Sample records for hamilton-zugangs zur yang-mills-theorie

  1. Holography and noncommutative yang-mills theory

    PubMed

    Li; Wu

    2000-03-06

    In this Letter a recently proposed gravity dual of noncommutative Yang-Mills theory is derived from the relations between closed string moduli and open string moduli recently suggested by Seiberg and Witten. The only new input one needs is a simple form of the running string tension as a function of energy. This derivation provides convincing evidence that string theory integrates with the holographical principle and demonstrates a direct link between noncommutative Yang-Mills theory and holography.

  2. Radiative double copy for Einstein-Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Chester, David

    2018-04-01

    Recently, a double-copy formalism was used to calculate gravitational radiation from classical Yang-Mills radiation solutions. This work shows that the Yang-Mills theory coupled to a biadjoint scalar field admits a radiative double copy that agrees with solutions in the Einstein-Yang-Mills theory at the lowest finite order. Within this context, the trace-reversed metric h¯μ ν is a natural double copy of the gauge boson Aμ a . This work provides additional evidence that solutions in gauge and gravity theories are related, even though their respective Lagrangians and nonlinear equations of motion appear to be different.

  3. Deconfinement in Yang-Mills Theory through Toroidal Compactification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simic, Dusan; Unsal, Mithat; /Stanford U., Phys. Dept. /SLAC

    2011-08-12

    We introduce field theory techniques through which the deconfinement transition of four-dimensional Yang-Mills theory can be moved to a semi-classical domain where it becomes calculable using two-dimensional field theory. We achieve this through a double-trace deformation of toroidally compactified Yang-Mills theory on R{sup 2} x S{sub L}{sup 1} x S{sub {beta}}{sup 1}. At large N, fixed-L, and arbitrary {beta}, the thermodynamics of the deformed theory is equivalent to that of ordinary Yang-Mills theory at leading order in the large N expansion. At fixed-N, small L and a range of {beta}, the deformed theory maps to a two-dimensional theory with electricmore » and magnetic (order and disorder) perturbations, analogs of which appear in planar spin-systems and statistical physics. We show that in this regime the deconfinement transition is driven by the competition between electric and magnetic perturbations in this two-dimensional theory. This appears to support the scenario proposed by Liao and Shuryak regarding the magnetic component of the quark-gluon plasma at RHIC.« less

  4. Masslessness of ghosts in equivariantly gauge-fixed Yang-Mills theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golterman, Maarten; Zimmerman, Leah

    2005-06-01

    We show that the one-loop ghost self-energy in an equivariantly gauge-fixed Yang-Mills theory vanishes at zero momentum. A ghost mass is forbidden by equivariant BRST symmetry, and our calculation confirms this explicitly. The four-ghost self interaction which appears in the equivariantly gauge-fixed Yang-Mills theory is needed in order to obtain this result.

  5. Super Yang-Mills theory with impurity walls and instanton moduli spaces

    NASA Astrophysics Data System (ADS)

    Cherkis, Sergey A.; O'Hara, Clare; Sämann, Christian

    2011-06-01

    We explore maximally supersymmetric Yang-Mills theory with walls of impurities respecting half of the supersymmetries. The walls carry fundamental or bifundamental matter multiplets. We employ three-dimensional N=2 superspace language to identify the Higgs branch of this theory. We find that the vacuum conditions determining the Higgs branch are exactly the bow equations yielding Yang-Mills instantons on a multi-Taub-NUT space. Under electric-magnetic duality, the super Yang-Mills theory describing the bulk is mapped to itself, while the fundamental- and bifundamental-carrying impurity walls are interchanged. We perform a one-loop computation on the Coulomb branch of the dual theory to find the asymptotic metric on the original Higgs branch.

  6. Perturbation Theory of Massive Yang-Mills Fields

    DOE R&D Accomplishments Database

    Veltman, M.

    1968-08-01

    Perturbation theory of massive Yang-Mills fields is investigated with the help of the Bell-Treiman transformation. Diagrams containing one closed loop are shown to be convergent if there are more than four external vector boson lines. The investigation presented does not exclude the possibility that the theory is renormalizable.

  7. YANG-MILLS Theory in, Beyond, and Behind Observed Reality

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    The primary interactions of Yang-Mills theory [1] are visibly embodied in hard processes, most directly in jets. The character of jets also reflects the deep structure of effective charge, which is dominated by the influence of intrinsically non-Abelian gauge dynamics. These proven insights into fundamental physics ramify in many directions, and are far from being exhausted. I will discuss three rewarding explorations from my own experience, whose point of departure is the hard Yang-Mills interaction, and whose end is not yet in sight. Given an insight so profound and fruitful as Yang and Mills brought us, it is in order to try to consider its broadest implications, which I attempt at the end.

  8. Higgs Amplitudes from N=4 Supersymmetric Yang-Mills Theory.

    PubMed

    Brandhuber, Andreas; Kostacińska, Martyna; Penante, Brenda; Travaglini, Gabriele

    2017-10-20

    Higgs plus multigluon amplitudes in QCD can be computed in an effective Lagrangian description. In the infinite top-mass limit, an amplitude with a Higgs boson and n gluons is computed by the form factor of the operator TrF^{2}. Up to two loops and for three gluons, its maximally transcendental part is captured entirely by the form factor of the protected stress tensor multiplet operator T_{2} in N=4 supersymmetric Yang-Mills theory. The next order correction involves the calculation of the form factor of the higher-dimensional, trilinear operator TrF^{3}. We present explicit results at two loops for three gluons, including the subleading transcendental terms derived from a particular descendant of the Konishi operator that contains TrF^{3}. These are expressed in terms of a few universal building blocks already identified in earlier calculations. We show that the maximally transcendental part of this quantity, computed in nonsupersymmetric Yang-Mills theory, is identical to the form factor of another protected operator, T_{3}, in the maximally supersymmetric theory. Our results suggest that the maximally transcendental part of Higgs amplitudes in QCD can be entirely computed through N=4 super Yang-Mills theory.

  9. Analysis of Ward identities in supersymmetric Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Ali, Sajid; Bergner, Georg; Gerber, Henning; Montvay, Istvan; Münster, Gernot; Piemonte, Stefano; Scior, Philipp

    2018-05-01

    In numerical investigations of supersymmetric Yang-Mills theory on a lattice, the supersymmetric Ward identities are valuable for finding the critical value of the hopping parameter and for examining the size of supersymmetry breaking by the lattice discretisation. In this article we present an improved method for the numerical analysis of supersymmetric Ward identities, which takes into account the correlations between the various observables involved. We present the first complete analysis of supersymmetric Ward identities in N=1 supersymmetric Yang-Mills theory with gauge group SU(3). The results indicate that lattice artefacts scale to zero as O(a^2) towards the continuum limit in agreement with theoretical expectations.

  10. Confinement, holonomy, and correlated instanton-dyon ensemble: SU(2) Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Lopez-Ruiz, Miguel Angel; Jiang, Yin; Liao, Jinfeng

    2018-03-01

    The mechanism of confinement in Yang-Mills theories remains a challenge to our understanding of nonperturbative gauge dynamics. While it is widely perceived that confinement may arise from chromomagnetically charged gauge configurations with nontrivial topology, it is not clear what types of configurations could do that and how, in pure Yang-Mills and QCD-like (nonsupersymmetric) theories. Recently, a promising approach has emerged, based on statistical ensembles of dyons/anti-dyons that are constituents of instanton/anti-instanton solutions with nontrivial holonomy where the holonomy plays a vital role as an effective "Higgsing" mechanism. We report a thorough numerical investigation of the confinement dynamics in S U (2 ) Yang-Mills theory by constructing such a statistical ensemble of correlated instanton-dyons.

  11. Nonperturbative finite-temperature Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Cyrol, Anton K.; Mitter, Mario; Pawlowski, Jan M.; Strodthoff, Nils

    2018-03-01

    We present nonperturbative correlation functions in Landau-gauge Yang-Mills theory at finite temperature. The results are obtained from the functional renormalisation group within a self-consistent approximation scheme. In particular, we compute the magnetic and electric components of the gluon propagator, and the three- and four-gluon vertices. We also show the ghost propagator and the ghost-gluon vertex at finite temperature. Our results for the propagators are confronted with lattice simulations and our Debye mass is compared to hard thermal loop perturbation theory.

  12. A BRST gauge-fixing procedure for Yang Mills theory on sphere

    NASA Astrophysics Data System (ADS)

    Banerjee, Rabin; Deguchi, Shinichi

    2006-01-01

    A gauge-fixing procedure for the Yang-Mills theory on an n-dimensional sphere (or a hypersphere) is discussed in a systematic manner. We claim that Adler's gauge-fixing condition used in massless Euclidean QED on a hypersphere is not conventional because of the presence of an extra free index, and hence is unfavorable for the gauge-fixing procedure based on the BRST invariance principle (or simply BRST gauge-fixing procedure). Choosing a suitable gauge condition, which is proved to be equivalent to a generalization of Adler's condition, we apply the BRST gauge-fixing procedure to the Yang-Mills theory on a hypersphere to obtain consistent results. Field equations for the Yang-Mills field and associated fields are derived in manifestly O (n + 1) covariant or invariant forms. In the large radius limit, these equations reproduce the corresponding field equations defined on the n-dimensional flat space.

  13. Yangian Symmetry and Integrability of Planar N=4 Supersymmetric Yang-Mills Theory.

    PubMed

    Beisert, Niklas; Garus, Aleksander; Rosso, Matteo

    2017-04-07

    In this Letter, we establish Yangian symmetry of planar N=4 supersymmetric Yang-Mills theory. We prove that the classical equations of motion of the model close onto themselves under the action of Yangian generators. Moreover, we propose an off-shell extension of our statement, which is equivalent to the invariance of the action and prove that it is exactly satisfied. We assert that our relationship serves as a criterion for integrability in planar gauge theories by explicitly checking that it applies to the integrable Aharony-Bergman-Jafferis-Maldacena theory but not to the nonintegrable N=1 supersymmetric Yang-Mills theory.

  14. Phase transitions in Yang-Mills theories and their gravity duals

    NASA Astrophysics Data System (ADS)

    Marsano, Joseph Daniel

    This thesis is a study of the thermal phase structure of systems that admit dual gauge theory and string theory descriptions. In a pair of examples, we explore the connection between perturbative Yang-Mills and gravitational thermodynamics which arises from the fact that these descriptions probe different corners of a single phase diagram. The structure that emerges from a detailed study of these isolated regions generally suggests a natural conjecture how they may be connected to one another within the full phase diagram. This permits the identification of interesting phenomena in the gauge and gravity regimes under a continuous change in parameters. We begin by studying the AdS5/CFT 4 system which, when the supergravity description is valid, exhibits a first order Hawking-Page phase transition as a function of temperature from a thermal gas of gravitons to a large black hole. In the perturbative Yang-Mills regime, we find that the free theory exhibits a weakly first order deconfinement transition whose precise nature at small nonzero coupling depends on the result of a nontrivial perturbative computation. It is conjectured that this deconfinement transition is continuously connected in the full phase diagram to the Hawking-Page transition at strong coupling, with the confined phase identified with the graviton gas and the deconfined phase identified with the black hole. We then turn to the study of Gregory-Laflamme (GL) black hole/black string transitions in supergravity and their realization in a setup that admits a dual description via the maximally supersymmetric Yang-Mills theory on T2. The thermodynamics of Yang-Mills theories on low dimensional tori is studied in detail revealing an intricate structure of which the GL transition at strong coupling is a small piece. We are led to conjecture that GL physics is continuously connected to deconfinement in maximally supersymmetric 0 + 1-dimensional gauged matrix quantum mechanics. This identification will then

  15. Glueball spectra from a matrix model of pure Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Acharyya, Nirmalendu; Balachandran, A. P.; Pandey, Mahul; Sanyal, Sambuddha; Vaidya, Sachindeo

    2018-05-01

    We present variational estimates for the low-lying energies of a simple matrix model that approximates SU(3) Yang-Mills theory on a three-sphere of radius R. By fixing the ground state energy, we obtain the (integrated) renormalization group (RG) equation for the Yang-Mills coupling g as a function of R. This RG equation allows to estimate the mass of other glueball states, which we find to be in excellent agreement with lattice simulations.

  16. Continuum strong-coupling expansion of Yang-Mills theory: quark confinement and infra-red slavery

    NASA Astrophysics Data System (ADS)

    Mansfield, Paul

    1994-04-01

    We solve Schrödinger's equation for the ground-state of four-dimensional Yang-Mills theory as an expansion in inverse powers of the coupling. Expectation values computed with the leading-order approximation are reduced to a calculation in two-dimensional Yang-Mills theory which is known to confine. Consequently the Wilson loop in the four-dimensional theory obeys an area law to leading order and the coupling becomes infinite as the mass scale goes to zero.

  17. N =2 super Yang-Mills theory in projective superspace

    NASA Astrophysics Data System (ADS)

    Davgadorj, Ariunzul; von Unge, Rikard

    2018-05-01

    We find a formulation of N =2 supersymmetric Yang-Mills theory in projective superspace. In particular we find an expression for the field strength in terms of an unconstrained prepotential which is desirable when quantizing the theory. We use this to write the action in terms of the prepotential and show that it reduces to the known result in the Abelian limit.

  18. Koopman-von Neumann formulation of classical Yang-Mills theories: I

    NASA Astrophysics Data System (ADS)

    Carta, P.; Gozzi, E.; Mauro, D.

    2006-03-01

    In this paper we present the Koopman-von Neumann (KvN) formulation of classical non-Abelian gauge field theories. In particular we shall explore the functional (or classical path integral) counterpart of the KvN method. In the quantum path integral quantization of Yang-Mills theories concepts like gauge-fixing and Faddeev-Popov determinant appear in a quite natural way. We will prove that these same objects are needed also in this classical path integral formulation for Yang-Mills theories. We shall also explore the classical path integral counterpart of the BFV formalism and build all the associated universal and gauge charges. These last are quite different from the analog quantum ones and we shall show the relation between the two. This paper lays the foundation of this formalism which, due to the many auxiliary fields present, is rather heavy. Applications to specific topics outlined in the paper will appear in later publications.

  19. Explicit formulae for Yang-Mills-Einstein amplitudes from the double copy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik

    Using the double-copy construction of Yang-Mills-Einstein theories formulated in our earlier work, we obtain compact presentations for single-trace Yang-Mills-Einstein tree amplitudes with up to five external gravitons and an arbitrary number of gluons. These are written as linear combinations of color-ordered Yang-Mills trees, where the coefficients are given by color/kinematics-satisfying numerators in a Yang-Mills + φ 3 theory. The construction outlined in this paper holds in general dimension and extends straightforwardly to supergravity theories. For one, two, and three external gravitons, our expressions give identical or simpler presentations of amplitudes already constructed through string-theory considerations or the scattering equations formalism.more » Our results are based on color/kinematics duality and gauge invariance, and strongly hint at a recursive structure underlying the single-trace amplitudes with an arbitrary number of gravitons. We also present explicit expressions for all-loop single-graviton Einstein-Yang-Mills amplitudes in terms of Yang-Mills amplitudes and, through gauge invariance, derive new all-loop amplitude relations for Yang-Mills theory.« less

  20. Explicit formulae for Yang-Mills-Einstein amplitudes from the double copy

    DOE PAGES

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik; ...

    2017-07-03

    Using the double-copy construction of Yang-Mills-Einstein theories formulated in our earlier work, we obtain compact presentations for single-trace Yang-Mills-Einstein tree amplitudes with up to five external gravitons and an arbitrary number of gluons. These are written as linear combinations of color-ordered Yang-Mills trees, where the coefficients are given by color/kinematics-satisfying numerators in a Yang-Mills + φ 3 theory. The construction outlined in this paper holds in general dimension and extends straightforwardly to supergravity theories. For one, two, and three external gravitons, our expressions give identical or simpler presentations of amplitudes already constructed through string-theory considerations or the scattering equations formalism.more » Our results are based on color/kinematics duality and gauge invariance, and strongly hint at a recursive structure underlying the single-trace amplitudes with an arbitrary number of gravitons. We also present explicit expressions for all-loop single-graviton Einstein-Yang-Mills amplitudes in terms of Yang-Mills amplitudes and, through gauge invariance, derive new all-loop amplitude relations for Yang-Mills theory.« less

  1. Yang-Mills Theory at 60: Milestones, Landmarks and Interesting Questions

    NASA Astrophysics Data System (ADS)

    Chau, Ling-Lie

    On the auspicious occasion of celebrating the 60th anniversary of the Yang-Mills theory, and Professor Yang's many other important contributions to physics and mathematics, I will highlight the impressive milestones and landmarks that have been established in the last 60 years, as well as some interesting questions that are worthy of answers from future researches. The paper is written (without equations) for the interest of non-scientists as well as of scientists.

  2. Infrared propagators of Yang-Mills theory from perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tissier, Matthieu; Wschebor, Nicolas

    2010-11-15

    We show that the correlation functions of ghosts and gluons for the pure Yang-Mills theory in Landau gauge can be accurately reproduced for all momenta by a one-loop calculation. The key point is to use a massive extension of the Faddeev-Popov action. The agreement with lattice simulation is excellent in d=4. The one-loop calculation also reproduces all the characteristic features of the lattice simulations in d=3 and naturally explains the peculiarities of the propagators in d=2.

  3. N = 2* Yang-Mills on the Lattice

    NASA Astrophysics Data System (ADS)

    Joseph, Anosh

    2018-03-01

    The N = 2* Yang-Mills theory in four dimensions is a non-conformal theory that appears as a mass deformation of maximally supersymmetric N = 4 Yang-Mills theory. This theory also takes part in the AdS/CFT correspondence and its gravity dual is type IIB supergravity on the Pilch-Warner background. The finite temperature properties of this theory have been studied recently in the literature. It has been argued that at large N and strong coupling this theory exhibits no thermal phase transition at any nonzero temperature. The low temperature N = 2* plasma can be compared to the QCD plasma. We provide a lattice construction of N = 2* Yang-Mills on a hypercubic lattice starting from the N = 4 gauge theory. The lattice construction is local, gauge-invariant, free from fermion doubling problem and preserves a part of the supersymmetry. This nonperturbative formulation of the theory can be used to provide a highly nontrivial check of the AdS/CFT correspondence in a non-conformal theory.

  4. Discriminating between two reformulations of SU(3) Yang-Mills theory on a lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibata, Akihiro; Kondo, Kei-Ichi; Shinohara, Toru

    2016-01-22

    In order to investigate quark confinement, we give a new reformulation of the SU (N) Yang-Mills theory on a lattice and present the results of the numerical simulations of the SU (3) Yang-Mills theory on a lattice. The numerical simulations include the derivation of the linear potential for static interquark potential, i.e., non-vanishing string tension, in which the “Abelian” dominance and magnetic monopole dominance are established, confirmation of the dual Meissner effect by measuring the chromoelectric flux tube between quark-antiquark pair, the induced magnetic-monopole current, and the type of dual superconductivity, etc.

  5. Two-dimensional N = 2 Super-Yang-Mills Theory

    NASA Astrophysics Data System (ADS)

    August, Daniel; Wellegehausen, Björn; Wipf, Andreas

    2018-03-01

    Supersymmetry is one of the possible scenarios for physics beyond the standard model. The building blocks of this scenario are supersymmetric gauge theories. In our work we study the N = 1 Super-Yang-Mills (SYM) theory with gauge group SU(2) dimensionally reduced to two-dimensional N = 2 SYM theory. In our lattice formulation we break supersymmetry and chiral symmetry explicitly while preserving R symmetry. By fine tuning the bar-mass of the fermions in the Lagrangian we construct a supersymmetric continuum theory. To this aim we carefully investigate mass spectra and Ward identities, which both show a clear signal of supersymmetry restoration in the continuum limit.

  6. Perturbative Yang-Mills theory without Faddeev-Popov ghost fields

    NASA Astrophysics Data System (ADS)

    Huffel, Helmuth; Markovic, Danijel

    2018-05-01

    A modified Faddeev-Popov path integral density for the quantization of Yang-Mills theory in the Feynman gauge is discussed, where contributions of the Faddeev-Popov ghost fields are replaced by multi-point gauge field interactions. An explicit calculation to O (g2) shows the equivalence of the usual Faddeev-Popov scheme and its modified version.

  7. Nonminimal Einstein-Yang-Mills-Higgs theory: Associated, color, and color-acoustic metrics for the Wu-Yang monopole model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakin, A. B.; Zayats, A. E.; Dehnen, H.

    2007-12-15

    We discuss a nonminimal Einstein-Yang-Mills-Higgs model with uniaxial anisotropy in the group space associated with the Higgs field. We apply this theory to the problem of propagation of color and color-acoustic waves in the gravitational background related to the nonminimal regular Wu-Yang monopole.

  8. Supersymmetric tools in Yang-Mills theories at strong coupling: The beginning of a long journey

    NASA Astrophysics Data System (ADS)

    Shifman, Mikhail

    2018-04-01

    Development of holomorphy-based methods in super-Yang-Mills theories started in the early 1980s and lead to a number of breakthrough results. I review some results in which I participated. The discovery of Seiberg’s duality and the Seiberg-Witten solution of 𝒩 = 2 Yang-Mills were the milestones in the long journey of which, I assume, much will be said in other talks. I will focus on the discovery (2003) of non-Abelian vortex strings with various degrees of supersymmetry, supported in some four-dimensional Yang-Mills theories and some intriguing implications of this discovery. One of the recent results is the observation of a soliton string in the bulk 𝒩 = 2 theory with the U(2) gauge group and four flavors, which can become critical in a certain limit. This is the case of a “reverse holography,” with a very transparent physical meaning.

  9. Multiscale Monte Carlo equilibration: Pure Yang-Mills theory

    DOE PAGES

    Endres, Michael G.; Brower, Richard C.; Orginos, Kostas; ...

    2015-12-29

    In this study, we present a multiscale thermalization algorithm for lattice gauge theory, which enables efficient parallel generation of uncorrelated gauge field configurations. The algorithm combines standard Monte Carlo techniques with ideas drawn from real space renormalization group and multigrid methods. We demonstrate the viability of the algorithm for pure Yang-Mills gauge theory for both heat bath and hybrid Monte Carlo evolution, and show that it ameliorates the problem of topological freezing up to controllable lattice spacing artifacts.

  10. S-duality in SU(3) Yang-Mills theory with non-abelian unbroken gauge group

    NASA Astrophysics Data System (ADS)

    Schroers, B. J.; Bais, F. A.

    1998-12-01

    It is observed that the magnetic charges of classical monopole solutions in Yang-Mills-Higgs theory with non-abelian unbroken gauge group H are in one-to-one correspondence with coherent states of a dual or magnetic group H˜. In the spirit of the Goddard-Nuyts-Olive conjecture this observation is interpreted as evidence for a hidden magnetic symmetry of Yang-Mills theory. SU(3) Yang-Mills-Higgs theory with unbroken gauge group U(2) is studied in detail. The action of the magnetic group on semi-classical states is given explicitly. Investigations of dyonic excitations show that electric and magnetic symmetry are never manifest at the same time: Non-abelian magnetic charge obstructs the realisation of electric symmetry and vice-versa. On the basis of this fact the charge sectors in the theory are classified and their fusion rules are discussed. Non-abelian electric-magnetic duality is formulated as a map between charge sectors. Coherent states obey particularly simple fusion rules, and in the set of coherent states S-duality can be formulated as an SL(2, Z) mapping between sectors which leaves the fusion rules invariant.

  11. Spontaneously broken Yang-Mills-Einstein supergravities as double copies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik

    Color/kinematics duality and the double-copy construction have proved to be systematic tools for gaining new insight into gravitational theories. Extending our earlier work, in this article we introduce new double-copy constructions for large classes of spontaneously-broken Yang-Mills-Einstein theories with adjoint Higgs elds. One gaugetheory copy entering the construction is a spontaneously-broken (super-)Yang-Mills theory, while the other copy is a bosonic Yang-Mills-scalar theory with trilinear scalar interactions that display an explicitly-broken global symmetry. We show that the kinematic numerators of these gauge theories can be made to obey color/kinematics duality by exhibiting particular additional Lie-algebraic relations. We discuss in detail explicitmore » examples with N = 2 supersymmetry, focusing on Yang-Mills-Einstein supergravity theories belonging to the generic Jordan family in four and five dimensions, and identify the map between the supergravity and double-copy elds and parameters. We also briefly discuss the application of our results to N = 4 supergravity theories. The constructions are illustrated by explicit examples of tree-level and one-loop scattering amplitudes.« less

  12. Spontaneously broken Yang-Mills-Einstein supergravities as double copies

    DOE PAGES

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik; ...

    2017-06-13

    Color/kinematics duality and the double-copy construction have proved to be systematic tools for gaining new insight into gravitational theories. Extending our earlier work, in this article we introduce new double-copy constructions for large classes of spontaneously-broken Yang-Mills-Einstein theories with adjoint Higgs elds. One gaugetheory copy entering the construction is a spontaneously-broken (super-)Yang-Mills theory, while the other copy is a bosonic Yang-Mills-scalar theory with trilinear scalar interactions that display an explicitly-broken global symmetry. We show that the kinematic numerators of these gauge theories can be made to obey color/kinematics duality by exhibiting particular additional Lie-algebraic relations. We discuss in detail explicitmore » examples with N = 2 supersymmetry, focusing on Yang-Mills-Einstein supergravity theories belonging to the generic Jordan family in four and five dimensions, and identify the map between the supergravity and double-copy elds and parameters. We also briefly discuss the application of our results to N = 4 supergravity theories. The constructions are illustrated by explicit examples of tree-level and one-loop scattering amplitudes.« less

  13. Callan-Symanzik equations for infrared Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Weber, Axel; Dall'Olio, Pietro

    2017-12-01

    Dyson-Schwinger equations have been successful in determining the correlation functions in Yang-Mills theory in the Landau gauge, in the infrared regime. We argue that similar results can be obtained, in a technically simpler way, with Callan-Symanzik renormalization group equations. We present generalizations of the infrared safe renormalization scheme proposed by Tissier and Wschebor in 2011, and show how the renormalization scheme dependence can be used to improve the matching to the existing lattice data for the gluon and ghost propagators.

  14. Yang-Mills theory and the ABC conjecture

    NASA Astrophysics Data System (ADS)

    He, Yang-Hui; Hu, Zhi; Probst, Malte; Read, James

    2018-05-01

    We establish a precise correspondence between the ABC Conjecture and 𝒩 = 4 super-Yang-Mills theory. This is achieved by combining three ingredients: (i) Elkies’ method of mapping ABC-triples to elliptic curves in his demonstration that ABC implies Mordell/Faltings; (ii) an explicit pair of elliptic curve and associated Belyi map given by Khadjavi-Scharaschkin; and (iii) the fact that the bipartite brane-tiling/dimer model for a gauge theory with toric moduli space is a particular dessin d’enfant in the sense of Grothendieck. We explore this correspondence for the highest quality ABC-triples as well as large samples of random triples. The conjecture itself is mapped to a statement about the fundamental domain of the toroidal compactification of the string realization of 𝒩 = 4 SYM.

  15. Calculating the jet quenching parameter in the plasma of noncommutative Yang-Mills theory from gauge/gravity duality

    NASA Astrophysics Data System (ADS)

    Chakraborty, Somdeb; Roy, Shibaji

    2012-02-01

    A particular decoupling limit of the nonextremal (D1, D3) brane bound state system of type IIB string theory is known to give the gravity dual of space-space noncommutative Yang-Mills theory at finite temperature. We use a string probe in this background to compute the jet quenching parameter in a strongly coupled plasma of hot noncommutative Yang-Mills theory in (3+1) dimensions from gauge/gravity duality. We give expressions for the jet quenching parameter for both small and large noncommutativity. For small noncommutativity, we find that the value of the jet quenching parameter gets reduced from its commutative value. The reduction is enhanced with temperature as T7 for fixed noncommutativity and fixed ’t Hooft coupling. We also give an estimate of the correction due to noncommutativity at the present collider energies like in RHIC or in LHC and find it too small to be detected. We further generalize the results for noncommutative Yang-Mills theories in diverse dimensions.

  16. BRST quantization of Yang-Mills theory: A purely Hamiltonian approach on Fock space

    NASA Astrophysics Data System (ADS)

    Öttinger, Hans Christian

    2018-04-01

    We develop the basic ideas and equations for the BRST quantization of Yang-Mills theories in an explicit Hamiltonian approach, without any reference to the Lagrangian approach at any stage of the development. We present a new representation of ghost fields that combines desirable self-adjointness properties with canonical anticommutation relations for ghost creation and annihilation operators, thus enabling us to characterize the physical states on a well-defined Fock space. The Hamiltonian is constructed by piecing together simple BRST invariant operators to obtain a minimal invariant extension of the free theory. It is verified that the evolution equations implied by the resulting minimal Hamiltonian provide a quantum version of the classical Yang-Mills equations. The modifications and requirements for the inclusion of matter are discussed in detail.

  17. Width of the confining string in Yang-Mills theory.

    PubMed

    Gliozzi, F; Pepe, M; Wiese, U-J

    2010-06-11

    We investigate the transverse fluctuations of the confining string connecting two static quarks in (2+1)D SU(2) Yang-Mills theory using Monte Carlo calculations. The exponentially suppressed signal is extracted from the large noise by a very efficient multilevel algorithm. The resulting width of the string increases logarithmically with the distance between the static quark charges. Corrections at intermediate distances due to universal higher-order terms in the effective string action are calculated analytically. They accurately fit the numerical data.

  18. Reformulations of the Yang-Mills theory toward quark confinement and mass gap

    NASA Astrophysics Data System (ADS)

    Kondo, Kei-Ichi; Kato, Seikou; Shibata, Akihiro; Shinohara, Toru

    2016-01-01

    We propose the reformulations of the SU (N) Yang-Mills theory toward quark confinement and mass gap. In fact, we have given a new framework for reformulating the SU (N) Yang-Mills theory using new field variables. This includes the preceding works given by Cho, Faddeev and Niemi, as a special case called the maximal option in our reformulations. The advantage of our reformulations is that the original non-Abelian gauge field variables can be changed into the new field variables such that one of them called the restricted field gives the dominant contribution to quark confinement in the gauge-independent way. Our reformulations can be combined with the SU (N) extension of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the Wilson loop operator to give a gauge-invariant definition for the magnetic monopole in the SU (N) Yang-Mills theory without the scalar field. In the so-called minimal option, especially, the restricted field is non-Abelian and involves the non-Abelian magnetic monopole with the stability group U (N- 1). This suggests the non-Abelian dual superconductivity picture for quark confinement. This should be compared with the maximal option: the restricted field is Abelian and involves only the Abelian magnetic monopoles with the stability group U(1)N-1, just like the Abelian projection. We give some applications of this reformulation, e.g., the stability for the homogeneous chromomagnetic condensation of the Savvidy type, the large N treatment for deriving the dimensional transmutation and understanding the mass gap, and also the numerical simulations on a lattice which are given by Dr. Shibata in a subsequent talk.

  19. Reformulations of the Yang-Mills theory toward quark confinement and mass gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondo, Kei-Ichi; Shinohara, Toru; Kato, Seikou

    2016-01-22

    We propose the reformulations of the SU (N) Yang-Mills theory toward quark confinement and mass gap. In fact, we have given a new framework for reformulating the SU (N) Yang-Mills theory using new field variables. This includes the preceding works given by Cho, Faddeev and Niemi, as a special case called the maximal option in our reformulations. The advantage of our reformulations is that the original non-Abelian gauge field variables can be changed into the new field variables such that one of them called the restricted field gives the dominant contribution to quark confinement in the gauge-independent way. Our reformulationsmore » can be combined with the SU (N) extension of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the Wilson loop operator to give a gauge-invariant definition for the magnetic monopole in the SU (N) Yang-Mills theory without the scalar field. In the so-called minimal option, especially, the restricted field is non-Abelian and involves the non-Abelian magnetic monopole with the stability group U (N− 1). This suggests the non-Abelian dual superconductivity picture for quark confinement. This should be compared with the maximal option: the restricted field is Abelian and involves only the Abelian magnetic monopoles with the stability group U(1){sup N−1}, just like the Abelian projection. We give some applications of this reformulation, e.g., the stability for the homogeneous chromomagnetic condensation of the Savvidy type, the large N treatment for deriving the dimensional transmutation and understanding the mass gap, and also the numerical simulations on a lattice which are given by Dr. Shibata in a subsequent talk.« less

  20. Wess-Zumino and super Yang-Mills theories in D=4 integral superspace

    NASA Astrophysics Data System (ADS)

    Castellani, L.; Catenacci, R.; Grassi, P. A.

    2018-05-01

    We reconstruct the action of N = 1 , D = 4 Wess-Zumino and N = 1 , 2 , D = 4 super-Yang-Mills theories, using integral top forms on the supermanifold M^{(.4|4)} . Choosing different Picture Changing Operators, we show the equivalence of their rheonomic and superspace actions. The corresponding supergeometry and integration theory are discussed in detail. This formalism is an efficient tool for building supersymmetric models in a geometrical framework.

  1. Bäcklund Transformations in 10D SUSY Yang-Mills Theories

    NASA Astrophysics Data System (ADS)

    Gervais, Jean-Loup

    A Bäcklund transformation is derived for the Yang's type (super) equations previously derived (hep-th/9811108) by M. Saveliev and the author, from the ten-dimensional super-Yang-Mills field equations in an on-shell light cone gauge. It is shown to be based upon a particular gauge transformation satisfying nonlinear conditions which ensure that the equations retain the same form. These Yang's type field equations are shown to be precisely such that they automatically provide a solution of these conditions. This Bäcklund transformation is similar to the one proposed by A. Leznov for self-dual Yang-Mills in four dimensions. In the introduction a personal recollection on the birth of supersymmetry is given.

  2. From SL(5, ℝ) Yang-Mills theory to induced gravity

    NASA Astrophysics Data System (ADS)

    Assimos, T. S.; Pereira, A. D.; Santos, T. R. S.; Sobreiro, R. F.; Tomaz, A. A.; Otoya, V. J. Vasquez

    From pure Yang-Mills action for the SL(5, ℝ) group in four Euclidean dimensions we obtain a gravity theory in the first order formalism. Besides the Einstein-Hilbert term, the effective gravity has a cosmological constant term, a curvature squared term, a torsion squared term and a matter sector. To obtain such geometrodynamical theory, asymptotic freedom and the Gribov parameter (soft BRST symmetry breaking) are crucial. Particularly, Newton and cosmological constant are related to these parameters and they also run as functions of the energy scale. One-loop computations are performed and the results are interpreted.

  3. Quantum Yang-Mills Dark Energy

    NASA Astrophysics Data System (ADS)

    Pasechnik, Roman

    2016-02-01

    In this short review, I discuss basic qualitative characteristics of quantum non-Abelian gauge dynamics in the non-stationary background of the expanding Universe in the framework of the standard Einstein--Yang--Mills formulation. A brief outlook of existing studies of cosmological Yang--Mills fields and their properties will be given. Quantum effects have a profound impact on the gauge field-driven cosmological evolution. In particular, a dynamical formation of the spatially-homogeneous and isotropic gauge field condensate may be responsible for both early and late-time acceleration, as well as for dynamical compensation of non-perturbative quantum vacua contributions to the ground state of the Universe. The main properties of such a condensate in the effective QCD theory at the flat Friedmann--Lema\\'itre--Robertson--Walker (FLRW) background will be discussed within and beyond perturbation theory. Finally, a phenomenologically consistent dark energy can be induced dynamically as a remnant of the QCD vacua compensation arising from leading-order graviton-mediated corrections to the QCD ground state.

  4. No-go for partially massless spin-2 Yang-Mills

    DOE PAGES

    Garcia-Saenz, Sebastian; Hinterbichler, Kurt; Joyce, Austin; ...

    2016-02-05

    There are various no-go results forbidding self-interactions for a single partially massless spin-2 field. Given the photon-like structure of the linear partially massless field, it is natural to ask whether a multiplet of such fields can interact under an internal Yang-Mills like extension of the partially massless symmetry. In this paper, we give two arguments that such a partially massless Yang-Mills theory does not exist. The first is that there is no Yang-Mills like non-abelian deformation of the partially massless symmetry, and the second is that cubic vertices with the appropriate structure constants do not exist.

  5. Non-Abelian sigma models from Yang-Mills theory compactified on a circle

    NASA Astrophysics Data System (ADS)

    Ivanova, Tatiana A.; Lechtenfeld, Olaf; Popov, Alexander D.

    2018-06-01

    We consider SU(N) Yang-Mills theory on R 2 , 1 ×S1, where S1 is a spatial circle. In the infrared limit of a small-circle radius the Yang-Mills action reduces to the action of a sigma model on R 2 , 1 whose target space is a 2 (N - 1)-dimensional torus modulo the Weyl-group action. We argue that there is freedom in the choice of the framing of the gauge bundles, which leads to more general options. In particular, we show that this low-energy limit can give rise to a target space SU (N) ×SU (N) /ZN. The latter is the direct product of SU(N) and its Langlands dual SU (N) /ZN, and it contains the above-mentioned torus as its maximal Abelian subgroup. An analogous result is obtained for any non-Abelian gauge group.

  6. Solution to the nonlinear field equations of ten dimensional supersymmetric Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Mafra, Carlos R.; Schlotterer, Oliver

    2015-09-01

    In this paper, we present a formal solution to the nonlinear field equations of ten-dimensional super Yang-Mills theory. It is assembled from products of linearized superfields which have been introduced as multiparticle superfields in the context of superstring perturbation theory. Their explicit form follows recursively from the conformal field theory description of the gluon multiplet in the pure spinor superstring. Furthermore, superfields of higher-mass dimensions are defined and their equations of motion are spelled out.

  7. Quark confinement: Dual superconductor picture based on a non-Abelian Stokes theorem and reformulations of Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Kondo, Kei-Ichi; Kato, Seikou; Shibata, Akihiro; Shinohara, Toru

    2015-05-01

    The purpose of this paper is to review the recent progress in understanding quark confinement. The emphasis of this review is placed on how to obtain a manifestly gauge-independent picture for quark confinement supporting the dual superconductivity in the Yang-Mills theory, which should be compared with the Abelian projection proposed by 't Hooft. The basic tools are novel reformulations of the Yang-Mills theory based on change of variables extending the decomposition of the SU(N) Yang-Mills field due to Cho, Duan-Ge and Faddeev-Niemi, together with the combined use of extended versions of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the SU(N) Wilson loop operator. Moreover, we give the lattice gauge theoretical versions of the reformulation of the Yang-Mills theory which enables us to perform the numerical simulations on the lattice. In fact, we present some numerical evidences for supporting the dual superconductivity for quark confinement. The numerical simulations include the derivation of the linear potential for static interquark potential, i.e., non-vanishing string tension, in which the "Abelian" dominance and magnetic monopole dominance are established, confirmation of the dual Meissner effect by measuring the chromoelectric flux tube between quark-antiquark pair, the induced magnetic-monopole current, and the type of dual superconductivity, etc. In addition, we give a direct connection between the topological configuration of the Yang-Mills field such as instantons/merons and the magnetic monopole. We show especially that magnetic monopoles in the Yang-Mills theory can be constructed in a manifestly gauge-invariant way starting from the gauge-invariant Wilson loop operator and thereby the contribution from the magnetic monopoles can be extracted from the Wilson loop in a gauge-invariant way through the non-Abelian Stokes theorem for the Wilson loop operator, which is a prerequisite for exhibiting magnetic monopole dominance for quark

  8. AdS/CFT correspondence, quasinormal modes, and thermal correlators in N=4 supersymmetric Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Núñez, Alvaro; Starinets, Andrei O.

    2003-06-01

    We use the Lorentzian AdS/CFT prescription to find the poles of the retarded thermal Green’s functions of N=4 SU(N) supersymmetric Yang-Mills theory in the limit of large N and large ’t Hooft coupling. In the process, we propose a natural definition for quasinormal modes in an asymptotically AdS spacetime, with boundary conditions dictated by the AdS/CFT correspondence. The corresponding frequencies determine the dispersion laws for the quasiparticle excitations in the dual finite-temperature gauge theory. Correlation functions of operators dual to massive scalar, vector and gravitational perturbations in a five-dimensional AdS-Schwarzschild background are considered. We find asymptotic formulas for quasinormal frequencies in the massive scalar and tensor cases, and an exact expression for vector perturbations. In the long-distance, low-frequency limit we recover results of the hydrodynamic approximation to thermal Yang-Mills theory.

  9. HYM-flation: Yang-Mills cosmology with Horndeski coupling

    NASA Astrophysics Data System (ADS)

    Davydov, E.; Gal'tsov, D.

    2016-02-01

    We propose new mechanism for inflation using classical SU (2) Yang-Mills (YM) homogeneous and isotropic field non-minimally coupled to gravity via Horndeski prescription. This is the unique generally and gauge covariant ghost-free YM theory with the curvature-dependent action leading to second-order gravity and Yang-Mills field equations. We show that its solution space contains de Sitter boundary to which the trajectories are attracted for some finite time, ensuring the robust inflation with a graceful exit. The theory can be generalized to include the Higgs field leading to two-steps inflationary scenario, in which the Planck-scale YM-generated inflation naturally prepares the desired initial conditions for the GUT-scale Higgs inflation.

  10. Asymptotically flat, stable black hole solutions in Einstein-Yang-Mills-Chern-Simons theory.

    PubMed

    Brihaye, Yves; Radu, Eugen; Tchrakian, D H

    2011-02-18

    We construct finite mass, asymptotically flat black hole solutions in d=5 Einstein-Yang-Mills-Chern-Simons theory. Our results indicate the existence of a second order phase transition between Reissner-Nordström solutions and the non-Abelian black holes which generically are thermodynamically preferred. Some of the non-Abelian configurations are also stable under linear, spherically symmetric perturbations.

  11. Is the ground state of Yang-Mills theory Coulombic?

    NASA Astrophysics Data System (ADS)

    Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; Lutz, W.; McMullan, D.

    2008-08-01

    We study trial states modelling the heavy quark-antiquark ground state in SU(2) Yang-Mills theory. A state describing the flux tube between quarks as a thin string of glue is found to be a poor description of the continuum ground state; the infinitesimal thickness of the string leads to UV artifacts which suppress the overlap with the ground state. Contrastingly, a state which surrounds the quarks with non-Abelian Coulomb fields is found to have a good overlap with the ground state for all charge separations. In fact, the overlap increases as the lattice regulator is removed. This opens up the possibility that the Coulomb state is the true ground state in the continuum limit.

  12. Gravitational catalysis of merons in Einstein-Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Canfora, Fabrizio; Oh, Seung Hun; Salgado-Rebolledo, Patricio

    2017-10-01

    We construct regular configurations of the Einstein-Yang-Mills theory in various dimensions. The gauge field is of meron-type: it is proportional to a pure gauge (with a suitable parameter λ determined by the field equations). The corresponding smooth gauge transformation cannot be deformed continuously to the identity. In the three-dimensional case we consider the inclusion of a Chern-Simons term into the analysis, allowing λ to be different from its usual value of 1 /2 . In four dimensions, the gravitating meron is a smooth Euclidean wormhole interpolating between different vacua of the theory. In five and higher dimensions smooth meron-like configurations can also be constructed by considering warped products of the three-sphere and lower-dimensional Einstein manifolds. In all cases merons (which on flat spaces would be singular) become regular due to the coupling with general relativity. This effect is named "gravitational catalysis of merons".

  13. Scattering amplitudes in $$\\mathcal{N}=2 $$ Maxwell-Einstein and Yang-Mills/Einstein supergravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiodaroli, Marco; Gunaydin, Murat; Johansson, Henrik

    We expose a double-copy structure in the scattering amplitudes of the generic Jordan family of N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravity theories in four and five dimensions. The Maxwell-Einstein supergravity amplitudes are obtained through the color/kinematics duality as a product of two gauge-theory factors; one originating from pure N = 2 super-Yang-Mills theory and the other from the dimensional reduction of a bosonic higher-dimensional pure Yang-Mills theory. We identify a specific symplectic frame in four dimensions for which the on-shell fields and amplitudes from the double-copy construction can be identified with the ones obtained from the supergravity Lagrangian andmore » Feynman-rule computations. The Yang-Mills/Einstein supergravity theories are obtained by gauging a compact subgroup of the isometry group of their Maxwell-Einstein counterparts. For the generic Jordan family this process is identified with the introduction of cubic scalar couplings on the bosonic gauge-theory side, which through the double copy are responsible for the non-abelian vector interactions in the supergravity theory. As a demonstration of the power of this structure, we present explicit computations at treelevel and one loop. Lastly, the double-copy construction allows us to obtain compact expressions for the supergravity superamplitudes, which are naturally organized as polynomials in the gauge coupling constant.« less

  14. Scattering amplitudes in $$\\mathcal{N}=2 $$ Maxwell-Einstein and Yang-Mills/Einstein supergravity

    DOE PAGES

    Chiodaroli, Marco; Gunaydin, Murat; Johansson, Henrik; ...

    2015-01-15

    We expose a double-copy structure in the scattering amplitudes of the generic Jordan family of N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravity theories in four and five dimensions. The Maxwell-Einstein supergravity amplitudes are obtained through the color/kinematics duality as a product of two gauge-theory factors; one originating from pure N = 2 super-Yang-Mills theory and the other from the dimensional reduction of a bosonic higher-dimensional pure Yang-Mills theory. We identify a specific symplectic frame in four dimensions for which the on-shell fields and amplitudes from the double-copy construction can be identified with the ones obtained from the supergravity Lagrangian andmore » Feynman-rule computations. The Yang-Mills/Einstein supergravity theories are obtained by gauging a compact subgroup of the isometry group of their Maxwell-Einstein counterparts. For the generic Jordan family this process is identified with the introduction of cubic scalar couplings on the bosonic gauge-theory side, which through the double copy are responsible for the non-abelian vector interactions in the supergravity theory. As a demonstration of the power of this structure, we present explicit computations at treelevel and one loop. Lastly, the double-copy construction allows us to obtain compact expressions for the supergravity superamplitudes, which are naturally organized as polynomials in the gauge coupling constant.« less

  15. Loop quantum corrected Einstein Yang-Mills black holes

    NASA Astrophysics Data System (ADS)

    Protter, Mason; DeBenedictis, Andrew

    2018-05-01

    In this paper, we study the homogeneous interiors of black holes possessing SU(2) Yang-Mills fields subject to corrections inspired by loop quantum gravity. The systems studied possess both magnetic and induced electric Yang-Mills fields. We consider the system of equations both with and without Wilson loop corrections to the Yang-Mills potential. The structure of the Yang-Mills Hamiltonian, along with the restriction to homogeneity, allows for an anomaly-free effective quantization. In particular, we study the bounce which replaces the classical singularity and the behavior of the Yang-Mills fields in the quantum corrected interior, which possesses topology R ×S2 . Beyond the bounce, the magnitude of the Yang-Mills electric field asymptotically grows monotonically. This results in an ever-expanding R sector even though the two-sphere volume is asymptotically constant. The results are similar with and without Wilson loop corrections on the Yang-Mills potential.

  16. Noncommutative Yang-Mills from equivalence of star products

    NASA Astrophysics Data System (ADS)

    Jurčo, B.; Schupp, P.

    2000-05-01

    It is shown that the transformation between ordinary and noncommutative Yang-Mills theory as formulated by Seiberg and Witten is due to the equivalence of certain star products on the D-brane world-volume.

  17. String tensions in deformed Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Poppitz, Erich; Shalchian T., M. Erfan

    2018-01-01

    We study k-strings in deformed Yang-Mills (dYM) with SU(N) gauge group in the semiclassically calculable regime on R^3× S^1 . Their tensions Tk are computed in two ways: numerically, for 2 ≤ N ≤ 10, and via an analytic approach using a re-summed perturbative expansion. The latter serves both as a consistency check on the numerical results and as a tool to analytically study the large-N limit. We find that dYM k-string ratios Tk/T1 do not obey the well-known sine- or Casimir-scaling laws. Instead, we show that the ratios Tk/T1 are bound above by a square root of Casimir scaling, previously found to hold for stringlike solutions of the MIT Bag Model. The reason behind this similarity is that dYM dynamically realizes, in a theoretically controlled setting, the main model assumptions of the Bag Model. We also compare confining strings in dYM and in other four-dimensional theories with abelian confinement, notably Seiberg-Witten theory, and show that the unbroken Z_N center symmetry in dYM leads to different properties of k-strings in the two theories; for example, a "baryon vertex" exists in dYM but not in softly-broken Seiberg-Witten theory. Our results also indicate that, at large values of N, k-strings in dYM do not become free.

  18. Parallel software for lattice N = 4 supersymmetric Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Schaich, David; DeGrand, Thomas

    2015-05-01

    We present new parallel software, SUSY LATTICE, for lattice studies of four-dimensional N = 4 supersymmetric Yang-Mills theory with gauge group SU(N). The lattice action is constructed to exactly preserve a single supersymmetry charge at non-zero lattice spacing, up to additional potential terms included to stabilize numerical simulations. The software evolved from the MILC code for lattice QCD, and retains a similar large-scale framework despite the different target theory. Many routines are adapted from an existing serial code (Catterall and Joseph, 2012), which SUSY LATTICE supersedes. This paper provides an overview of the new parallel software, summarizing the lattice system, describing the applications that are currently provided and explaining their basic workflow for non-experts in lattice gauge theory. We discuss the parallel performance of the code, and highlight some notable aspects of the documentation for those interested in contributing to its future development.

  19. Cluster Adjacency Properties of Scattering Amplitudes in N =4 Supersymmetric Yang-Mills Theory

    NASA Astrophysics Data System (ADS)

    Drummond, James; Foster, Jack; Gürdoǧan, Ömer

    2018-04-01

    We conjecture a new set of analytic relations for scattering amplitudes in planar N =4 super Yang-Mills theory. They generalize the Steinmann relations and are expressed in terms of the cluster algebras associated to Gr (4 ,n ). In terms of the symbol, they dictate which letters can appear consecutively. We study heptagon amplitudes and integrals in detail and present symbols for previously unknown integrals at two and three loops which support our conjecture.

  20. Color Memory: A Yang-Mills Analog of Gravitational Wave Memory.

    PubMed

    Pate, Monica; Raclariu, Ana-Maria; Strominger, Andrew

    2017-12-29

    A transient color flux across null infinity in classical Yang-Mills theory is considered. It is shown that a pair of test "quarks" initially in a color singlet generically acquire net color as a result of the flux. A nonlinear formula is derived for the relative color rotation of the quarks. For a weak color flux, the formula linearizes to the Fourier transform of the soft gluon theorem. This color memory effect is the Yang-Mills analog of the gravitational memory effect.

  1. Color Memory: A Yang-Mills Analog of Gravitational Wave Memory

    NASA Astrophysics Data System (ADS)

    Pate, Monica; Raclariu, Ana-Maria; Strominger, Andrew

    2017-12-01

    A transient color flux across null infinity in classical Yang-Mills theory is considered. It is shown that a pair of test "quarks" initially in a color singlet generically acquire net color as a result of the flux. A nonlinear formula is derived for the relative color rotation of the quarks. For a weak color flux, the formula linearizes to the Fourier transform of the soft gluon theorem. This color memory effect is the Yang-Mills analog of the gravitational memory effect.

  2. Supersymmetric Yang-Mills theory on conformal supergravity backgrounds in ten dimensions

    NASA Astrophysics Data System (ADS)

    de Medeiros, Paul; Figueroa-O'Farrill, José

    2016-03-01

    We consider bosonic supersymmetric backgrounds of ten-dimensional conformal supergravity. Up to local conformal isometry, we classify the maximally supersymmetric backgrounds, determine their conformal symmetry superalgebras and show how they arise as near-horizon geometries of certain half-BPS backgrounds or as a plane-wave limit thereof. We then show how to define Yang-Mills theory with rigid supersymmetry on any supersymmetric conformal supergravity background and, in particular, on the maximally supersymmetric backgrounds. We conclude by commenting on a striking resemblance between the supersymmetric backgrounds of ten-dimensional conformal supergravity and those of eleven-dimensional Poincaré supergravity.

  3. On the stability of dyons and dyonic black holes in Einstein-Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Nolan, Brien C.; Winstanley, Elizabeth

    2016-02-01

    We investigate the stability of four-dimensional dyonic soliton and black hole solutions of {su}(2) Einstein-Yang-Mills theory in anti-de Sitter space. We prove that, in a neighbourhood of the embedded trivial (Schwarzschild-)anti-de Sitter solution, there exist non-trivial dyonic soliton and black hole solutions of the field equations which are stable under linear, spherically symmetric, perturbations of the metric and non-Abelian gauge field.

  4. An object oriented code for simulating supersymmetric Yang-Mills theories

    NASA Astrophysics Data System (ADS)

    Catterall, Simon; Joseph, Anosh

    2012-06-01

    We present SUSY_LATTICE - a C++ program that can be used to simulate certain classes of supersymmetric Yang-Mills (SYM) theories, including the well known N=4 SYM in four dimensions, on a flat Euclidean space-time lattice. Discretization of SYM theories is an old problem in lattice field theory. It has resisted solution until recently when new ideas drawn from orbifold constructions and topological field theories have been brought to bear on the question. The result has been the creation of a new class of lattice gauge theories in which the lattice action is invariant under one or more supersymmetries. The resultant theories are local, free of doublers and also possess exact gauge-invariance. In principle they form the basis for a truly non-perturbative definition of the continuum SYM theories. In the continuum limit they reproduce versions of the SYM theories formulated in terms of twisted fields, which on a flat space-time is just a change of the field variables. In this paper, we briefly review these ideas and then go on to provide the details of the C++ code. We sketch the design of the code, with particular emphasis being placed on SYM theories with N=(2,2) in two dimensions and N=4 in three and four dimensions, making one-to-one comparisons between the essential components of the SYM theories and their corresponding counterparts appearing in the simulation code. The code may be used to compute several quantities associated with the SYM theories such as the Polyakov loop, mean energy, and the width of the scalar eigenvalue distributions. Program summaryProgram title: SUSY_LATTICE Catalogue identifier: AELS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 9315 No. of bytes in distributed program

  5. Improved results for the mass spectrum of N = 1 supersymmetric SU(3) Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Ali, Sajid; Bergner, Georg; Gerber, Henning; Giudice, Pietro; Kuberski, Simon; Münster, Gernot; Montvay, István; Piemonte, Stefano; Scior, Philipp

    2018-03-01

    This talk summarizes the results of the DESY-Münster collaboration for N = 1 supersymmetric Yang-Mills theory with the gauge group SU(3). It is an updated status report with respect to our preliminary data presented at the last conference. In order to control the lattice artefacts we have now considered a clover improved fermion action and different values of the gauge coupling.

  6. Phase diagram of q-deformed Yang-Mills theory on S 2 at non-zero θ-angle

    NASA Astrophysics Data System (ADS)

    Okuyama, Kazumi

    2018-04-01

    We study the phase diagram of q-deformed Yang-Mills theory on S 2 at non-zero θ-angle using the exact partition function at finite N . By evaluating the exact partition function numerically, we find evidence for the existence of a series of phase transitions at non-zero θ-angle as conjectured in [hep-th/0509004

  7. Pure spinor superspace action for D = 6, N = 1 super-Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Cederwall, Martin

    2018-05-01

    A Batalin-Vilkovisky action for D = 6, N = 1 super-Yang-Mills theory, including coupling to hypermultiplets, is given. The formalism involves pure spinor superfields. The geometric properties of the D = 6, N = 1 pure spinors (which differ from Cartan pure spinors) are examined. Unlike the situation for maximally supersymmetric models, the fields and antifields (including ghosts) of the vector multiplet reside in separate superfields. The formalism provides an off-shell superspace formulation for matter hypermultiplets, which in a traditional treatment are on-shell.

  8. Nonperturbative study of dynamical SUSY breaking in N =(2 ,2 ) Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Catterall, Simon; Jha, Raghav G.; Joseph, Anosh

    2018-03-01

    We examine the possibility of dynamical supersymmetry breaking in two-dimensional N =(2 ,2 ) supersymmetric Yang-Mills theory. The theory is discretized on a Euclidean spacetime lattice using a supersymmetric lattice action. We compute the vacuum energy of the theory at finite temperature and take the zero-temperature limit. Supersymmetry will be spontaneously broken in this theory if the measured ground-state energy is nonzero. By performing simulations on a range of lattices up to 96 ×96 we are able to perform a careful extrapolation to the continuum limit for a wide range of temperatures. Subsequent extrapolations to the zero-temperature limit yield an upper bound on the ground-state energy density. We find the energy density to be statistically consistent with zero in agreement with the absence of dynamical supersymmetry breaking in this theory.

  9. Solutions to Yang-Mills Equations on Four-Dimensional de Sitter Space

    NASA Astrophysics Data System (ADS)

    Ivanova, Tatiana A.; Lechtenfeld, Olaf; Popov, Alexander D.

    2017-08-01

    We consider pure SU(2) Yang-Mills theory on four-dimensional de Sitter space dS4 and construct a smooth and spatially homogeneous magnetic solution to the Yang-Mills equations. Slicing dS4 as R ×S3, via an SU(2)-equivariant ansatz, we reduce the Yang-Mills equations to ordinary matrix differential equations and further to Newtonian dynamics in a double-well potential. Its local maximum yields a Yang-Mills solution whose color-magnetic field at time τ ∈R is given by B˜a=-1/2 Ia/(R2cosh2τ ), where Ia for a =1 , 2, 3 are the SU(2) generators and R is the de Sitter radius. At any moment, this spatially homogeneous configuration has finite energy, but its action is also finite and of the value -1/2 j (j +1 )(2 j +1 )π3 in a spin-j representation. Similarly, the double-well bounce produces a family of homogeneous finite-action electric-magnetic solutions with the same energy. There is a continuum of other solutions whose energy and action extend down to zero.

  10. Composite operator and condensate in the S U (N ) Yang-Mills theory with U (N -1 ) stability group

    NASA Astrophysics Data System (ADS)

    Warschinke, Matthias; Matsudo, Ryutaro; Nishino, Shogo; Shinohara, Toru; Kondo, Kei-Ichi

    2018-02-01

    Recently, some reformulations of the Yang-Mills theory inspired by the Cho-Faddeev-Niemi decomposition have been developed in order to understand confinement from the viewpoint of the dual superconductivity. In this paper we focus on the reformulated S U (N ) Yang-Mills theory in the minimal option with U (N -1 ) stability group. Despite existing numerical simulations on the lattice we perform the perturbative analysis to one-loop level as a first step towards the nonperturbative analytical treatment. First, we give the Feynman rules and calculate all renormalization factors to obtain the standard renormalization group functions to one-loop level in light of the renormalizability of this theory. Then we introduce a mixed gluon-ghost composite operator of mass dimension 2 and show the Bechi-Rouet-Stora-Tyutin invariance and the multiplicative renormalizability. Armed with these results, we argue the existence of the mixed gluon-ghost condensate by means of the so-called local composite operator formalism, which leads to various interesting implications for confinement as shown in preceding works.

  11. Infrared singularities in Landau gauge Yang-Mills theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alkofer, Reinhard; Huber, Markus Q.; Schwenzer, Kai

    2010-05-15

    We present a more detailed picture of the infrared regime of Landau-gauge Yang-Mills theory. This is done within a novel framework that allows one to take into account the influence of finite scales within an infrared power counting analysis. We find that there are two qualitatively different infrared fixed points of the full system of Dyson-Schwinger equations. The first extends the known scaling solution, where the ghost dynamics is dominant and gluon propagation is strongly suppressed. It features in addition to the strong divergences of gluonic vertex functions in the previously considered uniform scaling limit, when all external momenta tendmore » to zero, also weaker kinematic divergences, when only some of the external momenta vanish. The second solution represents the recently proposed decoupling scenario where the gluons become massive and the ghosts remain bare. In this case we find that none of the vertex functions is enhanced, so that the infrared dynamics is entirely suppressed. Our analysis also provides a strict argument why the Landau-gauge gluon dressing function cannot be infrared divergent.« less

  12. Amplitudes in the N=4 supersymmetric Yang-Mills theory from quantum geometry of momentum space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorsky, A.

    We discuss multiloop maximally helicity violating amplitudes in the N=4 supersymmetric Yang-Mills theory in terms of effective gravity in the momentum space with IR regulator branes as degrees of freedom. Kinematical invariants of external particles yield the moduli spaces of complex or Kahler structures which are the playgrounds for the Kodaira-Spencer or Kahler type gravity. We suggest fermionic representation of the loop maximally helicity violating amplitudes in the N=4 supersymmetric Yang-Mills theory assuming the identification of the IR regulator branes with Kodaira-Spencer fermions in the B model and Lagrangian branes in the A model. The two-easy mass box diagram ismore » related to the correlator of fermionic currents on the spectral curve in the B model or hyperbolic volume in the A model and it plays the role of a building block in the whole picture. The Bern-Dixon-Smirnov-like ansatz has the interpretation as the semiclassical limit of a fermionic correlator. It is argued that fermionic representation implies a kind of integrability on the moduli spaces. We conjecture the interpretation of the reggeon degrees of freedom in terms of the open strings stretched between the IR regulator branes.« less

  13. Experiments on Frequency Dependence of the Deflection of Light in Yang-Mills Gravity

    NASA Astrophysics Data System (ADS)

    Hao, Yun; Zhu, Yiyi; Hsu, Jong-Ping

    2018-01-01

    In Yang-Mills gravity based on flat space-time, the eikonal equation for a light ray is derived from the modified Maxwell's wave equations in the geometric-optics limit. One obtains a Hamilton-Jacobi type equation, GLµv∂µΨ∂vΨ = 0 with an effective Riemannian metric tensor GLµv. According to Yang-Mills gravity, light rays (and macroscopic objects) move as if they were in an effective curved space-time with a metric tensor. The deflection angle of a light ray by the sun is about 1.53″ for experiments with optical frequencies ≈ 1014Hz. It is roughly 12% smaller than the usual value 1.75″. However, the experimental data in the past 100 years for the deflection of light by the sun in optical frequencies have uncertainties of (10-20)% due to large systematic errors. If one does not take the geometric-optics limit, one has the equation, GLµv[∂µΨ∂vΨcosΨ+ (∂µ∂vΨ)sinΨ] = 0, which suggests that the deflection angle could be frequency-dependent, according to Yang-Mills gravity. Nowadays, one has very accurate data in the radio frequencies ≈ 109Hz with uncertainties less than 0.1%. Thus, one can test this suggestion by using frequencies ≈ 1012 Hz, which could have a small uncertainty 0.1% due to the absence of systematic errors in the very long baseline interferometry.

  14. Duality-symmetric supersymmetric Yang-Mills theory in three dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishino, Hitoshi; Rajpoot, Subhash

    We formulate a duality-symmetric N=1 supersymmetric Yang-Mills theory in three dimensions. Our field content is (A{sub {mu}}{sup I},{lambda}{sup I},{phi}{sup I}), where the index I is for the adjoint representation of an arbitrary gauge group G. Our Hodge duality symmetry is F{sub {mu}{nu}}{sup I}=+{epsilon}{sub {mu}{nu}}{sup {rho}D}{sub {rho}{phi}}{sup I}. Because of this relationship, the presence of two physical fields A{sub {mu}}{sup I} and {phi}{sup I} within the same N=1 supermultiplet poses no problem. We can couple this multiplet to another vector multiplet (C{sub {mu}}{sup I},{chi}{sup I};B{sub {mu}{nu}}{sup I}) with 1+1 physical degrees of freedom modulo dim G. Thanks to peculiar couplings andmore » supersymmetry, the usual problem with an extra vector field in a nontrivial representation does not arise in our system.« less

  15. Magnetic black holes and monopoles in a nonminimal Einstein-Yang-Mills theory with a cosmological constant: Exact solutions

    NASA Astrophysics Data System (ADS)

    Balakin, Alexander B.; Lemos, José P. S.; Zayats, Alexei E.

    2016-04-01

    Alternative theories of gravity and their solutions are of considerable importance since, at some fundamental level, the world can reveal new features. Indeed, it is suspected that the gravitational field might be nonminimally coupled to the other fields at scales not yet probed, bringing into the forefront nonminimally coupled theories. In this mode, we consider a nonminimal Einstein-Yang-Mills theory with a cosmological constant. Imposing spherical symmetry and staticity for the spacetime and a magnetic Wu-Yang ansatz for the Yang-Mills field, we find expressions for the solutions of the theory. Further imposing constraints on the nonminimal parameters, we find a family of exact solutions of the theory depending on five parameters—two nonminimal parameters, the cosmological constant, the magnetic charge, and the mass. These solutions represent magnetic monopoles and black holes in magnetic monopoles with de Sitter, Minkowskian, and anti-de Sitter asymptotics, depending on the sign and value of the cosmological constant Λ . We classify completely the family of solutions with respect to the number and the type of horizons and show that the spacetime solutions can have, at most, four horizons. For particular sets of the parameters, these horizons can become double, triple, and quadruple. For instance, for a positive cosmological constant Λ , there is a critical Λc for which the solution admits a quadruple horizon, evocative of the Λc that appears for a given energy density in both the Einstein static and Eddington-Lemaître dynamical universes. As an example of our classification, we analyze solutions in the Drummond-Hathrell nonminimal theory that describe nonminimal black holes. Another application is with a set of regular black holes previously treated.

  16. The light bound states of N=1 supersymmetric SU(3) Yang-Mills theory on the lattice

    NASA Astrophysics Data System (ADS)

    Ali, Sajid; Bergner, Georg; Gerber, Henning; Giudice, Pietro; Montvay, Istvan; Münster, Gernot; Piemonte, Stefano; Scior, Philipp

    2018-03-01

    In this article we summarise our results from numerical simulations of N=1 supersymmetric Yang-Mills theory with gauge group SU(3). We use the formulation of Curci and Veneziano with clover-improved Wilson fermions. The masses of various bound states have been obtained at different values of the gluino mass and gauge coupling. Extrapolations to the limit of vanishing gluino mass indicate that the bound states form mass-degenerate supermultiplets.

  17. Tachyonic instabilities in 2  +  1 dimensional Yang-Mills theory and its connection to number theory

    NASA Astrophysics Data System (ADS)

    Chamizo, Fernando; González-Arroyo, Antonio

    2017-06-01

    We consider the 2  +  1 dimensional Yang-Mills theory with gauge group {{SU}}(N) on a flat 2-torus under twisted boundary conditions. We study the possibility of phase transitions (tachyonic instabilities) when N and the volume vary and certain chromomagnetic flux associated to the topology of the bundle can be adjusted. Under natural assumptions about how to match the perturbative regime and the expected confinement, we prove that the absence of tachyonic instabilities is related to some problems in number theory, namely the Diophantine approximation of irreducible fractions by other fractions of smaller denominator.

  18. Double-winding Wilson loops in SU(N) Yang-Mills theory - A criterion for testing the confinement models -

    NASA Astrophysics Data System (ADS)

    Matsudo, Ryutaro; Kondo, Kei-Ichi; Shibata, Akihiro

    2018-03-01

    We examine how the average of double-winding Wilson loops depends on the number of color N in the SU(N) Yang-Mills theory. In the case where the two loops C1 and C2 are identical, we derive the exact operator relation which relates the doublewinding Wilson loop operator in the fundamental representation to that in the higher dimensional representations depending on N. By taking the average of the relation, we find that the difference-of-areas law for the area law falloff recently claimed for N = 2 is excluded for N ⩾ 3, provided that the string tension obeys the Casimir scaling for the higher representations. In the case where the two loops are distinct, we argue that the area law follows a novel law (N - 3)A1/(N - 1) + A2 with A1 and A2(A1 < A2) being the minimal areas spanned respectively by the loops C1 and C2, which is neither sum-ofareas (A1 + A2) nor difference-of-areas (A2 - A1) law when (N ⩾ 3). Indeed, this behavior can be confirmed in the two-dimensional SU(N) Yang-Mills theory exactly.

  19. Non-Abelian Yang-Mills analogue of classical electromagnetic duality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Hong-Mo; Faridani, J.; Tsun, T.S.

    The classic question of non-Abelian Yang-Mills analogue to electromagnetic duality is examined here in a minimalist fashion at the strictly four-dimensional, classical field, and point charge level. A generalization of the Abelian Hodge star duality is found which, though not yet known to give dual symmetry, reproduces analogues to many dual properties of the Abelian theory. For example, there is a dual potential, but it is a two-indexed tensor {ital T}{sub {mu}{nu}} of the Freedman-Townsend-type. Though not itself functioning as such, {ital T}{sub {mu}{nu}} gives rise to a dual parallel transport {ital {tilde A}}{sub {mu}} for the phase of themore » wave function of the color magnetic charge, this last being a monopole of the Yang-Mills field but a source of the dual field. The standard color (electric) charge itself is found to be a monpole of {ital {tilde A}}{sub {mu}}. At the same time, the gauge symmetry is found doubled from say SU({ital N}) to SU({ital N}){times}SU({ital N}). A novel feature is that all equations of motion, including the standard Yang-Mills and Wong equations, are here derived from a ``universal`` principle, namely, the Wu-Yang criterion for monpoles, where interactions arise purely as a consequence of the topological definition of the monopole charge. The technique used is the loop space formulation of Polyakov.« less

  20. Seiberg-Witten/Whitham Equations and Instanton Corrections in {\\mathscr{N}}=2 Supersymmetric Yang-Mills Theory

    NASA Astrophysics Data System (ADS)

    Dai, Jia-Liang; Fan, En-Gui

    2018-05-01

    We obtain the instanton correction recursion relations for the low energy effective prepotential in pure {\\mathscr{N}}=2 SU(n) supersymmetric Yang-Mills gauge theory from Whitham hierarchy and Seiberg-Witten/Whitham equations. These formulae provide us a powerful tool to calculate arbitrary order instanton corrections coefficients from the perturbative contributions of the effective prepotential in Seiberg-Witten gauge theory. We apply this idea to evaluate one- and twoorder instanton corrections coefficients explicitly in SU(n) case in detail through the dynamical scale parameter expressed in terms of Riemann’s theta-function. Supported by the National Natural Science Foundation of China under Grant No. 11271079

  1. Wave fluctuations in the system with some Yang-Mills condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokhorov, G., E-mail: zhoraprox@yandex.ru; Pasechnik, R., E-mail: Roman.Pasechnik@thep.lu.se; Vereshkov, G., E-mail: gveresh@gmail.com

    2016-12-15

    Self-consistent dynamics of non-homogeneous fluctuations and homogeneous and isotropic condensate of Yang–Mills fields was investigated in zero, linear and quasilinear approximations over the wave modes in the framework of N = 4 supersymmetric model in Hamilton gauge in quasiclassical theory. The models with SU(2), SU(3) and SU(4) gauge groups were considered. Particle production effect and effect of generation of longitudinal oscillations were obtained.

  2. From decay to complete breaking: pulling the strings in SU(2) Yang-Mills theory.

    PubMed

    Pepe, M; Wiese, U-J

    2009-05-15

    We study {2Q+1} strings connecting two static charges Q in (2+1)D SU(2) Yang-Mills theory. While the fundamental {2} string between two charges Q=1/2 is unbreakable, the adjoint {3} string connecting two charges Q=1 can break. When a {4} string is stretched beyond a critical length, it decays into a {2} string by gluon pair creation. When a {5} string is stretched, it first decays into a {3} string, which eventually breaks completely. The energy of the screened charges at the ends of a string is well described by a phenomenological constituent gluon model.

  3. Testing holography using lattice super-Yang-Mills theory on a 2-torus

    NASA Astrophysics Data System (ADS)

    Catterall, Simon; Jha, Raghav G.; Schaich, David; Wiseman, Toby

    2018-04-01

    We consider maximally supersymmetric SU (N ) Yang-Mills theory in Euclidean signature compactified on a flat two-dimensional torus with antiperiodic ("thermal") fermion boundary conditions imposed on one cycle. At large N , holography predicts that this theory describes certain black hole solutions in type IIA and IIB supergravity, and we use lattice gauge theory to test this. Unlike the one-dimensional quantum mechanics case where there is only the dimensionless temperature to vary, here we emphasize there are two more parameters which determine the shape of the flat torus. While a rectangular Euclidean torus yields a thermal interpretation, allowing for skewed tori modifies the holographic dual black hole predictions and results in another direction to test holography. Our lattice calculations are based on a supersymmetric formulation naturally adapted to a particular skewing. Using this we perform simulations up to N =16 with several lattice spacings for both skewed and rectangular tori. We observe the two expected black hole phases with their predicted behavior, with a transition between them that is consistent with the gravity prediction based on the Gregory-Laflamme transition.

  4. Scattering of massless scalar waves by magnetically charged black holes in Einstein-Yang-Mills-Higgs theory

    NASA Astrophysics Data System (ADS)

    Gußmann, Alexander

    2017-03-01

    The existence of the classical black hole solutions of the Einstein-Yang-Mills-Higgs equations with non-Abelian Yang-Mills-Higgs hair implies that not all classical stationary magnetically charged black holes can be uniquely described by their asymptotic characteristics. In fact, in a certain domain of parameters, there exist different spherically-symmetric, non-rotating and asymptotically-flat classical black hole solutions of the Einstein-Yang-Mills-Higgs equations which have the same ADM mass and the same magnetic charge but significantly different geometries in the near-horizon regions. (These are black hole solutions which are described by a Reissner-Nordström metric on the one hand and the black hole solutions with non-Abelian Yang-Mills-Higgs hair which are described by a metric which is not of Reissner-Nordström form on the other hand). One can experimentally distinguish such black holes with the same asymptotic characteristics but different near-horizon geometries classically by probing the near-horizon regions of the black holes. We argue that one way to probe the near-horizon region of a black hole which allows one to distinguish magnetically charged black holes with the same asymptotic characteristics but different near-horizon geometries is by classical scattering of waves. Using the example of a minimally-coupled massless probe scalar field scattered by magnetically charged black holes which can be obtained as solutions of the Einstein-Yang-Mills-Higgs equations with a Higgs triplet and gauge group SU(2) in the limit of an infinite Higgs self-coupling constant we show how, in this case, the scattering cross sections differ for the magnetically charged black holes with different near-horizon geometries but the same asymptotic characteristics. We find in particular that the characteristic glory peaks in the cross sections are located at different scattering angles.

  5. The universal character of Zwanziger's horizon function in Euclidean Yang-Mills theories

    NASA Astrophysics Data System (ADS)

    Capri, M. A. L.; Dudal, D.; Guimaraes, M. S.; Pereira, A. D.; Mintz, B. W.; Palhares, L. F.; Sorella, S. P.

    2018-06-01

    In light of the recently established BRST invariant formulation of the Gribov-Zwanziger theory, we show that Zwanziger's horizon function displays a universal character. More precisely, the correlation functions of local BRST invariant operators evaluated with the Yang-Mills action supplemented with a BRST invariant version of the Zwanziger's horizon function and quantized in an arbitrary class of covariant, color invariant and renormalizable gauges which reduce to the Landau gauge when all gauge parameters are set to zero, have a unique, gauge parameters independent result, corresponding to that of the Landau gauge when the restriction to the Gribov region Ω in the latter gauge is imposed. As such, thanks to the BRST invariance, the cut-off at the Gribov region Ω acquires a gauge independent meaning in the class of the physical correlators.

  6. New perspectives on an old problem: The bending of light in Yang-Mills gravity

    NASA Astrophysics Data System (ADS)

    Cottrell, Kazuo Ota; Hsu, Jong-Ping

    Yang-Mills gravity with electromagnetism predicts, in the geometric optics limit, a value for the deflection of light by the sun which agrees closely with the reanalysis of Eddington's 1919 optical measurements done in 1979. Einstein's General Theory of Relativity, on the other hand, agrees very closely with measurements of the deflection of electromagnetic waves made in the range of radio frequencies. Since both General Relativity and Yang-Mills gravity with electromagnetism in the geometric optics limit make predictions for the optical region which fall within experimental uncertainty, it becomes important to consider the possibility of the existence of a frequency dependence in the measurement results for the deflection of light, in order to determine which theory more closely describes nature...

  7. Self-dual phase space for (3 +1 )-dimensional lattice Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Riello, Aldo

    2018-01-01

    I propose a self-dual deformation of the classical phase space of lattice Yang-Mills theory, in which both the electric and magnetic fluxes take value in the compact gauge Lie group. A local construction of the deformed phase space requires the machinery of "quasi-Hamiltonian spaces" by Alekseev et al., which is reviewed here. The results is a full-fledged finite-dimensional and gauge-invariant phase space, the self-duality properties of which are largely enhanced in (3 +1 ) spacetime dimensions. This enhancement is due to a correspondence with the moduli space of an auxiliary noncommutative flat connection living on a Riemann surface defined from the lattice itself, which in turn equips the duality between electric and magnetic fluxes with a neat geometrical interpretation in terms of a Heegaard splitting of the space manifold. Finally, I discuss the consequences of the proposed deformation on the quantization of the phase space, its quantum gravitational interpretation, as well as its relevance for the construction of (3 +1 )-dimensional topological field theories with defects.

  8. Quantum vacua of 2d maximally supersymmetric Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Koloğlu, Murat

    2017-11-01

    We analyze the classical and quantum vacua of 2d N=(8,8) supersymmetric Yang-Mills theory with SU( N) and U( N) gauge group, describing the worldvolume interactions of N parallel D1-branes with flat transverse directions {R}^8 . We claim that the IR limit of the SU( N) theory in the superselection sector labeled M (mod N) — identified with the internal dynamics of ( M, N)-string bound states of the Type IIB string theory — is described by the symmetric orbifold N=(8,8) sigma model into ({R}^8)^{D-1}/S_D when D = gcd( M, N) > 1, and by a single massive vacuum when D = 1, generalizing the conjectures of E. Witten and others. The full worldvolume theory of the D1-branes is the U( N) theory with an additional U(1) 2-form gauge field B coming from the string theory Kalb-Ramond field. This U( N) + B theory has generalized field configurations, labeled by the Z-valued generalized electric flux and an independent {Z}_N -valued 't Hooft flux. We argue that in the quantum mechanical theory, the ( M, N)-string sector with M units of electric flux has a {Z}_N -valued discrete θ angle specified by M (mod N) dual to the 't Hooft flux. Adding the brane center-of-mass degrees of freedom to the SU( N) theory, we claim that the IR limit of the U( N) + B theory in the sector with M bound F-strings is described by the N=(8,8) sigma model into {Sym}^D({R}^8) . We provide strong evidence for these claims by computing an N=(8,8) analog of the elliptic genus of the UV gauge theories and of their conjectured IR limit sigma models, and showing they agree. Agreement is established by noting that the elliptic genera are modular-invariant Abelian (multi-periodic and meromorphic) functions, which turns out to be very restrictive.

  9. Finite-action solutions of Yang-Mills equations on de Sitter dS4 and anti-de Sitter AdS4 spaces

    NASA Astrophysics Data System (ADS)

    Ivanova, Tatiana A.; Lechtenfeld, Olaf; Popov, Alexander D.

    2017-11-01

    We consider pure SU(2) Yang-Mills theory on four-dimensional de Sitter dS4 and anti-de Sitter AdS4 spaces and construct various solutions to the Yang-Mills equations. On de Sitter space we reduce the Yang-Mills equations via an SU(2)-equivariant ansatz to Newtonian mechanics of a particle moving in R^3 under the influence of a quartic potential. Then we describe magnetic and electric-magnetic solutions, both Abelian and non-Abelian, all having finite energy and finite action. A similar reduction on anti-de Sitter space also yields Yang-Mills solutions with finite energy and action. We propose a lower bound for the action on both backgrounds. Employing another metric on AdS4, the SU(2) Yang-Mills equations are reduced to an analytic continuation of the above particle mechanics from R^3 to R^{2,1} . We discuss analytical solutions to these equations, which produce infinite-action configurations. After a Euclidean continuation of dS4 and AdS4 we also present self-dual (instanton-type) Yang-Mills solutions on these backgrounds.

  10. Yang-Mills correlators across the deconfinement phase transition

    NASA Astrophysics Data System (ADS)

    Reinosa, U.; Serreau, J.; Tissier, M.; Tresmontant, A.

    2017-02-01

    We compute the finite temperature ghost and gluon propagators of Yang-Mills theory in the Landau-DeWitt gauge. The background field that enters the definition of the latter is intimately related with the (gauge-invariant) Polyakov loop and serves as an equivalent order parameter for the deconfinement transition. We use an effective gauge-fixed description where the nonperturbative infrared dynamics of the theory is parametrized by a gluon mass which, as argued elsewhere, may originate from the Gribov ambiguity. In this scheme, one can perform consistent perturbative calculations down to infrared momenta, which have been shown to correctly describe the phase diagram of Yang-Mills theories in four dimensions as well as the zero-temperature correlators computed in lattice simulations. In this article, we provide the one-loop expressions of the finite temperature Landau-DeWitt ghost and gluon propagators for a large class of gauge groups and present explicit results for the SU(2) case. These are substantially different from those previously obtained in the Landau gauge, which corresponds to a vanishing background field. The nonanalyticity of the order parameter across the transition is directly imprinted onto the propagators in the various color modes. In the SU(2) case, this leads, for instance, to a cusp in the electric and magnetic gluon susceptibilities as well as similar signatures in the ghost sector. We mention the possibility that such distinctive features of the transition could be measured in lattice simulations in the background field gauge studied here.

  11. Emerging geometry from maximally super-symmetric Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Vazquez, Samuel Enrique

    In this thesis, we explore the emergence of space-time geometry, and string theory physics from N = 4 supersymmetric Yang-Mills (SYM) theory with gauge group U(N). This is done in the context of the anti-de-Sitter/conformal field theory correspondence (AdS/CFT). The main results of this thesis are the following. First, we study single trace perturbations around generic 1/2 BPS states of the theory. We do this in the large N limit, and at one-loop in the 't-Hooft coupling. We show how these states can be mapped to dynamical lattices with boson statistics and periodic boundary conditions. By dynamical, we mean that the total boson occupation number is not conserved in general. Then, we show how to derive an effective sigma model for these systems which coincides with the Polyakov action of a probe string on a 1/2 BPS geometry (in the fast string limit). Secondly, we study non-supersymmetric perturbations of the vacuum which give rise to bosonic lattices with open boundary conditions. We also do this in the large N limit, and at one-loop in the 't-Hooft coupling. We show that these states are dual to open strings on D3-branes known as "Giant Gravitons". These lattice systems are also dynamical, but in some special cases, we show that we get an integrable spin chain with open boundary conditions. Next, we study single trace perturbations at strong coupling. We do this by taking a "dilute gas" approximation. We derive an all-loop result for the dispersion relation of the "magnons" which coincides with previous conjectures in the literature. What is more, we derive the geometrical picture of the so-called "giant magnon" string solution of Hofman and Maldacena, directly from the field theory. Finally, we explore the question of classical integrability of open strings on D-branes. In particular, we study the case of the giant gravitons, and compare the integrable structures on both sides of the AdS/CFT correspondence.

  12. A note on local BRST cohomology of Yang-Mills type theories with free Abelian factors

    NASA Astrophysics Data System (ADS)

    Barnich, Glenn; Boulanger, Nicolas

    2018-05-01

    We extend previous work on antifield dependent local Becchi-Rouet-Stora-Tyutin (BRST) cohomology for matter coupled gauge theories of Yang-Mills type to the case of gauge groups that involve free Abelian factors. More precisely, we first investigate in a model independent way how the dynamics enters the computation of the cohomology for a general class of Lagrangians in general spacetime dimensions. We then discuss explicit solutions in the case of specific models. Our analysis has implications for the structure of characteristic cohomology and for consistent deformations of the classical models, as well as for divergences/counterterms and for gauge anomalies that may appear during perturbative quantization.

  13. AdS charged black holes in Einstein-Yang-Mills gravity's rainbow: Thermal stability and P - V criticality

    NASA Astrophysics Data System (ADS)

    Hendi, Seyed Hossein; Momennia, Mehrab

    2018-02-01

    Motivated by the interesting non-abelian gauge field, in this paper, we look for the analytical solutions of Yang-Mills theory in the context of gravity's rainbow. Regarding the trace of quantum gravity in black hole thermodynamics, we examine the first law of thermodynamics and also thermal stability in the canonical ensemble. We show that although the rainbow functions and Yang-Mills charge modify the solutions, the first law of thermodynamics is still valid. Based on the phenomenological similarities between the adS black holes and van der Waals liquid/gas systems, we study the critical behavior of the Yang-Mills black holes in the extended phase space thermodynamics. We also investigate the effects of various parameters on thermal instability as well as critical properties by using appropriate figures.

  14. Hamilton-Jacobi theory in multisymplectic classical field theories

    NASA Astrophysics Data System (ADS)

    de León, Manuel; Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso; Vilariño, Silvia

    2017-09-01

    The geometric framework for the Hamilton-Jacobi theory developed in the studies of Cariñena et al. [Int. J. Geom. Methods Mod. Phys. 3(7), 1417-1458 (2006)], Cariñena et al. [Int. J. Geom. Methods Mod. Phys. 13(2), 1650017 (2015)], and de León et al. [Variations, Geometry and Physics (Nova Science Publishers, New York, 2009)] is extended for multisymplectic first-order classical field theories. The Hamilton-Jacobi problem is stated for the Lagrangian and the Hamiltonian formalisms of these theories as a particular case of a more general problem, and the classical Hamilton-Jacobi equation for field theories is recovered from this geometrical setting. Particular and complete solutions to these problems are defined and characterized in several equivalent ways in both formalisms, and the equivalence between them is proved. The use of distributions in jet bundles that represent the solutions to the field equations is the fundamental tool in this formulation. Some examples are analyzed and, in particular, the Hamilton-Jacobi equation for non-autonomous mechanical systems is obtained as a special case of our results.

  15. Perturbative tests for a large-N reduced model of {N} = {4} super Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Ishiki, Goro; Shimasaki, Shinji; Tsuchiya, Asato

    2011-11-01

    We study a non-perturbative formulation of {N} = {4} super Yang-Mills theory (SYM) on R × S 3 in the planar limit proposed in arXiv:0807.2352. This formulation is based on the large- N reduction, and the theory can be described as a particular large- N limit of the plane wave matrix model (PWMM), which is obtained by dimensionally reducing the original theory over S 3. In this paper, we perform some tests for this proposal. We construct an operator in the PWMM that corresponds to the Wilson loop in SYM in the continuum limit and calculate the vacuum expectation value of the operator for the case of the circular contour. We find that our result indeed agrees with the well-known result first obtained by Erickson, Semenoff and Zarembo. We also compute the beta function at the 1-loop level based on this formulation and see that it is indeed vanishing.

  16. Critical phenomena in the general spherically symmetric Einstein-Yang-Mills system

    NASA Astrophysics Data System (ADS)

    Maliborski, Maciej; Rinne, Oliver

    2018-02-01

    We study critical behavior in gravitational collapse of a general spherically symmetric Yang-Mills field coupled to the Einstein equations. Unlike the magnetic ansatz used in previous numerical work, the general Yang-Mills connection has two degrees of freedom in spherical symmetry. This fact changes the phenomenology of critical collapse dramatically. The magnetic sector features both type I and type II critical collapse, with universal critical solutions. In contrast, in the general system type I disappears and the critical behavior at the threshold between dispersal and black hole formation is always type II. We obtain values of the mass scaling and echoing exponents close to those observed in the magnetic sector, however we find some indications that the critical solution differs from the purely magnetic discretely self-similar attractor and exact self-similarity and universality might be lost. The additional "type III" critical phenomenon in the magnetic sector, where black holes form on both sides of the threshold but the Yang-Mills potential is in different vacuum states and there is a mass gap, also disappears in the general system. We support our dynamical numerical simulations with calculations in linear perturbation theory; for instance, we compute quasi-normal modes of the unstable attractor (the Bartnik-McKinnon soliton) in type I collapse in the magnetic sector.

  17. Einstein-Yang-Mills scattering amplitudes from scattering equations

    NASA Astrophysics Data System (ADS)

    Cachazo, Freddy; He, Song; Yuan, Ellis Ye

    2015-01-01

    We present the building blocks that can be combined to produce tree-level S-matrix elements of a variety of theories with various spins mixed in arbitrary dimensions. The new formulas for the scattering of n massless particles are given by integrals over the positions of n points on a sphere restricted to satisfy the scattering equations. As applications, we obtain all single-trace amplitudes in Einstein-Yang-Mills (EYM) theory, and generalizations to include scalars. Also in EYM but extended by a B-field and a dilaton, we present all double-trace gluon amplitudes. The building blocks are made of Pfaffians and Parke-Taylor-like factors of subsets of particle labels.

  18. SU(2) Yang-Mills solitons in R2 gravity

    NASA Astrophysics Data System (ADS)

    Perapechka, I.; Shnir, Ya.

    2018-05-01

    We construct new family of spherically symmetric regular solutions of SU (2) Yang-Mills theory coupled to pure R2 gravity. The particle-like field configurations possess non-integer non-Abelian magnetic charge. A discussion of the main properties of the solutions and their differences from the usual Bartnik-McKinnon solitons in the asymptotically flat case is presented. It is shown that there is continuous family of linearly stable non-trivial solutions in which the gauge field has no nodes.

  19. Doubled lattice Chern-Simons-Yang-Mills theories with discrete gauge group

    NASA Astrophysics Data System (ADS)

    Caspar, S.; Mesterházy, D.; Olesen, T. Z.; Vlasii, N. D.; Wiese, U.-J.

    2016-11-01

    We construct doubled lattice Chern-Simons-Yang-Mills theories with discrete gauge group G in the Hamiltonian formulation. Here, these theories are considered on a square spatial lattice and the fundamental degrees of freedom are defined on pairs of links from the direct lattice and its dual, respectively. This provides a natural lattice construction for topologically-massive gauge theories, which are invariant under parity and time-reversal symmetry. After defining the building blocks of the doubled theories, paying special attention to the realization of gauge transformations on quantum states, we examine the dynamics in the group space of a single cross, which is spanned by a single link and its dual. The dynamics is governed by the single-cross electric Hamiltonian and admits a simple quantum mechanical analogy to the problem of a charged particle moving on a discrete space affected by an abstract electromagnetic potential. Such a particle might accumulate a phase shift equivalent to an Aharonov-Bohm phase, which is manifested in the doubled theory in terms of a nontrivial ground-state degeneracy on a single cross. We discuss several examples of these doubled theories with different gauge groups including the cyclic group Z(k) ⊂ U(1) , the symmetric group S3 ⊂ O(2) , the binary dihedral (or quaternion) group D¯2 ⊂ SU(2) , and the finite group Δ(27) ⊂ SU(3) . In each case the spectrum of the single-cross electric Hamiltonian is determined exactly. We examine the nature of the low-lying excited states in the full Hilbert space, and emphasize the role of the center symmetry for the confinement of charges. Whether the investigated doubled models admit a non-Abelian topological state which allows for fault-tolerant quantum computation will be addressed in a future publication.

  20. Non-Perturbative Yang-Mills from Supersymmetry and Strings, Or, in the Jungles of Strong Coupling

    NASA Astrophysics Data System (ADS)

    Shifman, M.

    2005-12-01

    I summarize some recent developments in the issue of planar equivalence between supersymmetric Yang-Mills theory and its orbifold/orientifold daughters. This talk is based on works carried out in collaboration with Adi Armoni, Sasha Gorsky and Gabriele Veneziano.

  1. Non-Perturbative Yang--Mills from Supersymmetry and Strings, or, in the Jungles of Strong Coupling

    NASA Astrophysics Data System (ADS)

    Shifman, M.

    2005-12-01

    I summarize some recent developments in the issue of planar equivalence between supersymmetric Yang--Mills theory and its orbifold/orientifold daughters. This talk is based on works carried out in collaboration with Adi Armoni, Sasha Gorsky and Gabriele Veneziano.

  2. Non-Perturbative Yang-Mills from Supersymmetry and Strings, or, in the Jungles of Strong Coupling

    NASA Astrophysics Data System (ADS)

    Shifman, M.

    2006-06-01

    I summarize some recent developments in the issue of planar equivalence between supersymmetric Yang-Mills theory and its orbifold/orientifold daughters. This talk is based on works carried out in collaboration with Adi Armoni, Sasha Gorsky and Gabriele Veneziano.

  3. Gravitational matter-antimatter asymmetry and four-dimensional Yang-Mills gauge symmetry

    NASA Technical Reports Server (NTRS)

    Hsu, J. P.

    1981-01-01

    A formulation of gravity based on the maximum four-dimensional Yang-Mills gauge symmetry is studied. The theory predicts that the gravitational force inside matter (fermions) is different from that inside antimatter. This difference could lead to the cosmic separation of matter and antimatter in the evolution of the universe. Moreover, a new gravitational long-range spin-force between two fermions is predicted, in addition to the usual Newtonian force. The geometrical foundation of such a gravitational theory is the Riemann-Cartan geometry, in which there is a torsion. The results of the theory for weak fields are consistent with previous experiments.

  4. Perturbative tests for a large-N reduced model of mathcal{N} = {4} super Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Ishiki, Goro; Shimasaki, Shinji; Tsuchiya, Asato

    2012-02-01

    We study a non-perturbative formulation of mathcal{N} = {4} super Yang-Mills theory (SYM) on R × S 3 in the planar limit proposed in arXiv:0807.2352. This formulation is based on the large- N reduction, and the theory can be described as a particular large- N limit of the plane wave matrix model (PWMM), which is obtained by dimensionally reducing the original theory over S 3. In this paper, we perform some tests for this proposal. We construct an operator in the PWMM that corresponds to the Wilson loop in SYM in the continuum limit and calculate the vacuum expectation value of the operator for the case of the circular contour. We find that our result indeed agrees with the well-known result first obtained by Erickson, Semenoff and Zarembo. We also compute the beta function at the 1-loop level based on this formulation and see that it is indeed vanishing.

  5. Black p-branes versus black holes in non-asymptotically flat Einstein-Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Habib Mazharimousavi, S.; Halilsoy, M.

    2016-09-01

    We present a class of non-asymptotically flat (NAF) charged black p-branes (BpB) with p-compact dimensions in higher-dimensional Einstein-Yang-Mills theory. Asymptotically the NAF structure manifests itself as an anti-de sitter spacetime. We determine the total mass/energy enclosed in a thin shell located outside the event horizon. By comparing the entropies of BpB with those of black holes in the same dimensions we derive transition criteria between the two types of black objects. Given certain conditions satisfied, our analysis shows that BpB can be considered excited states of black holes. An event horizon r+ versus charge square Q2 plot for the BpB reveals such a transition where r+ is related to the horizon radius rh of the black hole (BH) both with the common charge Q.

  6. FLRW Cosmology from Yang-Mills Gravity

    NASA Astrophysics Data System (ADS)

    Katz, Daniel

    2013-04-01

    We extend to basic cosmology the subject of Yang-Mills gravity - a theory of gravity based on local translational gauge invariance in flat spacetime. It has been shown that this particular gauge invariance leads to tensor factors in the macroscopic limit of the equations of motion of particles which plays the same role as the metric tensor of General Relativity. The assumption that this ``effective metric" tensor takes on the standard FLRW form is our starting point. Equations analogous to the Friedman equations are derived and then solved in closed form for the three special cases of a universe dominated by 1) matter, 2) radiation, and 3) dark energy. We find that the solutions for the scale factor are similar to, but distinct from, those found in the corresponding GR based treatment.

  7. Structural aspects of Hamilton-Jacobi theory

    NASA Astrophysics Data System (ADS)

    Cariñena, J. F.; Gràcia, X.; Marmo, G.; Martínez, E.; Muñoz-Lecanda, M. C.; Román-Roy, N.

    2016-12-01

    In our previous papers [J. F. Cariñena, X. Gràcia, G. Marmo, E. Martínez, M. C. Muñoz-Lecanda and N. Román-Roy, Geometric Hamilton-Jacobi theory, Int. J. Geom. Meth. Mod. Phys. 3 (2006) 1417-1458; Geometric Hamilton-Jacobi theory for nonholonomic dynamical systems, Int. J. Geom. Meth. Mod. Phys. 7 (2010) 431-454] we showed that the Hamilton-Jacobi problem can be regarded as a way to describe a given dynamics on a phase space manifold in terms of a family of dynamics on a lower-dimensional manifold. We also showed how constants of the motion help to solve the Hamilton-Jacobi equation. Here we want to delve into this interpretation by considering the most general case: a dynamical system on a manifold that is described in terms of a family of dynamics (slicing vector fields) on lower-dimensional manifolds. We identify the relevant geometric structures that lead from this decomposition of the dynamics to the classical Hamilton-Jacobi theory, by considering special cases like fibered manifolds and Hamiltonian dynamics, in the symplectic framework and the Poisson one. We also show how a set of functions on a tangent bundle can determine a second-order dynamics for which they are constants of the motion.

  8. On the existence of topological dyons and dyonic black holes in anti-de Sitter Einstein-Yang-Mills theories with compact semisimple gauge groups

    NASA Astrophysics Data System (ADS)

    Baxter, J. Erik

    2018-05-01

    Here we study the global existence of "hairy" dyonic black hole and dyon solutions to four-dimensional, anti-de Sitter Einstein-Yang-Mills theories for a general simply connected and semisimple gauge group G, for the so-called topologically symmetric systems, concentrating here on the regular case. We generalise here cases in the literature which considered purely magnetic spherically symmetric solutions for a general gauge group and topological dyonic solutions for s u (N ) . We are able to establish the global existence of non-trivial solutions to all such systems, both near existing embedded solutions and as |Λ| → ∞. In particular, we can identify non-trivial solutions where the gauge field functions have no zeroes, which in the s u (N ) case proved important to stability. We believe that these are the most general analytically proven solutions in 4D anti-de Sitter Einstein-Yang-Mills systems to date.

  9. Running coupling from gluon and ghost propagators in the Landau gauge: Yang-Mills theories with adjoint fermions

    NASA Astrophysics Data System (ADS)

    Bergner, Georg; Piemonte, Stefano

    2018-04-01

    Non-Abelian gauge theories with fermions transforming in the adjoint representation of the gauge group (AdjQCD) are a fundamental ingredient of many models that describe the physics beyond the Standard Model. Two relevant examples are N =1 supersymmetric Yang-Mills (SYM) theory and minimal walking technicolor, which are gauge theories coupled to one adjoint Majorana and two adjoint Dirac fermions, respectively. While confinement is a property of N =1 SYM, minimal walking technicolor is expected to be infrared conformal. We study the propagators of ghost and gluon fields in the Landau gauge to compute the running coupling in the MiniMom scheme. We analyze several different ensembles of lattice Monte Carlo simulations for the SU(2) adjoint QCD with Nf=1 /2 ,1 ,3 /2 , and 2 Dirac fermions. We show how the running of the coupling changes as the number of interacting fermions is increased towards the conformal window.

  10. Finite field equation of Yang--Mills theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, R.A.; Wing-Chiu, N.; Yeung, W.

    1980-03-01

    We consider the finite local field equation -)(1+1/..cap alpha.. (1+f/sub 4/))g/sup munu/D'Alembertian-partial/sup ..mu../partial/sup ..nu../)A/sup nua/ =-(1+f/sub 3/) g/sup 2/N(A/sup c/..nu..A/sup a/..mu..A/sub ..nu..//sup c/) +xxx+(1-s)/sup 2/M/sup 2/A/sup a/..mu.., introduced by Lowenstein to rigorously describe SU(2) Yang--Mills theory, which is written in terms of normal products. We also consider the operator product expansion A/sup c/..nu..(x+xi) A/sup a/..mu..(x) A/sup b/lambda(x-xi) approx...sigma..M/sup c/ab..nu mu..lambda/sub c/'a'b'..nu..'..mu..'lambda' (xi) N(A/sup nuprimec/'A/sup muprimea/'A/sup lambdaprimeb/')(x), and using asymptotic freedom, we compute the leading behavior of the Wilson coefficients M/sup ...//sub .../(xi) with the help of a computer, and express the normal products in the field equation in terms ofmore » products of the c-number Wilson coefficients and of operator products like A/sup c/..nu..(x+xi) A/sup a/..mu..(x) A/sup b/lambda(x-xi) at separated points. Our result is -)(1+(1/..cap alpha..)(1+f/sub 4/))g/sup munu/D'Alembertian-partial/sup ..mu../partial/sup ..nu../)A/sup nua/ =-(1+f/sub 3/) g/sup 2/lim/sub xiarrow-right0/) (lnxi)/sup -0.28/2b/(A/sup c/..nu.. (x+xi) A/sup a/..mu..(x) A/sub ..nu..//sup c/(x-xi) +epsilon/sup a/bcA/sup muc/(x+xi) partial/sup ..nu../A/sup b//sub ..nu../(x)+xxx) +xxx)+(1-s)/sup 2/M/sup 2/A/sup a/..mu.., where ..beta.. (g) =-bg/sup 3/, and so (lnxi)/sup -0.28/2b/ is the leading behavior of the c-number coefficient multiplying the operator products in the field equation.« less

  11. The Analytic Structure of Scattering Amplitudes in N = 4 Super-Yang-Mills Theory

    NASA Astrophysics Data System (ADS)

    Litsey, Sean Christopher

    We begin the dissertation in Chapter 1 with a discussion of tree-level amplitudes in Yang-. Mills theories. The DDM and BCJ decompositions of the amplitudes are described and. related to one another by the introduction of a transformation matrix. This is related to the. Kleiss-Kuijf and BCJ amplitude identities, and we conjecture a connection to the existence. of a BCJ representation via a condition on the generalized inverse of that matrix. Under. two widely-believed assumptions, this relationship is proved. Switching gears somewhat, we introduce the RSVW formulation of the amplitude, and the extension of BCJ-like features to residues of the RSVW integrand is proposed. Using the previously proven connection of BCJ representations to the generalized inverse condition, this extension is validated, including a version of gravitational double copy. The remainder of the dissertation involves an analysis of the analytic properties of loop. amplitudes in N = 4 super-Yang-Mills theory. Chapter 2 contains a review of the planar case, including an exposition of dual variables and momentum twistors, dual conformal symmetry, and their implications for the amplitude. After defining the integrand and on-shell diagrams, we explain the crucial properties that the amplitude has no poles at infinite momentum and that its leading singularities are dual-conformally-invariant cross ratios, and can therefore be normalized to unity. We define the concept of a dlog form, and show that it is a feature of the planar integrand as well. This leads to the definition of a pure integrand basis. The proceeding setup is connected to the amplituhedron formulation, and we put forward the hypothesis that the amplitude is determined by zero conditions. Chapter 3 contains the primary computations of the dissertation. This chapter treats. amplitudes in fully nonplanar N = 4 super-Yang-Mills, analyzing the conjecture that they. follow the pattern of having no poles at infinity, can be written in dlog

  12. The Stack of Yang-Mills Fields on Lorentzian Manifolds

    NASA Astrophysics Data System (ADS)

    Benini, Marco; Schenkel, Alexander; Schreiber, Urs

    2018-03-01

    We provide an abstract definition and an explicit construction of the stack of non-Abelian Yang-Mills fields on globally hyperbolic Lorentzian manifolds. We also formulate a stacky version of the Yang-Mills Cauchy problem and show that its well-posedness is equivalent to a whole family of parametrized PDE problems. Our work is based on the homotopy theoretical approach to stacks proposed in Hollander (Isr. J. Math. 163:93-124, 2008), which we shall extend by further constructions that are relevant for our purposes. In particular, we will clarify the concretification of mapping stacks to classifying stacks such as BG con.

  13. On non-primitively divergent vertices of Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Huber, Markus Q.

    2017-11-01

    Two correlation functions of Yang-Mills beyond the primitively divergent ones, the two-ghost-two-gluon and the four-ghost vertices, are calculated and their influence on lower vertices is examined. Their full (transverse) tensor structure is taken into account. As input, a solution of the full two-point equations - including two-loop terms - is used that respects the resummed perturbative ultraviolet behavior. A clear hierarchy is found with regard to the color structure that reduces the number of relevant dressing functions. The impact of the two-ghost-two-gluon vertex on the three-gluon vertex is negligible, which is explained by the fact that all non-small dressing functions drop out due to their color factors. Only in the ghost-gluon vertex a small net effect below 2% is seen. The four-ghost vertex is found to be extremely small in general. Since these two four-point functions do not enter into the propagator equations, these findings establish their small overall effect on lower correlation functions.

  14. Yang-Baxter σ -models, conformal twists, and noncommutative Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Araujo, T.; Bakhmatov, I.; Colgáin, E. Ó.; Sakamoto, J.; Sheikh-Jabbari, M. M.; Yoshida, K.

    2017-05-01

    The Yang-Baxter σ -model is a systematic way to generate integrable deformations of AdS5×S5 . We recast the deformations as seen by open strings, where the metric is undeformed AdS5×S5 with constant string coupling, and all information about the deformation is encoded in the noncommutative (NC) parameter Θ . We identify the deformations of AdS5 as twists of the conformal algebra, thus explaining the noncommutativity. We show that the unimodularity condition on r -matrices for supergravity solutions translates into Θ being divergence-free. Integrability of the σ -model for unimodular r -matrices implies the existence and planar integrability of the dual NC gauge theory.

  15. An instability of hyperbolic space under the Yang-Mills flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gegenberg, Jack; Day, Andrew C.; Liu, Haitao

    2014-04-15

    We consider the Yang-Mills flow on hyperbolic 3-space. The gauge connection is constructed from the frame-field and (not necessarily compatible) spin connection components. The fixed points of this flow include zero Yang-Mills curvature configurations, for which the spin connection has zero torsion and the associated Riemannian geometry is one of constant curvature. We analytically solve the linearized flow equations for a large class of perturbations to the fixed point corresponding to hyperbolic 3-space. These can be expressed as a linear superposition of distinct modes, some of which are exponentially growing along the flow. The growing modes imply the divergence ofmore » the (gauge invariant) perturbative torsion for a wide class of initial data, indicating an instability of the background geometry that we confirm with numeric simulations in the partially compactified case. There are stable modes with zero torsion, but all the unstable modes are torsion-full. This leads us to speculate that the instability is induced by the torsion degrees of freedom present in the Yang-Mills flow.« less

  16. Yang-Mills matrix mechanics and quantum phases

    NASA Astrophysics Data System (ADS)

    Pandey, Mahul; Vaidya, Sachindeo

    The SU(2) Yang-Mills matrix model coupled to fundamental fermions is studied in the adiabatic limit, and quantum critical behavior is seen at special corners of the gauge field configuration space. The quantum scalar potential for the gauge field induced by the fermions diverges at the corners, and is intimately related to points of enhanced degeneracy of the fermionic Hamiltonian. This in turn leads to superselection sectors in the Hilbert space of the gauge field, the ground states in different sectors being orthogonal to each other. The SU(2) Yang-Mills matrix model coupled to two Weyl fermions has three quantum phases. When coupled to a massless Dirac fermion, the number of quantum phases is four. One of these phases is the color-spin locked phase. This paper is an extended version of the lectures given by the second author (SV) at the International Workshop on Quantum Physics: Foundations and Applications, Bangalore, in February 2016, and is based on [1].

  17. Supersymmetric electric-magnetic duality in D =3 +3 and D =5 +5 dimensions as foundation of self-dual supersymmetric Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Nishino, Hitoshi; Rajpoot, Subhash

    2016-05-01

    We present electric-magnetic (EM)-duality formulations for non-Abelian gauge groups with N =1 supersymmetry in D =3 +3 and 5 +5 space-time dimensions. We show that these systems generate self-dual N =1 supersymmetric Yang-Mills (SDSYM) theory in D =2 +2 . For a N =2 supersymmetric EM-dual system in D =3 +3 , we have the Yang-Mills multiplet (Aμ I,λA I) and a Hodge-dual multiplet (Bμν ρ I,χA I) , with an auxiliary tensors Cμν ρ σ I and Kμ ν. Here, I is the adjoint index, while A is for the doublet of S p (1 ). The EM-duality conditions are Fμν I=(1 /4 !)ɛμν ρ σ τ λGρσ τ λ I with its superpartner duality condition λA I=-χA I . Upon appropriate dimensional reduction, this system generates SDSYM in D =2 +2 . This system is further generalized to D =5 +5 with the EM-duality condition Fμν I=(1 /8 !)ɛμν ρ1⋯ρ8Gρ1⋯ρ8 I with its superpartner condition λI=-χI . Upon appropriate dimensional reduction, this theory also generates SDSYM in D =2 +2 . As long as we maintain Lorentz covariance, D =5 +5 dimensions seems to be the maximal space-time dimensions that generate SDSYM in D =2 +2 . Namely, EM-dual system in D =5 +5 serves as the Master Theory of all supersymmetric integrable models in dimensions 1 ≤D ≤3 .

  18. Integrability in dipole-deformed \\boldsymbol{N=4} super Yang-Mills

    NASA Astrophysics Data System (ADS)

    Guica, Monica; Levkovich Maslyuk, Fedor; Zarembo, Konstantin

    2017-09-01

    We study the null dipole deformation of N=4 super Yang-Mills theory, which is an example of a potentially solvable ‘dipole CFT’: a theory that is non-local along a null direction, has non-relativistic conformal invariance along the remaining ones, and is holographically dual to a Schrödinger space-time. We initiate the field-theoretical study of the spectrum in this model by using integrability inherited from the parent theory. The dipole deformation corresponds to a nondiagonal Drinfeld-Reshetikhin twist in the spin chain picture, which renders the traditional Bethe ansatz inapplicable from the very beginning. We use instead the Baxter equation supplemented with nontrivial asymptotics, which gives the full 1-loop spectrum in the sl(2) sector. We show that anomalous dimensions of long gauge theory operators perfectly match the string theory prediction, providing a quantitative test of Schrödinger holography. Dedicated to the memory of Petr Petrovich Kulish.

  19. Generalization of Faddeev-Popov rules in Yang-Mills theories: N = 3,4 BRST symmetries

    NASA Astrophysics Data System (ADS)

    Reshetnyak, Alexander

    2018-01-01

    The Faddeev-Popov rules for a local and Poincaré-covariant Lagrangian quantization of a gauge theory with gauge group are generalized to the case of an invariance of the respective quantum actions, S(N), with respect to N-parametric Abelian SUSY transformations with odd-valued parameters λp, p = 1,…,N and generators sp: spsq + sqsp = 0, for N = 3, 4, implying the substitution of an N-plet of ghost fields, Cp, instead of the parameter, ξ, of infinitesimal gauge transformations: ξ = Cpλ p. The total configuration spaces of fields for a quantum theory of the same classical model coincide in the N = 3 and N = 4 symmetric cases. The superspace of N = 3 SUSY irreducible representation includes, in addition to Yang-Mills fields 𝒜μ, (3 + 1) ghost odd-valued fields Cp, B̂ and 3 even-valued Bpq for p, q = 1, 2, 3. To construct the quantum action, S(3), by adding to the classical action, S0(𝒜), of an N = 3-exact gauge-fixing term (with gauge fermion), a gauge-fixing procedure requires (1 + 3 + 3 + 1) additional fields, Φ¯(3): antighost C¯, 3 even-valued Bp, 3 odd-valued B̂pq and Nakanishi-Lautrup B fields. The action of N = 3 transformations on new fields as N = 3-irreducible representation space is realized. These transformations are the N = 3 BRST symmetry transformations for the vacuum functional, Z3(0) =∫dΦ(3)dΦ¯(3)exp{(ı/ℏ)S(3)}. The space of all fields (Φ(3),Φ¯(3)) proves to be the space of an irreducible representation of the fields Φ(4) for N = 4-parametric SUSY transformations, which contains, in addition to 𝒜μ the (4 + 6 + 4 + 1) ghost-antighost, Cr = (Cp,C¯), even-valued, Brs = -Bsr = (Bpq,Bp4 = Bp), odd-valued B̂r = (B̂,B̂pq) and B fields. The quantum action is constructed by adding to S0(𝒜) an N = 4-exact gauge-fixing term with a gauge boson, F(4). The N = 4 SUSY transformations are by N = 4 BRST transformations for the vacuum functional, Z4(0) =∫dΦ(4)exp{(ı/ℏ)S(4)}. The procedures are valid for

  20. Constructing the tree-level Yang-Mills S-matrix using complex factorization

    NASA Astrophysics Data System (ADS)

    Schuster, Philip C.; Toro, Natalia

    2009-06-01

    A remarkable connection between BCFW recursion relations and constraints on the S-matrix was made by Benincasa and Cachazo in 0705.4305, who noted that mutual consistency of different BCFW constructions of four-particle amplitudes generates non-trivial (but familiar) constraints on three-particle coupling constants — these include gauge invariance, the equivalence principle, and the lack of non-trivial couplings for spins > 2. These constraints can also be derived with weaker assumptions, by demanding the existence of four-point amplitudes that factorize properly in all unitarity limits with complex momenta. From this starting point, we show that the BCFW prescription can be interpreted as an algorithm for fully constructing a tree-level S-matrix, and that complex factorization of general BCFW amplitudes follows from the factorization of four-particle amplitudes. The allowed set of BCFW deformations is identified, formulated entirely as a statement on the three-particle sector, and using only complex factorization as a guide. Consequently, our analysis based on the physical consistency of the S-matrix is entirely independent of field theory. We analyze the case of pure Yang-Mills, and outline a proof for gravity. For Yang-Mills, we also show that the well-known scaling behavior of BCFW-deformed amplitudes at large z is a simple consequence of factorization. For gravity, factorization in certain channels requires asymptotic behavior ~ 1/z2.

  1. Yang-Mills condensate as dark energy: A nonperturbative approach

    NASA Astrophysics Data System (ADS)

    Donà, Pietro; Marcianò, Antonino; Zhang, Yang; Antolini, Claudia

    2016-02-01

    Models based on the Yang-Mills condensate (YMC) have been advocated for in the literature and claimed as successful candidates for explaining dark energy. Several variations on this simple idea have been considered, the most promising of which are reviewed here. Nevertheless, the previously attained results relied heavily on the perturbative approach to the analysis of the effective Yang-Mills action, which is only adequate in the asymptotically free limit, and were extended into a regime, the infrared limit, in which confinement is expected. We show that if a minimum of the effective Lagrangian in θ =-Fμν aFa μ ν/2 exists, a YMC forms that drives the Universe toward an accelerated de Sitter phase. The details of the models depend weakly on the specific form of the effective Yang-Mills Lagrangian. Using nonperturbative techniques mutated from the functional renormalization-group procedure, we finally show that the minimum in θ of the effective Lagrangian exists. Thus, a YMC can actually take place. The nonperturbative model has properties similar to the ones in the perturbative model. In the early stage of the Universe, the YMC equation of state has an evolution that resembles the radiation component, i.e., wy→1 /3 . However, in the late stage, wy naturally runs to the critical state with wy=-1 , and the Universe transitions from a matter-dominated into a dark energy dominated stage only at latest time, at a redshift whose value depends on the initial conditions that are chosen while solving the dynamical system.

  2. S-Duality, Deconstruction and Confinement for a Marginal Deformation of N=4 SUSY Yang-Mills

    NASA Astrophysics Data System (ADS)

    Dorey, Nick

    2004-08-01

    We study an exactly marginal deformation of Script N = 4 SUSY Yang-Mills with gauge group U(N) using field theory and string theory methods. The classical theory has a Higgs branch for rational values of the deformation parameter. We argue that the quantum theory also has an S-dual confining branch which cannot be seen classically. The low-energy effective theory on these branches is a six-dimensional non-commutative gauge theory with sixteen supercharges. Confinement of magnetic and electric charges, on the Higgs and confining branches respectively, occurs due to the formation of BPS-saturated strings in the low energy theory. The results also suggest a new way of deconstructing Little String Theory as a large-N limit of a confining gauge theory in four dimensions.

  3. Holography for field theory solitons

    NASA Astrophysics Data System (ADS)

    Domokos, Sophia K.; Royston, Andrew B.

    2017-07-01

    We extend a well-known D-brane construction of the AdS/dCFT correspondence to non-abelian defects. We focus on the bulk side of the correspondence and show that there exists a regime of parameters in which the low-energy description consists of two approximately decoupled sectors. The two sectors are gravity in the ambient spacetime, and a six-dimensional supersymmetric Yang-Mills theory. The Yang-Mills theory is defined on a rigid AdS4 × S 2 background and admits sixteen supersymmetries. We also consider a one-parameter deformation that gives rise to a family of Yang-Mills theories on asymptotically AdS4 × S 2 spacetimes, which are invariant under eight supersymmetries. With future holographic applications in mind, we analyze the vacuum structure and perturbative spectrum of the Yang-Mills theory on AdS4 × S 2, as well as systems of BPS equations for finite-energy solitons. Finally, we demonstrate that the classical Yang-Mills theory has a consistent truncation on the two-sphere, resulting in maximally supersymmetric Yang-Mills on AdS4.

  4. Vacuum structure and string tension in Yang-Mills dimeron ensembles

    NASA Astrophysics Data System (ADS)

    Zimmermann, Falk; Forkel, Hilmar; Müller-Preußker, Michael

    2012-11-01

    We numerically simulate ensembles of SU(2) Yang-Mills dimeron solutions with a statistical weight determined by the classical action and perform a comprehensive analysis of their properties as a function of the bare coupling. In particular, we examine the extent to which these ensembles and their classical gauge interactions capture topological and confinement properties of the Yang-Mills vacuum. This also allows us to put the classic picture of meron-induced quark confinement, with the confinement-deconfinement transition triggered by dimeron dissociation, to stringent tests. In the first part of our analysis we study spacial, topological-charge and color correlations at the level of both the dimerons and their meron constituents. At small to moderate couplings, the dependence of the interactions between the dimerons on their relative color orientations is found to generate a strong attraction (repulsion) between nearest neighbors of opposite (equal) topological charge. Hence, the emerging short- to mid-range order in the gauge-field configurations screens topological charges. With increasing coupling this order weakens rapidly, however, in part because the dimerons gradually dissociate into their less localized meron constituents. Monitoring confinement properties by evaluating Wilson-loop expectation values, we find the growing disorder due to the long-range tails of these progressively liberated merons to generate a finite and (with the coupling) increasing string tension. The short-distance behavior of the static quark-antiquark potential, on the other hand, is dominated by small, “instantonlike” dimerons. String tension, action density and topological susceptibility of the dimeron ensembles in the physical coupling region turn out to be of the order of standard values. Hence, the above results demonstrate without reliance on weak-coupling or low-density approximations that the dissociating dimeron component in the Yang-Mills vacuum can indeed produce a

  5. 5D Super Yang-Mills on Y p, q Sasaki-Einstein Manifolds

    NASA Astrophysics Data System (ADS)

    Qiu, Jian; Zabzine, Maxim

    2015-01-01

    On any simply connected Sasaki-Einstein five dimensional manifold one can construct a super Yang-Mills theory which preserves at least two supersymmetries. We study the special case of toric Sasaki-Einstein manifolds known as Y p, q manifolds. We use the localisation technique to compute the full perturbative part of the partition function. The full equivariant result is expressed in terms of a certain special function which appears to be a curious generalisation of the triple sine function. As an application of our general result we study the large N behaviour for the case of single hypermultiplet in adjoint representation and we derive the N 3-behaviour in this case.

  6. FLRW Cosmology from Yang-Mills Gravity with Translational Gauge Symmetry

    NASA Astrophysics Data System (ADS)

    Katz, Daniel

    2013-03-01

    We extend to basic cosmology the subject of Yang-Mills gravity — a theory of gravity based on local translational gauge invariance in flat space-time. It has been shown that this particular gauge invariance leads to tensor factors in the macroscopic limit of the equations of motion of particles which plays the same role as the metric tensor of general relativity (GR). The assumption that this "effective metric" tensor takes on the standard FLRW form is our starting point. Equations analogous to the Friedmann equations are derived and then solved in closed form for the three special cases of a universe dominated by (1) matter, (2) radiation and (3) dark energy. We find that the solutions for the scale factor are similar to, but distinct from, those found in the corresponding GR based treatment.

  7. Hadamard States for the Linearized Yang-Mills Equation on Curved Spacetime

    NASA Astrophysics Data System (ADS)

    Gérard, C.; Wrochna, M.

    2015-07-01

    We construct Hadamard states for the Yang-Mills equation linearized around a smooth, space-compact background solution. We assume the spacetime is globally hyperbolic and its Cauchy surface is compact or equal . We first consider the case when the spacetime is ultra-static, but the background solution depends on time. By methods of pseudodifferential calculus we construct a parametrix for the associated vectorial Klein-Gordon equation. We then obtain Hadamard two-point functions in the gauge theory, acting on Cauchy data. A key role is played by classes of pseudodifferential operators that contain microlocal or spectral type low-energy cutoffs. The general problem is reduced to the ultra-static spacetime case using an extension of the deformation argument of Fulling, Narcowich and Wald. As an aside, we derive a correspondence between Hadamard states and parametrices for the Cauchy problem in ordinary quantum field theory.

  8. Five-dimensional Yang-Mills-Einstein supergravity on orbifold spacetimes: From phenomenology to M -theory

    NASA Astrophysics Data System (ADS)

    McReynolds, Sean

    Five-dimensional N = 2 Yang-Mills-Einstein supergravity and its couplings to hyper and tensor multiplets are considered on an orbifold spacetime of the form M4 x S1/Gamma, where Gamma is a discrete group. As is well known in such cases, supersymmetry is broken to N = 1 on the orbifold fixed planes, and chiral 4D theories can be obtained from bulk hypermultiplets (or from the coupling of fixed-plane supported fields). Five-dimensional gauge symmetries are broken by boundary conditions for the fields, which are equivalent to some set of Gamma-parity assignments in the orbifold theory, allowing for arbitrary rank reduction. Furthermore, Wilson lines looping from one boundary to the other can break bulk gauge groups, or give rise to vacuum expectation values for scalars on the boundaries, which can result in spontaneous breaking of boundary gauge groups. The broken gauge symmetries do not survive as global symmetries of the low energy theories below the compactification scale due to 4 D minimal couplings to gauge fields. Axionic fields are a generic feature, just as in any compactification of M-theory (or string theory for that matter), and we exhibit the form of this field and its role as the QCD axion, capable of resolving the strong CP problem. The main motivation for the orbifold theories here is taken to be orbifold-GUTS, wherein a unified gauge group is sought in higher dimensions while allowing the orbifold reduction to handle problems such as rapid proton decay, exotic matter, mass hierarchies, etc. To that end, we discuss the allowable minimal SU(5), SO(10) and E6 GUT theories with all fields living in five dimensions. It is argued that, within the class of homogeneous quaternionic scalar manifolds characterizing the hypermultiplet couplings in 5D, supergravity admits a restricted set of theories that yield minimal phenomenological field content. In addition, non-compact gaugings are a novel feature of supergravity theories, and in particular we consider the

  9. Wilson loops in supersymmetric gauge theories

    NASA Astrophysics Data System (ADS)

    Pestun, Vasily

    This thesis is devoted to several exact computations in four-dimensional supersymmetric gauge field theories. In the first part of the thesis we prove conjecture due to Erickson-Semenoff-Zarembo and Drukker-Gross which relates supersymmetric circular Wilson loop operators in the N = 4 supersymmetric Yang-Mills theory with a Gaussian matrix model. We also compute the partition function and give a new matrix model formula for the expectation value of a supersymmetric circular Wilson loop operator for the pure N = 2 and the N* = 2 supersymmetric Yang-Mills theory on a four-sphere. Circular supersymmetric Wilson loops in four-dimensional N = 2 superconformal gauge theory are treated similarly. In the second part we consider supersymmetric Wilson loops of arbitrary shape restricted to a two-dimensional sphere in the four-dimensional N = 4 supersymmetric Yang-Mills theory. We show that expectation value for these Wilson loops can be exactly computed using a two-dimensional theory closely related to the topological two-dimensional Higgs-Yang-Mills theory, or two-dimensional Yang-Mills theory for the complexified gauge group.

  10. Higher spin gravitational couplings: Ghosts in the Yang-Mills detour complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gover, A. R.; Hallowell, K.; Waldron, A.

    2007-01-15

    Gravitational interactions of higher spin fields are generically plagued by inconsistencies. There exists however, a simple framework that couples higher spins to a broad class of gravitational backgrounds (including Ricci flat and Einstein) consistently at the classical level. The model is the simplest example of a Yang-Mills detour complex and has broad mathematical applications, especially to conformal geometry. Even the simplest version of the theory, which couples gravitons, vectors and scalar fields in a flat background is rather rich, providing an explicit setting for detailed analysis of ghost excitations. Its asymptotic scattering states consist of a physical massless graviton, scalar,more » and massive vector along with a degenerate pair of zero norm photon excitations. Coherent states of the unstable sector do have positive norms, but their evolution is no longer unitary and amplitudes grow with time. The class of models proposed is extremely general and of considerable interest for ghost condensation and invariant theory.« less

  11. A Yang-Mills field on the extremal Reissner-Nordström black hole

    NASA Astrophysics Data System (ADS)

    Bizoń, Piotr; Kahl, Michał

    2016-09-01

    We consider a spherically symmetric (magnetic) SU(2) Yang-Mills field propagating on the exterior of the extremal Reissner-Nordström black hole. Taking advantage of the conformal symmetry, we reduce the problem to the study of the Yang-Mills equation in a geodesically complete spacetime with two asymptotically flat ends. We prove the existence of infinitely many static solutions (two of which are found in closed form) and determine the spectrum of their linear perturbations and quasinormal modes. Finally, using the hyperboloidal approach to the initial value problem, we describe the process of relaxation to the static endstates of evolution, both stable (for generic initial data) and unstable (for codimension-one initial data).

  12. Matrix models for 5d super Yang-Mills

    NASA Astrophysics Data System (ADS)

    Minahan, Joseph A.

    2017-11-01

    In this contribution to the issue on localization in gauge theories we investigate the matrix models derived from localizing N=1 super Yang-Mills on S 5. We consider the large-N limit and attempt to solve the matrix model by a saddle-point approximation. In general it is not possible to find an analytic solution, but at the weak and the strong limits of the ’t Hooft coupling there are dramatic simplifications that allows us to extract most of the interesting information. At weak coupling we show that the matrix model is close to the Gaussian matrix model and that the free-energy scales as N 2. At strong coupling we show that if the theory contains one adjoint hypermultiplet then the free-energy scales as N 3. We also find the expectation value of a supersymmetric Wilson loop that wraps the equator. We demonstrate how to extract the effective couplings and reproduce results of Seiberg. Finally, we compare to results for the six-dimensional (2,0) theory derived using the AdS/CFT correspondence. We show that by choosing the hypermultiplet mass such that the supersymmetry is enhanced to N=2 , the Wilson loop result matches the analogous calculation using AdS/CFT. The free-energies differ by a rational fraction. This is a contribution to the review issue ‘Localization techniques in quantum field theories’ (ed Pestun and Zabzine) which contains 17 chapters available at [1].

  13. Regge meets collinear in strongly-coupled N=4 super Yang-Mills

    NASA Astrophysics Data System (ADS)

    Sprenger, Martin

    2017-01-01

    We revisit the calculation of the six-gluon remainder function in planar N=4 super Yang-Mills theory from the strong coupling TBA in the multi-Regge limit and identify an infinite set of kinematically subleading terms. These new terms can be compared to the strong coupling limit of the finite-coupling expressions for the impact factor and the BFKL eigenvalue proposed by Basso et al. in [1], which were obtained from an analytic continuation of the Wilson loop OPE. After comparing the results order by order in those subleading terms, we show that it is possible to precisely map both formalisms onto each other. A similar calculation can be carried out for the seven-gluon amplitude, the result of which shows that the central emission vertex does not become trivial at strong coupling.

  14. Existence of topological hairy dyons and dyonic black holes in anti-de Sitter su(N) Einstein-Yang-Mills theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, J. Erik, E-mail: e.baxter@shu.ac.uk

    We investigate dyonic black hole and dyon solutions of four-dimensional su(N) Einstein-Yang-Mills theory with a negative cosmological constant. We derive a set of field equations in this case, and prove the existence of non-trivial solutions to these equations for any integer N, with 2N − 2 gauge degrees of freedom. We do this by showing that solutions exist locally at infinity, and at the event horizon for black holes and the origin for solitons. We then prove that we can patch these solutions together regularly into global solutions that can be integrated arbitrarily far into the asymptotic regime. Our mainmore » result is to show that dyonic solutions exist in open sets in the parameter space, and hence that we can find non-trivial dyonic solutions in a number of regimes whose magnetic gauge fields have no zeros, which is likely important to the stability of the solutions.« less

  15. Dirichlet to Neumann operator for Abelian Yang-Mills gauge fields

    NASA Astrophysics Data System (ADS)

    Díaz-Marín, Homero G.

    We consider the Dirichlet to Neumann operator for Abelian Yang-Mills boundary conditions. The aim is constructing a complex structure for the symplectic space of boundary conditions of Euler-Lagrange solutions modulo gauge for space-time manifolds with smooth boundary. Thus we prepare a suitable scenario for geometric quantization within the reduced symplectic space of boundary conditions of Abelian gauge fields.

  16. Gluon dynamics, center symmetry, and the deconfinement phase transition in SU(3) pure Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Silva, P. J.; Oliveira, O.

    2016-06-01

    The correlations between the modulus of the Polyakov loop, its phase θ , and the Landau gauge gluon propagator at finite temperature are investigated in connection with the center symmetry for pure Yang-Mills SU(3) theory. In the deconfined phase, where the center symmetry is spontaneously broken, the phase of the Polyakov loop per configuration is close to θ =0 , ±2 π /3 . We find that the gluon propagator form factors associated with θ ≈0 differ quantitatively and qualitatively from those associated to θ ≈±2 π /3 . This difference between the form factors is a property of the deconfined phase and a sign of the spontaneous breaking of the center symmetry. Furthermore, given that this difference vanishes in the confined phase, it can be used as an order parameter associated to the deconfinement transition. For simulations near the critical temperature Tc, the difference between the propagators associated to θ ≈0 and θ ≈±2 π /3 allows one to classify the configurations as belonging to the confined or deconfined phase. This establishes a selection procedure which has a measurable impact on the gluon form factors. Our results also show that the absence of the selection procedure can be erroneously interpreted as lattice artifacts.

  17. Hydrodynamics of the Polyakov line in SU(N c) Yang-Mills

    DOE PAGES

    Liu, Yizhuang; Warchoł, Piotr; Zahed, Ismail

    2015-12-08

    We discuss a hydrodynamical description of the eigenvalues of the Polyakov line at large but finite N c for Yang-Mills theory in even and odd space-time dimensions. The hydro-static solutions for the eigenvalue densities are shown to interpolate between a uniform distribution in the confined phase and a localized distribution in the de-confined phase. The resulting critical temperatures are in overall agreement with those measured on the lattice over a broad range of N c, and are consistent with the string model results at N c = ∞. The stochastic relaxation of the eigenvalues of the Polyakov line out ofmore » equilibrium is captured by a hydrodynamical instanton. An estimate of the probability of formation of a Z(N c)bubble using a piece-wise sound wave is suggested.« less

  18. A Hamilton-Jacobi theory for implicit differential systems

    NASA Astrophysics Data System (ADS)

    Esen, Oǧul; de León, Manuel; Sardón, Cristina

    2018-02-01

    In this paper, we propose a geometric Hamilton-Jacobi theory for systems of implicit differential equations. In particular, we are interested in implicit Hamiltonian systems, described in terms of Lagrangian submanifolds of TT*Q generated by Morse families. The implicit character implies the nonexistence of a Hamiltonian function describing the dynamics. This fact is here amended by a generating family of Morse functions which plays the role of a Hamiltonian. A Hamilton-Jacobi equation is obtained with the aid of this generating family of functions. To conclude, we apply our results to singular Lagrangians by employing the construction of special symplectic structures.

  19. Refraction seismic studies in the Miami River, Whitewater River, and Mill Creek valleys, Hamilton and Butler Counties, Ohio

    USGS Publications Warehouse

    Watkins, Joel S.

    1963-01-01

    Between September 17 and November 9, 1962, the U.S. Geological Survey, in cooperation with Ohio Division of Water, Miami Conservancy District, and c,ty of Cincinnati, Ohio, co.,:ducted a refraction seismic study in Hamilton and Butler Counties, southwest Ohio. The area lies between Hamilton, Ohio, and the Ohio River and includes a preglacial valley now occupied by portions of the Miami River, Whitewater River, and Mill Creek. The valley is partially filled with glacial debris which yields large quantities of good-quality water. The object of the study was to determine the thickness of these glacial deposits and the shape of the preglacial valley.

  20. On the stability of soliton and hairy black hole solutions of 𝔰𝔲(N) Einstein-Yang-Mills theory with a negative cosmological constant

    NASA Astrophysics Data System (ADS)

    Baxter, J. Erik; Winstanley, Elizabeth

    2016-02-01

    We investigate the stability of spherically symmetric, purely magnetic, soliton and black hole solutions of four-dimensional 𝔰𝔲(N) Einstein-Yang-Mills theory with a negative cosmological constant Λ. These solutions are described by N - 1 magnetic gauge field functions ωj. We consider linear, spherically symmetric, perturbations of these solutions. The perturbations decouple into two sectors, known as the sphaleronic and gravitational sectors. For any N, there are no instabilities in the sphaleronic sector if all the magnetic gauge field functions ωj have no zeros and satisfy a set of N - 1 inequalities. In the gravitational sector, we prove that there are solutions which have no instabilities in a neighbourhood of stable embedded 𝔰𝔲(2) solutions, provided the magnitude of the cosmological constant |" separators=" Λ | is sufficiently large.

  1. Exact equivalence of the D=4 gauged Wess-Zumino-Witten term and the D=5 Yang-Mills Chern-Simons term

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Christopher T.

    We derive the full Wess-Zumino-Witten term of a gauged chiral Lagrangian in D=4 by starting from a pure Yang-Mills theory of gauged quark flavor in a flat, compactified D=5. The theory is compactified such that there exists a B{sub 5} zero mode, and supplemented with quarks that are 'chirally delocalized' with q{sub L} (q{sub R}) on the left (right) boundary (brane). The theory then necessarily contains a Chern-Simons term (anomaly flux) to cancel the fermionic anomalies on the boundaries. The constituent quark mass represents chiral symmetry breaking and is a bilocal operator in D=5 of the form: q{sub L}Wq{sub R}+h.c,more » where W is the Wilson line spanning the bulk, 0{<=}x{sup 5}{<=}R, and is interpreted as a chiral meson field, W=exp(2i{pi}-tilde/f{sub {pi}}), where f{sub {pi}}{approx}1/R. The quarks are integrated out, yielding a Dirac determinant which takes the form of a 'boundary term' (anomaly flux return), and is equivalent to Bardeen's counterterm that connects consistent and covariant anomalies. The Wess-Zumino-Witten term then emerges straightforwardly, from the Yang-Mills Chern-Simons term, plus boundary term. The method is systematic and allows generalization of the Wess-Zumino-Witten term to theories of extra dimensions, and to express it in alternative and more compact forms. We give a novel form appropriate to the case of (unintegrated) massless fermions.« less

  2. Hamilton-Jacobi formalism for Podolsky's electromagnetic theory on the null-plane

    NASA Astrophysics Data System (ADS)

    Bertin, M. C.; Pimentel, B. M.; Valcárcel, C. E.; Zambrano, G. E. R.

    2017-08-01

    We develop the Hamilton-Jacobi formalism for Podolsky's electromagnetic theory on the null-plane. The main goal is to build the complete set of Hamiltonian generators of the system as well as to study the canonical and gauge transformations of the theory.

  3. On the global existence of hairy black holes and solitons in anti-de Sitter Einstein-Yang-Mills theories with compact semisimple gauge groups

    NASA Astrophysics Data System (ADS)

    Baxter, J. Erik

    2016-10-01

    We investigate the existence of black hole and soliton solutions to four dimensional, anti-de Sitter (adS), Einstein-Yang-Mills theories with general semisimple connected and simply connected gauge groups, concentrating on the so-called regular case. We here generalise results for the asymptotically flat case, and compare our system with similar results from the well-researched adS {mathfrak {su}}(N) system. We find the analysis differs from the asymptotically flat case in some important ways: the biggest difference is that for Λ <0, solutions are much less constrained as r→ infty , making it possible to prove the existence of global solutions to the field equations in some neighbourhood of existing trivial solutions, and in the limit of |Λ |→ infty . In particular, we can identify non-trivial solutions where the gauge field functions have no zeroes, which in the {mathfrak {su}}(N) case proved important to stability.

  4. Nonminimal Wu-Yang wormhole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakin, A. B.; Zayats, A. E.; Sushkov, S. V.

    2007-04-15

    We discuss exact solutions of a three-parameter nonminimal Einstein-Yang-Mills model, which describe the wormholes of a new type. These wormholes are considered to be supported by the SU(2)-symmetric Yang-Mills field, nonminimally coupled to gravity, the Wu-Yang ansatz for the gauge field being used. We distinguish between regular solutions, describing traversable nonminimal Wu-Yang wormholes, and black wormholes possessing one or two event horizons. The relation between the asymptotic mass of the regular traversable Wu-Yang wormhole and its throat radius is analyzed.

  5. Some exact solutions of (2+1)-dimensional Yang-Mills equations with the Chern-Simons term

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, C. H.; Sia, L. C.; Teh, R.

    1989-07-15

    Two /ital Ansa/$/ital uml/---/ital tze/ for the gauge field potential are given so that the(2+1)-dimensional Yang-Mills equations with the Chern-Simons termcan be solved in terms of the modified Bessel functions and the ellipticfunction respectively.

  6. Strolling along gauge theory vacua

    NASA Astrophysics Data System (ADS)

    Seraj, Ali; Van den Bleeken, Dieter

    2017-08-01

    We consider classical, pure Yang-Mills theory in a box. We show how a set of static electric fields that solve the theory in an adiabatic limit correspond to geodesic motion on the space of vacua, equipped with a particular Riemannian metric that we identify. The vacua are generated by spontaneously broken global gauge symmetries, leading to an infinite number of conserved momenta of the geodesic motion. We show that these correspond to the soft multipole charges of Yang-Mills theory.

  7. A noncompact Weyl-Einstein-Yang-Mills model: A semiclassical quantum gravity

    NASA Astrophysics Data System (ADS)

    Dengiz, Suat

    2017-08-01

    We construct and study perturbative unitarity (i.e., ghost and tachyon analysis) of a 3 + 1-dimensional noncompact Weyl-Einstein-Yang-Mills model. The model describes a local noncompact Weyl's scale plus SU(N) phase invariant Higgs-like field,conformally coupled to a generic Weyl-invariant dynamical background. Here, the Higgs-like sector generates the Weyl's conformal invariance of system. The action does not admit any dimensionful parameter and genuine presence of de Sitter vacuum spontaneously breaks the noncompact gauge symmetry in an analogous manner to the Standard Model Higgs mechanism. As to flat spacetime, the dimensionful parameter is generated within the dimensional transmutation in quantum field theories, and thus the symmetry is radiatively broken through the one-loop Effective Coleman-Weinberg potential. We show that the mere expectation of reducing to Einstein's gravity in the broken phases forbids anti-de Sitter space to be its stable vacua. The model is unitary in de Sitter and flat vacua around which a massless graviton, N2 - 1 massless scalar bosons, N massless Dirac fermions, N2 - 1 Proca-type massive Abelian and non-Abelian vector bosons are generically propagated.

  8. Step scaling and the Yang-Mills gradient flow

    NASA Astrophysics Data System (ADS)

    Lüscher, Martin

    2014-06-01

    The use of the Yang-Mills gradient flow in step-scaling studies of lattice QCD is expected to lead to results of unprecedented precision. Step scaling is usually based on the Schrödinger functional, where time ranges over an interval [0 , T] and all fields satisfy Dirichlet boundary conditions at time 0 and T. In these calculations, potentially important sources of systematic errors are boundary lattice effects and the infamous topology-freezing problem. The latter is here shown to be absent if Neumann instead of Dirichlet boundary conditions are imposed on the gauge field at time 0. Moreover, the expectation values of gauge-invariant local fields at positive flow time (and of other well localized observables) that reside in the center of the space-time volume are found to be largely insensitive to the boundary lattice effects.

  9. Nonlocal symmetries and Bäcklund transformations for the self-dual Yang-Mills system

    NASA Astrophysics Data System (ADS)

    Papachristou, C. J.; Harrison, B. Kent

    1988-01-01

    The observation is made that generalized evolutionary isovectors of the self-dual Yang-Mills equation, obtained by ``verticalization'' of the geometrical isovectors derived in a previous paper [J. Math. Phys. 28, 1261 (1987)], generate Bäcklund transformations for the self-dual system. In particular, new Bäcklund transformations are obtained by ``verticalizing'' the generators of point transformations on the solution manifold. A geometric ansatz for the derivation of such (generally nonlocal) symmetries is proposed.

  10. Generalized zeta function representation of groups and 2-dimensional topological Yang-Mills theory: The example of GL(2, #Mathematical Double-Struck Capital F#{sub q}) and PGL(2, #Mathematical Double-Struck Capital F#{sub q})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roche, Ph., E-mail: philippe.roche@univ-montp2.fr

    We recall the relation between zeta function representation of groups and two-dimensional topological Yang-Mills theory through Mednikh formula. We prove various generalisations of Mednikh formulas and define generalization of zeta function representations of groups. We compute some of these functions in the case of the finite group GL(2, #Mathematical Double-Struck Capital F#{sub q}) and PGL(2, #Mathematical Double-Struck Capital F#{sub q}). We recall the table characters of these groups for any q, compute the Frobenius-Schur indicator of their irreducible representations, and give the explicit structure of their fusion rings.

  11. Dyons and dyonic black holes in su (N ) Einstein-Yang-Mills theory in anti-de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Shepherd, Ben L.; Winstanley, Elizabeth

    2016-03-01

    We present new spherically symmetric, dyonic soliton and black hole solutions of the su (N ) Einstein-Yang-Mills equations in four-dimensional asymptotically anti-de Sitter spacetime. The gauge field has nontrivial electric and magnetic components and is described by N -1 magnetic gauge field functions and N -1 electric gauge field functions. We explore the phase space of solutions in detail for su (2 ) and su (3 ) gauge groups. Combinations of the electric gauge field functions are monotonic and have no zeros; in general the magnetic gauge field functions may have zeros. The phase space of solutions is extremely rich, and we find solutions in which the magnetic gauge field functions have more than fifty zeros. Of particular interest are solutions for which the magnetic gauge field functions have no zeros, which exist when the negative cosmological constant has sufficiently large magnitude. We conjecture that at least some of these nodeless solutions may be stable under linear, spherically symmetric, perturbations.

  12. 'From Man to Bacteria': W.D. Hamilton, the theory of inclusive fitness, and the post-war social order.

    PubMed

    Swenson, Sarah A

    2015-02-01

    W.D. Hamilton's theory of inclusive fitness aimed to define the evolved limits of altruism with mathematical precision. Although it was meant to apply universally, it has been almost irretrievably entwined with the particular case of social insects that featured in his famous 1964 papers. The assumption that social insects were central to Hamilton's early work contradicts material in his rich personal archive. In fact, careful study of Hamilton's notes, letters, diaries, and early essays indicates the extent to which he had humans in mind when he decided altruism was a topic worthy of biological inquiry. For this reason, this article reconsiders the role of extra-scientific factors in Hamilton's early theorizing. In doing so, it offers an alternative perspective as to why Hamilton saw self-sacrifice to be an important subject. Although the traditional narrative prioritizes his distaste for benefit-of-the-species explanations as a motivating factor behind his foundational work, I argue that greater attention ought to be given to Hamilton's hope that science could be used to address social ills. By reconsidering the meaning Hamilton intended inclusive fitness to have, we see that while he was no political ideologue, the socio-political relevance of his theory was nevertheless integral to its development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Classical r matrix of the su(2 vertical bar 2) super Yang-Mills spin chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torrielli, Alessandro

    2007-05-15

    In this note we straightforwardly derive and make use of the quantum R matrix for the su(2 vertical bar 2) super Yang-Mills spin chain in the manifest su(1 vertical bar 2)-invariant formulation, which solves the standard quantum Yang-Baxter equation, in order to obtain the correspondent (undressed) classical r matrix from the first order expansion in the 'deformation' parameter 2{pi}/{radical}({lambda}) and check that this last solves the standard classical Yang-Baxter equation. We analyze its bialgebra structure, its dependence on the spectral parameters, and its pole structure. We notice that it still preserves an su(1 vertical bar 2) subalgebra, thereby admitting anmore » expression in terms of a combination of projectors, which spans only a subspace of su(1 vertical bar 2)xsu(1 vertical bar 2). We study the residue at its simple pole at the origin and comment on the applicability of the classical Belavin-Drinfeld type of analysis.« less

  14. Analytic Result for the Two-loop Six-point NMHV Amplitude in N = 4 Super Yang-Mills Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Lance J.; /SLAC; Drummond, James M.

    2012-02-15

    We provide a simple analytic formula for the two-loop six-point ratio function of planar N = 4 super Yang-Mills theory. This result extends the analytic knowledge of multi-loop six-point amplitudes beyond those with maximal helicity violation. We make a natural ansatz for the symbols of the relevant functions appearing in the two-loop amplitude, and impose various consistency conditions, including symmetry, the absence of spurious poles, the correct collinear behavior, and agreement with the operator product expansion for light-like (super) Wilson loops. This information reduces the ansatz to a small number of relatively simple functions. In order to fix these parametersmore » uniquely, we utilize an explicit representation of the amplitude in terms of loop integrals that can be evaluated analytically in various kinematic limits. The final compact analytic result is expressed in terms of classical polylogarithms, whose arguments are rational functions of the dual conformal cross-ratios, plus precisely two functions that are not of this type. One of the functions, the loop integral {Omega}{sup (2)}, also plays a key role in a new representation of the remainder function R{sub 6}{sup (2)} in the maximally helicity violating sector. Another interesting feature at two loops is the appearance of a new (parity odd) x (parity odd) sector of the amplitude, which is absent at one loop, and which is uniquely determined in a natural way in terms of the more familiar (parity even) x (parity even) part. The second non-polylogarithmic function, the loop integral {tilde {Omega}}{sup (2)}, characterizes this sector. Both {Omega}{sup (2)} and {tilde {Omega}}{sup (2)} can be expressed as one-dimensional integrals over classical polylogarithms with rational arguments.« less

  15. Cluster-enriched Yang-Baxter equation from SUSY gauge theories

    NASA Astrophysics Data System (ADS)

    Yamazaki, Masahito

    2018-04-01

    We propose a new generalization of the Yang-Baxter equation, where the R-matrix depends on cluster y-variables in addition to the spectral parameters. We point out that we can construct solutions to this new equation from the recently found correspondence between Yang-Baxter equations and supersymmetric gauge theories. The S^2 partition function of a certain 2d N=(2,2) quiver gauge theory gives an R-matrix, whereas its FI parameters can be identified with the cluster y-variables.

  16. How nonperturbative is the infrared regime of Landau gauge Yang-Mills correlators?

    NASA Astrophysics Data System (ADS)

    Reinosa, U.; Serreau, J.; Tissier, M.; Wschebor, N.

    2017-07-01

    We study the Landau gauge correlators of Yang-Mills fields for infrared Euclidean momenta in the context of a massive extension of the Faddeev-Popov Lagrangian which, we argue, underlies a variety of continuum approaches. Standard (perturbative) renormalization group techniques with a specific, infrared-safe renormalization scheme produce so-called decoupling and scaling solutions for the ghost and gluon propagators, which correspond to nontrivial infrared fixed points. The decoupling fixed point is infrared stable and weakly coupled, while the scaling fixed point is unstable and generically strongly coupled except for low dimensions d →2 . Under the assumption that such a scaling fixed point exists beyond one-loop order, we find that the corresponding ghost and gluon scaling exponents are, respectively, 2 αF=2 -d and 2 αG=d at all orders of perturbation theory in the present renormalization scheme. We discuss the relation between the ghost wave function renormalization, the gluon screening mass, the scale of spectral positivity violation, and the gluon mass parameter. We also show that this scaling solution does not realize the standard Becchi-Rouet-Stora-Tyutin symmetry of the Faddeev-Popov Lagrangian. Finally, we discuss our findings in relation to the results of nonperturbative continuum methods.

  17. Localization of Gauge Theory on a Four-Sphere and Supersymmetric Wilson Loops

    NASA Astrophysics Data System (ADS)

    Pestun, Vasily

    2012-07-01

    We prove conjecture due to Erickson-Semenoff-Zarembo and Drukker-Gross which relates supersymmetric circular Wilson loop operators in the {N=4} supersymmetric Yang-Mills theory with a Gaussian matrix model. We also compute the partition function and give a new matrix model formula for the expectation value of a supersymmetric circular Wilson loop operator for the pure {N=2} and the {N=2^*} supersymmetric Yang-Mills theory on a four-sphere. A four-dimensional {N=2} superconformal gauge theory is treated similarly.

  18. String theory, gauge theory and quantum gravity. Proceedings. Trieste Spring School and Workshop on String Theory, Gauge Theory and Quantum Gravity, Trieste (Italy), 11 - 22 Apr 1994.

    NASA Astrophysics Data System (ADS)

    1995-04-01

    The following topics were dealt with: string theory, gauge theory, quantum gravity, quantum geometry, black hole physics and information loss, second quantisation of the Wilson loop, 2D Yang-Mills theory, topological field theories, equivariant cohomology, superstring theory and fermion masses, supergravity, topological gravity, waves in string cosmology, superstring theories, 4D space-time.

  19. Application of Hamilton's law of varying action

    NASA Technical Reports Server (NTRS)

    Bailey, C. D.

    1975-01-01

    The law of varying action enunciated by Hamilton in 1834-1835 permits the direct analytical solution of the problems of mechanics, both stationary and nonstationary, without consideration of force equilibrium and the theory of differential equations associated therewith. It has not been possible to obtain direct analytical solutions to nonstationary systems through the use of energy theory, which has been limited for 140 years to the principle of least action and to Hamilton's principle. It is shown here that Hamilton's law permits the direct analytical solution to nonstationary, initial value systems in the mechanics of solids without any knowledge or use of the theory of differential equations. Solutions are demonstrated for nonconservative, nonstationary particle motion, both linear and nonlinear.

  20. Solitons and black holes in non-Abelian Einstein-Born-Infeld theory

    NASA Astrophysics Data System (ADS)

    Dyadichev, V. V.; Gal'tsov, D. V.

    2000-08-01

    Recently it was shown that the Born-Infeld modification of the quadratic Yang-Mills action gives rise to classical particle-like solutions in the flat space which have a striking similarity with the Bartnik-McKinnon solutions obtained within the gravity coupled Yang-Mills theory. We show that both families of solutions are continuously related within the framework of the Einstein-Born-Infeld theory via interpolating sequences of parameters. We also investigate an internal structure of the associated black holes and find that the Born-Infeld non-linearity changes drastically the black hole interior typical for the usual quadratic Yang-Mills theory. In the latter case a generic solution exhibits violent metric oscillations near the singularity. In the Born-Infeld case the generic interior solution is smooth, the metric tends to the standard Schwarzschild type singularity, and we did not observe internal horizons. Smoothing of the `violent' EYM singularity may be interpreted as a result of non-gravitational quantum effects.

  1. Quantum spectral curve of the N=6 supersymmetric Chern-Simons theory.

    PubMed

    Cavaglià, Andrea; Fioravanti, Davide; Gromov, Nikolay; Tateo, Roberto

    2014-07-11

    Recently, it was shown that the spectrum of anomalous dimensions and other important observables in planar N=4 supersymmetric Yang-Mills theory are encoded into a simple nonlinear Riemann-Hilbert problem: the Pμ system or quantum spectral curve. In this Letter, we extend this formulation to the N=6 supersymmetric Chern-Simons theory introduced by Aharony, Bergman, Jafferis, and Maldacena. This may be an important step towards the exact determination of the interpolating function h(λ) characterizing the integrability of this model. We also discuss a surprising relation between the quantum spectral curves for the N=4 supersymmetric Yang-Mills theory and the N=6 supersymmetric Chern-Simons theory considered here.

  2. Hamilton's missing link.

    PubMed

    van Veelen, Matthijs

    2007-06-07

    Hamilton's famous rule was presented in 1964 in a paper called "The genetical theory of social behaviour (I and II)", Journal of Theoretical Biology 7, 1-16, 17-32. The paper contains a mathematical genetical model from which the rule supposedly follows, but it does not provide a link between the paper's central result, which states that selection dynamics take the population to a state where mean inclusive fitness is maximized, and the rule, which states that selection will lead to maximization of individual inclusive fitness. This note provides a condition under which Hamilton's rule does follow from his central result.

  3. Yang-Mills instantons in Kähler spaces with one holomorphic isometry

    NASA Astrophysics Data System (ADS)

    Chimento, Samuele; Ortín, Tomás; Ruipérez, Alejandro

    2018-03-01

    We consider self-dual Yang-Mills instantons in 4-dimensional Kähler spaces with one holomorphic isometry and show that they satisfy a generalization of the Bogomol'nyi equation for magnetic monopoles on certain 3-dimensional metrics. We then search for solutions of this equation in 3-dimensional metrics foliated by 2-dimensional spheres, hyperboloids or planes in the case in which the gauge group coincides with the isometry group of the metric (SO(3), SO (1 , 2) and ISO(2), respectively). Using a generalized hedgehog ansatz the Bogomol'nyi equations reduce to a simple differential equation in the radial variable which admits a universal solution and, in some cases, a particular one, from which one finally recovers instanton solutions in the original Kähler space. We work out completely a few explicit examples for some Kähler spaces of interest.

  4. 'Morals can not be drawn from facts but guidance may be': the early life of W.D. Hamilton's theory of inclusive fitness.

    PubMed

    Swenson, Sarah A

    2015-12-01

    W.D. Hamilton's theory of inclusive fitness saw the evolution of altruism from the point of view of the gene. It was at heart a theory of limits, redefining altruistic behaviours as ultimately selfish. This theory inspired two controversial texts published almost in tandem, E.O. Wilson's Sociobiology: The New Synthesis (1975) and Richard Dawkins's The Selfish Gene (1976). When Wilson and Dawkins were attacked for their evolutionary interpretations of human societies, they claimed a distinction between reporting what is and declaring what ought to be. Can the history of sociobiological theories be so easily separated from its sociopolitical context? This paper draws upon unpublished materials from the 1960s and early 1970s and documents some of the ways in which Hamilton saw his research as contributing to contemporary concerns. It pays special attention to the 1969 Man and Beast Smithsonian Institution symposium in order to explore the extent to which Hamilton intended his theory to be merely descriptive versus prescriptive. From this, we may see that Hamilton was deeply concerned about the political chaos he perceived in the world around him, and hoped to arrive at a level of self-understanding through science that could inform a new social order.

  5. Twistor theory at fifty: from contour integrals to twistor strings

    NASA Astrophysics Data System (ADS)

    Atiyah, Michael; Dunajski, Maciej; Mason, Lionel J.

    2017-10-01

    We review aspects of twistor theory, its aims and achievements spanning the last five decades. In the twistor approach, space-time is secondary with events being derived objects that correspond to compact holomorphic curves in a complex threefold-the twistor space. After giving an elementary construction of this space, we demonstrate how solutions to linear and nonlinear equations of mathematical physics-anti-self-duality equations on Yang-Mills or conformal curvature-can be encoded into twistor cohomology. These twistor correspondences yield explicit examples of Yang-Mills and gravitational instantons, which we review. They also underlie the twistor approach to integrability: the solitonic systems arise as symmetry reductions of anti-self-dual (ASD) Yang-Mills equations, and Einstein-Weyl dispersionless systems are reductions of ASD conformal equations. We then review the holomorphic string theories in twistor and ambitwistor spaces, and explain how these theories give rise to remarkable new formulae for the computation of quantum scattering amplitudes. Finally, we discuss the Newtonian limit of twistor theory and its possible role in Penrose's proposal for a role of gravity in quantum collapse of a wave function.

  6. Twistor theory at fifty: from contour integrals to twistor strings.

    PubMed

    Atiyah, Michael; Dunajski, Maciej; Mason, Lionel J

    2017-10-01

    We review aspects of twistor theory, its aims and achievements spanning the last five decades. In the twistor approach, space-time is secondary with events being derived objects that correspond to compact holomorphic curves in a complex threefold-the twistor space. After giving an elementary construction of this space, we demonstrate how solutions to linear and nonlinear equations of mathematical physics-anti-self-duality equations on Yang-Mills or conformal curvature-can be encoded into twistor cohomology. These twistor correspondences yield explicit examples of Yang-Mills and gravitational instantons, which we review. They also underlie the twistor approach to integrability: the solitonic systems arise as symmetry reductions of anti-self-dual (ASD) Yang-Mills equations, and Einstein-Weyl dispersionless systems are reductions of ASD conformal equations. We then review the holomorphic string theories in twistor and ambitwistor spaces, and explain how these theories give rise to remarkable new formulae for the computation of quantum scattering amplitudes. Finally, we discuss the Newtonian limit of twistor theory and its possible role in Penrose's proposal for a role of gravity in quantum collapse of a wave function.

  7. Tests of conformal field theory at the Yang-Lee singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wydro, Tomasz; McCabe, John F.

    2009-12-14

    This paper studies the Yang-Lee edge singularity of 2-dimensional (2D) Ising model based on a quantum spin chain and transfer matrix measurements on the cylinder. Based on finite-size scaling, the low-lying excitation spectrum is found at the Yang-Lee edge singularity. Based on transfer matrix techniques, the single structure constant is evaluated at the Yang-Lee edge singularity. The results of both types of measurements are found to be fully consistent with the predictions for the (A{sub 4}, A{sub 1}) minimal conformal field theory, which was previously identified with this critical point.

  8. Adventures in Topological Field Theory

    NASA Astrophysics Data System (ADS)

    Horne, James H.

    1990-01-01

    This thesis consists of 5 parts. In part I, the topological Yang-Mills theory and the topological sigma model are presented in a superspace formulation. This greatly simplifies the field content of the theories, and makes the Q-invariance more obvious. The Feynman rules for the topological Yang -Mills theory are derived. We calculate the one-loop beta-functions of the topological sigma model in superspace. The lattice version of these theories is presented. The self-duality constraints of both models lead to spectrum doubling. In part II, we show that conformally invariant gravity in three dimensions is equivalent to the Yang-Mills gauge theory of the conformal group in three dimensions, with a Chern-Simons action. This means that conformal gravity is finite and exactly soluble. In part III, we derive the skein relations for the fundamental representations of SO(N), Sp(2n), Su(m| n), and OSp(m| 2n). These relations can be used recursively to calculate the expectation values of Wilson lines in three-dimensional Chern-Simons gauge theory with these gauge groups. A combination of braiding and tying of Wilson lines completely describes the skein relations. In part IV, we show that the k = 1 two dimensional gravity amplitudes at genus 3 agree precisely with the results from intersection theory on moduli space. Predictions for the genus 4 intersection numbers follow from the two dimensional gravity theory. In part V, we discuss the partition function in two dimensional gravity. For the one matrix model at genus 2, we use the partition function to derive a recursion relation. We show that the k = 1 amplitudes completely determine the partition function at arbitrary genus. We present a conjecture for the partition function for the arbitrary topological field theory coupled to topological gravity.

  9. Unified formalism for the generalized kth-order Hamilton-Jacobi problem

    NASA Astrophysics Data System (ADS)

    Colombo, Leonardo; de Léon, Manuel; Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso

    2014-08-01

    The geometric formulation of the Hamilton-Jacobi theory enables us to generalize it to systems of higher-order ordinary differential equations. In this work we introduce the unified Lagrangian-Hamiltonian formalism for the geometric Hamilton-Jacobi theory on higher-order autonomous dynamical systems described by regular Lagrangian functions.

  10. Perturbative quantum gravity as a double copy of gauge theory.

    PubMed

    Bern, Zvi; Carrasco, John Joseph M; Johansson, Henrik

    2010-08-06

    In a previous paper we observed that (classical) tree-level gauge-theory amplitudes can be rearranged to display a duality between color and kinematics. Once this is imposed, gravity amplitudes are obtained using two copies of gauge-theory diagram numerators. Here we conjecture that this duality persists to all quantum loop orders and can thus be used to obtain multiloop gravity amplitudes easily from gauge-theory ones. As a nontrivial test, we show that the three-loop four-point amplitude of N=4 super-Yang-Mills theory can be arranged into a form satisfying the duality, and by taking double copies of the diagram numerators we obtain the corresponding amplitude of N=8 supergravity. We also remark on a nonsupersymmetric two-loop test based on pure Yang-Mills theory resulting in gravity coupled to an antisymmetric tensor and dilaton.

  11. Quantitative genetic versions of Hamilton's rule with empirical applications

    PubMed Central

    McGlothlin, Joel W.; Wolf, Jason B.; Brodie, Edmund D.; Moore, Allen J.

    2014-01-01

    Hamilton's theory of inclusive fitness revolutionized our understanding of the evolution of social interactions. Surprisingly, an incorporation of Hamilton's perspective into the quantitative genetic theory of phenotypic evolution has been slow, despite the popularity of quantitative genetics in evolutionary studies. Here, we discuss several versions of Hamilton's rule for social evolution from a quantitative genetic perspective, emphasizing its utility in empirical applications. Although evolutionary quantitative genetics offers methods to measure each of the critical parameters of Hamilton's rule, empirical work has lagged behind theory. In particular, we lack studies of selection on altruistic traits in the wild. Fitness costs and benefits of altruism can be estimated using a simple extension of phenotypic selection analysis that incorporates the traits of social interactants. We also discuss the importance of considering the genetic influence of the social environment, or indirect genetic effects (IGEs), in the context of Hamilton's rule. Research in social evolution has generated an extensive body of empirical work focusing—with good reason—almost solely on relatedness. We argue that quantifying the roles of social and non-social components of selection and IGEs, in addition to relatedness, is now timely and should provide unique additional insights into social evolution. PMID:24686930

  12. [Talk about nomenclature of twelve meridians from quantitative yin-yang theory].

    PubMed

    Zhao, Xi-xin; Wang, Xue-xia; Zhao, Zhao; Ran, Peng-fei; Lü, Xiao-rui

    2009-03-01

    Based on leads provided by Neijing and other literature, analyze origins of the three-yin and the three-yang and the their respective contents of yin and yang, indicating the principle that the order of yang-qi from more to less is Yang ming, Tai yang, Shao yang, and the order of yin-qi is Tai yin, Shao yin, Jue yin. According to the location of five (six) zang-organs, respective yin-qi content is defined, and according to the principle of more yin-qi matches more, and less yin-qi matches less, five (six) zang-organs match each other. The zang-organs above the diaphragm joints with The Hand-Channels and the zang-organs below the diaphragm with The Foot-Channels, completing the nomenclature of twelve meridians. The names of the six yang-channels correspond to the yin-channels of the exterior-interior relationship, the yin-channels link with hands (feet), and the yang-channels also link with hands (feet), and the amount of yin-qi of the zang-organs corresponding to the yin-channels and the amount of yang-qi of the fu-organs corresponding to yang-channels are in a state of balance. Based on this principle, nomenclature of six channels are completed. Emphasize that the nomenclature of twelve meridians contains profound TCM theories, especially, TCM, by yin-yang, three-yin and three- yang, illustrates living phenomena from the whole to the system and organ level in human body, and the scientific principle "yin-yang can be unlimitedly divided" and its significance, which must guide the studies on living phenomena with modern life sciences from the whole to the molecular level.

  13. Value-oriented citizenship index: New extensions of Kelman and Hamilton's theory to prevent autocracy.

    PubMed

    Morselli, Davide; Passini, Stefano

    2015-11-01

    In Crimes of obedience, Kelman and Hamilton argue that societies can be protected by the degeneration of authority only when citizenship is based on a strong values orientation. This reference to values may be the weakest point in their theory because they do not explicitly define these values. Nevertheless, their empirical findings suggest that the authors are referring to specific democratic principles and universal values (e.g., equality, fairness, harmlessness). In this article, a composite index known as the value-oriented citizenship (VOC) index is introduced and empirically analysed. The results confirm that the VOC index discriminates between people who relate to authority based on values rather than based on their role or on rules in general. The article discusses the utility of the VOC index to develop Kelman and Hamilton's framework further empirically as well as its implications for the analysis of the relationship between individuals and authority. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Chiral higher spin theories and self-duality

    NASA Astrophysics Data System (ADS)

    Ponomarev, Dmitry

    2017-12-01

    We study recently proposed chiral higher spin theories — cubic theories of interacting massless higher spin fields in four-dimensional flat space. We show that they are naturally associated with gauge algebras, which manifest themselves in several related ways. Firstly, the chiral higher spin equations of motion can be reformulated as the self-dual Yang-Mills equations with the associated gauge algebras instead of the usual colour gauge algebra. We also demonstrate that the chiral higher spin field equations, similarly to the self-dual Yang-Mills equations, feature an infinite algebra of hidden symmetries, which ensures their integrability. Secondly, we show that off-shell amplitudes in chiral higher spin theories satisfy the generalised BCJ relations with the usual colour structure constants replaced by the structure constants of higher spin gauge algebras. We also propose generalised double copy procedures featuring higher spin theory amplitudes. Finally, using the light-cone deformation procedure we prove that the structure of the Lagrangian that leads to all these properties is universal and follows from Lorentz invariance.

  15. Periodic solutions of the Hamilton-Jacobi equation with a periodic non-homogeneous term and Aubry-Mather theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolevskii, A N

    It is proved that the one-dimensional Hamilton-Jacobi equation with a periodic non-homogeneous term admits a family of generalized solutions, each of which can be represented as the sum of a linear and a periodic function; a condition for the uniqueness of such a solution is given in terms of Aubry-Mather theory.

  16. Dark energy as a fixed point of the Einstein Yang-Mills Higgs equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinaldi, Massimiliano, E-mail: massimiliano.rinaldi@unitn.it

    We study the Einstein Yang-Mills Higgs equations in the SO(3) representation on a isotropic and homogeneous flat Universe, in the presence of radiation and matter fluids. We map the equations of motion into an autonomous dynamical system of first-order differential equations and we find the equilibrium points. We show that there is only one stable fixed point that corresponds to an accelerated expanding Universe in the future. In the past, instead, there is an unstable fixed point that implies a stiff-matter domination. In between, we find three other unstable fixed points, corresponding, in chronological order, to radiation domination, to mattermore » domination, and, finally, to a transition from decelerated expansion to accelerated expansion. We solve the system numerically and we confirm that there are smooth trajectories that correctly describe the evolution of the Universe, from a remote past dominated by radiation to a remote future dominated by dark energy, passing through a matter-dominated phase.« less

  17. Dark energy as a fixed point of the Einstein Yang-Mills Higgs equations

    NASA Astrophysics Data System (ADS)

    Rinaldi, Massimiliano

    2015-10-01

    We study the Einstein Yang-Mills Higgs equations in the SO(3) representation on a isotropic and homogeneous flat Universe, in the presence of radiation and matter fluids. We map the equations of motion into an autonomous dynamical system of first-order differential equations and we find the equilibrium points. We show that there is only one stable fixed point that corresponds to an accelerated expanding Universe in the future. In the past, instead, there is an unstable fixed point that implies a stiff-matter domination. In between, we find three other unstable fixed points, corresponding, in chronological order, to radiation domination, to matter domination, and, finally, to a transition from decelerated expansion to accelerated expansion. We solve the system numerically and we confirm that there are smooth trajectories that correctly describe the evolution of the Universe, from a remote past dominated by radiation to a remote future dominated by dark energy, passing through a matter-dominated phase.

  18. Yang-Mills gauge conditions from Witten's open string field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng Haidong; Siegel, Warren

    2007-02-15

    We construct the Zinn-Justin-Batalin-Vilkovisky action for tachyons and gauge bosons from Witten's 3-string vertex of the bosonic open string without gauge fixing. Through canonical transformations, we find the off-shell, local, gauge-covariant action up to 3-point terms, satisfying the usual field theory gauge transformations. Perturbatively, it can be extended to higher-point terms. It also gives a new gauge condition in field theory which corresponds to the Feynman-Siegel gauge on the world-sheet.

  19. Chern-Simons theory and S-duality

    NASA Astrophysics Data System (ADS)

    Dimofte, Tudor; Gukov, Sergei

    2013-05-01

    We study S-dualities in analytically continued SL(2) Chern-Simons theory on a 3-manifold M. By realizing Chern-Simons theory via a compactification of a 6d five-brane theory on M, various objects and symmetries in Chern-Simons theory become related to objects and operations in dual 2d, 3d, and 4d theories. For example, the space of flat SL(2 , {C} ) connections on M is identified with the space of supersymmetric vacua in a dual 3d gauge theory. The hidden symmetry [InlineMediaObject not available: see fulltext.] of SL(2) Chern-Simons theory can be identified as the S-duality transformation of {N}=4 super-Yang-Mills theory (obtained by compactifying the five-brane theory on a torus); whereas the mapping class group action in Chern-Simons theory on a three-manifold M with boundary C is realized as S-duality in 4d {N}=2 super-Yang-Mills theory associated with the Riemann surface C. We illustrate these symmetries by considering simple examples of 3-manifolds that include knot complements and punctured torus bundles, on the one hand, and mapping cylinders associated with mapping class group transformations, on the other. A generalization of mapping class group actions further allows us to study the transformations between several distinguished coordinate systems on the phase space of Chern-Simons theory, the SL(2) Hitchin moduli space.

  20. Classical phase space and Hadamard states in the BRST formalism for gauge field theories on curved spacetime

    NASA Astrophysics Data System (ADS)

    Wrochna, Michał; Zahn, Jochen

    We investigate linearized gauge theories on globally hyperbolic spacetimes in the BRST formalism. A consistent definition of the classical phase space and of its Cauchy surface analogue is proposed. We prove that it is isomorphic to the phase space in the ‘subsidiary condition’ approach of Hack and Schenkel in the case of Maxwell, Yang-Mills, and Rarita-Schwinger fields. Defining Hadamard states in the BRST formalism in a standard way, their existence in the Maxwell and Yang-Mills case is concluded from known results in the subsidiary condition (or Gupta-Bleuler) formalism. Within our framework, we also formulate criteria for non-degeneracy of the phase space in terms of BRST cohomology and discuss special cases. These include an example in the Yang-Mills case, where degeneracy is not related to a non-trivial topology of the Cauchy surface.

  1. The large-N Yang-Mills S matrix is ultraviolet finite, but the large-N QCD S matrix is only renormalizable

    NASA Astrophysics Data System (ADS)

    Bochicchio, Marco

    2017-03-01

    Yang-Mills (YM) theory and QCD are known to be renormalizable, but not ultraviolet (UV) finite, order by order, in perturbation theory. It is a fundamental question whether YM theory or QCD is UV finite, or only renormalizable, order by order, in the large-N 't Hooft or Veneziano expansions. We demonstrate that the renormalization group (RG) and asymptotic freedom imply that in 't Hooft large-N expansion the S matrix in YM theory is UV finite, while in both 't Hooft and Veneziano large-N expansions, the S matrix in confining massless QCD is renormalizable but not UV finite. By the same argument, the large-N N =1 supersymmetry (SUSY) YM S matrix is UV finite as well. Besides, we demonstrate that, in both 't Hooft and Veneziano large-N expansions, the correlators of local gauge-invariant operators, as opposed to the S matrix, are renormalizable but, in general, not UV finite, either in YM theory and N =1 SUSY YM theory or a fortiori in massless QCD. Moreover, we compute explicitly the counterterms that arise from renormalizing the 't Hooft and Veneziano expansions by deriving in confining massless QCD-like theories a low-energy theorem of the Novikov-Shifman-Vainshtein-Zakharov type that relates the log derivative with respect to the gauge coupling of a k -point correlator, or the log derivative with respect to the RG-invariant scale, to a (k +1 )-point correlator with the insertion of Tr F2 at zero momentum. Finally, we argue that similar results hold in the large-N limit of a vast class of confining massive QCD-like theories, provided a renormalization scheme exists—as, for example, MS ¯ —in which the beta function is not dependent on the masses. Specifically, in both 't Hooft and Veneziano large-N expansions, the S matrix in confining massive QCD and massive N =1 SUSY QCD is renormalizable but not UV finite.

  2. Instantons in Lifshitz field theories

    NASA Astrophysics Data System (ADS)

    Fujimori, Toshiaki; Nitta, Muneto

    2015-10-01

    BPS instantons are discussed in Lifshitz-type anisotropic field theories. We consider generalizations of the sigma model/Yang-Mills instantons in renormalizable higher dimensional models with the classical Lifshitz scaling invariance. In each model, BPS instanton equation takes the form of the gradient flow equations for "the superpotential" defining "the detailed balance condition". The anisotropic Weyl rescaling and the coset space dimensional reduction are used to map rotationally symmetric instantons to vortices in two-dimensional anisotropic systems on the hyperbolic plane. As examples, we study anisotropic BPS baby Skyrmion 1+1 dimensions and BPS Skyrmion in 2+1 dimensions, for which we take Kähler 1-form and the Wess-Zumiono-Witten term as the superpotentials, respectively, and an anisotropic generalized Yang-Mills instanton in 4 + 1 dimensions, for which we take the Chern-Simons term as the superpotential.

  3. Nonrelativistic Yang-Mills theory for a naturally light Higgs boson

    NASA Astrophysics Data System (ADS)

    Berthier, Laure; Grosvenor, Kevin T.; Yan, Ziqi

    2017-11-01

    We continue the study of the nonrelativistic short-distance completions of a naturally light Higgs, focusing on the interplay between the gauge symmetries and the polynomial shift symmetries. We investigate the naturalness of nonrelativistic scalar quantum electrodynamics with a dynamical critical exponent z =3 by computing leading power law divergences to the scalar propagator in this theory. We find that power law divergences exhibit a more refined structure in theories that lack boost symmetries. Finally, in this toy model, we show that it is possible to preserve a fairly large hierarchy between the scalar mass and the high-energy naturalness scale across 7 orders of magnitude, while accommodating a gauge coupling of order 0.1.

  4. The Status of Children in John Stuart Mill's Theory of Liberty.

    ERIC Educational Resources Information Center

    Habibi, D. A.

    1983-01-01

    John Stuart Mill viewed children in a more favorable light than is generally believed. Mill wished to protect children from society's bad influences long enough for their individual personalities and talents to develop. Complexities that arise in applying a liberal theory to the education of the immature are discussed. (PP)

  5. Hamilton's rule and the causes of social evolution

    PubMed Central

    Bourke, Andrew F. G.

    2014-01-01

    Hamilton's rule is a central theorem of inclusive fitness (kin selection) theory and predicts that social behaviour evolves under specific combinations of relatedness, benefit and cost. This review provides evidence for Hamilton's rule by presenting novel syntheses of results from two kinds of study in diverse taxa, including cooperatively breeding birds and mammals and eusocial insects. These are, first, studies that empirically parametrize Hamilton's rule in natural populations and, second, comparative phylogenetic analyses of the genetic, life-history and ecological correlates of sociality. Studies parametrizing Hamilton's rule are not rare and demonstrate quantitatively that (i) altruism (net loss of direct fitness) occurs even when sociality is facultative, (ii) in most cases, altruism is under positive selection via indirect fitness benefits that exceed direct fitness costs and (iii) social behaviour commonly generates indirect benefits by enhancing the productivity or survivorship of kin. Comparative phylogenetic analyses show that cooperative breeding and eusociality are promoted by (i) high relatedness and monogamy and, potentially, by (ii) life-history factors facilitating family structure and high benefits of helping and (iii) ecological factors generating low costs of social behaviour. Overall, the focal studies strongly confirm the predictions of Hamilton's rule regarding conditions for social evolution and their causes. PMID:24686934

  6. Hamilton's rule and the causes of social evolution.

    PubMed

    Bourke, Andrew F G

    2014-05-19

    Hamilton's rule is a central theorem of inclusive fitness (kin selection) theory and predicts that social behaviour evolves under specific combinations of relatedness, benefit and cost. This review provides evidence for Hamilton's rule by presenting novel syntheses of results from two kinds of study in diverse taxa, including cooperatively breeding birds and mammals and eusocial insects. These are, first, studies that empirically parametrize Hamilton's rule in natural populations and, second, comparative phylogenetic analyses of the genetic, life-history and ecological correlates of sociality. Studies parametrizing Hamilton's rule are not rare and demonstrate quantitatively that (i) altruism (net loss of direct fitness) occurs even when sociality is facultative, (ii) in most cases, altruism is under positive selection via indirect fitness benefits that exceed direct fitness costs and (iii) social behaviour commonly generates indirect benefits by enhancing the productivity or survivorship of kin. Comparative phylogenetic analyses show that cooperative breeding and eusociality are promoted by (i) high relatedness and monogamy and, potentially, by (ii) life-history factors facilitating family structure and high benefits of helping and (iii) ecological factors generating low costs of social behaviour. Overall, the focal studies strongly confirm the predictions of Hamilton's rule regarding conditions for social evolution and their causes.

  7. Covariant open bosonic string field theory on multiple D-branes in the proper-time gauge

    NASA Astrophysics Data System (ADS)

    Lee, Taejin

    2017-12-01

    We construct a covariant open bosonic string field theory on multiple D-branes, which reduces to a non-Abelian group Yang-Mills gauge theory in the zero-slope limit. Making use of the first quantized open bosonic string in the proper time gauge, we convert the string amplitudes given by the Polyakov path integrals on string world sheets into those of the second quantized theory. The world sheet diagrams generated by the constructed open string field theory are planar in contrast to those of the Witten's cubic string field theory. However, the constructed string field theory is yet equivalent to the Witten's cubic string field theory. Having obtained planar diagrams, we may adopt the light-cone string field theory technique to calculate the multi-string scattering amplitudes with an arbitrary number of external strings. We examine in detail the three-string vertex diagram and the effective four-string vertex diagrams generated perturbatively by the three-string vertex at tree level. In the zero-slope limit, the string scattering amplitudes are identified precisely as those of non-Abelian Yang-Mills gauge theory if the external states are chosen to be massless vector particles.

  8. Topics in Higher-Derivative Supergravity and N = 2 Yang-Mills Theories

    NASA Astrophysics Data System (ADS)

    Hindawi, Ahmed Abdel-Ati

    1997-09-01

    In Part I of the thesis we discuss higher-derivative theories of gravity. We start by discussing the field content of quadratic higher-derivative gravity, together with a new example of a massless spin-two field consistently coupled to gravity. The full quadratic gravity theory is shown to be equivalent to a canonical second-order theory of a massive scalar field, a massive spin-two symmetric tensor field and gravity. It is shown that flat-space is the only stable vacuum, and that the spin-two field around it is always ghost-like. We give a procedure for exhibiting the new propagating degrees of freedom in a generic higher-derivative gravity, at the full non-linear level. We show that around any vacuum the elementary excitations remain the massless graviton, a massive scalar field and a massive ghost-like spin-two field. In Part II of the thesis we extend our investigations to the realm of supergravity. We consider the general form of quadratic (1, 1) supergravity in two dimensions. It is demonstrated that the theory possesses stable vacua with vanishing cosmological constant which spontaneously break supersymmetry. We then consider higher-derivative N=1 supergravity in four dimensions. We construct two classes of higher-derivative supergravity theories. They are found to be equivalent to Einstein supergravity coupled to one or two chiral superfields and have a rich vacuum structure. It is demonstrated that theories of the second class can possess a stable vacuum with vanishing cosmological constant that spontaneously breaks supersymmetry. We then proceed to show how spontaneous supersymmetry breaking in the vacuum state of higher-derivative supergravity is transmitted, as explicit soft supersymmetry-breaking terms, to the effective Lagrangian of the standard electroweak model. In Part III we use central charge superspace to give a geometrical construction of the N=2 Abelian vector-tensor multiplet consisting, under N=1 supersymmetry, of one vector and one linear

  9. Renormalized Polyakov loop in the deconfined phase of SU(N) gauge theory and gauge-string duality.

    PubMed

    Andreev, Oleg

    2009-05-29

    We use gauge-string duality to analytically evaluate the renormalized Polyakov loop in pure Yang-Mills theories. For SU(3), the result is in quite good agreement with lattice simulations for a broad temperature range.

  10. Causal hydrodynamics of gauge theory plasmas from AdS/CFT duality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natsuume, Makoto; Okamura, Takashi; Department of Physics, Kwansei Gakuin University, Sanda, Hyogo, 669-1337

    2008-03-15

    We study causal hydrodynamics (Israel-Stewart theory) of gauge theory plasmas from the AdS/CFT duality. Causal hydrodynamics requires new transport coefficients (relaxation times) and we compute them for a number of supersymmetric gauge theories including the N=4 super Yang-Mills theory. However, the relaxation times obtained from the 'shear mode' do not agree with the ones from the 'sound mode', which implies that the Israel-Stewart theory is not a sufficient framework to describe the gauge theory plasmas.

  11. Einstein-Yang-Mills-Dirac systems from the discretized Kaluza-Klein theory

    NASA Astrophysics Data System (ADS)

    Wali, Kameshwar; Viet, Nguyen Ali

    2017-01-01

    A unified theory of the non-Abelian gauge interactions with gravity in the framework of a discretized Kaluza-Klein theory is constructed with a modified Dirac operator and wedge product. All the couplings of chiral spinors to the non-Abelian gauge fields emerge naturally as components of the coupling of the chiral spinors in the generalized gravity together with some new interactions. In particular, the currently prevailing gravity-QCD quark and gravity-electroweak-quark and lepton models are shown to follow as special cases of the general framework.

  12. 2D Kac-Moody symmetry of 4D Yang-Mills theory

    DOE PAGES

    He, Temple; Mitra, Prahar; Strominger, Andrew

    2016-10-25

    Scattering amplitudes of any four-dimensional theory with nonabelian gauge group G may be recast as two-dimensional correlation functions on the asymptotic twosphere at null in nity. The soft gluon theorem is shown, for massless theories at the semiclassical level, to be the Ward identity of a holomorphic two-dimensional G-Kac-Moody symmetry acting on these correlation functions. Holomorphic Kac-Moody current insertions are positive helicity soft gluon insertions. Furthermore, the Kac-Moody transformations are a CPT invariant subgroup of gauge transformations which act nontrivially at null in nity and comprise the four-dimensional asymptotic symmetry group.

  13. Two-Loop Gell-Mann Function for General Renormalizable N = 1 Supersymmetric Theory, Regularized by Higher Derivatives

    NASA Astrophysics Data System (ADS)

    Shevtsova, Ekaterina

    2011-10-01

    For the general renormalizable N=1 supersymmetric Yang-Mills theory, regularized by higher covariant derivatives, a two-loop β-function is calculated. It is shown that all integrals, needed for its obtaining are integrals of total derivatives.

  14. Revisiting the phase transition of AdS-Maxwell-power-Yang-Mills black holes via AdS/CFT tools

    NASA Astrophysics Data System (ADS)

    El Moumni, H.

    2018-01-01

    In the present work we investigate the Van der Waals-like phase transition of AdS black hole solution in the Einstein-Maxwell-power-Yang-Mills gravity (EMPYM) via different approaches. After reconsidering this phase structure in the entropy-thermal plane, we recall the nonlocal observables such as holographic entanglement entropy and two point correlation function to show that the both observables exhibit a Van der Waals-like behavior as the case of the thermal entropy. By checking the Maxwell's equal area law and calculating the critical exponent for different values of charge C and nonlinearity parameter q we confirm that the first and the second order phases persist in the holographic framework. Also the validity of the Maxwell law is governed by the proximity to the critical point.

  15. Hidden simplicity of gauge theory amplitudes

    NASA Astrophysics Data System (ADS)

    Drummond, J. M.

    2010-11-01

    These notes were given as lectures at the CERN Winter School on Supergravity, Strings and Gauge Theory 2010. We describe the structure of scattering amplitudes in gauge theories, focussing on the maximally supersymmetric theory to highlight the hidden symmetries which appear. Using the Britto, Cachzo, Feng and Witten (BCFW) recursion relations we solve the tree-level S-matrix in \\ {N}=4 super Yang-Mills theory and describe how it produces a sum of invariants of a large symmetry algebra. We review amplitudes in the planar theory beyond tree level, describing the connection between amplitudes and Wilson loops, and discuss the implications of the hidden symmetries.

  16. Classical BV Theories on Manifolds with Boundary

    NASA Astrophysics Data System (ADS)

    Cattaneo, Alberto S.; Mnev, Pavel; Reshetikhin, Nicolai

    2014-12-01

    In this paper we extend the classical BV framework to gauge theories on spacetime manifolds with boundary. In particular, we connect the BV construction in the bulk with the BFV construction on the boundary and we develop its extension to strata of higher codimension in the case of manifolds with corners. We present several examples including electrodynamics, Yang-Mills theory and topological field theories coming from the AKSZ construction, in particular, the Chern-Simons theory, the BF theory, and the Poisson sigma model. This paper is the first step towards developing the perturbative quantization of such theories on manifolds with boundary in a way consistent with gluing.

  17. Nonabelian Bundle Gerbes, Their Differential Geometry and Gauge Theory

    NASA Astrophysics Data System (ADS)

    Aschieri, Paolo; Cantini, Luigi; Jurčo, Branislav

    2005-03-01

    Bundle gerbes are a higher version of line bundles, we present nonabelian bundle gerbes as a higher version of principal bundles. Connection, curving, curvature and gauge transformations are studied both in a global coordinate independent formalism and in local coordinates. These are the gauge fields needed for the construction of Yang-Mills theories with 2-form gauge potential.

  18. One-loop tests of supersymmetric gauge theories on spheres

    DOE PAGES

    Minahan, Joseph A.; Naseer, Usman

    2017-07-14

    Here, we show that a recently conjectured form for perturbative supersymmetric partition functions on spheres of general dimension d is consistent with the at space limit of 6-dimensional N = 1 super Yang-Mills. We also show that the partition functions for N = 1 8- and 9-dimensional theories are consistent with their known at space limits.

  19. Liberty, Authority, and Character Cultivation: John Stuart Mill's Revised Liberal Theories.

    ERIC Educational Resources Information Center

    Kim, Ki Su

    1988-01-01

    The article examines educational changes recommended by Mill in his liberal political theories to point out some of the attempts of liberals to adjust themselves to changing historical circumstances. (CB)

  20. Improved actions and asymptotic scaling in lattice Yang-Mills theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langfeld, Kurt

    2007-11-01

    Improved actions in SU(2) and SU(3) lattice gauge theories are investigated with an emphasis on asymptotic scaling. A new scheme for tadpole improvement is proposed. The standard but heuristic tadpole improvement emerges from a mean field approximation from the new approach. Scaling is investigated by means of the large distance static quark potential. Both the generic and the new tadpole scheme yield significant improvements on asymptotic scaling when compared with loop improved actions. A study of the rotational symmetry breaking terms, however, reveals that only the new improvement scheme efficiently eliminates the leading irrelevant term from the action.

  1. 2. GENERAL VIEW OF HYDRAULIC 48' BORING MILL. Manufactured by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW OF HYDRAULIC 48' BORING MILL. Manufactured by Simmons Machine Tool Corporation, Albany, New York, and Betts Company, a division of Niles Tool Company, Hamilton, Ohio. - Juniata Shops, Erecting Shop & Machine Shop, East of Fourth Avenue, between Fourth & Fifth Streets, Altoona, Blair County, PA

  2. Kaluza-Klein theories as a tool to find new gauge symmetries

    NASA Astrophysics Data System (ADS)

    Dolan, L.

    Non-abelian Kaluza-Klein theories are studied with respect to using the invariances of multi-dimensional general relativity to investigate hidden symmetry, such as Kac-Mody Lie algebras, of the four-dimensional Yang-Mills theory. Several properties of the affine transformations on the self-dual set are identified and are used to motivate the Kaluza-Klein analysis. In this context, a system of differential equations is derived for new symmetry transformations which may be extendable to the full gauge theory.

  3. Symmetric tops in combined electric fields: Conditional quasisolvability via the quantum Hamilton-Jacobi theory

    NASA Astrophysics Data System (ADS)

    Schatz, Konrad; Friedrich, Bretislav; Becker, Simon; Schmidt, Burkhard

    2018-05-01

    We make use of the quantum Hamilton-Jacobi (QHJ) theory to investigate conditional quasisolvability of the quantum symmetric top subject to combined electric fields (symmetric top pendulum). We derive the conditions of quasisolvability of the time-independent Schrödinger equation as well as the corresponding finite sets of exact analytic solutions. We do so for this prototypical trigonometric system as well as for its anti-isospectral hyperbolic counterpart. An examination of the algebraic and numerical spectra of these two systems reveals mutually closely related patterns. The QHJ approach allows us to retrieve the closed-form solutions for the spherical and planar pendula and the Razavy system that had been obtained in our earlier work via supersymmetric quantum mechanics as well as to find a cornucopia of additional exact analytic solutions.

  4. Dualities and Topological Field Theories from Twisted Geometries

    NASA Astrophysics Data System (ADS)

    Markov, Ruza

    I will present three studies of string theory on twisted geometries. In the first calculation included in this dissertation we use gauge/gravity duality to study the Coulomb branch of an unusual type of nonlocal field theory, called Puff Field Theory. On the gravity side, this theory is given in terms of D3-branes in type IIB string theory with a geometric twist. While the field theory description, available in the IR limit, is a deformation of Yang-Mills gauge theory by an order seven operator which we here compute. In the rest of this dissertation we explore N = 4 super Yang-Mills (SYM) theory compactied on a circle with S-duality and R-symmetry twists that preserve N = 6 supersymmetry in 2 + 1D. It was shown that abelian theory on a flat manifold gives Chern-Simons theory in the low-energy limit and here we are interested in the non-abelian counterpart. To that end, we introduce external static supersymmetric quark and anti-quark sources into the theory and calculate the Witten Index of the resulting Hilbert space of ground states on a two-torus. Using these results we compute the action of simple Wilson loops on the Hilbert space of ground states without sources. In some cases we find disagreement between our results for the Wilson loop eigenvalues and previous conjectures about a connection with Chern-Simons theory. The last result discussed in this dissertation demonstrates a connection between gravitational Chern-Simons theory and N = 4 four-dimensional SYM theory compactified on a circle twisted by S-duality where the remaining three-manifold is not flat starting with the explicit geometric realization of S-duality in terms of (2, 0) theory.

  5. Remarks on a New Possible Discretization Scheme for Gauge Theories

    NASA Astrophysics Data System (ADS)

    Magnot, Jean-Pierre

    2018-03-01

    We propose here a new discretization method for a class of continuum gauge theories which action functionals are polynomials of the curvature. Based on the notion of holonomy, this discretization procedure appears gauge-invariant for discretized analogs of Yang-Mills theories, and hence gauge-fixing is fully rigorous for these discretized action functionals. Heuristic parts are forwarded to the quantization procedure via Feynman integrals and the meaning of the heuristic infinite dimensional Lebesgue integral is questioned.

  6. Remarks on a New Possible Discretization Scheme for Gauge Theories

    NASA Astrophysics Data System (ADS)

    Magnot, Jean-Pierre

    2018-07-01

    We propose here a new discretization method for a class of continuum gauge theories which action functionals are polynomials of the curvature. Based on the notion of holonomy, this discretization procedure appears gauge-invariant for discretized analogs of Yang-Mills theories, and hence gauge-fixing is fully rigorous for these discretized action functionals. Heuristic parts are forwarded to the quantization procedure via Feynman integrals and the meaning of the heuristic infinite dimensional Lebesgue integral is questioned.

  7. The lattice and quantized Yang–Mills theory

    DOE PAGES

    Creutz, Michael

    2015-11-30

    Quantized Yang–Mills fields lie at the heart of our understanding of the strong nuclear force. To understand the theory at low energies, we must work in the strong coupling regime. The primary technique for this is the lattice. While basically an ultraviolet regulator, the lattice avoids the use of a perturbative expansion. In this paper, I discuss the historical circumstances that drove us to this approach, which has had immense success, convincingly demonstrating quark confinement and obtaining crucial properties of the strong interactions from first principles.

  8. Hamilton's rule, inclusive fitness maximization, and the goal of individual behaviour in symmetric two-player games.

    PubMed

    Okasha, S; Martens, J

    2016-03-01

    Hamilton's original work on inclusive fitness theory assumed additivity of costs and benefits. Recently, it has been argued that an exact version of Hamilton's rule for the spread of a pro-social allele (rb > c) holds under nonadditive pay-offs, so long as the cost and benefit terms are defined as partial regression coefficients rather than pay-off parameters. This article examines whether one of the key components of Hamilton's original theory can be preserved when the rule is generalized to the nonadditive case in this way, namely that evolved organisms will behave as if trying to maximize their inclusive fitness in social encounters. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  9. Austerity and Geometric Structure of Field Theories

    NASA Astrophysics Data System (ADS)

    Kheyfets, Arkady

    The relation between the austerity idea and the geometric structure of the three basic field theories- -electrodynamics, Yang-Mills theory, and general relativity --is studied. The idea of austerity was originally suggested by J. A. Wheeler in an attempt to formulate the laws of physics in such a way that they would come into being only within "the gates of time" extending from big bang to big crunch, rather than exist from everlasting to everlasting. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity (PAR-DIFF)(CCIRC)(PAR -DIFF) = 0 used twice, at the 1-2-3-dimensional level (providing the homgeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for the source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories--electrodynamics, Yang-Mills theory, and general relativity. This dissertation: (a) analyses the difficulties by means of algebraic topology, integration theory and modern differential geometry based on the concepts of principal bundles and Ehresmann connections; (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for all the three theories and compatible with the original austerity idea; (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories, including the soldering form as a dynamical variable rather than as a background structure.

  10. Aspects of Superconformal Field Theories

    NASA Astrophysics Data System (ADS)

    Gadde, Abhijit

    Recently, a lot of progress has been made towards understanding the strongly coupled supersymmetric quantum gauge theories. The problem of strong coupling for SU(N) gauge theories can be formulated in two separate regimes of interest, one at finite N and the other at large N in 't Hooft limit. In the first case electric/magnetic duality also called S-duality and in the second, AdS/CFT duality map the strongly coupled problem to a weakly coupled one. Both of the dualities have been well understood in the maximally supersymmetric 4 d gauge theory, the N = 4 super Yang-Mills. In this thesis, as a natural next step, we focus on the strong coupling behavior in N = 2 supersymmetric gauge theories.

  11. An almost trivial gauge theory in the limit of infinite gauge coupling constant.

    NASA Astrophysics Data System (ADS)

    Kaptanoglu, S.

    A local SU(2) gauge theory with one multiplet of scalars in the adjoint representation is considered. In the limit of infinite gauge coupling constant Yang-Mills fields become auxiliary and the action possesses a larger invariance than the usual gauge invariance; hence, the system develops a richer structure of constraints. The constraint analysis is carried out.

  12. Fifty years with the Hamilton scales for anxiety and depression. A tribute to Max Hamilton.

    PubMed

    Bech, P

    2009-01-01

    From the moment Max Hamilton started his psychiatric education, he considered psychometrics to be a scientific discipline on a par with biochemistry or pharmacology in clinical research. His clinimetric skills were in operation in the 1950s when randomised clinical trials were established as the method for the evaluation of the clinical effects of psychotropic drugs. Inspired by Eysenck, Hamilton took the long route around factor analysis in order to qualify his scales for anxiety (HAM-A) and depression (HAM-D) as scientific tools. From the moment when, 50 years ago, Hamilton published his first placebo-controlled trial with an experimental anti-anxiety drug, he realized the dialectic problem in using the total score on HAM-A as a sufficient statistic for the measurement of outcome. This dialectic problem has been investigated for more than 50 years with different types of factor analyses without success. Using modern psychometric methods, the solution to this problem is a simple matter of reallocating the Hamilton scale items according to the scientific hypothesis under examination. Hamilton's original intention, to measure the global burden of the symptoms experienced by the patients with affective disorders, is in agreement with the DSM-IV and ICD-10 classification systems. Scale reliability and obtainment of valid information from patients and their relatives were the most important clinimetric innovations to be developed by Hamilton. Max Hamilton therefore belongs to the very exclusive family of eminent physicians celebrated by this journal with a tribute. 2009 S. Karger AG, Basel.

  13. All conjugate-maximal-helicity-violating amplitudes from topological open string theory in twistor space.

    PubMed

    Roiban, Radu; Volovich, Anastasia

    2004-09-24

    It has recently been proposed that the D-instanton expansion of the open topological B model on P(3|4) is equivalent to the perturbative expansion of the maximally supersymmetric Yang-Mills theory in four dimensions. In this letter we show how to construct the gauge theory results for all n-point conjugate-maximal-helicity-violating amplitudes by computing the integral over the moduli space of curves of degree n-3 in P(3|4), providing strong support to the string theory construction.

  14. BPS Z{sub N} string tensions, sine law and Casimir scaling, and integrable field theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kneipp, Marco A. C.; International Centre for Theoretical Physics

    We consider a Yang-Mills-Higgs theory with spontaneous symmetry breaking of the gauge group G{yields}U(1){sup r}{yields}C{sub G}, with C{sub G} being the center of G. We study two vacua solutions of the theory which produce this symmetry breaking. We show that for one of these vacua, the theory in the Coulomb phase has the mass spectrum of particles and monopoles which is exactly the same as the mass spectrum of particles and solitons of two-dimensional affine Toda field theory, for suitable coupling constants. That result holds also for N=4 super Yang-Mills theories. On the other hand, in the Higgs phase, wemore » show that for each of the two vacua the ratio of the tensions of the BPS Z{sub N} strings satisfy either the Casimir scaling or the sine law scaling for G=SU(N). These results are extended to other gauge groups: for the Casimir scaling, the ratios of the tensions are equal to the ratios of the quadratic Casimir constant of specific representations; for the sine law scaling, the tensions are proportional to the components of the left Perron-Frobenius eigenvector of Cartan matrix K{sub ij} and the ratios of tensions are equal to the ratios of the soliton masses of affine Toda field theories.« less

  15. Event-by-Event Anisotropic Flow in Heavy-ion Collisions from Combined Yang-Mills and Viscous Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Gale, Charles; Jeon, Sangyong; Schenke, Björn; Tribedy, Prithwish; Venugopalan, Raju

    2013-01-01

    Anisotropic flow coefficients v1-v5 in heavy ion collisions are computed by combining a classical Yang-Mills description of the early time Glasma flow with the subsequent relativistic viscous hydrodynamic evolution of matter through the quark-gluon plasma and hadron gas phases. The Glasma dynamics, as realized in the impact parameter dependent Glasma (IP-Glasma) model, takes into account event-by-event geometric fluctuations in nucleon positions and intrinsic subnucleon scale color charge fluctuations; the preequilibrium flow of matter is then matched to the music algorithm describing viscous hydrodynamic flow and particle production at freeze-out. The IP-Glasma+MUSIC model describes well both transverse momentum dependent and integrated vn data measured at the Large Hadron Collider and the Relativistic Heavy Ion Collider. The model also reproduces the event-by-event distributions of v2, v3 and v4 measured by the ATLAS Collaboration. The implications of our results for better understanding of the dynamics of the Glasma and for the extraction of transport properties of the quark-gluon plasma are outlined.

  16. Topological resolution of gauge theory singularities

    NASA Astrophysics Data System (ADS)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-01

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric SU(2) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.

  17. Efficient solution for finding Hamilton cycles in undirected graphs.

    PubMed

    Alhalabi, Wadee; Kitanneh, Omar; Alharbi, Amira; Balfakih, Zain; Sarirete, Akila

    2016-01-01

    The Hamilton cycle problem is closely related to a series of famous problems and puzzles (traveling salesman problem, Icosian game) and, due to the fact that it is NP-complete, it was extensively studied with different algorithms to solve it. The most efficient algorithm is not known. In this paper, a necessary condition for an arbitrary un-directed graph to have Hamilton cycle is proposed. Based on this condition, a mathematical solution for this problem is developed and several proofs and an algorithmic approach are introduced. The algorithm is successfully implemented on many Hamiltonian and non-Hamiltonian graphs. This provides a new effective approach to solve a problem that is fundamental in graph theory and can influence the manner in which the existing applications are used and improved.

  18. Quark-antiquark potential in defect conformal field theory

    NASA Astrophysics Data System (ADS)

    Preti, Michelangelo; Trancanelli, Diego; Vescovi, Edoardo

    2017-10-01

    We consider antiparallel Wilson lines in N = 4 super Yang-Mills in the presence of a codimension-1 defect. We compute the Wilson lines' expectation value both at weak coupling, in the gauge theory, and at strong coupling, by finding the string configurations which are dual to this operator. These configurations display a Gross-Ooguri transition between a connected, U-shaped string phase and a phase in which the string breaks into two disconnected surfaces. We analyze in detail the critical configurations separating the two phases and compare the string result with the gauge theory one in a certain double scaling limit.

  19. New Results in {mathcal {N}}=2 N = 2 Theories from Non-perturbative String

    NASA Astrophysics Data System (ADS)

    Bonelli, Giulio; Grassi, Alba; Tanzini, Alessandro

    2018-03-01

    We describe the magnetic phase of SU(N) $\\mathcal{N}=2$ Super Yang-Mills theories in the self-dual Omega background in terms of a new class of multi-cut matrix models. These arise from a non-perturbative completion of topological strings in the dual four dimensional limit which engineers the gauge theory in the strongly coupled magnetic frame. The corresponding spectral determinants provide natural candidates for the tau functions of isomonodromy problems for flat spectral connections associated to the Seiberg-Witten geometry.

  20. Topological resolution of gauge theory singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-21

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit themore » singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.« less

  1. General relativity in two dimensions: A Hamilton-Jacobi analysis

    NASA Astrophysics Data System (ADS)

    Bertin, M. C.; Pimentel, B. M.; Pompeia, P. J.

    2010-11-01

    We analyzed the constraint structure of the Einstein-Hilbert first-order action in two dimensions using the Hamilton-Jacobi approach. We were able to find a set of involutive, as well as a set of non-involutive constraints. Using generalized brackets we showed how to assure integrability of the theory, to eliminate the set of non-involutive constraints and how to build the field equations.

  2. Hamilton and the square root of minus one

    NASA Astrophysics Data System (ADS)

    Weinberger, Peter

    2014-04-01

    Quaternions, objects consisting of a scalar and a vector, sound like a mysterious concept from the past. In the nineteenth century, the theory of quaternions was praised as one of the most brilliant achievements in mathematical physics. The originator of this theory, Hamilton, surely one of the greatest scientists in that area, spent about 18 years in discussing all kinds of algebraic and geometric properties of quaternions. His research was communicated to the Philosophical Magazine in three series of papers comprising a total of 29 contributions. In this commentary, these three series of papers are revisited concentrating primarily on the algebraic properties of quaternions.

  3. Equivalent D = 3 supergravity amplitudes from double copies of three-algebra and two-algebra gauge theories.

    PubMed

    Huang, Yu-tin; Johansson, Henrik

    2013-04-26

    We show that three-dimensional supergravity amplitudes can be obtained as double copies of either three-algebra super-Chern-Simons matter theory or two-algebra super-Yang-Mills theory when either theory is organized to display the color-kinematics duality. We prove that only helicity-conserving four-dimensional gravity amplitudes have nonvanishing descendants when reduced to three dimensions, implying the vanishing of odd-multiplicity S-matrix elements, in agreement with Chern-Simons matter theory. We explicitly verify the double-copy correspondence at four and six points for N = 12,10,8 supergravity theories and discuss its validity for all multiplicity.

  4. Pure spinors, function superspaces and supergravity theories in ten and eleven dimensions

    NASA Astrophysics Data System (ADS)

    Howe, P. S.

    1991-12-01

    The constraints of d = 10 supergravity coupled to super Yang-Mills and d = 11 supergravity are studied from the viewpoint of the differential geometry of certain function superspaces. For d = 10 the appropriate function space is loop superspace, and the presence of Chern-Simons terms in the coupling of supergravity to Yang-Mills is incorporated into the formalism via a central extension of the loop group of the Yang-Mills group. For d = 11 the function superspace is the space of maps from a compact two-manifold to superspace. In both cases the superspaces include additional commuting coordinates which are pure spinors. Permanent address: Department of Mathematics, King's College, London WC2R 2LS, UK.

  5. Hamiltonization of Solids of Revolution Through Reduction

    NASA Astrophysics Data System (ADS)

    Balseiro, Paula

    2017-12-01

    In this paper, we study the relation between conserved quantities of nonholonomic systems and the hamiltonization problem employing the geometric methods of Balseiro (Arch Ration Mech Anal 214:453-501, 2014) and Balseiro and Garcia-Naranjo (Arch Ration Mech Anal 205(1):267-310, 2012). We illustrate the theory with classical examples describing the dynamics of solids of revolution rolling without sliding on a plane. In these cases, using the existence of two conserved quantities we obtain, by means of gauge transformations and symmetry reduction, genuine Poisson brackets describing the reduced dynamics.

  6. Retrieving Storm Electric Fields from Aircraft Field Mill Data. Part 1; Theory

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.

    2006-01-01

    It is shown that the problem of retrieving storm electric fields from an aircraft instrumented with several electric field mill sensors can be expressed in terms of a standard Lagrange multiplier optimization problem. The method naturally removes aircraft charge from the retrieval process without having to use a high voltage stinger and linearly combined mill data values. It allows a variety of user-supplied physical constraints (the so-called side constraints in the theory of Lagrange multipliers) and also helps improve absolute calibration. Additionally, this paper introduces an alternate way of performing the absolute calibration of an aircraft that has some benefits over conventional analyses. It is accomplished by using the time derivatives of mill and pitch data for a pitch down maneuver performed at high (greater than 1 km) altitude. In Part II of this study, the above methods are tested and then applied to complete a full calibration of a Citation aircraft.

  7. Retrieving Storm Electric Fields From Aircraft Field Mill Data. Part I: Theory

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.

    2005-01-01

    It is shown that the problem of retrieving storm electric fields from an aircraft instrumented with several electric field mill sensors can be expressed in terms of a standard Lagrange multiplier optimization problem. The method naturally removes aircraft charge from the retrieval process without having to use a high voltage stinger and linearly combined mill data values. It also allows a variety of user-supplied physical constraints (the so-called side constraints in the theory of Lagrange multipliers). Additionally, this paper introduces a novel way of performing the absolute calibration of an aircraft that has several benefits over conventional analyses. In the new approach, absolute calibration is completed by inspecting the time derivatives of mill and pitch data for a pitch down maneuver performed at high (greater than 1 km) altitude. In Part II of this study, the above methods are tested and then applied to complete a full calibration of a Citation aircraft.

  8. Gauge Theories of Vector Particles

    DOE R&D Accomplishments Database

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  9. Holographic cosmology and phase transitions of SYM theory

    NASA Astrophysics Data System (ADS)

    Ghoroku, Kazuo; Meyer, René; Toyoda, Fumihiko

    2017-10-01

    We study the time development of strongly coupled N =4 supersymmetric Yang Mills (SYM) theory on cosmological Friedmann-Robertson-Walker (FRW) backgrounds via the AdS/CFT correspondence. We implement the cosmological background as a boundary metric fulfilling the Friedmann equation with a four-dimensional cosmological constant and a dark radiation term. We analyze the dual bulk solution of the type IIB supergravity and find that the time dependence of the FRW background strongly influences the dynamical properties of the SYM theory. We in particular find a phase transition between a confined and a deconfined phase. We also argue that some cosmological solutions could be related to the inflationary scenario.

  10. Yang-Baxter algebras, integrable theories and Bethe Ansatz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Vega, H.J.

    1990-03-10

    This paper presents the Yang-Baxter algebras (YBA) in a general framework stressing their power to exactly solve the lattice models associated to them. The algebraic Behe Ansatz is developed as an eigenvector construction based on the YBA. The six-vertex model solution is given explicitly. The generalization of YB algebras to face language is considered. The algebraic BA for the SOS model of Andrews, Baxter and Forrester is described using these face YB algebras. It is explained how these lattice models yield both solvable massive QFT and conformal models in appropriated scaling (continuous) limits within the lattice light-cone approach. This approachmore » permit to define and solve rigorously massive QFT as an appropriate continuum limit of gapless vertex models. The deep links between the YBA and Lie algebras are analyzed including the quantum groups that underlay the trigonometric/hyperbolic YBA. Braid and quantum groups are derived from trigonometric/hyperbolic YBA in the limit of infinite spectral parameter. To conclude, some recent developments in the domain of integrable theories are summarized.« less

  11. BOOK REVIEW: Path Integrals in Field Theory: An Introduction

    NASA Astrophysics Data System (ADS)

    Ryder, Lewis

    2004-06-01

    In the 1960s Feynman was known to particle physicists as one of the people who solved the major problems of quantum electrodynamics, his contribution famously introducing what are now called Feynman diagrams. To other physicists he gained a reputation as the author of the Feynman Lectures on Physics; in addition some people were aware of his work on the path integral formulation of quantum theory, and a very few knew about his work on gravitation and Yang--Mills theories, which made use of path integral methods. Forty years later the scene is rather different. Many of the problems of high energy physics are solved; and the standard model incorporates Feynman's path integral method as a way of proving the renormalisability of the gauge (Yang--Mills) theories involved. Gravitation is proving a much harder nut to crack, but here also questions of renormalisability are couched in path-integral language. What is more, theoretical studies of condensed matter physics now also appeal to this technique for quantisation, so the path integral method is becoming part of the standard apparatus of theoretical physics. Chapters on it appear in a number of recent books, and a few books have appeared devoted to this topic alone; the book under review is a very recent one. Path integral techniques have the advantage of enormous conceptual appeal and the great disadvantage of mathematical complexity, this being partly the result of messy integrals but more fundamentally due to the notions of functional differentiation and integration which are involved in the method. All in all this subject is not such an easy ride. Mosel's book, described as an introduction, is aimed at graduate students and research workers in particle physics. It assumes a background knowledge of quantum mechanics, both non-relativistic and relativistic. After three chapters on the path integral formulation of non-relativistic quantum mechanics there are eight chapters on scalar and spinor field theory, followed

  12. Hadronic density of states from string theory.

    PubMed

    Pando Zayas, Leopoldo A; Vaman, Diana

    2003-09-12

    We present an exact calculation of the finite temperature partition function for the hadronic states corresponding to a Penrose-Güven limit of the Maldacena-Nùñez embedding of the N=1 super Yang-Mills (SYM) into string theory. It is established that the theory exhibits a Hagedorn density of states. We propose a semiclassical string approximation to the finite temperature partition function for confining gauge theories admitting a supergravity dual, by performing an expansion around classical solutions characterized by temporal windings. This semiclassical approximation reveals a hadronic energy density of states of a Hagedorn type, with the coefficient determined by the gauge theory string tension as expected for confining theories. We argue that our proposal captures primarily information about states of pure N=1 SYM theory, given that this semiclassical approximation does not entail a projection onto states of large U(1) charge.

  13. Galilean field theories and conformal structure

    NASA Astrophysics Data System (ADS)

    Bagchi, Arjun; Chakrabortty, Joydeep; Mehra, Aditya

    2018-04-01

    We perform a detailed analysis of Galilean field theories, starting with free theories and then interacting theories. We consider non-relativistic versions of massless scalar and Dirac field theories before we go on to review our previous construction of Galilean Electrodynamics and Galilean Yang-Mills theory. We show that in all these cases, the field theories exhibit non-relativistic conformal structure (in appropriate dimensions). The surprising aspect of the analysis is that the non-relativistic conformal structure exhibited by these theories, unlike relativistic conformal invariance, becomes infinite dimensional even in spacetime dimensions greater than two. We then couple matter with Galilean gauge theories and show that there is a myriad of different sectors that arise in the non-relativistic limit from the parent relativistic theories. In every case, if the parent relativistic theory exhibited conformal invariance, we find an infinitely enhanced Galilean conformal invariance in the non-relativistic case. This leads us to suggest that infinite enhancement of symmetries in the non-relativistic limit is a generic feature of conformal field theories in any dimension.

  14. Localization of effective actions in open superstring field theory

    NASA Astrophysics Data System (ADS)

    Maccaferri, Carlo; Merlano, Alberto

    2018-03-01

    We consider the construction of the algebraic part of D-branes tree-level effective action from Berkovits open superstring field theory. Applying this construction to the quartic potential of massless fields carrying a specific worldsheet charge, we show that the full contribution to the potential localizes at the boundary of moduli space, reducing to elementary two-point functions. As examples of this general mechanism, we show how the Yang-Mills quartic potential and the instanton effective action of a Dp/D( p - 4) system are reproduced.

  15. Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence.

    PubMed

    Ryu, Shinsei; Takayanagi, Tadashi

    2006-05-12

    A holographic derivation of the entanglement entropy in quantum (conformal) field theories is proposed from anti-de Sitter/conformal field theory (AdS/CFT) correspondence. We argue that the entanglement entropy in d + 1 dimensional conformal field theories can be obtained from the area of d dimensional minimal surfaces in AdS(d+2), analogous to the Bekenstein-Hawking formula for black hole entropy. We show that our proposal agrees perfectly with the entanglement entropy in 2D CFT when applied to AdS(3). We also compare the entropy computed in AdS(5)XS(5) with that of the free N=4 super Yang-Mills theory.

  16. Ultraviolet divergences in non-renormalizable supersymmetric theories

    NASA Astrophysics Data System (ADS)

    Smilga, A.

    2017-03-01

    We present a pedagogical review of our current understanding of the ultraviolet structure of N = (1,1) 6D supersymmetric Yang-Mills theory and of N = 8 4 D supergravity. These theories are not renormalizable, they involve power ultraviolet divergences and, in all probability, an infinite set of higherdimensional counterterms that contribute to on-mass-shell scattering amplitudes. A specific feature of supersymmetric theories (especially, of extended supersymmetric theories) is that these counterterms may not be invariant off shell under the full set of supersymmetry transformations. The lowest-dimensional nontrivial counterterm is supersymmetric on shell. Still higher counterterms may lose even the on-shell invariance. On the other hand, the full effective Lagrangian, generating the amplitudes and representing an infinite sum of counterterms, still enjoys the complete symmetry of original theory. We also discuss simple supersymmetric quantum-mechanical models that exhibit the same behaviour.

  17. Gauge and integrable theories in loop spaces

    NASA Astrophysics Data System (ADS)

    Ferreira, L. A.; Luchini, G.

    2012-05-01

    We propose an integral formulation of the equations of motion of a large class of field theories which leads in a quite natural and direct way to the construction of conservation laws. The approach is based on generalized non-abelian Stokes theorems for p-form connections, and its appropriate mathematical language is that of loop spaces. The equations of motion are written as the equality of a hyper-volume ordered integral to a hyper-surface ordered integral on the border of that hyper-volume. The approach applies to integrable field theories in (1+1) dimensions, Chern-Simons theories in (2+1) dimensions, and non-abelian gauge theories in (2+1) and (3+1) dimensions. The results presented in this paper are relevant for the understanding of global properties of those theories. As a special byproduct we solve a long standing problem in (3+1)-dimensional Yang-Mills theory, namely the construction of conserved charges, valid for any solution, which are invariant under arbitrary gauge transformations.

  18. Entanglement branes in a two-dimensional string theory

    DOE PAGES

    Donnelly, William; Wong, Gabriel

    2017-09-20

    What is the meaning of entanglement in a theory of extended objects such as strings? To address this question we consider the spatial entanglement between two intervals in the Gross-Taylor model, the string theory dual to two-dimensional Yang-Mills theory at large N. The string diagrams that contribute to the entanglement entropy describe open strings with endpoints anchored to the entangling surface, as first argued by Susskind. We develop a canonical theory of these open strings, and describe how closed strings are divided into open strings at the level of the Hilbert space. Here, we derive the modular Hamiltonian for themore » Hartle-Hawking state and show that the corresponding reduced density matrix describes a thermal ensemble of open strings ending on an object at the entangling surface that we call an entanglement brane, or E-brane.« less

  19. Landau singularities and symbology: One- and two-loop MHV amplitudes in SYM theory

    DOE PAGES

    Dennen, Tristan; Spradlin, Marcus; Volovich, Anastasia

    2016-03-14

    We apply the Landau equations, whose solutions parameterize the locus of possible branch points, to the one- and two-loop Feynman integrals relevant to MHV amplitudes in planar N = 4 super-Yang-Mills theory. We then identify which of the Landau singularities appear in the symbols of the amplitudes, and which do not. Finally, we observe that all of the symbol entries in the two-loop MHV amplitudes are already present as Landau singularities of one-loop pentagon integrals.

  20. On the two-loop divergences of the 2-point hypermultiplet supergraphs for 6D, N = (1 , 1) SYM theory

    NASA Astrophysics Data System (ADS)

    Buchbinder, I. L.; Ivanov, E. A.; Merzlikin, B. S.; Stepanyantz, K. V.

    2018-03-01

    We consider 6D, N = (1 , 1) supersymmetric Yang-Mills theory formulated in N = (1 , 0) harmonic superspace and analyze the structure of the two-loop divergences in the hypermultiplet sector. Using the N = (1 , 0) superfield background field method we study the two-point supergraphs with the hypermultiplet legs and prove that their total contribution to the divergent part of effective action vanishes off shell.

  1. Léon Rosenfeld's general theory of constrained Hamiltonian dynamics

    NASA Astrophysics Data System (ADS)

    Salisbury, Donald

    Léon Rosenfeld published in Annalen der Physik in 1930 a groundbreaking paper showing how to construct a Hamiltonian formalism for Lagrangian theories which admitted an underlying local gauge symmetry. The theory included both ``internal'' transformations such as the U(1) symmetry group of electromagnetism, and ``external'' symmetries typified by Einstein's general theory of relativity. His comprehensive analysis predated by two decades the formalism known as the Dirac-Bergmann approach, and I will present evidence that each of these giants were to some extent influenced by Rosenfeld's theory. Of particular significance is Rosenfeld's incorporation of arbitrary functions into the phase space generator of temporal evolution, and his construction of the phase space generator of symmetry transformations. The existing Hamiltonian formalisms have of course played a central role both in the demonstration of the renormalizability of Yang-Mills theories and current efforts in constructing a quantum theory of gravity.

  2. The dyon spectra of finite gauge theories

    NASA Astrophysics Data System (ADS)

    Ferrari, Frank

    1997-02-01

    It is shown that all the ( p, q) dyon bound states exist and are unique in N = 4 and N = 2 with four massless flavor supersymmetric SU(2) Yang-Mills theories, where p and q are any relatively prime integers. The proof can be understood in the context of field theory alone, and does not rely on any duality assumption. We also give a general physical argument showing that these theories should have at least an exact Γ(2) duality symmetry, and then deduce in particular the existence of the (2 p,2 q) vector multiplets in the Nf = 4 theory. The corresponding massive theories are studied in parallel, and it is shown that though in these cases the spectrum is no longer self-dual at a given point on the moduli space, it is still in perfect agreement with an exact S duality. We also discuss the interplay between our results and both the semiclassical quantization and the heterotic-type II string-string duality conjecture.

  3. Holographic complexity and noncommutative gauge theory

    NASA Astrophysics Data System (ADS)

    Couch, Josiah; Eccles, Stefan; Fischler, Willy; Xiao, Ming-Lei

    2018-03-01

    We study the holographic complexity of noncommutative field theories. The four-dimensional N=4 noncommutative super Yang-Mills theory with Moyal algebra along two of the spatial directions has a well known holographic dual as a type IIB supergravity theory with a stack of D3 branes and non-trivial NS-NS B fields. We start from this example and find that the late time holographic complexity growth rate, based on the "complexity equals action" conjecture, experiences an enhancement when the non-commutativity is turned on. This enhancement saturates a new limit which is exactly 1/4 larger than the commutative value. We then attempt to give a quantum mechanics explanation of the enhancement. Finite time behavior of the complexity growth rate is also studied. Inspired by the non-trivial result, we move on to more general setup in string theory where we have a stack of D p branes and also turn on the B field. Multiple noncommutative directions are considered in higher p cases.

  4. Poisson sigma models, reduction and nonlinear gauge theories

    NASA Astrophysics Data System (ADS)

    Signori, Daniele

    This dissertation comprises two main lines of research. Firstly, we study non-linear gauge theories for principal bundles, where the structure group is replaced by a Lie groupoid. We follow the approach of Moerdijk-Mrcun and establish its relation with the existing physics literature. In particular, we derive a new formula for the gauge transformation which closely resembles and generalizes the classical formulas found in Yang Mills gauge theories. Secondly, we give a field theoretic interpretation of the of the BRST (Becchi-Rouet-Stora-Tyutin) and BFV (Batalin-Fradkin-Vilkovisky) methods for the reduction of coisotropic submanifolds of Poisson manifolds. The generalized Poisson sigma models that we define are related to the quantization deformation problems of coisotropic submanifolds using homotopical algebras.

  5. Higher-Loop Amplitude Monodromy Relations in String and Gauge Theory.

    PubMed

    Tourkine, Piotr; Vanhove, Pierre

    2016-11-18

    The monodromy relations in string theory provide a powerful and elegant formalism to understand some of the deepest properties of tree-level field theory amplitudes, like the color-kinematics duality. This duality has been instrumental in tremendous progress on the computations of loop amplitudes in quantum field theory, but a higher-loop generalization of the monodromy construction was lacking. In this Letter, we extend the monodromy relations to higher loops in open string theory. Our construction, based on a contour deformation argument of the open string diagram integrands, leads to new identities that relate planar and nonplanar topologies in string theory. We write one and two-loop monodromy formulas explicitly at any multiplicity. In the field theory limit, at one-loop we obtain identities that reproduce known results. At two loops, we check our formulas by unitarity in the case of the four-point N=4 super-Yang-Mills amplitude.

  6. Tensor modes in pure natural inflation

    NASA Astrophysics Data System (ADS)

    Nomura, Yasunori; Yamazaki, Masahito

    2018-05-01

    We study tensor modes in pure natural inflation [1], a recently-proposed inflationary model in which an axionic inflaton couples to pure Yang-Mills gauge fields. We find that the tensor-to-scalar ratio r is naturally bounded from below. This bound originates from the finiteness of the number of metastable branches of vacua in pure Yang-Mills theories. Details of the model can be probed by future cosmic microwave background experiments and improved lattice gauge theory calculations of the θ-angle dependence of the vacuum energy.

  7. The method of Ritz applied to the equation of Hamilton. [for pendulum systems

    NASA Technical Reports Server (NTRS)

    Bailey, C. D.

    1976-01-01

    Without any reference to the theory of differential equations, the initial value problem of the nonlinear, nonconservative double pendulum system is solved by the application of the method of Ritz to the equation of Hamilton. Also shown is an example of the reduction of the traditional eigenvalue problem of linear, homogeneous, differential equations of motion to the solution of a set of nonhomogeneous algebraic equations. No theory of differential equations is used. Solution of the time-space path of the linear oscillator is demonstrated and compared to the exact solution.

  8. Ambitwistor formulations of R 2 gravity and ( DF)2 gauge theories

    NASA Astrophysics Data System (ADS)

    Azevedo, Thales; Engelund, Oluf Tang

    2017-11-01

    We consider D-dimensional amplitudes in R 2 gravities (conformal gravity in D = 4) and in the recently introduced ( DF)2 gauge theory, from the perspective of the CHY formulae and ambitwistor string theory. These theories are related through the BCJ double-copy construction, and the ( DF)2 gauge theory obeys color-kinematics duality. We work out the worldsheet details of these theories and show that they admit a formulation as integrals on the support of the scattering equations, or alternatively, as ambitwistor string theories. For gravity, this generalizes the work done by Berkovits and Witten on conformal gravity to D dimensions. The ambitwistor is also interpreted as a D-dimensional generalization of Witten's twistor string (SYM + conformal supergravity). As part of our ambitwistor investigation, we discover another ( DF)2 gauge theory containing a photon that couples to Einstein gravity. This theory can provide an alternative KLT description of Einstein gravity compared to the usual Yang-Mills squared.

  9. Radiation-like scalar field and gauge fields in cosmology for a theory with dynamical time

    NASA Astrophysics Data System (ADS)

    Benisty, David; Guendelman, E. I.

    2016-09-01

    Cosmological solutions with a scalar field behaving as radiation are obtained, in the context of gravitational theory with dynamical time. The solution requires the spacial curvature of the universe k, to be zero, unlike the standard radiation solutions, which do not impose any constraint on the spatial curvature of the universe. This is because only such k = 0 radiation solutions pose a homothetic Killing vector. This kind of theory can be used to generalize electromagnetism and other gauge theories, in curved spacetime, and there are no deviations from standard gauge field equation (like Maxwell equations) in the case there exist a conformal Killing vector. But there could be departures from Maxwell and Yang-Mills equations, for more general spacetimes.

  10. Reformulations of Yang–Mills theories with space–time tensor fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Zhi-Qiang, E-mail: gzhqedu@gmail.com

    2016-01-15

    We provide the reformulations of Yang–Mills theories in terms of gauge invariant metric-like variables in three and four dimensions. The reformulations are used to analyze the dimension two gluon condensate and give gauge invariant descriptions of gluon polarization. In three dimensions, we obtain a non-zero dimension two gluon condensate by one loop computation, whose value is similar to the square of photon mass in the Schwinger model. In four dimensions, we obtain a Lagrangian with the dual property, which shares the similar but different property with the dual superconductor scenario. We also make discussions on the effectiveness of one loopmore » approximation.« less

  11. O (a) improvement of 2D N = (2 , 2) lattice SYM theory

    NASA Astrophysics Data System (ADS)

    Hanada, Masanori; Kadoh, Daisuke; Matsuura, So; Sugino, Fumihiko

    2018-04-01

    We perform a tree-level O (a) improvement of two-dimensional N = (2 , 2) supersymmetric Yang-Mills theory on the lattice, motivated by the fast convergence in numerical simulations. The improvement respects an exact supersymmetry Q which is needed for obtaining the correct continuum limit without a parameter fine tuning. The improved lattice action is given within a milder locality condition in which the interactions are decaying as the exponential of the distance on the lattice. We also prove that the path-integral measure is invariant under the improved Q-transformation.

  12. Structure of UV divergences in maximally supersymmetric gauge theories

    NASA Astrophysics Data System (ADS)

    Kazakov, D. I.; Borlakov, A. T.; Tolkachev, D. M.; Vlasenko, D. E.

    2018-06-01

    We consider the UV divergences up to sub-subleading order for the four-point on-shell scattering amplitudes in D =8 supersymmetric Yang-Mills theory in the planar limit. We trace how the leading, subleading, etc divergences appear in all orders of perturbation theory. The structure of these divergences is typical for any local quantum field theory independently on renormalizability. We show how the generalized renormalization group equations allow one to evaluate the leading, subleading, etc. contributions in all orders of perturbation theory starting from one-, two-, etc. loop diagrams respectively. We focus then on subtraction scheme dependence of the results and show that in full analogy with renormalizable theories the scheme dependence can be absorbed into the redefinition of the couplings. The only difference is that the role of the couplings play dimensionless combinations like g2s2 or g2t2, where s and t are the Mandelstam variables.

  13. The moduli space of vacua of $$ \\mathcal{N}=2 $$ class $$ \\mathcal{S} $$ theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Dan; Yonekura, Kazuya

    We develop a systematic method to describe the moduli space of vacua of four dimensional N=2 class S theories including Coulomb branch, Higgs branch and mixed branches. In particular, we determine the Higgs and mixed branch roots, and the dimensions of the Coulomb and Higgs components of mixed branches. They are derived by using generalized Hitchin’s equations obtained from twisted compactification of 5d maximal Super-Yang-Mills, with local degrees of freedom at punctures given by (nilpotent) orbits. The crucial thing is the holomorphic factorization of the Seiberg-Witten curve and reduction of singularity at punctures. We illustrate our method by many examplesmore » including N=2 SQCD, T N theory and Argyres-Douglas theories.« less

  14. Bootstrapping non-commutative gauge theories from L∞ algebras

    NASA Astrophysics Data System (ADS)

    Blumenhagen, Ralph; Brunner, Ilka; Kupriyanov, Vladislav; Lüst, Dieter

    2018-05-01

    Non-commutative gauge theories with a non-constant NC-parameter are investigated. As a novel approach, we propose that such theories should admit an underlying L∞ algebra, that governs not only the action of the symmetries but also the dynamics of the theory. Our approach is well motivated from string theory. We recall that such field theories arise in the context of branes in WZW models and briefly comment on its appearance for integrable deformations of AdS5 sigma models. For the SU(2) WZW model, we show that the earlier proposed matrix valued gauge theory on the fuzzy 2-sphere can be bootstrapped via an L∞ algebra. We then apply this approach to the construction of non-commutative Chern-Simons and Yang-Mills theories on flat and curved backgrounds with non-constant NC-structure. More concretely, up to the second order, we demonstrate how derivative and curvature corrections to the equations of motion can be bootstrapped in an algebraic way from the L∞ algebra. The appearance of a non-trivial A∞ algebra is discussed, as well.

  15. 78 FR 63852 - Airworthiness Directives; Hamilton Standard Division and Hamilton Sundstrand Corporation Propellers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... Blades and Hubs That Do Not Have an Updated ALS For Hamilton Standard Division propeller models 6/5500/F... approved update to the ALS, within one year after the effective date of this AD, perform an MI on the...

  16. The boundary of a boundary principle in field theories and the issue of austerity of the laws of physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kheyfets, A.; Miller, W.A.

    The boundary of a boundary principle has been suggested by J. A. Wheeler as a realization of the austerity idea in field theories. This principle is described in three basic field theories---electrodynamics, Yang--Mills theory, and general relativity. It is demonstrated that it supplies a unified geometric interpretation of the source current in each of the three theories in terms of a generalized E. Cartan moment of rotation. The extent to which the boundary of a boundary principle represents the austerity principle is discussed. It is concluded that it works in a way analogous to thermodynamic relations and it is arguedmore » that deeper principles might be needed to comprehend the nature of austerity.« less

  17. Algorithm for Overcoming the Curse of Dimensionality for Certain Non-convex Hamilton-Jacobi Equations, Projections and Differential Games

    DTIC Science & Technology

    2016-05-01

    Algorithm for Overcoming the Curse of Dimensionality for Certain Non-convex Hamilton-Jacobi Equations, Projections and Differential Games Yat Tin...subproblems. Our approach is expected to have wide applications in continuous dynamic games , control theory problems, and elsewhere. Mathematics...differential dynamic games , control theory problems, and dynamical systems coming from the physical world, e.g. [11]. An important application is to

  18. On the ground state of Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Bakry, Ahmed S.; Leinweber, Derek B.; Williams, Anthony G.

    2011-08-01

    We investigate the overlap of the ground state meson potential with sets of mesonic-trial wave functions corresponding to different gluonic distributions. We probe the transverse structure of the flux tube through the creation of non-uniform smearing profiles for the string of glue connecting two color sources in Wilson loop operator. The non-uniformly UV-regulated flux-tube operators are found to optimize the overlap with the ground state and display interesting features in the ground state overlap.

  19. Computing Critical Properties with Yang-Yang Anomalies

    NASA Astrophysics Data System (ADS)

    Orkoulas, Gerassimos; Cerdeirina, Claudio; Fisher, Michael

    2017-01-01

    Computation of the thermodynamics of fluids in the critical region is a challenging task owing to divergence of the correlation length and lack of particle-hole symmetries found in Ising or lattice-gas models. In addition, analysis of experiments and simulations reveals a Yang-Yang (YY) anomaly which entails sharing of the specific heat singularity between the pressure and the chemical potential. The size of the YY anomaly is measured by the YY ratio Rμ =C μ /CV of the amplitudes of C μ = - T d2 μ /dT2 and of the total specific heat CV. A ``complete scaling'' theory, in which the pressure mixes into the scaling fields, accounts for the YY anomaly. In Phys. Rev. Lett. 116, 040601 (2016), compressible cell gas (CCG) models which exhibit YY and singular diameter anomalies, have been advanced for near-critical fluids. In such models, the individual cell volumes are allowed to fluctuate. The thermodynamics of CCGs can be computed through mapping onto the Ising model via the seldom-used great grand canonical ensemble. The computations indicate that local free volume fluctuations are the origins of the YY effects. Furthermore, local energy-volume coupling (to model water) is another crucial factor underlying the phenomena.

  20. Exact supersymmetry on the lattice

    NASA Astrophysics Data System (ADS)

    Ghadab, Sofiane

    We describe a new approach of putting supersymmetric theories on the lattice. The basic idea is to discretize a twisted formulation of the (extended) supersymmetric theory. One can think about the twisting as an exotic change of variables that modifies the quantum numbers of the original fields. It exposes a scalar nilpotent supercharge which one can be preserved exactly on the lattice. We give explicit examples from sigma models and Yang-Mills theories. For the former, we show how to deform the theory by the addition of potential terms which preserve the supersymmmetry and play the role of Wilson terms, thus preventing the appearance of doublers. For the Yang-Mills theories however, one can show that their twisted versions can be rewritten in terms of two real Kahler-Dirac fields whose components transform into each other under the twisted supersymmetry. Once written in this geometrical language, one can ensure that the model does not exhibit spectrum doubling if one maps the component tensor fields to appropriate geometrical structures in the lattice. Numerical study of the O(3) sigma models and U(2) and SU(2) Yang-Mills theories for the case N = D = 2 indicates that no additional fine tuning is needed to recover the continuum supersymmetric models.

  1. Particles and strings in six-dimensional (2, 0) theory

    NASA Astrophysics Data System (ADS)

    Henningson, Måns

    2004-11-01

    In 1995, we learned of the rather surprising existence of a completely new class of quantum theories in six space-time dimensions with(2,0)superconformal symmetry. Some important reasons to study these theories are: (i) Finding the right conceptual framework to define them is a very challenging problem, that will probably take a long time to solve. It is likely to involve new interesting mathematical structures with connections in particular to algebra and geometry. (ii) They give rise to certain Yang-Mills theories with maximally extended supersymmetry upon compactification on a two-torus. This may be a way to find an S-dual formulation of these lower dimensional theories. (iii) They arise within string/ M-theory as decoupled subsectors localized on certain space-time impurities such as branes or singularities. (This is in fact how these theories were first discovered (see Witten, hep-th/9507121).) This may provide an opportunity to study aspects of these higher dimensional theories without having to deal with the conceptual subtleties of quantum gravity. To cite this article: M. Henningson, C. R. Physique 5 (2004).

  2. Soft-collinear supersymmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, Timothy; Elor, Gilly; Larkoski, Andrew J.

    Soft-Collinear E ective Theory (SCET) is a framework for modeling the infrared structure of theories whose long distance behavior is dominated by soft and collinear divergences. This paper demonstrates that SCET can be made compatible with supersymmetry (SUSY). Explicitly, the e ective Lagrangian for N = 1 SUSY Yang-Mills is constructed and shown to be a complete description for the infrared of this model. For contrast, we also construct the e ective Lagrangian for chiral SUSY theories with Yukawa couplings, speci cally the single avor Wess-Zumino model. Only a subset of the infrared divergences are reproduced by the Lagrangian |more » to account for the complete low energy description requires the inclusion of local operators. SCET is formulated by expanding elds along a light-like direction and then subsequently integrating out degrees-of-freedom that are away from the light-cone. De ning the theory with respect to a speci c frame obfuscates Lorentz invariance | given that SUSY is a space-time symmetry, this presents a possible obstruction. The cleanest language with which to expose the congruence between SUSY and SCET requires exploring two novel formalisms: collinear fermions as two-component Weyl spinors, and SCET in light-cone gauge. By expressing SUSY Yang- Mills in \\collinear superspace", a slice of superspace derived by integrating out half the fermionic coordinates, the light-cone gauge SUSY SCET theory can be written in terms of super elds. As a byproduct, bootstrapping up to the full theory yields the rst algorithmic approach for determining the SUSY Yang-Mills on-shell superspace action. As a result, this work paves the way toward discovering the e ective theory for the collinear limit of N = 4 SUSY Yang-Mills.« less

  3. Soft-collinear supersymmetry

    DOE PAGES

    Cohen, Timothy; Elor, Gilly; Larkoski, Andrew J.

    2017-03-03

    Soft-Collinear E ective Theory (SCET) is a framework for modeling the infrared structure of theories whose long distance behavior is dominated by soft and collinear divergences. This paper demonstrates that SCET can be made compatible with supersymmetry (SUSY). Explicitly, the e ective Lagrangian for N = 1 SUSY Yang-Mills is constructed and shown to be a complete description for the infrared of this model. For contrast, we also construct the e ective Lagrangian for chiral SUSY theories with Yukawa couplings, speci cally the single avor Wess-Zumino model. Only a subset of the infrared divergences are reproduced by the Lagrangian |more » to account for the complete low energy description requires the inclusion of local operators. SCET is formulated by expanding elds along a light-like direction and then subsequently integrating out degrees-of-freedom that are away from the light-cone. De ning the theory with respect to a speci c frame obfuscates Lorentz invariance | given that SUSY is a space-time symmetry, this presents a possible obstruction. The cleanest language with which to expose the congruence between SUSY and SCET requires exploring two novel formalisms: collinear fermions as two-component Weyl spinors, and SCET in light-cone gauge. By expressing SUSY Yang- Mills in \\collinear superspace", a slice of superspace derived by integrating out half the fermionic coordinates, the light-cone gauge SUSY SCET theory can be written in terms of super elds. As a byproduct, bootstrapping up to the full theory yields the rst algorithmic approach for determining the SUSY Yang-Mills on-shell superspace action. As a result, this work paves the way toward discovering the e ective theory for the collinear limit of N = 4 SUSY Yang-Mills.« less

  4. Hamilton Naki, transplant surgeon.

    PubMed

    Nzerue, Chike M

    2006-03-01

    A biographic sketch of Hamilton Naki is presented here. He was a great self-taught surgeon whose contributions to the world of transplantation were largely ignored due to the apartheid system of South Africa. He assisted Christian Barnard in the first human heart transplant in 1967.

  5. Beauty and physics: 13 important contributions of Chen Ning Yang

    NASA Astrophysics Data System (ADS)

    Shi, Yu

    2014-06-01

    In 2012, Chen Ning Yang received a 90th birthday gift in the form of a black cube inscribed with his 13 most important contributions, which cover four major areas of physics: statistical mechanics, condensed matter physics, particle physics and field theory. We briefly describe these 13 contributions and make general comments about Yang's distinctive style as a trailblazing leader in research.

  6. Chaos M-ary modulation and demodulation method based on Hamilton oscillator and its application in communication.

    PubMed

    Fu, Yongqing; Li, Xingyuan; Li, Yanan; Yang, Wei; Song, Hailiang

    2013-03-01

    Chaotic communication has aroused general interests in recent years, but its communication effect is not ideal with the restriction of chaos synchronization. In this paper a new chaos M-ary digital modulation and demodulation method is proposed. By using region controllable characteristics of spatiotemporal chaos Hamilton map in phase plane and chaos unique characteristic, which is sensitive to initial value, zone mapping method is proposed. It establishes the map relationship between M-ary digital information and the region of Hamilton map phase plane, thus the M-ary information chaos modulation is realized. In addition, zone partition demodulation method is proposed based on the structure characteristic of Hamilton modulated information, which separates M-ary information from phase trajectory of chaotic Hamilton map, and the theory analysis of zone partition demodulator's boundary range is given. Finally, the communication system based on the two methods is constructed on the personal computer. The simulation shows that in high speed transmission communications and with no chaos synchronization circumstance, the proposed chaotic M-ary modulation and demodulation method has outperformed some conventional M-ary modulation methods, such as quadrature phase shift keying and M-ary pulse amplitude modulation in bit error rate. Besides, it has performance improvement in bandwidth efficiency, transmission efficiency and anti-noise performance, and the system complexity is low and chaos signal is easy to generate.

  7. Interpolating the Coulomb phase of little string theory

    DOE PAGES

    Lin, Ying -Hsuan; Shao, Shu -Heng; Wang, Yifan; ...

    2015-12-03

    We study up to 8-derivative terms in the Coulomb branch effective action of (1,1) little string theory, by collecting results of 4-gluon scattering amplitudes from both perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double scaled little string theory (DSLST). In previous work we have matched the 6-derivative term from the 6D gauge theory to DSLST, indicating that this term is protected on the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected. In this paper we compute the 8-derivative term by interpolating from the two limits, near the origin and near the infinity onmore » the Coulomb branch, numerically from SU(k) SYM and DSLST respectively, for k=2,3,4,5. We discuss the implication of this result on the UV completion of 6D SYM as well as the strong coupling completion of DSLST. As a result, we also comment on analogous interpolating functions in the Coulomb phase of circle-compactified (2,0) little string theory.« less

  8. An /N=2 gauge theory and its supergravity dual

    NASA Astrophysics Data System (ADS)

    Brandhuber, A.; Sfetsos, K.

    2000-09-01

    We study flows on the scalar manifold of /N=8 gauged supergravity in five dimensions which are dual to certain mass deformations of /N=4 super Yang-Mills theory. In particular, we consider a perturbation of the gauge theory by a mass term for the adjoint hyper-multiplet, giving rise to an /N=2 theory. The exact solution of the 5-dim gauged supergravity equations of motion is found and the metric is uplifted to a ten-dimensional background of type-IIB supergravity. Using these geometric data and the AdS/CFT correspondence we analyze the spectra of certain operators as well as Wilson loops on the dual gauge theory side. The physical flows are parametrized by a single non-positive constant and describe part of the Coulomb branch of the /N=2 theory at strong coupling. We also propose a general criterion to distinguish between `physical' and `unphysical' curvature singularities. Applying it in many backgrounds arising within the AdS/CFT correspondence we find results that are in complete agreement with field theory expectations.

  9. Interpersonal Harmony and Conflict for Chinese People: A Yin-Yang Perspective.

    PubMed

    Huang, Li-Li

    2016-01-01

    This article provides an overview on a series of original studies conducted by the author. The aim here is to present the ideas that the author reconstructed, based on the dialectics of harmonization, regarding harmony and conflict embodied in traditional Chinese thought, and to describe how a formal psychological theory/model on interpersonal harmony and conflict was developed based on the Yin-Yang perspective. The paper also details how essential theories on interpersonal harmony and conflict were constructed under this formal model by conducting a qualitative study involving in-depth interviews with 30 adults. Psychological research in Western society has, intriguingly, long been focused more on interpersonal conflict than on interpersonal harmony. By contrast, the author's work started from the viewpoint of a materialist conception of history and dialectics of harmonization in order to reinterpret traditional Chinese thought. Next, a "dynamic model of interpersonal harmony and conflict" was developed, as a formal psychological theory, based on the real-virtual notions in the Yin-Yang perspective. Under this model, interpersonal harmony and conflict can be classified into genuine versus superficial harmony and authentic versus virtual focus conflict, and implicit/hidden conflict is regarded as superficial harmony. Subsequently, the author conducted a series of quantitative studies on interpersonal harmony and conflict within parent-child, supervisor-subordinate, and friend-friend relationships in order to verify the construct validity and the predictive validity of the dynamic model of interpersonal harmony and conflict. The claim presented herein is that Chinese traditional thought and the psychological theory/model based on the Yin-Yang perspective can be combined. Accordingly, by combining qualitative and quantitative empirical research, the relative substantial theory can be developed and the concepts can be validated. Thus, this work represents the

  10. Interpersonal Harmony and Conflict for Chinese People: A Yin–Yang Perspective

    PubMed Central

    Huang, Li-Li

    2016-01-01

    This article provides an overview on a series of original studies conducted by the author. The aim here is to present the ideas that the author reconstructed, based on the dialectics of harmonization, regarding harmony and conflict embodied in traditional Chinese thought, and to describe how a formal psychological theory/model on interpersonal harmony and conflict was developed based on the Yin–Yang perspective. The paper also details how essential theories on interpersonal harmony and conflict were constructed under this formal model by conducting a qualitative study involving in-depth interviews with 30 adults. Psychological research in Western society has, intriguingly, long been focused more on interpersonal conflict than on interpersonal harmony. By contrast, the author’s work started from the viewpoint of a materialist conception of history and dialectics of harmonization in order to reinterpret traditional Chinese thought. Next, a “dynamic model of interpersonal harmony and conflict” was developed, as a formal psychological theory, based on the real-virtual notions in the Yin–Yang perspective. Under this model, interpersonal harmony and conflict can be classified into genuine versus superficial harmony and authentic versus virtual focus conflict, and implicit/hidden conflict is regarded as superficial harmony. Subsequently, the author conducted a series of quantitative studies on interpersonal harmony and conflict within parent–child, supervisor–subordinate, and friend–friend relationships in order to verify the construct validity and the predictive validity of the dynamic model of interpersonal harmony and conflict. The claim presented herein is that Chinese traditional thought and the psychological theory/model based on the Yin–Yang perspective can be combined. Accordingly, by combining qualitative and quantitative empirical research, the relative substantial theory can be developed and the concepts can be validated. Thus, this work

  11. 78 FR 30795 - Airworthiness Directives; Hamilton Standard Division and Hamilton Sundstrand Corporation Propellers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... Airworthiness Limitations Sections (ALSs) of the applicable maintenance manuals to date. Each ALS establishes.... Relevant Service Information We reviewed the Hamilton Sundstrand ALS in Maintenance Manual P5185, Revision... P5189, Revision 8, dated March 26, 2013. The ALS in these maintenance manuals lists the MIs for the...

  12. The boundary of a boundary principle in field theories and the issue of austerity of the laws of physics

    NASA Astrophysics Data System (ADS)

    Kheyfets, Arkady; Miller, Warner A.

    1991-11-01

    The boundary of a boundary principle has been suggested by J. A. Wheeler as a realization of the austerity idea in field theories. This principle is described in three basic field theories—electrodynamics, Yang-Mills theory, and general relativity. It is demonstrated that it supplies a unified geometric interpretation of the source current in each of the three theories in terms of a generalized E. Cartan moment of rotation. The extent to which the boundary of a boundary principle represents the austerity principle is discussed. It is concluded that it works in a way analogous to thermodynamic relations and it is argued that deeper principles might be needed to comprehend the nature of austerity.

  13. The Zur regulon of Corynebacterium glutamicum ATCC 13032

    PubMed Central

    2010-01-01

    Background Zinc is considered as an essential element for all living organisms, but it can be toxic at large concentrations. Bacteria therefore tightly regulate zinc metabolism. The Cg2502 protein of Corynebacterium glutamicum was a candidate to control zinc metabolism in this species, since it was classified as metalloregulator of the zinc uptake regulator (Zur) subgroup of the ferric uptake regulator (Fur) family of DNA-binding transcription regulators. Results The cg2502 (zur) gene was deleted in the chromosome of C. glutamicum ATCC 13032 by an allelic exchange procedure to generate the zur-deficient mutant C. glutamicum JS2502. Whole-genome DNA microarray hybridizations and real-time RT-PCR assays comparing the gene expression in C. glutamicum JS2502 with that of the wild-type strain detected 18 genes with enhanced expression in the zur mutant. The expression data were combined with results from cross-genome comparisons of shared regulatory sites, revealing the presence of candidate Zur-binding sites in the mapped promoter regions of five transcription units encoding components of potential zinc ABC-type transporters (cg0041-cg0042/cg0043; cg2911-cg2912-cg2913), a putative secreted protein (cg0040), a putative oxidoreductase (cg0795), and a putative P-loop GTPase of the COG0523 protein family (cg0794). Enhanced transcript levels of the respective genes in C. glutamicum JS2502 were verified by real-time RT-PCR, and complementation of the mutant with a wild-type zur gene reversed the effect of differential gene expression. The zinc-dependent expression of the putative cg0042 and cg2911 operons was detected in vivo with a gfp reporter system. Moreover, the zinc-dependent binding of purified Zur protein to double-stranded 40-mer oligonucleotides containing candidate Zur-binding sites was demonstrated in vitro by DNA band shift assays. Conclusion Whole-genome expression profiling and DNA band shift assays demonstrated that Zur directly represses in a zinc

  14. Pions as gluons in higher dimensions

    NASA Astrophysics Data System (ADS)

    Cheung, Clifford; Remmen, Grant N.; Shen, Chia-Hsien; Wen, Congkao

    2018-04-01

    We derive the nonlinear sigma model as a peculiar dimensional reduction of Yang-Mills theory. In this framework, pions are reformulated as higher-dimensional gluons arranged in a kinematic configuration that only probes cubic interactions. This procedure yields a purely cubic action for the nonlinear sigma model that exhibits a symmetry enforcing color-kinematics duality. Remarkably, the associated kinematic algebra originates directly from the Poincaré algebra in higher dimensions. Applying the same construction to gravity yields a new quartic action for Born-Infeld theory and, applied once more, a cubic action for the special Galileon theory. Since the nonlinear sigma model and special Galileon are subtly encoded in the cubic sectors of Yang-Mills theory and gravity, respectively, their double copy relationship is automatic.

  15. 9. INTERIOR VIEW OF BREW HOUSE, STEAM ENGINE READS: HAMILTON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. INTERIOR VIEW OF BREW HOUSE, STEAM ENGINE- READS: HAMILTON CORLISS ENGINES, THE HOOVEN, OWENS & RENTSCHLER CO., BUILDERS, HAMILTON, OHIO, U.S.A. - August Schell Brewing Company, Twentieth Street South, New Ulm, Brown County, MN

  16. Four-dimensional \\mathcal{N} = 2 supersymmetric theory with boundary as a two-dimensional complex Toda theory

    NASA Astrophysics Data System (ADS)

    Luo, Yuan; Tan, Meng-Chwan; Vasko, Petr; Zhao, Qin

    2017-05-01

    We perform a series of dimensional reductions of the 6d, \\mathcal{N} = (2, 0) SCFT on S 2 × Σ × I × S 1 down to 2d on Σ. The reductions are performed in three steps: (i) a reduction on S 1 (accompanied by a topological twist along Σ) leading to a supersymmetric Yang-Mills theory on S 2 × Σ × I, (ii) a further reduction on S 2 resulting in a complex Chern-Simons theory defined on Σ × I, with the real part of the complex Chern-Simons level being zero, and the imaginary part being proportional to the ratio of the radii of S 2 and S 1, and (iii) a final reduction to the boundary modes of complex Chern-Simons theory with the Nahm pole boundary condition at both ends of the interval I, which gives rise to a complex Toda CFT on the Riemann surface Σ. As the reduction of the 6d theory on Σ would give rise to an \\mathcal{N} = 2 supersymmetric theory on S 2 × I × S 1, our results imply a 4d-2d duality between four-dimensional \\mathcal{N} = 2 supersymmetric theory with boundary and two-dimensional complex Toda theory.

  17. Hamilton Naki, transplant surgeon.

    PubMed Central

    Nzerue, Chike M.

    2006-01-01

    A biographic sketch of Hamilton Naki is presented here. He was a great self-taught surgeon whose contributions to the world of transplantation were largely ignored due to the apartheid system of South Africa. He assisted Christian Barnard in the first human heart transplant in 1967. Images p448-a PMID:16573312

  18. Periodic arrays of M2-branes

    NASA Astrophysics Data System (ADS)

    Jeon, Imtak; Lambert, Neil; Richmond, Paul

    2012-11-01

    We consider periodic arrays of M2-branes in the ABJM model in the spirit of a circle compactification to D2-branes in type IIA string theory. The result is a curious formulation of three-dimensional maximally supersymmetric Yang-Mills theory in terms of fermions, seven transverse scalars, a non-dynamical gauge field and an additional scalar `dual gluon'. Upon further T-duality on a transverse torus we obtain a non-manifest- Lorentz-invariant description of five-dimensional maximally supersymmetric Yang-Mills. Here the additional scalar field can be thought of as the components of a two-form along the torus. This action can be viewed as an M-theory description of M5-branes on {{{T}}^3}.

  19. Strings from massive higher spins: the asymptotic uniqueness of the Veneziano amplitude

    NASA Astrophysics Data System (ADS)

    Caron-Huot, Simon; Komargodski, Zohar; Sever, Amit; Zhiboedov, Alexander

    2017-10-01

    We consider weakly coupled theories of massive higher-spin particles. This class of models includes, for instance, tree-level String Theory and Large-N Yang-Mills theory. The S-matrix in such theories is a meromorphic function obeying unitarity and crossing symmetry. We discuss the (unphysical) regime s, t ≫ 1, in which we expect the amplitude to be universal and exponentially large. We develop methods to study this regime and show that the amplitude necessarily coincides with the Veneziano amplitude there. In particular, this implies that the leading Regge trajectory, j( t), is asymptotically linear in Yang-Mills theory. Further, our analysis shows that any such theory of higherspin particles has stringy excitations and infinitely many asymptotically parallel subleading trajectories. More generally, we argue that, under some assumptions, any theory with at least one higher-spin particle must have strings.

  20. Donaldson-Witten theory and indefinite theta functions

    NASA Astrophysics Data System (ADS)

    Korpas, Georgios; Manschot, Jan

    2017-11-01

    We consider partition functions with insertions of surface operators of topologically twisted N=2 , SU(2) supersymmetric Yang-Mills theory, or Donaldson-Witten theory for short, on a four-manifold. If the metric of the compact four-manifold has positive scalar curvature, Moore and Witten have shown that the partition function is completely determined by the integral over the Coulomb branch parameter a, while more generally the Coulomb branch integral captures the wall-crossing behavior of both Donaldson polynomials and Seiberg-Witten invariants. We show that after addition of a \\overlineQ -exact surface operator to the Moore-Witten integrand, the integrand can be written as a total derivative to the anti-holomorphic coordinate ā using Zwegers' indefinite theta functions. In this way, we reproduce Göttsche's expressions for Donaldson invariants of rational surfaces in terms of indefinite theta functions for any choice of metric.

  1. Variations on the seventh route to relativity

    NASA Astrophysics Data System (ADS)

    Anderson, Edward

    2003-11-01

    Wheeler asked how one might derive the Einstein-Hamilton-Jacobi equation from plausible first principles without any use of the Einstein field equations themselves. In addition to Hojman, Kuchař and Teitelboim’s “seventh route to relativity” partial answer to this, there is now a “3-space” partial answer due to Barbour, Foster and Ó Murchadha (BFÓ) which principally differs in that general covariance is no longer presupposed. BFÓ’s formulation of the 3-space approach is based on best-matched actions such as the lapse-eliminated Baierlein-Sharp-Wheeler (BSW) action of general relativity (GR). These give rise to several branches of gravitational theories including GR on superspace and a theory of gravity on conformal superspace. This paper investigates the 3-space approach further, motivated both by the hierarchies of increasingly well-defined and weakened simplicity postulates present in all routes to relativity, and by the requirement that all the known fundamental matter fields be included. We further the study of configuration spaces of gravity-matter systems upon which BFÓ’s formulation leans. We note that in further developments the lapse-eliminated BSW actions used by BFÓ become impractical and require generalization. We circumvent many of these problems by the equivalent use of lapse-uneliminated actions, which furthermore permit us to interpret BFÓ’s formulation within Kuchař’s generally covariant hypersurface framework. This viewpoint provides alternative reasons to BFÓ’s as to why the inclusion of bosonic fields in the 3-space approach gives rise to minimally coupled scalar fields, electromagnetism and Yang-Mills theory. This viewpoint also permits us to quickly exhibit further GR-matter theories admitted by the 3-space formulation. In particular, we show that the spin-1/2 fermions of the theories of Dirac, Maxwell-Dirac and Yang-Mills-Dirac, all coupled to GR, are admitted by the generalized 3-space formulation we present

  2. The large N limit of superconformal field theories and supergravity

    NASA Astrophysics Data System (ADS)

    Maldacena, Juan

    1999-07-01

    We show that the large N limit of certain conformal field theories in various dimensions include in their Hilbert space a sector describing supergravity on the product of Anti-deSitter spacetimes, spheres and other compact manifolds. This is shown by taking some branes in the full M/string theory and then taking a low energy limit where the field theory on the brane decouples from the bulk. We observe that, in this limit, we can still trust the near horizon geometry for large N. The enhanced supersymmetries of the near horizon geometry correspond to the extra supersymmetry generators present in the superconformal group (as opposed to just the super-Poincare group). The 't Hooft limit of 3+1N=4 super-Yang-Mills at the conformal point is shown to contain strings: they are IIB strings. We conjecture that compactifications of M/string theory on various Anti-deSitter spacetimes is dual to various conformal field theories. This leads to a new proposal for a definition of M-theory which could be extended to include five non-compact dimensions.

  3. Zero-g tests of involving Hamilton standard personnel and others

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Zero-g tests of involving Hamilton standard personnel, Don Williams and Larry Magers. View includes Williams and Magers tumbling in zero-g as photographer takes picures. Williams is wearing a headset (30361); Williams floats among Hamilton standard technicians (30362).

  4. Super Yang Mills, matrix models and geometric transitions

    NASA Astrophysics Data System (ADS)

    Ferrari, Frank

    2005-03-01

    I explain two applications of the relationship between four-dimensional N=1 supersymmetric gauge theories, zero-dimensional gauged matrix models, and geometric transitions in string theory. The first is related to the spectrum of BPS domain walls or BPS branes. It is shown that one can smoothly interpolate between a D-brane state, whose weak coupling tension scales as N˜1/g, and a closed string solitonic state, whose weak coupling tension scales as N˜1/gs2. This is part of a larger theory of N=1 quantum parameter spaces. The second is a new purely geometric approach to sum exactly over planar diagrams in zero dimension. It is an example of open/closed string duality. To cite this article: F. Ferrari, C. R. Physique 6 (2005).

  5. Hamilton's Principle for Beginners

    ERIC Educational Resources Information Center

    Brun, J. L.

    2007-01-01

    I find that students have difficulty with Hamilton's principle, at least the first time they come into contact with it, and therefore it is worth designing some examples to help students grasp its complex meaning. This paper supplies the simplest example to consolidate the learning of the quoted principle: that of a free particle moving along a…

  6. 78 FR 49660 - Airworthiness Directives; Hamilton Standard Division and Hamilton Sundstrand Corporation Propellers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... done. (f) MI for Blades and Hubs That Have an Updated Airworthiness Limitations Section (ALS) For..., that have an approved update to the ALS, within 45 days after the effective date of this AD, perform an... and Hubs That Do Not Have an Updated ALS For Hamilton Standard Division propeller models 6/5500/F and...

  7. Supersymmetric gauge theory with space-time-dependent couplings

    NASA Astrophysics Data System (ADS)

    Choi, Jaewang; Fernández-Melgarejo, José J.; Sugimoto, Shigeki

    2018-01-01

    We study deformations of N=4 supersymmetric Yang-Mills theory with couplings and masses depending on space-time. The conditions to preserve part of the supersymmetry are derived and a lot of solutions of these conditions are found. The main example is the case with ISO(1,1)× SO(3)× SO(3) symmetry, in which couplings, as well as masses and the theta parameter, can depend on two spatial coordinates. In the case in which ISO(1,1) is enhanced to ISO(1,2), it reproduces the supersymmetric Janus configuration found by Gaiotto and Witten [J. High Energy Phys. 06, 097 (2010)]. When SO(3)× SO(3) is enhanced to SO(6), it agrees with the world-volume theory of D3-branes embedded in F-theory (a background with 7-branes in type IIB string theory). We have also found the general solution of the supersymmetry conditions for the cases with ISO(1,1)× SO(2)× SO(4) symmetry. Cases with time-dependent couplings and/or masses are also considered.

  8. The Magnus problem in Rodrigues-Hamilton parameters

    NASA Astrophysics Data System (ADS)

    Koshliakov, V. N.

    1984-04-01

    The formalism of Rodrigues-Hamilton parameters is applied to the Magnus problem related to the systematic drift of a gimbal-mounted astatic gyroscope due to the nutational vibration of the main axis of the rotor. It is shown that the use of the above formalism makes it possible to limit the analysis to a consideration of a linear system of differential equations written in perturbed values of Rodrigues-Hamilton parameters. A refined formula for the drift of the main axis of the gyroscope rotor is obtained, and an estimation is made of the effect of the truncation of higher-order terms.

  9. A test of the AdS/CFT duality on the Coulomb branch

    NASA Astrophysics Data System (ADS)

    Costa, M. S.

    2000-06-01

    We consider the /N=4 /SU(N) Super Yang Mills theory on the Coulomb branch with gauge symmetry broken to S(U(N1)×U(N2)). By integrating the W particles, the effective action near the IR SU(Ni) conformal fixed points is seen to be a deformation of the Super Yang Mills theory by a non-renormalized, irrelevant, dimension 8 operator. The correction to the two-point function of the dilaton field dual operator near the IR is related to a three-point function of chiral primary operators at the conformal fixed points and agrees with the classical gravity prediction, including the numerical factor.

  10. Dark energy fingerprints in the nonminimal Wu-Yang wormhole structure

    NASA Astrophysics Data System (ADS)

    Balakin, Alexander B.; Zayats, Alexei E.

    2014-08-01

    We discuss new exact solutions to nonminimally extended Einstein-Yang-Mills equations describing spherically symmetric static wormholes supported by the gauge field of the Wu-Yang type in a dark energy environment. We focus on the analysis of three types of exact solutions to the gravitational field equations. Solutions of the first type relate to the model, in which the dark energy is anisotropic; i.e., the radial and tangential pressures do not coincide. Solutions of the second type correspond to the isotropic pressure tensor; in particular, we discuss the exact solution, for which the dark energy is characterized by the equation of state for a string gas. Solutions of the third type describe the dark energy model with constant pressure and energy density. For the solutions of the third type, we consider in detail the problem of horizons and find constraints for the parameters of nonminimal coupling and for the constitutive parameters of the dark energy equation of state, which guarantee that the nonminimal wormholes are traversable.

  11. Asymptotically free theory with scale invariant thermodynamics

    NASA Astrophysics Data System (ADS)

    Ferrari, Gabriel N.; Kneur, Jean-Loïc; Pinto, Marcus Benghi; Ramos, Rudnei O.

    2017-12-01

    A recently developed variational resummation technique, incorporating renormalization group properties consistently, has been shown to solve the scale dependence problem that plagues the evaluation of thermodynamical quantities, e.g., within the framework of approximations such as in the hard-thermal-loop resummed perturbation theory. This method is used in the present work to evaluate thermodynamical quantities within the two-dimensional nonlinear sigma model, which, apart from providing a technically simpler testing ground, shares some common features with Yang-Mills theories, like asymptotic freedom, trace anomaly and the nonperturbative generation of a mass gap. The present application confirms that nonperturbative results can be readily generated solely by considering the lowest-order (quasiparticle) contribution to the thermodynamic effective potential, when this quantity is required to be renormalization group invariant. We also show that when the next-to-leading correction from the method is accounted for, the results indicate convergence, apart from optimally preserving, within the approximations here considered, the sought-after scale invariance.

  12. Experimental realization of the Yang-Baxter Equation via NMR interferometry.

    PubMed

    Vind, F Anvari; Foerster, A; Oliveira, I S; Sarthour, R S; Soares-Pinto, D O; Souza, A M; Roditi, I

    2016-02-10

    The Yang-Baxter equation is an important tool in theoretical physics, with many applications in different domains that span from condensed matter to string theory. Recently, the interest on the equation has increased due to its connection to quantum information processing. It has been shown that the Yang-Baxter equation is closely related to quantum entanglement and quantum computation. Therefore, owing to the broad relevance of this equation, besides theoretical studies, it also became significant to pursue its experimental implementation. Here, we show an experimental realization of the Yang-Baxter equation and verify its validity through a Nuclear Magnetic Resonance (NMR) interferometric setup. Our experiment was performed on a liquid state Iodotrifluoroethylene sample which contains molecules with three qubits. We use Controlled-transfer gates that allow us to build a pseudo-pure state from which we are able to apply a quantum information protocol that implements the Yang-Baxter equation.

  13. Structural and Mechanistic Basis of Zinc Regulation Across the E. coli Zur Regulon

    PubMed Central

    Gilston, Benjamin A.; Wang, Suning; Marcus, Mason D.; Canalizo-Hernández, Mónica A.; Swindell, Elden P.; Xue, Yi; Mondragón, Alfonso; O'Halloran, Thomas V.

    2014-01-01

    Commensal microbes, whether they are beneficial or pathogenic, are sensitive to host processes that starve or swamp the prokaryote with large fluctuations in local zinc concentration. To understand how microorganisms coordinate a dynamic response to changes in zinc availability at the molecular level, we evaluated the molecular mechanism of the zinc-sensing zinc uptake regulator (Zur) protein at each of the known Zur-regulated genes in Escherichia coli. We solved the structure of zinc-loaded Zur bound to the PznuABC promoter and show that this metalloregulatory protein represses gene expression by a highly cooperative binding of two adjacent dimers to essentially encircle the core element of each of the Zur-regulated promoters. Cooperativity in these protein-DNA interactions requires a pair of asymmetric salt bridges between Arg52 and Asp49′ that connect otherwise independent dimers. Analysis of the protein-DNA interface led to the discovery of a new member of the Zur-regulon: pliG. We demonstrate this gene is directly regulated by Zur in a zinc responsive manner. The pliG promoter forms stable complexes with either one or two Zur dimers with significantly less protein-DNA cooperativity than observed at other Zur regulon promoters. Comparison of the in vitro Zur-DNA binding affinity at each of four Zur-regulon promoters reveals ca. 10,000-fold variation Zur-DNA binding constants. The degree of Zur repression observed in vivo by comparison of transcript copy number in wild-type and Δzur strains parallels this trend spanning a 100-fold difference. We conclude that the number of ferric uptake regulator (Fur)-family dimers that bind within any given promoter varies significantly and that the thermodynamic profile of the Zur-DNA interactions directly correlates with the physiological response at different promoters. PMID:25369000

  14. Recursive Techniques for Computing Gluon Scattering in Anti-de-Sitter Space

    NASA Astrophysics Data System (ADS)

    Shyaka, Claude; Kharel, Savan

    2016-03-01

    The anti-de Sitter/conformal field theory correspondence is a relationship between two kinds of physical theories. On one side of the duality are special type of quantum (conformal) field theories known as the Yang-Mills theory. These quantum field theories are known to be equivalent to theories of gravity in Anti-de Sitter (AdS) space. The physical observables in the theory are the correlation functions that live in the boundary of AdS space. In general correlation functions are computed using configuration space and the expressions are extremely complicated. Using momentum basis and recursive techniques developed by Raju, we extend tree level correlation functions for four and five-point correlation functions in Yang-Mills theory in Anti-de Sitter space. In addition, we show that for certain external helicity, the correlation functions have simple analytic structure. Finally, we discuss how one can generalize these results to n-point functions. Hendrix college odyssey Grant.

  15. Asymptotically Free Gauge Theories. I

    DOE R&D Accomplishments Database

    Wilczek, Frank; Gross, David J.

    1973-07-01

    Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons for doing this are recounted, including a review of renormalization group techniques and their application to scaling phenomena. The renormalization group equations are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the effective coupling constant, which determines the ultraviolet behavior of the theory, vanishes for large space-like momenta. Fermions are incorporated and the construction of realistic models is discussed. We propose that the strong interactions be mediated by a "color" gauge group which commutes with SU(3)xSU(3). The problem of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge symmetry might not be broken, and that the severe infrared singularities prevent the occurrence of non-color singlet physical states. The deep inelastic structure functions, as well as the electron position total annihilation cross section are analyzed. Scaling obtains up to calculable logarithmic corrections, and the naive lightcone or parton model results follow. The problems of incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.

  16. Hamiltonian approach to GR - Part 1: covariant theory of classical gravity

    NASA Astrophysics Data System (ADS)

    Cremaschini, Claudio; Tessarotto, Massimo

    2017-05-01

    A challenging issue in General Relativity concerns the determination of the manifestly covariant continuum Hamiltonian structure underlying the Einstein field equations and the related formulation of the corresponding covariant Hamilton-Jacobi theory. The task is achieved by adopting a synchronous variational principle requiring distinction between the prescribed deterministic metric tensor \\widehat{g}(r)≡ { \\widehat{g}_{μ ν }(r)} solution of the Einstein field equations which determines the geometry of the background space-time and suitable variational fields x≡ { g,π } obeying an appropriate set of continuum Hamilton equations, referred to here as GR-Hamilton equations. It is shown that a prerequisite for reaching such a goal is that of casting the same equations in evolutionary form by means of a Lagrangian parametrization for a suitably reduced canonical state. As a result, the corresponding Hamilton-Jacobi theory is established in manifestly covariant form. Physical implications of the theory are discussed. These include the investigation of the structural stability of the GR-Hamilton equations with respect to vacuum solutions of the Einstein equations, assuming that wave-like perturbations are governed by the canonical evolution equations.

  17. Recognizing the Presidents: Was Alexander Hamilton President?

    PubMed

    Roediger, Henry L; DeSoto, K Andrew

    2016-05-01

    Studies over the past 40 years have shown that Americans can recall about half the U.S. presidents. Do people know the presidents even though they are unable to access them for recall? We investigated this question using the powerful cues of a recognition test. Specifically, we tested the ability of 326 online subjects to recognize U.S. presidents when presented with their full names among various types of lures. The hit rate for presidential recognition was .88, well above the proportion produced in free recall but far from perfect. Presidents Franklin Pierce and Chester Arthur were recognized less than 60% of the time. Interestingly, four nonpresidents were falsely recognized at relatively high rates, and Alexander Hamilton was more frequently identified as president than were several actual presidents. Even on a recognition test, knowledge of American presidents is imperfect and prone to error. The false alarm data support the theory that false fame can arise from contextual familiarity. © The Author(s) 2016.

  18. A generalization of Hamilton's rule--love others how much?

    PubMed

    Alger, Ingela; Weibull, Jörgen W

    2012-04-21

    According to Hamilton's (1964a, b) rule, a costly action will be undertaken if its fitness cost to the actor falls short of the discounted benefit to the recipient, where the discount factor is Wright's index of relatedness between the two. We propose a generalization of this rule, and show that if evolution operates at the level of behavior rules, rather than directly at the level of actions, evolution will select behavior rules that induce a degree of cooperation that may differ from that predicted by Hamilton's rule as applied to actions. In social dilemmas there will be less (more) cooperation than under Hamilton's rule if the actions are strategic substitutes (complements). Our approach is based on natural selection, defined in terms of personal (direct) fitness, and applies to a wide range of pairwise interactions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. New contributions to physics by Prof. C. N. Yang: 2009-2011

    NASA Astrophysics Data System (ADS)

    Ma, Zhong-Qi

    2016-01-01

    In a seminal paper of 1967, Professor Chen Ning Yang found the full solution of the one-dimensional Fermi gas with a repulsive delta function interaction by using the Bethe ansatz and group theory. This work with a brilliant discovery of the Yang-Baxter equation has been inspiring new developments in mathematical physics, statistical physics, and many-body physics. Based on experimental developments in simulating many-body physics of one-dimensional systems of ultracold atoms, during a period from 2009 to 2011, Prof. Yang published seven papers on the exact properties of the ground state of bosonic and fermionic atoms with the repulsive delta function interaction and a confined potential to one dimension. Here I would like to share my experience in doing research work fortunately under the direct supervision of Prof. Yang in that period.

  20. New Contributions to Physics by Prof. C. N. Yang: 2009-2011

    NASA Astrophysics Data System (ADS)

    Ma, Zhong-Qi

    In a seminal paper of 1967, Professor Chen Ning Yang found the full solution of the one-dimensional Fermi gas with a repulsive delta function interaction by using the Bethe ansatz and group theory. This work with a brilliant discovery of the Yang-Baxter equation has been inspiring new developments in mathematical physics, statistical physics, and many-body physics. Based on experimental developments in simulating many-body physics of one-dimensional systems of ultracold atoms, during a period from 2009 to 2011, Prof. Yang published seven papers on the exact properties of the ground state of bosonic and fermionic atoms with the repulsive delta function interaction and a confined potential to one dimension. Here I would like to share my experience in doing research work fortunately under the direct supervision of Prof. Yang in that period.

  1. Scattering of massless particles: scalars, gluons and gravitons

    NASA Astrophysics Data System (ADS)

    Cachazo, Freddy; He, Song; Yuan, Ellis Ye

    2014-07-01

    In a recent note we presented a compact formula for the complete tree-level S-matrix of pure Yang-Mills and gravity theories in arbitrary spacetime dimension. In this paper we show that a natural formulation also exists for a massless colored cubic scalar theory. In Yang-Mills, the formula is an integral over the space of n marked points on a sphere and has as integrand two factors. The first factor is a combination of Parke-Taylor-like terms dressed with U( N ) color structures while the second is a Pfaffian. The S-matrix of a U( N ) × U( Ñ ) cubic scalar theory is obtained by simply replacing the Pfaffian with a U( Ñ ) version of the previous U( N ) factor. Given that gravity amplitudes are obtained by replacing the U( N ) factor in Yang-Mills by a second Pfaffian, we are led to a natural color-kinematics correspondence. An expansion of the integrand of the scalar theory leads to sums over trivalent graphs and are directly related to the KLT matrix. Combining this and the Yang-Mills formula we find a connection to the BCJ color-kinematics duality as well as a new proof of the BCJ doubling property that gives rise to gravity amplitudes. We end by considering a special kinematic point where the partial amplitude simply counts the number of color-ordered planar trivalent trees, which equals a Catalan number. The scattering equations simplify dramatically and are equivalent to a special Y-system with solutions related to roots of Chebyshev polynomials. The sum of the integrand over the solutions gives rise to a representation of Catalan numbers in terms of eigenvectors and eigenvalues of the adjacency matrix of an A-type Dynkin diagram.

  2. Sternbilder und ihre Mythen

    NASA Astrophysics Data System (ADS)

    Fasching, Gerhard

    Die Sternbilder und die damit verbundenen Mythen helfen, sich am Sternenhimmel zurechtzufinden und vermitteln die Vielfalt der Bilder der Mythologie und der Sternsagen. Sternkarten und alte Kupferstiche aus dem Bestand der Österreichischen Nationalbibliothek zeigen, wie man sich in früheren Jahrhunderten den Sternenhimmel vorgestellt hat. Ausführliche Sachverzeichnisse mit über 3000 Suchbegriffen erleichtern den Zugang zu Stern- und Sternbildnamen und zur Mythologie. Die dritte, erweiterte Auflage gibt für die kommenden Jahrzehnte darüber Auskunft, wo und wann die Planeten aber auch Sternhaufen, Gasnebel und Galaxien am Himmel mühelos aufgefunden werden können.

  3. Exact Cosmological Models with Yang–Mills Fields on Lyra Manifold

    NASA Astrophysics Data System (ADS)

    Shchigolev, V. K.; Bezbatko, D. N.

    2018-04-01

    The present study deals with the Friedmann-Robertson-Walker cosmological models with Yang-Mills (YM) fields in Lyra geometry. The energy-momentum tensor of the YM fields for our models is obtained with the help of an exact solution to the YM equations with minimal coupling to gravity. Two specific exact solutions of the model are obtained regarding the effective equation of state and the exponential law of expansion. The physical and geometric behavior of the model is also discussed.

  4. Abelian Toda field theories on the noncommutative plane

    NASA Astrophysics Data System (ADS)

    Cabrera-Carnero, Iraida

    2005-10-01

    Generalizations of GL(n) abelian Toda and GL with tilde above(n) abelian affine Toda field theories to the noncommutative plane are constructed. Our proposal relies on the noncommutative extension of a zero-curvature condition satisfied by algebra-valued gauge potentials dependent on the fields. This condition can be expressed as noncommutative Leznov-Saveliev equations which make possible to define the noncommutative generalizations as systems of second order differential equations, with an infinite chain of conserved currents. The actions corresponding to these field theories are also provided. The special cases of GL(2) Liouville and GL with tilde above(2) sinh/sine-Gordon are explicitly studied. It is also shown that from the noncommutative (anti-)self-dual Yang-Mills equations in four dimensions it is possible to obtain by dimensional reduction the equations of motion of the two-dimensional models constructed. This fact supports the validity of the noncommutative version of the Ward conjecture. The relation of our proposal to previous versions of some specific Toda field theories reported in the literature is presented as well.

  5. Nonlinear modes of the tensor Dirac equation and CPT violation

    NASA Technical Reports Server (NTRS)

    Reifler, Frank J.; Morris, Randall D.

    1993-01-01

    Recently, it has been shown that Dirac's bispinor equation can be expressed, in an equivalent tensor form, as a constrained Yang-Mills equation in the limit of an infinitely large coupling constant. It was also shown that the free tensor Dirac equation is a completely integrable Hamiltonian system with Lie algebra type Poisson brackets, from which Fermi quantization can be derived directly without using bispinors. The Yang-Mills equation for a finite coupling constant is investigated. It is shown that the nonlinear Yang-Mills equation has exact plane wave solutions in one-to-one correspondence with the plane wave solutions of Dirac's bispinor equation. The theory of nonlinear dispersive waves is applied to establish the existence of wave packets. The CPT violation of these nonlinear wave packets, which could lead to new observable effects consistent with current experimental bounds, is investigated.

  6. 77 FR 52135 - Hamilton Bank, Baltimore, Maryland; Approval of Conversion Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... DEPARTMENT OF THE TREASURY Office of the Comptroller of the Currency [OCC Charter Number 701904] Hamilton Bank, Baltimore, Maryland; Approval of Conversion Application Notice is hereby given that on August 13, 2012, the Office of the Comptroller of the Currency (OCC) approved the application of Hamilton...

  7. Gauge engineering and propagators

    NASA Astrophysics Data System (ADS)

    Maas, Axel

    2017-03-01

    Beyond perturbation theory gauge-fixing becomes more involved due to the Gribov-Singer ambiguity: The appearance of additional gauge copies requires to define a procedure how to handle them. For the case of Landau gauge the structure and properties of these additional gauge copies will be investigated. Based on these properties gauge conditions are constructed to account for these gauge copies. The dependence of the propagators on the choice of these complete gauge-fixings will then be investigated using lattice gauge theory for Yang-Mills theory. It is found that the implications for the infrared, and to some extent mid-momentum behavior, can be substantial. In going beyond the Yang-Mills case it turns out that the influence of matter can generally not be neglected. This will be briefly discussed for various types of matter.

  8. Torus Knot Polynomials and Susy Wilson Loops

    NASA Astrophysics Data System (ADS)

    Giasemidis, Georgios; Tierz, Miguel

    2014-12-01

    We give, using an explicit expression obtained in (Jones V, Ann Math 126:335, 1987), a basic hypergeometric representation of the HOMFLY polynomial of ( n, m) torus knots, and present a number of equivalent expressions, all related by Heine's transformations. Using this result, the symmetry and the leading polynomial at large N are explicit. We show the latter to be the Wilson loop of 2d Yang-Mills theory on the plane. In addition, after taking one winding to infinity, it becomes the Wilson loop in the zero instanton sector of the 2d Yang-Mills theory, which is known to give averages of Wilson loops in = 4 SYM theory. We also give, using matrix models, an interpretation of the HOMFLY polynomial and the corresponding Jones-Rosso representation in terms of q-harmonic oscillators.

  9. Potential development and recharge of ground water in Mill Creek Valley, Butler and Hamilton Counties, Ohio, based on analog model analysis

    USGS Publications Warehouse

    Fidler, Richard E.

    1971-01-01

    Mill Creek valley is part of the greater Cincinnati industrial area in southwestern Ohio. In 1964, nearly 30 percent of the water supply in the study area of about 27 square miles was obtained from wells in the glacial-outwash aquifer underlying the valley. Ground-water demand has increased steadily since the late 1800's, and excessive pumpage during the years of World War II caused water levels to decline to critical levels. Natural recharge to the aquifer, from precipitation, is about 8.5 mgd (million gallons per day). In 1964, the total water use was about 30 mgd, of which 8.1 mgd was obtained from wells in Mill Creek valley, and the remainder was imported from outside the basin. With rapid industrial expansion and population growth, demand for ground water is continuing to increase. By the year 2000 ground-water pumpage is expected to exceed 25 mgd. At a public hearing before the Ohio Water Commission in 1961, artificial recharge of the aquifer through injection wells was proposed as a possible solution to the Mill Creek valley water-supply problem. The present study attempts to determine the feasibility of injection-well recharge systems in the Mill Creek valley. Although basically simple, the hydrologic system in Mill Creek valley is complex in detail and is difficult to evaluate using conventional quantitative methods. Because of this complexity, an electric analog model was used to test specific development plans. Three hypothetical pumping plans were developed by projecting past pumpage data to the years 1980 and 2000. Various combinations of injection wells were tested on the model under different hypothetical conditions of pumpage. Based on analog model analysis, from three to eight inject-ion wells, with an approximate input of 2 mgd each, would reverse the trend in declining groundwater levels and provide adequate water to meet anticipated future demands.

  10. Expression Profiling of Transcriptome and Its Associated Disease Risk in Yang Deficiency Constitution of Healthy Subjects

    PubMed Central

    Yu, Ruoxi; Yang, Yin; Han, Yuanyuan; Hou, Pengwei; Li, Yingshuai; Li, Siqi

    2016-01-01

    Objectives. Differences among healthy subjects and associated disease risks are of substantial interest in clinical medicine. According to the theory of “constitution-disease correlation” in traditional Chinese medicine, we try to find out if there is any connection between intolerance of cold in Yang deficiency constitution and molecular evidence and if there is any gene expression basis in specific disorders. Methods. Peripheral blood mononuclear cells were collected from Chinese Han individuals with Yang deficiency constitution (n = 20) and balanced constitution (n = 8) (aged 18–28) and global gene expression profiles were determined between them using the Affymetrix HG-U133 Plus 2.0 array. Results. The results showed that when the fold change was ≥1.2 and q ≤ 0.05, 909 genes were upregulated in the Yang deficiency constitution, while 1189 genes were downregulated. According to our research differential genes found in Yang deficiency constitution were usually related to lower immunity, metabolic disorders, and cancer tendency. Conclusion. Gene expression disturbance exists in Yang deficiency constitution, which corresponds to the concept of constitution and gene classification. It also suggests people with Yang deficiency constitution are susceptible to autoimmune diseases, enteritis, arthritis, metabolism disorders, and cancer, which provides molecular evidence for the theory of “constitution-disease correlation.” PMID:28484499

  11. Notes on wall crossing and instanton in compactified gauge theory with matter

    NASA Astrophysics Data System (ADS)

    Chen, Heng-Yu; Petunin, Kirill

    2010-10-01

    We study the quantum effects on the Coulomb branch of mathcal{N} = 2 SU(2) super-symmetric Yang-Mills with fundamental matters compactified on {mathbb{R}^3} × {S^1} , and extract the explicit perturbative and leading non-perturbative corrections to the moduli space metric predicted from the recent work of Gaiotto, Moore and Neitzke on wall-crossing [1]. We verify the predicted metric by computing the leading weak coupling instanton contribution to the four fermion correlation using standard field theory techniques, and demonstrate perfect agreement. We also demonstrate how previously known three dimensional quantities can be recovered in appropriate small radius limit, and provide a simple geometric picture from brane construction.

  12. Towards an M5-brane model I: A 6d superconformal field theory

    NASA Astrophysics Data System (ADS)

    Sämann, Christian; Schmidt, Lennart

    2018-04-01

    We present an action for a six-dimensional superconformal field theory containing a non-abelian tensor multiplet. All of the ingredients of this action have been available in the literature. We bring these pieces together by choosing the string Lie 2-algebra as a gauge structure, which we motivated in previous work. The kinematical data contains a connection on a categorified principal bundle, which is the appropriate mathematical description of the parallel transport of self-dual strings. Our action can be written down for each of the simply laced Dynkin diagrams, and each case reduces to a four-dimensional supersymmetric Yang-Mills theory with corresponding gauge Lie algebra. Our action also reduces nicely to an M2-brane model which is a deformation of the Aharony-Bergman-Jafferis-Maldacena (ABJM) model. While this action is certainly not the desired M5-brane model, we regard it as a key stepping stone towards a potential construction of the (2, 0)-theory.

  13. The Theory of High Energy Collision Processes - Final Report DOE/ER/40158-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Tai, T.

    In 1984, DOE awarded Harvard University a new Grant DE-FG02-84ER40158 to continue their support of Tai Tsun Wu as Principal Investigator of research on the theory of high energy collision processes. This Grant was renewed and remained active continuously from June 1, 1984 through November 30, 2007. Topics of interest during the 23-year duration of this Grant include: the theory and phenomenology of collision and production processes at ever higher energies; helicity methods of QED and QCD; neutrino oscillations and masses; Yang-Mills gauge theory; Beamstrahlung; Fermi pseudopotentials; magnetic monopoles and dyons; cosmology; classical confinement; mass relations; Bose-Einstein condensation; and large-momentum-transfermore » scattering processes. This Final Report describes the research carried out on Grant DE-FG02-84ER40158 for the period June 1, 1984 through November 30, 2007. Two books resulted from this project and a total of 125 publications.« less

  14. Gauge assisted quadratic gravity: A framework for UV complete quantum gravity

    NASA Astrophysics Data System (ADS)

    Donoghue, John F.; Menezes, Gabriel

    2018-06-01

    We discuss a variation of quadratic gravity in which the gravitational interaction remains weakly coupled at all energies, but is assisted by a Yang-Mills gauge theory which becomes strong at the Planck scale. The Yang-Mills interaction is used to induce the usual Einstein-Hilbert term, which was taken to be small or absent in the original action. We study the spin-two propagator in detail, with a focus on the high mass resonance which is shifted off the real axis by the coupling to real decay channels. We calculate scattering in the J =2 partial wave and show explicitly that unitarity is satisfied. The theory will in general have a large cosmological constant and we study possible solutions to this, including a unimodular version of the theory. Overall, the theory satisfies our present tests for being a ultraviolet completion of quantum gravity.

  15. Quantum supergroups and solutions of the Yang-Baxter equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bracken, A.J.; Gould, M.D.; Zhang, R.B.

    1990-05-10

    A method is developed for systematically constructing trigonometric and rational solutions of the Yang-Baxter equation using the representation theory of quantum supergroups. New quantum R-matrices are obtained by applying the method to the vector representations of quantum osp(1/2) and gl(m/n).

  16. Combinatorial quantization of the Hamiltonian Chern-Simons theory II

    NASA Astrophysics Data System (ADS)

    Alekseev, Anton Yu.; Grosse, Harald; Schomerus, Volker

    1996-01-01

    This paper further develops the combinatorial approach to quantization of the Hamiltonian Chern Simons theory advertised in [1]. Using the theory of quantum Wilson lines, we show how the Verlinde algebra appears within the context of quantum group gauge theory. This allows to discuss flatness of quantum connections so that we can give a mathematically rigorous definition of the algebra of observables A CS of the Chern Simons model. It is a *-algebra of “functions on the quantum moduli space of flat connections” and comes equipped with a positive functional ω (“integration”). We prove that this data does not depend on the particular choices which have been made in the construction. Following ideas of Fock and Rosly [2], the algebra A CS provides a deformation quantization of the algebra of functions on the moduli space along the natural Poisson bracket induced by the Chern Simons action. We evaluate a volume of the quantized moduli space and prove that it coincides with the Verlinde number. This answer is also interpreted as a partition partition function of the lattice Yang-Mills theory corresponding to a quantum gauge group.

  17. Lee-Yang zero analysis for the study of QCD phase structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ejiri, Shinji

    2006-03-01

    We comment on the Lee-Yang zero analysis for the study of the phase structure of QCD at high temperature and baryon number density by Monte-Carlo simulations. We find that the sign problem for nonzero density QCD induces a serious problem in the finite volume scaling analysis of the Lee-Yang zeros for the investigation of the order of the phase transition. If the sign problem occurs at large volume, the Lee-Yang zeros will always approach the real axis of the complex parameter plane in the thermodynamic limit. This implies that a scaling behavior which would suggest a crossover transition will notmore » be obtained. To clarify this problem, we discuss the Lee-Yang zero analysis for SU(3) pure gauge theory as a simple example without the sign problem, and then consider the case of nonzero density QCD. It is suggested that the distribution of the Lee-Yang zeros in the complex parameter space obtained by each simulation could be more important information for the investigation of the critical endpoint in the (T,{mu}{sub q}) plane than the finite volume scaling behavior.« less

  18. Radiation and the classical double copy for color charges

    NASA Astrophysics Data System (ADS)

    Goldberger, Walter D.; Ridgway, Alexander K.

    2017-06-01

    We construct perturbative classical solutions of the Yang-Mills equations coupled to dynamical point particles carrying color charge. By applying a set of color to kinematics replacement rules first introduced by Bern, Carrasco and Johansson, these are shown to generate solutions of d -dimensional dilaton gravity, which we also explicitly construct. Agreement between the gravity result and the gauge theory double copy implies a correspondence between non-Abelian particles and gravitating sources with dilaton charge. When the color sources are highly relativistic, dilaton exchange decouples, and the solutions we obtain match those of pure gravity. We comment on possible implications of our findings to the calculation of gravitational waveforms in astrophysical black hole collisions, directly from computationally simpler gluon radiation in Yang-Mills theory.

  19. Austerity and geometric structure of field theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kheyfets, A.

    The relation between the austerity idea and the geometric structure of the three basic field theories - electrodynamics, Yang-Mills theory, and general relativity - is studied. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity of delta dot produced with delta = 0 used twice, at the 1-2-3-dimensional level (providing the homogeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for themore » source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories above. This dissertation: (a) analyzes the difficulties by means of algebraic topology, integration theory, and modern differential geometry based on the concepts of principal bundles and Ehresmann connections: (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for the three theories and compatible with the original austerity idea; and (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories.« less

  20. [Anna Hamilton (1864-1935), the excellence of nursing.

    PubMed

    Diebolt, Évelyne

    2017-12-01

    A Frenchwoman, Anna Hamilton (1864-1935), daughter of a Franco-English couple, reads with passion the works of Florence Nightingale and takes an interest in nursing. In order to practice it, she first passes the equivalent of a bachelor’s degree in self-education and registers at the Marseille medical school. She wants to prepare a medical thesis on the nursing staff in the hospitals in Europe and is conducting an investigation throughout Europe. She passed her thesis on June 15, 1900 entitled “Considerations on hospital nurses”. This work is immediately published. That same year, she took up a post at the “Maison de santé protestante” in Bordeaux (MSP), founded in 1863. Without managerial staff, she is forced to recruit them abroad. She publishes a professional journal : “La Garde-Malade hospitalière” (1906-1914). Then the war turned the MSP into a military hospital, but the institution continued to receive local paying patients. She was given permission to call the school of nurses : Florence Nightingale School. Anna Hamilton is working with American women to create a medical and social service in Aisne. A graduate, Antoinette Hervey, then opened a medical-social service in Rouen, which would employ up to 30 visiting nurses. In 1916, the MSP received a donation from the domain of Bagatelle. The board of directors wants to sell it, but Anna Hamilton manages to finance a hospital-school thanks to families bereaved by the war and a subscription announced in the “Journal of Nursing”. Other establishments created by former students of the MSP opened : the School-hospital Ambroise Paré in Lille, a nursing home for nurses in Chambon-sur-Lignon in 1927 (the Edith-Seltzer foundation) and a sanatorium in Briançon. After a busy life, Anna Hamilton died of cancer in 1935 and is buried in Bordeaux.

  1. Six-dimensional regularization of chiral gauge theories

    NASA Astrophysics Data System (ADS)

    Fukaya, Hidenori; Onogi, Tetsuya; Yamamoto, Shota; Yamamura, Ryo

    2017-03-01

    We propose a regularization of four-dimensional chiral gauge theories using six-dimensional Dirac fermions. In our formulation, we consider two different mass terms having domain-wall profiles in the fifth and the sixth directions, respectively. A Weyl fermion appears as a localized mode at the junction of two different domain walls. One domain wall naturally exhibits the Stora-Zumino chain of the anomaly descent equations, starting from the axial U(1) anomaly in six dimensions to the gauge anomaly in four dimensions. Another domain wall implies a similar inflow of the global anomalies. The anomaly-free condition is equivalent to requiring that the axial U(1) anomaly and the parity anomaly are canceled among the six-dimensional Dirac fermions. Since our formulation is based on a massive vector-like fermion determinant, a nonperturbative regularization will be possible on a lattice. Putting the gauge field at the four-dimensional junction and extending it to the bulk using the Yang-Mills gradient flow, as recently proposed by Grabowska and Kaplan, we define the four-dimensional path integral of the target chiral gauge theory.

  2. Negative correlation between nuptial throat colour and blood parasite load in male European green lizards supports the Hamilton-Zuk hypothesis

    NASA Astrophysics Data System (ADS)

    Molnár, Orsolya; Bajer, Katalin; Mészáros, Boglárka; Török, János; Herczeg, Gábor

    2013-06-01

    During female mate choice, conspicuous male sexual signals are used to infer male quality and choose the best sire for the offspring. The theory of parasite-mediated sexual selection (Hamilton-Zuk hypothesis) presumes that parasite infection can influence the elaboration of sexual signals: resistant individuals can invest more energy into signal expression and thus advertise their individual quality through signal intensity. By preferring these males, females can provide resistance genes for their offspring. Previous research showed that nuptial throat colour of male European green lizard, Lacerta viridis, plays a role in both inter- and intrasexual selections as a condition-dependent multiple signalling system. The aim of this study was to test the predictions of the Hamilton-Zuk hypothesis on male European green lizards. By blood sampling 30 adult males during the reproductive season, we found members of the Haemogregarinidae family in all but one individual (prevalence = 96 %). The infection intensity showed strong negative correlation with the throat and belly colour brightness in line with the predictions of the Hamilton-Zuk hypothesis. In addition, we found other correlations between infection intensity and other fitness-related traits, suggesting that parasite load has a remarkable effect on individual fitness. This study shows that throat patch colour of the European green lizards not only is a multiple signalling system but also possibly acts as an honest sexual signal of health state in accordance with the Hamilton-Zuk hypothesis.

  3. Vafa-Witten theorem and Lee-Yang singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguado, M.; Asorey, M.

    2009-12-15

    We prove the analyticity of the finite volume QCD partition function for complex values of the {theta}-vacuum parameter. The absence of singularities different from Lee-Yang zeros only permits and cusp singularities in the vacuum energy density and never or cusps. This fact together with the Vafa-Witten diamagnetic inequality implies the vanishing of the density of Lee-Yang zeros at {theta}=0 and has an important consequence: the absence of a first order phase transition at {theta}=0. The result provides a key missing link in the Vafa-Witten proof of parity symmetry conservation in vectorlike gauge theories and follows from renormalizability, unitarity, positivity, andmore » existence of Bogomol'nyi-Prasad-Sommerfield bounds. Generalizations of this theorem to other physical systems are also discussed, with particular interest focused on the nonlinear CP{sup N} sigma model.« less

  4. Alexander Hamilton: Soldier-Statesmen of the Constitution. A Bicentennial Series No. 16.

    ERIC Educational Resources Information Center

    Army Center of Military History, Washington, DC.

    Alexander Hamilton was among the most intellectually gifted of the Founding Fathers and a brilliant political theorist, but he lacked practical political experience, and his major political contributions occurred only when his specific policies were adopted and carried forward by others with broader vision. This booklet on Hamilton is one in a…

  5. Modeling the milling tool wear by using an evolutionary SVM-based model from milling runs experimental data

    NASA Astrophysics Data System (ADS)

    Nieto, Paulino José García; García-Gonzalo, Esperanza; Vilán, José Antonio Vilán; Robleda, Abraham Segade

    2015-12-01

    The main aim of this research work is to build a new practical hybrid regression model to predict the milling tool wear in a regular cut as well as entry cut and exit cut of a milling tool. The model was based on Particle Swarm Optimization (PSO) in combination with support vector machines (SVMs). This optimization mechanism involved kernel parameter setting in the SVM training procedure, which significantly influences the regression accuracy. Bearing this in mind, a PSO-SVM-based model, which is based on the statistical learning theory, was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc. To accomplish the objective of this study, the experimental dataset represents experiments from runs on a milling machine under various operating conditions. In this way, data sampled by three different types of sensors (acoustic emission sensor, vibration sensor and current sensor) were acquired at several positions. A second aim is to determine the factors with the greatest bearing on the milling tool flank wear with a view to proposing milling machine's improvements. Firstly, this hybrid PSO-SVM-based regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the flank wear (output variable) and input variables (time, depth of cut, feed, etc.). Indeed, regression with optimal hyperparameters was performed and a determination coefficient of 0.95 was obtained. The agreement of this model with experimental data confirmed its good performance. Secondly, the main advantages of this PSO-SVM-based model are its capacity to produce a simple, easy-to-interpret model, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, the main conclusions of this study are exposed.

  6. 4D and 2D superconformal index with surface operator

    NASA Astrophysics Data System (ADS)

    Nakayama, Yu

    2011-08-01

    We study the superconformal index of the mathcal{N} = 4 super-Yang-Milles theory on S 3 × S 1 with the half BPS superconformal surface operator (defect) inserted at the great circle of S 3. The half BPS superconformal surface operators preserve the same supersymmetry as well as the symmetry of the chemical potential used in the definition of the superconformal index, so the structure and the parameterization of the superconformal index remain unaffected by the presence of the surface operator. On the surface defect, a two-dimensional (4, 4) superconformal field theory resides, and the four-dimensional super-conformal index may be regarded as a superconformal index of the two-dimensional (4, 4) superconformal field theory coupled with the four-dimensional bulk system. We construct the matrix model that computes the superconformal index with the surface operator when it couples with the bulk mathcal{N} = 4 super-Yang-Milles theory through the defect hypermultiplets on it.

  7. Ghost-gluon vertex in the presence of the Gribov horizon

    NASA Astrophysics Data System (ADS)

    Mintz, B. W.; Palhares, L. F.; Sorella, S. P.; Pereira, A. D.

    2018-02-01

    We consider Yang-Mills theories quantized in the Landau gauge in the presence of the Gribov horizon via the refined Gribov-Zwanziger (RGZ) framework. As the restriction of the gauge path integral to the Gribov region is taken into account, the resulting gauge field propagators display a nontrivial infrared behavior, being very close to the ones observed in lattice gauge field theory simulations. In this work, we explore a higher correlation function in the refined Gribov-Zwanziger theory: the ghost-gluon interaction vertex, at one-loop level. We show explicit compatibility with kinematical constraints, as required by the Ward identities of the theory, and obtain analytical expressions in the limit of vanishing gluon momentum. We find that the RGZ results are nontrivial in the infrared regime, being compatible with lattice Yang-Mills simulations in both SU(2) and SU(3), as well as with solutions from Schwinger-Dyson equations in different truncation schemes, Functional Renormalization Group analysis, and the renormalization group-improved Curci-Ferrari model.

  8. Generalizations of the classical Yang-Baxter equation and O-operators

    NASA Astrophysics Data System (ADS)

    Bai, Chengming; Guo, Li; Ni, Xiang

    2011-06-01

    Tensor solutions (r-matrices) of the classical Yang-Baxter equation (CYBE) in a Lie algebra, obtained as the classical limit of the R-matrix solution of the quantum Yang-Baxter equation, is an important structure appearing in different areas such as integrable systems, symplectic geometry, quantum groups, and quantum field theory. Further study of CYBE led to its interpretation as certain operators, giving rise to the concept of {O}-operators. The O-operators were in turn interpreted as tensor solutions of CYBE by enlarging the Lie algebra [Bai, C., "A unified algebraic approach to the classical Yang-Baxter equation," J. Phys. A: Math. Theor. 40, 11073 (2007)], 10.1088/1751-8113/40/36/007. The purpose of this paper is to extend this study to a more general class of operators that were recently introduced [Bai, C., Guo, L., and Ni, X., "Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras," Commun. Math. Phys. 297, 553 (2010)], 10.1007/s00220-010-0998-7 in the study of Lax pairs in integrable systems. Relations between O-operators, relative differential operators, and Rota-Baxter operators are also discussed.

  9. Tunneling in quantum cosmology and holographic SYM theory

    NASA Astrophysics Data System (ADS)

    Ghoroku, Kazuo; Nakano, Yoshimasa; Tachibana, Motoi; Toyoda, Fumihiko

    2018-03-01

    We study the time evolution of the early Universe, which is developed by a cosmological constant Λ4 and supersymmetric Yang-Mills (SYM) fields in the Friedmann-Robertson-Walker space-time. The renormalized vacuum expectation value of the energy-momentum tensor of the SYM theory is obtained in a holographic way. It includes a radiation of the SYM field, parametrized as C . The evolution is controlled by this radiation C and the cosmological constant Λ4. For positive Λ4, an inflationary solution is obtained at late time. When C is added, the quantum mechanical situation at early time is fairly changed. Here we perform the early time analysis in terms of two different approaches, (i) the Wheeler-DeWitt equation and (ii) Lorentzian path integral with the Picard-Lefschetz method by introducing an effective action. The results of two methods are compared.

  10. Statistical effects in large N supersymmetric gauge theories

    NASA Astrophysics Data System (ADS)

    Czech, Bartlomiej Stanislaw

    This thesis discusses statistical simplifications arising in supersymmetric gauge theories in the limit of large rank. Applications involve the physics of black holes and the problem of predicting the low energy effective theory from a landscape of string vacua. The first part of this work uses the AdS/CFT correspondence to explain properties of black holes. We establish that in the large charge sector of toric quiver gauge theories there exists a typical state whose structure is closely mimicked by almost all other states. Then, working in the settings of the half-BPS sector of N = 4 super-Yang-Mills theory, we show that in the dual gravity theory semiclassical observations cannot distinguish a pair of geometries corresponding to two generic heavy states. Finally, we argue on general grounds that these conclusions are exponentially enhanced in quantum cosmological settings. The results establish that one may consistently account for the entropy of a black hole with heavy states in the dual field theory and suggest that the usual properties of black holes arise as artifacts of imposing a semiclassical description on a quantum system. In the second half we develop new tools to determine the infrared behavior of quiver gauge theories in a certain class. We apply the dynamical results to a toy model of the landscape of effective field theories defined at some high energy scale, and derive firm statistical predictions for the low energy effective theory.

  11. Measuring Social Capital in Hamilton, Ontario

    ERIC Educational Resources Information Center

    Kitchen, Peter; Williams, Allison; Simone, Dylan

    2012-01-01

    Social capital has been studied by academics for more than 20 years and within the past decade there has been an explosion of growth in research linking social capital to health. This paper investigates social capital in Hamilton, Ontario by way of a telephone survey of 1,002 households in three neighbourhood groups representing high, mixed and…

  12. On SYM theory and all order bulk singularity structures of BPS strings in type II theory

    NASA Astrophysics Data System (ADS)

    Hatefi, Ehsan

    2018-06-01

    The complete forms of the S-matrix elements of a transverse scalar field, two world volume gauge fields, and a Potential Cn-1 Ramond-Ramond (RR) form field are investigated. In order to find an infinite number of t , s , (t + s + u)-channel bulk singularity structures of this particular mixed open-closed amplitude, we employ all the conformal field theory techniques to , exploring all the entire correlation functions and all order α‧ contact interactions to these supersymmetric Yang-Mills (SYM) couplings. Singularity and contact term comparisons with the other symmetric analysis, and are also carried out in detail. Various couplings from pull-Back of branes, Myers terms and several generalized Bianchi identities should be taken into account to be able to reconstruct all order α‧ bulk singularities of type IIB (IIA) superstring theory. Finally, we make a comment on how to derive without any ambiguity all order α‧ contact terms of this S-matrix which carry momentum of RR in transverse directions.

  13. Toward a proof of Montonen-Olive duality via multiple M2-branes

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Tai, Ta-Sheng; Terashima, Seiji

    2009-04-01

    We derive 4-dimensional Script N = 4 U(N) supersymmetric Yang-Mills theory from a 3-dimensional Chern-Simons-matter theory with product gauge group (U(N))2n. The latter describes M2-branes probing an orbifold where a torus emerges in a scaling limit. It is expected that the SL(2,Z) duality of the 4-dimensional Yang-Mills theory will be shown in M-theory point of view since it is trivially realized as modular transformations of the torus. Indeed, starting from one single Chern-Simons-matter theory, we find infinitely many equivalent 4-dimensional theories differing up to T-transformation of the SL(2,Z) redefinition of the gauge coupling τ = θ/2π + 4πi/g2 and a parity transformation in 4 dimensions. Although S-transformation can not be shown in our work, it is important that a part of the SL(2,Z) transformation is realized via the M2-brane action. Thus we think our work can be a step toward a proof of Montonen-Olive duality via M2-branes.

  14. In defence of inclusive fitness theory.

    PubMed

    Herre, Edward Allen; Wcislo, William T

    2011-03-24

    Arising from M. A. Nowak, C. E. Tarnita & E. O. Wilson 466, 1057-1062 (2010); Nowak et al. reply. Arguably the defining characteristic of the scientific process is its capacity for self-criticism and correction. Nowak et al. challenge proposed connections between relatedness and the evolution of eusociality, suggest instead that defensible nests and "spring-loaded" traits are key, and present alternative modelling approaches. They then dismiss the utility of Hamilton's insight that relatedness has a profound evolutionary effect, formalized in his widely accepted inclusive fitness theory as Hamilton's rule ("Rise and fall of inclusive fitness theory"). However, we believe that Nowak et al. fail to make their case for logical, theoretical and empirical reasons.

  15. Semi-abelian Z-theory: NLSM+ ϕ 3 from the open string

    NASA Astrophysics Data System (ADS)

    Carrasco, John Joseph M.; Mafra, Carlos R.; Schlotterer, Oliver

    2017-08-01

    We continue our investigation of Z-theory, the second double-copy component of open-string tree-level interactions besides super-Yang-Mills (sYM). We show that the amplitudes of the extended non-linear sigma model (NLSM) recently considered by Cachazo, Cha, and Mizera are reproduced by the leading α '-order of Z-theory amplitudes in the semi-abelian case. The extension refers to a coupling of NLSM pions to bi-adjoint scalars, and the semi-abelian case involves to a partial symmetrization over one of the color orderings that characterize the Z-theory amplitudes. Alternatively, the partial symmetrization corresponds to a mixed interaction among abelian and non-abelian states in the underlying open-superstring amplitude. We simplify these permutation sums via monodromy relations which greatly increase the efficiency in extracting the α '-expansion of these amplitudes. Their α '-corrections encode higher-derivative interactions between NLSM pions and bi-colored scalars all of which obey the duality between color and kinematics. Through double-copy, these results can be used to generate the predictions of supersymmetric Dirac-Born-Infeld-Volkov-Akulov theory coupled with sYM as well as a complete tower of higher-order α '-corrections.

  16. 7 CFR 457.113 - Coarse grains crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., Reagan, Sterling, Coke, Tom Green, Concho, McCulloch, San Saba, Mills, Hamilton, Bosque, Johnson, Tarrant..., Upton, Reagan, Sterling, Coke, Tom Green, Concho, McCulloch, San Saba, Mills, Hamilton, Bosque, Johnson... September 30. (2) Clark, Cowlitz, Grays Harbor, Island, Jefferson, King, Kitsap, Lewis, Pierce, Skagit...

  17. 7 CFR 457.113 - Coarse grains crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., Reagan, Sterling, Coke, Tom Green, Concho, McCulloch, San Saba, Mills, Hamilton, Bosque, Johnson, Tarrant..., Upton, Reagan, Sterling, Coke, Tom Green, Concho, McCulloch, San Saba, Mills, Hamilton, Bosque, Johnson... September 30. (2) Clark, Cowlitz, Grays Harbor, Island, Jefferson, King, Kitsap, Lewis, Pierce, Skagit...

  18. 7 CFR 457.113 - Coarse grains crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., Reagan, Sterling, Coke, Tom Green, Concho, McCulloch, San Saba, Mills, Hamilton, Bosque, Johnson, Tarrant..., Upton, Reagan, Sterling, Coke, Tom Green, Concho, McCulloch, San Saba, Mills, Hamilton, Bosque, Johnson... September 30. (2) Clark, Cowlitz, Grays Harbor, Island, Jefferson, King, Kitsap, Lewis, Pierce, Skagit...

  19. GL/sub 3/-invariant solutions of the Yang-Baxter equation and associated quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulish, P.P.; Reshetikhin, N.Yu.

    1987-05-20

    The authors investigate the GL/sub 3/-invariant finite-dimensional solutions of the Yang-Baxter equation acting in the tensor product of two irreducible representations of the GL/sub 3/ group. Relationships obtained for the transfer matrices demonstrate the link between representation theory and the Bethe ansatz in GL/sub 3/-invariant models. Some examples of quantum and classical integrable systems associated with GL/sub 3/-invariant solutions of the Yang-Baxter equation are given.

  20. Yerkes, Hamilton and the experimental study of the ape mind: from evolutionary psychiatry to eugenic politics.

    PubMed

    Thomas, Marion

    2006-06-01

    Robert Yerkes is a pivotal figure in American psychology and primatology in the first half of the twentieth century. As is well known, Yerkes first studied ape intelligence in 1915, on a visit to the private California laboratory of the psychiatrist Gilbert Hamilton, a former student. Less widely appreciated is how far the work done at the Hamilton lab, in its aims and ambitions as well as its techniques, served as a template for much of Yerkes's research thereafter. This paper uses the Hamilton-Yerkes relationship to re-examine Yerkes's career and, more generally, that of American psychology in the early twentieth century. Three points especially are emphasized: first, the role of Freudian psychoanalysis as a spur to Hamilton's experimental studies of ape intelligence; second, the importance of Hamilton's laboratory, with its semi-wild population of monkeys and ape, as a model for Yerkes's efforts to create a laboratory of his own; and third, the influence on Yerkes of Hamilton's optimism about experimental psychological studies of nonhuman primates as a source of lessons beneficial to a troubled human world.

  1. Application of Hamilton's Law of Varying Action

    NASA Technical Reports Server (NTRS)

    Bailey, C. D.

    1973-01-01

    The application of Hamilton's Law to the direct solution of nonstationary as well as stationary problems in mechanics of solids is discussed. Solutions are demonstrated for conservative and monconservative, stationary and/or nonstationary particle motion. Mathematical models are developed to establish the relationships of the parameters.

  2. The Classical Theory of Light Colors: a Paradigm for Description of Particle Interactions

    NASA Astrophysics Data System (ADS)

    Mazilu, Nicolae; Agop, Maricel; Gatu, Irina; Iacob, Dan Dezideriu; Butuc, Irina; Ghizdovat, Vlad

    2016-06-01

    The color is an interaction property: of the interaction of light with matter. Classically speaking it is therefore akin to the forces. But while forces engendered the mechanical view of the world, the colors generated the optical view. One of the modern concepts of interaction between the fundamental particles of matter - the quantum chromodynamics - aims to fill the gap between mechanics and optics, in a specific description of strong interactions. We show here that this modern description of the particle interactions has ties with both the classical and quantum theories of light, regardless of the connection between forces and colors. In a word, the light is a universal model in the description of matter. The description involves classical Yang-Mills fields related to color.

  3. Lie-Hamilton systems on the plane: Properties, classification and applications

    NASA Astrophysics Data System (ADS)

    Ballesteros, A.; Blasco, A.; Herranz, F. J.; de Lucas, J.; Sardón, C.

    2015-04-01

    We study Lie-Hamilton systems on the plane, i.e. systems of first-order differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional real Lie algebra of planar Hamiltonian vector fields with respect to a Poisson structure. We start with the local classification of finite-dimensional real Lie algebras of vector fields on the plane obtained in González-López, Kamran, and Olver (1992) [23] and we interpret their results as a local classification of Lie systems. By determining which of these real Lie algebras consist of Hamiltonian vector fields relative to a Poisson structure, we provide the complete local classification of Lie-Hamilton systems on the plane. We present and study through our results new Lie-Hamilton systems of interest which are used to investigate relevant non-autonomous differential equations, e.g. we get explicit local diffeomorphisms between such systems. We also analyse biomathematical models, the Milne-Pinney equations, second-order Kummer-Schwarz equations, complex Riccati equations and Buchdahl equations.

  4. Linear-response time-dependent density-functional theory with pairing fields.

    PubMed

    Peng, Degao; van Aggelen, Helen; Yang, Yang; Yang, Weitao

    2014-05-14

    Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)] and N ± 2 excitation energies [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. So far Hartree-Fock and approximated density-functional orbitals have been utilized to evaluate the pp-RPA equation. In this paper, to further explore the fundamentals and the potential use of pairing matrix dependent functionals, we present the linear-response time-dependent density-functional theory with pairing fields with both adiabatic and frequency-dependent kernels. This theory is related to the density-functional theory and time-dependent density-functional theory for superconductors, but is applied to normal non-superconducting systems for our purpose. Due to the lack of the proof of the one-to-one mapping between the pairing matrix and the pairing field for time-dependent systems, the linear-response theory is established based on the representability assumption of the pairing matrix. The linear response theory justifies the use of approximated density-functionals in the pp-RPA equation. This work sets the fundamentals for future density-functional development to enhance the description of ground state correlation energies and N ± 2 excitation energies.

  5. Integrability of the Ad{{S}_{5}}\\times {{S}^{5}} superstring and its deformations

    NASA Astrophysics Data System (ADS)

    van Tongeren, Stijn J.

    2014-10-01

    This article reviews the application of integrability to the spectral problem of strings on Ad{{S}5}× {{S}5} and its deformations. We begin with a pedagogical introduction to integrable field theories culminating in the description of their finite-volume spectra through the thermodynamic Bethe ansatz (TBA). Next, we apply these ideas to the Ad{{S}5}× {{S}5} string and in later sections discuss how to account for particular integrable deformations. Through the AdS/CFT correspondence this gives an exact description of anomalous scaling dimensions of single trace operators in planar N=4 supersymmetry Yang-Mills theory, its ‘orbifolds’, and β and γ-deformed supersymmetric Yang-Mills theory. We also touch upon some subtleties arising in these deformed theories. Furthermore, we consider complex excited states (bound states) in the su(2) sector and give their TBA description. Finally we discuss the TBA for a quantum deformation of the Ad{{S}5}× {{S}5} superstring S-matrix, with close relations to among others Pohlmeyer reduced string theory, and briefly indicate more recent developments in this area.

  6. Spinning particle and gauge theories as integrability conditions

    NASA Astrophysics Data System (ADS)

    Eisenberg, Yeshayahu

    1992-02-01

    Starting from a new four dimensional spinning point particle we obtain new representations of the standard four dimensional gauge field equations in terms of a generalized space (Minkowski + light cone). In terms of this new formulation we define linear systems whose integrability conditions imply the massive Dirac-Maxwell and the Yang-Mills equations. Research supported by the Rothschild Fellowship.

  7. Decomposition Theory in the Teaching of Elementary Linear Algebra.

    ERIC Educational Resources Information Center

    London, R. R.; Rogosinski, H. P.

    1990-01-01

    Described is a decomposition theory from which the Cayley-Hamilton theorem, the diagonalizability of complex square matrices, and functional calculus can be developed. The theory and its applications are based on elementary polynomial algebra. (KR)

  8. On the Geometry of the Hamilton-Jacobi Equation and Generating Functions

    NASA Astrophysics Data System (ADS)

    Ferraro, Sebastián; de León, Manuel; Marrero, Juan Carlos; Martín de Diego, David; Vaquero, Miguel

    2017-10-01

    In this paper we develop a geometric version of the Hamilton-Jacobi equation in the Poisson setting. Specifically, we "geometrize" what is usually called a complete solution of the Hamilton-Jacobi equation. We use some well-known results about symplectic groupoids, in particular cotangent groupoids, as a keystone for the construction of our framework. Our methodology follows the ambitious program proposed by Weinstein (In Mechanics day (Waterloo, ON, 1992), volume 7 of fields institute communications, American Mathematical Society, Providence, 1996) in order to develop geometric formulations of the dynamical behavior of Lagrangian and Hamiltonian systems on Lie algebroids and Lie groupoids. This procedure allows us to take symmetries into account, and, as a by-product, we recover results from Channell and Scovel (Phys D 50(1):80-88, 1991), Ge (Indiana Univ. Math. J. 39(3):859-876, 1990), Ge and Marsden (Phys Lett A 133(3):134-139, 1988), but even in these situations our approach is new. A theory of generating functions for the Poisson structures considered here is also developed following the same pattern, solving a longstanding problem of the area: how to obtain a generating function for the identity transformation and the nearby Poisson automorphisms of Poisson manifolds. A direct application of our results gives the construction of a family of Poisson integrators, that is, integrators that conserve the underlying Poisson geometry. These integrators are implemented in the paper in benchmark problems. Some conclusions, current and future directions of research are shown at the end of the paper.

  9. The components of the unique Zur regulon of Cupriavidus metallidurans mediate cytoplasmic zinc handling.

    PubMed

    Bütof, Lucy; Schmidt-Vogler, Christopher; Herzberg, Martin; Große, Cornelia; Nies, Dietrich H

    2017-08-14

    Zinc is an essential trace element and at the same time it is toxic at high concentrations. In the beta-proteobacterium Cupriavidus metallidurans the highly efficient removal of surplus zinc from the periplasm is responsible for its outstanding metal resistance. Rather than having a typical Zur-dependent, high-affinity ATP-binding cassette transporter of the ABC protein superfamily for zinc uptake at low concentrations, C. metallidurans instead has the secondary zinc importer ZupT of the ZRT/IRT (ZIP) family. It is important to understand, therefore, how this zinc-resistant bacterium copes when it is exposed to low zinc concentrations. Members of the Zur regulon in C. metallidurans were identified by comparing the transcriptomes of a Δ zur mutant and its parent strain. The consensus sequence of the Zur-binding box was derived for the zupTp promoter-regulatory region using a truncation assay. The motif was used to predict possible Zur-boxes upstream of Zur regulon members. Binding of Zur to these boxes was confirmed. Two Zur-boxes upstream of the cobW 1 gene, encoding a putative zinc chaperone, proved to be required for complete repression of cobW 1 and its downstream genes in cells cultivated in mineral salts medium. A Zur box upstream of each of zur-cobW 2 , cobW 3 and zupT permitted low-expression level of these genes plus their up-regulation under zinc starvation conditions. This demonstrates a compartmentalization of zinc homeostasis in C. metallidurans with the periplasm being responsible for removal of surplus zinc and cytoplasmic components for management of zinc as an essential co-factor, with both compartments connected by ZupT. Importance Elucidating zinc homeostasis is necessary to understand both host-pathogen interactions and performance of free-living bacteria in their natural environment. Escherichia coli acquires zinc under low zinc concentrations by the Zur-controlled ZnuABC importer of the ABC superfamily, and this was also the paradigm for other

  10. Hamilton County: A Rural School District Profile.

    ERIC Educational Resources Information Center

    Harned, Catherine

    Using state education agency, census, industry employment and occupational information data, this paper provides a detailed picture of a rural school district in Southern Illinois. Mining and agriculture are the major industries in Hamilton County. The major mining employer closed in February 1988, and the drought of 1988 is likely to adversely…

  11. Rotating hairy black holes.

    PubMed

    Kleihaus, B; Kunz, J

    2001-04-23

    We construct stationary black-hole solutions in SU(2) Einstein-Yang-Mills theory which carry angular momentum and electric charge. Possessing nontrivial non-Abelian magnetic fields outside their regular event horizon, they represent nonperturbative rotating hairy black holes.

  12. GL/sub 3/-invariant solutions of the Yang-Baxter equation and associated quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulish, P.P.; Reshetikin N.Y.

    1986-09-01

    GL/sub 3/-invariant, finite-dimensional solutions of the Yang-Baxter equations acting in the tensor product of two irreducible representations of the group GL/sub 3/ are investigated. A number of relations are obtained for the transfer matrices which demonstrate the connection of representation theory and the Bethe Ansatz in GL/sub 3/invariant models. Some of the most interesting quantum and classical integrable systems connected with GL/sub 3/-invariant solutions of the Yang-Baxter equation are presented.

  13. GL/sub 3/-invariant solutions of the Yang-Baxter equation and associated quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulish, P.P.; Reshetikhin, N.Yu.

    1986-09-10

    GL/sub 3/-invariant, finite-dimensional solutions of the Yang-Baxter equations acting in the tensor product of two irreducible representations of the group GL/sub 3/ are investigated. A number of relations are obtained for the transfer matrices which demonstrate the connection of representation theory and the Bethe Ansatz in GL/sub 3/-invariant models. Some of the most interesting quantum and classical integrable systems connected with GL/sub 3/-invariant solutions of the Yang-Baxter equation are presented.

  14. Magnetic monopole versus vortex as gauge-invariant topological objects for quark confinement

    NASA Astrophysics Data System (ADS)

    Kondo, Kei-Ichi; Sasago, Takaaki; Shinohara, Toru; Shibata, Akihiro; Kato, Seikou

    2017-12-01

    First, we give a gauge-independent definition of chromomagnetic monopoles in SU(N) Yang-Mills theory which is derived through a non-Abelian Stokes theorem for the Wilson loop operator. Then we discuss how such magnetic monopoles can give a nontrivial contribution to the Wilson loop operator for understanding the area law of the Wilson loop average. Next, we discuss how the magnetic monopole condensation picture are compatible with the vortex condensation picture as another promising scenario for quark confinement. We analyze the profile function of the magnetic flux tube as the non-Abelian vortex solution of U(N) gauge-Higgs model, which is to be compared with numerical simulations of the SU(N) Yang-Mills theory on a lattice. This analysis gives an estimate of the string tension based on the vortex condensation picture, and possible interactions between two non-Abelian vortices.

  15. Loop Integrands for Scattering Amplitudes from the Riemann Sphere

    NASA Astrophysics Data System (ADS)

    Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Tourkine, Piotr

    2015-09-01

    The scattering equations on the Riemann sphere give rise to remarkable formulas for tree-level gauge theory and gravity amplitudes. Adamo, Casali, and Skinner conjectured a one-loop formula for supergravity amplitudes based on scattering equations on a torus. We use a residue theorem to transform this into a formula on the Riemann sphere. What emerges is a framework for loop integrands on the Riemann sphere that promises to have a wide application, based on off-shell scattering equations that depend on the loop momentum. We present new formulas, checked explicitly at low points, for supergravity and super-Yang-Mills amplitudes and for n -gon integrands at one loop. Finally, we show that the off-shell scattering equations naturally extend to arbitrary loop order, and we give a proposal for the all-loop integrands for supergravity and planar super-Yang-Mills theory.

  16. Magnetically charged calorons with non-trivial holonomy

    NASA Astrophysics Data System (ADS)

    Kato, Takumi; Nakamula, Atsushi; Takesue, Koki

    2018-06-01

    Instantons in pure Yang-Mills theories on partially periodic space R^3× {S}^1 are usually called calorons. The background periodicity brings on characteristic features of calorons such as non-trivial holonomy, which plays an essential role for confinement/deconfinement transition in pure Yang-Mills gauge theory. For the case of gauge group SU(2), calorons can be interpreted as composite objects of two constituent "monopoles" with opposite magnetic charges. There are often the cases that the two monopole charges are unbalanced so that the calorons possess net magnetic charge in R3. In this paper, we consider several mechanism how such net magnetic charges appear for certain types of calorons through the ADHM/Nahm construction with explicit examples. In particular, we construct analytically the gauge configuration of the (2 , 1)-caloron with U(1)-symmetry, which has intrinsically magnetic charge.

  17. The Components of the Unique Zur Regulon of Cupriavidus metallidurans Mediate Cytoplasmic Zinc Handling

    PubMed Central

    Bütof, Lucy; Schmidt-Vogler, Christopher; Herzberg, Martin; Große, Cornelia

    2017-01-01

    ABSTRACT Zinc is an essential trace element, yet it is toxic at high concentrations. In the betaproteobacterium Cupriavidus metallidurans, the highly efficient removal of surplus zinc from the periplasm is responsible for the outstanding metal resistance of the organism. Rather than having a typical Zur-dependent, high-affinity ATP-binding cassette transporter of the ABC protein superfamily for zinc uptake at low concentrations, C. metallidurans has the secondary zinc importer ZupT of the zinc-regulated transporter, iron-regulated transporter (ZRT/IRT)-like protein (ZIP) family. It is important to understand, therefore, how this zinc-resistant bacterium copes with exposure to low zinc concentrations. Members of the Zur regulon in C. metallidurans were identified by comparing the transcriptomes of a Δzur mutant and its parent strain. The consensus sequence of the Zur-binding box was derived for the zupTp promoter-regulatory region by use of a truncation assay. The motif was used to predict possible Zur boxes upstream of Zur regulon members. The binding of Zur to these boxes was confirmed. Two Zur boxes upstream of the cobW1 gene, encoding a putative zinc chaperone, proved to be required for complete repression of cobW1 and its downstream genes in cells cultivated in mineral salts medium. A Zur box upstream of each of zur-cobW2, cobW3, and zupT permitted both low expression levels of these genes and their upregulation under conditions of zinc starvation. This demonstrates a compartmentalization of zinc homeostasis in C. metallidurans, where the periplasm is responsible for the removal of surplus zinc, cytoplasmic components are responsible for the management of zinc as an essential cofactor, and the two compartments are connected by ZupT. IMPORTANCE Elucidating zinc homeostasis is necessary for understanding both host-pathogen interactions and the performance of free-living bacteria in their natural environments. Escherichia coli acquires zinc under conditions of

  18. Theoretische Konzepte der Physik

    NASA Astrophysics Data System (ADS)

    Longair, Malcolm S.; Simon, B.; Simon, H.

    "Dies ist kein Lehrbuch der theoretischen Physik, auch kein Kompendium der Physikgeschichte ... , vielmehr eine recht anspruchsvolle Sammlung historischer Miniaturen zur Vergangenheit der theoretischen Physik - ihrer "Sternstunden", wenn man so will. Frei vom Zwang, etwas Erschöpfendes vorlegen zu müssen, gelingt dem Autor etwas Seltenes: einen "lebendigen" Zugang zum Ideengebäude der modernen Physik freizulegen, ... zu zeigen, wie Physik in praxi entsteht... Als Vehikel seiner Absichten dienen dem Autor geschichtliche Fallstudien, insgesamt sieben an der Zahl. Aus ihnen extrahiert er das seiner Meinung nach Lehrhafte, dabei bestrebt, mathematische Anachronismen womöglich zu vermeiden... Als Student hätte ich mir diese gescheiten Essays zum Werden unserer heutigen physikalischen Weltsicht gewünscht. Sie sind originell, didaktisch klug und genieren sich auch nicht, von der Faszination zu sprechen, die ... von der Physik ausgeht. Unnötig darauf hinzuweisen, das sie ein gründliches "konventionelles" Studium weder ersetzen wollen noch können, sie vermögen aber, dazu zu ermuntern." #Astronomische Nachrichten (zur englischen Ausgabe)#1

  19. Pure natural inflation

    NASA Astrophysics Data System (ADS)

    Nomura, Yasunori; Watari, Taizan; Yamazaki, Masahito

    2018-01-01

    We point out that a simple inflationary model in which the axionic inflaton couples to a pure Yang-Mills theory may give the scalar spectral index (ns) and tensor-to-scalar ratio (r) in complete agreement with the current observational data.

  20. {{SO(d,1)}}-Invariant Yang-Baxter Operators and the dS/CFT Correspondence

    NASA Astrophysics Data System (ADS)

    Hollands, Stefan; Lechner, Gandalf

    2018-01-01

    We propose a model for the dS/CFT correspondence. The model is constructed in terms of a "Yang-Baxter operator" R for unitary representations of the de Sitter group {SO(d,1)}. This R-operator is shown to satisfy the Yang-Baxter equation, unitarity, as well as certain analyticity relations, including in particular a crossing symmetry. With the aid of this operator we construct: (a) a chiral (light-ray) conformal quantum field theory whose internal degrees of freedom transform under the given unitary representation of {SO(d,1)}. By analogy with the O( N) non-linear sigma model, this chiral CFT can be viewed as propagating in a de Sitter spacetime. (b) A (non-unitary) Euclidean conformal quantum field theory on R}^{d-1, where SO( d, 1) now acts by conformal transformations in (Euclidean) spacetime. These two theories can be viewed as dual to each other if we interpret R}^{d-1 as conformal infinity of de Sitter spacetime. Our constructions use semi-local generator fields defined in terms of R and abstract methods from operator algebras.

  1. Evidence for a nonplanar amplituhedron

    DOE PAGES

    Bern, Zvi; Herrmann, Enrico; Litsey, Sean; ...

    2016-06-17

    The scattering amplitudes of planar N = 4 super-Yang-Mills exhibit a number of remarkable analytic structures, including dual conformal symmetry and logarithmic singularities of integrands. The amplituhedron is a geometric construction of the integrand that incorporates these structures. This geometric construction further implies the amplitude is fully specified by constraining it to vanish on spurious residues. By writing the amplitude in a dlog basis, we provide nontrivial evidence that these analytic properties and “zero conditions” carry over into the nonplanar sector. Finally, this suggests that the concept of the amplituhedron can be extended to the nonplanar sector of N =more » 4 super-Yang-Mills theory.« less

  2. Deconstruction of the Maldacena Núñez compactification

    NASA Astrophysics Data System (ADS)

    Andrews, R. P.; Dorey, N.

    2006-09-01

    We demonstrate a classical equivalence between the large- N limit of the higgsed N=1 SUSY U(N) Yang-Mills theory and the Maldacena-Núñez twisted compactification of a six-dimensional gauge theory on a two-sphere. A direct comparison of the actions and spectra of the two theories reveals them to be identical. We also propose a gauge theory limit which should describe the corresponding spherical compactification of little string theory.

  3. On spinodal points and Lee-Yang edge singularities

    NASA Astrophysics Data System (ADS)

    An, X.; Mesterházy, D.; Stephanov, M. A.

    2018-03-01

    We address a number of outstanding questions associated with the analytic properties of the universal equation of state of the φ4 theory, which describes the critical behavior of the Ising model and ubiquitous critical points of the liquid–gas type. We focus on the relation between spinodal points that limit the domain of metastability for temperatures below the critical temperature, i.e. T < Tc , and Lee-Yang edge singularities that restrict the domain of analyticity around the point of zero magnetic field H for T > Tc . The extended analyticity conjecture (due to Fonseca and Zamolodchikov) posits that, for T < Tc , the Lee-Yang edge singularities are the closest singularities to the real H axis. This has interesting implications, in particular, that the spinodal singularities must lie off the real H axis for d < 4 , in contrast to the commonly known result of the mean-field approximation. We find that the parametric representation of the Ising equation of state obtained in the \\renewcommandε{\\varepsilon} \

  4. 31. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill: oneton ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill: one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: View down at the mill from top of the mill's circular masonry enclosure. Mill animals circling above the mill, on top of the enclosure, dragged booms radiating from the drive shaft to power the mill. The drive-shaft is no longer in its upright positon but is lying next to the mill in the foreground. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  5. Many Faces, Many Voices: Multicultural Literary Experiences for Youth. The Virginia Hamilton Conference (Kent, Ohio).

    ERIC Educational Resources Information Center

    Manna, Anthony L., Ed.; Brodie, Carolyn S., Ed.

    This volume contains keynote and workshop presentations from several Virginia Hamilton Conferences on multicultural literature for children and young people. The papers and speeches are as follows: (1) "A Toiler, A Teller" (Virginia Hamilton); (2) "The Next America" (Arnold Adoff); (3) "The Magic of Imagining: Transaction…

  6. Local renormalization group functions from quantum renormalization group and holographic bulk locality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, Yu

    Here, the bulk locality in the constructive holographic renormalization group requires miraculous cancellations among various local renormalization group functions. The cancellation is not only from the properties of the spectrum but from more detailed aspects of operator product expansions in relation to conformal anomaly. It is remarkable that one-loop computation of the universal local renormalization group functions in the weakly coupled limit of the N = 4 super Yang-Mills theory fulfils the necessary condition for the cancellation in the strongly coupled limit in its SL(2, Z) duality invariant form. From the consistency between the quantum renormalization group and the holographicmore » renormalization group, we determine some unexplored local renormalization group functions (e.g. diffusive term in the beta function for the gauge coupling constant) in the strongly coupled limit of the planar N = 4 super Yang-Mills theory.« less

  7. Dynamical tachyons on fuzzy spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berenstein, David; Institute for Advanced Study, School of Natural Science, Princeton, New Jersey 08540; Trancanelli, Diego

    2011-05-15

    We study the spectrum of off-diagonal fluctuations between displaced fuzzy spheres in the Berenstein-Maldacena-Nastase plane wave matrix model. The displacement is along the plane of the fuzzy spheres. We find that when two fuzzy spheres intersect at angles, classical tachyons develop and that the spectrum of these modes can be computed analytically. These tachyons can be related to the familiar Nielsen-Olesen instabilities in Yang-Mills theory on a constant magnetic background. Many features of the problem become more apparent when we compare with maximally supersymmetric Yang-Mills theory on a sphere, of which this system is a truncation. We also set upmore » a simple oscillatory trajectory on the displacement between the fuzzy spheres and study the dynamics of the modes as they become tachyonic for part of the oscillations. We speculate on their role regarding the possible thermalization of the system.« less

  8. Multiple Instantons Representing Higher-Order Chern-Pontryagin Classes

    NASA Astrophysics Data System (ADS)

    Spruck, Joel; Tchrakian, D. H.; Yang, Yisong

    It has been shown in the work of Chakrabarti, Sherry and Tchrakian that the chiral SO+/-(4 p) Yang-Mills theory in the Euclidean 4 p (p>= 2) dimensions allows an axially symmetric self-dual system of equations similar to Witten's instanton equations in the classical 4-dimensional SU(2) SO+/-(4) theory and the solutions represent a new class of instantons. However the rigorous existence of these higher-dimensional instanton solutions has remained open except for the solution of unit charge representing a single instanton. In this paper we establish an existence and uniqueness theorem for multi-instantons of arbitrary charges in the case p>= 2. These solutions are the first known instantons, with the Chern-Pontryagin index greater than one, of the Yang-Mills model in higher dimensions. Our approach is a study of a nonlinear variational equation defined on the Poincaré half plane.

  9. CP Symmetry, Lee-Yang zeros and Phase Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguado, M.; Asorey, M.

    2011-05-23

    We analyze the analytic properties of {theta}-vacuum in QCD and its connection with spontaneous symmetry breaking of CP symmetry. A loss of analyticity in the {theta}-vacuum energy density can only be due to the accumulation of Lee-Yang zeros at some real values of {theta}. In the case of first order transitions these singularities are always associated to and cusp singularities and never to or cusps, which in the case {theta} = 0 are incompatible with the Vafa-Witten diamagnetic inequality This fact provides a key missing link in the Vafa-Witten proof of parity symmetry conservation in vector-like gauge theories like QCD.more » The argument is very similar to that used in the derivation of Bank-Casher formula for chiral symmetry breaking. However, the and behavior does not exclude the existence of a first phase transition at {theta} = {pi}, where a and cusp singularity is not forbidden by any inequality; in this case the topological charge condensate is proportional to the density of Lee-Yang zeros at {theta} = {pi}. Moreover, Lee-Yang zeros could give rise to a second order phase transition at {theta} = 0, which might be very relevant for the interpretation of the anomalous behavior of the topological susceptibility in the CP{sup 1} sigma model.« less

  10. The North American light rail experience : insights for Hamilton.

    DOT National Transportation Integrated Search

    2012-04-01

    This report provides a high level overview of the North American Light Rail Experience with the goal of : providing insights for Hamilton, Ontario. Light rail transit (LRT) is a term that emerged at the : Transportation Research Boards first confe...

  11. Macroscopic Fluctuation Theory for Stationary Non-Equilibrium States

    NASA Astrophysics Data System (ADS)

    Bertini, L.; de Sole, A.; Gabrielli, D.; Jona-Lasinio, G.; Landim, C.

    2002-05-01

    We formulate a dynamical fluctuation theory for stationary non-equilibrium states (SNS) which is tested explicitly in stochastic models of interacting particles. In our theory a crucial role is played by the time reversed dynamics. Within this theory we derive the following results: the modification of the Onsager-Machlup theory in the SNS; a general Hamilton-Jacobi equation for the macroscopic entropy; a non-equilibrium, nonlinear fluctuation dissipation relation valid for a wide class of systems; an H theorem for the entropy. We discuss in detail two models of stochastic boundary driven lattice gases: the zero range and the simple exclusion processes. In the first model the invariant measure is explicitly known and we verify the predictions of the general theory. For the one dimensional simple exclusion process, as recently shown by Derrida, Lebowitz, and Speer, it is possible to express the macroscopic entropy in terms of the solution of a nonlinear ordinary differential equation; by using the Hamilton-Jacobi equation, we obtain a logically independent derivation of this result.

  12. [The Yin and Yang movement in the cosmology of Chinese medicine].

    PubMed

    Coutinho, Bernardo Diniz; Dulcetti, Pérola Goretti Sichero

    2015-01-01

    After being developed in the East, based on Taoist cosmology, Chinese medicine has been practiced in the West based on scientific foundations and biomedical paradigms. Some traditional elements of this philosophy were abandoned, such as the theory of Yin and Yang, knowledge that is essential for understanding the health-disease process resulting from the circulation of the body's energy flow. This article studies the movement of the dual elements of Yin and Yang in Chinese medical teaching, seeking to understand how this line of thought developed and how it has contributed towards establishing a system of diagnosis and therapy. The methodology employed was to analyze literature on the subject, based on theoretical references to Taoist thought and traditional Chinese medicine.

  13. 75 FR 24938 - City of Hamilton, Ohio American Municipal Power, Inc.; Notice of Application for Transfer of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ...) and American Municipal Power, Inc. (AMP) filed an application for a partial transfer of license of the... to Hamilton and AMP. Applicants' Contacts: City of Hamilton--Mr. Mark Brandenburger, City Manager...

  14. The Montgomery Äsberg and the Hamilton Ratings of Depression

    PubMed Central

    Carmody, Thomas; Rush, A. John; Bernstein, Ira; Warden, Diane; Brannan, Stephen; Burnham, Daniel; Woo, Ada; Trivedi, Madhukar

    2007-01-01

    The 17-item Hamilton Rating Scale for Depression (HRSD17) and the Montgomery Äsberg Depression Rating Scale (MADRS) are two widely used clinicianrated symptom scales. A 6-item version of the HRSD (HRSD6) was created by Bech to address the psychometric limitations of the HRSD17. The psychometric properties of these measures were compared using classical test theory (CTT) and item response theory (IRT) methods. IRT methods were used to equate total scores on any two scales. Data from two distinctly different outpatient studies of nonpsychotic major depression: a 12-month study of highly treatment-resistant patients (n=233) and an 8-week acute phase drug treatment trial (n=985) were used for robustness of results. MADRS and HRSD6 items generally contributed more to the measurement of depression than HRSD17 items as shown by higher item-total correlations and higher IRT slope parameters. The MADRS and HRSD6 were unifactorial while the HRSD17 contained 2 factors. The MADRS showed about twice the precision in estimating depression as either the HRSD17 or HRSD6 for average severity of depression. An HRSD17 of 7 corresponded to an 8 or 9 on the MADRS and 4 on the HRSD6. The MADRS would be superior to the HRSD17 in the conduct of clinical trials. PMID:16769204

  15. On supersymmetry anomalies

    NASA Astrophysics Data System (ADS)

    Howe, P. S.; Parkes, A. J.; West, P. C.

    1985-01-01

    It is shown analytically that there are no one-loop supersymmetry anomalies in N = 2 and N = 4 supersymmetric Yang-Mills theories. This implies that the two-loop β functions in these theories are in accord with supersymmetry when the one-loop finite local counter terms required by supersymmetry are correctly taken into account. Permanent address: Department of Mathematics, King's College, London, UK.

  16. Quark-gluon plasma (Selected Topics)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakharov, V. I., E-mail: vzakharov@itep.ru

    Introductory lectures to the theory of (strongly interacting) quark-gluon plasma given at the Winter School of Physics of ITEP (Moscow, February 2010). We emphasize theoretical issues highlighted by the discovery of the low viscosity of the plasma. The topics include relativistic hydrodynamics, manifestations of chiral anomaly in hydrodynamics, superfluidity, relativistic superfluid hydrodynamics, effective stringy scalars, holographic models of Yang-Mills theories.

  17. Durand Neighbourhood Heritage Inventory: Toward a Digital Citywide Survey Approach to Heritage Planning in Hamilton

    NASA Astrophysics Data System (ADS)

    Angel, V.; Garvey, A.; Sydor, M.

    2017-08-01

    In the face of changing economies and patterns of development, the definition of heritage is diversifying, and the role of inventories in local heritage planning is coming to the fore. The Durand neighbourhood is a layered and complex area located in inner-city Hamilton, Ontario, Canada, and the second subject area in a set of pilot inventory studies to develop a new city-wide inventory strategy for the City of Hamilton,. This paper presents an innovative digital workflow developed to undertake the Durand Built Heritage Inventory project. An online database was developed to be at the centre of all processes, including digital documentation, record management, analysis and variable outputs. Digital tools were employed for survey work in the field and analytical work in the office, resulting in a GIS-based dataset that can be integrated into Hamilton's larger municipal planning system. Together with digital mapping and digitized historical resources, the Durand database has been leveraged to produce both digital and static outputs to shape recommendations for the protection of Hamilton's heritage resources.

  18. Gauge theories with time dependent couplings and their cosmological duals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awad, Adel; Center for Theoretical Physics, British University of Egypt, Sherouk City 11837, P.O. Box 43; Das, Sumit R.

    2009-02-15

    We consider the N=4 super Yang-Mills theory in flat 3+1-dimensional space-time with a time dependent coupling constant which vanishes at t=0, like g{sub YM}{sup 2}=t{sup p}. In an analogous quantum mechanics toy model we find that the response is singular. The energy diverges at t=0, for a generic state. In addition, if p>1 the phase of the wave function has a wildly oscillating behavior, which does not allow it to be continued past t=0. A similar effect would make the gauge theory singular as well, though nontrivial effects of renormalization could tame this singularity and allow a smooth continuation beyondmore » t=0. The gravity dual in some cases is known to be a time dependent cosmology which exhibits a spacelike singularity at t=0. Our results, if applicable in the gauge theory for the case of the vanishing coupling, imply that the singularity is a genuine sickness and does not admit a meaningful continuation. When the coupling remains nonzero and becomes small at t=0, the curvature in the bulk becomes of order string scale. The gauge theory now admits a time evolution beyond this point. In this case, a finite amount of energy is produced which possibly thermalizes and leads to a black hole in the bulk.« less

  19. Yang-Baxter deformations of W2,4 × T1,1 and the associated T-dual models

    NASA Astrophysics Data System (ADS)

    Sakamoto, Jun-ichi; Yoshida, Kentaroh

    2017-08-01

    Recently, for principal chiral models and symmetric coset sigma models, Hoare and Tseytlin proposed an interesting conjecture that the Yang-Baxter deformations with the homogeneous classical Yang-Baxter equation are equivalent to non-abelian T-dualities with topological terms. It is significant to examine this conjecture for non-symmetric (i.e., non-integrable) cases. Such an example is the W2,4 ×T 1 , 1 background. In this note, we study Yang-Baxter deformations of type IIB string theory defined on W2,4 ×T 1 , 1 and the associated T-dual models, and show that this conjecture is valid even for this case. Our result indicates that the conjecture would be valid beyond integrability.

  20. Local subsystems in gauge theory and gravity

    DOE PAGES

    Donnelly, William; Freidel, Laurent

    2016-09-16

    We consider the problem of defining localized subsystems in gauge theory and gravity. Such systems are associated to spacelike hypersurfaces with boundaries and provide the natural setting for studying entanglement entropy of regions of space. We present a general formalism to associate a gauge-invariant classical phase space to a spatial slice with boundary by introducing new degrees of freedom on the boundary. In Yang-Mills theory the new degrees of freedom are a choice of gauge on the boundary, transformations of which are generated by the normal component of the nonabelian electric field. In general relativity the new degrees of freedommore » are the location of a codimension-2 surface and a choice of conformal normal frame. These degrees of freedom transform under a group of surface symmetries, consisting of diffeomorphisms of the codimension-2 boundary, and position-dependent linear deformations of its normal plane. We find the observables which generate these symmetries, consisting of the conformal normal metric and curvature of the normal connection. We discuss the implications for the problem of defining entanglement entropy in quantum gravity. Finally, our work suggests that the Bekenstein-Hawking entropy may arise from the different ways of gluing together two partial Cauchy surfaces at a cross-section of the horizon.« less

  1. 30. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill: oneton ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill: one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1885-1870. View: Masonry-lined passage-way leading to the mill at the center of its circular masonry enclosure. The passageway permitted cane to be carried to the mill and cane trash (bagasse) to be carried away. Bridges over the passageways, no longer in place, permitted the mill animals to circle and power the mill from above. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  2. 12. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill: oneton ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill: one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: Historical view, 1934, T.T. Waterman Collection, Hawaiian Sugar Planters' Association, Oahu, Hawaii. Masonry-lined passageway leading to the mill at the center of its circular masonry enclosure. The passageway permitted cane to be carried to the mill and cane trash (bagasse) to be carried away after milling. Bridges over the passageways, not in place, permitted the mill animals to circle and power the mill from above. View shows area prior to substantial overgrowth existing in 1978 views of the area. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  3. Nonequilibrium Phase Transitions and a Nonequilibrium Critical Point from Anti-de Sitter Space and Conformal Field Theory Correspondence

    NASA Astrophysics Data System (ADS)

    Nakamura, Shin

    2012-09-01

    We find novel phase transitions and critical phenomena that occur only outside the linear-response regime of current-driven nonequilibrium states. We consider the strongly interacting (3+1)-dimensional N=4 large-Nc SU(Nc) supersymmetric Yang-Mills theory with a single flavor of fundamental N=2 hypermultiplet as a microscopic theory. We compute its nonlinear nonballistic quark-charge conductivity by using the AdS/CFT correspondence. We find that the system exhibits a novel nonequilibrium first-order phase transition where the conductivity jumps and the sign of the differential conductivity flips at finite current density. A nonequilibrium critical point is discovered at the end point of the first-order regime. We propose a nonequilibrium steady-state analogue of thermodynamic potential in terms of the gravity-dual theory in order to define the transition point. Nonequilibrium analogues of critical exponents are proposed as well. The critical behavior of the conductivity is numerically confirmed on the basis of these proposals. The present work provides a new example of nonequilibrium phase transitions and nonequilibrium critical points.

  4. Numerical Solution of Hamilton-Jacobi Equations in High Dimension

    DTIC Science & Technology

    2012-11-23

    high dimension FA9550-10-1-0029 Maurizio Falcone Dipartimento di Matematica SAPIENZA-Universita di Roma P. Aldo Moro, 2 00185 ROMA AH930...solution of Hamilton-Jacobi equations in high dimension AFOSR contract n. FA9550-10-1-0029 Maurizio Falcone Dipartimento di Matematica SAPIENZA

  5. John Stuart Mill's "On Liberty": Implications for the Epistemology of the New Rhetoric.

    ERIC Educational Resources Information Center

    Cherwitz, Richard A.; Hikins, James W.

    1979-01-01

    Discusses John Stuart Mill's nineteenth century treatise and reveals that it embodies the tenets of a sophisticated theory of argument. Makes clear the implications of that theory for contemporary rhetoric. (JMF)

  6. Zur (FurB) is a key factor in the control of the oxidative stress response in Anabaena sp. PCC 7120.

    PubMed

    Sein-Echaluce, Violeta C; González, Andrés; Napolitano, Mauro; Luque, Ignacio; Barja, Francisco; Peleato, M Luisa; Fillat, María F

    2015-06-01

    Iron and zinc are necessary nutrients whose homeostasis is tightly controlled by members of the ferric uptake regulator (FUR) superfamily in the cyanobacterium Anabaena sp. PCC7120. Although the link between iron metabolism and oxidative stress management is well documented, little is known about the connection between zinc homeostasis and the oxidative stress response in cyanobacteria. Zinc homeostasis in Anabaena is controlled by Zur, also named FurB. When overexpressed in Escherichia coli, Zur (FurB) improved cell survival during oxidative stress. In order to investigate the possible correlation between Zur and the oxidative stress response in Anabaena, zur deletion and zur-overexpressing strains have been constructed, and the consequences of Zur imbalance evaluated. The lack of Zur increased sensitivity to hydrogen peroxide (H2 O2 ), whereas an excess of Zur enhanced oxidative stress resistance. Both mutants displayed pleiotropic phenotypes, including alterations on the filament surfaces observable by scanning electron microscopy, reduced content of endogenous H2 O2 and altered expression of sodA, catalases and several peroxiredoxins. Transcriptional and biochemical analyses unveiled that the appropriate level of Zur is required for proper control of the oxidative stress response and allowed us to identify major antioxidant enzymes as novel members of the Zur regulon. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. From Planck Data to Planck Era: Observational Tests of Holographic Cosmology

    NASA Astrophysics Data System (ADS)

    Afshordi, Niayesh; Corianò, Claudio; Delle Rose, Luigi; Gould, Elizabeth; Skenderis, Kostas

    2017-01-01

    We test a class of holographic models for the very early Universe against cosmological observations and find that they are competitive to the standard cold dark matter model with a cosmological constant (Λ CDM ) of cosmology. These models are based on three-dimensional perturbative superrenormalizable quantum field theory (QFT), and, while they predict a different power spectrum from the standard power law used in Λ CDM , they still provide an excellent fit to the data (within their regime of validity). By comparing the Bayesian evidence for the models, we find that Λ CDM does a better job globally, while the holographic models provide a (marginally) better fit to the data without very low multipoles (i.e., l ≲30 ), where the QFT becomes nonperturbative. Observations can be used to exclude some QFT models, while we also find models satisfying all phenomenological constraints: The data rule out the dual theory being a Yang-Mills theory coupled to fermions only but allow for a Yang-Mills theory coupled to nonminimal scalars with quartic interactions. Lattice simulations of 3D QFTs can provide nonperturbative predictions for large-angle statistics of the cosmic microwave background and potentially explain its apparent anomalies.

  8. From Planck Data to Planck Era: Observational Tests of Holographic Cosmology.

    PubMed

    Afshordi, Niayesh; Corianò, Claudio; Delle Rose, Luigi; Gould, Elizabeth; Skenderis, Kostas

    2017-01-27

    We test a class of holographic models for the very early Universe against cosmological observations and find that they are competitive to the standard cold dark matter model with a cosmological constant (ΛCDM) of cosmology. These models are based on three-dimensional perturbative superrenormalizable quantum field theory (QFT), and, while they predict a different power spectrum from the standard power law used in ΛCDM, they still provide an excellent fit to the data (within their regime of validity). By comparing the Bayesian evidence for the models, we find that ΛCDM does a better job globally, while the holographic models provide a (marginally) better fit to the data without very low multipoles (i.e., l≲30), where the QFT becomes nonperturbative. Observations can be used to exclude some QFT models, while we also find models satisfying all phenomenological constraints: The data rule out the dual theory being a Yang-Mills theory coupled to fermions only but allow for a Yang-Mills theory coupled to nonminimal scalars with quartic interactions. Lattice simulations of 3D QFTs can provide nonperturbative predictions for large-angle statistics of the cosmic microwave background and potentially explain its apparent anomalies.

  9. 33. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill, oneton ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill, one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: From above the mill showing the three 15' x 22' horizontal rolls, mill frame or cheeks, portland cement foundation, and lower part of vertical drive shaft lying next mill in foreground. The loose metal piece resting on top of the mill frame matched the indented portion of the upper frame to form a bracket and bearing for the drive shaft when it was in its proper upright position. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  10. Mills' ratio

    NASA Astrophysics Data System (ADS)

    Baricz, Árpád

    2008-04-01

    In this paper we study the monotonicity properties of some functions involving the Mills' ratio of the standard normal law. From these we deduce some new functional inequalities involving the Mills' ratio, and we show that the Mills' ratio is strictly completely monotonic. At the end of this paper we present some Turán-type inequalities for Mills' ratio.

  11. Digitale Transformation, aber wie? - Von der Spielwiese zur Umsetzungsplanung

    NASA Astrophysics Data System (ADS)

    Kaiser, Thomas

    Es besteht wohl kaum Anlass zur Annahme, dass die seit Jahrzehnten etablierten Markt- und Technologiestrukturen der Energiewirtschaft sich nicht in einem radikalen Ablöseprozess mit Gewinnern und Verlierern befinden. Aber Vorsicht - vordergründig bereits verloren erscheinende Geschäftsmodelle erfahren im Zuge der Digitalisierung einerseits noch intensiveren Wettbewerbsdruck, können aber andererseits von diesem "technologischen Jungbrunnen" profitieren, um verlorenes Terrain zurückzugewinnen. Im folgenden Kapitel wird ein Managementzyklus aufgezeigt, der in Anlehnung an die bereits erfolgreiche Implementierung digitaler R/Evolutionen anderer Branchen aufzeigt, wie die Geschäftsleitung systematisch kostenbewusst und zielorientiert die Digitalisierung umsetzen kann.

  12. 12. TROJAN MILL, INTERIOR SHOWING PRIMARY MILL No. 1 (MONADNOCK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. TROJAN MILL, INTERIOR SHOWING PRIMARY MILL No. 1 (MONADNOCK CHILEAN) FROM EAST, c. 1912. ELEVATOR No. 1 ADJACENT TO MILL. CREDIT WR. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  13. Identifikationsverfahren zur Analyse von EEG-Signalen bei Epilepsie mit Reaktions-Diffusions Netzwerken

    NASA Astrophysics Data System (ADS)

    Gollas, F.; Tetzlaff, R.

    2007-06-01

    Partielle Differentialgleichungen des Reaktions-Diffusions-Typs beschreiben Phänomene wie Musterbildung, nichtlineare Wellenausbreitung und deterministisches Chaos und werden oft zur Untersuchung komplexer Vorgänge auf den Gebieten der Biologie, Chemie und Physik herangezogen. Zellulare Nichtlineare Netzwerke (CNN) sind eine räumliche Anordnung vergleichsweise einfacher dynamischer Systeme, die eine lokale Kopplung untereinander aufweisen. Durch eine Diskretisierung der Ortsvariablen können Reaktions-Diffusions-Gleichungen häufig auf CNN mit nichtlinearen Gewichtsfunktionen abgebildet werden. Die resultierenden Reaktions-Diffusions-CNN (RD-CNN) weisen dann in ihrer Dynamik näherungsweise gleiches Verhalten wie die zugrunde gelegten Reaktions-Diffusions-Systeme auf. Werden RD-CNN zur Identifikation neuronaler Strukturen anhand von EEG-Signalen herangezogen, so besteht die Möglichkeit festzustellen, ob das gefundene Netzwerk lokale Aktivität aufweist. Die von Chua eingeführte Theorie der lokalen Aktivität Chua (1998); Dogaru und Chua (1998) liefert eine notwendige Bedingung für das Auftreten von emergentem Verhalten in zellularen Netzwerken. Änderungen in den Parametern bestimmter RD-CNN könnten auf bevorstehende epileptische Anfälle hinweisen. In diesem Beitrag steht die Identifikation neuronaler Strukturen anhand von EEG-Signalen durch Reaktions-Diffusions-Netzwerke im Vordergrund der dargestellten Untersuchungen. In der Ergebnisdiskussion wird insbesondere auch die Frage nach einer geeigneten Netzwerkstruktur mit minimaler Komplexität behandelt.

  14. [Correlations between Beck's suicidal ideation scale, suicidal risk assessment scale RSD and Hamilton's depression rating scale].

    PubMed

    Ducher, J-L; Dalery, J

    2008-04-01

    Most of the people who will attempt suicide, talk about it beforehand. Therefore, recognition of suicidal risk is not absolutely impossible. Beck's suicidal ideation scale and Ducher's suicidal risk assessment scale (RSD) are common tools to help practicians in this way. These scales and the Hamilton's depression scale were included in an international multicentric, phase IV, double-blind study, according to two parallel groups who had been administered a fixed dose of fluvoxamin or fluoxetin for six weeks. This allowed examination of the correlations between these scales and the relations, which could possibly exist between suicidal risk, depression and anxiety. (a) Relationships between the Beck's suicidal ideation scale, the suicidal risk assessment scale RSD and Hamilton's depression before treatment. Before treatment, the analysis was conducted with 108 male and female depressive outpatients, aged 18 or over. Results revealed a significant positive correlation (with a Pearson's correlation coefficient r equal to 0.69 and risk p<0.0001) between Beck's suicidal ideation scale and the suicidal risk assessment scale RSD. These scales correlate less consistently with Hamilton's depression (Beck/Hamilton's depression: r=0.34; p=0.0004-RSD/Hamilton's depression: r=0.35; p=0.0002). We observed that the clinical anxiety scale by Snaith is also strongly correlated to these two suicidal risk assessment scales (Beck/CAS: r=0.48; p<0.0001-RSD/CAS: r=0.35; p=0.0005). Besides, the item "suicide" of Hamilton's depression scale accounts for more than a third of the variability of Beck's suicidal ideation scale and the suicidal risk assessment scale RSD. According to these results, the suicidal risk evaluated by these two scales seems to be significantly correlated with anxiety as much as with depression. On the other hand, the Clinical Global Impression is fairly significantly correlated with Beck's suicidal ideation scale (r=0.22; p=0.02), unlike the suicidal risk assessment

  15. Equivariance, BRST symmetry, and superspace

    NASA Astrophysics Data System (ADS)

    Niemi, Antti J.; Tirkkonen, Olav

    1994-12-01

    The structure of equivariant cohomology in non-Abelian localization formulas and topological field theories is discussed. Equivariance is formulated in terms of a nilpotent Becchi-Rouet-Stora-Tyutin (BRST) symmetry, and another nilpotent operator which restricts the BRST cohomology onto the equivariant, or basic sector. A superfield formulation is presented and connections to reducible [Batalin-Fradkin-Vilkovisky (BFV)] quantization of topological Yang-Mills theory are discussed.

  16. New variables for classical and quantum gravity

    NASA Technical Reports Server (NTRS)

    Ashtekar, Abhay

    1986-01-01

    A Hamiltonian formulation of general relativity based on certain spinorial variables is introduced. These variables simplify the constraints of general relativity considerably and enable one to imbed the constraint surface in the phase space of Einstein's theory into that of Yang-Mills theory. The imbedding suggests new ways of attacking a number of problems in both classical and quantum gravity. Some illustrative applications are discussed.

  17. 13. TROJAN MILL, INTERIOR SHOWING PRIMARY MILL No. 1 (ALLIS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. TROJAN MILL, INTERIOR SHOWING PRIMARY MILL No. 1 (ALLIS CHALMERS BALL MILL) FROM EAST, c. 1919. ELECTRIC MOTOR AND DRIVE SHAFT CLEARLY VISIBLE. CREDIT WR. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  18. Can a Linear Sigma Model Describe Walking Gauge Theories at Low Energies?

    NASA Astrophysics Data System (ADS)

    Gasbarro, Andrew

    2018-03-01

    In recent years, many investigations of confining Yang Mills gauge theories near the edge of the conformal window have been carried out using lattice techniques. These studies have revealed that the spectrum of hadrons in nearly conformal ("walking") gauge theories differs significantly from the QCD spectrum. In particular, a light singlet scalar appears in the spectrum which is nearly degenerate with the PNGBs at the lightest currently accessible quark masses. This state is a viable candidate for a composite Higgs boson. Presently, an acceptable effective field theory (EFT) description of the light states in walking theories has not been established. Such an EFT would be useful for performing chiral extrapolations of lattice data and for serving as a bridge between lattice calculations and phenomenology. It has been shown that the chiral Lagrangian fails to describe the IR dynamics of a theory near the edge of the conformal window. Here we assess a linear sigma model as an alternate EFT description by performing explicit chiral fits to lattice data. In a combined fit to the Goldstone (pion) mass and decay constant, a tree level linear sigma model has a Χ2/d.o.f. = 0.5 compared to Χ2/d.o.f. = 29.6 from fitting nextto-leading order chiral perturbation theory. When the 0++ (σ) mass is included in the fit, Χ2/d.o.f. = 4.9. We remark on future directions for providing better fits to the σ mass.

  19. Discontinuous solutions of Hamilton-Jacobi equations on networks

    NASA Astrophysics Data System (ADS)

    Graber, P. J.; Hermosilla, C.; Zidani, H.

    2017-12-01

    This paper studies optimal control problems on networks without controllability assumptions at the junctions. The Value Function associated with the control problem is characterized as the solution to a system of Hamilton-Jacobi equations with appropriate junction conditions. The novel feature of the result lies in that the controllability conditions are not needed and the characterization remains valid even when the Value Function is not continuous.

  20. 1. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill: oneton ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill: one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: Historical view, 1934, from T.T. Waterman collection, Hawaiian Sugar Planters' Association. Large rectangular piece lying in front of the mill is the top of the mill frame appearing in its proper place in 1928 views. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  1. Liquid Biopsy zur Überwachung von Melanompatienten.

    PubMed

    Gaiser, Maria Rita; von Bubnoff, Nikolas; Gebhardt, Christoffer; Utikal, Jochen Sven

    2018-04-01

    In den letzten sechs Jahren wurden verschiedene innovative systemische Therapien zur Behandlung des metastasierten malignen Melanoms (MM) entwickelt. Die konventionelle Chemotherapie wurde durch neuartige Primärtherapien abgelöst, darunter systemische Immuntherapien (Anti-CTLA4- und Anti-PD1-Antikörper; Zulassung von Anti-PDL1-Antikörpern erwartet) und Therapien, die gegen bestimmte Mutationen gerichtet sind (BRAF, NRAS und c-KIT). Daher stehen die behandelnden Ärzte neuen Herausforderungen gegenüber, beispielsweise der Stratifizierung von Patienten für geeignete Behandlungen und der Überwachung von Langzeit-Respondern auf Progression. Folglich werden zuverlässige Methoden zur Überwachung von Krankheitsprogression oder Behandlungsresistenz benötigt. Lokalisierte und fortgeschrittene Krebserkrankungen können zur Bildung zirkulierender Tumorzellen und Tumor-DNA (ctDNA) führen, die sich in Proben von peripherem Blut nachweisen und quantifizieren lassen (Liquid Biopsy). Im Fall von Melanompatienten können die Ergebnisse von Liquid Biopsy als neuartige prädiktive Biomarker bei therapeutischen Entscheidungen hilfreich sein, insbesondere im Zusammenhang mit mutationsbasierten zielgerichteten Therapien. Die Herausforderungen bei der Anwendung der Liquid Biopsy beinhalten strikte Kriterien für den Phänotyp der zirkulierenden MM-Zellen oder ihrer Fragmente und die Instabilität von ctDNA im Blut. In diesem Übersichtsartikel diskutieren wir die Beschränkungen der Liquid Biopsy hinsichtlich ihrer Anwendung in der Routinediagnostik. © 2018 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  2. Duality Quantum Simulation of the Yang-Baxter Equation

    NASA Astrophysics Data System (ADS)

    Zheng, Chao; Wei, Shijie

    2018-04-01

    The Yang-Baxter equation has become a significant theoretical tool in a variety of areas of physics. It is desirable to investigate the quantum simulation of the Yang-Baxter equation itself, exploring the connections between quantum integrability and quantum information processing, in which the unity of both the Yang-Baxter equation system and its quantum entanglement should be kept as a whole. In this work, we propose a duality quantum simulation algorithm of the Yang-Baxter equation, which contains the Yang-Baxter system and an ancillary qubit. Contrasting to conventional methods in which the two hand sides of the equation are simulated separately, they are simulated simultaneously in this proposal. Consequently, it opens up a way to further investigate entanglements in a Yang-Baxter equation.

  3. Duality Quantum Simulation of the Yang-Baxter Equation

    NASA Astrophysics Data System (ADS)

    Zheng, Chao; Wei, Shijie

    2018-07-01

    The Yang-Baxter equation has become a significant theoretical tool in a variety of areas of physics. It is desirable to investigate the quantum simulation of the Yang-Baxter equation itself, exploring the connections between quantum integrability and quantum information processing, in which the unity of both the Yang-Baxter equation system and its quantum entanglement should be kept as a whole. In this work, we propose a duality quantum simulation algorithm of the Yang-Baxter equation, which contains the Yang-Baxter system and an ancillary qubit. Contrasting to conventional methods in which the two hand sides of the equation are simulated separately, they are simulated simultaneously in this proposal. Consequently, it opens up a way to further investigate entanglements in a Yang-Baxter equation.

  4. 2. RW Meyer Sugar Mill: 18761899. Threeroll sugar mill, oneton ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. RW Meyer Sugar Mill: 1876-1899. Three-roll sugar mill, one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: Top roll and one bottom roll, mill housing or cheeks, and spur pinion gears. The broken projection on the mill beside the bottom roll indicates the location of the cane tray. The cane juice crushed from the cane flowed into the juice tray below the bottom rolls. It then flowed into a wooden gutter and through a short tunnel in the mill's masonry enclosure and on to the boiling house for further processing. The opening at the base of the masency wall (In the photograph) is where the gutter ran from the mill to the boiling house. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  5. 34. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill, oneton ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill, one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: Side view of mill. Vertical drive shaft lying on ground in foreground. When drive-shaft was in upright position its bevel gear was meshed with the bevel gear of the top roll, transmitting the animals'circular motion around the drive shaft to the horizontal rolls. The foundation is of portland cement. The heavy timber mill bed, between the mill and the portland cement foundation has rolled away. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  6. Revitalizing America's Mills: A Report on Brownfields Mill Projects

    EPA Pesticide Factsheets

    This report focuses on mills -- former textile, wood, paper, iron, and steel mills. The report describes the challenges and opportunities of mill sites with case studies highlighting some of the most creative solutions from across the country.

  7. 77 FR 27272 - Environmental Impact Statement: Hamilton and Clermont Counties, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    .... In the interim, new information came to light regarding the archaeological resources present in... highway and light rail improvements in the SR 32 corridor between US 50 and IR 275 in Hamilton and...

  8. 32. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill, oneton ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill, one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: End of mill into which cane was fed between top and bottom roll. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  9. Holographic Tools for Probing the Dynamics of Strongly Coupled Field Theories

    NASA Astrophysics Data System (ADS)

    Fuini, John F.

    Since it was conjectured almost 20 years ago, AdS/CFT duality, or holography, has enabled steady progress in understanding certain gauge theories in the strongly coupled limit. In this thesis we examine various aspects of holography and holographic techniques, as well as particular applications to the dynamics of strongly coupled plasmas. We discuss the energy loss of general probe defects in generic holographic plasmas and the lifetime of quasinormal modes of sufficiently short-wavelength in a strongly coupled N = 4 Super Yang-Mills (SYM) plasma. We then perform a thorough investigation of the far-from-equilibrium dynamics of the SYM plasma, focusing on how the presence of large magnetic fields or chemical potentials affect the timescale of equilibration. Finally we discuss some non-relativistic directions by finding a covariant construction of Lagrangians for spinor fields in generic Newton-Cartan backgrounds via a non-relativistic reduction, which may assist in the construction of non-relativistic versions of holography.

  10. Experimental Determination of Dynamical Lee-Yang Zeros

    NASA Astrophysics Data System (ADS)

    Brandner, Kay; Maisi, Ville F.; Pekola, Jukka P.; Garrahan, Juan P.; Flindt, Christian

    2017-05-01

    Statistical physics provides the concepts and methods to explain the phase behavior of interacting many-body systems. Investigations of Lee-Yang zeros—complex singularities of the free energy in systems of finite size—have led to a unified understanding of equilibrium phase transitions. The ideas of Lee and Yang, however, are not restricted to equilibrium phenomena. Recently, Lee-Yang zeros have been used to characterize nonequilibrium processes such as dynamical phase transitions in quantum systems after a quench or dynamic order-disorder transitions in glasses. Here, we experimentally realize a scheme for determining Lee-Yang zeros in such nonequilibrium settings. We extract the dynamical Lee-Yang zeros of a stochastic process involving Andreev tunneling between a normal-state island and two superconducting leads from measurements of the dynamical activity along a trajectory. From the short-time behavior of the Lee-Yang zeros, we predict the large-deviation statistics of the activity which is typically difficult to measure. Our method paves the way for further experiments on the statistical mechanics of many-body systems out of equilibrium.

  11. Holographic signatures of cosmological singularities.

    PubMed

    Engelhardt, Netta; Hertog, Thomas; Horowitz, Gary T

    2014-09-19

    To gain insight into the quantum nature of cosmological singularities, we study anisotropic Kasner solutions in gauge-gravity duality. The dual description of the bulk evolution towards the singularity involves N=4 super Yang-Mills theory on the expanding branch of deformed de Sitter space and is well defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike geodesics anchored on the boundary. The correlators show a strong signature of the singularity around horizon scales and decay at large boundary separation at different rates in different directions. More generally, the boundary evolution exhibits a process of particle creation similar to that in inflation. This leads us to conjecture that information on the quantum nature of cosmological singularities is encoded in long-wavelength features of the boundary wave function.

  12. Moving the Education Needle: A Conversation with Scott Hamilton

    ERIC Educational Resources Information Center

    Jacobs, Joanne

    2014-01-01

    Scott Hamilton is the Forrest Gump of education reform, although with a lot more IQ points and fewer chocolates. He worked for Bill Bennett in the U.S. Department of Education and for Benno Schmidt at the Edison Project. He authorized charter schools in Massachusetts, co-founded the KIPP network, quadrupled the size of Teach For America (TFA), and…

  13. Disassembling the clockwork mechanism

    NASA Astrophysics Data System (ADS)

    Craig, Nathaniel; Garcia Garcia, Isabel; Sutherland, Dave

    2017-10-01

    The clockwork mechanism is a means of naturally generating exponential hierarchies in theories without significant hierarchies among fundamental parameters. We emphasize the role of interactions in the clockwork mechanism, demonstrating that clockwork is an intrinsically abelian phenomenon precluded in non-abelian theories such as Yang-Mills, non-linear sigma models, and gravity. We also show that clockwork is not realized in extra-dimensional theories through purely geometric effects, but may be generated by appropriate localization of zero modes.

  14. Robuste Verzweigungserkennung von Gefäßen in CTA-Datensätzen zur modellbasierten Extraktion der Centerline

    NASA Astrophysics Data System (ADS)

    Beck, Thomas; Fritz, Dominik; Biermann, Christina; Dillmann, Rüdiger

    Bei der Befundung und Visualisierung von Blutgefäßen ist deren Centerline von zentraler Bedeutung. Die Unterscheidung zwischen unverzweigten Abschnitten des Gefäßes und Verzweigungsbereichen ermöglicht den Einsatz spezialisierter und sehr effizienter Algorithmen zur modellbasierten Extraktion der Centerline. In diesem Artikel wird ein robustes Verfahren zur Verzweigungserkennung vorgestellt. Das Verfahren beruht auf einem Front-Propagation-Ansatz mit dynamisch angepassten Schwellwerten und einer anschließenden Clusteranalyse. Die vorgestellte Methode zur Verzweigungserkennung wurde als Komponente einer Architektur zur Extraktion der Centerline auf handannotierten Datensätzen getestet. Erste Ergebnisse sind sehr vielversprechend und ermöglichen auch bei pathologischen Gefäßen eine robuste Detektion von Gefäßverzweigungen.

  15. Loops in AdS from conformal field theory

    DOE PAGES

    Aharony, Ofer; Alday, Luis F.; Bissi, Agnese; ...

    2017-07-10

    We propose and demonstrate a new use for conformal field theory (CFT) crossing equations in the context of AdS/CFT: the computation of loop amplitudes in AdS, dual to non-planar correlators in holographic CFTs. Loops in AdS are largely unexplored, mostly due to technical difficulties in direct calculations. We revisit this problem, and the dual 1=N expansion of CFTs, in two independent ways. The first is to show how to explicitly solve the crossing equations to the first subleading order in 1=N 2, given a leading order solution. This is done as a systematic expansion in inverse powers of the spin, to all orders. These expansions can be resummed, leading to the CFT data for nite values of the spin. Our second approach involves Mellin space. We show how the polar part of the four-point, loop-level Mellin amplitudes can be fully reconstructed from the leading-order data. The anomalous dimensions computed with both methods agree. In the case ofmore » $$\\phi$$ 4 theory in AdS, our crossing solution reproduces a previous computation of the one-loop bubble diagram. We can go further, deriving the four-point scalar triangle diagram in AdS, which had never been computed. In the process, we show how to analytically derive anomalous dimensions from Mellin amplitudes with an in nite series of poles, and discuss applications to more complicated cases such as the N = 4 super-Yang-Mills theory.« less

  16. Loops in AdS from conformal field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aharony, Ofer; Alday, Luis F.; Bissi, Agnese

    We propose and demonstrate a new use for conformal field theory (CFT) crossing equations in the context of AdS/CFT: the computation of loop amplitudes in AdS, dual to non-planar correlators in holographic CFTs. Loops in AdS are largely unexplored, mostly due to technical difficulties in direct calculations. We revisit this problem, and the dual 1=N expansion of CFTs, in two independent ways. The first is to show how to explicitly solve the crossing equations to the first subleading order in 1=N 2, given a leading order solution. This is done as a systematic expansion in inverse powers of the spin, to all orders. These expansions can be resummed, leading to the CFT data for nite values of the spin. Our second approach involves Mellin space. We show how the polar part of the four-point, loop-level Mellin amplitudes can be fully reconstructed from the leading-order data. The anomalous dimensions computed with both methods agree. In the case ofmore » $$\\phi$$ 4 theory in AdS, our crossing solution reproduces a previous computation of the one-loop bubble diagram. We can go further, deriving the four-point scalar triangle diagram in AdS, which had never been computed. In the process, we show how to analytically derive anomalous dimensions from Mellin amplitudes with an in nite series of poles, and discuss applications to more complicated cases such as the N = 4 super-Yang-Mills theory.« less

  17. Loops in AdS from conformal field theory

    NASA Astrophysics Data System (ADS)

    Aharony, Ofer; Alday, Luis F.; Bissi, Agnese; Perlmutter, Eric

    2017-07-01

    We propose and demonstrate a new use for conformal field theory (CFT) crossing equations in the context of AdS/CFT: the computation of loop amplitudes in AdS, dual to non-planar correlators in holographic CFTs. Loops in AdS are largely unexplored, mostly due to technical difficulties in direct calculations. We revisit this problem, and the dual 1 /N expansion of CFTs, in two independent ways. The first is to show how to explicitly solve the crossing equations to the first subleading order in 1 /N 2, given a leading order solution. This is done as a systematic expansion in inverse powers of the spin, to all orders. These expansions can be resummed, leading to the CFT data for finite values of the spin. Our second approach involves Mellin space. We show how the polar part of the four-point, loop-level Mellin amplitudes can be fully reconstructed from the leading-order data. The anomalous dimensions computed with both methods agree. In the case of ϕ 4 theory in AdS, our crossing solution reproduces a previous computation of the one-loop bubble diagram. We can go further, deriving the four-point scalar triangle diagram in AdS, which had never been computed. In the process, we show how to analytically derive anomalous dimensions from Mellin amplitudes with an infinite series of poles, and discuss applications to more complicated cases such as the N = 4 super-Yang-Mills theory.

  18. The Zinc-Responsive Regulator Zur Controls a Zinc Uptake System and Some Ribosomal Proteins in Streptomyces coelicolor A3(2)▿

    PubMed Central

    Shin, Jung-Ho; Oh, So-Young; Kim, Soon-Jong; Roe, Jung-Hye

    2007-01-01

    In various bacteria, Zur, a zinc-specific regulator of the Fur family, regulates genes for zinc transport systems to maintain zinc homeostasis. It has also been suggested that Zur controls zinc mobilization by regulating some ribosomal proteins. The antibiotic-producing soil bacterium Streptomyces coelicolor contains four genes for Fur family regulators, and one (named zur) is located downstream of the znuACB operon encoding a putative zinc uptake transporter. We found that zinc specifically repressed the level of znuA transcripts and that this level was derepressed in a Δzur mutant. Purified Zur existing as homodimers bound to the znuA promoter region in the presence of zinc, confirming the role of Zur as a zinc-responsive repressor. We analyzed transcripts for paralogous forms of ribosomal proteins L31 (RpmE1 and RpmE2) and L33 (RpmG2 and RpmG3) for their dependence on Zur and found that RpmE2 and RpmG2 with no zinc-binding motif of conserved cysteines (C's) were negatively regulated by Zur. C-negative RpmG3 and C-positive RpmE1 were not regulated by Zur. Instead, they were regulated by the sigma factor σR as predicted from their promoter sequences. The rpmE1 and rpmG3 genes were partially induced by EDTA in a manner dependent on σR, suggesting that zinc depletion may stimulate the σR regulatory system. This finding reflects a link between thiol-oxidizing stress and zinc depletion. We determined the Zur-binding sites within znuA and rpmG2 promoter regions by footprinting analyses and identified a consensus inverted repeat sequence (TGaaAatgatTttCA, where uppercase letters represent the nucleotides common to all sites analyzed). This sequence closely matches that for mycobacterial Zur and allows the prediction of more genes in the Zur regulon. PMID:17416659

  19. Central Schemes for Multi-Dimensional Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron; Biegel, Bryan (Technical Monitor)

    2002-01-01

    We present new, efficient central schemes for multi-dimensional Hamilton-Jacobi equations. These non-oscillatory, non-staggered schemes are first- and second-order accurate and are designed to scale well with an increasing dimension. Efficiency is obtained by carefully choosing the location of the evolution points and by using a one-dimensional projection step. First-and second-order accuracy is verified for a variety of multi-dimensional, convex and non-convex problems.

  20. On the Hamilton approach of the dissipative systems

    NASA Astrophysics Data System (ADS)

    Zimin, B. A.; Zorin, I. S.; Sventitskaya, V. E.

    2018-05-01

    In this paper we consider the problem of constructing equations describing the states of dissipative dynamical systems (media with absorption or damping). The approaches of Lagrange and Hamilton are discussed. A non-symplectic extension of the Poisson brackets is formulated. The application of the Hamiltonian formalism here makes it possible to obtain explicit equations for the dynamics of a nonlinear elastic system with damping and a one-dimensional continuous medium with internal friction.

  1. Hamilton's principle and normal mode coupling in an aspherical planet with a fluid core

    NASA Astrophysics Data System (ADS)

    Al-Attar, David; Crawford, Ophelia; Valentine, Andrew P.; Trampert, Jeannot

    2018-04-01

    We apply Hamilton's principle to obtain the exact equations of motion for an elastic planet that is rotating, self-gravitating, and comprises both fluid and solid regions. This variational problem is complicated by the occurrence of tangential slip at fluid-solid boundaries, but we show how this can be accommodated both directly and using the method of Lagrange multipliers. A novelty of our approach is that the planet's motion is described relative to an arbitrary reference configuration, with this generality offering advantages for numerical calculations. In particular, aspherical topography on the free surface or internal boundaries of the planet's equilibrium configuration can be converted exactly into effective volumetric heterogeneities within a geometrically spherical reference body by applying a suitable particle relabelling transformation. The theory is then specialised to consider the linearised motion of a planet about a steadily rotating equilibrium configuration, with these results having applications to normal mode coupling calculations used within studies of long period seismology, tidal deformation, and related fields. In particular, we explain how our new theory will, for the first time, allow aspherical boundary topography to be incorporated exactly within such coupling calculations.

  2. Soluble Model Fluids with Complete Scaling and Yang-Yang Features

    NASA Astrophysics Data System (ADS)

    Cerdeiriña, Claudio A.; Orkoulas, Gerassimos; Fisher, Michael E.

    2016-01-01

    Yang-Yang (YY) and singular diameter critical anomalies arise in exactly soluble compressible cell gas (CCG) models that obey complete scaling with pressure mixing. Thus, on the critical isochore ρ =ρc , C˜ μ≔-T d2μ /d T2 diverges as |t |-α when t ∝T -Tc→0- while ρd-ρc˜|t |2β where ρd(T )=1/2 [ρliq+ρgas] . When the discrete local CCG cell volumes fluctuate freely, the YY ratio Rμ=C˜μ/CV may take any value -∞ 0 . More general decorated CCGs, including "hydrogen bonding" water models, illuminate energy-volume coupling as relevant to Rμ.

  3. Graviweak Unification, Invisible Universe and Dark Energy

    NASA Astrophysics Data System (ADS)

    Das, C. R.; Laperashvili, L. V.; Tureanu, A.

    2013-07-01

    We consider a graviweak unification model with the assumption of the existence of a hidden (invisible) sector of our Universe, parallel to the visible world. This Hidden World (HW) is assumed to be a Mirror World (MW) with broken mirror parity. We start with a diffeomorphism invariant theory of a gauge field valued in a Lie algebra g, which is broken spontaneously to the direct sum of the space-time Lorentz algebra and the Yang-Mills algebra: ˜ {g} = {{su}}(2) (grav)L ⊕ {{su}}(2)L — in the ordinary world, and ˜ {g}' = {{su}}(2){' (grav)}R ⊕ {{su}}(2)'R — in the hidden world. Using an extension of the Plebanski action for general relativity, we recover the actions for gravity, SU(2) Yang-Mills and Higgs fields in both (visible and invisible) sectors of the Universe, and also the total action. After symmetry breaking, all physical constants, including the Newton's constants, cosmological constants, Yang-Mills couplings, and other parameters, are determined by a single parameter g present in the initial action, and by the Higgs VEVs. The dark energy problem of this model predicts a too large supersymmetric breaking scale (MSUSY 1010GeV), which is not within the reach of the LHC experiments.

  4. The origin of the energy-momentum conservation law

    NASA Astrophysics Data System (ADS)

    Chubykalo, Andrew E.; Espinoza, Augusto; Kosyakov, B. P.

    2017-09-01

    The interplay between the action-reaction principle and the energy-momentum conservation law is revealed by the examples of the Maxwell-Lorentz and Yang-Mills-Wong theories, and general relativity. These two statements are shown to be equivalent in the sense that both hold or fail together. Their mutual agreement is demonstrated most clearly in the self-interaction problem by taking account of the rearrangement of degrees of freedom appearing in the action of the Maxwell-Lorentz and Yang-Mills-Wong theories. The failure of energy-momentum conservation in general relativity is attributed to the fact that this theory allows solutions having nontrivial topologies. The total energy and momentum of a system with nontrivial topological content prove to be ambiguous, coordinatization-dependent quantities. For example, the energy of a Schwarzschild black hole may take any positive value greater than, or equal to, the mass of the body whose collapse is responsible for forming this black hole. We draw the analogy to the paradoxial Banach-Tarski theorem; the measure becomes a poorly defined concept if initial three-dimensional bounded sets are rearranged in topologically nontrivial ways through the action of free non-Abelian isometry groups.

  5. 68. VIEW OF MILLING FLOOR FROM SOUTHEAST. SECONDARY MILL AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. VIEW OF MILLING FLOOR FROM SOUTHEAST. SECONDARY MILL AND CLASSIFIER AT MIDDLE LEFT. PRIMARY MILL SURGE TANK AND LAUNDERS AT MIDDLE BOTTOM. STAIR TO TROJAN CLASSIFIER LEVEL BEHIND CRANE BENT, UPPER RIGHT. PAIRED PIPES FROM PRIMARY PULP PUMPS TO PRIMARY THICKENERS RISE VERTICALLY AT MIDDLE RIGHT AND RUN HORIZONTALLY ACROSS TOP OF VIEW. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  6. 168. VIEW OF MILLING FLOOR FROM SOUTHEAST. SECONDARY MILL AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    168. VIEW OF MILLING FLOOR FROM SOUTHEAST. SECONDARY MILL AND CLASSIFIER AT MIDDLE LEFT. PRIMARY MILL SURGE TANK AND LAUNDERS AT MIDDLE BOTTOM. STAIR TO TROJAN CLASSIFIER LEVEL BEHIND CRANE BENT, UPPER RIGHT. PAIRED PIPES FROM PRIMARY PULP PUMPS TO PRIMARY THICKENERS RISE VERTICALLY AT MIDDLE RIGHT AND RUN HORIZONTALLY ACROSS TOP OF VIEW - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  7. Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations

    NASA Astrophysics Data System (ADS)

    Kao, Chiu Yen; Osher, Stanley; Qian, Jianliang

    2004-05-01

    We propose a simple, fast sweeping method based on the Lax-Friedrichs monotone numerical Hamiltonian to approximate viscosity solutions of arbitrary static Hamilton-Jacobi equations in any number of spatial dimensions. By using the Lax-Friedrichs numerical Hamiltonian, we can easily obtain the solution at a specific grid point in terms of its neighbors, so that a Gauss-Seidel type nonlinear iterative method can be utilized. Furthermore, by incorporating a group-wise causality principle into the Gauss-Seidel iteration by following a finite group of characteristics, we have an easy-to-implement, sweeping-type, and fast convergent numerical method. However, unlike other methods based on the Godunov numerical Hamiltonian, some computational boundary conditions are needed in the implementation. We give a simple recipe which enforces a version of discrete min-max principle. Some convergence analysis is done for the one-dimensional eikonal equation. Extensive 2-D and 3-D numerical examples illustrate the efficiency and accuracy of the new approach. To our knowledge, this is the first fast numerical method based on discretizing the Hamilton-Jacobi equation directly without assuming convexity and/or homogeneity of the Hamiltonian.

  8. Wilson loops and QCD/string scattering amplitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makeenko, Yuri; Olesen, Poul; Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen O

    2009-07-15

    We generalize modern ideas about the duality between Wilson loops and scattering amplitudes in N=4 super Yang-Mills theory to large N QCD by deriving a general relation between QCD meson scattering amplitudes and Wilson loops. We then investigate properties of the open-string disk amplitude integrated over reparametrizations. When the Wilson-loop is approximated by the area behavior, we find that the QCD scattering amplitude is a convolution of the standard Koba-Nielsen integrand and a kernel. As usual poles originate from the first factor, whereas no (momentum-dependent) poles can arise from the kernel. We show that the kernel becomes a constant whenmore » the number of external particles becomes large. The usual Veneziano amplitude then emerges in the kinematical regime, where the Wilson loop can be reliably approximated by the area behavior. In this case, we obtain a direct duality between Wilson loops and scattering amplitudes when spatial variables and momenta are interchanged, in analogy with the N=4 super Yang-Mills theory case.« less

  9. Axisymmetric black holes allowing for separation of variables in the Klein-Gordon and Hamilton-Jacobi equations

    NASA Astrophysics Data System (ADS)

    Konoplya, R. A.; Stuchlík, Z.; Zhidenko, A.

    2018-04-01

    We determine the class of axisymmetric and asymptotically flat black-hole spacetimes for which the test Klein-Gordon and Hamilton-Jacobi equations allow for the separation of variables. The known Kerr, Kerr-Newman, Kerr-Sen and some other black-hole metrics in various theories of gravity are within the class of spacetimes described here. It is shown that although the black-hole metric in the Einstein-dilaton-Gauss-Bonnet theory does not allow for the separation of variables (at least in the considered coordinates), for a number of applications it can be effectively approximated by a metric within the above class. This gives us some hope that the class of spacetimes described here may be not only generic for the known solutions allowing for the separation of variables, but also a good approximation for a broader class of metrics, which does not admit such separation. Finally, the generic form of the axisymmetric metric is expanded in the radial direction in terms of the continued fractions and the connection with other black-hole parametrizations is discussed.

  10. Derivation of the Schrodinger Equation from the Hamilton-Jacobi Equation in Feynman's Path Integral Formulation of Quantum Mechanics

    ERIC Educational Resources Information Center

    Field, J. H.

    2011-01-01

    It is shown how the time-dependent Schrodinger equation may be simply derived from the dynamical postulate of Feynman's path integral formulation of quantum mechanics and the Hamilton-Jacobi equation of classical mechanics. Schrodinger's own published derivations of quantum wave equations, the first of which was also based on the Hamilton-Jacobi…

  11. Quantum groups, Yang-Baxter maps and quasi-determinants

    NASA Astrophysics Data System (ADS)

    Tsuboi, Zengo

    2018-01-01

    For any quasi-triangular Hopf algebra, there exists the universal R-matrix, which satisfies the Yang-Baxter equation. It is known that the adjoint action of the universal R-matrix on the elements of the tensor square of the algebra constitutes a quantum Yang-Baxter map, which satisfies the set-theoretic Yang-Baxter equation. The map has a zero curvature representation among L-operators defined as images of the universal R-matrix. We find that the zero curvature representation can be solved by the Gauss decomposition of a product of L-operators. Thereby obtained a quasi-determinant expression of the quantum Yang-Baxter map associated with the quantum algebra Uq (gl (n)). Moreover, the map is identified with products of quasi-Plücker coordinates over a matrix composed of the L-operators. We also consider the quasi-classical limit, where the underlying quantum algebra reduces to a Poisson algebra. The quasi-determinant expression of the quantum Yang-Baxter map reduces to ratios of determinants, which give a new expression of a classical Yang-Baxter map.

  12. Constants of the motion, universal time and the Hamilton-Jacobi function in general relativity

    NASA Astrophysics Data System (ADS)

    O'Hara, Paul

    2013-04-01

    In most text books of mechanics, Newton's laws or Hamilton's equations of motion are first written down and then solved based on initial conditions to determine the constants of the motions and to describe the trajectories of the particles. In this essay, we take a different starting point. We begin with the metrics of general relativity and show how they can be used to construct by inspection constants of motion, which can then be used to write down the equations of the trajectories. This will be achieved by deriving a Hamiltonian-Jacobi function from the metric and showing that its existence requires all of the above mentioned properties. The article concludes by showing that a consistent theory of such functions also requires the need for a universal measure of time which can be identified with the "worldtime" parameter, first introduced by Steuckelberg and later developed by Horwitz and Piron.

  13. VIEW SOUTH FROM HAMILTON AVENUE BUILDING 25 LEFT; BUILDING 32 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW SOUTH FROM HAMILTON AVENUE BUILDING 25 LEFT; BUILDING 32 MACHINE SHOP (1890) LEFT CENTER BUILDING 31 RIGGER'S SHOP (1890) CENTER BUILDING 28 BLACKSMITH SHOP (1885) RIGHT CENTER; BUILDING 27 PATTERN SHOP (1853) RIGHT - John A. Roebling's Sons Company & American Steel & Wire Company, South Broad, Clark, Elmer, Mott & Hudson Streets, Trenton, Mercer County, NJ

  14. 7. VIEW TO EAST, MILL WAREHOUSE, DRYERS, GRINDING/ROD MILL, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW TO EAST, MILL WAREHOUSE, DRYERS, GRINDING/ROD MILL, AND MECHANIC SHED. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  15. Generalized recursion relations for correlators in the gauge-gravity correspondence.

    PubMed

    Raju, Suvrat

    2011-03-04

    We show that a generalization of the Britto-Cachazo-Feng-Witten recursion relations gives a new and efficient method of computing correlation functions of the stress tensor or conserved currents in conformal field theories with an (d+1)-dimensional anti-de Sitter space dual, for d≥4, in the limit where the bulk theory is approximated by tree-level Yang-Mills theory or gravity. In supersymmetric theories, additional correlators of operators that live in the same multiplet as a conserved current or stress tensor can be computed by these means.

  16. Light Rail Transit in Hamilton: Health, Environmental and Economic Impact Analysis

    ERIC Educational Resources Information Center

    Topalovic, P.; Carter, J.; Topalovic, M.; Krantzberg, G.

    2012-01-01

    Hamilton's historical roots as an electric, industrial and transportation-oriented city provide it with a high potential for rapid transit, especially when combined with its growing population, developing economy, redeveloping downtown core and its plans for sustainable growth. This paper explores the health, environmental, social and economic…

  17. Perceptions of Quality Life in Hamilton's Neighbourhood Hubs: A Qualitative Analysis

    ERIC Educational Resources Information Center

    Eby, Jeanette; Kitchen, Peter; Williams, Allison

    2012-01-01

    This paper examines perceptions of quality of life in Hamilton, Ontario, Canada from the perspective of residents and key community stakeholders. A series of eight focus groups were conducted. Six sessions were held with residents of neighbourhood "hubs", areas characterized by high levels of poverty. The following themes were…

  18. Air Quality in Hamilton: Who Is Concerned? Perceptions from Three Neighbourhoods

    ERIC Educational Resources Information Center

    Simone, Dylan; Eyles, John; Newbold, K. Bruce; Kitchen, Peter; Williams, Allison

    2012-01-01

    This study investigates the factors influencing perceptions of air quality in the industrial city of Hamilton, Canada. The research employs data collected via a telephone survey of 1,002 adult residents in three neighbourhoods. Perceptions in the neighbourhoods were examined by individual socio-demographic factors (age, gender, marital and…

  19. Non-Abelian clouds around Reissner-Nordström black holes: The existence line

    NASA Astrophysics Data System (ADS)

    Radu, Eugen; Tchrakian, D. H.; Yang, Yisong

    2016-06-01

    A known feature of electrically charged Reissner-Nordström-anti-de Sitter planar black holes is that they can become unstable when considered as solutions of Einstein-Yang-Mills theory. The mechanism for this is that the linearized Yang-Mills equations in the background of the Reissner-Nordström (RN) black holes possess a normalizable zero mode, resulting in non-Abelian (nA) magnetic clouds near the horizon. In this work we show that the same pattern may occur also for asymptotically flat RN black holes. Different from the anti-de Sitter case, in the Minkowskian background the prerequisites for the existence of the nA clouds are (i) a large enough gauge group, and (ii) the presence of some extra interaction terms in the matter Lagrangian. To illustrate this mechanism we present two specific examples, one in four- and the other in five-dimensional asymptotically flat spacetime. In the first case, we augment the usual S U (3 ) Yang-Mills Lagrangian with a higher-order (quartic) curvature term, while for the second one we add the Chern-Simons density to the S O (6 ) Yang-Mills system. In both cases, an Abelian gauge symmetry is spontaneously broken near a RN black hole horizon with the appearance of a condensate of nA gauge fields. In addition to these two examples, we review the corresponding picture for anti-de Sitter black holes. All these solutions are studied both analytically and numerically, existence proofs being provided for nA clouds in the background of RN black holes. The proofs use shooting techniques which are suggested by and in turn offer insights for our numerical methods. They indicate that, for a black hole of given mass, appropriate electric charge values are required to ensure the existence of solutions interpolating desired boundary behavior at the horizons and spatial infinity.

  20. Verbesserte Visualisierung der Koronararterien in MSCT-Daten mit direkter Vergleichbarkeit zur Angiographie

    NASA Astrophysics Data System (ADS)

    Lacalli, Christina; Jähne, Marion; Wesarg, Stefan

    In diesem Beitrag stellen wir neue, automatisierte Verfahren zur Visualisierung der Koronararterien einerseits und für eine direkte Vergleichbarkeit mit konventionellen Angiogrammen andererseits vor. Unser Ansatz umfasst Methoden für die automatische Extraktion des Herzens aus kontrastverstärkten CT-Daten, sowie für die Maskierung grosser kontrastmittelgefüllter Kavitäten des Herzens, um die Sichtbarkeit der Koronararterien bei der Darstellung mittels Volumenrendering zu verbessern. Zum direkten Vergleich mit konventionellen Angiographien wurde ein Verfahren zur automatischen Generierung von Projektionsansichten aus den CT-Daten entwickelt.

  1. Design and Testing of UMM Vertical Ball Mill (UVBM) for producing Aluminium Powder

    NASA Astrophysics Data System (ADS)

    Aisyah, I. S.; Caesarendra, Wahyu; Suprihanto, Agus

    2018-04-01

    UMM Vertical Ball Mill (UVBM) was intended to be the apparatus to produce metal powder with superior characteristic in production rate while retaining good quality of metal powder. The concept of design was adopting design theory of Phal and Beitz with emphasis on increasing of probability of success in engineering and economy aspects.Since it was designed as vertical ball mill, a new way to produce powder, then it need to be tested for the performance after manufactured. The test on UVBM was carried out by milling of aluminium chip for 5 (five) different milling time of 0.5 hours, 1 hour, 3 hours, 5 hours and 7 hours, and the powder product then be characterized for it morphology and size using Scanning Electron Microscope (SEM) and Sieve.The results of the study were the longer of the milling time, the finer of the powder. From the test results of SEM, the morphology of the powder with 5 variations of milling time were most of the powder in form of flake (flat), small round and angular (irregular). The distribution of powder size was best obtained on the variation of milling time 3 hours, 5 hours, and 7 hours with percentage of 200 mesh in size of 22.14 %, 64 % and 91.25 % respectively.

  2. An evolutionary theory of human motivation.

    PubMed

    Bernard, Larry C; Mills, Michael; Swenson, Leland; Walsh, R Patricia

    2005-05-01

    The authors review psychology's historical, competing perspectives on human motivation and propose a new comprehensive theory. The new theory is based on evolutionary principles as proposed by C. Darwin (1859) and modified by W. D. Hamilton (1964, 1996), R. L. Trivers (1971, 1972), and R. Dawkins (1989). The theory unifies biological, behavioral, and cognitive approaches to motivation. The theory is neuropsychological and addresses conscious and nonconscious processes that underlie motivation, emotion, and self-control. The theory predicts a hierarchical structure of motives that are measurable as individual differences in human behavior. These motives are related to social problem domains (D. B. Bugental, 2000; D. T. Kenrick, N. P. Li, & J. Butner, 2003), and each is hypothesized to solve a particular problem of human inclusive fitness.

  3. Relativistic collisions as Yang-Baxter maps

    NASA Astrophysics Data System (ADS)

    Kouloukas, Theodoros E.

    2017-10-01

    We prove that one-dimensional elastic relativistic collisions satisfy the set-theoretical Yang-Baxter equation. The corresponding collision maps are symplectic and admit a Lax representation. Furthermore, they can be considered as reductions of a higher dimensional integrable Yang-Baxter map on an invariant manifold. In this framework, we study the integrability of transfer maps that represent particular periodic sequences of collisions.

  4. Fluxes, holography and twistors: String theory paths to four dimensions

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    2007-12-01

    There are presently three popular paths to obtain four dimensional physics from string theory: compactification, holography and twistor space. We present results in this thesis on each of them, discussing the geometric structure of flux compactifications, the interplay between holography and S -duality in M-theory and the perturbative amplitudes of the marginally deformed super-Yang-Mills theory obtained from topological string theory on a supertwistor space. First we analyze supersymmetric flux compactifications of ten dimensional string theories to four dimensions. Back reaction of the fluxes on the six dimensional internal geometry is characterized by G-structures. In type IIB compactification on SU(3)-structure manifold with N = 1 supersymmetry, we solve the equations dictating the five components of intrinsic torsion. We find that the six dimensional manifold always retains an integrable almost complex structure compatible with supersymmetry. In terms of the various vacuum fields, the axion/dilaton is found to be generically non-holomorphic, and the four dimensional cosmological constant is nonvanishing only if the SU(3) structure group is reduced to SU(2). The equations are solved by one holomorphic function. Around the poles and zeros of the holomorphic function, the geometry locally looks like the well known type-A and type-B solutions. When this function is a constant, the geometry can be viewed as a holographic RG flow. After classifying the type IIB SU(3)-structure flux vacua, we analyze the effect of non-perturbative corrections on the moduli space of N = 2 flux compactifications. At energy below the Kaluza-Klein scale, the four dimensional effective theory is a gauged supergravity theory with vanishing cosmological constant. The gauging of isometries on the hyper-multiplet moduli space is induced by the fluxes. We show that instanton corrections which could potentially lift the gauged isometries are in fact prohibited both in the type IIA and heterotic

  5. Hamilton-Jacobi formalism to warm inflationary scenario

    NASA Astrophysics Data System (ADS)

    Sayar, K.; Mohammadi, A.; Akhtari, L.; Saaidi, Kh.

    2017-01-01

    The Hamilton-Jacobi formalism as a powerful method is being utilized to reconsider the warm inflationary scenario, where the scalar field as the main component driving inflation interacts with other fields. Separating the context into strong and weak dissipative regimes, the goal is followed for two popular functions of Γ . Applying slow-rolling approximation, the required perturbation parameters are extracted and, by comparing to the latest Planck data, the free parameters are restricted. The possibility of producing an acceptable inflation is studied where the result shows that for all cases the model could successfully suggest the amplitude of scalar perturbation, scalar spectral index, its running, and the tensor-to-scalar ratio.

  6. Preconstruction Biogeochemical Analysis of Mercury in Wetlands Bordering the Hamilton Army Airfield (HAAF) Wetlands Restoration Site. Part 3

    DTIC Science & Technology

    2009-12-01

    ER D C/ EL T R- 09 -2 1 Preconstruction Biogeochemical Analysis of Mercury in Wetlands Bordering the Hamilton Army Airfield (HAAF) Wetlands...Preconstruction Biogeochemical Analysis of Mercury in Wetlands Bordering the Hamilton Army Airfield (HAAF) Wetlands Restoration Site Part 3 Elly P. H... mercury methylation and demethylation, and biogeochemical parameters related to the mercury cycle as measured by both conventional and emerging methods

  7. Hamilton and Hardy for the 21st Century

    PubMed Central

    Ogden, Trevor

    2016-01-01

    Hamilton and Hardy’s Industrial Toxicology is now 80 years old, and the new sixth edition links us with a pioneer era. This is an impressive book, but the usefulness of the hardback version as a reference book is unfortunately limited by its poor index. There is now an ebook version, and for the practitioner on the move this has the great advantages of searchability and portability. However, Wiley ebooks can apparently only be downloaded when first purchased, so their lifetime is limited to that of the device. The Kindle edition should avoid this shortcoming.

  8. The Failed Educations of John Stuart Mill and Henry Adams.

    ERIC Educational Resources Information Center

    Crossley, Robert

    1979-01-01

    Analyzes and contrasts Mill's "Autobiography" and Adams'"The Education of Henry Adams" in order to present two approaches to the nature of education and of failure. Maintains that their perspectives may serve as catalysts and cautions for contemporary theories of education and its utility and relevance. (CAM)

  9. Q-balls of quasi-particles in a (2, 0)-theory model of the fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Ganor, Ori J.; Hong, Yoon Pyo; Moore, Nathan; Sun, Hao-Yu; Tan, Hai Siong; Torres-Chicon, Nesty R.

    2015-09-01

    A toy model of the fractional quantum Hall effect appears as part of the low-energy description of the Coulomb branch of the A 1 (2 , 0)-theory formulated on ({S}^1× {{R}}^2)/{{Z}}_k , where the generator of {{Z}}_k acts as a combination of translation on S 1 and rotation by 2 π/k on {{R}}^2 . At low energy the configuration is described in terms of a 4+1D Super-Yang-Mills theory on a cone ({{R}}^2/{{Z}}_k) with additional 2+1D degrees of freedom at the tip of the cone that include fractionally charged particles. These fractionally charged "quasi-particles" are BPS strings of the (2 , 0)-theory wrapped on short cycles. We analyze the large k limit, where a smooth cigar-geometry provides an alternative description. In this framework a W-boson can be modeled as a bound state of k quasi-particles. The W-boson becomes a Q-ball, and it can be described as a soliton solution of Bogomolnyi monopole equations on a certain auxiliary curved space. We show that axisymmetric solutions of these equations correspond to singular maps from AdS 3 to AdS 2, and we present some numerical results and an asymptotic expansion.

  10. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations

    NASA Technical Reports Server (NTRS)

    Osher, Stanley; Sethian, James A.

    1987-01-01

    New numerical algorithms are devised (PSC algorithms) for following fronts propagating with curvature-dependent speed. The speed may be an arbitrary function of curvature, and the front can also be passively advected by an underlying flow. These algorithms approximate the equations of motion, which resemble Hamilton-Jacobi equations with parabolic right-hand-sides, by using techniques from the hyperbolic conservation laws. Non-oscillatory schemes of various orders of accuracy are used to solve the equations, providing methods that accurately capture the formation of sharp gradients and cusps in the moving fronts. The algorithms handle topological merging and breaking naturally, work in any number of space dimensions, and do not require that the moving surface be written as a function. The methods can be used also for more general Hamilton-Jacobi-type problems. The algorithms are demonstrated by computing the solution to a variety of surface motion problems.

  11. Octavia Butler and Virginia Hamilton: Black Women Writers and Science Fiction.

    ERIC Educational Resources Information Center

    Hampton, Gregory Jerome; Brooks, Wanda M.

    2003-01-01

    Notes that African American literature has always had science fiction elements in its focus on narratives of the alienated and marginalized "other." Contends that Octavia Butler and Virginia Hamilton are two African American writers of science fiction who examine the connections between the stories of a culture and the genre of science…

  12. A Survey of Environmental Education in Hamilton County Schools (K-12).

    ERIC Educational Resources Information Center

    Garver, Janice B.

    Environmental education (EE) courses and programs offered in grades K-12 in Hamilton County (Ohio) public, private, and parochial schools were surveyed by means of a questionnaire mailed to 67 district level administrators, principals, and teachers. Questionnaires were returned from 5 private, 4 parochial, and 27 public schools, representing a 57…

  13. Relations between Eastern Four Pillars Theory and Western Measures of Personality Traits

    PubMed Central

    Jung, Seung Ah

    2015-01-01

    Purpose The present study investigated the validity of personality classification using four pillars theory, a tradition in China and northeastern Asia. Materials and Methods Four pillars analyses were performed for 148 adults on the basis of their birth year, month, day, and hour. Participants completed two personality tests, the Korean version of Temperament and Character Inventory-Revised-Short Version (TCI) and the Korean Inventory of Interpersonal Problems; scores were correlated with four pillars classification elements. Mean difference tests (e.g., t-test, ANOVA) were compared with groups classified by four pillars index. Results There were no significant correlations between personality scale scores and total yin/yang number (i.e., the 8 heavenly or earthly stems), and no significant between-groups results for classifications by yin/yang day stem and the five elements. There were significant but weak (r=0.18-0.29) correlations between the five elements and personality scale scores. For the six gods and personality scales, there were significant but weak (r=0.18-0.25) correlations. Features predicted by four pillars theory were most consistent when participants were grouped according to the yin/yang of the day stem and dominance of yin/yang numbers in the eight heavenly or earthly stems. Conclusion Although the major criteria of four pillars theory were not independently correlated with personality scale scores, correlations emerged when participants were grouped according to the composite yin/yang variable. Our results suggest the utility of four pillars theory (beyond fortune telling or astrology) for classifying personality traits and making behavioral predictions. PMID:25837175

  14. Bacillus licheniformis Contains Two More PerR-Like Proteins in Addition to PerR, Fur, and Zur Orthologues

    PubMed Central

    Ju, Shin-Yeong; Yang, Yoon-Mo; Ryu, Su-Hyun; Kwon, Yumi; Won, Young-Bin; Lee, Yeh-Eun; Youn, Hwan; Lee, Jin-Won

    2016-01-01

    The ferric uptake regulator (Fur) family proteins include sensors of Fe (Fur), Zn (Zur), and peroxide (PerR). Among Fur family proteins, Fur and Zur are ubiquitous in most prokaryotic organisms, whereas PerR exists mainly in Gram positive bacteria as a functional homologue of OxyR. Gram positive bacteria such as Bacillus subtilis, Listeria monocytogenes and Staphylococcus aureus encode three Fur family proteins: Fur, Zur, and PerR. In this study, we identified five Fur family proteins from B. licheniformis: two novel PerR-like proteins (BL00690 and BL00950) in addition to Fur (BL05249), Zur (BL03703), and PerR (BL00075) homologues. Our data indicate that all of the five B. licheniformis Fur homologues contain a structural Zn2+ site composed of four cysteine residues like many other Fur family proteins. Furthermore, we provide evidence that the PerR-like proteins (BL00690 and BL00950) as well as PerRBL (BL00075), but not FurBL (BL05249) and ZurBL (BL03703), can sense H2O2 by histidine oxidation with different sensitivity. We also show that PerR2 (BL00690) has a PerR-like repressor activity for PerR-regulated genes in vivo. Taken together, our results suggest that B. licheniformis contains three PerR subfamily proteins which can sense H2O2 by histidine oxidation not by cysteine oxidation, in addition to Fur and Zur. PMID:27176811

  15. High-Order Semi-Discrete Central-Upwind Schemes for Multi-Dimensional Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron; Biegel, Bryan (Technical Monitor)

    2002-01-01

    We present the first fifth order, semi-discrete central upwind method for approximating solutions of multi-dimensional Hamilton-Jacobi equations. Unlike most of the commonly used high order upwind schemes, our scheme is formulated as a Godunov-type scheme. The scheme is based on the fluxes of Kurganov-Tadmor and Kurganov-Tadmor-Petrova, and is derived for an arbitrary number of space dimensions. A theorem establishing the monotonicity of these fluxes is provided. The spacial discretization is based on a weighted essentially non-oscillatory reconstruction of the derivative. The accuracy and stability properties of our scheme are demonstrated in a variety of examples. A comparison between our method and other fifth-order schemes for Hamilton-Jacobi equations shows that our method exhibits smaller errors without any increase in the complexity of the computations.

  16. Witten index for noncompact dynamics

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Joo; Yi, Piljin

    2016-06-01

    Among gauged dynamics motivated by string theory, we find many with gapless asymptotic directions. Although the natural boundary condition for ground states is L 2, one often turns on chemical potentials or supersymmetric mass terms to regulate the infrared issues, instead, and computes the twisted partition function. We point out how this procedure generically fails to capture physical L 2 Witten index with often misleading results. We also explore how, nevertheless, the Witten index is sometimes intricately embedded in such twisted partition functions. For d = 1 theories with gapless continuum sector from gauge multiplets, such as non-primitive quivers and pure Yang-Mills, a further subtlety exists, leading to fractional expressions. Quite unexpectedly, however, the integral L 2 Witten index can be extracted directly and easily from the twisted partition function of such theories. This phenomenon is tied to the notion of the rational invariant that appears naturally in the wall-crossing formulae, and offers a general mechanism of reading off Witten index directly from the twisted partition function. Along the way, we correct early numerical results for some of mathcal{N} = 4 , 8 , 16 pure Yang-Mills quantum mechanics, and count threshold bound states for general gauge groups beyond SU( N ).

  17. Duality and integrability: Electromagnetism, linearized gravity, and massless higher spin gauge fields as bi-Hamiltonian systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnich, Glenn; Troessaert, Cedric

    2009-04-15

    In the reduced phase space of electromagnetism, the generator of duality rotations in the usual Poisson bracket is shown to generate Maxwell's equations in a second, much simpler Poisson bracket. This gives rise to a hierarchy of bi-Hamiltonian evolution equations in the standard way. The result can be extended to linearized Yang-Mills theory, linearized gravity, and massless higher spin gauge fields.

  18. The quantum holonomy-diffeomorphism algebra and quantum gravity

    NASA Astrophysics Data System (ADS)

    Aastrup, Johannes; Grimstrup, Jesper Møller

    2016-03-01

    We introduce the quantum holonomy-diffeomorphism ∗-algebra, which is generated by holonomy-diffeomorphisms on a three-dimensional manifold and translations on a space of SU(2)-connections. We show that this algebra encodes the canonical commutation relations of canonical quantum gravity formulated in terms of Ashtekar variables. Furthermore, we show that semiclassical states exist on the holonomy-diffeomorphism part of the algebra but that these states cannot be extended to the full algebra. Via a Dirac-type operator we derive a certain class of unbounded operators that act in the GNS construction of the semiclassical states. These unbounded operators are the type of operators, which we have previously shown to entail the spatial three-dimensional Dirac operator and Dirac-Hamiltonian in a semiclassical limit. Finally, we show that the structure of the Hamilton constraint emerges from a Yang-Mills-type operator over the space of SU(2)-connections.

  19. BF actions for the Husain-Kuchař model

    NASA Astrophysics Data System (ADS)

    Barbero G., J. Fernando; Villaseñor, Eduardo J.

    2001-04-01

    We show that the Husain-Kuchař model can be described in the framework of BF theories. This is a first step towards its quantization by standard perturbative quantum field theory techniques or the spin-foam formalism introduced in the space-time description of general relativity and other diff-invariant theories. The actions that we will consider are similar to the ones describing the BF-Yang-Mills model and some mass generating mechanisms for gauge fields. We will also discuss the role of diffeomorphisms in the new formulations that we propose.

  20. (In)dependence of 𝜃 in the Higgs regime without axions

    NASA Astrophysics Data System (ADS)

    Shifman, Mikhail; Vainshtein, Arkady

    2017-05-01

    We revisit the issue of the vacuum angle 𝜃 dependence in weakly coupled (Higgsed) Yang-Mills theories. Two most popular mechanisms for eliminating physical 𝜃 dependence are massless quarks and axions. Anselm and Johansen noted that the vacuum angle 𝜃EW, associated with the electroweak SU(2) in the Glashow-Weinberg-Salam model (Standard Model, SM), is unobservable although all fermion fields obtain masses through Higgsing and there is no axion. We generalize this idea to a broad class of Higgsed Yang-Mills theories. In the second part, we consider the consequences of Grand Unification. We start from a unifying group, e.g. SU(5), at a high ultraviolet scale and evolve the theory down within the Wilson procedure. If on the way to infrared the unifying group is broken down into a few factors, all factor groups inherit one and the same 𝜃 angle — that of the unifying group. We show that embedding the SM in SU(5) drastically changes the Anselm-Johansen conclusion: the electroweak vacuum angle 𝜃EW, equal to 𝜃QCD becomes in principle observable in ΔB = ΔL = ±1 processes. We also note in passing that if the axion mechanism is set up above the unification scale, we have one and the same axion in the electroweak theory and QCD, and their impacts are interdependent.

  1. Topics in string theory

    NASA Astrophysics Data System (ADS)

    Jejjala, Vishnumohan

    2002-01-01

    This Thesis explores aspects of superstring theory on orbifold spaces and applies some of the intuition gleaned from the study of the non-commutative geometry of space-time to understanding the fractional quantum Hall effect. The moduli space of vacua of marginal and relevant deformations of N = 4 super-Yang-Mills gauge theory in four dimensions is interpreted in terms of non-commutative geometry. A formalism for thinking about the algebraic geometry of the moduli space is developed. Within this framework, the representation theory of the algebras studied provides a natural exposition of D-brane fractionation. The non-commutative moduli space of deformations preserving N = 1 supersymmetry is examined in detail through various examples. In string theory, by the AdS/CFT correspondence, deformations of the N = 4 field theory are dual to the near-horizon geometries of D-branes on orbifolds of AdS5 x S 5. The physics of D-branes on the dual AdS backgrounds is explored. Quivers encapsulate the matter content of supersymmetric field theories on the worldvolumes of D-branes at orbifold singularities. New techniques for constructing quivers are presented here. When N is a normal subgroup of a finite group G, the quiver corresponding to fixed points of the orbifold M/G is computed from a G/N action on the quiver corresponding to M/G . These techniques prove useful for constructing non-Abelian quivers and for examining discrete torsion orbifolds. Quivers obtained through our constructions contain interesting low-energy phenomenology. The matter content on a brane at an isolated singularity of the Delta27 orbifold embeds the Standard Model. The symmetries of the quiver require exactly three generations of fields in the particle spectrum. Lepton masses are suppressed relative to quark masses because lepton Yukawa couplings do not appear in the superpotential. Lepton masses are generated through the Kahler potential and are related to the supersymmetry breaking scale. The model

  2. Bogoliubov theory and Lee-Huang-Yang corrections in spin-1 and spin-2 Bose-Einstein condensates in the presence of the quadratic Zeeman effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchino, Shun; Kobayashi, Michikazu; Ueda, Masahito

    2010-06-15

    We develop Bogoliubov theory of spin-1 and spin-2 Bose-Einstein condensates (BECs) in the presence of a quadratic Zeeman effect, and derive the Lee-Huang-Yang (LHY) corrections to the ground-state energy, pressure, sound velocity, and quantum depletion. We investigate all the phases of spin-1 and spin-2 BECs that can be realized experimentally. We also examine the stability of each phase against quantum fluctuations and the quadratic Zeeman effect. Furthermore, we discuss a relationship between the number of symmetry generators that are spontaneously broken and that of Nambu-Goldstone (NG) modes. It is found that in the spin-2 nematic phase there are special Bogoliubovmore » modes that have gapless linear dispersion relations but do not belong to the NG modes.« less

  3. T -folds from Yang-Baxter deformations

    NASA Astrophysics Data System (ADS)

    Fernández-Melgarejo, José J.; Sakamoto, Jun-ichi; Sakatani, Yuho; Yoshida, Kentaroh

    2017-12-01

    Yang-Baxter (YB) deformations of type IIB string theory have been well studied from the viewpoint of classical integrability. Most of the works, however, are focused upon the local structure of the deformed geometries and the global structure still remains unclear. In this work, we reveal a non-geometric aspect of YB-deformed backgrounds as T -fold by explicitly showing the associated O( D, D; ℤ) T -duality monodromy. In particular, the appearance of an extra vector field in the generalized supergravity equations (GSE) leads to the non-geometric Q-flux. In addition, we study a particular solution of GSE that is obtained by a non-Abelian T-duality but cannot be expressed as a homogeneous YB deformation, and show that it can also be regarded as a T -fold. This result indicates that solutions of GSE should be non-geometric quite in general beyond the YB deformation.

  4. Identification of potential fish carcinogens in sediment from Hamilton Harbour, Ontario, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balch, G.C.; Metcalfe, C.D.; Huestis, S.Y.

    1995-01-01

    A carcinogenicity- and mutagenicity-directed fractionation approach was used to identify the carcinogenic compounds in contaminated sediments that are putatively responsible for the high prevalence of tumors in bottom-dwelling fish from Hamilton Harbour, Ontario. Mutagenic activity was detected with Ames tester strains (TA98, TA100) in relatively nonpolar fractions of sediment extract containing PAHs and nitrogen-containing aromatic compounds (NCACs). These fractions were also carcinogenic in an in vivo carcinogenicity bioassay with rainbow trout (Oncorhynchus mykiss). When a more polar extract fraction was tested for mutagenicity and carcinogenicity, weak mutagenic activity was detected with an O-acetyltransferase-enriched Ames tester strain (YG1024), and weak carcinogenicmore » activity was detected in the rainbow trout assay. These data indicate that PAHs in contaminated Hamilton Harbour sediments are potent fish carcinogens, but it is also evident that other organic compounds in the sediment, such as NCACs and nitroarenes, may contribute to carcinogenicity.« less

  5. Two-spectral Yang-Baxter operators in topological quantum computation

    NASA Astrophysics Data System (ADS)

    Sanchez, William F.

    2011-05-01

    One of the current trends in quantum computing is the application of algebraic topological methods in the design of new algorithms and quantum computers, giving rise to topological quantum computing. One of the tools used in it is the Yang-Baxter equation whose solutions are interpreted as universal quantum gates. Lately, more general Yang-Baxter equations have been investigated, making progress as two-spectral equations and Yang-Baxter systems. This paper intends to apply these new findings to the field of topological quantum computation, more specifically, the proposition of the two-spectral Yang-Baxter operators as universal quantum gates for 2 qubits and 2 qutrits systems, obtaining 4x4 and 9x9 matrices respectively, and further elaboration of the corresponding Hamiltonian by the use of computer algebra software Mathematica® and its Qucalc package. In addition, possible physical systems to which the Yang-Baxter operators obtained can be applied are considered. In the present work it is demonstrated the utility of the Yang-Baxter equation to generate universal quantum gates and the power of computer algebra to design them; it is expected that these mathematical studies contribute to the further development of quantum computers

  6. Compressed Semi-Discrete Central-Upwind Schemes for Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Kurganov, Alexander; Levy, Doron; Petrova, Guergana

    2003-01-01

    We introduce a new family of Godunov-type semi-discrete central schemes for multidimensional Hamilton-Jacobi equations. These schemes are a less dissipative generalization of the central-upwind schemes that have been recently proposed in series of works. We provide the details of the new family of methods in one, two, and three space dimensions, and then verify their expected low-dissipative property in a variety of examples.

  7. Gluon scattering amplitudes from gauge/string duality and integrability

    NASA Astrophysics Data System (ADS)

    Satoh, Yuji

    2014-06-01

    We discuss the gluon scattering amplitudes of the four-dimensional maximally supersymmetric Yang-Mills theory. By the gauge/string duality, the amplitudes at strong coupling are given by the area of the minimal surfaces in anti-de Sitter space, which can be analyzed by a set of integral equations of the thermodynamic Bethe ansatz (TBA) type. By using the two-dimensional integrable models and conformal field theories underlying the TBA system, we derive analytic expansions of the amplitudes around certain kinematic configurations.

  8. Investigation of the milling capabilities of the F10 Fine Grind mill using Box-Behnken designs.

    PubMed

    Tan, Bernice Mei Jin; Tay, Justin Yong Soon; Wong, Poh Mun; Chan, Lai Wah; Heng, Paul Wan Sia

    2015-01-01

    Size reduction or milling of the active is often the first processing step in the design of a dosage form. The ability of a mill to convert coarse crystals into the target size and size distribution efficiently is highly desirable as the quality of the final pharmaceutical product after processing is often still dependent on the dimensional attributes of its component constituents. The F10 Fine Grind mill is a mechanical impact mill designed to produce unimodal mid-size particles by utilizing a single-pass two-stage size reduction process for fine grinding of raw materials needed in secondary processing. Box-Behnken designs were used to investigate the effects of various mill variables (impeller, blower and feeder speeds and screen aperture size) on the milling of coarse crystals. Response variables included the particle size parameters (D10, D50 and D90), span and milling rate. Milled particles in the size range of 5-200 μm, with D50 ranging from 15 to 60 μm, were produced. The impeller and feeder speeds were the most critical factors influencing the particle size and milling rate, respectively. Size distributions of milled particles were better described by their goodness-of-fit to a log-normal distribution (i.e. unimodality) rather than span. Milled particles with symmetrical unimodal distributions were obtained when the screen aperture size was close to the median diameter of coarse particles employed. The capacity for high throughput milling of particles to a mid-size range, which is intermediate between conventional mechanical impact mills and air jet mills, was demonstrated in the F10 mill. Prediction models from the Box-Behnken designs will aid in providing a better guide to the milling process and milled product characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Color Confinement and Screening in the θ Vacuum of QCD

    DOE PAGES

    Kharzeev, Dmitri E.; Levin, Eugene M.

    2015-06-16

    QCD perturbation theory ignores the compact nature of the SU(3) gauge group that gives rise to the periodic θ vacuum of the theory. In this paper, we propose to modify the gluon propagator to reconcile perturbation theory with the anomalous Ward identities for the topological current in the θ vacuum. As a result, the gluon couples to the Veneziano ghost describing the tunneling transitions between different Chern-Simons sectors of the vacuum; we call the emerging gluon dressed by ghost loops a “glost.” We evaluate the glost propagator and find that it has the form G(p)=(p 2+χ top/p 2) -1 wheremore » χ top is the Yang-Mills topological susceptibility related to the η" mass by the Witten-Veneziano relation; this propagator describes the confinement of gluons at distances ~χ top -1/4≃1 fm. The same functional form of the propagator was originally proposed by Gribov as a solution to the gauge copies problem that plagues perturbation theory. The resulting running coupling coincides with the perturbative one at p 2>>√χtop, but in the infrared region either freezes (in pure Yang-Mills theory) or vanishes (in full QCD with light quarks), in accord with experimental evidence. In conclusion, our scenario makes explicit the connection between confinement and topology of the QCD vacuum; we discuss the implications for spin physics, high energy scattering, and the physics of quark-gluon plasma.« less

  10. Color Confinement and Screening in the θ Vacuum of QCD.

    PubMed

    Kharzeev, Dmitri E; Levin, Eugene M

    2015-06-19

    QCD perturbation theory ignores the compact nature of the SU(3) gauge group that gives rise to the periodic θ vacuum of the theory. We propose to modify the gluon propagator to reconcile perturbation theory with the anomalous Ward identities for the topological current in the θ vacuum. As a result, the gluon couples to the Veneziano ghost describing the tunneling transitions between different Chern-Simons sectors of the vacuum; we call the emerging gluon dressed by ghost loops a "glost." We evaluate the glost propagator and find that it has the form G(p)=(p(2)+χ(top)/p(2))(-1) where χ(top) is the Yang-Mills topological susceptibility related to the η' mass by the Witten-Veneziano relation; this propagator describes the confinement of gluons at distances ∼χ(top)(-1/4)≃1  fm. The same functional form of the propagator was originally proposed by Gribov as a solution to the gauge copies problem that plagues perturbation theory. The resulting running coupling coincides with the perturbative one at p(2)≫√[χ(top)], but in the infrared region either freezes (in pure Yang-Mills theory) or vanishes (in full QCD with light quarks), in accord with experimental evidence. Our scenario makes explicit the connection between confinement and topology of the QCD vacuum; we discuss the implications for spin physics, high energy scattering, and the physics of quark-gluon plasma.

  11. Derivation of Hamilton's equations of motion for mechanical systems with constraints on the basis of Pontriagin's maximum principle

    NASA Astrophysics Data System (ADS)

    Kovalev, A. M.

    The problem of the motion of a mechanical system with constraints conforming to Hamilton's principle is stated as an optimum control problem, with equations of motion obtained on the basis of Pontriagin's principle. A Hamiltonian function in Rodrigues-Hamilton parameters for a gyrostat in a potential force field is obtained as an example. Equations describing the motion of a skate on a sloping surface and the motion of a disk on a horizontal plane are examined.

  12. APC Yin-Yang haplotype associated with colorectal cancer risk

    PubMed Central

    GARRE, P.; DE LA HOYA, M.; INIESTA, P.; ROMERA, A.; LLOVET, P.; GONZALEZ, S.; PEREZ-SEGURA, P.; CAPELLA, G.; DIAZ-RUBIO, E.; CALDES, T.

    2010-01-01

    The Yin-Yang haplotype is defined as two mismatched haplotypes (Yin and Yang) representing the majority of the existing haplotypes in a particular genomic region. The human adenomatous polyposis coli (APC) gene shows a Yin-Yang haplotype pattern accounting for 84% of all of the haplotypes existing in the Spanish population. Several association studies have been published regarding APC gene variants (SNPs and haplotypes) and colorectal cancer (CRC) risk. However, no studies concerning diplotype structure and CRC risk have been conducted. The aim of the present study was to investigate whether the APC Yin-Yang homozygote diplotype is over-represented in patients with sporadic CRC when compared to its distribution in controls, and its association with CRC risk. TaqMan® assays were used to genotype three tagSNPs selected across the APC Yin-Yang region. Frequencies of the APC Yin-Yang tagSNP alleles, haplotype and diplotype of 378 CRC cases and 642 controls were compared. Two Spanish CRC group samples were included [Hospital Clínico San Carlos in Madrid (HCSC) and Instituto Catalán de Oncología in Barcelona (ICO)]. Analysis of 157 consecutive CRC patients and 405 control subjects from HCSC showed a significative effect for the risk of CRC (OR=1.93; 95% CI 1.32–2.81; P=0.001). However, this effect was not confirmed in 221 CRC patients and 237 control subjects from ICO (OR=0.89; 95% CI 0.61–1.28; P=0.521). We found a significant association between the APC homozygote Yin-Yang diplotype and the risk of colorectal cancer in the HCSC samples. However, we did not observe this association in the ICO samples. These observations suggest that a study with a larger Spanish cohort is necessary to confirm the effects of the APC Yin-Yang diplotype on the risk of CRC. PMID:22993613

  13. APC Yin-Yang haplotype associated with colorectal cancer risk.

    PubMed

    Garre, P; DE LA Hoya, M; Iniesta, P; Romera, A; Llovet, P; Gonzalez, S; Perez-Segura, P; Capella, G; Diaz-Rubio, E; Caldes, T

    2010-09-01

    The Yin-Yang haplotype is defined as two mismatched haplotypes (Yin and Yang) representing the majority of the existing haplotypes in a particular genomic region. The human adenomatous polyposis coli (APC) gene shows a Yin-Yang haplotype pattern accounting for 84% of all of the haplotypes existing in the Spanish population. Several association studies have been published regarding APC gene variants (SNPs and haplotypes) and colorectal cancer (CRC) risk. However, no studies concerning diplotype structure and CRC risk have been conducted. The aim of the present study was to investigate whether the APC Yin-Yang homozygote diplotype is over-represented in patients with sporadic CRC when compared to its distribution in controls, and its association with CRC risk. TaqMan(®) assays were used to genotype three tagSNPs selected across the APC Yin-Yang region. Frequencies of the APC Yin-Yang tagSNP alleles, haplotype and diplotype of 378 CRC cases and 642 controls were compared. Two Spanish CRC group samples were included [Hospital Clínico San Carlos in Madrid (HCSC) and Instituto Catalán de Oncología in Barcelona (ICO)]. Analysis of 157 consecutive CRC patients and 405 control subjects from HCSC showed a significative effect for the risk of CRC (OR=1.93; 95% CI 1.32-2.81; P=0.001). However, this effect was not confirmed in 221 CRC patients and 237 control subjects from ICO (OR=0.89; 95% CI 0.61-1.28; P=0.521). We found a significant association between the APC homozygote Yin-Yang diplotype and the risk of colorectal cancer in the HCSC samples. However, we did not observe this association in the ICO samples. These observations suggest that a study with a larger Spanish cohort is necessary to confirm the effects of the APC Yin-Yang diplotype on the risk of CRC.

  14. Von neuen Geschäftsideen zur gelebten Digitalisierung in Utility 4.0 - das Integrierte Geschäftsmodell

    NASA Astrophysics Data System (ADS)

    Doleski, Oliver D.

    Die Energiewirtschaft benötigt neue, digitale Geschäftsmodelle. Gegenwärtig folgt auf Liberalisierung und Energiewende die nächste Stufe einer weitreichenden Bereinigung des Versorgungsmarktes. Digitalisierung und Dezentralisierung sind heute in aller Munde und verlangen nach neuen Produkten und Dienstleistungen. Dabei wirken die immensen Herausforderungen einer digitalen Energiewelt wie Beschleuniger für die Transformation im Versorgungssektor und tragen damit zur breiten Etablierung von Utilities 4.0 bei. Dieser Entwicklungsprozess vollzieht sich mithilfe unterschiedlicher Methoden zur Realisierung neuer Geschäftsideen. Allerdings greifen die gängigen Konzepte zur Entwicklung von Geschäftsmodellen gerade im Hinblick auf die Berücksichtigung komplexer, unbeständiger Rahmenbedingungen und spezifischer Anforderungen der digitalen Energiewelt mitunter zu kurz. Vor diesem Hintergrund wird das auf dem ganzheitlichen St. Galler Management-Konzept beruhende Integrierte Geschäftsmodell iOcTen als geeignetes Instrumentarium zur Geschäftsmodellentwicklung vorgestellt. Neben der Modellbeschreibung unterstützt ein intuitiv verständlicher Leitfaden den Praktiker bei der Transformation vom klassischen Versorgungsunternehmen zum digitalen Energiedienstleistungsunternehmen.

  15. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice...

  16. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice...

  17. Ball milling: An experimental support to the energy transfer evaluated by the collision model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magini, M.; Iasonna, A.; Padella, F.

    1996-01-01

    In recent years several attempts have been made in order to understand the fundamentals of the ball milling process. The aim of these approaches is to establish predictive capabilities for this process, i.e. the possibility of obtaining a given product by suitable choosing the proper milling conditions. Maurice and Courtney have modeled ball milling in a planetary and in a vibratory mill including parameters like impact times, areas of the colliding surfaces (derived from hertzian collision theory), powder strain rates and pressure peak during collision. Burgio et al derived the kinematic equations of a ball moving on a planetary millmore » and the consequent ball-to-powder energy transfer occurring in a single collision event. The fraction of input energy transferred to the powder was subsequently estimated by an analysis of the collision event. Finally an energy map was constructed which was the basis for a model with predictive capabilities. The aim of the present article is to show that the arguments used to construct the model of the milling process has substantial experimental support.« less

  18. Renormalization of composite operators in Yang-Mills theories using a general covariant gauge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, J.C.; Scalise, R.J.

    Essential to QCD applications of the operator product expansion, etc., is a knowledge of those operators that mix with gauge-invariant operators. A standard theorem asserts that the renormalization matrix is triangular: Gauge-invariant operators have alien'' gauge-variant operators among their counterterms, but, with a suitably chosen basis, the necessary alien operators have only themselves as counterterms. Moreover, the alien operators are supposed to vanish in physical matrix elements. A recent calculation by Hamberg and van Neerven apparently contradicts these results. By explicit calculations with the energy-momentum tensor, we show that the problems arise because of subtle infrared singularities that appear whenmore » gluonic matrix elements are taken on shell at zero momentum transfer.« less

  19. Values Education and the Board of Education for the City of Hamilton.

    ERIC Educational Resources Information Center

    Kocmarek, Ivan; Barrs, Steve

    1988-01-01

    Describes a values education program developed in the city of Hamilton, Ontario. Advocates removing values education from the realm of the hidden curriculum as found in the traditional school model of knowledge of facts, mastery of technical skills, and awareness of attitudes. Emphasizes the importance of continual interaction between school and…

  20. 76 FR 25534 - Airworthiness Directives; Hamilton Sundstrand Propellers Model 247F Propellers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ... 5 p.m., Monday through Friday, except Federal holidays. The AD docket contains this AD, the... through FR2279 inclusive, FR 2398, FR2449 to FR2958 inclusive, FR20010710 to FR20010722 inclusive, and FR20010723RT to FR20020127RT inclusive, installed. Propeller blades reworked to Hamilton Sundstrand Service...

  1. Who Tells "Our" Story: Intersectional Temporalities in "Hamilton: An American Musical"

    ERIC Educational Resources Information Center

    Silva, Andie; Inayatulla, Shereen

    2017-01-01

    This article examines the ways in which "Hamilton: An American Musical" can be read less as a historical account and more as a prediction of a future immigrant, who is called upon to (re)define US nationhood. Keeping with the tempo of the musical as well as the broader issues of time, space and identity it attempts to address, this…

  2. 75 FR 71463 - Woodland Mills Corporation Mill Spring, NC; Notice of Revised Determination on Reconsideration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-73,695] Woodland Mills Corporation Mill Spring, NC; Notice of Revised Determination on Reconsideration By application dated July 22... regarding the eligibility of workers and former workers of Woodland Mills Corporation, Mill Spring, North...

  3. Retracted: Long-term copper toxicity in apple trees (Malus pumila Mill) and bioaccumulation in fruits.

    PubMed

    Sun, Bai-Ye; Kan, Shi-Hong; Zhang, Yan-Zong; Wu, Jun; Deng, Shi-Huai; Liu, Chun-Sheng; Yang, Gang

    2010-01-15

    The following article from Environmental Toxicology, 'Long-term Copper Toxicity in Apple Trees (Malus pumila Mill) and Bioaccumulation in Fruits' by Bai-Ye Sun, Shi- Hong Kan, Yan-Zong Zhang, Jun Wu, Shi-Huai Deng, Chun-Sheng Liu and Gang Yang, published online on January 15, 2010 in Wiley InterScience (www.interscience.wiley.com; DOI: 10.1002/tox.20565), has been retracted by agreement between the authors, the journal Editor in Chief, Dr. Paul Tchounwou, and Wiley Periodicals, Inc. The retraction has been agreed at the request of the authors due to overlap with 'Copper Toxicity and Bioaccumulation in Chinese Cabbage (Brassica pekinensis Rupr.)' by Zhi-Ting Xiong and Hai Wang, published in Environmental Toxicology, Volume 20, pages 188-194, 2005.

  4. 43 CFR 3596.1 - Milling.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Milling. 3596.1 Section 3596.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT... OPERATIONS Waste From Mining or Milling § 3596.1 Milling. The operator/lessee shall conduct milling...

  5. 43 CFR 3596.1 - Milling.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Milling. 3596.1 Section 3596.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT... OPERATIONS Waste From Mining or Milling § 3596.1 Milling. The operator/lessee shall conduct milling...

  6. Nonlinear Waves and Inverse Scattering

    DTIC Science & Technology

    1989-01-01

    transform provides a linearization.’ Well known systems include the Kadomtsev - Petviashvili , Davey-Stewartson and Self-Dual Yang-Mills equations . The d...which employs inverse scattering theory in order to linearize the given nonlinear equation . I.S.T. has led to new developments in both fields: inverse...scattering and nonlinear wave equations . Listed below are some of the problems studied and a short description of results. - Multidimensional

  7. Bootstrapping a five-loop amplitude using Steinmann relations

    DOE PAGES

    Caron-Huot, Simon; Dixon, Lance J.; McLeod, Andrew; ...

    2016-12-05

    Here, the analytic structure of scattering amplitudes is restricted by Steinmann relations, which enforce the vanishing of certain discontinuities of discontinuities. We show that these relations dramatically simplify the function space for the hexagon function bootstrap in planar maximally supersymmetric Yang-Mills theory. Armed with this simplification, along with the constraints of dual conformal symmetry and Regge exponentiation, we obtain the complete five-loop six-particle amplitude.

  8. Complex quantum Hamilton-Jacobi equation with Bohmian trajectories: Application to the photodissociation dynamics of NOCl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    2014-03-14

    The complex quantum Hamilton-Jacobi equation-Bohmian trajectories (CQHJE-BT) method is introduced as a synthetic trajectory method for integrating the complex quantum Hamilton-Jacobi equation for the complex action function by propagating an ensemble of real-valued correlated Bohmian trajectories. Substituting the wave function expressed in exponential form in terms of the complex action into the time-dependent Schrödinger equation yields the complex quantum Hamilton-Jacobi equation. We transform this equation into the arbitrary Lagrangian-Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation describing the rate of change in the complex action transported along Bohmian trajectories is simultaneouslymore » integrated with the guidance equation for Bohmian trajectories, and the time-dependent wave function is readily synthesized. The spatial derivatives of the complex action required for the integration scheme are obtained by solving one moving least squares matrix equation. In addition, the method is applied to the photodissociation of NOCl. The photodissociation dynamics of NOCl can be accurately described by propagating a small ensemble of trajectories. This study demonstrates that the CQHJE-BT method combines the considerable advantages of both the real and the complex quantum trajectory methods previously developed for wave packet dynamics.« less

  9. The Hamilton Rating Scale for Depression: The making of a “gold standard” and the unmaking of a chronic illness, 1960–1980

    PubMed Central

    Worboys, Michael

    2013-01-01

    Objectives: To show why and how the Hamilton Rating Scale for Depression became the ‘Gold Standard’ for assessing therapies from the mid-1960s and how it was used to frame depression as a short-term and curable illness rather than a chronic one. Methods: My approach is that of the social construction of knowledge, identifying the interests, institutional contexts and practices that produce knowledge claims and then mapping the social processes of their circulation, validation and acceptance. Results: The circulation and validation of Hamilton Rating Scale for Depression was relatively slow and it became a ‘Gold Standard’ ‘from below’, from an emerging consensus amongst psychiatrists undertaking clinical trials for depression, which from the 1960s were principally with psychopharmaceuticals for short-term illness. Hamilton Rating Scale for Depression, drug trials and the construction of depression as non-chronic were mutually constituted. Discussion: Hamilton Rating Scale for Depression framed depression and its sufferers in new ways, leading psychiatrists to understand illness as a treatable episode, rather than a life course condition. As such, Hamilton Rating Scale for Depression served the interests of psychiatrists and psychiatry in its new era of drug therapy outside the mental hospital. However, Hamilton Rating Scale for Depression was a strange kind of ‘standard’, being quite non-standard in the widely varying ways it was used and the meanings given to its findings. PMID:23172888

  10. Constructing an explicit AdS/CFT correspondence with Cartan geometry

    NASA Astrophysics Data System (ADS)

    Hazboun, Jeffrey S.

    2018-04-01

    An explicit AdS/CFT correspondence is shown for the Lie group SO (4 , 2). The Lie symmetry structures allow for the construction of two physical theories through the tools of Cartan geometry. One is a gravitational theory that has anti-de Sitter symmetry. The other is also a gravitational theory but is conformally symmetric and lives on 8-dimensional biconformal space. These "extra" four dimensions have the degrees of freedom used to construct a Yang-Mills theory. The two theories, based on AdS or conformal symmetry, have a natural correspondence in the context of their Lie algebras alone where neither SUSY, nor holography, is necessary.

  11. Evaluation of End Mill Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. J. Lazarus; R. L. Hester,

    2005-08-01

    Milling tests were run on families of High Speed Steel (HSS) end mills to determine their lives while machining 304 Stainless Steel. The end mills tested were made from M7, M42 and T15-CPM High Speed Steels. The end mills were also evaluated with no coatings as well as with Titanium Nitride (TiN) and Titanium Carbo-Nitride (TiCN) coatings to determine which combination of HSS and coating provided the highest increase in end mill life while increasing the cost of the tool the least. We found end mill made from M42 gave us the largest increase in tool life with the leastmore » increase in cost. The results of this study will be used by Cutting Tool Engineering in determining which end mill descriptions will be dropped from our tool catalog.« less

  12. Topics in Nonsupersymmetric Scattering Amplitudes in Gauge and Gravity Theories

    NASA Astrophysics Data System (ADS)

    Nohle, Joshua David

    In Chapters 1 and 2, we introduce and review the duality between color and kinematics in Yang-Mills theory uncovered by Bern, Carrasco and Johansson (BCJ). In Chapter 3, we provide evidence in favor of the conjectured duality between color and kinematics for the case of nonsupersymmetric pure Yang-Mills amplitudes by constructing a form of the one-loop four-point amplitude of this theory that makes the duality manifest. Our construction is valid in any dimension. We also describe a duality-satisfying representation for the two-loop four-point amplitude with identical four-dimensional external helicities. We use these results to obtain corresponding gravity integrands for a theory containing a graviton, dilaton, and antisymmetric tensor, simply by replacing color factors with specified diagram numerators. Using this, we give explicit forms of ultraviolet divergences at one loop in four, six, and eight dimensions, and at two loops in four dimensions. In Chapter 4, we extend the four-point one-loop nonsupersymmetric pure Yang-Mills discussion of Chapter 3 to include fermions and scalars circulating in the loop with all external gluons. This gives another nontrivial loop-level example showing that the duality between color and kinematics holds in nonsupersymmetric gauge theory. The construction is valid in any spacetime dimension and written in terms of formal polarization vectors. We also convert these expressions into a four-dimensional form with explicit external helicity states. Using this, we compare our results to one-loop duality-satisfying amplitudes that are already present in literature. In Chapter 5, we switch from the topic of color-kinematics duality to discuss the recently renewed interest in the soft behavior of gravitons and gluons. Specifically, we discuss the subleading low-energy behavior. Cachazo and Strominger recently proposed an extension of the soft-graviton theorem found by Weinberg. In addition, they proved the validity of their extension at

  13. Viscous warm inflation: Hamilton-Jacobi formalism

    NASA Astrophysics Data System (ADS)

    Akhtari, L.; Mohammadi, A.; Sayar, K.; Saaidi, Kh.

    2017-04-01

    Using Hamilton-Jacobi formalism, the scenario of warm inflation with viscous pressure is considered. The formalism gives a way of computing the slow-rolling parameter without extra approximation, and it is well-known as a powerful method in cold inflation. The model is studied in detail for three different cases of the dissipation and bulk viscous pressure coefficients. In the first case where both coefficients are taken as constant, it is shown that the case could not portray warm inflationary scenario compatible with observational data even it is possible to restrict the model parameters. For other cases, the results shows that the model could properly predicts the perturbation parameters in which they stay in perfect agreement with Planck data. As a further argument, r -ns and αs -ns are drown that show the acquired result could stand in acceptable area expressing a compatibility with observational data.

  14. Biomass torrefaction mill

    DOEpatents

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  15. String splitting and strong coupling meson decay.

    PubMed

    Cotrone, A L; Martucci, L; Troost, W

    2006-04-14

    We study the decay of high spin mesons using the gauge-string theory correspondence. The rate of the process is calculated by studying the splitting of a macroscopic string intersecting a D-brane. The result is applied to the decay of mesons in N=4 super Yang-Mills theory with a small number of flavors and in a gravity dual of large N QCD. In QCD the decay of high spin mesons is found to be heavily suppressed in the regime of validity of the supergravity description.

  16. High-Order Central WENO Schemes for 1D Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    In this paper we derive fully-discrete Central WENO (CWENO) schemes for approximating solutions of one dimensional Hamilton-Jacobi (HJ) equations, which combine our previous works. We introduce third and fifth-order accurate schemes, which are the first central schemes for the HJ equations of order higher than two. The core ingredient is the derivation of our schemes is a high-order CWENO reconstructions in space.

  17. [Herbs for calming liver and suppressing yang in treatment of hyperthyroidism with hyperactive liver yang: herbal effects on lymphocyte protein expression].

    PubMed

    Li, Xiangping; Yin, Tao; Zhong, Guangwei; Li, Wei; Luo, Yanhong; Xiang, Lingli; Liu, Zhehao

    2011-07-01

    To observe the herbal effects on hyperthyroidism patients with syndrome of hyperactivity of liver-Yang by method for calming the liver and suppressing Yang and investigate its effects on the lymphocyte protein expression. This approach may lay a foundation for the further investigation of the curative mechanisms of calming the liver and suppressing Yang treatment. A total of 48 hyperthyroidism patients with syndrome of hyperactivity of liver-Yang were randomly divided into treatment group and control group. The treatment group was treated by method for calming the liver and suppressing Yang in accordance with traditional Chinese medicine (TCM) and the control group with thiamazole tablets for three periods of treatment The therapeutic effects, the score of TCM symptom, electrocardiogram (P wave), thyroid hormones and ultrasound were observed in both groups before and after the treatment. The side effects in the treatment course were observed in both groups. The level of differential protein expression was analyzed by two-dimensional electrphoresis and matrix assisted laser desorption/ionizaton time-of-flight mass spectrometry. The treatment group has the effect on stepping down the heart rate, cutting down the P wave amplitude changes, regulating the level of thyroid hormones and decreasing the volume of thyromegaly. There are not statistically significant between the treatment group and control group. However, the treatment group has obviously better effect on regulating TCM symptom and decreasing the side reaction than the control group (P<0.05). There are not statistically significant on the total effective between the treatment group and control group. The average spots in lymphocyte for normal people, before and after treating hyperthyroidism patients with syndrome of hyperactivity of liver-Yang were (429 +/- 31), (452 +/- 28) and (437 +/- 36) spots respectively. Eight down-regulated protein expressions and 11 up-regulated protein expressions were obtained in

  18. S2k-Leitlinie zum Gebrauch von Präparationen zur lokalen Anwendung auf der Haut (Topika).

    PubMed

    Wohlrab, Johannes; Staubach, Petra; Augustin, Matthias; Eisert, Lisa; Hünerbein, Andreas; Nast, Alexander; Reimann, Holger; Strömer, Klaus; Mahler, Vera

    2018-03-01

    Diese Leitlinie richtet sich an Assistenz- und Fachärzte der Dermatologie sowie an Kostenträger und politische Entscheidungsgremien. Die Leitlinie wurde im formellen Konsensusverfahren (S2k) von Dermatologen unter Einbindung von Apothekern erstellt. Die Leitlinie stellt allgemeine Aspekte der Pharmakokinetik sowie der regulatorischen Begrifflichkeiten dar. Es werden Empfehlungen zur Indikation von Magistralrezepturen sowie deren Qualitätssicherung gegeben. Die Bedeutung der galenischen Grundlagen und die Problematik bei einer Substitution gegeneinander verschiedener Grundlagen werden dargestellt. Die Leitlinie umfasst Kriterien zur Auswahl einer adäquaten Grundlage sowie spezifische Aspekte zur Therapieplanung. Die Leitlinie gibt Empfehlungen zum Management bei Unverträglichkeiten gegenüber Bestandteilen der Grundlagen oder Hilfsstoffe. © 2018 The Authors | Journal compilation © Blackwell Verlag GmbH, Berlin.

  19. The nonconvex multi-dimensional Riemann problem for Hamilton-Jacobi equations

    NASA Technical Reports Server (NTRS)

    Osher, Stanley

    1989-01-01

    Simple inequalities for the Riemann problem for a Hamilton-Jacobi equation in N space dimension when neither the initial data nor the Hamiltonian need be convex (or concave) are presented. The initial data is globally continuous, affine in each orthant, with a possible jump in normal derivative across each coordinate plane, x sub i = 0. The inequalities become equalities wherever a maxmin equals a minmax and thus an exact closed form solution to this problem is then obtained.

  20. Structure and metamorphism of the Franciscan Complex, Mt. Hamilton area, Northern California

    USGS Publications Warehouse

    Blake, M.C.; Wentworth, C.M.

    1999-01-01

    Truncation of metamorphic isograds and fold axes within coherent terranes of Franciscan metagraywacke by intervening zones of melange indicate that the melange is tectonic and formed after the subduction-related metamorphism and folding. These relations are expressed in two terranes of blueschist-facies rocks of the Franciscan Complex in the Mt. Hamilton area, northern California-the Jurassic Yolla Bolly terrane and the structurally underlying Cretaceous Burnt Hills terrane. Local preservation in both terranes of basal radiolarian chert and oceanic basalt beneath continent-derived metagraywacke and argillite demonstrates thrust repetition within the coherent terranes, although these relations are scarce near Mt. Hamilton. The metagraywackes range from albite-pumpellyite blueschists to those containing well-crystallized jadeitic pyroxene, and a jadeite-in isograd can be defined in parts of the area. Primary bedding defines locally coherent structural orientations and folds within the metagraywacke units. These units are crosscut by thin zones of tectonic melange containing blocks of high-grade blueschist, serpentinite, and other exotic rocks, and a broader, but otherwise identical melange zone marks the discordant boundary between the two terranes.