Sample records for hamiltonian deformation linear

  1. On the Existence of Star Products on Quotient Spaces of Linear Hamiltonian Torus Actions

    NASA Astrophysics Data System (ADS)

    Herbig, Hans-Christian; Iyengar, Srikanth B.; Pflaum, Markus J.

    2009-08-01

    We discuss BFV deformation quantization (Bordemann et al. in A homological approach to singular reduction in deformation quantization, singularity theory, pp. 443-461. World Scientific, Hackensack, 2007) in the special case of a linear Hamiltonian torus action. In particular, we show that the Koszul complex on the moment map of an effective linear Hamiltonian torus action is acyclic. We rephrase the nonpositivity condition of Arms and Gotay (Adv Math 79(1):43-103, 1990) for linear Hamiltonian torus actions. It follows that reduced spaces of such actions admit continuous star products.

  2. Linear transformation and oscillation criteria for Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Zheng, Zhaowen

    2007-08-01

    Using a linear transformation similar to the Kummer transformation, some new oscillation criteria for linear Hamiltonian systems are established. These results generalize and improve the oscillation criteria due to I.S. Kumari and S. Umanaheswaram [I. Sowjaya Kumari, S. Umanaheswaram, Oscillation criteria for linear matrix Hamiltonian systems, J. Differential Equations 165 (2000) 174-198], Q. Yang et al. [Q. Yang, R. Mathsen, S. Zhu, Oscillation theorems for self-adjoint matrix Hamiltonian systems, J. Differential Equations 190 (2003) 306-329], and S. Chen and Z. Zheng [Shaozhu Chen, Zhaowen Zheng, Oscillation criteria of Yan type for linear Hamiltonian systems, Comput. Math. Appl. 46 (2003) 855-862]. These criteria also unify many of known criteria in literature and simplify the proofs.

  3. Modular Hamiltonians for deformed half-spaces and the averaged null energy condition

    NASA Astrophysics Data System (ADS)

    Faulkner, Thomas; Leigh, Robert G.; Parrikar, Onkar; Wang, Huajia

    2016-09-01

    We study modular Hamiltonians corresponding to the vacuum state for deformed half-spaces in relativistic quantum field theories on {{R}}^{1,d-1} . We show that in addition to the usual boost generator, there is a contribution to the modular Hamiltonian at first order in the shape deformation, proportional to the integral of the null components of the stress tensor along the Rindler horizon. We use this fact along with monotonicity of relative entropy to prove the averaged null energy condition in Minkowski space-time. This subsequently gives a new proof of the Hofman-Maldacena bounds on the parameters appearing in CFT three-point functions. Our main technical advance involves adapting newly developed perturbative methods for calculating entanglement entropy to the problem at hand. These methods were recently used to prove certain results on the shape dependence of entanglement in CFTs and here we generalize these results to excited states and real time dynamics. We also discuss the AdS/CFT counterpart of this result, making connection with the recently proposed gravitational dual for modular Hamiltonians in holographic theories.

  4. Modular Hamiltonians for deformed half-spaces and the averaged null energy condition

    DOE PAGES

    Faulkner, Thomas; Leigh, Robert G.; Parrikar, Onkar; ...

    2016-09-08

    We study modular Hamiltonians corresponding to the vacuum state for deformed half-spaces in relativistic quantum field theories on R 1,d-1. We show that in addition to the usual boost generator, there is a contribution to the modular Hamiltonian at first order in the shape deformation, proportional to the integral of the null components of the stress tensor along the Rindler horizon. We use this fact along with monotonicity of relative entropy to prove the averaged null energy condition in Minkowski space-time. This subsequently gives a new proof of the Hofman-Maldacena bounds on the parameters appearing in CFT three-point functions. Ourmore » main technical advance involves adapting newly developed perturbative methods for calculating entanglement entropy to the problem at hand. Our methods were recently used to prove certain results on the shape dependence of entanglement in CFTs and here we generalize these results to excited states and real time dynamics. Finally, we discuss the AdS/CFT counterpart of this result, making connection with the recently proposed gravitational dual for modular Hamiltonians in holographic theories.« less

  5. Modular Hamiltonians for deformed half-spaces and the averaged null energy condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulkner, Thomas; Leigh, Robert G.; Parrikar, Onkar

    We study modular Hamiltonians corresponding to the vacuum state for deformed half-spaces in relativistic quantum field theories on R 1,d-1. We show that in addition to the usual boost generator, there is a contribution to the modular Hamiltonian at first order in the shape deformation, proportional to the integral of the null components of the stress tensor along the Rindler horizon. We use this fact along with monotonicity of relative entropy to prove the averaged null energy condition in Minkowski space-time. This subsequently gives a new proof of the Hofman-Maldacena bounds on the parameters appearing in CFT three-point functions. Ourmore » main technical advance involves adapting newly developed perturbative methods for calculating entanglement entropy to the problem at hand. Our methods were recently used to prove certain results on the shape dependence of entanglement in CFTs and here we generalize these results to excited states and real time dynamics. Finally, we discuss the AdS/CFT counterpart of this result, making connection with the recently proposed gravitational dual for modular Hamiltonians in holographic theories.« less

  6. Berry phases for Landau Hamiltonians on deformed tori

    NASA Astrophysics Data System (ADS)

    Lévay, Péter

    1995-06-01

    Parametrized families of Landau Hamiltonians are introduced, where the parameter space is the Teichmüller space (topologically the complex upper half plane) corresponding to deformations of tori. The underlying SO(2,1) symmetry of the families enables an explicit calculation of the Berry phases picked up by the eigenstates when the torus is slowly deformed. It is also shown that apart from these phases that are local in origin, there are global non-Abelian ones too, related to the hidden discrete symmetry group Γϑ (the theta group, which is a subgroup of the modular group) of the families. The induced Riemannian structure on the parameter space is the usual Poincare metric on the upper half plane of constant negative curvature. Due to the discrete symmetry Γϑ the geodesic motion restricted to the fundamental domain of this group is chaotic.

  7. Focal points and principal solutions of linear Hamiltonian systems revisited

    NASA Astrophysics Data System (ADS)

    Šepitka, Peter; Šimon Hilscher, Roman

    2018-05-01

    In this paper we present a novel view on the principal (and antiprincipal) solutions of linear Hamiltonian systems, as well as on the focal points of their conjoined bases. We present a new and unified theory of principal (and antiprincipal) solutions at a finite point and at infinity, and apply it to obtain new representation of the multiplicities of right and left proper focal points of conjoined bases. We show that these multiplicities can be characterized by the abnormality of the system in a neighborhood of the given point and by the rank of the associated T-matrix from the theory of principal (and antiprincipal) solutions. We also derive some additional important results concerning the representation of T-matrices and associated normalized conjoined bases. The results in this paper are new even for completely controllable linear Hamiltonian systems. We also discuss other potential applications of our main results, in particular in the singular Sturmian theory.

  8. Deformation-Aware Log-Linear Models

    NASA Astrophysics Data System (ADS)

    Gass, Tobias; Deselaers, Thomas; Ney, Hermann

    In this paper, we present a novel deformation-aware discriminative model for handwritten digit recognition. Unlike previous approaches our model directly considers image deformations and allows discriminative training of all parameters, including those accounting for non-linear transformations of the image. This is achieved by extending a log-linear framework to incorporate a latent deformation variable. The resulting model has an order of magnitude less parameters than competing approaches to handling image deformations. We tune and evaluate our approach on the USPS task and show its generalization capabilities by applying the tuned model to the MNIST task. We gain interesting insights and achieve highly competitive results on both tasks.

  9. Linearly scaling and almost Hamiltonian dielectric continuum molecular dynamics simulations through fast multipole expansions

    NASA Astrophysics Data System (ADS)

    Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-11-01

    Hamiltonian Dielectric Solvent (HADES) is a recent method [S. Bauer et al., J. Chem. Phys. 140, 104103 (2014)] which enables atomistic Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric solvent continua. Such simulations become rapidly impractical for large proteins, because the computational effort of HADES scales quadratically with the number N of atoms. If one tries to achieve linear scaling by applying a fast multipole method (FMM) to the computation of the HADES electrostatics, the Hamiltonian character (conservation of total energy, linear, and angular momenta) may get lost. Here, we show that the Hamiltonian character of HADES can be almost completely preserved, if the structure-adapted fast multipole method (SAMM) as recently redesigned by Lorenzen et al. [J. Chem. Theory Comput. 10, 3244-3259 (2014)] is suitably extended and is chosen as the FMM module. By this extension, the HADES/SAMM forces become exact gradients of the HADES/SAMM energy. Their translational and rotational invariance then guarantees (within the limits of numerical accuracy) the exact conservation of the linear and angular momenta. Also, the total energy is essentially conserved—up to residual algorithmic noise, which is caused by the periodically repeated SAMM interaction list updates. These updates entail very small temporal discontinuities of the force description, because the employed SAMM approximations represent deliberately balanced compromises between accuracy and efficiency. The energy-gradient corrected version of SAMM can also be applied, of course, to MD simulations of all-atom solvent-solute systems enclosed by periodic boundary conditions. However, as we demonstrate in passing, this choice does not offer any serious advantages.

  10. Linearly scaling and almost Hamiltonian dielectric continuum molecular dynamics simulations through fast multipole expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul, E-mail: tavan@physik.uni-muenchen.de

    2015-11-14

    Hamiltonian Dielectric Solvent (HADES) is a recent method [S. Bauer et al., J. Chem. Phys. 140, 104103 (2014)] which enables atomistic Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric solvent continua. Such simulations become rapidly impractical for large proteins, because the computational effort of HADES scales quadratically with the number N of atoms. If one tries to achieve linear scaling by applying a fast multipole method (FMM) to the computation of the HADES electrostatics, the Hamiltonian character (conservation of total energy, linear, and angular momenta) may get lost. Here, we show that the Hamiltonian character of HADESmore » can be almost completely preserved, if the structure-adapted fast multipole method (SAMM) as recently redesigned by Lorenzen et al. [J. Chem. Theory Comput. 10, 3244-3259 (2014)] is suitably extended and is chosen as the FMM module. By this extension, the HADES/SAMM forces become exact gradients of the HADES/SAMM energy. Their translational and rotational invariance then guarantees (within the limits of numerical accuracy) the exact conservation of the linear and angular momenta. Also, the total energy is essentially conserved—up to residual algorithmic noise, which is caused by the periodically repeated SAMM interaction list updates. These updates entail very small temporal discontinuities of the force description, because the employed SAMM approximations represent deliberately balanced compromises between accuracy and efficiency. The energy-gradient corrected version of SAMM can also be applied, of course, to MD simulations of all-atom solvent-solute systems enclosed by periodic boundary conditions. However, as we demonstrate in passing, this choice does not offer any serious advantages.« less

  11. Hamiltonian analysis for linearly acceleration-dependent Lagrangians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz, Miguel, E-mail: miguelcruz02@uv.mx, E-mail: roussjgc@gmail.com, E-mail: molgado@fc.uaslp.mx, E-mail: efrojas@uv.mx; Gómez-Cortés, Rosario, E-mail: miguelcruz02@uv.mx, E-mail: roussjgc@gmail.com, E-mail: molgado@fc.uaslp.mx, E-mail: efrojas@uv.mx; Rojas, Efraín, E-mail: miguelcruz02@uv.mx, E-mail: roussjgc@gmail.com, E-mail: molgado@fc.uaslp.mx, E-mail: efrojas@uv.mx

    2016-06-15

    We study the constrained Ostrogradski-Hamilton framework for the equations of motion provided by mechanical systems described by second-order derivative actions with a linear dependence in the accelerations. We stress out the peculiar features provided by the surface terms arising for this type of theories and we discuss some important properties for this kind of actions in order to pave the way for the construction of a well defined quantum counterpart by means of canonical methods. In particular, we analyse in detail the constraint structure for these theories and its relation to the inherent conserved quantities where the associated energies togethermore » with a Noether charge may be identified. The constraint structure is fully analyzed without the introduction of auxiliary variables, as proposed in recent works involving higher order Lagrangians. Finally, we also provide some examples where our approach is explicitly applied and emphasize the way in which our original arrangement results in propitious for the Hamiltonian formulation of covariant field theories.« less

  12. A position-dependent mass harmonic oscillator and deformed space

    NASA Astrophysics Data System (ADS)

    da Costa, Bruno G.; Borges, Ernesto P.

    2018-04-01

    We consider canonically conjugated generalized space and linear momentum operators x^ q and p^ q in quantum mechanics, associated with a generalized translation operator which produces infinitesimal deformed displacements controlled by a deformation parameter q. A canonical transformation (x ^ ,p ^ ) →(x^ q,p^ q ) leads the Hamiltonian of a position-dependent mass particle in usual space to another Hamiltonian of a particle with constant mass in a conservative force field of the deformed space. The equation of motion for the classical phase space (x, p) may be expressed in terms of the deformed (dual) q-derivative. We revisit the problem of a q-deformed oscillator in both classical and quantum formalisms. Particularly, this canonical transformation leads a particle with position-dependent mass in a harmonic potential to a particle with constant mass in a Morse potential. The trajectories in phase spaces (x, p) and (xq, pq) are analyzed for different values of the deformation parameter. Finally, we compare the results of the problem in classical and quantum formalisms through the principle of correspondence and the WKB approximation.

  13. A study of the linear free energy model for DNA structures using the generalized Hamiltonian formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yavari, M., E-mail: yavari@iaukashan.ac.ir

    2016-06-15

    We generalize the results of Nesterenko [13, 14] and Gogilidze and Surovtsev [15] for DNA structures. Using the generalized Hamiltonian formalism, we investigate solutions of the equilibrium shape equations for the linear free energy model.

  14. Duality and integrability: Electromagnetism, linearized gravity, and massless higher spin gauge fields as bi-Hamiltonian systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnich, Glenn; Troessaert, Cedric

    2009-04-15

    In the reduced phase space of electromagnetism, the generator of duality rotations in the usual Poisson bracket is shown to generate Maxwell's equations in a second, much simpler Poisson bracket. This gives rise to a hierarchy of bi-Hamiltonian evolution equations in the standard way. The result can be extended to linearized Yang-Mills theory, linearized gravity, and massless higher spin gauge fields.

  15. Sparse 4D TomoSAR imaging in the presence of non-linear deformation

    NASA Astrophysics Data System (ADS)

    Khwaja, Ahmed Shaharyar; ćetin, Müjdat

    2018-04-01

    In this paper, we present a sparse four-dimensional tomographic synthetic aperture radar (4D TomoSAR) imaging scheme that can estimate elevation and linear as well as non-linear seasonal deformation rates of scatterers using the interferometric phase. Unlike existing sparse processing techniques that use fixed dictionaries based on a linear deformation model, we use a variable dictionary for the non-linear deformation in the form of seasonal sinusoidal deformation, in addition to the fixed dictionary for the linear deformation. We estimate the amplitude of the sinusoidal deformation using an optimization method and create the variable dictionary using the estimated amplitude. We show preliminary results using simulated data that demonstrate the soundness of our proposed technique for sparse 4D TomoSAR imaging in the presence of non-linear deformation.

  16. sdg Interacting boson hamiltonian in the seniority scheme

    NASA Astrophysics Data System (ADS)

    Yoshinaga, N.

    1989-03-01

    The sdg interacting boson hamiltonian is derived in the seniority scheme. We use the method of Otsuka, Arima and Iachello in order to derive the boson hamiltonian from the fermion hamiltonian. To examine how good is the boson approximation in the zeroth-order, we carry out the exact shell model calculations in a single j-shell. It is found that almost all low-lying levels are reproduced quite well by diagonalizing the sdg interacting boson hamiltonian in the vibrational case. In the deformed case the introduction of g-bosons improves the reproduction of the spectra and of the binding energies which are obtained by diagonalizing the exact shell model hamiltonian. In particular the sdg interacting boson model reproduces well-developed rotational bands.

  17. Two-layer interfacial flows beyond the Boussinesq approximation: a Hamiltonian approach

    NASA Astrophysics Data System (ADS)

    Camassa, R.; Falqui, G.; Ortenzi, G.

    2017-02-01

    The theory of integrable systems of Hamiltonian PDEs and their near-integrable deformations is used to study evolution equations resulting from vertical-averages of the Euler system for two-layer stratified flows in an infinite two-dimensional channel. The Hamiltonian structure of the averaged equations is obtained directly from that of the Euler equations through the process of Hamiltonian reduction. Long-wave asymptotics together with the Boussinesq approximation of neglecting the fluids’ inertia is then applied to reduce the leading order vertically averaged equations to the shallow-water Airy system, albeit in a non-trivial way. The full non-Boussinesq system for the dispersionless limit can then be viewed as a deformation of this well known equation. In a perturbative study of this deformation, a family of approximate constants of the motion are explicitly constructed and used to find local solutions of the evolution equations by means of hodograph-like formulae.

  18. Hamiltonian modelling of relative motion.

    PubMed

    Kasdin, N Jeremy; Gurfil, Pini

    2004-05-01

    This paper presents a Hamiltonian approach to modelling relative spacecraft motion based on derivation of canonical coordinates for the relative state-space dynamics. The Hamiltonian formulation facilitates the modelling of high-order terms and orbital perturbations while allowing us to obtain closed-form solutions to the relative motion problem. First, the Hamiltonian is partitioned into a linear term and a high-order term. The Hamilton-Jacobi equations are solved for the linear part by separation, and new constants for the relative motions are obtained, they are called epicyclic elements. The influence of higher order terms and perturbations, such as the oblateness of the Earth, are incorporated into the analysis by a variation of parameters procedure. Closed-form solutions for J(2-) and J(4-)invariant orbits and for periodic high-order unperturbed relative motion, in terms of the relative motion elements only, are obtained.

  19. Hamiltonian stability for weighted measure and generalized Lagrangian mean curvature flow

    NASA Astrophysics Data System (ADS)

    Kajigaya, Toru; Kunikawa, Keita

    2018-06-01

    In this paper, we generalize several results for the Hamiltonian stability and the mean curvature flow of Lagrangian submanifolds in a Kähler-Einstein manifold to more general Kähler manifolds including a Fano manifold equipped with a Kähler form ω ∈ 2 πc1(M) by using the method proposed by Behrndt (2011). Namely, we first consider a weighted measure on a Lagrangian submanifold L in a Kähler manifold M and investigate the variational problem of L for the weighted volume functional. We call a stationary point of the weighted volume functional f-minimal, and define the notion of Hamiltonian f-stability as a local minimizer under Hamiltonian deformations. We show such examples naturally appear in a toric Fano manifold. Moreover, we consider the generalized Lagrangian mean curvature flow in a Fano manifold which is introduced by Behrndt and Smoczyk-Wang. We generalize the result of H. Li, and show that if the initial Lagrangian submanifold is a small Hamiltonian deformation of an f-minimal and Hamiltonian f-stable Lagrangian submanifold, then the generalized MCF converges exponentially fast to an f-minimal Lagrangian submanifold.

  20. Inter and intra-modal deformable registration: continuous deformations meet efficient optimal linear programming.

    PubMed

    Glocker, Ben; Paragios, Nikos; Komodakis, Nikos; Tziritas, Georgios; Navab, Nassir

    2007-01-01

    In this paper we propose a novel non-rigid volume registration based on discrete labeling and linear programming. The proposed framework reformulates registration as a minimal path extraction in a weighted graph. The space of solutions is represented using a set of a labels which are assigned to predefined displacements. The graph topology corresponds to a superimposed regular grid onto the volume. Links between neighborhood control points introduce smoothness, while links between the graph nodes and the labels (end-nodes) measure the cost induced to the objective function through the selection of a particular deformation for a given control point once projected to the entire volume domain, Higher order polynomials are used to express the volume deformation from the ones of the control points. Efficient linear programming that can guarantee the optimal solution up to (a user-defined) bound is considered to recover the optimal registration parameters. Therefore, the method is gradient free, can encode various similarity metrics (simple changes on the graph construction), can guarantee a globally sub-optimal solution and is computational tractable. Experimental validation using simulated data with known deformation, as well as manually segmented data demonstrate the extreme potentials of our approach.

  1. Exploring corrections to the Optomechanical Hamiltonian.

    PubMed

    Sala, Kamila; Tufarelli, Tommaso

    2018-06-14

    We compare two approaches for deriving corrections to the "linear model" of cavity optomechanics, in order to describe effects that are beyond first order in the radiation pressure coupling. In the regime where the mechanical frequency is much lower than the cavity one, we compare: (I) a widely used phenomenological Hamiltonian conserving the photon number; (II) a two-mode truncation of C. K. Law's microscopic model, which we take as the "true" system Hamiltonian. While these approaches agree at first order, the latter model does not conserve the photon number, resulting in challenging computations. We find that approach (I) allows for several analytical predictions, and significantly outperforms the linear model in our numerical examples. Yet, we also find that the phenomenological Hamiltonian cannot fully capture all high-order corrections arising from the C. K. Law model.

  2. Finite-dimensional Liouville integrable Hamiltonian systems generated from Lax pairs of a bi-Hamiltonian soliton hierarchy by symmetry constraints

    NASA Astrophysics Data System (ADS)

    Manukure, Solomon

    2018-04-01

    We construct finite-dimensional Hamiltonian systems by means of symmetry constraints from the Lax pairs and adjoint Lax pairs of a bi-Hamiltonian hierarchy of soliton equations associated with the 3-dimensional special linear Lie algebra, and discuss the Liouville integrability of these systems based on the existence of sufficiently many integrals of motion.

  3. Mechanical design of deformation compensated flexural pivots structured for linear nanopositioning stages

    DOEpatents

    Shu, Deming; Kearney, Steven P.; Preissner, Curt A.

    2015-02-17

    A method and deformation compensated flexural pivots structured for precision linear nanopositioning stages are provided. A deformation-compensated flexural linear guiding mechanism includes a basic parallel mechanism including a U-shaped member and a pair of parallel bars linked to respective pairs of I-link bars and each of the I-bars coupled by a respective pair of flexural pivots. The basic parallel mechanism includes substantially evenly distributed flexural pivots minimizing center shift dynamic errors.

  4. Change in Stiffness of Pavement Layers in the Linear Discontinuous Deformation Area

    NASA Astrophysics Data System (ADS)

    Grygierek, Marcin

    2017-10-01

    The underground mining exploitation causes deformations on the surface of the area which are classified as continuous or discontinuous. Mining deformations cause loosening or compression of the subsoil. Loosening has an impact on the reduction of the subsoil stiffness. As a result the reduction of subsoil stiffness causes loosening of construction layers built in that subsoil. Pavement is a specific case. If there happens to be loosening then the fatigue life of pavement is reduced and premature damages can be observed such as fatigue cracks or/and structural deformation. Discontinuous deformations are an especially interesting case. They not only cause the reduction of the stiffness of the subsoil and pavement layers but also cause rapid deterioration in roughness. Change of roughness is very dangerous especially on fast roads such as a highway. Lately there can be observed the so called linear discontinuous surface deformations in the lanes in the mining area. Unfortunately, the ‘in situ’ research, presenting experiments on the effect of linear discontinuous deformations on the pavement, is in short supply. It is especially crucial with regard to the design of pavement reinforcement and the specification of optimal length of the reinforced part of the road. The article presents the results of ‘in situ’ tests carried out on the chosen pavements where the so called linear discontinuous surface deformation has appeared. The genesis of the damage is connected with the underground mining exploitation. Falling Weight Deflectometer (FWD) has been used in researches. Measuring points were carried out with high frequency which helped to acquire a very interesting distribution of deflections. The distribution of deflections well shows the impact of linear discontinuous deformation on the changes in stiffness pavement layers. In the analysis of data from FWD there has been used back calculation which worked modulus of layers out. The results of researches and

  5. Large deformation image classification using generalized locality-constrained linear coding.

    PubMed

    Zhang, Pei; Wee, Chong-Yaw; Niethammer, Marc; Shen, Dinggang; Yap, Pew-Thian

    2013-01-01

    Magnetic resonance (MR) imaging has been demonstrated to be very useful for clinical diagnosis of Alzheimer's disease (AD). A common approach to using MR images for AD detection is to spatially normalize the images by non-rigid image registration, and then perform statistical analysis on the resulting deformation fields. Due to the high nonlinearity of the deformation field, recent studies suggest to use initial momentum instead as it lies in a linear space and fully encodes the deformation field. In this paper we explore the use of initial momentum for image classification by focusing on the problem of AD detection. Experiments on the public ADNI dataset show that the initial momentum, together with a simple sparse coding technique-locality-constrained linear coding (LLC)--can achieve a classification accuracy that is comparable to or even better than the state of the art. We also show that the performance of LLC can be greatly improved by introducing proper weights to the codebook.

  6. Explicit methods in extended phase space for inseparable Hamiltonian problems

    NASA Astrophysics Data System (ADS)

    Pihajoki, Pauli

    2015-03-01

    We present a method for explicit leapfrog integration of inseparable Hamiltonian systems by means of an extended phase space. A suitably defined new Hamiltonian on the extended phase space leads to equations of motion that can be numerically integrated by standard symplectic leapfrog (splitting) methods. When the leapfrog is combined with coordinate mixing transformations, the resulting algorithm shows good long term stability and error behaviour. We extend the method to non-Hamiltonian problems as well, and investigate optimal methods of projecting the extended phase space back to original dimension. Finally, we apply the methods to a Hamiltonian problem of geodesics in a curved space, and a non-Hamiltonian problem of a forced non-linear oscillator. We compare the performance of the methods to a general purpose differential equation solver LSODE, and the implicit midpoint method, a symplectic one-step method. We find the extended phase space methods to compare favorably to both for the Hamiltonian problem, and to the implicit midpoint method in the case of the non-linear oscillator.

  7. BRST theory without Hamiltonian and Lagrangian

    NASA Astrophysics Data System (ADS)

    Lyakhovich, S. L.; Sharapov, A. A.

    2005-03-01

    We consider a generic gauge system, whose physical degrees of freedom are obtained by restriction on a constraint surface followed by factorization with respect to the action of gauge transformations; in so doing, no Hamiltonian structure or action principle is supposed to exist. For such a generic gauge system we construct a consistent BRST formulation, which includes the conventional BV Lagrangian and BFV Hamiltonian schemes as particular cases. If the original manifold carries a weak Poisson structure (a bivector field giving rise to a Poisson bracket on the space of physical observables) the generic gauge system is shown to admit deformation quantization by means of the Kontsevich formality theorem. A sigma-model interpretation of this quantization algorithm is briefly discussed.

  8. Hamiltonian dynamics of extended objects

    NASA Astrophysics Data System (ADS)

    Capovilla, R.; Guven, J.; Rojas, E.

    2004-12-01

    We consider relativistic extended objects described by a reparametrization-invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behaviour under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory is described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations are shown to be consistent with the Euler Lagrange equations.

  9. Influence of linearly polarized near-infrared irradiation on deformability of human stored erythrocytes.

    PubMed

    Yokoyama, Kozo; Sugiyama, Kazuna

    2003-02-01

    To investigate the influence of linearly polarized near-infrared irradiation using the Super Lizer trade mark on deformability of human erythrocytes. Not only low-powered laser but also linearly polarized near-infrared beams have some biostimulation effects on various tissues. There were some reports of erythrocyte deformability improved by low-powered He-Ne laser irradiation. Human erythrocyte samples stored for three weeks were adjusted to 30% hematocrit. Erythrocyte deformability presented as the filter filtration rate was measured. There was no difference of the filter filtration rate between control group without irradiation and the group of 125 mJ/cm(2) exposure level at a wavelength of 830 nm. However, the groups of 625 and 1,250 mJ/cm(2) exposure levels at a wavelength of 830 nm showed higher filter filtration rates compared to the control group. Linearly polarized near-infrared irradiation in a range of 625-1,250 mJ/cm(2) exposure level at a wavelength of 830 nm improved deformability of human stored erythrocytes.

  10. Hamiltonian quantum simulation with bounded-strength controls

    NASA Astrophysics Data System (ADS)

    Bookatz, Adam D.; Wocjan, Pawel; Viola, Lorenza

    2014-04-01

    We propose dynamical control schemes for Hamiltonian simulation in many-body quantum systems that avoid instantaneous control operations and rely solely on realistic bounded-strength control Hamiltonians. Each simulation protocol consists of periodic repetitions of a basic control block, constructed as a modification of an ‘Eulerian decoupling cycle,’ that would otherwise implement a trivial (zero) target Hamiltonian. For an open quantum system coupled to an uncontrollable environment, our approach may be employed to engineer an effective evolution that simulates a target Hamiltonian on the system while suppressing unwanted decoherence to the leading order, thereby allowing for dynamically corrected simulation. We present illustrative applications to both closed- and open-system simulation settings, with emphasis on simulation of non-local (two-body) Hamiltonians using only local (one-body) controls. In particular, we provide simulation schemes applicable to Heisenberg-coupled spin chains exposed to general linear decoherence, and show how to simulate Kitaev's honeycomb lattice Hamiltonian starting from Ising-coupled qubits, as potentially relevant to the dynamical generation of a topologically protected quantum memory. Additional implications for quantum information processing are discussed.

  11. Review: Hamiltonian Linearization of the Rest-Frame Instant Form of Tetrad Gravity in a Completely Fixed 3-Orthogonal Gauge: A Radiation Gauge for Background-Independent Gravitational Waves in a Post-Minkowskian Einstein Spacetime

    NASA Astrophysics Data System (ADS)

    Agresti, Juri; De Pietri, Roberto; Lusanna, Luca; Martucci, Luca

    2004-05-01

    In the framework of the rest-frame instant form of tetrad gravity, where the Hamiltonian is the weak ADM energy {\\hat E}ADM, we define a special completely fixed 3-orthogonal Hamiltonian gauge, corresponding to a choice of non-harmonic 4-coordinates, in which the independent degrees of freedom of the gravitational field are described by two pairs of canonically conjugate Dirac observables (DO) r_{\\bar a}(\\tau ,\\vec \\sigma ), \\pi_{\\bar a}(\\tau ,\\vec \\sigma ), \\bar a = 1,2. We define a Hamiltonian linearization of the theory, i.e. gravitational waves, without introducing any background 4-metric, by retaining only the linear terms in the DO's in the super-hamiltonian constraint (the Lichnerowicz equation for the conformal factor of the 3-metric) and the quadratic terms in the DO's in {\\hat E}ADM. We solve all the constraints of the linearized theory: this amounts to work in a well defined post-Minkowskian Christodoulou-Klainermann space-time. The Hamilton equations imply the wave equation for the DO's r_{\\bar a}(\\tau ,\\vec \\sigma ), which replace the two polarizations of the TT harmonic gauge, and that linearized Einstein's equations are satisfied. Finally we study the geodesic equation, both for time-like and null geodesics, and the geodesic deviation equation.

  12. Birkhoffian symplectic algorithms derived from Hamiltonian symplectic algorithms

    NASA Astrophysics Data System (ADS)

    Xin-Lei, Kong; Hui-Bin, Wu; Feng-Xiang, Mei

    2016-01-01

    In this paper, we focus on the construction of structure preserving algorithms for Birkhoffian systems, based on existing symplectic schemes for the Hamiltonian equations. The key of the method is to seek an invertible transformation which drives the Birkhoffian equations reduce to the Hamiltonian equations. When there exists such a transformation, applying the corresponding inverse map to symplectic discretization of the Hamiltonian equations, then resulting difference schemes are verified to be Birkhoffian symplectic for the original Birkhoffian equations. To illustrate the operation process of the method, we construct several desirable algorithms for the linear damped oscillator and the single pendulum with linear dissipation respectively. All of them exhibit excellent numerical behavior, especially in preserving conserved quantities. Project supported by the National Natural Science Foundation of China (Grant No. 11272050), the Excellent Young Teachers Program of North China University of Technology (Grant No. XN132), and the Construction Plan for Innovative Research Team of North China University of Technology (Grant No. XN129).

  13. Simulating highly nonlocal Hamiltonians with less nonlocal Hamiltonians

    NASA Astrophysics Data System (ADS)

    Subasi, Yigit; Jarzynski, Christopher

    The need for Hamiltonians with many-body interactions arises in various applications of quantum computing. However, interactions beyond two-body are difficult to realize experimentally. Perturbative gadgets were introduced to obtain arbitrary many-body effective interactions using Hamiltonians with two-body interactions only. Although valid for arbitrary k-body interactions, their use is limited to small k because the strength of interaction is k'th order in perturbation theory. Here we develop a nonperturbative technique for obtaining effective k-body interactions using Hamiltonians consisting of at most l-body interactions with l < k . This technique works best for Hamiltonians with a few interactions with very large k and can be used together with perturbative gadgets to embed Hamiltonians of considerable complexity in proper subspaces of two-local Hamiltonians. We describe how our technique can be implemented in a hybrid (gate-based and adiabatic) as well as solely adiabatic quantum computing scheme. We gratefully acknowledge financial support from the Lockheed Martin Corporation under Contract U12001C.

  14. Effective Hamiltonians for phosphorene and silicene

    DOE PAGES

    Lew Yan Voon, L. C.; Lopez-Bezanilla, A.; Wang, J.; ...

    2015-02-04

    Here, we derived the effective Hamiltonians for silicene and phosphorene with strain, electric field and magnetic field using the method of invariants. Our paper extends the work on silicene, and on phosphorene. Our Hamiltonians are compared to an equivalent one for graphene. For silicene, the expression for band warping is obtained analytically and found to be of different order than for graphene.We prove that a uniaxial strain does not open a gap, resolving contradictory numerical results in the literature. For phosphorene, it is shown that the bands near the Brillouin zone center only have terms in even powers of themore » wave vector.We predict that the energies change quadratically in the presence of a perpendicular external electric field but linearly in a perpendicular magnetic field, as opposed to those for silicene which vary linearly in both cases. Preliminary ab initio calculations for the intrinsic band structures have been carried out in order to evaluate some of the k · p parameters.« less

  15. Phase space flows for non-Hamiltonian systems with constraints

    NASA Astrophysics Data System (ADS)

    Sergi, Alessandro

    2005-09-01

    In this paper, non-Hamiltonian systems with holonomic constraints are treated by a generalization of Dirac’s formalism. Non-Hamiltonian phase space flows can be described by generalized antisymmetric brackets or by general Liouville operators which cannot be derived from brackets. Both situations are treated. In the first case, a Nosé-Dirac bracket is introduced as an example. In the second one, Dirac’s recipe for projecting out constrained variables from time translation operators is generalized and then applied to non-Hamiltonian linear response. Dirac’s formalism avoids spurious terms in the response function of constrained systems. However, corrections coming from phase space measure must be considered for general perturbations.

  16. Soft Ionic Electroactive Polymer Actuators with Tunable Non-Linear Angular Deformation

    PubMed Central

    Hong, Wangyujue; Almomani, Abdallah; Chen, Yuanfen; Jamshidi, Reihaneh; Montazami, Reza

    2017-01-01

    The most rational approach to fabricate soft robotics is the implementation of soft actuators. Conventional soft electromechanical actuators exhibit linear or circular deformation, based on their design. This study presents the use of conjugated polymers, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) to locally vary ion permeability of the ionic electroactive polymer actuators and manipulate ion motion through means of structural design to realize intrinsic angular deformation. Such angular deformations are closer to biomimetic systems and have potential applications in bio-robotics. Electrochemical studies reveal that the mechanism of actuation is mainly associated with the charging of electric double layer (EDL) capacitors by ion accumulation and the PEDOT:PSS layer’s expansion by ion interchange and penetration. Dependence of actuator deformation on structural design is studied experimentally and conclusions are verified by analytical and finite element method modeling. The results suggest that the ion-material interactions are considerably dominated by the design of the drop-cast PEDOT:PSS on Nafion. PMID:28773036

  17. Soft Ionic Electroactive Polymer Actuators with Tunable Non-Linear Angular Deformation.

    PubMed

    Hong, Wangyujue; Almomani, Abdallah; Chen, Yuanfen; Jamshidi, Reihaneh; Montazami, Reza

    2017-06-21

    The most rational approach to fabricate soft robotics is the implementation of soft actuators. Conventional soft electromechanical actuators exhibit linear or circular deformation, based on their design. This study presents the use of conjugated polymers, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) to locally vary ion permeability of the ionic electroactive polymer actuators and manipulate ion motion through means of structural design to realize intrinsic angular deformation. Such angular deformations are closer to biomimetic systems and have potential applications in bio-robotics. Electrochemical studies reveal that the mechanism of actuation is mainly associated with the charging of electric double layer (EDL) capacitors by ion accumulation and the PEDOT:PSS layer's expansion by ion interchange and penetration. Dependence of actuator deformation on structural design is studied experimentally and conclusions are verified by analytical and finite element method modeling. The results suggest that the ion-material interactions are considerably dominated by the design of the drop-cast PEDOT:PSS on Nafion.

  18. Nuclear Deformation at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Alhassid, Y.; Gilbreth, C. N.; Bertsch, G. F.

    2014-12-01

    Deformation, a key concept in our understanding of heavy nuclei, is based on a mean-field description that breaks the rotational invariance of the nuclear many-body Hamiltonian. We present a method to analyze nuclear deformations at finite temperature in a framework that preserves rotational invariance. The auxiliary-field Monte Carlo method is used to generate a statistical ensemble and calculate the probability distribution associated with the quadrupole operator. Applying the technique to nuclei in the rare-earth region, we identify model-independent signatures of deformation and find that deformation effects persist to temperatures higher than the spherical-to-deformed shape phase-transition temperature of mean-field theory.

  19. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    NASA Astrophysics Data System (ADS)

    Szederkényi, Gábor; Hangos, Katalin M.

    2004-04-01

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.

  20. Universal adiabatic quantum computation via the space-time circuit-to-Hamiltonian construction.

    PubMed

    Gosset, David; Terhal, Barbara M; Vershynina, Anna

    2015-04-10

    We show how to perform universal adiabatic quantum computation using a Hamiltonian which describes a set of particles with local interactions on a two-dimensional grid. A single parameter in the Hamiltonian is adiabatically changed as a function of time to simulate the quantum circuit. We bound the eigenvalue gap above the unique ground state by mapping our model onto the ferromagnetic XXZ chain with kink boundary conditions; the gap of this spin chain was computed exactly by Koma and Nachtergaele using its q-deformed version of SU(2) symmetry. We also discuss a related time-independent Hamiltonian which was shown by Janzing to be capable of universal computation. We observe that in the limit of large system size, the time evolution is equivalent to the exactly solvable quantum walk on Young's lattice.

  1. Universal Adiabatic Quantum Computation via the Space-Time Circuit-to-Hamiltonian Construction

    NASA Astrophysics Data System (ADS)

    Gosset, David; Terhal, Barbara M.; Vershynina, Anna

    2015-04-01

    We show how to perform universal adiabatic quantum computation using a Hamiltonian which describes a set of particles with local interactions on a two-dimensional grid. A single parameter in the Hamiltonian is adiabatically changed as a function of time to simulate the quantum circuit. We bound the eigenvalue gap above the unique ground state by mapping our model onto the ferromagnetic X X Z chain with kink boundary conditions; the gap of this spin chain was computed exactly by Koma and Nachtergaele using its q -deformed version of SU(2) symmetry. We also discuss a related time-independent Hamiltonian which was shown by Janzing to be capable of universal computation. We observe that in the limit of large system size, the time evolution is equivalent to the exactly solvable quantum walk on Young's lattice.

  2. A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation

    NASA Technical Reports Server (NTRS)

    Diosady, Laslo T.; Murman, Scott M.

    2018-01-01

    A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.

  3. Recursion Operators and Tri-Hamiltonian Structure of the First Heavenly Equation of Plebański

    NASA Astrophysics Data System (ADS)

    Sheftel, Mikhail; Yazıcı, Devrim

    2016-09-01

    We present first heavenly equation of Plebański in a two-component evolutionary form and obtain Lagrangian and Hamiltonian representations of this system. We study all point symmetries of the two-component system and, using the inverse Noether theorem in the Hamiltonian form, obtain all the integrals of motion corresponding to each variational (Noether) symmetry. We derive two linearly independent recursion operators for symmetries of this system related by a discrete symmetry of both the two-component system and its symmetry condition. Acting by these operators on the first Hamiltonian operator J_0 we obtain second and third Hamiltonian operators. However, we were not able to find Hamiltonian densities corresponding to the latter two operators. Therefore, we construct two recursion operators, which are either even or odd, respectively, under the above-mentioned discrete symmetry. Acting with them on J_0, we generate another two Hamiltonian operators J_+ and J_- and find the corresponding Hamiltonian densities, thus obtaining second and third Hamiltonian representations for the first heavenly equation in a two-component form. Using P. Olver's theory of the functional multi-vectors, we check that the linear combination of J_0, J_+ and J_- with arbitrary constant coefficients satisfies Jacobi identities. Since their skew symmetry is obvious, these three operators are compatible Hamiltonian operators and hence we obtain a tri-Hamiltonian representation of the first heavenly equation. Our well-founded conjecture applied here is that P. Olver's method works fine for nonlocal operators and our proof of the Jacobi identities and bi-Hamiltonian structures crucially depends on the validity of this conjecture.

  4. Study of non-linear deformation of vocal folds in simulations of human phonation

    NASA Astrophysics Data System (ADS)

    Saurabh, Shakti; Bodony, Daniel

    2014-11-01

    Direct numerical simulation is performed on a two-dimensional compressible, viscous fluid interacting with a non-linear, viscoelastic solid as a model for the generation of the human voice. The vocal fold (VF) tissues are modeled as multi-layered with varying stiffness in each layer and using a finite-strain Standard Linear Solid (SLS) constitutive model implemented in a quadratic finite element code and coupled to a high-order compressible Navier-Stokes solver through a boundary-fitted fluid-solid interface. The large non-linear mesh deformation is handled using an elliptic/poisson smoothening technique. Supra-glottal flow shows asymmetry in the flow, which in turn has a coupling effect on the motion of the VF. The fully compressible simulations gives direct insight into the sound produced as pressure distributions and the vocal fold deformation helps study the unsteady vortical flow resulting from the fluid-structure interaction along the full phonation cycle. Supported by the National Science Foundation (CAREER Award Number 1150439).

  5. Similarity-transformed dyson mapping and SDG-interacting boson hamiltonian

    NASA Astrophysics Data System (ADS)

    Navrátil, P.; Dobeš, J.

    1991-10-01

    The sdg-interacting boson hamiltonian is constructed from the fermion shell-model input. The seniority boson mapping as given by the similarity-transformed Dyson boson mapping is used. The s, d, and g collective boson amplitudes are determined consistently from the mapped hamiltonian. Influence of the starting shell-model parameters is discussed. Calculations for the Sm isotopic chain and for the 148Sm, 150Nd, and 196Pt nuclei are presented. Calculated energy levels as well as E2 and E4 properties agree rather well with experimental ones. To obtain such agreement, the input shell-model parameters cannot be fixed at a constant set for several nuclei but have to be somewhat varied, especially in the deformed region. Possible reasons for this variation are discussed. Effects of the explicit g-boson consideration are shown.

  6. N=2 supersymmetric a=4-Korteweg-de Vries hierarchy derived via Gardner's deformation of Kaup-Boussinesq equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussin, V.; Kiselev, A. V.; Krutov, A. O.

    2010-08-15

    We consider the problem of constructing Gardner's deformations for the N=2 supersymmetric a=4-Korteweg-de Vries (SKdV) equation; such deformations yield recurrence relations between the super-Hamiltonians of the hierarchy. We prove the nonexistence of supersymmetry-invariant deformations that retract to Gardner's formulas for the Korteweg-de Vries (KdV) with equation under the component reduction. At the same time, we propose a two-step scheme for the recursive production of the integrals of motion for the N=2, a=4-SKdV. First, we find a new Gardner's deformation of the Kaup-Boussinesq equation, which is contained in the bosonic limit of the superhierarchy. This yields the recurrence relation between themore » Hamiltonians of the limit, whence we determine the bosonic super-Hamiltonians of the full N=2, a=4-SKdV hierarchy. Our method is applicable toward the solution of Gardner's deformation problems for other supersymmetric KdV-type systems.« less

  7. Meshless analysis of shear deformable shells: the linear model

    NASA Astrophysics Data System (ADS)

    Costa, Jorge C.; Tiago, Carlos M.; Pimenta, Paulo M.

    2013-10-01

    This work develops a kinematically linear shell model departing from a consistent nonlinear theory. The initial geometry is mapped from a flat reference configuration by a stress-free finite deformation, after which, the actual shell motion takes place. The model maintains the features of a complete stress-resultant theory with Reissner-Mindlin kinematics based on an inextensible director. A hybrid displacement variational formulation is presented, where the domain displacements and kinematic boundary reactions are independently approximated. The resort to a flat reference configuration allows the discretization using 2-D Multiple Fixed Least-Squares (MFLS) on the domain. The consistent definition of stress resultants and consequent plane stress assumption led to a neat formulation for the analysis of shells. The consistent linear approximation, combined with MFLS, made possible efficient computations with a desired continuity degree, leading to smooth results for the displacement, strain and stress fields, as shown by several numerical examples.

  8. Prediction of Undsteady Flows in Turbomachinery Using the Linearized Euler Equations on Deforming Grids

    NASA Technical Reports Server (NTRS)

    Clark, William S.; Hall, Kenneth C.

    1994-01-01

    A linearized Euler solver for calculating unsteady flows in turbomachinery blade rows due to both incident gusts and blade motion is presented. The model accounts for blade loading, blade geometry, shock motion, and wake motion. Assuming that the unsteadiness in the flow is small relative to the nonlinear mean solution, the unsteady Euler equations can be linearized about the mean flow. This yields a set of linear variable coefficient equations that describe the small amplitude harmonic motion of the fluid. These linear equations are then discretized on a computational grid and solved using standard numerical techniques. For transonic flows, however, one must use a linear discretization which is a conservative linearization of the non-linear discretized Euler equations to ensure that shock impulse loads are accurately captured. Other important features of this analysis include a continuously deforming grid which eliminates extrapolation errors and hence, increases accuracy, and a new numerically exact, nonreflecting far-field boundary condition treatment based on an eigenanalysis of the discretized equations. Computational results are presented which demonstrate the computational accuracy and efficiency of the method and demonstrate the effectiveness of the deforming grid, far-field nonreflecting boundary conditions, and shock capturing techniques. A comparison of the present unsteady flow predictions to other numerical, semi-analytical, and experimental methods shows excellent agreement. In addition, the linearized Euler method presented requires one or two orders-of-magnitude less computational time than traditional time marching techniques making the present method a viable design tool for aeroelastic analyses.

  9. Model Hamiltonian Calculations of the Nonlinear Polarizabilities of Conjugated Molecules.

    NASA Astrophysics Data System (ADS)

    Risser, Steven Michael

    This dissertation advances the theoretical knowledge of the nonlinear polarizabilities of conjugated molecules. The unifying feature of these molecules is an extended delocalized pi electron structure. The pi electrons dominate the electronic properties of the molecules, allowing prediction of molecular properties based on the treatment of just the pi electrons. Two separate pi electron Hamiltonians are used in the research. The principal Hamiltonian used is the non-interacting single-particle Huckel Hamiltonian, which replaces the Coulomb interaction among the pi electrons with a mean field interaction. The simplification allows for exact solution of the Hamiltonian for large molecules. The second Hamiltonian used for this research is the interacting multi-particle Pariser-Parr-Pople (PPP) Hamiltonian, which retains explicit Coulomb interactions. This limits exact solutions to molecules containing at most eight electrons. The molecular properties being investigated are the linear polarizability, and the second and third order hyperpolarizabilities. The hyperpolarizabilities determine the nonlinear optical response of materials. These molecular parameters are determined by two independent approaches. The results from the Huckel Hamiltonian are obtained through first, second and third order perturbation theory. The results from the PPP Hamiltonian are obtained by including the applied field directly in the Hamiltonian and determining the ground state energy at a series of field strengths. By fitting the energy to a polynomial in field strength, the polarizability and hyperpolarizabilities are determined. The Huckel Hamiltonian is used to calculate the third order hyperpolarizability of polyenes. These calculations were the first to show the average hyperpolarizability of the polyenes to be positive, and also to show the saturation of the hyperpolarizability. Comparison of these Huckel results to those from the PPP Hamiltonian shows the lack of explicit Coulomb

  10. Linear friction weld process monitoring of fixture cassette deformations using empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Bakker, O. J.; Gibson, C.; Wilson, P.; Lohse, N.; Popov, A. A.

    2015-10-01

    Due to its inherent advantages, linear friction welding is a solid-state joining process of increasing importance to the aerospace, automotive, medical and power generation equipment industries. Tangential oscillations and forge stroke during the burn-off phase of the joining process introduce essential dynamic forces, which can also be detrimental to the welding process. Since burn-off is a critical phase in the manufacturing stage, process monitoring is fundamental for quality and stability control purposes. This study aims to improve workholding stability through the analysis of fixture cassette deformations. Methods and procedures for process monitoring are developed and implemented in a fail-or-pass assessment system for fixture cassette deformations during the burn-off phase. Additionally, the de-noised signals are compared to results from previous production runs. The observed deformations as a consequence of the forces acting on the fixture cassette are measured directly during the welding process. Data on the linear friction-welding machine are acquired and de-noised using empirical mode decomposition, before the burn-off phase is extracted. This approach enables a direct, objective comparison of the signal features with trends from previous successful welds. The capacity of the whole process monitoring system is validated and demonstrated through the analysis of a large number of signals obtained from welding experiments.

  11. SU-F-J-138: An Extension of PCA-Based Respiratory Deformation Modeling Via Multi-Linear Decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iliopoulos, AS; Sun, X; Pitsianis, N

    Purpose: To address and lift the limited degree of freedom (DoF) of globally bilinear motion components such as those based on principal components analysis (PCA), for encoding and modeling volumetric deformation motion. Methods: We provide a systematic approach to obtaining a multi-linear decomposition (MLD) and associated motion model from deformation vector field (DVF) data. We had previously introduced MLD for capturing multi-way relationships between DVF variables, without being restricted by the bilinear component format of PCA-based models. PCA-based modeling is commonly used for encoding patient-specific deformation as per planning 4D-CT images, and aiding on-board motion estimation during radiotherapy. However, themore » bilinear space-time decomposition inherently limits the DoF of such models by the small number of respiratory phases. While this limit is not reached in model studies using analytical or digital phantoms with low-rank motion, it compromises modeling power in the presence of relative motion, asymmetries and hysteresis, etc, which are often observed in patient data. Specifically, a low-DoF model will spuriously couple incoherent motion components, compromising its adaptability to on-board deformation changes. By the multi-linear format of extracted motion components, MLD-based models can encode higher-DoF deformation structure. Results: We conduct mathematical and experimental comparisons between PCA- and MLD-based models. A set of temporally-sampled analytical trajectories provides a synthetic, high-rank DVF; trajectories correspond to respiratory and cardiac motion factors, including different relative frequencies and spatial variations. Additionally, a digital XCAT phantom is used to simulate a lung lesion deforming incoherently with respect to the body, which adheres to a simple respiratory trend. In both cases, coupling of incoherent motion components due to a low model DoF is clearly demonstrated. Conclusion: Multi-linear

  12. Mixed linear-non-linear inversion of crustal deformation data: Bayesian inference of model, weighting and regularization parameters

    NASA Astrophysics Data System (ADS)

    Fukuda, Jun'ichi; Johnson, Kaj M.

    2010-06-01

    We present a unified theoretical framework and solution method for probabilistic, Bayesian inversions of crustal deformation data. The inversions involve multiple data sets with unknown relative weights, model parameters that are related linearly or non-linearly through theoretic models to observations, prior information on model parameters and regularization priors to stabilize underdetermined problems. To efficiently handle non-linear inversions in which some of the model parameters are linearly related to the observations, this method combines both analytical least-squares solutions and a Monte Carlo sampling technique. In this method, model parameters that are linearly and non-linearly related to observations, relative weights of multiple data sets and relative weights of prior information and regularization priors are determined in a unified Bayesian framework. In this paper, we define the mixed linear-non-linear inverse problem, outline the theoretical basis for the method, provide a step-by-step algorithm for the inversion, validate the inversion method using synthetic data and apply the method to two real data sets. We apply the method to inversions of multiple geodetic data sets with unknown relative data weights for interseismic fault slip and locking depth. We also apply the method to the problem of estimating the spatial distribution of coseismic slip on faults with unknown fault geometry, relative data weights and smoothing regularization weight.

  13. Higher-dimensional Wannier functions of multiparameter Hamiltonians

    NASA Astrophysics Data System (ADS)

    Hanke, Jan-Philipp; Freimuth, Frank; Blügel, Stefan; Mokrousov, Yuriy

    2015-05-01

    When using Wannier functions to study the electronic structure of multiparameter Hamiltonians H(k ,λ ) carrying a dependence on crystal momentum k and an additional periodic parameter λ , one usually constructs several sets of Wannier functions for a set of values of λ . We present the concept of higher-dimensional Wannier functions (HDWFs), which provide a minimal and accurate description of the electronic structure of multiparameter Hamiltonians based on a single set of HDWFs. The obstacle of nonorthogonality of Bloch functions at different λ is overcome by introducing an auxiliary real space, which is reciprocal to the parameter λ . We derive a generalized interpolation scheme and emphasize the essential conceptual and computational simplifications in using the formalism, for instance, in the evaluation of linear response coefficients. We further implement the necessary machinery to construct HDWFs from ab initio within the full potential linearized augmented plane-wave method (FLAPW). We apply our implementation to accurately interpolate the Hamiltonian of a one-dimensional magnetic chain of Mn atoms in two important cases of λ : (i) the spin-spiral vector q and (ii) the direction of the ferromagnetic magnetization m ̂. Using the generalized interpolation of the energy, we extract the corresponding values of magnetocrystalline anisotropy energy, Heisenberg exchange constants, and spin stiffness, which compare very well with the values obtained from direct first principles calculations. For toy models we demonstrate that the method of HDWFs can also be used in applications such as the virtual crystal approximation, ferroelectric polarization, and spin torques.

  14. A partial Hamiltonian approach for current value Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Naz, R.; Mahomed, F. M.; Chaudhry, Azam

    2014-10-01

    We develop a partial Hamiltonian framework to obtain reductions and closed-form solutions via first integrals of current value Hamiltonian systems of ordinary differential equations (ODEs). The approach is algorithmic and applies to many state and costate variables of the current value Hamiltonian. However, we apply the method to models with one control, one state and one costate variable to illustrate its effectiveness. The current value Hamiltonian systems arise in economic growth theory and other economic models. We explain our approach with the help of a simple illustrative example and then apply it to two widely used economic growth models: the Ramsey model with a constant relative risk aversion (CRRA) utility function and Cobb Douglas technology and a one-sector AK model of endogenous growth are considered. We show that our newly developed systematic approach can be used to deduce results given in the literature and also to find new solutions.

  15. Hamiltonian Cycle Enumeration via Fermion-Zeon Convolution

    NASA Astrophysics Data System (ADS)

    Staples, G. Stacey

    2017-12-01

    Beginning with a simple graph having finite vertex set V, operators are induced on fermion and zeon algebras by the action of the graph's adjacency matrix and combinatorial Laplacian on the vector space spanned by the graph's vertices. When the graph is simple (undirected with no loops or multiple edges), the matrices are symmetric and the induced operators are self-adjoint. The goal of the current paper is to recover a number of known graph-theoretic results from quantum observables constructed as linear operators on fermion and zeon Fock spaces. By considering an "indeterminate" fermion/zeon Fock space, a fermion-zeon convolution operator is defined whose trace recovers the number of Hamiltonian cycles in the graph. This convolution operator is a quantum observable whose expectation reveals the number of Hamiltonian cycles in the graph.

  16. Hamiltonian structure of three-dimensional gravity in Vielbein formalism

    NASA Astrophysics Data System (ADS)

    Hajihashemi, Mahdi; Shirzad, Ahmad

    2018-01-01

    Considering Chern-Simons like gravity theories in three dimensions as first order systems, we analyze the Hamiltonian structure of three theories Topological massive gravity, New massive gravity, and Zwei-Dreibein Gravity. We show that these systems demonstrate a new feature of the constrained systems in which a new kind of constraints emerge due to factorization of determinant of the matrix of Poisson brackets of constraints. We find the desired number of degrees of freedom as well as the generating functional of local Lorentz transformations and diffeomorphism through canonical structure of the system. We also compare the Hamiltonian structure of linearized version of the considered models with the original ones.

  17. A 2-dimensional optical architecture for solving Hamiltonian path problem based on micro ring resonators

    NASA Astrophysics Data System (ADS)

    Shakeri, Nadim; Jalili, Saeed; Ahmadi, Vahid; Rasoulzadeh Zali, Aref; Goliaei, Sama

    2015-01-01

    The problem of finding the Hamiltonian path in a graph, or deciding whether a graph has a Hamiltonian path or not, is an NP-complete problem. No exact solution has been found yet, to solve this problem using polynomial amount of time and space. In this paper, we propose a two dimensional (2-D) optical architecture based on optical electronic devices such as micro ring resonators, optical circulators and MEMS based mirror (MEMS-M) to solve the Hamiltonian Path Problem, for undirected graphs in linear time. It uses a heuristic algorithm and employs n+1 different wavelengths of a light ray, to check whether a Hamiltonian path exists or not on a graph with n vertices. Then if a Hamiltonian path exists, it reports the path. The device complexity of the proposed architecture is O(n2).

  18. Quantum finance Hamiltonian for coupon bond European and barrier options.

    PubMed

    Baaquie, Belal E

    2008-03-01

    Coupon bond European and barrier options are financial derivatives that can be analyzed in the Hamiltonian formulation of quantum finance. Forward interest rates are modeled as a two-dimensional quantum field theory and its Hamiltonian and state space is defined. European and barrier options are realized as transition amplitudes of the time integrated Hamiltonian operator. The double barrier option for a financial instrument is "knocked out" (terminated with zero value) if the price of the underlying instrument exceeds or falls below preset limits; the barrier option is realized by imposing boundary conditions on the eigenfunctions of the forward interest rates' Hamiltonian. The price of the European coupon bond option and the zero coupon bond barrier option are calculated. It is shown that, is general, the constraint function for a coupon bond barrier option can -- to a good approximation -- be linearized. A calculation using an overcomplete set of eigenfunctions yields an approximate price for the coupon bond barrier option, which is given in the form of an integral of a factor that results from the barrier condition times another factor that arises from the payoff function.

  19. Linear quadratic Gaussian control of a deformable mirror adaptive optics system with time-delayed measurements

    NASA Astrophysics Data System (ADS)

    Paschall, Randall N.; Anderson, David J.

    1993-11-01

    A linear quadratic Gaussian method is proposed for a deformable mirror adaptive optics system control. Estimates of system states describing the distortion are generated by a Kalman filter based on Hartmann wave front measurements of the wave front gradient.

  20. Pauli energy spectrum for twist-deformed spacetime

    NASA Astrophysics Data System (ADS)

    Daszkiewicz, Marcin

    2018-04-01

    In this paper, we define the Pauli Hamiltonian function for the twist-deformed N-enlarged Newton-Hooke spacetime provided by M. Daszkiewicz [Mod. Phys. Lett. A 27, 1250083 (2012)]. Further, we derive its energy spectrum, i.e. we find the corresponding eigenvalues as well as the proper eigenfunctions.

  1. Representation of the exact relativistic electronic Hamiltonian within the regular approximation

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Cremer, Dieter

    2003-12-01

    The exact relativistic Hamiltonian for electronic states is expanded in terms of energy-independent linear operators within the regular approximation. An effective relativistic Hamiltonian has been obtained, which yields in lowest order directly the infinite-order regular approximation (IORA) rather than the zeroth-order regular approximation method. Further perturbational expansion of the exact relativistic electronic energy utilizing the effective Hamiltonian leads to new methods based on ordinary (IORAn) or double [IORAn(2)] perturbation theory (n: order of expansion), which provide improved energies in atomic calculations. Energies calculated with IORA4 and IORA3(2) are accurate up to c-20. Furthermore, IORA is improved by using the IORA wave function to calculate the Rayleigh quotient, which, if minimized, leads to the exact relativistic energy. The outstanding performance of this new IORA method coined scaled IORA is documented in atomic and molecular calculations.

  2. Proton-neutron sdg boson model and spherical-deformed phase transition

    NASA Astrophysics Data System (ADS)

    Otsuka, Takaharu; Sugita, Michiaki

    1988-12-01

    The spherical-deformed phase transition in nuclei is described in terms of the proton-neutron sdg interacting boson model. The sdg hamiltonian is introduced to model the pairing+quadrupole interaction. The phase transition is reproduced in this framework as a function of the boson number in the Sm isotopes, while all parameters in the hamiltonian are kept constant at values reasonable from the shell-model point of view. The sd IBM is derived from this model through the renormalization of g-boson effects.

  3. Hamiltonian purification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orsucci, Davide; Burgarth, Daniel; Facchi, Paolo

    The problem of Hamiltonian purification introduced by Burgarth et al. [Nat. Commun. 5, 5173 (2014)] is formalized and discussed. Specifically, given a set of non-commuting Hamiltonians (h{sub 1}, …, h{sub m}) operating on a d-dimensional quantum system ℋ{sub d}, the problem consists in identifying a set of commuting Hamiltonians (H{sub 1}, …, H{sub m}) operating on a larger d{sub E}-dimensional system ℋ{sub d{sub E}} which embeds ℋ{sub d} as a proper subspace, such that h{sub j} = PH{sub j}P with P being the projection which allows one to recover ℋ{sub d} from ℋ{sub d{sub E}}. The notions of spanning-set purificationmore » and generator purification of an algebra are also introduced and optimal solutions for u(d) are provided.« less

  4. Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time: application to non-rigid neuroimage registration.

    PubMed

    Wittek, Adam; Joldes, Grand; Couton, Mathieu; Warfield, Simon K; Miller, Karol

    2010-12-01

    Long computation times of non-linear (i.e. accounting for geometric and material non-linearity) biomechanical models have been regarded as one of the key factors preventing application of such models in predicting organ deformation for image-guided surgery. This contribution presents real-time patient-specific computation of the deformation field within the brain for six cases of brain shift induced by craniotomy (i.e. surgical opening of the skull) using specialised non-linear finite element procedures implemented on a graphics processing unit (GPU). In contrast to commercial finite element codes that rely on an updated Lagrangian formulation and implicit integration in time domain for steady state solutions, our procedures utilise the total Lagrangian formulation with explicit time stepping and dynamic relaxation. We used patient-specific finite element meshes consisting of hexahedral and non-locking tetrahedral elements, together with realistic material properties for the brain tissue and appropriate contact conditions at the boundaries. The loading was defined by prescribing deformations on the brain surface under the craniotomy. Application of the computed deformation fields to register (i.e. align) the preoperative and intraoperative images indicated that the models very accurately predict the intraoperative deformations within the brain. For each case, computing the brain deformation field took less than 4 s using an NVIDIA Tesla C870 GPU, which is two orders of magnitude reduction in computation time in comparison to our previous study in which the brain deformation was predicted using a commercial finite element solver executed on a personal computer. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Nonlinear dynamics of a semiquantum Hamiltonian in the vicinity of quantum unstable regimes

    NASA Astrophysics Data System (ADS)

    Kowalski, A. M.; Rossignoli, R.

    2018-04-01

    We examine the emergence of chaos in a non-linear model derived from a semiquantum Hamiltonian describing the coupling between a classical field and a quantum system. The latter corresponds to a bosonic version of a BCS-like Hamiltonian, and possesses stable and unstable regimes. The dynamics of the whole system is shown to be strongly influenced by the quantum subsystem. In particular, chaos is seen to arise in the vicinity of a quantum critical case, which separates the stable and unstable regimes of the bosonic system.

  6. Formalism for the solution of quadratic Hamiltonians with large cosine terms

    NASA Astrophysics Data System (ADS)

    Ganeshan, Sriram; Levin, Michael

    2016-02-01

    We consider quantum Hamiltonians of the form H =H0-U ∑jcos(Cj) , where H0 is a quadratic function of position and momentum variables {x1,p1,x2,p2,⋯} and the Cj's are linear in these variables. We allow H0 and Cj to be completely general with only two restrictions: we require that (1) the Cj's are linearly independent and (2) [Cj,Ck] is an integer multiple of 2 π i for all j ,k so that the different cosine terms commute with one another. Our main result is a recipe for solving these Hamiltonians and obtaining their exact low-energy spectrum in the limit U →∞ . This recipe involves constructing creation and annihilation operators and is similar in spirit to the procedure for diagonalizing quadratic Hamiltonians. In addition to our exact solution in the infinite U limit, we also discuss how to analyze these systems when U is large but finite. Our results are relevant to a number of different physical systems, but one of the most natural applications is to understanding the effects of electron scattering on quantum Hall edge modes. To demonstrate this application, we use our formalism to solve a toy model for a fractional quantum spin Hall edge with different types of impurities.

  7. Branched Hamiltonians and supersymmetry

    DOE PAGES

    Curtright, Thomas L.; Zachos, Cosmas K.

    2014-03-21

    Some examples of branched Hamiltonians are explored both classically and in the context of quantum mechanics, as recently advocated by Shapere and Wilczek. These are in fact cases of switchback potentials, albeit in momentum space, as previously analyzed for quasi-Hamiltonian chaotic dynamical systems in a classical setting, and as encountered in analogous renormalization group flows for quantum theories which exhibit RG cycles. In conclusion, a basic two-worlds model, with a pair of Hamiltonian branches related by supersymmetry, is considered in detail.

  8. Understanding nuclear motions in molecules: Derivation of Eckart frame ro-vibrational Hamiltonian operators via a gateway Hamiltonian operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szalay, Viktor, E-mail: szalay.viktor@wigner.mta.hu

    A new ro-vibrational Hamiltonian operator, named gateway Hamiltonian operator, with exact kinetic energy term, T-hat, is presented. It is in the Eckart frame and it is of the same form as Watson’s normal coordinate Hamiltonian. However, the vibrational coordinates employed are not normal coordinates. The new Hamiltonian is shown to provide easy access to Eckart frame ro-vibrational Hamiltonians with exact T-hat given in terms of any desired set of vibrational coordinates. A general expression of the Eckart frame ro-vibrational Hamiltonian operator is given and some of its properties are discussed.

  9. Exact Mapping from Many-Spin Hamiltonians to Giant-Spin Hamiltonians.

    PubMed

    Ghassemi Tabrizi, Shadan; Arbuznikov, Alexei V; Kaupp, Martin

    2018-03-26

    Thermodynamic and spectroscopic data of exchange-coupled molecular spin clusters (e.g. single-molecule magnets) are routinely interpreted in terms of two different models: the many-spin Hamiltonian (MSH) explicitly considers couplings between individual spin centers, while the giant-spin Hamiltonian (GSH) treats the system as a single collective spin. When isotropic exchange coupling is weak, the physical compatibility between both spin Hamiltonian models becomes a serious concern, due to mixing of spin multiplets by local zero-field splitting (ZFS) interactions ('S-mixing'). Until now, this effect, which makes the mapping MSH→GSH ('spin projection') non-trivial, had only been treated perturbationally (up to third order), with obvious limitations. Here, based on exact diagonalization of the MSH, canonical effective Hamiltonian theory is applied to construct a GSH that exactly matches the energies of the relevant (2S+1) states comprising an effective spin multiplet. For comparison, a recently developed strategy for the unique derivation of effective ('pseudospin') Hamiltonians, now routinely employed in ab initio calculations of mononuclear systems, is adapted to the problem of spin projection. Expansion of the zero-field Hamiltonian and the magnetic moment in terms of irreducible tensor operators (or Stevens operators) yields terms of all ranks k (up to k=2S) in the effective spin. Calculations employing published MSH parameters illustrate exact spin projection for the well-investigated [Ni(hmp)(dmb)Cl] 4 ('Ni 4 ') single-molecule magnet, which displays weak isotropic exchange (dmb=3,3-dimethyl-1-butanol, hmp - is the anion of 2-hydroxymethylpyridine). The performance of the resulting GSH in finite field is assessed in terms of EPR resonances and diabolical points. The large tunnel splitting in the M=± 4 ground doublet of the S=4 multiplet, responsible for fast tunneling in Ni 4 , is attributed to a Stevens operator with eightfold rotational symmetry, marking

  10. Discontinuous Galerkin methods for Hamiltonian ODEs and PDEs

    NASA Astrophysics Data System (ADS)

    Tang, Wensheng; Sun, Yajuan; Cai, Wenjun

    2017-02-01

    In this article, we present a unified framework of discontinuous Galerkin (DG) discretizations for Hamiltonian ODEs and PDEs. We show that with appropriate numerical fluxes the numerical algorithms deduced from DG discretizations can be combined with the symplectic methods in time to derive the multi-symplectic PRK schemes. The resulting numerical discretizations are applied to the linear and nonlinear Schrödinger equations. Some conservative properties of the numerical schemes are investigated and confirmed in the numerical experiments.

  11. Deformation of the free surface of a conducting fluid in the magnetic field of current-carrying linear conductors

    NASA Astrophysics Data System (ADS)

    Zubarev, N. M.; Zubareva, O. V.

    2017-06-01

    The magnetic shaping problem is studied for the situation where a cylindrical column of a perfectly conducting fluid is deformed by the magnetic field of a system of linear current-carrying conductors. Equilibrium is achieved due to the balance of capillary and magnetic pressures. Two two-parametric families of exact solutions of the problem are obtained with the help of conformal mapping technique. In accordance with them, the column essentially deforms in the cross section up to its disintegration.

  12. Deformed Palmprint Matching Based on Stable Regions.

    PubMed

    Wu, Xiangqian; Zhao, Qiushi

    2015-12-01

    Palmprint recognition (PR) is an effective technology for personal recognition. A main problem, which deteriorates the performance of PR, is the deformations of palmprint images. This problem becomes more severe on contactless occasions, in which images are acquired without any guiding mechanisms, and hence critically limits the applications of PR. To solve the deformation problems, in this paper, a model for non-linearly deformed palmprint matching is derived by approximating non-linear deformed palmprint images with piecewise-linear deformed stable regions. Based on this model, a novel approach for deformed palmprint matching, named key point-based block growing (KPBG), is proposed. In KPBG, an iterative M-estimator sample consensus algorithm based on scale invariant feature transform features is devised to compute piecewise-linear transformations to approximate the non-linear deformations of palmprints, and then, the stable regions complying with the linear transformations are decided using a block growing algorithm. Palmprint feature extraction and matching are performed over these stable regions to compute matching scores for decision. Experiments on several public palmprint databases show that the proposed models and the KPBG approach can effectively solve the deformation problem in palmprint verification and outperform the state-of-the-art methods.

  13. Effective field theory for triaxially deformed nuclei

    NASA Astrophysics Data System (ADS)

    Chen, Q. B.; Kaiser, N.; Meißner, Ulf-G.; Meng, J.

    2017-10-01

    Effective field theory is generalized to investigate the rotational motion of triaxially deformed even-even nuclei. The Hamiltonian for the triaxial rotor is obtained up to next-to-leading order within the effective field theory formalism. Its applicability is examined by comparing with a five-dimensional rotor-vibrator Hamiltonian for the description of the energy spectra of the ground state and γ band in Ru isotopes. It is found that by taking into account the next-to-leading order corrections, the ground state band in the whole spin region and the γ band in the low spin region are well described. The deviations for high-spin states in the γ bands point towards the importance of including vibrational degrees of freedom in the effective field theory formulation.

  14. Perspective: Quantum Hamiltonians for optical interactions

    NASA Astrophysics Data System (ADS)

    Andrews, David L.; Jones, Garth A.; Salam, A.; Woolley, R. Guy

    2018-01-01

    The multipolar Hamiltonian of quantum electrodynamics is extensively employed in chemical and optical physics to treat rigorously the interaction of electromagnetic fields with matter. It is also widely used to evaluate intermolecular interactions. The multipolar version of the Hamiltonian is commonly obtained by carrying out a unitary transformation of the Coulomb gauge Hamiltonian that goes by the name of Power-Zienau-Woolley (PZW). Not only does the formulation provide excellent agreement with experiment, and versatility in its predictive ability, but also superior physical insight. Recently, the foundations and validity of the PZW Hamiltonian have been questioned, raising a concern over issues of gauge transformation and invariance, and whether observable quantities obtained from unitarily equivalent Hamiltonians are identical. Here, an in-depth analysis of theoretical foundations clarifies the issues and enables misconceptions to be identified. Claims of non-physicality are refuted: the PZW transformation and ensuing Hamiltonian are shown to rest on solid physical principles and secure theoretical ground.

  15. Dynamics and Self-consistent Chaos in a Mean Field Hamiltonian Model

    NASA Astrophysics Data System (ADS)

    del-Castillo-Negrete, Diego

    We study a mean field Hamiltonian model that describes the collective dynamics of marginally stable fluids and plasmas in the finite N and N-> infty kinetic limit (where N is the number of particles). The linear stability of equilibria in the kinetic model is studied as well as the initial value problem including Landau damping . Numerical simulations show the existence of coherent, rotating dipole states. We approximate the dipole as two macroparticles and show that the N=2 limit has a family of rotating integrable solutions that provide an accurate description of the dynamics. We discuss the role of self-consistent Hamiltonian chaos in the formation of coherent structures, and discuss a mechanism of "violent" mixing caused by a self-consistent elliptic-hyperbolic bifurcation in phase space.

  16. Hamiltonian thermostats fail to promote heat flow

    NASA Astrophysics Data System (ADS)

    Hoover, Wm. G.; Hoover, Carol G.

    2013-12-01

    Hamiltonian mechanics can be used to constrain temperature simultaneously with energy. We illustrate the interesting situations that develop when two different temperatures are imposed within a composite Hamiltonian system. The model systems we treat are ϕ4 chains, with quartic tethers and quadratic nearest-neighbor Hooke's-law interactions. This model is known to satisfy Fourier's law. Our prototypical problem sandwiches a Newtonian subsystem between hot and cold Hamiltonian reservoir regions. We have characterized four different Hamiltonian reservoir types. There is no tendency for any of these two-temperature Hamiltonian simulations to transfer heat from the hot to the cold degrees of freedom. Evidently steady heat flow simulations require energy sources and sinks, and are therefore incompatible with Hamiltonian mechanics.

  17. On the domain of the Nelson Hamiltonian

    NASA Astrophysics Data System (ADS)

    Griesemer, M.; Wünsch, A.

    2018-04-01

    The Nelson Hamiltonian is unitarily equivalent to a Hamiltonian defined through a closed, semibounded quadratic form, the unitary transformation being explicitly known and due to Gross. In this paper, we study the mapping properties of the Gross-transform in order to characterize the regularity properties of vectors in the form domain of the Nelson Hamiltonian. Since the operator domain is a subset of the form domain, our results apply to vectors in the domain of the Hamiltonian as well. This work is a continuation of our previous work on the Fröhlich Hamiltonian.

  18. Singular reduction of resonant Hamiltonians

    NASA Astrophysics Data System (ADS)

    Meyer, Kenneth R.; Palacián, Jesús F.; Yanguas, Patricia

    2018-06-01

    We investigate the dynamics of resonant Hamiltonians with n degrees of freedom to which we attach a small perturbation. Our study is based on the geometric interpretation of singular reduction theory. The flow of the Hamiltonian vector field is reconstructed from the cross sections corresponding to an approximation of this vector field in an energy surface. This approximate system is also built using normal forms and applying reduction theory obtaining the reduced Hamiltonian that is defined on the orbit space. Generically, the reduction is of singular character and we classify the singularities in the orbit space, getting three different types of singular points. A critical point of the reduced Hamiltonian corresponds to a family of periodic solutions in the full system whose characteristic multipliers are approximated accordingly to the nature of the critical point.

  19. Generalized Heisenberg algebra and (non linear) pseudo-bosons

    NASA Astrophysics Data System (ADS)

    Bagarello, F.; Curado, E. M. F.; Gazeau, J. P.

    2018-04-01

    We propose a deformed version of the generalized Heisenberg algebra by using techniques borrowed from the theory of pseudo-bosons. In particular, this analysis is relevant when non self-adjoint Hamiltonians are needed to describe a given physical system. We also discuss relations with nonlinear pseudo-bosons. Several examples are discussed.

  20. Hamiltonian closures in fluid models for plasmas

    NASA Astrophysics Data System (ADS)

    Tassi, Emanuele

    2017-11-01

    This article reviews recent activity on the Hamiltonian formulation of fluid models for plasmas in the non-dissipative limit, with emphasis on the relations between the fluid closures adopted for the different models and the Hamiltonian structures. The review focuses on results obtained during the last decade, but a few classical results are also described, in order to illustrate connections with the most recent developments. With the hope of making the review accessible not only to specialists in the field, an introduction to the mathematical tools applied in the Hamiltonian formalism for continuum models is provided. Subsequently, we review the Hamiltonian formulation of models based on the magnetohydrodynamics description, including those based on the adiabatic and double adiabatic closure. It is shown how Dirac's theory of constrained Hamiltonian systems can be applied to impose the incompressibility closure on a magnetohydrodynamic model and how an extended version of barotropic magnetohydrodynamics, accounting for two-fluid effects, is amenable to a Hamiltonian formulation. Hamiltonian reduced fluid models, valid in the presence of a strong magnetic field, are also reviewed. In particular, reduced magnetohydrodynamics and models assuming cold ions and different closures for the electron fluid are discussed. Hamiltonian models relaxing the cold-ion assumption are then introduced. These include models where finite Larmor radius effects are added by means of the gyromap technique, and gyrofluid models. Numerical simulations of Hamiltonian reduced fluid models investigating the phenomenon of magnetic reconnection are illustrated. The last part of the review concerns recent results based on the derivation of closures preserving a Hamiltonian structure, based on the Hamiltonian structure of parent kinetic models. Identification of such closures for fluid models derived from kinetic systems based on the Vlasov and drift-kinetic equations are presented, and

  1. Weak form of Stokes-Dirac structures and geometric discretization of port-Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Kotyczka, Paul; Maschke, Bernhard; Lefèvre, Laurent

    2018-05-01

    We present the mixed Galerkin discretization of distributed parameter port-Hamiltonian systems. On the prototypical example of hyperbolic systems of two conservation laws in arbitrary spatial dimension, we derive the main contributions: (i) A weak formulation of the underlying geometric (Stokes-Dirac) structure with a segmented boundary according to the causality of the boundary ports. (ii) The geometric approximation of the Stokes-Dirac structure by a finite-dimensional Dirac structure is realized using a mixed Galerkin approach and power-preserving linear maps, which define minimal discrete power variables. (iii) With a consistent approximation of the Hamiltonian, we obtain finite-dimensional port-Hamiltonian state space models. By the degrees of freedom in the power-preserving maps, the resulting family of structure-preserving schemes allows for trade-offs between centered approximations and upwinding. We illustrate the method on the example of Whitney finite elements on a 2D simplicial triangulation and compare the eigenvalue approximation in 1D with a related approach.

  2. Modelling the 3D post-seismic deformation signal of the Maule 2010 earthquake: Viscosity heterogeneity or non-linear creep?

    NASA Astrophysics Data System (ADS)

    Peña, C.; Heidbach, O.; Moreno, M.; Li, S.; Bedford, J. R.; Oncken, O.

    2017-12-01

    The surface deformation associated with the 2010 Mw 8.8 Maule earthquake, Chile was recorded in great detail before, during and after the event. The quality of the post-seismic continuous GPS time series has facilitated a number of studies that have modelled the horizontal signal with a combination of after-slip and viscoelastic relaxation using linear Newtonian rheology. Li et al. (2017, GRL), one of the first studies that also looked into the details of the vertical post-seismic signal, showed that a homogeneous viscosity structure cannot well explain the vertical signal, but that with a heterogeneous viscosity distribution producing a better fit. It is, however, difficult to argue why viscous rock properties should change significantly with distance to the trench. Thus, here we investigate if a non-linear, strain-rate dependent power-law can fit the post-seismic signal in all three components - in particular the vertical one. We use the first 6 years of post-seismic cGPS data and investigate with a 2D geomechanical-numerical model along a profile at 36°S if non-linear creep can explain the deformation signal as well using reasonable rock properties and a temperature field derived for this region from Springer (1999). The 2D model geometry considers the slab as well as the Moho geometry. Our results show that with our model the post-seismic surface deformation signal can be reproduced as well as in the study of Li et al. (2017). These findings suggest that the largest deformations are produced by dislocation creep. Such a process would take place below the Andes ( 40 km depth) at the interface between the deeper, colder crust and the olivine-rich upper mantle, where the lowest effective viscosity results from the relaxation of tensional stresses imposed by the co-seismic displacement. Additionally, we present preliminary results from a 3D geomechanical-numerical model with the same rheology that provides more details of the post-seismic deformation especially

  3. On the chaotic diffusion in multidimensional Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Cincotta, P. M.; Giordano, C. M.; Martí, J. G.; Beaugé, C.

    2018-01-01

    We present numerical evidence that diffusion in the herein studied multidimensional near-integrable Hamiltonian systems departs from a normal process, at least for realistic timescales. Therefore, the derivation of a diffusion coefficient from a linear fit on the variance evolution of the unperturbed integrals fails. We review some topics on diffusion in the Arnold Hamiltonian and yield numerical and theoretical arguments to show that in the examples we considered, a standard coefficient would not provide a good estimation of the speed of diffusion. However, numerical experiments concerning diffusion would provide reliable information about the stability of the motion within chaotic regions of the phase space. In this direction, we present an extension of previous results concerning the dynamical structure of the Laplace resonance in Gliese-876 planetary system considering variations of the orbital parameters accordingly to the error introduced by the radial velocity determination. We found that a slight variation of the eccentricity of planet c would destabilize the inner region of the resonance that, though chaotic, shows stable when adopting the best fit values for the parameters.

  4. Analytic Description of Critical Point Nuclei in a Spherical-Axially Deformed Shape Phase Transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iachello, F.

    2001-07-30

    An approximate solution at the critical point of the spherical to axially deformed shape phase transition in nuclei is presented. The eigenvalues of the Hamiltonian are expressed in terms of zeros of Bessel functions of irrational order.

  5. Stability of Inhomogeneous Equilibria of Hamiltonian Continuous Media Field Theories

    NASA Astrophysics Data System (ADS)

    Hagstrom, George

    2013-10-01

    There are a wide variety of 1 + 1 Hamiltonian continuous media field theories that exhibit phase space pattern formation. In plasma physics, the most famous of these is the Vlasov-Poisson equation, but other examples include the incompressible Euler equation in two-dimensions and the Hamiltonian Mean Field (or XY) model. One of the characteristic phenomenon that occurs in systems described by these equations is the formation of cat's eye patterns in phase space as a result of the nonlinear saturation of instabilities. Corresponding to each of these cat's eyes is a spatially inhomogeneous equilibrium solution of the underlying model, in plasma physics these are called BGK modes, but analogous solutions exist in all of the above systems. Here we analyze the stability of inhomogeneous equilibria in the Hamiltonian Mean Field model and in the Single Wave model, which is an equation that was derived to provide a model of the formation of electron holes in plasmas. We use action angle variables and the properties of elliptic functions to analyze the resulting dispersion relation construct linearly stable inhomogeneous equilibria for in the limit of small numbers of particles and study the behavior of solutions near these equilibria. Work supported by USDOE grant no. DE-FG02-ER53223.

  6. Translation invariant time-dependent massive gravity: Hamiltonian analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mourad, Jihad; Steer, Danièle A.; Noui, Karim, E-mail: mourad@apc.univ-paris7.fr, E-mail: karim.noui@lmpt.univ-tours.fr, E-mail: steer@apc.univ-paris7.fr

    2014-09-01

    The canonical structure of the massive gravity in the first order moving frame formalism is studied. We work in the simplified context of translation invariant fields, with mass terms given by general non-derivative interactions, invariant under the diagonal Lorentz group, depending on the moving frame as well as a fixed reference frame. We prove that the only mass terms which give 5 propagating degrees of freedom are the dRGT mass terms, namely those which are linear in the lapse. We also complete the Hamiltonian analysis with the dynamical evolution of the system.

  7. Hamiltonian approach to slip-stacking dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. Y.; Ng, K. Y.

    Hamiltonian dynamics has been applied to study the slip-stacking dynamics. The canonical-perturbation method is employed to obtain the second-harmonic correction term in the slip-stacking Hamiltonian. The Hamiltonian approach provides a clear optimal method for choosing the slip-stacking parameter and improving stacking efficiency. The dynamics are applied specifically to the Fermilab Booster-Recycler complex. As a result, the dynamics can also be applied to other accelerator complexes.

  8. Hamiltonian approach to slip-stacking dynamics

    DOE PAGES

    Lee, S. Y.; Ng, K. Y.

    2017-06-29

    Hamiltonian dynamics has been applied to study the slip-stacking dynamics. The canonical-perturbation method is employed to obtain the second-harmonic correction term in the slip-stacking Hamiltonian. The Hamiltonian approach provides a clear optimal method for choosing the slip-stacking parameter and improving stacking efficiency. The dynamics are applied specifically to the Fermilab Booster-Recycler complex. As a result, the dynamics can also be applied to other accelerator complexes.

  9. Fluid-structure interaction simulations of deformable structures with non-linear thin shell elements

    NASA Astrophysics Data System (ADS)

    Asgharzadeh, Hafez; Hedayat, Mohammadali; Borazjani, Iman; Scientific Computing; Biofluids Laboratory Team

    2017-11-01

    Large deformation of structures in a fluid is simulated using a strongly coupled partitioned fluid-structure interaction (FSI) approach which is stabilized with under-relaxation and the Aitken acceleration technique. The fluid is simulated using a recently developed implicit Newton-Krylov method with a novel analytical Jacobian. Structures are simulated using a triangular thin-shell finite element formulation, which considers only translational degrees of freedom. The thin-shell method is developed on the top of a previously implemented membrane finite element formulation. A sharp interface immersed boundary method is used to handle structures in the fluid domain. The developed FSI framework is validated against two three-dimensional experiments: (1) a flexible aquatic vegetation in the fluid and (2) a heaving flexible panel in fluid. Furthermore, the developed FSI framework is used to simulate tissue heart valves, which involve large deformations and non-linear material properties. This work was supported by American Heart Association (AHA) Grant 13SDG17220022 and the Center of Computational Research (CCR) of University at Buffalo.

  10. Extension of non-linear beam models with deformable cross sections

    NASA Astrophysics Data System (ADS)

    Sokolov, I.; Krylov, S.; Harari, I.

    2015-12-01

    Geometrically exact beam theory is extended to allow distortion of the cross section. We present an appropriate set of cross-section basis functions and provide physical insight to the cross-sectional distortion from linear elastostatics. The beam formulation in terms of material (back-rotated) beam internal force resultants and work-conjugate kinematic quantities emerges naturally from the material description of virtual work of constrained finite elasticity. The inclusion of cross-sectional deformation allows straightforward application of three-dimensional constitutive laws in the beam formulation. Beam counterparts of applied loads are expressed in terms of the original three-dimensional data. Special attention is paid to the treatment of the applied stress, keeping in mind applications such as hydrogel actuators under environmental stimuli or devices made of electroactive polymers. Numerical comparisons show the ability of the beam model to reproduce finite elasticity results with good efficiency.

  11. Non-singular black holes and the limiting curvature mechanism: a Hamiltonian perspective

    NASA Astrophysics Data System (ADS)

    Ben Achour, J.; Lamy, F.; Liu, H.; Noui, K.

    2018-05-01

    We revisit the non-singular black hole solution in (extended) mimetic gravity with a limiting curvature from a Hamiltonian point of view. We introduce a parameterization of the phase space which allows us to describe fully the Hamiltonian structure of the theory. We write down the equations of motion that we solve in the regime deep inside the black hole, and we recover that the black hole has no singularity, due to the limiting curvature mechanism. Then, we study the relation between such black holes and effective polymer black holes which have been introduced in the context of loop quantum gravity. As expected, contrary to what happens in the cosmological sector, mimetic gravity with a limiting curvature fails to reproduce the usual effective dynamics of spherically symmetric loop quantum gravity which are generically not covariant. Nonetheless, we exhibit a theory in the class of extended mimetic gravity whose dynamics reproduces the general shape of the effective corrections of spherically symmetric polymer models, but in an undeformed covariant manner. These covariant effective corrections are found to be always metric dependent, i.e. within the bar mu-scheme, underlying the importance of this ingredient for inhomogeneous polymer models. In that respect, extended mimetic gravity can be viewed as an effective covariant theory which naturally implements a covariant notion of point wise holonomy-like corrections. The difference between the mimetic and polymer Hamiltonian formulations provides us with a guide to understand the deformation of covariance in inhomogeneous polymer models.

  12. Hamiltonian identifiability assisted by single-probe measurement

    NASA Astrophysics Data System (ADS)

    Sone, Akira; Cappellaro, Paola; Quantum Engineering Group Team

    2017-04-01

    We study the Hamiltonian identifiability of a many-body spin- 1 / 2 system assisted by the measurement on a single quantum probe based on the eigensystem realization algorithm (ERA) approach employed in. We demonstrate a potential application of Gröbner basis to the identifiability test of the Hamiltonian, and provide the necessary experimental resources, such as the lower bound in the number of the required sampling points, the upper bound in total required evolution time, and thus the total measurement time. Focusing on the examples of the identifiability in the spin chain model with nearest-neighbor interaction, we classify the spin-chain Hamiltonian based on its identifiability, and provide the control protocols to engineer the non-identifiable Hamiltonian to be an identifiable Hamiltonian.

  13. Constructing Dense Graphs with Unique Hamiltonian Cycles

    ERIC Educational Resources Information Center

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  14. Integrable time-dependent Hamiltonians, solvable Landau-Zener models and Gaudin magnets

    NASA Astrophysics Data System (ADS)

    Yuzbashyan, Emil A.

    2018-05-01

    We solve the non-stationary Schrödinger equation for several time-dependent Hamiltonians, such as the BCS Hamiltonian with an interaction strength inversely proportional to time, periodically driven BCS and linearly driven inhomogeneous Dicke models as well as various multi-level Landau-Zener tunneling models. The latter are Demkov-Osherov, bow-tie, and generalized bow-tie models. We show that these Landau-Zener problems and their certain interacting many-body generalizations map to Gaudin magnets in a magnetic field. Moreover, we demonstrate that the time-dependent Schrödinger equation for the above models has a similar structure and is integrable with a similar technique as Knizhnik-Zamolodchikov equations. We also discuss applications of our results to the problem of molecular production in an atomic Fermi gas swept through a Feshbach resonance and to the evaluation of the Landau-Zener transition probabilities.

  15. Quantum Hamiltonian identification from measurement time traces.

    PubMed

    Zhang, Jun; Sarovar, Mohan

    2014-08-22

    Precise identification of parameters governing quantum processes is a critical task for quantum information and communication technologies. In this Letter, we consider a setting where system evolution is determined by a parametrized Hamiltonian, and the task is to estimate these parameters from temporal records of a restricted set of system observables (time traces). Based on the notion of system realization from linear systems theory, we develop a constructive algorithm that provides estimates of the unknown parameters directly from these time traces. We illustrate the algorithm and its robustness to measurement noise by applying it to a one-dimensional spin chain model with variable couplings.

  16. Lagrangian and Hamiltonian constraints for guiding-center Hamiltonian theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tronko, Natalia; Brizard, Alain J.

    A consistent guiding-center Hamiltonian theory is derived by Lie-transform perturbation method, with terms up to second order in magnetic-field nonuniformity. Consistency is demonstrated by showing that the guiding-center transformation presented here satisfies separate Jacobian and Lagrangian constraints that have not been explored before. A new first-order term appearing in the guiding-center phase-space Lagrangian is identified through a calculation of the guiding-center polarization. It is shown that this new polarization term also yields a simpler expression of the guiding-center toroidal canonical momentum, which satisfies an exact conservation law in axisymmetric magnetic geometries. Finally, an application of the guiding-center Lagrangian constraint onmore » the guiding-center Hamiltonian yields a natural interpretation for its higher-order corrections.« less

  17. Polynomial approximation of Poincare maps for Hamiltonian system

    NASA Technical Reports Server (NTRS)

    Froeschle, Claude; Petit, Jean-Marc

    1992-01-01

    Different methods are proposed and tested for transforming a non-linear differential system, and more particularly a Hamiltonian one, into a map without integrating the whole orbit as in the well-known Poincare return map technique. We construct piecewise polynomial maps by coarse-graining the phase-space surface of section into parallelograms and using either only values of the Poincare maps at the vertices or also the gradient information at the nearest neighbors to define a polynomial approximation within each cell. The numerical experiments are in good agreement with both the real symplectic and Poincare maps.

  18. Gyroaverage effects on nontwist Hamiltonians: Separatrix reconnection and chaos suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del-Castillo-Negrete, Diego B; Martinell, J.

    2012-01-01

    A study of finite Larmor radius (FLR) effects on E x B test particle chaotic transport in non-monotonic zonal flows with drift waves in magnetized plasmas is presented. Due to the non-monotonicity of the zonal flow, the Hamiltonian does not satisfy the twist condition. The electrostatic potential is modeled as a linear superposition of a zonal flow and the regular neutral modes of the Hasegawa-Mima equation. FLR effects are incorporated by gyro-averaging the E x B Hamiltonian. It is shown that there is a critical value of the Larmor radius for which the zonal flow transitions from a profile withmore » one maximum to a profile with two maxima and a minimum. This bifurcation leads to the creation of additional shearless curves and resonances. The gyroaveraged nontwist Hamiltonian exhibits complex patterns of separatrix reconnection. A change in the Larmor radius can lead to heteroclinic-homoclinic bifurcations and dipole formation. For Larmor radii for which the zonal flow has bifurcated, double heteroclinic-heteroclinic, homoclinic-homoclinic and heteroclinic-homoclinic separatrix topologies are observed. It is also shown that chaotic transport is typically reduced as the Larmor radius increases. Poincare sections show that, for large enough Larmor radius, chaos can be practically suppressed. In particular, changes of the Larmor radius can restore the shearless curve.« less

  19. Gyroaverage effects on nontwist Hamiltonians: separatrix reconnection and chaos suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del-Castillo-Negrete, Diego B; Martinell, J.

    2012-01-01

    A study of nite Larmor radius (FLR) eects on E B test particle chaotic transport in non- monotonic zonal ows with drift waves in magnetized plasmas is presented. Due to the non- monotonicity of the zonal ow, the Hamiltonian does not satisfy the twist condition. The electro- static potential is modeled as a linear superposition of a zonal ow and regular neutral modes of the Hasegawa-Mima equation. FLR eects are incorporated by gyro-averaging the EB Hamiltonian. It is shown that there is a critical value the Larmor radius for which the zonal ow transitions from a prole with one maximummore » to a prole with two maxima and a minimum. This bifurcation leads to the creation of additional shearless curves and resonances. The gyroaveraged nontwist Hamiltonian exhibits complex patterns of separatrix reconnection. A change in the Larmor ra- dius can lead to heteroclinic-homoclinic bifurcations and dipole formation. For Larmor radii for which the zonal ow has bifurcated, double heteroclinic-heteroclinic, homoclinic-homoclinic and heteroclinic-homoclinic topologies are observed. It is also shown that chaotic transport is typically reduced as the Larmor radius increases. Poincare sections shows that, for large enough Larmor radius, chaos can be practically suppressed. In particular, small changes on the Larmor radius can restore the shearless curve.« less

  20. Hamiltonian structure of the Lotka-Volterra equations

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1990-03-01

    The Lotka-Volterra equations governing predator-prey relations are shown to admit Hamiltonian structure with respect to a generalized Poisson bracket. These equations provide an example of a system for which the naive criterion for the existence of Hamiltonian structure fails. We show further that there is a three-component generalization of the Lotka-Volterra equations which is a bi-Hamiltonian system.

  1. Systems of conservation laws with third-order Hamiltonian structures

    NASA Astrophysics Data System (ADS)

    Ferapontov, Evgeny V.; Pavlov, Maxim V.; Vitolo, Raffaele F.

    2018-06-01

    We investigate n-component systems of conservation laws that possess third-order Hamiltonian structures of differential-geometric type. The classification of such systems is reduced to the projective classification of linear congruences of lines in P^{n+2} satisfying additional geometric constraints. Algebraically, the problem can be reformulated as follows: for a vector space W of dimension n+2, classify n-tuples of skew-symmetric 2-forms A^{α } \\in Λ^2(W) such that φ _{β γ }A^{β }\\wedge A^{γ }=0, for some non-degenerate symmetric φ.

  2. Quasi-Hamiltonian structure and Hojman construction

    NASA Astrophysics Data System (ADS)

    Carinena, Jose F.; Guha, Partha; Ranada, Manuel F.

    2007-08-01

    Given a smooth vector field [Gamma] and assuming the knowledge of an infinitesimal symmetry X, Hojman [S. Hojman, The construction of a Poisson structure out of a symmetry and a conservation law of a dynamical system, J. Phys. A Math. Gen. 29 (1996) 667-674] proposed a method for finding both a Poisson tensor and a function H such that [Gamma] is the corresponding Hamiltonian system. In this paper, we approach the problem from geometrical point of view. The geometrization leads to the clarification of several concepts and methods used in Hojman's paper. In particular, the relationship between the nonstandard Hamiltonian structure proposed by Hojman and the degenerate quasi-Hamiltonian structures introduced by Crampin and Sarlet [M. Crampin, W. Sarlet, Bi-quasi-Hamiltonian systems, J. Math. Phys. 43 (2002) 2505-2517] is unveiled in this paper. We also provide some applications of our construction.

  3. Fourier series expansion for nonlinear Hamiltonian oscillators.

    PubMed

    Méndez, Vicenç; Sans, Cristina; Campos, Daniel; Llopis, Isaac

    2010-06-01

    The problem of nonlinear Hamiltonian oscillators is one of the classical questions in physics. When an analytic solution is not possible, one can resort to obtaining a numerical solution or using perturbation theory around the linear problem. We apply the Fourier series expansion to find approximate solutions to the oscillator position as a function of time as well as the period-amplitude relationship. We compare our results with other recent approaches such as variational methods or heuristic approximations, in particular the Ren-He's method. Based on its application to the Duffing oscillator, the nonlinear pendulum and the eardrum equation, it is shown that the Fourier series expansion method is the most accurate.

  4. Non-isospectral Hamiltonians, intertwining operators and hidden hermiticity

    NASA Astrophysics Data System (ADS)

    Bagarello, F.

    2011-12-01

    We have recently proposed a strategy to produce, starting from a given Hamiltonian h and a certain operator x for which [h,xx]=0 and xx is invertible, a second Hamiltonian h with the same eigenvalues as h and whose eigenvectors are related to those of h by x. Here we extend this procedure to build up a second Hamiltonian, whose eigenvalues are different from those of h, and whose eigenvectors are still related as before. This new procedure is also extended to crypto-hermitian Hamiltonians.

  5. Deformation of supersymmetric and conformal quantum mechanics through affine transformations

    NASA Technical Reports Server (NTRS)

    Spiridonov, Vyacheslav

    1993-01-01

    Affine transformations (dilatations and translations) are used to define a deformation of one-dimensional N = 2 supersymmetric quantum mechanics. Resulting physical systems do not have conserved charges and degeneracies in the spectra. Instead, superpartner Hamiltonians are q-isospectral, i.e. the spectrum of one can be obtained from another (with possible exception of the lowest level) by q(sup 2)-factor scaling. This construction allows easily to rederive a special self-similar potential found by Shabat and to show that for the latter a q-deformed harmonic oscillator algebra of Biedenharn and Macfarlane serves as the spectrum generating algebra. A general class of potentials related to the quantum conformal algebra su(sub q)(1,1) is described. Further possibilities for q-deformation of known solvable potentials are outlined.

  6. Dynamical decoupling of unbounded Hamiltonians

    NASA Astrophysics Data System (ADS)

    Arenz, Christian; Burgarth, Daniel; Facchi, Paolo; Hillier, Robin

    2018-03-01

    We investigate the possibility to suppress interactions between a finite dimensional system and an infinite dimensional environment through a fast sequence of unitary kicks on the finite dimensional system. This method, called dynamical decoupling, is known to work for bounded interactions, but physical environments such as bosonic heat baths are usually modeled with unbounded interactions; hence, here, we initiate a systematic study of dynamical decoupling for unbounded operators. We develop a sufficient decoupling criterion for arbitrary Hamiltonians and a necessary decoupling criterion for semibounded Hamiltonians. We give examples for unbounded Hamiltonians where decoupling works and the limiting evolution as well as the convergence speed can be explicitly computed. We show that decoupling does not always work for unbounded interactions and we provide both physically and mathematically motivated examples.

  7. Hamiltonian indices and rational spectral densities

    NASA Technical Reports Server (NTRS)

    Byrnes, C. I.; Duncan, T. E.

    1980-01-01

    Several (global) topological properties of various spaces of linear systems, particularly symmetric, lossless, and Hamiltonian systems, and multivariable spectral densities of fixed McMillan degree are announced. The study is motivated by a result asserting that on a connected but not simply connected manifold, it is not possible to find a vector field having a sink as its only critical point. In the scalar case, this is illustrated by showing that only on the space of McMillan degree = /Cauchy index/ = n, scalar transfer functions can one define a globally convergent vector field. This result holds both in discrete-time and for the nonautonomous case. With these motivations in mind, theorems of Bochner and Fogarty are used in showing that spaces of transfer functions defined by symmetry conditions are, in fact, smooth algebraic manifolds.

  8. Classification of three-state Hamiltonians solvable by the coordinate Bethe ansatz

    NASA Astrophysics Data System (ADS)

    Crampé, N.; Frappat, L.; Ragoucy, E.

    2013-10-01

    We classify ‘all’ Hamiltonians with rank 1 symmetry and nearest-neighbour interactions, acting on a periodic three-state spin chain, and solvable through (generalization of) the coordinate Bethe ansatz (CBA). In this way we obtain four multi-parametric extensions of the known 19-vertex Hamiltonians (such as Zamolodchikov-Fateev, Izergin-Korepin and Bariev Hamiltonians). Apart from the 19-vertex Hamiltonians, there exist 17-vertex and 14-vertex Hamiltonians that cannot be viewed as subcases of the 19-vertex ones. In the case of 17-vertex Hamiltonians, we get a generalization of the genus 5 special branch found by Martins, plus three new ones. We also get two 14-vertex Hamiltonians. We solve all these Hamiltonians using CBA, and provide their spectrum, eigenfunctions and Bethe equations. Special attention is given to provide the specifications of our multi-parametric Hamiltonians that give back known Hamiltonians.

  9. Extended Hamiltonian approach to continuous tempering

    NASA Astrophysics Data System (ADS)

    Gobbo, Gianpaolo; Leimkuhler, Benedict J.

    2015-06-01

    We introduce an enhanced sampling simulation technique based on continuous tempering, i.e., on continuously varying the temperature of the system under investigation. Our approach is mathematically straightforward, being based on an extended Hamiltonian formulation in which an auxiliary degree of freedom, determining the effective temperature, is coupled to the physical system. The physical system and its temperature evolve continuously in time according to the equations of motion derived from the extended Hamiltonian. Due to the Hamiltonian structure, it is easy to show that a particular subset of the configurations of the extended system is distributed according to the canonical ensemble for the physical system at the correct physical temperature.

  10. Entanglement Hamiltonians for Chiral Fermions with Zero Modes.

    PubMed

    Klich, Israel; Vaman, Diana; Wong, Gabriel

    2017-09-22

    In this Letter, we study the effect of topological zero modes on entanglement Hamiltonians and the entropy of free chiral fermions in (1+1)D. We show how Riemann-Hilbert solutions combined with finite rank perturbation theory allow us to obtain exact expressions for entanglement Hamiltonians. In the absence of the zero mode, the resulting entanglement Hamiltonians consist of local and bilocal terms. In the periodic sector, the presence of a zero mode leads to an additional nonlocal contribution to the entanglement Hamiltonian. We derive an exact expression for this term and for the resulting change in the entanglement entropy.

  11. Multi-Hamiltonian structure of equations of hydrodynamic type

    NASA Astrophysics Data System (ADS)

    Gümral, H.; Nutku, Y.

    1990-11-01

    The discussion of the Hamiltonian structure of two-component equations of hydrodynamic type is completed by presenting the Hamiltonian operators for Euler's equation governing the motion of plane sound waves of finite amplitude and another quasilinear second-order wave equation. There exists a doubly infinite family of conserved Hamiltonians for the equations of gas dynamics that degenerate into one, namely, the Benney sequence, for shallow-water waves. Infinite sequences of conserved quantities for these equations are also presented. In the case of multicomponent equations of hydrodynamic type, it is shown, that Kodama's generalization of the shallow-water equations admits bi-Hamiltonian structure.

  12. Covariant hamiltonian spin dynamics in curved space-time

    NASA Astrophysics Data System (ADS)

    d'Ambrosi, G.; Satish Kumar, S.; van Holten, J. W.

    2015-04-01

    The dynamics of spinning particles in curved space-time is discussed, emphasizing the hamiltonian formulation. Different choices of hamiltonians allow for the description of different gravitating systems. We give full results for the simplest case with minimal hamiltonian, constructing constants of motion including spin. The analysis is illustrated by the example of motion in Schwarzschild space-time. We also discuss a non-minimal extension of the hamiltonian giving rise to a gravitational equivalent of the Stern-Gerlach force. We show that this extension respects a large class of known constants of motion for the minimal case.

  13. Optimal adaptive control for quantum metrology with time-dependent Hamiltonians.

    PubMed

    Pang, Shengshi; Jordan, Andrew N

    2017-03-09

    Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T 2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T 4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case.

  14. Optimal adaptive control for quantum metrology with time-dependent Hamiltonians

    PubMed Central

    Pang, Shengshi; Jordan, Andrew N.

    2017-01-01

    Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case. PMID:28276428

  15. Hamiltonian identifiability assisted by a single-probe measurement

    NASA Astrophysics Data System (ADS)

    Sone, Akira; Cappellaro, Paola

    2017-02-01

    We study the Hamiltonian identifiability of a many-body spin-1 /2 system assisted by the measurement on a single quantum probe based on the eigensystem realization algorithm approach employed in Zhang and Sarovar, Phys. Rev. Lett. 113, 080401 (2014), 10.1103/PhysRevLett.113.080401. We demonstrate a potential application of Gröbner basis to the identifiability test of the Hamiltonian, and provide the necessary experimental resources, such as the lower bound in the number of the required sampling points, the upper bound in total required evolution time, and thus the total measurement time. Focusing on the examples of the identifiability in the spin-chain model with nearest-neighbor interaction, we classify the spin-chain Hamiltonian based on its identifiability, and provide the control protocols to engineer the nonidentifiable Hamiltonian to be an identifiable Hamiltonian.

  16. Non-commuting two-local Hamiltonians for quantum error suppression

    NASA Astrophysics Data System (ADS)

    Jiang, Zhang; Rieffel, Eleanor G.

    2017-04-01

    Physical constraints make it challenging to implement and control many-body interactions. For this reason, designing quantum information processes with Hamiltonians consisting of only one- and two-local terms is a worthwhile challenge. Enabling error suppression with two-local Hamiltonians is particularly challenging. A no-go theorem of Marvian and Lidar (Phys Rev Lett 113(26):260504, 2014) demonstrates that, even allowing particles with high Hilbert space dimension, it is impossible to protect quantum information from single-site errors by encoding in the ground subspace of any Hamiltonian containing only commuting two-local terms. Here, we get around this no-go result by encoding in the ground subspace of a Hamiltonian consisting of non-commuting two-local terms arising from the gauge operators of a subsystem code. Specifically, we show how to protect stored quantum information against single-qubit errors using a Hamiltonian consisting of sums of the gauge generators from Bacon-Shor codes (Bacon in Phys Rev A 73(1):012340, 2006) and generalized-Bacon-Shor code (Bravyi in Phys Rev A 83(1):012320, 2011). Our results imply that non-commuting two-local Hamiltonians have more error-suppressing power than commuting two-local Hamiltonians. While far from providing full fault tolerance, this approach improves the robustness achievable in near-term implementable quantum storage and adiabatic quantum computations, reducing the number of higher-order terms required to encode commonly used adiabatic Hamiltonians such as the Ising Hamiltonians common in adiabatic quantum optimization and quantum annealing.

  17. On pp wave limit for η deformed superstrings

    NASA Astrophysics Data System (ADS)

    Roychowdhury, Dibakar

    2018-05-01

    In this paper, based on the notion of plane wave string/gauge theory duality, we explore the pp wave limit associated with the bosonic sector of η deformed superstrings propagating in ( AdS 5 × S 5) η . Our analysis reveals that in the presence of NS-NS and RR fluxes, the pp wave limit associated to full ABF background satisfies type IIB equations in its standard form. However, the beta functions as well as the string Hamiltonian start receiving non trivial curvature corrections as one starts probing beyond pp wave limit which thereby takes solutions away from the standard type IIB form. Furthermore, using uniform gauge, we also explore the BMN dynamics associated with short strings and compute the corresponding Hamiltonian density. Finally, we explore the Penrose limit associated with the HT background and compute the corresponding stringy spectrum for the bosonic sector.

  18. The gravity duals of modular Hamiltonians

    DOE PAGES

    Jafferis, Daniel L.; Suh, S. Josephine

    2016-09-12

    In this study, we investigate modular Hamiltonians defined with respect to arbitrary spatial regions in quantum field theory states which have semi-classical gravity duals. We find prescriptions in the gravity dual for calculating the action of the modular Hamiltonian on its defining state, including its dual metric, and also on small excitations around the state. Curiously, use of the covariant holographic entanglement entropy formula leads us to the conclusion that the modular Hamiltonian, which in the quantum field theory acts only in the causal completion of the region, does not commute with bulk operators whose entire gauge-invariant description is space-likemore » to the causal completion of the region.« less

  19. The gravity duals of modular Hamiltonians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafferis, Daniel L.; Suh, S. Josephine

    In this study, we investigate modular Hamiltonians defined with respect to arbitrary spatial regions in quantum field theory states which have semi-classical gravity duals. We find prescriptions in the gravity dual for calculating the action of the modular Hamiltonian on its defining state, including its dual metric, and also on small excitations around the state. Curiously, use of the covariant holographic entanglement entropy formula leads us to the conclusion that the modular Hamiltonian, which in the quantum field theory acts only in the causal completion of the region, does not commute with bulk operators whose entire gauge-invariant description is space-likemore » to the causal completion of the region.« less

  20. Large poroelastic deformation of a soft material

    NASA Astrophysics Data System (ADS)

    MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.

    2014-11-01

    Flow through a porous material will drive mechanical deformation when the fluid pressure becomes comparable to the stiffness of the solid skeleton. This has applications ranging from hydraulic fracture for recovery of shale gas, where fluid is injected at high pressure, to the mechanics of biological cells and tissues, where the solid skeleton is very soft. The traditional linear theory of poroelasticity captures this fluid-solid coupling by combining Darcy's law with linear elasticity. However, linear elasticity is only volume-conservative to first order in the strain, which can become problematic when damage, plasticity, or extreme softness lead to large deformations. Here, we compare the predictions of linear poroelasticity with those of a large-deformation framework in the context of two model problems. We show that errors in volume conservation are compounded and amplified by coupling with the fluid flow, and can become important even when the deformation is small. We also illustrate these results with a laboratory experiment.

  1. Symmetric quadratic Hamiltonians with pseudo-Hermitian matrix representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar

    2016-06-15

    We prove that any symmetric Hamiltonian that is a quadratic function of the coordinates and momenta has a pseudo-Hermitian adjoint or regular matrix representation. The eigenvalues of the latter matrix are the natural frequencies of the Hamiltonian operator. When all the eigenvalues of the matrix are real, then the spectrum of the symmetric Hamiltonian is real and the operator is Hermitian. As illustrative examples we choose the quadratic Hamiltonians that model a pair of coupled resonators with balanced gain and loss, the electromagnetic self-force on an oscillating charged particle and an active LRC circuit. -- Highlights: •Symmetric quadratic operators aremore » useful models for many physical applications. •Any such operator exhibits a pseudo-Hermitian matrix representation. •Its eigenvalues are the natural frequencies of the Hamiltonian operator. •The eigenvalues may be real or complex and describe a phase transition.« less

  2. Hamiltonian analysis of higher derivative scalar-tensor theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langlois, David; Noui, Karim, E-mail: langlois@apc.univ-paris7.fr, E-mail: karim.noui@lmpt.univ-tours.fr

    2016-07-01

    We perform a Hamiltonian analysis of a large class of scalar-tensor Lagrangians which depend quadratically on the second derivatives of a scalar field. By resorting to a convenient choice of dynamical variables, we show that the Hamiltonian can be written in a very simple form, where the Hamiltonian and the momentum constraints are easily identified. In the case of degenerate Lagrangians, which include the Horndeski and beyond Horndeski quartic Lagrangians, our analysis confirms that the dimension of the physical phase space is reduced by the primary and secondary constraints due to the degeneracy, thus leading to the elimination of themore » dangerous Ostrogradsky ghost. We also present the Hamiltonian formulation for nondegenerate theories and find that they contain four degrees of freedom, including a ghost, as expected. We finally discuss the status of the unitary gauge from the Hamiltonian perspective.« less

  3. Geometric construction of quantum hall clustering Hamiltonians

    DOE PAGES

    Lee, Ching Hua; Papić, Zlatko; Thomale, Ronny

    2015-10-08

    In this study, many fractional quantum Hall wave functions are known to be unique highest-density zero modes of certain “pseudopotential” Hamiltonians. While a systematic method to construct such parent Hamiltonians has been available for the infinite plane and sphere geometries, the generalization to manifolds where relative angular momentum is not an exact quantum number, i.e., the cylinder or torus, remains an open problem. This is particularly true for non-Abelian states, such as the Read-Rezayi series (in particular, the Moore-Read and Read-Rezayi Z 3 states) and more exotic nonunitary (Haldane-Rezayi and Gaffnian) or irrational (Haffnian) states, whose parent Hamiltonians involve complicatedmore » many-body interactions. Here, we develop a universal geometric approach for constructing pseudopotential Hamiltonians that is applicable to all geometries. Our method straightforwardly generalizes to the multicomponent SU(n) cases with a combination of spin or pseudospin (layer, subband, or valley) degrees of freedom. We demonstrate the utility of our approach through several examples, some of which involve non-Abelian multicomponent states whose parent Hamiltonians were previously unknown, and we verify the results by numerically computing their entanglement properties.« less

  4. Action with Acceleration II: Euclidean Hamiltonian and Jordan Blocks

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.

    2013-10-01

    The Euclidean action with acceleration has been analyzed in Ref. 1, and referred to henceforth as Paper I, for its Hamiltonian and path integral. In this paper, the state space of the Hamiltonian is analyzed for the case when it is pseudo-Hermitian (equivalent to a Hermitian Hamiltonian), as well as the case when it is inequivalent. The propagator is computed using both creation and destruction operators as well as the path integral. A state space calculation of the propagator shows the crucial role played by the dual state vectors that yields a result impossible to obtain from a Hermitian Hamiltonian. When it is not pseudo-Hermitian, the Hamiltonian is shown to be a direct sum of Jordan blocks.

  5. Influence of interfacial slip on the suspension rheology of a dilute emulsion of surfactant-laden deformable drops in linear flows

    NASA Astrophysics Data System (ADS)

    Das, Sayan; Bhattacharjee, Anirban; Chakraborty, Suman

    2018-03-01

    The present study deals with the effect of interfacial slip on the deformation and emulsion rheology of a dilute suspension of droplets in a linear flow. The droplets are laden with surfactants that are bulk-insoluble and get transported only along the interface. An asymptotic approach is adopted for the present analysis in order to tackle the nonlinearity present due to deformation of droplets. The analysis is carried out for two different limiting scenarios, namely, surface diffusion-dominated-surfactant transport and surface convection-dominated surfactant transport. For either of the limiting cases, we look into the droplet dynamics for two commonly encountered bulk flows—uniaxial extensional and simple shear flow. Under the assumption of negligible fluid inertia in either phase, it is shown that slip at the droplet interface significantly affects the surfactant-induced Marangoni stress and hence droplet deformation and emulsion rheology. The presence of interfacial slip not only brings about a decrease in the droplet deformation but also reduces the effective viscosity of the emulsion. The fall in both droplet deformation and effective viscosity is found to be more severe for the limiting case of surface convection-dominated surfactant transport. For the case of an imposed simple shear flow, the normal stress differences generated due to droplet deformation are affected as well due to the presence of interfacial slip.

  6. A New Scheme of Integrability for (bi)Hamiltonian PDE

    NASA Astrophysics Data System (ADS)

    De Sole, Alberto; Kac, Victor G.; Valeri, Daniele

    2016-10-01

    We develop a new method for constructing integrable Hamiltonian hierarchies of Lax type equations, which combines the fractional powers technique of Gelfand and Dickey, and the classical Hamiltonian reduction technique of Drinfeld and Sokolov. The method is based on the notion of an Adler type matrix pseudodifferential operator and the notion of a generalized quasideterminant. We also introduce the notion of a dispersionless Adler type series, which is applied to the study of dispersionless Hamiltonian equations. Non-commutative Hamiltonian equations are discussed in this framework as well.

  7. Gravitational surface Hamiltonian and entropy quantization

    NASA Astrophysics Data System (ADS)

    Bakshi, Ashish; Majhi, Bibhas Ranjan; Samanta, Saurav

    2017-02-01

    The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure where p is conjugate momentum of x. Moreover, it leads to TS on the horizon of a black hole. Here T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos-Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein's observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.

  8. First principles of Hamiltonian medicine.

    PubMed

    Crespi, Bernard; Foster, Kevin; Úbeda, Francisco

    2014-05-19

    We introduce the field of Hamiltonian medicine, which centres on the roles of genetic relatedness in human health and disease. Hamiltonian medicine represents the application of basic social-evolution theory, for interactions involving kinship, to core issues in medicine such as pathogens, cancer, optimal growth and mental illness. It encompasses three domains, which involve conflict and cooperation between: (i) microbes or cancer cells, within humans, (ii) genes expressed in humans, (iii) human individuals. A set of six core principles, based on these domains and their interfaces, serves to conceptually organize the field, and contextualize illustrative examples. The primary usefulness of Hamiltonian medicine is that, like Darwinian medicine more generally, it provides novel insights into what data will be productive to collect, to address important clinical and public health problems. Our synthesis of this nascent field is intended predominantly for evolutionary and behavioural biologists who aspire to address questions directly relevant to human health and disease.

  9. New quantum number for the many-electron Dirac-Coulomb Hamiltonian

    NASA Astrophysics Data System (ADS)

    Komorovsky, Stanislav; Repisky, Michal; Bučinský, Lukáš

    2016-11-01

    By breaking the spin symmetry in the relativistic domain, a powerful tool in physical sciences was lost. In this work, we examine an alternative of spin symmetry for systems described by the many-electron Dirac-Coulomb Hamiltonian. We show that the square of many-electron operator K+, defined as a sum of individual single-electron time-reversal (TR) operators, is a linear Hermitian operator which commutes with the Dirac-Coulomb Hamiltonian in a finite Fock subspace. In contrast to the square of a standard unitary many-electron TR operator K , the K+2 has a rich eigenspectrum having potential to substitute spin symmetry in the relativistic domain. We demonstrate that K+ is connected to K through an exponential mapping, in the same way as spin operators are mapped to the spin rotational group. Consequently, we call K+ the generator of the many-electron TR symmetry. By diagonalizing the operator K+2 in the basis of Kramers-restricted Slater determinants, we introduce the relativistic variant of configuration state functions (CSF), denoted as Kramers CSF. A new quantum number associated with K+2 has potential to be used in many areas, for instance, (a) to design effective spin Hamiltonians for electron spin resonance spectroscopy of heavy-element containing systems; (b) to increase efficiency of methods for the solution of many-electron problems in relativistic computational chemistry and physics; (c) to define Kramers contamination in unrestricted density functional and Hartree-Fock theory as a relativistic analog of the spin contamination in the nonrelativistic domain.

  10. Uncertainty relation for non-Hamiltonian quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasov, Vasily E.

    2013-01-15

    General forms of uncertainty relations for quantum observables of non-Hamiltonian quantum systems are considered. Special cases of uncertainty relations are discussed. The uncertainty relations for non-Hamiltonian quantum systems are considered in the Schroedinger-Robertson form since it allows us to take into account Lie-Jordan algebra of quantum observables. In uncertainty relations, the time dependence of quantum observables and the properties of this dependence are discussed. We take into account that a time evolution of observables of a non-Hamiltonian quantum system is not an endomorphism with respect to Lie, Jordan, and associative multiplications.

  11. Electrostatics of proteins in dielectric solvent continua. II. Hamiltonian reaction field dynamics

    NASA Astrophysics Data System (ADS)

    Bauer, Sebastian; Tavan, Paul; Mathias, Gerald

    2014-03-01

    In Paper I of this work [S. Bauer, G. Mathias, and P. Tavan, J. Chem. Phys. 140, 104102 (2014)] we have presented a reaction field (RF) method, which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of polarizable molecular mechanics (MM) force fields. Building upon these results, here we suggest a method for linearly scaling Hamiltonian RF/MM molecular dynamics (MD) simulations, which we call "Hamiltonian dielectric solvent" (HADES). First, we derive analytical expressions for the RF forces acting on the solute atoms. These forces properly account for all those conditions, which have to be self-consistently fulfilled by RF quantities introduced in Paper I. Next we provide details on the implementation, i.e., we show how our RF approach is combined with a fast multipole method and how the self-consistency iterations are accelerated by the use of the so-called direct inversion in the iterative subspace. Finally we demonstrate that the method and its implementation enable Hamiltonian, i.e., energy and momentum conserving HADES-MD, and compare in a sample application on Ac-Ala-NHMe the HADES-MD free energy landscape at 300 K with that obtained in Paper I by scanning of configurations and with one obtained from an explicit solvent simulation.

  12. Adiabatic dynamics of one-dimensional classical Hamiltonian dissipative systems

    NASA Astrophysics Data System (ADS)

    Pritula, G. M.; Petrenko, E. V.; Usatenko, O. V.

    2018-02-01

    A linearized plane pendulum with the slowly varying mass and length of string and the suspension point moving at a slowly varying speed is presented as an example of a simple 1D mechanical system described by the generalized harmonic oscillator equation, which is a basic model in discussion of the adiabatic dynamics and geometric phase. The expression for the pendulum geometric phase is obtained by three different methods. The pendulum is shown to be canonically equivalent to the damped harmonic oscillator. This supports the mathematical conclusion, not widely accepted in physical community, of no difference between the dissipative and Hamiltonian 1D systems.

  13. Alternative bi-Hamiltonian structures for WDVV equations of associativity

    NASA Astrophysics Data System (ADS)

    Kalayci, J.; Nutku, Y.

    1998-01-01

    The WDVV equations of associativity in two-dimensional topological field theory are completely integrable third-order Monge-Ampère equations which admit bi-Hamiltonian structure. The time variable plays a distinguished role in the discussion of Hamiltonian structure, whereas in the theory of WDVV equations none of the independent variables merits such a distinction. WDVV equations admit very different alternative Hamiltonian structures under different possible choices of the time variable, but all these various Hamiltonian formulations can be brought together in the framework of the covariant theory of symplectic structure. They can be identified as different components of the covariant Witten-Zuckerman symplectic 2-form current density where a variational formulation of the WDVV equation that leads to the Hamiltonian operator through the Dirac bracket is available.

  14. Local Hamiltonians for maximally multipartite-entangled states

    NASA Astrophysics Data System (ADS)

    Facchi, P.; Florio, G.; Pascazio, S.; Pepe, F.

    2010-10-01

    We study the conditions for obtaining maximally multipartite-entangled states (MMESs) as nondegenerate eigenstates of Hamiltonians that involve only short-range interactions. We investigate small-size systems (with a number of qubits ranging from 3 to 5) and show some example Hamiltonians with MMESs as eigenstates.

  15. Hamiltonian structure of the guiding center plasma model

    NASA Astrophysics Data System (ADS)

    Burby, J. W.; Sengupta, W.

    2018-02-01

    The guiding center plasma model (also known as kinetic MHD) is a rigorous sub-cyclotron-frequency closure of the Vlasov-Maxwell system. While the model has been known for decades and it plays a fundamental role in describing the physics of strongly magnetized collisionless plasmas, its Hamiltonian structure has never been found. We provide explicit expressions for the model's Poisson bracket and Hamiltonian and thereby prove that the model is an infinite-dimensional Hamiltonian system. The bracket is derived in a manner which ensures that it satisfies the Jacobi identity. We also report on several previously unknown circulation theorems satisfied by the guiding center plasma model. Without knowledge of the Hamiltonian structure, these circulation theorems would be difficult to guess.

  16. Greenberger-Horne-Zeilinger States and Few-Body Hamiltonians

    NASA Astrophysics Data System (ADS)

    Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio; Pepe, Francesco V.

    2011-12-01

    The generation of Greenberger-Horne-Zeilinger (GHZ) states is a crucial problem in quantum information. We derive general conditions for obtaining GHZ states as eigenstates of a Hamiltonian. We find that a necessary condition for an n-qubit GHZ state to be a nondegenerate eigenstate of a Hamiltonian is the presence of m-qubit couplings with m≥[(n+1)/2]. Moreover, we introduce a Hamiltonian with a GHZ eigenstate and derive sufficient conditions for the removal of the degeneracy.

  17. Greenberger-Horne-Zeilinger states and few-body Hamiltonians.

    PubMed

    Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio; Pepe, Francesco V

    2011-12-23

    The generation of Greenberger-Horne-Zeilinger (GHZ) states is a crucial problem in quantum information. We derive general conditions for obtaining GHZ states as eigenstates of a Hamiltonian. We find that a necessary condition for an n-qubit GHZ state to be a nondegenerate eigenstate of a Hamiltonian is the presence of m-qubit couplings with m≥[(n+1)/2]. Moreover, we introduce a Hamiltonian with a GHZ eigenstate and derive sufficient conditions for the removal of the degeneracy.

  18. Gauge invariance of excitonic linear and nonlinear optical response

    NASA Astrophysics Data System (ADS)

    Taghizadeh, Alireza; Pedersen, T. G.

    2018-05-01

    We study the equivalence of four different approaches to calculate the excitonic linear and nonlinear optical response of multiband semiconductors. These four methods derive from two choices of gauge, i.e., length and velocity gauges, and two ways of computing the current density, i.e., direct evaluation and evaluation via the time-derivative of the polarization density. The linear and quadratic response functions are obtained for all methods by employing a perturbative density-matrix approach within the mean-field approximation. The equivalence of all four methods is shown rigorously, when a correct interaction Hamiltonian is employed for the velocity gauge approaches. The correct interaction is written as a series of commutators containing the unperturbed Hamiltonian and position operators, which becomes equivalent to the conventional velocity gauge interaction in the limit of infinite Coulomb screening and infinitely many bands. As a case study, the theory is applied to hexagonal boron nitride monolayers, and the linear and nonlinear optical response found in different approaches are compared.

  19. Effective Hamiltonian for travelling discrete breathers

    NASA Astrophysics Data System (ADS)

    MacKay, Robert S.; Sepulchre, Jacques-Alexandre

    2002-05-01

    Hamiltonian chains of oscillators in general probably do not sustain exact travelling discrete breathers. However solutions which look like moving discrete breathers for some time are not difficult to observe in numerics. In this paper we propose an abstract framework for the description of approximate travelling discrete breathers in Hamiltonian chains of oscillators. The method is based on the construction of an effective Hamiltonian enabling one to describe the dynamics of the translation degree of freedom of moving breathers. Error estimate on the approximate dynamics is also studied. The concept of the Peierls-Nabarro barrier can be made clear in this framework. We illustrate the method with two simple examples, namely the Salerno model which interpolates between the Ablowitz-Ladik lattice and the discrete nonlinear Schrödinger system, and the Fermi-Pasta-Ulam chain.

  20. Study of phase transition of even and odd nuclei based on q-deforme SU(1,1) algebraic model

    NASA Astrophysics Data System (ADS)

    Jafarizadeh, M. A.; Amiri, N.; Fouladi, N.; Ghapanvari, M.; Ranjbar, Z.

    2018-04-01

    The q-deformed Hamiltonian for the SO (6) ↔ U (5) transitional case in s, d interaction boson model (IBM) can be constructed by using affine SUq (1 , 1) Lie algebra in the both IBM-1 and 2 versions and IBFM. In this research paper, we have studied the energy spectra of 120-128Xe isotopes and 123-131Xe isotopes and B(E2) transition probabilities of 120-128Xe isotopes in the shape phase transition region between the spherical and gamma unstable deformed shapes of the theory of quantum deformation. The theoretical results agree with the experimental data fairly well. It is shown that the q-deformed SO (6) ↔ U (5) transitional dynamical symmetry remains after deformation.

  1. Approximate symmetries of Hamiltonians

    NASA Astrophysics Data System (ADS)

    Chubb, Christopher T.; Flammia, Steven T.

    2017-08-01

    We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.

  2. Intraplate deformation due to continental collisions: A numerical study of deformation in a thin viscous sheet

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.; Morgan, R. C.

    1985-01-01

    A model of crustal deformation from continental collision that involves the penetration of a rigid punch into a deformable sheet is investigated. A linear viscous flow law is used to compute the magnitude and rate of change of crustal thickness, the velocity of mass points, strain rates and their principal axes, modes of deformation, areal changes, and stress. In general, a free lateral boundary reduces the magnitude of changes in crustal thickening by allowing material to more readily escape the advancing punch. The shearing that occurs diagonally in front of the punch terminates in compression or extension depending on whether the lateral boundary is fixed or free. When the ratio of the diameter of the punch to that of the sheet exceeds one-third, the deformation is insenstive to the choice of lateral boundary conditions. When the punch is rigid with sharply defined edges, deformation is concentrated near the punch corners. With non-rigid punches, shearing results in deformation being concentrated near the center of the punch. Variations with respect to linearity and nonlinearity of flow are discussed.

  3. A Few Integrable Dynamical Systems, Recurrence Operators, Expanding Integrable Models and Hamiltonian Structures by the r-Matrix Method

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Feng; Muhammad, Iqbal; Yue, Chao

    2017-10-01

    We extend two known dynamical systems obtained by Blaszak, et al. via choosing Casimir functions and utilizing Novikov-Lax equation so that a series of novel dynamical systems including generalized Burgers dynamical system, heat equation, and so on, are followed to be generated. Then we expand some differential operators presented in the paper to deduce two types of expanding dynamical models. By taking the generalized Burgers dynamical system as an example, we deform its expanding model to get a half-expanding system, whose recurrence operator is derived from Lax representation, and its Hamiltonian structure is also obtained by adopting a new way. Finally, we expand the generalized Burgers dynamical system to the (2+1)-dimensional case whose Hamiltonian structure is derived by Poisson tensor and gradient of the Casimir function. Besides, a kind of (2+1)-dimensional expanding dynamical model of the (2+1)-dimensional dynamical system is generated as well. Supported by the Fundamental Research Funds for the Central University under Grant No. 2017XKZD11

  4. Finite Nilpotent BRST Transformations in Hamiltonian Formulation

    NASA Astrophysics Data System (ADS)

    Rai, Sumit Kumar; Mandal, Bhabani Prasad

    2013-10-01

    We consider the finite field dependent BRST (FFBRST) transformations in the context of Hamiltonian formulation using Batalin-Fradkin-Vilkovisky method. The non-trivial Jacobian of such transformations is calculated in extended phase space. The contribution from Jacobian can be written as exponential of some local functional of fields which can be added to the effective Hamiltonian of the system. Thus, FFBRST in Hamiltonian formulation with extended phase space also connects different effective theories. We establish this result with the help of two explicit examples. We also show that the FFBRST transformations is similar to the canonical transformations in the sector of Lagrange multiplier and its corresponding momenta.

  5. Latent log-linear models for handwritten digit classification.

    PubMed

    Deselaers, Thomas; Gass, Tobias; Heigold, Georg; Ney, Hermann

    2012-06-01

    We present latent log-linear models, an extension of log-linear models incorporating latent variables, and we propose two applications thereof: log-linear mixture models and image deformation-aware log-linear models. The resulting models are fully discriminative, can be trained efficiently, and the model complexity can be controlled. Log-linear mixture models offer additional flexibility within the log-linear modeling framework. Unlike previous approaches, the image deformation-aware model directly considers image deformations and allows for a discriminative training of the deformation parameters. Both are trained using alternating optimization. For certain variants, convergence to a stationary point is guaranteed and, in practice, even variants without this guarantee converge and find models that perform well. We tune the methods on the USPS data set and evaluate on the MNIST data set, demonstrating the generalization capabilities of our proposed models. Our models, although using significantly fewer parameters, are able to obtain competitive results with models proposed in the literature.

  6. Finite Group Invariance and Solution of Jaynes-Cummings Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haydargil, Derya; Koc, Ramazan

    2004-10-04

    The finite group invariance of the E x {beta} and Jaynes-Cummings models are studied. A method is presented to obtain finite group invariance of the E x {beta} system.A suitable transformation of a Jaynes-Cummings Hamiltonian leads to equivalence of E x {beta} system. Then a general method is applied to obtain the solution of Jaynes-Cummings Hamiltonian with Kerr nonlinearity. Number operator for this structure and the generators of su(2) algebra are used to find the eigenvalues of the Jaynes-Cummings Hamiltonian for different states. By using the invariance of number operator the solution of modified Jaynes-Cummings Hamiltonian is also discussed.

  7. Loading Deformation Characteristic Simulation Study of Engineering Vehicle Refurbished Tire

    NASA Astrophysics Data System (ADS)

    Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv

    2018-05-01

    The paper constructed engineering vehicle refurbished tire computer geometry model, mechanics model, contact model, finite element analysis model, did simulation study on load-deformation property of engineering vehicle refurbished tire by comparing with that of the new and the same type tire, got load-deformation of engineering vehicle refurbished tire under the working condition of static state and ground contact. The analysis result shows that change rules of radial-direction deformation and side-direction deformation of engineering vehicle refurbished tire are close to that of the new tire, radial-direction and side-direction deformation value is a little less than that of the new tire. When air inflation pressure was certain, radial-direction deformation linear rule of engineer vehicle refurbished tire would increase with load adding, however, side-direction deformation showed linear change rule, when air inflation pressure was low; and it would show increase of non-linear change rule, when air inflation pressure was very high.

  8. Does finite-temperature decoding deliver better optima for noisy Hamiltonians?

    NASA Astrophysics Data System (ADS)

    Ochoa, Andrew J.; Nishimura, Kohji; Nishimori, Hidetoshi; Katzgraber, Helmut G.

    The minimization of an Ising spin-glass Hamiltonian is an NP-hard problem. Because many problems across disciplines can be mapped onto this class of Hamiltonian, novel efficient computing techniques are highly sought after. The recent development of quantum annealing machines promises to minimize these difficult problems more efficiently. However, the inherent noise found in these analog devices makes the minimization procedure difficult. While the machine might be working correctly, it might be minimizing a different Hamiltonian due to the inherent noise. This means that, in general, the ground-state configuration that correctly minimizes a noisy Hamiltonian might not minimize the noise-less Hamiltonian. Inspired by rigorous results that the energy of the noise-less ground-state configuration is equal to the expectation value of the energy of the noisy Hamiltonian at the (nonzero) Nishimori temperature [J. Phys. Soc. Jpn., 62, 40132930 (1993)], we numerically study the decoding probability of the original noise-less ground state with noisy Hamiltonians in two space dimensions, as well as the D-Wave Inc. Chimera topology. Our results suggest that thermal fluctuations might be beneficial during the optimization process in analog quantum annealing machines.

  9. Bi-Hamiltonian Structure in 2-d Field Theory

    NASA Astrophysics Data System (ADS)

    Ferapontov, E. V.; Galvão, C. A. P.; Mokhov, O. I.; Nutku, Y.

    We exhibit the bi-Hamiltonian structure of the equations of associativity (Witten-Dijkgraaf-Verlinde-Verlinde-Dubrovin equations) in 2-d topological field theory, which reduce to a single equation of Monge-Ampère type $ fttt}=f{xxt;;;;;2 - fxxx}f{xtt ,$ in the case of three primary fields. The first Hamiltonian structure of this equation is based on its representation as a 3-component system of hydrodynamic type and the second Hamiltonian structure follows from its formulation in terms of a variational principle with a degenerate Lagrangian.

  10. Local modular Hamiltonians from the quantum null energy condition

    NASA Astrophysics Data System (ADS)

    Koeller, Jason; Leichenauer, Stefan; Levine, Adam; Shahbazi-Moghaddam, Arvin

    2018-03-01

    The vacuum modular Hamiltonian K of the Rindler wedge in any relativistic quantum field theory is given by the boost generator. Here we investigate the modular Hamiltonian for more general half-spaces which are bounded by an arbitrary smooth cut of a null plane. We derive a formula for the second derivative of the modular Hamiltonian with respect to the coordinates of the cut which schematically reads K''=Tv v . This formula can be integrated twice to obtain a simple expression for the modular Hamiltonian. The result naturally generalizes the standard expression for the Rindler modular Hamiltonian to this larger class of regions. Our primary assumptions are the quantum null energy condition—an inequality between the second derivative of the von Neumann entropy of a region and the stress tensor—and its saturation in the vacuum for these regions. We discuss the validity of these assumptions in free theories and holographic theories to all orders in 1 /N .

  11. Hamiltonian surface charges using external sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troessaert, Cédric, E-mail: troessaert@cecs.cl

    2016-05-15

    In this work, we interpret part of the boundary conditions as external sources in order to partially solve the integrability problem present in the computation of surface charges associated to gauge symmetries in the hamiltonian formalism. We start by describing the hamiltonian structure of external symmetries preserving the action up to a transformation of the external sources of the theory. We then extend these results to the computation of surface charges for field theories with non-trivial boundary conditions.

  12. Contact Hamiltonian systems and complete integrability

    NASA Astrophysics Data System (ADS)

    Visinescu, Mihai

    2017-12-01

    We summarize recent results on the integrability of Hamiltonian systems on contact manifolds. We explain how to extend the classical formulation of action-angle variables to contact integrable systems. Using the Jacobi brackets defined on contact manifolds, we discuss the commutativity of first integrals for contact Hamiltonian systems and present the construction of generalized contact action-angle variables. We illustrate the integrability in the contact geometry on the five-dimensional Sasaki-Einstein spaces T1,1 and Yp,q.

  13. Hamiltonian structure of real Monge - Ampère equations

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1996-06-01

    The variational principle for the real homogeneous Monge - Ampère equation in two dimensions is shown to contain three arbitrary functions of four variables. There exist two different specializations of this variational principle where the Lagrangian is degenerate and furthermore contains an arbitrary function of two variables. The Hamiltonian formulation of these degenerate Lagrangian systems requires the use of Dirac's theory of constraints. As in the case of most completely integrable systems the constraints are second class and Dirac brackets directly yield the Hamiltonian operators. Thus the real homogeneous Monge - Ampère equation in two dimensions admits two classes of infinitely many Hamiltonian operators, namely a family of local, as well as another family non-local Hamiltonian operators and symplectic 2-forms which depend on arbitrary functions of two variables. The simplest non-local Hamiltonian operator corresponds to the Kac - Moody algebra of vector fields and functions on the unit circle. Hamiltonian operators that belong to either class are compatible with each other but between classes there is only one compatible pair. In the case of real Monge - Ampère equations with constant right-hand side this compatible pair is the only pair of Hamiltonian operators that survives. Then the complete integrability of all these real Monge - Ampère equations follows by Magri's theorem. Some of the remarkable properties we have obtained for the Hamiltonian structure of the real homogeneous Monge - Ampère equation in two dimensions turn out to be generic to the real homogeneous Monge - Ampère equation and the geodesic flow for the complex homogeneous Monge - Ampère equation in arbitrary number of dimensions. Hence among all integrable nonlinear evolution equations in one space and one time dimension, the real homogeneous Monge - Ampère equation is distinguished as one that retains its character as an integrable system in multiple dimensions.

  14. Passive simulation of the nonlinear port-Hamiltonian modeling of a Rhodes Piano

    NASA Astrophysics Data System (ADS)

    Falaize, Antoine; Hélie, Thomas

    2017-03-01

    This paper deals with the time-domain simulation of an electro-mechanical piano: the Fender Rhodes. A simplified description of this multi-physical system is considered. It is composed of a hammer (nonlinear mechanical component), a cantilever beam (linear damped vibrating component) and a pickup (nonlinear magneto-electronic transducer). The approach is to propose a power-balanced formulation of the complete system, from which a guaranteed-passive simulation is derived to generate physically-based realistic sound synthesis. Theses issues are addressed in four steps. First, a class of Port-Hamiltonian Systems is introduced: these input-to-output systems fulfill a power balance that can be decomposed into conservative, dissipative and source parts. Second, physical models are proposed for each component and are recast in the port-Hamiltonian formulation. In particular, a finite-dimensional model of the cantilever beam is derived, based on a standard modal decomposition applied to the Euler-Bernoulli model. Third, these systems are interconnected, providing a nonlinear finite-dimensional Port-Hamiltonian System of the piano. Fourth, a passive-guaranteed numerical method is proposed. This method is built to preserve the power balance in the discrete-time domain, and more precisely, its decomposition structured into conservative, dissipative and source parts. Finally, simulations are performed for a set of physical parameters, based on empirical but realistic values. They provide a variety of audio signals which are perceptively relevant and qualitatively similar to some signals measured on a real instrument.

  15. Quasi-hamiltonian quotients as disjoint unions of symplectic manifolds

    NASA Astrophysics Data System (ADS)

    Schaffhauser, Florent

    2007-08-01

    The main result of this paper is Theorem 2.12 which says that the quotient μ-1({1})/U associated to a quasi-hamiltonian space (M, ω, μ: M → U) has a symplectic structure even when 1 is not a regular value of the momentum map μ. Namely, it is a disjoint union of symplectic manifolds of possibly different dimensions, which generalizes the result of Alekseev, Malkin and Meinrenken in [AMM98]. We illustrate this theorem with the example of representation spaces of surface groups. As an intermediary step, we give a new class of examples of quasi-hamiltonian spaces: the isotropy submanifold MK whose points are the points of M with isotropy group K ⊂ U. The notion of quasi-hamiltonian space was introduced by Alekseev, Malkin and Meinrenken in their paper [AMM98]. The main motivation for it was the existence, under some regularity assumptions, of a symplectic structure on the associated quasi-hamiltonian quotient. Throughout their paper, the analogy with usual hamiltonian spaces is often used as a guiding principle, replacing Lie-algebra-valued momentum maps with Lie-group-valued momentum maps. In the hamiltonian setting, when the usual regularity assumptions on the group action or the momentum map are dropped, Lerman and Sjamaar showed in [LS91] that the quotient associated to a hamiltonian space carries a stratified symplectic structure. In particular, this quotient space is a disjoint union of symplectic manifolds. In this paper, we prove an analogous result for quasi-hamiltonian quotients. More precisely, we show that for any quasi-hamiltonian space (M, ω, μ: M → U), the associated quotient M//U := μ-1({1})/U is a disjoint union of symplectic manifolds (Theorem 2.12): [ mu^{-1}(\\{1\\})/U = bigsqcup_{jin J} (mu^{-1}(\\{1\\})\\cap M_{K_j})/L_{K_j} . ] Here Kj denotes a closed subgroup of U and MKj denotes the isotropy submanifold of type Kj: MKj = {x ∈ M | Ux = Kj}. Finally, LKj is the quotient group LKj = { N

  16. Hamiltonian formulation of the KdV equation

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1984-06-01

    We consider the canonical formulation of Whitham's variational principle for the KdV equation. This Lagrangian is degenerate and we have found it necessary to use Dirac's theory of constrained systems in constructing the Hamiltonian. Earlier discussions of the Hamiltonian structure of the KdV equation were based on various different decompositions of the field which is avoided by this new approach.

  17. Intertwined Hamiltonians in two-dimensional curved spaces

    NASA Astrophysics Data System (ADS)

    Aghababaei Samani, Keivan; Zarei, Mina

    2005-04-01

    The problem of intertwined Hamiltonians in two-dimensional curved spaces is investigated. Explicit results are obtained for Euclidean plane, Minkowski plane, Poincaré half plane (AdS2), de Sitter plane (dS2), sphere, and torus. It is shown that the intertwining operator is related to the Killing vector fields and the isometry group of corresponding space. It is shown that the intertwined potentials are closely connected to the integral curves of the Killing vector fields. Two problems are considered as applications of the formalism presented in the paper. The first one is the problem of Hamiltonians with equispaced energy levels and the second one is the problem of Hamiltonians whose spectrum is like the spectrum of a free particle.

  18. Next generation of the self-consistent and environment-dependent Hamiltonian: Applications to various boron allotropes from zero- to three-dimensional structures

    NASA Astrophysics Data System (ADS)

    Tandy, P.; Yu, Ming; Leahy, C.; Jayanthi, C. S.; Wu, S. Y.

    2015-03-01

    An upgrade of the previous self-consistent and environment-dependent linear combination of atomic orbitals Hamiltonian (referred as SCED-LCAO) has been developed. This improved version of the semi-empirical SCED-LCAO Hamiltonian, in addition to the inclusion of self-consistent determination of charge redistribution, multi-center interactions, and modeling of electron-electron correlation, has taken into account the effect excited on the orbitals due to the atomic aggregation. This important upgrade has been subjected to a stringent test, the construction of the SCED-LCAO Hamiltonian for boron. It was shown that the Hamiltonian for boron has successfully characterized the electron deficiency of boron and captured the complex chemical bonding in various boron allotropes, including the planar and quasi-planar, the convex, the ring, the icosahedral, and the fullerene-like clusters, the two-dimensional monolayer sheets, and the bulk alpha boron, demonstrating its transferability, robustness, reliability, and predictive power. The molecular dynamics simulation scheme based on the Hamiltonian has been applied to explore the existence and the energetics of ˜230 compact boron clusters BN with N in the range from ˜100 to 768, including the random, the rhombohedral, and the spherical icosahedral structures. It was found that, energetically, clusters containing whole icosahedral B12 units are more stable for boron clusters of larger size (N > 200). The ease with which the simulations both at 0 K and finite temperatures were completed is a demonstration of the efficiency of the SCED-LCAO Hamiltonian.

  19. Contact symmetries and Hamiltonian thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bravetti, A., E-mail: bravetti@correo.nucleares.unam.mx; Lopez-Monsalvo, C.S., E-mail: cesar.slm@correo.nucleares.unam.mx; Nettel, F., E-mail: Francisco.Nettel@roma1.infn.it

    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendremore » symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production.« less

  20. NLO renormalization in the Hamiltonian truncation

    NASA Astrophysics Data System (ADS)

    Elias-Miró, Joan; Rychkov, Slava; Vitale, Lorenzo G.

    2017-09-01

    Hamiltonian truncation (also known as "truncated spectrum approach") is a numerical technique for solving strongly coupled quantum field theories, in which the full Hilbert space is truncated to a finite-dimensional low-energy subspace. The accuracy of the method is limited only by the available computational resources. The renormalization program improves the accuracy by carefully integrating out the high-energy states, instead of truncating them away. In this paper, we develop the most accurate ever variant of Hamiltonian Truncation, which implements renormalization at the cubic order in the interaction strength. The novel idea is to interpret the renormalization procedure as a result of integrating out exactly a certain class of high-energy "tail states." We demonstrate the power of the method with high-accuracy computations in the strongly coupled two-dimensional quartic scalar theory and benchmark it against other existing approaches. Our work will also be useful for the future goal of extending Hamiltonian truncation to higher spacetime dimensions.

  1. An algorithm for finding a similar subgraph of all Hamiltonian cycles

    NASA Astrophysics Data System (ADS)

    Wafdan, R.; Ihsan, M.; Suhaimi, D.

    2018-01-01

    This paper discusses an algorithm to find a similar subgraph called findSimSubG algorithm. A similar subgraph is a subgraph with a maximum number of edges, contains no isolated vertex and is contained in every Hamiltonian cycle of a Hamiltonian Graph. The algorithm runs only on Hamiltonian graphs with at least two Hamiltonian cycles. The algorithm works by examining whether the initial subgraph of the first Hamiltonian cycle is a subgraph of comparison graphs. If the initial subgraph is not in comparison graphs, the algorithm will remove edges and vertices of the initial subgraph that are not in comparison graphs. There are two main processes in the algorithm, changing Hamiltonian cycle into a cycle graph and removing edges and vertices of the initial subgraph that are not in comparison graphs. The findSimSubG algorithm can find the similar subgraph without using backtracking method. The similar subgraph cannot be found on certain graphs, such as an n-antiprism graph, complete bipartite graph, complete graph, 2n-crossed prism graph, n-crown graph, n-möbius ladder, prism graph, and wheel graph. The complexity of this algorithm is O(m|V|), where m is the number of Hamiltonian cycles and |V| is the number of vertices of a Hamiltonian graph.

  2. Hamiltonian description of closed configurations of the vacuum magnetic field

    NASA Astrophysics Data System (ADS)

    Skovoroda, A. A.

    2015-05-01

    Methods of obtaining and using the Hamiltonians of closed vacuum magnetic configurations of fusion research systems are reviewed. Various approaches to calculate the flux functions determining the Hamiltonian are discussed. It is shown that the Hamiltonian description allows one not only to reproduce all traditional results, but also to study the behavior of magnetic field lines by using the theory of dynamic systems. The potentialities of the Hamiltonian formalism and its close relation to traditional methods are demonstrated using a large number of classical examples adopted from the fundamental works by A.I. Morozov, L.S. Solov'ev, and V.D. Shafranov.

  3. Non-stoquastic Hamiltonians in quantum annealing via geometric phases

    NASA Astrophysics Data System (ADS)

    Vinci, Walter; Lidar, Daniel A.

    2017-09-01

    We argue that a complete description of quantum annealing implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan geometric phase that arises when the system Hamiltonian changes during the anneal. We show that this geometric effect leads to the appearance of non-stoquasticity in the effective quantum Ising Hamiltonians that are typically used to describe quantum annealing with flux qubits. We explicitly demonstrate the effect of this geometric non-stoquasticity when quantum annealing is performed with a system of one and two coupled flux qubits. The realization of non-stoquastic Hamiltonians has important implications from a computational complexity perspective, since it is believed that in many cases quantum annealing with stoquastic Hamiltonians can be efficiently simulated via classical algorithms such as Quantum Monte Carlo. It is well known that the direct implementation of non-stoquastic Hamiltonians with flux qubits is particularly challenging. Our results suggest an alternative path for the implementation of non-stoquasticity via geometric phases that can be exploited for computational purposes.

  4. An electromechanical Ising Hamiltonian

    PubMed Central

    Mahboob, Imran; Okamoto, Hajime; Yamaguchi, Hiroshi

    2016-01-01

    Solving intractable mathematical problems in simulators composed of atoms, ions, photons, or electrons has recently emerged as a subject of intense interest. We extend this concept to phonons that are localized in spectrally pure resonances in an electromechanical system that enables their interactions to be exquisitely fashioned via electrical means. We harness this platform to emulate the Ising Hamiltonian whose spin 1/2 particles are replicated by the phase bistable vibrations from the parametric resonances of multiple modes. The coupling between the mechanical spins is created by generating two-mode squeezed states, which impart correlations between modes that can imitate a random, ferromagnetic state or an antiferromagnetic state on demand. These results suggest that an electromechanical simulator could be built for the Ising Hamiltonian in a nontrivial configuration, namely, for a large number of spins with multiple degrees of coupling. PMID:28861469

  5. An electromechanical Ising Hamiltonian.

    PubMed

    Mahboob, Imran; Okamoto, Hajime; Yamaguchi, Hiroshi

    2016-06-01

    Solving intractable mathematical problems in simulators composed of atoms, ions, photons, or electrons has recently emerged as a subject of intense interest. We extend this concept to phonons that are localized in spectrally pure resonances in an electromechanical system that enables their interactions to be exquisitely fashioned via electrical means. We harness this platform to emulate the Ising Hamiltonian whose spin 1/2 particles are replicated by the phase bistable vibrations from the parametric resonances of multiple modes. The coupling between the mechanical spins is created by generating two-mode squeezed states, which impart correlations between modes that can imitate a random, ferromagnetic state or an antiferromagnetic state on demand. These results suggest that an electromechanical simulator could be built for the Ising Hamiltonian in a nontrivial configuration, namely, for a large number of spins with multiple degrees of coupling.

  6. The Artificial Hamiltonian, First Integrals, and Closed-Form Solutions of Dynamical Systems for Epidemics

    NASA Astrophysics Data System (ADS)

    Naz, Rehana; Naeem, Imran

    2018-03-01

    The non-standard Hamiltonian system, also referred to as a partial Hamiltonian system in the literature, of the form {\\dot q^i} = {partial H}/{partial {p_i}},\\dot p^i = - {partial H}/{partial {q_i}} + {Γ ^i}(t,{q^i},{p_i}) appears widely in economics, physics, mechanics, and other fields. The non-standard (partial) Hamiltonian systems arise from physical Hamiltonian structures as well as from artificial Hamiltonian structures. We introduce the term `artificial Hamiltonian' for the Hamiltonian of a model having no physical structure. We provide here explicitly the notion of an artificial Hamiltonian for dynamical systems of ordinary differential equations (ODEs). Also, we show that every system of second-order ODEs can be expressed as a non-standard (partial) Hamiltonian system of first-order ODEs by introducing an artificial Hamiltonian. This notion of an artificial Hamiltonian gives a new way to solve dynamical systems of first-order ODEs and systems of second-order ODEs that can be expressed as a non-standard (partial) Hamiltonian system by using the known techniques applicable to the non-standard Hamiltonian systems. We employ the proposed notion to solve dynamical systems of first-order ODEs arising in epidemics.

  7. Boson Hamiltonians and stochasticity for the vorticity equation

    NASA Technical Reports Server (NTRS)

    Shen, Hubert H.

    1990-01-01

    The evolution of the vorticity in time for two-dimensional inviscid flow and in Lagrangian time for three-dimensional viscous flow is written in Hamiltonian form by introducing Bose operators. The addition of the viscous and convective terms, respectively, leads to an interpretation of the Hamiltonian contribution to the evolution as Langevin noise.

  8. Nonunitary quantum computation in the ground space of local Hamiltonians

    NASA Astrophysics Data System (ADS)

    Usher, Naïri; Hoban, Matty J.; Browne, Dan E.

    2017-09-01

    A central result in the study of quantum Hamiltonian complexity is that the k -local Hamiltonian problem is quantum-Merlin-Arthur-complete. In that problem, we must decide if the lowest eigenvalue of a Hamiltonian is bounded below some value, or above another, promised one of these is true. Given the ground state of the Hamiltonian, a quantum computer can determine this question, even if the ground state itself may not be efficiently quantum preparable. Kitaev's proof of QMA-completeness encodes a unitary quantum circuit in QMA into the ground space of a Hamiltonian. However, we now have quantum computing models based on measurement instead of unitary evolution; furthermore, we can use postselected measurement as an additional computational tool. In this work, we generalize Kitaev's construction to allow for nonunitary evolution including postselection. Furthermore, we consider a type of postselection under which the construction is consistent, which we call tame postselection. We consider the computational complexity consequences of this construction and then consider how the probability of an event upon which we are postselecting affects the gap between the ground-state energy and the energy of the first excited state of its corresponding Hamiltonian. We provide numerical evidence that the two are not immediately related by giving a family of circuits where the probability of an event upon which we postselect is exponentially small, but the gap in the energy levels of the Hamiltonian decreases as a polynomial.

  9. Next generation of the self-consistent and environment-dependent Hamiltonian: Applications to various boron allotropes from zero- to three-dimensional structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tandy, P.; Yu, Ming; Leahy, C.

    2015-03-28

    An upgrade of the previous self-consistent and environment-dependent linear combination of atomic orbitals Hamiltonian (referred as SCED-LCAO) has been developed. This improved version of the semi-empirical SCED-LCAO Hamiltonian, in addition to the inclusion of self-consistent determination of charge redistribution, multi-center interactions, and modeling of electron-electron correlation, has taken into account the effect excited on the orbitals due to the atomic aggregation. This important upgrade has been subjected to a stringent test, the construction of the SCED-LCAO Hamiltonian for boron. It was shown that the Hamiltonian for boron has successfully characterized the electron deficiency of boron and captured the complex chemicalmore » bonding in various boron allotropes, including the planar and quasi-planar, the convex, the ring, the icosahedral, and the fullerene-like clusters, the two-dimensional monolayer sheets, and the bulk alpha boron, demonstrating its transferability, robustness, reliability, and predictive power. The molecular dynamics simulation scheme based on the Hamiltonian has been applied to explore the existence and the energetics of ∼230 compact boron clusters B{sub N} with N in the range from ∼100 to 768, including the random, the rhombohedral, and the spherical icosahedral structures. It was found that, energetically, clusters containing whole icosahedral B{sub 12} units are more stable for boron clusters of larger size (N > 200). The ease with which the simulations both at 0 K and finite temperatures were completed is a demonstration of the efficiency of the SCED-LCAO Hamiltonian.« less

  10. Multi-Hamiltonian structure of the Born-Infeld equation

    NASA Astrophysics Data System (ADS)

    Arik, Metin; Neyzi, Fahrünisa; Nutku, Yavuz; Olver, Peter J.; Verosky, John M.

    1989-06-01

    The multi-Hamiltonian structure, conservation laws, and higher order symmetries for the Born-Infeld equation are exhibited. A new transformation of the Born-Infeld equation to the equations of a Chaplygin gas is presented and explored. The Born-Infeld equation is distinguished among two-dimensional hyperbolic systems by its wealth of such multi-Hamiltonian structures.

  11. Computing pKa Values with a Mixing Hamiltonian Quantum Mechanical/Molecular Mechanical Approach.

    PubMed

    Liu, Yang; Fan, Xiaoli; Jin, Yingdi; Hu, Xiangqian; Hu, Hao

    2013-09-10

    Accurate computation of the pKa value of a compound in solution is important but challenging. Here, a new mixing quantum mechanical/molecular mechanical (QM/MM) Hamiltonian method is developed to simulate the free-energy change associated with the protonation/deprotonation processes in solution. The mixing Hamiltonian method is designed for efficient quantum mechanical free-energy simulations by alchemically varying the nuclear potential, i.e., the nuclear charge of the transforming nucleus. In pKa calculation, the charge on the proton is varied in fraction between 0 and 1, corresponding to the fully deprotonated and protonated states, respectively. Inspired by the mixing potential QM/MM free energy simulation method developed previously [H. Hu and W. T. Yang, J. Chem. Phys. 2005, 123, 041102], this method succeeds many advantages of a large class of λ-coupled free-energy simulation methods and the linear combination of atomic potential approach. Theory and technique details of this method, along with the calculation results of the pKa of methanol and methanethiol molecules in aqueous solution, are reported. The results show satisfactory agreement with the experimental data.

  12. Advantages of formulating an evolution equation directly for elastic distortional deformation in finite deformation plasticity

    NASA Astrophysics Data System (ADS)

    Rubin, M. B.; Cardiff, P.

    2017-11-01

    Simo (Comput Methods Appl Mech Eng 66:199-219, 1988) proposed an evolution equation for elastic deformation together with a constitutive equation for inelastic deformation rate in plasticity. The numerical algorithm (Simo in Comput Methods Appl Mech Eng 68:1-31, 1988) for determining elastic distortional deformation was simple. However, the proposed inelastic deformation rate caused plastic compaction. The corrected formulation (Simo in Comput Methods Appl Mech Eng 99:61-112, 1992) preserves isochoric plasticity but the numerical integration algorithm is complicated and needs special methods for calculation of the exponential map of a tensor. Alternatively, an evolution equation for elastic distortional deformation can be proposed directly with a simplified constitutive equation for inelastic distortional deformation rate. This has the advantage that the physics of inelastic distortional deformation is separated from that of dilatation. The example of finite deformation J2 plasticity with linear isotropic hardening is used to demonstrate the simplicity of the numerical algorithm.

  13. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity

    NASA Astrophysics Data System (ADS)

    Bridges, Thomas J.; Reich, Sebastian

    2001-06-01

    The symplectic numerical integration of finite-dimensional Hamiltonian systems is a well established subject and has led to a deeper understanding of existing methods as well as to the development of new very efficient and accurate schemes, e.g., for rigid body, constrained, and molecular dynamics. The numerical integration of infinite-dimensional Hamiltonian systems or Hamiltonian PDEs is much less explored. In this Letter, we suggest a new theoretical framework for generalizing symplectic numerical integrators for ODEs to Hamiltonian PDEs in R2: time plus one space dimension. The central idea is that symplecticity for Hamiltonian PDEs is directional: the symplectic structure of the PDE is decomposed into distinct components representing space and time independently. In this setting PDE integrators can be constructed by concatenating uni-directional ODE symplectic integrators. This suggests a natural definition of multi-symplectic integrator as a discretization that conserves a discrete version of the conservation of symplecticity for Hamiltonian PDEs. We show that this approach leads to a general framework for geometric numerical schemes for Hamiltonian PDEs, which have remarkable energy and momentum conservation properties. Generalizations, including development of higher-order methods, application to the Euler equations in fluid mechanics, application to perturbed systems, and extension to more than one space dimension are also discussed.

  14. On a new class of completely integrable nonlinear wave equations. II. Multi-Hamiltonian structure

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1987-11-01

    The multi-Hamiltonian structure of a class of nonlinear wave equations governing the propagation of finite amplitude waves is discussed. Infinitely many conservation laws had earlier been obtained for these equations. Starting from a (primary) Hamiltonian formulation of these equations the necessary and sufficient conditions for the existence of bi-Hamiltonian structure are obtained and it is shown that the second Hamiltonian operator can be constructed solely through a knowledge of the first Hamiltonian function. The recursion operator which first appears at the level of bi-Hamiltonian structure gives rise to an infinite sequence of conserved Hamiltonians. It is found that in general there exist two different infinite sequences of conserved quantities for these equations. The recursion relation defining higher Hamiltonian structures enables one to obtain the necessary and sufficient conditions for the existence of the (k+1)st Hamiltonian operator which depends on the kth Hamiltonian function. The infinite sequence of conserved Hamiltonians are common to all the higher Hamiltonian structures. The equations of gas dynamics are discussed as an illustration of this formalism and it is shown that in general they admit tri-Hamiltonian structure with two distinct infinite sets of conserved quantities. The isothermal case of γ=1 is an exceptional one that requires separate treatment. This corresponds to a specialization of the equations governing the expansion of plasma into vacuum which will be shown to be equivalent to Poisson's equation in nonlinear acoustics.

  15. Hamiltonian thermodynamics of three-dimensional dilatonic black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dias, Goncalo A. S.; Lemos, Jose P. S.

    2008-08-15

    The action for a class of three-dimensional dilaton-gravity theories with a negative cosmological constant can be recast in a Brans-Dicke type action, with its free {omega} parameter. These theories have static spherically symmetric black holes. Those with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found out. The theories studied are general relativity ({omega}{yields}{infinity}), a dimensionally reduced cylindrical four-dimensional general relativity theory ({omega}=0), and a theory representing a class of theories ({omega}=-3). The Hamiltonian formalism is set up in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcationmore » 1-sphere as the left boundary, and anti-de Sitter infinity as the right boundary. The metric functions on the foliated hypersurfaces are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unconstrained theory with one pair of canonical coordinates (M,P{sub M}), M being the mass parameter and P{sub M} its conjugate momenta The resulting Hamiltonian is a sum of boundary terms only. A quantization of the theory is performed. The Schroedinger evolution operator is constructed, the trace is taken, and the partition function of the canonical ensemble is obtained. The black hole entropies differ, in general, from the usual quarter of the horizon area due to the dilaton.« less

  16. Exploring Hamiltonian dielectric solvent molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bauer, Sebastian; Tavan, Paul; Mathias, Gerald

    2014-09-01

    Hamiltonian dielectric solvent (HADES) is a recent method [7,25], which enables Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric continua. Sample simulations of an α-helical decapeptide with and without explicit solvent demonstrate the high efficiency of HADES-MD. Addressing the folding of this peptide by replica exchange MD we study the properties of HADES by comparing melting curves, secondary structure motifs and salt bridges with explicit solvent results. Despite the unoptimized ad hoc parametrization of HADES, calculated reaction field energies correlate well with numerical grid solutions of the dielectric Poisson equation.

  17. Hamiltonian dynamics for complex food webs

    NASA Astrophysics Data System (ADS)

    Kozlov, Vladimir; Vakulenko, Sergey; Wennergren, Uno

    2016-03-01

    We investigate stability and dynamics of large ecological networks by introducing classical methods of dynamical system theory from physics, including Hamiltonian and averaging methods. Our analysis exploits the topological structure of the network, namely the existence of strongly connected nodes (hubs) in the networks. We reveal new relations between topology, interaction structure, and network dynamics. We describe mechanisms of catastrophic phenomena leading to sharp changes of dynamics and hence completely altering the ecosystem. We also show how these phenomena depend on the structure of interaction between species. We can conclude that a Hamiltonian structure of biological interactions leads to stability and large biodiversity.

  18. Spectral Deformation for Two-Body Dispersive Systems with e.g. the Yukawa Potential

    NASA Astrophysics Data System (ADS)

    Engelmann, Matthias; Rasmussen, Morten Grud

    2016-12-01

    We find an explicit closed formula for the k'th iterated commutator {{ad}Ak}(HV(ξ )) of arbitrary order k ⩾ 1 between a Hamiltonian HV(ξ )=M_{ω _{ξ }}+S_{\\check V} and a conjugate operator A={i}/2(v_{ξ}\\cdotnabla+nabla\\cdot v_{ξ}), where M_{ω _{ξ }} is the operator of multiplication with the real analytic function ω ξ which depends real analytically on the parameter ξ, and the operator S_{\\check V} is the operator of convolution with the (sufficiently nice) function \\check V, and v ξ is some vector field determined by ω ξ . Under certain assumptions, which are satisfied for the Yukawa potential, we then prove estimates of the form {{{ad}Ak}(HV(ξ ))(H0(ξ )+{i} )}|≤ C_{ξ }kk! where C ξ is some constant which depends continuously on ξ. The Hamiltonian is the fixed total momentum fiber Hamiltonian of an abstract two-body dispersive system and the work is inspired by a recent result [3] which, under conditions including estimates of the mentioned type, opens up for spectral deformation and analytic perturbation theory of embedded eigenvalues of finite multiplicity.

  19. Update to the conventional model for rotational deformation

    NASA Astrophysics Data System (ADS)

    Ries, J. C.; Desai, S.

    2017-12-01

    Rotational deformation (also called the "pole tide") is the deformation resulting from the centrifugal effect of polar motion on the solid earth and ocean, which manifests itself as variations in ocean heights, in the gravity field and in surface displacements. The model for rotational deformation assumes a primarily elastic response of the Earth to the centrifugal potential at the annual and Chandler periods and applies body tide Love numbers to the polar motion after removing the mean pole. The original model was conceived when the mean pole was moving (more or less) linearly, largely in response to glacial isostatic adjustment. In light of the significant variations in the mean pole due to present-day ice mass losses, an `appropriately' filtered mean pole was adopted for the conventional model, so that the longer period variations in the mean pole were not included in the rotational deformation model. However, the elastic Love numbers should be applicable to longer period variations as well, and only the secular (i.e. linear) mean pole should be removed. A model for the linear mean pole is recommended based on a linear fit to the IERS C01 time series spanning 1900 to 2015: in milliarcsec, Xp = 55.0+1.677*dt and Yp = 320.5+3.460*dt where dt=(t-t0), t0=2000.0 and assuming a year=365.25 days. The consequences of an updated model for rotational deformation for site motion and the gravity field are illustrated.

  20. Hamiltonian analysis of curvature-squared gravity with or without conformal invariance

    NASA Astrophysics Data System (ADS)

    KlusoÅ, Josef; Oksanen, Markku; Tureanu, Anca

    2014-03-01

    We analyze gravitational theories with quadratic curvature terms, including the case of conformally invariant Weyl gravity, motivated by the intention to find a renormalizable theory of gravity in the ultraviolet region, yet yielding general relativity at long distances. In the Hamiltonian formulation of Weyl gravity, the number of local constraints is equal to the number of unstable directions in phase space, which in principle could be sufficient for eliminating the unstable degrees of freedom in the full nonlinear theory. All the other theories of quadratic type are unstable—a problem appearing as ghost modes in the linearized theory. We find that the full projection of the Weyl tensor onto a three-dimensional hypersurface contains an additional fully traceless component, given by a quadratic extrinsic curvature tensor. A certain inconsistency in the literature is found and resolved: when the conformal invariance of Weyl gravity is broken by a cosmological constant term, the theory becomes pathological, since a constraint required by the Hamiltonian analysis imposes the determinant of the metric of spacetime to be zero. In order to resolve this problem by restoring the conformal invariance, we introduce a new scalar field that couples to the curvature of spacetime, reminiscent of the introduction of vector fields for ensuring the gauge invariance.

  1. Deforming regular black holes

    NASA Astrophysics Data System (ADS)

    Neves, J. C. S.

    2017-06-01

    In this work, we have deformed regular black holes which possess a general mass term described by a function which generalizes the Bardeen and Hayward mass functions. By using linear constraints in the energy-momentum tensor to generate metrics, the solutions presented in this work are either regular or singular. That is, within this approach, it is possible to generate regular or singular black holes from regular or singular black holes. Moreover, contrary to the Bardeen and Hayward regular solutions, the deformed regular black holes may violate the weak energy condition despite the presence of the spherical symmetry. Some comments on accretion of deformed black holes in cosmological scenarios are made.

  2. High Resolution, Large Deformation 3D Traction Force Microscopy

    PubMed Central

    López-Fagundo, Cristina; Reichner, Jonathan; Hoffman-Kim, Diane; Franck, Christian

    2014-01-01

    Traction Force Microscopy (TFM) is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D) imaging and traction force analysis (3D TFM) have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients. PMID:24740435

  3. Two-body problem in scalar-tensor theories as a deformation of general relativity: An effective-one-body approach

    NASA Astrophysics Data System (ADS)

    Julié, Félix-Louis; Deruelle, Nathalie

    2017-06-01

    In this paper we address the two-body problem in massless scalar-tensor (ST) theories within an effective-one-body (EOB) framework. We focus on the first building block of the EOB approach, that is, mapping the conservative part of the two-body dynamics onto the geodesic motion of a test particle in an effective external metric. To this end, we first deduce the second post-Keplerian (2PK) Hamiltonian of the two-body problem from the known 2PK Lagrangian. We then build, by means of a canonical transformation, a ST deformation of the general relativistic EOB Hamiltonian that allows us to incorporate the scalar-tensor (2PK) corrections to the currently best available general relativity EOB results. This EOB-ST Hamiltonian defines a resummation of the dynamics that may provide information on the strong-field regime, in particular, the ISCO location and associated orbital frequency, and can be compared to, other, e.g., tidal, corrections.

  4. Hamiltonian Analysis of Subcritical Stochastic Epidemic Dynamics

    PubMed Central

    2017-01-01

    We extend a technique of approximation of the long-term behavior of a supercritical stochastic epidemic model, using the WKB approximation and a Hamiltonian phase space, to the subcritical case. The limiting behavior of the model and approximation are qualitatively different in the subcritical case, requiring a novel analysis of the limiting behavior of the Hamiltonian system away from its deterministic subsystem. This yields a novel, general technique of approximation of the quasistationary distribution of stochastic epidemic and birth-death models and may lead to techniques for analysis of these models beyond the quasistationary distribution. For a classic SIS model, the approximation found for the quasistationary distribution is very similar to published approximations but not identical. For a birth-death process without depletion of susceptibles, the approximation is exact. Dynamics on the phase plane similar to those predicted by the Hamiltonian analysis are demonstrated in cross-sectional data from trachoma treatment trials in Ethiopia, in which declining prevalences are consistent with subcritical epidemic dynamics. PMID:28932256

  5. Potentials of Mean Force With Ab Initio Mixed Hamiltonian Models of Solvation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupuis, Michel; Schenter, Gregory K.; Garrett, Bruce C.

    2003-08-01

    We give an account of a computationally tractable and efficient procedure for the calculation of potentials of mean force using mixed Hamiltonian models of electronic structure where quantum subsystems are described with computationally intensive ab initio wavefunctions. The mixed Hamiltonian is mapped into an all-classical Hamiltonian that is amenable to a thermodynamic perturbation treatment for the calculation of free energies. A small number of statistically uncorrelated (solute-solvent) configurations are selected from the Monte Carlo random walk generated with the all-classical Hamiltonian approximation. Those are used in the averaging of the free energy using the mixed quantum/classical Hamiltonian. The methodology ismore » illustrated for the micro-solvated SN2 substitution reaction of methyl chloride by hydroxide. We also compare the potential of mean force calculated with the above protocol with an approximate formalism, one in which the potential of mean force calculated with the all-classical Hamiltonian is simply added to the energy of the isolated (non-solvated) solute along the reaction path. Interestingly the latter approach is found to be in semi-quantitative agreement with the full mixed Hamiltonian approximation.« less

  6. Is the addition of an assisted driving Hamiltonian always useful for adiabatic evolution?

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Lu, Songfeng; Li, Li

    2017-04-01

    It has been known that when an assisted driving item is added to the main system Hamiltonian, the efficiency of the resultant adiabatic evolution can be significantly improved. In some special cases, it can be seen that only through adding an assisted driving Hamiltonian can the resulting adiabatic evolution be made not to fail. Thus the additional driving Hamiltonian plays an important role in adiabatic computing. In this paper, we show that if the driving Hamiltonian is chosen inappropriately, the adiabatic computation may still fail. More importantly, we find that the adiabatic computation can only succeed if the assisted driving Hamiltonian has a relatively fixed form. This may help us understand why in the related literature all of the driving Hamiltonians used share the same form.

  7. An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation.

    PubMed

    Ilias, Miroslav; Saue, Trond

    2007-02-14

    The authors report the implementation of a simple one-step method for obtaining an infinite-order two-component (IOTC) relativistic Hamiltonian using matrix algebra. They apply the IOTC Hamiltonian to calculations of excitation and ionization energies as well as electric and magnetic properties of the radon atom. The results are compared to corresponding calculations using identical basis sets and based on the four-component Dirac-Coulomb Hamiltonian as well as Douglas-Kroll-Hess and zeroth-order regular approximation Hamiltonians, all implemented in the DIRAC program package, thus allowing a comprehensive comparison of relativistic Hamiltonians within the finite basis approximation.

  8. Hamiltonian structures for systems of hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Olver, Peter J.; Nutku, Yavuz

    1988-07-01

    The bi-Hamiltonian structure for a large class of one-dimensional hyberbolic systems of conservation laws in two field variables, including the equations of gas dynamics, shallow water waves, one-dimensional elastic media, and the Born-Infeld equation from nonlinear electrodynamics, is exhibited. For polytropic gas dynamics, these results lead to a quadri-Hamiltonian structure. New higher-order entropy-flux pairs (conservation laws) and higher-order symmetries are exhibited.

  9. R matrices of three-state Hamiltonians solvable by coordinate Bethe ansatz

    NASA Astrophysics Data System (ADS)

    Fonseca, T.; Frappat, L.; Ragoucy, E.

    2015-01-01

    We review some of the strategies that can be implemented to infer an R-matrix from the knowledge of its Hamiltonian. We apply them to the classification achieved in Crampé, Frappat, and Ragoucy, J. Phys. A 46, 405001 (2013), on three state U(1)-invariant Hamiltonians solvable by coordinate Bethe ansatz, focusing on models for which the S-matrix is not trivial. For the 19-vertex solutions, we recover the R-matrices of the well-known Zamolodchikov-Fateev and Izergin-Korepin models. We point out that the generalized Bariev Hamiltonian is related to both main and special branches studied by Martins in Nucl. Phys. B 874, 243 (2013), that we prove to generate the same Hamiltonian. The 19-vertex SpR model still resists to the analysis, although we are able to state some no-go theorems on its R-matrix. For 17-vertex Hamiltonians, we produce a new R-matrix.

  10. Dynamical tunneling versus fast diffusion for a non-convex Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pittman, S. M.; Tannenbaum, E.; Heller, E. J.

    This paper attempts to resolve the issue of the nature of the 0.01-0.1 cm{sup −1} peak splittings observed in high-resolution IR spectra of polyatomic molecules. One hypothesis is that these splittings are caused by dynamical tunneling, a quantum-mechanical phenomenon whereby energy flows between two disconnected regions of phase-space across dynamical barriers. However, a competing classical mechanism for energy flow is Arnol’d diffusion, which connects different regions of phase-space by a resonance network known as the Arnol’d web. The speed of diffusion is bounded by the Nekhoroshev theorem, which guarantees stability on exponentially long time scales if the Hamiltonian is steep.more » Here we consider a non-convex Hamiltonian that contains the characteristics of a molecular Hamiltonian, but does not satisfy the Nekhoroshev theorem. The diffusion along the Arnol’d web is expected to be fast for a non-convex Hamiltonian. While fast diffusion is an unlikely competitor for longtime energy flow in molecules, we show how dynamical tunneling dominates compared to fast diffusion in the nearly integrable regime for a non-convex Hamiltonian, as well as present a new kind of dynamical tunneling.« less

  11. Cluster expansion for ground states of local Hamiltonians

    NASA Astrophysics Data System (ADS)

    Bastianello, Alvise; Sotiriadis, Spyros

    2016-08-01

    A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  12. Continuous-variable phase estimation with unitary and random linear disturbance

    NASA Astrophysics Data System (ADS)

    Delgado de Souza, Douglas; Genoni, Marco G.; Kim, M. S.

    2014-10-01

    We address the problem of continuous-variable quantum phase estimation in the presence of linear disturbance at the Hamiltonian level by means of Gaussian probe states. In particular we discuss both unitary and random disturbance by considering the parameter which characterizes the unwanted linear term present in the Hamiltonian as fixed (unitary disturbance) or random with a given probability distribution (random disturbance). We derive the optimal input Gaussian states at fixed energy, maximizing the quantum Fisher information over the squeezing angle and the squeezing energy fraction, and we discuss the scaling of the quantum Fisher information in terms of the output number of photons, nout. We observe that, in the case of unitary disturbance, the optimal state is a squeezed vacuum state and the quadratic scaling is conserved. As regards the random disturbance, we observe that the optimal squeezing fraction may not be equal to one and, for any nonzero value of the noise parameter, the quantum Fisher information scales linearly with the average number of photons. Finally, we discuss the performance of homodyne measurement by comparing the achievable precision with the ultimate limit imposed by the quantum Cramér-Rao bound.

  13. A theorem about Hamiltonian systems.

    PubMed

    Case, K M

    1984-09-01

    A simple theorem in Hamiltonian mechanics is pointed out. One consequence is a generalization of the classical result that symmetries are generated by Poisson brackets of conserved functionals. General applications are discussed. Special emphasis is given to the Kadomtsev-Petviashvili equation.

  14. Combinatorial quantization of the Hamiltonian Chern-Simons theory II

    NASA Astrophysics Data System (ADS)

    Alekseev, Anton Yu.; Grosse, Harald; Schomerus, Volker

    1996-01-01

    This paper further develops the combinatorial approach to quantization of the Hamiltonian Chern Simons theory advertised in [1]. Using the theory of quantum Wilson lines, we show how the Verlinde algebra appears within the context of quantum group gauge theory. This allows to discuss flatness of quantum connections so that we can give a mathematically rigorous definition of the algebra of observables A CS of the Chern Simons model. It is a *-algebra of “functions on the quantum moduli space of flat connections” and comes equipped with a positive functional ω (“integration”). We prove that this data does not depend on the particular choices which have been made in the construction. Following ideas of Fock and Rosly [2], the algebra A CS provides a deformation quantization of the algebra of functions on the moduli space along the natural Poisson bracket induced by the Chern Simons action. We evaluate a volume of the quantized moduli space and prove that it coincides with the Verlinde number. This answer is also interpreted as a partition partition function of the lattice Yang-Mills theory corresponding to a quantum gauge group.

  15. A theorem about Hamiltonian systems

    PubMed Central

    Case, K. M.

    1984-01-01

    A simple theorem in Hamiltonian mechanics is pointed out. One consequence is a generalization of the classical result that symmetries are generated by Poisson brackets of conserved functionals. General applications are discussed. Special emphasis is given to the Kadomtsev-Petviashvili equation. PMID:16593515

  16. Convergence to equilibrium under a random Hamiltonian.

    PubMed

    Brandão, Fernando G S L; Ćwikliński, Piotr; Horodecki, Michał; Horodecki, Paweł; Korbicz, Jarosław K; Mozrzymas, Marek

    2012-09-01

    We analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we compute the inverse of a matrix of overlaps of operators which permute four systems. We first obtain results on such a matrix for a representation of an arbitrary finite group and then apply it to the particular representation of the permutation group under consideration.

  17. Convergence to equilibrium under a random Hamiltonian

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Ćwikliński, Piotr; Horodecki, Michał; Horodecki, Paweł; Korbicz, Jarosław K.; Mozrzymas, Marek

    2012-09-01

    We analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we compute the inverse of a matrix of overlaps of operators which permute four systems. We first obtain results on such a matrix for a representation of an arbitrary finite group and then apply it to the particular representation of the permutation group under consideration.

  18. Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians

    NASA Astrophysics Data System (ADS)

    Bringewatt, Jacob; Dorland, William; Jordan, Stephen P.; Mink, Alan

    2018-02-01

    Most research regarding quantum adiabatic optimization has focused on stoquastic Hamiltonians, whose ground states can be expressed with only real non-negative amplitudes and thus for whom destructive interference is not manifest. This raises the question of whether classical Monte Carlo algorithms can efficiently simulate quantum adiabatic optimization with stoquastic Hamiltonians. Recent results have given counterexamples in which path-integral and diffusion Monte Carlo fail to do so. However, most adiabatic optimization algorithms, such as for solving MAX-k -SAT problems, use k -local Hamiltonians, whereas our previous counterexample for diffusion Monte Carlo involved n -body interactions. Here we present a 6-local counterexample which demonstrates that even for these local Hamiltonians there are cases where diffusion Monte Carlo cannot efficiently simulate quantum adiabatic optimization. Furthermore, we perform empirical testing of diffusion Monte Carlo on a standard well-studied class of permutation-symmetric tunneling problems and similarly find large advantages for quantum optimization over diffusion Monte Carlo.

  19. Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics

    NASA Astrophysics Data System (ADS)

    Tao, Xuecheng; Shushkov, Philip; Miller, Thomas F.

    2018-03-01

    We describe a path-integral approach for including nuclear quantum effects in non-adiabatic chemical dynamics simulations. For a general physical system with multiple electronic energy levels, a corresponding isomorphic Hamiltonian is introduced such that Boltzmann sampling of the isomorphic Hamiltonian with classical nuclear degrees of freedom yields the exact quantum Boltzmann distribution for the original physical system. In the limit of a single electronic energy level, the isomorphic Hamiltonian reduces to the familiar cases of either ring polymer molecular dynamics (RPMD) or centroid molecular dynamics Hamiltonians, depending on the implementation. An advantage of the isomorphic Hamiltonian is that it can easily be combined with existing mixed quantum-classical dynamics methods, such as surface hopping or Ehrenfest dynamics, to enable the simulation of electronically non-adiabatic processes with nuclear quantum effects. We present numerical applications of the isomorphic Hamiltonian to model two- and three-level systems, with encouraging results that include improvement upon a previously reported combination of RPMD with surface hopping in the deep-tunneling regime.

  20. Resolving the issue of branched Hamiltonian in modified Lanczos-Lovelock gravity

    NASA Astrophysics Data System (ADS)

    Ruz, Soumendranath; Mandal, Ranajit; Debnath, Subhra; Sanyal, Abhik Kumar

    2016-07-01

    The Hamiltonian constraint H_c = N{H} = 0, defines a diffeomorphic structure on spatial manifolds by the lapse function N in general theory of relativity. However, it is not manifest in Lanczos-Lovelock gravity, since the expression for velocity in terms of the momentum is multivalued. Thus the Hamiltonian is a branch function of momentum. Here we propose an extended theory of Lanczos-Lovelock gravity to construct a unique Hamiltonian in its minisuperspace version, which results in manifest diffeomorphic invariance and canonical quantization.

  1. Time and a physical Hamiltonian for quantum gravity.

    PubMed

    Husain, Viqar; Pawłowski, Tomasz

    2012-04-06

    We present a nonperturbative quantization of general relativity coupled to dust and other matter fields. The dust provides a natural time variable, leading to a physical Hamiltonian with spatial diffeomorphism symmetry. The surprising feature is that the Hamiltonian is not a square root. This property, together with the kinematical structure of loop quantum gravity, provides a complete theory of quantum gravity, and puts applications to cosmology, quantum gravitational collapse, and Hawking radiation within technical reach. © 2012 American Physical Society

  2. Deformed coset models from gauged WZW actions

    NASA Astrophysics Data System (ADS)

    Park, Q.-Han

    1994-06-01

    A general Lagrangian formulation of integrably deformed G/H-coset models is given. We consider the G/H-coset model in terms of the gauged Wess-Zumino-Witten action and obtain an integrable deformation by adding a potential energy term Tr(gTg -1overlineT) , where algebra elements T, overlineT belong to the center of the algebra h associated with the subgroup H. We show that the classical equation of motion of the deformed coset model can be identified with the integrability condition of certain linear equations which makes the use of the inverse scattering method possible. Using the linear equation, we give a systematic way to construct infinitely many conserved currents as well as soliton solutions. In the case of the parafermionic SU(2)/U(1)-coset model, we derive n-solitons and conserved currents explicitly.

  3. The Lagrangian-Hamiltonian formalism for higher order field theories

    NASA Astrophysics Data System (ADS)

    Vitagliano, Luca

    2010-06-01

    We generalize the Lagrangian-Hamiltonian formalism of Skinner and Rusk to higher order field theories on fiber bundles. As a byproduct we solve the long standing problem of defining, in a coordinate free manner, a Hamiltonian formalism for higher order Lagrangian field theories. Namely, our formalism does only depend on the action functional and, therefore, unlike previously proposed ones, is free from any relevant ambiguity.

  4. Effective Hamiltonian for protected edge states in graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, R.; Deshpande, H.

    Edge states in topological insulators (TIs) disperse symmetrically about one of the time-reversal invariant momenta Λ in the Brillouin zone (BZ) with protected degeneracies at Λ. Commonly TIs are distinguished from trivial insulators by the values of one or multiple topological invariants that require an analysis of the bulk band structure across the BZ. We propose an effective two-band Hamiltonian for the electronic states in graphene based on a Taylor expansion of the tight-binding Hamiltonian about the time-reversal invariant M point at the edge of the BZ. This Hamiltonian provides a faithful description of the protected edge states for bothmore » zigzag and armchair ribbons, though the concept of a BZ is not part of such an effective model. In conclusion, we show that the edge states are determined by a band inversion in both reciprocal and real space, which allows one to select Λ for the edge states without affecting the bulk spectrum.« less

  5. Effective Hamiltonian for protected edge states in graphene

    DOE PAGES

    Winkler, R.; Deshpande, H.

    2017-06-15

    Edge states in topological insulators (TIs) disperse symmetrically about one of the time-reversal invariant momenta Λ in the Brillouin zone (BZ) with protected degeneracies at Λ. Commonly TIs are distinguished from trivial insulators by the values of one or multiple topological invariants that require an analysis of the bulk band structure across the BZ. We propose an effective two-band Hamiltonian for the electronic states in graphene based on a Taylor expansion of the tight-binding Hamiltonian about the time-reversal invariant M point at the edge of the BZ. This Hamiltonian provides a faithful description of the protected edge states for bothmore » zigzag and armchair ribbons, though the concept of a BZ is not part of such an effective model. In conclusion, we show that the edge states are determined by a band inversion in both reciprocal and real space, which allows one to select Λ for the edge states without affecting the bulk spectrum.« less

  6. Lagrangian-Hamiltonian unified formalism for autonomous higher order dynamical systems

    NASA Astrophysics Data System (ADS)

    Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso

    2011-09-01

    The Lagrangian-Hamiltonian unified formalism of Skinner and Rusk was originally stated for autonomous dynamical systems in classical mechanics. It has been generalized for non-autonomous first-order mechanical systems, as well as for first-order and higher order field theories. However, a complete generalization to higher order mechanical systems is yet to be described. In this work, after reviewing the natural geometrical setting and the Lagrangian and Hamiltonian formalisms for higher order autonomous mechanical systems, we develop a complete generalization of the Lagrangian-Hamiltonian unified formalism for these kinds of systems, and we use it to analyze some physical models from this new point of view.

  7. A Hamiltonian approach to Thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldiotti, M.C., E-mail: baldiotti@uel.br; Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br; Molina, C., E-mail: cmolina@usp.br

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensivelymore » used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.« less

  8. Bi-Hamiltonian structure of the Kermack-McKendrick model for epidemics

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1990-11-01

    The dynamical system proposed by Kermack and McKendrick (1933) to model the spread of epidemics is shown to admit bi-Hamiltonian structure without any restrictions on the rate constants. These two inequivalent Hamiltonian structures are compatible.

  9. Gapped two-body Hamiltonian for continuous-variable quantum computation.

    PubMed

    Aolita, Leandro; Roncaglia, Augusto J; Ferraro, Alessandro; Acín, Antonio

    2011-03-04

    We introduce a family of Hamiltonian systems for measurement-based quantum computation with continuous variables. The Hamiltonians (i) are quadratic, and therefore two body, (ii) are of short range, (iii) are frustration-free, and (iv) possess a constant energy gap proportional to the squared inverse of the squeezing. Their ground states are the celebrated Gaussian graph states, which are universal resources for quantum computation in the limit of infinite squeezing. These Hamiltonians constitute the basic ingredient for the adiabatic preparation of graph states and thus open new venues for the physical realization of continuous-variable quantum computing beyond the standard optical approaches. We characterize the correlations in these systems at thermal equilibrium. In particular, we prove that the correlations across any multipartition are contained exactly in its boundary, automatically yielding a correlation area law.

  10. Multidimensional supersymmetric quantum mechanics: spurious states for the tensor sector two Hamiltonian.

    PubMed

    Chou, Chia-Chun; Kouri, Donald J

    2013-04-25

    We show that there exist spurious states for the sector two tensor Hamiltonian in multidimensional supersymmetric quantum mechanics. For one-dimensional supersymmetric quantum mechanics on an infinite domain, the sector one and two Hamiltonians have identical spectra with the exception of the ground state of the sector one. For tensorial multidimensional supersymmetric quantum mechanics, there exist normalizable spurious states for the sector two Hamiltonian with energy equal to the ground state energy of the sector one. These spurious states are annihilated by the adjoint charge operator, and hence, they do not correspond to physical states for the original Hamiltonian. The Hermitian property of the sector two Hamiltonian implies the orthogonality between spurious and physical states. In addition, we develop a method for construction of a specific form of the spurious states for any quantum system and also generate several spurious states for a two-dimensional anharmonic oscillator system and for the hydrogen atom.

  11. Hamiltonian dynamics of thermostated systems: two-temperature heat-conducting phi4 chains.

    PubMed

    Hoover, Wm G; Hoover, Carol G

    2007-04-28

    We consider and compare four Hamiltonian formulations of thermostated mechanics, three of them kinetic, and the other one configurational. Though all four approaches "work" at equilibrium, their application to many-body nonequilibrium simulations can fail to provide a proper flow of heat. All the Hamiltonian formulations considered here are applied to the same prototypical two-temperature "phi4" model of a heat-conducting chain. This model incorporates nearest-neighbor Hooke's-Law interactions plus a quartic tethering potential. Physically correct results, obtained with the isokinetic Gaussian and Nose-Hoover thermostats, are compared with two other Hamiltonian results. The latter results, based on constrained Hamiltonian thermostats, fail to model correctly the flow of heat.

  12. Regime of validity of the pairing Hamiltonian in the study of Fermi gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, S. Y.; Pandharipande, V. R.

    2006-06-01

    The ground state energy and pairing gap of the interacting Fermi gases calculated by the ab initio stochastic method are compared with those estimated from the Bardeen-Cooper-Schrieffer pairing Hamiltonian. We discuss the ingredients of this Hamiltonian in various regimes of interaction strength. In the weakly interacting (1/ak{sub F}<<0) regime the BCS Hamiltonian should describe Landau quasiparticle energies and interactions, on the other hand, in the strongly pairing regime, that is, 1/ak{sub F} > or approx. 0, it becomes part of the bare Hamiltonian. However, the bare BCS Hamiltonian is not adequate for describing atomic gases in the regime of weakmore » to moderate interaction strength -{infinity}<1/ak{sub F}<0 such as ak{sub F}{approx}-1.« less

  13. On time-dependent Hamiltonian realizations of planar and nonplanar systems

    NASA Astrophysics Data System (ADS)

    Esen, Oğul; Guha, Partha

    2018-04-01

    In this paper, we elucidate the key role played by the cosymplectic geometry in the theory of time dependent Hamiltonian systems in 2 D. We generalize the cosymplectic structures to time-dependent Nambu-Poisson Hamiltonian systems and corresponding Jacobi's last multiplier for 3 D systems. We illustrate our constructions with various examples.

  14. Hamiltonian methods: BRST, BFV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, J. Antonio

    2006-09-25

    The range of applicability of Hamiltonian methods to gauge theories is very diverse and cover areas of research from phenomenology to mathematical physics. We review some of the areas developed in Mexico in the last decades. They cover the study of symplectic methods, BRST-BFV and BV approaches, Klauder projector program, and non perturbative technics used in the study of bound states in relativistic field theories.

  15. Hamiltonian methods: BRST, BFV

    NASA Astrophysics Data System (ADS)

    García, J. Antonio

    2006-09-01

    The range of applicability of Hamiltonian methods to gauge theories is very diverse and cover areas of research from phenomenology to mathematical physics. We review some of the areas developed in México in the last decades. They cover the study of symplectic methods, BRST-BFV and BV approaches, Klauder projector program, and non perturbative technics used in the study of bound states in relativistic field theories.

  16. First results on applying a non-linear effect formalism to alliances between political parties and buy and sell dynamics

    NASA Astrophysics Data System (ADS)

    Bagarello, F.; Haven, E.

    2016-02-01

    We discuss a non linear extension of a model of alliances in politics, recently proposed by one of us. The model is constructed in terms of operators, describing the interest of three parties to form, or not, some political alliance with the other parties. The time evolution of what we call the decision functions is deduced by introducing a suitable Hamiltonian, which describes the main effects of the interactions of the parties amongst themselves and with their environments, which are generated by their electors and by people who still have no clear idea for which party to vote (or even if to vote). The Hamiltonian contains some non-linear effects, which takes into account the role of a party in the decision process of the other two parties. Moreover, we show how the same Hamiltonian can also be used to construct a formal structure which can describe the dynamics of buying and selling financial assets (without however implying a specific price setting mechanism).

  17. Double-β decay within a consistent deformed approach

    NASA Astrophysics Data System (ADS)

    Delion, D. S.; Suhonen, J.

    2015-05-01

    In this paper we present a timely application of the proton-neutron deformed quasiparticle random-phase approximation (p n -dQRPA), designed to describe in a consistent way the 1+ Gamow-Teller states in odd-odd deformed nuclei. For this purpose we apply a projection before variation procedure by using a single-particle basis with projected angular momentum, provided by the diagonalization of a spherical mean field plus quadrupole-quadrupole interaction. The residual Hamiltonian contains pairing plus proton-neutron dipole terms in particle-hole and particle-particle channels, with constant strengths. As an example we describe the two-neutrino double-beta (2 ν β β ) decay of 150Nd to the ground state of 150Sm. The experimental (p ,n ) type of strength in 150Nd and the (n ,p ) type of strength in 150Sm are reasonably reproduced and the 2 ν β β decay matrix element depicts a strong dependence upon the particle-particle strength gp p. The experimental half-life is reproduced for gp p=0.05 . It turns out that the measured half-lives for 2 ν β β transitions between other deformed superfluid partners with mass numbers A =82 ,96,100,128,130,238 are reproduced with fairly good accuracy by using this value of gp p.

  18. Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes

    NASA Astrophysics Data System (ADS)

    Marvian, Milad; Lidar, Daniel A.

    2017-01-01

    We present general conditions for quantum error suppression for Hamiltonian-based quantum computation using subsystem codes. This involves encoding the Hamiltonian performing the computation using an error detecting subsystem code and the addition of a penalty term that commutes with the encoded Hamiltonian. The scheme is general and includes the stabilizer formalism of both subspace and subsystem codes as special cases. We derive performance bounds and show that complete error suppression results in the large penalty limit. To illustrate the power of subsystem-based error suppression, we introduce fully two-local constructions for protection against local errors of the swap gate of adiabatic gate teleportation and the Ising chain in a transverse field.

  19. Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes.

    PubMed

    Marvian, Milad; Lidar, Daniel A

    2017-01-20

    We present general conditions for quantum error suppression for Hamiltonian-based quantum computation using subsystem codes. This involves encoding the Hamiltonian performing the computation using an error detecting subsystem code and the addition of a penalty term that commutes with the encoded Hamiltonian. The scheme is general and includes the stabilizer formalism of both subspace and subsystem codes as special cases. We derive performance bounds and show that complete error suppression results in the large penalty limit. To illustrate the power of subsystem-based error suppression, we introduce fully two-local constructions for protection against local errors of the swap gate of adiabatic gate teleportation and the Ising chain in a transverse field.

  20. Divide and conquer approach to quantum Hamiltonian simulation

    NASA Astrophysics Data System (ADS)

    Hadfield, Stuart; Papageorgiou, Anargyros

    2018-04-01

    We show a divide and conquer approach for simulating quantum mechanical systems on quantum computers. We can obtain fast simulation algorithms using Hamiltonian structure. Considering a sum of Hamiltonians we split them into groups, simulate each group separately, and combine the partial results. Simulation is customized to take advantage of the properties of each group, and hence yield refined bounds to the overall simulation cost. We illustrate our results using the electronic structure problem of quantum chemistry, where we obtain significantly improved cost estimates under very mild assumptions.

  1. Simple model for deriving sdg interacting boson model Hamiltonians: 150Nd example

    NASA Astrophysics Data System (ADS)

    Devi, Y. D.; Kota, V. K. B.

    1993-07-01

    A simple and yet useful model for deriving sdg interacting boson model (IBM) Hamiltonians is to assume that single-boson energies derive from identical particle (pp and nn) interactions and proton, neutron single-particle energies, and that the two-body matrix elements for bosons derive from pn interaction, with an IBM-2 to IBM-1 projection of the resulting p-n sdg IBM Hamiltonian. The applicability of this model in generating sdg IBM Hamiltonians is demonstrated, using a single-j-shell Otsuka-Arima-Iachello mapping of the quadrupole and hexadecupole operators in proton and neutron spaces separately and constructing a quadrupole-quadrupole plus hexadecupole-hexadecupole Hamiltonian in the analysis of the spectra, B(E2)'s, and E4 strength distribution in the example of 150Nd.

  2. Coupling density functional theory to polarizable force fields for efficient and accurate Hamiltonian molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Schwörer, Magnus; Breitenfeld, Benedikt; Tröster, Philipp; Bauer, Sebastian; Lorenzen, Konstantin; Tavan, Paul; Mathias, Gerald

    2013-06-01

    Hybrid molecular dynamics (MD) simulations, in which the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 103-105 molecules, pose a challenge. A corresponding computational approach should guarantee energy conservation, exclude artificial distortions of the electron density at the interface between the DFT and PMM fragments, and should treat the long-range electrostatic interactions within the hybrid simulation system in a linearly scaling fashion. Here we describe a corresponding Hamiltonian DFT/(P)MM implementation, which accounts for inducible atomic dipoles of a PMM environment in a joint DFT/PMM self-consistency iteration. The long-range parts of the electrostatics are treated by hierarchically nested fast multipole expansions up to a maximum distance dictated by the minimum image convention of toroidal boundary conditions and, beyond that distance, by a reaction field approach such that the computation scales linearly with the number of PMM atoms. Short-range over-polarization artifacts are excluded by using Gaussian inducible dipoles throughout the system and Gaussian partial charges in the PMM region close to the DFT fragment. The Hamiltonian character, the stability, and efficiency of the implementation are investigated by hybrid DFT/PMM-MD simulations treating one molecule of the water dimer and of bulk water by DFT and the respective remainder by PMM.

  3. A Hamiltonian electromagnetic gyrofluid model

    NASA Astrophysics Data System (ADS)

    Waelbroeck, F. L.; Hazeltine, R. D.; Morrison, P. J.

    2009-03-01

    An isothermal truncation of the electromagnetic gyrofluid model of Snyder and Hammett [Phys. Plasmas 8, 3199 (2001)] is shown to be Hamiltonian. The corresponding noncanonical Lie-Poisson bracket and its Casimir invariants are presented. The invariants are used to obtain a set of coupled Grad-Shafranov equations describing equilibria and propagating coherent structures.

  4. Effective Hamiltonian Approach to Optical Activity in Weyl Spin–Orbit System

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Hideo; Tatara, Gen

    2018-06-01

    Chirality or handedness in condensed matter induces anomalous optical responses such as natural optical activity, rotation of the plane of light polarization, as a result of breaking of spatial-inversion symmetry. In this study, optical properties of a Weyl spin-orbit system with quadratic dispersion, a typical chiral system invariant under time-reversal, are investigated theoretically by deriving an effective Hamiltonian based on an imaginary-time path-integral formalism. We show that the effective Hamiltonian can indeed be written in terms of an optical chirality order parameter suggested by Lipkin. The natural optical activity is discussed on the basis of the Hamiltonian.

  5. Quantum error suppression with commuting Hamiltonians: two local is too local.

    PubMed

    Marvian, Iman; Lidar, Daniel A

    2014-12-31

    We consider error suppression schemes in which quantum information is encoded into the ground subspace of a Hamiltonian comprising a sum of commuting terms. Since such Hamiltonians are gapped, they are considered natural candidates for protection of quantum information and topological or adiabatic quantum computation. However, we prove that they cannot be used to this end in the two-local case. By making the favorable assumption that the gap is infinite, we show that single-site perturbations can generate a degeneracy splitting in the ground subspace of this type of Hamiltonian which is of the same order as the magnitude of the perturbation, and is independent of the number of interacting sites and their Hilbert space dimensions, just as in the absence of the protecting Hamiltonian. This splitting results in decoherence of the ground subspace, and we demonstrate that for natural noise models the coherence time is proportional to the inverse of the degeneracy splitting. Our proof involves a new version of the no-hiding theorem which shows that quantum information cannot be approximately hidden in the correlations between two quantum systems. The main reason that two-local commuting Hamiltonians cannot be used for quantum error suppression is that their ground subspaces have only short-range (two-body) entanglement.

  6. A material sensitivity study on the accuracy of deformable organ registration using linear biomechanical models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Y.; Liang, J.; Yan, D.

    2006-02-15

    Model-based deformable organ registration techniques using the finite element method (FEM) have recently been investigated intensively and applied to image-guided adaptive radiotherapy (IGART). These techniques assume that human organs are linearly elastic material, and their mechanical properties are predetermined. Unfortunately, the accurate measurement of the tissue material properties is challenging and the properties usually vary between patients. A common issue is therefore the achievable accuracy of the calculation due to the limited access to tissue elastic material constants. In this study, we performed a systematic investigation on this subject based on tissue biomechanics and computer simulations to establish the relationshipsmore » between achievable registration accuracy and tissue mechanical and organ geometrical properties. Primarily we focused on image registration for three organs: rectal wall, bladder wall, and prostate. The tissue anisotropy due to orientation preference in tissue fiber alignment is captured by using an orthotropic or a transversely isotropic elastic model. First we developed biomechanical models for the rectal wall, bladder wall, and prostate using simplified geometries and investigated the effect of varying material parameters on the resulting organ deformation. Then computer models based on patient image data were constructed, and image registrations were performed. The sensitivity of registration errors was studied by perturbating the tissue material properties from their mean values while fixing the boundary conditions. The simulation results demonstrated that registration error for a subvolume increases as its distance from the boundary increases. Also, a variable associated with material stability was found to be a dominant factor in registration accuracy in the context of material uncertainty. For hollow thin organs such as rectal walls and bladder walls, the registration errors are limited. Given 30% in material

  7. Solving a Hamiltonian Path Problem with a bacterial computer

    PubMed Central

    Baumgardner, Jordan; Acker, Karen; Adefuye, Oyinade; Crowley, Samuel Thomas; DeLoache, Will; Dickson, James O; Heard, Lane; Martens, Andrew T; Morton, Nickolaus; Ritter, Michelle; Shoecraft, Amber; Treece, Jessica; Unzicker, Matthew; Valencia, Amanda; Waters, Mike; Campbell, A Malcolm; Heyer, Laurie J; Poet, Jeffrey L; Eckdahl, Todd T

    2009-01-01

    Background The Hamiltonian Path Problem asks whether there is a route in a directed graph from a beginning node to an ending node, visiting each node exactly once. The Hamiltonian Path Problem is NP complete, achieving surprising computational complexity with modest increases in size. This challenge has inspired researchers to broaden the definition of a computer. DNA computers have been developed that solve NP complete problems. Bacterial computers can be programmed by constructing genetic circuits to execute an algorithm that is responsive to the environment and whose result can be observed. Each bacterium can examine a solution to a mathematical problem and billions of them can explore billions of possible solutions. Bacterial computers can be automated, made responsive to selection, and reproduce themselves so that more processing capacity is applied to problems over time. Results We programmed bacteria with a genetic circuit that enables them to evaluate all possible paths in a directed graph in order to find a Hamiltonian path. We encoded a three node directed graph as DNA segments that were autonomously shuffled randomly inside bacteria by a Hin/hixC recombination system we previously adapted from Salmonella typhimurium for use in Escherichia coli. We represented nodes in the graph as linked halves of two different genes encoding red or green fluorescent proteins. Bacterial populations displayed phenotypes that reflected random ordering of edges in the graph. Individual bacterial clones that found a Hamiltonian path reported their success by fluorescing both red and green, resulting in yellow colonies. We used DNA sequencing to verify that the yellow phenotype resulted from genotypes that represented Hamiltonian path solutions, demonstrating that our bacterial computer functioned as expected. Conclusion We successfully designed, constructed, and tested a bacterial computer capable of finding a Hamiltonian path in a three node directed graph. This proof

  8. A Note on Hamiltonian Graphs

    ERIC Educational Resources Information Center

    Skurnick, Ronald; Davi, Charles; Skurnick, Mia

    2005-01-01

    Since 1952, several well-known graph theorists have proven numerous results regarding Hamiltonian graphs. In fact, many elementary graph theory textbooks contain the theorems of Ore, Bondy and Chvatal, Chvatal and Erdos, Posa, and Dirac, to name a few. In this note, the authors state and prove some propositions of their own concerning Hamiltonian…

  9. Conservative, unconditionally stable discretization methods for Hamiltonian equations, applied to wave motion in lattice equations modeling protein molecules

    NASA Astrophysics Data System (ADS)

    LeMesurier, Brenton

    2012-01-01

    A new approach is described for generating exactly energy-momentum conserving time discretizations for a wide class of Hamiltonian systems of DEs with quadratic momenta, including mechanical systems with central forces; it is well-suited in particular to the large systems that arise in both spatial discretizations of nonlinear wave equations and lattice equations such as the Davydov System modeling energetic pulse propagation in protein molecules. The method is unconditionally stable, making it well-suited to equations of broadly “Discrete NLS form”, including many arising in nonlinear optics. Key features of the resulting discretizations are exact conservation of both the Hamiltonian and quadratic conserved quantities related to continuous linear symmetries, preservation of time reversal symmetry, unconditional stability, and respecting the linearity of certain terms. The last feature allows a simple, efficient iterative solution of the resulting nonlinear algebraic systems that retain unconditional stability, avoiding the need for full Newton-type solvers. One distinction from earlier work on conservative discretizations is a new and more straightforward nearly canonical procedure for constructing the discretizations, based on a “discrete gradient calculus with product rule” that mimics the essential properties of partial derivatives. This numerical method is then used to study the Davydov system, revealing that previously conjectured continuum limit approximations by NLS do not hold, but that sech-like pulses related to NLS solitons can nevertheless sometimes arise.

  10. Static response of deformable microchannels

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.; Sidhore, Tanmay C.

    2017-11-01

    Microfluidic channels manufactured from PDMS are a key component of lab-on-a-chip devices. Experimentally, rectangular microchannels are found to deform into a non-rectangular cross-section due to fluid-structure interactions. Deformation affects the flow profile, which results in a nonlinear relationship between the volumetric flow rate and the pressure drop. We develop a framework, within the lubrication approximation (l >> w >> h), to self-consistently derive flow rate-pressure drop relations. Emphasis is placed on handling different types of elastic response: from pure plate-bending, to half-space deformation, to membrane stretching. The ``simplest'' model (Stokes flow in a 3D rectangular channel capped with a linearly elastic Kirchhoff-Love plate) agrees well with recent experiments. We also simulate the static response of such microfluidic channels under laminar flow conditions using ANSYSWorkbench. Simulations are calibrated using experimental flow rate-pressure drop data from the literature. The simulations provide highly resolved deformation profiles, which are difficult to measure experimentally. By comparing simulations, experiments and our theoretical models, we show good agreement in many flow/deformation regimes, without any fitting parameters.

  11. An exact elliptic superpotential for N=1 ∗ deformations of finite N=2 gauge theories

    NASA Astrophysics Data System (ADS)

    Dorey, Nick; Hollowood, Timothy J.; Kumar, S. Prem

    2002-03-01

    We study relevant deformations of the N=2 superconformal theory on the world-volume of N D3-branes at an Ak-1 singularity. In particular, we determine the vacuum structure of the mass-deformed theory with N=1 supersymmetry and show how the different vacua are permuted by an extended duality symmetry. We then obtain exact, modular covariant formulae (for all k, N and arbitrary gauge couplings) for the holomorphic observables in the massive vacua in two different ways: by lifting to M-theory, and by compactification to three dimensions and subsequent use of mirror symmetry. In the latter case, we find an exact superpotential for the model which coincides with a certain combination of the quadratic Hamiltonians of the spin generalization of the elliptic Calogero-Moser integrable system.

  12. Hamiltonian BVMs (HBVMs): Implementation Details and Applications

    NASA Astrophysics Data System (ADS)

    Brugnano, Luigi; Iavernaro, Felice; Susca, Tiziana

    2009-09-01

    Hamiltonian Boundary Value Methods are one step schemes of high order where the internal stages are partly exploited to impose the order conditions (fundamental stages) and partly to confer the formula the property of conserving the Hamiltonian function when this is a polynomial with a given degree v. The term "silent stages" has been coined for these latter set of extra-stages to mean that their presence does not cause an increase of the dimension of the associated nonlinear system to be solved at each step. By considering a specific method in this class, we give some details about how the solution of the nonlinear system may be conveniently carried out and how to compensate the effect of roundoff errors.

  13. A Variational Principle for Reconstruction of Elastic Deformations in Shear Deformable Plates and Shells

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Spangler, Jan L.

    2003-01-01

    A variational principle is formulated for the inverse problem of full-field reconstruction of three-dimensional plate/shell deformations from experimentally measured surface strains. The formulation is based upon the minimization of a least squares functional that uses the complete set of strain measures consistent with linear, first-order shear-deformation theory. The formulation, which accommodates for transverse shear deformation, is applicable for the analysis of thin and moderately thick plate and shell structures. The main benefit of the variational principle is that it is well suited for C(sup 0)-continuous displacement finite element discretizations, thus enabling the development of robust algorithms for application to complex civil and aeronautical structures. The methodology is especially aimed at the next generation of aerospace vehicles for use in real-time structural health monitoring systems.

  14. (p,q) deformations and (p,q)-vector coherent states of the Jaynes-Cummings model in the rotating wave approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Geloun, Joseph; Govaerts, Jan; Hounkonnou, M. Norbert

    2007-03-15

    Classes of (p,q) deformations of the Jaynes-Cummings model in the rotating wave approximation are considered. Diagonalization of the Hamiltonian is performed exactly, leading to useful spectral decompositions of a series of relevant operators. The latter include ladder operators acting between adjacent energy eigenstates within two separate infinite discrete towers, except for a singleton state. These ladder operators allow for the construction of (p,q)-deformed vector coherent states. Using (p,q) arithmetics, explicit and exact solutions to the associated moment problem are displayed, providing new classes of coherent states for such models. Finally, in the limit of decoupled spin sectors, our analysis translatesmore » into (p,q) deformations of the supersymmetric harmonic oscillator, such that the two supersymmetric sectors get intertwined through the action of the ladder operators as well as in the associated coherent states.« less

  15. An Exposition on the Nonlinear Kinematics of Shells, Including Transverse Shearing Deformations

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2013-01-01

    An in-depth exposition on the nonlinear deformations of shells with "small" initial geometric imperfections, is presented without the use of tensors. First, the mathematical descriptions of an undeformed-shell reference surface, and its deformed image, are given in general nonorthogonal coordinates. The two-dimensional Green-Lagrange strains of the reference surface derived and simplified for the case of "small" strains. Linearized reference-surface strains, rotations, curvatures, and torsions are then derived and used to obtain the "small" Green-Lagrange strains in terms of linear deformation measures. Next, the geometry of the deformed shell is described mathematically and the "small" three-dimensional Green-Lagrange strains are given. The deformations of the shell and its reference surface are related by introducing a kinematic hypothesis that includes transverse shearing deformations and contains the classical Love-Kirchhoff kinematic hypothesis as a proper, explicit subset. Lastly, summaries of the essential equations are given for general nonorthogonal and orthogonal coordinates, and the basis for further simplification of the equations is discussed.

  16. Can model Hamiltonians describe the electron-electron interaction in π-conjugated systems?: PAH and graphene

    NASA Astrophysics Data System (ADS)

    Chiappe, G.; Louis, E.; San-Fabián, E.; Vergés, J. A.

    2015-11-01

    Model Hamiltonians have been, and still are, a valuable tool for investigating the electronic structure of systems for which mean field theories work poorly. This review will concentrate on the application of Pariser-Parr-Pople (PPP) and Hubbard Hamiltonians to investigate some relevant properties of polycyclic aromatic hydrocarbons (PAH) and graphene. When presenting these two Hamiltonians we will resort to second quantisation which, although not the way chosen in its original proposal of the former, is much clearer. We will not attempt to be comprehensive, but rather our objective will be to try to provide the reader with information on what kinds of problems they will encounter and what tools they will need to solve them. One of the key issues concerning model Hamiltonians that will be treated in detail is the choice of model parameters. Although model Hamiltonians reduce the complexity of the original Hamiltonian, they cannot be solved in most cases exactly. So, we shall first consider the Hartree-Fock approximation, still the only tool for handling large systems, besides density functional theory (DFT) approaches. We proceed by discussing to what extent one may exactly solve model Hamiltonians and the Lanczos approach. We shall describe the configuration interaction (CI) method, a common technology in quantum chemistry but one rarely used to solve model Hamiltonians. In particular, we propose a variant of the Lanczos method, inspired by CI, that has the novelty of using as the seed of the Lanczos process a mean field (Hartree-Fock) determinant (the method will be named LCI). Two questions of interest related to model Hamiltonians will be discussed: (i) when including long-range interactions, how crucial is including in the Hamiltonian the electronic charge that compensates ion charges? (ii) Is it possible to reduce a Hamiltonian incorporating Coulomb interactions (PPP) to an ‘effective’ Hamiltonian including only on-site interactions (Hubbard)? The

  17. Hamiltonian approach to second order gauge invariant cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Domènech, Guillem; Sasaki, Misao

    2018-01-01

    In view of growing interest in tensor modes and their possible detection, we clarify the definition of tensor modes up to 2nd order in perturbation theory within the Hamiltonian formalism. Like in gauge theory, in cosmology the Hamiltonian is a suitable and consistent approach to reduce the gauge degrees of freedom. In this paper we employ the Faddeev-Jackiw method of Hamiltonian reduction. An appropriate set of gauge invariant variables that describe the dynamical degrees of freedom may be obtained by suitable canonical transformations in the phase space. We derive a set of gauge invariant variables up to 2nd order in perturbation expansion and for the first time we reduce the 3rd order action without adding gauge fixing terms. In particular, we are able to show the relation between the uniform-ϕ and Newtonian slicings, and study the difference in the definition of tensor modes in these two slicings.

  18. Integrated Hamiltonian sampling: a simple and versatile method for free energy simulations and conformational sampling.

    PubMed

    Mori, Toshifumi; Hamers, Robert J; Pedersen, Joel A; Cui, Qiang

    2014-07-17

    Motivated by specific applications and the recent work of Gao and co-workers on integrated tempering sampling (ITS), we have developed a novel sampling approach referred to as integrated Hamiltonian sampling (IHS). IHS is straightforward to implement and complementary to existing methods for free energy simulation and enhanced configurational sampling. The method carries out sampling using an effective Hamiltonian constructed by integrating the Boltzmann distributions of a series of Hamiltonians. By judiciously selecting the weights of the different Hamiltonians, one achieves rapid transitions among the energy landscapes that underlie different Hamiltonians and therefore an efficient sampling of important regions of the conformational space. Along this line, IHS shares similar motivations as the enveloping distribution sampling (EDS) approach of van Gunsteren and co-workers, although the ways that distributions of different Hamiltonians are integrated are rather different in IHS and EDS. Specifically, we report efficient ways for determining the weights using a combination of histogram flattening and weighted histogram analysis approaches, which make it straightforward to include many end-state and intermediate Hamiltonians in IHS so as to enhance its flexibility. Using several relatively simple condensed phase examples, we illustrate the implementation and application of IHS as well as potential developments for the near future. The relation of IHS to several related sampling methods such as Hamiltonian replica exchange molecular dynamics and λ-dynamics is also briefly discussed.

  19. Hermitian Hamiltonian equivalent to a given non-Hermitian one: manifestation of spectral singularity.

    PubMed

    Samsonov, Boris F

    2013-04-28

    One of the simplest non-Hermitian Hamiltonians, first proposed by Schwartz in 1960, that may possess a spectral singularity is analysed from the point of view of the non-Hermitian generalization of quantum mechanics. It is shown that the η operator, being a second-order differential operator, has supersymmetric structure. Asymptotic behaviour of the eigenfunctions of a Hermitian Hamiltonian equivalent to the given non-Hermitian one is found. As a result, the corresponding scattering matrix and cross section are given explicitly. It is demonstrated that the possible presence of a spectral singularity in the spectrum of the non-Hermitian Hamiltonian may be detected as a resonance in the scattering cross section of its Hermitian counterpart. Nevertheless, just at the singular point, the equivalent Hermitian Hamiltonian becomes undetermined.

  20. Nuclear deformation in the laboratory frame

    NASA Astrophysics Data System (ADS)

    Gilbreth, C. N.; Alhassid, Y.; Bertsch, G. F.

    2018-01-01

    We develop a formalism for calculating the distribution of the axial quadrupole operator in the laboratory frame within the rotationally invariant framework of the configuration-interaction shell model. The calculation is carried out using a finite-temperature auxiliary-field quantum Monte Carlo method. We apply this formalism to isotope chains of even-mass samarium and neodymium nuclei and show that the quadrupole distribution provides a model-independent signature of nuclear deformation. Two technical advances are described that greatly facilitate the calculations. The first is to exploit the rotational invariance of the underlying Hamiltonian to reduce the statistical fluctuations in the Monte Carlo calculations. The second is to determine quadruple invariants from the distribution of the axial quadrupole operator in the laboratory frame. This allows us to extract effective values of the intrinsic quadrupole shape parameters without invoking an intrinsic frame or a mean-field approximation.

  1. Optimal feedback scheme and universal time scaling for Hamiltonian parameter estimation.

    PubMed

    Yuan, Haidong; Fung, Chi-Hang Fred

    2015-09-11

    Time is a valuable resource and it is expected that a longer time period should lead to better precision in Hamiltonian parameter estimation. However, recent studies in quantum metrology have shown that in certain cases more time may even lead to worse estimations, which puts this intuition into question. In this Letter we show that by including feedback controls this intuition can be restored. By deriving asymptotically optimal feedback controls we quantify the maximal improvement feedback controls can provide in Hamiltonian parameter estimation and show a universal time scaling for the precision limit under the optimal feedback scheme. Our study reveals an intriguing connection between noncommutativity in the dynamics and the gain of feedback controls in Hamiltonian parameter estimation.

  2. Supermultiplet of β-deformations from twistors

    NASA Astrophysics Data System (ADS)

    Milián, Segundo P.

    2017-09-01

    We consider the supermultiplet of linearized beta-deformation of 𝒩 = 4 super-Yang-Mills (SYM). It was previously studied on the gravitational side. We study the supermultiplet of beta-deformations on the field theory side and we compare two finite-dimensional representations of psl(4|4,R) algebra. We show that they are related by an intertwining operator. We develop a twistor-based approach which could be useful for studying other finite-dimensional and nonunitary representations in AdS/CFT correspondence.

  3. Deformations of vector-scalar models

    NASA Astrophysics Data System (ADS)

    Barnich, Glenn; Boulanger, Nicolas; Henneaux, Marc; Julia, Bernard; Lekeu, Victor; Ranjbar, Arash

    2018-02-01

    Abelian vector fields non-minimally coupled to uncharged scalar fields arise in many contexts. We investigate here through algebraic methods their consistent deformations ("gaugings"), i.e., the deformations that preserve the number (but not necessarily the form or the algebra) of the gauge symmetries. Infinitesimal consistent deformations are given by the BRST cohomology classes at ghost number zero. We parametrize explicitly these classes in terms of various types of global symmetries and corresponding Noether currents through the characteristic cohomology related to antifields and equations of motion. The analysis applies to all ghost numbers and not just ghost number zero. We also provide a systematic discussion of the linear and quadratic constraints on these parameters that follow from higher-order consistency. Our work is relevant to the gaugings of extended supergravities.

  4. Multiple Time-Step Dual-Hamiltonian Hybrid Molecular Dynamics — Monte Carlo Canonical Propagation Algorithm

    PubMed Central

    Weare, Jonathan; Dinner, Aaron R.; Roux, Benoît

    2016-01-01

    A multiple time-step integrator based on a dual Hamiltonian and a hybrid method combining molecular dynamics (MD) and Monte Carlo (MC) is proposed to sample systems in the canonical ensemble. The Dual Hamiltonian Multiple Time-Step (DHMTS) algorithm is based on two similar Hamiltonians: a computationally expensive one that serves as a reference and a computationally inexpensive one to which the workload is shifted. The central assumption is that the difference between the two Hamiltonians is slowly varying. Earlier work has shown that such dual Hamiltonian multiple time-step schemes effectively precondition nonlinear differential equations for dynamics by reformulating them into a recursive root finding problem that can be solved by propagating a correction term through an internal loop, analogous to RESPA. Of special interest in the present context, a hybrid MD-MC version of the DHMTS algorithm is introduced to enforce detailed balance via a Metropolis acceptance criterion and ensure consistency with the Boltzmann distribution. The Metropolis criterion suppresses the discretization errors normally associated with the propagation according to the computationally inexpensive Hamiltonian, treating the discretization error as an external work. Illustrative tests are carried out to demonstrate the effectiveness of the method. PMID:26918826

  5. The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate.

    PubMed

    Dridi, G; Julien, R; Hliwa, M; Joachim, C

    2015-08-28

    The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor.

  6. Construction of Hamiltonians by supervised learning of energy and entanglement spectra

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroyuki; Nakagawa, Yuya O.; Sugiura, Sho; Oshikawa, Masaki

    2018-02-01

    Correlated many-body problems ubiquitously appear in various fields of physics such as condensed matter, nuclear, and statistical physics. However, due to the interplay of the large number of degrees of freedom, it is generically impossible to treat these problems from first principles. Thus the construction of a proper model, namely, effective Hamiltonian, is essential. Here, we propose a simple supervised learning algorithm for constructing Hamiltonians from given energy or entanglement spectra. We apply the proposed scheme to the Hubbard model at the half-filling, and compare the obtained effective low-energy spin model with several analytic results based on the high-order perturbation theory, which have been inconsistent with each other. We also show that our approach can be used to construct the entanglement Hamiltonian of a quantum many-body state from its entanglement spectrum as well. We exemplify this using the ground states of the S =1 /2 two-leg Heisenberg ladders. We observe a qualitative difference between the entanglement Hamiltonians of the two phases (the Haldane and the rung singlet phase) of the model due to the different origin of the entanglement. In the Haldane phase, we find that the entanglement Hamiltonian is nonlocal by nature, and the locality can be restored by introducing the anisotropy and turning the ground state into the large-D phase. Possible applications to the model construction from experimental data and to various problems of strongly correlated systems are discussed.

  7. Symmetries of SU(2) Skyrmion in Hamiltonian and Lagrangian Approaches

    NASA Astrophysics Data System (ADS)

    Hong, Soon-Tae; Kim, Yong-Wan; Park, Young-Jai

    We apply the Batalin-Fradkin-Tyutin (BFT) method to the SU(2) Skyrmion to study the full symmetry structure of the model at the first-class Hamiltonian level. On the other hand, we also analyze the symmetry structure of the action having the WZ term, which corresponds to this Hamiltonian, in the framework of the Lagrangian approach. Furthermore, following the BFV formalism we derive the BRST invariant gauge fixed Lagrangian from the above extended action.

  8. The Hamiltonian structure of the (2+1)-dimensional Ablowitz--Kaup--Newell--Segur hierarchy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Athorne, C.; Dorfman, I.Y.

    1993-08-01

    By considering Hamiltonian theory over a suitable (noncommutative) ring the nonlinear evolution equations of the Ablowitz--Kaup--Newell--Segur (2+1) hierarchy are incorporated into a Hamiltonian framework and a modified Lenard scheme.

  9. Hamiltonian structure of Dubrovin's equation of associativity in 2-d topological field theory

    NASA Astrophysics Data System (ADS)

    Galvão, C. A. P.; Nutku, Y.

    1996-12-01

    A third order Monge-Ampère type equation of associativity that Dubrovin has obtained in 2-d topological field theory is formulated in terms of a variational principle subject to second class constraints. Using Dirac's theory of constraints this degenerate Lagrangian system is cast into Hamiltonian form and the Hamiltonian operator is obtained from the Dirac bracket. There is a new type of Kac-Moody algebra that corresponds to this Hamiltonian operator. In particular, it is not a W-algebra.

  10. Hamiltonian thermodynamics of charged three-dimensional dilatonic black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dias, Goncalo A. S.; Lemos, Jose P. S.; Centro Multidisciplinar de Astrofisica-CENTRA, Departamento de Fisica, Instituto Superior Tecnico-IST, Universidade Tecnica de Lisboa-UTL, Avenida Rovisco Pais 1, 1049-001 Lisboa

    2008-10-15

    The action for a class of three-dimensional dilaton-gravity theories, with an electromagnetic Maxwell field and a cosmological constant, can be recast in a Brans-Dicke-Maxwell type action, with its free {omega} parameter. For a negative cosmological constant, these theories have static, electrically charged, and spherically symmetric black hole solutions. Those theories with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found out. The theories studied are general relativity ({omega}{yields}{+-}{infinity}), a dimensionally reduced cylindrical four-dimensional general relativity theory ({omega}=0), and a theory representing a class of theories ({omega}=-3), all with a Maxwell term. The Hamiltonian formalismmore » is set up in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcation 1-sphere as the left boundary, and anti-de Sitter infinity as the right boundary. The metric functions on the foliated hypersurfaces and the radial component of the vector potential one-form are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unconstrained theory with two pairs of canonical coordinates (M,P{sub M};Q,P{sub Q}), where M is the mass parameter, which for {omega}<-(3/2) and for {omega}={+-}{infinity} needs a careful renormalization, P{sub M} is the conjugate momenta of M, Q is the charge parameter, and P{sub Q} is its conjugate momentum. The resulting Hamiltonian is a sum of boundary terms only. A quantization of the theory is performed. The Schroedinger evolution operator is constructed, the trace is taken, and the partition function of the grand canonical ensemble is obtained, where the chemical potential is the scalar electric field {phi}. Like the uncharged cases studied previously, the charged black hole entropies differ, in general, from the usual quarter of

  11. Non-commutative geometry of the h-deformed quantum plane

    NASA Astrophysics Data System (ADS)

    Cho, S.; Madore, J.; Park, K. S.

    1998-03-01

    The h-deformed quantum plane is a counterpart of the q-deformed one in the set of quantum planes which are covariant under those quantum deformations of GL(2) which admit a central determinant. We have investigated the non-commutative geometry of the h-deformed quantum plane. There is a two-parameter family of torsion-free linear connections, a one-parameter sub-family of which are compatible with a skew-symmetric non-degenerate bilinear map. The skew-symmetric map resembles a symplectic 2-form and induces a metric. It is also shown that the extended h-deformed quantum plane is a non-commutative version of the Poincaré half-plane, a surface of constant negative Gaussian

  12. The Schwinger Model on S 1: Hamiltonian Formulation, Vacuum and Anomaly

    NASA Astrophysics Data System (ADS)

    Stuart, David

    2014-12-01

    We present a Hamiltonian formulation of the Schwinger model with spatial domain taken to be the circle. It is shown that, in Coulomb gauge, the Hamiltonian is a semi-bounded, self-adjoint operator which is invariant under the group of large gauge transformations. There is a nontrivial action of on fermionic Fock space and its vacuum. This action plays a role analogous to that played by the spectral flow in the infinite Dirac sea formalism. The formulation allows (1) a description of the anomaly and its relation to the group action, and (2) an explicit identification of the vacuum. The anomaly in the chiral conservation law appears as a consequence of insisting upon semi-boundedness and gauge invariance of the quantized Hamiltonian.

  13. Finite-error metrological bounds on multiparameter Hamiltonian estimation

    NASA Astrophysics Data System (ADS)

    Kura, Naoto; Ueda, Masahito

    2018-01-01

    Estimation of multiple parameters in an unknown Hamiltonian is investigated. We present upper and lower bounds on the time required to complete the estimation within a prescribed error tolerance δ . The lower bound is given on the basis of the Cramér-Rao inequality, where the quantum Fisher information is bounded by the squared evolution time. The upper bound is obtained by an explicit construction of estimation procedures. By comparing the cases with different numbers of Hamiltonian channels, we also find that the few-channel procedure with adaptive feedback and the many-channel procedure with entanglement are equivalent in the sense that they require the same amount of time resource up to a constant factor.

  14. Reverse engineering of a Hamiltonian by designing the evolution operators

    NASA Astrophysics Data System (ADS)

    Kang, Yi-Hao; Chen, Ye-Hong; Wu, Qi-Cheng; Huang, Bi-Hua; Xia, Yan; Song, Jie

    2016-07-01

    We propose an effective and flexible scheme for reverse engineering of a Hamiltonian by designing the evolution operators to eliminate the terms of Hamiltonian which are hard to be realized in practice. Different from transitionless quantum driving (TQD), the present scheme is focus on only one or parts of moving states in a D-dimension (D ≥ 3) system. The numerical simulation shows that the present scheme not only contains the results of TQD, but also has more free parameters, which make this scheme more flexible. An example is given by using this scheme to realize the population transfer for a Rydberg atom. The influences of various decoherence processes are discussed by numerical simulation and the result shows that the scheme is fast and robust against the decoherence and operational imperfection. Therefore, this scheme may be used to construct a Hamiltonian which can be realized in experiments.

  15. Riemannian geometry of Hamiltonian chaos: hints for a general theory.

    PubMed

    Cerruti-Sola, Monica; Ciraolo, Guido; Franzosi, Roberto; Pettini, Marco

    2008-10-01

    We aim at assessing the validity limits of some simplifying hypotheses that, within a Riemmannian geometric framework, have provided an explanation of the origin of Hamiltonian chaos and have made it possible to develop a method of analytically computing the largest Lyapunov exponent of Hamiltonian systems with many degrees of freedom. Therefore, a numerical hypotheses testing has been performed for the Fermi-Pasta-Ulam beta model and for a chain of coupled rotators. These models, for which analytic computations of the largest Lyapunov exponents have been carried out in the mentioned Riemannian geometric framework, appear as paradigmatic examples to unveil the reason why the main hypothesis of quasi-isotropy of the mechanical manifolds sometimes breaks down. The breakdown is expected whenever the topology of the mechanical manifolds is nontrivial. This is an important step forward in view of developing a geometric theory of Hamiltonian chaos of general validity.

  16. Extended hamiltonian formalism and Lorentz-violating lagrangians

    NASA Astrophysics Data System (ADS)

    Colladay, Don

    2017-09-01

    A new perspective on the classical mechanical formulation of particle trajectories in Lorentz-violating theories is presented. Using the extended hamiltonian formalism, a Legendre Transformation between the associated covariant lagrangian and hamiltonian varieties is constructed. This approach enables calculation of trajectories using Hamilton's equations in momentum space and the Euler-Lagrange equations in velocity space away from certain singular points that arise in the theory. Singular points are naturally de-singularized by requiring the trajectories to be smooth functions of both velocity and momentum variables. In addition, it is possible to identify specific sheets of the dispersion relations that correspond to specific solutions for the lagrangian. Examples corresponding to bipartite Finsler functions are computed in detail. A direct connection between the lagrangians and the field-theoretic solutions to the Dirac equation is also established for a special case.

  17. On the exactness of effective Floquet Hamiltonians employed in solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Garg, Rajat; Ramachandran, Ramesh

    2017-05-01

    Development of theoretical models based on analytic theory has remained an active pursuit in molecular spectroscopy for its utility both in the design of experiments as well as in the interpretation of spectroscopic data. In particular, the role of "Effective Hamiltonians" in the evolution of theoretical frameworks is well known across all forms of spectroscopy. Nevertheless, a constant revalidation of the approximations employed in the theoretical frameworks is necessitated by the constant improvements on the experimental front in addition to the complexity posed by the systems under study. Here in this article, we confine our discussion to the derivation of effective Floquet Hamiltonians based on the contact transformation procedure. While the importance of the effective Floquet Hamiltonians in the qualitative description of NMR experiments has been realized in simpler cases, its extension in quantifying spectral data deserves a cautious approach. With this objective, the validity of the approximations employed in the derivation of the effective Floquet Hamiltonians is re-examined through a comparison with exact numerical methods under differing experimental conditions. The limitations arising from the existing analytic methods are outlined along with remedial measures for improving the accuracy of the derived effective Floquet Hamiltonians.

  18. Time evolution of the one-dimensional Jaynes-Cummings-Hubbard Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makin, M. I.; Hill, Charles D.; Greentree, Andrew D.

    2009-10-15

    The Jaynes-Cummings-Hubbard (JCH) system describes a network of single-mode photonic cavities connected via evanescent coupling. Each cavity contains a single two-level system which can be tuned in resonance with the cavity. Here, we explore the behavior of single excitations (where an excitation can be either photonic or atomic) in the linear JCH system, which describes a coupled cavity waveguide. We use direct, analytic diagonalization of the Hamiltonian to study cases where intercavity coupling is either uniform or varies parabolically along the chain. Both excitations located in a single cavity, as well as one excitation as a Gaussian pulse spread overmore » many cavities, are investigated as initial states. We predict unusual behavior of this system in the time domain, including slower than expected propagation of the excitation and also splitting of the excitation into two distinct pulses, which travel at distinct speeds. In certain limits, we show that the JCH system mimics two Heisenberg spin chains.« less

  19. Hamiltonian General Relativity in Finite Space and Cosmological Potential Perturbations

    NASA Astrophysics Data System (ADS)

    Barbashov, B. M.; Pervushin, V. N.; Zakharov, A. F.; Zinchuk, V. A.

    The Hamiltonian formulation of general relativity is considered in finite space-time and a specific reference frame given by the diffeo-invariant components of the Fock simplex in terms of the Dirac-ADM variables. The evolution parameter and energy invariant with respect to the time-coordinate transformations are constructed by the separation of the cosmological scale factor a(x0) and its identification with the spatial averaging of the metric determinant, so that the dimension of the kinemetric group of diffeomorphisms coincides with the dimension of a set of variables whose velocities are removed by the Gauss-type constraints in accordance with the second Nöther theorem. This coincidence allows us to solve the energy constraint, fulfil Dirac's Hamiltonian reduction, and to describe the potential perturbations in terms of the Lichnerowicz scale-invariant variables distinguished by the absence of the time derivatives of the spatial metric determinant. It was shown that the Hamiltonian version of the cosmological perturbation theory acquires attributes of the theory of superfluid liquid, and it leads to a generalization of the Schwarzschild solution. The astrophysical application of this approach to general relativity is considered under supposition that the Dirac-ADM Hamiltonian frame is identified with that of the Cosmic Microwave Background radiation distinguished by its dipole component in the frame of an Earth observer.

  20. 3D deformable image matching: a hierarchical approach over nested subspaces

    NASA Astrophysics Data System (ADS)

    Musse, Olivier; Heitz, Fabrice; Armspach, Jean-Paul

    2000-06-01

    This paper presents a fast hierarchical method to perform dense deformable inter-subject matching of 3D MR Images of the brain. To recover the complex morphological variations in neuroanatomy, a hierarchy of 3D deformations fields is estimated, by minimizing a global energy function over a sequence of nested subspaces. The nested subspaces, generated from a single scaling function, consist of deformation fields constrained at different scales. The highly non linear energy function, describing the interactions between the target and the source images, is minimized using a coarse-to-fine continuation strategy over this hierarchy. The resulting deformable matching method shows low sensitivity to local minima and is able to track large non-linear deformations, with moderate computational load. The performances of the approach are assessed both on simulated 3D transformations and on a real data base of 3D brain MR Images from different individuals. The method has shown efficient in putting into correspondence the principle anatomical structures of the brain. An application to atlas-based MRI segmentation, by transporting a labeled segmentation map on patient data, is also presented.

  1. Bounded Hamiltonian in the Fourth-Order Extension of the Chern-Simons Theory

    NASA Astrophysics Data System (ADS)

    Abakumova, V. A.; Kaparulin, D. S.; Lyakhovich, S. L.

    2018-04-01

    The problem of constructing alternative Hamiltonian formulations in the extended Chern-Simons theory with higher derivatives is considered. It is shown that the fourth-order extended theory admits a four-parameter series of alternative Hamiltonians which can be bounded from below, even if the canonical energy of the model is unbounded from below.

  2. A Deformable Atlas of the Laboratory Mouse

    PubMed Central

    Wang, Hongkai; Stout, David B.; Chatziioannou, Arion F.

    2015-01-01

    Purpose This paper presents a deformable mouse atlas of the laboratory mouse anatomy. This atlas is fully articulated and can be positioned into arbitrary body poses. The atlas can also adapt body weight by changing body length and fat amount. Procedures A training set of 103 micro-CT images was used to construct the atlas. A cage-based deformation method was applied to realize the articulated pose change. The weight-related body deformation was learned from the training set using a linear regression method. A conditional Gaussian model and thin-plate spline mapping were used to deform the internal organs following the changes of pose and weight. Results The atlas was deformed into different body poses and weights, and the deformation results were more realistic compared to the results achieved with other mouse atlases. The organ weights of this atlas matched well with the measurements of real mouse organ weights. This atlas can also be converted into voxelized images with labeled organs, pseudo CT images and tetrahedral mesh for phantom studies. Conclusions With the unique ability of articulated pose and weight changes, the deformable laboratory mouse atlas can become a valuable tool for preclinical image analysis. PMID:25049072

  3. Hamiltonian models for topological phases of matter in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Williamson, Dominic J.; Wang, Zhenghan

    2017-02-01

    We present commuting projector Hamiltonian realizations of a large class of (3 + 1)D topological models based on mathematical objects called unitary G-crossed braided fusion categories. This construction comes with a wealth of examples from the literature of symmetry-enriched topological phases. The spacetime counterparts to our Hamiltonians are unitary state sum topological quantum fields theories (TQFTs) that appear to capture all known constructions in the literature, including the Crane-Yetter-Walker-Wang and 2-Group gauge theory models. We also present Hamiltonian realizations of a state sum TQFT recently constructed by Kashaev whose relation to existing models was previously unknown. We argue that this TQFT is captured as a special case of the Crane-Yetter-Walker-Wang model, with a premodular input category in some instances.

  4. Hamiltonian formalism for f (T ) gravity

    NASA Astrophysics Data System (ADS)

    Ferraro, Rafael; Guzmán, María José

    2018-05-01

    We present the Hamiltonian formalism for f (T ) gravity, and prove that the theory has n/(n -3 ) 2 +1 degrees of freedom (d.o.f.) in n dimensions. We start from a scalar-tensor action for the theory, which represents a scalar field minimally coupled with the torsion scalar T that defines the teleparallel equivalent of general relativity (TEGR) Lagrangian. T is written as a quadratic form of the coefficients of anholonomy of the vierbein. We obtain the primary constraints through the analysis of the structure of the eigenvalues of the multi-index matrix involved in the definition of the canonical momenta. The auxiliary scalar field generates one extra primary constraint when compared with the TEGR case. The secondary constraints are the super-Hamiltonian and supermomenta constraints, that are preserved from the Arnowitt-Deser-Misner formulation of GR. There is a set of n/(n -1 ) 2 primary constraints that represent the local Lorentz transformations of the theory, which can be combined to form a set of n/(n -1 ) 2 -1 first-class constraints, while one of them becomes second class. This result is irrespective of the dimension, due to the structure of the matrix of the brackets between the constraints. The first-class canonical Hamiltonian is modified due to this local Lorentz violation, and the only one local Lorentz transformation that becomes second-class pairs up with the second-class constraint π ≈0 to remove one d.o.f. from the n2+1 pairs of canonical variables. The remaining n/(n -1 ) 2 +2 n -1 primary constraints remove the same number of d.o.f., leaving the theory with n/(n -3 ) 2 +1 d.o.f. This means that f (T ) gravity has only one extra d.o.f., which could be interpreted as a scalar d.o.f.

  5. Hamiltonian vs Lagrangian Embedding of a Massive Spin-One Theory Involving Two-Form Field

    NASA Astrophysics Data System (ADS)

    Harikumar, E.; Sivakumar, M.

    We consider the Hamiltonian and Lagrangian embedding of a first-order, massive spin-one, gauge noninvariant theory involving antisymmetric tensor field. We apply the BFV-BRST generalized canonical approach to convert the model to a first class system and construct nilpotent BFV-BRST charge and a unitarizing Hamiltonian. The canonical analysis of the Stückelberg formulation of this model is presented. We bring out the contrasting feature in the constraint structure, specifically with respect to the reducibility aspect, of the Hamiltonian and the Lagrangian embedded model. We show that to obtain manifestly covariant Stückelberg Lagrangian from the BFV embedded Hamiltonian, phase space has to be further enlarged and show how the reducible gauge structure emerges in the embedded model.

  6. Hamiltonian Anomalies from Extended Field Theories

    NASA Astrophysics Data System (ADS)

    Monnier, Samuel

    2015-09-01

    We develop a proposal by Freed to see anomalous field theories as relative field theories, namely field theories taking value in a field theory in one dimension higher, the anomaly field theory. We show that when the anomaly field theory is extended down to codimension 2, familiar facts about Hamiltonian anomalies can be naturally recovered, such as the fact that the anomalous symmetry group admits only a projective representation on the Hilbert space, or that the latter is really an abelian bundle gerbe over the moduli space. We include in the discussion the case of non-invertible anomaly field theories, which is relevant to six-dimensional (2, 0) superconformal theories. In this case, we show that the Hamiltonian anomaly is characterized by a degree 2 non-abelian group cohomology class, associated to the non-abelian gerbe playing the role of the state space of the anomalous theory. We construct Dai-Freed theories, governing the anomalies of chiral fermionic theories, and Wess-Zumino theories, governing the anomalies of Wess-Zumino terms and self-dual field theories, as extended field theories down to codimension 2.

  7. Separate spatial Holographic-Hamiltonian soliton pairs and solitons interaction in an unbiased series photorefractive crystal circuit.

    PubMed

    Cai, Xin; Liu, Jinsong; Wang, Shenglie

    2009-02-16

    This paper presents calculations for an idea in photorefractive spatial soliton, namely, a dissipative holographic soliton and a Hamiltonian soliton in one dimension form in an unbiased series photorefractive crystal circuit consisting of two photorefractive crystals of which at least one must be photovoltaic. The two solitons are known collectively as a separate Holographic-Hamiltonian spatial soliton pair and there are two types: dark-dark and bright-dark if only one crystal of the circuit is photovoltaic. The numerical results show that the Hamiltonian soliton in a soliton pair can affect the holographic one by the light-induced current whereas the effect of the holographic soliton on the Hamiltonian soliton is too weak to be ignored, i.e., the holographic soliton cannot affect the Hamiltonian one.

  8. Phase equilibria in polymer blend thin films: A Hamiltonian approach

    NASA Astrophysics Data System (ADS)

    Souche, M.; Clarke, N.

    2009-12-01

    We propose a Hamiltonian formulation of the Flory-Huggins-de Gennes theory describing a polymer blend thin film. We then focus on the case of 50:50 polymer blends confined between antisymmetric walls. The different phases of the system and the transitions between them, including finite-size effects, are systematically studied through their relation with the geometry of the Hamiltonian flow in phase space. This method provides an easy and efficient way, with strong graphical insight, to infer the qualitative physical behavior of polymer blend thin films.

  9. Non-linear regime of the Generalized Minimal Massive Gravity in critical points

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Adami, H.

    2016-03-01

    The Generalized Minimal Massive Gravity (GMMG) theory is realized by adding the CS deformation term, the higher derivative deformation term, and an extra term to pure Einstein gravity with a negative cosmological constant. In the present paper we obtain exact solutions to the GMMG field equations in the non-linear regime of the model. GMMG model about AdS_3 space is conjectured to be dual to a 2-dimensional CFT. We study the theory in critical points corresponding to the central charges c_-=0 or c_+=0, in the non-linear regime. We show that AdS_3 wave solutions are present, and have logarithmic form in critical points. Then we study the AdS_3 non-linear deformation solution. Furthermore we obtain logarithmic deformation of extremal BTZ black hole. After that using Abbott-Deser-Tekin method we calculate the energy and angular momentum of these types of black hole solutions.

  10. An integrable family of Monge-Ampère equations and their multi-Hamiltonian structure

    NASA Astrophysics Data System (ADS)

    Nutku, Y.; Sarioǧlu, Ö.

    1993-02-01

    We have identified a completely integrable family of Monge-Ampère equations through an examination of their Hamiltonian structure. Starting with a variational formulation of the Monge-Ampère equations we have constructed the first Hamiltonian operator through an application of Dirac's theory of constraints. The completely integrable class of Monge-Ampère equations are then obtained by solving the Jacobi identities for a sufficiently general form of the second Hamiltonian operator that is compatible with the first.

  11. Plastic deformation in a metallic granular chain

    NASA Astrophysics Data System (ADS)

    Musson, Ryan W.; Carlson, William

    2016-03-01

    Solitary wave response was investigated in a metallic granular chain-piston system using LS-DYNA. A power law hardening material model was used to show that localized plastic deformation is present in a metallic granular chain for an impact velocity of 0.5 m/s. This loss due to plastic deformation was quantified via impulse, and it was shown that the loss scales nearly linearly with impact velocity. Therefore, metallic grains may not be suitable for devices that require high-amplitude solitary waves. There would be too much energy lost to plastic deformation. One can assume that ceramics will behave elastically; therefore, the response of an aluminum oxide granular chain was compared to that of a steel chain.

  12. The Jarzynski identity derived from general Hamiltonian or non-Hamiltonian dynamics reproducing NVT or NPT ensembles

    NASA Astrophysics Data System (ADS)

    Cuendet, Michel A.

    2006-10-01

    The Jarzynski identity (JI) relates nonequilibrium work averages to thermodynamic free energy differences. It was shown in a recent contribution [M. A. Cuendet, Phys. Rev. Lett. 96, 120602 (2006)] that the JI can, in particular, be derived directly from the Nosé-Hoover thermostated dynamics. This statistical mechanical derivation is particularly relevant in the framework of molecular dynamics simulation, because it is based solely on the equations of motion considered and is free of any additional assumptions on system size or bath coupling. Here, this result is generalized to a variety of dynamics, along two directions. On the one hand, specific improved thermostating schemes used in practical applications are treated. These include Nosé-Hoover chains, higher moment thermostats, as well as an isothermal-isobaric scheme yielding the JI in the NPT ensemble. On the other hand, the theoretical generality of the new derivation is explored. Generic dynamics with arbitrary coupling terms and an arbitrary number of thermostating variables, both non-Hamiltonian and Hamiltonian, are shown to imply the JI. In particular, a nonautonomous formulation of the generalized Nosé-Poincaré thermostat is proposed. Finally, general conditions required for the JI derivation are briefly discussed.

  13. Hamiltonian formulation of systems with balanced loss-gain and exactly solvable models

    NASA Astrophysics Data System (ADS)

    Ghosh, Pijush K.; Sinha, Debdeep

    2018-01-01

    A Hamiltonian formulation of generic many-body systems with balanced loss and gain is presented. It is shown that a Hamiltonian formulation is possible only if the balancing of loss and gain terms occurs in a pairwise fashion. It is also shown that with the choice of a suitable co-ordinate, the Hamiltonian can always be reformulated in the background of a pseudo-Euclidean metric. If the equations of motion of some of the well-known many-body systems like Calogero models are generalized to include balanced loss and gain, it appears that the same may not be amenable to a Hamiltonian formulation. A few exactly solvable systems with balanced loss and gain, along with a set of integrals of motion are constructed. The examples include a coupled chain of nonlinear oscillators and a many-particle Calogero-type model with four-body inverse square plus two-body pair-wise harmonic interactions. For the case of nonlinear oscillators, stable solution exists even if the loss and gain parameter has unbounded upper range. Further, the range of the parameter for which the stable solutions are obtained is independent of the total number of the oscillators. The set of coupled nonlinear equations are solved exactly for the case when the values of all the constants of motions except the Hamiltonian are equal to zero. Exact, analytical classical solutions are presented for all the examples considered.

  14. Quantitative genetic properties of four measures of deformity in yellowtail kingfish Seriola lalandi Valenciennes, 1833.

    PubMed

    Nguyen, N H; Whatmore, P; Miller, A; Knibb, W

    2016-02-01

    The main aim of this study was to estimate the heritability for four measures of deformity and their genetic associations with growth (body weight and length), carcass (fillet weight and yield) and flesh-quality (fillet fat content) traits in yellowtail kingfish Seriola lalandi. The observed major deformities included lower jaw, nasal erosion, deformed operculum and skinny fish on 480 individuals from 22 families at Clean Seas Tuna Ltd. They were typically recorded as binary traits (presence or absence) and were analysed separately by both threshold generalized models and standard animal mixed models. Consistency of the models was evaluated by calculating simple Pearson correlation of breeding values of full-sib families for jaw deformity. Genetic and phenotypic correlations among traits were estimated using a multitrait linear mixed model in ASReml. Both threshold and linear mixed model analysis showed that there is additive genetic variation in the four measures of deformity, with the estimates of heritability obtained from the former (threshold) models on liability scale ranging from 0.14 to 0.66 (SE 0.32-0.56) and from the latter (linear animal and sire) models on original (observed) scale, 0.01-0.23 (SE 0.03-0.16). When the estimates on the underlying liability were transformed to the observed scale (0, 1), they were generally consistent between threshold and linear mixed models. Phenotypic correlations among deformity traits were weak (close to zero). The genetic correlations among deformity traits were not significantly different from zero. Body weight and fillet carcass showed significant positive genetic correlations with jaw deformity (0.75 and 0.95, respectively). Genetic correlation between body weight and operculum was negative (-0.51, P < 0.05). The genetic correlations' estimates of body and carcass traits with other deformity were not significant due to their relatively high standard errors. Our results showed that there are prospects for genetic

  15. Multisymplectic Lagrangian and Hamiltonian Formalisms of Classical Field Theories

    NASA Astrophysics Data System (ADS)

    Román-Roy, Narciso

    2009-11-01

    This review paper is devoted to presenting the standard multisymplectic formulation for describing geometrically classical field theories, both the regular and singular cases. First, the main features of the Lagrangian formalism are revisited and, second, the Hamiltonian formalism is constructed using Hamiltonian sections. In both cases, the variational principles leading to the Euler-Lagrange and the Hamilton-De Donder-Weyl equations, respectively, are stated, and these field equations are given in different but equivalent geometrical ways in each formalism. Finally, both are unified in a new formulation (which has been developed in the last years), following the original ideas of Rusk and Skinner for mechanical systems.

  16. Centrifugal distortion coefficients of asymmetric-top molecules: Reduction of the octic terms of the rotational Hamiltonian

    NASA Astrophysics Data System (ADS)

    Ramachandra Rao, Ch. V. S.

    1983-11-01

    The rotational Hamiltonian of an asymmetric-top molecule in its standard form, containing terms up to eighth degree in the components of the total angular momentum, is transformed by a unitary transformation with parameters Spqr to a reduced Hamiltonian so as to avoid the indeterminacies inherent in fitting the complete Hamiltonian to observed energy levels. Expressions are given for the nine determinable combinations of octic constants Θ' i ( i = 1 to 9) which are invariant under the unitary transformation. A method of reduction suitable for energy calculations by matrix diagonalization is considered. The relations between the coefficients of the transformed Hamiltonian, for suitable choice of the parameters Spqr, and those of the reduced Hamiltonian are given. This enables the determination of the nine octic constants Θ' i in terms of the experimental constants.

  17. Entanglement Entropy of Eigenstates of Quadratic Fermionic Hamiltonians.

    PubMed

    Vidmar, Lev; Hackl, Lucas; Bianchi, Eugenio; Rigol, Marcos

    2017-07-14

    In a seminal paper [D. N. Page, Phys. Rev. Lett. 71, 1291 (1993)PRLTAO0031-900710.1103/PhysRevLett.71.1291], Page proved that the average entanglement entropy of subsystems of random pure states is S_{ave}≃lnD_{A}-(1/2)D_{A}^{2}/D for 1≪D_{A}≤sqrt[D], where D_{A} and D are the Hilbert space dimensions of the subsystem and the system, respectively. Hence, typical pure states are (nearly) maximally entangled. We develop tools to compute the average entanglement entropy ⟨S⟩ of all eigenstates of quadratic fermionic Hamiltonians. In particular, we derive exact bounds for the most general translationally invariant models lnD_{A}-(lnD_{A})^{2}/lnD≤⟨S⟩≤lnD_{A}-[1/(2ln2)](lnD_{A})^{2}/lnD. Consequently, we prove that (i) if the subsystem size is a finite fraction of the system size, then ⟨S⟩Hamiltonian departs from the result for typical pure states, and (ii) in the limit in which the subsystem size is a vanishing fraction of the system size, the average entanglement entropy is maximal; i.e., typical eigenstates of such Hamiltonians exhibit eigenstate thermalization.

  18. Mesh Deformation Based on Fully Stressed Design: The Method and Two-Dimensional Examples

    NASA Technical Reports Server (NTRS)

    Hsu, Su-Yuen; Chang, Chau-Lyan

    2007-01-01

    Mesh deformation in response to redefined boundary geometry is a frequently encountered task in shape optimization and analysis of fluid-structure interaction. We propose a simple and concise method for deforming meshes defined with three-node triangular or four-node tetrahedral elements. The mesh deformation method is suitable for large boundary movement. The approach requires two consecutive linear elastic finite-element analyses of an isotropic continuum using a prescribed displacement at the mesh boundaries. The first analysis is performed with homogeneous elastic property and the second with inhomogeneous elastic property. The fully stressed design is employed with a vanishing Poisson s ratio and a proposed form of equivalent strain (modified Tresca equivalent strain) to calculate, from the strain result of the first analysis, the element-specific Young s modulus for the second analysis. The theoretical aspect of the proposed method, its convenient numerical implementation using a typical linear elastic finite-element code in conjunction with very minor extra coding for data processing, and results for examples of large deformation of two-dimensional meshes are presented in this paper. KEY WORDS: Mesh deformation, shape optimization, fluid-structure interaction, fully stressed design, finite-element analysis, linear elasticity, strain failure, equivalent strain, Tresca failure criterion

  19. Simultaneous measurements of photoemission and morphology of various Al alloys during mechanical deformation

    NASA Astrophysics Data System (ADS)

    Cai, M.; Li, W.; Dickinson, J. T.

    2006-11-01

    We report simultaneous measurements of strain and photoelectron emission from high purity Al (1350), Al-Mg (5052), Al-Mn (3003), Al-Cu (2024), and Al-Mg-Si (6061) alloys under uniaxial tension due to pulsed excimer laser radiation (248nm). The emission of low-energy photoelectrons is sensitive to deformation-induced changes in surface morphology, including the formation of slip lines and slip bands. Alloy composition and surface treatment significantly influence the photoemission during deformation. Surface oxide enhances the signal-to-noise level during photoemission measurement. In the early stage of deformation (strain ⩽0.04), photoemission intensity increases gradually in a nonlinear fashion. While subsequent photoemission increases almost linearly with strain until failure in samples with thin oxide layer (˜31Å), there are two linear segments of photoemission for the samples with oxide of 45Å. The onset of strain localization corresponds to the intersection point of two linear segments, usually at a strain of 0.08-0.20. A constitutive model incorporating microstructure evolution and work hardening during tensile deformation is proposed to qualitatively interpret the growth of the photoemission as a function of strain. Photoemissions from various alloys are interpreted in the light of surface treatment, work function, composition, and microstructural development during deformation.

  20. Quantum recurrence and fractional dynamic localization in ac-driven perfect state transfer Hamiltonians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhi, Stefano, E-mail: stefano.longhi@fisi.polimi.it

    Quantum recurrence and dynamic localization are investigated in a class of ac-driven tight-binding Hamiltonians, the Krawtchouk quantum chain, which in the undriven case provides a paradigmatic Hamiltonian model that realizes perfect quantum state transfer and mirror inversion. The equivalence between the ac-driven single-particle Krawtchouk Hamiltonian H{sup -hat} (t) and the non-interacting ac-driven bosonic junction Hamiltonian enables to determine in a closed form the quasi energy spectrum of H{sup -hat} (t) and the conditions for exact wave packet reconstruction (dynamic localization). In particular, we show that quantum recurrence, which is predicted by the general quantum recurrence theorem, is exact for themore » Krawtchouk quantum chain in a dense range of the driving amplitude. Exact quantum recurrence provides perfect wave packet reconstruction at a frequency which is fractional than the driving frequency, a phenomenon that can be referred to as fractional dynamic localization.« less

  1. Continuation of periodic orbits in symmetric Hamiltonian and conservative systems

    NASA Astrophysics Data System (ADS)

    Galan-Vioque, J.; Almaraz, F. J. M.; Macías, E. F.

    2014-12-01

    We present and review results on the continuation and bifurcation of periodic solutions in conservative, reversible and Hamiltonian systems in the presence of symmetries. In particular we show how two-point boundary value problem continuation software can be used to compute families of periodic solutions of symmetric Hamiltonian systems. The technique is introduced with a very simple model example (the mathematical pendulum), justified with a theoretical continuation result and then applied to two non trivial examples: the non integrable spring pendulum and the continuation of the figure eight solution of the three body problem.

  2. Aeroelastic deformation of a perforated strip

    NASA Astrophysics Data System (ADS)

    Guttag, M.; Karimi, H. H.; Falcón, C.; Reis, P. M.

    2018-01-01

    We perform a combined experimental and numerical investigation into the static deformation of perforated elastic strips under uniform aerodynamic loading at high-Reynolds-number conditions. The static shape of the porous strips, clamped either horizontally or vertically, is quantified as they are deformed by wind loading, induced by a horizontal flow. The experimental profiles are compared to numerical simulations using a reduced model that takes into account the normal drag force on the deformed surface. For both configurations (vertical and horizontal clamping), we compute the drag coefficient of the strip, by fitting the experimental data to the model, and find that it decreases as a function of porosity. Surprisingly, we find that, for every value of porosity, the drag coefficients for the horizontal configuration are larger than those of the vertical configuration. For all data in both configurations, with the exception of the continuous strip clamped vertically, a linear relation is found between the porosity and drag. Making use of this linearity, we can rescale the drag coefficient in a way that it becomes constant as a function of the Cauchy number, which relates the force due to fluid loading on the elastic strip to its bending rigidity, independently of the material properties and porosity of the strip and the flow speed. Our findings on flexible strips are contrasted to previous work on rigid perforated plates. These results highlight some open questions regarding the usage of reduced models to describe the deformation of flexible structures subjected to aerodynamic loading.

  3. Equilibrium Solutions of the Logarithmic Hamiltonian Leapfrog for the N-body Problem

    NASA Astrophysics Data System (ADS)

    Minesaki, Yukitaka

    2018-04-01

    We prove that a second-order logarithmic Hamiltonian leapfrog for the classical general N-body problem (CGNBP) designed by Mikkola and Tanikawa and some higher-order logarithmic Hamiltonian methods based on symmetric multicompositions of the logarithmic algorithm exactly reproduce the orbits of elliptic relative equilibrium solutions in the original CGNBP. These methods are explicit symplectic methods. Before this proof, only some implicit discrete-time CGNBPs proposed by Minesaki had been analytically shown to trace the orbits of elliptic relative equilibrium solutions. The proof is therefore the first existence proof for explicit symplectic methods. Such logarithmic Hamiltonian methods with a variable time step can also precisely retain periodic orbits in the classical general three-body problem, which generic numerical methods with a constant time step cannot do.

  4. A unified theoretical framework for mapping models for the multi-state Hamiltonian.

    PubMed

    Liu, Jian

    2016-11-28

    We propose a new unified theoretical framework to construct equivalent representations of the multi-state Hamiltonian operator and present several approaches for the mapping onto the Cartesian phase space. After mapping an F-dimensional Hamiltonian onto an F+1 dimensional space, creation and annihilation operators are defined such that the F+1 dimensional space is complete for any combined excitation. Commutation and anti-commutation relations are then naturally derived, which show that the underlying degrees of freedom are neither bosons nor fermions. This sets the scene for developing equivalent expressions of the Hamiltonian operator in quantum mechanics and their classical/semiclassical counterparts. Six mapping models are presented as examples. The framework also offers a novel way to derive such as the well-known Meyer-Miller model.

  5. A Synthetical Two-Component Model with Peakon Solutions: One More Bi-Hamiltonian Case

    NASA Astrophysics Data System (ADS)

    Mengxia, Zhang; Xiaomin, Yang

    2018-05-01

    Compatible pairs of Hamiltonian operators for the synthetical two-component model of Xia, Qiao, and Zhou are derived systematically by means of the spectral gradient method. A new two-component system, which is bi-Hamiltonian, is presented. For this new system, the construction of its peakon solutions is considered.

  6. Tsallis thermostatistics for finite systems: a Hamiltonian approach

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.; Moreira, Andrã© A.; Andrade, José S., Jr.; Almeida, Murilo P.

    2003-05-01

    The derivation of the Tsallis generalized canonical distribution from the traditional approach of the Gibbs microcanonical ensemble is revisited (Phys. Lett. A 193 (1994) 140). We show that finite systems whose Hamiltonians obey a generalized homogeneity relation rigorously follow the nonextensive thermostatistics of Tsallis. In the thermodynamical limit, however, our results indicate that the Boltzmann-Gibbs statistics is always recovered, regardless of the type of potential among interacting particles. This approach provides, moreover, a one-to-one correspondence between the generalized entropy and the Hamiltonian structure of a wide class of systems, revealing a possible origin for the intrinsic nonlinear features present in the Tsallis formalism that lead naturally to power-law behavior. Finally, we confirm these exact results through extensive numerical simulations of the Fermi-Pasta-Ulam chain of anharmonic oscillators.

  7. An Exact Separation of the Spin-Free and Spin-Dependent Terms of the Dirac-Coulomb-Breit Hamiltonian

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.

    1994-01-01

    The Dirac Hamiltonian is transformed by extracting the operator (sigma x p)/2mc from the small component of the wave function and applying it to the operators of the original Hamiltonian. The resultant operators contain products of Paull matrices that can be rearranged to give spin-free and spin-dependent operators. These operators are the ones encountered in the Breit-Pauli Hamiltonian, as well as some of higher order in alpha(sup 2). However, since the transformation of the original Dirac Hamiltonian is exact, the new Hamiltonian can be used in variational calculations, with or without the spin-dependent terms. The new small component functions have the same symmetry properties as the large component. Use of only the spin-free terms of the new Hamiltonian permits the same factorization over spin variables as in nonrelativistic theory, and therefore all the post-Self-Consistent Field (SCF) machinery of nonrelativistic calculations can be applied. However, the single-particle functions are two-component orbitals having a large and small component, and the SCF methods must be modified accordingly. Numerical examples are presented, and comparisons are made with the spin-free second-order Douglas-Kroll transformed Hamiltonian of Hess.

  8. Iterated Hamiltonian type systems and applications

    NASA Astrophysics Data System (ADS)

    Tiba, Dan

    2018-04-01

    We discuss, in arbitrary dimension, certain Hamiltonian type systems and prove existence, uniqueness and regularity properties, under the independence condition. We also investigate the critical case, define a class of generalized solutions and prove existence and basic properties. Relevant examples and counterexamples are also indicated. The applications concern representations of implicitly defined manifolds and their perturbations, motivated by differential systems involving unknown geometries.

  9. Conformal killing tensors and covariant Hamiltonian dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cariglia, M., E-mail: marco@iceb.ufop.br; Gibbons, G. W., E-mail: G.W.Gibbons@damtp.cam.ac.uk; LE STUDIUM, Loire Valley Institute for Advanced Studies, Tours and Orleans

    2014-12-15

    A covariant algorithm for deriving the conserved quantities for natural Hamiltonian systems is combined with the non-relativistic framework of Eisenhart, and of Duval, in which the classical trajectories arise as geodesics in a higher dimensional space-time, realized by Brinkmann manifolds. Conserved quantities which are polynomial in the momenta can be built using time-dependent conformal Killing tensors with flux. The latter are associated with terms proportional to the Hamiltonian in the lower dimensional theory and with spectrum generating algebras for higher dimensional quantities of order 1 and 2 in the momenta. Illustrations of the general theory include the Runge-Lenz vector formore » planetary motion with a time-dependent gravitational constant G(t), motion in a time-dependent electromagnetic field of a certain form, quantum dots, the Hénon-Heiles and Holt systems, respectively, providing us with Killing tensors of rank that ranges from one to six.« less

  10. Non-linear eigensolver-based alternative to traditional SCF methods

    NASA Astrophysics Data System (ADS)

    Gavin, B.; Polizzi, E.

    2013-05-01

    The self-consistent procedure in electronic structure calculations is revisited using a highly efficient and robust algorithm for solving the non-linear eigenvector problem, i.e., H({ψ})ψ = Eψ. This new scheme is derived from a generalization of the FEAST eigenvalue algorithm to account for the non-linearity of the Hamiltonian with the occupied eigenvectors. Using a series of numerical examples and the density functional theory-Kohn/Sham model, it will be shown that our approach can outperform the traditional SCF mixing-scheme techniques by providing a higher converge rate, convergence to the correct solution regardless of the choice of the initial guess, and a significant reduction of the eigenvalue solve time in simulations.

  11. Effect of chordwise forces and deformations and deformations due to steady lift on wing flutter

    NASA Technical Reports Server (NTRS)

    Boyd, W. N.

    1977-01-01

    This investigation explores the effects of chordwise forces and deformations and steady-state deformation due to lift on the static and dynamic aeroelastic stability of a uniform cantilever wing. Results of this analysis are believed to have practical applications for high-performance sailplanes and certain RPV's. The airfoil cross section is assumed to be symmetric and camber bending is neglected. Motions in vertical bending, fore-and-aft bending, and torsion are considered. A differential equation model is developed, which included the nonlinear elastic bending-torsion coupling that accompanies even moderate deflections. A linearized expansion in small time-dependent deflections is made about a steady flight condition. The stability determinant of the linearized system then contains coefficients that depend on steady displacements. Loads derived from two-dimensional incompressible aerodynamic theory are used to obtain the majority of the results, but cases using three-dimensional subsonic compressible theory are also studied. The stability analysis is carried out in terms of the dynamically uncoupled natural modes of vibration of the uniform cantilever.

  12. Reductions of topologically massive gravity I: Hamiltonian analysis of second order degenerate Lagrangians

    NASA Astrophysics Data System (ADS)

    Ćaǧatay Uçgun, Filiz; Esen, Oǧul; Gümral, Hasan

    2018-01-01

    We present Skinner-Rusk and Hamiltonian formalisms of second order degenerate Clément and Sarıoğlu-Tekin Lagrangians. The Dirac-Bergmann constraint algorithm is employed to obtain Hamiltonian realizations of Lagrangian theories. The Gotay-Nester-Hinds algorithm is used to investigate Skinner-Rusk formalisms of these systems.

  13. A preconditioner for the finite element computation of incompressible, nonlinear elastic deformations

    NASA Astrophysics Data System (ADS)

    Whiteley, J. P.

    2017-10-01

    Large, incompressible elastic deformations are governed by a system of nonlinear partial differential equations. The finite element discretisation of these partial differential equations yields a system of nonlinear algebraic equations that are usually solved using Newton's method. On each iteration of Newton's method, a linear system must be solved. We exploit the structure of the Jacobian matrix to propose a preconditioner, comprising two steps. The first step is the solution of a relatively small, symmetric, positive definite linear system using the preconditioned conjugate gradient method. This is followed by a small number of multigrid V-cycles for a larger linear system. Through the use of exemplar elastic deformations, the preconditioner is demonstrated to facilitate the iterative solution of the linear systems arising. The number of GMRES iterations required has only a very weak dependence on the number of degrees of freedom of the linear systems.

  14. Deformation Theory and Physics Model Building

    NASA Astrophysics Data System (ADS)

    Sternheimer, Daniel

    2006-08-01

    The mathematical theory of deformations has proved to be a powerful tool in modeling physical reality. We start with a short historical and philosophical review of the context and concentrate this rapid presentation on a few interrelated directions where deformation theory is essential in bringing a new framework - which has then to be developed using adapted tools, some of which come from the deformation aspect. Minkowskian space-time can be deformed into Anti de Sitter, where massless particles become composite (also dynamically): this opens new perspectives in particle physics, at least at the electroweak level, including prediction of new mesons. Nonlinear group representations and covariant field equations, coming from interactions, can be viewed as some deformation of their linear (free) part: recognizing this fact can provide a good framework for treating problems in this area, in particular global solutions. Last but not least, (algebras associated with) classical mechanics (and field theory) on a Poisson phase space can be deformed to (algebras associated with) quantum mechanics (and quantum field theory). That is now a frontier domain in mathematics and theoretical physics called deformation quantization, with multiple ramifications, avatars and connections in both mathematics and physics. These include representation theory, quantum groups (when considering Hopf algebras instead of associative or Lie algebras), noncommutative geometry and manifolds, algebraic geometry, number theory, and of course what is regrouped under the name of M-theory. We shall here look at these from the unifying point of view of deformation theory and refer to a limited number of papers as a starting point for further study.

  15. Linear solver performance in elastoplastic problem solution on GPU cluster

    NASA Astrophysics Data System (ADS)

    Khalevitsky, Yu. V.; Konovalov, A. V.; Burmasheva, N. V.; Partin, A. S.

    2017-12-01

    Applying the finite element method to severe plastic deformation problems involves solving linear equation systems. While the solution procedure is relatively hard to parallelize and computationally intensive by itself, a long series of large scale systems need to be solved for each problem. When dealing with fine computational meshes, such as in the simulations of three-dimensional metal matrix composite microvolume deformation, tens and hundreds of hours may be needed to complete the whole solution procedure, even using modern supercomputers. In general, one of the preconditioned Krylov subspace methods is used in a linear solver for such problems. The method convergence highly depends on the operator spectrum of a problem stiffness matrix. In order to choose the appropriate method, a series of computational experiments is used. Different methods may be preferable for different computational systems for the same problem. In this paper we present experimental data obtained by solving linear equation systems from an elastoplastic problem on a GPU cluster. The data can be used to substantiate the choice of the appropriate method for a linear solver to use in severe plastic deformation simulations.

  16. Atypical transitions in material response during constant strain rate, hot deformation of austenitic steel

    NASA Astrophysics Data System (ADS)

    Borah, Utpal; Aashranth, B.; Samantaray, Dipti; Kumar, Santosh; Davinci, M. Arvinth; Albert, Shaju K.; Bhaduri, A. K.

    2017-10-01

    Work hardening, dynamic recovery and dynamic recrystallization (DRX) occurring during hot working of austenitic steel have been extensively studied. Various empirical models describe the nature and effects of these phenomena in a typical framework. However, the typical model is sometimes violated following atypical transitions in deformation mechanisms of the material. To ascertain the nature of these atypical transitions, researchers have intentionally introduced discontinuities in the deformation process, such as interrupting the deformation as in multi-step rolling and abruptly changing the rate of deformation. In this work, we demonstrate that atypical transitions are possible even in conventional single-step, constant strain rate deformation of austenitic steel. Towards this aim, isothermal, constant true strain rate deformation of austenitic steel has been carried out in a temperature range of 1173-1473 K and strain rate range of 0.01-100 s-1. The microstructural response corresponding to each deformation condition is thoroughly investigated. The conventional power-law variation of deformation grain size (D) with peak stress (σp) during DRX is taken as a typical model and experimental data is tested against it. It is shown that σp-D relations exhibit an atypical two-slope linear behaviour rather than a continuous power law relation. Similarly, the reduction in σp with temperature (T) is found to consist of two discrete linear segments. In practical terms, the two linear segments denote two distinct microstructural responses to deformation. As a consequence of this distinction, the typical model breaks down and is unable to completely relate microstructural evolution to flow behaviour. The present work highlights the microstructural mechanisms responsible for this atypical behavior and suggests strategies to incorporate the two-slope behaviour in the DRX model.

  17. Complete Hamiltonian analysis of cosmological perturbations at all orders II: non-canonical scalar field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, Debottam; Shankaranarayanan, S., E-mail: debottam@iisertvm.ac.in, E-mail: shanki@iisertvm.ac.in

    2016-10-01

    In this work, we present a consistent Hamiltonian analysis of cosmological perturbations for generalized non-canonical scalar fields. In order to do so, we introduce a new phase-space variable that is uniquely defined for different non-canonical scalar fields. We also show that this is the simplest and efficient way of expressing the Hamiltonian. We extend the Hamiltonian approach of [1] to non-canonical scalar field and obtain an unique expression of speed of sound in terms of phase-space variable. In order to invert generalized phase-space Hamilton's equations to Euler-Lagrange equations of motion, we prescribe a general inversion formulae and show that ourmore » approach for non-canonical scalar field is consistent. We also obtain the third and fourth order interaction Hamiltonian for generalized non-canonical scalar fields and briefly discuss the extension of our method to generalized Galilean scalar fields.« less

  18. Hamiltonian theory of guiding-center motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Littlejohn, R.G.

    1980-05-01

    A Hamiltonian treatment of the guiding center problem is given which employs noncanonical coordinates in phase space. Separation of the unperturbed system from the perturbation is achieved by using a coordinate transformation suggested by a theorem of Darboux. As a model to illustrate the method, motion in the magnetic field B=B(x,y)z is studied. Lie transforms are used to carry out the perturbation expansion.

  19. Wavelet based free-form deformations for nonrigid registration

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    In nonrigid registration, deformations may take place on the coarse and fine scales. For the conventional B-splines based free-form deformation (FFD) registration, these coarse- and fine-scale deformations are all represented by basis functions of a single scale. Meanwhile, wavelets have been proposed as a signal representation suitable for multi-scale problems. Wavelet analysis leads to a unique decomposition of a signal into its coarse- and fine-scale components. Potentially, this could therefore be useful for image registration. In this work, we investigate whether a wavelet-based FFD model has advantages for nonrigid image registration. We use a B-splines based wavelet, as defined by Cai and Wang.1 This wavelet is expressed as a linear combination of B-spline basis functions. Derived from the original B-spline function, this wavelet is smooth, differentiable, and compactly supported. The basis functions of this wavelet are orthogonal across scales in Sobolev space. This wavelet was previously used for registration in computer vision, in 2D optical flow problems,2 but it was not compared with the conventional B-spline FFD in medical image registration problems. An advantage of choosing this B-splines based wavelet model is that the space of allowable deformation is exactly equivalent to that of the traditional B-spline. The wavelet transformation is essentially a (linear) reparameterization of the B-spline transformation model. Experiments on 10 CT lung and 18 T1-weighted MRI brain datasets show that wavelet based registration leads to smoother deformation fields than traditional B-splines based registration, while achieving better accuracy.

  20. LQG control of a deformable mirror adaptive optics system with time-delayed measurements

    NASA Astrophysics Data System (ADS)

    Anderson, David J.

    1991-12-01

    This thesis proposes a linear quadratic Gaussian (LQG) control law for a ground-based deformable mirror adaptive optics system. The incoming image wavefront is distorted, primarily in phase, due to the turbulent effects of the earth's atmosphere. The adaptive optics system attempts to compensate for the distortion with a deformable mirror. A Hartman wavefront sensor measures the degree of distortion in the image wavefront. The measurements are input to a Kalman filter which estimates the system states. The state estimates are processed by a linear quadratic regulator which generates the appropriate control voltages to apply to the deformable mirror actuators. The dynamics model for the atmospheric phase distortion consists of 14 Zernike coefficient states; each modeled as a first-order linear time-invariant shaping filter driven by zero-mean white Gaussian noise. The dynamics of the deformable mirror are also model as 14 Zernike coefficients with first-order deterministic dynamics. A significant reduction in total wavefront phase distortion is achieved in the presence of time-delayed measurements. Wavefront sensor sampling rate is the major factor limiting system performance. The Multimode Simulation for Optimal Filter Evaluation (MSOFE) software is the performance evaluation tool of choice for this research.

  1. Witnessing eigenstates for quantum simulation of Hamiltonian spectra

    PubMed Central

    Santagati, Raffaele; Wang, Jianwei; Gentile, Antonio A.; Paesani, Stefano; Wiebe, Nathan; McClean, Jarrod R.; Morley-Short, Sam; Shadbolt, Peter J.; Bonneau, Damien; Silverstone, Joshua W.; Tew, David P.; Zhou, Xiaoqi; O’Brien, Jeremy L.; Thompson, Mark G.

    2018-01-01

    The efficient calculation of Hamiltonian spectra, a problem often intractable on classical machines, can find application in many fields, from physics to chemistry. We introduce the concept of an “eigenstate witness” and, through it, provide a new quantum approach that combines variational methods and phase estimation to approximate eigenvalues for both ground and excited states. This protocol is experimentally verified on a programmable silicon quantum photonic chip, a mass-manufacturable platform, which embeds entangled state generation, arbitrary controlled unitary operations, and projective measurements. Both ground and excited states are experimentally found with fidelities >99%, and their eigenvalues are estimated with 32 bits of precision. We also investigate and discuss the scalability of the approach and study its performance through numerical simulations of more complex Hamiltonians. This result shows promising progress toward quantum chemistry on quantum computers. PMID:29387796

  2. Global organization of tectonic deformation on Venus

    NASA Astrophysics Data System (ADS)

    Bilotti, Frank; Connors, Chris; Suppe, John

    1993-03-01

    The geographic organization of surface deformation on Venus as on Earth is a key to understanding the global tectonic system. To date we have mapped the distribution of three unambiguous tectonic land forms on Venus: (1) linear foldbelts analogous to those at plate margins of the Earth; (2) linear rift zones, analogous to continental rifts on the Earth; and (3) distributed plains deformation in the form of wrinkle ridges and extensional faults and fractures. The linear foldbelts are the dominant structural style in the Northern Hemisphere; ninety percent of the planet's foldbelts lie above the equator. In contrast, compressive deformation in the Southern Hemisphere is dominated by two large, sweeping patterns of wrinkle ridges. The two hemispheres are divided by an equatorial region that is largely covered by rift zones and several large tessera blocks. A tectonic model of generally poleward convergence of the Northern Hemisphere explains the distribution of foldbelts and rift zones. In our model, a northern hemispherical plate (or system of plates) moves poleward and deforms along discrete, predominately longitudinal bands. We recognize four types of foldbelts based on their relationships to other large-scale tectonic features on Venus. There are foldbelts that lie within the low plains, foldbelts associated with coronae, novae and chasmata, foldbelts that lie at the margins of poly-deformed tessera plateaus, and the folded mountain belts around Lakshmi Planum. We see a geometric increase in the area of fold belts when normalized to percent area at a given latitude. This increase is consistent with our model of poleward convergence. Also, the orientations of most foldbelts are either approximately north-south or parallel to lines of latitude in the northern hemisphere. This observation is also consistent with the model in that the longitudinal bands are the result of the decreasing area of the sphere as the plate moves poleward and the latitudinal belts are the

  3. Global organization of tectonic deformation on Venus

    NASA Technical Reports Server (NTRS)

    Bilotti, Frank; Connors, Chris; Suppe, John

    1993-01-01

    The geographic organization of surface deformation on Venus as on Earth is a key to understanding the global tectonic system. To date we have mapped the distribution of three unambiguous tectonic land forms on Venus: (1) linear foldbelts analogous to those at plate margins of the Earth; (2) linear rift zones, analogous to continental rifts on the Earth; and (3) distributed plains deformation in the form of wrinkle ridges and extensional faults and fractures. The linear foldbelts are the dominant structural style in the Northern Hemisphere; ninety percent of the planet's foldbelts lie above the equator. In contrast, compressive deformation in the Southern Hemisphere is dominated by two large, sweeping patterns of wrinkle ridges. The two hemispheres are divided by an equatorial region that is largely covered by rift zones and several large tessera blocks. A tectonic model of generally poleward convergence of the Northern Hemisphere explains the distribution of foldbelts and rift zones. In our model, a northern hemispherical plate (or system of plates) moves poleward and deforms along discrete, predominately longitudinal bands. We recognize four types of foldbelts based on their relationships to other large-scale tectonic features on Venus. There are foldbelts that lie within the low plains, foldbelts associated with coronae, novae and chasmata, foldbelts that lie at the margins of poly-deformed tessera plateaus, and the folded mountain belts around Lakshmi Planum. We see a geometric increase in the area of fold belts when normalized to percent area at a given latitude. This increase is consistent with our model of poleward convergence. Also, the orientations of most foldbelts are either approximately north-south or parallel to lines of latitude in the northern hemisphere. This observation is also consistent with the model in that the longitudinal bands are the result of the decreasing area of the sphere as the plate moves poleward and the latitudinal belts are the

  4. Corrigendum to ;Lotka-Volterra systems satisfying a strong Painlevé property; [Phys. Lett. A 380 (47) (2016) 3977-3982

    NASA Astrophysics Data System (ADS)

    Bountis, Tassos; Vanhaecke, Pol

    2017-12-01

    The comment made after the proof of Proposition 3.3, in our paper [T. Bountis, P. Vanhaecke, Lotka-Volterra systems satisfying a strong Pailevé property, Phys. Lett. A 380 (47) (2016) 3977-3982], saying that the proposition can be generalized when linear terms are added to the Lotka-Volterra systems considered in the paper, is wrong. In general such deformed systems are not even Hamiltonian.

  5. Linearized self-consistent GW approach satisfying the Ward identity

    NASA Astrophysics Data System (ADS)

    Kuwahara, Riichi; Ohno, Kaoru

    2014-09-01

    We propose a linearized self-consistent GW approach satisfying the Ward identity. The vertex function derived from the Ward-Takahashi identity in the limit of q =0 and ω -ω'=0 is included in the self-energy and the polarization function as a consequence of the linearization of the quasiparticle equation. Due to the energy dependence of the self-energy, the Hamiltonian is a non-Hermitian operator and quasiparticle states are nonorthonormal and linearly dependent. However, the linearized quasiparticle states recover orthonormality and fulfill the completeness condition. This approach is very efficient, and the resulting quasiparticle energies are greatly improved compared to the nonlinearized self-consistent GW approach, although its computational cost is not much increased. We show the results for atoms and dimers of Li and Na compared with other approaches. We also propose convenient ways to calculate the Luttinger-Ward functional Φ based on a plasmon-pole model and calculate the total energy for the ground state. As a result, we conclude that the linearization improves overall behaviors in the self-consistent GW approach.

  6. Curved Displacement Transfer Functions for Geometric Nonlinear Large Deformation Structure Shape Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran; Lung, Shun-Fat

    2017-01-01

    For shape predictions of structures under large geometrically nonlinear deformations, Curved Displacement Transfer Functions were formulated based on a curved displacement, traced by a material point from the undeformed position to deformed position. The embedded beam (depth-wise cross section of a structure along a surface strain-sensing line) was discretized into multiple small domains, with domain junctures matching the strain-sensing stations. Thus, the surface strain distribution could be described with a piecewise linear or a piecewise nonlinear function. The discretization approach enabled piecewise integrations of the embedded-beam curvature equations to yield the Curved Displacement Transfer Functions, expressed in terms of embedded beam geometrical parameters and surface strains. By entering the surface strain data into the Displacement Transfer Functions, deflections along each embedded beam can be calculated at multiple points for mapping the overall structural deformed shapes. Finite-element linear and nonlinear analyses of a tapered cantilever tubular beam were performed to generate linear and nonlinear surface strains and the associated deflections to be used for validation. The shape prediction accuracies were then determined by comparing the theoretical deflections with the finiteelement- generated deflections. The results show that the newly developed Curved Displacement Transfer Functions are very accurate for shape predictions of structures under large geometrically nonlinear deformations.

  7. Monitoring the Deformation of High-Rise Buildings in Shanghai Luijiazui Zone by Tomo-Psinsar

    NASA Astrophysics Data System (ADS)

    Zhou, L. F.; Ma, P. F.; Xia, Y.; Xie, C. H.

    2018-05-01

    In this study, we utilize a Tomography-based Persistent Scatterers Interferometry (Tomo-PSInSAR) approach for monitoring the deformation performances of high-rise buildings, i.e. SWFC and Jin Mao Tower, in Shanghai Lujiazui Zone. For the purpose of this study, we use 31 Stripmap acquisitions from TerraSAR-X missions, spanning from December 2009 to February 2013. Considering thermal expansion, creep and shrinkage are two long-term movements that occur in high-rise buildings with concrete structures, we use an extended 4-D SAR phase model, and three parameters (height, deformation velocity, and thermal amplitude) are estimated simultaneously. Moreover, we apply a two-tier network strategy to detect single and double PSs with no need for preliminary removal of the atmospheric phase screen (APS) in the study area, avoiding possible error caused by the uncertainty in spatiotemporal filtering. Thermal expansion is illustrated in the thermal amplitude map, and deformation due to creep and shrinkage is revealed in the linear deformation velocity map. The thermal amplitude map demonstrates that the derived thermal amplitude of the two high-rise buildings both dilate and contract periodically, which is highly related to the building height due to the upward accumulative effect of thermal expansion. The linear deformation velocity map reveals that SWFC is subject to deformation during the new built period due to creep and shrinkage, which is height-dependent movements in the linear velocity map. It is worth mention that creep and shrinkage induces movements that increase with the increasing height in the downward direction. In addition, the deformation rates caused by creep and shrinkage are largest at the beginning and gradually decrease, and at last achieve a steady state as time goes infinity. On the contrary, the linear deformation velocity map shows that Jin Mao Tower is almost stable, and the reason is that it is an old built building, which is not influenced by creep

  8. Full-field drift Hamiltonian particle orbits in 3D geometry

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Graves, J. P.; Brunner, S.; Isaev, M. Yu

    2011-02-01

    A Hamiltonian/Lagrangian theory to describe guiding centre orbit drift motion which is canonical in the Boozer coordinate frame has been extended to include full electromagnetic perturbed fields in anisotropic pressure 3D equilibria with nested magnetic flux surfaces. A redefinition of the guiding centre velocity to eliminate the motion due to finite equilibrium radial magnetic fields and the choice of a gauge condition that sets the radial component of the electromagnetic vector potential to zero are invoked to guarantee that the Boozer angular coordinates retain the canonical structure. The canonical momenta are identified and the guiding centre particle radial drift motion and parallel gyroradius evolution are derived. The particle coordinate position is linearly modified by wave-particle interactions. All the nonlinear wave-wave interactions appear explicitly only in the evolution of the parallel gyroradius. The radial variation of the electrostatic potential is related to the binormal component of the displacement vector for MHD-type perturbations. The electromagnetic vector potential projections can then be determined from the electrostatic potential and the radial component of the MHD displacement vector.

  9. Non-linear behavior of fiber composite laminates

    NASA Technical Reports Server (NTRS)

    Hashin, Z.; Bagchi, D.; Rosen, B. W.

    1974-01-01

    The non-linear behavior of fiber composite laminates which results from lamina non-linear characteristics was examined. The analysis uses a Ramberg-Osgood representation of the lamina transverse and shear stress strain curves in conjunction with deformation theory to describe the resultant laminate non-linear behavior. A laminate having an arbitrary number of oriented layers and subjected to a general state of membrane stress was treated. Parametric results and comparison with experimental data and prior theoretical results are presented.

  10. Multi-temporal InSAR analysis to reduce uncertainties and assess time-dependence of deformation in the northern Chilean forearc

    NASA Astrophysics Data System (ADS)

    Manjunath, D.; Gomez, F.; Loveless, J.

    2005-12-01

    Interferometric Synthetic Aperture Radar (InSAR) provides unprecedented spatial imaging of crustal deformation. However, for small deformations, such as those due to interseismic strain accumulation, potentially significant uncertainty may result from other sources of interferometric phase, such as atmospheric effects, errors in satellite baseline, and height errors in the reference digital elevation model (DEM). We aim to constrain spatial and temporal variations in crustal deformation of the northern Chilean forearc region of the Andean subduction zone (19° - 22°S) using multiple interferograms spanning 1995 - 2000. The study area includes the region of the 1995 Mw 8.1 Antofagasta earthquake and the region to the north. In contrast to previous InSAR-based studies of the Chilean forearc, we seek to distinguish interferometric phase contributions from linear and nonlinear deformation, height errors in the DEM, and atmospheric effects. Understanding these phase contributions reduces the uncertainties on the deformation rates and provides a view of the time-dependence of deformation. The inteferograms cover a 150 km-wide swath spanning two adjacent orbital tracks. Our study involves the analysis of more than 28 inteferograms along each track. Coherent interferograms in the hyper-arid Atacama Desert permit spatial phase unwrapping. Initial estimates of topographic phase were determined using 3'' DEM data from the SRTM mission. We perform a pixel-by-pixel analysis of the unwrapped phase to identify time- and baseline-dependent phase contributions, using the Gamma Remote Sensing radar software. Atmospheric phase, non-linear deformation, and phase noise were further distinguished using a combination of spatial and temporal filters. Non-linear deformation is evident for up to 2.5 years following the 1995 earthquake, followed by a return to time-linear, interseismic strain accumulation. The regional trend of linear deformation, characterized by coastal subsidence and

  11. Integrable Time-Dependent Quantum Hamiltonians

    NASA Astrophysics Data System (ADS)

    Sinitsyn, Nikolai A.; Yuzbashyan, Emil A.; Chernyak, Vladimir Y.; Patra, Aniket; Sun, Chen

    2018-05-01

    We formulate a set of conditions under which the nonstationary Schrödinger equation with a time-dependent Hamiltonian is exactly solvable analytically. The main requirement is the existence of a non-Abelian gauge field with zero curvature in the space of system parameters. Known solvable multistate Landau-Zener models satisfy these conditions. Our method provides a strategy to incorporate time dependence into various quantum integrable models while maintaining their integrability. We also validate some prior conjectures, including the solution of the driven generalized Tavis-Cummings model.

  12. Modular Hamiltonians on the null plane and the Markov property of the vacuum state

    NASA Astrophysics Data System (ADS)

    Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo

    2017-09-01

    We compute the modular Hamiltonians of regions having the future horizon lying on a null plane. For a CFT this is equivalent to regions with a boundary of arbitrary shape lying on the null cone. These Hamiltonians have a local expression on the horizon formed by integrals of the stress tensor. We prove this result in two different ways, and show that the modular Hamiltonians of these regions form an infinite dimensional Lie algebra. The corresponding group of unitary transformations moves the fields on the null surface locally along the null generators with arbitrary null line dependent velocities, but act non-locally outside the null plane. We regain this result in greater generality using more abstract tools on the algebraic quantum field theory. Finally, we show that modular Hamiltonians on the null surface satisfy a Markov property that leads to the saturation of the strong sub-additive inequality for the entropies and to the strong super-additivity of the relative entropy.

  13. Transient Non Lin Deformation in Fractured Rock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sartori, Enrico

    1998-10-14

    MATLOC is a nonlinear, transient, two-dimensional (planer and axisymmetric), thermal stress, finite-element code designed to determine the deformation within a fractured rock mass. The mass is modeled as a nonlinear anistropic elastic material which can exhibit stress-dependent bi-linear locking behavior.

  14. Linearization instability for generic gravity in AdS spacetime

    NASA Astrophysics Data System (ADS)

    Altas, Emel; Tekin, Bayram

    2018-01-01

    In general relativity, perturbation theory about a background solution fails if the background spacetime has a Killing symmetry and a compact spacelike Cauchy surface. This failure, dubbed as linearization instability, shows itself as non-integrability of the perturbative infinitesimal deformation to a finite deformation of the background. Namely, the linearized field equations have spurious solutions which cannot be obtained from the linearization of exact solutions. In practice, one can show the failure of the linear perturbation theory by showing that a certain quadratic (integral) constraint on the linearized solutions is not satisfied. For non-compact Cauchy surfaces, the situation is different and for example, Minkowski space having a non-compact Cauchy surface, is linearization stable. Here we study, the linearization instability in generic metric theories of gravity where Einstein's theory is modified with additional curvature terms. We show that, unlike the case of general relativity, for modified theories even in the non-compact Cauchy surface cases, there are some theories which show linearization instability about their anti-de Sitter backgrounds. Recent D dimensional critical and three dimensional chiral gravity theories are two such examples. This observation sheds light on the paradoxical behavior of vanishing conserved charges (mass, angular momenta) for non-vacuum solutions, such as black holes, in these theories.

  15. Model many-body Stoner Hamiltonian for binary FeCr alloys

    NASA Astrophysics Data System (ADS)

    Nguyen-Manh, D.; Dudarev, S. L.

    2009-09-01

    We derive a model tight-binding many-body d -electron Stoner Hamiltonian for FeCr binary alloys and investigate the sensitivity of its mean-field solutions to the choice of hopping integrals and the Stoner exchange parameters. By applying the local charge-neutrality condition within a self-consistent treatment we show that the negative enthalpy-of-mixing anomaly characterizing the alloy in the low chromium concentration limit is due entirely to the presence of the on-site exchange Stoner terms and that the occurrence of this anomaly is not specifically related to the choice of hopping integrals describing conventional chemical bonding between atoms in the alloy. The Bain transformation pathway computed, using the proposed model Hamiltonian, for the Fe15Cr alloy configuration is in excellent agreement with ab initio total-energy calculations. Our investigation also shows how the parameters of a tight-binding many-body model Hamiltonian for a magnetic alloy can be derived from the comparison of its mean-field solutions with other, more accurate, mean-field approximations (e.g., density-functional calculations), hence stimulating the development of large-scale computational algorithms for modeling radiation damage effects in magnetic alloys and steels.

  16. Multi-Hamiltonian structure of Plebanski's second heavenly equation

    NASA Astrophysics Data System (ADS)

    Neyzi, F.; Nutku, Y.; Sheftel, M. B.

    2005-09-01

    We show that Plebanski's second heavenly equation, when written as a first-order nonlinear evolutionary system, admits multi-Hamiltonian structure. Therefore by Magri's theorem it is a completely integrable system. Thus it is an example of a completely integrable system in four dimensions.

  17. Thermalization Time Bounds for Pauli Stabilizer Hamiltonians

    NASA Astrophysics Data System (ADS)

    Temme, Kristan

    2017-03-01

    We prove a general lower bound to the spectral gap of the Davies generator for Hamiltonians that can be written as the sum of commuting Pauli operators. These Hamiltonians, defined on the Hilbert space of N-qubits, serve as one of the most frequently considered candidates for a self-correcting quantum memory. A spectral gap bound on the Davies generator establishes an upper limit on the life time of such a quantum memory and can be used to estimate the time until the system relaxes to thermal equilibrium when brought into contact with a thermal heat bath. The bound can be shown to behave as {λ ≥ O(N^{-1} exp(-2β overline{ɛ}))}, where {overline{ɛ}} is a generalization of the well known energy barrier for logical operators. Particularly in the low temperature regime we expect this bound to provide the correct asymptotic scaling of the gap with the system size up to a factor of N -1. Furthermore, we discuss conditions and provide scenarios where this factor can be removed and a constant lower bound can be proven.

  18. The Modified Hartmann Potential Effects on γ-rigid Bohr Hamiltonian

    NASA Astrophysics Data System (ADS)

    Suparmi, A.; Cari, C.; Nur Pratiwi, Beta

    2018-04-01

    In this paper, we present the solution of Bohr Hamiltonian in the case of γ-rigid for the modified Hartmann potential. The modified Hartmann potential was formed from the original Hartmann potential, consists of β function and θ function. By using the separation method, the three-dimensional Bohr Hamiltonian equation was reduced into three one-dimensional Schrodinger-like equation which was solved analytically. The results for the wavefunction were shown in mathematically, while for the binding energy was solved numerically. The numerical binding energy for the presence of the modified Hartmann potential is lower than the binding energy value in the absence of modified Hartmann potential effect.

  19. Nonholonomic Hamiltonian Method for Meso-macroscale Simulations of Reacting Shocks

    NASA Astrophysics Data System (ADS)

    Fahrenthold, Eric; Lee, Sangyup

    2015-06-01

    The seamless integration of macroscale, mesoscale, and molecular scale models of reacting shock physics has been hindered by dramatic differences in the model formulation techniques normally used at different scales. In recent research the authors have developed the first unified discrete Hamiltonian approach to multiscale simulation of reacting shock physics. Unlike previous work, the formulation employs reacting themomechanical Hamiltonian formulations at all scales, including the continuum. Unlike previous work, the formulation employs a nonholonomic modeling approach to systematically couple the models developed at all scales. Example applications of the method show meso-macroscale shock to detonation simulations in nitromethane and RDX. Research supported by the Defense Threat Reduction Agency.

  20. Anharmonic vibrations around a triaxial nuclear deformation “frozen” to γ = 30°

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buganu, Petrica, E-mail: buganu@theory.nipne.ro; Budaca, Radu

    2015-12-07

    The Davydov-Chaban Hamiltonian with a sextic oscillator potential for the variable β and γ fixed to 30° is exactly solved for the ground and β bands and approximately for the γ band. The model is called Z(4)-Sextic in connection with the already established Z(4) solution. The energy spectra, normalized to the energy of the first excited state, and several B(E2) transition probabilities, normalized to the B(E2) transition from the first excited state to the ground state, depend on a single parameter α. By varying α within a sufficiently large interval, a shape phase transition from an approximately spherical shape tomore » a deformed one is evidenced.« less

  1. Steepest entropy ascent for two-state systems with slowly varying Hamiltonians

    NASA Astrophysics Data System (ADS)

    Militello, Benedetto

    2018-05-01

    The steepest entropy ascent approach is considered and applied to two-state systems. When the Hamiltonian of the system is time-dependent, the principle of maximum entropy production can still be exploited; arguments to support this fact are given. In the limit of slowly varying Hamiltonians, which allows for the adiabatic approximation for the unitary part of the dynamics, the system exhibits significant robustness to the thermalization process. Specific examples such as a spin in a rotating field and a generic two-state system undergoing an avoided crossing are considered.

  2. Large landslides induced by the 2008 Wenchuan earthquake and their precursory gravitational slope deformation

    NASA Astrophysics Data System (ADS)

    Chigira, Masahiro; Wu, Xiyong; Wang, Gonghui; Uchida, Osamu

    2010-05-01

    2008 Wenchuan earthquake induced numerous large landslides, of which many large landslides had been preceded by gravitational deformation. The deformation could be detected by linear depressions and convex slopes observed on satellite images taken before the earthquake. Ground truth survey after the earthquake also found the gravitational deformation of rocks, which could be predated before the earthquake. The Daguanbao landslide, the largest landslide induced by this earthquake, occurred on a slope of bedded carbonate rocks. The area of the landslide, based on measurements made from the ALOS/PRISM images is 7.353 km2. Its volume is estimated to be 0.837 km3 based on the comparison of the PRISM data and the SRTM DEM. It had an open V-shaped main scarp, of which one linear part was along a high angle fault and the other was approximately parallel to the bedding strike. The upslope edge of the V-shaped main scarp was observed as 2- km long linear depressions along the ridge-top on satellite image before the landslide. This indicates that this slope had been already destabilized and small movement occurred along the bedding planes and along the fault before the event. The Wenchuan earthquake pulled the final trigger of this landslide. The major sliding surface was along the bedding plane, which was observed to dip 35° or slightly gentler. It was warped convex upward and the beds were fractured, which suggests that the beds were slightly buckled before the landslide. This deformation may correspond to the formation of the linear depression. The Tangjiashan landslide in Beichuan, which produced the largest landslide dam during the earthquake, occurred on a dip slope of shale and slate. The geologic structures of the landslide was observed on the side flanks of the landslide, which indicated that the beds had been buckled gravitationally beforehand and the sliding surface was made along the bedding plane and a joint parallel to the slope surface. The buckling

  3. Dynamics, integrability and topology for some classes of Kolmogorov Hamiltonian systems in R+4

    NASA Astrophysics Data System (ADS)

    Llibre, Jaume; Xiao, Dongmei

    2017-02-01

    In this paper we first give the sufficient and necessary conditions in order that two classes of polynomial Kolmogorov systems in R+4 are Hamiltonian systems. Then we study the integrability of these Hamiltonian systems in the Liouville sense. Finally, we investigate the global dynamics of the completely integrable Lotka-Volterra Hamiltonian systems in R+4. As an application of the invariant subsets of these systems, we obtain topological classifications of the 3-submanifolds in R+4 defined by the hypersurfaces axy + bzw + cx2 y + dxy2 + ez2 w + fzw2 = h, where a , b , c , d , e , f , w and h are real constants.

  4. Droplet Deformation Prediction With the Droplet Deformation and Breakup Model (DDB)

    NASA Technical Reports Server (NTRS)

    Vargas, Mario

    2012-01-01

    The Droplet Deformation and Breakup Model was used to predict deformation of droplets approaching the leading edge stagnation line of an airfoil. The quasi-steady model was solved for each position along the droplet path. A program was developed to solve the non-linear, second order, ordinary differential equation that governs the model. A fourth order Runge-Kutta method was used to solve the equation. Experimental slip velocities from droplet breakup studies were used as input to the model which required slip velocity along the particle path. The center of mass displacement predictions were compared to the experimental measurements from the droplet breakup studies for droplets with radii in the range of 200 to 700 mm approaching the airfoil at 50 and 90 m/sec. The model predictions were good for the displacement of the center of mass for small and medium sized droplets. For larger droplets the model predictions did not agree with the experimental results.

  5. Towards classical spectrum generating algebras for f-deformations

    NASA Astrophysics Data System (ADS)

    Kullock, Ricardo; Latini, Danilo

    2016-01-01

    In this paper we revise the classical analog of f-oscillators, a generalization of q-oscillators given in Man'ko et al. (1997) [8], in the framework of classical spectrum generating algebras (SGA) introduced in Kuru and Negro (2008) [9]. We write down the deformed Poisson algebra characterizing the entire family of non-linear oscillators and construct its general solution algebraically. The latter, covering the full range of f-deformations, shows an energy dependence both in the amplitude and the frequency of the motion.

  6. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations.

    PubMed

    Kim, Dae-Hyeong; Song, Jizhou; Choi, Won Mook; Kim, Hoon-Sik; Kim, Rak-Hwan; Liu, Zhuangjian; Huang, Yonggang Y; Hwang, Keh-Chih; Zhang, Yong-wei; Rogers, John A

    2008-12-02

    Electronic systems that offer elastic mechanical responses to high-strain deformations are of growing interest because of their ability to enable new biomedical devices and other applications whose requirements are impossible to satisfy with conventional wafer-based technologies or even with those that offer simple bendability. This article introduces materials and mechanical design strategies for classes of electronic circuits that offer extremely high stretchability, enabling them to accommodate even demanding configurations such as corkscrew twists with tight pitch (e.g., 90 degrees in approximately 1 cm) and linear stretching to "rubber-band" levels of strain (e.g., up to approximately 140%). The use of single crystalline silicon nanomaterials for the semiconductor provides performance in stretchable complementary metal-oxide-semiconductor (CMOS) integrated circuits approaching that of conventional devices with comparable feature sizes formed on silicon wafers. Comprehensive theoretical studies of the mechanics reveal the way in which the structural designs enable these extreme mechanical properties without fracturing the intrinsically brittle active materials or even inducing significant changes in their electrical properties. The results, as demonstrated through electrical measurements of arrays of transistors, CMOS inverters, ring oscillators, and differential amplifiers, suggest a valuable route to high-performance stretchable electronics.

  7. Controlling effect of geometrically defined local structural changes on chaotic Hamiltonian systems.

    PubMed

    Ben Zion, Yossi; Horwitz, Lawrence

    2010-04-01

    An effective characterization of chaotic conservative Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor derived from the structure of the Hamiltonian has been extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce the Hamilton equations of the original potential model through an inverse map in the tangent space. The second covariant derivative of the geodesic deviation in this space generates a dynamical curvature, resulting in (energy-dependent) criteria for unstable behavior different from the usual Lyapunov criteria. We show here that this criterion can be constructively used to modify locally the potential of a chaotic Hamiltonian model in such a way that stable motion is achieved. Since our criterion for instability is local in coordinate space, these results provide a minimal method for achieving control of a chaotic system.

  8. Global deformation on the surface of Venus

    NASA Technical Reports Server (NTRS)

    Bilotti, Frank; Connors, Chris; Suppe, John

    1992-01-01

    Large-scale mapping of tectonic structures on Venus shows that there is an organized global distribution to deformation. The structures we emphasize are linear compressive mountain belts, extensional rafted zones, and the small-scale but widely distributed wrinkle ridges. Ninety percent of the area of the planet's compressive mountain belts are concentrated in the northern hemisphere whereas the southern hemisphere is dominated by extension and small-scale compression. We propose that this striking concentration of fold belts in the northern hemisphere, along with the globe-encircling equatorial rift system, represents a global organization to deformation on Venus.

  9. T\\overline{T} -deformations, AdS/CFT and correlation functions

    NASA Astrophysics Data System (ADS)

    Giribet, Gaston

    2018-02-01

    A solvable irrelevant deformation of AdS3/CFT2 correspondence leading to a theory with Hagedorn spectrum at high energy has been recently proposed. It consists of a single trace deformation of the boundary theory, which is inspired by the recent work on solvable T\\overline{T} deformations of two-dimensional CFTs. Thought of as a worldsheet σ-model, the interpretation of the deformed theory from the bulk viewpoint is that of string theory on a background that interpolates between AdS3 in the IR and a linear dilaton vacuum of little string theory in the UV. The insertion of the operator that realizes the deformation in the correlation functions produces a logarithmic divergence, leading to the renormalization of the primary operators, which thus acquire an anomalous dimension. We compute this anomalous dimension explicitly, and this provides us with a direct way of determining the spectrum of the theory. We discuss this and other features of the correlation functions in presence of the deformation.

  10. Dynamics of Deformable Active Particles under External Flow Field

    NASA Astrophysics Data System (ADS)

    Tarama, Mitsusuke

    2017-10-01

    In most practical situations, active particles are affected by their environment, for example, by a chemical concentration gradient, light intensity, gravity, or confinement. In particular, the effect of an external flow field is important for particles swimming in a solvent fluid. For deformable active particles such as self-propelled liquid droplets and active vesicles, as well as microorganisms such as euglenas and neutrophils, a general description has been developed by focusing on shape deformation. In this review, we present our recent studies concerning the dynamics of a single active deformable particle under an external flow field. First, a set of model equations of active deformable particles including the effect of a general external flow is introduced. Then, the dynamics under two specific flow profiles is discussed: a linear shear flow, as the simplest example, and a swirl flow. In the latter case, the scattering dynamics of the active deformable particles by the swirl flow is also considered.

  11. Habit tic deformity secondary to guitar playing.

    PubMed

    Wu, Jashin J

    2009-03-15

    A 29-year-old man exhibited linear ridges of the right thumbnail that had been present for ten years. After he stopped playing the guitar for three months, the proximal portion of the abnormality cleared. Nail changes similar to the habit tic deformity may be produced by guitar playing.

  12. Laboratory determination of effective stress laws for deformation and permeability of chalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teufel, L W; Warpinski, N R

    1990-01-01

    Laboratory deformation and permeability measurements have been made on chalk samples from Ekofisk area fields as a function of confining stress and pore pressure to determine the effective stress laws for chalk. An understanding of the effective stress law is essential to obtain correct reservoir-property data from core analysis and is critical for reservoir management studies and reservoir compaction models. A powerful statistical technique known as the response surface method has been used to analyze our laboratory data determine the form of the effective stress law for deformation and permeability. Experiments were conducted on chalk samples that had a rangemore » of porosities from 15% to 36%, because porosity is the dominant intrinsic property that effects deformation and permeability behavior of chalk. Deformation of a 36% porosity chalk was highly nonlinear, but the effective stress law was linear, with {alpha} equal to about unity. Lower-porosity samples showed linear strain behavior and a linear effective stress law with {alpha} as low as 0.74. Analysis of the effective stress law for permeability is presented only for the lowest porosity chalk sample because changes in permeability in the higher-porosity chalk samples due to increasing confining stress or pore pressure were not were large enough, to deduce meaningful effective stress relationships. 15 refs., 8 figs., 2 tabs.« less

  13. BRST quantization of Yang-Mills theory: A purely Hamiltonian approach on Fock space

    NASA Astrophysics Data System (ADS)

    Öttinger, Hans Christian

    2018-04-01

    We develop the basic ideas and equations for the BRST quantization of Yang-Mills theories in an explicit Hamiltonian approach, without any reference to the Lagrangian approach at any stage of the development. We present a new representation of ghost fields that combines desirable self-adjointness properties with canonical anticommutation relations for ghost creation and annihilation operators, thus enabling us to characterize the physical states on a well-defined Fock space. The Hamiltonian is constructed by piecing together simple BRST invariant operators to obtain a minimal invariant extension of the free theory. It is verified that the evolution equations implied by the resulting minimal Hamiltonian provide a quantum version of the classical Yang-Mills equations. The modifications and requirements for the inclusion of matter are discussed in detail.

  14. Hamiltonian Effective Field Theory Study of the N^{*}(1535) Resonance in Lattice QCD.

    PubMed

    Liu, Zhan-Wei; Kamleh, Waseem; Leinweber, Derek B; Stokes, Finn M; Thomas, Anthony W; Wu, Jia-Jun

    2016-02-26

    Drawing on experimental data for baryon resonances, Hamiltonian effective field theory (HEFT) is used to predict the positions of the finite-volume energy levels to be observed in lattice QCD simulations of the lowest-lying J^{P}=1/2^{-} nucleon excitation. In the initial analysis, the phenomenological parameters of the Hamiltonian model are constrained by experiment and the finite-volume eigenstate energies are a prediction of the model. The agreement between HEFT predictions and lattice QCD results obtained on volumes with spatial lengths of 2 and 3 fm is excellent. These lattice results also admit a more conventional analysis where the low-energy coefficients are constrained by lattice QCD results, enabling a determination of resonance properties from lattice QCD itself. Finally, the role and importance of various components of the Hamiltonian model are examined.

  15. Plastic strain is a mixture of avalanches and quasireversible deformations: Study of various sizes

    NASA Astrophysics Data System (ADS)

    Szabó, Péter; Ispánovity, Péter Dusán; Groma, István

    2015-02-01

    The size dependence of plastic flow is studied by discrete dislocation dynamical simulations of systems with various amounts of interacting dislocations while the stress is slowly increased. The regions between avalanches in the individual stress curves as functions of the plastic strain were found to be nearly linear and reversible where the plastic deformation obeys an effective equation of motion with a nearly linear force. For small plastic deformation, the mean values of the stress-strain curves obey a power law over two decades. Here and for somewhat larger plastic deformations, the mean stress-strain curves converge for larger sizes, while their variances shrink, both indicating the existence of a thermodynamical limit. The converging averages decrease with increasing size, in accordance with size effects from experiments. For large plastic deformations, where steady flow sets in, the thermodynamical limit was not realized in this model system.

  16. Quadratic time dependent Hamiltonians and separation of variables

    NASA Astrophysics Data System (ADS)

    Anzaldo-Meneses, A.

    2017-06-01

    Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green's function is obtained and a comparison with the classical Hamilton-Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei-Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü-Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems.

  17. Quantum gates by inverse engineering of a Hamiltonian

    NASA Astrophysics Data System (ADS)

    Santos, Alan C.

    2018-01-01

    Inverse engineering of a Hamiltonian (IEH) from an evolution operator is a useful technique for the protocol of quantum control with potential applications in quantum information processing. In this paper we introduce a particular protocol to perform IEH and we show how this scheme can be used to implement a set of quantum gates by using minimal quantum resources (such as entanglement, interactions between more than two qubits or auxiliary qubits). Remarkably, while previous protocols request three-qubit interactions and/or auxiliary qubits to implement such gates, our protocol requires just two-qubit interactions and no auxiliary qubits. By using this approach we can obtain a large class of Hamiltonians that allow us to implement single and two-qubit gates necessary for quantum computation. To conclude this article we analyze the performance of our scheme against systematic errors related to amplitude noise, where we show that the free parameters introduced in our scheme can be useful for enhancing the robustness of the protocol against such errors.

  18. Hamiltonian analysis of non-relativistic non-BPS Dp-brane

    NASA Astrophysics Data System (ADS)

    Klusoň, J.

    2017-07-01

    We perform Hamiltonian analysis of non-relativistic non-BPS Dp-brane. We find the constraint structure of this theory and determine corresponding equations of motion. We further discuss property of this theory at the tachyon vacuum.

  19. Weak hamiltonian Wilson Coefficients from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Bruno, Mattia

    2018-03-01

    n this work we present a calculation of the Wilson Coefficients C1 and C2 of the Effective Weak Hamiltonian to all-orders in αs, using lattice simulations. Given the current availability of lattice spacings we restrict our calculation to unphysically light W bosons around 2 GeV and we study the systematic uncertainties of the two Wilson Coefficients.

  20. Effective Hamiltonian approach to the Kerr nonlinearity in an optomechanical system

    NASA Astrophysics Data System (ADS)

    Gong, Z. R.; Ian, H.; Liu, Yu-Xi; Sun, C. P.; Nori, Franco

    2009-12-01

    Using the Born-Oppenheimer approximation, we derive an effective Hamiltonian for an optomechanical system that leads to a nonlinear Kerr effect in the system’s vacuum. The oscillating mirror at one edge of the optomechanical system induces a squeezing effect in the intensity spectrum of the cavity field. A near-resonant laser field is applied at the other edge to drive the cavity field in order to enhance the Kerr effect. We also propose a quantum-nondemolition-measurement setup to monitor a system with two cavities separated by a common oscillating mirror based on our effective Hamiltonian approach.

  1. Trojan dynamics well approximated by a new Hamiltonian normal form

    NASA Astrophysics Data System (ADS)

    Páez, Rocío Isabel; Locatelli, Ugo

    2015-10-01

    We revisit a classical perturbative approach to the Hamiltonian related to the motions of Trojan bodies, in the framework of the planar circular restricted three-body problem, by introducing a number of key new ideas in the formulation. In some sense, we adapt the approach of Garfinkel to the context of the normal form theory and its modern techniques. First, we make use of Delaunay variables for a physically accurate representation of the system. Therefore, we introduce a novel manipulation of the variables so as to respect the natural behaviour of the model. We develop a normalization procedure over the fast angle which exploits the fact that singularities in this model are essentially related to the slow angle. Thus, we produce a new normal form, i.e. an integrable approximation to the Hamiltonian. We emphasize some practical examples of the applicability of our normalizing scheme, e.g. the estimation of the stable libration region. Finally, we compare the level curves produced by our normal form with surfaces of section provided by the integration of the non-normalized Hamiltonian, with very good agreement. Further precision tests are also provided. In addition, we give a step-by-step description of the algorithm, allowing for extensions to more complicated models.

  2. Hamiltonian model and dynamic analyses for a hydro-turbine governing system with fractional item and time-lag

    NASA Astrophysics Data System (ADS)

    Xu, Beibei; Chen, Diyi; Zhang, Hao; Wang, Feifei; Zhang, Xinguang; Wu, Yonghong

    2017-06-01

    This paper focus on a Hamiltonian mathematical modeling for a hydro-turbine governing system including fractional item and time-lag. With regards to hydraulic pressure servo system, a universal dynamical model is proposed, taking into account the viscoelastic properties and low-temperature impact toughness of constitutive materials as well as the occurrence of time-lag in the signal transmissions. The Hamiltonian model of the hydro-turbine governing system is presented using the method of orthogonal decomposition. Furthermore, a novel Hamiltonian function that provides more detailed energy information is presented, since the choice of the Hamiltonian function is the key issue by putting the whole dynamical system to the theory framework of the generalized Hamiltonian system. From the numerical experiments based on a real large hydropower station, we prove that the Hamiltonian function can describe the energy variation of the hydro-turbine suitably during operation. Moreover, the effect of the fractional α and the time-lag τ on the dynamic variables of the hydro-turbine governing system are explored and their change laws identified, respectively. The physical meaning between fractional calculus and time-lag are also discussed in nature. All of the above theories and numerical results are expected to provide a robust background for the safe operation and control of large hydropower stations.

  3. Stiffness optimization of non-linear elastic structures

    DOE PAGES

    Wallin, Mathias; Ivarsson, Niklas; Tortorelli, Daniel

    2017-11-13

    Our paper revisits stiffness optimization of non-linear elastic structures. Due to the non-linearity, several possible stiffness measures can be identified and in this work conventional compliance, i.e. secant stiffness designs are compared to tangent stiffness designs. The optimization problem is solved by the method of moving asymptotes and the sensitivities are calculated using the adjoint method. And for the tangent cost function it is shown that although the objective involves the third derivative of the strain energy an efficient formulation for calculating the sensitivity can be obtained. Loss of convergence due to large deformations in void regions is addressed bymore » using a fictitious strain energy such that small strain linear elasticity is approached in the void regions. We formulate a well-posed topology optimization problem by using restriction which is achieved via a Helmholtz type filter. The numerical examples provided show that for low load levels, the designs obtained from the different stiffness measures coincide whereas for large deformations significant differences are observed.« less

  4. Stiffness optimization of non-linear elastic structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallin, Mathias; Ivarsson, Niklas; Tortorelli, Daniel

    Our paper revisits stiffness optimization of non-linear elastic structures. Due to the non-linearity, several possible stiffness measures can be identified and in this work conventional compliance, i.e. secant stiffness designs are compared to tangent stiffness designs. The optimization problem is solved by the method of moving asymptotes and the sensitivities are calculated using the adjoint method. And for the tangent cost function it is shown that although the objective involves the third derivative of the strain energy an efficient formulation for calculating the sensitivity can be obtained. Loss of convergence due to large deformations in void regions is addressed bymore » using a fictitious strain energy such that small strain linear elasticity is approached in the void regions. We formulate a well-posed topology optimization problem by using restriction which is achieved via a Helmholtz type filter. The numerical examples provided show that for low load levels, the designs obtained from the different stiffness measures coincide whereas for large deformations significant differences are observed.« less

  5. Toward efficient biomechanical-based deformable image registration of lungs for image-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Al-Mayah, Adil; Moseley, Joanne; Velec, Mike; Brock, Kristy

    2011-08-01

    Both accuracy and efficiency are critical for the implementation of biomechanical model-based deformable registration in clinical practice. The focus of this investigation is to evaluate the potential of improving the efficiency of the deformable image registration of the human lungs without loss of accuracy. Three-dimensional finite element models have been developed using image data of 14 lung cancer patients. Each model consists of two lungs, tumor and external body. Sliding of the lungs inside the chest cavity is modeled using a frictionless surface-based contact model. The effect of the type of element, finite deformation and elasticity on the accuracy and computing time is investigated. Linear and quadrilateral tetrahedral elements are used with linear and nonlinear geometric analysis. Two types of material properties are applied namely: elastic and hyperelastic. The accuracy of each of the four models is examined using a number of anatomical landmarks representing the vessels bifurcation points distributed across the lungs. The registration error is not significantly affected by the element type or linearity of analysis, with an average vector error of around 2.8 mm. The displacement differences between linear and nonlinear analysis methods are calculated for all lungs nodes and a maximum value of 3.6 mm is found in one of the nodes near the entrance of the bronchial tree into the lungs. The 95 percentile of displacement difference ranges between 0.4 and 0.8 mm. However, the time required for the analysis is reduced from 95 min in the quadratic elements nonlinear geometry model to 3.4 min in the linear element linear geometry model. Therefore using linear tetrahedral elements with linear elastic materials and linear geometry is preferable for modeling the breathing motion of lungs for image-guided radiotherapy applications.

  6. Hamiltonian structure of Dubrovin{close_quote}s equation of associativity in 2-d topological field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galvao, C.A.; Nutku, Y.

    1996-12-01

    mA third order Monge-Amp{grave e}re type equation of associativity that Dubrovin has obtained in 2-d topological field theory is formulated in terms of a variational principle subject to second class constraints. Using Dirac{close_quote}s theory of constraints this degenerate Lagrangian system is cast into Hamiltonian form and the Hamiltonian operator is obtained from the Dirac bracket. There is a new type of Kac-Moody algebra that corresponds to this Hamiltonian operator. In particular, it is not a W-algebra. {copyright} {ital 1996 American Institute of Physics.}

  7. On the paradoxical evolution of the number of photons in a new model of interpolating Hamiltonians

    NASA Astrophysics Data System (ADS)

    Valverde, Clodoaldo; Baseia, Basílio

    2018-01-01

    We introduce a new Hamiltonian model which interpolates between the Jaynes-Cummings model (JCM) and other types of such Hamiltonians. It works with two interpolating parameters, rather than one as traditional. Taking advantage of this greater degree of freedom, we can perform continuous interpolation between the various types of these Hamiltonians. As applications, we discuss a paradox raised in literature and compare the time evolution of the photon statistics obtained in the various interpolating models. The role played by the average excitation in these comparisons is also highlighted.

  8. Noiseless Vlasov-Poisson simulations with linearly transformed particles

    DOE PAGES

    Pinto, Martin C.; Sonnendrucker, Eric; Friedman, Alex; ...

    2014-06-25

    We introduce a deterministic discrete-particle simulation approach, the Linearly-Transformed Particle-In-Cell (LTPIC) method, that employs linear deformations of the particles to reduce the noise traditionally associated with particle schemes. Formally, transforming the particles is justified by local first order expansions of the characteristic flow in phase space. In practice the method amounts of using deformation matrices within the particle shape functions; these matrices are updated via local evaluations of the forward numerical flow. Because it is necessary to periodically remap the particles on a regular grid to avoid excessively deforming their shapes, the method can be seen as a development ofmore » Denavit's Forward Semi-Lagrangian (FSL) scheme (Denavit, 1972 [8]). However, it has recently been established (Campos Pinto, 2012 [20]) that the underlying Linearly-Transformed Particle scheme converges for abstract transport problems, with no need to remap the particles; deforming the particles can thus be seen as a way to significantly lower the remapping frequency needed in the FSL schemes, and hence the associated numerical diffusion. To couple the method with electrostatic field solvers, two specific charge deposition schemes are examined, and their performance compared with that of the standard deposition method. Finally, numerical 1d1v simulations involving benchmark test cases and halo formation in an initially mismatched thermal sheet beam demonstrate some advantages of our LTPIC scheme over the classical PIC and FSL methods. Lastly, benchmarked test cases also indicate that, for numerical choices involving similar computational effort, the LTPIC method is capable of accuracy comparable to or exceeding that of state-of-the-art, high-resolution Vlasov schemes.« less

  9. Size Reduction of Hamiltonian Matrix for Large-Scale Energy Band Calculations Using Plane Wave Bases

    NASA Astrophysics Data System (ADS)

    Morifuji, Masato

    2018-01-01

    We present a method of reducing the size of a Hamiltonian matrix used in calculations of electronic states. In the electronic states calculations using plane wave basis functions, a large number of plane waves are often required to obtain precise results. Even using state-of-the-art techniques, the Hamiltonian matrix often becomes very large. The large computational time and memory necessary for diagonalization limit the widespread use of band calculations. We show a procedure of deriving a reduced Hamiltonian constructed using a small number of low-energy bases by renormalizing high-energy bases. We demonstrate numerically that the significant speedup of eigenstates evaluation is achieved without losing accuracy.

  10. Deformable image registration for tissues with large displacements

    PubMed Central

    Huang, Xishi; Ren, Jing; Green, Mark

    2017-01-01

    Abstract. Image registration for internal organs and soft tissues is considered extremely challenging due to organ shifts and tissue deformation caused by patients’ movements such as respiration and repositioning. In our previous work, we proposed a fast registration method for deformable tissues with small rotations. We extend our method to deformable registration of soft tissues with large displacements. We analyzed the deformation field of the liver by decomposing the deformation into shift, rotation, and pure deformation components and concluded that in many clinical cases, the liver deformation contains large rotations and small deformations. This analysis justified the use of linear elastic theory in our image registration method. We also proposed a region-based neuro-fuzzy transformation model to seamlessly stitch together local affine and local rigid models in different regions. We have performed the experiments on a liver MRI image set and showed the effectiveness of the proposed registration method. We have also compared the performance of the proposed method with the previous method on tissues with large rotations and showed that the proposed method outperformed the previous method when dealing with the combination of pure deformation and large rotations. Validation results show that we can achieve a target registration error of 1.87±0.87  mm and an average centerline distance error of 1.28±0.78  mm. The proposed technique has the potential to significantly improve registration capabilities and the quality of intraoperative image guidance. To the best of our knowledge, this is the first time that the complex displacement of the liver is explicitly separated into local pure deformation and rigid motion. PMID:28149924

  11. Mechanical biocompatibility of highly deformable biomedical materials.

    PubMed

    Mazza, Edoardo; Ehret, Alexander E

    2015-08-01

    Mismatch of mechanical properties between highly deformable biomedical materials and adjacent native tissue might lead to short and long term health impairment. The capability of implants to deform at the right level, i.e. similar to the macroscopic mechanical response of the surrounding biological materials, is often associated with dissimilar microstructural deformation mechanisms. This mismatch on smaller length scales might lead to micro-injuries, cell damage, inflammation, fibrosis or necrosis. Hence, the mechanical biocompatibility of soft implants depends not only on the properties and composition of the implant material, but also on its organization, distribution and motion at one or several length scales. The challenges related to the analysis and attainment of mechanical biocompatibility are illustrated with two examples: prosthetic meshes for hernia and pelvic repair and electrospun scaffolds for tissue engineering. For these material systems we describe existing methods for characterization and analysis of the non-linear response to uniaxial and multiaxial stress states, its time and history dependence, and the changes in deformation behavior associated with tissue in-growth and material resorption. We discuss the multi-scale deformation behavior of biomaterials and adjacent tissue, and indicate major interdisciplinary questions to be addressed in future research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Sqeezing generated by a nonlinear master equation and by amplifying-dissipative Hamiltonians

    NASA Technical Reports Server (NTRS)

    Dodonov, V. V.; Marchiolli, M. A.; Mizrahi, Solomon S.; Moussa, M. H. Y.

    1994-01-01

    In the first part of this contribution we show that the master equation derived from the generalized version of the nonlinear Doebner-Goldin equation leads to the squeezing of one of the quadratures. In the second part we consider two familiar Hamiltonians, the Bateman- Caldirola-Kanai and the optical parametric oscillator; going back to their classical Lagrangian form we introduce a stochastic force and a dissipative factor. From this new Lagrangian we obtain a modified Hamiltonian that treats adequately the simultaneous amplification and dissipation phenomena, presenting squeezing, too.

  13. Construction of Lagrangians and Hamiltonians from the Equation of Motion

    ERIC Educational Resources Information Center

    Yan, C. C.

    1978-01-01

    Demonstrates that infinitely many Lagrangians and Hamiltonians can be constructed from a given equation of motion. Points out the lack of an established criterion for making a proper selection. (Author/GA)

  14. Modelling deformation and fracture in confectionery wafers

    NASA Astrophysics Data System (ADS)

    Mohammed, Idris K.; Charalambides, Maria N.; Williams, J. Gordon; Rasburn, John

    2015-01-01

    The aim of this research is to model the deformation and fracture behaviour of brittle wafers often used in chocolate confectionary products. Three point bending and compression experiments were performed on beam and circular disc samples respectively to determine the 'apparent' stress-strain curves in bending and compression. The deformation of the wafer for both these testing types was observed in-situ within an SEM. The wafer is modeled analytically and numerically as a composite material with a core which is more porous than the skins. X-ray tomography was used to generate a three dimensional volume of the wafer microstructure which was then meshed and used for quantitative analysis. A linear elastic material model, with a damage function and element deletion, was used and the XMT generated architecture was loaded in compression. The output from the FE simulations correlates closely to the load-deflection deformation observed experimentally.

  15. Quantifying Dynamic Deformity After Dual Plane Breast Augmentation.

    PubMed

    Cheffe, Marcelo Recondo; Valentini, Jorge Diego; Collares, Marcus Vinicius Martins; Piccinini, Pedro Salomão; da Silva, Jefferson Luis Braga

    2018-06-01

    Dynamic breast deformity (DBD) is characterized by visible distortion and deformity of the breast due to contraction of the pectoralis major muscle after submuscular breast augmentation; fortunately, in most cases, this is not a clinically significant complaint from patients. The purpose of this study is to present a simple method for objectively measuring DBD in patients submitted to dual plane breast augmentation (DPBA). We studied 32 women, between 18 and 50 years old, who underwent primary DPBA with at least 1 year of follow-up. Anthropometric landmarks of the breast were marked, creating linear segments. Standardized photographs were obtained both during no pectoralis contraction (NPC) and during maximum pectoralis muscle contraction (MPC); measurements of the linear segments were taken through ImageJ imaging software, and both groups were compared. We found statistically significant differences in all analyzed segments when comparing measurements of the breasts during NPC and MPC (p < 0.001). Our study proposes a novel, standardized method for measuring DBD after DPBA. This technique is reproducible, allowing for objective quantification of the deformity in any patient, which can be valuable for both patients and surgeons, as it allows for a more thorough discussion on DBD, both pre- and postoperatively, and may help both patients and surgeons to make more informed decisions regarding potential animation deformities after breast augmentation. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  16. Force required for correcting the deformity of pectus carinatum and related multivariate analysis.

    PubMed

    Chen, Chenghao; Zeng, Qi; Li, Zhongzhi; Zhang, Na; Yu, Jie

    2017-12-24

    To measure the force required for correcting pectus carinatum to the desired position and investigate the correlations of the required force with patients' gender, age, deformity type, severity and body mass index (BMI). A total of 125 patients with pectus carinatum were enrolled in the study from August 2013 to August 2016. Their gender, age, deformity type, severity and BMI were recorded. A chest wall compressor was used to measure the force required for correcting the chest wall deformity. Multivariate linear regression was used for data analysis. Among the 125 patients, 112 were males and 13 were females. Their mean age was 13.7±1.5 years old, mean Haller index was 2.1±0.2, and mean BMI was 17.4±1.8 kg/m 2 . Multivariate linear regression analysis showed that the desirable force for correcting chest wall deformity was not correlated with gender and deformity type, but positively correlated with age and BMI and negatively correlated with Haller index. The desirable force measured for correcting chest wall deformities of patients with pectus carinatum positively correlates with age and BMI and negatively correlates with Haller index. The study provides valuable information for future improvement of implanted bar, bar fixation technique, and personalized surgery. Retrospective study. Level 3-4. Copyright © 2018. Published by Elsevier Inc.

  17. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations

    PubMed Central

    Kim, Dae-Hyeong; Song, Jizhou; Choi, Won Mook; Kim, Hoon-Sik; Kim, Rak-Hwan; Liu, Zhuangjian; Huang, Yonggang Y.; Hwang, Keh-Chih; Zhang, Yong-wei; Rogers, John A.

    2008-01-01

    Electronic systems that offer elastic mechanical responses to high-strain deformations are of growing interest because of their ability to enable new biomedical devices and other applications whose requirements are impossible to satisfy with conventional wafer-based technologies or even with those that offer simple bendability. This article introduces materials and mechanical design strategies for classes of electronic circuits that offer extremely high stretchability, enabling them to accommodate even demanding configurations such as corkscrew twists with tight pitch (e.g., 90° in ≈1 cm) and linear stretching to “rubber-band” levels of strain (e.g., up to ≈140%). The use of single crystalline silicon nanomaterials for the semiconductor provides performance in stretchable complementary metal-oxide-semiconductor (CMOS) integrated circuits approaching that of conventional devices with comparable feature sizes formed on silicon wafers. Comprehensive theoretical studies of the mechanics reveal the way in which the structural designs enable these extreme mechanical properties without fracturing the intrinsically brittle active materials or even inducing significant changes in their electrical properties. The results, as demonstrated through electrical measurements of arrays of transistors, CMOS inverters, ring oscillators, and differential amplifiers, suggest a valuable route to high-performance stretchable electronics. PMID:19015528

  18. Thouless-Valatin rotational moment of inertia from linear response theory

    NASA Astrophysics Data System (ADS)

    Petrík, Kristian; Kortelainen, Markus

    2018-03-01

    Spontaneous breaking of continuous symmetries of a nuclear many-body system results in the appearance of zero-energy restoration modes. These so-called spurious Nambu-Goldstone modes represent a special case of collective motion and are sources of important information about the Thouless-Valatin inertia. The main purpose of this work is to study the Thouless-Valatin rotational moment of inertia as extracted from the Nambu-Goldstone restoration mode that results from the zero-frequency response to the total-angular-momentum operator. We examine the role and effects of the pairing correlations on the rotational characteristics of heavy deformed nuclei in order to extend our understanding of superfluidity in general. We use the finite-amplitude method of the quasiparticle random-phase approximation on top of the Skyrme energy density functional framework with the Hartree-Fock-Bogoliubov theory. We have successfully extended this formalism and established a practical method for extracting the Thouless-Valatin rotational moment of inertia from the strength function calculated in the symmetry-restoration regime. Our results reveal the relation between the pairing correlations and the moment of inertia of axially deformed nuclei of rare-earth and actinide regions of the nuclear chart. We have also demonstrated the feasibility of the method for obtaining the moment of inertia for collective Hamiltonian models. We conclude that from the numerical and theoretical perspective, the finite-amplitude method can be widely used to effectively study rotational properties of deformed nuclei within modern density functional approaches.

  19. Extracting Cell Stiffness from Real-Time Deformability Cytometry: Theory and Experiment

    PubMed Central

    Mietke, Alexander; Otto, Oliver; Girardo, Salvatore; Rosendahl, Philipp; Taubenberger, Anna; Golfier, Stefan; Ulbricht, Elke; Aland, Sebastian; Guck, Jochen; Fischer-Friedrich, Elisabeth

    2015-01-01

    Cell stiffness is a sensitive indicator of physiological and pathological changes in cells, with many potential applications in biology and medicine. A new method, real-time deformability cytometry, probes cell stiffness at high throughput by exposing cells to a shear flow in a microfluidic channel, allowing for mechanical phenotyping based on single-cell deformability. However, observed deformations of cells in the channel not only are determined by cell stiffness, but also depend on cell size relative to channel size. Here, we disentangle mutual contributions of cell size and cell stiffness to cell deformation by a theoretical analysis in terms of hydrodynamics and linear elasticity theory. Performing real-time deformability cytometry experiments on both model spheres of known elasticity and biological cells, we demonstrate that our analytical model not only predicts deformed shapes inside the channel but also allows for quantification of cell mechanical parameters. Thereby, fast and quantitative mechanical sampling of large cell populations becomes feasible. PMID:26588562

  20. Experimental quantification of decoherence via the Loschmidt echo in a many spin system with scaled dipolar Hamiltonians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buljubasich, Lisandro; Dente, Axel D.; Levstein, Patricia R.

    2015-10-28

    We performed Loschmidt echo nuclear magnetic resonance experiments to study decoherence under a scaled dipolar Hamiltonian by means of a symmetrical time-reversal pulse sequence denominated Proportionally Refocused Loschmidt (PRL) echo. The many-spin system represented by the protons in polycrystalline adamantane evolves through two steps of evolution characterized by the secular part of the dipolar Hamiltonian, scaled down with a factor |k| and opposite signs. The scaling factor can be varied continuously from 0 to 1/2, giving access to a range of complexity in the dynamics. The experimental results for the Loschmidt echoes showed a spreading of the decay rates thatmore » correlate directly to the scaling factors |k|, giving evidence that the decoherence is partially governed by the coherent dynamics. The average Hamiltonian theory was applied to give an insight into the spin dynamics during the pulse sequence. The calculations were performed for every single radio frequency block in contrast to the most widely used form. The first order of the average Hamiltonian numerically computed for an 8-spin system showed decay rates that progressively decrease as the secular dipolar Hamiltonian becomes weaker. Notably, the first order Hamiltonian term neglected by conventional calculations yielded an explanation for the ordering of the experimental decoherence rates. However, there is a strong overall decoherence observed in the experiments which is not reflected by the theoretical results. The fact that the non-inverted terms do not account for this effect is a challenging topic. A number of experiments to further explore the relation of the complete Hamiltonian with this dominant decoherence rate are proposed.« less

  1. High-throughput linear optical stretcher for mechanical characterization of blood cells.

    PubMed

    Roth, Kevin B; Neeves, Keith B; Squier, Jeff; Marr, David W M

    2016-04-01

    This study describes a linear optical stretcher as a high-throughput mechanical property cytometer. Custom, inexpensive, and scalable optics image a linear diode bar source into a microfluidic channel, where cells are hydrodynamically focused into the optical stretcher. Upon entering the stretching region, antipodal optical forces generated by the refraction of tightly focused laser light at the cell membrane deform each cell in flow. Each cell relaxes as it flows out of the trap and is compared to the stretched state to determine deformation. The deformation response of untreated red blood cells and neutrophils were compared to chemically treated cells. Statistically significant differences were observed between normal, diamide-treated, and glutaraldehyde-treated red blood cells, as well as between normal and cytochalasin D-treated neutrophils. Based on the behavior of the pure, untreated populations of red cells and neutrophils, a mixed population of these cells was tested and the discrete populations were identified by deformability. © 2015 International Society for Advancement of Cytometry. © 2015 International Society for Advancement of Cytometry.

  2. Plastic Deformation of Magnesium Alloy Subjected to Compression-First Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Lee, Soo Yeol; Gharghouri, Michael A.; Root, John H.

    In-situ neutron diffraction has been employed to study the deformation mechanisms in a precipitation-hardened and extruded Mg-8.5wt.% Al alloy subjected to compression followed by reverse tension. The starting texture is such that the basal poles of most grains are oriented normal to the extrusion axis and a small portion of grains are oriented with the basal pole parallel to the extrusion axis. Diffraction peak intensities for several grain orientations monitored in-situ during deformation show that deformation twinning plays an important role in the elastic-plastic transition and subsequent plastic deformation behavior. Significant non-linear behavior is observed during unloading after compression and appears to be due to detwinning. This effect is much stronger after compressive loading than after tensile loading.

  3. Léon Rosenfeld's general theory of constrained Hamiltonian dynamics

    NASA Astrophysics Data System (ADS)

    Salisbury, Donald

    Léon Rosenfeld published in Annalen der Physik in 1930 a groundbreaking paper showing how to construct a Hamiltonian formalism for Lagrangian theories which admitted an underlying local gauge symmetry. The theory included both ``internal'' transformations such as the U(1) symmetry group of electromagnetism, and ``external'' symmetries typified by Einstein's general theory of relativity. His comprehensive analysis predated by two decades the formalism known as the Dirac-Bergmann approach, and I will present evidence that each of these giants were to some extent influenced by Rosenfeld's theory. Of particular significance is Rosenfeld's incorporation of arbitrary functions into the phase space generator of temporal evolution, and his construction of the phase space generator of symmetry transformations. The existing Hamiltonian formalisms have of course played a central role both in the demonstration of the renormalizability of Yang-Mills theories and current efforts in constructing a quantum theory of gravity.

  4. Entangled trajectories Hamiltonian dynamics for treating quantum nuclear effects

    NASA Astrophysics Data System (ADS)

    Smith, Brendan; Akimov, Alexey V.

    2018-04-01

    A simple and robust methodology, dubbed Entangled Trajectories Hamiltonian Dynamics (ETHD), is developed to capture quantum nuclear effects such as tunneling and zero-point energy through the coupling of multiple classical trajectories. The approach reformulates the classically mapped second-order Quantized Hamiltonian Dynamics (QHD-2) in terms of coupled classical trajectories. The method partially enforces the uncertainty principle and facilitates tunneling. The applicability of the method is demonstrated by studying the dynamics in symmetric double well and cubic metastable state potentials. The methodology is validated using exact quantum simulations and is compared to QHD-2. We illustrate its relationship to the rigorous Bohmian quantum potential approach, from which ETHD can be derived. Our simulations show a remarkable agreement of the ETHD calculation with the quantum results, suggesting that ETHD may be a simple and inexpensive way of including quantum nuclear effects in molecular dynamics simulations.

  5. Hamiltonian derivation of the nonhydrostatic pressure-coordinate model

    NASA Astrophysics Data System (ADS)

    Salmon, Rick; Smith, Leslie M.

    1994-07-01

    In 1989, the Miller-Pearce (MP) model for nonhydrostatic fluid motion governed by equations written in pressure coordinates was extended by removing the prescribed reference temperature, T(sub s)(p), while retaining the conservation laws and other desirable properties. It was speculated that this extension of the MP model had a Hamiltonian structure and that a slick derivation of the Ertel property could be constructed if the relevant Hamiltonian were known. In this note, the extended equations are derived using Hamilton's principle. The potential vorticity law arises from the usual particle-relabeling symmetry of the Lagrangian, and even the absence of sound waves is anticipated from the fact that the pressure inside the free energy G(p, theta) in the derived equation is hydrostatic and thus G is insensitive to local pressure fluctuations. The model extension is analogous to the semigeostrophic equations for nearly geostrophic flow, which do not incorporate a prescribed reference state, while the earlier MP model is analogous to the quasigeostrophic equations, which become highly inaccurate when the flow wanders from a prescribed state with nearly flat isothermal surfaces.

  6. Magnetic anisotropy in binuclear complexes in the weak-exchange limit: From the multispin to the giant-spin Hamiltonian

    NASA Astrophysics Data System (ADS)

    Maurice, Rémi; de Graaf, Coen; Guihéry, Nathalie

    2010-06-01

    This paper studies the physical basis of the giant-spin Hamiltonian, which is usually used to describe the anisotropy of single-molecule magnets. A rigorous extraction of the model has been performed in the weak-exchange limit of a binuclear centrosymmetric Ni(II) complex, using correlated ab initio calculations and effective Hamiltonian theory. It is shown that the giant-spin Hamiltonian is not appropriate to describe polynuclear complexes as soon as spin mixing becomes non-negligible. A relevant model is proposed involving fourth-order operators, different from the traditionally used Stevens operators. The new giant-spin Hamiltonian correctly reproduces the effects of the spin mixing in the weak-exchange limit. A procedure to switch on and off the spin mixing in the extraction has been implemented in order to separate this effect from other anisotropic effects and to numerically evaluate both contributions to the tunnel splitting. Furthermore, the new giant-spin Hamiltonian has been derived analytically from the multispin Hamiltonian at the second order of perturbation and the theoretical link between the two models is studied to gain understanding concerning the microscopic origin of the fourth-order interaction in terms of axial, rhombic, or mixed (axial-rhombic) character. Finally, an adequate method is proposed to extract the proper magnetic axes frame for polynuclear anisotropic systems.

  7. Numerical estimation of deformation energy of selected bulk oilseeds in compression loading

    NASA Astrophysics Data System (ADS)

    Demirel, C.; Kabutey, A.; Herak, D.; Gurdil, G. A. K.

    2017-09-01

    This paper aimed at the determination of the deformation energy of some bulk oilseeds or kernels namely oil palm, sunflower, rape and flax in linear pressing applying the trapezoidal rule which is characterized by the area under the force and deformation curve.The bulk samples were measured at the initial pressing height of 60 mm with the vessel diameter of 60 mm where they were compressed under the universal compression machine at a maximum force of 200 kN and speed of 5 mm/min.Based on the compression test, the optimal deformation energy for recovering the oil was observed at a force of 163 kN where there was no seed/kernel cake ejection in comparison to the initial maximum force used particularly for rape and flax bulk oilseeds.This information is needed for analyzing the energy efficiency of the non-linear compression process involving a mechanical screw press or expeller.

  8. Hamiltonian approach to continuum dynamics

    NASA Astrophysics Data System (ADS)

    Isaev, A. A.; Kovalevskii, M. Yu.; Peletminskii, S. V.

    1995-02-01

    A study is made of the problem of obtaining the Poisson-bracket algebra of the dynamical variables of continuous media on the basis of specification of the kinematic part of the Lagrangian in terms of generalized coordinates and momenta. Within this algebra, subalgebras of variables corresponding to the description of elastic media, the hydrodynamics of ordinary liquids, and the dynamics of some phases of liquid crystals are identified. The differential conservation laws associated with the symmetries of the Hamiltonian of the system are studied. The dynamics of nematics is considered, and features of the dynamics of the cholesteric, smectic, and discotic phases are noted.

  9. Modelling of deformation of underground tunnel lining, interacting with water-saturated soil

    NASA Astrophysics Data System (ADS)

    Berezhnoi, D. V.; Balafendieva, I. S.; Sachenkov, A. A.; Sekaeva, L. R.

    2016-11-01

    Built finite element method of calculating the deformation of underground tunnel lining, interacting with dry and water-saturated soils. To simulate the interaction between the lining and soils environments, including physical and non-linear, a special "contact" finite element, which allows to consider all cases of interaction between the contacting surfaces. It solved a number of problems of deformation with the ground subway tunnel lining rings.

  10. Linear and non-linear infrared response of one-dimensional vibrational Holstein polarons in the anti-adiabatic limit: Optical and acoustical phonon models

    NASA Astrophysics Data System (ADS)

    Falvo, Cyril

    2018-02-01

    The theory of linear and non-linear infrared response of vibrational Holstein polarons in one-dimensional lattices is presented in order to identify the spectral signatures of self-trapping phenomena. Using a canonical transformation, the optical response is computed from the small polaron point of view which is valid in the anti-adiabatic limit. Two types of phonon baths are considered: optical phonons and acoustical phonons, and simple expressions are derived for the infrared response. It is shown that for the case of optical phonons, the linear response can directly probe the polaron density of states. The model is used to interpret the experimental spectrum of crystalline acetanilide in the C=O range. For the case of acoustical phonons, it is shown that two bound states can be observed in the two-dimensional infrared spectrum at low temperature. At high temperature, analysis of the time-dependence of the two-dimensional infrared spectrum indicates that bath mediated correlations slow down spectral diffusion. The model is used to interpret the experimental linear-spectroscopy of model α-helix and β-sheet polypeptides. This work shows that the Davydov Hamiltonian cannot explain the observations in the NH stretching range.

  11. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network

    PubMed Central

    Sosa, Jose M.; Nielsen, Nathan D.; Vignes, Seth M.; Chen, Tanya G.; Shevkoplyas, Sergey S.

    2013-01-01

    The ability of red blood cells (RBC) to undergo a wide range of deformations while traversing the microvasculature is crucial for adequate perfusion. Interpretation of RBC deformability measurements performed in vitro in the context of microvascular perfusion has been notoriously difficult. This study compares the measurements of RBC deformability performed using micropore filtration and ektacytometry with the RBC ability to perfuse an artificial microvascular network (AMVN). Human RBCs were collected from healthy consenting volunteers, leukoreduced, washed and exposed to graded concentrations (0% – 0.08%) of glutaraldehyde (a non-specific protein cross-linker) and diamide (a spectrin-specific protein cross-linker) to impair the deformability of RBCs. Samples comprising cells with two different levels of deformability were created by adding non-deformable RBCs (hardened by exposure to 0.08% glutaraldehyde) to the sample of normal healthy RBCs. Ektacytometry indicated a nearly linear decline in RBC deformability with increasing glutaraldehyde concentration. Micropore filtration showed a significant reduction only for concentrations of glutaraldehyde higher than 0.04%. Neither micropore filtration nor ektacytometry measurements could accurately predict the AMVN perfusion. Treatment with diamide reduced RBC deformability as indicated by ektacytometry, but had no significant effect on either micropore filtration or the AMVN perfusion. Both micropore filtration and ektacytometry showed a linear decline in effective RBC deformability with increasing fraction of non-deformable RBCs in the sample. The corresponding decline in the AMVN perfusion plateaued above 50%, reflecting the innate ability of blood flow in the microvasculature to bypass occluded capillaries. Our results suggest that in vitro measurements of RBC deformability performed using either micropore filtration or ektacytometry may not represent the ability of same RBCs to perfuse microvascular networks

  12. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network.

    PubMed

    Sosa, Jose M; Nielsen, Nathan D; Vignes, Seth M; Chen, Tanya G; Shevkoplyas, Sergey S

    2014-01-01

    The ability of red blood cells (RBC) to undergo a wide range of deformations while traversing the microvasculature is crucial for adequate perfusion. Interpretation of RBC deformability measurements performed in vitro in the context of microvascular perfusion has been notoriously difficult. This study compares the measurements of RBC deformability performed using micropore filtration and ektacytometry with the RBC ability to perfuse an artificial microvascular network (AMVN). Human RBCs were collected from healthy consenting volunteers, leukoreduced, washed and exposed to graded concentrations (0-0.08%) of glutaraldehyde (a non-specific protein cross-linker) and diamide (a spectrin-specific protein cross-linker) to impair the deformability of RBCs. Samples comprising cells with two different levels of deformability were created by adding non-deformable RBCs (hardened by exposure to 0.08% glutaraldehyde) to the sample of normal healthy RBCs. Ektacytometry indicated a nearly linear decline in RBC deformability with increasing glutaraldehyde concentration. Micropore filtration showed a significant reduction only for concentrations of glutaraldehyde higher than 0.04%. Neither micropore filtration nor ektacytometry measurements could accurately predict the AMVN perfusion. Treatment with diamide reduced RBC deformability as indicated by ektacytometry, but had no significant effect on either micropore filtration or the AMVN perfusion. Both micropore filtration and ektacytometry showed a linear decline in effective RBC deformability with increasing fraction of non-deformable RBCs in the sample. The corresponding decline in the AMVN perfusion plateaued above 50%, reflecting the innate ability of blood flow in the microvasculature to bypass occluded capillaries. Our results suggest that in vitro measurements of RBC deformability performed using either micropore filtration or ektacytometry may not represent the ability of same RBCs to perfuse microvascular networks. Further

  13. Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order.

    PubMed

    Reiher, Markus; Wolf, Alexander

    2004-12-08

    In order to achieve exact decoupling of the Dirac Hamiltonian within a unitary transformation scheme, we have discussed in part I of this series that either a purely numerical iterative technique (the Barysz-Sadlej-Snijders method) or a stepwise analytic approach (the Douglas-Kroll-Hess method) are possible. For the evaluation of Douglas-Kroll-Hess Hamiltonians up to a pre-defined order it was shown that a symbolic scheme has to be employed. In this work, an algorithm for this analytic derivation of Douglas-Kroll-Hess Hamiltonians up to any arbitrary order in the external potential is presented. We discuss how an estimate for the necessary order for exact decoupling (within machine precision) for a given system can be determined from the convergence behavior of the Douglas-Kroll-Hess expansion prior to a quantum chemical calculation. Once this maximum order has been accomplished, the spectrum of the positive-energy part of the decoupled Hamiltonian, e.g., for electronic bound states, cannot be distinguished from the corresponding part of the spectrum of the Dirac operator. An efficient scalar-relativistic implementation of the symbolic operations for the evaluation of the positive-energy part of the block-diagonal Hamiltonian is presented, and its accuracy is tested for ground-state energies of one-electron ions over the whole periodic table. Furthermore, the first many-electron calculations employing sixth up to fourteenth order DKH Hamiltonians are presented. (c) 2004 American Institute of Physics.

  14. Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiher, Markus; Wolf, Alexander

    In order to achieve exact decoupling of the Dirac Hamiltonian within a unitary transformation scheme, we have discussed in part I of this series that either a purely numerical iterative technique (the Barysz-Sadlej-Snijders method) or a stepwise analytic approach (the Douglas-Kroll-Hess method) are possible. For the evaluation of Douglas-Kroll-Hess Hamiltonians up to a pre-defined order it was shown that a symbolic scheme has to be employed. In this work, an algorithm for this analytic derivation of Douglas-Kroll-Hess Hamiltonians up to any arbitrary order in the external potential is presented. We discuss how an estimate for the necessary order for exactmore » decoupling (within machine precision) for a given system can be determined from the convergence behavior of the Douglas-Kroll-Hess expansion prior to a quantum chemical calculation. Once this maximum order has been accomplished, the spectrum of the positive-energy part of the decoupled Hamiltonian, e.g., for electronic bound states, cannot be distinguished from the corresponding part of the spectrum of the Dirac operator. An efficient scalar-relativistic implementation of the symbolic operations for the evaluation of the positive-energy part of the block-diagonal Hamiltonian is presented, and its accuracy is tested for ground-state energies of one-electron ions over the whole periodic table. Furthermore, the first many-electron calculations employing sixth up to fourteenth order DKH Hamiltonians are presented.« less

  15. Multi-objective optimization in quantum parameter estimation

    NASA Astrophysics Data System (ADS)

    Gong, BeiLi; Cui, Wei

    2018-04-01

    We investigate quantum parameter estimation based on linear and Kerr-type nonlinear controls in an open quantum system, and consider the dissipation rate as an unknown parameter. We show that while the precision of parameter estimation is improved, it usually introduces a significant deformation to the system state. Moreover, we propose a multi-objective model to optimize the two conflicting objectives: (1) maximizing the Fisher information, improving the parameter estimation precision, and (2) minimizing the deformation of the system state, which maintains its fidelity. Finally, simulations of a simplified ɛ-constrained model demonstrate the feasibility of the Hamiltonian control in improving the precision of the quantum parameter estimation.

  16. On the Perturbative Equivalence Between the Hamiltonian and Lagrangian Quantizations

    NASA Astrophysics Data System (ADS)

    Batalin, I. A.; Tyutin, I. V.

    The Hamiltonian (BFV) and Lagrangian (BV) quantization schemes are proved to be perturbatively equivalent to each other. It is shown in particular that the quantum master equation being treated perturbatively possesses a local formal solution.

  17. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t tomore » be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.« less

  18. Numerical study of suspensions of deformable particles.

    NASA Astrophysics Data System (ADS)

    Brandt, Luca; Rosti, Marco Edoardo

    2017-11-01

    We consider a model non-Newtonian fluid consisting of a suspension of deformable particles in a Newtonian solvent. Einstein showed in his pioneering work that the relative increase in effective viscosity is a linear function of the particle volume fraction for dilute suspensions of rigid particles. Inertia has been shown to introduce deviations from the behaviour predicted by the different empirical fits, an effect that can be related to an increase of the effective volume fraction. We here focus on the effect of elasticity, i.e. visco-elastic deformable particles. To tackle the problem at hand, we perform three-dimensional Direct Numerical Simulation of a plane Couette flow with a suspension of neutrally buoyant deformable viscous hyper-elastic particles. We show that elasticity produces a shear-thinning effect in elastic suspensions (in comparison to rigid ones) and that it can be understood in terms of a reduction of the effective volume fraction of the suspension. The deformation modifies the particle motion reducing the level of mutual interaction. Normal stress differences will also be considered. European Research Council, Grant No. ERC-2013-CoG- 616186, TRITOS; SNIC (the Swedish National Infrastructure for Computing).

  19. Fermion bag approach to Hamiltonian lattice field theories in continuous time

    NASA Astrophysics Data System (ADS)

    Huffman, Emilie; Chandrasekharan, Shailesh

    2017-12-01

    We extend the idea of fermion bags to Hamiltonian lattice field theories in the continuous time formulation. Using a class of models we argue that the temperature is a parameter that splits the fermion dynamics into small spatial regions that can be used to identify fermion bags. Using this idea we construct a continuous time quantum Monte Carlo algorithm and compute critical exponents in the 3 d Ising Gross-Neveu universality class using a single flavor of massless Hamiltonian staggered fermions. We find η =0.54 (6 ) and ν =0.88 (2 ) using lattices up to N =2304 sites. We argue that even sizes up to N =10 ,000 sites should be accessible with supercomputers available today.

  20. Implementation of the SU(2) Hamiltonian Symmetry for the DMRG Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, Gonzalo

    2012-01-01

    In the Density Matrix Renormalization Group (DMRG) algorithm (White, 1992, 1993) and Hamiltonian symmetries play an important role. Using symmetries, the matrix representation of the Hamiltonian can be blocked. Diagonalizing each matrix block is more efficient than diagonalizing the original matrix. This paper explains how the the DMRG++ code (Alvarez, 2009) has been extended to handle the non-local SU(2) symmetry in a model independent way. Improvements in CPU times compared to runs with only local symmetries are discussed for the one-orbital Hubbard model, and for a two-orbital Hubbard model for iron-based superconductors. The computational bottleneck of the algorithm and themore » use of shared memory parallelization are also addressed.« less

  1. Modelling deformation and fracture in confectionery wafers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammed, Idris K.; Charalambides, Maria N.; Williams, J. Gordon

    2015-01-22

    The aim of this research is to model the deformation and fracture behaviour of brittle wafers often used in chocolate confectionary products. Three point bending and compression experiments were performed on beam and circular disc samples respectively to determine the 'apparent' stress-strain curves in bending and compression. The deformation of the wafer for both these testing types was observed in-situ within an SEM. The wafer is modeled analytically and numerically as a composite material with a core which is more porous than the skins. X-ray tomography was used to generate a three dimensional volume of the wafer microstructure which wasmore » then meshed and used for quantitative analysis. A linear elastic material model, with a damage function and element deletion, was used and the XMT generated architecture was loaded in compression. The output from the FE simulations correlates closely to the load-deflection deformation observed experimentally.« less

  2. Simultaneous concentration and purification through gradient deformation chromatography

    NASA Technical Reports Server (NTRS)

    Velayudhan, A.; Hendrickson, R. L.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1995-01-01

    Mobile-phase additives, commonly used to modulate absorbate retention in gradient elution chromatography, are usually assumed to be either linearly retained or unretained. Previous theoretical work from our laboratory has shown that these modulators, such as salts in ion-exchange and hydrophobic interaction chromatography and organic modifiers in reversed-phase chromatography, can absorb nonlinearly, giving rise to gradient deformation. Consequently, adsorbate peaks that elute in the vicinity of the head of the deformed gradient may exhibit unusual shapes, form shoulders, and/or be concentrated. These effects for a reversed-phase sorbent with aqueous acetonitrile (ACN) as the modulator are verified experimentally. Gradient deformation is demonstrated experimentally and agrees with simulations based on ACN isotherm parameters that are independently determined from batch equilibrium studies using the layer model. Unusual absorbate peak shapes were found experimentally for single-component injections of phenylalanine, similar to those calculated by the simulations. A binary mixture of tryptophan and phenylalanine is used to demonstrate simultaneous concentration and separation, again in agreement with simulations. The possibility of gradient deformation in ion-exchange and hydrophobic interaction chromatography is discussed.

  3. Monitoring of landslide deformation based on the coherent targets of high resolution InSAR data

    NASA Astrophysics Data System (ADS)

    Fan, Jinghui; Xia, Ye; Zhao, Hongli; Li, Man; Wang, Yi; Guo, Xiaofang; Tu, Pengfei; Liu, Guang; Lin, Hao

    2014-05-01

    Landslides are a kind of typical natural disaster in China, which pose serious threats to civil lives, property and living environment. Therefore, the identification, monitoring and prevention of landslides have been considered as a long-term geological work for the public welfare. In this article, 8 TerraSAR-X high resolution strip-map mode images, acquired in the period from January to March 2012 and covering Fanjinping landslide in Zigui county, Hubei province, were used to test the usability in monitoring the deformation of single landslide. The results of two-pass DInSAR sketched the region and the shape of the deformation field of Fanjiaping landslide. Corner reflectors' linear deformation rate using CRInSAR method could be approximately validated by the in-situ GPS measurements. From the coherent pixels' linear deformation rate map, it was inferred that the deformation could be more obvious in the tail of the Muyubao landslide while the lowest frontier of this landslide might prevent the slide. Due to its shorter revisiting period and high bandwidth,,the high resolution TerraSAR-X images can keep better coherence than previous satellite SAR data in the test area and provide basic guarantee to monitor the deformation of single landslides.

  4. Léon Rosenfeld's general theory of constrained Hamiltonian dynamics

    NASA Astrophysics Data System (ADS)

    Salisbury, Donald; Sundermeyer, Kurt

    2017-04-01

    This commentary reflects on the 1930 general theory of Léon Rosenfeld dealing with phase-space constraints. We start with a short biography of Rosenfeld and his motivation for this article in the context of ideas pursued by W. Pauli, F. Klein, E. Noether. We then comment on Rosenfeld's General Theory dealing with symmetries and constraints, symmetry generators, conservation laws and the construction of a Hamiltonian in the case of phase-space constraints. It is remarkable that he was able to derive expressions for all phase space symmetry generators without making explicit reference to the generator of time evolution. In his Applications, Rosenfeld treated the general relativistic example of Einstein-Maxwell-Dirac theory. We show, that although Rosenfeld refrained from fully applying his general findings to this example, he could have obtained the Hamiltonian. Many of Rosenfeld's discoveries were re-developed or re-discovered by others two decades later, yet as we show there remain additional firsts that are still not recognized in the community.

  5. Applications of the trilinear Hamiltonian with three trapped ions

    NASA Astrophysics Data System (ADS)

    Hablutzel Marrero, Roland Esteban; Ding, Shiqian; Maslennikov, Gleb; Gan, Jaren; Nimmrichter, Stefan; Roulet, Alexandre; Dai, Jibo; Scarani, Valerio; Matsukevich, Dzmitry

    2017-04-01

    The trilinear Hamiltonian a† bc + ab†c† , which describes a nonlinear interaction between harmonic oscillators, can be implemented to study different phenomena ranging from simple quantum models to quantum thermodynamics. We engineer this coupling between three modes of motion of three trapped 171Yb+ ions, where the interaction arises naturally from their mutual (anharmonic) Coulomb repulsion. By tuning our trapping parameters we are able to turn on / off resonant exchange of energy between the modes on demand. We present applications of this Hamiltonian for simulations of the parametric down conversion process in the regime of depleted pump, a simple model of Hawking radiation, and the Tavis-Cummings model. We also discuss the implementation of the quantum absorption refrigerator in such system and experimentally study effects of quantum coherence on its performance. This research is supported by the National Research Foundation, Prime Minister's Office, Singapore and the Ministry of Education, Singapore under the Research Centres of Excellence programme.

  6. Clocks in Feynman's computer and Kitaev's local Hamiltonian: Bias, gaps, idling, and pulse tuning

    NASA Astrophysics Data System (ADS)

    Caha, Libor; Landau, Zeph; Nagaj, Daniel

    2018-06-01

    We present a collection of results about the clock in Feynman's computer construction and Kitaev's local Hamiltonian problem. First, by analyzing the spectra of quantum walks on a line with varying end-point terms, we find a better lower bound on the gap of the Feynman Hamiltonian, which translates into a less strict promise gap requirement for the quantum-Merlin-Arthur-complete local Hamiltonian problem. We also translate this result into the language of adiabatic quantum computation. Second, introducing an idling clock construction with a large state space but fast Cesaro mixing, we provide a way for achieving an arbitrarily high success probability of computation with Feynman's computer with only a logarithmic increase in the number of clock qubits. Finally, we tune and thus improve the costs (locality and gap scaling) of implementing a (pulse) clock with a single excitation.

  7. Isospectral Hamiltonian for position-dependent mass for an arbitrary quantum system and coherent states

    NASA Astrophysics Data System (ADS)

    Yahiaoui, Sid-Ahmed; Bentaiba, Mustapha

    2017-06-01

    By means of the unitary transformation, a new way for discussing the ordering prescription of the Schrödinger equation with a position-dependent mass (PDM) for isospectral Hamiltonian operators is presented. We show that the ambiguity parameter choices in the kinetic part of the Hamiltonian can be explained through an exact SUSY QM symmetry as well as a consequence of an accidental symmetry under the Z2 action. By making use of the unitary transformation, we construct coherent states for a family of PDM isospectral Hamiltonians from a suitable choice of ladder operators. We show that these states preserve the usual structure of Klauder-Perelomov's states and thus saturate and minimize the position-momentum uncertainty relation (PMUR) under some special restrictions. We show that PMUR properties can be used to determine the sign of the superpotential.

  8. The tracer diffusion coefficient of soft nanoparticles in a linear polymer matrix

    DOE PAGES

    Imel, Adam E.; Rostom, Sahar; Holley, Wade; ...

    2017-03-09

    The diffusion properties of nanoparticles in polymer nanocomposites are largely unknown and are often difficult to determine experimentally. To address this shortcoming, we have developed a novel method to determine the tracer diffusion coefficient of soft polystyrene nanoparticles in a linear polystyrene matrix. Monitoring the interdiffusion of soft nanoparticles into a linear polystyrene matrix provides the mutual diffusion coefficient of this system, from which the tracer diffusion coefficient of the soft nanoparticle can be determined using the slow mode theory. Utilizing this protocol, the role of nanoparticle molecular weight and rigidity on its tracer diffusion coefficient is provided. These resultsmore » demonstrate that the diffusive behavior of these soft nanoparticles differ from that of star polymers, which is surprising since our recent studies suggest that the nanoparticle interacts with a linear polymer similarly to that of a star polymer. It appears that these deformable nanoparticles mostly closely mimic the diffusive behavior of fractal macromolecular architectures or microgels, where the transport of the nanoparticle relies on the cooperative motion of neighboring linear chains. Finally, the less cross-linked, and thus more deformable, nanoparticles diffuse faster than the more highly crosslinked nanoparticles, presumably because the increased deformability allows the nanoparticle to distort and fit into available space.« less

  9. Hamiltonian description and quantization of dissipative systems

    NASA Astrophysics Data System (ADS)

    Enz, Charles P.

    1994-09-01

    Dissipative systems are described by a Hamiltonian, combined with a “dynamical matrix” which generalizes the simplectic form of the equations of motion. Criteria for dissipation are given and the examples of a particle with friction and of the Lotka-Volterra model are presented. Quantization is first introduced by translating generalized Poisson brackets into commutators and anticommutators. Then a generalized Schrödinger equation expressed by a dynamical matrix is constructed and discussed.

  10. A novel approach of an absolute coding pattern based on Hamiltonian graph

    NASA Astrophysics Data System (ADS)

    Wang, Ya'nan; Wang, Huawei; Hao, Fusheng; Liu, Liqiang

    2017-02-01

    In this paper, a novel approach of an optical type absolute rotary encoder coding pattern is presented. The concept is based on the principle of the absolute encoder to find out a unique sequence that ensures an unambiguous shaft position of any angular. We design a single-ring and a n-by-2 matrix absolute encoder coding pattern by using the variations of Hamiltonian graph principle. 12 encoding bits is used in the single-ring by a linear array CCD to achieve an 1080-position cycle encoding. Besides, a 2-by-2 matrix is used as an unit in the 2-track disk to achieve a 16-bits encoding pattern by using an area array CCD sensor (as a sample). Finally, a higher resolution can be gained by an electronic subdivision of the signals. Compared with the conventional gray or binary code pattern (for a 2n resolution), this new pattern has a higher resolution (2n*n) with less coding tracks, which means the new pattern can lead to a smaller encoder, which is essential in the industrial production.

  11. Simplified solution for point contact deformation between two elastic solids

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Hamrock, B. J.

    1976-01-01

    A linear-regression by the method of least squares is made on the geometric variables that occur in the equation for point contact deformation. The ellipticity and the complete eliptic integrals of the first and second kind are expressed as a function of the x, y-plane principal radii. The ellipticity was varied from 1 (circular contact) to 10 (a configuration approaching line contact). These simplified equations enable one to calculate easily the point-contact deformation to within 3 percent without resorting to charts or numerical methods.

  12. What Do Observations of Postseismic Deformation Tell us About the Rheology of the Lithoshpere?

    NASA Astrophysics Data System (ADS)

    Fialko, Y.

    2006-12-01

    Geodetic observations in epicentral areas of large shallow earthquakes reveal transient displacements that typically have the same sense as the coseismic ones, but are about an order of magnitude smaller. A number of different mechanisms has been proposed to explain the observed time-dependent deformation, including afterslip on a deep extension of the seismic rupture, viscous-like response of a substrate below the brittle-ductile transition (e.g., the lower crust or upper mantle), and re-distribution of pore fluids in the upper crust. Distinguishing the relative contributions of these relaxation mechanisms is important before one can make robust inferences about the effective rheology of the upper part of the continental lithosphere. Either the bulk visco-elastic relaxation or afterslip is required to explain large horizontal displacements observed in the aftermath of large strike-slip earthquakes. Both temporal and spatial signatures of postseismic deformation were used to demonstrate that simple linear Maxwell rheologies are not adequate. For non-linear (e.g., powerlaw) rheologies, the surface deformation field may be indistinguishable from that due to afterslip at the early stages of relaxation, when the deformation is localized in high stress areas on the downdip continuation of the earthquake fault. However, at later stages of relaxation visco-elastic models predict appreciable changes in the displacement pattern. In particular, vertical velocities may change sign after viscous flow in the ductile substrate becomes more diffuse. Thus afterslip and non-linear visco-elastic models can be in principle distinguished given a sufficiently long observation period. Fluid flow and poro-elastic effects are incapable of explaining the observed horizontal deformation, but may substantially contribute to vertical postseismic motions, further complicating a discrimination between afterslip and visco-elastic relaxation. I will present space geodetic measurements of

  13. Deformations of super Riemann surfaces

    NASA Astrophysics Data System (ADS)

    Ninnemann, Holger

    1992-11-01

    Two different approaches to (Kostant-Leites-) super Riemann surfaces are investigated. In the local approach, i.e. glueing open superdomains by superconformal transition functions, deformations of the superconformal structure are discussed. On the other hand, the representation of compact super Riemann surfaces of genus greater than one as a fundamental domain in the Poincaré upper half-plane provides a simple description of super Laplace operators acting on automorphic p-forms. Considering purely odd deformations of super Riemann surfaces, the number of linear independent holomorphic sections of arbitrary holomorphic line bundles will be shown to be independent of the odd moduli, leading to a simple proof of the Riemann-Roch theorem for compact super Riemann surfaces. As a further consequence, the explicit connections between determinants of super Laplacians and Selberg's super zeta functions can be determined, allowing to calculate at least the 2-loop contribution to the fermionic string partition function.

  14. Inflationary universe in deformed phase space scenario

    NASA Astrophysics Data System (ADS)

    Rasouli, S. M. M.; Saba, Nasim; Farhoudi, Mehrdad; Marto, João; Moniz, P. V.

    2018-06-01

    We consider a noncommutative (NC) inflationary model with a homogeneous scalar field minimally coupled to gravity. The particular NC inflationary setting herein proposed, produces entirely new consequences as summarized in what follows. We first analyze the free field case and subsequently examine the situation where the scalar field is subjected to a polynomial and exponential potentials. We propose to use a canonical deformation between momenta, in a spatially flat Friedmann-Lemaî tre-Robertson-Walker (FLRW) universe, and while the Friedmann equation (Hamiltonian constraint) remains unaffected the Friedmann acceleration equation (and thus the Klein-Gordon equation) is modified by an extra term linear in the NC parameter. This concrete noncommutativity on the momenta allows interesting dynamics that other NC models seem not to allow. Let us be more precise. This extra term behaves as the sole explicit pressure that under the right circumstances implies a period of accelerated expansion of the universe. We find that in the absence of the scalar field potential, and in contrast with the commutative case, in which the scale factor always decelerates, we obtain an inflationary phase for small negative values of the NC parameter. Subsequently, the period of accelerated expansion is smoothly replaced by an appropriate deceleration phase providing an interesting model regarding the graceful exit problem in inflationary models. This last property is present either in the free field case or under the influence of the scalar field potentials considered here. Moreover, in the case of the free scalar field, we show that not only the horizon problem is solved but also there is some resemblance between the evolution equation of the scale factor associated to our model and that for the R2 (Starobinsky) inflationary model. Therefore, our herein NC model not only can be taken as an appropriate scenario to get a successful kinetic inflation, but also is a convenient setting to

  15. A finite-temperature Hartree-Fock code for shell-model Hamiltonians

    NASA Astrophysics Data System (ADS)

    Bertsch, G. F.; Mehlhaff, J. M.

    2016-10-01

    The codes HFgradZ.py and HFgradT.py find axially symmetric minima of a Hartree-Fock energy functional for a Hamiltonian supplied in a shell model basis. The functional to be minimized is the Hartree-Fock energy for zero-temperature properties or the Hartree-Fock grand potential for finite-temperature properties (thermal energy, entropy). The minimization may be subjected to additional constraints besides axial symmetry and nucleon numbers. A single-particle operator can be used to constrain the minimization by adding it to the single-particle Hamiltonian with a Lagrange multiplier. One can also constrain its expectation value in the zero-temperature code. Also the orbital filling can be constrained in the zero-temperature code, fixing the number of nucleons having given Kπ quantum numbers. This is particularly useful to resolve near-degeneracies among distinct minima.

  16. De Donder-Weyl Hamiltonian formalism of MacDowell-Mansouri gravity

    NASA Astrophysics Data System (ADS)

    Berra-Montiel, Jasel; Molgado, Alberto; Serrano-Blanco, David

    2017-12-01

    We analyse the behaviour of the MacDowell-Mansouri action with internal symmetry group SO(4, 1) under the De Donder-Weyl Hamiltonian formulation. The field equations, known in this formalism as the De Donder-Weyl equations, are obtained by means of the graded Poisson-Gerstenhaber bracket structure present within the De Donder-Weyl formulation. The decomposition of the internal algebra so(4, 1)≃so(3, 1)\\oplus{R}3, 1 allows the symmetry breaking SO(4, 1)\\toSO(3, 1) , which reduces the original action to the Palatini action without the topological term. We demonstrate that, in contrast to the Lagrangian approach, this symmetry breaking can be performed indistinctly in the polysymplectic formalism either before or after the variation of the De Donder-Weyl Hamiltonian has been done, recovering Einstein’s equations via the Poisson-Gerstenhaber bracket.

  17. Smoothly deformed light

    NASA Technical Reports Server (NTRS)

    Stenholm, Stig

    1993-01-01

    A single mode cavity is deformed smoothly to change its electromagnetic eigenfrequency. The system is modeled as a simple harmonic oscillator with a varying period. The Wigner function of the problem is obtained exactly by starting with a squeezed initial state. The result is evaluated for a linear change of the cavity length. The approach to the adiabatic limit is investigated. The maximum squeezing is found to occur for smooth change lasting only a fraction of the oscillational period. However, only a factor of two improvement over the adiabatic result proves to be possible. The sudden limit cannot be investigated meaningfully within the model.

  18. The limits of hamiltonian structures in three-dimensional elasticity, shells, and rods

    NASA Astrophysics Data System (ADS)

    Ge, Z.; Kruse, H. P.; Marsden, J. E.

    1996-01-01

    This paper uses Hamiltonian structures to study the problem of the limit of three-dimensional (3D) elastic models to shell and rod models. In the case of shells, we show that the Hamiltonian structure for a three-dimensional elastic body converges, in a sense made precise, to that for a shell model described by a one-director Cosserat surface as the thickness goes to zero. We study limiting procedures that give rise to unconstrained as well as constrained Cosserat director models. The case of a rod is also considered and similar convergence results are established, with the limiting model being a geometrically exact director rod model (in the framework developed by Antman, Simo, and coworkers). The resulting model may or may not have constraints, depending on the nature of the constitutive relations and their behavior under the limiting procedure. The closeness of Hamiltonian structures is measured by the closeness of Poisson brackets on certain classes of functions, as well as the Hamiltonians. This provides one way of justifying the dynamic one-director model for shells. Another way of stating the convergence result is that there is an almost-Poisson embedding from the phase space of the shell to the phase space of the 3D elastic body, which implies that, in the sense of Hamiltonian structures, the dynamics of the elastic body is close to that of the shell. The constitutive equations of the 3D model and their behavior as the thickness tends to zero dictates whether the limiting 2D model is a constrained or an unconstrained director model. We apply our theory in the specific case of a 3D Saint Venant-Kirchhoff material and derive the corresponding limiting shell and rod theories. The limiting shell model is an interesting Kirchhoff-like shell model in which the stored energy function is explicitly derived in terms of the shell curvature. For rods, one gets (with an additional inextensibility constraint) a one-director Kirchhoff elastic rod model, which reduces to

  19. Extracting Cell Stiffness from Real-Time Deformability Cytometry: Theory and Experiment.

    PubMed

    Mietke, Alexander; Otto, Oliver; Girardo, Salvatore; Rosendahl, Philipp; Taubenberger, Anna; Golfier, Stefan; Ulbricht, Elke; Aland, Sebastian; Guck, Jochen; Fischer-Friedrich, Elisabeth

    2015-11-17

    Cell stiffness is a sensitive indicator of physiological and pathological changes in cells, with many potential applications in biology and medicine. A new method, real-time deformability cytometry, probes cell stiffness at high throughput by exposing cells to a shear flow in a microfluidic channel, allowing for mechanical phenotyping based on single-cell deformability. However, observed deformations of cells in the channel not only are determined by cell stiffness, but also depend on cell size relative to channel size. Here, we disentangle mutual contributions of cell size and cell stiffness to cell deformation by a theoretical analysis in terms of hydrodynamics and linear elasticity theory. Performing real-time deformability cytometry experiments on both model spheres of known elasticity and biological cells, we demonstrate that our analytical model not only predicts deformed shapes inside the channel but also allows for quantification of cell mechanical parameters. Thereby, fast and quantitative mechanical sampling of large cell populations becomes feasible. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Diagonalizing the Hamiltonian of λϕ4 theory in 2 space-time dimensions

    NASA Astrophysics Data System (ADS)

    Christensen, Neil

    2018-01-01

    We propose a new non-perturbative technique for calculating the scattering amplitudes of field-theory directly from the eigenstates of the Hamiltonian. Our method involves a discretized momentum space and a momentum cutoff, thereby truncating the Hilbert space and making numerical diagonalization of the Hamiltonian achievable. We show how to do this in the context of a simplified λϕ4 theory in two space-time dimensions. We present the results of our diagonalization, its dependence on time, its dependence on the parameters of the theory and its renormalization.

  1. A coupled deformation-diffusion theory for fluid-saturated porous solids

    NASA Astrophysics Data System (ADS)

    Henann, David; Kamrin, Ken; Anand, Lallit

    2012-02-01

    Fluid-saturated porous materials are important in several familiar applications, such as the response of soils in geomechanics, food processing, pharmaceuticals, and the biomechanics of living bone tissue. An appropriate constitutive theory describing the coupling of the mechanical behavior of the porous solid with the transport of the fluid is a crucial ingredient towards understanding the material behavior in these varied applications. In this work, we formulate and numerically implement in a finite-element framework a large-deformation theory for coupled deformation-diffusion in isotropic, fluid-saturated porous solids. The theory synthesizes the classical Biot theory of linear poroelasticity and the more-recent Coussy theory of poroplasticity in a large deformation framework. In this talk, we highlight several salient features of our theory and discuss representative examples of the application of our numerical simulation capability to problems of consolidation as well as deformation localization in granular materials.

  2. Linear growth of the entanglement entropy and the Kolmogorov-Sinai rate

    NASA Astrophysics Data System (ADS)

    Bianchi, Eugenio; Hackl, Lucas; Yokomizo, Nelson

    2018-03-01

    The rate of entropy production in a classical dynamical system is characterized by the Kolmogorov-Sinai entropy rate h KS given by the sum of all positive Lyapunov exponents of the system. We prove a quantum version of this result valid for bosonic systems with unstable quadratic Hamiltonian. The derivation takes into account the case of time-dependent Hamiltonians with Floquet instabilities. We show that the entanglement entropy S A of a Gaussian state grows linearly for large times in unstable systems, with a rate Λ A ≤ h KS determined by the Lyapunov exponents and the choice of the subsystem A. We apply our results to the analysis of entanglement production in unstable quadratic potentials and due to periodic quantum quenches in many-body quantum systems. Our results are relevant for quantum field theory, for which we present three applications: a scalar field in a symmetry-breaking potential, parametric resonance during post-inflationary reheating and cosmological perturbations during inflation. Finally, we conjecture that the same rate Λ A appears in the entanglement growth of chaotic quantum systems prepared in a semiclassical state.

  3. Forecasting volcanic eruptions: the control of elastic-brittle deformation

    NASA Astrophysics Data System (ADS)

    Kilburn, Christopher; Robertson, Robert; Wall, Richard; Steele, Alexander

    2016-04-01

    At volcanoes reawakening after long repose, patterns of unrest normally reflect the elastic-brittle deformation of crust above a magma reservoir. Local fault movements, detected as volcano-tectonic (VT) earthquakes, increase in number with surface deformation, at first approximately exponentially and then linearly. The trends describe how crustal behaviour evolves from quasi-elastic deformation under an increasing stress to inelastic deformation under a constant stress. They have been quantified and verified against experiments for deformation in compression [1]. We have extended the analysis to extensional deformation. The results agree well with field data for crust being stretched by a pressurizing magmatic system [2]. They also provide new criteria for enhancing the definitions of alert levels and preferred times to eruption. The VT-deformation sequence is a field proxy for changes in deformation with applied stress. The transition from quasi-elastic to inelastic behaviour is characterised in extension by the ratio of differential failure stress SF to tensile strength σT. Unrest data from at least basaltic to andesitic stratovolcanoes, as well as large calderas, yield preferred values for SF/σT ≤ 4, coinciding with the range for tensile failure expected from established theoretical constraints (from Mohr-Coulomb-Griffiths failure). We thus associate the transition with the approach to tensile rupture at the wall of a pressurized magma reservoir. In particular, values of about 2 are consistent with the rupture of a cylindrical reservoir, such as a closed conduit within a volcanic edifice, whereas values of about 3 suggest an approximately spherical reservoir, such as may exist at deeper levels. The onset of inelastic behaviour reflects the emergence of self-accelerating crack growth under a constant stress. Applied to forecasting eruptions, it provides a new and objective criterion for raising alert levels during an emergency; it yields the classic linear

  4. The algebraic-hyperbolic approach to the linearized gravitational constraints on a Minkowski background

    NASA Astrophysics Data System (ADS)

    Winicour, Jeffrey

    2017-08-01

    An algebraic-hyperbolic method for solving the Hamiltonian and momentum constraints has recently been shown to be well posed for general nonlinear perturbations of the initial data for a Schwarzschild black hole. This is a new approach to solving the constraints of Einstein’s equations which does not involve elliptic equations and has potential importance for the construction of binary black hole data. In order to shed light on the underpinnings of this approach, we consider its application to obtain solutions of the constraints for linearized perturbations of Minkowski space. In that case, we find the surprising result that there are no suitable Cauchy hypersurfaces in Minkowski space for which the linearized algebraic-hyperbolic constraint problem is well posed.

  5. Competition Between Two Large-Amplitude Motion Models: New Hybrid Hamiltonian Versus Old Pure-Tunneling Hamiltonian

    NASA Astrophysics Data System (ADS)

    Kleiner, Isabelle; Hougen, Jon T.

    2017-06-01

    In this talk we report on our progress in trying to make the hybrid Hamiltonian competitive with the pure-tunneling Hamiltonian for treating large-amplitude motions in methylamine. A treatment using the pure-tunneling model has the advantages of: (i) requiring relatively little computer time, (ii) working with relatively uncorrelated fitting parameters, and (iii) yielding in the vast majority of cases fits to experimental measurement accuracy. These advantages are all illustrated in the work published this past year on a gigantic v_{t} = 1 data set for the torsional fundamental band in methyl amine. A treatment using the hybrid model has the advantages of: (i) being able to carry out a global fit involving both v_{t} = 0 and v_{t} = 1 energy levels and (ii) working with fitting parameters that have a clearer physical interpretation. Unfortunately, a treatment using the hybrid model has the great disadvantage of requiring a highly correlated set of fitting parameters to achieve reasonable fitting accuracy, which complicates the search for a good set of molecular fitting parameters and a fit to experimental accuracy. At the time of writing this abstract, we have been able to carry out a fit with J up to 15 that includes all available infrared data in the v_{t} = 1-0 torsional fundamental band, all ground-state microwave data with K up to 10 and J up to 15, and about a hundred microwave lines within the v_{t} = 1 torsional state, achieving weighted root-mean-square (rms) deviations of about 1.4, 2.8, and 4.2 for these three categories of data. We will give an update of this situation at the meeting. I. Gulaczyk, M. Kreglewski, V.-M. Horneman, J. Mol. Spectrosc., in Press (2017).

  6. PREFACE: 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics

    NASA Astrophysics Data System (ADS)

    Fring, Andreas; Jones, Hugh; Znojil, Miloslav

    2008-06-01

    Attempts to understand the quantum mechanics of non-Hermitian Hamiltonian systems can be traced back to the early days, one example being Heisenberg's endeavour to formulate a consistent model involving an indefinite metric. Over the years non-Hermitian Hamiltonians whose spectra were believed to be real have appeared from time to time in the literature, for instance in the study of strong interactions at high energies via Regge models, in condensed matter physics in the context of the XXZ-spin chain, in interacting boson models in nuclear physics, in integrable quantum field theories as Toda field theories with complex coupling constants, and also very recently in a field theoretical scenario in the quantization procedure of strings on an AdS5 x S5 background. Concrete experimental realizations of these types of systems in the form of optical lattices have been proposed in 2007. In the area of mathematical physics similar non-systematic results appeared sporadically over the years. However, intensive and more systematic investigation of these types of non- Hermitian Hamiltonians with real eigenvalue spectra only began about ten years ago, when the surprising discovery was made that a large class of one-particle systems perturbed by a simple non-Hermitian potential term possesses a real energy spectrum. Since then regular international workshops devoted to this theme have taken place. This special issue is centred around the 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics held in July 2007 at City University London. All the contributions contain significant new results or alternatively provide a survey of the state of the art of the subject or a critical assessment of the present understanding of the topic and a discussion of open problems. Original contributions from non-participants were also invited. Meanwhile many interesting results have been obtained and consensus has been reached on various central conceptual issues in the

  7. Integrable and superintegrable Hamiltonian systems with four dimensional real Lie algebras as symmetry of the systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abedi-Fardad, J., E-mail: j.abedifardad@bonabu.ac.ir; Rezaei-Aghdam, A., E-mail: rezaei-a@azaruniv.edu; Haghighatdoost, Gh., E-mail: gorbanali@azaruniv.edu

    2014-05-15

    We construct integrable and superintegrable Hamiltonian systems using the realizations of four dimensional real Lie algebras as a symmetry of the system with the phase space R{sup 4} and R{sup 6}. Furthermore, we construct some integrable and superintegrable Hamiltonian systems for which the symmetry Lie group is also the phase space of the system.

  8. FAST TRACK COMMUNICATION: Superintegrability of the Tremblay-Turbiner-Winternitz quantum Hamiltonians on a plane for odd k

    NASA Astrophysics Data System (ADS)

    Quesne, C.

    2010-02-01

    In a recent communication paper by Tremblay et al (2009 J. Phys. A: Math. Theor. 42 205206), it has been conjectured that for any integer value of k, some novel exactly solvable and integrable quantum Hamiltonian Hk on a plane is superintegrable and that the additional integral of motion is a 2kth-order differential operator Y2k. Here we demonstrate the conjecture for the infinite family of Hamiltonians Hk with odd k >= 3, whose first member corresponds to the three-body Calogero-Marchioro-Wolfes model after elimination of the centre-of-mass motion. Our approach is based on the construction of some D2k-extended and invariant Hamiltonian {\\cal H}_k, which can be interpreted as a modified boson oscillator Hamiltonian. The latter is then shown to possess a D2k-invariant integral of motion {\\cal Y}_{2k}, from which Y2k can be obtained by projection in the D2k identity representation space.

  9. Improving long time behavior of Poisson bracket mapping equation: A non-Hamiltonian approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyun Woo; Rhee, Young Min, E-mail: ymrhee@postech.ac.kr

    2014-05-14

    Understanding nonadiabatic dynamics in complex systems is a challenging subject. A series of semiclassical approaches have been proposed to tackle the problem in various settings. The Poisson bracket mapping equation (PBME) utilizes a partial Wigner transform and a mapping representation for its formulation, and has been developed to describe nonadiabatic processes in an efficient manner. Operationally, it is expressed as a set of Hamilton's equations of motion, similar to more conventional classical molecular dynamics. However, this original Hamiltonian PBME sometimes suffers from a large deviation in accuracy especially in the long time limit. Here, we propose a non-Hamiltonian variant ofmore » PBME to improve its behavior especially in that limit. As a benchmark, we simulate spin-boson and photosynthetic model systems and find that it consistently outperforms the original PBME and its Ehrenfest style variant. We explain the source of this improvement by decomposing the components of the mapping Hamiltonian and by assessing the energy flow between the system and the bath. We discuss strengths and weaknesses of our scheme with a viewpoint of offering future prospects.« less

  10. Equilibrium Droplets on Deformable Substrates: Equilibrium Conditions.

    PubMed

    Koursari, Nektaria; Ahmed, Gulraiz; Starov, Victor M

    2018-05-15

    Equilibrium conditions of droplets on deformable substrates are investigated, and it is proven using Jacobi's sufficient condition that the obtained solutions really provide equilibrium profiles of both the droplet and the deformed support. At the equilibrium, the excess free energy of the system should have a minimum value, which means that both necessary and sufficient conditions of the minimum should be fulfilled. Only in this case, the obtained profiles provide the minimum of the excess free energy. The necessary condition of the equilibrium means that the first variation of the excess free energy should vanish, and the second variation should be positive. Unfortunately, the mentioned two conditions are not the proof that the obtained profiles correspond to the minimum of the excess free energy and they could not be. It is necessary to check whether the sufficient condition of the equilibrium (Jacobi's condition) is satisfied. To the best of our knowledge Jacobi's condition has never been verified for any already published equilibrium profiles of both the droplet and the deformable substrate. A simple model of the equilibrium droplet on the deformable substrate is considered, and it is shown that the deduced profiles of the equilibrium droplet and deformable substrate satisfy the Jacobi's condition, that is, really provide the minimum to the excess free energy of the system. To simplify calculations, a simplified linear disjoining/conjoining pressure isotherm is adopted for the calculations. It is shown that both necessary and sufficient conditions for equilibrium are satisfied. For the first time, validity of the Jacobi's condition is verified. The latter proves that the developed model really provides (i) the minimum of the excess free energy of the system droplet/deformable substrate and (ii) equilibrium profiles of both the droplet and the deformable substrate.

  11. An Algebraic Approach to the Evolution of Emittances upon Crossing the Linear Coupling Difference Resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner,C.

    One of the hallmarks of linear coupling is the resonant exchange of oscillation amplitude between the horizontal and vertical planes when the difference between the unperturbed tunes is close to an integer. The standard derivation of this phenomenon (known as the difference resonance) can be found, for example, in the classic papers of Guignard [1, 2]. One starts with an uncoupled lattice and adds a linear perturbation that couples the two planes. The equations of motion are expressed in hamiltonian form. As the difference between the unperturbed tunes approaches an integer, one finds that the perturbing terms in the hamiltonianmore » can be divided into terms that oscillate slowly and ones that oscillate rapidly. The rapidly oscillating terms are discarded or transformed to higher order with an appropriate canonical transformation. The resulting approximate hamiltonian gives equations of motion that clearly exhibit the exchange of oscillation amplitude between the two planes. If, instead of the hamiltonian, one is given the four-by-four matrix for one turn around a synchrotron, then one has the complete solution for the turn-by-turn (TBT) motion. However, the conditions for the phenomenon of amplitude exchange are not obvious from a casual inspection of the matrix. These conditions and those that give rise to the related sum resonance are identified in this report. The identification is made using the well known formalism of Edwards and Teng [3, 4, 5] and, in particular, the normalized coupling matrix of Sagan and Rubin [6]. The formulae obtained are general in that no particular hamiltonian or coupling elements are assumed. The only assumptions are that the one-turn matrix is symplectic and that it has distinct eigenvalues on the unit circle in the complex plane. Having identified the conditions of the one-turn matrix that give rise to the resonances, we focus on the difference resonance and apply the formulae to the evolution of the horizontal and vertical

  12. Analysis of Franck-Condon factors for CO+ molecule using the Fourier Grid Hamiltonian method

    NASA Astrophysics Data System (ADS)

    Syiemiong, Arnestar; Swer, Shailes; Jha, Ashok Kumar; Saxena, Atul

    2018-04-01

    Franck-Condon factors (FCFs) are important parameters and it plays a very important role in determining the intensities of the vibrational bands in electronic transitions. In this paper, we illustrate the Fourier Grid Hamiltonian (FGH) method, a relatively simple method to calculate the FCFs. The FGH is a method used for calculating the vibrational eigenvalues and eigenfunctions of bound electronic states of diatomic molecules. The obtained vibrational wave functions for the ground and the excited states are used to calculate the vibrational overlap integral and then the FCFs. In this computation, we used the Morse potential and Bi-Exponential potential model for constructing and diagonalizing the molecular Hamiltonians. The effects of the change in equilibrium internuclear distance (xe), dissociation energy (De), and the nature of the excited state electronic energy curve on the FCFs have been determined. Here we present our work for the qualitative analysis of Franck-Condon Factorsusing this Fourier Grid Hamiltonian Method.

  13. Equivalent Theories and Changing Hamiltonian Observables in General Relativity

    NASA Astrophysics Data System (ADS)

    Pitts, J. Brian

    2018-03-01

    Change and local spatial variation are missing in Hamiltonian general relativity according to the most common definition of observables as having 0 Poisson bracket with all first-class constraints. But other definitions of observables have been proposed. In pursuit of Hamiltonian-Lagrangian equivalence, Pons, Salisbury and Sundermeyer use the Anderson-Bergmann-Castellani gauge generator G, a tuned sum of first-class constraints. Kuchař waived the 0 Poisson bracket condition for the Hamiltonian constraint to achieve changing observables. A systematic combination of the two reforms might use the gauge generator but permit non-zero Lie derivative Poisson brackets for the external gauge symmetry of General Relativity. Fortunately one can test definitions of observables by calculation using two formulations of a theory, one without gauge freedom and one with gauge freedom. The formulations, being empirically equivalent, must have equivalent observables. For de Broglie-Proca non-gauge massive electromagnetism, all constraints are second-class, so everything is observable. Demanding equivalent observables from gauge Stueckelberg-Utiyama electromagnetism, one finds that the usual definition fails while the Pons-Salisbury-Sundermeyer definition with G succeeds. This definition does not readily yield change in GR, however. Should GR's external gauge freedom of general relativity share with internal gauge symmetries the 0 Poisson bracket (invariance), or is covariance (a transformation rule) sufficient? A graviton mass breaks the gauge symmetry (general covariance), but it can be restored by parametrization with clock fields. By requiring equivalent observables, one can test whether observables should have 0 or the Lie derivative as the Poisson bracket with the gauge generator G. The latter definition is vindicated by calculation. While this conclusion has been reported previously, here the calculation is given in some detail.

  14. Equivalent Theories and Changing Hamiltonian Observables in General Relativity

    NASA Astrophysics Data System (ADS)

    Pitts, J. Brian

    2018-05-01

    Change and local spatial variation are missing in Hamiltonian general relativity according to the most common definition of observables as having 0 Poisson bracket with all first-class constraints. But other definitions of observables have been proposed. In pursuit of Hamiltonian-Lagrangian equivalence, Pons, Salisbury and Sundermeyer use the Anderson-Bergmann-Castellani gauge generator G, a tuned sum of first-class constraints. Kuchař waived the 0 Poisson bracket condition for the Hamiltonian constraint to achieve changing observables. A systematic combination of the two reforms might use the gauge generator but permit non-zero Lie derivative Poisson brackets for the external gauge symmetry of General Relativity. Fortunately one can test definitions of observables by calculation using two formulations of a theory, one without gauge freedom and one with gauge freedom. The formulations, being empirically equivalent, must have equivalent observables. For de Broglie-Proca non-gauge massive electromagnetism, all constraints are second-class, so everything is observable. Demanding equivalent observables from gauge Stueckelberg-Utiyama electromagnetism, one finds that the usual definition fails while the Pons-Salisbury-Sundermeyer definition with G succeeds. This definition does not readily yield change in GR, however. Should GR's external gauge freedom of general relativity share with internal gauge symmetries the 0 Poisson bracket (invariance), or is covariance (a transformation rule) sufficient? A graviton mass breaks the gauge symmetry (general covariance), but it can be restored by parametrization with clock fields. By requiring equivalent observables, one can test whether observables should have 0 or the Lie derivative as the Poisson bracket with the gauge generator G. The latter definition is vindicated by calculation. While this conclusion has been reported previously, here the calculation is given in some detail.

  15. Hybrid Topological Lie-Hamiltonian Learning in Evolving Energy Landscapes

    NASA Astrophysics Data System (ADS)

    Ivancevic, Vladimir G.; Reid, Darryn J.

    2015-11-01

    In this Chapter, a novel bidirectional algorithm for hybrid (discrete + continuous-time) Lie-Hamiltonian evolution in adaptive energy landscape-manifold is designed and its topological representation is proposed. The algorithm is developed within a geometrically and topologically extended framework of Hopfield's neural nets and Haken's synergetics (it is currently designed in Mathematica, although with small changes it could be implemented in Symbolic C++ or any other computer algebra system). The adaptive energy manifold is determined by the Hamiltonian multivariate cost function H, based on the user-defined vehicle-fleet configuration matrix W, which represents the pseudo-Riemannian metric tensor of the energy manifold. Search for the global minimum of H is performed using random signal differential Hebbian adaptation. This stochastic gradient evolution is driven (or, pulled-down) by `gravitational forces' defined by the 2nd Lie derivatives of H. Topological changes of the fleet matrix W are observed during the evolution and its topological invariant is established. The evolution stops when the W-topology breaks down into several connectivity-components, followed by topology-breaking instability sequence (i.e., a series of phase transitions).

  16. Application of Dirac's Generalized Hamiltonian Dynamics to Atomic and Molecular Systems

    NASA Astrophysics Data System (ADS)

    Uzer, Turgay

    2002-10-01

    Incorporating electronic degrees of freedom into classical treatments of atoms and molecules is a challenging problem from both the practical and fundamental points of view. Because it goes to the heart of classical-quantal correspondence, there are now a number of prescriptions which differ by the extent of quantal information that they include. We reach back to Dirac for inspiration, who, half a century ago, designed a so-called Generalized Hamiltonian Dynamics (GHD) with applications to field theory in mind. Physically, the GHD is a purely classical formalism for systems with constraints; it incorporates the constraints into the Hamiltonian. We apply the GHD to atomic and molecular physics by choosing integrals of motion as the constraints. We show that this purely classical formalism allows the derivation of energies of non-radiating states.

  17. Quantum theory of atoms in molecules: results for the SR-ZORA Hamiltonian.

    PubMed

    Anderson, James S M; Ayers, Paul W

    2011-11-17

    The quantum theory of atoms in molecules (QTAIM) is generalized to include relativistic effects using the popular scalar-relativistic zeroth-order regular approximation (SR-ZORA). It is usually assumed that the definition of the atom as a volume bounded by a zero-flux surface of the electron density is closely linked to the form of the kinetic energy, so it is somewhat surprising that the atoms corresponding to the relativistic kinetic-energy operator in the SR-ZORA Hamiltonian are also bounded by zero-flux surfaces. The SR-ZORA Hamiltonian should be sufficient for qualitative descriptions of molecular electronic structure across the periodic table, which suggests that QTAIM-based analysis can be useful for molecules and solids containing heavy atoms.

  18. Interacting quantum dot coupled to a kondo spin: a universal Hamiltonian study.

    PubMed

    Rotter, Stefan; Türeci, Hakan E; Alhassid, Y; Stone, A Douglas

    2008-04-25

    We study a Kondo spin coupled to a mesoscopic interacting quantum dot that is described by the "universal Hamiltonian." The problem is solved numerically by diagonalizing the system Hamiltonian in a good-spin basis and analytically in the weak and strong Kondo coupling limits. The ferromagnetic exchange interaction within the dot leads to a stepwise increase of the ground-state spin (Stoner staircase), which is modified nontrivially by the Kondo interaction. We find that the spin-transition steps move to lower values of the exchange coupling for weak Kondo interaction, but shift back up for sufficiently strong Kondo coupling. The interplay between Kondo and ferromagnetic exchange correlations can be probed with experimentally tunable parameters.

  19. Texture- and deformability-based surface recognition by tactile image analysis.

    PubMed

    Khasnobish, Anwesha; Pal, Monalisa; Tibarewala, D N; Konar, Amit; Pal, Kunal

    2016-08-01

    Deformability and texture are two unique object characteristics which are essential for appropriate surface recognition by tactile exploration. Tactile sensation is required to be incorporated in artificial arms for rehabilitative and other human-computer interface applications to achieve efficient and human-like manoeuvring. To accomplish the same, surface recognition by tactile data analysis is one of the prerequisites. The aim of this work is to develop effective technique for identification of various surfaces based on deformability and texture by analysing tactile images which are obtained during dynamic exploration of the item by artificial arms whose gripper is fitted with tactile sensors. Tactile data have been acquired, while human beings as well as a robot hand fitted with tactile sensors explored the objects. The tactile images are pre-processed, and relevant features are extracted from the tactile images. These features are provided as input to the variants of support vector machine (SVM), linear discriminant analysis and k-nearest neighbour (kNN) for classification. Based on deformability, six household surfaces are recognized from their corresponding tactile images. Moreover, based on texture five surfaces of daily use are classified. The method adopted in the former two cases has also been applied for deformability- and texture-based recognition of four biomembranes, i.e. membranes prepared from biomaterials which can be used for various applications such as drug delivery and implants. Linear SVM performed best for recognizing surface deformability with an accuracy of 83 % in 82.60 ms, whereas kNN classifier recognizes surfaces of daily use having different textures with an accuracy of 89 % in 54.25 ms and SVM with radial basis function kernel recognizes biomembranes with an accuracy of 78 % in 53.35 ms. The classifiers are observed to generalize well on the unseen test datasets with very high performance to achieve efficient material

  20. The Electromagnetic Dipole Radiation Field through the Hamiltonian Approach

    ERIC Educational Resources Information Center

    Likar, A.; Razpet, N.

    2009-01-01

    The dipole radiation from an oscillating charge is treated using the Hamiltonian approach to electrodynamics where the concept of cavity modes plays a central role. We show that the calculation of the radiation field can be obtained in a closed form within this approach by emphasizing the role of coherence between the cavity modes, which is…

  1. Self-duality of the compactified Ruijsenaars-Schneider system from quasi-Hamiltonian reduction

    NASA Astrophysics Data System (ADS)

    Fehér, L.; Klimčík, C.

    2012-07-01

    The Delzant theorem of symplectic topology is used to derive the completely integrable compactified Ruijsenaars-Schneider IIIb system from a quasi-Hamiltonian reduction of the internally fused double SU(n)×SU(n). In particular, the reduced spectral functions depending respectively on the first and second SU(n) factor of the double engender two toric moment maps on the IIIb phase space CP(n-1) that play the roles of action-variables and particle-positions. A suitable central extension of the SL(2,Z) mapping class group of the torus with one boundary component is shown to act on the quasi-Hamiltonian double by automorphisms and, upon reduction, the standard generator S of the mapping class group is proved to descend to the Ruijsenaars self-duality symplectomorphism that exchanges the toric moment maps. We give also two new presentations of this duality map: one as the composition of two Delzant symplectomorphisms and the other as the composition of three Dehn twist symplectomorphisms realized by Goldman twist flows. Through the well-known relation between quasi-Hamiltonian manifolds and moduli spaces, our results rigorously establish the validity of the interpretation [going back to Gorsky and Nekrasov] of the IIIb system in terms of flat SU(n) connections on the one-holed torus.

  2. Deformation-driven diffusion and plastic flow in amorphous granular pillars.

    PubMed

    Li, Wenbin; Rieser, Jennifer M; Liu, Andrea J; Durian, Douglas J; Li, Ju

    2015-06-01

    We report a combined experimental and simulation study of deformation-induced diffusion in compacted quasi-two-dimensional amorphous granular pillars, in which thermal fluctuations play a negligible role. The pillars, consisting of bidisperse cylindrical acetal plastic particles standing upright on a substrate, are deformed uniaxially and quasistatically by a rigid bar moving at a constant speed. The plastic flow and particle rearrangements in the pillars are characterized by computing the best-fit affine transformation strain and nonaffine displacement associated with each particle between two stages of deformation. The nonaffine displacement exhibits exponential crossover from ballistic to diffusive behavior with respect to the cumulative deviatoric strain, indicating that in athermal granular packings, the cumulative deviatoric strain plays the role of time in thermal systems and drives effective particle diffusion. We further study the size-dependent deformation of the granular pillars by simulation, and find that different-sized pillars follow self-similar shape evolution during deformation. In addition, the yield stress of the pillars increases linearly with pillar size. Formation of transient shear lines in the pillars during deformation becomes more evident as pillar size increases. The width of these elementary shear bands is about twice the diameter of a particle, and does not vary with pillar size.

  3. ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.

    PubMed

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-07-20

    Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.

  4. Time-Dependent Reversible-Irreversible Deformation Threshold Determined Explicitly by Experimental Technique

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.; Arnold, Steven M.

    2000-01-01

    Structural materials for the design of advanced aeropropulsion components are usually subject to loading under elevated temperatures, where a material's viscosity (resistance to flow) is greatly reduced in comparison to its viscosity under low-temperature conditions. As a result, the propensity for the material to exhibit time-dependent deformation is significantly enhanced, even when loading is limited to a quasi-linear stress-strain regime as an effort to avoid permanent (irreversible) nonlinear deformation. An understanding and assessment of such time-dependent effects in the context of combined reversible and irreversible deformation is critical to the development of constitutive models that can accurately predict the general hereditary behavior of material deformation. To this end, researchers at the NASA Glenn Research Center at Lewis Field developed a unique experimental technique that identifies the existence of and explicitly determines a threshold stress k, below which the time-dependent material deformation is wholly reversible, and above which irreversible deformation is incurred. This technique is unique in the sense that it allows, for the first time, an objective, explicit, experimental measurement of k. The underlying concept for the experiment is based on the assumption that the material s time-dependent reversible response is invariable, even in the presence of irreversible deformation.

  5. Injuries of the head from backface deformation of ballistic protective helmets under ballistic impact.

    PubMed

    Rafaels, Karin A; Cutcliffe, Hattie C; Salzar, Robert S; Davis, Martin; Boggess, Brian; Bush, Bryan; Harris, Robert; Rountree, Mark Steve; Sanderson, Ellory; Campman, Steven; Koch, Spencer; Dale Bass, Cameron R

    2015-01-01

    Modern ballistic helmets defeat penetrating bullets by energy transfer from the projectile to the helmet, producing helmet deformation. This deformation may cause severe injuries without completely perforating the helmet, termed "behind armor blunt trauma" (BABT). As helmets become lighter, the likelihood of larger helmet backface deformation under ballistic impact increases. To characterize the potential for BABT, seven postmortem human head/neck specimens wearing a ballistic protective helmet were exposed to nonperforating impact, using a 9 mm, full metal jacket, 124 grain bullet with velocities of 400-460 m/s. An increasing trend of injury severity was observed, ranging from simple linear fractures to combinations of linear and depressed fractures. Overall, the ability to identify skull fractures resulting from BABT can be used in forensic investigations. Our results demonstrate a high risk of skull fracture due to BABT and necessitate the prevention of BABT as a design factor in future generations of protective gear. © 2014 American Academy of Forensic Sciences.

  6. Maximum Renyi entropy principle for systems with power-law Hamiltonians.

    PubMed

    Bashkirov, A G

    2004-09-24

    The Renyi distribution ensuring the maximum of Renyi entropy is investigated for a particular case of a power-law Hamiltonian. Both Lagrange parameters alpha and beta can be eliminated. It is found that beta does not depend on a Renyi parameter q and can be expressed in terms of an exponent kappa of the power-law Hamiltonian and an average energy U. The Renyi entropy for the resulting Renyi distribution reaches its maximal value at q=1/(1+kappa) that can be considered as the most probable value of q when we have no additional information on the behavior of the stochastic process. The Renyi distribution for such q becomes a power-law distribution with the exponent -(kappa+1). When q=1/(1+kappa)+epsilon (0

  7. Hamiltonian approach to Ehrenfest expectation values and Gaussian quantum states

    PubMed Central

    Bonet-Luz, Esther

    2016-01-01

    The dynamics of quantum expectation values is considered in a geometric setting. First, expectation values of the canonical observables are shown to be equivariant momentum maps for the action of the Heisenberg group on quantum states. Then, the Hamiltonian structure of Ehrenfest’s theorem is shown to be Lie–Poisson for a semidirect-product Lie group, named the Ehrenfest group. The underlying Poisson structure produces classical and quantum mechanics as special limit cases. In addition, quantum dynamics is expressed in the frame of the expectation values, in which the latter undergo canonical Hamiltonian motion. In the case of Gaussian states, expectation values dynamics couples to second-order moments, which also enjoy a momentum map structure. Eventually, Gaussian states are shown to possess a Lie–Poisson structure associated with another semidirect-product group, which is called the Jacobi group. This structure produces the energy-conserving variant of a class of Gaussian moment models that have previously appeared in the chemical physics literature. PMID:27279764

  8. A new approach in the design of an interactive environment for teaching Hamiltonian digraphs

    NASA Astrophysics Data System (ADS)

    Iordan, A. E.; Panoiu, M.

    2014-03-01

    In this article the authors present the necessary steps in object orientated design of an interactive environment that is dedicated to the process of acquaintances assimilation in Hamiltonian graphs theory domain, especially for the simulation of algorithms which determine the Hamiltonian trails and circuits. The modelling of the interactive environment is achieved through specific UML diagrams representing the steps of analysis, design and implementation. This interactive environment is very useful for both students and professors, because computer programming domain, especially digraphs theory domain is comprehended and assimilated with difficulty by students.

  9. Deformation of red blood cells using acoustic radiation forces

    PubMed Central

    Mishra, Puja; Hill, Martyn; Glynne-Jones, Peter

    2014-01-01

    Acoustic radiation forces have been used to manipulate cells and bacteria in a number of recent microfluidic applications. The net force on a cell has been subject to careful investigation over a number of decades. We demonstrate that the radiation forces also act to deform cells. An ultrasonic standing wave field is created in a 0.1 mm glass capillary at a frequency of 7.9 MHz. Using osmotically swollen red-blood cells, we show observable deformations up to an aspect ratio of 1.35, comparable to deformations created by optical tweezing. In contrast to optical technologies, ultrasonic devices are potentially capable of deforming thousands of cells simultaneously. We create a finite element model that includes both the acoustic environment of the cell, and a model of the cell membrane subject to forces resulting from the non-linear aspects of the acoustic field. The model is found to give reasonable agreement with the experimental results, and shows that the deformation is the result of variation in an acoustic force that is directed outwards at all points on the cell membrane. We foresee applications in diagnostic devices, and in the possibility of mechanically stimulating cells to promote differentiation and physiological effects. PMID:25379070

  10. Precursory Slope Deformation around Landslide Area Detected by Insar Throughout Japan

    NASA Astrophysics Data System (ADS)

    Nakano, T.; Wada, K.; Yamanaka, M.; Kamiya, I.; Nakajima, H.

    2016-06-01

    Interferometric Synthetic Aperture Radar (InSAR) technique is able to detect a slope deformation around landslide (e.g., Singhroy et al., 2004; Une et al., 2008; Riedel and Walther, 2008; Sato et al., 2014). Geospatial Information Authority (GSI) of Japan has been performing the InSAR analysis regularly by using ALOS/PALSAR data and ALOS-2/PALSAR-2 data throughout Japan. There are a lot of small phase change sites except for crustal deformation with earthquake or volcano activity in the InSAR imagery. Most of the phase change sites are located in landslide area. We conducted field survey at the 10 sites of those phase change sites. As a result, we identified deformation of artificial structures or linear depressions caused by mass movement at the 9 sites. This result indicates that InSAR technique can detect on the continual deformation of landslide block for several years. GSI of Japan will continue to perform the InSAR analysis throughout Japan. Therefore, we will be able to observe and monitor precursory slope deformation around landslide areas throughout Japan.

  11. Hamiltonian structure of classical N-body systems of finite-size particles subject to EM interactions

    NASA Astrophysics Data System (ADS)

    Cremaschini, C.; Tessarotto, M.

    2012-01-01

    An open issue in classical relativistic mechanics is the consistent treatment of the dynamics of classical N-body systems of mutually interacting particles. This refers, in particular, to charged particles subject to EM interactions, including both binary interactions and self-interactions ( EM-interacting N- body systems). The correct solution to the question represents an overriding prerequisite for the consistency between classical and quantum mechanics. In this paper it is shown that such a description can be consistently obtained in the context of classical electrodynamics, for the case of a N-body system of classical finite-size charged particles. A variational formulation of the problem is presented, based on the N -body hybrid synchronous Hamilton variational principle. Covariant Lagrangian and Hamiltonian equations of motion for the dynamics of the interacting N-body system are derived, which are proved to be delay-type ODEs. Then, a representation in both standard Lagrangian and Hamiltonian forms is proved to hold, the latter expressed by means of classical Poisson Brackets. The theory developed retains both the covariance with respect to the Lorentz group and the exact Hamiltonian structure of the problem, which is shown to be intrinsically non-local. Different applications of the theory are investigated. The first one concerns the development of a suitable Hamiltonian approximation of the exact equations that retains finite delay-time effects characteristic of the binary interactions and self-EM-interactions. Second, basic consequences concerning the validity of Dirac generator formalism are pointed out, with particular reference to the instant-form representation of Poincaré generators. Finally, a discussion is presented both on the validity and possible extension of the Dirac generator formalism as well as the failure of the so-called Currie "no-interaction" theorem for the non-local Hamiltonian system considered here.

  12. Dynamic soft tissue deformation estimation based on energy analysis

    NASA Astrophysics Data System (ADS)

    Gao, Dedong; Lei, Yong; Yao, Bin

    2016-10-01

    The needle placement accuracy of millimeters is required in many needle-based surgeries. The tissue deformation, especially that occurring on the surface of organ tissue, affects the needle-targeting accuracy of both manual and robotic needle insertions. It is necessary to understand the mechanism of tissue deformation during needle insertion into soft tissue. In this paper, soft tissue surface deformation is investigated on the basis of continuum mechanics, where a geometry model is presented to quantitatively approximate the volume of tissue deformation. The energy-based method is presented to the dynamic process of needle insertion into soft tissue based on continuum mechanics, and the volume of the cone is exploited to quantitatively approximate the deformation on the surface of soft tissue. The external work is converted into potential, kinetic, dissipated, and strain energies during the dynamic rigid needle-tissue interactive process. The needle insertion experimental setup, consisting of a linear actuator, force sensor, needle, tissue container, and a light, is constructed while an image-based method for measuring the depth and radius of the soft tissue surface deformations is introduced to obtain the experimental data. The relationship between the changed volume of tissue deformation and the insertion parameters is created based on the law of conservation of energy, with the volume of tissue deformation having been obtained using image-based measurements. The experiments are performed on phantom specimens, and an energy-based analytical fitted model is presented to estimate the volume of tissue deformation. The experimental results show that the energy-based analytical fitted model can predict the volume of soft tissue deformation, and the root mean squared errors of the fitting model and experimental data are 0.61 and 0.25 at the velocities 2.50 mm/s and 5.00 mm/s. The estimating parameters of the soft tissue surface deformations are proven to be useful

  13. Collective coordinates and constrained hamiltonian systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dayi, O.F.

    1992-07-01

    A general method of incorporating collective coordinates (transformation of fields into an overcomplete basis) with constrained hamiltonian systems is given where the original phase space variables and collective coordinates can be bosonic or/and fermionic. This method is illustrated by applying it to the SU(2) Yang-Mills-Higgs theory and its BFV-BRST quantization is discussed. Moreover, this formalism is used to give a systematic way of converting second class constraints into effectively first class ones, by considering second class constraints as first class constraints and gauge fixing conditions. This approach is applied to the massive superparticle. Proca lagrangian, and some topological quantum fieldmore » theories.« less

  14. Superfield Hamiltonian quantization in terms of quantum antibrackets

    NASA Astrophysics Data System (ADS)

    Batalin, Igor A.; Lavrov, Peter M.

    2016-04-01

    We develop a new version of the superfield Hamiltonian quantization. The main new feature is that the BRST-BFV charge and the gauge fixing Fermion are introduced on equal footing within the sigma model approach, which provides for the actual use of the quantum/derived antibrackets. We study in detail the generating equations for the quantum antibrackets and their primed counterparts. We discuss the finite quantum anticanonical transformations generated by the quantum antibracket.

  15. Robust Online Hamiltonian Learning

    NASA Astrophysics Data System (ADS)

    Granade, Christopher; Ferrie, Christopher; Wiebe, Nathan; Cory, David

    2013-05-01

    In this talk, we introduce a machine-learning algorithm for the problem of inferring the dynamical parameters of a quantum system, and discuss this algorithm in the example of estimating the precession frequency of a single qubit in a static field. Our algorithm is designed with practicality in mind by including parameters that control trade-offs between the requirements on computational and experimental resources. The algorithm can be implemented online, during experimental data collection, or can be used as a tool for post-processing. Most importantly, our algorithm is capable of learning Hamiltonian parameters even when the parameters change from experiment-to-experiment, and also when additional noise processes are present and unknown. Finally, we discuss the performance of the our algorithm by appeal to the Cramer-Rao bound. This work was financially supported by the Canadian government through NSERC and CERC and by the United States government through DARPA. NW would like to acknowledge funding from USARO-DTO.

  16. Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection.

    PubMed

    Warren, Sean C; Kim, Youngchan; Stone, James M; Mitchell, Claire; Knight, Jonathan C; Neil, Mark A A; Paterson, Carl; French, Paul M W; Dunsby, Chris

    2016-09-19

    This paper demonstrates multiphoton excited fluorescence imaging through a polarisation maintaining multicore fiber (PM-MCF) while the fiber is dynamically deformed using all-proximal detection. Single-shot proximal measurement of the relative optical path lengths of all the cores of the PM-MCF in double pass is achieved using a Mach-Zehnder interferometer read out by a scientific CMOS camera operating at 416 Hz. A non-linear least squares fitting procedure is then employed to determine the deformation-induced lateral shift of the excitation spot at the distal tip of the PM-MCF. An experimental validation of this approach is presented that compares the proximally measured deformation-induced lateral shift in focal spot position to an independent distally measured ground truth. The proximal measurement of deformation-induced shift in focal spot position is applied to correct for deformation-induced shifts in focal spot position during raster-scanning multiphoton excited fluorescence imaging.

  17. Effect of propellant deformation on ignition and combustion processes in solid propellant cracks

    NASA Technical Reports Server (NTRS)

    Kumar, M.; Kuo, K. K.

    1980-01-01

    A comprehensive theoretical model was formulated to study the development of convective burning in a solid propellant crack which continually deforms due to burning and pressure loading. In the theoretical model, the effect of interrelated structural deformation and combustion processes was taken into account by considering (1) transient, one dimensional mass, momentum, and energy conservation equations in the gas phase; (2) a transient, one dimensional heat conduction equation in the solid phase; and (3) quasi-static deformation of the two dimensional, linear viscoelastic propellant crack caused by pressure loading. Partial closures may generate substantial local pressure peaks along the crack, implying a strong coupling between chamber pressurization, crack combustion, and propellant deformation, especially when the cracks are narrow and the chamber pressurization rates high. The maximum pressure in the crack cavity is generally higher than that in the chamber. The initial flame-spreading process is not affected by propellant deformation.

  18. Deformation relief induced by scratch testing on the surface of Hadfield steel

    NASA Astrophysics Data System (ADS)

    Lychagin, D. V.; Filippov, A. V.; Novitskaya, O. S.; Kolubaev, A. V.; Sizova, O. V.

    2017-12-01

    The paper is devoted to deformation relief formed on the surface of Hadfield steel while scratching under a linearly increasing load. The deformation relief is analyzed to detect regions with microfracture of the surface layer of Hadfield steel. Crack generation regions coincide with regions of the most intense acoustic emission (AE) signal. Single and multiple slip bands are observed in various grains of the material. As the load increases, slip bands thicken and grains with multiple slip are more frequent.

  19. The use of an analytic Hamiltonian matrix for solving the hydrogenic atom

    NASA Astrophysics Data System (ADS)

    Bhatti, Mohammad

    2001-10-01

    The non-relativistic Hamiltonian corresponding to the Shrodinger equation is converted into analytic Hamiltonian matrix using the kth order B-splines functions. The Galerkin method is applied to the solution of the Shrodinger equation for bound states of hydrogen-like systems. The program Mathematica is used to create analytic matrix elements and exact integration is performed over the knot-sequence of B-splines and the resulting generalized eigenvalue problem is solved on a specified numerical grid. The complete basis set and the energy spectrum is obtained for the coulomb potential for hydrogenic systems with Z less than 100 with B-splines of order eight. Another application is given to test the Thomas-Reiche-Kuhn sum rule for the hydrogenic systems.

  20. Asymptotic analysis on a pseudo-Hermitian Riemann-zeta Hamiltonian

    NASA Astrophysics Data System (ADS)

    Bender, Carl M.; Brody, Dorje C.

    2018-04-01

    The differential-equation eigenvalue problem associated with a recently-introduced Hamiltonian, whose eigenvalues correspond to the zeros of the Riemann zeta function, is analyzed using Fourier and WKB analysis. The Fourier analysis leads to a challenging open problem concerning the formulation of the eigenvalue problem in the momentum space. The WKB analysis gives the exact asymptotic behavior of the eigenfunction.

  1. Dependence of laser radiation intensity on the elastic deformation of a revolving optical disk with a reflective coating

    NASA Astrophysics Data System (ADS)

    Gladyshev, V. O.; Portnov, D. I.

    2016-12-01

    The physical mechanism of alteration of intensity of linearly polarized monochromatic electromagnetic radiation with λ = 630 nm in a revolving dielectric disk with a mirror coating is examined. The effect is induced by elastic deformation due to the revolution and by thermoelastic deformation of the optically transparent disk. These deformations result in birefringence, the polarization plane rotation, and a 30-40% change in the intensity of reflected radiation.

  2. A Hamiltonian electromagnetic gyrofluid model

    NASA Astrophysics Data System (ADS)

    Waelbroeck, F. L.; Hazeltine, R. D.; Morrison, P. J.

    2009-11-01

    An isothermal truncation of the electromagnetic gyrofluid model of Snyder and Hammett [Phys. Plasmas 8, 3199 (2001)] is shown to be Hamiltonian. The corresponding noncanonical Lie-Poisson bracket and its Casimir invariants are presented. The model describes the evolution of the density, the electrostatic potential, and the component of the vector potential along a strong background field. This makes it suitable for describing such phenomena as the propagation of kinetic-Alfv'en modons, the nonlinear saturation of drift-tearing modes, and the diamagnetic stabilization of the internal kink. The invariants are used to obtain a set of coupled Grad-Shafranov equations describing equilibria and propagating coherent structures. They also lead to a Lagrangian formulation of the equations of motion that is well suited to solution with the PIC method.

  3. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles

    PubMed Central

    Kononova, Olga; Snijder, Joost; Kholodov, Yaroslav; Marx, Kenneth A.; Wuite, Gijs J. L.; Roos, Wouter H.; Barsegov, Valeri

    2016-01-01

    The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams) modeling the particle structure. The beams’ deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F)-deformation (X) spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young’s moduli for Hertzian and bending deformations, and the structural damage dependent beams’ survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications. PMID:26821264

  4. Deformation and Breakup of Two Fluid Jets

    NASA Astrophysics Data System (ADS)

    Doshi, Pankaj; Ramkrishna, Doraiswamy; Basaran, Osman

    2001-11-01

    Two fluid jets consists of an inner liquid core surrounded by an annulus of outer immiscible liquid. The perturbation in the inner and outer interphase could cause capillary instability resulting in large deformation and breakup of the jet into drops. The jet breakup and drop size distribution is largely influenced by the properties of inner and outer fluid phases. Out of the various jet breakup phenomena one with most technological importance is the one in which inner interphase ruptures followed by the outer interphase resulting in the formation of compound drops. The compound drop formation is very useful for the microencapsulation technology, which find use in diverse pharmaceutical and chemical industry applications. In this paper we present a computational analysis of non-linear deformation and breakup of two fluid jets of Newtonian fluids. The analysis involves study of capillary instability driven deformation of a free jet with periodic boundary conditions. Although small amplitude deformation of two fluid jets have previously been studied, large amplitude deformation exhibiting interesting nonlinear dynamics and eventual breakup of the two fluid jets have been beyond the reach of previously used analytical and computational techniques. The computational difficulties result from the facts that (1) the inner and outer interphase can overturn during the motion and (2) pressure and normal stress are discontinuous at the inner interphase. We overcome both of these difficulties by using a new Galerkin/finite element algorithm that relies on a powerful elliptic mesh generation technique. The results to be presented includes jet deformation and breakup time as a function of inner and outer fluid phase properties. The highlight of the results will be prediction of drop size distribution which is of critical importance for microencapsulation technology.

  5. Non-linear eigensolver-based alternative to traditional SCF methods

    NASA Astrophysics Data System (ADS)

    Gavin, Brendan; Polizzi, Eric

    2013-03-01

    The self-consistent iterative procedure in Density Functional Theory calculations is revisited using a new, highly efficient and robust algorithm for solving the non-linear eigenvector problem (i.e. H(X)X = EX;) of the Kohn-Sham equations. This new scheme is derived from a generalization of the FEAST eigenvalue algorithm, and provides a fundamental and practical numerical solution for addressing the non-linearity of the Hamiltonian with the occupied eigenvectors. In contrast to SCF techniques, the traditional outer iterations are replaced by subspace iterations that are intrinsic to the FEAST algorithm, while the non-linearity is handled at the level of a projected reduced system which is orders of magnitude smaller than the original one. Using a series of numerical examples, it will be shown that our approach can outperform the traditional SCF mixing techniques such as Pulay-DIIS by providing a high converge rate and by converging to the correct solution regardless of the choice of the initial guess. We also discuss a practical implementation of the technique that can be achieved effectively using the FEAST solver package. This research is supported by NSF under Grant #ECCS-0846457 and Intel Corporation.

  6. Toward Hamiltonian Adaptive QM/MM: Accurate Solvent Structures Using Many-Body Potentials.

    PubMed

    Boereboom, Jelle M; Potestio, Raffaello; Donadio, Davide; Bulo, Rosa E

    2016-08-09

    Adaptive quantum mechanical (QM)/molecular mechanical (MM) methods enable efficient molecular simulations of chemistry in solution. Reactive subregions are modeled with an accurate QM potential energy expression while the rest of the system is described in a more approximate manner (MM). As solvent molecules diffuse in and out of the reactive region, they are gradually included into (and excluded from) the QM expression. It would be desirable to model such a system with a single adaptive Hamiltonian, but thus far this has resulted in distorted structures at the boundary between the two regions. Solving this long outstanding problem will allow microcanonical adaptive QM/MM simulations that can be used to obtain vibrational spectra and dynamical properties. The difficulty lies in the complex QM potential energy expression, with a many-body expansion that contains higher order terms. Here, we outline a Hamiltonian adaptive multiscale scheme within the framework of many-body potentials. The adaptive expressions are entirely general, and complementary to all standard (nonadaptive) QM/MM embedding schemes available. We demonstrate the merit of our approach on a molecular system defined by two different MM potentials (MM/MM'). For the long-range interactions a numerical scheme is used (particle mesh Ewald), which yields energy expressions that are many-body in nature. Our Hamiltonian approach is the first to provide both energy conservation and the correct solvent structure everywhere in this system.

  7. A Particle Representation Model for the Deformation of Homogeneous Turbulence

    NASA Technical Reports Server (NTRS)

    Kassinos, S. C.; Reynolds, W. C.

    1996-01-01

    In simple flows, where the mean deformation rates are mild and the turbulence has time to come to equilibrium with the mean flow, the Reynolds stresses are determined by the applied strain rate. Hence in these flows, it is often adequate to use an eddy-viscosity representation. The modern family of kappa-epsilon models has been very useful in predicting near equilibrium turbulent flows, where the rms deformation rate S is small compared to the reciprocal time scale of the turbulence (epsilon/kappa). In modern engineering applications, turbulence models are quite often required to predict flows with very rapid deformations (large S kappa/epsilon). In these flows, the structure takes some time to respond and eddy viscosity models are inadequate. The response of turbulence to rapid deformations is given by rapid distortion theory (RDT). Under RDT the nonlinear effects due to turbulence-turbulence interactions are neglected in the governing equations, but even when linearized in this fashion, the governing equations are unclosed at the one-point level due to the non-locality of the pressure fluctuations.

  8. Parity Deformed Jaynes-Cummings Model: “Robust Maximally Entangled States”

    PubMed Central

    Dehghani, A.; Mojaveri, B.; Shirin, S.; Faseghandis, S. Amiri

    2016-01-01

    The parity-deformations of the quantum harmonic oscillator are used to describe the generalized Jaynes-Cummings model based on the λ-analog of the Heisenberg algebra. The behavior is interestingly that of a coupled system comprising a two-level atom and a cavity field assisted by a continuous external classical field. The dynamical characters of the system is explored under the influence of the external field. In particular, we analytically study the generation of robust and maximally entangled states formed by a two-level atom trapped in a lossy cavity interacting with an external centrifugal field. We investigate the influence of deformation and detuning parameters on the degree of the quantum entanglement and the atomic population inversion. Under the condition of a linear interaction controlled by an external field, the maximally entangled states may emerge periodically along with time evolution. In the dissipation regime, the entanglement of the parity deformed JCM are preserved more with the increase of the deformation parameter, i.e. the stronger external field induces better degree of entanglement. PMID:27917882

  9. Altered ventral neck muscle deformation for individuals with whiplash associated disorder compared to healthy controls - a case-control ultrasound study.

    PubMed

    Peterson, Gunnel; Dedering, Åsa; Andersson, Erika; Nilsson, David; Trygg, Johan; Peolsson, Michael; Wallman, Thorne; Peolsson, Anneli

    2015-04-01

    Previous studies have shown altered neck muscle function in individuals with chronic whiplash associated disorder (WAD). However, we lack real-time investigations with non-invasive methods that can distinguish between the different ventral neck muscle layers. This study investigated deformations and deformation rates in the sternocleidomastoid (SCM), longus capitis (Lcap), and longus colli (Lco) muscles with real-time ultrasonography. Twenty-six individuals with WAD were compared with 26 controls, matched for age and sex. Ultrasound imaging of the SCM, Lcap, and Lco were recorded during 10 repetitive arm elevations. The first and tenth arm elevations were post-process analyzed with speckle tracking. There were few significant differences in the deformations or deformation rates in the SCM, Lcap, and Lco between the WAD and control group. In controls, deformations and deformation rates showed linear positive relationships between SCM/Lcap, SCM/Lco, and Lcap/Lco which increased from the first arm elevation (R(2) = 0.14-0.70); to the tenth arm elevation (R(2) = 0.51-0.71). The WAD group showed similar or weaker linear relationship (R(2) < 0.19) during the tenth compared to the first (R(2) < 0.44) arm elevation except for deformations in Lcap/Lco (R(2) = 0.13-0.57). This result indicated that deformations and deformation rates in one muscle were correlated by similar deformations and deformation rates in other neck muscles in the control group, but this interplay between muscles was not found in the WAD group. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Flows in forward deformable roll coating gaps: Comparison between spring and plane-strain models of roll cover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvalho, M.S.; Scriven, L.E.

    1997-12-01

    In this report the flow between rigid and a deformable rotating rolls fully submerged in a liquid pool is studied. The deformation of compliant roll cover is described by two different models (1) independent, radially oriented springs that deform in response to the traction force applied at the extremity of each or one-dimensional model, and (2) a plane-strain deformation of an incompressible Mooney-Rivlin material or non-linear elastic model. Based on the flow rate predictions of both models, an empirical relation between the spring constant of the one dimensional model and the roll cover thickness and elastic modulus is proposed.

  11. Investigation of the Impact of Different Terms in the Second Order Hamiltonian on Excitation Energies of Valence and Rydberg States.

    PubMed

    Tajti, Attila; Szalay, Péter G

    2016-11-08

    Describing electronically excited states of molecules accurately poses a challenging problem for theoretical methods. Popular second order techniques like Linear Response CC2 (CC2-LR), Partitioned Equation-of-Motion MBPT(2) (P-EOM-MBPT(2)), or Equation-of-Motion CCSD(2) (EOM-CCSD(2)) often produce results that are controversial and are ill-balanced with their accuracy on valence and Rydberg type states. In this study, we connect the theory of these methods and, to investigate the origin of their different behavior, establish a series of intermediate variants. The accuracy of these on excitation energies of singlet valence and Rydberg electronic states is benchmarked on a large sample against high-accuracy Linear Response CC3 references. The results reveal the role of individual terms of the second order similarity transformed Hamiltonian, and the reason for the bad performance of CC2-LR in the description of Rydberg states. We also clarify the importance of the T̂ 1 transformation employed in the CC2 procedure, which is found to be very small for vertical excitation energies.

  12. Entanglement hamiltonian and entanglement contour in inhomogeneous 1D critical systems

    NASA Astrophysics Data System (ADS)

    Tonni, Erik; Rodríguez-Laguna, Javier; Sierra, Germán

    2018-04-01

    Inhomogeneous quantum critical systems in one spatial dimension have been studied by using conformal field theory in static curved backgrounds. Two interesting examples are the free fermion gas in the harmonic trap and the inhomogeneous XX spin chain called rainbow chain. For conformal field theories defined on static curved spacetimes characterised by a metric which is Weyl equivalent to the flat metric, with the Weyl factor depending only on the spatial coordinate, we study the entanglement hamiltonian and the entanglement spectrum of an interval adjacent to the boundary of a segment where the same boundary condition is imposed at the endpoints. A contour function for the entanglement entropies corresponding to this configuration is also considered, being closely related to the entanglement hamiltonian. The analytic expressions obtained by considering the curved spacetime which characterises the rainbow model have been checked against numerical data for the rainbow chain, finding an excellent agreement.

  13. Deformations of a pre-stretched and lubricated finite elastic membrane driven by non-uniform external forcing

    NASA Astrophysics Data System (ADS)

    Boyko, Evgeniy; Gat, Amir; Bercovici, Moran

    2017-11-01

    We study viscous-elastic dynamics of a fluid confined between a rigid plate and a finite pre-stretched circular elastic membrane, pinned at its boundaries. The membrane is subjected to forces acting either directly on the membrane or through a pressure distribution in the fluid. Under the assumptions of strong pre-stretching and small deformations of the elastic sheet, and by applying the lubrication approximation for the flow, we derive the Green's function for the resulting linearized 4th order diffusion equation governing the deformation field in cylindrical coordinates. In addition, defining an asymptotic expansion with the ratio of the induced to prescribed tension serving as the small parameter, we reduce the coupled Reynolds and non-linear von-Karman equations to a set of three one-way coupled linear equations. The solutions to these equations provide insight onto the effects of induced tension, and enable simplified prediction of the correction for the deformation field. Funded by the European Research Council (ERC) under the European Union'sHorizon 2020 Research and Innovation Programme, Grant Agreement No. 678734 (MetamorphChip). E.B. is supported by the Adams Fellowship Program.

  14. Laser speckle strain and deformation sensor using linear array image cross-correlation method for specifically arranged triple-beam triple-camera configuration

    NASA Technical Reports Server (NTRS)

    Sarrafzadeh-Khoee, Adel K. (Inventor)

    2000-01-01

    The invention provides a method of triple-beam and triple-sensor in a laser speckle strain/deformation measurement system. The triple-beam/triple-camera configuration combined with sequential timing of laser beam shutters is capable of providing indications of surface strain and structure deformations. The strain and deformation quantities, the four variables of surface strain, in-plane displacement, out-of-plane displacement and tilt, are determined in closed form solutions.

  15. Transition probabilities for non self-adjoint Hamiltonians in infinite dimensional Hilbert spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagarello, F., E-mail: fabio.bagarello@unipa.it

    In a recent paper we have introduced several possible inequivalent descriptions of the dynamics and of the transition probabilities of a quantum system when its Hamiltonian is not self-adjoint. Our analysis was carried out in finite dimensional Hilbert spaces. This is useful, but quite restrictive since many physically relevant quantum systems live in infinite dimensional Hilbert spaces. In this paper we consider this situation, and we discuss some applications to well known models, introduced in the literature in recent years: the extended harmonic oscillator, the Swanson model and a generalized version of the Landau levels Hamiltonian. Not surprisingly we willmore » find new interesting features not previously found in finite dimensional Hilbert spaces, useful for a deeper comprehension of this kind of physical systems.« less

  16. Equivalent Hamiltonian for the Lee model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H. F.

    2008-03-15

    Using the techniques of quasi-Hermitian quantum mechanics and quantum field theory we use a similarity transformation to construct an equivalent Hermitian Hamiltonian for the Lee model. In the field theory confined to the V/N{theta} sector it effectively decouples V, replacing the three-point interaction of the original Lee model by an additional mass term for the V particle and a four-point interaction between N and {theta}. While the construction is originally motivated by the regime where the bare coupling becomes imaginary, leading to a ghost, it applies equally to the standard Hermitian regime where the bare coupling is real. In thatmore » case the similarity transformation becomes a unitary transformation.« less

  17. Symmetries of the Space of Linear Symplectic Connections

    NASA Astrophysics Data System (ADS)

    Fox, Daniel J. F.

    2017-01-01

    There is constructed a family of Lie algebras that act in a Hamiltonian way on the symplectic affine space of linear symplectic connections on a symplectic manifold. The associated equivariant moment map is a formal sum of the Cahen-Gutt moment map, the Ricci tensor, and a translational term. The critical points of a functional constructed from it interpolate between the equations for preferred symplectic connections and the equations for critical symplectic connections. The commutative algebra of formal sums of symmetric tensors on a symplectic manifold carries a pair of compatible Poisson structures, one induced from the canonical Poisson bracket on the space of functions on the cotangent bundle polynomial in the fibers, and the other induced from the algebraic fiberwise Schouten bracket on the symmetric algebra of each fiber of the cotangent bundle. These structures are shown to be compatible, and the required Lie algebras are constructed as central extensions of their! linear combinations restricted to formal sums of symmetric tensors whose first order term is a multiple of the differential of its zeroth order term.

  18. Quantum Hamiltonian daemons: Unitary analogs of combustion engines

    NASA Astrophysics Data System (ADS)

    Thesing, Eike P.; Gilz, Lukas; Anglin, James R.

    2017-07-01

    Hamiltonian daemons have recently been defined classically as small, closed Hamiltonian systems which can exhibit secular energy transfer from high-frequency to low-frequency degrees of freedom (steady downconversion), analogous to the steady transfer of energy in a combustion engine from the high terahertz frequencies of molecular excitations to the low kilohertz frequencies of piston motion [L. Gilz, E. P. Thesing, and J. R. Anglin, Phys. Rev. E 94, 042127 (2016), 10.1103/PhysRevE.94.042127]. Classical daemons achieve downconversion within a small, closed system by exploiting nonlinear resonances; the adiabatic theorem permits their operation but imposes nontrivial limitations on their efficiency. Here we investigate a simple example of a quantum mechanical daemon. In the correspondence regime it obeys similar efficiency limits to its classical counterparts, but in the strongly quantum mechanical regime the daemon operates in an entirely different manner. It maintains an engine-like behavior in a distinctly quantum mechanical form: a weight is lifted at a steady average speed through a long sequence of quantum jumps in momentum, at each of which a quantum of fuel is consumed. The quantum daemon can cease downconversion at any time through nonadiabatic Landau-Zener transitions, and continuing operation of the quantum daemon is associated with steadily growing entanglement between fast and slow degrees of freedom.

  19. Template-Based 3D Reconstruction of Non-rigid Deformable Object from Monocular Video

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Peng, Xiaodong; Zhou, Wugen; Liu, Bo; Gerndt, Andreas

    2018-06-01

    In this paper, we propose a template-based 3D surface reconstruction system of non-rigid deformable objects from monocular video sequence. Firstly, we generate a semi-dense template of the target object with structure from motion method using a subsequence video. This video can be captured by rigid moving camera orienting the static target object or by a static camera observing the rigid moving target object. Then, with the reference template mesh as input and based on the framework of classical template-based methods, we solve an energy minimization problem to get the correspondence between the template and every frame to get the time-varying mesh to present the deformation of objects. The energy terms combine photometric cost, temporal and spatial smoothness cost as well as as-rigid-as-possible cost which can enable elastic deformation. In this paper, an easy and controllable solution to generate the semi-dense template for complex objects is presented. Besides, we use an effective iterative Schur based linear solver for the energy minimization problem. The experimental evaluation presents qualitative deformation objects reconstruction results with real sequences. Compare against the results with other templates as input, the reconstructions based on our template have more accurate and detailed results for certain regions. The experimental results show that the linear solver we used performs better efficiency compared to traditional conjugate gradient based solver.

  20. Self-consistent chaos in a mean-field Hamiltonian model of fluids and plasmas

    NASA Astrophysics Data System (ADS)

    del-Castillo-Negrete, D.; Firpo, Marie-Christine

    2002-11-01

    We present a mean-field Hamiltonian model that describes the collective dynamics of marginally stable fluids and plasmas. In plasmas, the model describes the self-consistent evolution of electron holes and clumps in phase space. In fluids, the model describes the dynamics of vortices with negative and positive circulation in shear flows. The mean-field nature of the system makes it a tractable model to study the dynamics of large degrees-of-freedom, coupled Hamiltonian systems. Here we focus in the role of self-consistent chaos in the formation and destruction of phase space coherent structures. Numerical simulations in the finite N and in the Narrow kinetic limit (where N is the number of particles) show the existence of coherent, rotating dipole states. We approximate the dipole as two macroparticles, and show that the N = 2 limit has a family of rotating integrable solutions described by a one degree-of-freedom nontwist Hamiltonian. The coherence of the dipole is explained in terms of a parametric resonance between the rotation frequency of the macroparticles and the oscillation frequency of the self-consistent mean field. For a class of initial conditions, the mean field exhibits a self-consistent, elliptic-hyperbolic bifurcation that leads to the destruction of the dipole and violent mixing of the phase space.

  1. Spatial fluctuations in transient creep deformation

    NASA Astrophysics Data System (ADS)

    Laurson, Lasse; Rosti, Jari; Koivisto, Juha; Miksic, Amandine; Alava, Mikko J.

    2011-07-01

    We study the spatial fluctuations of transient creep deformation of materials as a function of time, both by digital image correlation (DIC) measurements of paper samples and by numerical simulations of a crystal plasticity or discrete dislocation dynamics model. This model has a jamming or yielding phase transition, around which power law or Andrade creep is found. During primary creep, the relative strength of the strain rate fluctuations increases with time in both cases—the spatially averaged creep rate obeys the Andrade law epsilont ~ t - 0.7, while the time dependence of the spatial fluctuations of the local creep rates is given by Δepsilont ~ t - 0.5. A similar scaling for the fluctuations is found in the logarithmic creep regime that is typically observed for lower applied stresses. We review briefly some classical theories of Andrade creep from the point of view of such spatial fluctuations. We consider these phenomenological, time-dependent creep laws in terms of a description based on a non-equilibrium phase transition separating evolving and frozen states of the system when the externally applied load is varied. Such an interpretation is discussed further by the data collapse of the local deformations in the spirit of absorbing state/depinning phase transitions, as well as deformation-deformation correlations and the width of the cumulative strain distributions. The results are also compared with the order parameter fluctuations observed close to the depinning transition of the 2d linear interface model or the quenched Edwards-Wilkinson equation.

  2. Sea-ice deformation in a coupled ocean-sea-ice model and in satellite remote sensing data

    NASA Astrophysics Data System (ADS)

    Spreen, Gunnar; Kwok, Ron; Menemenlis, Dimitris; Nguyen, An T.

    2017-07-01

    A realistic representation of sea-ice deformation in models is important for accurate simulation of the sea-ice mass balance. Simulated sea-ice deformation from numerical simulations with 4.5, 9, and 18 km horizontal grid spacing and a viscous-plastic (VP) sea-ice rheology are compared with synthetic aperture radar (SAR) satellite observations (RGPS, RADARSAT Geophysical Processor System) for the time period 1996-2008. All three simulations can reproduce the large-scale ice deformation patterns, but small-scale sea-ice deformations and linear kinematic features (LKFs) are not adequately reproduced. The mean sea-ice total deformation rate is about 40 % lower in all model solutions than in the satellite observations, especially in the seasonal sea-ice zone. A decrease in model grid spacing, however, produces a higher density and more localized ice deformation features. The 4.5 km simulation produces some linear kinematic features, but not with the right frequency. The dependence on length scale and probability density functions (PDFs) of absolute divergence and shear for all three model solutions show a power-law scaling behavior similar to RGPS observations, contrary to what was found in some previous studies. Overall, the 4.5 km simulation produces the most realistic divergence, vorticity, and shear when compared with RGPS data. This study provides an evaluation of high and coarse-resolution viscous-plastic sea-ice simulations based on spatial distribution, time series, and power-law scaling metrics.

  3. Capillary wave Hamiltonian for the Landau-Ginzburg-Wilson density functional

    NASA Astrophysics Data System (ADS)

    Chacón, Enrique; Tarazona, Pedro

    2016-06-01

    We study the link between the density functional (DF) formalism and the capillary wave theory (CWT) for liquid surfaces, focused on the Landau-Ginzburg-Wilson (LGW) model, or square gradient DF expansion, with a symmetric double parabola free energy, which has been extensively used in theoretical studies of this problem. We show the equivalence between the non-local DF results of Parry and coworkers and the direct evaluation of the mean square fluctuations of the intrinsic surface, as is done in the intrinsic sampling method for computer simulations. The definition of effective wave-vector dependent surface tensions is reviewed and we obtain new proposals for the LGW model. The surface weight proposed by Blokhuis and the surface mode analysis proposed by Stecki provide consistent and optimal effective definitions for the extended CWT Hamiltonian associated to the DF model. A non-local, or coarse-grained, definition of the intrinsic surface provides the missing element to get the mesoscopic surface Hamiltonian from the molecular DF description, as had been proposed a long time ago by Dietrich and coworkers.

  4. Capillary wave Hamiltonian for the Landau-Ginzburg-Wilson density functional.

    PubMed

    Chacón, Enrique; Tarazona, Pedro

    2016-06-22

    We study the link between the density functional (DF) formalism and the capillary wave theory (CWT) for liquid surfaces, focused on the Landau-Ginzburg-Wilson (LGW) model, or square gradient DF expansion, with a symmetric double parabola free energy, which has been extensively used in theoretical studies of this problem. We show the equivalence between the non-local DF results of Parry and coworkers and the direct evaluation of the mean square fluctuations of the intrinsic surface, as is done in the intrinsic sampling method for computer simulations. The definition of effective wave-vector dependent surface tensions is reviewed and we obtain new proposals for the LGW model. The surface weight proposed by Blokhuis and the surface mode analysis proposed by Stecki provide consistent and optimal effective definitions for the extended CWT Hamiltonian associated to the DF model. A non-local, or coarse-grained, definition of the intrinsic surface provides the missing element to get the mesoscopic surface Hamiltonian from the molecular DF description, as had been proposed a long time ago by Dietrich and coworkers.

  5. Isochronous extension of the Hamiltonian describing free motion in the Poincaré half-plane: Classical and quantum treatments

    NASA Astrophysics Data System (ADS)

    Calogero, F. A.; Leyvraz, F.

    2007-09-01

    We modify (in two different manners) the Hamiltonian describing motions in the Poincaré half-plane so that the modified Hamiltonians thereby obtained are entirely isochronous: indeed, in the classical context, all the motions they entail are periodic with the same period. We then investigate suitably quantized versions of these systems and show that their spectra are equispaced.

  6. Nonperturbative light-front Hamiltonian methods

    NASA Astrophysics Data System (ADS)

    Hiller, J. R.

    2016-09-01

    We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli-Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, ϕ4 theory, ordinary Yukawa theory, supersymmetric Yang-Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations.

  7. High-precision calculations in strongly coupled quantum field theory with next-to-leading-order renormalized Hamiltonian Truncation

    NASA Astrophysics Data System (ADS)

    Elias-Miró, Joan; Rychkov, Slava; Vitale, Lorenzo G.

    2017-10-01

    Hamiltonian Truncation (a.k.a. Truncated Spectrum Approach) is an efficient numerical technique to solve strongly coupled QFTs in d = 2 spacetime dimensions. Further theoretical developments are needed to increase its accuracy and the range of applicability. With this goal in mind, here we present a new variant of Hamiltonian Truncation which exhibits smaller dependence on the UV cutoff than other existing implementations, and yields more accurate spectra. The key idea for achieving this consists in integrating out exactly a certain class of high energy states, which corresponds to performing renormalization at the cubic order in the interaction strength. We test the new method on the strongly coupled two-dimensional quartic scalar theory. Our work will also be useful for the future goal of extending Hamiltonian Truncation to higher dimensions d ≥ 3.

  8. Incremental analysis of large elastic deformation of a rotating cylinder

    NASA Technical Reports Server (NTRS)

    Buchanan, G. R.

    1976-01-01

    The effect of finite deformation upon a rotating, orthotropic cylinder was investigated using a general incremental theory. The incremental equations of motion are developed using the variational principle. The governing equations are derived using the principle of virtual work for a body with initial stress. The governing equations are reduced to those for the title problem and a numerical solution is obtained using finite difference approximations. Since the problem is defined in terms of one independent space coordinate, the finite difference grid can be modified as the incremental deformation occurs without serious numerical difficulties. The nonlinear problem is solved incrementally by totaling a series of linear solutions.

  9. SU-E-T-237: Deformable Image Registration and Deformed Dose Composite for Volumetric Evaluation of Multimodal Gynecological Cancer Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albani, D; Sherertz, T; Ellis, R

    2015-06-15

    Purpose: Radiotherapy plans for patients with cervical cancer treated with EBRT followed by HDR brachytherapy are optimized by constraining dose to organs at risk (OARs). Risk of treatment related toxicities is estimated based on the dose received to the hottest 2cc (D2cc) of the bladder, bowel, rectum, and sigmoid. To account for intrafractional variation in OAR volume and positioning, a dose deformation method is proposed for more accurate evaluation of dose distribution for these patients. Methods: Radiotherapy plans from five patients who received 50.4Gy pelvic EBRT followed by 30Gy in five fractions of HDR brachytherapy, using split-ring and tandem applicators,more » were retrospectively evaluated using MIM Software version 6.0. Dose accumulation workflows were used for initial deformation of EBRT and HDR planning CTs onto a common HDR planning CT. The Reg Refine tool was applied with user-specified local alignments to refine the deformation. Doses from the deformed images were transferred to the common planning CT. Deformed doses were scaled to the EQD2, following the linear-quadratic BED model (considered α/β ratio for tumor as 10, and 3 for rest of the tissues), and then combined to create the dose composite. MIM composite doses were compared to the clinically-reported plan assessments based upon the American Brachytherapy Society (ABS) guidelines for cervical HDR brachytherapy treatment. Results: Bladder D2cc exhibited significant reduction (−11.4%±3.85%, p< 0.02) when evaluated using MIM deformable dose composition. Differences observed for bowel, rectum, and sigmoid D2cc were not significant (−0.58±7.37%, −4.13%±13.7%, and 8.58%±4.71%, respectively and p>0.05 for all) relative to the calculated values used clinically. Conclusion: Application of deformable dose composite techniques may lead to more accurate total dose reporting and can allow for elevated dose to target structures with the assurance of not exceeding dose to OARs. Further

  10. Scattering matrix of arbitrary tight-binding Hamiltonians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramírez, C., E-mail: carlos@ciencias.unam.mx; Medina-Amayo, L.A.

    2017-03-15

    A novel efficient method to calculate the scattering matrix (SM) of arbitrary tight-binding Hamiltonians is proposed, including cases with multiterminal structures. In particular, the SM of two kinds of fundamental structures is given, which can be used to obtain the SM of bigger systems iteratively. Also, a procedure to obtain the SM of layer-composed periodic leads is described. This method allows renormalization approaches, which permits computations over macroscopic length systems without introducing additional approximations. Finally, the transmission coefficient of a ring-shaped multiterminal system and the transmission function of a square-lattice nanoribbon with a reduced width region are calculated.

  11. Simple and Double Alfven Waves: Hamiltonian Aspects

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Zank, G. P.; Hu, Q.; le Roux, J. A.; Dasgupta, B.

    2011-12-01

    We discuss the nature of simple and double Alfvén waves. Simple waves depend on a single phase variable \\varphi, but double waves depend on two independent phase variables \\varphi1 and \\varphi2. The phase variables depend on the space and time coordinates x and t. Simple and double Alfvén waves have the same integrals, namely, the entropy, density, magnetic pressure, and group velocity (the sum of the Alfvén and fluid velocities) are constant throughout the flow. We present examples of both simple and double Alfvén waves, and discuss Hamiltonian formulations of the waves.

  12. Droplet Deformation in an Extensional Flow: The Role of Surfactant Physical Chemistry

    NASA Technical Reports Server (NTRS)

    Stebe, Kathleen J.

    1996-01-01

    Surfactant-induced Marangoni effects strongly alter the stresses exerted along fluid particle interfaces. In low gravity processes, these stresses can dictate the system behavior. The dependence of Marangoni effects on surfactant physical chemistry is not understood, severely impacting our ability to predict and control fluid particle flows. A droplet in an extensional flow allows the controlled study of stretching and deforming interfaces. The deformations of the drop allow both Marangoni stresses, which resist tangential shear, and Marangoni elasticities, which resist surface dilatation, to develop. This flow presents an ideal model system for studying these effects. Prior surfactant-related work in this flow considered a linear dependence of the surface tension on the surface concentration, valid only at dilute surface concentrations, or a non-linear framework at concentrations sufficiently dilute that the linear approximation was valid. The linear framework becomes inadequate for several reasons. The finite dimensions of surfactant molecules must be taken into account with a model that includes surfaces saturation. Nonideal interactions between adsorbed surfactant molecules alter the partitioning of surfactant between the bulk and the interface, the dynamics of surfactant adsorptive/desorptive exchange, and the sensitivity of the surface tension to adsorbed surfactant. For example, cohesion between hydrocarbon chains favors strong adsorption. Cohesion also slows the rate of desorption from interfaces, and decreases the sensitivity of the surface tension to adsorbed surfactant. Strong cohesive interactions result in first order surface phase changes with a plateau in the surface tension vs surface concentration. Within this surface concentration range, the surface tension is decoupled from surface concentration gradients. We are engaged in the study of the role of surfactant physical chemistry in determining the Marangoni stresses on a drop in an extensional

  13. Linearized T-Matrix and Mie Scattering Computations

    NASA Technical Reports Server (NTRS)

    Spurr, R.; Wang, J.; Zeng, J.; Mishchenko, M. I.

    2011-01-01

    We present a new linearization of T-Matrix and Mie computations for light scattering by non-spherical and spherical particles, respectively. In addition to the usual extinction and scattering cross-sections and the scattering matrix outputs, the linearized models will generate analytical derivatives of these optical properties with respect to the real and imaginary parts of the particle refractive index, and (for non-spherical scatterers) with respect to the ''shape'' parameter (the spheroid aspect ratio, cylinder diameter/height ratio, Chebyshev particle deformation factor). These derivatives are based on the essential linearity of Maxwell's theory. Analytical derivatives are also available for polydisperse particle size distribution parameters such as the mode radius. The T-matrix formulation is based on the NASA Goddard Institute for Space Studies FORTRAN 77 code developed in the 1990s. The linearized scattering codes presented here are in FORTRAN 90 and will be made publicly available.

  14. Effective Hamiltonians for correlated narrow energy band systems and magnetic insulators: Role of spin-orbit interactions in metal-insulator transitions and magnetic phase transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Subrata; Vijay, Amrendra, E-mail: avijay@iitm.ac.in

    Using a second-quantized many-electron Hamiltonian, we obtain (a) an effective Hamiltonian suitable for materials whose electronic properties are governed by a set of strongly correlated bands in a narrow energy range and (b) an effective spin-only Hamiltonian for magnetic materials. The present Hamiltonians faithfully include phonon and spin-related interactions as well as the external fields to study the electromagnetic response properties of complex materials and they, in appropriate limits, reduce to the model Hamiltonians due to Hubbard and Heisenberg. With the Hamiltonian for narrow-band strongly correlated materials, we show that the spin-orbit interaction provides a mechanism for metal-insulator transition, whichmore » is distinct from the Mott-Hubbard (driven by the electron correlation) and the Anderson mechanism (driven by the disorder). Next, with the spin-only Hamiltonian, we demonstrate the spin-orbit interaction to be a reason for the existence of antiferromagnetic phase in materials which are characterized by a positive isotropic spin-exchange energy. This is distinct from the Néel-VanVleck-Anderson paradigm which posits a negative spin-exchange for the existence of antiferromagnetism. We also find that the Néel temperature increases as the absolute value of the spin-orbit coupling increases.« less

  15. Sequential Feedback Scheme Outperforms the Parallel Scheme for Hamiltonian Parameter Estimation.

    PubMed

    Yuan, Haidong

    2016-10-14

    Measurement and estimation of parameters are essential for science and engineering, where the main quest is to find the highest achievable precision with the given resources and design schemes to attain it. Two schemes, the sequential feedback scheme and the parallel scheme, are usually studied in the quantum parameter estimation. While the sequential feedback scheme represents the most general scheme, it remains unknown whether it can outperform the parallel scheme for any quantum estimation tasks. In this Letter, we show that the sequential feedback scheme has a threefold improvement over the parallel scheme for Hamiltonian parameter estimations on two-dimensional systems, and an order of O(d+1) improvement for Hamiltonian parameter estimation on d-dimensional systems. We also show that, contrary to the conventional belief, it is possible to simultaneously achieve the highest precision for estimating all three components of a magnetic field, which sets a benchmark on the local precision limit for the estimation of a magnetic field.

  16. Classical Affine W-Algebras and the Associated Integrable Hamiltonian Hierarchies for Classical Lie Algebras

    NASA Astrophysics Data System (ADS)

    De Sole, Alberto; Kac, Victor G.; Valeri, Daniele

    2018-06-01

    We prove that any classical affine W-algebra W (g, f), where g is a classical Lie algebra and f is an arbitrary nilpotent element of g, carries an integrable Hamiltonian hierarchy of Lax type equations. This is based on the theories of generalized Adler type operators and of generalized quasideterminants, which we develop in the paper. Moreover, we show that under certain conditions, the product of two generalized Adler type operators is a Lax type operator. We use this fact to construct a large number of integrable Hamiltonian systems, recovering, as a special case, all KdV type hierarchies constructed by Drinfeld and Sokolov.

  17. A Hamiltonian driven quantum-like model for overdistribution in episodic memory recollection.

    NASA Astrophysics Data System (ADS)

    Broekaert, Jan B.; Busemeyer, Jerome R.

    2017-06-01

    While people famously forget genuine memories over time, they also tend to mistakenly over-recall equivalent memories concerning a given event. The memory phenomenon is known by the name of episodic overdistribution and occurs both in memories of disjunctions and partitions of mutually exclusive events and has been tested, modeled and documented in the literature. The total classical probability of recalling exclusive sub-events most often exceeds the probability of recalling the composed event, i.e. a subadditive total. We present a Hamiltonian driven propagation for the Quantum Episodic Memory model developed by Brainerd (et al., 2015) for the episodic memory overdistribution in the experimental immediate item false memory paradigm (Brainerd and Reyna, 2008, 2010, 2015). Following the Hamiltonian method of Busemeyer and Bruza (2012) our model adds time-evolution of the perceived memory state through the stages of the experimental process based on psychologically interpretable parameters - γ_c for recollection capability of cues, κ_p for bias or description-dependence by probes and β for the average gist component in the memory state at start. With seven parameters the Hamiltonian model shows good accuracy of predictions both in the EOD-disjunction and in the EOD-subadditivity paradigm. We noticed either an outspoken preponderance of the gist over verbatim trace, or the opposite, in the initial memory state when β is real. Only for complex β a mix of both traces is present in the initial state for the EOD-subadditivity paradigm.

  18. Multicast backup reprovisioning problem for Hamiltonian cycle-based protection on WDM networks

    NASA Astrophysics Data System (ADS)

    Din, Der-Rong; Huang, Jen-Shen

    2014-03-01

    As networks grow in size and complexity, the chance and the impact of failures increase dramatically. The pre-allocated backup resources cannot provide 100% protection guarantee when continuous failures occur in a network. In this paper, the multicast backup re-provisioning problem (MBRP) for Hamiltonian cycle (HC)-based protection on WDM networks for the link-failure case is studied. We focus on how to recover the protecting capabilities of Hamiltonian cycle against the subsequent link-failures on WDM networks for multicast transmissions, after recovering the multicast trees affected by the previous link-failure. Since this problem is a hard problem, an algorithm, which consists of several heuristics and a genetic algorithm (GA), is proposed to solve it. The simulation results of the proposed method are also given. Experimental results indicate that the proposed algorithm can solve this problem efficiently.

  19. Simulating Open Quantum Systems with Hamiltonian Ensembles and the Nonclassicality of the Dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Bin; Gneiting, Clemens; Lo, Ping-Yuan; Chen, Yueh-Nan; Nori, Franco

    2018-01-01

    The incoherent dynamical properties of open quantum systems are generically attributed to an ongoing correlation between the system and its environment. Here, we propose a novel way to assess the nature of these system-environment correlations by examining the system dynamics alone. Our approach is based on the possibility or impossibility to simulate open-system dynamics with Hamiltonian ensembles. As we show, such (im)possibility to simulate is closely linked to the system-environment correlations. We thus define the nonclassicality of open-system dynamics in terms of the nonexistence of a Hamiltonian-ensemble simulation. This classifies any nonunital open-system dynamics as nonclassical. We give examples for open-system dynamics that are unital and classical, as well as unital and nonclassical.

  20. Analytical spectrum for a Hamiltonian of quantum dots with Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Dossa, Anselme F.; Avossevou, Gabriel Y. H.

    2014-12-01

    We determine the analytical solution for a Hamiltonian describing a confined charged particle in a quantum dot, including Rashba spin-orbit coupling and Zeeman splitting terms. The approach followed in this paper is straightforward and uses the symmetrization of the wave function's components. The eigenvalue problem for the Hamiltonian in Bargmann's Hilbert space reduces to a system of coupled first-order differential equations. Then we exploit the symmetry in the system to obtain uncoupled second-order differential equations, which are found to be the Whittaker-Ince limit of the confluent Heun equations. Analytical expressions as well as numerical results are obtained for the spectrum. One of the main features of such models, namely, the level splitting, is present through the spectrum obtained in this paper.

  1. Stroboscopic versus nonstroboscopic dynamics in the Floquet realization of the Harper-Hofstadter Hamiltonian

    NASA Astrophysics Data System (ADS)

    Bukov, Marin; Polkovnikov, Anatoli

    2014-10-01

    We study the stroboscopic and nonstroboscopic dynamics in the Floquet realization of the Harper-Hofstadter Hamiltonian. We show that the former produces the evolution expected in the high-frequency limit only for observables, which commute with the operator to which the driving protocol couples. On the contrary, nonstroboscopic dynamics is capable of capturing the evolution governed by the Floquet Hamiltonian of any observable associated with the effective high-frequency model. We provide exact numerical simulations for the dynamics of the number operator following a quantum cyclotron orbit on a 2×2 plaquette, as well as the chiral current operator flowing along the legs of a 2×20 ladder. The exact evolution is compared with its stroboscopic and nonstroboscopic counterparts, including finite-frequency corrections.

  2. A quantum algorithm for obtaining the lowest eigenstate of a Hamiltonian assisted with an ancillary qubit system

    NASA Astrophysics Data System (ADS)

    Bang, Jeongho; Lee, Seung-Woo; Lee, Chang-Woo; Jeong, Hyunseok

    2015-01-01

    We propose a quantum algorithm to obtain the lowest eigenstate of any Hamiltonian simulated by a quantum computer. The proposed algorithm begins with an arbitrary initial state of the simulated system. A finite series of transforms is iteratively applied to the initial state assisted with an ancillary qubit. The fraction of the lowest eigenstate in the initial state is then amplified up to 1. We prove that our algorithm can faithfully work for any arbitrary Hamiltonian in the theoretical analysis. Numerical analyses are also carried out. We firstly provide a numerical proof-of-principle demonstration with a simple Hamiltonian in order to compare our scheme with the so-called "Demon-like algorithmic cooling (DLAC)", recently proposed in Xu (Nat Photonics 8:113, 2014). The result shows a good agreement with our theoretical analysis, exhibiting the comparable behavior to the best `cooling' with the DLAC method. We then consider a random Hamiltonian model for further analysis of our algorithm. By numerical simulations, we show that the total number of iterations is proportional to , where is the difference between the two lowest eigenvalues and is an error defined as the probability that the finally obtained system state is in an unexpected (i.e., not the lowest) eigenstate.

  3. Non-linear flow law of rockglacier creep determined from geomorphological observations: A case study from the Murtèl rockglacier (Engadin, SE Switzerland)

    NASA Astrophysics Data System (ADS)

    Frehner, Marcel; Amschwand, Dominik; Gärtner-Roer, Isabelle

    2016-04-01

    Rockglaciers consist of unconsolidated rock fragments (silt/sand-rock boulders) with interstitial ice; hence their creep behavior (i.e., rheology) may deviate from the simple and well-known flow-laws for pure ice. Here we constrain the non-linear viscous flow law that governs rockglacier creep based on geomorphological observations. We use the Murtèl rockglacier (upper Engadin valley, SE Switzerland) as a case study, for which high-resolution digital elevation models (DEM), time-lapse borehole deformation data, and geophysical soundings exist that reveal the exterior and interior architecture and dynamics of the landform. Rockglaciers often feature a prominent furrow-and-ridge topography. For the Murtèl rockglacier, Frehner et al. (2015) reproduced the wavelength, amplitude, and distribution of the furrow-and-ridge morphology using a linear viscous (Newtonian) flow model. Arenson et al. (2002) presented borehole deformation data, which highlight the basal shear zone at about 30 m depth and a curved deformation profile above the shear zone. Similarly, the furrow-and-ridge morphology also exhibits a curved geometry in map view. Hence, the surface morphology and the borehole deformation data together describe a curved 3D geometry, which is close to, but not quite parabolic. We use a high-resolution DEM to quantify the curved geometry of the Murtèl furrow-and-ridge morphology. We then calculate theoretical 3D flow geometries using different non-linear viscous flow laws. By comparing them to the measured curved 3D geometry (i.e., both surface morphology and borehole deformation data), we can determine the most adequate flow-law that fits the natural data best. Linear viscous models result in perfectly parabolic flow geometries; non-linear creep leads to localized deformation at the sides and bottom of the rockglacier while the deformation in the interior and top are less intense. In other words, non-linear creep results in non-parabolic flow geometries. Both the

  4. Localization in Naturally Deformed Systems - the Default State?

    NASA Astrophysics Data System (ADS)

    Clancy White, Joseph

    2017-04-01

    Based on the extensive literature on localized rock deformation, conventional wisdom would interpret it to be a special behaviour within an anticipated background of otherwise uniform deformation. The latter notwithstanding, the rock record is so rife with transient (cyclic), heterogeneous deformation, notably shear localization, as to characterize localization as the anticipated 'normal' behaviour. The corollary is that steady, homogeneous deformation is significantly less common, and if achieved must reflect some special set of conditions that are not representative of the general case. An issue central to natural deformation is then not the existance of localized strain, but rather how the extant deformation processes scale across tectonic phenomena and in turn organize to enable a coherent(?) descripion of Earth deformation. Deformation is fundamentally quantized, discrete (diffusion, glide, crack propagation) and reliant on the defect state of rock-forming minerals. The strain energy distribution that drives thermo-mechanical responses is in the first instance established at the grain-scale where the non-linear interaction of defect-mediated micromechanical processes introduces heterogeneous behaviour described by various gradient theories, and evidenced by the defect microstructures of deformed rocks. Hence, the potential for non-uniform response is embedded within even quasi-uniform, monomineralic materials, seen, for example, in the spatially discrete evolution of dynamic recrystallization. What passes as homogeneous or uniform deformation at various scales is the aggregation of responses at some characteristic dimension at which heterogeneity is not registered or measured. Nevertheless, the aggregate response and associated normalized parameters (strain, strain rate) do not correspond to any condition actually experienced by the deforming material. The more common types of macroscopic heterogeneity promoting localization comprise mechanically contrasting

  5. Some aspects of forecasting the post-mining substratum deformation for evaluation of its influence on constructions

    NASA Astrophysics Data System (ADS)

    Strzałkowski, Piotr; Ścigała, Roman; Szafulera, Katarzyna

    2018-04-01

    Some problems have been discussed, connected with performing predictions of post-mining terrain deformations. Especially problems occur with the summation of horizontal strain over long time intervals as well as predictions of linear discontinuous deformations. Of great importance in recent years is the problem of taking into account transient values of deformations associated with the development of extraction field. The exemplary analysis has been presented of planned extraction influences on two characteristic locations of building structure. The proposal has been shown of calculations with using transient deformation model allowing to describe the influence of extraction advance influence on the value of coefficient of extraction rate c (time factor), according to own original empirical formula.

  6. Simulation of Earthquake-Generated Sea-Surface Deformation

    NASA Astrophysics Data System (ADS)

    Vogl, Chris; Leveque, Randy

    2016-11-01

    Earthquake-generated tsunamis can carry with them a powerful, destructive force. One of the most well-known, recent examples is the tsunami generated by the Tohoku earthquake, which was responsible for the nuclear disaster in Fukushima. Tsunami simulation and forecasting, a necessary element of emergency procedure planning and execution, is typically done using the shallow-water equations. A typical initial condition is that using the Okada solution for a homogeneous, elastic half-space. This work focuses on simulating earthquake-generated sea-surface deformations that are more true to the physics of the materials involved. In particular, a water layer is added on top of the half-space that models the seabed. Sea-surface deformations are then simulated using the Clawpack hyperbolic PDE package. Results from considering the water layer both as linearly elastic and as "nearly incompressible" are compared to that of the Okada solution.

  7. Linear and Non-Linear Dielectric Response of Periodic Systems from Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Umari, Paolo

    2006-03-01

    We present a novel approach that allows to calculate the dielectric response of periodic systems in the quantum Monte Carlo formalism. We employ a many-body generalization for the electric enthalpy functional, where the coupling with the field is expressed via the Berry-phase formulation for the macroscopic polarization. A self-consistent local Hamiltonian then determines the ground-state wavefunction, allowing for accurate diffusion quantum Monte Carlo calculations where the polarization's fixed point is estimated from the average on an iterative sequence. The polarization is sampled through forward-walking. This approach has been validated for the case of the polarizability of an isolated hydrogen atom, and then applied to a periodic system. We then calculate the linear susceptibility and second-order hyper-susceptibility of molecular-hydrogen chains whith different bond-length alternations, and assess the quality of nodal surfaces derived from density-functional theory or from Hartree-Fock. The results found are in excellent agreement with the best estimates obtained from the extrapolation of quantum-chemistry calculations.P. Umari, A.J. Williamson, G. Galli, and N. MarzariPhys. Rev. Lett. 95, 207602 (2005).

  8. Effects of Host-rock Fracturing on Elastic-deformation Source Models of Volcano Deflation.

    PubMed

    Holohan, Eoghan P; Sudhaus, Henriette; Walter, Thomas R; Schöpfer, Martin P J; Walsh, John J

    2017-09-08

    Volcanoes commonly inflate or deflate during episodes of unrest or eruption. Continuum mechanics models that assume linear elastic deformation of the Earth's crust are routinely used to invert the observed ground motions. The source(s) of deformation in such models are generally interpreted in terms of magma bodies or pathways, and thus form a basis for hazard assessment and mitigation. Using discontinuum mechanics models, we show how host-rock fracturing (i.e. non-elastic deformation) during drainage of a magma body can progressively change the shape and depth of an elastic-deformation source. We argue that this effect explains the marked spatio-temporal changes in source model attributes inferred for the March-April 2007 eruption of Piton de la Fournaise volcano, La Reunion. We find that pronounced deflation-related host-rock fracturing can: (1) yield inclined source model geometries for a horizontal magma body; (2) cause significant upward migration of an elastic-deformation source, leading to underestimation of the true magma body depth and potentially to a misinterpretation of ascending magma; and (3) at least partly explain underestimation by elastic-deformation sources of changes in sub-surface magma volume.

  9. Contribution of Deformation to Sea Ice Mass Balance: A Case Study From an N-ICE2015 Storm

    NASA Astrophysics Data System (ADS)

    Itkin, Polona; Spreen, Gunnar; Hvidegaard, Sine Munk; Skourup, Henriette; Wilkinson, Jeremy; Gerland, Sebastian; Granskog, Mats A.

    2018-01-01

    The fastest and most efficient process of gaining sea ice volume is through the mechanical redistribution of mass as a consequence of deformation events. During the ice growth season divergent motion produces leads where new ice grows thermodynamically, while convergent motion fractures the ice and either piles the resultant ice blocks into ridges or rafts one floe under the other. Here we present an exceptionally detailed airborne data set from a 9 km2 area of first year and second year ice in the Transpolar Drift north of Svalbard that allowed us to estimate the redistribution of mass from an observed deformation event. To achieve this level of detail we analyzed changes in sea ice freeboard acquired from two airborne laser scanner surveys just before and right after a deformation event brought on by a passing low-pressure system. A linear regression model based on divergence during this storm can explain 64% of freeboard variability. Over the survey region we estimated that about 1.3% of level sea ice volume was pressed together into deformed ice and the new ice formed in leads in a week after the deformation event would increase the sea ice volume by 0.5%. As the region is impacted by about 15 storms each winter, a simple linear extrapolation would result in about 7% volume increase and 20% deformed ice fraction at the end of the season.

  10. A new Morse-oscillator based Hamiltonian for H 3+: Calculation of line strengths

    NASA Astrophysics Data System (ADS)

    Jensen, Per; Špirko, V.

    1986-07-01

    In two recent publications [V. Špirko, P. Jensen, P. R. Bunker, and A. Čejchan, J. Mol. Spectrosc.112, 183-202 (1985); P. Jensen, V. Špirko, and P. R. Bunker, J. Mol. Spectrosc.115, 269-293 (1986)], we have described the development of Morse oscillator adapted rotation-vibration Hamiltonians for equilateral triangular X3 and Y2X molecules, and we have used these Hamiltonians to calculate the rotation-vibration energies for H 3+ and its X3+ and Y2X+ isotopes from ab initio potential energy functions. The present paper presents a method for calculating rotation-vibration line strengths of H 3+ and its isotopes using an ab initio dipole moment function [G. D. Carney and R. N. Porter, J. Chem. Phys.60, 4251-4264 (1974)] together with the energies and wave-functions obtained by diagonalization of the Morse oscillator adapted Hamiltonians. We use this method for calculating the vibrational transition moments involving the lowest vibrational states of H 3+, D 3+, H 2D +, and D 2H +. Further, we calculate the line strengths of the low- J transitions in the rotational spectra of H 3+ in the vibrational ground state and in the ν1 and ν2 states. We hope that the calculations presented will facilitate the search for further rotation-vibration transitions of H 3+ and its isotopes.

  11. Deformation-Induced Precession of a Robot Moving on Curved Space

    NASA Astrophysics Data System (ADS)

    Li, Shengkai; Aydin, Yasemin; Lofaro, Olivia; Rieser, Jennifer; Goldman, Daniel

    Previous studies have demonstrated that passive particles rolling on a deformed surface can mimic aspects of general relativity [Ford et al, AJP, 2015]. However, these systems are dissipative. To explore steady-state dynamics, we study the movement of a self-propelled robot car on a large deformable elastic membrane: a spandex sheet stretched over a metal frame with a diameter of 2.5 m. Two wheels in the rear of the car are differentially-driven by a DC motor, and a caster in the front helps maintain directional stability; in the absence of curvature the car drives straight. A linear actuator attached below the membrane allows for controlled deformation at the center of the membrane. We find that closed elliptic orbits occur when the membrane is highly depressed ( 10 cm). However, when the center is only slightly indented, the elliptical orbits precess at a rate depending on the orbit shape and the depression. Remarkably, this dynamic is well described by the Schwarzschild metric solution, typically used to describe the effects of gravity on bodies orbiting a massive object. Experiments with multiple cars reveal complex interactions that are mediated through car-induced deformations of the membrane.

  12. Hamiltonian flows with random-walk behaviour originating from zero-sum games and fictitious play

    NASA Astrophysics Data System (ADS)

    van Strien, Sebastian

    2011-06-01

    In this paper we introduce Hamiltonian dynamics, inspired by zero-sum games (best response and fictitious play dynamics). The Hamiltonian functions we consider are continuous and piecewise affine (and of a very simple form). It follows that the corresponding Hamiltonian vector fields are discontinuous and multi-valued. Differential equations with discontinuities along a hyperplane are often called 'Filippov systems', and there is a large literature on such systems, see for example (di Bernardo et al 2008 Theory and applications Piecewise-Smooth Dynamical Systems (Applied Mathematical Sciences vol 163) (London: Springer); Kunze 2000 Non-Smooth Dynamical Systems (Lecture Notes in Mathematics vol 1744) (Berlin: Springer); Leine and Nijmeijer 2004 Dynamics and Bifurcations of Non-smooth Mechanical Systems (Lecture Notes in Applied and Computational Mechanics vol 18) (Berlin: Springer)). The special feature of the systems we consider here is that they have discontinuities along a large number of intersecting hyperplanes. Nevertheless, somewhat surprisingly, the flow corresponding to such a vector field exists, is unique and continuous. We believe that these vector fields deserve attention, because it turns out that the resulting dynamics are rather different from those found in more classically defined Hamiltonian dynamics. The vector field is extremely simple: outside codimension-one hyperplanes it is piecewise constant and so the flow phit piecewise a translation (without stationary points). Even so, the dynamics can be rather rich and complicated as a detailed study of specific examples show (see for example theorems 7.1 and 7.2 and also (Ostrovski and van Strien 2011 Regular Chaotic Dynf. 16 129-54)). In the last two sections of the paper we give some applications to game theory, and finish with posing a version of the Palis conjecture in the context of the class of non-smooth systems studied in this paper. To Jacob Palis on his 70th birthday.

  13. Deformation history and load sequence effects on cumulative fatigue damage and life predictions

    NASA Astrophysics Data System (ADS)

    Colin, Julie

    strain control and ratcheting in load control and their influence on fatigue life are discussed. Some unusual mean strain test results are presented for stainless steel 304L, where in spite of mean stress relaxation fatigue lives were significantly longer than fully-reversed tests. Prestraining indicated no effect on either deformation or fatigue behavior of aluminum, while it induced considerable hardening in stainless steel 304L and led to different results on fatigue life, depending on the test control mode. In step tests for stainless steel 304L, strong hardening induced by the first step of a high-low sequence significantly affects the fatigue behavior, depending on the test control mode used. For periodic overload tests of stainless steel 340L, hardening due to the overloads was progressive throughout life and more significant than in high-low step tests. For aluminum, no effect on deformation behavior was observed due to periodic overloads. However, the direction of the overloads was found to affect fatigue life, as tensile overloads led to longer lives, while compressive overloads led to shorter lives. Deformation and fatigue behaviors under random loading conditions are also presented and discussed for the two materials. The applicability of a common cumulative damage rule, the linear damage rule, is assessed for the two types of material, and for various loading conditions. While the linear damage rule associated with a strain-life or stress-life curve is shown to be fairly accurate for life predictions for aluminum, it is shown to poorly represent the behavior of stainless steel, especially in prestrained and high-low step tests, in load control. In order to account for prior deformation effects and achieve accurate fatigue life predictions for stainless steel, parameters including both stress and strain terms are required. The Smith-Watson-Topper and Fatemi-Socie approaches, as such parameters, are shown to correlate most test data fairly accurately. For

  14. Linear feedback stabilization of a dispersively monitored qubit

    NASA Astrophysics Data System (ADS)

    Patti, Taylor Lee; Chantasri, Areeya; García-Pintos, Luis Pedro; Jordan, Andrew N.; Dressel, Justin

    2017-08-01

    The state of a continuously monitored qubit evolves stochastically, exhibiting competition between coherent Hamiltonian dynamics and diffusive partial collapse dynamics that follow the measurement record. We couple these distinct types of dynamics together by linearly feeding the collected record for dispersive energy measurements directly back into a coherent Rabi drive amplitude. Such feedback turns the competition cooperative and effectively stabilizes the qubit state near a target state. We derive the conditions for obtaining such dispersive state stabilization and verify the stabilization conditions numerically. We include common experimental nonidealities, such as energy decay, environmental dephasing, detector efficiency, and feedback delay, and show that the feedback delay has the most significant negative effect on the feedback protocol. Setting the measurement collapse time scale to be long compared to the feedback delay yields the best stabilization.

  15. Fluctuation theorem for Hamiltonian Systems: Le Chatelier's principle

    NASA Astrophysics Data System (ADS)

    Evans, Denis J.; Searles, Debra J.; Mittag, Emil

    2001-05-01

    For thermostated dissipative systems, the fluctuation theorem gives an analytical expression for the ratio of probabilities that the time-averaged entropy production in a finite system observed for a finite time takes on a specified value compared to the negative of that value. In the past, it has been generally thought that the presence of some thermostating mechanism was an essential component of any system that satisfies a fluctuation theorem. In the present paper, we point out that a fluctuation theorem can be derived for purely Hamiltonian systems, with or without applied dissipative fields.

  16. Reducing the two-body problem in scalar-tensor theories to the motion of a test particle: A scalar-tensor effective-one-body approach

    NASA Astrophysics Data System (ADS)

    Julié, Félix-Louis

    2018-01-01

    Starting from the second post-Keplerian (2PK) Hamiltonian describing the conservative part of the two-body dynamics in massless scalar-tensor (ST) theories, we build an effective-one-body (EOB) Hamiltonian which is a ν deformation (where ν =0 is the test mass limit) of the analytically known ST Hamiltonian of a test particle. This ST-EOB Hamiltonian leads to a simple (yet canonically equivalent) formulation of the conservative 2PK two-body problem, but also defines a resummation of the dynamics which is well-suited to ST regimes that depart strongly from general relativity (GR) and which may provide information on the strong field dynamics; in particular, the ST innermost stable circular orbit location and associated orbital frequency. Results will be compared and contrasted with those deduced from the ST-deformation of the (5PN) GR-EOB Hamiltonian previously obtained in [Phys. Rev. D 95, 124054 (2017), 10.1103/PhysRevD.95.124054].

  17. Hamiltonian models for the propagation of irrotational surface gravity waves over a variable bottom

    NASA Astrophysics Data System (ADS)

    Compelli, A.; Ivanov, R.; Todorov, M.

    2017-12-01

    A single incompressible, inviscid, irrotational fluid medium bounded by a free surface and varying bottom is considered. The Hamiltonian of the system is expressed in terms of the so-called Dirichlet-Neumann operators. The equations for the surface waves are presented in Hamiltonian form. Specific scaling of the variables is selected which leads to approximations of Boussinesq and Korteweg-de Vries (KdV) types, taking into account the effect of the slowly varying bottom. The arising KdV equation with variable coefficients is studied numerically when the initial condition is in the form of the one-soliton solution for the initial depth. This article is part of the theme issue 'Nonlinear water waves'.

  18. Hamiltonian models for the propagation of irrotational surface gravity waves over a variable bottom.

    PubMed

    Compelli, A; Ivanov, R; Todorov, M

    2018-01-28

    A single incompressible, inviscid, irrotational fluid medium bounded by a free surface and varying bottom is considered. The Hamiltonian of the system is expressed in terms of the so-called Dirichlet-Neumann operators. The equations for the surface waves are presented in Hamiltonian form. Specific scaling of the variables is selected which leads to approximations of Boussinesq and Korteweg-de Vries (KdV) types, taking into account the effect of the slowly varying bottom. The arising KdV equation with variable coefficients is studied numerically when the initial condition is in the form of the one-soliton solution for the initial depth.This article is part of the theme issue 'Nonlinear water waves'. © 2017 The Author(s).

  19. Laplace-transformed atomic orbital-based Møller–Plesset perturbation theory for relativistic two-component Hamiltonians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmich-Paris, Benjamin, E-mail: b.helmichparis@vu.nl; Visscher, Lucas, E-mail: l.visscher@vu.nl; Repisky, Michal, E-mail: michal.repisky@uit.no

    2016-07-07

    We present a formulation of Laplace-transformed atomic orbital-based second-order Møller–Plesset perturbation theory (MP2) energies for two-component Hamiltonians in the Kramers-restricted formalism. This low-order scaling technique can be used to enable correlated relativistic calculations for large molecular systems. We show that the working equations to compute the relativistic MP2 energy differ by merely a change of algebra (quaternion instead of real) from their non-relativistic counterparts. With a proof-of-principle implementation we study the effect of the nuclear charge on the magnitude of half-transformed integrals and show that for light elements spin-free and spin-orbit MP2 energies are almost identical. Furthermore, we investigate themore » effect of separation of charge distributions on the Coulomb and exchange energy contributions, which show the same long-range decay with the inter-electronic/atomic distance as for non-relativistic MP2. A linearly scaling implementation is possible if the proper distance behavior is introduced to the quaternion Schwarz-type estimates as for non-relativistic MP2.« less

  20. Hamiltonian fluid closures of the Vlasov-Ampère equations: From water-bags to N moment models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perin, M.; Chandre, C.; Tassi, E.

    2015-09-15

    Moment closures of the Vlasov-Ampère system, whereby higher moments are represented as functions of lower moments with the constraint that the resulting fluid system remains Hamiltonian, are investigated by using water-bag theory. The link between the water-bag formalism and fluid models that involve density, fluid velocity, pressure and higher moments is established by introducing suitable thermodynamic variables. The cases of one, two, and three water-bags are treated and their Hamiltonian structures are provided. In each case, we give the associated fluid closures and we discuss their Casimir invariants. We show how the method can be extended to an arbitrary numbermore » of fields, i.e., an arbitrary number of water-bags and associated moments. The thermodynamic interpretation of the resulting models is discussed. Finally, a general procedure to derive Hamiltonian N-field fluid models is proposed.« less