Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems
NASA Astrophysics Data System (ADS)
Szederkényi, Gábor; Hangos, Katalin M.
2004-04-01
We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.
An Exact Separation of the Spin-Free and Spin-Dependent Terms of the Dirac-Coulomb-Breit Hamiltonian
NASA Technical Reports Server (NTRS)
Dyall, Kenneth G.
1994-01-01
The Dirac Hamiltonian is transformed by extracting the operator (sigma x p)/2mc from the small component of the wave function and applying it to the operators of the original Hamiltonian. The resultant operators contain products of Paull matrices that can be rearranged to give spin-free and spin-dependent operators. These operators are the ones encountered in the Breit-Pauli Hamiltonian, as well as some of higher order in alpha(sup 2). However, since the transformation of the original Dirac Hamiltonian is exact, the new Hamiltonian can be used in variational calculations, with or without the spin-dependent terms. The new small component functions have the same symmetry properties as the large component. Use of only the spin-free terms of the new Hamiltonian permits the same factorization over spin variables as in nonrelativistic theory, and therefore all the post-Self-Consistent Field (SCF) machinery of nonrelativistic calculations can be applied. However, the single-particle functions are two-component orbitals having a large and small component, and the SCF methods must be modified accordingly. Numerical examples are presented, and comparisons are made with the spin-free second-order Douglas-Kroll transformed Hamiltonian of Hess.
On a new class of completely integrable nonlinear wave equations. II. Multi-Hamiltonian structure
NASA Astrophysics Data System (ADS)
Nutku, Y.
1987-11-01
The multi-Hamiltonian structure of a class of nonlinear wave equations governing the propagation of finite amplitude waves is discussed. Infinitely many conservation laws had earlier been obtained for these equations. Starting from a (primary) Hamiltonian formulation of these equations the necessary and sufficient conditions for the existence of bi-Hamiltonian structure are obtained and it is shown that the second Hamiltonian operator can be constructed solely through a knowledge of the first Hamiltonian function. The recursion operator which first appears at the level of bi-Hamiltonian structure gives rise to an infinite sequence of conserved Hamiltonians. It is found that in general there exist two different infinite sequences of conserved quantities for these equations. The recursion relation defining higher Hamiltonian structures enables one to obtain the necessary and sufficient conditions for the existence of the (k+1)st Hamiltonian operator which depends on the kth Hamiltonian function. The infinite sequence of conserved Hamiltonians are common to all the higher Hamiltonian structures. The equations of gas dynamics are discussed as an illustration of this formalism and it is shown that in general they admit tri-Hamiltonian structure with two distinct infinite sets of conserved quantities. The isothermal case of γ=1 is an exceptional one that requires separate treatment. This corresponds to a specialization of the equations governing the expansion of plasma into vacuum which will be shown to be equivalent to Poisson's equation in nonlinear acoustics.
Resolving the issue of branched Hamiltonian in modified Lanczos-Lovelock gravity
NASA Astrophysics Data System (ADS)
Ruz, Soumendranath; Mandal, Ranajit; Debnath, Subhra; Sanyal, Abhik Kumar
2016-07-01
The Hamiltonian constraint H_c = N{H} = 0, defines a diffeomorphic structure on spatial manifolds by the lapse function N in general theory of relativity. However, it is not manifest in Lanczos-Lovelock gravity, since the expression for velocity in terms of the momentum is multivalued. Thus the Hamiltonian is a branch function of momentum. Here we propose an extended theory of Lanczos-Lovelock gravity to construct a unique Hamiltonian in its minisuperspace version, which results in manifest diffeomorphic invariance and canonical quantization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yang; Xiao, Jianyuan; Zhang, Ruili
Hamiltonian time integrators for the Vlasov-Maxwell equations are developed by a Hamiltonian splitting technique. The Hamiltonian functional is split into five parts, which produces five exactly solvable subsystems. Each subsystem is a Hamiltonian system equipped with the Morrison-Marsden-Weinstein Poisson bracket. Compositions of the exact solutions provide Poisson structure preserving/Hamiltonian methods of arbitrary high order for the Vlasov-Maxwell equations. They are then accurate and conservative over a long time because of the Poisson-preserving nature.
Understanding squeezing of quantum states with the Wigner function
NASA Technical Reports Server (NTRS)
Royer, Antoine
1994-01-01
The Wigner function is argued to be the only natural phase space function evolving classically under quadratic Hamiltonians with time-dependent bilinear part. This is used to understand graphically how certain quadratic time-dependent Hamiltonians induce squeezing of quantum states. The Wigner representation is also used to generalize Ehrenfest's theorem to the quantum uncertainties. This makes it possible to deduce features of the quantum evolution, such as squeezing, from the classical evolution, whatever the Hamiltonian.
NASA Astrophysics Data System (ADS)
Xu, Beibei; Chen, Diyi; Zhang, Hao; Wang, Feifei; Zhang, Xinguang; Wu, Yonghong
2017-06-01
This paper focus on a Hamiltonian mathematical modeling for a hydro-turbine governing system including fractional item and time-lag. With regards to hydraulic pressure servo system, a universal dynamical model is proposed, taking into account the viscoelastic properties and low-temperature impact toughness of constitutive materials as well as the occurrence of time-lag in the signal transmissions. The Hamiltonian model of the hydro-turbine governing system is presented using the method of orthogonal decomposition. Furthermore, a novel Hamiltonian function that provides more detailed energy information is presented, since the choice of the Hamiltonian function is the key issue by putting the whole dynamical system to the theory framework of the generalized Hamiltonian system. From the numerical experiments based on a real large hydropower station, we prove that the Hamiltonian function can describe the energy variation of the hydro-turbine suitably during operation. Moreover, the effect of the fractional α and the time-lag τ on the dynamic variables of the hydro-turbine governing system are explored and their change laws identified, respectively. The physical meaning between fractional calculus and time-lag are also discussed in nature. All of the above theories and numerical results are expected to provide a robust background for the safe operation and control of large hydropower stations.
A Schrödinger equation for solving the Bender-Brody-Müller conjecture
NASA Astrophysics Data System (ADS)
Moxley, Frederick Ira
2017-11-01
The Hamiltonian of a quantum mechanical system has an affiliated spectrum. If this spectrum is the sequence of prime numbers, a connection between quantum mechanics and the nontrivial zeros of the Riemann zeta function can be made. In this case, the Riemann zeta function is analogous to chaotic quantum systems, as the harmonic oscillator is for integrable quantum systems. Such quantum Riemann zeta function analogies have led to the Bender-Brody-Müller (BBM) conjecture, which involves a non-Hermitian Hamiltonian that maps to the zeros of the Riemann zeta function. If the BBM Hamiltonian can be shown to be Hermitian, then the Riemann Hypothesis follows. As such, herein we perform a symmetrization procedure of the BBM Hamiltonian to obtain a unique Hermitian Hamiltonian that maps to the zeros of the analytic continuation of the Riemann zeta function, and discuss the eigenvalues of the results. Moreover, a second quantization of the resulting Schrödinger equation is performed, and a convergent solution for the nontrivial zeros of the analytic continuation of the Riemann zeta function is obtained. Finally, the Hilbert-Pólya conjecture is discussed, and it is heuristically shown that the real part of every nontrivial zero of the Riemann zeta function converges at σ = 1/2.
Hamiltonian structure of real Monge - Ampère equations
NASA Astrophysics Data System (ADS)
Nutku, Y.
1996-06-01
The variational principle for the real homogeneous Monge - Ampère equation in two dimensions is shown to contain three arbitrary functions of four variables. There exist two different specializations of this variational principle where the Lagrangian is degenerate and furthermore contains an arbitrary function of two variables. The Hamiltonian formulation of these degenerate Lagrangian systems requires the use of Dirac's theory of constraints. As in the case of most completely integrable systems the constraints are second class and Dirac brackets directly yield the Hamiltonian operators. Thus the real homogeneous Monge - Ampère equation in two dimensions admits two classes of infinitely many Hamiltonian operators, namely a family of local, as well as another family non-local Hamiltonian operators and symplectic 2-forms which depend on arbitrary functions of two variables. The simplest non-local Hamiltonian operator corresponds to the Kac - Moody algebra of vector fields and functions on the unit circle. Hamiltonian operators that belong to either class are compatible with each other but between classes there is only one compatible pair. In the case of real Monge - Ampère equations with constant right-hand side this compatible pair is the only pair of Hamiltonian operators that survives. Then the complete integrability of all these real Monge - Ampère equations follows by Magri's theorem. Some of the remarkable properties we have obtained for the Hamiltonian structure of the real homogeneous Monge - Ampère equation in two dimensions turn out to be generic to the real homogeneous Monge - Ampère equation and the geodesic flow for the complex homogeneous Monge - Ampère equation in arbitrary number of dimensions. Hence among all integrable nonlinear evolution equations in one space and one time dimension, the real homogeneous Monge - Ampère equation is distinguished as one that retains its character as an integrable system in multiple dimensions.
Painlevé equations, elliptic integrals and elementary functions
NASA Astrophysics Data System (ADS)
Żołądek, Henryk; Filipuk, Galina
2015-02-01
The six Painlevé equations can be written in the Hamiltonian form, with time dependent Hamilton functions. We present a rather new approach to this result, leading to rational Hamilton functions. By a natural extension of the phase space one gets corresponding autonomous Hamiltonian systems with two degrees of freedom. We realize the Bäcklund transformations of the Painlevé equations as symplectic birational transformations in C4 and we interpret the cases with classical solutions as the cases of partial integrability of the extended Hamiltonian systems. We prove that the extended Hamiltonian systems do not have any additional algebraic first integral besides the known special cases of the third and fifth Painlevé equations. We also show that the original Painlevé equations admit the first integrals expressed in terms of the elementary functions only in the special cases mentioned above. In the proofs we use equations in variations with respect to a parameter and Liouville's theory of elementary functions.
A Hamilton-Jacobi theory for implicit differential systems
NASA Astrophysics Data System (ADS)
Esen, Oǧul; de León, Manuel; Sardón, Cristina
2018-02-01
In this paper, we propose a geometric Hamilton-Jacobi theory for systems of implicit differential equations. In particular, we are interested in implicit Hamiltonian systems, described in terms of Lagrangian submanifolds of TT*Q generated by Morse families. The implicit character implies the nonexistence of a Hamiltonian function describing the dynamics. This fact is here amended by a generating family of Morse functions which plays the role of a Hamiltonian. A Hamilton-Jacobi equation is obtained with the aid of this generating family of functions. To conclude, we apply our results to singular Lagrangians by employing the construction of special symplectic structures.
Tempel, David G; Aspuru-Guzik, Alán
2012-01-01
We prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density functionals). Additionally, we also demonstrate that TDDFT provides an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize two-qubit interactions. This establishes the foundations of TDDFT for quantum computation and opens the possibility of developing density functionals for use in quantum algorithms.
Hamiltonian stability for weighted measure and generalized Lagrangian mean curvature flow
NASA Astrophysics Data System (ADS)
Kajigaya, Toru; Kunikawa, Keita
2018-06-01
In this paper, we generalize several results for the Hamiltonian stability and the mean curvature flow of Lagrangian submanifolds in a Kähler-Einstein manifold to more general Kähler manifolds including a Fano manifold equipped with a Kähler form ω ∈ 2 πc1(M) by using the method proposed by Behrndt (2011). Namely, we first consider a weighted measure on a Lagrangian submanifold L in a Kähler manifold M and investigate the variational problem of L for the weighted volume functional. We call a stationary point of the weighted volume functional f-minimal, and define the notion of Hamiltonian f-stability as a local minimizer under Hamiltonian deformations. We show such examples naturally appear in a toric Fano manifold. Moreover, we consider the generalized Lagrangian mean curvature flow in a Fano manifold which is introduced by Behrndt and Smoczyk-Wang. We generalize the result of H. Li, and show that if the initial Lagrangian submanifold is a small Hamiltonian deformation of an f-minimal and Hamiltonian f-stable Lagrangian submanifold, then the generalized MCF converges exponentially fast to an f-minimal Lagrangian submanifold.
Explicit symplectic algorithms based on generating functions for charged particle dynamics.
Zhang, Ruili; Qin, Hong; Tang, Yifa; Liu, Jian; He, Yang; Xiao, Jianyuan
2016-07-01
Dynamics of a charged particle in the canonical coordinates is a Hamiltonian system, and the well-known symplectic algorithm has been regarded as the de facto method for numerical integration of Hamiltonian systems due to its long-term accuracy and fidelity. For long-term simulations with high efficiency, explicit symplectic algorithms are desirable. However, it is generally believed that explicit symplectic algorithms are only available for sum-separable Hamiltonians, and this restriction limits the application of explicit symplectic algorithms to charged particle dynamics. To overcome this difficulty, we combine the familiar sum-split method and a generating function method to construct second- and third-order explicit symplectic algorithms for dynamics of charged particle. The generating function method is designed to generate explicit symplectic algorithms for product-separable Hamiltonian with form of H(x,p)=p_{i}f(x) or H(x,p)=x_{i}g(p). Applied to the simulations of charged particle dynamics, the explicit symplectic algorithms based on generating functions demonstrate superiorities in conservation and efficiency.
Explicit symplectic algorithms based on generating functions for charged particle dynamics
NASA Astrophysics Data System (ADS)
Zhang, Ruili; Qin, Hong; Tang, Yifa; Liu, Jian; He, Yang; Xiao, Jianyuan
2016-07-01
Dynamics of a charged particle in the canonical coordinates is a Hamiltonian system, and the well-known symplectic algorithm has been regarded as the de facto method for numerical integration of Hamiltonian systems due to its long-term accuracy and fidelity. For long-term simulations with high efficiency, explicit symplectic algorithms are desirable. However, it is generally believed that explicit symplectic algorithms are only available for sum-separable Hamiltonians, and this restriction limits the application of explicit symplectic algorithms to charged particle dynamics. To overcome this difficulty, we combine the familiar sum-split method and a generating function method to construct second- and third-order explicit symplectic algorithms for dynamics of charged particle. The generating function method is designed to generate explicit symplectic algorithms for product-separable Hamiltonian with form of H (x ,p ) =pif (x ) or H (x ,p ) =xig (p ) . Applied to the simulations of charged particle dynamics, the explicit symplectic algorithms based on generating functions demonstrate superiorities in conservation and efficiency.
Spherical type integrable classical systems in a magnetic field
NASA Astrophysics Data System (ADS)
Marchesiello, A.; Šnobl, L.; Winternitz, P.
2018-04-01
We show that four classes of second order spherical type integrable classical systems in a magnetic field exist in the Euclidean space {E}3 , and construct the Hamiltonian and two second order integrals of motion in involution for each of them. For one of the classes the Hamiltonian depends on four arbitrary functions of one variable. This class contains the magnetic monopole as a special case. Two further classes have Hamiltonians depending on one arbitrary function of one variable and four or six constants, respectively. The magnetic field in these cases is radial. The remaining system corresponds to a constant magnetic field and the Hamiltonian depends on two constants. Questions of superintegrability—i.e. the existence of further integrals—are discussed.
Hamiltonian description of closed configurations of the vacuum magnetic field
NASA Astrophysics Data System (ADS)
Skovoroda, A. A.
2015-05-01
Methods of obtaining and using the Hamiltonians of closed vacuum magnetic configurations of fusion research systems are reviewed. Various approaches to calculate the flux functions determining the Hamiltonian are discussed. It is shown that the Hamiltonian description allows one not only to reproduce all traditional results, but also to study the behavior of magnetic field lines by using the theory of dynamic systems. The potentialities of the Hamiltonian formalism and its close relation to traditional methods are demonstrated using a large number of classical examples adopted from the fundamental works by A.I. Morozov, L.S. Solov'ev, and V.D. Shafranov.
Multi-Lagrangians for integrable systems
NASA Astrophysics Data System (ADS)
Nutku, Y.; Pavlov, M. V.
2002-03-01
We propose a general scheme to construct multiple Lagrangians for completely integrable nonlinear evolution equations that admit multi-Hamiltonian structure. The recursion operator plays a fundamental role in this construction. We use a conserved quantity higher/lower than the Hamiltonian in the potential part of the new Lagrangian and determine the corresponding kinetic terms by generating the appropriate momentum map. This leads to some remarkable new developments. We show that nonlinear evolutionary systems that admit N-fold first order local Hamiltonian structure can be cast into variational form with 2N-1 Lagrangians which will be local functionals of Clebsch potentials. This number increases to 3N-2 when the Miura transformation is invertible. Furthermore we construct a new Lagrangian for polytropic gas dynamics in 1+1 dimensions which is a free, local functional of the physical field variables, namely density and velocity, thus dispensing with the necessity of introducing Clebsch potentials entirely. This is a consequence of bi-Hamiltonian structure with a compatible pair of first and third order Hamiltonian operators derived from Sheftel's recursion operator.
A systematic study of finite BRST-BFV transformations in generalized Hamiltonian formalism
NASA Astrophysics Data System (ADS)
Batalin, Igor A.; Lavrov, Peter M.; Tyutin, Igor V.
2014-09-01
We study systematically finite BRST-BFV transformations in the generalized Hamiltonian formalism. We present explicitly their Jacobians and the form of a solution to the compensation equation determining the functional field dependence of finite Fermionic parameters, necessary to generate an arbitrary finite change of gauge-fixing functions in the path integral.
Particle Creation at a Point Source by Means of Interior-Boundary Conditions
NASA Astrophysics Data System (ADS)
Lampart, Jonas; Schmidt, Julian; Teufel, Stefan; Tumulka, Roderich
2018-06-01
We consider a way of defining quantum Hamiltonians involving particle creation and annihilation based on an interior-boundary condition (IBC) on the wave function, where the wave function is the particle-position representation of a vector in Fock space, and the IBC relates (essentially) the values of the wave function at any two configurations that differ only by the creation of a particle. Here we prove, for a model of particle creation at one or more point sources using the Laplace operator as the free Hamiltonian, that a Hamiltonian can indeed be rigorously defined in this way without the need for any ultraviolet regularization, and that it is self-adjoint. We prove further that introducing an ultraviolet cut-off (thus smearing out particles over a positive radius) and applying a certain known renormalization procedure (taking the limit of removing the cut-off while subtracting a constant that tends to infinity) yields, up to addition of a finite constant, the Hamiltonian defined by the IBC.
The Lagrangian-Hamiltonian formalism for higher order field theories
NASA Astrophysics Data System (ADS)
Vitagliano, Luca
2010-06-01
We generalize the Lagrangian-Hamiltonian formalism of Skinner and Rusk to higher order field theories on fiber bundles. As a byproduct we solve the long standing problem of defining, in a coordinate free manner, a Hamiltonian formalism for higher order Lagrangian field theories. Namely, our formalism does only depend on the action functional and, therefore, unlike previously proposed ones, is free from any relevant ambiguity.
The wave function and minimum uncertainty function of the bound quadratic Hamiltonian system
NASA Technical Reports Server (NTRS)
Yeon, Kyu Hwang; Um, Chung IN; George, T. F.
1994-01-01
The bound quadratic Hamiltonian system is analyzed explicitly on the basis of quantum mechanics. We have derived the invariant quantity with an auxiliary equation as the classical equation of motion. With the use of this invariant it can be determined whether or not the system is bound. In bound system we have evaluated the exact eigenfunction and minimum uncertainty function through unitary transformation.
NASA Astrophysics Data System (ADS)
Batalin, Igor A.; Lavrov, Peter M.; Tyutin, Igor V.
2014-09-01
We study systematically finite BRST-BFV transformations in Sp(2)-extended generalized Hamiltonian formalism. We present explicitly their Jacobians and the form of a solution to the compensation equation determining the functional field dependence of finite Fermionic parameters, necessary to generate arbitrary finite change of gauge-fixing functions in the path integral.
Quantum finance Hamiltonian for coupon bond European and barrier options.
Baaquie, Belal E
2008-03-01
Coupon bond European and barrier options are financial derivatives that can be analyzed in the Hamiltonian formulation of quantum finance. Forward interest rates are modeled as a two-dimensional quantum field theory and its Hamiltonian and state space is defined. European and barrier options are realized as transition amplitudes of the time integrated Hamiltonian operator. The double barrier option for a financial instrument is "knocked out" (terminated with zero value) if the price of the underlying instrument exceeds or falls below preset limits; the barrier option is realized by imposing boundary conditions on the eigenfunctions of the forward interest rates' Hamiltonian. The price of the European coupon bond option and the zero coupon bond barrier option are calculated. It is shown that, is general, the constraint function for a coupon bond barrier option can -- to a good approximation -- be linearized. A calculation using an overcomplete set of eigenfunctions yields an approximate price for the coupon bond barrier option, which is given in the form of an integral of a factor that results from the barrier condition times another factor that arises from the payoff function.
Symmetric quadratic Hamiltonians with pseudo-Hermitian matrix representation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar
2016-06-15
We prove that any symmetric Hamiltonian that is a quadratic function of the coordinates and momenta has a pseudo-Hermitian adjoint or regular matrix representation. The eigenvalues of the latter matrix are the natural frequencies of the Hamiltonian operator. When all the eigenvalues of the matrix are real, then the spectrum of the symmetric Hamiltonian is real and the operator is Hermitian. As illustrative examples we choose the quadratic Hamiltonians that model a pair of coupled resonators with balanced gain and loss, the electromagnetic self-force on an oscillating charged particle and an active LRC circuit. -- Highlights: •Symmetric quadratic operators aremore » useful models for many physical applications. •Any such operator exhibits a pseudo-Hermitian matrix representation. •Its eigenvalues are the natural frequencies of the Hamiltonian operator. •The eigenvalues may be real or complex and describe a phase transition.« less
A partial Hamiltonian approach for current value Hamiltonian systems
NASA Astrophysics Data System (ADS)
Naz, R.; Mahomed, F. M.; Chaudhry, Azam
2014-10-01
We develop a partial Hamiltonian framework to obtain reductions and closed-form solutions via first integrals of current value Hamiltonian systems of ordinary differential equations (ODEs). The approach is algorithmic and applies to many state and costate variables of the current value Hamiltonian. However, we apply the method to models with one control, one state and one costate variable to illustrate its effectiveness. The current value Hamiltonian systems arise in economic growth theory and other economic models. We explain our approach with the help of a simple illustrative example and then apply it to two widely used economic growth models: the Ramsey model with a constant relative risk aversion (CRRA) utility function and Cobb Douglas technology and a one-sector AK model of endogenous growth are considered. We show that our newly developed systematic approach can be used to deduce results given in the literature and also to find new solutions.
Squeezed coherent states of motion for ions confined in quadrupole and octupole ion traps
NASA Astrophysics Data System (ADS)
Mihalcea, Bogdan M.
2018-01-01
Quasiclassical dynamics of trapped ions is characterized by applying the time dependent variational principle (TDVP) on coherent state orbits, in case of quadrupole and octupole combined (Paul and Penning) or radiofrequency (RF) traps. A dequantization algorithm is proposed, by which the classical Hamilton (energy) function associated to the system results as the expectation value of the quantum Hamiltonian on squeezed coherent states. We develop such method and particularize the quantum Hamiltonian for both combined and RF nonlinear traps, that exhibit axial symmetry. We also build the classical Hamiltonian functions for the particular traps we considered, and find the classical equations of motion.
The Modified Hartmann Potential Effects on γ-rigid Bohr Hamiltonian
NASA Astrophysics Data System (ADS)
Suparmi, A.; Cari, C.; Nur Pratiwi, Beta
2018-04-01
In this paper, we present the solution of Bohr Hamiltonian in the case of γ-rigid for the modified Hartmann potential. The modified Hartmann potential was formed from the original Hartmann potential, consists of β function and θ function. By using the separation method, the three-dimensional Bohr Hamiltonian equation was reduced into three one-dimensional Schrodinger-like equation which was solved analytically. The results for the wavefunction were shown in mathematically, while for the binding energy was solved numerically. The numerical binding energy for the presence of the modified Hartmann potential is lower than the binding energy value in the absence of modified Hartmann potential effect.
Recursion Operators and Tri-Hamiltonian Structure of the First Heavenly Equation of Plebański
NASA Astrophysics Data System (ADS)
Sheftel, Mikhail; Yazıcı, Devrim
2016-09-01
We present first heavenly equation of Plebański in a two-component evolutionary form and obtain Lagrangian and Hamiltonian representations of this system. We study all point symmetries of the two-component system and, using the inverse Noether theorem in the Hamiltonian form, obtain all the integrals of motion corresponding to each variational (Noether) symmetry. We derive two linearly independent recursion operators for symmetries of this system related by a discrete symmetry of both the two-component system and its symmetry condition. Acting by these operators on the first Hamiltonian operator J_0 we obtain second and third Hamiltonian operators. However, we were not able to find Hamiltonian densities corresponding to the latter two operators. Therefore, we construct two recursion operators, which are either even or odd, respectively, under the above-mentioned discrete symmetry. Acting with them on J_0, we generate another two Hamiltonian operators J_+ and J_- and find the corresponding Hamiltonian densities, thus obtaining second and third Hamiltonian representations for the first heavenly equation in a two-component form. Using P. Olver's theory of the functional multi-vectors, we check that the linear combination of J_0, J_+ and J_- with arbitrary constant coefficients satisfies Jacobi identities. Since their skew symmetry is obvious, these three operators are compatible Hamiltonian operators and hence we obtain a tri-Hamiltonian representation of the first heavenly equation. Our well-founded conjecture applied here is that P. Olver's method works fine for nonlocal operators and our proof of the Jacobi identities and bi-Hamiltonian structures crucially depends on the validity of this conjecture.
Polymeric quantum mechanics and the zeros of the Riemann zeta function
NASA Astrophysics Data System (ADS)
Berra-Montiel, Jasel; Molgado, Alberto
We analyze the Berry-Keating model and the Sierra and Rodríguez-Laguna Hamiltonian within the polymeric quantization formalism. By using the polymer representation, we obtain for both models, the associated polymeric quantum Hamiltonians and the corresponding stationary wave functions. The self-adjointness condition provides a proper domain for the Hamiltonian operator and the energy spectrum, which turned out to be dependent on an introduced scale parameter. By performing a counting of semiclassical states, we prove that the polymer representation reproduces the smooth part of the Riemann-von Mangoldt formula, and also introduces a correction depending on the energy and the scale parameter. This may shed some light on the understanding of the fluctuation behavior of the zeros of the Riemann function from a purely quantum point of view.
Space-time models based on random fields with local interactions
NASA Astrophysics Data System (ADS)
Hristopulos, Dionissios T.; Tsantili, Ivi C.
2016-08-01
The analysis of space-time data from complex, real-life phenomena requires the use of flexible and physically motivated covariance functions. In most cases, it is not possible to explicitly solve the equations of motion for the fields or the respective covariance functions. In the statistical literature, covariance functions are often based on mathematical constructions. In this paper, we propose deriving space-time covariance functions by solving “effective equations of motion”, which can be used as statistical representations of systems with diffusive behavior. In particular, we propose to formulate space-time covariance functions based on an equilibrium effective Hamiltonian using the linear response theory. The effective space-time dynamics is then generated by a stochastic perturbation around the equilibrium point of the classical field Hamiltonian leading to an associated Langevin equation. We employ a Hamiltonian which extends the classical Gaussian field theory by including a curvature term and leads to a diffusive Langevin equation. Finally, we derive new forms of space-time covariance functions.
A theorem about Hamiltonian systems.
Case, K M
1984-09-01
A simple theorem in Hamiltonian mechanics is pointed out. One consequence is a generalization of the classical result that symmetries are generated by Poisson brackets of conserved functionals. General applications are discussed. Special emphasis is given to the Kadomtsev-Petviashvili equation.
NASA Technical Reports Server (NTRS)
Moncrief, V.; Teitelboim, C.
1972-01-01
It is shown that if the Hamiltonian constraint of general relativity is imposed as a restriction on the Hamilton principal functional in the classical theory, or on the state functional in the quantum theory, then the momentum constraints are automatically satisfied. This result holds both for closed and open spaces and it means that the full content of the theory is summarized by a single functional equation of the Tomonaga-Schwinger type.
Finite Nilpotent BRST Transformations in Hamiltonian Formulation
NASA Astrophysics Data System (ADS)
Rai, Sumit Kumar; Mandal, Bhabani Prasad
2013-10-01
We consider the finite field dependent BRST (FFBRST) transformations in the context of Hamiltonian formulation using Batalin-Fradkin-Vilkovisky method. The non-trivial Jacobian of such transformations is calculated in extended phase space. The contribution from Jacobian can be written as exponential of some local functional of fields which can be added to the effective Hamiltonian of the system. Thus, FFBRST in Hamiltonian formulation with extended phase space also connects different effective theories. We establish this result with the help of two explicit examples. We also show that the FFBRST transformations is similar to the canonical transformations in the sector of Lagrange multiplier and its corresponding momenta.
A theorem about Hamiltonian systems
Case, K. M.
1984-01-01
A simple theorem in Hamiltonian mechanics is pointed out. One consequence is a generalization of the classical result that symmetries are generated by Poisson brackets of conserved functionals. General applications are discussed. Special emphasis is given to the Kadomtsev-Petviashvili equation. PMID:16593515
Long-time correlation for the chaotic orbit in the two-wave Hamiltonian
NASA Astrophysics Data System (ADS)
Hatori, Tadatsugu; Irie, Haruyuki
1987-03-01
The time correlation function of velocity is found to decay with the power law for the orbit governed by a Hamiltonian, H=v sup 2/2 - Mcosx - Pcos (k(x-t)). The renormalization group technique can predict the power of decay for the correlation function defined by the ensemble average. The power spectrum becomes the 1/f-type for a special case.
Quantum and classical dissipation of charged particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibarra-Sierra, V.G.; Anzaldo-Meneses, A.; Cardoso, J.L.
2013-08-15
A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle.more » •Classical and quantum dynamics of a damped electric charge.« less
Symplectic evolution of Wigner functions in Markovian open systems.
Brodier, O; Almeida, A M Ozorio de
2004-01-01
The Wigner function is known to evolve classically under the exclusive action of a quadratic Hamiltonian. If the system also interacts with the environment through Lindblad operators that are complex linear functions of position and momentum, then the general evolution is the convolution of a non-Hamiltonian classical propagation of the Wigner function with a phase space Gaussian that broadens in time. We analyze the consequences of this in the three generic cases of elliptic, hyperbolic, and parabolic Hamiltonians. The Wigner function always becomes positive in a definite time, which does not depend on the initial pure state. We observe the influence of classical dynamics and dissipation upon this threshold. We also derive an exact formula for the evolving linear entropy as the average of a narrowing Gaussian taken over a probability distribution that depends only on the initial state. This leads to a long time asymptotic formula for the growth of linear entropy. We finally discuss the possibility of recovering the initial state.
Quasi-Hamiltonian structure and Hojman construction
NASA Astrophysics Data System (ADS)
Carinena, Jose F.; Guha, Partha; Ranada, Manuel F.
2007-08-01
Given a smooth vector field [Gamma] and assuming the knowledge of an infinitesimal symmetry X, Hojman [S. Hojman, The construction of a Poisson structure out of a symmetry and a conservation law of a dynamical system, J. Phys. A Math. Gen. 29 (1996) 667-674] proposed a method for finding both a Poisson tensor and a function H such that [Gamma] is the corresponding Hamiltonian system. In this paper, we approach the problem from geometrical point of view. The geometrization leads to the clarification of several concepts and methods used in Hojman's paper. In particular, the relationship between the nonstandard Hamiltonian structure proposed by Hojman and the degenerate quasi-Hamiltonian structures introduced by Crampin and Sarlet [M. Crampin, W. Sarlet, Bi-quasi-Hamiltonian systems, J. Math. Phys. 43 (2002) 2505-2517] is unveiled in this paper. We also provide some applications of our construction.
Time evolution of a Gaussian class of quasi-distribution functions under quadratic Hamiltonian.
Ginzburg, D; Mann, A
2014-03-10
A Lie algebraic method for propagation of the Wigner quasi-distribution function (QDF) under quadratic Hamiltonian was presented by Zoubi and Ben-Aryeh. We show that the same method can be used in order to propagate a rather general class of QDFs, which we call the "Gaussian class." This class contains as special cases the well-known Wigner, Husimi, Glauber, and Kirkwood-Rihaczek QDFs. We present some examples of the calculation of the time evolution of those functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gadella, M.; Negro, J.; Santander, M.
In this paper, we construct a Spectrum Generating Algebra (SGA) for a quantum system with purely continuous spectrum: the quantum free particle in a Lobachevski space with constant negative curvature. The SGA contains the geometrical symmetry algebra of the system plus a subalgebra of operators that give the spectrum of the system and connects the eigenfunctions of the Hamiltonian among themselves. In our case, the geometrical symmetry algebra is so(3,1) and the SGA is so(4,2). We start with a representation of so(4,2) by functions on a realization of the Lobachevski space given by a two-sheeted hyperboloid, where the Lie algebramore » commutators are the usual Poisson-Dirac brackets. Then, we introduce a quantized version of the representation in which functions are replaced by operators on a Hilbert space and Poisson-Dirac brackets by commutators. Eigenfunctions of the Hamiltonian are given and 'naive' ladder operators are identified. The previously defined 'naive' ladder operators shift the eigenvalues by a complex number so that an alternative approach is necessary. This is obtained by a non-self-adjoint function of a linear combination of the ladder operators, which gives the correct relation among the eigenfunctions of the Hamiltonian. We give an eigenfunction expansion of functions over the upper sheet of a two-sheeted hyperboloid in terms of the eigenfunctions of the Hamiltonian.« less
Alternative descriptions of wave and particle aspects of the harmonic oscillator
NASA Technical Reports Server (NTRS)
Schuch, Dieter
1993-01-01
The dynamical properties of the wave and particle aspects of the harmonic oscillator can be studied with the help of the time-dependent Schroedinger equation (SE). Especially the time-dependence of maximum and width of Gaussian wave packet solutions allow to show the evolution and connections of those two complementary aspects. The investigation of the relations between the equations describing wave and particle aspects leads to an alternative description of the considered systems. This can be achieved by means of a Newtonian equation for a complex variable in connection with a conservation law for a nonclassical angular momentum-type quantity. With the help of this complex variable, it is also possible to develop a Hamiltonian formalism for the wave aspect contained in the SE, which allows to describe the dynamics of the position and momentum uncertainties. In this case the Hamiltonian function is equivalent to the difference between the mean value of the Hamiltonian operator and the classical Hamiltonian function.
NASA Astrophysics Data System (ADS)
Esmaili, Esmat; Mardaani, Mohammad; Rabani, Hassan
2018-01-01
The electronic transport of a ladder-like graphene nanoribbon which the on-site or hopping energies of a small part of it can be random is modeled by using the Green's function technique within the nearest neighbor tight-binding approach. We employ a unitary transformation in order to convert the Hamiltonian of the nanoribbon to the Hamiltonian of a tight-binding ladder-like network. In this case, the disturbed part of the system includes the second neighbor hopping interactions. While, the converted Hamiltonian of each ideal part is equivalent to the Hamiltonian of two periodic on-site chains. Therefore, we can insert the self-energies of the alternative on-site tight-binding chains to the inverse of the Green's function matrix of the ladder-like part. In this viewpoint, the conductance is constructed from two trans and cis contributions. The results show that increasing the disorder strength causes the increase and decrease of the conductance of the trans and cis contributions, respectively.
Phase space flows for non-Hamiltonian systems with constraints
NASA Astrophysics Data System (ADS)
Sergi, Alessandro
2005-09-01
In this paper, non-Hamiltonian systems with holonomic constraints are treated by a generalization of Dirac’s formalism. Non-Hamiltonian phase space flows can be described by generalized antisymmetric brackets or by general Liouville operators which cannot be derived from brackets. Both situations are treated. In the first case, a Nosé-Dirac bracket is introduced as an example. In the second one, Dirac’s recipe for projecting out constrained variables from time translation operators is generalized and then applied to non-Hamiltonian linear response. Dirac’s formalism avoids spurious terms in the response function of constrained systems. However, corrections coming from phase space measure must be considered for general perturbations.
Size Reduction of Hamiltonian Matrix for Large-Scale Energy Band Calculations Using Plane Wave Bases
NASA Astrophysics Data System (ADS)
Morifuji, Masato
2018-01-01
We present a method of reducing the size of a Hamiltonian matrix used in calculations of electronic states. In the electronic states calculations using plane wave basis functions, a large number of plane waves are often required to obtain precise results. Even using state-of-the-art techniques, the Hamiltonian matrix often becomes very large. The large computational time and memory necessary for diagonalization limit the widespread use of band calculations. We show a procedure of deriving a reduced Hamiltonian constructed using a small number of low-energy bases by renormalizing high-energy bases. We demonstrate numerically that the significant speedup of eigenstates evaluation is achieved without losing accuracy.
A round trip from Caldirola to Bateman systems
NASA Astrophysics Data System (ADS)
Guerrero, J.; López-Ruiz, F. F.; Aldaya, V.; Cossío, F.
2011-03-01
For the quantum Caldirola-Kanai Hamiltonian, describing a quantum damped harmonic oscillator, a couple of constant of motion operators generating the Heisenberg algebra can be found. The inclusion in this algebra, in a unitary manner, of the standard time evolution generator , which is not a constant of motion, requires a non-trivial extension of this basic algebra and the physical system itself, which now includes a new dual particle. This enlarged algebra, when exponentiated, leads to a group, named the Bateman group, which admits unitary representations with support in the Hilbert space of functions satisfying the Schrodinger equation associated with the quantum Bateman Hamiltonian, either as a second order differential operator as well as a first order one. The classical Bateman Hamiltonian describes a dual system of a damped (losing energy) particle and a dual (gaining energy) particle. The classical Bateman system has a solution submanifold containing the trajectories of the original system as a submanifold. When restricted to this submanifold, the Bateman dual classical Hamiltonian leads to the Caldirola-Kanai Hamiltonian for a single damped particle. This construction can also be done at the quantum level, and the Caldirola-Kanai Hamiltonian operator can be derived from the Bateman Hamiltonian operator when appropriate constraints are imposed.
NASA Astrophysics Data System (ADS)
Yu, Hua-Gen
2016-08-01
We report a new full-dimensional variational algorithm to calculate rovibrational spectra of polyatomic molecules using an exact quantum mechanical Hamiltonian. The rovibrational Hamiltonian of system is derived in a set of orthogonal polyspherical coordinates in the body-fixed frame. It is expressed in an explicitly Hermitian form. The Hamiltonian has a universal formulation regardless of the choice of orthogonal polyspherical coordinates and the number of atoms in molecule, which is suitable for developing a general program to study the spectra of many polyatomic systems. An efficient coupled-state approach is also proposed to solve the eigenvalue problem of the Hamiltonian using a multi-layer Lanczos iterative diagonalization approach via a set of direct product basis set in three coordinate groups: radial coordinates, angular variables, and overall rotational angles. A simple set of symmetric top rotational functions is used for the overall rotation whereas a potential-optimized discrete variable representation method is employed in radial coordinates. A set of contracted vibrationally diabatic basis functions is adopted in internal angular variables. Those diabatic functions are first computed using a neural network iterative diagonalization method based on a reduced-dimension Hamiltonian but only once. The final rovibrational energies are computed using a modified Lanczos method for a given total angular momentum J, which is usually fast. Two numerical applications to CH4 and H2CO are given, together with a comparison with previous results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Hua-Gen, E-mail: hgy@bnl.gov
We report a new full-dimensional variational algorithm to calculate rovibrational spectra of polyatomic molecules using an exact quantum mechanical Hamiltonian. The rovibrational Hamiltonian of system is derived in a set of orthogonal polyspherical coordinates in the body-fixed frame. It is expressed in an explicitly Hermitian form. The Hamiltonian has a universal formulation regardless of the choice of orthogonal polyspherical coordinates and the number of atoms in molecule, which is suitable for developing a general program to study the spectra of many polyatomic systems. An efficient coupled-state approach is also proposed to solve the eigenvalue problem of the Hamiltonian using amore » multi-layer Lanczos iterative diagonalization approach via a set of direct product basis set in three coordinate groups: radial coordinates, angular variables, and overall rotational angles. A simple set of symmetric top rotational functions is used for the overall rotation whereas a potential-optimized discrete variable representation method is employed in radial coordinates. A set of contracted vibrationally diabatic basis functions is adopted in internal angular variables. Those diabatic functions are first computed using a neural network iterative diagonalization method based on a reduced-dimension Hamiltonian but only once. The final rovibrational energies are computed using a modified Lanczos method for a given total angular momentum J, which is usually fast. Two numerical applications to CH{sub 4} and H{sub 2}CO are given, together with a comparison with previous results.« less
Hamiltonian thermodynamics of three-dimensional dilatonic black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dias, Goncalo A. S.; Lemos, Jose P. S.
2008-08-15
The action for a class of three-dimensional dilaton-gravity theories with a negative cosmological constant can be recast in a Brans-Dicke type action, with its free {omega} parameter. These theories have static spherically symmetric black holes. Those with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found out. The theories studied are general relativity ({omega}{yields}{infinity}), a dimensionally reduced cylindrical four-dimensional general relativity theory ({omega}=0), and a theory representing a class of theories ({omega}=-3). The Hamiltonian formalism is set up in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcationmore » 1-sphere as the left boundary, and anti-de Sitter infinity as the right boundary. The metric functions on the foliated hypersurfaces are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unconstrained theory with one pair of canonical coordinates (M,P{sub M}), M being the mass parameter and P{sub M} its conjugate momenta The resulting Hamiltonian is a sum of boundary terms only. A quantization of the theory is performed. The Schroedinger evolution operator is constructed, the trace is taken, and the partition function of the canonical ensemble is obtained. The black hole entropies differ, in general, from the usual quarter of the horizon area due to the dilaton.« less
Local density approximation in site-occupation embedding theory
NASA Astrophysics Data System (ADS)
Senjean, Bruno; Tsuchiizu, Masahisa; Robert, Vincent; Fromager, Emmanuel
2017-01-01
Site-occupation embedding theory (SOET) is a density functional theory (DFT)-based method which aims at modelling strongly correlated electrons. It is in principle exact and applicable to model and quantum chemical Hamiltonians. The theory is presented here for the Hubbard Hamiltonian. In contrast to conventional DFT approaches, the site (or orbital) occupations are deduced in SOET from a partially interacting system consisting of one (or more) impurity site(s) and non-interacting bath sites. The correlation energy of the bath is then treated implicitly by means of a site-occupation functional. In this work, we propose a simple impurity-occupation functional approximation based on the two-level (2L) Hubbard model which is referred to as two-level impurity local density approximation (2L-ILDA). Results obtained on a prototypical uniform eight-site Hubbard ring are promising. The extension of the method to larger systems and more sophisticated model Hamiltonians is currently in progress.
Geometric construction of quantum hall clustering Hamiltonians
Lee, Ching Hua; Papić, Zlatko; Thomale, Ronny
2015-10-08
In this study, many fractional quantum Hall wave functions are known to be unique highest-density zero modes of certain “pseudopotential” Hamiltonians. While a systematic method to construct such parent Hamiltonians has been available for the infinite plane and sphere geometries, the generalization to manifolds where relative angular momentum is not an exact quantum number, i.e., the cylinder or torus, remains an open problem. This is particularly true for non-Abelian states, such as the Read-Rezayi series (in particular, the Moore-Read and Read-Rezayi Z 3 states) and more exotic nonunitary (Haldane-Rezayi and Gaffnian) or irrational (Haffnian) states, whose parent Hamiltonians involve complicatedmore » many-body interactions. Here, we develop a universal geometric approach for constructing pseudopotential Hamiltonians that is applicable to all geometries. Our method straightforwardly generalizes to the multicomponent SU(n) cases with a combination of spin or pseudospin (layer, subband, or valley) degrees of freedom. We demonstrate the utility of our approach through several examples, some of which involve non-Abelian multicomponent states whose parent Hamiltonians were previously unknown, and we verify the results by numerically computing their entanglement properties.« less
Higher-dimensional Wannier functions of multiparameter Hamiltonians
NASA Astrophysics Data System (ADS)
Hanke, Jan-Philipp; Freimuth, Frank; Blügel, Stefan; Mokrousov, Yuriy
2015-05-01
When using Wannier functions to study the electronic structure of multiparameter Hamiltonians H(k ,λ ) carrying a dependence on crystal momentum k and an additional periodic parameter λ , one usually constructs several sets of Wannier functions for a set of values of λ . We present the concept of higher-dimensional Wannier functions (HDWFs), which provide a minimal and accurate description of the electronic structure of multiparameter Hamiltonians based on a single set of HDWFs. The obstacle of nonorthogonality of Bloch functions at different λ is overcome by introducing an auxiliary real space, which is reciprocal to the parameter λ . We derive a generalized interpolation scheme and emphasize the essential conceptual and computational simplifications in using the formalism, for instance, in the evaluation of linear response coefficients. We further implement the necessary machinery to construct HDWFs from ab initio within the full potential linearized augmented plane-wave method (FLAPW). We apply our implementation to accurately interpolate the Hamiltonian of a one-dimensional magnetic chain of Mn atoms in two important cases of λ : (i) the spin-spiral vector q and (ii) the direction of the ferromagnetic magnetization m ̂. Using the generalized interpolation of the energy, we extract the corresponding values of magnetocrystalline anisotropy energy, Heisenberg exchange constants, and spin stiffness, which compare very well with the values obtained from direct first principles calculations. For toy models we demonstrate that the method of HDWFs can also be used in applications such as the virtual crystal approximation, ferroelectric polarization, and spin torques.
On a Lagrange-Hamilton formalism describing position and momentum uncertainties
NASA Technical Reports Server (NTRS)
Schuch, Dieter
1993-01-01
According to Heisenberg's uncertainty relation, in quantum mechanics it is not possible to determine, simultaneously, exact values for the position and the momentum of a material system. Calculating the mean value of the Hamiltonian operator with the aid of exact analytic Gaussian wave packet solutions, these uncertainties cause an energy contribution additional to the classical energy of the system. For the harmonic oscillator, e.g., this nonclassical energy represents the ground state energy. It will be shown that this additional energy contribution can be considered as a Hamiltonian function, if it is written in appropriate variables. With the help of the usual Lagrange-Hamilton formalism known from classical particle mechanics, but now considering this new Hamiltonian function, it is possible to obtain the equations of motion for position and momentum uncertainties.
Algebraic Bethe ansatz for the sℓ (2) Gaudin model with boundary
NASA Astrophysics Data System (ADS)
Cirilo António, N.; Manojlović, N.; Ragoucy, E.; Salom, I.
2015-04-01
Following Sklyanin's proposal in the periodic case, we derive the generating function of the Gaudin Hamiltonians with boundary terms. Our derivation is based on the quasi-classical expansion of the linear combination of the transfer matrix of the XXX Heisenberg spin chain and the central element, the so-called Sklyanin determinant. The corresponding Gaudin Hamiltonians with boundary terms are obtained as the residues of the generating function. By defining the appropriate Bethe vectors which yield strikingly simple off shell action of the generating function, we fully implement the algebraic Bethe ansatz, obtaining the spectrum of the generating function and the corresponding Bethe equations.
Functional level-set derivative for a polymer self consistent field theory Hamiltonian
NASA Astrophysics Data System (ADS)
Ouaknin, Gaddiel; Laachi, Nabil; Bochkov, Daniil; Delaney, Kris; Fredrickson, Glenn H.; Gibou, Frederic
2017-09-01
We derive functional level-set derivatives for the Hamiltonian arising in self-consistent field theory, which are required to solve free boundary problems in the self-assembly of polymeric systems such as block copolymer melts. In particular, we consider Dirichlet, Neumann and Robin boundary conditions. We provide numerical examples that illustrate how these shape derivatives can be used to find equilibrium and metastable structures of block copolymer melts with a free surface in both two and three spatial dimensions.
Tecmer, Paweł; Gomes, André Severo Pereira; Knecht, Stefan; Visscher, Lucas
2014-07-28
We present a study of the electronic structure of the [UO2](+), [UO2](2 +), [UO2](3 +), NUO, [NUO](+), [NUO](2 +), [NUN](-), NUN, and [NUN](+) molecules with the intermediate Hamiltonian Fock-space coupled cluster method. The accuracy of mean-field approaches based on the eXact-2-Component Hamiltonian to incorporate spin-orbit coupling and Gaunt interactions are compared to results obtained with the Dirac-Coulomb Hamiltonian. Furthermore, we assess the reliability of calculations employing approximate density functionals in describing electronic spectra and quantities useful in rationalizing Uranium (VI) species reactivity (hardness, electronegativity, and electrophilicity).
NASA Astrophysics Data System (ADS)
Tecmer, Paweł; Severo Pereira Gomes, André; Knecht, Stefan; Visscher, Lucas
2014-07-01
We present a study of the electronic structure of the [UO2]+, [UO2]2 +, [UO2]3 +, NUO, [NUO]+, [NUO]2 +, [NUN]-, NUN, and [NUN]+ molecules with the intermediate Hamiltonian Fock-space coupled cluster method. The accuracy of mean-field approaches based on the eXact-2-Component Hamiltonian to incorporate spin-orbit coupling and Gaunt interactions are compared to results obtained with the Dirac-Coulomb Hamiltonian. Furthermore, we assess the reliability of calculations employing approximate density functionals in describing electronic spectra and quantities useful in rationalizing Uranium (VI) species reactivity (hardness, electronegativity, and electrophilicity).
Extended hamiltonian formalism and Lorentz-violating lagrangians
NASA Astrophysics Data System (ADS)
Colladay, Don
2017-09-01
A new perspective on the classical mechanical formulation of particle trajectories in Lorentz-violating theories is presented. Using the extended hamiltonian formalism, a Legendre Transformation between the associated covariant lagrangian and hamiltonian varieties is constructed. This approach enables calculation of trajectories using Hamilton's equations in momentum space and the Euler-Lagrange equations in velocity space away from certain singular points that arise in the theory. Singular points are naturally de-singularized by requiring the trajectories to be smooth functions of both velocity and momentum variables. In addition, it is possible to identify specific sheets of the dispersion relations that correspond to specific solutions for the lagrangian. Examples corresponding to bipartite Finsler functions are computed in detail. A direct connection between the lagrangians and the field-theoretic solutions to the Dirac equation is also established for a special case.
A finite-temperature Hartree-Fock code for shell-model Hamiltonians
NASA Astrophysics Data System (ADS)
Bertsch, G. F.; Mehlhaff, J. M.
2016-10-01
The codes HFgradZ.py and HFgradT.py find axially symmetric minima of a Hartree-Fock energy functional for a Hamiltonian supplied in a shell model basis. The functional to be minimized is the Hartree-Fock energy for zero-temperature properties or the Hartree-Fock grand potential for finite-temperature properties (thermal energy, entropy). The minimization may be subjected to additional constraints besides axial symmetry and nucleon numbers. A single-particle operator can be used to constrain the minimization by adding it to the single-particle Hamiltonian with a Lagrange multiplier. One can also constrain its expectation value in the zero-temperature code. Also the orbital filling can be constrained in the zero-temperature code, fixing the number of nucleons having given Kπ quantum numbers. This is particularly useful to resolve near-degeneracies among distinct minima.
Franck-Condon Factors for Diatomics: Insights and Analysis Using the Fourier Grid Hamiltonian Method
ERIC Educational Resources Information Center
Ghosh, Supriya; Dixit, Mayank Kumar; Bhattacharyya, S. P.; Tembe, B. L.
2013-01-01
Franck-Condon factors (FCFs) play a crucial role in determining the intensities of the vibrational bands in electronic transitions. In this article, a relatively simple method to calculate the FCFs is illustrated. An algorithm for the Fourier Grid Hamiltonian (FGH) method for computing the vibrational wave functions and the corresponding energy…
Cluster expansion for ground states of local Hamiltonians
NASA Astrophysics Data System (ADS)
Bastianello, Alvise; Sotiriadis, Spyros
2016-08-01
A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.
Universal adiabatic quantum computation via the space-time circuit-to-Hamiltonian construction.
Gosset, David; Terhal, Barbara M; Vershynina, Anna
2015-04-10
We show how to perform universal adiabatic quantum computation using a Hamiltonian which describes a set of particles with local interactions on a two-dimensional grid. A single parameter in the Hamiltonian is adiabatically changed as a function of time to simulate the quantum circuit. We bound the eigenvalue gap above the unique ground state by mapping our model onto the ferromagnetic XXZ chain with kink boundary conditions; the gap of this spin chain was computed exactly by Koma and Nachtergaele using its q-deformed version of SU(2) symmetry. We also discuss a related time-independent Hamiltonian which was shown by Janzing to be capable of universal computation. We observe that in the limit of large system size, the time evolution is equivalent to the exactly solvable quantum walk on Young's lattice.
Universal Adiabatic Quantum Computation via the Space-Time Circuit-to-Hamiltonian Construction
NASA Astrophysics Data System (ADS)
Gosset, David; Terhal, Barbara M.; Vershynina, Anna
2015-04-01
We show how to perform universal adiabatic quantum computation using a Hamiltonian which describes a set of particles with local interactions on a two-dimensional grid. A single parameter in the Hamiltonian is adiabatically changed as a function of time to simulate the quantum circuit. We bound the eigenvalue gap above the unique ground state by mapping our model onto the ferromagnetic X X Z chain with kink boundary conditions; the gap of this spin chain was computed exactly by Koma and Nachtergaele using its q -deformed version of SU(2) symmetry. We also discuss a related time-independent Hamiltonian which was shown by Janzing to be capable of universal computation. We observe that in the limit of large system size, the time evolution is equivalent to the exactly solvable quantum walk on Young's lattice.
NASA Astrophysics Data System (ADS)
Chiappe, G.; Louis, E.; San-Fabián, E.; Vergés, J. A.
2015-11-01
Model Hamiltonians have been, and still are, a valuable tool for investigating the electronic structure of systems for which mean field theories work poorly. This review will concentrate on the application of Pariser-Parr-Pople (PPP) and Hubbard Hamiltonians to investigate some relevant properties of polycyclic aromatic hydrocarbons (PAH) and graphene. When presenting these two Hamiltonians we will resort to second quantisation which, although not the way chosen in its original proposal of the former, is much clearer. We will not attempt to be comprehensive, but rather our objective will be to try to provide the reader with information on what kinds of problems they will encounter and what tools they will need to solve them. One of the key issues concerning model Hamiltonians that will be treated in detail is the choice of model parameters. Although model Hamiltonians reduce the complexity of the original Hamiltonian, they cannot be solved in most cases exactly. So, we shall first consider the Hartree-Fock approximation, still the only tool for handling large systems, besides density functional theory (DFT) approaches. We proceed by discussing to what extent one may exactly solve model Hamiltonians and the Lanczos approach. We shall describe the configuration interaction (CI) method, a common technology in quantum chemistry but one rarely used to solve model Hamiltonians. In particular, we propose a variant of the Lanczos method, inspired by CI, that has the novelty of using as the seed of the Lanczos process a mean field (Hartree-Fock) determinant (the method will be named LCI). Two questions of interest related to model Hamiltonians will be discussed: (i) when including long-range interactions, how crucial is including in the Hamiltonian the electronic charge that compensates ion charges? (ii) Is it possible to reduce a Hamiltonian incorporating Coulomb interactions (PPP) to an ‘effective’ Hamiltonian including only on-site interactions (Hubbard)? The performance of CI will be checked on small molecules. The electronic structure of azulene and fused azulene will be used to illustrate several aspects of the method. As regards graphene, several questions will be considered: (i) paramagnetic versus antiferromagnetic solutions, (ii) forbidden gap versus dot size, (iii) graphene nano-ribbons, and (iv) optical properties.
NASA Astrophysics Data System (ADS)
Rast, S.; Fries, P. H.; Belorizky, E.; Borel, A.; Helm, L.; Merbach, A. E.
2001-10-01
The time correlation functions of the electronic spin components of a metal ion without orbital degeneracy in solution are computed. The approach is based on the numerical solution of the time-dependent Schrödinger equation for a stochastic perturbing Hamiltonian which is simulated by a Monte Carlo algorithm using discrete time steps. The perturbing Hamiltonian is quite general, including the superposition of both the static mean crystal field contribution in the molecular frame and the usual transient ligand field term. The Hamiltonian of the static crystal field can involve the terms of all orders, which are invariant under the local group of the average geometry of the complex. In the laboratory frame, the random rotation of the complex is the only source of modulation of this Hamiltonian, whereas an additional Ornstein-Uhlenbeck process is needed to describe the time fluctuations of the Hamiltonian of the transient crystal field. A numerical procedure for computing the electronic paramagnetic resonance (EPR) spectra is proposed and discussed. For the [Gd(H2O)8]3+ octa-aqua ion and the [Gd(DOTA)(H2O)]- complex [DOTA=1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclo dodecane] in water, the predictions of the Redfield relaxation theory are compared with those of the Monte Carlo approach. The Redfield approximation is shown to be accurate for all temperatures and for electronic resonance frequencies at and above X-band, justifying the previous interpretations of EPR spectra. At lower frequencies the transverse and longitudinal relaxation functions derived from the Redfield approximation display significantly faster decays than the corresponding simulated functions. The practical interest of this simulation approach is underlined.
A new Morse-oscillator based Hamiltonian for H 3+: Calculation of line strengths
NASA Astrophysics Data System (ADS)
Jensen, Per; Špirko, V.
1986-07-01
In two recent publications [V. Špirko, P. Jensen, P. R. Bunker, and A. Čejchan, J. Mol. Spectrosc.112, 183-202 (1985); P. Jensen, V. Špirko, and P. R. Bunker, J. Mol. Spectrosc.115, 269-293 (1986)], we have described the development of Morse oscillator adapted rotation-vibration Hamiltonians for equilateral triangular X3 and Y2X molecules, and we have used these Hamiltonians to calculate the rotation-vibration energies for H 3+ and its X3+ and Y2X+ isotopes from ab initio potential energy functions. The present paper presents a method for calculating rotation-vibration line strengths of H 3+ and its isotopes using an ab initio dipole moment function [G. D. Carney and R. N. Porter, J. Chem. Phys.60, 4251-4264 (1974)] together with the energies and wave-functions obtained by diagonalization of the Morse oscillator adapted Hamiltonians. We use this method for calculating the vibrational transition moments involving the lowest vibrational states of H 3+, D 3+, H 2D +, and D 2H +. Further, we calculate the line strengths of the low- J transitions in the rotational spectra of H 3+ in the vibrational ground state and in the ν1 and ν2 states. We hope that the calculations presented will facilitate the search for further rotation-vibration transitions of H 3+ and its isotopes.
Asymptotic analysis on a pseudo-Hermitian Riemann-zeta Hamiltonian
NASA Astrophysics Data System (ADS)
Bender, Carl M.; Brody, Dorje C.
2018-04-01
The differential-equation eigenvalue problem associated with a recently-introduced Hamiltonian, whose eigenvalues correspond to the zeros of the Riemann zeta function, is analyzed using Fourier and WKB analysis. The Fourier analysis leads to a challenging open problem concerning the formulation of the eigenvalue problem in the momentum space. The WKB analysis gives the exact asymptotic behavior of the eigenfunction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degroote, M.; Henderson, T. M.; Zhao, J.
We present a similarity transformation theory based on a polynomial form of a particle-hole pair excitation operator. In the weakly correlated limit, this polynomial becomes an exponential, leading to coupled cluster doubles. In the opposite strongly correlated limit, the polynomial becomes an extended Bessel expansion and yields the projected BCS wavefunction. In between, we interpolate using a single parameter. The e ective Hamiltonian is non-hermitian and this Polynomial Similarity Transformation Theory follows the philosophy of traditional coupled cluster, left projecting the transformed Hamiltonian onto subspaces of the Hilbert space in which the wave function variance is forced to be zero.more » Similarly, the interpolation parameter is obtained through minimizing the next residual in the projective hierarchy. We rationalize and demonstrate how and why coupled cluster doubles is ill suited to the strongly correlated limit whereas the Bessel expansion remains well behaved. The model provides accurate wave functions with energy errors that in its best variant are smaller than 1% across all interaction stengths. The numerical cost is polynomial in system size and the theory can be straightforwardly applied to any realistic Hamiltonian.« less
The Effects of Nonzero Total Electron Spin in the X˜3B1State of Methylene CH 2
NASA Astrophysics Data System (ADS)
Kozin, Igor N.; Jensen, Per
1997-06-01
We report here how we have incorporated the effects of a nonzero total electron spin in the MORBID Hamiltonian and computer program [P. Jensen,J. Mol. Spectrosc.128,478-501 (1988);J. Chem. Soc. Faraday Trans. 284,1315-1340 (1988);in"Methods in Computational Molecular Physics" (S. Wilson and G. H. F. Diercksen, Eds.), Plenum Press, New York, 1992] for calculating the rovibronic energies of a triatomic molecule directly from the potential energy function. The spin-spin and spin-rotation Hamiltonian terms, given in a form depending on the vibrational coordinates, have been expressed in terms of isotope-independent functions and added to the MORBID rotation-vibration Hamiltonian. The eigenvalues of the resulting Hamiltonian are obtained in a variational procedure. This method is tested on the methylene radical CH2in theX˜3B1electronic ground state for which we describe simultaneously the splittings due to electron spin for the isotopomers12CH2,12CD2, and13CH2. For these molecules, experimental data are available, and we compare the results of least-squares fits to these data with predictions fromab initiotheory.
NASA Astrophysics Data System (ADS)
Sobhani, Hadi; Hassanabadi, Hassan; Chung, Won Sang
2018-05-01
In this study, Bohr Hamiltonian is studied for the triaxial and rotational cases. In both cases, Killingbeck potential is used as interaction. The wave function and energy of these cases are found using bi-confluent Heun functions. The results are examined by reproducing experimental data of some isotopes for each case. Energy levels of the isotopes are shown graphically as well as theoretical results for staggering in γ bands of the isotopes is discussed. In the next step, we argue about B (E 2) transition rates of the isotopes for each case. The results have a good agreement with experimental data.
Stretched hydrogen molecule from a constrained-search density-functional perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valone, Steven M; Levy, Mel
2009-01-01
Constrained-search density functional theory gives valuable insights into the fundamentals of density functional theory. It provides exact results and bounds on the ground- and excited-state density functionals. An important advantage of the theory is that it gives guidance in the construction of functionals. Here they engage constrained search theory to explore issues associated with the functional behavior of 'stretched bonds' in molecular hydrogen. A constrained search is performed with familiar valence bond wavefunctions ordinarily used to describe molecular hydrogen. The effective, one-electron hamiltonian is computed and compared to the corresponding uncorrelated, Hartree-Fock effective hamiltonian. Analysis of the functional suggests themore » need to construct different functionals for the same density and to allow a competition among these functions. As a result the correlation energy functional is composed explicitly of energy gaps from the different functionals.« less
Hamiltonian structure of three-dimensional gravity in Vielbein formalism
NASA Astrophysics Data System (ADS)
Hajihashemi, Mahdi; Shirzad, Ahmad
2018-01-01
Considering Chern-Simons like gravity theories in three dimensions as first order systems, we analyze the Hamiltonian structure of three theories Topological massive gravity, New massive gravity, and Zwei-Dreibein Gravity. We show that these systems demonstrate a new feature of the constrained systems in which a new kind of constraints emerge due to factorization of determinant of the matrix of Poisson brackets of constraints. We find the desired number of degrees of freedom as well as the generating functional of local Lorentz transformations and diffeomorphism through canonical structure of the system. We also compare the Hamiltonian structure of linearized version of the considered models with the original ones.
Spectrum of Quantized Energy for a Lengthening Pendulum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jeong Ryeol; Song, Ji Nny; Hong, Seong Ju
We considered a quantum system of simple pendulum whose length of string is increasing at a steady rate. Since the string length is represented as a time function, this system is described by a time-dependent Hamiltonian. The invariant operator method is very useful in solving the quantum solutions of time-dependent Hamiltonian systems like this. The invariant operator of the system is represented in terms of the lowering operator a(t) and the raising operator a{sup {dagger}}(t). The Schroedinger solutions {psi}{sub n}({theta}, t) whose spectrum is discrete are obtained by means of the invariant operator. The expectation value of the Hamiltonian inmore » the {psi}{sub n}({theta}, t) state is the same as the quantum energy. At first, we considered only {theta}{sup 2} term in the Hamiltonian in order to evaluate the quantized energy. The numerical study for quantum energy correction is also made by considering the angle variable not only up to {theta}{sup 4} term but also up to {theta}{sup 6} term in the Hamiltonian, using the perturbation theory.« less
Representation of the exact relativistic electronic Hamiltonian within the regular approximation
NASA Astrophysics Data System (ADS)
Filatov, Michael; Cremer, Dieter
2003-12-01
The exact relativistic Hamiltonian for electronic states is expanded in terms of energy-independent linear operators within the regular approximation. An effective relativistic Hamiltonian has been obtained, which yields in lowest order directly the infinite-order regular approximation (IORA) rather than the zeroth-order regular approximation method. Further perturbational expansion of the exact relativistic electronic energy utilizing the effective Hamiltonian leads to new methods based on ordinary (IORAn) or double [IORAn(2)] perturbation theory (n: order of expansion), which provide improved energies in atomic calculations. Energies calculated with IORA4 and IORA3(2) are accurate up to c-20. Furthermore, IORA is improved by using the IORA wave function to calculate the Rayleigh quotient, which, if minimized, leads to the exact relativistic energy. The outstanding performance of this new IORA method coined scaled IORA is documented in atomic and molecular calculations.
Hamiltonian fluid closures of the Vlasov-Ampère equations: From water-bags to N moment models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perin, M.; Chandre, C.; Tassi, E.
2015-09-15
Moment closures of the Vlasov-Ampère system, whereby higher moments are represented as functions of lower moments with the constraint that the resulting fluid system remains Hamiltonian, are investigated by using water-bag theory. The link between the water-bag formalism and fluid models that involve density, fluid velocity, pressure and higher moments is established by introducing suitable thermodynamic variables. The cases of one, two, and three water-bags are treated and their Hamiltonian structures are provided. In each case, we give the associated fluid closures and we discuss their Casimir invariants. We show how the method can be extended to an arbitrary numbermore » of fields, i.e., an arbitrary number of water-bags and associated moments. The thermodynamic interpretation of the resulting models is discussed. Finally, a general procedure to derive Hamiltonian N-field fluid models is proposed.« less
Twisted quantum double model of topological order with boundaries
NASA Astrophysics Data System (ADS)
Bullivant, Alex; Hu, Yuting; Wan, Yidun
2017-10-01
We generalize the twisted quantum double model of topological orders in two dimensions to the case with boundaries by systematically constructing the boundary Hamiltonians. Given the bulk Hamiltonian defined by a gauge group G and a 3-cocycle in the third cohomology group of G over U (1 ) , a boundary Hamiltonian can be defined by a subgroup K of G and a 2-cochain in the second cochain group of K over U (1 ) . The consistency between the bulk and boundary Hamiltonians is dictated by what we call the Frobenius condition that constrains the 2-cochain given the 3-cocyle. We offer a closed-form formula computing the ground-state degeneracy of the model on a cylinder in terms of the input data only, which can be naturally generalized to surfaces with more boundaries. We also explicitly write down the ground-state wave function of the model on a disk also in terms of the input data only.
Algebraic approach to electronic spectroscopy and dynamics.
Toutounji, Mohamad
2008-04-28
Lie algebra, Zassenhaus, and parameter differentiation techniques are utilized to break up the exponential of a bilinear Hamiltonian operator into a product of noncommuting exponential operators by the virtue of the theory of Wei and Norman [J. Math. Phys. 4, 575 (1963); Proc. Am. Math. Soc., 15, 327 (1964)]. There are about three different ways to find the Zassenhaus exponents, namely, binomial expansion, Suzuki formula, and q-exponential transformation. A fourth, and most reliable method, is provided. Since linearly displaced and distorted (curvature change upon excitation/emission) Hamiltonian and spin-boson Hamiltonian may be classified as bilinear Hamiltonians, the presented algebraic algorithm (exponential operator disentanglement exploiting six-dimensional Lie algebra case) should be useful in spin-boson problems. The linearly displaced and distorted Hamiltonian exponential is only treated here. While the spin-boson model is used here only as a demonstration of the idea, the herein approach is more general and powerful than the specific example treated. The optical linear dipole moment correlation function is algebraically derived using the above mentioned methods and coherent states. Coherent states are eigenvectors of the bosonic lowering operator a and not of the raising operator a(+). While exp(a(+)) translates coherent states, exp(a(+)a(+)) operation on coherent states has always been a challenge, as a(+) has no eigenvectors. Three approaches, and the results, of that operation are provided. Linear absorption spectra are derived, calculated, and discussed. The linear dipole moment correlation function for the pure quadratic coupling case is expressed in terms of Legendre polynomials to better show the even vibronic transitions in the absorption spectrum. Comparison of the present line shapes to those calculated by other methods is provided. Franck-Condon factors for both linear and quadratic couplings are exactly accounted for by the herein calculated linear absorption spectra. This new methodology should easily pave the way to calculating the four-point correlation function, F(tau(1),tau(2),tau(3),tau(4)), of which the optical nonlinear response function may be procured, as evaluating F(tau(1),tau(2),tau(3),tau(4)) is only evaluating the optical linear dipole moment correlation function iteratively over different time intervals, which should allow calculating various optical nonlinear temporal/spectral signals.
NASA Astrophysics Data System (ADS)
Kováčik, Roman; Murthy, Sowmya Sathyanarayana; Quiroga, Carmen E.; Ederer, Claude; Franchini, Cesare
2016-02-01
We merge advanced ab initio schemes (standard density functional theory, hybrid functionals, and the G W approximation) with model Hamiltonian approaches (tight-binding and Heisenberg Hamiltonian) to study the evolution of the electronic, magnetic, and dielectric properties of the manganite family R MnO3 (R =La,Pr,Nd,Sm,Eu, and Gd) . The link between first principles and tight binding is established by downfolding the physically relevant subset of 3 d bands with eg character by means of maximally localized Wannier functions (MLWFs) using the VASP2WANNIER90 interface. The MLWFs are then used to construct a general tight-binding Hamiltonian written as a sum of the kinetic term, the Hund's rule coupling, the JT coupling, and the electron-electron interaction. The dispersion of the tight-binding (TB) eg bands at all levels are found to match closely the MLWFs. We provide a complete set of TB parameters which can serve as guidance for the interpretation of future studies based on many-body Hamiltonian approaches. In particular, we find that the Hund's rule coupling strength, the Jahn-Teller coupling strength, and the Hubbard interaction parameter U remain nearly constant for all the members of the R MnO3 series, whereas the nearest-neighbor hopping amplitudes show a monotonic attenuation as expected from the trend of the tolerance factor. Magnetic exchange interactions, computed by mapping a large set of hybrid functional total energies onto an Heisenberg Hamiltonian, clarify the origin of the A-type magnetic ordering observed in the early rare-earth manganite series as arising from a net negative out-of-plane interaction energy. The obtained exchange parameters are used to estimate the Néel temperature by means of Monte Carlo simulations. The resulting data capture well the monotonic decrease of the ordering temperature down the series from R =La to Gd, in agreement with experiments. This trend correlates well with the modulation of structural properties, in particular with the progressive reduction of the Mn-O-Mn bond angle which is associated with the quenching of the volume and the decrease of the tolerance factor due to the shrinkage of the ionic radii of R going from La to Gd.
2D Quantum Simulation of MOSFET Using the Non Equilibrium Green's Function Method
NASA Technical Reports Server (NTRS)
Svizhenko, Alexel; Anantram, M. P.; Govindan, T. R.; Yan, Jerry (Technical Monitor)
2000-01-01
The objectives this viewgraph presentation summarizes include: (1) the development of a quantum mechanical simulator for ultra short channel MOSFET simulation, including theory, physical approximations, and computer code; (2) explore physics that is not accessible by semiclassical methods; (3) benchmarking of semiclassical and classical methods; and (4) study other two-dimensional devices and molecular structure, from discretized Hamiltonian to tight-binding Hamiltonian.
Hamiltonian BVMs (HBVMs): Implementation Details and Applications
NASA Astrophysics Data System (ADS)
Brugnano, Luigi; Iavernaro, Felice; Susca, Tiziana
2009-09-01
Hamiltonian Boundary Value Methods are one step schemes of high order where the internal stages are partly exploited to impose the order conditions (fundamental stages) and partly to confer the formula the property of conserving the Hamiltonian function when this is a polynomial with a given degree v. The term "silent stages" has been coined for these latter set of extra-stages to mean that their presence does not cause an increase of the dimension of the associated nonlinear system to be solved at each step. By considering a specific method in this class, we give some details about how the solution of the nonlinear system may be conveniently carried out and how to compensate the effect of roundoff errors.
Formation Energies of Native Point Defects in Strained layer Superlattices (Postprint)
2017-06-05
AFRL-RX-WP-JA-2017-0440 FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES (POSTPRINT) Zhi Gang Yu...2017 Interim 11 September 2013 – 31 May 2017 4. TITLE AND SUBTITLE FORMATION ENERGIES OF NATIVE POINT DEFECTS IN STRAINED-LAYER SUPERLATTICES...Hamiltonian, tight-binding Hamiltonian, and Green’s function techniques to obtain energy levels arising from native point defects (NPDs) in InAs-GaSb and
Jacquin, Hugo; Gilson, Amy; Shakhnovich, Eugene; Cocco, Simona; Monasson, Rémi
2016-05-01
Inverse statistical approaches to determine protein structure and function from Multiple Sequence Alignments (MSA) are emerging as powerful tools in computational biology. However the underlying assumptions of the relationship between the inferred effective Potts Hamiltonian and real protein structure and energetics remain untested so far. Here we use lattice protein model (LP) to benchmark those inverse statistical approaches. We build MSA of highly stable sequences in target LP structures, and infer the effective pairwise Potts Hamiltonians from those MSA. We find that inferred Potts Hamiltonians reproduce many important aspects of 'true' LP structures and energetics. Careful analysis reveals that effective pairwise couplings in inferred Potts Hamiltonians depend not only on the energetics of the native structure but also on competing folds; in particular, the coupling values reflect both positive design (stabilization of native conformation) and negative design (destabilization of competing folds). In addition to providing detailed structural information, the inferred Potts models used as protein Hamiltonian for design of new sequences are able to generate with high probability completely new sequences with the desired folds, which is not possible using independent-site models. Those are remarkable results as the effective LP Hamiltonians used to generate MSA are not simple pairwise models due to the competition between the folds. Our findings elucidate the reasons for the success of inverse approaches to the modelling of proteins from sequence data, and their limitations.
Hamiltonian thermodynamics of charged three-dimensional dilatonic black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dias, Goncalo A. S.; Lemos, Jose P. S.; Centro Multidisciplinar de Astrofisica-CENTRA, Departamento de Fisica, Instituto Superior Tecnico-IST, Universidade Tecnica de Lisboa-UTL, Avenida Rovisco Pais 1, 1049-001 Lisboa
2008-10-15
The action for a class of three-dimensional dilaton-gravity theories, with an electromagnetic Maxwell field and a cosmological constant, can be recast in a Brans-Dicke-Maxwell type action, with its free {omega} parameter. For a negative cosmological constant, these theories have static, electrically charged, and spherically symmetric black hole solutions. Those theories with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found out. The theories studied are general relativity ({omega}{yields}{+-}{infinity}), a dimensionally reduced cylindrical four-dimensional general relativity theory ({omega}=0), and a theory representing a class of theories ({omega}=-3), all with a Maxwell term. The Hamiltonian formalismmore » is set up in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcation 1-sphere as the left boundary, and anti-de Sitter infinity as the right boundary. The metric functions on the foliated hypersurfaces and the radial component of the vector potential one-form are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unconstrained theory with two pairs of canonical coordinates (M,P{sub M};Q,P{sub Q}), where M is the mass parameter, which for {omega}<-(3/2) and for {omega}={+-}{infinity} needs a careful renormalization, P{sub M} is the conjugate momenta of M, Q is the charge parameter, and P{sub Q} is its conjugate momentum. The resulting Hamiltonian is a sum of boundary terms only. A quantization of the theory is performed. The Schroedinger evolution operator is constructed, the trace is taken, and the partition function of the grand canonical ensemble is obtained, where the chemical potential is the scalar electric field {phi}. Like the uncharged cases studied previously, the charged black hole entropies differ, in general, from the usual quarter of the horizon area due to the dilaton.« less
A Gaussian theory for fluctuations in simple liquids.
Krüger, Matthias; Dean, David S
2017-04-07
Assuming an effective quadratic Hamiltonian, we derive an approximate, linear stochastic equation of motion for the density-fluctuations in liquids, composed of overdamped Brownian particles. From this approach, time dependent two point correlation functions (such as the intermediate scattering function) are derived. We show that this correlation function is exact at short times, for any interaction and, in particular, for arbitrary external potentials so that it applies to confined systems. Furthermore, we discuss the relation of this approach to previous ones, such as dynamical density functional theory as well as the formally exact treatment. This approach, inspired by the well known Landau-Ginzburg Hamiltonians, and the corresponding "Model B" equation of motion, may be seen as its microscopic version, containing information about the details on the particle level.
A Gaussian theory for fluctuations in simple liquids
NASA Astrophysics Data System (ADS)
Krüger, Matthias; Dean, David S.
2017-04-01
Assuming an effective quadratic Hamiltonian, we derive an approximate, linear stochastic equation of motion for the density-fluctuations in liquids, composed of overdamped Brownian particles. From this approach, time dependent two point correlation functions (such as the intermediate scattering function) are derived. We show that this correlation function is exact at short times, for any interaction and, in particular, for arbitrary external potentials so that it applies to confined systems. Furthermore, we discuss the relation of this approach to previous ones, such as dynamical density functional theory as well as the formally exact treatment. This approach, inspired by the well known Landau-Ginzburg Hamiltonians, and the corresponding "Model B" equation of motion, may be seen as its microscopic version, containing information about the details on the particle level.
Lei, Youming; Zheng, Fan
2016-12-01
Stochastic chaos induced by diffusion processes, with identical spectral density but different probability density functions (PDFs), is investigated in selected lightly damped Hamiltonian systems. The threshold amplitude of diffusion processes for the onset of chaos is derived by using the stochastic Melnikov method together with a mean-square criterion. Two quasi-Hamiltonian systems, namely, a damped single pendulum and damped Duffing oscillator perturbed by stochastic excitations, are used as illustrative examples. Four different cases of stochastic processes are taking as the driving excitations. It is shown that in such two systems the spectral density of diffusion processes completely determines the threshold amplitude for chaos, regardless of the shape of their PDFs, Gaussian or otherwise. Furthermore, the mean top Lyapunov exponent is employed to verify analytical results. The results obtained by numerical simulations are in accordance with the analytical results. This demonstrates that the stochastic Melnikov method is effective in predicting the onset of chaos in the quasi-Hamiltonian systems.
A two-step, fourth-order method with energy preserving properties
NASA Astrophysics Data System (ADS)
Brugnano, Luigi; Iavernaro, Felice; Trigiante, Donato
2012-09-01
We introduce a family of fourth-order two-step methods that preserve the energy function of canonical polynomial Hamiltonian systems. As is the case with linear mutistep and one-leg methods, a prerogative of the new formulae is that the associated nonlinear systems to be solved at each step of the integration procedure have the very same dimension of the underlying continuous problem. The key tools in the new methods are the line integral associated with a conservative vector field (such as the one defined by a Hamiltonian dynamical system) and its discretization obtained by the aid of a quadrature formula. Energy conservation is equivalent to the requirement that the quadrature is exact, which turns out to be always the case in the event that the Hamiltonian function is a polynomial and the degree of precision of the quadrature formula is high enough. The non-polynomial case is also discussed and a number of test problems are finally presented in order to compare the behavior of the new methods to the theoretical results.
Bosonization of nonrelativistic fermions on a circle: Tomonaga's problem revisited
NASA Astrophysics Data System (ADS)
Dhar, Avinash; Mandal, Gautam
2006-11-01
We use the recently developed tools for an exact bosonization of a finite number N of nonrelativistic fermions to discuss the classic Tomonaga problem. In the case of noninteracting fermions, the bosonized Hamiltonian naturally splits into an O(N) piece and an O(1) piece. We show that in the large-N and low-energy limit, the O(N) piece in the Hamiltonian describes a massless relativistic boson, while the O(1) piece gives rise to cubic self-interactions of the boson. At finite N and high energies, the low-energy effective description breaks down and the exact bosonized Hamiltonian must be used. We also comment on the connection between the Tomonaga problem and pure Yang-Mills theory on a cylinder. In the dual context of baby universes and multiple black holes in string theory, we point out that the O(N) piece in our bosonized Hamiltonian provides a simple understanding of the origin of two different kinds of nonperturbative O(e-N) corrections to the black hole partition function.
Analysis of Franck-Condon factors for CO+ molecule using the Fourier Grid Hamiltonian method
NASA Astrophysics Data System (ADS)
Syiemiong, Arnestar; Swer, Shailes; Jha, Ashok Kumar; Saxena, Atul
2018-04-01
Franck-Condon factors (FCFs) are important parameters and it plays a very important role in determining the intensities of the vibrational bands in electronic transitions. In this paper, we illustrate the Fourier Grid Hamiltonian (FGH) method, a relatively simple method to calculate the FCFs. The FGH is a method used for calculating the vibrational eigenvalues and eigenfunctions of bound electronic states of diatomic molecules. The obtained vibrational wave functions for the ground and the excited states are used to calculate the vibrational overlap integral and then the FCFs. In this computation, we used the Morse potential and Bi-Exponential potential model for constructing and diagonalizing the molecular Hamiltonians. The effects of the change in equilibrium internuclear distance (xe), dissociation energy (De), and the nature of the excited state electronic energy curve on the FCFs have been determined. Here we present our work for the qualitative analysis of Franck-Condon Factorsusing this Fourier Grid Hamiltonian Method.
Franchini, C; Kováčik, R; Marsman, M; Murthy, S Sathyanarayana; He, J; Ederer, C; Kresse, G
2012-06-13
Using the newly developed VASP2WANNIER90 interface we have constructed maximally localized Wannier functions (MLWFs) for the e(g) states of the prototypical Jahn-Teller magnetic perovskite LaMnO(3) at different levels of approximation for the exchange-correlation kernel. These include conventional density functional theory (DFT) with and without the additional on-site Hubbard U term, hybrid DFT and partially self-consistent GW. By suitably mapping the MLWFs onto an effective e(g) tight-binding (TB) Hamiltonian we have computed a complete set of TB parameters which should serve as guidance for more elaborate treatments of correlation effects in effective Hamiltonian-based approaches. The method-dependent changes of the calculated TB parameters and their interplay with the electron-electron (el-el) interaction term are discussed and interpreted. We discuss two alternative model parameterizations: one in which the effects of the el-el interaction are implicitly incorporated in the otherwise 'noninteracting' TB parameters and a second where we include an explicit mean-field el-el interaction term in the TB Hamiltonian. Both models yield a set of tabulated TB parameters which provide the band dispersion in excellent agreement with the underlying ab initio and MLWF bands.
NASA Astrophysics Data System (ADS)
Hoque, Md. Fazlul; Marquette, Ian; Post, Sarah; Zhang, Yao-Zhong
2018-04-01
We introduce an extended Kepler-Coulomb quantum model in spherical coordinates. The Schrödinger equation of this Hamiltonian is solved in these coordinates and it is shown that the wave functions of the system can be expressed in terms of Laguerre, Legendre and exceptional Jacobi polynomials (of hypergeometric type). We construct ladder and shift operators based on the corresponding wave functions and obtain their recurrence formulas. These recurrence relations are used to construct higher-order, algebraically independent integrals of motion to prove superintegrability of the Hamiltonian. The integrals form a higher rank polynomial algebra. By constructing the structure functions of the associated deformed oscillator algebras we derive the degeneracy of energy spectrum of the superintegrable system.
NASA Astrophysics Data System (ADS)
Samsonov, Boris F.
2010-10-01
Supersymmetric (SUSY) transformation operators with complex factorization constants are analyzed as operators acting in the Hilbert space of functions square integrable on the positive semiaxis. The obtained results are applied to Hamiltonians possessing spectral singularities which are non-Hermitian SUSY partners of self-adjoint operators. A new regularization procedure for the resolution of the identity operator in terms of a continuous biorthonormal set of the non-Hermitian Hamiltonian eigenfunctions is proposed. It is also argued that if the binorm of continuous spectrum eigenfunctions is interpreted in the same way as the norm of similar functions in the usual Hermitian case, then one can state that the function corresponding to a spectral singularity has zero binorm.
Nonholonomic Hamiltonian Method for Molecular Dynamics Simulations of Reacting Shocks
NASA Astrophysics Data System (ADS)
Fahrenthold, Eric; Bass, Joseph
2015-06-01
Conventional molecular dynamics simulations of reacting shocks employ a holonomic Hamiltonian formulation: the breaking and forming of covalent bonds is described by potential functions. In general these potential functions: (a) are algebraically complex, (b) must satisfy strict smoothness requirements, and (c) contain many fitted parameters. In recent research the authors have developed a new noholonomic formulation of reacting molecular dynamics. In this formulation bond orders are determined by rate equations and the bonding-debonding process need not be described by differentiable functions. This simplifies the representation of complex chemistry and reduces the number of fitted model parameters. Example applications of the method show molecular level shock to detonation simulations in nitromethane and RDX. Research supported by the Defense Threat Reduction Agency.
N =4 supersymmetric mechanics on curved spaces
NASA Astrophysics Data System (ADS)
Kozyrev, Nikolay; Krivonos, Sergey; Lechtenfeld, Olaf; Nersessian, Armen; Sutulin, Anton
2018-04-01
We present N =4 supersymmetric mechanics on n -dimensional Riemannian manifolds constructed within the Hamiltonian approach. The structure functions entering the supercharges and the Hamiltonian obey modified covariant constancy equations as well as modified Witten-Dijkgraaf-Verlinde-Verlinde equations specified by the presence of the manifold's curvature tensor. Solutions of original Witten-Dijkgraaf-Verlinde-Verlinde equations and related prepotentials defining N =4 superconformal mechanics in flat space can be lifted to s o (n )-invariant Riemannian manifolds. For the Hamiltonian this lift generates an additional potential term which, on spheres and (two-sheeted) hyperboloids, becomes a Higgs-oscillator potential. In particular, the sum of n copies of one-dimensional conformal mechanics results in a specific superintegrable deformation of the Higgs oscillator.
The use of an analytic Hamiltonian matrix for solving the hydrogenic atom
NASA Astrophysics Data System (ADS)
Bhatti, Mohammad
2001-10-01
The non-relativistic Hamiltonian corresponding to the Shrodinger equation is converted into analytic Hamiltonian matrix using the kth order B-splines functions. The Galerkin method is applied to the solution of the Shrodinger equation for bound states of hydrogen-like systems. The program Mathematica is used to create analytic matrix elements and exact integration is performed over the knot-sequence of B-splines and the resulting generalized eigenvalue problem is solved on a specified numerical grid. The complete basis set and the energy spectrum is obtained for the coulomb potential for hydrogenic systems with Z less than 100 with B-splines of order eight. Another application is given to test the Thomas-Reiche-Kuhn sum rule for the hydrogenic systems.
Landau problem with time dependent mass in time dependent electric and harmonic background fields
NASA Astrophysics Data System (ADS)
Lawson, Latévi M.; Avossevou, Gabriel Y. H.
2018-04-01
The spectrum of a Hamiltonian describing the dynamics of a Landau particle with time-dependent mass and frequency undergoing the influence of a uniform time-dependent electric field is obtained. The configuration space wave function of the model is expressed in terms of the generalised Laguerre polynomials. To diagonalize the time-dependent Hamiltonian, we employ the Lewis-Riesenfeld method of invariants. To this end, we introduce a unitary transformation in the framework of the algebraic formalism to construct the invariant operator of the system and then to obtain the exact solution of the Hamiltonian. We recover the solutions of the ordinary Landau problem in the absence of the electric and harmonic fields for a constant particle mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharkey, Keeper L.; Pavanello, Michele; Bubin, Sergiy
2009-12-15
A new algorithm for calculating the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for quantum-mechanical calculations of atoms with two p electrons or a single d electron have been derived and implemented. The Hamiltonian used in the approach was obtained by rigorously separating the center-of-mass motion and it explicitly depends on the finite mass of the nucleus. The approach was employed to perform test calculations on the isotopes of the carbon atom in their ground electronic states and to determine the finite-nuclear-mass corrections for these states.
Time dependence of correlation functions following a quantum quench.
Calabrese, Pasquale; Cardy, John
2006-04-07
We show that the time dependence of correlation functions in an extended quantum system in d dimensions, which is prepared in the ground state of some Hamiltonian and then evolves without dissipation according to some other Hamiltonian, may be extracted using methods of boundary critical phenomena in d + 1 dimensions. For d = 1 particularly powerful results are available using conformal field theory. These are checked against those available from solvable models. They may be explained in terms of a picture, valid more generally, whereby quasiparticles, entangled over regions of the order of the correlation length in the initial state, then propagate classically through the system.
Coprocessors for quantum devices
NASA Astrophysics Data System (ADS)
Kay, Alastair
2018-03-01
Quantum devices, from simple fixed-function tools to the ultimate goal of a universal quantum computer, will require high-quality, frequent repetition of a small set of core operations, such as the preparation of entangled states. These tasks are perfectly suited to realization by a coprocessor or supplementary instruction set, as is common practice in modern CPUs. In this paper, we present two quintessentially quantum coprocessor functions: production of a Greenberger-Horne-Zeilinger state and implementation of optimal universal (asymmetric) quantum cloning. Both are based on the evolution of a fixed Hamiltonian. We introduce a technique for deriving the parameters of these Hamiltonians based on the numerical integration of Toda-like flows.
Algebraic approach to electronic spectroscopy and dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toutounji, Mohamad
Lie algebra, Zassenhaus, and parameter differentiation techniques are utilized to break up the exponential of a bilinear Hamiltonian operator into a product of noncommuting exponential operators by the virtue of the theory of Wei and Norman [J. Math. Phys. 4, 575 (1963); Proc. Am. Math. Soc., 15, 327 (1964)]. There are about three different ways to find the Zassenhaus exponents, namely, binomial expansion, Suzuki formula, and q-exponential transformation. A fourth, and most reliable method, is provided. Since linearly displaced and distorted (curvature change upon excitation/emission) Hamiltonian and spin-boson Hamiltonian may be classified as bilinear Hamiltonians, the presented algebraic algorithm (exponentialmore » operator disentanglement exploiting six-dimensional Lie algebra case) should be useful in spin-boson problems. The linearly displaced and distorted Hamiltonian exponential is only treated here. While the spin-boson model is used here only as a demonstration of the idea, the herein approach is more general and powerful than the specific example treated. The optical linear dipole moment correlation function is algebraically derived using the above mentioned methods and coherent states. Coherent states are eigenvectors of the bosonic lowering operator a and not of the raising operator a{sup +}. While exp(a{sup +}) translates coherent states, exp(a{sup +}a{sup +}) operation on coherent states has always been a challenge, as a{sup +} has no eigenvectors. Three approaches, and the results, of that operation are provided. Linear absorption spectra are derived, calculated, and discussed. The linear dipole moment correlation function for the pure quadratic coupling case is expressed in terms of Legendre polynomials to better show the even vibronic transitions in the absorption spectrum. Comparison of the present line shapes to those calculated by other methods is provided. Franck-Condon factors for both linear and quadratic couplings are exactly accounted for by the herein calculated linear absorption spectra. This new methodology should easily pave the way to calculating the four-point correlation function, F({tau}{sub 1},{tau}{sub 2},{tau}{sub 3},{tau}{sub 4}), of which the optical nonlinear response function may be procured, as evaluating F({tau}{sub 1},{tau}{sub 2},{tau}{sub 3},{tau}{sub 4}) is only evaluating the optical linear dipole moment correlation function iteratively over different time intervals, which should allow calculating various optical nonlinear temporal/spectral signals.« less
Gravitation and cosmology with York time
NASA Astrophysics Data System (ADS)
Roser, Philipp
Despite decades of inquiry an adequate theory of 'quantum gravity' has remained elusive, in part due to the absence of data that would guide the search and in part due to technical difficulties, prominently among them the 'problem of time'. The problem is a result of the attempt to quantise a classical theory with temporal reparameterisation and refoliation invariance such as general relativity. One way forward is therefore the breaking of this invariance via the identification of a preferred foliation of spacetime into parameterised spatial slices. In this thesis we argue that a foliation into slices of constant extrinsic curvature, parameterised by 'York time', is a viable contender. We argue that the role of York time in the initial-value problem of general relativity as well as a number of the parameter's other properties make it the most promising candidate for a physically preferred notion of time. A Hamiltonian theory describing gravity in the York-time picture may be derived from general relativity by 'Hamiltonian reduction', a procedure that eliminates certain degrees of freedom -- specifically the local scale and its rate of change -- in favour of an explicit time parameter and a functional expression for the associated Hamiltonian. In full generality this procedure is impossible to carry out since the equation that determines the Hamiltonian cannot be solved using known methods. However, it is possible to derive explicit Hamiltonian functions for cosmological scenarios (where matter and geometry is treated as spatially homogeneous). Using a perturbative expansion of the unsolvable equation enables us to derive a quantisable Hamiltonian for cosmological perturbations on such a homogeneous background. We analyse the (classical) theories derived in this manner and look at the York-time description of a number of cosmological processes. We then proceed to apply the canonical quantisation procedure to these systems and analyse the resulting quantum theories. We discuss a number of conceptual and technical points, such as the notion of volume eigen functions and the absence of a momentum representation as a result of the non-canonical commutator structure. While not problematic in a technical sense, the conceptual problems with canonical quantisation are particularly apparent when the procedure is applied in cosmological contexts. In the final part of this thesis we develop a new quantisation method based on configuration-space trajectories and a dynamical configuration-space Weyl geometry. There is no wave function in this type of quantum theory and so many of the conceptual issues do not arise. We outline the application of this quantisation procedure to gravity and discuss some technical points. The actual technical developments are however left for future work. We conclude by reviewing how the York-time Hamiltonian-reduced theory deals with the problem of time. We place it in the wider context of a search for a theory of quantum gravity and briefly discuss the future of physics if and when such a theory is found.
Ground State of the Universe and the Cosmological Constant. A Nonperturbative Analysis.
Husain, Viqar; Qureshi, Babar
2016-02-12
The physical Hamiltonian of a gravity-matter system depends on the choice of time, with the vacuum naturally identified as its ground state. We study the expanding Universe with scalar field in the volume time gauge. We show that the vacuum energy density computed from the resulting Hamiltonian is a nonlinear function of the cosmological constant and time. This result provides a new perspective on the relation between time, the cosmological constant, and vacuum energy.
Analytical spectrum for a Hamiltonian of quantum dots with Rashba spin-orbit coupling
NASA Astrophysics Data System (ADS)
Dossa, Anselme F.; Avossevou, Gabriel Y. H.
2014-12-01
We determine the analytical solution for a Hamiltonian describing a confined charged particle in a quantum dot, including Rashba spin-orbit coupling and Zeeman splitting terms. The approach followed in this paper is straightforward and uses the symmetrization of the wave function's components. The eigenvalue problem for the Hamiltonian in Bargmann's Hilbert space reduces to a system of coupled first-order differential equations. Then we exploit the symmetry in the system to obtain uncoupled second-order differential equations, which are found to be the Whittaker-Ince limit of the confluent Heun equations. Analytical expressions as well as numerical results are obtained for the spectrum. One of the main features of such models, namely, the level splitting, is present through the spectrum obtained in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anand, Nikhil; Genest, Vincent X.; Katz, Emanuel
We study 1+1 dimensional Φ 4 theory using the recently proposed method of conformal truncation. Starting in the UV CFT of free field theory, we construct a complete basis of states with definite conformal Casimir, C. We use these states to express the Hamiltonian of the full interacting theory in lightcone quantization. After truncating to states with C≤C max, we numerically diagonalize the Hamiltonian at strong coupling and study the resulting IR dynamics. We compute non-perturbative spectral densities of several local operators, which are equivalent to real-time, infinite-volume correlation functions. These spectral densities, which include the Zamolodchikov C-function along themore » full RG flow, are calculable at any value of the coupling. Near criticality, our numerical results reproduce correlation functions in the 2D Ising model.« less
Proton-neutron sdg boson model and spherical-deformed phase transition
NASA Astrophysics Data System (ADS)
Otsuka, Takaharu; Sugita, Michiaki
1988-12-01
The spherical-deformed phase transition in nuclei is described in terms of the proton-neutron sdg interacting boson model. The sdg hamiltonian is introduced to model the pairing+quadrupole interaction. The phase transition is reproduced in this framework as a function of the boson number in the Sm isotopes, while all parameters in the hamiltonian are kept constant at values reasonable from the shell-model point of view. The sd IBM is derived from this model through the renormalization of g-boson effects.
NASA Astrophysics Data System (ADS)
Adamowicz, Ludwik; Stanke, Monika; Tellgren, Erik; Helgaker, Trygve
2017-08-01
Explicitly correlated all-particle Gaussian functions with shifted centers (ECGs) are implemented within the earlier proposed effective variational non-Born-Oppenheimer method for calculating bound states of molecular systems in magnetic field (Adamowicz et al., 2015). The Hamiltonian used in the calculations is obtained by subtracting the operator representing the kinetic energy of the center-of-mass motion from the total laboratory-frame Hamiltonian. Test ECG calculations are performed for the HD molecule.
Compactly supported Wannier functions and algebraic K -theory
NASA Astrophysics Data System (ADS)
Read, N.
2017-03-01
In a tight-binding lattice model with n orbitals (single-particle states) per site, Wannier functions are n -component vector functions of position that fall off rapidly away from some location, and such that a set of them in some sense span all states in a given energy band or set of bands; compactly supported Wannier functions are such functions that vanish outside a bounded region. They arise not only in band theory, but also in connection with tensor-network states for noninteracting fermion systems, and for flat-band Hamiltonians with strictly short-range hopping matrix elements. In earlier work, it was proved that for general complex band structures (vector bundles) or general complex Hamiltonians—that is, class A in the tenfold classification of Hamiltonians and band structures—a set of compactly supported Wannier functions can span the vector bundle only if the bundle is topologically trivial, in any dimension d of space, even when use of an overcomplete set of such functions is permitted. This implied that, for a free-fermion tensor network state with a nontrivial bundle in class A, any strictly short-range parent Hamiltonian must be gapless. Here, this result is extended to all ten symmetry classes of band structures without additional crystallographic symmetries, with the result that in general the nontrivial bundles that can arise from compactly supported Wannier-type functions are those that may possess, in each of d directions, the nontrivial winding that can occur in the same symmetry class in one dimension, but nothing else. The results are obtained from a very natural usage of algebraic K -theory, based on a ring of polynomials in e±i kx,e±i ky,..., which occur as entries in the Fourier-transformed Wannier functions.
Capillary wave Hamiltonian for the Landau-Ginzburg-Wilson density functional
NASA Astrophysics Data System (ADS)
Chacón, Enrique; Tarazona, Pedro
2016-06-01
We study the link between the density functional (DF) formalism and the capillary wave theory (CWT) for liquid surfaces, focused on the Landau-Ginzburg-Wilson (LGW) model, or square gradient DF expansion, with a symmetric double parabola free energy, which has been extensively used in theoretical studies of this problem. We show the equivalence between the non-local DF results of Parry and coworkers and the direct evaluation of the mean square fluctuations of the intrinsic surface, as is done in the intrinsic sampling method for computer simulations. The definition of effective wave-vector dependent surface tensions is reviewed and we obtain new proposals for the LGW model. The surface weight proposed by Blokhuis and the surface mode analysis proposed by Stecki provide consistent and optimal effective definitions for the extended CWT Hamiltonian associated to the DF model. A non-local, or coarse-grained, definition of the intrinsic surface provides the missing element to get the mesoscopic surface Hamiltonian from the molecular DF description, as had been proposed a long time ago by Dietrich and coworkers.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Feng; Muhammad, Iqbal; Yue, Chao
2017-10-01
We extend two known dynamical systems obtained by Blaszak, et al. via choosing Casimir functions and utilizing Novikov-Lax equation so that a series of novel dynamical systems including generalized Burgers dynamical system, heat equation, and so on, are followed to be generated. Then we expand some differential operators presented in the paper to deduce two types of expanding dynamical models. By taking the generalized Burgers dynamical system as an example, we deform its expanding model to get a half-expanding system, whose recurrence operator is derived from Lax representation, and its Hamiltonian structure is also obtained by adopting a new way. Finally, we expand the generalized Burgers dynamical system to the (2+1)-dimensional case whose Hamiltonian structure is derived by Poisson tensor and gradient of the Casimir function. Besides, a kind of (2+1)-dimensional expanding dynamical model of the (2+1)-dimensional dynamical system is generated as well. Supported by the Fundamental Research Funds for the Central University under Grant No. 2017XKZD11
Capillary wave Hamiltonian for the Landau-Ginzburg-Wilson density functional.
Chacón, Enrique; Tarazona, Pedro
2016-06-22
We study the link between the density functional (DF) formalism and the capillary wave theory (CWT) for liquid surfaces, focused on the Landau-Ginzburg-Wilson (LGW) model, or square gradient DF expansion, with a symmetric double parabola free energy, which has been extensively used in theoretical studies of this problem. We show the equivalence between the non-local DF results of Parry and coworkers and the direct evaluation of the mean square fluctuations of the intrinsic surface, as is done in the intrinsic sampling method for computer simulations. The definition of effective wave-vector dependent surface tensions is reviewed and we obtain new proposals for the LGW model. The surface weight proposed by Blokhuis and the surface mode analysis proposed by Stecki provide consistent and optimal effective definitions for the extended CWT Hamiltonian associated to the DF model. A non-local, or coarse-grained, definition of the intrinsic surface provides the missing element to get the mesoscopic surface Hamiltonian from the molecular DF description, as had been proposed a long time ago by Dietrich and coworkers.
Modular Hamiltonians for deformed half-spaces and the averaged null energy condition
Faulkner, Thomas; Leigh, Robert G.; Parrikar, Onkar; ...
2016-09-08
We study modular Hamiltonians corresponding to the vacuum state for deformed half-spaces in relativistic quantum field theories on R 1,d-1. We show that in addition to the usual boost generator, there is a contribution to the modular Hamiltonian at first order in the shape deformation, proportional to the integral of the null components of the stress tensor along the Rindler horizon. We use this fact along with monotonicity of relative entropy to prove the averaged null energy condition in Minkowski space-time. This subsequently gives a new proof of the Hofman-Maldacena bounds on the parameters appearing in CFT three-point functions. Ourmore » main technical advance involves adapting newly developed perturbative methods for calculating entanglement entropy to the problem at hand. Our methods were recently used to prove certain results on the shape dependence of entanglement in CFTs and here we generalize these results to excited states and real time dynamics. Finally, we discuss the AdS/CFT counterpart of this result, making connection with the recently proposed gravitational dual for modular Hamiltonians in holographic theories.« less
Modular Hamiltonians for deformed half-spaces and the averaged null energy condition
NASA Astrophysics Data System (ADS)
Faulkner, Thomas; Leigh, Robert G.; Parrikar, Onkar; Wang, Huajia
2016-09-01
We study modular Hamiltonians corresponding to the vacuum state for deformed half-spaces in relativistic quantum field theories on {{R}}^{1,d-1} . We show that in addition to the usual boost generator, there is a contribution to the modular Hamiltonian at first order in the shape deformation, proportional to the integral of the null components of the stress tensor along the Rindler horizon. We use this fact along with monotonicity of relative entropy to prove the averaged null energy condition in Minkowski space-time. This subsequently gives a new proof of the Hofman-Maldacena bounds on the parameters appearing in CFT three-point functions. Our main technical advance involves adapting newly developed perturbative methods for calculating entanglement entropy to the problem at hand. These methods were recently used to prove certain results on the shape dependence of entanglement in CFTs and here we generalize these results to excited states and real time dynamics. We also discuss the AdS/CFT counterpart of this result, making connection with the recently proposed gravitational dual for modular Hamiltonians in holographic theories.
Cosmic time and reduced phase space of general relativity
NASA Astrophysics Data System (ADS)
Ita, Eyo Eyo; Soo, Chopin; Yu, Hoi-Lai
2018-05-01
In an ever-expanding spatially closed universe, the fractional change of the volume is the preeminent intrinsic time interval to describe evolution in general relativity. The expansion of the universe serves as a subsidiary condition which transforms Einstein's theory from a first class to a second class constrained system when the physical degrees of freedom (d.o.f.) are identified with transverse traceless excitations. The super-Hamiltonian constraint is solved by eliminating the trace of the momentum in terms of the other variables, and spatial diffeomorphism symmetry is tackled explicitly by imposing transversality. The theorems of Maskawa-Nishijima appositely relate the reduced phase space to the physical variables in canonical functional integral and Dirac's criterion for second class constraints to nonvanishing Faddeev-Popov determinants in the phase space measures. A reduced physical Hamiltonian for intrinsic time evolution of the two physical d.o.f. emerges. Freed from the first class Dirac algebra, deformation of the Hamiltonian constraint is permitted, and natural extension of the Hamiltonian while maintaining spatial diffeomorphism invariance leads to a theory with Cotton-York term as the ultraviolet completion of Einstein's theory.
Modular Hamiltonians for deformed half-spaces and the averaged null energy condition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faulkner, Thomas; Leigh, Robert G.; Parrikar, Onkar
We study modular Hamiltonians corresponding to the vacuum state for deformed half-spaces in relativistic quantum field theories on R 1,d-1. We show that in addition to the usual boost generator, there is a contribution to the modular Hamiltonian at first order in the shape deformation, proportional to the integral of the null components of the stress tensor along the Rindler horizon. We use this fact along with monotonicity of relative entropy to prove the averaged null energy condition in Minkowski space-time. This subsequently gives a new proof of the Hofman-Maldacena bounds on the parameters appearing in CFT three-point functions. Ourmore » main technical advance involves adapting newly developed perturbative methods for calculating entanglement entropy to the problem at hand. Our methods were recently used to prove certain results on the shape dependence of entanglement in CFTs and here we generalize these results to excited states and real time dynamics. Finally, we discuss the AdS/CFT counterpart of this result, making connection with the recently proposed gravitational dual for modular Hamiltonians in holographic theories.« less
Effectively-truncated large-scale shell-model calculations and nuclei around 100Sn
NASA Astrophysics Data System (ADS)
Gargano, A.; Coraggio, L.; Itaco, N.
2017-09-01
This paper presents a short overview of a procedure we have recently introduced, dubbed the double-step truncation method, which is aimed to reduce the computational complexity of large-scale shell-model calculations. Within this procedure, one starts with a realistic shell-model Hamiltonian defined in a large model space, and then, by analyzing the effective single particle energies of this Hamiltonian as a function of the number of valence protons and/or neutrons, reduced model spaces are identified containing only the single-particle orbitals relevant to the description of the spectroscopic properties of a certain class of nuclei. As a final step, new effective shell-model Hamiltonians defined within the reduced model spaces are derived by way of a unitary transformation of the original large-scale Hamiltonian. A detailed account of this transformation is given and the merit of the double-step truncation method is illustrated by discussing few selected results for 96Mo, described as four protons and four neutrons outside 88Sr. Some new preliminary results for light odd-tin isotopes from A = 101 to 107 are also reported.
NASA Astrophysics Data System (ADS)
Herranz, F. J.; Ballesteros, Á.
2008-05-01
The Lie—Poisson algebra so( N + 1) and some of its contractions are used to construct a family of superintegrable Hamiltonians on the N-dimensional spherical, Euclidean, hyperbolic, Minkowskian, and (anti-)de Sitter spaces. We firstly present a Hamiltonian which is a superposition of an arbitrary central potential with N arbitrary centrifugal terms. Such a system is quasi-maximally superintegrable since this is endowed with 2 N — 3 functionally independent constants of motion (plus the Hamiltonian). Secondly, we identify two maximally superintegrable Hamiltonians by choosing a specific central potential and finding at the same time the remaining integral. The former is the generalization of the Smorodinsky—Winternitz system to the above six spaces, while the latter is a generalization of the Kepler—Coulomb potential, for which the Laplace—Runge—Lenz N vector is also given. All the systems and constants of motion are explicitly expressed in a unified form in terms of ambient and polar coordinates as they are parametrized by two contraction parameters (curvature and signature of the metric).
NASA Astrophysics Data System (ADS)
Johnson, Britta; Sibert, Edwin
2017-06-01
Surfaces and interfaces play an important role in understanding many chemical process; they also contain molecular configurations and vibrations that are unique compared to those seen in the bulk and gas phases. Sum frequency generated (SFG) vibrational spectroscopy provides an incredibly detailed picture of these interfaces. In particular, the CH stretch region of the spectrum contains an extensive degree of information about the molecular vibrations and arrangements at the surface or interface. The presence of a strong bandwidth SFG signal for the benzene/air interface has generated controversy since it was discovered; since benzene is centrosymmetric, no SFG signal is expected. It has been hypothesized that this signal is primarily a result of bulk contributions that results from electric quadrupole transitions. Our work focuses on testing this conclusion by calculating a theoretical VSF spectrum from pure surface contributions using a mixed quantum/classical local mode Hamiltonian. We take as a starting point our local mode CH/OH stretch Hamiltonian, that was previously used to study alkylbenzenes, benzene-(H_2O)_n, and DPOE-water clusters, and extend it to the condensed phase by including shifts in the intensities and frequencies as a function of the environment. This environment is modeled using a SAPT-based force-field that accurately reproduces the quadrupole for the benzene dimer. A series of independent time-dependent trajectories are used to obtain an ensemble of surface configurations and calculate the appropriate correlation functions. These correlations functions allow us to determine the origins of the VSF signal. Our talk will focus on the challenges of extending our local mode Hamiltonian into the condensed phase.
The limits of hamiltonian structures in three-dimensional elasticity, shells, and rods
NASA Astrophysics Data System (ADS)
Ge, Z.; Kruse, H. P.; Marsden, J. E.
1996-01-01
This paper uses Hamiltonian structures to study the problem of the limit of three-dimensional (3D) elastic models to shell and rod models. In the case of shells, we show that the Hamiltonian structure for a three-dimensional elastic body converges, in a sense made precise, to that for a shell model described by a one-director Cosserat surface as the thickness goes to zero. We study limiting procedures that give rise to unconstrained as well as constrained Cosserat director models. The case of a rod is also considered and similar convergence results are established, with the limiting model being a geometrically exact director rod model (in the framework developed by Antman, Simo, and coworkers). The resulting model may or may not have constraints, depending on the nature of the constitutive relations and their behavior under the limiting procedure. The closeness of Hamiltonian structures is measured by the closeness of Poisson brackets on certain classes of functions, as well as the Hamiltonians. This provides one way of justifying the dynamic one-director model for shells. Another way of stating the convergence result is that there is an almost-Poisson embedding from the phase space of the shell to the phase space of the 3D elastic body, which implies that, in the sense of Hamiltonian structures, the dynamics of the elastic body is close to that of the shell. The constitutive equations of the 3D model and their behavior as the thickness tends to zero dictates whether the limiting 2D model is a constrained or an unconstrained director model. We apply our theory in the specific case of a 3D Saint Venant-Kirchhoff material and derive the corresponding limiting shell and rod theories. The limiting shell model is an interesting Kirchhoff-like shell model in which the stored energy function is explicitly derived in terms of the shell curvature. For rods, one gets (with an additional inextensibility constraint) a one-director Kirchhoff elastic rod model, which reduces to the well-known Euler elastica if one adds an additional single constraint that the director lines up with the Frenet frame.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baykara, N. A.
Recent studies on quantum evolutionary problems in Demiralp’s group have arrived at a stage where the construction of an expectation value formula for a given algebraic function operator depending on only position operator becomes possible. It has also been shown that this formula turns into an algebraic recursion amongst some finite number of consecutive elements in a set of expectation values of an appropriately chosen basis set over the natural number powers of the position operator as long as the function under consideration and the system Hamiltonian are both autonomous. This recursion corresponds to a denumerable infinite number of algebraicmore » equations whose solutions can or can not be obtained analytically. This idea is not completely original. There are many recursive relations amongst the expectation values of the natural number powers of position operator. However, those recursions may not be always efficient to get the system energy values and especially the eigenstate wavefunctions. The present approach is somehow improved and generalized form of those expansions. We focus on this issue for a specific system where the Hamiltonian is defined on the coordinate of a curved space instead of the Cartesian one.« less
NASA Astrophysics Data System (ADS)
Lewis, Debra
2013-05-01
Relative equilibria of Lagrangian and Hamiltonian systems with symmetry are critical points of appropriate scalar functions parametrized by the Lie algebra (or its dual) of the symmetry group. Setting aside the structures - symplectic, Poisson, or variational - generating dynamical systems from such functions highlights the common features of their construction and analysis, and supports the construction of analogous functions in non-Hamiltonian settings. If the symmetry group is nonabelian, the functions are invariant only with respect to the isotropy subgroup of the given parameter value. Replacing the parametrized family of functions with a single function on the product manifold and extending the action using the (co)adjoint action on the algebra or its dual yields a fully invariant function. An invariant map can be used to reverse the usual perspective: rather than selecting a parametrized family of functions and finding their critical points, conditions under which functions will be critical on specific orbits, typically distinguished by isotropy class, can be derived. This strategy is illustrated using several well-known mechanical systems - the Lagrange top, the double spherical pendulum, the free rigid body, and the Riemann ellipsoids - and generalizations of these systems.
New quantum number for the many-electron Dirac-Coulomb Hamiltonian
NASA Astrophysics Data System (ADS)
Komorovsky, Stanislav; Repisky, Michal; Bučinský, Lukáš
2016-11-01
By breaking the spin symmetry in the relativistic domain, a powerful tool in physical sciences was lost. In this work, we examine an alternative of spin symmetry for systems described by the many-electron Dirac-Coulomb Hamiltonian. We show that the square of many-electron operator K+, defined as a sum of individual single-electron time-reversal (TR) operators, is a linear Hermitian operator which commutes with the Dirac-Coulomb Hamiltonian in a finite Fock subspace. In contrast to the square of a standard unitary many-electron TR operator K , the K+2 has a rich eigenspectrum having potential to substitute spin symmetry in the relativistic domain. We demonstrate that K+ is connected to K through an exponential mapping, in the same way as spin operators are mapped to the spin rotational group. Consequently, we call K+ the generator of the many-electron TR symmetry. By diagonalizing the operator K+2 in the basis of Kramers-restricted Slater determinants, we introduce the relativistic variant of configuration state functions (CSF), denoted as Kramers CSF. A new quantum number associated with K+2 has potential to be used in many areas, for instance, (a) to design effective spin Hamiltonians for electron spin resonance spectroscopy of heavy-element containing systems; (b) to increase efficiency of methods for the solution of many-electron problems in relativistic computational chemistry and physics; (c) to define Kramers contamination in unrestricted density functional and Hartree-Fock theory as a relativistic analog of the spin contamination in the nonrelativistic domain.
Low-energy effective Hamiltonians for correlated electron systems beyond density functional theory
NASA Astrophysics Data System (ADS)
Hirayama, Motoaki; Miyake, Takashi; Imada, Masatoshi; Biermann, Silke
2017-08-01
We propose a refined scheme of deriving an effective low-energy Hamiltonian for materials with strong electronic Coulomb correlations beyond density functional theory (DFT). By tracing out the electronic states away from the target degrees of freedom in a controlled way by a perturbative scheme, we construct an effective Hamiltonian for a restricted low-energy target space incorporating the effects of high-energy degrees of freedom in an effective manner. The resulting effective Hamiltonian can afterwards be solved by accurate many-body solvers. We improve this "multiscale ab initio scheme for correlated electrons" (MACE) primarily in two directions by elaborating and combining two frameworks developed by Hirayama et al. [M. Hirayama, T. Miyake, and M. Imada, Phys. Rev. B 87, 195144 (2013), 10.1103/PhysRevB.87.195144] and Casula et al. [M. Casula, P. Werner, L. Vaugier, F. Aryasetiawan, T. Miyake, A. J. Millis, and S. Biermann, Phys. Rev. Lett. 109, 126408 (2012), 10.1103/PhysRevLett.109.126408]: (1) Double counting of electronic correlations between the DFT and the low-energy solver is avoided by using the constrained G W scheme; and (2) the frequency dependent interactions emerging from the partial trace summation are successfully separated into a nonlocal part that is treated following ideas by Hirayama et al. and a local part treated nonperturbatively in the spirit of Casula et al. and are incorporated into the renormalization of the low-energy dispersion. The scheme is favorably tested on the example of SrVO3.
Work distributions for random sudden quantum quenches
NASA Astrophysics Data System (ADS)
Łobejko, Marcin; Łuczka, Jerzy; Talkner, Peter
2017-05-01
The statistics of work performed on a system by a sudden random quench is investigated. Considering systems with finite dimensional Hilbert spaces we model a sudden random quench by randomly choosing elements from a Gaussian unitary ensemble (GUE) consisting of Hermitian matrices with identically, Gaussian distributed matrix elements. A probability density function (pdf) of work in terms of initial and final energy distributions is derived and evaluated for a two-level system. Explicit results are obtained for quenches with a sharply given initial Hamiltonian, while the work pdfs for quenches between Hamiltonians from two independent GUEs can only be determined in explicit form in the limits of zero and infinite temperature. The same work distribution as for a sudden random quench is obtained for an adiabatic, i.e., infinitely slow, protocol connecting the same initial and final Hamiltonians.
Hamiltonian dynamics of extended objects
NASA Astrophysics Data System (ADS)
Capovilla, R.; Guven, J.; Rojas, E.
2004-12-01
We consider relativistic extended objects described by a reparametrization-invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behaviour under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory is described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations are shown to be consistent with the Euler Lagrange equations.
RG flow from Φ 4 theory to the 2D Ising model
Anand, Nikhil; Genest, Vincent X.; Katz, Emanuel; ...
2017-08-16
We study 1+1 dimensional Φ 4 theory using the recently proposed method of conformal truncation. Starting in the UV CFT of free field theory, we construct a complete basis of states with definite conformal Casimir, C. We use these states to express the Hamiltonian of the full interacting theory in lightcone quantization. After truncating to states with C≤C max, we numerically diagonalize the Hamiltonian at strong coupling and study the resulting IR dynamics. We compute non-perturbative spectral densities of several local operators, which are equivalent to real-time, infinite-volume correlation functions. These spectral densities, which include the Zamolodchikov C-function along themore » full RG flow, are calculable at any value of the coupling. Near criticality, our numerical results reproduce correlation functions in the 2D Ising model.« less
NASA Astrophysics Data System (ADS)
Mortensen, Henrik Lund; Sørensen, Jens Jakob W. H.; Mølmer, Klaus; Sherson, Jacob Friis
2018-02-01
We propose an efficient strategy to find optimal control functions for state-to-state quantum control problems. Our procedure first chooses an input state trajectory, that can realize the desired transformation by adiabatic variation of the system Hamiltonian. The shortcut-to-adiabaticity formalism then provides a control Hamiltonian that realizes the reference trajectory exactly but on a finite time scale. As the final state is achieved with certainty, we define a cost functional that incorporates the resource requirements and a perturbative expression for robustness. We optimize this functional by systematically varying the reference trajectory. We demonstrate the method by application to population transfer in a laser driven three-level Λ-system, where we find solutions that are fast and robust against perturbations while maintaining a low peak laser power.
Perturbation theory corrections to the two-particle reduced density matrix variational method.
Juhasz, Tamas; Mazziotti, David A
2004-07-15
In the variational 2-particle-reduced-density-matrix (2-RDM) method, the ground-state energy is minimized with respect to the 2-particle reduced density matrix, constrained by N-representability conditions. Consider the N-electron Hamiltonian H(lambda) as a function of the parameter lambda where we recover the Fock Hamiltonian at lambda=0 and we recover the fully correlated Hamiltonian at lambda=1. We explore using the accuracy of perturbation theory at small lambda to correct the 2-RDM variational energies at lambda=1 where the Hamiltonian represents correlated atoms and molecules. A key assumption in the correction is that the 2-RDM method will capture a fairly constant percentage of the correlation energy for lambda in (0,1] because the nonperturbative 2-RDM approach depends more significantly upon the nature rather than the strength of the two-body Hamiltonian interaction. For a variety of molecules we observe that this correction improves the 2-RDM energies in the equilibrium bonding region, while the 2-RDM energies at stretched or nearly dissociated geometries, already highly accurate, are not significantly changed. At equilibrium geometries the corrected 2-RDM energies are similar in accuracy to those from coupled-cluster singles and doubles (CCSD), but at nonequilibrium geometries the 2-RDM energies are often dramatically more accurate as shown in the bond stretching and dissociation data for water and nitrogen. (c) 2004 American Institute of Physics.
High-energy gravitational scattering and the general relativistic two-body problem
NASA Astrophysics Data System (ADS)
Damour, Thibault
2018-02-01
A technique for translating the classical scattering function of two gravitationally interacting bodies into a corresponding (effective one-body) Hamiltonian description has been recently introduced [Phys. Rev. D 94, 104015 (2016), 10.1103/PhysRevD.94.104015]. Using this technique, we derive, for the first time, to second-order in Newton's constant (i.e. one classical loop) the Hamiltonian of two point masses having an arbitrary (possibly relativistic) relative velocity. The resulting (second post-Minkowskian) Hamiltonian is found to have a tame high-energy structure which we relate both to gravitational self-force studies of large mass-ratio binary systems, and to the ultra high-energy quantum scattering results of Amati, Ciafaloni and Veneziano. We derive several consequences of our second post-Minkowskian Hamiltonian: (i) the need to use special phase-space gauges to get a tame high-energy limit; and (ii) predictions about a (rest-mass independent) linear Regge trajectory behavior of high-angular-momenta, high-energy circular orbits. Ways of testing these predictions by dedicated numerical simulations are indicated. We finally indicate a way to connect our classical results to the quantum gravitational scattering amplitude of two particles, and we urge amplitude experts to use their novel techniques to compute the two-loop scattering amplitude of scalar masses, from which one could deduce the third post-Minkowskian effective one-body Hamiltonian.
NASA Astrophysics Data System (ADS)
Naz, Rehana; Naeem, Imran
2018-03-01
The non-standard Hamiltonian system, also referred to as a partial Hamiltonian system in the literature, of the form {\\dot q^i} = {partial H}/{partial {p_i}},\\dot p^i = - {partial H}/{partial {q_i}} + {Γ ^i}(t,{q^i},{p_i}) appears widely in economics, physics, mechanics, and other fields. The non-standard (partial) Hamiltonian systems arise from physical Hamiltonian structures as well as from artificial Hamiltonian structures. We introduce the term `artificial Hamiltonian' for the Hamiltonian of a model having no physical structure. We provide here explicitly the notion of an artificial Hamiltonian for dynamical systems of ordinary differential equations (ODEs). Also, we show that every system of second-order ODEs can be expressed as a non-standard (partial) Hamiltonian system of first-order ODEs by introducing an artificial Hamiltonian. This notion of an artificial Hamiltonian gives a new way to solve dynamical systems of first-order ODEs and systems of second-order ODEs that can be expressed as a non-standard (partial) Hamiltonian system by using the known techniques applicable to the non-standard Hamiltonian systems. We employ the proposed notion to solve dynamical systems of first-order ODEs arising in epidemics.
Periodic solutions with prescribed minimal period of vortex type problems in domains
NASA Astrophysics Data System (ADS)
Bartsch, Thomas; Sacchet, Matteo
2018-05-01
We consider Hamiltonian systems with two degrees of freedom of point vortex type for in a domain . In the classical point vortex context the Hamiltonian is of the form where is the regular part of a hydrodynamic Green function in Ω, is the Robin function: , and , are the vortex strengths. We prove the existence of infinitely many periodic solutions with prescribed minimal period that are superpositions of a slow motion of the center of vorticity close to a star-shaped level line of h and of a fast rotation of the two vortices around their center of vorticity. The proofs are based on a recent higher dimensional version of the Poincaré–Birkhoff theorem due to Fonda and Ureña.
Limit Cycle Bifurcations by Perturbing a Piecewise Hamiltonian System with a Double Homoclinic Loop
NASA Astrophysics Data System (ADS)
Xiong, Yanqin
2016-06-01
This paper is concerned with the bifurcation problem of limit cycles by perturbing a piecewise Hamiltonian system with a double homoclinic loop. First, the derivative of the first Melnikov function is provided. Then, we use it, together with the analytic method, to derive the asymptotic expansion of the first Melnikov function near the loop. Meanwhile, we present the first coefficients in the expansion, which can be applied to study the limit cycle bifurcation near the loop. We give sufficient conditions for this system to have 14 limit cycles in the neighborhood of the loop. As an application, a piecewise polynomial Liénard system is investigated, finding six limit cycles with the help of the obtained method.
NASA Astrophysics Data System (ADS)
Bubin, Sergiy; Adamowicz, Ludwik
2006-06-01
In this work we present analytical expressions for Hamiltonian matrix elements with spherically symmetric, explicitly correlated Gaussian basis functions with complex exponential parameters for an arbitrary number of particles. The expressions are derived using the formalism of matrix differential calculus. In addition, we present expressions for the energy gradient that includes derivatives of the Hamiltonian integrals with respect to the exponential parameters. The gradient is used in the variational optimization of the parameters. All the expressions are presented in the matrix form suitable for both numerical implementation and theoretical analysis. The energy and gradient formulas have been programed and used to calculate ground and excited states of the He atom using an approach that does not involve the Born-Oppenheimer approximation.
Bubin, Sergiy; Adamowicz, Ludwik
2006-06-14
In this work we present analytical expressions for Hamiltonian matrix elements with spherically symmetric, explicitly correlated Gaussian basis functions with complex exponential parameters for an arbitrary number of particles. The expressions are derived using the formalism of matrix differential calculus. In addition, we present expressions for the energy gradient that includes derivatives of the Hamiltonian integrals with respect to the exponential parameters. The gradient is used in the variational optimization of the parameters. All the expressions are presented in the matrix form suitable for both numerical implementation and theoretical analysis. The energy and gradient formulas have been programmed and used to calculate ground and excited states of the He atom using an approach that does not involve the Born-Oppenheimer approximation.
Classification of three-state Hamiltonians solvable by the coordinate Bethe ansatz
NASA Astrophysics Data System (ADS)
Crampé, N.; Frappat, L.; Ragoucy, E.
2013-10-01
We classify ‘all’ Hamiltonians with rank 1 symmetry and nearest-neighbour interactions, acting on a periodic three-state spin chain, and solvable through (generalization of) the coordinate Bethe ansatz (CBA). In this way we obtain four multi-parametric extensions of the known 19-vertex Hamiltonians (such as Zamolodchikov-Fateev, Izergin-Korepin and Bariev Hamiltonians). Apart from the 19-vertex Hamiltonians, there exist 17-vertex and 14-vertex Hamiltonians that cannot be viewed as subcases of the 19-vertex ones. In the case of 17-vertex Hamiltonians, we get a generalization of the genus 5 special branch found by Martins, plus three new ones. We also get two 14-vertex Hamiltonians. We solve all these Hamiltonians using CBA, and provide their spectrum, eigenfunctions and Bethe equations. Special attention is given to provide the specifications of our multi-parametric Hamiltonians that give back known Hamiltonians.
Hamiltonian of Mean Force and Dissipative Scalar Field Theory
NASA Astrophysics Data System (ADS)
Jafari, Marjan; Kheirandish, Fardin
2018-04-01
Quantum dynamics of a dissipative scalar field is investigated. Using the Hamiltonian of mean force, internal energy, free energy and entropy of a dissipative scalar field are obtained. It is shown that a dissipative massive scalar field can be considered as a free massive scalar field described by an effective mass and dispersion relation. Internal energy of the scalar field, as the subsystem, is found in the limit of low temperature and weak and strong couplings to an Ohimc heat bath. Correlation functions for thermal and coherent states are derived.
Connection between optimal control theory and adiabatic-passage techniques in quantum systems
NASA Astrophysics Data System (ADS)
Assémat, E.; Sugny, D.
2012-08-01
This work explores the relationship between optimal control theory and adiabatic passage techniques in quantum systems. The study is based on a geometric analysis of the Hamiltonian dynamics constructed from Pontryagin's maximum principle. In a three-level quantum system, we show that the stimulated Raman adiabatic passage technique can be associated to a peculiar Hamiltonian singularity. One deduces that the adiabatic pulse is solution of the optimal control problem only for a specific cost functional. This analysis is extended to the case of a four-level quantum system.
Spectral Deformation for Two-Body Dispersive Systems with e.g. the Yukawa Potential
NASA Astrophysics Data System (ADS)
Engelmann, Matthias; Rasmussen, Morten Grud
2016-12-01
We find an explicit closed formula for the k'th iterated commutator {{ad}Ak}(HV(ξ )) of arbitrary order k ⩾ 1 between a Hamiltonian HV(ξ )=M_{ω _{ξ }}+S_{\\check V} and a conjugate operator A={i}/2(v_{ξ}\\cdotnabla+nabla\\cdot v_{ξ}), where M_{ω _{ξ }} is the operator of multiplication with the real analytic function ω ξ which depends real analytically on the parameter ξ, and the operator S_{\\check V} is the operator of convolution with the (sufficiently nice) function \\check V, and v ξ is some vector field determined by ω ξ . Under certain assumptions, which are satisfied for the Yukawa potential, we then prove estimates of the form {{{ad}Ak}(HV(ξ ))(H0(ξ )+{i} )}|≤ C_{ξ }kk! where C ξ is some constant which depends continuously on ξ. The Hamiltonian is the fixed total momentum fiber Hamiltonian of an abstract two-body dispersive system and the work is inspired by a recent result [3] which, under conditions including estimates of the mentioned type, opens up for spectral deformation and analytic perturbation theory of embedded eigenvalues of finite multiplicity.
Chern-Simons improved Hamiltonians for strings in three space dimensions
NASA Astrophysics Data System (ADS)
Gordeli, Ivan; Melnikov, Dmitry; Niemi, Antti J.; Sedrakyan, Ara
2016-07-01
In the case of a structureless string the extrinsic curvature and torsion determine uniquely its shape in three-dimensional ambient space, by way of solution of the Frenet equation. In many physical scenarios there are in addition symmetries that constrain the functional form of the ensuing energy function. For example, the energy of a structureless string should be independent of the way the string is framed in the Frenet equation. Thus the energy should only involve the curvature and torsion as dynamical variables, in a manner that resembles the Hamiltonian of the Abelian Higgs model. Here we investigate the effect of symmetry principles in the construction of Hamiltonians for structureless strings. We deduce from the concept of frame independence that in addition to extrinsic curvature and torsion, the string can also engage a three-dimensional Abelian bulk gauge field as a dynamical variable. We find that the presence of a bulk gauge field gives rise to a long-range interaction between different strings. Moreover, when this gauge field is subject to Chern-Simons self-interaction, it becomes plausible that interacting strings are subject to fractional statistics in three space dimensions.
Seniority and orbital symmetry as tools for establishing a full configuration interaction hierarchy.
Bytautas, Laimutis; Henderson, Thomas M; Jiménez-Hoyos, Carlos A; Ellis, Jason K; Scuseria, Gustavo E
2011-07-28
We explore the concept of seniority number (defined as the number of unpaired electrons in a determinant) when applied to the problem of electron correlation in atomic and molecular systems. Although seniority is a good quantum number only for certain model Hamiltonians (such as the pairing Hamiltonian), we show that it provides a useful partitioning of the electronic full configuration interaction (FCI) wave function into rapidly convergent Hilbert subspaces whose weight diminishes as its seniority number increases. The primary focus of this study is the adequate description of static correlation effects. The examples considered are the ground states of the helium, beryllium, and neon atoms, the symmetric dissociation of the N(2) and CO(2) molecules, as well as the symmetric dissociation of an H(8) hydrogen chain. It is found that the symmetry constraints that are normally placed on the spatial orbitals greatly affect the convergence rate of the FCI expansion. The energy relevance of the seniority zero sector (determinants with all paired electrons) increases dramatically if orbitals of broken spatial symmetry (as those commonly used for Hubbard Hamiltonian studies) are allowed in the wave function construction. © 2011 American Institute of Physics
Entanglement hamiltonian and entanglement contour in inhomogeneous 1D critical systems
NASA Astrophysics Data System (ADS)
Tonni, Erik; Rodríguez-Laguna, Javier; Sierra, Germán
2018-04-01
Inhomogeneous quantum critical systems in one spatial dimension have been studied by using conformal field theory in static curved backgrounds. Two interesting examples are the free fermion gas in the harmonic trap and the inhomogeneous XX spin chain called rainbow chain. For conformal field theories defined on static curved spacetimes characterised by a metric which is Weyl equivalent to the flat metric, with the Weyl factor depending only on the spatial coordinate, we study the entanglement hamiltonian and the entanglement spectrum of an interval adjacent to the boundary of a segment where the same boundary condition is imposed at the endpoints. A contour function for the entanglement entropies corresponding to this configuration is also considered, being closely related to the entanglement hamiltonian. The analytic expressions obtained by considering the curved spacetime which characterises the rainbow model have been checked against numerical data for the rainbow chain, finding an excellent agreement.
Hamiltonian Systems and Optimal Control in Computational Anatomy: 100 Years Since D'Arcy Thompson.
Miller, Michael I; Trouvé, Alain; Younes, Laurent
2015-01-01
The Computational Anatomy project is the morphome-scale study of shape and form, which we model as an orbit under diffeomorphic group action. Metric comparison calculates the geodesic length of the diffeomorphic flow connecting one form to another. Geodesic connection provides a positioning system for coordinatizing the forms and positioning their associated functional information. This article reviews progress since the Euler-Lagrange characterization of the geodesics a decade ago. Geodesic positioning is posed as a series of problems in Hamiltonian control, which emphasize the key reduction from the Eulerian momentum with dimension of the flow of the group, to the parametric coordinates appropriate to the dimension of the submanifolds being positioned. The Hamiltonian viewpoint provides important extensions of the core setting to new, object-informed positioning systems. Several submanifold mapping problems are discussed as they apply to metamorphosis, multiple shape spaces, and longitudinal time series studies of growth and atrophy via shape splines.
Léon Rosenfeld's general theory of constrained Hamiltonian dynamics
NASA Astrophysics Data System (ADS)
Salisbury, Donald
Léon Rosenfeld published in Annalen der Physik in 1930 a groundbreaking paper showing how to construct a Hamiltonian formalism for Lagrangian theories which admitted an underlying local gauge symmetry. The theory included both ``internal'' transformations such as the U(1) symmetry group of electromagnetism, and ``external'' symmetries typified by Einstein's general theory of relativity. His comprehensive analysis predated by two decades the formalism known as the Dirac-Bergmann approach, and I will present evidence that each of these giants were to some extent influenced by Rosenfeld's theory. Of particular significance is Rosenfeld's incorporation of arbitrary functions into the phase space generator of temporal evolution, and his construction of the phase space generator of symmetry transformations. The existing Hamiltonian formalisms have of course played a central role both in the demonstration of the renormalizability of Yang-Mills theories and current efforts in constructing a quantum theory of gravity.
Transitionless driving on adiabatic search algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Sangchul, E-mail: soh@qf.org.qa; Kais, Sabre, E-mail: kais@purdue.edu; Department of Chemistry, Department of Physics and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907
We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian,more » approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.« less
Quadratic time dependent Hamiltonians and separation of variables
NASA Astrophysics Data System (ADS)
Anzaldo-Meneses, A.
2017-06-01
Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green's function is obtained and a comparison with the classical Hamilton-Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei-Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü-Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems.
Khoma, Mykhaylo; Jaquet, Ralph
2017-09-21
The kinetic energy operator for triatomic molecules with coordinate or distance-dependent nuclear masses has been derived. By combination of the chain rule method and the analysis of infinitesimal variations of molecular coordinates, a simple and general technique for the construction of the kinetic energy operator has been proposed. The asymptotic properties of the Hamiltonian have been investigated with respect to the ratio of the electron and proton mass. We have demonstrated that an ad hoc introduction of distance (and direction) dependent nuclear masses in Cartesian coordinates preserves the total rotational invariance of the problem. With the help of Wigner rotation functions, an effective Hamiltonian for nuclear motion can be derived. In the derivation, we have focused on the effective trinuclear Hamiltonian. All necessary matrix elements are given in closed analytical form. Preliminary results for the influence of non-adiabaticity on vibrational band origins are presented for H 3 + .
NASA Astrophysics Data System (ADS)
Yu, Jin; van Veen, Edo; Katsnelson, Mikhail I.; Yuan, Shengjun
2018-06-01
The electronic properties of monolayer tin dilsulfide (ML -Sn S2 ), a recently synthesized metal dichalcogenide, are studied by a combination of first-principles calculations and tight-binding (TB) approximation. An effective lattice Hamiltonian based on six hybrid s p -like orbitals with trigonal rotation symmetry are proposed to calculate the band structure and density of states for ML -Sn S2 , which demonstrates good quantitative agreement with relativistic density-functional-theory calculations in a wide energy range. We show that the proposed TB model can be easily applied to the case of an external electric field, yielding results consistent with those obtained from full Hamiltonian results. In the presence of a perpendicular magnetic field, highly degenerate equidistant Landau levels are obtained, showing typical two-dimensional electron gas behavior. Thus, the proposed TB model provides a simple way in describing properties in ML -Sn S2 .
Model many-body Stoner Hamiltonian for binary FeCr alloys
NASA Astrophysics Data System (ADS)
Nguyen-Manh, D.; Dudarev, S. L.
2009-09-01
We derive a model tight-binding many-body d -electron Stoner Hamiltonian for FeCr binary alloys and investigate the sensitivity of its mean-field solutions to the choice of hopping integrals and the Stoner exchange parameters. By applying the local charge-neutrality condition within a self-consistent treatment we show that the negative enthalpy-of-mixing anomaly characterizing the alloy in the low chromium concentration limit is due entirely to the presence of the on-site exchange Stoner terms and that the occurrence of this anomaly is not specifically related to the choice of hopping integrals describing conventional chemical bonding between atoms in the alloy. The Bain transformation pathway computed, using the proposed model Hamiltonian, for the Fe15Cr alloy configuration is in excellent agreement with ab initio total-energy calculations. Our investigation also shows how the parameters of a tight-binding many-body model Hamiltonian for a magnetic alloy can be derived from the comparison of its mean-field solutions with other, more accurate, mean-field approximations (e.g., density-functional calculations), hence stimulating the development of large-scale computational algorithms for modeling radiation damage effects in magnetic alloys and steels.
NASA Astrophysics Data System (ADS)
Cuevas-Maraver, Jesús; Kevrekidis, Panayotis G.; Vainchtein, Anna; Xu, Haitao
2017-09-01
In this work, we provide two complementary perspectives for the (spectral) stability of solitary traveling waves in Hamiltonian nonlinear dynamical lattices, of which the Fermi-Pasta-Ulam and the Toda lattice are prototypical examples. One is as an eigenvalue problem for a stationary solution in a cotraveling frame, while the other is as a periodic orbit modulo shifts. We connect the eigenvalues of the former with the Floquet multipliers of the latter and using this formulation derive an energy-based spectral stability criterion. It states that a sufficient (but not necessary) condition for a change in the wave stability occurs when the functional dependence of the energy (Hamiltonian) H of the model on the wave velocity c changes its monotonicity. Moreover, near the critical velocity where the change of stability occurs, we provide an explicit leading-order computation of the unstable eigenvalues, based on the second derivative of the Hamiltonian H''(c0) evaluated at the critical velocity c0. We corroborate this conclusion with a series of analytically and numerically tractable examples and discuss its parallels with a recent energy-based criterion for the stability of discrete breathers.
Six Impossible Things: Fractional Charge From Laughlin's Wave Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, Keshav N.
2010-12-23
The Laughlin's wave function is found to be the zero-energy ground state of a {delta}-function Hamiltonian. The finite negative value of the ground state energy which is 91 per cent of Wigner value, can be obtained only when Coulomb correlations are introduced. The Laughlin's wave function is of short range and it overlaps with that of the exact wave functions of small (number of electrons 2 or 5) systems. (i) It is impossible to obtain fractional charge from Laughlin's wave function. (ii) It is impossible to prove that the Laughlin's wave function gives the ground state of the Coulomb Hamiltonian.more » (iii) It is impossible to have particle-hole symmetry in the Laughlin's wave function. (iv) It is impossible to derive the value of m in the Laughlin's wave function. The value of m in {psi}{sub m} can not be proved to be 3 or 5. (v) It is impossible to prove that the Laughlin's state is incompressible because the compressible states are also likely. (vi) It is impossible for the Laughlin's wave function to have spin. This effort is directed to explain the experimental data of quantum Hall effect in GaAs/AlGaAs.« less
NASA Astrophysics Data System (ADS)
Papior, Nick; Lorente, Nicolás; Frederiksen, Thomas; García, Alberto; Brandbyge, Mads
2017-03-01
We present novel methods implemented within the non-equilibrium Green function code (NEGF) TRANSIESTA based on density functional theory (DFT). Our flexible, next-generation DFT-NEGF code handles devices with one or multiple electrodes (Ne ≥ 1) with individual chemical potentials and electronic temperatures. We describe its novel methods for electrostatic gating, contour optimizations, and assertion of charge conservation, as well as the newly implemented algorithms for optimized and scalable matrix inversion, performance-critical pivoting, and hybrid parallelization. Additionally, a generic NEGF "post-processing" code (TBTRANS/PHTRANS) for electron and phonon transport is presented with several novelties such as Hamiltonian interpolations, Ne ≥ 1 electrode capability, bond-currents, generalized interface for user-defined tight-binding transport, transmission projection using eigenstates of a projected Hamiltonian, and fast inversion algorithms for large-scale simulations easily exceeding 106 atoms on workstation computers. The new features of both codes are demonstrated and bench-marked for relevant test systems.
On non-autonomous dynamical systems
NASA Astrophysics Data System (ADS)
Anzaldo-Meneses, A.
2015-04-01
In usual realistic classical dynamical systems, the Hamiltonian depends explicitly on time. In this work, a class of classical systems with time dependent nonlinear Hamiltonians is analyzed. This type of problems allows to find invariants by a family of Veronese maps. The motivation to develop this method results from the observation that the Poisson-Lie algebra of monomials in the coordinates and momenta is clearly defined in terms of its brackets and leads naturally to an infinite linear set of differential equations, under certain circumstances. To perform explicit analytic and numerical calculations, two examples are presented to estimate the trajectories, the first given by a nonlinear problem and the second by a quadratic Hamiltonian with three time dependent parameters. In the nonlinear problem, the Veronese approach using jets is shown to be equivalent to a direct procedure using elliptic functions identities, and linear invariants are constructed. For the second example, linear and quadratic invariants as well as stability conditions are given. Explicit solutions are also obtained for stepwise constant forces. For the quadratic Hamiltonian, an appropriated set of coordinates relates the geometric setting to that of the three dimensional manifold of central conic sections. It is shown further that the quantum mechanical problem of scattering in a superlattice leads to mathematically equivalent equations for the wave function, if the classical time is replaced by the space coordinate along a superlattice. The mathematical method used to compute the trajectories for stepwise constant parameters can be applied to both problems. It is the standard method in quantum scattering calculations, as known for locally periodic systems including a space dependent effective mass.
General method of solving the Schroedinger equation of atoms and molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakatsuji, Hiroshi
2005-12-15
We propose a general method of solving the Schroedinger equation of atoms and molecules. We first construct the wave function having the exact structure, using the ICI (iterative configuration or complement interaction) method and then optimize the variables involved by the variational principle. Based on the scaled Schroedinger equation and related principles, we can avoid the singularity problem of atoms and molecules and formulate a general method of calculating the exact wave functions in an analytical expansion form. We choose initial function {psi}{sub 0} and scaling g function, and then the ICI method automatically generates the wave function that hasmore » the exact structure by using the Hamiltonian of the system. The Hamiltonian contains all the information of the system. The free ICI method provides a flexible and variationally favorable procedure of constructing the exact wave function. We explain the computational procedure of the analytical ICI method routinely performed in our laboratory. Simple examples are given using hydrogen atom for the nuclear singularity case, the Hooke's atom for the electron singularity case, and the helium atom for both cases.« less
Constraint algebra in Smolin's G →0 limit of 4D Euclidean gravity
NASA Astrophysics Data System (ADS)
Varadarajan, Madhavan
2018-05-01
Smolin's generally covariant GNewton→0 limit of 4d Euclidean gravity is a useful toy model for the study of the constraint algebra in loop quantum gravity (LQG). In particular, the commutator between its Hamiltonian constraints has a metric dependent structure function. While a prior LQG-like construction of nontrivial anomaly free constraint commutators for the model exists, that work suffers from two defects. First, Smolin's remarks on the inability of the quantum dynamics to generate propagation effects apply. Second, the construction only yields the action of a single Hamiltonian constraint together with the action of its commutator through a continuum limit of corresponding discrete approximants; the continuum limit of a product of two or more constraints does not exist. Here, we incorporate changes in the quantum dynamics through structural modifications in the choice of discrete approximants to the quantum Hamiltonian constraint. The new structure is motivated by that responsible for propagation in an LQG-like quantization of paramatrized field theory and significantly alters the space of physical states. We study the off shell constraint algebra of the model in the context of these structural changes and show that the continuum limit action of multiple products of Hamiltonian constraints is (a) supported on an appropriate domain of states, (b) yields anomaly free commutators between pairs of Hamiltonian constraints, and (c) is diffeomorphism covariant. Many of our considerations seem robust enough to be applied to the setting of 4d Euclidean gravity.
Quasi-stationary states and fermion pair creation from a vacuum in supercritical Coulomb field
NASA Astrophysics Data System (ADS)
Khalilov, V. R.
2017-12-01
Creation of charged fermion pair from a vacuum in so-called supercritical Coulomb potential is examined for the case when fermions can move only in the same (one) plane. In which case, quantum dynamics of charged massive or massless fermions can be described by the two-dimensional Dirac Hamiltonians with an usual (-a/r) Coulomb potential. These Hamiltonians are singular and require the additional definition in order for them to be treated as self-adjoint quantum-mechanical operators. We construct the self-adjoint two-dimensional Dirac Hamiltonians with a Coulomb potential and determine the quantum-mechanical states for such Hamiltonians in the corresponding Hilbert spaces of square-integrable functions. We determine the scattering amplitude in which the self-adjoint extension parameter is incorporated and then obtain equations implicitly defining possible discrete energy spectra of the self-adjoint Dirac Hamiltonians with a Coulomb potential. It is shown that this quantum system becomes unstable in the presence of a supercritical Coulomb potential which manifests in the appearance of quasi-stationary states in the lower (negative) energy continuum. The energy spectrum of those states is quasi-discrete, consists of broadened levels with widths related to the inverse lifetimes of the quasi-stationary states as well as the probability of creation of charged fermion pair by a supercritical Coulomb field. Explicit analytical expressions for the creation probabilities of charged (massive or massless) fermion pair are obtained in a supercritical Coulomb field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szalay, Viktor, E-mail: szalay.viktor@wigner.mta.hu
A new ro-vibrational Hamiltonian operator, named gateway Hamiltonian operator, with exact kinetic energy term, T-hat, is presented. It is in the Eckart frame and it is of the same form as Watson’s normal coordinate Hamiltonian. However, the vibrational coordinates employed are not normal coordinates. The new Hamiltonian is shown to provide easy access to Eckart frame ro-vibrational Hamiltonians with exact T-hat given in terms of any desired set of vibrational coordinates. A general expression of the Eckart frame ro-vibrational Hamiltonian operator is given and some of its properties are discussed.
Density-functional expansion methods: Grand challenges.
Giese, Timothy J; York, Darrin M
2012-03-01
We discuss the source of errors in semiempirical density functional expansion (VE) methods. In particular, we show that VE methods are capable of well-reproducing their standard Kohn-Sham density functional method counterparts, but suffer from large errors upon using one or more of these approximations: the limited size of the atomic orbital basis, the Slater monopole auxiliary basis description of the response density, and the one- and two-body treatment of the core-Hamiltonian matrix elements. In the process of discussing these approximations and highlighting their symptoms, we introduce a new model that supplements the second-order density-functional tight-binding model with a self-consistent charge-dependent chemical potential equalization correction; we review our recently reported method for generalizing the auxiliary basis description of the atomic orbital response density; and we decompose the first-order potential into a summation of additive atomic components and many-body corrections, and from this examination, we provide new insights and preliminary results that motivate and inspire new approximate treatments of the core-Hamiltonian.
Hamiltonian indices and rational spectral densities
NASA Technical Reports Server (NTRS)
Byrnes, C. I.; Duncan, T. E.
1980-01-01
Several (global) topological properties of various spaces of linear systems, particularly symmetric, lossless, and Hamiltonian systems, and multivariable spectral densities of fixed McMillan degree are announced. The study is motivated by a result asserting that on a connected but not simply connected manifold, it is not possible to find a vector field having a sink as its only critical point. In the scalar case, this is illustrated by showing that only on the space of McMillan degree = /Cauchy index/ = n, scalar transfer functions can one define a globally convergent vector field. This result holds both in discrete-time and for the nonautonomous case. With these motivations in mind, theorems of Bochner and Fogarty are used in showing that spaces of transfer functions defined by symmetry conditions are, in fact, smooth algebraic manifolds.
Time-invariant PT product and phase locking in PT -symmetric lattice models
NASA Astrophysics Data System (ADS)
Joglekar, Yogesh N.; Onanga, Franck Assogba; Harter, Andrew K.
2018-01-01
Over the past decade, non-Hermitian, PT -symmetric Hamiltonians have been investigated as candidates for both a fundamental, unitary, quantum theory and open systems with a nonunitary time evolution. In this paper, we investigate the implications of the former approach in the context of the latter. Motivated by the invariance of the PT (inner) product under time evolution, we discuss the dynamics of wave-function phases in a wide range of PT -symmetric lattice models. In particular, we numerically show that, starting with a random initial state, a universal, gain-site location dependent locking between wave-function phases at adjacent sites occurs in the PT -symmetry-broken region. Our results pave the way towards understanding the physically observable implications of time invariants in the nonunitary dynamics produced by PT -symmetric Hamiltonians.
Replica Approach for Minimal Investment Risk with Cost
NASA Astrophysics Data System (ADS)
Shinzato, Takashi
2018-06-01
In the present work, the optimal portfolio minimizing the investment risk with cost is discussed analytically, where an objective function is constructed in terms of two negative aspects of investment, the risk and cost. We note the mathematical similarity between the Hamiltonian in the mean-variance model and the Hamiltonians in the Hopfield model and the Sherrington-Kirkpatrick model, show that we can analyze this portfolio optimization problem by using replica analysis, and derive the minimal investment risk with cost and the investment concentration of the optimal portfolio. Furthermore, we validate our proposed method through numerical simulations.
Non-autonomous Hénon--Heiles systems
NASA Astrophysics Data System (ADS)
Hone, Andrew N. W.
1998-07-01
Scaling similarity solutions of three integrable PDEs, namely the Sawada-Kotera, fifth order KdV and Kaup-Kupershmidt equations, are considered. It is shown that the resulting ODEs may be written as non-autonomous Hamiltonian equations, which are time-dependent generalizations of the well-known integrable Hénon-Heiles systems. The (time-dependent) Hamiltonians are given by logarithmic derivatives of the tau-functions (inherited from the original PDEs). The ODEs for the similarity solutions also have inherited Bäcklund transformations, which may be used to generate sequences of rational solutions as well as other special solutions related to the first Painlevé transcendent.
Scattering matrix of arbitrary tight-binding Hamiltonians
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramírez, C., E-mail: carlos@ciencias.unam.mx; Medina-Amayo, L.A.
2017-03-15
A novel efficient method to calculate the scattering matrix (SM) of arbitrary tight-binding Hamiltonians is proposed, including cases with multiterminal structures. In particular, the SM of two kinds of fundamental structures is given, which can be used to obtain the SM of bigger systems iteratively. Also, a procedure to obtain the SM of layer-composed periodic leads is described. This method allows renormalization approaches, which permits computations over macroscopic length systems without introducing additional approximations. Finally, the transmission coefficient of a ring-shaped multiterminal system and the transmission function of a square-lattice nanoribbon with a reduced width region are calculated.
Solving a Hamiltonian Path Problem with a bacterial computer
Baumgardner, Jordan; Acker, Karen; Adefuye, Oyinade; Crowley, Samuel Thomas; DeLoache, Will; Dickson, James O; Heard, Lane; Martens, Andrew T; Morton, Nickolaus; Ritter, Michelle; Shoecraft, Amber; Treece, Jessica; Unzicker, Matthew; Valencia, Amanda; Waters, Mike; Campbell, A Malcolm; Heyer, Laurie J; Poet, Jeffrey L; Eckdahl, Todd T
2009-01-01
Background The Hamiltonian Path Problem asks whether there is a route in a directed graph from a beginning node to an ending node, visiting each node exactly once. The Hamiltonian Path Problem is NP complete, achieving surprising computational complexity with modest increases in size. This challenge has inspired researchers to broaden the definition of a computer. DNA computers have been developed that solve NP complete problems. Bacterial computers can be programmed by constructing genetic circuits to execute an algorithm that is responsive to the environment and whose result can be observed. Each bacterium can examine a solution to a mathematical problem and billions of them can explore billions of possible solutions. Bacterial computers can be automated, made responsive to selection, and reproduce themselves so that more processing capacity is applied to problems over time. Results We programmed bacteria with a genetic circuit that enables them to evaluate all possible paths in a directed graph in order to find a Hamiltonian path. We encoded a three node directed graph as DNA segments that were autonomously shuffled randomly inside bacteria by a Hin/hixC recombination system we previously adapted from Salmonella typhimurium for use in Escherichia coli. We represented nodes in the graph as linked halves of two different genes encoding red or green fluorescent proteins. Bacterial populations displayed phenotypes that reflected random ordering of edges in the graph. Individual bacterial clones that found a Hamiltonian path reported their success by fluorescing both red and green, resulting in yellow colonies. We used DNA sequencing to verify that the yellow phenotype resulted from genotypes that represented Hamiltonian path solutions, demonstrating that our bacterial computer functioned as expected. Conclusion We successfully designed, constructed, and tested a bacterial computer capable of finding a Hamiltonian path in a three node directed graph. This proof-of-concept experiment demonstrates that bacterial computing is a new way to address NP-complete problems using the inherent advantages of genetic systems. The results of our experiments also validate synthetic biology as a valuable approach to biological engineering. We designed and constructed basic parts, devices, and systems using synthetic biology principles of standardization and abstraction. PMID:19630940
Nishimura, Kohji; Nishimori, Hidetoshi; Ochoa, Andrew J; Katzgraber, Helmut G
2016-09-01
We study the problem to infer the ground state of a spin-glass Hamiltonian using data from another Hamiltonian with interactions disturbed by noise from the original Hamiltonian, motivated by the ground-state inference in quantum annealing on a noisy device. It is shown that the average Hamming distance between the inferred spin configuration and the true ground state is minimized when the temperature of the noisy system is kept at a finite value, and not at zero temperature. We present a spin-glass generalization of a well-established result that the ground state of a purely ferromagnetic Hamiltonian is best inferred at a finite temperature in the sense of smallest Hamming distance when the original ferromagnetic interactions are disturbed by noise. We use the numerical transfer-matrix method to establish the existence of an optimal finite temperature in one- and two-dimensional systems. Our numerical results are supported by mean-field calculations, which give an explicit expression of the optimal temperature to infer the spin-glass ground state as a function of variances of the distributions of the original interactions and the noise. The mean-field prediction is in qualitative agreement with numerical data. Implications on postprocessing of quantum annealing on a noisy device are discussed.
Formalism for the solution of quadratic Hamiltonians with large cosine terms
NASA Astrophysics Data System (ADS)
Ganeshan, Sriram; Levin, Michael
2016-02-01
We consider quantum Hamiltonians of the form H =H0-U ∑jcos(Cj) , where H0 is a quadratic function of position and momentum variables {x1,p1,x2,p2,⋯} and the Cj's are linear in these variables. We allow H0 and Cj to be completely general with only two restrictions: we require that (1) the Cj's are linearly independent and (2) [Cj,Ck] is an integer multiple of 2 π i for all j ,k so that the different cosine terms commute with one another. Our main result is a recipe for solving these Hamiltonians and obtaining their exact low-energy spectrum in the limit U →∞ . This recipe involves constructing creation and annihilation operators and is similar in spirit to the procedure for diagonalizing quadratic Hamiltonians. In addition to our exact solution in the infinite U limit, we also discuss how to analyze these systems when U is large but finite. Our results are relevant to a number of different physical systems, but one of the most natural applications is to understanding the effects of electron scattering on quantum Hall edge modes. To demonstrate this application, we use our formalism to solve a toy model for a fractional quantum spin Hall edge with different types of impurities.
Self-duality of the compactified Ruijsenaars-Schneider system from quasi-Hamiltonian reduction
NASA Astrophysics Data System (ADS)
Fehér, L.; Klimčík, C.
2012-07-01
The Delzant theorem of symplectic topology is used to derive the completely integrable compactified Ruijsenaars-Schneider IIIb system from a quasi-Hamiltonian reduction of the internally fused double SU(n)×SU(n). In particular, the reduced spectral functions depending respectively on the first and second SU(n) factor of the double engender two toric moment maps on the IIIb phase space CP(n-1) that play the roles of action-variables and particle-positions. A suitable central extension of the SL(2,Z) mapping class group of the torus with one boundary component is shown to act on the quasi-Hamiltonian double by automorphisms and, upon reduction, the standard generator S of the mapping class group is proved to descend to the Ruijsenaars self-duality symplectomorphism that exchanges the toric moment maps. We give also two new presentations of this duality map: one as the composition of two Delzant symplectomorphisms and the other as the composition of three Dehn twist symplectomorphisms realized by Goldman twist flows. Through the well-known relation between quasi-Hamiltonian manifolds and moduli spaces, our results rigorously establish the validity of the interpretation [going back to Gorsky and Nekrasov] of the IIIb system in terms of flat SU(n) connections on the one-holed torus.
Stability of Inhomogeneous Equilibria of Hamiltonian Continuous Media Field Theories
NASA Astrophysics Data System (ADS)
Hagstrom, George
2013-10-01
There are a wide variety of 1 + 1 Hamiltonian continuous media field theories that exhibit phase space pattern formation. In plasma physics, the most famous of these is the Vlasov-Poisson equation, but other examples include the incompressible Euler equation in two-dimensions and the Hamiltonian Mean Field (or XY) model. One of the characteristic phenomenon that occurs in systems described by these equations is the formation of cat's eye patterns in phase space as a result of the nonlinear saturation of instabilities. Corresponding to each of these cat's eyes is a spatially inhomogeneous equilibrium solution of the underlying model, in plasma physics these are called BGK modes, but analogous solutions exist in all of the above systems. Here we analyze the stability of inhomogeneous equilibria in the Hamiltonian Mean Field model and in the Single Wave model, which is an equation that was derived to provide a model of the formation of electron holes in plasmas. We use action angle variables and the properties of elliptic functions to analyze the resulting dispersion relation construct linearly stable inhomogeneous equilibria for in the limit of small numbers of particles and study the behavior of solutions near these equilibria. Work supported by USDOE grant no. DE-FG02-ER53223.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jae Woo; Rhee, Young Min, E-mail: ymrhee@postech.ac.kr; Department of Chemistry, Pohang University of Science and Technology
2014-04-28
Simulating molecular dynamics directly on quantum chemically obtained potential energy surfaces is generally time consuming. The cost becomes overwhelming especially when excited state dynamics is aimed with multiple electronic states. The interpolated potential has been suggested as a remedy for the cost issue in various simulation settings ranging from fast gas phase reactions of small molecules to relatively slow condensed phase dynamics with complex surrounding. Here, we present a scheme for interpolating multiple electronic surfaces of a relatively large molecule, with an intention of applying it to studying nonadiabatic behaviors. The scheme starts with adiabatic potential information and its diabaticmore » transformation, both of which can be readily obtained, in principle, with quantum chemical calculations. The adiabatic energies and their derivatives on each interpolation center are combined with the derivative coupling vectors to generate the corresponding diabatic Hamiltonian and its derivatives, and they are subsequently adopted in producing a globally defined diabatic Hamiltonian function. As a demonstration, we employ the scheme to build an interpolated Hamiltonian of a relatively large chromophore, para-hydroxybenzylidene imidazolinone, in reference to its all-atom analytical surface model. We show that the interpolation is indeed reliable enough to reproduce important features of the reference surface model, such as its adiabatic energies and derivative couplings. In addition, nonadiabatic surface hopping simulations with interpolation yield population transfer dynamics that is well in accord with the result generated with the reference analytic surface. With these, we conclude by suggesting that the interpolation of diabatic Hamiltonians will be applicable for studying nonadiabatic behaviors of sizeable molecules.« less
Area law from loop quantum gravity
NASA Astrophysics Data System (ADS)
Hamma, Alioscia; Hung, Ling-Yan; Marcianò, Antonino; Zhang, Mingyi
2018-03-01
We explore the constraints following from requiring the area law in the entanglement entropy in the context of loop quantum gravity. We find a unique solution to the single-link wave function in the large j limit, believed to be appropriate in the semiclassical limit. We then generalize our considerations to multilink coherent states, and find that the area law is preserved very generically using our single-link wave function as a building block. Finally, we develop the framework that generates families of multilink states that preserve the area law while avoiding macroscopic entanglement, the space-time analogue of "Schrödinger's cat." We note that these states, defined on a given set of graphs, are the ground states of some local Hamiltonian that can be constructed explicitly. This can potentially shed light on the construction of the appropriate Hamiltonian constraints in the LQG framework.
Yu, Hua-Gen
2002-01-01
We present a full dimensional variational algorithm to calculate vibrational energies of penta-atomic molecules. The quantum mechanical Hamiltonian of the system for J=0 is derived in a set of orthogonal polyspherical coordinates in the body-fixed frame without any dynamical approximation. Moreover, the vibrational Hamiltonian has been obtained in an explicitly Hermitian form. Variational calculations are performed in a direct product discrete variable representation basis set. The sine functions are used for the radial coordinates, whereas the Legendre polynomials are employed for the polar angles. For the azimuthal angles, the symmetrically adapted Fourier–Chebyshev basis functions are utilized. The eigenvalue problem ismore » solved by a Lanczos iterative diagonalization algorithm. The preliminary application to methane is given. Ultimately, we made a comparison with previous results.« less
NASA Astrophysics Data System (ADS)
Qin, Tao; Hofstetter, Walter
2017-08-01
We present a systematic study of the spectral functions of a time-periodically driven Falicov-Kimball Hamiltonian. In the high-frequency limit, this system can be effectively described as a Harper-Hofstadter-Falicov-Kimball model. Using real-space Floquet dynamical mean-field theory (DMFT), we take into account the interaction effects and contributions from higher Floquet bands in a nonperturbative way. Our calculations show a high degree of similarity between the interacting driven system and its effective static counterpart with respect to spectral properties. However, as also illustrated by our results, one should bear in mind that Floquet DMFT describes a nonequilibrium steady state, while an effective static Hamiltonian describes an equilibrium state. We further demonstrate the possibility of using real-space Floquet DMFT to study edge states on a cylinder geometry.
Optimal adaptive control for quantum metrology with time-dependent Hamiltonians.
Pang, Shengshi; Jordan, Andrew N
2017-03-09
Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T 2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T 4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case.
Optimal adaptive control for quantum metrology with time-dependent Hamiltonians
Pang, Shengshi; Jordan, Andrew N.
2017-01-01
Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case. PMID:28276428
Modeling the Conformation-Specific Infrared Spectra of N-Alkylbenzenes
NASA Astrophysics Data System (ADS)
Tabor, Daniel P.; Sibert, Edwin; Hewett, Daniel M.; Korn, Joseph A.; Zwier, Timothy S.
2016-06-01
Conformation-specific UV-IR double resonance spectra are presented for n-alkylbenzenes. With the aid of a local mode Hamiltonian that includes the effects of stretch-bend Fermi coupling, the spectra of ethyl, n-propyl, and n-butylbenzene are assigned to individual conformers. These molecules allow for further development of the work on a first principles method for calculating alkyl stretch spectra. Due to the consistency of the anharmonic couplings from conformer to conformer, construction of the model Hamiltonian for a given conformer only requires a harmonic frequency calculation at the conformer's minimum geometry as an input. The model Hamiltonian can be parameterized with either density functional theory or MP2 electronic structure calculations. The relative strengths and weaknesses of these methods are evaluated, including their predictions of the relative energetics of the conformers. Finally, the IR spectra for conformers that have the alkyl chain bend back and interact with the π cloud of the benzene ring are modeled.
NASA Astrophysics Data System (ADS)
Bagarello, F.; Haven, E.
2016-02-01
We discuss a non linear extension of a model of alliances in politics, recently proposed by one of us. The model is constructed in terms of operators, describing the interest of three parties to form, or not, some political alliance with the other parties. The time evolution of what we call the decision functions is deduced by introducing a suitable Hamiltonian, which describes the main effects of the interactions of the parties amongst themselves and with their environments, which are generated by their electors and by people who still have no clear idea for which party to vote (or even if to vote). The Hamiltonian contains some non-linear effects, which takes into account the role of a party in the decision process of the other two parties. Moreover, we show how the same Hamiltonian can also be used to construct a formal structure which can describe the dynamics of buying and selling financial assets (without however implying a specific price setting mechanism).
Dissipative N-point-vortex Models in the Plane
NASA Astrophysics Data System (ADS)
Shashikanth, Banavara N.
2010-02-01
A method is presented for constructing point vortex models in the plane that dissipate the Hamiltonian function at any prescribed rate and yet conserve the level sets of the invariants of the Hamiltonian model arising from the SE (2) symmetries. The method is purely geometric in that it uses the level sets of the Hamiltonian and the invariants to construct the dissipative field and is based on elementary classical geometry in ℝ3. Extension to higher-dimensional spaces, such as the point vortex phase space, is done using exterior algebra. The method is in fact general enough to apply to any smooth finite-dimensional system with conserved quantities, and, for certain special cases, the dissipative vector field constructed can be associated with an appropriately defined double Nambu-Poisson bracket. The most interesting feature of this method is that it allows for an infinite sequence of such dissipative vector fields to be constructed by repeated application of a symmetric linear operator (matrix) at each point of the intersection of the level sets.
Canonical formalism for modelling and control of rigid body dynamics.
Gurfil, P
2005-12-01
This paper develops a new paradigm for stabilization of rigid-body dynamics. The state-space model is formulated using canonical elements, known as the Serret-Andoyer (SA) variables, thus far scarcely used for engineering applications. The main feature of the SA formalism is the reduction of the dynamics via the underlying symmetry stemming from conservation of angular momentum and rotational kinetic energy. The controllability of the system model is examined using the notion of accessibility, and is shown to be accessible from all points. Based on the accessibility proof, two nonlinear asymptotic feedback stabilizers are developed: a damping feedback is designed based on the Jurdjevic-Quinn method, and a Hamiltonian controller is derived by using the Hamiltonian as a natural Lyapunov function for the closed-loop dynamics. It is shown that the Hamiltonian control is both passive and inverse optimal with respect to a meaningful performance index. The performance of the new controllers is examined and compared using simulations of realistic scenarios from the satellite attitude dynamics field.
Hamiltonian thermostats fail to promote heat flow
NASA Astrophysics Data System (ADS)
Hoover, Wm. G.; Hoover, Carol G.
2013-12-01
Hamiltonian mechanics can be used to constrain temperature simultaneously with energy. We illustrate the interesting situations that develop when two different temperatures are imposed within a composite Hamiltonian system. The model systems we treat are ϕ4 chains, with quartic tethers and quadratic nearest-neighbor Hooke's-law interactions. This model is known to satisfy Fourier's law. Our prototypical problem sandwiches a Newtonian subsystem between hot and cold Hamiltonian reservoir regions. We have characterized four different Hamiltonian reservoir types. There is no tendency for any of these two-temperature Hamiltonian simulations to transfer heat from the hot to the cold degrees of freedom. Evidently steady heat flow simulations require energy sources and sinks, and are therefore incompatible with Hamiltonian mechanics.
NASA Astrophysics Data System (ADS)
Li, Hui-Jia; Cheng, Qing; Mao, He-Jin; Wang, Huanian; Chen, Junhua
2017-03-01
The study of community structure is a primary focus of network analysis, which has attracted a large amount of attention. In this paper, we focus on two famous functions, i.e., the Hamiltonian function H and the modularity density measure D, and intend to uncover the effective thresholds of their corresponding resolution parameter γ without resolution limit problem. Two widely used example networks are employed, including the ring network of lumps as well as the ad hoc network. In these two networks, we use discrete convex analysis to study the interval of resolution parameter of H and D that will not cause the misidentification. By comparison, we find that in both examples, for Hamiltonian function H, the larger the value of resolution parameter γ, the less resolution limit the network suffers; while for modularity density D, the less resolution limit the network suffers when we decrease the value of γ. Our framework is mathematically strict and efficient and can be applied in a lot of scientific fields.
Charge Transport Properties of Durene Crystals from First-Principles.
Motta, Carlo; Sanvito, Stefano
2014-10-14
We establish a rigorous computational scheme for constructing an effective Hamiltonian to be used for the determination of the charge carrier mobility of pure organic crystals at finite temperature, which accounts for van der Waals interactions, and it includes vibrational contributions from the entire phonon spectrum of the crystal. Such an approach is based on the ab initio framework provided by density functional theory and the construction of a tight-binding effective model via Wannier transformation. The final Hamiltonian includes coupling of the electrons to the crystals phonons, which are also calculated from density functional theory. We apply this methodology to the case of durene, a small π-conjugated molecule, which forms a high-mobility herringbone-stacked crystal. We show that accounting correctly for dispersive forces is fundamental for obtaining a high-quality phonon spectrum, in agreement with experiments. Then, the mobility as a function of temperature is calculated along different crystallographic directions and the phonons most responsible for the scattering are identified.
Vancoillie, Steven; Malmqvist, Per Åke; Veryazov, Valera
2016-04-12
The chromium dimer has long been a benchmark molecule to evaluate the performance of different computational methods ranging from density functional theory to wave function methods. Among the latter, multiconfigurational perturbation theory was shown to be able to reproduce the potential energy surface of the chromium dimer accurately. However, for modest active space sizes, it was later shown that different definitions of the zeroth-order Hamiltonian have a large impact on the results. In this work, we revisit the system for the third time with multiconfigurational perturbation theory, now in order to increase the active space of the reference wave function. This reduces the impact of the choice of zeroth-order Hamiltonian and improves the shape of the potential energy surface significantly. We conclude by comparing our results of the dissocation energy and vibrational spectrum to those obtained from several highly accurate multiconfigurational methods and experiment. For a meaningful comparison, we used the extrapolation to the complete basis set for all methods involved.
On the domain of the Nelson Hamiltonian
NASA Astrophysics Data System (ADS)
Griesemer, M.; Wünsch, A.
2018-04-01
The Nelson Hamiltonian is unitarily equivalent to a Hamiltonian defined through a closed, semibounded quadratic form, the unitary transformation being explicitly known and due to Gross. In this paper, we study the mapping properties of the Gross-transform in order to characterize the regularity properties of vectors in the form domain of the Nelson Hamiltonian. Since the operator domain is a subset of the form domain, our results apply to vectors in the domain of the Hamiltonian as well. This work is a continuation of our previous work on the Fröhlich Hamiltonian.
Fourier series expansion for nonlinear Hamiltonian oscillators.
Méndez, Vicenç; Sans, Cristina; Campos, Daniel; Llopis, Isaac
2010-06-01
The problem of nonlinear Hamiltonian oscillators is one of the classical questions in physics. When an analytic solution is not possible, one can resort to obtaining a numerical solution or using perturbation theory around the linear problem. We apply the Fourier series expansion to find approximate solutions to the oscillator position as a function of time as well as the period-amplitude relationship. We compare our results with other recent approaches such as variational methods or heuristic approximations, in particular the Ren-He's method. Based on its application to the Duffing oscillator, the nonlinear pendulum and the eardrum equation, it is shown that the Fourier series expansion method is the most accurate.
Competing bosonic condensates in optical lattice with a mixture of single and pair hoppings
NASA Astrophysics Data System (ADS)
Travin, V. M.; Kopeć, T. K.
2017-01-01
A system of ultra-cold atoms with single boson and pair tunneling of bosonic atoms is considered in an optical lattice at arbitrary temperature. A mean-field theory was applied to the extended Bose-Hubbard Hamiltonian describing the system in order to investigate the competition between superfluid and pair superfluid as a function of the chemical potential and the temperature. To this end we have applied a method based on the Laplace transform method for the efficient calculation of the statistical sum for the quantum Hamiltonian. These results may be of interest for experiments on cold atom systems in optical lattices.
NASA Astrophysics Data System (ADS)
Harada, Hiromitsu; Mouchet, Amaury; Shudo, Akira
2017-10-01
The topology of complex classical paths is investigated to discuss quantum tunnelling splittings in one-dimensional systems. Here the Hamiltonian is assumed to be given as polynomial functions, so the fundamental group for the Riemann surface provides complete information on the topology of complex paths, which allows us to enumerate all the possible candidates contributing to the semiclassical sum formula for tunnelling splittings. This naturally leads to action relations among classically disjoined regions, revealing entirely non-local nature in the quantization condition. The importance of the proper treatment of Stokes phenomena is also discussed in Hamiltonians in the normal form.
Improvement of the Davydov theory of bioenergy transport in protein molecular systems.
Pang, X F
2000-11-01
The Hamiltonian and the wave function in the Davydov theory have simultaneously been improved and extended, based on some physical and biological grounds and on results from other models. The equations of motion for the improved Davydov model with a quasicoherent two-quanta state and a new interaction term in the Hamiltonian describe bioenergy transport along the molecular chains in protein molecules by a soliton mechanism. Some elementary properties of the soliton, including the nonlinear coupling energy and greatly increased binding energy of the soliton, are also given. The results obtained suggest that the model could be a candidate for a bioenergy transport mechanism in protein molecules.
Generalized Bloch theorem and topological characterization
NASA Astrophysics Data System (ADS)
Dobardžić, E.; Dimitrijević, M.; Milovanović, M. V.
2015-03-01
The Bloch theorem enables reduction of the eigenvalue problem of the single-particle Hamiltonian that commutes with the translational group. Based on a group theory analysis we present a generalization of the Bloch theorem that incorporates all additional symmetries of a crystal. The generalized Bloch theorem constrains the form of the Hamiltonian which becomes manifestly invariant under additional symmetries. In the case of isotropic interactions the generalized Bloch theorem gives a unique Hamiltonian. This Hamiltonian coincides with the Hamiltonian in the periodic gauge. In the case of anisotropic interactions the generalized Bloch theorem allows a family of Hamiltonians. Due to the continuity argument we expect that even in this case the Hamiltonian in the periodic gauge defines observables, such as Berry curvature, in the inverse space. For both cases we present examples and demonstrate that the average of the Berry curvatures of all possible Hamiltonians in the Bloch gauge is the Berry curvature in the periodic gauge.
Quantization of Electromagnetic Fields in Cavities
NASA Technical Reports Server (NTRS)
Kakazu, Kiyotaka; Oshiro, Kazunori
1996-01-01
A quantization procedure for the electromagnetic field in a rectangular cavity with perfect conductor walls is presented, where a decomposition formula of the field plays an essential role. All vector mode functions are obtained by using the decomposition. After expanding the field in terms of the vector mode functions, we get the quantized electromagnetic Hamiltonian.
Szidarovszky, Tamás; Fábri, Csaba; Császár, Attila G
2012-05-07
Approximate rotational characterization of variational rovibrational wave functions via the rigid rotor decomposition (RRD) protocol is developed for Hamiltonians based on arbitrary sets of internal coordinates and axis embeddings. An efficient and general procedure is given that allows employing the Eckart embedding with arbitrary polyatomic Hamiltonians through a fully numerical approach. RRD tables formed by projecting rotational-vibrational wave functions into products of rigid-rotor basis functions and previously determined vibrational eigenstates yield rigid-rotor labels for rovibrational eigenstates by selecting the largest overlap. Embedding-dependent RRD analyses are performed, up to high energies and rotational excitations, for the H(2) (16)O isotopologue of the water molecule. Irrespective of the embedding chosen, the RRD procedure proves effective in providing unambiguous rotational assignments at low energies and J values. Rotational labeling of rovibrational states of H(2) (16)O proves to be increasingly difficult beyond about 10,000 cm(-1), close to the barrier to linearity of the water molecule. For medium energies and excitations the Eckart embedding yields the largest RRD coefficients, thus providing the largest number of unambiguous rotational labels.
NASA Astrophysics Data System (ADS)
Chen, Zhenhua; Chen, Xun; Wu, Wei
2013-04-01
In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism.
Hamiltonian Monte Carlo acceleration using surrogate functions with random bases.
Zhang, Cheng; Shahbaba, Babak; Zhao, Hongkai
2017-11-01
For big data analysis, high computational cost for Bayesian methods often limits their applications in practice. In recent years, there have been many attempts to improve computational efficiency of Bayesian inference. Here we propose an efficient and scalable computational technique for a state-of-the-art Markov chain Monte Carlo methods, namely, Hamiltonian Monte Carlo. The key idea is to explore and exploit the structure and regularity in parameter space for the underlying probabilistic model to construct an effective approximation of its geometric properties. To this end, we build a surrogate function to approximate the target distribution using properly chosen random bases and an efficient optimization process. The resulting method provides a flexible, scalable, and efficient sampling algorithm, which converges to the correct target distribution. We show that by choosing the basis functions and optimization process differently, our method can be related to other approaches for the construction of surrogate functions such as generalized additive models or Gaussian process models. Experiments based on simulated and real data show that our approach leads to substantially more efficient sampling algorithms compared to existing state-of-the-art methods.
Combinatorial quantization of the Hamiltonian Chern-Simons theory II
NASA Astrophysics Data System (ADS)
Alekseev, Anton Yu.; Grosse, Harald; Schomerus, Volker
1996-01-01
This paper further develops the combinatorial approach to quantization of the Hamiltonian Chern Simons theory advertised in [1]. Using the theory of quantum Wilson lines, we show how the Verlinde algebra appears within the context of quantum group gauge theory. This allows to discuss flatness of quantum connections so that we can give a mathematically rigorous definition of the algebra of observables A CS of the Chern Simons model. It is a *-algebra of “functions on the quantum moduli space of flat connections” and comes equipped with a positive functional ω (“integration”). We prove that this data does not depend on the particular choices which have been made in the construction. Following ideas of Fock and Rosly [2], the algebra A CS provides a deformation quantization of the algebra of functions on the moduli space along the natural Poisson bracket induced by the Chern Simons action. We evaluate a volume of the quantized moduli space and prove that it coincides with the Verlinde number. This answer is also interpreted as a partition partition function of the lattice Yang-Mills theory corresponding to a quantum gauge group.
NASA Astrophysics Data System (ADS)
Sarma, Manabendra; Singh, Raman K.; Mishra, Manoj K.
2007-12-01
Vibrational excitation cross-sections σn←m(E) in resonant e-N2, e-CO and e-H2 scattering are calculated from transition matrix elements Tn←m(E) obtained using Fourier transform of the cross correlation function <φn(R)|ψm(R,t)> where ψm(R,t); e-iHA-(R)t/ℏφm(R). Time evolution under the influence of the resonance anionic Hamiltonian HA-(A- = N2-/CO/H2-) is effected using Lanczos and fast Fourier transforms and the target (A) vibrational eigenfunctions φm(R) and φn(R) are calculated using Fourier grid Hamiltonian method applied to PE curve of the neutral target. The resulting vibrational excitation cross-section profiles provide reasonable agreement with experimental results and the cross correlation functions offer an unequivocal differentiation between the boomerang and impulse models.
NASA Astrophysics Data System (ADS)
Amaku, Marcos; Coutinho, Francisco A. B.; Masafumi Toyama, F.
2017-09-01
The usual definition of the time evolution operator e-i H t /ℏ=∑n=0∞1/n ! (-i/ℏHt ) n , where H is the Hamiltonian of the system, as given in almost every book on quantum mechanics, causes problems in some situations. The operators that appear in quantum mechanics are either bounded or unbounded. Unbounded operators are not defined for all the vectors (wave functions) of the Hilbert space of the system; when applied to some states, they give a non-normalizable state. Therefore, if H is an unbounded operator, the definition in terms of the power series expansion does not make sense because it may diverge or result in a non-normalizable wave function. In this article, we explain why this is so and suggest, as an alternative, another definition used by mathematicians.
Theory of Stochastic Laplacian Growth
NASA Astrophysics Data System (ADS)
Alekseev, Oleg; Mineev-Weinstein, Mark
2017-07-01
We generalize the diffusion-limited aggregation by issuing many randomly-walking particles, which stick to a cluster at the discrete time unit providing its growth. Using simple combinatorial arguments we determine probabilities of different growth scenarios and prove that the most probable evolution is governed by the deterministic Laplacian growth equation. A potential-theoretical analysis of the growth probabilities reveals connections with the tau-function of the integrable dispersionless limit of the two-dimensional Toda hierarchy, normal matrix ensembles, and the two-dimensional Dyson gas confined in a non-uniform magnetic field. We introduce the time-dependent Hamiltonian, which generates transitions between different classes of equivalence of closed curves, and prove the Hamiltonian structure of the interface dynamics. Finally, we propose a relation between probabilities of growth scenarios and the semi-classical limit of certain correlation functions of "light" exponential operators in the Liouville conformal field theory on a pseudosphere.
Canonical transformation path to gauge theories of gravity
NASA Astrophysics Data System (ADS)
Struckmeier, J.; Muench, J.; Vasak, D.; Kirsch, J.; Hanauske, M.; Stoecker, H.
2017-06-01
In this paper, the generic part of the gauge theory of gravity is derived, based merely on the action principle and on the general principle of relativity. We apply the canonical transformation framework to formulate geometrodynamics as a gauge theory. The starting point of our paper is constituted by the general De Donder-Weyl Hamiltonian of a system of scalar and vector fields, which is supposed to be form-invariant under (global) Lorentz transformations. Following the reasoning of gauge theories, the corresponding locally form-invariant system is worked out by means of canonical transformations. The canonical transformation approach ensures by construction that the form of the action functional is maintained. We thus encounter amended Hamiltonian systems which are form-invariant under arbitrary spacetime transformations. This amended system complies with the general principle of relativity and describes both, the dynamics of the given physical system's fields and their coupling to those quantities which describe the dynamics of the spacetime geometry. In this way, it is unambiguously determined how spin-0 and spin-1 fields couple to the dynamics of spacetime. A term that describes the dynamics of the "free" gauge fields must finally be added to the amended Hamiltonian, as common to all gauge theories, to allow for a dynamic spacetime geometry. The choice of this "dynamics" Hamiltonian is outside of the scope of gauge theory as presented in this paper. It accounts for the remaining indefiniteness of any gauge theory of gravity and must be chosen "by hand" on the basis of physical reasoning. The final Hamiltonian of the gauge theory of gravity is shown to be at least quadratic in the conjugate momenta of the gauge fields—this is beyond the Einstein-Hilbert theory of general relativity.
Is the addition of an assisted driving Hamiltonian always useful for adiabatic evolution?
NASA Astrophysics Data System (ADS)
Sun, Jie; Lu, Songfeng; Li, Li
2017-04-01
It has been known that when an assisted driving item is added to the main system Hamiltonian, the efficiency of the resultant adiabatic evolution can be significantly improved. In some special cases, it can be seen that only through adding an assisted driving Hamiltonian can the resulting adiabatic evolution be made not to fail. Thus the additional driving Hamiltonian plays an important role in adiabatic computing. In this paper, we show that if the driving Hamiltonian is chosen inappropriately, the adiabatic computation may still fail. More importantly, we find that the adiabatic computation can only succeed if the assisted driving Hamiltonian has a relatively fixed form. This may help us understand why in the related literature all of the driving Hamiltonians used share the same form.
Hamiltonian closures in fluid models for plasmas
NASA Astrophysics Data System (ADS)
Tassi, Emanuele
2017-11-01
This article reviews recent activity on the Hamiltonian formulation of fluid models for plasmas in the non-dissipative limit, with emphasis on the relations between the fluid closures adopted for the different models and the Hamiltonian structures. The review focuses on results obtained during the last decade, but a few classical results are also described, in order to illustrate connections with the most recent developments. With the hope of making the review accessible not only to specialists in the field, an introduction to the mathematical tools applied in the Hamiltonian formalism for continuum models is provided. Subsequently, we review the Hamiltonian formulation of models based on the magnetohydrodynamics description, including those based on the adiabatic and double adiabatic closure. It is shown how Dirac's theory of constrained Hamiltonian systems can be applied to impose the incompressibility closure on a magnetohydrodynamic model and how an extended version of barotropic magnetohydrodynamics, accounting for two-fluid effects, is amenable to a Hamiltonian formulation. Hamiltonian reduced fluid models, valid in the presence of a strong magnetic field, are also reviewed. In particular, reduced magnetohydrodynamics and models assuming cold ions and different closures for the electron fluid are discussed. Hamiltonian models relaxing the cold-ion assumption are then introduced. These include models where finite Larmor radius effects are added by means of the gyromap technique, and gyrofluid models. Numerical simulations of Hamiltonian reduced fluid models investigating the phenomenon of magnetic reconnection are illustrated. The last part of the review concerns recent results based on the derivation of closures preserving a Hamiltonian structure, based on the Hamiltonian structure of parent kinetic models. Identification of such closures for fluid models derived from kinetic systems based on the Vlasov and drift-kinetic equations are presented, and connections with previously discussed fluid models are pointed out.
Leclerc, Arnaud; Carrington, Tucker
2014-05-07
We propose an iterative method for computing vibrational spectra that significantly reduces the memory cost of calculations. It uses a direct product primitive basis, but does not require storing vectors with as many components as there are product basis functions. Wavefunctions are represented in a basis each of whose functions is a sum of products (SOP) and the factorizable structure of the Hamiltonian is exploited. If the factors of the SOP basis functions are properly chosen, wavefunctions are linear combinations of a small number of SOP basis functions. The SOP basis functions are generated using a shifted block power method. The factors are refined with a rank reduction algorithm to cap the number of terms in a SOP basis function. The ideas are tested on a 20-D model Hamiltonian and a realistic CH3CN (12 dimensional) potential. For the 20-D problem, to use a standard direct product iterative approach one would need to store vectors with about 10(20) components and would hence require about 8 × 10(11) GB. With the approach of this paper only 1 GB of memory is necessary. Results for CH3CN agree well with those of a previous calculation on the same potential.
Simulating highly nonlocal Hamiltonians with less nonlocal Hamiltonians
NASA Astrophysics Data System (ADS)
Subasi, Yigit; Jarzynski, Christopher
The need for Hamiltonians with many-body interactions arises in various applications of quantum computing. However, interactions beyond two-body are difficult to realize experimentally. Perturbative gadgets were introduced to obtain arbitrary many-body effective interactions using Hamiltonians with two-body interactions only. Although valid for arbitrary k-body interactions, their use is limited to small k because the strength of interaction is k'th order in perturbation theory. Here we develop a nonperturbative technique for obtaining effective k-body interactions using Hamiltonians consisting of at most l-body interactions with l < k . This technique works best for Hamiltonians with a few interactions with very large k and can be used together with perturbative gadgets to embed Hamiltonians of considerable complexity in proper subspaces of two-local Hamiltonians. We describe how our technique can be implemented in a hybrid (gate-based and adiabatic) as well as solely adiabatic quantum computing scheme. We gratefully acknowledge financial support from the Lockheed Martin Corporation under Contract U12001C.
Theoretical Study of the IR Spectroscopy of BENZENE-(WATER)_N Clusters
NASA Astrophysics Data System (ADS)
Tabor, Daniel P.; Sibert, Edwin; Kusaka, Ryoji; Walsh, Patrick S.; Zwier, Timothy S.
2015-06-01
The local mode Hamiltonian that assigns RIDIR spectra for Bz-(H_2O)_6 and Bz-(H_2O)_7 is explored in detail for Bz-(H_2O)_n with n=3-7. In addition to contributions from OH stretches, the Hamiltonian includes the anharmonic coupling of each water monomer's bend overtone and its OH stretch fundamentals, which is necessary for accurately modeling 3150-3300 cm-1 region of the spectra. The parameters of the Hamiltonian can be calculated using either MP2 or density functional theory. The relative strengths and weaknesses of these two electronic structure approaches are examined to gain further physical understanding. Initial assignments of Bz-(H_2O)_6 and Bz-(H_2O)_7 were based on a linear scaling of M06-2X harmonic frequencies. In most cases, counterpoise-corrected MP2 calculations obtain similar frequencies (across all cluster sizes) if stretch anharmonicity is taken into account. Individual ``monomer Hamiltonians'' are constructed via the application of fourth order Van Vleck perturbation theory to MP2 potential energy surfaces. These calculations elucidate the sensitivity of intra-monomer couplings to chemical environment. The presence of benzene has particularly important consequences for the spectra of the Bz-(H_2O)3-5 clusters, in which the symmetry of the water cycles is broken by π-H-bonding to benzene. The nature of these perturbations is discussed.
Model Hamiltonian Calculations of the Nonlinear Polarizabilities of Conjugated Molecules.
NASA Astrophysics Data System (ADS)
Risser, Steven Michael
This dissertation advances the theoretical knowledge of the nonlinear polarizabilities of conjugated molecules. The unifying feature of these molecules is an extended delocalized pi electron structure. The pi electrons dominate the electronic properties of the molecules, allowing prediction of molecular properties based on the treatment of just the pi electrons. Two separate pi electron Hamiltonians are used in the research. The principal Hamiltonian used is the non-interacting single-particle Huckel Hamiltonian, which replaces the Coulomb interaction among the pi electrons with a mean field interaction. The simplification allows for exact solution of the Hamiltonian for large molecules. The second Hamiltonian used for this research is the interacting multi-particle Pariser-Parr-Pople (PPP) Hamiltonian, which retains explicit Coulomb interactions. This limits exact solutions to molecules containing at most eight electrons. The molecular properties being investigated are the linear polarizability, and the second and third order hyperpolarizabilities. The hyperpolarizabilities determine the nonlinear optical response of materials. These molecular parameters are determined by two independent approaches. The results from the Huckel Hamiltonian are obtained through first, second and third order perturbation theory. The results from the PPP Hamiltonian are obtained by including the applied field directly in the Hamiltonian and determining the ground state energy at a series of field strengths. By fitting the energy to a polynomial in field strength, the polarizability and hyperpolarizabilities are determined. The Huckel Hamiltonian is used to calculate the third order hyperpolarizability of polyenes. These calculations were the first to show the average hyperpolarizability of the polyenes to be positive, and also to show the saturation of the hyperpolarizability. Comparison of these Huckel results to those from the PPP Hamiltonian shows the lack of explicit Coulomb interactions in the Huckel Hamiltonian results in calculated hyperpolarizabilities that are much larger than the experimentally determined values. Comparison of hyperpolarizabilities calculated for small benzene derivatives using both the Huckel and PPP Hamiltonians shows that inclusion of explicit Coulomb interactions is not as significant for aromatic molecules. This assertion is supported by comparison of the calculated results to the experimentally determined values. This allows for predictions of the hyperpolarizability of various liquid crystal molecules to be made.
An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation.
Ilias, Miroslav; Saue, Trond
2007-02-14
The authors report the implementation of a simple one-step method for obtaining an infinite-order two-component (IOTC) relativistic Hamiltonian using matrix algebra. They apply the IOTC Hamiltonian to calculations of excitation and ionization energies as well as electric and magnetic properties of the radon atom. The results are compared to corresponding calculations using identical basis sets and based on the four-component Dirac-Coulomb Hamiltonian as well as Douglas-Kroll-Hess and zeroth-order regular approximation Hamiltonians, all implemented in the DIRAC program package, thus allowing a comprehensive comparison of relativistic Hamiltonians within the finite basis approximation.
Gauge-invariant expectation values of the energy of a molecule in an electromagnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandal, Anirban; Hunt, Katharine L. C.
In this paper, we show that the full Hamiltonian for a molecule in an electromagnetic field can be separated into a molecular Hamiltonian and a field Hamiltonian, both with gauge-invariant expectation values. The expectation value of the molecular Hamiltonian gives physically meaningful results for the energy of a molecule in a time-dependent applied field. In contrast, the usual partitioning of the full Hamiltonian into molecular and field terms introduces an arbitrary gauge-dependent potential into the molecular Hamiltonian and leaves a gauge-dependent form of the Hamiltonian for the field. With the usual partitioning of the Hamiltonian, this same problem of gaugemore » dependence arises even in the absence of an applied field, as we show explicitly by considering a gauge transformation from zero applied field and zero external potentials to zero applied field, but non-zero external vector and scalar potentials. We resolve this problem and also remove the gauge dependence from the Hamiltonian for a molecule in a non-zero applied field and from the field Hamiltonian, by repartitioning the full Hamiltonian. It is possible to remove the gauge dependence because the interaction of the molecular charges with the gauge potential cancels identically with a gauge-dependent term in the usual form of the field Hamiltonian. We treat the electromagnetic field classically and treat the molecule quantum mechanically, but nonrelativistically. Our derivation starts from the Lagrangian for a set of charged particles and an electromagnetic field, with the particle coordinates, the vector potential, the scalar potential, and their time derivatives treated as the variables in the Lagrangian. We construct the full Hamiltonian using a Lagrange multiplier method originally suggested by Dirac, partition this Hamiltonian into a molecular term H{sub m} and a field term H{sub f}, and show that both H{sub m} and H{sub f} have gauge-independent expectation values. Any gauge may be chosen for the calculations; but following our partitioning, the expectation values of the molecular Hamiltonian are identical to those obtained directly in the Coulomb gauge. As a corollary of this result, the power absorbed by a molecule from a time-dependent, applied electromagnetic field is equal to the time derivative of the non-adiabatic term in the molecular energy, in any gauge.« less
Bifurcation of solutions to Hamiltonian boundary value problems
NASA Astrophysics Data System (ADS)
McLachlan, R. I.; Offen, C.
2018-06-01
A bifurcation is a qualitative change in a family of solutions to an equation produced by varying parameters. In contrast to the local bifurcations of dynamical systems that are often related to a change in the number or stability of equilibria, bifurcations of boundary value problems are global in nature and may not be related to any obvious change in dynamical behaviour. Catastrophe theory is a well-developed framework which studies the bifurcations of critical points of functions. In this paper we study the bifurcations of solutions of boundary-value problems for symplectic maps, using the language of (finite-dimensional) singularity theory. We associate certain such problems with a geometric picture involving the intersection of Lagrangian submanifolds, and hence with the critical points of a suitable generating function. Within this framework, we then study the effect of three special cases: (i) some common boundary conditions, such as Dirichlet boundary conditions for second-order systems, restrict the possible types of bifurcations (for example, in generic planar systems only the A-series beginning with folds and cusps can occur); (ii) integrable systems, such as planar Hamiltonian systems, can exhibit a novel periodic pitchfork bifurcation; and (iii) systems with Hamiltonian symmetries or reversing symmetries can exhibit restricted bifurcations associated with the symmetry. This approach offers an alternative to the analysis of critical points in function spaces, typically used in the study of bifurcation of variational problems, and opens the way to the detection of more exotic bifurcations than the simple folds and cusps that are often found in examples.
Quantized Vector Potential and the Photon Wave-function
NASA Astrophysics Data System (ADS)
Meis, C.; Dahoo, P. R.
2017-12-01
The vector potential function {\\overrightarrow{α }}kλ (\\overrightarrow{r},t) for a k-mode and λ-polarization photon, with the quantized amplitude α 0k (ω k ) = ξω k , satisfies the classical wave propagation equation as well as the Schrodinger’s equation with the relativistic massless Hamiltonian \\mathop{H}\\limits∼ =-i\\hslash c\\overrightarrow{\
NASA Astrophysics Data System (ADS)
Hermes, Matthew R.; Dukelsky, Jorge; Scuseria, Gustavo E.
2017-06-01
The failures of single-reference coupled-cluster theory for strongly correlated many-body systems is flagged at the mean-field level by the spontaneous breaking of one or more physical symmetries of the Hamiltonian. Restoring the symmetry of the mean-field determinant by projection reveals that coupled-cluster theory fails because it factorizes high-order excitation amplitudes incorrectly. However, symmetry-projected mean-field wave functions do not account sufficiently for dynamic (or weak) correlation. Here we pursue a merger of symmetry projection and coupled-cluster theory, following previous work along these lines that utilized the simple Lipkin model system as a test bed [J. Chem. Phys. 146, 054110 (2017), 10.1063/1.4974989]. We generalize the concept of a symmetry-projected mean-field wave function to the concept of a symmetry projected state, in which the factorization of high-order excitation amplitudes in terms of low-order ones is guided by symmetry projection and is not exponential, and combine them with coupled-cluster theory in order to model the ground state of the Agassi Hamiltonian. This model has two separate channels of correlation and two separate physical symmetries which are broken under strong correlation. We show how the combination of symmetry collective states and coupled-cluster theory is effective in obtaining correlation energies and order parameters of the Agassi model throughout its phase diagram.
On the spin separation of algebraic two-component relativistic Hamiltonians: Molecular properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhendong; Xiao, Yunlong; Liu, Wenjian, E-mail: liuwjbdf@gmail.com
2014-08-07
The idea for separating the algebraic exact two-component (X2C) relativistic Hamiltonians into spin-free (sf) and spin-dependent terms [Z. Li, Y. Xiao, and W. Liu, J. Chem. Phys. 137, 154114 (2012)] is extended to both electric and magnetic molecular properties. Taking the spin-free terms (which are correct to infinite order in α ≈ 1/137) as zeroth order, the spin-dependent terms can be treated to any desired order via analytic derivative technique. This is further facilitated by unified Sylvester equations for the response of the decoupling and renormalization matrices to single or multiple perturbations. For practical purposes, explicit expressions of order α{supmore » 2} in spin are also given for electric and magnetic properties, as well as two-electron spin-orbit couplings. At this order, the response of the decoupling and renormalization matrices is not required, such that the expressions are very compact and completely parallel to those based on the Breit-Pauli (BP) Hamiltonian. However, the former employ sf-X2C wave functions, whereas the latter can only use nonrelativistic wave functions. As the sf-X2C terms can readily be interfaced with any nonrelativistic program, the implementation of the O(α{sup 2}) spin-orbit corrections to sf-X2C properties requires only marginal revisions of the routines for evaluating the BP type of corrections.« less
On the spin separation of algebraic two-component relativistic Hamiltonians: Molecular properties
NASA Astrophysics Data System (ADS)
Li, Zhendong; Xiao, Yunlong; Liu, Wenjian
2014-08-01
The idea for separating the algebraic exact two-component (X2C) relativistic Hamiltonians into spin-free (sf) and spin-dependent terms [Z. Li, Y. Xiao, and W. Liu, J. Chem. Phys. 137, 154114 (2012)] is extended to both electric and magnetic molecular properties. Taking the spin-free terms (which are correct to infinite order in α ≈ 1/137) as zeroth order, the spin-dependent terms can be treated to any desired order via analytic derivative technique. This is further facilitated by unified Sylvester equations for the response of the decoupling and renormalization matrices to single or multiple perturbations. For practical purposes, explicit expressions of order α2 in spin are also given for electric and magnetic properties, as well as two-electron spin-orbit couplings. At this order, the response of the decoupling and renormalization matrices is not required, such that the expressions are very compact and completely parallel to those based on the Breit-Pauli (BP) Hamiltonian. However, the former employ sf-X2C wave functions, whereas the latter can only use nonrelativistic wave functions. As the sf-X2C terms can readily be interfaced with any nonrelativistic program, the implementation of the O(α ^2) spin-orbit corrections to sf-X2C properties requires only marginal revisions of the routines for evaluating the BP type of corrections.
Constructing Dense Graphs with Unique Hamiltonian Cycles
ERIC Educational Resources Information Center
Lynch, Mark A. M.
2012-01-01
It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…
Non-isospectral Hamiltonians, intertwining operators and hidden hermiticity
NASA Astrophysics Data System (ADS)
Bagarello, F.
2011-12-01
We have recently proposed a strategy to produce, starting from a given Hamiltonian h and a certain operator x for which [h,xx]=0 and xx is invertible, a second Hamiltonian h with the same eigenvalues as h and whose eigenvectors are related to those of h by x. Here we extend this procedure to build up a second Hamiltonian, whose eigenvalues are different from those of h, and whose eigenvectors are still related as before. This new procedure is also extended to crypto-hermitian Hamiltonians.
A Thin Lens Model for Charged-Particle RF Accelerating Gaps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Christopher K.
Presented is a thin-lens model for an RF accelerating gap that considers general axial fields without energy dependence or other a priori assumptions. Both the cosine and sine transit time factors (i.e., Fourier transforms) are required plus two additional functions; the Hilbert transforms the transit-time factors. The combination yields a complex-valued Hamiltonian rotating in the complex plane with synchronous phase. Using Hamiltonians the phase and energy gains are computed independently in the pre-gap and post-gap regions then aligned using the asymptotic values of wave number. Derivations of these results are outlined, examples are shown, and simulations with the model aremore » presented.« less
NASA Astrophysics Data System (ADS)
Nielsen, N. K.; Quaade, U. J.
1995-07-01
The physical phase space of the relativistic top, as defined by Hansson and Regge, is expressed in terms of canonical coordinates of the Poincaré group manifold. The system is described in the Hamiltonian formalism by the mass-shell condition and constraints that reduce the number of spin degrees of freedom. The constraints are second class and are modified into a set of first class constraints by adding combinations of gauge-fixing functions. The Batalin-Fradkin-Vilkovisky method is then applied to quantize the system in the path integral formalism in Hamiltonian form. It is finally shown that different gauge choices produce different equivalent forms of the constraints.
Bohr Hamiltonian for γ = 30° with Davidson potential
NASA Astrophysics Data System (ADS)
Yigitoglu, Ibrahim; Gokbulut, Melek
2018-03-01
A γ-rigid solution of the Bohr Hamiltonian for γ = 30° is constructed with the Davidson potential in the β part. This solution is going to be called Z(4)-D. The energy eigenvalues and wave functions are obtained by using the analytic method developed by Nikiforov and Uvarov. The calculated intraband and interband B(E2) transitions rates are presented and compared with the Z(4) model predictions. The staggering behavior in γ-bands is considered to search Z(4) -D candidate nuclei. A variational procedure is applied to demonstrate that the Z(4) model is a solution of the critical point at the shape phase transition from spherical to rigid triaxial rotor.
Time-dependent mean-field theory for x-ray near-edge spectroscopy
NASA Astrophysics Data System (ADS)
Bertsch, G. F.; Lee, A. J.
2014-02-01
We derive equations of motion for calculating the near-edge x-ray absorption spectrum in molecules and condensed matter, based on a two-determinant approximation and Dirac's variational principle. The theory provides an exact solution for the linear response when the Hamiltonian or energy functional has only diagonal interactions in some basis. We numerically solve the equations to compare with the Mahan-Nozières-De Dominicis theory of the edge singularity in metallic conductors. Our extracted power-law exponents are similar to those of the analytic theory, but are not in quantitative agreement. The calculational method can be readily generalized to treat Kohn-Sham Hamiltonians with electron-electron interactions derived from correlation-exchange potentials.
Bifurcation of Limit Cycles in a Near-Hamiltonian System with a Cusp of Order Two and a Saddle
NASA Astrophysics Data System (ADS)
Bakhshalizadeh, Ali; Zangeneh, Hamid R. Z.; Kazemi, Rasool
In this paper, the asymptotic expansion of first-order Melnikov function of a heteroclinic loop connecting a cusp of order two and a hyperbolic saddle for a planar near-Hamiltonian system is given. Next, we consider the limit cycle bifurcations of a hyper-elliptic Liénard system with this kind of heteroclinic loop and study the least upper bound of limit cycles bifurcated from the period annulus inside the heteroclinic loop, from the heteroclinic loop itself and the center. We find that at most three limit cycles can be bifurcated from the period annulus, also we present different distributions of bifurcated limit cycles.
NASA Astrophysics Data System (ADS)
Liu, Si-Qi; Zhang, Youjin; Zhou, Chunhui
2018-02-01
The generating function of cubic Hodge integrals satisfying the local Calabi-Yau condition is conjectured to be a tau function of a new integrable system which can be regarded as a fractional generalization of the Volterra lattice hierarchy, so we name it the fractional Volterra hierarchy. In this paper, we give the definition of this integrable hierarchy in terms of Lax pair and Hamiltonian formalisms, construct its tau functions, and present its multi-soliton solutions.
Self-dual gravity is completely integrable
NASA Astrophysics Data System (ADS)
Nutku, Y.; Sheftel, M. B.; Kalayci, J.; Yazıcı, D.
2008-10-01
We discover a multi-Hamiltonian structure of a complex Monge-Ampère equation (CMA) set in a real first-order 2-component form. Therefore, by Magri's theorem this is a completely integrable system in four real dimensions. We start with Lagrangian and Hamiltonian densities and obtain a symplectic form and the Hamiltonian operator that determines the Dirac bracket. We have calculated all point symmetries of the 2-component CMA system and Hamiltonians of the symmetry flows. We have found two new real recursion operators for symmetries which commute with the operator of a symmetry condition on solutions of the CMA system. These operators form two Lax pairs for the 2-component system. The recursion operators, applied to the first Hamiltonian operator, generate infinitely many real Hamiltonian structures. We show how to construct an infinite hierarchy of higher commuting flows together with the corresponding infinite chain of their Hamiltonians.
Perspective: Quantum Hamiltonians for optical interactions
NASA Astrophysics Data System (ADS)
Andrews, David L.; Jones, Garth A.; Salam, A.; Woolley, R. Guy
2018-01-01
The multipolar Hamiltonian of quantum electrodynamics is extensively employed in chemical and optical physics to treat rigorously the interaction of electromagnetic fields with matter. It is also widely used to evaluate intermolecular interactions. The multipolar version of the Hamiltonian is commonly obtained by carrying out a unitary transformation of the Coulomb gauge Hamiltonian that goes by the name of Power-Zienau-Woolley (PZW). Not only does the formulation provide excellent agreement with experiment, and versatility in its predictive ability, but also superior physical insight. Recently, the foundations and validity of the PZW Hamiltonian have been questioned, raising a concern over issues of gauge transformation and invariance, and whether observable quantities obtained from unitarily equivalent Hamiltonians are identical. Here, an in-depth analysis of theoretical foundations clarifies the issues and enables misconceptions to be identified. Claims of non-physicality are refuted: the PZW transformation and ensuing Hamiltonian are shown to rest on solid physical principles and secure theoretical ground.
Hybrid Topological Lie-Hamiltonian Learning in Evolving Energy Landscapes
NASA Astrophysics Data System (ADS)
Ivancevic, Vladimir G.; Reid, Darryn J.
2015-11-01
In this Chapter, a novel bidirectional algorithm for hybrid (discrete + continuous-time) Lie-Hamiltonian evolution in adaptive energy landscape-manifold is designed and its topological representation is proposed. The algorithm is developed within a geometrically and topologically extended framework of Hopfield's neural nets and Haken's synergetics (it is currently designed in Mathematica, although with small changes it could be implemented in Symbolic C++ or any other computer algebra system). The adaptive energy manifold is determined by the Hamiltonian multivariate cost function H, based on the user-defined vehicle-fleet configuration matrix W, which represents the pseudo-Riemannian metric tensor of the energy manifold. Search for the global minimum of H is performed using random signal differential Hebbian adaptation. This stochastic gradient evolution is driven (or, pulled-down) by `gravitational forces' defined by the 2nd Lie derivatives of H. Topological changes of the fleet matrix W are observed during the evolution and its topological invariant is established. The evolution stops when the W-topology breaks down into several connectivity-components, followed by topology-breaking instability sequence (i.e., a series of phase transitions).
Stability of Poisson Equilibria and Hamiltonian Relative Equilibria by Energy Methods
NASA Astrophysics Data System (ADS)
Patrick, George W.; Roberts, Mark; Wulff, Claudia
2004-12-01
We develop a general stability theory for equilibrium points of Poisson dynamical systems and relative equilibria of Hamiltonian systems with symmetries, including several generalisations of the Energy-Casimir and Energy-Momentum Methods. Using a topological generalisation of Lyapunov’s result that an extremal critical point of a conserved quantity is stable, we show that a Poisson equilibrium is stable if it is an isolated point in the intersection of a level set of a conserved function with a subset of the phase space that is related to the topology of the symplectic leaf space at that point. This criterion is applied to generalise the energy-momentum method to Hamiltonian systems which are invariant under non-compact symmetry groups for which the coadjoint orbit space is not Hausdorff. We also show that a G-stable relative equilibrium satisfies the stronger condition of being A-stable, where A is a specific group-theoretically defined subset of G which contains the momentum isotropy subgroup of the relative equilibrium. The results are illustrated by an application to the stability of a rigid body in an ideal irrotational fluid.
On quantum integrability of the Landau-Lifshitz model
NASA Astrophysics Data System (ADS)
Melikyan, A.; Pinzul, A.
2009-10-01
We investigate the quantum integrability of the Landau-Lifshitz (LL) model and solve the long-standing problem of finding the local quantum Hamiltonian for the arbitrary n-particle sector. The particular difficulty of the LL model quantization, which arises due to the ill-defined operator product, is dealt with by simultaneously regularizing the operator product and constructing the self-adjoint extensions of a very particular structure. The diagonalizibility difficulties of the Hamiltonian of the LL model, due to the highly singular nature of the quantum-mechanical Hamiltonian, are also resolved in our method for the arbitrary n-particle sector. We explicitly demonstrate the consistency of our construction with the quantum inverse scattering method due to Sklyanin [Lett. Math. Phys. 15, 357 (1988)] and give a prescription to systematically construct the general solution, which explains and generalizes the puzzling results of Sklyanin for the particular two-particle sector case. Moreover, we demonstrate the S-matrix factorization and show that it is a consequence of the discontinuity conditions on the functions involved in the construction of the self-adjoint extensions.
Wavelets in electronic structure calculations
NASA Astrophysics Data System (ADS)
Modisette, Jason Perry
1997-09-01
Ab initio calculations of the electronic structure of bulk materials and large clusters are not possible on today's computers using current techniques. The storage and diagonalization of the Hamiltonian matrix are the limiting factors in both memory and execution time. The scaling of both quantities with problem size can be reduced by using approximate diagonalization or direct minimization of the total energy with respect to the density matrix in conjunction with a localized basis. Wavelet basis members are much more localized than conventional bases such as Gaussians or numerical atomic orbitals. This localization leads to sparse matrices of the operators that arise in SCF multi-electron calculations. We have investigated the construction of the one-electron Hamiltonian, and also the effective one- electron Hamiltonians that appear in density-functional and Hartree-Fock theories. We develop efficient methods for the generation of the kinetic energy and potential matrices, the Hartree and exchange potentials, and the local exchange-correlation potential of the LDA. Test calculations are performed on one-electron problems with a variety of potentials in one and three dimensions.
A projection-free method for representing plane-wave DFT results in an atom-centered basis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunnington, Benjamin D.; Schmidt, J. R., E-mail: schmidt@chem.wisc.edu
2015-09-14
Plane wave density functional theory (DFT) is a powerful tool for gaining accurate, atomic level insight into bulk and surface structures. Yet, the delocalized nature of the plane wave basis set hinders the application of many powerful post-computation analysis approaches, many of which rely on localized atom-centered basis sets. Traditionally, this gap has been bridged via projection-based techniques from a plane wave to atom-centered basis. We instead propose an alternative projection-free approach utilizing direct calculation of matrix elements of the converged plane wave DFT Hamiltonian in an atom-centered basis. This projection-free approach yields a number of compelling advantages, including strictmore » orthonormality of the resulting bands without artificial band mixing and access to the Hamiltonian matrix elements, while faithfully preserving the underlying DFT band structure. The resulting atomic orbital representation of the Kohn-Sham wavefunction and Hamiltonian provides a gateway to a wide variety of analysis approaches. We demonstrate the utility of the approach for a diverse set of chemical systems and example analysis approaches.« less
Morrison, Adrian F; Herbert, John M
2017-06-14
Recently, we introduced an ab initio version of the Frenkel-Davydov exciton model for computing excited-state properties of molecular crystals and aggregates. Within this model, supersystem excited states are approximated as linear combinations of excitations localized on molecular sites, and the electronic Hamiltonian is constructed and diagonalized in a direct-product basis of non-orthogonal configuration state functions computed for isolated fragments. Here, we derive and implement analytic derivative couplings for this model, including nuclear derivatives of the natural transition orbital and symmetric orthogonalization transformations that are part of the approximation. Nuclear derivatives of the exciton Hamiltonian's matrix elements, required in order to compute the nonadiabatic couplings, are equivalent to the "Holstein" and "Peierls" exciton/phonon couplings that are widely discussed in the context of model Hamiltonians for energy and charge transport in organic photovoltaics. As an example, we compute the couplings that modulate triplet exciton transport in crystalline tetracene, which is relevant in the context of carrier diffusion following singlet exciton fission.
{ital R}-matrix theory, formal Casimirs and the periodic Toda lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morosi, C.; Pizzocchero, L.
The nonunitary {ital r}-matrix theory and the associated bi- and triHamiltonian schemes are considered. The language of Poisson pencils and of their formal Casimirs is applied in this framework to characterize the biHamiltonian chains of integrals of motion, pointing out the role of the Schur polynomials in these constructions. This formalism is subsequently applied to the periodic Toda lattice. Some different algebraic settings and Lax formulations proposed in the literature for this system are analyzed in detail, and their full equivalence is exploited. In particular, the equivalence between the loop algebra approach and the method of differential-difference operators is illustrated;more » moreover, two alternative Lax formulations are considered, and appropriate reduction algorithms are found in both cases, allowing us to derive the multiHamiltonian formalism from {ital r}-matrix theory. The systems of integrals for the periodic Toda lattice known after Flaschka and H{acute e}non, and their functional relations, are recovered through systematic application of the previously outlined schemes. {copyright} {ital 1996 American Institute of Physics.}« less
An algorithm for finding a similar subgraph of all Hamiltonian cycles
NASA Astrophysics Data System (ADS)
Wafdan, R.; Ihsan, M.; Suhaimi, D.
2018-01-01
This paper discusses an algorithm to find a similar subgraph called findSimSubG algorithm. A similar subgraph is a subgraph with a maximum number of edges, contains no isolated vertex and is contained in every Hamiltonian cycle of a Hamiltonian Graph. The algorithm runs only on Hamiltonian graphs with at least two Hamiltonian cycles. The algorithm works by examining whether the initial subgraph of the first Hamiltonian cycle is a subgraph of comparison graphs. If the initial subgraph is not in comparison graphs, the algorithm will remove edges and vertices of the initial subgraph that are not in comparison graphs. There are two main processes in the algorithm, changing Hamiltonian cycle into a cycle graph and removing edges and vertices of the initial subgraph that are not in comparison graphs. The findSimSubG algorithm can find the similar subgraph without using backtracking method. The similar subgraph cannot be found on certain graphs, such as an n-antiprism graph, complete bipartite graph, complete graph, 2n-crossed prism graph, n-crown graph, n-möbius ladder, prism graph, and wheel graph. The complexity of this algorithm is O(m|V|), where m is the number of Hamiltonian cycles and |V| is the number of vertices of a Hamiltonian graph.
Non-commuting two-local Hamiltonians for quantum error suppression
NASA Astrophysics Data System (ADS)
Jiang, Zhang; Rieffel, Eleanor G.
2017-04-01
Physical constraints make it challenging to implement and control many-body interactions. For this reason, designing quantum information processes with Hamiltonians consisting of only one- and two-local terms is a worthwhile challenge. Enabling error suppression with two-local Hamiltonians is particularly challenging. A no-go theorem of Marvian and Lidar (Phys Rev Lett 113(26):260504, 2014) demonstrates that, even allowing particles with high Hilbert space dimension, it is impossible to protect quantum information from single-site errors by encoding in the ground subspace of any Hamiltonian containing only commuting two-local terms. Here, we get around this no-go result by encoding in the ground subspace of a Hamiltonian consisting of non-commuting two-local terms arising from the gauge operators of a subsystem code. Specifically, we show how to protect stored quantum information against single-qubit errors using a Hamiltonian consisting of sums of the gauge generators from Bacon-Shor codes (Bacon in Phys Rev A 73(1):012340, 2006) and generalized-Bacon-Shor code (Bravyi in Phys Rev A 83(1):012320, 2011). Our results imply that non-commuting two-local Hamiltonians have more error-suppressing power than commuting two-local Hamiltonians. While far from providing full fault tolerance, this approach improves the robustness achievable in near-term implementable quantum storage and adiabatic quantum computations, reducing the number of higher-order terms required to encode commonly used adiabatic Hamiltonians such as the Ising Hamiltonians common in adiabatic quantum optimization and quantum annealing.
A New Scheme of Integrability for (bi)Hamiltonian PDE
NASA Astrophysics Data System (ADS)
De Sole, Alberto; Kac, Victor G.; Valeri, Daniele
2016-10-01
We develop a new method for constructing integrable Hamiltonian hierarchies of Lax type equations, which combines the fractional powers technique of Gelfand and Dickey, and the classical Hamiltonian reduction technique of Drinfeld and Sokolov. The method is based on the notion of an Adler type matrix pseudodifferential operator and the notion of a generalized quasideterminant. We also introduce the notion of a dispersionless Adler type series, which is applied to the study of dispersionless Hamiltonian equations. Non-commutative Hamiltonian equations are discussed in this framework as well.
sdg Interacting boson hamiltonian in the seniority scheme
NASA Astrophysics Data System (ADS)
Yoshinaga, N.
1989-03-01
The sdg interacting boson hamiltonian is derived in the seniority scheme. We use the method of Otsuka, Arima and Iachello in order to derive the boson hamiltonian from the fermion hamiltonian. To examine how good is the boson approximation in the zeroth-order, we carry out the exact shell model calculations in a single j-shell. It is found that almost all low-lying levels are reproduced quite well by diagonalizing the sdg interacting boson hamiltonian in the vibrational case. In the deformed case the introduction of g-bosons improves the reproduction of the spectra and of the binding energies which are obtained by diagonalizing the exact shell model hamiltonian. In particular the sdg interacting boson model reproduces well-developed rotational bands.
Action with Acceleration II: Euclidean Hamiltonian and Jordan Blocks
NASA Astrophysics Data System (ADS)
Baaquie, Belal E.
2013-10-01
The Euclidean action with acceleration has been analyzed in Ref. 1, and referred to henceforth as Paper I, for its Hamiltonian and path integral. In this paper, the state space of the Hamiltonian is analyzed for the case when it is pseudo-Hermitian (equivalent to a Hermitian Hamiltonian), as well as the case when it is inequivalent. The propagator is computed using both creation and destruction operators as well as the path integral. A state space calculation of the propagator shows the crucial role played by the dual state vectors that yields a result impossible to obtain from a Hermitian Hamiltonian. When it is not pseudo-Hermitian, the Hamiltonian is shown to be a direct sum of Jordan blocks.
Hamiltonian identifiability assisted by single-probe measurement
NASA Astrophysics Data System (ADS)
Sone, Akira; Cappellaro, Paola; Quantum Engineering Group Team
2017-04-01
We study the Hamiltonian identifiability of a many-body spin- 1 / 2 system assisted by the measurement on a single quantum probe based on the eigensystem realization algorithm (ERA) approach employed in. We demonstrate a potential application of Gröbner basis to the identifiability test of the Hamiltonian, and provide the necessary experimental resources, such as the lower bound in the number of the required sampling points, the upper bound in total required evolution time, and thus the total measurement time. Focusing on the examples of the identifiability in the spin chain model with nearest-neighbor interaction, we classify the spin-chain Hamiltonian based on its identifiability, and provide the control protocols to engineer the non-identifiable Hamiltonian to be an identifiable Hamiltonian.
Triangular Quantum Loop Topography for Machine Learning
NASA Astrophysics Data System (ADS)
Zhang, Yi; Kim, Eun-Ah
Despite rapidly growing interest in harnessing machine learning in the study of quantum many-body systems there has been little success in training neural networks to identify topological phases. The key challenge is in efficiently extracting essential information from the many-body Hamiltonian or wave function and turning the information into an image that can be fed into a neural network. When targeting topological phases, this task becomes particularly challenging as topological phases are defined in terms of non-local properties. Here we introduce triangular quantum loop (TQL) topography: a procedure of constructing a multi-dimensional image from the ''sample'' Hamiltonian or wave function using two-point functions that form triangles. Feeding the TQL topography to a fully-connected neural network with a single hidden layer, we demonstrate that the architecture can be effectively trained to distinguish Chern insulator and fractional Chern insulator from trivial insulators with high fidelity. Given the versatility of the TQL topography procedure that can handle different lattice geometries, disorder, interaction and even degeneracy our work paves the route towards powerful applications of machine learning in the study of topological quantum matters.
Exact diagonalization library for quantum electron models
NASA Astrophysics Data System (ADS)
Iskakov, Sergei; Danilov, Michael
2018-04-01
We present an exact diagonalization C++ template library (EDLib) for solving quantum electron models, including the single-band finite Hubbard cluster and the multi-orbital impurity Anderson model. The observables that can be computed using EDLib are single particle Green's functions and spin-spin correlation functions. This code provides three different types of Hamiltonian matrix storage that can be chosen based on the model.
Determination of linear optics functions from turn-by-turn data
NASA Astrophysics Data System (ADS)
Alexahin, Y.; Gianfelice-Wendt, E.
2011-10-01
A method for evaluation of coupled optics functions, detection of strong perturbing elements, determination of BPM calibration errors and tilts using turn-by-turn (TBT) data is presented as well as the new version of the Hamiltonian perturbation theory of betatron oscillations the method is based upon. An example of application of the considered method to the Tevatron is given.
The period function of the generalized Lotka-Volterra centers
NASA Astrophysics Data System (ADS)
Villadelprat, J.
2008-05-01
The present paper deals with the period function of the quadratic centers. In the literature different terminologies are used to classify these centers, but essentially there are four families: Hamiltonian, reversible , codimension four Q4 and generalized Lotka-Volterra systems . Chicone [C. Chicone, Review in MathSciNet, Ref. 94h:58072] conjectured that the reversible centers have at most two critical periods, and that the centers of the three other families have a monotonic period function. With regard to the second part of this conjecture, only the monotonicity of the Hamiltonian and Q4 families [W.A. Coppel, L. Gavrilov, The period function of a Hamiltonian quadratic system, Differential Integral Equations 6 (1993) 1357-1365; Y. Zhao, The monotonicity of period function for codimension four quadratic system Q4, J. Differential Equations 185 (2002) 370-387] has been proved. Concerning the family, no substantial progress has been made since the middle 80s, when several authors showed independently the monotonicity of the classical Lotka-Volterra centers [F. Rothe, The periods of the Volterra-Lokta system, J. Reine Angew. Math. 355 (1985) 129-138; R. Schaaf, Global behaviour of solution branches for some Neumann problems depending on one or several parameters, J. Reine Angew. Math. 346 (1984) 1-31; J. Waldvogel, The period in the Lotka-Volterra system is monotonic, J. Math. Anal. Appl. 114 (1986) 178-184]. By means of the first period constant one can easily conclude that the period function of the centers in the family is monotone increasing near the inner boundary of its period annulus (i.e., the center itself). Thus, according to Chicone's conjecture, it should be also monotone increasing near the outer boundary, which in the Poincaré disc is a polycycle. In this paper we show that this is true. In addition we prove that, except for a zero measure subset of the parameter plane, there is no bifurcation of critical periods from the outer boundary. Finally we show that the period function is globally (i.e., in the whole period annulus) monotone increasing in two other cases different from the classical one.
The multifacet graphically contracted function method. I. Formulation and implementation
NASA Astrophysics Data System (ADS)
Shepard, Ron; Gidofalvi, Gergely; Brozell, Scott R.
2014-08-01
The basic formulation for the multifacet generalization of the graphically contracted function (MFGCF) electronic structure method is presented. The analysis includes the discussion of linear dependency and redundancy of the arc factor parameters, the computation of reduced density matrices, Hamiltonian matrix construction, spin-density matrix construction, the computation of optimization gradients for single-state and state-averaged calculations, graphical wave function analysis, and the efficient computation of configuration state function and Slater determinant expansion coefficients. Timings are given for Hamiltonian matrix element and analytic optimization gradient computations for a range of model problems for full-CI Shavitt graphs, and it is observed that both the energy and the gradient computation scale as O(N2n4) for N electrons and n orbitals. The important arithmetic operations are within dense matrix-matrix product computational kernels, resulting in a computationally efficient procedure. An initial implementation of the method is used to present applications to several challenging chemical systems, including N2 dissociation, cubic H8 dissociation, the symmetric dissociation of H2O, and the insertion of Be into H2. The results are compared to the exact full-CI values and also to those of the previous single-facet GCF expansion form.
The multifacet graphically contracted function method. I. Formulation and implementation.
Shepard, Ron; Gidofalvi, Gergely; Brozell, Scott R
2014-08-14
The basic formulation for the multifacet generalization of the graphically contracted function (MFGCF) electronic structure method is presented. The analysis includes the discussion of linear dependency and redundancy of the arc factor parameters, the computation of reduced density matrices, Hamiltonian matrix construction, spin-density matrix construction, the computation of optimization gradients for single-state and state-averaged calculations, graphical wave function analysis, and the efficient computation of configuration state function and Slater determinant expansion coefficients. Timings are given for Hamiltonian matrix element and analytic optimization gradient computations for a range of model problems for full-CI Shavitt graphs, and it is observed that both the energy and the gradient computation scale as O(N(2)n(4)) for N electrons and n orbitals. The important arithmetic operations are within dense matrix-matrix product computational kernels, resulting in a computationally efficient procedure. An initial implementation of the method is used to present applications to several challenging chemical systems, including N2 dissociation, cubic H8 dissociation, the symmetric dissociation of H2O, and the insertion of Be into H2. The results are compared to the exact full-CI values and also to those of the previous single-facet GCF expansion form.
Mori, Toshifumi; Hamers, Robert J; Pedersen, Joel A; Cui, Qiang
2014-07-17
Motivated by specific applications and the recent work of Gao and co-workers on integrated tempering sampling (ITS), we have developed a novel sampling approach referred to as integrated Hamiltonian sampling (IHS). IHS is straightforward to implement and complementary to existing methods for free energy simulation and enhanced configurational sampling. The method carries out sampling using an effective Hamiltonian constructed by integrating the Boltzmann distributions of a series of Hamiltonians. By judiciously selecting the weights of the different Hamiltonians, one achieves rapid transitions among the energy landscapes that underlie different Hamiltonians and therefore an efficient sampling of important regions of the conformational space. Along this line, IHS shares similar motivations as the enveloping distribution sampling (EDS) approach of van Gunsteren and co-workers, although the ways that distributions of different Hamiltonians are integrated are rather different in IHS and EDS. Specifically, we report efficient ways for determining the weights using a combination of histogram flattening and weighted histogram analysis approaches, which make it straightforward to include many end-state and intermediate Hamiltonians in IHS so as to enhance its flexibility. Using several relatively simple condensed phase examples, we illustrate the implementation and application of IHS as well as potential developments for the near future. The relation of IHS to several related sampling methods such as Hamiltonian replica exchange molecular dynamics and λ-dynamics is also briefly discussed.
On the Decay of Correlations in Non-Analytic SO(n)-Symmetric Models
NASA Astrophysics Data System (ADS)
Naddaf, Ali
We extend the method of complex translations which was originally employed by McBryan-Spencer [2] to obtain a decay rate for the two point function in two-dimensional SO(n)-symmetric models with non-analytic Hamiltonians for $.
Analytic Description of Critical Point Nuclei in a Spherical-Axially Deformed Shape Phase Transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iachello, F.
2001-07-30
An approximate solution at the critical point of the spherical to axially deformed shape phase transition in nuclei is presented. The eigenvalues of the Hamiltonian are expressed in terms of zeros of Bessel functions of irrational order.
Hamiltonian structure of the Lotka-Volterra equations
NASA Astrophysics Data System (ADS)
Nutku, Y.
1990-03-01
The Lotka-Volterra equations governing predator-prey relations are shown to admit Hamiltonian structure with respect to a generalized Poisson bracket. These equations provide an example of a system for which the naive criterion for the existence of Hamiltonian structure fails. We show further that there is a three-component generalization of the Lotka-Volterra equations which is a bi-Hamiltonian system.
Does finite-temperature decoding deliver better optima for noisy Hamiltonians?
NASA Astrophysics Data System (ADS)
Ochoa, Andrew J.; Nishimura, Kohji; Nishimori, Hidetoshi; Katzgraber, Helmut G.
The minimization of an Ising spin-glass Hamiltonian is an NP-hard problem. Because many problems across disciplines can be mapped onto this class of Hamiltonian, novel efficient computing techniques are highly sought after. The recent development of quantum annealing machines promises to minimize these difficult problems more efficiently. However, the inherent noise found in these analog devices makes the minimization procedure difficult. While the machine might be working correctly, it might be minimizing a different Hamiltonian due to the inherent noise. This means that, in general, the ground-state configuration that correctly minimizes a noisy Hamiltonian might not minimize the noise-less Hamiltonian. Inspired by rigorous results that the energy of the noise-less ground-state configuration is equal to the expectation value of the energy of the noisy Hamiltonian at the (nonzero) Nishimori temperature [J. Phys. Soc. Jpn., 62, 40132930 (1993)], we numerically study the decoding probability of the original noise-less ground state with noisy Hamiltonians in two space dimensions, as well as the D-Wave Inc. Chimera topology. Our results suggest that thermal fluctuations might be beneficial during the optimization process in analog quantum annealing machines.
Potentials of Mean Force With Ab Initio Mixed Hamiltonian Models of Solvation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupuis, Michel; Schenter, Gregory K.; Garrett, Bruce C.
2003-08-01
We give an account of a computationally tractable and efficient procedure for the calculation of potentials of mean force using mixed Hamiltonian models of electronic structure where quantum subsystems are described with computationally intensive ab initio wavefunctions. The mixed Hamiltonian is mapped into an all-classical Hamiltonian that is amenable to a thermodynamic perturbation treatment for the calculation of free energies. A small number of statistically uncorrelated (solute-solvent) configurations are selected from the Monte Carlo random walk generated with the all-classical Hamiltonian approximation. Those are used in the averaging of the free energy using the mixed quantum/classical Hamiltonian. The methodology ismore » illustrated for the micro-solvated SN2 substitution reaction of methyl chloride by hydroxide. We also compare the potential of mean force calculated with the above protocol with an approximate formalism, one in which the potential of mean force calculated with the all-classical Hamiltonian is simply added to the energy of the isolated (non-solvated) solute along the reaction path. Interestingly the latter approach is found to be in semi-quantitative agreement with the full mixed Hamiltonian approximation.« less
Hahn, Seungsoo
2016-10-28
The Hamiltonian matrix for the first excited vibrational states of a protein can be effectively represented by local vibrational modes constituting amide III, II, I, and A modes to simulate various vibrational spectra. Methods for obtaining the Hamiltonian matrix from ab initio quantum calculation results are discussed, where the methods consist of three steps: selection of local vibrational mode coordinates, calculation of a reduced Hessian matrix, and extraction of the Hamiltonian matrix from the Hessian matrix. We introduce several methods for each step. The methods were assessed based on the density functional theory calculation results of 24 oligopeptides with four different peptide lengths and six different secondary structures. The completeness of a Hamiltonian matrix represented in the reduced local mode space is improved by adopting a specific atom group for each amide mode and reducing the effect of ignored local modes. The calculation results are also compared to previous models using C=O stretching vibration and transition dipole couplings. We found that local electric transition dipole moments of the amide modes are mainly bound on the local peptide planes. Their direction and magnitude are well conserved except amide A modes, which show large variation. Contrary to amide I modes, the vibrational coupling constants of amide III, II, and A modes obtained by analysis of a dipeptide are not transferable to oligopeptides with the same secondary conformation because coupling constants are affected by the surrounding atomic environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damour, Thibault; Jaranowski, Piotr; Schaefer, Gerhard
2008-07-15
Using a recent, novel Hamiltonian formulation of the gravitational interaction of spinning binaries, we extend the effective one body (EOB) description of the dynamics of two spinning black holes to next-to-leading order (NLO) in the spin-orbit interaction. The spin-dependent EOB Hamiltonian is constructed from four main ingredients: (i) a transformation between the 'effective' Hamiltonian and the 'real' one; (ii) a generalized effective Hamilton-Jacobi equation involving higher powers of the momenta; (iii) a Kerr-type effective metric (with Pade-resummed coefficients) which depends on the choice of some basic 'effective spin vector' S{sub eff}, and which is deformed by comparable-mass effects; and (iv)more » an additional effective spin-orbit interaction term involving another spin vector {sigma}. As a first application of the new, NLO spin-dependent EOB Hamiltonian, we compute the binding energy of circular orbits (for parallel spins) as a function of the orbital frequency, and of the spin parameters. We also study the characteristics of the last stable circular orbit: binding energy, orbital frequency, and the corresponding dimensionless spin parameter a{sub LSO}{identical_to}cJ{sub LSO}/(G(H{sub LSO}/c{sup 2}){sup 2}). We find that the inclusion of NLO spin-orbit terms has a significant 'moderating' effect on the dynamical characteristics of the circular orbits for large and parallel spins.« less
Kleiner, Isabelle; Hougen, Jon T.
2015-01-01
A new hybrid-model fitting program for methylamine-like molecules has been developed, based on an effective Hamiltonian in which the ammonia-like inversion motion is treated using a tunneling formalism, while the internal-rotation motion is treated using an explicit kinetic energy operator and potential energy function. The Hamiltonian in the computer program is set up as a 2×2 partitioned matrix, where each diagonal block contains a traditional torsion-rotation Hamiltonian (as in the earlier program BELGI), and the two off-diagonal blocks contain tunneling terms. This hybrid formulation permits the use of the permutation-inversion group G6 (isomorphic to C3v) for terms in the two diagonal blocks, but requires G12 for terms in the off-diagonal blocks. The first application of the new program is to 2-methylmalonaldehyde. Microwave data for this molecule were previously fit using an all-tunneling Hamiltonian formalism to treat both large-amplitude-motions. For 2-methylmalonaldehyde, the hybrid program achieves the same quality of fit as was obtained with the all-tunneling program, but fits with the hybrid program eliminate a large discrepancy between internal rotation barriers in the OH and OD isotopologs of 2-methylmalonaldehyde that arose in fits with the all-tunneling program. This large isotopic shift in internal rotation barrier is thus almost certainly an artifact of the all-tunneling model. Other molecules for application of the hybrid program are mentioned. PMID:26439709
Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics
NASA Astrophysics Data System (ADS)
Tao, Xuecheng; Shushkov, Philip; Miller, Thomas F.
2018-03-01
We describe a path-integral approach for including nuclear quantum effects in non-adiabatic chemical dynamics simulations. For a general physical system with multiple electronic energy levels, a corresponding isomorphic Hamiltonian is introduced such that Boltzmann sampling of the isomorphic Hamiltonian with classical nuclear degrees of freedom yields the exact quantum Boltzmann distribution for the original physical system. In the limit of a single electronic energy level, the isomorphic Hamiltonian reduces to the familiar cases of either ring polymer molecular dynamics (RPMD) or centroid molecular dynamics Hamiltonians, depending on the implementation. An advantage of the isomorphic Hamiltonian is that it can easily be combined with existing mixed quantum-classical dynamics methods, such as surface hopping or Ehrenfest dynamics, to enable the simulation of electronically non-adiabatic processes with nuclear quantum effects. We present numerical applications of the isomorphic Hamiltonian to model two- and three-level systems, with encouraging results that include improvement upon a previously reported combination of RPMD with surface hopping in the deep-tunneling regime.
Explicit methods in extended phase space for inseparable Hamiltonian problems
NASA Astrophysics Data System (ADS)
Pihajoki, Pauli
2015-03-01
We present a method for explicit leapfrog integration of inseparable Hamiltonian systems by means of an extended phase space. A suitably defined new Hamiltonian on the extended phase space leads to equations of motion that can be numerically integrated by standard symplectic leapfrog (splitting) methods. When the leapfrog is combined with coordinate mixing transformations, the resulting algorithm shows good long term stability and error behaviour. We extend the method to non-Hamiltonian problems as well, and investigate optimal methods of projecting the extended phase space back to original dimension. Finally, we apply the methods to a Hamiltonian problem of geodesics in a curved space, and a non-Hamiltonian problem of a forced non-linear oscillator. We compare the performance of the methods to a general purpose differential equation solver LSODE, and the implicit midpoint method, a symplectic one-step method. We find the extended phase space methods to compare favorably to both for the Hamiltonian problem, and to the implicit midpoint method in the case of the non-linear oscillator.
Spatial and temporal compact equations for water waves
NASA Astrophysics Data System (ADS)
Dyachenko, Alexander; Kachulin, Dmitriy; Zakharov, Vladimir
2016-04-01
A one-dimensional potential flow of an ideal incompressible fluid with a free surface in a gravity field is the Hamiltonian system with the Hamiltonian: H = 1/2intdxint-∞^η |nablaφ|^2dz + g/2ont η^2dxŗφ(x,z,t) - is the potential of the fluid, g - gravity acceleration, η(x,t) - surface profile Hamiltonian can be expanded as infinite series of steepness: {Ham4} H &=& H2 + H3 + H4 + dotsŗH2 &=& 1/2int (gη2 + ψ hat kψ) dx, ŗH3 &=& -1/2int \\{(hat kψ)2 -(ψ_x)^2}η dx,ŗH4 &=&1/2int {ψxx η2 hat kψ + ψ hat k(η hat k(η hat kψ))} dx. where hat k corresponds to the multiplication by |k| in Fourier space, ψ(x,t)= φ(x,η(x,t),t). This truncated Hamiltonian is enough for gravity waves of moderate amplitudes and can not be reduced. We have derived self-consistent compact equations, both spatial and temporal, for unidirectional water waves. Equations are written for normal complex variable c(x,t), not for ψ(x,t) and η(x,t). Hamiltonian for temporal compact equation can be written in x-space as following: {SPACE_C} H = intc^*hat V c dx + 1/2int [ i/4(c2 partial/partial x {c^*}2 - {c^*}2 partial/partial x c2)- |c|2 hat K(|c|^2) ]dx Here operator hat V in K-space is so that Vk = ω_k/k. If along with this to introduce Gardner-Zakharov-Faddeev bracket (for the analytic in the upper half-plane function) {GZF} partial^+x Leftrightarrow ikθk Hamiltonian for spatial compact equation is the following: {H24} &&H=1/gint1/ω|cω|2 dω +ŗ&+&1/2g^3int|c|^2(ddot c^*c + ddot c c^*)dt + i/g^2int |c|^2hatω(dot c c* - cdot c^*)dt. equation of motion is: {t-space} &&partial /partial xc +i/g partial^2/partial t^2c =ŗ&=& 1/2g^3partial^3/partial t3 [ partial^2/partial t^2(|c|^2c) +2 |c|^2ddot c +ddot c^*c2 ]+ŗ&+&i/g3 partial^3/partial t3 [ partial /partial t( chatω |c|^2) + dot c hatω |c|2 + c hatω(dot c c* - cdot c^*) ]. It solves the spatial Cauchy problem for surface gravity wave on the deep water. Main features of the equations are: Equations are written for complex normal variable c(x,t) which is analytic function in the upper half-planeHamiltonians both for temporal and spatial equations are very simple It can be easily implemented for numerical simulation The equations can be generalized for "almost" 2-D waves like KdV is generalized to KP. This work was supported by was Grant "Wave turbulence: theory, numerical simulation, experiment" #14-22-00174 of Russian Science Foundation.
Nakatsuji, Hiroshi
2012-09-18
Just as Newtonian law governs classical physics, the Schrödinger equation (SE) and the relativistic Dirac equation (DE) rule the world of chemistry. So, if we can solve these equations accurately, we can use computation to predict chemistry precisely. However, for approximately 80 years after the discovery of these equations, chemists believed that they could not solve SE and DE for atoms and molecules that included many electrons. This Account reviews ideas developed over the past decade to further the goal of predictive quantum chemistry. Between 2000 and 2005, I discovered a general method of solving the SE and DE accurately. As a first inspiration, I formulated the structure of the exact wave function of the SE in a compact mathematical form. The explicit inclusion of the exact wave function's structure within the variational space allows for the calculation of the exact wave function as a solution of the variational method. Although this process sounds almost impossible, it is indeed possible, and I have published several formulations and applied them to solve the full configuration interaction (CI) with a very small number of variables. However, when I examined analytical solutions for atoms and molecules, the Hamiltonian integrals in their secular equations diverged. This singularity problem occurred in all atoms and molecules because it originates from the singularity of the Coulomb potential in their Hamiltonians. To overcome this problem, I first introduced the inverse SE and then the scaled SE. The latter simpler idea led to immediate and surprisingly accurate solution for the SEs of the hydrogen atom, helium atom, and hydrogen molecule. The free complement (FC) method, also called the free iterative CI (free ICI) method, was efficient for solving the SEs. In the FC method, the basis functions that span the exact wave function are produced by the Hamiltonian of the system and the zeroth-order wave function. These basis functions are called complement functions because they are the elements of the complete functions for the system under consideration. We extended this idea to solve the relativistic DE and applied it to the hydrogen and helium atoms, without observing any problems such as variational collapse. Thereafter, we obtained very accurate solutions of the SE for the ground and excited states of the Born-Oppenheimer (BO) and non-BO states of very small systems like He, H(2)(+), H(2), and their analogues. For larger systems, however, the overlap and Hamiltonian integrals over the complement functions are not always known mathematically (integration difficulty); therefore we formulated the local SE (LSE) method as an integral-free method. Without any integration, the LSE method gave fairly accurate energies and wave functions for small atoms and molecules. We also calculated continuous potential curves of the ground and excited states of small diatomic molecules by introducing the transferable local sampling method. Although the FC-LSE method is simple, the achievement of chemical accuracy in the absolute energy of larger systems remains time-consuming. The development of more efficient methods for the calculations of ordinary molecules would allow researchers to make these calculations more easily.
Alternative bi-Hamiltonian structures for WDVV equations of associativity
NASA Astrophysics Data System (ADS)
Kalayci, J.; Nutku, Y.
1998-01-01
The WDVV equations of associativity in two-dimensional topological field theory are completely integrable third-order Monge-Ampère equations which admit bi-Hamiltonian structure. The time variable plays a distinguished role in the discussion of Hamiltonian structure, whereas in the theory of WDVV equations none of the independent variables merits such a distinction. WDVV equations admit very different alternative Hamiltonian structures under different possible choices of the time variable, but all these various Hamiltonian formulations can be brought together in the framework of the covariant theory of symplectic structure. They can be identified as different components of the covariant Witten-Zuckerman symplectic 2-form current density where a variational formulation of the WDVV equation that leads to the Hamiltonian operator through the Dirac bracket is available.
Cai, Xin; Liu, Jinsong; Wang, Shenglie
2009-02-16
This paper presents calculations for an idea in photorefractive spatial soliton, namely, a dissipative holographic soliton and a Hamiltonian soliton in one dimension form in an unbiased series photorefractive crystal circuit consisting of two photorefractive crystals of which at least one must be photovoltaic. The two solitons are known collectively as a separate Holographic-Hamiltonian spatial soliton pair and there are two types: dark-dark and bright-dark if only one crystal of the circuit is photovoltaic. The numerical results show that the Hamiltonian soliton in a soliton pair can affect the holographic one by the light-induced current whereas the effect of the holographic soliton on the Hamiltonian soliton is too weak to be ignored, i.e., the holographic soliton cannot affect the Hamiltonian one.
Regime of validity of the pairing Hamiltonian in the study of Fermi gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, S. Y.; Pandharipande, V. R.
2006-06-01
The ground state energy and pairing gap of the interacting Fermi gases calculated by the ab initio stochastic method are compared with those estimated from the Bardeen-Cooper-Schrieffer pairing Hamiltonian. We discuss the ingredients of this Hamiltonian in various regimes of interaction strength. In the weakly interacting (1/ak{sub F}<<0) regime the BCS Hamiltonian should describe Landau quasiparticle energies and interactions, on the other hand, in the strongly pairing regime, that is, 1/ak{sub F} > or approx. 0, it becomes part of the bare Hamiltonian. However, the bare BCS Hamiltonian is not adequate for describing atomic gases in the regime of weakmore » to moderate interaction strength -{infinity}<1/ak{sub F}<0 such as ak{sub F}{approx}-1.« less
Quantum theory of the generalised uncertainty principle
NASA Astrophysics Data System (ADS)
Bruneton, Jean-Philippe; Larena, Julien
2017-04-01
We extend significantly previous works on the Hilbert space representations of the generalized uncertainty principle (GUP) in 3 + 1 dimensions of the form [X_i,P_j] = i F_{ij} where F_{ij} = f({{P}}^2) δ _{ij} + g({{P}}^2) P_i P_j for any functions f. However, we restrict our study to the case of commuting X's. We focus in particular on the symmetries of the theory, and the minimal length that emerge in some cases. We first show that, at the algebraic level, there exists an unambiguous mapping between the GUP with a deformed quantum algebra and a quadratic Hamiltonian into a standard, Heisenberg algebra of operators and an aquadratic Hamiltonian, provided the boost sector of the symmetries is modified accordingly. The theory can also be mapped to a completely standard Quantum Mechanics with standard symmetries, but with momentum dependent position operators. Next, we investigate the Hilbert space representations of these algebraically equivalent models, and focus specifically on whether they exhibit a minimal length. We carry the functional analysis of the various operators involved, and show that the appearance of a minimal length critically depends on the relationship between the generators of translations and the physical momenta. In particular, because this relationship is preserved by the algebraic mapping presented in this paper, when a minimal length is present in the standard GUP, it is also present in the corresponding Aquadratic Hamiltonian formulation, despite the perfectly standard algebra of this model. In general, a minimal length requires bounded generators of translations, i.e. a specific kind of quantization of space, and this depends on the precise shape of the function f defined previously. This result provides an elegant and unambiguous classification of which universal quantum gravity corrections lead to the emergence of a minimal length.
Entanglement Hamiltonians for Chiral Fermions with Zero Modes.
Klich, Israel; Vaman, Diana; Wong, Gabriel
2017-09-22
In this Letter, we study the effect of topological zero modes on entanglement Hamiltonians and the entropy of free chiral fermions in (1+1)D. We show how Riemann-Hilbert solutions combined with finite rank perturbation theory allow us to obtain exact expressions for entanglement Hamiltonians. In the absence of the zero mode, the resulting entanglement Hamiltonians consist of local and bilocal terms. In the periodic sector, the presence of a zero mode leads to an additional nonlocal contribution to the entanglement Hamiltonian. We derive an exact expression for this term and for the resulting change in the entanglement entropy.
Multi-Hamiltonian structure of equations of hydrodynamic type
NASA Astrophysics Data System (ADS)
Gümral, H.; Nutku, Y.
1990-11-01
The discussion of the Hamiltonian structure of two-component equations of hydrodynamic type is completed by presenting the Hamiltonian operators for Euler's equation governing the motion of plane sound waves of finite amplitude and another quasilinear second-order wave equation. There exists a doubly infinite family of conserved Hamiltonians for the equations of gas dynamics that degenerate into one, namely, the Benney sequence, for shallow-water waves. Infinite sequences of conserved quantities for these equations are also presented. In the case of multicomponent equations of hydrodynamic type, it is shown, that Kodama's generalization of the shallow-water equations admits bi-Hamiltonian structure.
Covariant hamiltonian spin dynamics in curved space-time
NASA Astrophysics Data System (ADS)
d'Ambrosi, G.; Satish Kumar, S.; van Holten, J. W.
2015-04-01
The dynamics of spinning particles in curved space-time is discussed, emphasizing the hamiltonian formulation. Different choices of hamiltonians allow for the description of different gravitating systems. We give full results for the simplest case with minimal hamiltonian, constructing constants of motion including spin. The analysis is illustrated by the example of motion in Schwarzschild space-time. We also discuss a non-minimal extension of the hamiltonian giving rise to a gravitational equivalent of the Stern-Gerlach force. We show that this extension respects a large class of known constants of motion for the minimal case.
Integrable cosmological potentials
NASA Astrophysics Data System (ADS)
Sokolov, V. V.; Sorin, A. S.
2017-09-01
The problem of classification of the Einstein-Friedman cosmological Hamiltonians H with a single scalar inflaton field φ, which possess an additional integral of motion polynomial in momenta on the shell of the Friedman constraint H=0, is considered. Necessary and sufficient conditions for the existence of the first-, second- and third-degree integrals are derived. These conditions have the form of ODEs for the cosmological potential V(φ). In the case of linear and quadratic integrals we find general solutions of the ODEs and construct the corresponding integrals explicitly. A new wide class of Hamiltonians that possess a cubic integral is derived. The corresponding potentials are represented in parametric form in terms of the associated Legendre functions. Six families of special elementary solutions are described, and sporadic superintegrable cases are discussed.
Chiral and deconfinement phase transition in the Hamiltonian approach to QCD in Coulomb gauge
NASA Astrophysics Data System (ADS)
Reinhardt, H.; Vastag, P.
2016-11-01
The chiral and deconfinement phase transitions are investigated within the variational Hamiltonian approach to QCD in Coulomb gauge. The temperature β-1 is introduced by compactifying a spatial dimension. Thereby the whole temperature dependence is encoded in the vacuum state on the spatial manifold R2×S1(β ) . The chiral quark condensate and the dual quark condensate (dressed Polyakov loop) are calculated as a function of the temperature. From their inflection points the pseudocritical temperatures for the chiral and deconfinement crossover transitions are determined. Using the zero-temperature quark and gluon propagators obtained within the variational approach as input, we find 170 and 198 MeV, respectively, for the chiral and deconfinement transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demiralp, Metin
This work focuses on the dynamics of a system of quantum multi harmonic oscillators whose Hamiltonian is conic in positions and momenta with time variant coefficients. While it is simple, this system is useful for modeling the dynamics of a number of systems in contemporary sciences where the equations governing spatial or temporal changes are described by sets of ODEs. The dynamical causal models used readily in neuroscience can be indirectly described by these systems. In this work, we want to show that it is possible to describe these systems using quantum wave function type entities and expectations if themore » dynamic of the system is related to a set of ODEs.« less
Hamiltonian flow over saddles for exploring molecular phase space structures
NASA Astrophysics Data System (ADS)
Farantos, Stavros C.
2018-03-01
Despite using potential energy surfaces, multivariable functions on molecular configuration space, to comprehend chemical dynamics for decades, the real happenings in molecules occur in phase space, in which the states of a classical dynamical system are completely determined by the coordinates and their conjugate momenta. Theoretical and numerical results are presented, employing alanine dipeptide as a model system, to support the view that geometrical structures in phase space dictate the dynamics of molecules, the fingerprints of which are traced by following the Hamiltonian flow above saddles. By properly selecting initial conditions in alanine dipeptide, we have found internally free rotor trajectories the existence of which can only be justified in a phase space perspective. This article is part of the theme issue `Modern theoretical chemistry'.
NASA Astrophysics Data System (ADS)
Manukure, Solomon
2018-04-01
We construct finite-dimensional Hamiltonian systems by means of symmetry constraints from the Lax pairs and adjoint Lax pairs of a bi-Hamiltonian hierarchy of soliton equations associated with the 3-dimensional special linear Lie algebra, and discuss the Liouville integrability of these systems based on the existence of sufficiently many integrals of motion.
NASA Astrophysics Data System (ADS)
Schwörer, Magnus; Breitenfeld, Benedikt; Tröster, Philipp; Bauer, Sebastian; Lorenzen, Konstantin; Tavan, Paul; Mathias, Gerald
2013-06-01
Hybrid molecular dynamics (MD) simulations, in which the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 103-105 molecules, pose a challenge. A corresponding computational approach should guarantee energy conservation, exclude artificial distortions of the electron density at the interface between the DFT and PMM fragments, and should treat the long-range electrostatic interactions within the hybrid simulation system in a linearly scaling fashion. Here we describe a corresponding Hamiltonian DFT/(P)MM implementation, which accounts for inducible atomic dipoles of a PMM environment in a joint DFT/PMM self-consistency iteration. The long-range parts of the electrostatics are treated by hierarchically nested fast multipole expansions up to a maximum distance dictated by the minimum image convention of toroidal boundary conditions and, beyond that distance, by a reaction field approach such that the computation scales linearly with the number of PMM atoms. Short-range over-polarization artifacts are excluded by using Gaussian inducible dipoles throughout the system and Gaussian partial charges in the PMM region close to the DFT fragment. The Hamiltonian character, the stability, and efficiency of the implementation are investigated by hybrid DFT/PMM-MD simulations treating one molecule of the water dimer and of bulk water by DFT and the respective remainder by PMM.
Thomas, Phillip S; Carrington, Tucker
2015-12-31
We propose a method for solving the vibrational Schrödinger equation with which one can compute hundreds of energy levels of seven-atom molecules using at most a few gigabytes of memory. It uses nested contractions in conjunction with the reduced-rank block power method (RRBPM) described in J. Chem. Phys. 2014, 140, 174111. Successive basis contractions are organized into a tree, the nodes of which are associated with eigenfunctions of reduced-dimension Hamiltonians. The RRBPM is used recursively to compute eigenfunctions of nodes in bases of products of reduced-dimension eigenfunctions of nodes with fewer coordinates. The corresponding vectors are tensors in what is called CP-format. The final wave functions are therefore represented in a hierarchical CP-format. Computational efficiency and accuracy are significantly improved by representing the Hamiltonian in the same hierarchical format as the wave function. We demonstrate that with this hierarchical RRBPM it is possible to compute energy levels of a 64-D coupled-oscillator model Hamiltonian and also of acetonitrile (CH3CN) and ethylene oxide (C2H4O), for which we use quartic potentials. The most accurate acetonitrile calculation uses 139 MB of memory and takes 3.2 h on a single processor. The most accurate ethylene oxide calculation uses 6.1 GB of memory and takes 14 d on 63 processors. The hierarchical RRBPM shatters the memory barrier that impedes the calculation of vibrational spectra.
NASA Astrophysics Data System (ADS)
Toyota, Koudai
2016-10-01
The method of the envelope Hamiltonian [K. Toyota, U. Saalmann, and J. M. Rost, New J. Phys. 17, 073005 (2015), 10.1088/1367-2630/17/7/073005] is applied to further study a detachment dynamics of a model negative ion in one dimension in the high-frequency regime. This method is based on the Floquet approach, but the time dependency of an envelope function is explicitly kept for arbitrary pulse durations. Therefore, it is capable of describing not only a photon absorption or emission, but also a nonadiabatic transition which is induced by the time-varying envelope of the pulse. It was shown that the envelope Hamiltonian accurately retrieves the results obtained by the time-dependent Schrödinger equation, and the underlying physics were well understood by the adiabatic approximation based on the envelope Hamiltonian. In this paper, we explore two more aspects of the detachment dynamics, which were not considered in our previous work. First, we determine the features of both a spatial and temporal interference of photoelectron wave packets in a photon-absorption process. We conclude that both of the interference mechanisms are universal in ionization dynamics in the high-frequency regime. Second, we extract a pulse duration which maximizes a yield of the nonadiabatic transition as a function of a pulse duration. It is shown that it becomes maximum when the pulse duration is comparable to a time scale of an electron.
Long-time tail in the two-wave model
NASA Astrophysics Data System (ADS)
Hatori, T.; Abe, Y.; Irie, H.; Kaufman, A. N.
1984-07-01
The velocity time correlation function is found, both theoretically and numerically, to decay with the power law for the chaotic orbit governed by a Hamiltonian, H = v to 2nd power/2 - Mcosx - Pcos k(x-t) , M, P and k are the parameters.
Quantum carpets in a one-dimensional tilted optical lattices
NASA Astrophysics Data System (ADS)
Parra Murillo, Carlos Alberto; Muã+/-Oz Arias, Manuel Humberto; Madroã+/-Ero, Javier
A unit filling Bose-Hubbard Hamiltonian embedded in a strong Stark field is studied in the off-resonant regime inhibiting single- and many-particle first-order tunneling resonances. We investigate the occurrence of coherent dipole wavelike propagation along an optical lattice by means of an effective Hamiltonian accounting for second-order tunneling processes. It is shown that dipole wave function evolution in the short-time limit is ballistic and that finite-size effects induce dynamical self-interference patterns known as quantum carpets. We also present the effects of the border right after the first reflection, showing that the wave function diffuses normally with the variance changing linearly in time. This work extends the rich physical phenomenology of tilted one-dimensional lattice systems in a scenario of many interacting quantum particles, the so-called many-body Wannier-Stark system. The authors acknownledge the finantial support of the Universidad del Valle (project CI 7996). C. A. Parra-Murillo greatfully acknowledges the financial support of COLCIENCIAS (Grant 656).
Phase transition and field effect topological quantum transistor made of monolayer MoS2
NASA Astrophysics Data System (ADS)
Simchi, H.; Simchi, M.; Fardmanesh, M.; Peeters, F. M.
2018-06-01
We study topological phase transitions and topological quantum field effect transistor in monolayer molybdenum disulfide (MoS2) using a two-band Hamiltonian model. Without considering the quadratic (q 2) diagonal term in the Hamiltonian, we show that the phase diagram includes quantum anomalous Hall effect, quantum spin Hall effect, and spin quantum anomalous Hall effect regions such that the topological Kirchhoff law is satisfied in the plane. By considering the q 2 diagonal term and including one valley, it is shown that MoS2 has a non-trivial topology, and the valley Chern number is non-zero for each spin. We show that the wave function is (is not) localized at the edges when the q 2 diagonal term is added (deleted) to (from) the spin-valley Dirac mass equation. We calculate the quantum conductance of zigzag MoS2 nanoribbons by using the nonequilibrium Green function method and show how this device works as a field effect topological quantum transistor.
Matrix elements of explicitly correlated Gaussian basis functions with arbitrary angular momentum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joyce, Tennesse; Varga, Kálmán
2016-05-14
A new algorithm for calculating the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for quantum-mechanical calculations of atoms with arbitrary angular momentum is presented. The calculations are checked on several excited states of three and four electron systems. The presented formalism can be used as unified framework for high accuracy calculations of properties of small atoms and molecules.
NASA Astrophysics Data System (ADS)
Ramachandra Rao, Ch. V. S.
1983-11-01
The rotational Hamiltonian of an asymmetric-top molecule in its standard form, containing terms up to eighth degree in the components of the total angular momentum, is transformed by a unitary transformation with parameters Spqr to a reduced Hamiltonian so as to avoid the indeterminacies inherent in fitting the complete Hamiltonian to observed energy levels. Expressions are given for the nine determinable combinations of octic constants Θ' i ( i = 1 to 9) which are invariant under the unitary transformation. A method of reduction suitable for energy calculations by matrix diagonalization is considered. The relations between the coefficients of the transformed Hamiltonian, for suitable choice of the parameters Spqr, and those of the reduced Hamiltonian are given. This enables the determination of the nine octic constants Θ' i in terms of the experimental constants.
Hamiltonian identifiability assisted by a single-probe measurement
NASA Astrophysics Data System (ADS)
Sone, Akira; Cappellaro, Paola
2017-02-01
We study the Hamiltonian identifiability of a many-body spin-1 /2 system assisted by the measurement on a single quantum probe based on the eigensystem realization algorithm approach employed in Zhang and Sarovar, Phys. Rev. Lett. 113, 080401 (2014), 10.1103/PhysRevLett.113.080401. We demonstrate a potential application of Gröbner basis to the identifiability test of the Hamiltonian, and provide the necessary experimental resources, such as the lower bound in the number of the required sampling points, the upper bound in total required evolution time, and thus the total measurement time. Focusing on the examples of the identifiability in the spin-chain model with nearest-neighbor interaction, we classify the spin-chain Hamiltonian based on its identifiability, and provide the control protocols to engineer the nonidentifiable Hamiltonian to be an identifiable Hamiltonian.
Hamiltonian approach to slip-stacking dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S. Y.; Ng, K. Y.
Hamiltonian dynamics has been applied to study the slip-stacking dynamics. The canonical-perturbation method is employed to obtain the second-harmonic correction term in the slip-stacking Hamiltonian. The Hamiltonian approach provides a clear optimal method for choosing the slip-stacking parameter and improving stacking efficiency. The dynamics are applied specifically to the Fermilab Booster-Recycler complex. As a result, the dynamics can also be applied to other accelerator complexes.
Hamiltonian approach to slip-stacking dynamics
Lee, S. Y.; Ng, K. Y.
2017-06-29
Hamiltonian dynamics has been applied to study the slip-stacking dynamics. The canonical-perturbation method is employed to obtain the second-harmonic correction term in the slip-stacking Hamiltonian. The Hamiltonian approach provides a clear optimal method for choosing the slip-stacking parameter and improving stacking efficiency. The dynamics are applied specifically to the Fermilab Booster-Recycler complex. As a result, the dynamics can also be applied to other accelerator complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Subrata; Vijay, Amrendra, E-mail: avijay@iitm.ac.in
Using a second-quantized many-electron Hamiltonian, we obtain (a) an effective Hamiltonian suitable for materials whose electronic properties are governed by a set of strongly correlated bands in a narrow energy range and (b) an effective spin-only Hamiltonian for magnetic materials. The present Hamiltonians faithfully include phonon and spin-related interactions as well as the external fields to study the electromagnetic response properties of complex materials and they, in appropriate limits, reduce to the model Hamiltonians due to Hubbard and Heisenberg. With the Hamiltonian for narrow-band strongly correlated materials, we show that the spin-orbit interaction provides a mechanism for metal-insulator transition, whichmore » is distinct from the Mott-Hubbard (driven by the electron correlation) and the Anderson mechanism (driven by the disorder). Next, with the spin-only Hamiltonian, we demonstrate the spin-orbit interaction to be a reason for the existence of antiferromagnetic phase in materials which are characterized by a positive isotropic spin-exchange energy. This is distinct from the Néel-VanVleck-Anderson paradigm which posits a negative spin-exchange for the existence of antiferromagnetism. We also find that the Néel temperature increases as the absolute value of the spin-orbit coupling increases.« less
Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity
NASA Astrophysics Data System (ADS)
Bridges, Thomas J.; Reich, Sebastian
2001-06-01
The symplectic numerical integration of finite-dimensional Hamiltonian systems is a well established subject and has led to a deeper understanding of existing methods as well as to the development of new very efficient and accurate schemes, e.g., for rigid body, constrained, and molecular dynamics. The numerical integration of infinite-dimensional Hamiltonian systems or Hamiltonian PDEs is much less explored. In this Letter, we suggest a new theoretical framework for generalizing symplectic numerical integrators for ODEs to Hamiltonian PDEs in R2: time plus one space dimension. The central idea is that symplecticity for Hamiltonian PDEs is directional: the symplectic structure of the PDE is decomposed into distinct components representing space and time independently. In this setting PDE integrators can be constructed by concatenating uni-directional ODE symplectic integrators. This suggests a natural definition of multi-symplectic integrator as a discretization that conserves a discrete version of the conservation of symplecticity for Hamiltonian PDEs. We show that this approach leads to a general framework for geometric numerical schemes for Hamiltonian PDEs, which have remarkable energy and momentum conservation properties. Generalizations, including development of higher-order methods, application to the Euler equations in fluid mechanics, application to perturbed systems, and extension to more than one space dimension are also discussed.
Finite Group Invariance and Solution of Jaynes-Cummings Hamiltonian
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haydargil, Derya; Koc, Ramazan
2004-10-04
The finite group invariance of the E x {beta} and Jaynes-Cummings models are studied. A method is presented to obtain finite group invariance of the E x {beta} system.A suitable transformation of a Jaynes-Cummings Hamiltonian leads to equivalence of E x {beta} system. Then a general method is applied to obtain the solution of Jaynes-Cummings Hamiltonian with Kerr nonlinearity. Number operator for this structure and the generators of su(2) algebra are used to find the eigenvalues of the Jaynes-Cummings Hamiltonian for different states. By using the invariance of number operator the solution of modified Jaynes-Cummings Hamiltonian is also discussed.
Hamiltonian flows with random-walk behaviour originating from zero-sum games and fictitious play
NASA Astrophysics Data System (ADS)
van Strien, Sebastian
2011-06-01
In this paper we introduce Hamiltonian dynamics, inspired by zero-sum games (best response and fictitious play dynamics). The Hamiltonian functions we consider are continuous and piecewise affine (and of a very simple form). It follows that the corresponding Hamiltonian vector fields are discontinuous and multi-valued. Differential equations with discontinuities along a hyperplane are often called 'Filippov systems', and there is a large literature on such systems, see for example (di Bernardo et al 2008 Theory and applications Piecewise-Smooth Dynamical Systems (Applied Mathematical Sciences vol 163) (London: Springer); Kunze 2000 Non-Smooth Dynamical Systems (Lecture Notes in Mathematics vol 1744) (Berlin: Springer); Leine and Nijmeijer 2004 Dynamics and Bifurcations of Non-smooth Mechanical Systems (Lecture Notes in Applied and Computational Mechanics vol 18) (Berlin: Springer)). The special feature of the systems we consider here is that they have discontinuities along a large number of intersecting hyperplanes. Nevertheless, somewhat surprisingly, the flow corresponding to such a vector field exists, is unique and continuous. We believe that these vector fields deserve attention, because it turns out that the resulting dynamics are rather different from those found in more classically defined Hamiltonian dynamics. The vector field is extremely simple: outside codimension-one hyperplanes it is piecewise constant and so the flow phit piecewise a translation (without stationary points). Even so, the dynamics can be rather rich and complicated as a detailed study of specific examples show (see for example theorems 7.1 and 7.2 and also (Ostrovski and van Strien 2011 Regular Chaotic Dynf. 16 129-54)). In the last two sections of the paper we give some applications to game theory, and finish with posing a version of the Palis conjecture in the context of the class of non-smooth systems studied in this paper. To Jacob Palis on his 70th birthday.
Hamiltonian quantum simulation with bounded-strength controls
NASA Astrophysics Data System (ADS)
Bookatz, Adam D.; Wocjan, Pawel; Viola, Lorenza
2014-04-01
We propose dynamical control schemes for Hamiltonian simulation in many-body quantum systems that avoid instantaneous control operations and rely solely on realistic bounded-strength control Hamiltonians. Each simulation protocol consists of periodic repetitions of a basic control block, constructed as a modification of an ‘Eulerian decoupling cycle,’ that would otherwise implement a trivial (zero) target Hamiltonian. For an open quantum system coupled to an uncontrollable environment, our approach may be employed to engineer an effective evolution that simulates a target Hamiltonian on the system while suppressing unwanted decoherence to the leading order, thereby allowing for dynamically corrected simulation. We present illustrative applications to both closed- and open-system simulation settings, with emphasis on simulation of non-local (two-body) Hamiltonians using only local (one-body) controls. In particular, we provide simulation schemes applicable to Heisenberg-coupled spin chains exposed to general linear decoherence, and show how to simulate Kitaev's honeycomb lattice Hamiltonian starting from Ising-coupled qubits, as potentially relevant to the dynamical generation of a topologically protected quantum memory. Additional implications for quantum information processing are discussed.
Pauli energy spectrum for twist-deformed spacetime
NASA Astrophysics Data System (ADS)
Daszkiewicz, Marcin
2018-04-01
In this paper, we define the Pauli Hamiltonian function for the twist-deformed N-enlarged Newton-Hooke spacetime provided by M. Daszkiewicz [Mod. Phys. Lett. A 27, 1250083 (2012)]. Further, we derive its energy spectrum, i.e. we find the corresponding eigenvalues as well as the proper eigenfunctions.
R matrices of three-state Hamiltonians solvable by coordinate Bethe ansatz
NASA Astrophysics Data System (ADS)
Fonseca, T.; Frappat, L.; Ragoucy, E.
2015-01-01
We review some of the strategies that can be implemented to infer an R-matrix from the knowledge of its Hamiltonian. We apply them to the classification achieved in Crampé, Frappat, and Ragoucy, J. Phys. A 46, 405001 (2013), on three state U(1)-invariant Hamiltonians solvable by coordinate Bethe ansatz, focusing on models for which the S-matrix is not trivial. For the 19-vertex solutions, we recover the R-matrices of the well-known Zamolodchikov-Fateev and Izergin-Korepin models. We point out that the generalized Bariev Hamiltonian is related to both main and special branches studied by Martins in Nucl. Phys. B 874, 243 (2013), that we prove to generate the same Hamiltonian. The 19-vertex SpR model still resists to the analysis, although we are able to state some no-go theorems on its R-matrix. For 17-vertex Hamiltonians, we produce a new R-matrix.
Local modular Hamiltonians from the quantum null energy condition
NASA Astrophysics Data System (ADS)
Koeller, Jason; Leichenauer, Stefan; Levine, Adam; Shahbazi-Moghaddam, Arvin
2018-03-01
The vacuum modular Hamiltonian K of the Rindler wedge in any relativistic quantum field theory is given by the boost generator. Here we investigate the modular Hamiltonian for more general half-spaces which are bounded by an arbitrary smooth cut of a null plane. We derive a formula for the second derivative of the modular Hamiltonian with respect to the coordinates of the cut which schematically reads K''=Tv v . This formula can be integrated twice to obtain a simple expression for the modular Hamiltonian. The result naturally generalizes the standard expression for the Rindler modular Hamiltonian to this larger class of regions. Our primary assumptions are the quantum null energy condition—an inequality between the second derivative of the von Neumann entropy of a region and the stress tensor—and its saturation in the vacuum for these regions. We discuss the validity of these assumptions in free theories and holographic theories to all orders in 1 /N .
NASA Astrophysics Data System (ADS)
Leon, Juan; Maccone, Lorenzo
2017-12-01
Schrödinger's equation says that the Hamiltonian is the generator of time translations. This seems to imply that any reasonable definition of time operator must be conjugate to the Hamiltonian. Then both time and energy must have the same spectrum since conjugate operators are unitarily equivalent. Clearly this is not always true: normal Hamiltonians have lower bounded spectrum and often only have discrete eigenvalues, whereas we typically desire that time can take any real value. Pauli concluded that constructing a general a time operator is impossible (although clearly it can be done in specific cases). Here we show how the Pauli argument fails when one uses an external system (a "clock") to track time, so that time arises as correlations between the system and the clock (conditional probability amplitudes framework). In this case, the time operator is conjugate to the clock Hamiltonian and not to the system Hamiltonian, but its eigenvalues still satisfy the Schrödinger equation for arbitrary system Hamiltonians.
NASA Astrophysics Data System (ADS)
Shakeri, Nadim; Jalili, Saeed; Ahmadi, Vahid; Rasoulzadeh Zali, Aref; Goliaei, Sama
2015-01-01
The problem of finding the Hamiltonian path in a graph, or deciding whether a graph has a Hamiltonian path or not, is an NP-complete problem. No exact solution has been found yet, to solve this problem using polynomial amount of time and space. In this paper, we propose a two dimensional (2-D) optical architecture based on optical electronic devices such as micro ring resonators, optical circulators and MEMS based mirror (MEMS-M) to solve the Hamiltonian Path Problem, for undirected graphs in linear time. It uses a heuristic algorithm and employs n+1 different wavelengths of a light ray, to check whether a Hamiltonian path exists or not on a graph with n vertices. Then if a Hamiltonian path exists, it reports the path. The device complexity of the proposed architecture is O(n2).
Chou, Chia-Chun; Kouri, Donald J
2013-04-25
We show that there exist spurious states for the sector two tensor Hamiltonian in multidimensional supersymmetric quantum mechanics. For one-dimensional supersymmetric quantum mechanics on an infinite domain, the sector one and two Hamiltonians have identical spectra with the exception of the ground state of the sector one. For tensorial multidimensional supersymmetric quantum mechanics, there exist normalizable spurious states for the sector two Hamiltonian with energy equal to the ground state energy of the sector one. These spurious states are annihilated by the adjoint charge operator, and hence, they do not correspond to physical states for the original Hamiltonian. The Hermitian property of the sector two Hamiltonian implies the orthogonality between spurious and physical states. In addition, we develop a method for construction of a specific form of the spurious states for any quantum system and also generate several spurious states for a two-dimensional anharmonic oscillator system and for the hydrogen atom.
Hamiltonian analysis of higher derivative scalar-tensor theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langlois, David; Noui, Karim, E-mail: langlois@apc.univ-paris7.fr, E-mail: karim.noui@lmpt.univ-tours.fr
2016-07-01
We perform a Hamiltonian analysis of a large class of scalar-tensor Lagrangians which depend quadratically on the second derivatives of a scalar field. By resorting to a convenient choice of dynamical variables, we show that the Hamiltonian can be written in a very simple form, where the Hamiltonian and the momentum constraints are easily identified. In the case of degenerate Lagrangians, which include the Horndeski and beyond Horndeski quartic Lagrangians, our analysis confirms that the dimension of the physical phase space is reduced by the primary and secondary constraints due to the degeneracy, thus leading to the elimination of themore » dangerous Ostrogradsky ghost. We also present the Hamiltonian formulation for nondegenerate theories and find that they contain four degrees of freedom, including a ghost, as expected. We finally discuss the status of the unitary gauge from the Hamiltonian perspective.« less
An EPR investigation of the dynamic Jahn-Teller effect in SrCl2:y(2 plus) and SrCl2:Sc(2 plus)
NASA Technical Reports Server (NTRS)
Herrington, J. R.; Estle, T. L.; Boatner, L. A.
1972-01-01
EPR spectra have been observed for SrCl2:Y(2+) and SrCl2:Sc(2+) at liquid helium temperatures. At 1.2 K the spectra were dominated by anisotropic hyperfine patterns whose lineshapes and angular dependences were explained using second order solutions of the effective Hamiltonian for an isolated 2Eg state split by large random internal strains. Pronounced asymmetries in some of the strin produced lineshapes for Srcl2:Sc(2+) are shown to result from second order terms in the solution of the effective Hamiltonian. Coexisting with the anisotropic hyperfine patterns are weak nearly isotropic hyperfine patterns with typical lineshapes. Variations in the apparent intensity of lines in these weak hyperfine patterns as functions of the applied magnetic field direction and temperature imply that these lines result from averaging by vibronic relaxation of a portion of the anisotropic pattern. The effective Hamiltonian parameters for SrCl2:La(2+), SrCl2:y(2+), and SrCl2:SC(2+) are analyzed in terms of crystal field theory modified to include a dynamic Jahn-Teller effect.
NASA Technical Reports Server (NTRS)
Sinha, Sujit
1988-01-01
A study was conducted to evaluate the performance implications of a heads-up ascent flight design for the Space Transportation System, as compared to the current heads-down flight mode. The procedure involved the use of the Minimum Hamiltonian Ascent Shuttle Trajectory Evaluation Program, which is a three-degree-of-freedom moment balance simulation of shuttle ascent. A minimum-Hamiltonian optimization strategy was employed to maximize injection weight as a function of maximum dynamic pressure constraint and Solid Rocket Motor burnrate. Performance Reference Mission Four trajectory groundrules were used for consistency. The major conclusions are that for heads-up ascent and a mission nominal design maximum dynamic pressure value of 680 psf, the optimum solid motor burnrate is 0.394 ips, which produces a performance enhancement of 4293 lbm relative to the baseline heads-down ascent, with 0.368 ips burnrate solid motors and a 680 psf dynamic pressure constraint. However, no performance advantage exists for heads-up flight if the current Solid Rocket Motor target burnrate of 0.368 ips is used. The advantage of heads-up ascent flight employing the current burnrate is that Space Shuttle Main Engine throttling for dynamic pressure control is not necessary.
Zheng, Lianjun; Polizzi, Nicholas F; Dave, Adarsh R; Migliore, Agostino; Beratan, David N
2016-03-24
The effectiveness of solar energy capture and conversion materials derives from their ability to absorb light and to transform the excitation energy into energy stored in free carriers or chemical bonds. The Thomas-Reiche-Kuhn (TRK) sum rule mandates that the integrated (electronic) oscillator strength of an absorber equals the total number of electrons in the structure. Typical molecular chromophores place only about 1% of their oscillator strength in the UV-vis window, so individual chromophores operate at about 1% of their theoretical limit. We explore the distribution of oscillator strength as a function of excitation energy to understand this circumstance. To this aim, we use familiar independent-electron model Hamiltonians as well as first-principles electronic structure methods. While model Hamiltonians capture the qualitative electronic spectra associated with π electron chromophores, these Hamiltonians mistakenly focus the oscillator strength in the fewest low-energy transitions. Advanced electronic structure methods, in contrast, spread the oscillator strength over a very wide excitation energy range, including transitions to Rydberg and continuum states, consistent with experiment. Our analysis rationalizes the low oscillator strength in the UV-vis spectral region in molecules, a step toward the goal of oscillator strength manipulation and focusing.
Dissipation and entropy production in open quantum systems
NASA Astrophysics Data System (ADS)
Majima, H.; Suzuki, A.
2010-11-01
A microscopic description of an open system is generally expressed by the Hamiltonian of the form: Htot = Hsys + Henviron + Hsys-environ. We developed a microscopic theory of entropy and derived a general formula, so-called "entropy-Hamiltonian relation" (EHR), that connects the entropy of the system to the interaction Hamiltonian represented by Hsys-environ for a nonequilibrium open quantum system. To derive the EHR formula, we mapped the open quantum system to the representation space of the Liouville-space formulation or thermo field dynamics (TFD), and thus worked on the representation space Script L := Script H otimes , where Script H denotes the ordinary Hilbert space while the tilde Hilbert space conjugates to Script H. We show that the natural transformation (mapping) of nonequilibrium open quantum systems is accomplished within the theoretical structure of TFD. By using the obtained EHR formula, we also derived the equation of motion for the distribution function of the system. We demonstrated that by knowing the microscopic description of the interaction, namely, the specific form of Hsys-environ on the representation space Script L, the EHR formulas enable us to evaluate the entropy of the system and to gain some information about entropy for nonequilibrium open quantum systems.
NASA Astrophysics Data System (ADS)
Kim, Ilki; von Spakovsky, Michael R.
2017-08-01
Quantum systems driven by time-dependent Hamiltonians are considered here within the framework of steepest-entropy-ascent quantum thermodynamics (SEAQT) and used to study the thermodynamic characteristics of such systems. In doing so, a generalization of the SEAQT framework valid for all such systems is provided, leading to the development of an ab initio physically relevant expression for the intrarelaxation time, an important element of this framework and one that had as of yet not been uniquely determined as an integral part of the theory. The resulting expression for the relaxation time is valid as well for time-independent Hamiltonians as a special case and makes the description provided by the SEAQT framework more robust at the fundamental level. In addition, the SEAQT framework is used to help resolve a fundamental issue of thermodynamics in the quantum domain, namely, that concerning the unique definition of process-dependent work and heat functions. The developments presented lead to the conclusion that this framework is not just an alternative approach to thermodynamics in the quantum domain but instead one that uniquely sheds new light on various fundamental but as of yet not completely resolved questions of thermodynamics.
The Hamiltonian structure of the (2+1)-dimensional Ablowitz--Kaup--Newell--Segur hierarchy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athorne, C.; Dorfman, I.Y.
1993-08-01
By considering Hamiltonian theory over a suitable (noncommutative) ring the nonlinear evolution equations of the Ablowitz--Kaup--Newell--Segur (2+1) hierarchy are incorporated into a Hamiltonian framework and a modified Lenard scheme.
Linear transformation and oscillation criteria for Hamiltonian systems
NASA Astrophysics Data System (ADS)
Zheng, Zhaowen
2007-08-01
Using a linear transformation similar to the Kummer transformation, some new oscillation criteria for linear Hamiltonian systems are established. These results generalize and improve the oscillation criteria due to I.S. Kumari and S. Umanaheswaram [I. Sowjaya Kumari, S. Umanaheswaram, Oscillation criteria for linear matrix Hamiltonian systems, J. Differential Equations 165 (2000) 174-198], Q. Yang et al. [Q. Yang, R. Mathsen, S. Zhu, Oscillation theorems for self-adjoint matrix Hamiltonian systems, J. Differential Equations 190 (2003) 306-329], and S. Chen and Z. Zheng [Shaozhu Chen, Zhaowen Zheng, Oscillation criteria of Yan type for linear Hamiltonian systems, Comput. Math. Appl. 46 (2003) 855-862]. These criteria also unify many of known criteria in literature and simplify the proofs.
Hamiltonian dynamics of thermostated systems: two-temperature heat-conducting phi4 chains.
Hoover, Wm G; Hoover, Carol G
2007-04-28
We consider and compare four Hamiltonian formulations of thermostated mechanics, three of them kinetic, and the other one configurational. Though all four approaches "work" at equilibrium, their application to many-body nonequilibrium simulations can fail to provide a proper flow of heat. All the Hamiltonian formulations considered here are applied to the same prototypical two-temperature "phi4" model of a heat-conducting chain. This model incorporates nearest-neighbor Hooke's-Law interactions plus a quartic tethering potential. Physically correct results, obtained with the isokinetic Gaussian and Nose-Hoover thermostats, are compared with two other Hamiltonian results. The latter results, based on constrained Hamiltonian thermostats, fail to model correctly the flow of heat.
Extended screened exchange functional derived from transcorrelated density functional theory.
Umezawa, Naoto
2017-09-14
We propose a new formulation of the correlation energy functional derived from the transcorrelated method in use in density functional theory (TC-DFT). An effective Hamiltonian, H TC , is introduced by a similarity transformation of a many-body Hamiltonian, H, with respect to a complex function F: H TC =1FHF. It is proved that an expectation value of H TC for a normalized single Slater determinant, D n , corresponds to the total energy: E[n] = ⟨Ψ n |H|Ψ n ⟩/⟨Ψ n |Ψ n ⟩ = ⟨D n |H TC |D n ⟩ under the two assumptions: (1) The electron density nr associated with a trial wave function Ψ n = D n F is v-representable and (2) Ψ n and D n give rise to the same electron density nr. This formulation, therefore, provides an alternative expression of the total energy that is useful for the development of novel correlation energy functionals. By substituting a specific function for F, we successfully derived a model correlation energy functional, which resembles the functional form of the screened exchange method. The proposed functional, named the extended screened exchange (ESX) functional, is described within two-body integrals and is parametrized for a numerically exact correlation energy of the homogeneous electron gas. The ESX functional does not contain any ingredients of (semi-)local functionals and thus is totally free from self-interactions. The computational cost for solving the self-consistent-field equation is comparable to that of the Hartree-Fock method. We apply the ESX functional to electronic structure calculations for a solid silicon, H - ion, and small atoms. The results demonstrate that the TC-DFT formulation is promising for the systematic improvement of the correlation energy functional.
Greenberger-Horne-Zeilinger States and Few-Body Hamiltonians
NASA Astrophysics Data System (ADS)
Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio; Pepe, Francesco V.
2011-12-01
The generation of Greenberger-Horne-Zeilinger (GHZ) states is a crucial problem in quantum information. We derive general conditions for obtaining GHZ states as eigenstates of a Hamiltonian. We find that a necessary condition for an n-qubit GHZ state to be a nondegenerate eigenstate of a Hamiltonian is the presence of m-qubit couplings with m≥[(n+1)/2]. Moreover, we introduce a Hamiltonian with a GHZ eigenstate and derive sufficient conditions for the removal of the degeneracy.
Branched Hamiltonians and supersymmetry
Curtright, Thomas L.; Zachos, Cosmas K.
2014-03-21
Some examples of branched Hamiltonians are explored both classically and in the context of quantum mechanics, as recently advocated by Shapere and Wilczek. These are in fact cases of switchback potentials, albeit in momentum space, as previously analyzed for quasi-Hamiltonian chaotic dynamical systems in a classical setting, and as encountered in analogous renormalization group flows for quantum theories which exhibit RG cycles. In conclusion, a basic two-worlds model, with a pair of Hamiltonian branches related by supersymmetry, is considered in detail.
Greenberger-Horne-Zeilinger states and few-body Hamiltonians.
Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio; Pepe, Francesco V
2011-12-23
The generation of Greenberger-Horne-Zeilinger (GHZ) states is a crucial problem in quantum information. We derive general conditions for obtaining GHZ states as eigenstates of a Hamiltonian. We find that a necessary condition for an n-qubit GHZ state to be a nondegenerate eigenstate of a Hamiltonian is the presence of m-qubit couplings with m≥[(n+1)/2]. Moreover, we introduce a Hamiltonian with a GHZ eigenstate and derive sufficient conditions for the removal of the degeneracy.
Pure and Poetic: Butterfly in the Quantum World
NASA Astrophysics Data System (ADS)
Satija, Indubala
Story of the Hofstadter butterfly is a magical occurrence in a quantum flatland of two-dimensional crystals in a magnetic field. In this drama, the magnetic flux plays the role of Planck constant, linking the variables x and p in the butterfly Hamiltonian H = cosx + cosp as [ x , p ] = iℏ . It is a story of reunion of Descartes and Pythagoras and tale of this quantum fractal is related to Integral Apollonian gaskets. Integers rule the butterfly landscape as quantum numbers of Hall conductivity while irrational numbers emerge as the asymptotic magnification of these topological integers in the kaleidoscopic images of the butterfly. Simple variations of the above Hamiltonian generates a wide spectrum of physical phenomenon. For example, the Hamiltonian H = cosx + λcosp with the parameter λ ≠ 1 in its zero energy solution hides the critical point of a topological transition in a superconducting chain and thus barely misses the Majorana fermions. Another example is the Hamiltonian obtained by including terms like cos (x +/- p) which for flux half exhibits Dirac semi-metallic states in addition to all integer quantum Hall states corresponding to all possible solutions of the Diophantine equation for this value of the magnetic flux. In this analytically tractable model where the parameter λ varies periodically with time, the topological states are described by edge modes whose dispersion is given by a pure cosine function. Finally, nature has composed beautiful variations of the Hofstadter butterfly not only in systems such as Penrose and Kagame lattices and also in the relativistic colorful world of quarks and antiquarks.
NASA Astrophysics Data System (ADS)
Neate, Andrew; Truman, Aubrey
2016-05-01
Little is known about dark matter particles save that their most important interactions with ordinary matter are gravitational and that, if they exist, they are stable, slow moving and relatively massive. Based on these assumptions, a semiclassical approximation to the Schrödinger equation under the action of a Coulomb potential should be relevant for modelling their behaviour. We investigate the semiclassical limit of the Schrödinger equation for a particle of mass M under a Coulomb potential in the context of Nelson's stochastic mechanics. This is done using a Freidlin-Wentzell asymptotic series expansion in the parameter ɛ = √{ ħ / M } for the Nelson diffusion. It is shown that for wave functions ψ ˜ exp((R + iS)/ɛ2) where R and S are real valued, the ɛ = 0 behaviour is governed by a constrained Hamiltonian system with Hamiltonian Hr and constraint Hi = 0 where the superscripts r and i denote the real and imaginary parts of the Bohr correspondence limit of the quantum mechanical Hamiltonian, independent of Nelson's ideas. Nelson's stochastic mechanics is restored in dealing with the nodal surface singularities and by computing (correct to first order in ɛ) the relevant diffusion process in terms of Jacobi fields thereby revealing Kepler's laws in a new light. The key here is that the constrained Hamiltonian system has just two solutions corresponding to the forward and backward drifts in Nelson's stochastic mechanics. We discuss the application of this theory to modelling dark matter particles under the influence of a large gravitating point mass.
MaxEnt, second variation, and generalized statistics
NASA Astrophysics Data System (ADS)
Plastino, A.; Rocca, M. C.
2015-10-01
There are two kinds of Tsallis-probability distributions: heavy tail ones and compact support distributions. We show here, by appeal to functional analysis' tools, that for lower bound Hamiltonians, the second variation's analysis of the entropic functional guarantees that the heavy tail q-distribution constitutes a maximum of Tsallis' entropy. On the other hand, in the compact support instance, a case by case analysis is necessary in order to tackle the issue.
NASA Astrophysics Data System (ADS)
Angeli, C.; Cimiraglia, R.
2005-02-01
Starting from a CAS-SCF calculation a sequence of contracted functions can be generated by applying strings of spin-traced replacement operators to the CAS-SCF solution. The laborious task of producing the Hamiltonian matrix elements between such functions can be substantially reduced making use of a computer algebra system. An implementation employing the MuPAD system is presented and illustrated.
NASA Technical Reports Server (NTRS)
Akhundova, E. A.; Dodonov, V. V.; Manko, V. I.
1993-01-01
The exact expressions for density matrix and Wigner functions of quantum systems are known only in special cases. Corresponding Hamiltonians are quadratic forms of Euclidean coordinates and momenta. In this paper we consider the problem of one-dimensional free particle movement in the bounded region 0 is less than x is less than a (including the case a = infinity).
The multifacet graphically contracted function method. I. Formulation and implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepard, Ron; Brozell, Scott R.; Gidofalvi, Gergely
2014-08-14
The basic formulation for the multifacet generalization of the graphically contracted function (MFGCF) electronic structure method is presented. The analysis includes the discussion of linear dependency and redundancy of the arc factor parameters, the computation of reduced density matrices, Hamiltonian matrix construction, spin-density matrix construction, the computation of optimization gradients for single-state and state-averaged calculations, graphical wave function analysis, and the efficient computation of configuration state function and Slater determinant expansion coefficients. Timings are given for Hamiltonian matrix element and analytic optimization gradient computations for a range of model problems for full-CI Shavitt graphs, and it is observed that bothmore » the energy and the gradient computation scale as O(N{sup 2}n{sup 4}) for N electrons and n orbitals. The important arithmetic operations are within dense matrix-matrix product computational kernels, resulting in a computationally efficient procedure. An initial implementation of the method is used to present applications to several challenging chemical systems, including N{sub 2} dissociation, cubic H{sub 8} dissociation, the symmetric dissociation of H{sub 2}O, and the insertion of Be into H{sub 2}. The results are compared to the exact full-CI values and also to those of the previous single-facet GCF expansion form.« less
Bi-Hamiltonian structure of the Kermack-McKendrick model for epidemics
NASA Astrophysics Data System (ADS)
Nutku, Y.
1990-11-01
The dynamical system proposed by Kermack and McKendrick (1933) to model the spread of epidemics is shown to admit bi-Hamiltonian structure without any restrictions on the rate constants. These two inequivalent Hamiltonian structures are compatible.
Unified formalism for the generalized kth-order Hamilton-Jacobi problem
NASA Astrophysics Data System (ADS)
Colombo, Leonardo; de Léon, Manuel; Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso
2014-08-01
The geometric formulation of the Hamilton-Jacobi theory enables us to generalize it to systems of higher-order ordinary differential equations. In this work we introduce the unified Lagrangian-Hamiltonian formalism for the geometric Hamilton-Jacobi theory on higher-order autonomous dynamical systems described by regular Lagrangian functions.
Xu, Enhua; Li, Shuhua
2013-11-07
The block correlated second-order perturbation theory with a generalized valence bond (GVB) reference (GVB-BCPT2) is proposed. In this approach, each geminal in the GVB reference is considered as a "multi-orbital" block (a subset of spin orbitals), and each occupied or virtual spin orbital is also taken as a single block. The zeroth-order Hamiltonian is set to be the summation of the individual Hamiltonians of all blocks (with explicit two-electron operators within each geminal) so that the GVB reference function and all excited configuration functions are its eigenfunctions. The GVB-BCPT2 energy can be directly obtained without iteration, just like the second order Mo̸ller-Plesset perturbation method (MP2), both of which are size consistent. We have applied this GVB-BCPT2 method to investigate the equilibrium distances and spectroscopic constants of 7 diatomic molecules, conformational energy differences of 8 small molecules, and bond-breaking potential energy profiles in 3 systems. GVB-BCPT2 is demonstrated to have noticeably better performance than MP2 for systems with significant multi-reference character, and provide reasonably accurate results for some systems with large active spaces, which are beyond the capability of all CASSCF-based methods.
Dolan Grady relations and noncommutative quasi-exactly solvable systems
NASA Astrophysics Data System (ADS)
Klishevich, Sergey M.; Plyushchay, Mikhail S.
2003-11-01
We investigate a U(1) gauge invariant quantum mechanical system on a 2D noncommutative space with coordinates generating a generalized deformed oscillator algebra. The Hamiltonian is taken as a quadratic form in gauge covariant derivatives obeying the nonlinear Dolan-Grady relations. This restricts the structure function of the deformed oscillator algebra to a quadratic polynomial. The cases when the coordinates form the {\\mathfrak{su}}(2) and {\\mathfrak{sl}}(2,{\\bb {R}}) algebras are investigated in detail. Reducing the Hamiltonian to 1D finite-difference quasi-exactly solvable operators, we demonstrate partial algebraization of the spectrum of the corresponding systems on the fuzzy sphere and noncommutative hyperbolic plane. A completely covariant method based on the notion of intrinsic algebra is proposed to deal with the spectral problem of such systems.
Microscopic derivation of IBM and structural evolution in nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nomura, Kosuke
A Hamiltonian of the interacting boson model (IBM) is derived based on the mean-field calculations with nuclear energy density functionals (EDFs). The multi-nucleon dynamics of the surface deformation is simulated in terms of the boson degrees of freedom. The interaction strengths of the IBM Hamiltonian are determined by mapping the potential energy surfaces (PESs) of a given EDF with quadrupole degrees of freedom onto the corresponding PES of IBM. A fermion-to-boson mapping for a rotational nucleus is discussed in terms of the rotational response, which reflects a specific time-dependent feature. Ground-state correlation energy is evaluated as a signature of structuralmore » evolution. Some examples resulting from the present spectroscopic calculations are shown for neutron-rich Pt, Os and W isotopes including exotic ones.« less
Quantum strain sensor with a topological insulator HgTe quantum dot
Korkusinski, Marek; Hawrylak, Pawel
2014-01-01
We present a theory of electronic properties of HgTe quantum dot and propose a strain sensor based on a strain-driven transition from a HgTe quantum dot with inverted bandstructure and robust topologically protected quantum edge states to a normal state without edge states in the energy gap. The presence or absence of edge states leads to large on/off ratio of conductivity across the quantum dot, tunable by adjusting the number of conduction channels in the source-drain voltage window. The electronic properties of a HgTe quantum dot as a function of size and applied strain are described using eight-band Luttinger and Bir-Pikus Hamiltonians, with surface states identified with chirality of Luttinger spinors and obtained through extensive numerical diagonalization of the Hamiltonian. PMID:24811674
Renormalization group procedure for potential -g/r2
NASA Astrophysics Data System (ADS)
Dawid, S. M.; Gonsior, R.; Kwapisz, J.; Serafin, K.; Tobolski, M.; Głazek, S. D.
2018-02-01
Schrödinger equation with potential - g /r2 exhibits a limit cycle, described in the literature in a broad range of contexts using various regularizations of the singularity at r = 0. Instead, we use the renormalization group transformation based on Gaussian elimination, from the Hamiltonian eigenvalue problem, of high momentum modes above a finite, floating cutoff scale. The procedure identifies a richer structure than the one we found in the literature. Namely, it directly yields an equation that determines the renormalized Hamiltonians as functions of the floating cutoff: solutions to this equation exhibit, in addition to the limit-cycle, also the asymptotic-freedom, triviality, and fixed-point behaviors, the latter in vicinity of infinitely many separate pairs of fixed points in different partial waves for different values of g.
Diffeomorphism invariance and black hole entropy
NASA Astrophysics Data System (ADS)
Huang, Chao-Guang; Guo, Han-Ying; Wu, Xiaoning
2003-11-01
The Noether-charge and the Hamiltonian realizations for the diff(M) algebra in diffeomorphism-invariant gravitational theories without a cosmological constant in any dimension are studied in a covariant formalism. We analyze how the Hamiltonian functionals form the diff(M) algebra under the Poisson brackets and show how the Noether charges with respect to the diffeomorphism generated by the vector fields and their variations in n-dimensional general relativity form this algebra. The asymptotic behaviors of vector fields generating diffeomorphism of the manifold with boundaries are discussed. It is shown that the “central extension” for a large class of vector fields is always zero on the Killing horizon. We also check whether choosing the vector fields near the horizon may pick up the Virasoro algebra. The conclusion is unfortunately negative in any dimension.
Toda Systems, Cluster Characters, and Spectral Networks
NASA Astrophysics Data System (ADS)
Williams, Harold
2016-11-01
We show that the Hamiltonians of the open relativistic Toda system are elements of the generic basis of a cluster algebra, and in particular are cluster characters of nonrigid representations of a quiver with potential. Using cluster coordinates defined via spectral networks, we identify the phase space of this system with the wild character variety related to the periodic nonrelativistic Toda system by the wild nonabelian Hodge correspondence. We show that this identification takes the relativistic Toda Hamiltonians to traces of holonomies around a simple closed curve. In particular, this provides nontrivial examples of cluster coordinates on SL n -character varieties for n > 2 where canonical functions associated to simple closed curves can be computed in terms of quivers with potential, extending known results in the SL 2 case.
Nonperturbative light-front Hamiltonian methods
NASA Astrophysics Data System (ADS)
Hiller, J. R.
2016-09-01
We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli-Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, ϕ4 theory, ordinary Yukawa theory, supersymmetric Yang-Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations.
NASA Astrophysics Data System (ADS)
Secchi, Andrea; Rontani, Massimo
2012-03-01
We demonstrate that the profile of the space-resolved spectral function at finite temperature provides a signature of Wigner localization for electrons in quantum wires and semiconducting carbon nanotubes. Our numerical evidence is based on the exact diagonalization of the microscopic Hamiltonian of few particles interacting in gate-defined quantum dots. The minimal temperature required to suppress residual exchange effects in the spectral function image of (nanotubes) quantum wires lies in the (sub)kelvin range.
One-dimensional Coulomb problem in Dirac materials
NASA Astrophysics Data System (ADS)
Downing, C. A.; Portnoi, M. E.
2014-11-01
We investigate the one-dimensional Coulomb potential with application to a class of quasirelativistic systems, so-called Dirac-Weyl materials, described by matrix Hamiltonians. We obtain the exact solution of the shifted and truncated Coulomb problems, with the wave functions expressed in terms of special functions (namely, Whittaker functions), while the energy spectrum must be determined via solutions to transcendental equations. Most notably, there are critical band gaps below which certain low-lying quantum states are missing in a manifestation of atomic collapse.
Universal Adiabatic Quantum Computing using Double Quantum Dot Charge Qubits
NASA Astrophysics Data System (ADS)
Ryan-Anderson, Ciaran; Jacobson, N. Tobias; Landahl, Andrew
Adiabatic quantum computation (AQC) provides one path to achieving universal quantum computing in experiment. Computation in the AQC model occurs by starting with an easy to prepare groundstate of some simple Hamiltonian and then adiabatically evolving the Hamiltonian to obtain the groundstate of a final, more complex Hamiltonian. It has been shown that the circuit model can be mapped to AQC Hamiltonians and, thus, AQC can be made universal. Further, these Hamiltonians can be made planar and two-local. We propose using double quantum dot charge qubits (DQDs) to implement such universal AQC Hamiltonians. However, the geometry and restricted set of interactions of DQDs make the application of even these 2-local planar Hamiltonians non-trivial. We present a construction tailored to DQDs to overcome the geometric and interaction contraints and allow for universal AQC. These constraints are dealt with in this construction by making use of perturbation gadgets, which introduce ancillary qubits to mediate interactions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Weare, Jonathan; Dinner, Aaron R.; Roux, Benoît
2016-01-01
A multiple time-step integrator based on a dual Hamiltonian and a hybrid method combining molecular dynamics (MD) and Monte Carlo (MC) is proposed to sample systems in the canonical ensemble. The Dual Hamiltonian Multiple Time-Step (DHMTS) algorithm is based on two similar Hamiltonians: a computationally expensive one that serves as a reference and a computationally inexpensive one to which the workload is shifted. The central assumption is that the difference between the two Hamiltonians is slowly varying. Earlier work has shown that such dual Hamiltonian multiple time-step schemes effectively precondition nonlinear differential equations for dynamics by reformulating them into a recursive root finding problem that can be solved by propagating a correction term through an internal loop, analogous to RESPA. Of special interest in the present context, a hybrid MD-MC version of the DHMTS algorithm is introduced to enforce detailed balance via a Metropolis acceptance criterion and ensure consistency with the Boltzmann distribution. The Metropolis criterion suppresses the discretization errors normally associated with the propagation according to the computationally inexpensive Hamiltonian, treating the discretization error as an external work. Illustrative tests are carried out to demonstrate the effectiveness of the method. PMID:26918826
An integrable family of Monge-Ampère equations and their multi-Hamiltonian structure
NASA Astrophysics Data System (ADS)
Nutku, Y.; Sarioǧlu, Ö.
1993-02-01
We have identified a completely integrable family of Monge-Ampère equations through an examination of their Hamiltonian structure. Starting with a variational formulation of the Monge-Ampère equations we have constructed the first Hamiltonian operator through an application of Dirac's theory of constraints. The completely integrable class of Monge-Ampère equations are then obtained by solving the Jacobi identities for a sufficiently general form of the second Hamiltonian operator that is compatible with the first.
Hamiltonian structure of Dubrovin's equation of associativity in 2-d topological field theory
NASA Astrophysics Data System (ADS)
Galvão, C. A. P.; Nutku, Y.
1996-12-01
A third order Monge-Ampère type equation of associativity that Dubrovin has obtained in 2-d topological field theory is formulated in terms of a variational principle subject to second class constraints. Using Dirac's theory of constraints this degenerate Lagrangian system is cast into Hamiltonian form and the Hamiltonian operator is obtained from the Dirac bracket. There is a new type of Kac-Moody algebra that corresponds to this Hamiltonian operator. In particular, it is not a W-algebra.
Wilson, David G [Tijeras, NM; Robinett, III, Rush D.
2012-02-21
A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.
Green's function calculations for semi-infinite carbon nanotubes
NASA Astrophysics Data System (ADS)
John, D. L.; Pulfrey, D. L.
2006-02-01
In the modeling of nanoscale electronic devices, the non-equilibrium Green's function technique is gaining increasing popularity. One complication in this method is the need for computation of the self-energy functions that account for the interactions between the active portion of a device and its leads. In the one-dimensional case, these functions may be computed analytically. In higher dimensions, a numerical approach is required. In this work, we generalize earlier methods that were developed for tight-binding Hamiltonians, and present results for the case of a carbon nanotube.
Off-diagonal series expansion for quantum partition functions
NASA Astrophysics Data System (ADS)
Hen, Itay
2018-05-01
We derive an integral-free thermodynamic perturbation series expansion for quantum partition functions which enables an analytical term-by-term calculation of the series. The expansion is carried out around the partition function of the classical component of the Hamiltonian with the expansion parameter being the strength of the off-diagonal, or quantum, portion. To demonstrate the usefulness of the technique we analytically compute to third order the partition functions of the 1D Ising model with longitudinal and transverse fields, and the quantum 1D Heisenberg model.
Hamiltonian structure of the guiding center plasma model
NASA Astrophysics Data System (ADS)
Burby, J. W.; Sengupta, W.
2018-02-01
The guiding center plasma model (also known as kinetic MHD) is a rigorous sub-cyclotron-frequency closure of the Vlasov-Maxwell system. While the model has been known for decades and it plays a fundamental role in describing the physics of strongly magnetized collisionless plasmas, its Hamiltonian structure has never been found. We provide explicit expressions for the model's Poisson bracket and Hamiltonian and thereby prove that the model is an infinite-dimensional Hamiltonian system. The bracket is derived in a manner which ensures that it satisfies the Jacobi identity. We also report on several previously unknown circulation theorems satisfied by the guiding center plasma model. Without knowledge of the Hamiltonian structure, these circulation theorems would be difficult to guess.
NASA Astrophysics Data System (ADS)
Rajak, Atanu; Dutta, Amit
2014-04-01
We consider the temporal evolution of a zero-energy edge Majorana of a spinless p-wave superconducting chain following a sudden change of a parameter of the Hamiltonian. Starting from one of the topological phases that has an edge Majorana, the system is suddenly driven to the other topological phase or to the (topologically) trivial phases and to the quantum critical points (QCPs) separating these phases. The survival probability of the initial edge Majorana as a function of time is studied following the quench. Interestingly when the chain is quenched to the QCP, we find a nearly perfect oscillation of the survival probability, indicating that the Majorana travels back and forth between two ends, with a time period that scales with the system size. We also generalize to the situation when there is a next-nearest-neighbor hopping in a superconducting chain and there results in a pair of edge Majorana at each end of the chain in the topological phase. We show that the frequency of oscillation of the survival probability gets doubled in this case. We also perform an instantaneous quenching of the Hamiltonian (with two Majorana modes at each end of the chain) to an another Hamiltonian which has only one Majorana mode in equilibrium; the MSP shows oscillations as a function of time with a noticeable decay in the amplitude. On the other hand for a quenching which is reverse to the previous one, the MSP decays rapidly and stays close to zero with fluctuations in amplitude.
Universal programmable quantum circuit schemes to emulate an operator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daskin, Anmer; Grama, Ananth; Kollias, Giorgos
Unlike fixed designs, programmable circuit designs support an infinite number of operators. The functionality of a programmable circuit can be altered by simply changing the angle values of the rotation gates in the circuit. Here, we present a new quantum circuit design technique resulting in two general programmable circuit schemes. The circuit schemes can be used to simulate any given operator by setting the angle values in the circuit. This provides a fixed circuit design whose angles are determined from the elements of the given matrix-which can be non-unitary-in an efficient way. We also give both the classical and quantummore » complexity analysis for these circuits and show that the circuits require a few classical computations. For the electronic structure simulation on a quantum computer, one has to perform the following steps: prepare the initial wave function of the system; present the evolution operator U=e{sup -iHt} for a given atomic and molecular Hamiltonian H in terms of quantum gates array and apply the phase estimation algorithm to find the energy eigenvalues. Thus, in the circuit model of quantum computing for quantum chemistry, a crucial step is presenting the evolution operator for the atomic and molecular Hamiltonians in terms of quantum gate arrays. Since the presented circuit designs are independent from the matrix decomposition techniques and the global optimization processes used to find quantum circuits for a given operator, high accuracy simulations can be done for the unitary propagators of molecular Hamiltonians on quantum computers. As an example, we show how to build the circuit design for the hydrogen molecule.« less
Local Hamiltonians for maximally multipartite-entangled states
NASA Astrophysics Data System (ADS)
Facchi, P.; Florio, G.; Pascazio, S.; Pepe, F.
2010-10-01
We study the conditions for obtaining maximally multipartite-entangled states (MMESs) as nondegenerate eigenstates of Hamiltonians that involve only short-range interactions. We investigate small-size systems (with a number of qubits ranging from 3 to 5) and show some example Hamiltonians with MMESs as eigenstates.
Non-stoquastic Hamiltonians in quantum annealing via geometric phases
NASA Astrophysics Data System (ADS)
Vinci, Walter; Lidar, Daniel A.
2017-09-01
We argue that a complete description of quantum annealing implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan geometric phase that arises when the system Hamiltonian changes during the anneal. We show that this geometric effect leads to the appearance of non-stoquasticity in the effective quantum Ising Hamiltonians that are typically used to describe quantum annealing with flux qubits. We explicitly demonstrate the effect of this geometric non-stoquasticity when quantum annealing is performed with a system of one and two coupled flux qubits. The realization of non-stoquastic Hamiltonians has important implications from a computational complexity perspective, since it is believed that in many cases quantum annealing with stoquastic Hamiltonians can be efficiently simulated via classical algorithms such as Quantum Monte Carlo. It is well known that the direct implementation of non-stoquastic Hamiltonians with flux qubits is particularly challenging. Our results suggest an alternative path for the implementation of non-stoquasticity via geometric phases that can be exploited for computational purposes.
Nonunitary quantum computation in the ground space of local Hamiltonians
NASA Astrophysics Data System (ADS)
Usher, Naïri; Hoban, Matty J.; Browne, Dan E.
2017-09-01
A central result in the study of quantum Hamiltonian complexity is that the k -local Hamiltonian problem is quantum-Merlin-Arthur-complete. In that problem, we must decide if the lowest eigenvalue of a Hamiltonian is bounded below some value, or above another, promised one of these is true. Given the ground state of the Hamiltonian, a quantum computer can determine this question, even if the ground state itself may not be efficiently quantum preparable. Kitaev's proof of QMA-completeness encodes a unitary quantum circuit in QMA into the ground space of a Hamiltonian. However, we now have quantum computing models based on measurement instead of unitary evolution; furthermore, we can use postselected measurement as an additional computational tool. In this work, we generalize Kitaev's construction to allow for nonunitary evolution including postselection. Furthermore, we consider a type of postselection under which the construction is consistent, which we call tame postselection. We consider the computational complexity consequences of this construction and then consider how the probability of an event upon which we are postselecting affects the gap between the ground-state energy and the energy of the first excited state of its corresponding Hamiltonian. We provide numerical evidence that the two are not immediately related by giving a family of circuits where the probability of an event upon which we postselect is exponentially small, but the gap in the energy levels of the Hamiltonian decreases as a polynomial.
Bi-Hamiltonian Structure in 2-d Field Theory
NASA Astrophysics Data System (ADS)
Ferapontov, E. V.; Galvão, C. A. P.; Mokhov, O. I.; Nutku, Y.
We exhibit the bi-Hamiltonian structure of the equations of associativity (Witten-Dijkgraaf-Verlinde-Verlinde-Dubrovin equations) in 2-d topological field theory, which reduce to a single equation of Monge-Ampère type $ fttt}=f{xxt;;;;;2 - fxxx}f{xtt ,$ in the case of three primary fields. The first Hamiltonian structure of this equation is based on its representation as a 3-component system of hydrodynamic type and the second Hamiltonian structure follows from its formulation in terms of a variational principle with a degenerate Lagrangian.
Uncertainty relation for non-Hamiltonian quantum systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasov, Vasily E.
2013-01-15
General forms of uncertainty relations for quantum observables of non-Hamiltonian quantum systems are considered. Special cases of uncertainty relations are discussed. The uncertainty relations for non-Hamiltonian quantum systems are considered in the Schroedinger-Robertson form since it allows us to take into account Lie-Jordan algebra of quantum observables. In uncertainty relations, the time dependence of quantum observables and the properties of this dependence are discussed. We take into account that a time evolution of observables of a non-Hamiltonian quantum system is not an endomorphism with respect to Lie, Jordan, and associative multiplications.
Simple model for deriving sdg interacting boson model Hamiltonians: 150Nd example
NASA Astrophysics Data System (ADS)
Devi, Y. D.; Kota, V. K. B.
1993-07-01
A simple and yet useful model for deriving sdg interacting boson model (IBM) Hamiltonians is to assume that single-boson energies derive from identical particle (pp and nn) interactions and proton, neutron single-particle energies, and that the two-body matrix elements for bosons derive from pn interaction, with an IBM-2 to IBM-1 projection of the resulting p-n sdg IBM Hamiltonian. The applicability of this model in generating sdg IBM Hamiltonians is demonstrated, using a single-j-shell Otsuka-Arima-Iachello mapping of the quadrupole and hexadecupole operators in proton and neutron spaces separately and constructing a quadrupole-quadrupole plus hexadecupole-hexadecupole Hamiltonian in the analysis of the spectra, B(E2)'s, and E4 strength distribution in the example of 150Nd.
Hamiltonian vs Lagrangian Embedding of a Massive Spin-One Theory Involving Two-Form Field
NASA Astrophysics Data System (ADS)
Harikumar, E.; Sivakumar, M.
We consider the Hamiltonian and Lagrangian embedding of a first-order, massive spin-one, gauge noninvariant theory involving antisymmetric tensor field. We apply the BFV-BRST generalized canonical approach to convert the model to a first class system and construct nilpotent BFV-BRST charge and a unitarizing Hamiltonian. The canonical analysis of the Stückelberg formulation of this model is presented. We bring out the contrasting feature in the constraint structure, specifically with respect to the reducibility aspect, of the Hamiltonian and the Lagrangian embedded model. We show that to obtain manifestly covariant Stückelberg Lagrangian from the BFV embedded Hamiltonian, phase space has to be further enlarged and show how the reducible gauge structure emerges in the embedded model.
Singular reduction of resonant Hamiltonians
NASA Astrophysics Data System (ADS)
Meyer, Kenneth R.; Palacián, Jesús F.; Yanguas, Patricia
2018-06-01
We investigate the dynamics of resonant Hamiltonians with n degrees of freedom to which we attach a small perturbation. Our study is based on the geometric interpretation of singular reduction theory. The flow of the Hamiltonian vector field is reconstructed from the cross sections corresponding to an approximation of this vector field in an energy surface. This approximate system is also built using normal forms and applying reduction theory obtaining the reduced Hamiltonian that is defined on the orbit space. Generically, the reduction is of singular character and we classify the singularities in the orbit space, getting three different types of singular points. A critical point of the reduced Hamiltonian corresponds to a family of periodic solutions in the full system whose characteristic multipliers are approximated accordingly to the nature of the critical point.
Samsonov, Boris F
2013-04-28
One of the simplest non-Hermitian Hamiltonians, first proposed by Schwartz in 1960, that may possess a spectral singularity is analysed from the point of view of the non-Hermitian generalization of quantum mechanics. It is shown that the η operator, being a second-order differential operator, has supersymmetric structure. Asymptotic behaviour of the eigenfunctions of a Hermitian Hamiltonian equivalent to the given non-Hermitian one is found. As a result, the corresponding scattering matrix and cross section are given explicitly. It is demonstrated that the possible presence of a spectral singularity in the spectrum of the non-Hermitian Hamiltonian may be detected as a resonance in the scattering cross section of its Hermitian counterpart. Nevertheless, just at the singular point, the equivalent Hermitian Hamiltonian becomes undetermined.
Quasi-hamiltonian quotients as disjoint unions of symplectic manifolds
NASA Astrophysics Data System (ADS)
Schaffhauser, Florent
2007-08-01
The main result of this paper is Theorem 2.12 which says that the quotient μ-1({1})/U associated to a quasi-hamiltonian space (M, ω, μ: M → U) has a symplectic structure even when 1 is not a regular value of the momentum map μ. Namely, it is a disjoint union of symplectic manifolds of possibly different dimensions, which generalizes the result of Alekseev, Malkin and Meinrenken in [AMM98]. We illustrate this theorem with the example of representation spaces of surface groups. As an intermediary step, we give a new class of examples of quasi-hamiltonian spaces: the isotropy submanifold MK whose points are the points of M with isotropy group K ⊂ U. The notion of quasi-hamiltonian space was introduced by Alekseev, Malkin and Meinrenken in their paper [AMM98]. The main motivation for it was the existence, under some regularity assumptions, of a symplectic structure on the associated quasi-hamiltonian quotient. Throughout their paper, the analogy with usual hamiltonian spaces is often used as a guiding principle, replacing Lie-algebra-valued momentum maps with Lie-group-valued momentum maps. In the hamiltonian setting, when the usual regularity assumptions on the group action or the momentum map are dropped, Lerman and Sjamaar showed in [LS91] that the quotient associated to a hamiltonian space carries a stratified symplectic structure. In particular, this quotient space is a disjoint union of symplectic manifolds. In this paper, we prove an analogous result for quasi-hamiltonian quotients. More precisely, we show that for any quasi-hamiltonian space (M, ω, μ: M → U), the associated quotient M//U := μ-1({1})/U is a disjoint union of symplectic manifolds (Theorem 2.12): [ mu^{-1}(\\{1\\})/U = bigsqcup_{jin J} (mu^{-1}(\\{1\\})\\cap M_{K_j})/L_{K_j} . ] Here Kj denotes a closed subgroup of U and M
Finite BRST-BFV transformations for dynamical systems with second-class constraints
NASA Astrophysics Data System (ADS)
Batalin, Igor A.; Lavrov, Peter M.; Tyutin, Igor V.
2015-06-01
We study finite field-dependent BRST-BFV transformations for dynamical systems with first- and second-class constraints within the generalized Hamiltonian formalism. We find explicitly their Jacobians and the form of a solution to the compensation equation necessary for generating an arbitrary finite change of gauge-fixing functionals in the path integral.
Computational Chemistry Modeling of the Atmospheric Fate of Toxic Industrial Compounds (TICs)
2007-06-01
1+G(3df,2p) number of atoms and number of basis functions) of the (LRG) compounds under study precludes the use of coupled 0 Zero Point Energy ( ZPE ...overlap (NDDO) The extrapolated energy = E(QCI) + E(LRG) - Hamiltonian that is reparameterized to accurately E(SML) + ZPE reproduce coupled cluster
Optical absorption in disordered monolayer molybdenum disulfide
NASA Astrophysics Data System (ADS)
Ekuma, C. E.; Gunlycke, D.
2018-05-01
We explore the combined impact of sulfur vacancies and electronic interactions on the optical properties of monolayer MoS2. First, we present a generalized Anderson-Hubbard Hamiltonian that accounts for both randomly distributed sulfur vacancies and the presence of dielectric screening within the material. Second, we parametrize this energy-dependent Hamiltonian from first-principles calculations based on density functional theory and the Green's function and screened Coulomb (GW) method. Third, we apply a first-principles-based many-body typical medium method to determine the single-particle electronic structure. Fourth, we solve the Bethe-Salpeter equation to obtain the charge susceptibility χ with its imaginary part being related to the absorbance A . Our results show that an increased vacancy concentration leads to decreased absorption both in the band continuum and from exciton states within the band gap. We also observe increased absorption below the band-gap threshold and present an expression, which describes Lifshitz tails, in excellent qualitative agreement with our numerical calculations. This latter increased absorption in the 1.0 -2.5 eV range makes defect engineering of potential interest for solar cell applications.
NASA Astrophysics Data System (ADS)
Hagiwara, Yohsuke; Ohta, Takehiro; Tateno, Masaru
2009-02-01
An interface program connecting a quantum mechanics (QM) calculation engine, GAMESS, and a molecular mechanics (MM) calculation engine, AMBER, has been developed for QM/MM hybrid calculations. A protein-DNA complex is used as a test system to investigate the following two types of QM/MM schemes. In a 'subtractive' scheme, electrostatic interactions between QM/MM regions are truncated in QM calculations; in an 'additive' scheme, long-range electrostatic interactions within a cut-off distance from QM regions are introduced into one-electron integration terms of a QM Hamiltonian. In these calculations, 338 atoms are assigned as QM atoms using Hartree-Fock (HF)/density functional theory (DFT) hybrid all-electron calculations. By comparing the results of the additive and subtractive schemes, it is found that electronic structures are perturbed significantly by the introduction of MM partial charges surrounding QM regions, suggesting that biological processes occurring in functional sites are modulated by the surrounding structures. This also indicates that the effects of long-range electrostatic interactions involved in the QM Hamiltonian are crucial for accurate descriptions of electronic structures of biological macromolecules.
NASA Astrophysics Data System (ADS)
Bruhwiler, D. L.; Cary, J. R.; Shasharina, S.
1998-04-01
The MAPA accelerator modeling code symplectically advances the full nonlinear map, tangent map and tangent map derivative through all accelerator elements. The tangent map and its derivative are nonlinear generalizations of Browns first- and second-order matrices(K. Brown, SLAC-75, Rev. 4 (1982), pp. 107-118.), and they are valid even near the edges of the dynamic aperture, which may be beyond the radius of convergence for a truncated Taylor series. In order to avoid truncation of the map and its derivatives, the Hamiltonian is split into pieces for which the map can be obtained analytically. Yoshidas method(H. Yoshida, Phys. Lett. A 150 (1990), pp. 262-268.) is then used to obtain a symplectic approximation to the map, while the tangent map and its derivative are appropriately composed at each step to obtain them with equal accuracy. We discuss our splitting of the quadrupole and combined-function dipole Hamiltonians and show that typically few steps are required for a high-energy accelerator.
Strain distribution and band structure of InAs/GaAs quantum ring superlattice
NASA Astrophysics Data System (ADS)
Mughnetsyan, Vram; Kirakosyan, Albert
2017-12-01
The elastic strain distribution and the band structure of InAs/GaAs one-layer quantum ring superlattice with square symmetry has been considered in this work. The Green's function formalism based on the method of inclusions has been implied to calculate the components of the strain tensor, while the combination of Green's function method with the Fourier transformation to momentum space in Pikus-Bir Hamiltonian has been used for obtaining the miniband energy dispersion surfaces via the exact diagonalization procedure. The dependencies of the strain tensor components on spatial coordinates are compared with ones for single quantum ring and are in good agreement with previously obtained results for cylindrical quantum disks. It is shown that strain significantly affects the miniband structure of the superlattice and has contribution to the degeneracy lifting effect due to heavy hole-light hole coupling. The demonstrated method is simple and provides reasonable results for comparatively small Hamiltonian matrix. The obtained results may be useful for further investigation and construction of novel devices based on quantum ring superlattices.
Regression relation for pure quantum states and its implications for efficient computing.
Elsayed, Tarek A; Fine, Boris V
2013-02-15
We obtain a modified version of the Onsager regression relation for the expectation values of quantum-mechanical operators in pure quantum states of isolated many-body quantum systems. We use the insights gained from this relation to show that high-temperature time correlation functions in many-body quantum systems can be controllably computed without complete diagonalization of the Hamiltonians, using instead the direct integration of the Schrödinger equation for randomly sampled pure states. This method is also applicable to quantum quenches and other situations describable by time-dependent many-body Hamiltonians. The method implies exponential reduction of the computer memory requirement in comparison with the complete diagonalization. We illustrate the method by numerically computing infinite-temperature correlation functions for translationally invariant Heisenberg chains of up to 29 spins 1/2. Thereby, we also test the spin diffusion hypothesis and find it in a satisfactory agreement with the numerical results. Both the derivation of the modified regression relation and the justification of the computational method are based on the notion of quantum typicality.
NASA Astrophysics Data System (ADS)
Pala, M. G.; Esseni, D.
2018-03-01
This paper presents the theory, implementation, and application of a quantum transport modeling approach based on the nonequilibrium Green's function formalism and a full-band empirical pseudopotential Hamiltonian. We here propose to employ a hybrid real-space/plane-wave basis that results in a significant reduction of the computational complexity compared to a full plane-wave basis. To this purpose, we provide a theoretical formulation in the hybrid basis of the quantum confinement, the self-energies of the leads, and the coupling between the device and the leads. After discussing the theory and the implementation of the new simulation methodology, we report results for complete, self-consistent simulations of different electron devices, including a silicon Esaki diode, a thin-body silicon field effect transistor (FET), and a germanium tunnel FET. The simulated transistors have technologically relevant geometrical features with a semiconductor film thickness of about 4 nm and a channel length ranging from 10 to 17 nm. We believe that the newly proposed formalism may find applications also in transport models based on ab initio Hamiltonians, as those employed in density functional theory methods.
Solitons, τ-functions and hamiltonian reduction for non-Abelian conformal affine Toda theories
NASA Astrophysics Data System (ADS)
Ferreira, L. A.; Miramontes, J. Luis; Guillén, Joaquín Sánchez
1995-02-01
We consider the Hamiltonian reduction of the "two-loop" Wess-Zumino-Novikov-Witten model (WZNW) based on an untwisted affine Kac-Moody algebra G. The resulting reduced models, called Generalized Non-Abelian Conformal Affine Toda (G-CAT), are conformally invariant and a wide class of them possesses soliton solutions; these models constitute non-Abelian generalizations of the conformal affine Toda models. Their general solution is constructed by the Leznov-Saveliev method. Moreover, the dressing transformations leading to the solutions in the orbit of the vacuum are considered in detail, as well as the τ-functions, which are defined for any integrable highest weight representation of G, irrespectively of its particular realization. When the conformal symmetry is spontaneously broken, the G-CAT model becomes a generalized affine Toda model, whose soliton solutions are constructed. Their masses are obtained exploring the spontaneous breakdown of the conformal symmetry, and their relation to the fundamental particle masses is discussed. We also introduce what we call the two-loop Virasoro algebra, describing extended symmetries of the two-loop WZNW models.
NASA Astrophysics Data System (ADS)
Tubman, Norm; Whaley, Birgitta
The development of exponential scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, allows exact diagonalization through stochastically sampling of determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, together with a stochastic projected wave function, which are used to explore the important parts of Hilbert space. However, a stochastic representation of the wave function is not required to search Hilbert space efficiently and new deterministic approaches have recently been shown to efficiently find the important parts of determinant space. We shall discuss the technique of Adaptive Sampling Configuration Interaction (ASCI) and the related heat-bath Configuration Interaction approach for ground state and excited state simulations. We will present several applications for strongly correlated Hamiltonians. This work was supported through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences.
Spin Relaxation and Manipulation in Spin-orbit Qubits
NASA Astrophysics Data System (ADS)
Borhani, Massoud; Hu, Xuedong
2012-02-01
We derive a generalized form of the Electric Dipole Spin Resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g-tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD). Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.
Birkhoff Normal Form for Some Nonlinear PDEs
NASA Astrophysics Data System (ADS)
Bambusi, Dario
We consider the problem of extending to PDEs Birkhoff normal form theorem on Hamiltonian systems close to nonresonant elliptic equilibria. As a model problem we take the nonlinear wave equation
A weak Hamiltonian finite element method for optimal guidance of an advanced launch vehicle
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Calise, Anthony J.; Bless, Robert R.; Leung, Martin
1989-01-01
A temporal finite-element method based on a mixed form of the Hamiltonian weak principle is presented for optimal control problems. The mixed form of this principle contains both states and costates as primary variables, which are expanded in terms of nodal values and simple shape functions. Time derivatives of the states and costates do not appear in the governing variational equation; the only quantities whose time derivatives appear therein are virtual states and virtual costates. Numerical results are presented for an elementary trajectory optimization problem; they show very good agreement with the exact solution along with excellent computational efficiency and self-starting capability. The feasibility of this approach for real-time guidance applications is evaluated. A simplified model for an advanced launch vehicle application that is suitable for finite-element solution is presented.
Cyclotomic Gaudin Models: Construction and Bethe Ansatz
NASA Astrophysics Data System (ADS)
Vicedo, Benoît; Young, Charles
2016-05-01
To any finite-dimensional simple Lie algebra g and automorphism {σ: gto g we associate a cyclotomic Gaudin algebra. This is a large commutative subalgebra of {U(g)^{⊗ N}} generated by a hierarchy of cyclotomic Gaudin Hamiltonians. It reduces to the Gaudin algebra in the special case {σ =id}. We go on to construct joint eigenvectors and their eigenvalues for this hierarchy of cyclotomic Gaudin Hamiltonians, in the case of a spin chain consisting of a tensor product of Verma modules. To do so we generalize an approach to the Bethe ansatz due to Feigin, Frenkel and Reshetikhin involving vertex algebras and the Wakimoto construction. As part of this construction, we make use of a theorem concerning cyclotomic coinvariants, which we prove in a companion paper. As a byproduct, we obtain a cyclotomic generalization of the Schechtman-Varchenko formula for the weight function.
Quantum Hall effect in graphene with interface-induced spin-orbit coupling
NASA Astrophysics Data System (ADS)
Cysne, Tarik P.; Garcia, Jose H.; Rocha, Alexandre R.; Rappoport, Tatiana G.
2018-02-01
We consider an effective model for graphene with interface-induced spin-orbit coupling and calculate the quantum Hall effect in the low-energy limit. We perform a systematic analysis of the contribution of the different terms of the effective Hamiltonian to the quantum Hall effect (QHE). By analyzing the spin splitting of the quantum Hall states as a function of magnetic field and gate voltage, we obtain different scaling laws that can be used to characterize the spin-orbit coupling in experiments. Furthermore, we employ a real-space quantum transport approach to calculate the quantum Hall conductivity and investigate the robustness of the QHE to disorder introduced by hydrogen impurities. For that purpose, we combine first-principles calculations and a genetic algorithm strategy to obtain a graphene-only Hamiltonian that models the impurity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalay, Berfin; Demiralp, Metin
2014-10-06
The expectation value definitions over an extended space from the considered Hilbert space of the system under consideration is given in another paper of the second author in this symposium. There, in that paper, the conceptuality rather than specification is emphasized on. This work uses that conceptuality to investigate the time evolutions of the position related operators' expectation values not in its standard meaning but rather in a new version of the definition over not the original Hilbert space but in the space obtained by extensions via introducing the images of the given initial wave packet under the positive integermore » powers of the system Hamiltonian. These images may not be residing in the same space of the initial wave packet when certain singularities appear in the structure of the system Hamiltonian. This may break down the existence of the integrals in the definitions of the expectation values. The cure is the use of basis functions in the abovementioned extended space and the sandwiching of the target operator whose expectation value is under questioning by an appropriately chosen operator guaranteeing the existence of the relevant integrals. Work specifically focuses on the hydrogen-like quantum systems whose Hamiltonians contain a polar singularity at the origin.« less
Detecting level crossings without solving the Hamiltonian. II. Applications to atoms and molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, M.; Raman, C.
2007-03-15
A number of interesting phenomena occur at points where the energy levels of an atom or a molecule (anti) cross as a function of some parameter such as an external field. In a previous paper [M. Bhattacharya and C. Raman, Phys. Rev. Lett. 97, 140405 (2006)] we have outlined powerful mathematical techniques useful in identifying the parameter values at which such (avoided) crossings occur. In the accompanying article [M. Bhattacharya and C. Raman, Phys. Rev A 75, 033405 (2007)] we have developed the mathematical basis of these algebraic techniques in some detail. In this article we apply these level-crossing methodsmore » to the spectra of atoms and molecules in a magnetic field. In the case of atoms the final result is the derivation of a class of invariants of the Breit-Rabi Hamiltonian of magnetic resonance. These invariants completely describe the parametric symmetries of the Hamiltonian. In the case of molecules we present an indicator which can tell when the Born-Oppenheimer approximation breaks down without using any information about the molecular potentials other than the fact that they are real. We frame our discussion in the context of Feshbach resonances in the atom-pair {sup 23}Na-{sup 85}Rb which are of current interest.« less
Franck-Condon fingerprinting of vibration-tunneling spectra.
Berrios, Eduardo; Sundaradevan, Praveen; Gruebele, Martin
2013-08-15
We introduce Franck-Condon fingerprinting as a method for assigning complex vibration-tunneling spectra. The B̃ state of thiophosgene (SCCl2) serves as our prototype. Despite several attempts, assignment of its excitation spectrum has proved difficult because of near-degenerate vibrational frequencies, Fermi resonance between the C-Cl stretching mode and the Cl-C-Cl bending mode, and large tunneling splittings due to the out-of-plane umbrella mode. Hence, the spectrum has never been fitted to an effective Hamiltonian. Our assignment approach replaces precise frequency information with intensity information, eliminating the need for double resonance spectroscopy or combination differences, neither of which have yielded a full assignment thus far. The dispersed fluorescence spectrum of each unknown vibration-tunneling state images its character onto known vibrational progressions in the ground state. By using this Franck-Condon fingerprint, we were able to determine the predominant character of several vibration-tunneling states and assign them; in other cases, the fingerprinting revealed that the states are strongly mixed and cannot be characterized with a simple normal mode assignment. The assigned transitions from vibration-tunneling wave functions that were not too strongly mixed could be fitted within measurement uncertainty by an effective vibration-tunneling Hamiltonian. A fit of all observed vibration-tunneling states will require a full resonance-tunneling Hamiltonian.
Directed Abelian algebras and their application to stochastic models.
Alcaraz, F C; Rittenberg, V
2008-10-01
With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma_(tau)=32 ). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma_(tau)=1.780+/-0.005 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bravetti, Alessandro, E-mail: alessandro.bravetti@iimas.unam.mx; Cruz, Hans, E-mail: hans@ciencias.unam.mx; Tapias, Diego, E-mail: diego.tapias@nucleares.unam.mx
In this work we introduce contact Hamiltonian mechanics, an extension of symplectic Hamiltonian mechanics, and show that it is a natural candidate for a geometric description of non-dissipative and dissipative systems. For this purpose we review in detail the major features of standard symplectic Hamiltonian dynamics and show that all of them can be generalized to the contact case.
Multi-Hamiltonian structure of the Born-Infeld equation
NASA Astrophysics Data System (ADS)
Arik, Metin; Neyzi, Fahrünisa; Nutku, Yavuz; Olver, Peter J.; Verosky, John M.
1989-06-01
The multi-Hamiltonian structure, conservation laws, and higher order symmetries for the Born-Infeld equation are exhibited. A new transformation of the Born-Infeld equation to the equations of a Chaplygin gas is presented and explored. The Born-Infeld equation is distinguished among two-dimensional hyperbolic systems by its wealth of such multi-Hamiltonian structures.
Boson Hamiltonians and stochasticity for the vorticity equation
NASA Technical Reports Server (NTRS)
Shen, Hubert H.
1990-01-01
The evolution of the vorticity in time for two-dimensional inviscid flow and in Lagrangian time for three-dimensional viscous flow is written in Hamiltonian form by introducing Bose operators. The addition of the viscous and convective terms, respectively, leads to an interpretation of the Hamiltonian contribution to the evolution as Langevin noise.
A Synthetical Two-Component Model with Peakon Solutions: One More Bi-Hamiltonian Case
NASA Astrophysics Data System (ADS)
Mengxia, Zhang; Xiaomin, Yang
2018-05-01
Compatible pairs of Hamiltonian operators for the synthetical two-component model of Xia, Qiao, and Zhou are derived systematically by means of the spectral gradient method. A new two-component system, which is bi-Hamiltonian, is presented. For this new system, the construction of its peakon solutions is considered.
On time-dependent Hamiltonian realizations of planar and nonplanar systems
NASA Astrophysics Data System (ADS)
Esen, Oğul; Guha, Partha
2018-04-01
In this paper, we elucidate the key role played by the cosymplectic geometry in the theory of time dependent Hamiltonian systems in 2 D. We generalize the cosymplectic structures to time-dependent Nambu-Poisson Hamiltonian systems and corresponding Jacobi's last multiplier for 3 D systems. We illustrate our constructions with various examples.
Extension of the Kohn-Sham formulation of density functional theory to finite temperature
NASA Astrophysics Data System (ADS)
Gonis, A.; Däne, M.
2018-05-01
Based on Mermin's extension of the Hohenberg and Kohn theorems to non-zero temperature, the Kohn-Sham formulation of density functional theory (KS-DFT) is generalized to finite temperature. We show that present formulations are inconsistent with Mermin's functional containing expressions, in particular describing the Coulomb energy, that defy derivation and are even in violation of rules of logical inference. More; current methodology is in violation of fundamental laws of both quantum and classical mechanics. Based on this feature, we demonstrate the impossibility of extending the KS formalism to finite temperature through the self-consistent solutions of the single-particle Schrödinger equation of T > 0. Guided by the form of Mermin's functional that depends on the eigenstates of a Hamiltonian, determined at T = 0, we base our extension of KS-DFT on the determination of the excited states of a non-interacting system at the zero of temperature. The resulting formulation is consistent with that of Mermin constructing the free energy at T > 0 in terms of the excited states of a non-interacting Hamiltonian (system) that, within the KS formalism, are described by Slater determinants. To determine the excited states at T = 0 use is made of the extension of the Hohenberg and Kohn theorems to excited states presented in previous work applied here to a non-interacting collection of replicas of a non-interacting N-particle system, whose ground state density is taken to match that of K non-interacting replicas of an interacting N-particle system at T = 0 . The formalism allows for an ever denser population of the excitation spectrum of a Hamiltonian, within the KS approximation. The form of the auxiliary potential, (Kohn-Sham potential), is formally identical to that in the ground state formalism with the contribution of the Coulomb energy provided by the derivative of the Coulomb energy in all excited states taken into account. Once the excited states are determined, the minimum of the free energy within the KS formalism follows immediately in the form of Mermin's functional, but with the exact excited states in that functional represented by Slater determinants obtained through self-consistency conditions at the zero of temperature. It is emphasized that, in departure from all existing formulations, no self-consistency conditions are implemented at finite T; as we show, in fact, such formulations are rigorously blocked.
Quasi-additive estimates on the Hamiltonian for the one-dimensional long range Ising model
NASA Astrophysics Data System (ADS)
Littin, Jorge; Picco, Pierre
2017-07-01
In this work, we study the problem of getting quasi-additive bounds for the Hamiltonian of the long range Ising model, when the two-body interaction term decays proportionally to 1/d2 -α , α ∈(0,1 ) . We revisit the paper by Cassandro et al. [J. Math. Phys. 46, 053305 (2005)] where they extend to the case α ∈[0 ,ln3/ln2 -1 ) the result of the existence of a phase transition by using a Peierls argument given by Fröhlich and Spencer [Commun. Math. Phys. 84, 87-101 (1982)] for α =0 . The main arguments of Cassandro et al. [J. Math. Phys. 46, 053305 (2005)] are based in a quasi-additive decomposition of the Hamiltonian in terms of hierarchical structures called triangles and contours, which are related to the original definition of contours introduced by Fröhlich and Spencer [Commun. Math. Phys. 84, 87-101 (1982)]. In this work, we study the existence of a quasi-additive decomposition of the Hamiltonian in terms of the contours defined in the work of Cassandro et al. [J. Math. Phys. 46, 053305 (2005)]. The most relevant result obtained is Theorem 4.3 where we show that there is a quasi-additive decomposition for the Hamiltonian in terms of contours when α ∈[0,1 ) but not in terms of triangles. The fact that it cannot be a quasi-additive bound in terms of triangles lead to a very interesting maximization problem whose maximizer is related to a discrete Cantor set. As a consequence of the quasi-additive bounds, we prove that we can generalise the [Cassandro et al., J. Math. Phys. 46, 053305 (2005)] result, that is, a Peierls argument, to the whole interval α ∈[0,1 ) . We also state here the result of Cassandro et al. [Commun. Math. Phys. 327, 951-991 (2014)] about cluster expansions which implies that Theorem 2.4 that concerns interfaces and Theorem 2.5 that concerns n point truncated correlation functions in Cassandro et al. [Commun. Math. Phys. 327, 951-991 (2014)] are valid for all α ∈[0,1 ) instead of only α ∈[0 ,ln3/ln2 -1 ) .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galvao, C.A.; Nutku, Y.
1996-12-01
mA third order Monge-Amp{grave e}re type equation of associativity that Dubrovin has obtained in 2-d topological field theory is formulated in terms of a variational principle subject to second class constraints. Using Dirac{close_quote}s theory of constraints this degenerate Lagrangian system is cast into Hamiltonian form and the Hamiltonian operator is obtained from the Dirac bracket. There is a new type of Kac-Moody algebra that corresponds to this Hamiltonian operator. In particular, it is not a W-algebra. {copyright} {ital 1996 American Institute of Physics.}
On the Existence of Star Products on Quotient Spaces of Linear Hamiltonian Torus Actions
NASA Astrophysics Data System (ADS)
Herbig, Hans-Christian; Iyengar, Srikanth B.; Pflaum, Markus J.
2009-08-01
We discuss BFV deformation quantization (Bordemann et al. in A homological approach to singular reduction in deformation quantization, singularity theory, pp. 443-461. World Scientific, Hackensack, 2007) in the special case of a linear Hamiltonian torus action. In particular, we show that the Koszul complex on the moment map of an effective linear Hamiltonian torus action is acyclic. We rephrase the nonpositivity condition of Arms and Gotay (Adv Math 79(1):43-103, 1990) for linear Hamiltonian torus actions. It follows that reduced spaces of such actions admit continuous star products.
Flexible and experimentally feasible shortcut to quantum Zeno dynamic passage
NASA Astrophysics Data System (ADS)
Li, Wenlin; Zhang, Fengyang; Jiang, Yunfeng; Li, Chong; Song, Heshan
2016-10-01
We propose and discuss a theoretical scheme to speed up Zeno dynamic passage by an external acceleration Hamiltonian. This scheme is a flexible and experimentally feasible acceleration because the acceleration Hamiltonian does not adhere rigidly to an invariant relationship, whereas it can be a more general form ∑uj (t)Hcj. Here Hcj can be arbitrarily selected without any limitation, and therefore one can always construct an acceleration Hamiltonian by only using realizable Hcj. Applying our scheme, we finally design an experimentally feasible Hamiltonian as an example to speed up an entanglement preparation passage.
The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate.
Dridi, G; Julien, R; Hliwa, M; Joachim, C
2015-08-28
The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor.
On the paradoxical evolution of the number of photons in a new model of interpolating Hamiltonians
NASA Astrophysics Data System (ADS)
Valverde, Clodoaldo; Baseia, Basílio
2018-01-01
We introduce a new Hamiltonian model which interpolates between the Jaynes-Cummings model (JCM) and other types of such Hamiltonians. It works with two interpolating parameters, rather than one as traditional. Taking advantage of this greater degree of freedom, we can perform continuous interpolation between the various types of these Hamiltonians. As applications, we discuss a paradox raised in literature and compare the time evolution of the photon statistics obtained in the various interpolating models. The role played by the average excitation in these comparisons is also highlighted.
Diffusion on an Ising chain with kinks
NASA Astrophysics Data System (ADS)
Hamma, Alioscia; Mansour, Toufik; Severini, Simone
2009-07-01
We count the number of histories between the two degenerate minimum energy configurations of the Ising model on a chain, as a function of the length n and the number d of kinks that appear above the critical temperature. This is equivalent to count permutations of length n avoiding certain subsequences depending on d. We give explicit generating functions and compute the asymptotics. The setting considered has a role when describing dynamics induced by quantum Hamiltonians with deconfined quasi-particles.
NASA Astrophysics Data System (ADS)
Mousavi, Hamze; Jalilvand, Samira; Kurdestany, Jamshid Moradi; Grabowski, Marek
2017-10-01
The Kubo formula is used to extract the electrical conductivity (EC) of different diameters of doped zigzag carbon nanotubes and their corresponding unzipped armchair graphene nanoribbons, as a function of temperature and chemical potential, within the tight-binding Hamiltonian model and Green's functions approach. The results reveal more sensitivity to temperature for semiconducting systems in addition to a decrease in EC of all systems with increasing cross-sections.
Semiclassical approximations in the coherent-state representation
NASA Technical Reports Server (NTRS)
Kurchan, J.; Leboeuf, P.; Saraceno, M.
1989-01-01
The semiclassical limit of the stationary Schroedinger equation in the coherent-state representation is analyzed simultaneously for the groups W1, SU(2), and SU(1,1). A simple expression for the first two orders for the wave function and the associated semiclassical quantization rule is obtained if a definite choice for the classical Hamiltonian and expansion parameter is made. The behavior of the modulus of the wave function, which is a distribution function in a curved phase space, is studied for the three groups. The results are applied to the quantum triaxial rotor.
Quantum localization of classical mechanics
NASA Astrophysics Data System (ADS)
Batalin, Igor A.; Lavrov, Peter M.
2016-07-01
Quantum localization of classical mechanics within the BRST-BFV and BV (or field-antifield) quantization methods are studied. It is shown that a special choice of gauge fixing functions (or BRST-BFV charge) together with the unitary limit leads to Hamiltonian localization in the path integral of the BRST-BFV formalism. In turn, we find that a special choice of gauge fixing functions being proportional to extremals of an initial non-degenerate classical action together with a very special solution of the classical master equation result in Lagrangian localization in the partition function of the BV formalism.
Towards an exact factorization of the molecular wave function
NASA Astrophysics Data System (ADS)
Parashar, Shubham; Sajeev, Y.; Ghosh, Swapan K.
2015-10-01
An exact single-product factorisation of the molecular wave function for the timedependent Schrödinger equation is investigated by using an ansatz involving a phase factor. By using the Frenkel variational method, we obtain the Schrödinger equations for the electronic and nuclear wave functions. The concept of a potential energy surface (PES) is retained by introducing a modified Hamiltonian as suggested earlier by Cederbaum. The parameter ω in the phase factor is chosen such that the equations of motion retain the physically appealing Born- Oppenheimer-like form, and is therefore unique.
Haven, Emmanuel E
2015-01-01
In this paper we consider how two types of potential functions, the real and quantum potential can be shown to be of use in a social science context. The real potential function is a key ingredient in the Hamiltonian framework used in both classical and quantum mechanics. The quantum potential however emerges in a different way in quantum mechanics. In this paper we consider both potentials and we attempt to give them a social science interpretation within the setting of two applications.
Haven, Emmanuel E.
2015-01-01
In this paper we consider how two types of potential functions, the real and quantum potential can be shown to be of use in a social science context. The real potential function is a key ingredient in the Hamiltonian framework used in both classical and quantum mechanics. The quantum potential however emerges in a different way in quantum mechanics. In this paper we consider both potentials and we attempt to give them a social science interpretation within the setting of two applications. PMID:26539130
Hu, Wei; Lin, Lin; Yang, Chao
2015-12-21
With the help of our recently developed massively parallel DGDFT (Discontinuous Galerkin Density Functional Theory) methodology, we perform large-scale Kohn-Sham density functional theory calculations on phosphorene nanoribbons with armchair edges (ACPNRs) containing a few thousands to ten thousand atoms. The use of DGDFT allows us to systematically achieve a conventional plane wave basis set type of accuracy, but with a much smaller number (about 15) of adaptive local basis (ALB) functions per atom for this system. The relatively small number of degrees of freedom required to represent the Kohn-Sham Hamiltonian, together with the use of the pole expansion the selected inversion (PEXSI) technique that circumvents the need to diagonalize the Hamiltonian, results in a highly efficient and scalable computational scheme for analyzing the electronic structures of ACPNRs as well as their dynamics. The total wall clock time for calculating the electronic structures of large-scale ACPNRs containing 1080-10,800 atoms is only 10-25 s per self-consistent field (SCF) iteration, with accuracy fully comparable to that obtained from conventional planewave DFT calculations. For the ACPNR system, we observe that the DGDFT methodology can scale to 5000-50,000 processors. We use DGDFT based ab initio molecular dynamics (AIMD) calculations to study the thermodynamic stability of ACPNRs. Our calculations reveal that a 2 × 1 edge reconstruction appears in ACPNRs at room temperature.
Decoherence of odd compass states in the phase-sensitive amplifying/dissipating environment
NASA Astrophysics Data System (ADS)
Dodonov, V. V.; Valverde, C.; Souza, L. S.; Baseia, B.
2016-08-01
We study the evolution of odd compass states (specific superpositions of four coherent states), governed by the standard master equation with phase-sensitive amplifying/attenuating terms, in the presence of a Hamiltonian describing a parametric degenerate linear amplifier. Explicit expressions for the time-dependent Wigner function are obtained. The time of disappearance of the so called ;sub-Planck structures; is calculated using the negative value of the Wigner function at the origin of phase space. It is shown that this value rapidly decreases during a short ;conventional interference degradation time; (CIDT), which is inversely proportional to the size of quantum superposition, provided the anti-Hermitian terms in the master equation are of the same order (or stronger) as the Hermitian ones (governing the parametric amplification). The CIDT is compared with the final positivization time (FPT), when the Wigner function becomes positive. It appears that the FPT does not depend on the size of superpositions, moreover, it can be much bigger in the amplifying media than in the attenuating ones. Paradoxically, strengthening the Hamiltonian part results in decreasing the CIDT, so that the CIDT almost does not depend on the size of superpositions in the asymptotical case of very weak reservoir coupling. We also analyze the evolution of the Mandel factor, showing that for some sets of parameters this factor remains significantly negative, even when the Wigner function becomes positive.
NASA Astrophysics Data System (ADS)
Maurice, Rémi; de Graaf, Coen; Guihéry, Nathalie
2010-06-01
This paper studies the physical basis of the giant-spin Hamiltonian, which is usually used to describe the anisotropy of single-molecule magnets. A rigorous extraction of the model has been performed in the weak-exchange limit of a binuclear centrosymmetric Ni(II) complex, using correlated ab initio calculations and effective Hamiltonian theory. It is shown that the giant-spin Hamiltonian is not appropriate to describe polynuclear complexes as soon as spin mixing becomes non-negligible. A relevant model is proposed involving fourth-order operators, different from the traditionally used Stevens operators. The new giant-spin Hamiltonian correctly reproduces the effects of the spin mixing in the weak-exchange limit. A procedure to switch on and off the spin mixing in the extraction has been implemented in order to separate this effect from other anisotropic effects and to numerically evaluate both contributions to the tunnel splitting. Furthermore, the new giant-spin Hamiltonian has been derived analytically from the multispin Hamiltonian at the second order of perturbation and the theoretical link between the two models is studied to gain understanding concerning the microscopic origin of the fourth-order interaction in terms of axial, rhombic, or mixed (axial-rhombic) character. Finally, an adequate method is proposed to extract the proper magnetic axes frame for polynuclear anisotropic systems.
Toscano; de Aguiar MA; Ozorio De Almeida AM
2001-01-01
We propose a picture of Wigner function scars as a sequence of concentric rings along a two-dimensional surface inside a periodic orbit. This is verified for a two-dimensional plane that contains a classical hyperbolic orbit of a Hamiltonian system with 2 degrees of freedom. The stationary wave functions are the familiar mixture of scarred and random waves, but the spectral average of the Wigner functions in part of the plane is nearly that of a harmonic oscillator and individual states are also remarkably regular. These results are interpreted in terms of the semiclassical picture of chords and centers.
On optimizing the treatment of exchange perturbations.
NASA Technical Reports Server (NTRS)
Hirschfelder, J. O.; Chipman, D. M.
1972-01-01
Most theories of exchange perturbations would give the exact energy and wave function if carried out to an infinite order. However, the different methods give different values for the second-order energy, and different values for E(1), the expectation value of the Hamiltonian corresponding to the zeroth- plus first-order wave function. In the presented paper, it is shown that the zeroth- plus first-order wave function obtained by optimizing the basic equation which is used in most exchange perturbation treatments is the exact wave function for the perturbation system and E(1) is the exact energy.
Bounded Hamiltonian in the Fourth-Order Extension of the Chern-Simons Theory
NASA Astrophysics Data System (ADS)
Abakumova, V. A.; Kaparulin, D. S.; Lyakhovich, S. L.
2018-04-01
The problem of constructing alternative Hamiltonian formulations in the extended Chern-Simons theory with higher derivatives is considered. It is shown that the fourth-order extended theory admits a four-parameter series of alternative Hamiltonians which can be bounded from below, even if the canonical energy of the model is unbounded from below.
NASA Astrophysics Data System (ADS)
Ćaǧatay Uçgun, Filiz; Esen, Oǧul; Gümral, Hasan
2018-01-01
We present Skinner-Rusk and Hamiltonian formalisms of second order degenerate Clément and Sarıoğlu-Tekin Lagrangians. The Dirac-Bergmann constraint algorithm is employed to obtain Hamiltonian realizations of Lagrangian theories. The Gotay-Nester-Hinds algorithm is used to investigate Skinner-Rusk formalisms of these systems.
Quantum supersymmetric Bianchi IX cosmology
NASA Astrophysics Data System (ADS)
Damour, Thibault; Spindel, Philippe
2014-11-01
We study the quantum dynamics of a supersymmetric squashed three-sphere by dimensionally reducing (to one timelike dimension) the action of D =4 simple supergravity for a S U (2 ) -homogeneous (Bianchi IX) cosmological model. The quantization of the homogeneous gravitino field leads to a 64-dimensional fermionic Hilbert space. After imposition of the diffeomorphism constraints, the wave function of the Universe becomes a 64-component spinor of spin(8,4) depending on the three squashing parameters, which satisfies Dirac-like, and Klein-Gordon-like, wave equations describing the propagation of a "quantum spinning particle" reflecting off spin-dependent potential walls. The algebra of the supersymmetry constraints and of the Hamiltonian one is found to close. One finds that the quantum Hamiltonian is built from operators that generate a 64-dimensional representation of the (infinite-dimensional) maximally compact subalgebra of the rank-3 hyperbolic Kac-Moody algebra A E3 . The (quartic-in-fermions) squared-mass term μ^ 2 entering the Klein-Gordon-like equation has several remarkable properties: (i) it commutes with all the other (Kac-Moody-related) building blocks of the Hamiltonian; (ii) it is a quadratic function of the fermion number NF; and (iii) it is negative in most of the Hilbert space. The latter property leads to a possible quantum avoidance of the singularity ("cosmological bounce"), and suggests imposing the boundary condition that the wave function of the Universe vanish when the volume of space tends to zero (a type of boundary condition which looks like a final-state condition when considering the big crunch inside a black hole). The space of solutions is a mixture of "discrete-spectrum states" (parametrized by a few constant parameters, and known in explicit form) and of continuous-spectrum states (parametrized by arbitrary functions entering some initial-value problem). The predominantly negative values of the squared-mass term lead to a "bottle effect" between small-volume universes and large-volume ones, and to a possible reduction of the continuous spectrum to a discrete spectrum of quantum states looking like excited versions of the Planckian-size universes described by the discrete states at fermionic levels NF=0 and 1.
Chen, Zhenhua; Hoffmann, Mark R
2012-07-07
A unitary wave operator, exp (G), G(+) = -G, is considered to transform a multiconfigurational reference wave function Φ to the potentially exact, within basis set limit, wave function Ψ = exp (G)Φ. To obtain a useful approximation, the Hausdorff expansion of the similarity transformed effective Hamiltonian, exp (-G)Hexp (G), is truncated at second order and the excitation manifold is limited; an additional separate perturbation approximation can also be made. In the perturbation approximation, which we refer to as multireference unitary second-order perturbation theory (MRUPT2), the Hamiltonian operator in the highest order commutator is approximated by a Mo̸ller-Plesset-type one-body zero-order Hamiltonian. If a complete active space self-consistent field wave function is used as reference, then the energy is invariant under orbital rotations within the inactive, active, and virtual orbital subspaces for both the second-order unitary coupled cluster method and its perturbative approximation. Furthermore, the redundancies of the excitation operators are addressed in a novel way, which is potentially more efficient compared to the usual full diagonalization of the metric of the excited configurations. Despite the loss of rigorous size-extensivity possibly due to the use of a variational approach rather than a projective one in the solution of the amplitudes, test calculations show that the size-extensivity errors are very small. Compared to other internally contracted multireference perturbation theories, MRUPT2 only needs reduced density matrices up to three-body even with a non-complete active space reference wave function when two-body excitations within the active orbital subspace are involved in the wave operator, exp (G). Both the coupled cluster and perturbation theory variants are amenable to large, incomplete model spaces. Applications to some widely studied model systems that can be problematic because of geometry dependent quasidegeneracy, H4, P4, and BeH(2), are performed in order to test the new methods on problems where full configuration interaction results are available.
Classical spin glass system in external field with taking into account relaxation effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gevorkyan, A. S., E-mail: g_ashot@sci.am; Abajyan, H. G.
2013-08-15
We study statistical properties of disordered spin systems under the influence of an external field with taking into account relaxation effects. For description of system the spatial 1D Heisenberg spin-glass Hamiltonian is used. In addition, we suppose that interactions occur between nearest-neighboring spins and they are random. Exact solutions which define angular configuration of the spin in nodes were obtained from the equations of stationary points of Hamiltonian and the corresponding conditions for the energy local minimum. On the basis of these recurrent solutions an effective parallel algorithm is developed for simulation of stabile spin-chains of an arbitrary length. Itmore » is shown that by way of an independent order of N{sup 2} numerical simulations (where N is number of spin in each chain) it is possible to generate ensemble of spin-chains, which is completely ergodic which is equivalent to full self-averaging of spin-chains' vector polarization. Distributions of different parameters (energy, average polarization by coordinates, and spin-spin interaction constant) of unperturbed system are calculated. In particular, analytically is proved and numerically is shown, that for the Heisenberg nearest-neighboring Hamiltonian model, the distribution of spin-spin interaction constants as opposed to widely used Gauss-Edwards-Anderson distribution satisfies Levy alpha-stable distribution law. This distribution is nonanalytic function and does not have variance. In the work we have in detail studied critical properties of an ensemble depending on value of external field parameters (from amplitude and frequency) and have shown that even at weak external fields the spin-glass systemis strongly frustrated. It is shown that frustrations have fractal behavior, they are selfsimilar and do not disappear at scale decreasing of area. By the numerical computation is shown that the average polarization of spin-glass on a different coordinates can have values which can lead to catastrophes in the equation ofClausius-Mossotti for dielectric constant. In other words, for some values of external field parameter, a critical phenomenon occurs in the system which is impossible to describe by the real-valued Heisenberg spin-glass Hamiltonian. For the solution of this problem at first the complex-valued disordered Hamiltonian is used. Physically this type of extension of Hamiltonian allows to consider relaxation effects which occur in the system under the influence of an external field. On the basis of developed approach an effective parallel algorithm is developed for simulation of statistic parameters of spin-glass system under the influence of an external field.« less
Complex-energy approach to sum rules within nuclear density functional theory
Hinohara, Nobuo; Kortelainen, Markus; Nazarewicz, Witold; ...
2015-04-27
The linear response of the nucleus to an external field contains unique information about the effective interaction, correlations governing the behavior of the many-body system, and properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or nuclear energy density functional (EDF). But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. To establish anmore » efficient framework to compute energy-weighted sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy finite-amplitude method (FAM) based on the quasiparticle random- phase approximation. The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when optimizing effective interactions or energy functionals. The method is very efficient and well-adaptable to parallel computing. As a result, the FAM formulation is especially useful when standard theorems based on commutation relations involving the nuclear Hamiltonian and external field cannot be used.« less
Form of the manifestly covariant Lagrangian
NASA Astrophysics Data System (ADS)
Johns, Oliver Davis
1985-10-01
The preferred form for the manifestly covariant Lagrangian function of a single, charged particle in a given electromagnetic field is the subject of some disagreement in the textbooks. Some authors use a ``homogeneous'' Lagrangian and others use a ``modified'' form in which the covariant Hamiltonian function is made to be nonzero. We argue in favor of the ``homogeneous'' form. We show that the covariant Lagrangian theories can be understood only if one is careful to distinguish quantities evaluated on the varied (in the sense of the calculus of variations) world lines from quantities evaluated on the unvaried world lines. By making this distinction, we are able to derive the Hamilton-Jacobi and Klein-Gordon equations from the ``homogeneous'' Lagrangian, even though the covariant Hamiltonian function is identically zero on all world lines. The derivation of the Klein-Gordon equation in particular gives Lagrangian theoretical support to the derivations found in standard quantum texts, and is also shown to be consistent with the Feynman path-integral method. We conclude that the ``homogeneous'' Lagrangian is a completely adequate basis for covariant Lagrangian theory both in classical and quantum mechanics. The article also explores the analogy with the Fermat theorem of optics, and illustrates a simple invariant notation for the Lagrangian and other four-vector equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Kostryukov, P. V.
It is shown that a quantum system whose Hamiltonian is independent of time is T -invariant if this Hamiltonian contains only those terms that do not change sign upon time reversal. It is also shown that the coincidence of the amplitudes for multistep direct and statistical nuclear reactions with the timereversed amplitudes for the reactions being studied is a condition that ensures the T -invariance of the amplitudes in question, the transition from the original amplitudes to their time-reversed counterparts being accomplished, first, upon introducing the inverse-reactionmatrices T instead of the original-reaction matrix T and, second, upon replacing the wavemore » functions for the initial, final, and intermediate states of the system by the respective time-reversed functions. It is found that the T -even (T -odd) asymmetries in cross sections for nuclear reactions stem from the interference between the amplitudes characterizing these reactions and having identical (opposite) T -parities. It is shown that the T -invariance condition for the above T -even (T -odd) asymmetries is related to the conservation of (change in) the sign of these asymmetries upon going over from original to inverse nuclear reactions. Mechanisms underlying the appearance of possible T -even and T-odd asymmetries in the cross sections for the cold-polarizedneutron- induced binary and ternary fission of oriented target nuclei are analyzed for the case of employing T -invariant Hamiltonians for the systems under study. It is also shown that the asymmetries in question satisfy the T -invariance condition if the reactions being considered have a sequential multistep statistical character. It is concluded that T -invariance is violated in the limiting case where, in ternary nuclear fission, the emission of a light third particle froma fissile compound nucleus formed upon incident-neutron capture by a target nucleus and its separation to two fission fragments are simultaneous events.« less
Approximation methods in relativistic eigenvalue perturbation theory
NASA Astrophysics Data System (ADS)
Noble, Jonathan Howard
In this dissertation, three questions, concerning approximation methods for the eigenvalues of quantum mechanical systems, are investigated: (i) What is a pseudo--Hermitian Hamiltonian, and how can its eigenvalues be approximated via numerical calculations? This is a fairly broad topic, and the scope of the investigation is narrowed by focusing on a subgroup of pseudo--Hermitian operators, namely, PT--symmetric operators. Within a numerical approach, one projects a PT--symmetric Hamiltonian onto an appropriate basis, and uses a straightforward two--step algorithm to diagonalize the resulting matrix, leading to numerically approximated eigenvalues. (ii) Within an analytic ansatz, how can a relativistic Dirac Hamiltonian be decoupled into particle and antiparticle degrees of freedom, in appropriate kinematic limits? One possible answer is the Foldy--Wouthuysen transform; however, there are alter- native methods which seem to have some advantages over the time--tested approach. One such method is investigated by applying both the traditional Foldy--Wouthuysen transform and the "chiral" Foldy--Wouthuysen transform to a number of Dirac Hamiltonians, including the central-field Hamiltonian for a gravitationally bound system; namely, the Dirac-(Einstein-)Schwarzschild Hamiltonian, which requires the formal- ism of general relativity. (iii) Are there are pseudo--Hermitian variants of Dirac Hamiltonians that can be approximated using a decoupling transformation? The tachyonic Dirac Hamiltonian, which describes faster-than-light spin-1/2 particles, is gamma5--Hermitian, i.e., pseudo-Hermitian. Superluminal particles remain faster than light upon a Lorentz transformation, and hence, the Foldy--Wouthuysen program is unsuited for this case. Thus, inspired by the Foldy--Wouthuysen program, a decoupling transform in the ultrarelativistic limit is proposed, which is applicable to both sub- and superluminal particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buljubasich, Lisandro; Dente, Axel D.; Levstein, Patricia R.
2015-10-28
We performed Loschmidt echo nuclear magnetic resonance experiments to study decoherence under a scaled dipolar Hamiltonian by means of a symmetrical time-reversal pulse sequence denominated Proportionally Refocused Loschmidt (PRL) echo. The many-spin system represented by the protons in polycrystalline adamantane evolves through two steps of evolution characterized by the secular part of the dipolar Hamiltonian, scaled down with a factor |k| and opposite signs. The scaling factor can be varied continuously from 0 to 1/2, giving access to a range of complexity in the dynamics. The experimental results for the Loschmidt echoes showed a spreading of the decay rates thatmore » correlate directly to the scaling factors |k|, giving evidence that the decoherence is partially governed by the coherent dynamics. The average Hamiltonian theory was applied to give an insight into the spin dynamics during the pulse sequence. The calculations were performed for every single radio frequency block in contrast to the most widely used form. The first order of the average Hamiltonian numerically computed for an 8-spin system showed decay rates that progressively decrease as the secular dipolar Hamiltonian becomes weaker. Notably, the first order Hamiltonian term neglected by conventional calculations yielded an explanation for the ordering of the experimental decoherence rates. However, there is a strong overall decoherence observed in the experiments which is not reflected by the theoretical results. The fact that the non-inverted terms do not account for this effect is a challenging topic. A number of experiments to further explore the relation of the complete Hamiltonian with this dominant decoherence rate are proposed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandi, Debottam; Shankaranarayanan, S., E-mail: debottam@iisertvm.ac.in, E-mail: shanki@iisertvm.ac.in
2016-10-01
In this work, we present a consistent Hamiltonian analysis of cosmological perturbations for generalized non-canonical scalar fields. In order to do so, we introduce a new phase-space variable that is uniquely defined for different non-canonical scalar fields. We also show that this is the simplest and efficient way of expressing the Hamiltonian. We extend the Hamiltonian approach of [1] to non-canonical scalar field and obtain an unique expression of speed of sound in terms of phase-space variable. In order to invert generalized phase-space Hamilton's equations to Euler-Lagrange equations of motion, we prescribe a general inversion formulae and show that ourmore » approach for non-canonical scalar field is consistent. We also obtain the third and fourth order interaction Hamiltonian for generalized non-canonical scalar fields and briefly discuss the extension of our method to generalized Galilean scalar fields.« less
Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians
NASA Astrophysics Data System (ADS)
Bringewatt, Jacob; Dorland, William; Jordan, Stephen P.; Mink, Alan
2018-02-01
Most research regarding quantum adiabatic optimization has focused on stoquastic Hamiltonians, whose ground states can be expressed with only real non-negative amplitudes and thus for whom destructive interference is not manifest. This raises the question of whether classical Monte Carlo algorithms can efficiently simulate quantum adiabatic optimization with stoquastic Hamiltonians. Recent results have given counterexamples in which path-integral and diffusion Monte Carlo fail to do so. However, most adiabatic optimization algorithms, such as for solving MAX-k -SAT problems, use k -local Hamiltonians, whereas our previous counterexample for diffusion Monte Carlo involved n -body interactions. Here we present a 6-local counterexample which demonstrates that even for these local Hamiltonians there are cases where diffusion Monte Carlo cannot efficiently simulate quantum adiabatic optimization. Furthermore, we perform empirical testing of diffusion Monte Carlo on a standard well-studied class of permutation-symmetric tunneling problems and similarly find large advantages for quantum optimization over diffusion Monte Carlo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longhi, Stefano, E-mail: stefano.longhi@fisi.polimi.it
Quantum recurrence and dynamic localization are investigated in a class of ac-driven tight-binding Hamiltonians, the Krawtchouk quantum chain, which in the undriven case provides a paradigmatic Hamiltonian model that realizes perfect quantum state transfer and mirror inversion. The equivalence between the ac-driven single-particle Krawtchouk Hamiltonian H{sup -hat} (t) and the non-interacting ac-driven bosonic junction Hamiltonian enables to determine in a closed form the quasi energy spectrum of H{sup -hat} (t) and the conditions for exact wave packet reconstruction (dynamic localization). In particular, we show that quantum recurrence, which is predicted by the general quantum recurrence theorem, is exact for themore » Krawtchouk quantum chain in a dense range of the driving amplitude. Exact quantum recurrence provides perfect wave packet reconstruction at a frequency which is fractional than the driving frequency, a phenomenon that can be referred to as fractional dynamic localization.« less
p-Forms and diffeomorphisms: Hamiltonian formulation
NASA Astrophysics Data System (ADS)
Baulieu, Laurent; Henneaux, Marc
1987-07-01
The BRST charges corresponding to various (equivalent) ways of writing the action of the diffeomorphism group on p-form gauge fields are canonically related by a canonical transformation in the extended phase space which is explicitly constructed. The occurrence of higher order structure functions is pointed out. Also at: Centro de Estudios Cientificos de Santiago, Casilla 16443, Santiago 9, Chile.
Constraint on the second functional derivative of the exchange-correlation energy
NASA Astrophysics Data System (ADS)
Joubert, D. P.
2012-09-01
Using the density functional adiabatic connection approach for an N-electron system it is shown that ? γ is the coupling constant that scales the electron-electron interaction strength. For the non-interacting Kohn-Sham Hamiltonian γ = 0 and for the fully interacting system γ = 1. ? is the Hartree plus exchange-correlation energy while f 0(r) and fγ(r) are the Fukui functions of the non-interacting and interacting systems, respectively. This identity can serve to test the internal self-consistency or quality of approximate functionals. The quality of some popular approximate exchange and correlation functionals are tested for a simple model system.
Mills, Jeffrey D; Ben-Nun, Michal; Rollin, Kyle; Bromley, Michael W J; Li, Jiabo; Hinde, Robert J; Winstead, Carl L; Sheehy, Jeffrey A; Boatz, Jerry A; Langhoff, Peter W
2016-08-25
Continuing attention has addressed incorportation of the electronically dynamical attributes of biomolecules in the largely static first-generation molecular-mechanical force fields commonly employed in molecular-dynamics simulations. We describe here a universal quantum-mechanical approach to calculations of the electronic energy surfaces of both small molecules and large aggregates on a common basis which can include such electronic attributes, and which also seems well-suited to adaptation in ab initio molecular-dynamics applications. In contrast to the more familiar orbital-product-based methodologies employed in traditional small-molecule computational quantum chemistry, the present approach is based on an "ex-post-facto" method in which Hamiltonian matrices are evaluated prior to wave function antisymmetrization, implemented here in the support of a Hilbert space of orthonormal products of many-electron atomic spectral eigenstates familiar from the van der Waals theory of long-range interactions. The general theory in its various forms incorporates the early semiempirical atoms- and diatomics-in-molecules approaches of Moffitt, Ellison, Tully, Kuntz, and others in a comprehensive mathematical setting, and generalizes the developments of Eisenschitz, London, Claverie, and others addressing electron permutation symmetry adaptation issues, completing these early attempts to treat van der Waals and chemical forces on a common basis. Exact expressions are obtained for molecular Hamiltonian matrices and for associated energy eigenvalues as sums of separate atomic and interaction-energy terms, similar in this respect to the forms of classical force fields. The latter representation is seen to also provide a long-missing general definition of the energies of individual atoms and of their interactions within molecules and matter free from subjective additional constraints. A computer code suite is described for calculations of the many-electron atomic eigenspectra and the pairwise-atomic Hamiltonian matrices required for practical applications. These matrices can be retained as functions of scalar atomic-pair separations and employed in assembling aggregate Hamiltonian matrices, with Wigner rotation matrices providing analytical representations of their angular degrees of freedom. In this way, ab initio potential energy surfaces are obtained in the complete absence of repeated evaluations and transformations of the one- and two-electron integrals at different molecular geometries required in most ab inito molecular calculations, with large Hamiltonian matrix assembly simplified and explicit diagonalizations avoided employing partitioning and Brillouin-Wigner or Rayleigh-Schrödinger perturbation theory. Illustrative applications of the important components of the formalism, selected aspects of the scaling of the approach, and aspects of "on-the-fly" interfaces with Monte Carlo and molecular-dynamics methods are described in anticipation of subsequent applications to biomolecules and other large aggregates.
Hamiltonian formulation of the KdV equation
NASA Astrophysics Data System (ADS)
Nutku, Y.
1984-06-01
We consider the canonical formulation of Whitham's variational principle for the KdV equation. This Lagrangian is degenerate and we have found it necessary to use Dirac's theory of constrained systems in constructing the Hamiltonian. Earlier discussions of the Hamiltonian structure of the KdV equation were based on various different decompositions of the field which is avoided by this new approach.
Effective Hamiltonian Approach to Optical Activity in Weyl Spin–Orbit System
NASA Astrophysics Data System (ADS)
Kawaguchi, Hideo; Tatara, Gen
2018-06-01
Chirality or handedness in condensed matter induces anomalous optical responses such as natural optical activity, rotation of the plane of light polarization, as a result of breaking of spatial-inversion symmetry. In this study, optical properties of a Weyl spin-orbit system with quadratic dispersion, a typical chiral system invariant under time-reversal, are investigated theoretically by deriving an effective Hamiltonian based on an imaginary-time path-integral formalism. We show that the effective Hamiltonian can indeed be written in terms of an optical chirality order parameter suggested by Lipkin. The natural optical activity is discussed on the basis of the Hamiltonian.
Modified n-level, n - 1-mode Tavis-Cummings model and algebraic Bethe ansatz
NASA Astrophysics Data System (ADS)
Skrypnyk, T.
2018-01-01
Using the quantum group technique we construct a one-parametric family of integrable modifications of the n-level, n-1 mode Tavis-Cummings Hamiltonian possessing an additional Stark-type term. We show that in the ‘quasiclassical’ limit the constructed Hamiltonian transforms into the integrable Hamiltonian of the quantum n-level, n-1 mode Tavis-Cummings model with the equal interaction strengths considered in Skrypnyk (2008 J. Phys. A: Math. Theor. 41 475202, 2009 J. Math. Phys. 50 103523). We diagonalize the constructed ‘modified’ Tavis-Cummings Hamiltonian and its second order integrals of motion using the nested Bethe ansatz.
Lagrangian-Hamiltonian unified formalism for autonomous higher order dynamical systems
NASA Astrophysics Data System (ADS)
Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso
2011-09-01
The Lagrangian-Hamiltonian unified formalism of Skinner and Rusk was originally stated for autonomous dynamical systems in classical mechanics. It has been generalized for non-autonomous first-order mechanical systems, as well as for first-order and higher order field theories. However, a complete generalization to higher order mechanical systems is yet to be described. In this work, after reviewing the natural geometrical setting and the Lagrangian and Hamiltonian formalisms for higher order autonomous mechanical systems, we develop a complete generalization of the Lagrangian-Hamiltonian unified formalism for these kinds of systems, and we use it to analyze some physical models from this new point of view.
Extended Hamiltonian approach to continuous tempering
NASA Astrophysics Data System (ADS)
Gobbo, Gianpaolo; Leimkuhler, Benedict J.
2015-06-01
We introduce an enhanced sampling simulation technique based on continuous tempering, i.e., on continuously varying the temperature of the system under investigation. Our approach is mathematically straightforward, being based on an extended Hamiltonian formulation in which an auxiliary degree of freedom, determining the effective temperature, is coupled to the physical system. The physical system and its temperature evolve continuously in time according to the equations of motion derived from the extended Hamiltonian. Due to the Hamiltonian structure, it is easy to show that a particular subset of the configurations of the extended system is distributed according to the canonical ensemble for the physical system at the correct physical temperature.
On the exactness of effective Floquet Hamiltonians employed in solid-state NMR spectroscopy
NASA Astrophysics Data System (ADS)
Garg, Rajat; Ramachandran, Ramesh
2017-05-01
Development of theoretical models based on analytic theory has remained an active pursuit in molecular spectroscopy for its utility both in the design of experiments as well as in the interpretation of spectroscopic data. In particular, the role of "Effective Hamiltonians" in the evolution of theoretical frameworks is well known across all forms of spectroscopy. Nevertheless, a constant revalidation of the approximations employed in the theoretical frameworks is necessitated by the constant improvements on the experimental front in addition to the complexity posed by the systems under study. Here in this article, we confine our discussion to the derivation of effective Floquet Hamiltonians based on the contact transformation procedure. While the importance of the effective Floquet Hamiltonians in the qualitative description of NMR experiments has been realized in simpler cases, its extension in quantifying spectral data deserves a cautious approach. With this objective, the validity of the approximations employed in the derivation of the effective Floquet Hamiltonians is re-examined through a comparison with exact numerical methods under differing experimental conditions. The limitations arising from the existing analytic methods are outlined along with remedial measures for improving the accuracy of the derived effective Floquet Hamiltonians.
Dynamical tunneling versus fast diffusion for a non-convex Hamiltonian
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pittman, S. M.; Tannenbaum, E.; Heller, E. J.
This paper attempts to resolve the issue of the nature of the 0.01-0.1 cm{sup −1} peak splittings observed in high-resolution IR spectra of polyatomic molecules. One hypothesis is that these splittings are caused by dynamical tunneling, a quantum-mechanical phenomenon whereby energy flows between two disconnected regions of phase-space across dynamical barriers. However, a competing classical mechanism for energy flow is Arnol’d diffusion, which connects different regions of phase-space by a resonance network known as the Arnol’d web. The speed of diffusion is bounded by the Nekhoroshev theorem, which guarantees stability on exponentially long time scales if the Hamiltonian is steep.more » Here we consider a non-convex Hamiltonian that contains the characteristics of a molecular Hamiltonian, but does not satisfy the Nekhoroshev theorem. The diffusion along the Arnol’d web is expected to be fast for a non-convex Hamiltonian. While fast diffusion is an unlikely competitor for longtime energy flow in molecules, we show how dynamical tunneling dominates compared to fast diffusion in the nearly integrable regime for a non-convex Hamiltonian, as well as present a new kind of dynamical tunneling.« less
Spectroscopy of samarium isotopes in the sdg interacting boson model
NASA Astrophysics Data System (ADS)
Devi, Y. D.; Kota, V. K. B.
1992-05-01
Successful spectroscopic calculations for the 0+1, 2+1, and 4+1 levels in 146-158Sm are carried out in sdg boson space with the restriction that the s-boson number ns>=2 and the g-boson number ng<=2. Observed energies, quadrupole and magnetic moments, E2 and E4 transition strengths, nuclear radii, and two-nucleon transfer intensities are reproduced with a simple two-parameter Hamiltonian. For a good simultaneous description of ground, β, and γ bands, a Hamiltonian interpolating the dynamical symmetries in the sdg model is employed. Using the resulting wave functions, in 152,154Sm, the observed B(E40+1-->4+γ) values are well reproduced and E4 strength distributions are predicted. Moreover, a particular ratio scrR involving two-nucleon transfer strengths showing a peak at neutron number 90 is well described by the calculations.
Dynamical systems theory for nonlinear evolution equations.
Choudhuri, Amitava; Talukdar, B; Das, Umapada
2010-09-01
We observe that the fully nonlinear evolution equations of Rosenau and Hymann, often abbreviated as K(n,m) equations, can be reduced to Hamiltonian form only on a zero-energy hypersurface belonging to some potential function associated with the equations. We treat the resulting Hamiltonian equations by the dynamical systems theory and present a phase-space analysis of their stable points. The results of our study demonstrate that the equations can, in general, support both compacton and soliton solutions. For the K(2,2) and K(3,3) cases one type of solutions can be obtained from the other by continuously varying a parameter of the equations. This is not true for the K(3,2) equation for which the parameter can take only negative values. The K(2,3) equation does not have any stable point and, in the language of mechanics, represents a particle moving with constant acceleration.
Measures for the Dynamics in a Few-Body Quantum System with Harmonic Interactions
NASA Astrophysics Data System (ADS)
Nagy, I.; Pipek, J.; Glasser, M. L.
2018-01-01
We determine the exact time-dependent non-idempotent one-particle reduced density matrix and its spectral decomposition for a harmonically confined two-particle correlated one-dimensional system when the interaction terms in the Schrödinger Hamiltonian are changed abruptly. Based on this matrix in coordinate space we derive a precise condition for the equivalence of the purity and the overlap-square of the correlated and non-correlated wave functions as the model system with harmonic interactions evolves in time. This equivalence holds only if the interparticle interactions are affected, while the confinement terms are unaffected within the stability range of the system. Under this condition we analyze various time-dependent measures of entanglement and demonstrate that, depending on the magnitude of the changes made in the Hamiltonian, periodic, logarithmically increasing or constant value behavior of the von Neumann entropy can occur.
Spin manipulation and relaxation in spin-orbit qubits
NASA Astrophysics Data System (ADS)
Borhani, Massoud; Hu, Xuedong
2012-03-01
We derive a generalized form of the electric dipole spin resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD), where coherent Rabi oscillations between the singlet and triplet states are induced by jittering the inter-dot distance at the resonance frequency. Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.
On pp wave limit for η deformed superstrings
NASA Astrophysics Data System (ADS)
Roychowdhury, Dibakar
2018-05-01
In this paper, based on the notion of plane wave string/gauge theory duality, we explore the pp wave limit associated with the bosonic sector of η deformed superstrings propagating in ( AdS 5 × S 5) η . Our analysis reveals that in the presence of NS-NS and RR fluxes, the pp wave limit associated to full ABF background satisfies type IIB equations in its standard form. However, the beta functions as well as the string Hamiltonian start receiving non trivial curvature corrections as one starts probing beyond pp wave limit which thereby takes solutions away from the standard type IIB form. Furthermore, using uniform gauge, we also explore the BMN dynamics associated with short strings and compute the corresponding Hamiltonian density. Finally, we explore the Penrose limit associated with the HT background and compute the corresponding stringy spectrum for the bosonic sector.
Spectroscopic properties of Cr3+ ions at the defect sites in cubic fluoroperovskite crystals
NASA Astrophysics Data System (ADS)
Wan-Lun, Yu; Xin-Min, Zhang; La-Xun, Yang; Bao-Qing, Zen
1994-09-01
The spin-Hamiltonian (SH) parameters for the 4A2(F) state of 3d3/3d7 ions for tetragonal and trigonal symmetries are studied as a function of the crystal-field (CF) parameters based on simultaneous diagonalization of the electrostatic, CF, and the spin-orbit-coupling Hamiltonians. The results obtained are compared to those in earlier works. The CF and SH parameters of Cr3+ ions at the A and M vacancies and at codoped Li+ sites in the cubic fluoroperovskites AMF3 are investigated by taking into account the contributions of the defects and the defect-induced lattice distortion. Suitable models are proposed for the lattice distortion, and the distortion parameters are obtained by adjusting them to fit to the observed data for the SH parameters and the energy of the first excited state.
NASA Astrophysics Data System (ADS)
Liang, Feng; Wang, Dechang
In this paper, we suppose that a planar piecewise Hamiltonian system, with a straight line of separation, has a piecewise generalized homoclinic loop passing through a Saddle-Fold point, and assume that there exists a family of piecewise smooth periodic orbits near the loop. By studying the asymptotic expansion of the first order Melnikov function corresponding to the period annulus, we obtain the formulas of the first six coefficients in the expansion, based on which, we provide a lower bound for the maximal number of limit cycles bifurcated from the period annulus. As applications, two concrete systems are considered. Especially, the first one reveals that a quadratic piecewise Hamiltonian system can have five limit cycles near a generalized homoclinic loop under a quadratic piecewise smooth perturbation. Compared with the smooth case [Horozov & Iliev, 1994; Han et al., 1999], three more limit cycles are found.
The effect of band Jahn-Teller distortion on the magnetoresistivity of manganites: a model study.
Rout, G C; Panda, Saswati; Behera, S N
2011-10-05
We present a model study of magnetoresistance through the interplay of magnetisation, structural distortion and external magnetic field for the manganite systems. The manganite system is described by the Hamiltonian which consists of the s-d type double exchange interaction, Heisenberg spin-spin interaction among the core electrons, and the static and dynamic band Jahn-Teller (JT) interaction in the e(g) band. The relaxation time of the e(g) electron is found from the imaginary part of the Green's function using the total Hamiltonian consisting of the interactions due to the electron and phonon. The calculated resistivity exhibits a peak in the pure JT distorted insulating phase separating the low temperature metallic ferromagnetic phase and the high temperature paramagnetic phase. The resistivity is suppressed with the increase of the external magnetic field. The e(g) electron band splitting and its effect on magnetoresistivity is reported here. © 2011 IOP Publishing Ltd
A weak Hamiltonian finite element method for optimal control problems
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.
1989-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
A weak Hamiltonian finite element method for optimal control problems
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.
1990-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
Weak Hamiltonian finite element method for optimal control problems
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.
1991-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
Computing resonance energies, widths, and wave functions using a Lanczos method in real arithmetic.
Tremblay, Jean Christophe; Carrington, Tucker
2005-06-22
We introduce new ideas for calculating resonance energies and widths. It is shown that a non-Hermitian-Lanczos approach can be used to compute eigenvalues of H+W, where H is the Hamiltonian and W is a complex absorbing potential (CAP), without evaluating complex matrix-vector products. This is done by exploiting the link between a CAP-modified Hamiltonian matrix and a real but nonsymmetric matrix U suggested by Mandelshtam and Neumaier [J. Theor. Comput. Chem. 1, 1 (2002)] and using a coupled-two-term Lanczos procedure. We use approximate resonance eigenvectors obtained from the non-Hermitian-Lanczos algorithm and a very good CAP to obtain very accurate energies and widths without solving eigenvalue problems for many values of the CAP strength parameter and searching for cusps. The method is applied to the resonances of HCO. We compare properties of the method with those of established approaches.
Using Hamiltonian control to desynchronize Kuramoto oscillators
NASA Astrophysics Data System (ADS)
Gjata, Oltiana; Asllani, Malbor; Barletti, Luigi; Carletti, Timoteo
2017-02-01
Many coordination phenomena are based on a synchronization process, whose global behavior emerges from the interactions among the individual parts. Often in nature, such self-organized mechanism allows the system to behave as a whole and thus grounding its very first existence, or expected functioning, on such process. There are, however, cases where synchronization acts against the stability of the system; for instance in some neurodegenerative diseases or epilepsy or the famous case of Millennium Bridge where the crowd synchronization of the pedestrians seriously endangered the stability of the structure. In this paper we propose an innovative control method to tackle the synchronization process based on the application of the Hamiltonian control theory, by adding a small control term to the system we are able to impede the onset of the synchronization. We present our results on a generalized class of the paradigmatic Kuramoto model.
Fractional-calculus diffusion equation
2010-01-01
Background Sequel to the work on the quantization of nonconservative systems using fractional calculus and quantization of a system with Brownian motion, which aims to consider the dissipation effects in quantum-mechanical description of microscale systems. Results The canonical quantization of a system represented classically by one-dimensional Fick's law, and the diffusion equation is carried out according to the Dirac method. A suitable Lagrangian, and Hamiltonian, describing the diffusive system, are constructed and the Hamiltonian is transformed to Schrodinger's equation which is solved. An application regarding implementation of the developed mathematical method to the analysis of diffusion, osmosis, which is a biological application of the diffusion process, is carried out. Schrödinger's equation is solved. Conclusions The plot of the probability function represents clearly the dissipative and drift forces and hence the osmosis, which agrees totally with the macro-scale view, or the classical-version osmosis. PMID:20492677
Moyal dynamics and trajectories
NASA Astrophysics Data System (ADS)
Braunss, G.
2010-01-01
We give first an approximation of the operator δh: f → δhf := h*planckf - f*planckh in terms of planck2n, n >= 0, where h\\equiv h(p,q), (p,q)\\in {\\mathbb R}^{2 n} , is a Hamilton function and *planck denotes the star product. The operator, which is the generator of time translations in a *planck-algebra, can be considered as a canonical extension of the Liouville operator Lh: f → Lhf := {h, f}Poisson. Using this operator we investigate the dynamics and trajectories of some examples with a scheme that extends the Hamilton-Jacobi method for classical dynamics to Moyal dynamics. The examples we have chosen are Hamiltonians with a one-dimensional quartic potential and two-dimensional radially symmetric nonrelativistic and relativistic Coulomb potentials, and the Hamiltonian for a Schwarzschild metric. We further state a conjecture concerning an extension of the Bohr-Sommerfeld formula for the calculation of the exact eigenvalues for systems with classically periodic trajectories.
NASA Astrophysics Data System (ADS)
Wang, C. C.; Tan, J. Y.; Liu, L. H.
2018-05-01
Hamiltonian adaptive resolution scheme (H-AdResS), which allows to simulate materials by treating different domains of the system at different levels of resolution, is a recently proposed atomistic/coarse-grained multiscale model. In this work, a scheme to calculate the dielectric functions of liquids on account of H-AdResS is presented. In the proposed H-AdResS dielectric-function calculation scheme (DielectFunctCalS), the corrected molecular dipole moments are calculated by multiplying molecular dipole moment by the weighting fraction of the molecular mapping point. As the widths of all-atom and hybrid regions show different degrees of influence on the dielectric functions, a prefactor is multiplied to eliminate the effects of all-atom and hybrid region widths. Since one goal of using the H-AdResS method is to reduce computational costs, widths of the all-atom region and the hybrid region can be reduced considering that the coarse-grained simulation is much more timesaving compared to atomistic simulation. Liquid water and ethanol are taken as test cases to validate the DielectFunctCalS. The H-AdResS DielectFunctCalS results are in good agreement with all-atom molecular dynamics simulations. The accuracy of the H-AdResS results, together with all-atom molecular dynamics results, depends heavily on the choice of the force field and force field parameters. The H-AdResS DielectFunctCalS allows us to calculate the dielectric functions of macromolecule systems with high efficiency and makes the dielectric function calculations of large biomolecular systems possible.
Reiher, Markus; Wolf, Alexander
2004-12-08
In order to achieve exact decoupling of the Dirac Hamiltonian within a unitary transformation scheme, we have discussed in part I of this series that either a purely numerical iterative technique (the Barysz-Sadlej-Snijders method) or a stepwise analytic approach (the Douglas-Kroll-Hess method) are possible. For the evaluation of Douglas-Kroll-Hess Hamiltonians up to a pre-defined order it was shown that a symbolic scheme has to be employed. In this work, an algorithm for this analytic derivation of Douglas-Kroll-Hess Hamiltonians up to any arbitrary order in the external potential is presented. We discuss how an estimate for the necessary order for exact decoupling (within machine precision) for a given system can be determined from the convergence behavior of the Douglas-Kroll-Hess expansion prior to a quantum chemical calculation. Once this maximum order has been accomplished, the spectrum of the positive-energy part of the decoupled Hamiltonian, e.g., for electronic bound states, cannot be distinguished from the corresponding part of the spectrum of the Dirac operator. An efficient scalar-relativistic implementation of the symbolic operations for the evaluation of the positive-energy part of the block-diagonal Hamiltonian is presented, and its accuracy is tested for ground-state energies of one-electron ions over the whole periodic table. Furthermore, the first many-electron calculations employing sixth up to fourteenth order DKH Hamiltonians are presented. (c) 2004 American Institute of Physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiher, Markus; Wolf, Alexander
In order to achieve exact decoupling of the Dirac Hamiltonian within a unitary transformation scheme, we have discussed in part I of this series that either a purely numerical iterative technique (the Barysz-Sadlej-Snijders method) or a stepwise analytic approach (the Douglas-Kroll-Hess method) are possible. For the evaluation of Douglas-Kroll-Hess Hamiltonians up to a pre-defined order it was shown that a symbolic scheme has to be employed. In this work, an algorithm for this analytic derivation of Douglas-Kroll-Hess Hamiltonians up to any arbitrary order in the external potential is presented. We discuss how an estimate for the necessary order for exactmore » decoupling (within machine precision) for a given system can be determined from the convergence behavior of the Douglas-Kroll-Hess expansion prior to a quantum chemical calculation. Once this maximum order has been accomplished, the spectrum of the positive-energy part of the decoupled Hamiltonian, e.g., for electronic bound states, cannot be distinguished from the corresponding part of the spectrum of the Dirac operator. An efficient scalar-relativistic implementation of the symbolic operations for the evaluation of the positive-energy part of the block-diagonal Hamiltonian is presented, and its accuracy is tested for ground-state energies of one-electron ions over the whole periodic table. Furthermore, the first many-electron calculations employing sixth up to fourteenth order DKH Hamiltonians are presented.« less
Mechanism for subgap optical conductivity in honeycomb Kitaev materials
NASA Astrophysics Data System (ADS)
Bolens, Adrien; Katsura, Hosho; Ogata, Masao; Miyashita, Seiji
2018-04-01
Motivated by recent terahertz absorption measurements in α -RuCl3 , we develop a theory for the electromagnetic absorption of materials described by the Kitaev model on the honeycomb lattice. We derive a mechanism for the polarization operator at second order in the nearest-neighbor hopping Hamiltonian. Using the exact results of the Kitaev honeycomb model, we then calculate the polarization dynamical correlation function corresponding to electric dipole transitions in addition to the spin dynamical correlation function corresponding to magnetic dipole transitions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abedi-Fardad, J., E-mail: j.abedifardad@bonabu.ac.ir; Rezaei-Aghdam, A., E-mail: rezaei-a@azaruniv.edu; Haghighatdoost, Gh., E-mail: gorbanali@azaruniv.edu
2014-05-15
We construct integrable and superintegrable Hamiltonian systems using the realizations of four dimensional real Lie algebras as a symmetry of the system with the phase space R{sup 4} and R{sup 6}. Furthermore, we construct some integrable and superintegrable Hamiltonian systems for which the symmetry Lie group is also the phase space of the system.
The gravity duals of modular Hamiltonians
Jafferis, Daniel L.; Suh, S. Josephine
2016-09-12
In this study, we investigate modular Hamiltonians defined with respect to arbitrary spatial regions in quantum field theory states which have semi-classical gravity duals. We find prescriptions in the gravity dual for calculating the action of the modular Hamiltonian on its defining state, including its dual metric, and also on small excitations around the state. Curiously, use of the covariant holographic entanglement entropy formula leads us to the conclusion that the modular Hamiltonian, which in the quantum field theory acts only in the causal completion of the region, does not commute with bulk operators whose entire gauge-invariant description is space-likemore » to the causal completion of the region.« less
The gravity duals of modular Hamiltonians
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jafferis, Daniel L.; Suh, S. Josephine
In this study, we investigate modular Hamiltonians defined with respect to arbitrary spatial regions in quantum field theory states which have semi-classical gravity duals. We find prescriptions in the gravity dual for calculating the action of the modular Hamiltonian on its defining state, including its dual metric, and also on small excitations around the state. Curiously, use of the covariant holographic entanglement entropy formula leads us to the conclusion that the modular Hamiltonian, which in the quantum field theory acts only in the causal completion of the region, does not commute with bulk operators whose entire gauge-invariant description is space-likemore » to the causal completion of the region.« less
Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes
NASA Astrophysics Data System (ADS)
Marvian, Milad; Lidar, Daniel A.
2017-01-01
We present general conditions for quantum error suppression for Hamiltonian-based quantum computation using subsystem codes. This involves encoding the Hamiltonian performing the computation using an error detecting subsystem code and the addition of a penalty term that commutes with the encoded Hamiltonian. The scheme is general and includes the stabilizer formalism of both subspace and subsystem codes as special cases. We derive performance bounds and show that complete error suppression results in the large penalty limit. To illustrate the power of subsystem-based error suppression, we introduce fully two-local constructions for protection against local errors of the swap gate of adiabatic gate teleportation and the Ising chain in a transverse field.
Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes.
Marvian, Milad; Lidar, Daniel A
2017-01-20
We present general conditions for quantum error suppression for Hamiltonian-based quantum computation using subsystem codes. This involves encoding the Hamiltonian performing the computation using an error detecting subsystem code and the addition of a penalty term that commutes with the encoded Hamiltonian. The scheme is general and includes the stabilizer formalism of both subspace and subsystem codes as special cases. We derive performance bounds and show that complete error suppression results in the large penalty limit. To illustrate the power of subsystem-based error suppression, we introduce fully two-local constructions for protection against local errors of the swap gate of adiabatic gate teleportation and the Ising chain in a transverse field.
The quantization of the chiral Schwinger model based on the BFT - BFV formalism
NASA Astrophysics Data System (ADS)
Kim, Won T.; Kim, Yong-Wan; Park, Mu-In; Park, Young-Jai; Yoon, Sean J.
1997-03-01
We apply the newly improved Batalin - Fradkin - Tyutin (BFT) Hamiltonian method to the chiral Schwinger model in the case of the regularization ambiguity a>1. We show that one can systematically construct the first class constraints by the BFT Hamiltonian method, and also show that the well-known Dirac brackets of the original phase space variables are exactly the Poisson brackets of the corresponding modified fields in the extended phase space. Furthermore, we show that the first class Hamiltonian is simply obtained by replacing the original fields in the canonical Hamiltonian by these modified fields. Performing the momentum integrations, we obtain the corresponding first class Lagrangian in the configuration space.
Dynamics, integrability and topology for some classes of Kolmogorov Hamiltonian systems in R+4
NASA Astrophysics Data System (ADS)
Llibre, Jaume; Xiao, Dongmei
2017-02-01
In this paper we first give the sufficient and necessary conditions in order that two classes of polynomial Kolmogorov systems in R+4 are Hamiltonian systems. Then we study the integrability of these Hamiltonian systems in the Liouville sense. Finally, we investigate the global dynamics of the completely integrable Lotka-Volterra Hamiltonian systems in R+4. As an application of the invariant subsets of these systems, we obtain topological classifications of the 3-submanifolds in R+4 defined by the hypersurfaces axy + bzw + cx2 y + dxy2 + ez2 w + fzw2 = h, where a , b , c , d , e , f , w and h are real constants.
Solution of effective Hamiltonian of impurity hopping between two sites in a metal
NASA Astrophysics Data System (ADS)
Ye, Jinwu
1998-03-01
We analyze in detail all the possible fixed points of the effective Hamiltonian of a non-magnetic impurity hopping between two sites in a metal obtained by Moustakas and Fisher(MF). We find a line of non-fermi liquid fixed points which continuously interpolates between the 2-channel Kondo fixed point(2CK) and the one channel, two impurity Kondo (2IK) fixed point. There is one relevant direction with scaling dimension 1/2 and one leading irrelevant operator with dimension 3/2. There is also one marginal operator in the spin sector moving along this line. The additional non-fermi liquid fixed point found by MF has the same symmetry as the 2IK, it has two relevant directions with scaling dimension 1/2, therefore also unstable. The system is shown to flow to a line of fermi-liquid fixed points which continuously interpolates between the non-interacting fixed point and the 2 channel spin-flavor Kondo fixed point (2CSFK) discussed by the author previously. The effect of particle-hole symmetry breaking is discussed. The effective Hamiltonian in the external magnetic field is analysed. The scaling functions for the physical measurable quantities are derived in the different regimes; their predictions for the experiments are given. Finally the implications are given for a non-magnetic impurity hopping around three sites with triangular symmetry discussed by MF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahlen-Strothman, J. M.; Henderson, T. H.; Hermes, M. R.
Coupled cluster and symmetry projected Hartree-Fock are two central paradigms in electronic structure theory. However, they are very different. Single reference coupled cluster is highly successful for treating weakly correlated systems, but fails under strong correlation unless one sacrifices good quantum numbers and works with broken-symmetry wave functions, which is unphysical for finite systems. Symmetry projection is effective for the treatment of strong correlation at the mean-field level through multireference non-orthogonal configuration interaction wavefunctions, but unlike coupled cluster, it is neither size extensive nor ideal for treating dynamic correlation. We here examine different scenarios for merging these two dissimilar theories.more » We carry out this exercise over the integrable Lipkin model Hamiltonian, which despite its simplicity, encompasses non-trivial physics for degenerate systems and can be solved via diagonalization for a very large number of particles. We show how symmetry projection and coupled cluster doubles individually fail in different correlation limits, whereas models that merge these two theories are highly successful over the entire phase diagram. Despite the simplicity of the Lipkin Hamiltonian, the lessons learned in this work will be useful for building an ab initio symmetry projected coupled cluster theory that we expect to be accurate in the weakly and strongly correlated limits, as well as the recoupling regime.« less
Quantum and electromagnetic propagation with the conjugate symmetric Lanczos method.
Acevedo, Ramiro; Lombardini, Richard; Turner, Matthew A; Kinsey, James L; Johnson, Bruce R
2008-02-14
The conjugate symmetric Lanczos (CSL) method is introduced for the solution of the time-dependent Schrodinger equation. This remarkably simple and efficient time-domain algorithm is a low-order polynomial expansion of the quantum propagator for time-independent Hamiltonians and derives from the time-reversal symmetry of the Schrodinger equation. The CSL algorithm gives forward solutions by simply complex conjugating backward polynomial expansion coefficients. Interestingly, the expansion coefficients are the same for each uniform time step, a fact that is only spoiled by basis incompleteness and finite precision. This is true for the Krylov basis and, with further investigation, is also found to be true for the Lanczos basis, important for efficient orthogonal projection-based algorithms. The CSL method errors roughly track those of the short iterative Lanczos method while requiring fewer matrix-vector products than the Chebyshev method. With the CSL method, only a few vectors need to be stored at a time, there is no need to estimate the Hamiltonian spectral range, and only matrix-vector and vector-vector products are required. Applications using localized wavelet bases are made to harmonic oscillator and anharmonic Morse oscillator systems as well as electrodynamic pulse propagation using the Hamiltonian form of Maxwell's equations. For gold with a Drude dielectric function, the latter is non-Hermitian, requiring consideration of corrections to the CSL algorithm.
A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems
NASA Astrophysics Data System (ADS)
Abanin, Dmitry; De Roeck, Wojciech; Ho, Wen Wei; Huveneers, François
2017-09-01
Prethermalization refers to the transient phenomenon where a system thermalizes according to a Hamiltonian that is not the generator of its evolution. We provide here a rigorous framework for quantum spin systems where prethermalization is exhibited for very long times. First, we consider quantum spin systems under periodic driving at high frequency {ν}. We prove that up to a quasi-exponential time {τ_* ˜ e^{c ν/log^3 ν}}, the system barely absorbs energy. Instead, there is an effective local Hamiltonian {\\widehat D} that governs the time evolution up to {τ_*}, and hence this effective Hamiltonian is a conserved quantity up to {τ_*}. Next, we consider systems without driving, but with a separation of energy scales in the Hamiltonian. A prime example is the Fermi-Hubbard model where the interaction U is much larger than the hopping J. Also here we prove the emergence of an effective conserved quantity, different from the Hamiltonian, up to a time {τ_*} that is (almost) exponential in {U/J}.
NASA Astrophysics Data System (ADS)
Quesne, C.
2010-02-01
In a recent communication paper by Tremblay et al (2009 J. Phys. A: Math. Theor. 42 205206), it has been conjectured that for any integer value of k, some novel exactly solvable and integrable quantum Hamiltonian Hk on a plane is superintegrable and that the additional integral of motion is a 2kth-order differential operator Y2k. Here we demonstrate the conjecture for the infinite family of Hamiltonians Hk with odd k >= 3, whose first member corresponds to the three-body Calogero-Marchioro-Wolfes model after elimination of the centre-of-mass motion. Our approach is based on the construction of some D2k-extended and invariant Hamiltonian {\\cal H}_k, which can be interpreted as a modified boson oscillator Hamiltonian. The latter is then shown to possess a D2k-invariant integral of motion {\\cal Y}_{2k}, from which Y2k can be obtained by projection in the D2k identity representation space.
NASA Astrophysics Data System (ADS)
Julié, Félix-Louis
2018-01-01
Starting from the second post-Keplerian (2PK) Hamiltonian describing the conservative part of the two-body dynamics in massless scalar-tensor (ST) theories, we build an effective-one-body (EOB) Hamiltonian which is a ν deformation (where ν =0 is the test mass limit) of the analytically known ST Hamiltonian of a test particle. This ST-EOB Hamiltonian leads to a simple (yet canonically equivalent) formulation of the conservative 2PK two-body problem, but also defines a resummation of the dynamics which is well-suited to ST regimes that depart strongly from general relativity (GR) and which may provide information on the strong field dynamics; in particular, the ST innermost stable circular orbit location and associated orbital frequency. Results will be compared and contrasted with those deduced from the ST-deformation of the (5PN) GR-EOB Hamiltonian previously obtained in [Phys. Rev. D 95, 124054 (2017), 10.1103/PhysRevD.95.124054].
Modular Hamiltonians on the null plane and the Markov property of the vacuum state
NASA Astrophysics Data System (ADS)
Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo
2017-09-01
We compute the modular Hamiltonians of regions having the future horizon lying on a null plane. For a CFT this is equivalent to regions with a boundary of arbitrary shape lying on the null cone. These Hamiltonians have a local expression on the horizon formed by integrals of the stress tensor. We prove this result in two different ways, and show that the modular Hamiltonians of these regions form an infinite dimensional Lie algebra. The corresponding group of unitary transformations moves the fields on the null surface locally along the null generators with arbitrary null line dependent velocities, but act non-locally outside the null plane. We regain this result in greater generality using more abstract tools on the algebraic quantum field theory. Finally, we show that modular Hamiltonians on the null surface satisfy a Markov property that leads to the saturation of the strong sub-additive inequality for the entropies and to the strong super-additivity of the relative entropy.
Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; ...
2016-09-09
In this paper, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesizedmore » by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. Finally, these four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillet, Natacha; Berstis, Laura; Wu, Xiaojing
In this paper, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesizedmore » by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. Finally, these four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.« less
Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; Gajdos, Fruzsina; Heck, Alexander; de la Lande, Aurélien; Blumberger, Jochen; Elstner, Marcus
2016-10-11
In this article, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesized by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated π-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. These four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.
Random density matrices versus random evolution of open system
NASA Astrophysics Data System (ADS)
Pineda, Carlos; Seligman, Thomas H.
2015-10-01
We present and compare two families of ensembles of random density matrices. The first, static ensemble, is obtained foliating an unbiased ensemble of density matrices. As criterion we use fixed purity as the simplest example of a useful convex function. The second, dynamic ensemble, is inspired in random matrix models for decoherence where one evolves a separable pure state with a random Hamiltonian until a given value of purity in the central system is achieved. Several families of Hamiltonians, adequate for different physical situations, are studied. We focus on a two qubit central system, and obtain exact expressions for the static case. The ensemble displays a peak around Werner-like states, modulated by nodes on the degeneracies of the density matrices. For moderate and strong interactions good agreement between the static and the dynamic ensembles is found. Even in a model where one qubit does not interact with the environment excellent agreement is found, but only if there is maximal entanglement with the interacting one. The discussion is started recalling similar considerations for scattering theory. At the end, we comment on the reach of the results for other convex functions of the density matrix, and exemplify the situation with the von Neumann entropy.
Cui, Yao; Bulik, Ireneusz W; Jiménez-Hoyos, Carlos A; Henderson, Thomas M; Scuseria, Gustavo E
2013-10-21
We study the spectra of the molecular orbital Hessian (stability matrix) and random-phase approximation (RPA) Hamiltonian of broken-symmetry Hartree-Fock solutions, focusing on zero eigenvalue modes. After all negative eigenvalues are removed from the Hessian by following their eigenvectors downhill, one is left with only positive and zero eigenvalues. Zero modes correspond to orbital rotations with no restoring force. These rotations determine states in the Goldstone manifold, which originates from a spontaneously broken continuous symmetry in the wave function. Zero modes can be classified as improper or proper according to their different mathematical and physical properties. Improper modes arise from symmetry breaking and their restoration always lowers the energy. Proper modes, on the other hand, correspond to degeneracies of the wave function, and their symmetry restoration does not necessarily lower the energy. We discuss how the RPA Hamiltonian distinguishes between proper and improper modes by doubling the number of zero eigenvalues associated with the latter. Proper modes in the Hessian always appear in pairs which do not double in RPA. We present several pedagogical cases exemplifying the above statements. The relevance of these results for projected Hartree-Fock methods is also addressed.
Hamiltonian structures for systems of hyperbolic conservation laws
NASA Astrophysics Data System (ADS)
Olver, Peter J.; Nutku, Yavuz
1988-07-01
The bi-Hamiltonian structure for a large class of one-dimensional hyberbolic systems of conservation laws in two field variables, including the equations of gas dynamics, shallow water waves, one-dimensional elastic media, and the Born-Infeld equation from nonlinear electrodynamics, is exhibited. For polytropic gas dynamics, these results lead to a quadri-Hamiltonian structure. New higher-order entropy-flux pairs (conservation laws) and higher-order symmetries are exhibited.
Null lifts and projective dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cariglia, Marco, E-mail: marco@iceb.ufop.br
2015-11-15
We describe natural Hamiltonian systems using projective geometry. The null lift procedure endows the tangent bundle with a projective structure where the null Hamiltonian is identified with a projective conic and induces a Weyl geometry. Projective transformations generate a set of known and new dualities between Hamiltonian systems, as for example the phenomenon of coupling-constant metamorphosis. We conclude outlining how this construction can be extended to the quantum case for Eisenhart–Duval lifts.
NASA Astrophysics Data System (ADS)
Calogero, F. A.; Leyvraz, F.
2007-09-01
We modify (in two different manners) the Hamiltonian describing motions in the Poincaré half-plane so that the modified Hamiltonians thereby obtained are entirely isochronous: indeed, in the classical context, all the motions they entail are periodic with the same period. We then investigate suitably quantized versions of these systems and show that their spectra are equispaced.
Quantum error suppression with commuting Hamiltonians: two local is too local.
Marvian, Iman; Lidar, Daniel A
2014-12-31
We consider error suppression schemes in which quantum information is encoded into the ground subspace of a Hamiltonian comprising a sum of commuting terms. Since such Hamiltonians are gapped, they are considered natural candidates for protection of quantum information and topological or adiabatic quantum computation. However, we prove that they cannot be used to this end in the two-local case. By making the favorable assumption that the gap is infinite, we show that single-site perturbations can generate a degeneracy splitting in the ground subspace of this type of Hamiltonian which is of the same order as the magnitude of the perturbation, and is independent of the number of interacting sites and their Hilbert space dimensions, just as in the absence of the protecting Hamiltonian. This splitting results in decoherence of the ground subspace, and we demonstrate that for natural noise models the coherence time is proportional to the inverse of the degeneracy splitting. Our proof involves a new version of the no-hiding theorem which shows that quantum information cannot be approximately hidden in the correlations between two quantum systems. The main reason that two-local commuting Hamiltonians cannot be used for quantum error suppression is that their ground subspaces have only short-range (two-body) entanglement.
Variational model for one-dimensional quantum magnets
NASA Astrophysics Data System (ADS)
Kudasov, Yu. B.; Kozabaranov, R. V.
2018-04-01
A new variational technique for investigation of the ground state and correlation functions in 1D quantum magnets is proposed. A spin Hamiltonian is reduced to a fermionic representation by the Jordan-Wigner transformation. The ground state is described by a new non-local trial wave function, and the total energy is calculated in an analytic form as a function of two variational parameters. This approach is demonstrated with an example of the XXZ-chain of spin-1/2 under a staggered magnetic field. Generalizations and applications of the variational technique for low-dimensional magnetic systems are discussed.
Evolution of wave function in a dissipative system
NASA Technical Reports Server (NTRS)
Yu, Li-Hua; Sun, Chang-Pu
1994-01-01
For a dissipative system with Ohmic friction, we obtain a simple and exact solution for the wave function of the system plus the bath. It is described by the direct product in two independent Hilbert space. One of them is described by an effective Hamiltonian, the other represents the effect of the bath, i.e., the Brownian motion, thus clarifying the structure of the wave function of the system whose energy is dissipated by its interaction with the bath. No path integral technology is needed in this treatment. The derivation of the Weisskopf-Wigner line width theory follows easily.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tandy, P.; Yu, Ming; Leahy, C.
2015-03-28
An upgrade of the previous self-consistent and environment-dependent linear combination of atomic orbitals Hamiltonian (referred as SCED-LCAO) has been developed. This improved version of the semi-empirical SCED-LCAO Hamiltonian, in addition to the inclusion of self-consistent determination of charge redistribution, multi-center interactions, and modeling of electron-electron correlation, has taken into account the effect excited on the orbitals due to the atomic aggregation. This important upgrade has been subjected to a stringent test, the construction of the SCED-LCAO Hamiltonian for boron. It was shown that the Hamiltonian for boron has successfully characterized the electron deficiency of boron and captured the complex chemicalmore » bonding in various boron allotropes, including the planar and quasi-planar, the convex, the ring, the icosahedral, and the fullerene-like clusters, the two-dimensional monolayer sheets, and the bulk alpha boron, demonstrating its transferability, robustness, reliability, and predictive power. The molecular dynamics simulation scheme based on the Hamiltonian has been applied to explore the existence and the energetics of ∼230 compact boron clusters B{sub N} with N in the range from ∼100 to 768, including the random, the rhombohedral, and the spherical icosahedral structures. It was found that, energetically, clusters containing whole icosahedral B{sub 12} units are more stable for boron clusters of larger size (N > 200). The ease with which the simulations both at 0 K and finite temperatures were completed is a demonstration of the efficiency of the SCED-LCAO Hamiltonian.« less
NASA Astrophysics Data System (ADS)
Tandy, P.; Yu, Ming; Leahy, C.; Jayanthi, C. S.; Wu, S. Y.
2015-03-01
An upgrade of the previous self-consistent and environment-dependent linear combination of atomic orbitals Hamiltonian (referred as SCED-LCAO) has been developed. This improved version of the semi-empirical SCED-LCAO Hamiltonian, in addition to the inclusion of self-consistent determination of charge redistribution, multi-center interactions, and modeling of electron-electron correlation, has taken into account the effect excited on the orbitals due to the atomic aggregation. This important upgrade has been subjected to a stringent test, the construction of the SCED-LCAO Hamiltonian for boron. It was shown that the Hamiltonian for boron has successfully characterized the electron deficiency of boron and captured the complex chemical bonding in various boron allotropes, including the planar and quasi-planar, the convex, the ring, the icosahedral, and the fullerene-like clusters, the two-dimensional monolayer sheets, and the bulk alpha boron, demonstrating its transferability, robustness, reliability, and predictive power. The molecular dynamics simulation scheme based on the Hamiltonian has been applied to explore the existence and the energetics of ˜230 compact boron clusters BN with N in the range from ˜100 to 768, including the random, the rhombohedral, and the spherical icosahedral structures. It was found that, energetically, clusters containing whole icosahedral B12 units are more stable for boron clusters of larger size (N > 200). The ease with which the simulations both at 0 K and finite temperatures were completed is a demonstration of the efficiency of the SCED-LCAO Hamiltonian.
Decoherence of odd compass states in the phase-sensitive amplifying/dissipating environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodonov, V.V., E-mail: vdodonov@fis.unb.br; Valverde, C.; Universidade Paulista, BR 153, km 7, 74845-090 Goiânia, GO
2016-08-15
We study the evolution of odd compass states (specific superpositions of four coherent states), governed by the standard master equation with phase-sensitive amplifying/attenuating terms, in the presence of a Hamiltonian describing a parametric degenerate linear amplifier. Explicit expressions for the time-dependent Wigner function are obtained. The time of disappearance of the so called “sub-Planck structures” is calculated using the negative value of the Wigner function at the origin of phase space. It is shown that this value rapidly decreases during a short “conventional interference degradation time” (CIDT), which is inversely proportional to the size of quantum superposition, provided the anti-Hermitianmore » terms in the master equation are of the same order (or stronger) as the Hermitian ones (governing the parametric amplification). The CIDT is compared with the final positivization time (FPT), when the Wigner function becomes positive. It appears that the FPT does not depend on the size of superpositions, moreover, it can be much bigger in the amplifying media than in the attenuating ones. Paradoxically, strengthening the Hamiltonian part results in decreasing the CIDT, so that the CIDT almost does not depend on the size of superpositions in the asymptotical case of very weak reservoir coupling. We also analyze the evolution of the Mandel factor, showing that for some sets of parameters this factor remains significantly negative, even when the Wigner function becomes positive.« less
Bubbling and on-off intermittency in bailout embeddings.
Cartwright, Julyan H E; Magnasco, Marcelo O; Piro, Oreste; Tuval, Idan
2003-07-01
We establish and investigate the conceptual connection between the dynamics of the bailout embedding of a Hamiltonian system and the dynamical regimes associated with the occurrence of bubbling and blowout bifurcations. The roles of the invariant manifold and the dynamics restricted to it, required in bubbling and blowout bifurcating systems, are played in the bailout embedding by the embedded Hamiltonian dynamical system. The Hamiltonian nature of the dynamics is precisely the distinctive feature of this instance of a bubbling or blowout bifurcation. The detachment of the embedding trajectories from the original ones can thus be thought of as transient on-off intermittency, and noise-induced avoidance of some regions of the embedded phase space can be recognized as Hamiltonian bubbling.
Optimal feedback scheme and universal time scaling for Hamiltonian parameter estimation.
Yuan, Haidong; Fung, Chi-Hang Fred
2015-09-11
Time is a valuable resource and it is expected that a longer time period should lead to better precision in Hamiltonian parameter estimation. However, recent studies in quantum metrology have shown that in certain cases more time may even lead to worse estimations, which puts this intuition into question. In this Letter we show that by including feedback controls this intuition can be restored. By deriving asymptotically optimal feedback controls we quantify the maximal improvement feedback controls can provide in Hamiltonian parameter estimation and show a universal time scaling for the precision limit under the optimal feedback scheme. Our study reveals an intriguing connection between noncommutativity in the dynamics and the gain of feedback controls in Hamiltonian parameter estimation.
Dynamical decoupling of unbounded Hamiltonians
NASA Astrophysics Data System (ADS)
Arenz, Christian; Burgarth, Daniel; Facchi, Paolo; Hillier, Robin
2018-03-01
We investigate the possibility to suppress interactions between a finite dimensional system and an infinite dimensional environment through a fast sequence of unitary kicks on the finite dimensional system. This method, called dynamical decoupling, is known to work for bounded interactions, but physical environments such as bosonic heat baths are usually modeled with unbounded interactions; hence, here, we initiate a systematic study of dynamical decoupling for unbounded operators. We develop a sufficient decoupling criterion for arbitrary Hamiltonians and a necessary decoupling criterion for semibounded Hamiltonians. We give examples for unbounded Hamiltonians where decoupling works and the limiting evolution as well as the convergence speed can be explicitly computed. We show that decoupling does not always work for unbounded interactions and we provide both physically and mathematically motivated examples.
Gravitational surface Hamiltonian and entropy quantization
NASA Astrophysics Data System (ADS)
Bakshi, Ashish; Majhi, Bibhas Ranjan; Samanta, Saurav
2017-02-01
The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure where p is conjugate momentum of x. Moreover, it leads to TS on the horizon of a black hole. Here T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos-Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein's observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.
The Schwinger Model on S 1: Hamiltonian Formulation, Vacuum and Anomaly
NASA Astrophysics Data System (ADS)
Stuart, David
2014-12-01
We present a Hamiltonian formulation of the Schwinger model with spatial domain taken to be the circle. It is shown that, in Coulomb gauge, the Hamiltonian is a semi-bounded, self-adjoint operator which is invariant under the group of large gauge transformations. There is a nontrivial action of on fermionic Fock space and its vacuum. This action plays a role analogous to that played by the spectral flow in the infinite Dirac sea formalism. The formulation allows (1) a description of the anomaly and its relation to the group action, and (2) an explicit identification of the vacuum. The anomaly in the chiral conservation law appears as a consequence of insisting upon semi-boundedness and gauge invariance of the quantized Hamiltonian.
Intertwined Hamiltonians in two-dimensional curved spaces
NASA Astrophysics Data System (ADS)
Aghababaei Samani, Keivan; Zarei, Mina
2005-04-01
The problem of intertwined Hamiltonians in two-dimensional curved spaces is investigated. Explicit results are obtained for Euclidean plane, Minkowski plane, Poincaré half plane (AdS2), de Sitter plane (dS2), sphere, and torus. It is shown that the intertwining operator is related to the Killing vector fields and the isometry group of corresponding space. It is shown that the intertwined potentials are closely connected to the integral curves of the Killing vector fields. Two problems are considered as applications of the formalism presented in the paper. The first one is the problem of Hamiltonians with equispaced energy levels and the second one is the problem of Hamiltonians whose spectrum is like the spectrum of a free particle.
Extension of the Kohn-Sham formulation of density functional theory to finite temperature
Gonis, A.; Dane, M.
2017-12-20
Based on Mermin's extension of the Hohenberg and Kohn theorems to non-zero temperature, the Kohn-Sham formulation of density functional theory (KS-DFT) is generalized to finite temperature. Here, we show that present formulations are inconsistent with Mermin's functional containing expressions, in particular describing the Coulomb energy, that defy derivation and are even in violation of rules of logical inference. More; current methodology is in violation of fundamental laws of both quantum and classical mechanics. Based on this feature, we demonstrate the impossibility of extending the KS formalism to finite temperature through the self-consistent solutions of the single-particle Schrödinger equation of T>0.more » Guided by the form of Mermin's functional that depends on the eigenstates of a Hamiltonian, determined at T>0 we base our extension of KS-DFT on the determination of the excited states of a non-interacting system at the zero of temperature. The resulting formulation is consistent with that of Mermin constructing the free energy at T>0 in terms of the excited states of a non-interacting Hamiltonian (system) that, within the KS formalism, are described by Slater determinants. To determine the excited states at T=0 use is made of the extension of the Hohenberg and Kohn theorems to excited states presented in previous work applied here to a non-interacting collection of replicas of a non-interacting N-particle system, whose ground state density is taken to match that of K non-interacting replicas of an interacting N-particle system at T>0. The formalism allows for an ever denser population of the excitation spectrum of a Hamiltonian, within the KS approximation. The form of the auxiliary potential, (Kohn-Sham potential), is formally identical to that in the ground state formalism with the contribution of the Coulomb energy provided by the derivative of the Coulomb energy in all excited states taken into account. Once the excited states are determined, the minimum of the free energy within the KS formalism follows immediately in the form of Mermin's functional, but with the exact excited states in that functional represented by Slater determinants obtained through self-consistency conditions at the zero of temperature. Lastly, it is emphasized that, in departure from all existing formulations, no self-consistency conditions are implemented at finite T; as we show, in fact, such formulations are rigorously blocked.« less
Extension of the Kohn-Sham formulation of density functional theory to finite temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonis, A.; Dane, M.
Based on Mermin's extension of the Hohenberg and Kohn theorems to non-zero temperature, the Kohn-Sham formulation of density functional theory (KS-DFT) is generalized to finite temperature. Here, we show that present formulations are inconsistent with Mermin's functional containing expressions, in particular describing the Coulomb energy, that defy derivation and are even in violation of rules of logical inference. More; current methodology is in violation of fundamental laws of both quantum and classical mechanics. Based on this feature, we demonstrate the impossibility of extending the KS formalism to finite temperature through the self-consistent solutions of the single-particle Schrödinger equation of T>0.more » Guided by the form of Mermin's functional that depends on the eigenstates of a Hamiltonian, determined at T>0 we base our extension of KS-DFT on the determination of the excited states of a non-interacting system at the zero of temperature. The resulting formulation is consistent with that of Mermin constructing the free energy at T>0 in terms of the excited states of a non-interacting Hamiltonian (system) that, within the KS formalism, are described by Slater determinants. To determine the excited states at T=0 use is made of the extension of the Hohenberg and Kohn theorems to excited states presented in previous work applied here to a non-interacting collection of replicas of a non-interacting N-particle system, whose ground state density is taken to match that of K non-interacting replicas of an interacting N-particle system at T>0. The formalism allows for an ever denser population of the excitation spectrum of a Hamiltonian, within the KS approximation. The form of the auxiliary potential, (Kohn-Sham potential), is formally identical to that in the ground state formalism with the contribution of the Coulomb energy provided by the derivative of the Coulomb energy in all excited states taken into account. Once the excited states are determined, the minimum of the free energy within the KS formalism follows immediately in the form of Mermin's functional, but with the exact excited states in that functional represented by Slater determinants obtained through self-consistency conditions at the zero of temperature. Lastly, it is emphasized that, in departure from all existing formulations, no self-consistency conditions are implemented at finite T; as we show, in fact, such formulations are rigorously blocked.« less
Fast and accurate 3D tensor calculation of the Fock operator in a general basis
NASA Astrophysics Data System (ADS)
Khoromskaia, V.; Andrae, D.; Khoromskij, B. N.
2012-11-01
The present paper contributes to the construction of a “black-box” 3D solver for the Hartree-Fock equation by the grid-based tensor-structured methods. It focuses on the calculation of the Galerkin matrices for the Laplace and the nuclear potential operators by tensor operations using the generic set of basis functions with low separation rank, discretized on a fine N×N×N Cartesian grid. We prove the Ch2 error estimate in terms of mesh parameter, h=O(1/N), that allows to gain a guaranteed accuracy of the core Hamiltonian part in the Fock operator as h→0. However, the commonly used problem adapted basis functions have low regularity yielding a considerable increase of the constant C, hence, demanding a rather large grid-size N of about several tens of thousands to ensure the high resolution. Modern tensor-formatted arithmetics of complexity O(N), or even O(logN), practically relaxes the limitations on the grid-size. Our tensor-based approach allows to improve significantly the standard basis sets in quantum chemistry by including simple combinations of Slater-type, local finite element and other basis functions. Numerical experiments for moderate size organic molecules show efficiency and accuracy of grid-based calculations to the core Hamiltonian in the range of grid parameter N3˜1015.
NASA Astrophysics Data System (ADS)
Ripoche, J.; Lacroix, D.; Gambacurta, D.; Ebran, J.-P.; Duguet, T.
2017-01-01
Background: Ab initio many-body methods have been developed over the past ten years to address mid-mass nuclei. In their best current level of implementation, their accuracy is of the order of a few percent error on the ground-state correlation energy. Recently implemented variants of these methods are operating a breakthrough in the description of medium-mass open-shell nuclei at a polynomial computational cost while putting state-of-the-art models of internucleon interactions to the test. Purpose: As progress in the design of internucleon interactions is made, and as questions one wishes to answer are refined in connection with increasingly available experimental data, further efforts must be made to tailor many-body methods that can reach an even higher precision for an even larger number of observable quantum states or nuclei. The objective of the present work is to contribute to such a quest by designing and testing a new many-body scheme. Methods: We formulate a truncated configuration-interaction method that consists of diagonalizing the Hamiltonian in a highly truncated subspace of the total N -body Hilbert space. The reduced Hilbert space is generated via the particle-number projected BCS state along with projected seniority-zero two- and four-quasiparticle excitations. Furthermore, the extent by which the underlying BCS state breaks U(1 ) symmetry is optimized in the presence of the projected two- and four-quasiparticle excitations. This constitutes an extension of the so-called restricted variation after projection method in use within the frame of multireference energy density functional calculations. The quality of the newly designed method is tested against exact solutions of the so-called attractive pairing Hamiltonian problem. Results: By construction, the method reproduces exact results for N =2 and N =4 . For N =(8 ,16 ,20 ) , the error in the ground-state correlation energy is less than (0.006%, 0.1%, 0.15%) across the entire range of internucleon coupling defining the pairing Hamiltonian and driving the normal-to-superfluid quantum phase transition. The presently proposed method offers the advantage of automatic access to the low-lying spectroscopy, which it does with high accuracy. Conclusions: The numerical cost of the newly designed variational method is polynomial (N6) in system size. This method achieves unprecedented accuracy for the ground-state correlation energy, effective pairing gap, and one-body entropy as well as for the excitation energy of low-lying states of the attractive pairing Hamiltonian. This constitutes a sufficiently strong motivation to envision its application to realistic nuclear Hamiltonians in view of providing a complementary, accurate, and versatile ab initio description of mid-mass open-shell nuclei in the future.
NASA Astrophysics Data System (ADS)
Nery, Jean Paul; Allen, Philip B.; Antonius, Gabriel; Reining, Lucia; Miglio, Anna; Gonze, Xavier
2018-03-01
The electron-phonon interaction causes thermal and zero-point motion shifts of electron quasiparticle (QP) energies ɛk(T ) . Other consequences of interactions, visible in angle-resolved photoemission spectroscopy (ARPES) experiments, are broadening of QP peaks and appearance of sidebands, contained in the electron spectral function A (k ,ω ) =-ℑ m GR(k ,ω ) /π , where GR is the retarded Green's function. Electronic structure codes (e.g., using density-functional theory) are now available that compute the shifts and start to address broadening and sidebands. Here we consider MgO and LiF, and determine their nonadiabatic Migdal self-energy. The spectral function obtained from the Dyson equation makes errors in the weight and energy of the QP peak and the position and weight of the phonon-induced sidebands. Only one phonon satellite appears, with an unphysically large energy difference (larger than the highest phonon energy) with respect to the QP peak. By contrast, the spectral function from a cumulant treatment of the same self-energy is physically better, giving a quite accurate QP energy and several satellites approximately spaced by the LO phonon energy. In particular, the positions of the QP peak and first satellite agree closely with those found for the Fröhlich Hamiltonian by Mishchenko et al. [Phys. Rev. B 62, 6317 (2000), 10.1103/PhysRevB.62.6317] using diagrammatic Monte Carlo. We provide a detailed comparison between the first-principles MgO and LiF results and those of the Fröhlich Hamiltonian. Such an analysis applies widely to materials with infrared(IR)-active phonons.
NASA Astrophysics Data System (ADS)
Gumral, Hasan
Poisson structure of completely integrable 3 dimensional dynamical systems can be defined in terms of an integrable 1-form. We take advantage of this fact and use the theory of foliations in discussing the geometrical structure underlying complete and partial integrability. We show that the Halphen system can be formulated in terms of a flat SL(2,R)-valued connection and belongs to a non-trivial Godbillon-Vey class. On the other hand, for the Euler top and a special case of 3-species Lotka-Volterra equations which are contained in the Halphen system as limiting cases, this structure degenerates into the form of globally integrable bi-Hamiltonian structures. The globally integrable bi-Hamiltonian case is a linear and the sl_2 structure is a quadratic unfolding of an integrable 1-form in 3 + 1 dimensions. We complete the discussion of the Hamiltonian structure of 2-component equations of hydrodynamic type by presenting the Hamiltonian operators for Euler's equation and a continuum limit of Toda lattice. We present further infinite sequences of conserved quantities for shallow water equations and show that their generalizations by Kodama admit bi-Hamiltonian structure. We present a simple way of constructing the second Hamiltonian operators for N-component equations admitting some scaling properties. The Kodama reduction of the dispersionless-Boussinesq equations and the Lax reduction of the Benney moment equations are shown to be equivalent by a symmetry transformation. They can be cast into the form of a triplet of conservation laws which enable us to recognize a non-trivial scaling symmetry. The resulting bi-Hamiltonian structure generates three infinite sequences of conserved densities.
Geometric phase of cosmological scalar and tensor perturbations in f(R) gravity
NASA Astrophysics Data System (ADS)
Balajany, Hamideh; Mehrafarin, Mohammad
2018-05-01
By using the conformal equivalence of f(R) gravity in vacuum and the usual Einstein theory with scalar-field matter, we derive the Hamiltonian of the linear cosmological scalar and tensor perturbations in f(R) gravity in the form of time-dependent harmonic oscillator Hamiltonians. We find the invariant operators of the resulting Hamiltonians and use their eigenstates to calculate the adiabatic Berry phase for sub-horizon modes as a Lewis-Riesenfeld phase.
Symmetries of SU(2) Skyrmion in Hamiltonian and Lagrangian Approaches
NASA Astrophysics Data System (ADS)
Hong, Soon-Tae; Kim, Yong-Wan; Park, Young-Jai
We apply the Batalin-Fradkin-Tyutin (BFT) method to the SU(2) Skyrmion to study the full symmetry structure of the model at the first-class Hamiltonian level. On the other hand, we also analyze the symmetry structure of the action having the WZ term, which corresponds to this Hamiltonian, in the framework of the Lagrangian approach. Furthermore, following the BFV formalism we derive the BRST invariant gauge fixed Lagrangian from the above extended action.
Hamiltonian surface charges using external sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troessaert, Cédric, E-mail: troessaert@cecs.cl
2016-05-15
In this work, we interpret part of the boundary conditions as external sources in order to partially solve the integrability problem present in the computation of surface charges associated to gauge symmetries in the hamiltonian formalism. We start by describing the hamiltonian structure of external symmetries preserving the action up to a transformation of the external sources of the theory. We then extend these results to the computation of surface charges for field theories with non-trivial boundary conditions.
Contact Hamiltonian systems and complete integrability
NASA Astrophysics Data System (ADS)
Visinescu, Mihai
2017-12-01
We summarize recent results on the integrability of Hamiltonian systems on contact manifolds. We explain how to extend the classical formulation of action-angle variables to contact integrable systems. Using the Jacobi brackets defined on contact manifolds, we discuss the commutativity of first integrals for contact Hamiltonian systems and present the construction of generalized contact action-angle variables. We illustrate the integrability in the contact geometry on the five-dimensional Sasaki-Einstein spaces T1,1 and Yp,q.
Hamiltonian formulation of systems with balanced loss-gain and exactly solvable models
NASA Astrophysics Data System (ADS)
Ghosh, Pijush K.; Sinha, Debdeep
2018-01-01
A Hamiltonian formulation of generic many-body systems with balanced loss and gain is presented. It is shown that a Hamiltonian formulation is possible only if the balancing of loss and gain terms occurs in a pairwise fashion. It is also shown that with the choice of a suitable co-ordinate, the Hamiltonian can always be reformulated in the background of a pseudo-Euclidean metric. If the equations of motion of some of the well-known many-body systems like Calogero models are generalized to include balanced loss and gain, it appears that the same may not be amenable to a Hamiltonian formulation. A few exactly solvable systems with balanced loss and gain, along with a set of integrals of motion are constructed. The examples include a coupled chain of nonlinear oscillators and a many-particle Calogero-type model with four-body inverse square plus two-body pair-wise harmonic interactions. For the case of nonlinear oscillators, stable solution exists even if the loss and gain parameter has unbounded upper range. Further, the range of the parameter for which the stable solutions are obtained is independent of the total number of the oscillators. The set of coupled nonlinear equations are solved exactly for the case when the values of all the constants of motions except the Hamiltonian are equal to zero. Exact, analytical classical solutions are presented for all the examples considered.
The degenerate parametric oscillator and Ince's equation
NASA Astrophysics Data System (ADS)
Cordero-Soto, Ricardo; Suslov, Sergei K.
2011-01-01
We construct Green's function for the quantum degenerate parametric oscillator in the coordinate representation in terms of standard solutions of Ince's equation in a framework of a general approach to variable quadratic Hamiltonians. Exact time-dependent wavefunctions and their connections with dynamical invariants and SU(1, 1) group are also discussed. An extension to the degenerate parametric oscillator with time-dependent amplitude and phase is also mentioned.
The crypto-Hermitian smeared-coordinate representation of wave functions
NASA Astrophysics Data System (ADS)
Znojil, Miloslav
2011-08-01
In discrete-coordinate quantum models the kinematical observable of position need not necessarily be chosen local (i.e., diagonal). Its smearing is selected in the nearest-neighbor form of a real asymmetric (i.e., crypto-Hermitian) tridiagonal matrix Qˆ. Via Gauss-Hermite illustrative example we show how such an option restricts the class of admissible dynamical observables (sampled here just by the Hamiltonian).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vázquez-Báez, V.; Ramírez, C.
We present calculations towards obtaining a wave functions of the universe for the supersymmetric closed string tachyon cosmology. Supersymmetrization, in the superfield formalism, is performed by taking advantage of the time reparametrization invariance of the cosmological action and generalizing the transformations to include grassmannian variables. We calculate the corresponding Hamiltonian, by means of the Dirac formalism, and make use of the superalgebra to find solutions to the Wheeler-DeWitt equations indirectly.
Quantum Model of a Charged Black Hole
NASA Astrophysics Data System (ADS)
Gladush, V. D.
A canonical approach for constructing of the classical and quantum description spherically-symmetric con guration gravitational and electromagnetic elds is considered. According to the sign of the square of the Kodama vector, space-time is divided into R-and T-regions. By virtue of the generalized Birkho theorem, one can choose coordinate systems such that the desired metric functions in the T-region depend on the time, and in the R-domain on the space coordinate. Then, the initial action for the con guration breaks up into terms describing the elds in the T- and R-regions with the time and space evolutionary variable, respectively. For these regions, Lagrangians of the con guration are constructed, which contain dynamic and non-dynamic degrees of freedom, leading to constrains. We concentrate our attention on dynamic T-regions. There are two additional conserved physical quantities: the charge and the total mass of the system. The Poisson bracket of the total mass with the Hamiltonian function vanishes in the weak sense. A classical solution of the eld equations in the con guration space (minisuperspace) is constructed without xing non-dynamic variable. In the framework of the canonical approach to the quantum mechanics of the system under consideration, physical states are found by solving the Hamiltonian constraint in the operator form (the DeWitt equation) for the system wave function Ψ. It also requires that Ψ is an eigenfunction of the operators of charge and total mass. For the symmetric of the mass operator the corresponding ordering of operators is carried out. Since the total mass operator commutes with the Hamiltonian in the weak sense, its eigenfunctions must be constructed in conjunction with the solution of the DeWitt equation. The consistency condition leads to the ansatz, with the help of which the solution of the DeWitt equation for the state Ψem with a defined total mass and charge is constructed, taking into account the regularity condition on the horizon. The mass and charge spectra of the con guration in this approach turn out to be continuous. It is interesting that formal quantization in the R-region with a space evolutionary coordinate leads to a similar result.
Capillary wave theory of adsorbed liquid films and the structure of the liquid-vapor interface
NASA Astrophysics Data System (ADS)
MacDowell, Luis G.
2017-08-01
In this paper we try to work out in detail the implications of a microscopic theory for capillary waves under the assumption that the density is given along lines normal to the interface. Within this approximation, which may be justified in terms of symmetry arguments, the Fisk-Widom scaling of the density profile holds for frozen realizations of the interface profile. Upon thermal averaging of capillary wave fluctuations, the resulting density profile yields results consistent with renormalization group calculations in the one-loop approximation. The thermal average over capillary waves may be expressed in terms of a modified convolution approximation where normals to the interface are Gaussian distributed. In the absence of an external field we show that the phenomenological density profile applied to the square-gradient free energy functional recovers the capillary wave Hamiltonian exactly. We extend the theory to the case of liquid films adsorbed on a substrate. For systems with short-range forces, we recover an effective interface Hamiltonian with a film height dependent surface tension that stems from the distortion of the liquid-vapor interface by the substrate, in agreement with the Fisher-Jin theory of short-range wetting. In the presence of long-range interactions, the surface tension picks up an explicit dependence on the external field and recovers the wave vector dependent logarithmic contribution observed by Napiorkowski and Dietrich. Using an error function for the intrinsic density profile, we obtain closed expressions for the surface tension and the interface width. We show the external field contribution to the surface tension may be given in terms of the film's disjoining pressure. From literature values of the Hamaker constant, it is found that the fluid-substrate forces may be able to double the surface tension for films in the nanometer range. The film height dependence of the surface tension described here is in full agreement with results of the capillary wave spectrum obtained recently in computer simulations, and the predicted translation mode of surface fluctuations reproduces to linear order in field strength an exact solution of the density correlation function for the Landau-Ginzburg-Wilson Hamiltonian in an external field.
Irreconcilable difference between quantum walks and adiabatic quantum computing
NASA Astrophysics Data System (ADS)
Wong, Thomas G.; Meyer, David A.
2016-06-01
Continuous-time quantum walks and adiabatic quantum evolution are two general techniques for quantum computing, both of which are described by Hamiltonians that govern their evolutions by Schrödinger's equation. In the former, the Hamiltonian is fixed, while in the latter, the Hamiltonian varies with time. As a result, their formulations of Grover's algorithm evolve differently through Hilbert space. We show that this difference is fundamental; they cannot be made to evolve along each other's path without introducing structure more powerful than the standard oracle for unstructured search. For an adiabatic quantum evolution to evolve like the quantum walk search algorithm, it must interpolate between three fixed Hamiltonians, one of which is complex and introduces structure that is stronger than the oracle for unstructured search. Conversely, for a quantum walk to evolve along the path of the adiabatic search algorithm, it must be a chiral quantum walk on a weighted, directed star graph with structure that is also stronger than the oracle for unstructured search. Thus, the two techniques, although similar in being described by Hamiltonians that govern their evolution, compute by fundamentally irreconcilable means.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonçalves, L.A.; Olavo, L.S.F., E-mail: olavolsf@gmail.com
Dissipation in Quantum Mechanics took some time to become a robust field of investigation after the birth of the field. The main issue hindering developments in the field is that the Quantization process was always tightly connected to the Hamiltonian formulation of Classical Mechanics. In this paper we present a quantization process that does not depend upon the Hamiltonian formulation of Classical Mechanics (although still departs from Classical Mechanics) and thus overcome the problem of finding, from first principles, a completely general Schrödinger equation encompassing dissipation. This generalized process of quantization is shown to be nothing but an extension ofmore » a more restricted version that is shown to produce the Schrödinger equation for Hamiltonian systems from first principles (even for Hamiltonian velocity dependent potential). - Highlights: • A Quantization process independent of the Hamiltonian formulation of quantum Mechanics is proposed. • This quantization method is applied to dissipative or absorptive systems. • A Dissipative Schrödinger equation is derived from first principles.« less
Effective time-independent analysis for quantum kicked systems.
Bandyopadhyay, Jayendra N; Guha Sarkar, Tapomoy
2015-03-01
We present a mapping of potentially chaotic time-dependent quantum kicked systems to an equivalent approximate effective time-independent scenario, whereby the system is rendered integrable. The time evolution is factorized into an initial kick, followed by an evolution dictated by a time-independent Hamiltonian and a final kick. This method is applied to the kicked top model. The effective time-independent Hamiltonian thus obtained does not suffer from spurious divergences encountered if the traditional Baker-Cambell-Hausdorff treatment is used. The quasienergy spectrum of the Floquet operator is found to be in excellent agreement with the energy levels of the effective Hamiltonian for a wide range of system parameters. The density of states for the effective system exhibits sharp peaklike features, pointing towards quantum criticality. The dynamics in the classical limit of the integrable effective Hamiltonian shows remarkable agreement with the nonintegrable map corresponding to the actual time-dependent system in the nonchaotic regime. This suggests that the effective Hamiltonian serves as a substitute for the actual system in the nonchaotic regime at both the quantum and classical level.
Effective time-independent analysis for quantum kicked systems
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Jayendra N.; Guha Sarkar, Tapomoy
2015-03-01
We present a mapping of potentially chaotic time-dependent quantum kicked systems to an equivalent approximate effective time-independent scenario, whereby the system is rendered integrable. The time evolution is factorized into an initial kick, followed by an evolution dictated by a time-independent Hamiltonian and a final kick. This method is applied to the kicked top model. The effective time-independent Hamiltonian thus obtained does not suffer from spurious divergences encountered if the traditional Baker-Cambell-Hausdorff treatment is used. The quasienergy spectrum of the Floquet operator is found to be in excellent agreement with the energy levels of the effective Hamiltonian for a wide range of system parameters. The density of states for the effective system exhibits sharp peaklike features, pointing towards quantum criticality. The dynamics in the classical limit of the integrable effective Hamiltonian shows remarkable agreement with the nonintegrable map corresponding to the actual time-dependent system in the nonchaotic regime. This suggests that the effective Hamiltonian serves as a substitute for the actual system in the nonchaotic regime at both the quantum and classical level.
Nagoor Gani, A; Latha, S R
2016-01-01
A Hamiltonian cycle in a graph is a cycle that visits each node/vertex exactly once. A graph containing a Hamiltonian cycle is called a Hamiltonian graph. There have been several researches to find the number of Hamiltonian cycles of a Hamilton graph. As the number of vertices and edges grow, it becomes very difficult to keep track of all the different ways through which the vertices are connected. Hence, analysis of large graphs can be efficiently done with the assistance of a computer system that interprets graphs as matrices. And, of course, a good and well written algorithm will expedite the analysis even faster. The most convenient way to quickly test whether there is an edge between two vertices is to represent graphs using adjacent matrices. In this paper, a new algorithm is proposed to find fuzzy Hamiltonian cycle using adjacency matrix and the degree of the vertices of a fuzzy graph. A fuzzy graph structure is also modeled to illustrate the proposed algorithms with the selected air network of Indigo airlines.
First-principles molecular transport calculation for the benzenedithiolate molecule
NASA Astrophysics Data System (ADS)
Rumetshofer, M.; Dorn, G.; Boeri, L.; Arrigoni, E.; von der Linden, W.
2017-10-01
A first-principles approach based on density functional theory and non-equilibrium Green’s functions is used to study the molecular transport system consisting of benzenedithiolate connected with monoatomic gold and platinum electrodes. Using symmetry arguments we explain why the conductance mechanism is different for gold and platinum electrodes. We present the charge stability diagram for the benzenedithiolate connected with monoatomic platinum electrodes including many-body effects in terms of an extended Hubbard Hamiltonian and discuss how the electrodes and the many-body effects influence the transport properties of the system.
The nonconvex multi-dimensional Riemann problem for Hamilton-Jacobi equations
NASA Technical Reports Server (NTRS)
Bardi, Martino; Osher, Stanley
1991-01-01
Simple inequalities are presented for the viscosity solution of a Hamilton-Jacobi equation in N space dimensions when neither the initial data nor the Hamiltonian need be convex (or concave). The initial data are uniformly Lipschitz and can be written as the sum of a convex function in a group of variables and a concave function in the remaining variables, therefore including the nonconvex Riemann problem. The inequalities become equalities wherever a 'maxmin' equals a 'minmax', and thus a representation formula for this problem is obtained, generalizing the classical Hopi formulas.
Compact exponential product formulas and operator functional derivative
NASA Astrophysics Data System (ADS)
Suzuki, Masuo
1997-02-01
A new scheme for deriving compact expressions of the logarithm of the exponential product is proposed and it is applied to several exponential product formulas. A generalization of the Dynkin-Specht-Wever (DSW) theorem on free Lie elements is given, and it is used to study the relation between the traditional method (based on the DSW theorem) and the present new scheme. The concept of the operator functional derivative is also proposed, and it is applied to ordered exponentials, such as time-evolution operators for time-dependent Hamiltonians.
QEDMOD: Fortran program for calculating the model Lamb-shift operator
NASA Astrophysics Data System (ADS)
Shabaev, V. M.; Tupitsyn, I. I.; Yerokhin, V. A.
2018-02-01
We present Fortran package QEDMOD for computing the model QED operator hQED that can be used to account for the Lamb shift in accurate atomic-structure calculations. The package routines calculate the matrix elements of hQED with the user-specified one-electron wave functions. The operator can be used to calculate Lamb shift in many-electron atomic systems with a typical accuracy of few percent, either by evaluating the matrix element of hQED with the many-electron wave function, or by adding hQED to the Dirac-Coulomb-Breit Hamiltonian.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalewski, Markus, E-mail: mkowalew@uci.edu; Mukamel, Shaul, E-mail: smukamel@uci.edu
2015-07-28
Femtosecond Stimulated Raman Spectroscopy (FSRS) signals that monitor the excited state conical intersections dynamics of acrolein are simulated. An effective time dependent Hamiltonian for two C—H vibrational marker bands is constructed on the fly using a local mode expansion combined with a semi-classical surface hopping simulation protocol. The signals are obtained by a direct forward and backward propagation of the vibrational wave function on a numerical grid. Earlier work is extended to fully incorporate the anharmonicities and intermode couplings.
Fidelity under isospectral perturbations: a random matrix study
NASA Astrophysics Data System (ADS)
Leyvraz, F.; García, A.; Kohler, H.; Seligman, T. H.
2013-07-01
The set of Hamiltonians generated by all unitary transformations from a single Hamiltonian is the largest set of isospectral Hamiltonians we can form. Taking advantage of the fact that the unitary group can be generated from Hermitian matrices we can take the ones generated by the Gaussian unitary ensemble with a small parameter as small perturbations. Similarly, the transformations generated by Hermitian antisymmetric matrices from orthogonal matrices form isospectral transformations among symmetric matrices. Based on this concept we can obtain the fidelity decay of a system that decays under a random isospectral perturbation with well-defined properties regarding time-reversal invariance. If we choose the Hamiltonian itself also from a classical random matrix ensemble, then we obtain solutions in terms of form factors in the limit of large matrices.
Equilibrium Solutions of the Logarithmic Hamiltonian Leapfrog for the N-body Problem
NASA Astrophysics Data System (ADS)
Minesaki, Yukitaka
2018-04-01
We prove that a second-order logarithmic Hamiltonian leapfrog for the classical general N-body problem (CGNBP) designed by Mikkola and Tanikawa and some higher-order logarithmic Hamiltonian methods based on symmetric multicompositions of the logarithmic algorithm exactly reproduce the orbits of elliptic relative equilibrium solutions in the original CGNBP. These methods are explicit symplectic methods. Before this proof, only some implicit discrete-time CGNBPs proposed by Minesaki had been analytically shown to trace the orbits of elliptic relative equilibrium solutions. The proof is therefore the first existence proof for explicit symplectic methods. Such logarithmic Hamiltonian methods with a variable time step can also precisely retain periodic orbits in the classical general three-body problem, which generic numerical methods with a constant time step cannot do.
Lagrangian and Hamiltonian constraints for guiding-center Hamiltonian theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tronko, Natalia; Brizard, Alain J.
A consistent guiding-center Hamiltonian theory is derived by Lie-transform perturbation method, with terms up to second order in magnetic-field nonuniformity. Consistency is demonstrated by showing that the guiding-center transformation presented here satisfies separate Jacobian and Lagrangian constraints that have not been explored before. A new first-order term appearing in the guiding-center phase-space Lagrangian is identified through a calculation of the guiding-center polarization. It is shown that this new polarization term also yields a simpler expression of the guiding-center toroidal canonical momentum, which satisfies an exact conservation law in axisymmetric magnetic geometries. Finally, an application of the guiding-center Lagrangian constraint onmore » the guiding-center Hamiltonian yields a natural interpretation for its higher-order corrections.« less
Gapped two-body Hamiltonian for continuous-variable quantum computation.
Aolita, Leandro; Roncaglia, Augusto J; Ferraro, Alessandro; Acín, Antonio
2011-03-04
We introduce a family of Hamiltonian systems for measurement-based quantum computation with continuous variables. The Hamiltonians (i) are quadratic, and therefore two body, (ii) are of short range, (iii) are frustration-free, and (iv) possess a constant energy gap proportional to the squared inverse of the squeezing. Their ground states are the celebrated Gaussian graph states, which are universal resources for quantum computation in the limit of infinite squeezing. These Hamiltonians constitute the basic ingredient for the adiabatic preparation of graph states and thus open new venues for the physical realization of continuous-variable quantum computing beyond the standard optical approaches. We characterize the correlations in these systems at thermal equilibrium. In particular, we prove that the correlations across any multipartition are contained exactly in its boundary, automatically yielding a correlation area law.
Adiabatic quantum simulation of quantum chemistry.
Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán
2014-10-13
We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.
BRST quantization of Yang-Mills theory: A purely Hamiltonian approach on Fock space
NASA Astrophysics Data System (ADS)
Öttinger, Hans Christian
2018-04-01
We develop the basic ideas and equations for the BRST quantization of Yang-Mills theories in an explicit Hamiltonian approach, without any reference to the Lagrangian approach at any stage of the development. We present a new representation of ghost fields that combines desirable self-adjointness properties with canonical anticommutation relations for ghost creation and annihilation operators, thus enabling us to characterize the physical states on a well-defined Fock space. The Hamiltonian is constructed by piecing together simple BRST invariant operators to obtain a minimal invariant extension of the free theory. It is verified that the evolution equations implied by the resulting minimal Hamiltonian provide a quantum version of the classical Yang-Mills equations. The modifications and requirements for the inclusion of matter are discussed in detail.
NASA Astrophysics Data System (ADS)
Nakano, Masahiko; Seino, Junji; Nakai, Hiromi
2017-05-01
We have derived and implemented a universal formulation of the second-order generalized Møller-Plesset perturbation theory (GMP2) for spin-dependent (SD) two-component relativistic many-electron Hamiltonians, such as the infinite-order Douglas-Kroll-Hess Hamiltonian for many-electron systems, which is denoted as IODKH/IODKH. Numerical assessments for He- and Ne-like atoms and 16 diatomic molecules show that the MP2 correlation energies with IODKH/IODKH agree well with those calculated with the four-component Dirac-Coulomb (DC) Hamiltonian, indicating a systematic improvement on the inclusion of relativistic two-electron terms. The present MP2 scheme for IODKH/IODKH is demonstrated to be computationally more efficient than that for DC.
Hamiltonian models for topological phases of matter in three spatial dimensions
NASA Astrophysics Data System (ADS)
Williamson, Dominic J.; Wang, Zhenghan
2017-02-01
We present commuting projector Hamiltonian realizations of a large class of (3 + 1)D topological models based on mathematical objects called unitary G-crossed braided fusion categories. This construction comes with a wealth of examples from the literature of symmetry-enriched topological phases. The spacetime counterparts to our Hamiltonians are unitary state sum topological quantum fields theories (TQFTs) that appear to capture all known constructions in the literature, including the Crane-Yetter-Walker-Wang and 2-Group gauge theory models. We also present Hamiltonian realizations of a state sum TQFT recently constructed by Kashaev whose relation to existing models was previously unknown. We argue that this TQFT is captured as a special case of the Crane-Yetter-Walker-Wang model, with a premodular input category in some instances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orsucci, Davide; Burgarth, Daniel; Facchi, Paolo
The problem of Hamiltonian purification introduced by Burgarth et al. [Nat. Commun. 5, 5173 (2014)] is formalized and discussed. Specifically, given a set of non-commuting Hamiltonians (h{sub 1}, …, h{sub m}) operating on a d-dimensional quantum system ℋ{sub d}, the problem consists in identifying a set of commuting Hamiltonians (H{sub 1}, …, H{sub m}) operating on a larger d{sub E}-dimensional system ℋ{sub d{sub E}} which embeds ℋ{sub d} as a proper subspace, such that h{sub j} = PH{sub j}P with P being the projection which allows one to recover ℋ{sub d} from ℋ{sub d{sub E}}. The notions of spanning-set purificationmore » and generator purification of an algebra are also introduced and optimal solutions for u(d) are provided.« less
Semi-classical approach to transitionless quantum driving: Explicitness and Locality
NASA Astrophysics Data System (ADS)
Loewe, Benjamin; Hipolito, Rafael; Goldbart, Paul M.
Berry has shown that, via a reverse engineering strategy, non-adiabatic transitions in time-dependent quantum systems can be stifled through the introduction of a specific auxiliary hamiltonian. This hamiltonian comes, however, expressed as a formal sum of outer products of the original instantaneous eigenstates and their time-derivatives. Generically, how to create such an operator in the laboratory is thus not evident. Furthermore, the operator may be non- local. By following a semi-classical approach, we obtain a recipe that yields the auxiliary hamiltonian explicitly in terms of the fundamental operators of the system (e.g., position and momentum). By using this formalism, we are able to ascertain criteria for the locality of the auxiliary hamiltonian, and also to determine its exact form in certain special cases.
Exploring corrections to the Optomechanical Hamiltonian.
Sala, Kamila; Tufarelli, Tommaso
2018-06-14
We compare two approaches for deriving corrections to the "linear model" of cavity optomechanics, in order to describe effects that are beyond first order in the radiation pressure coupling. In the regime where the mechanical frequency is much lower than the cavity one, we compare: (I) a widely used phenomenological Hamiltonian conserving the photon number; (II) a two-mode truncation of C. K. Law's microscopic model, which we take as the "true" system Hamiltonian. While these approaches agree at first order, the latter model does not conserve the photon number, resulting in challenging computations. We find that approach (I) allows for several analytical predictions, and significantly outperforms the linear model in our numerical examples. Yet, we also find that the phenomenological Hamiltonian cannot fully capture all high-order corrections arising from the C. K. Law model.
Effective Hamiltonian for travelling discrete breathers
NASA Astrophysics Data System (ADS)
MacKay, Robert S.; Sepulchre, Jacques-Alexandre
2002-05-01
Hamiltonian chains of oscillators in general probably do not sustain exact travelling discrete breathers. However solutions which look like moving discrete breathers for some time are not difficult to observe in numerics. In this paper we propose an abstract framework for the description of approximate travelling discrete breathers in Hamiltonian chains of oscillators. The method is based on the construction of an effective Hamiltonian enabling one to describe the dynamics of the translation degree of freedom of moving breathers. Error estimate on the approximate dynamics is also studied. The concept of the Peierls-Nabarro barrier can be made clear in this framework. We illustrate the method with two simple examples, namely the Salerno model which interpolates between the Ablowitz-Ladik lattice and the discrete nonlinear Schrödinger system, and the Fermi-Pasta-Ulam chain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maryasov, Alexander G.; Bowman, Michael K.
2004-07-08
It is shown that HYSCORE spectra of paramagnetic centers having nuclei of spin I=1 with isotropic hfi and arbitrary NQI consist of ridges having zero width. A parametric presentation of these ridges is found which shows the range of possible frequencies in the HYSCORE spectrum and aids in spectral assignments and rapid estimation of spin Hamiltonian parameters. An alternative approach for the spectral density calculation is presented that is based on spectral decomposition of the Hamiltonian. Only the eigenvalues of the Hamiltonian are needed in this approach. An atlas of HYSCORE spectra is given in the Supporting Information. This approachmore » is applied to the estimation of the spin Hamiltonian parameters of the oxovanadium-EDTA complex.« less
A unified theoretical framework for mapping models for the multi-state Hamiltonian.
Liu, Jian
2016-11-28
We propose a new unified theoretical framework to construct equivalent representations of the multi-state Hamiltonian operator and present several approaches for the mapping onto the Cartesian phase space. After mapping an F-dimensional Hamiltonian onto an F+1 dimensional space, creation and annihilation operators are defined such that the F+1 dimensional space is complete for any combined excitation. Commutation and anti-commutation relations are then naturally derived, which show that the underlying degrees of freedom are neither bosons nor fermions. This sets the scene for developing equivalent expressions of the Hamiltonian operator in quantum mechanics and their classical/semiclassical counterparts. Six mapping models are presented as examples. The framework also offers a novel way to derive such as the well-known Meyer-Miller model.
Symplectic semiclassical wave packet dynamics II: non-Gaussian states
NASA Astrophysics Data System (ADS)
Ohsawa, Tomoki
2018-05-01
We generalize our earlier work on the symplectic/Hamiltonian formulation of the dynamics of the Gaussian wave packet to non-Gaussian semiclassical wave packets. We find the symplectic forms and asymptotic expansions of the Hamiltonians associated with these semiclassical wave packets, and obtain Hamiltonian systems governing their dynamics. Numerical experiments demonstrate that the dynamics give a very good approximation to the short-time dynamics of the expectation values computed by a method based on Egorov’s theorem or the initial value representation.
Time and a physical Hamiltonian for quantum gravity.
Husain, Viqar; Pawłowski, Tomasz
2012-04-06
We present a nonperturbative quantization of general relativity coupled to dust and other matter fields. The dust provides a natural time variable, leading to a physical Hamiltonian with spatial diffeomorphism symmetry. The surprising feature is that the Hamiltonian is not a square root. This property, together with the kinematical structure of loop quantum gravity, provides a complete theory of quantum gravity, and puts applications to cosmology, quantum gravitational collapse, and Hawking radiation within technical reach. © 2012 American Physical Society
A contour for the entanglement entropies in harmonic lattices
NASA Astrophysics Data System (ADS)
Coser, Andrea; De Nobili, Cristiano; Tonni, Erik
2017-08-01
We construct a contour function for the entanglement entropies in generic harmonic lattices. In one spatial dimension, numerical analysis are performed by considering harmonic chains with either periodic or Dirichlet boundary conditions. In the massless regime and for some configurations where the subsystem is a single interval, the numerical results for the contour function are compared to the inverse of the local weight function which multiplies the energy-momentum tensor in the corresponding entanglement hamiltonian, found through conformal field theory methods, and a good agreement is observed. A numerical analysis of the contour function for the entanglement entropy is performed also in a massless harmonic chain for a subsystem made by two disjoint intervals.
Functional integral for non-Lagrangian systems
NASA Astrophysics Data System (ADS)
Kochan, Denis
2010-02-01
A functional integral formulation of quantum mechanics for non-Lagrangian systems is presented. The approach, which we call “stringy quantization,” is based solely on classical equations of motion and is free of any ambiguity arising from Lagrangian and/or Hamiltonian formulation of the theory. The functionality of the proposed method is demonstrated on several examples. Special attention is paid to the stringy quantization of systems with a general A-power friction force -κq˙A. Results for A=1 are compared with those obtained in the approaches by Caldirola-Kanai, Bateman, and Kostin. Relations to the Caldeira-Leggett model and to the Feynman-Vernon approach are discussed as well.
Magnetohydrodynamic motion of a two-fluid plasma
Burby, Joshua W.
2017-07-21
Here, the two-fluid Maxwell system couples frictionless electron and ion fluids via Maxwell’s equations. When the frequencies of light waves, Langmuir waves, and single-particle cyclotron motion are scaled to be asymptotically large, the two-fluid Maxwell system becomes a fast-slow dynamical system. This fast-slow system admits a formally-exact single-fluid closure that may be computed systematically with any desired order of accuracy through the use of a functional partial differential equation. In the leading order approximation, the closure reproduces magnetohydrodynamics (MHD). Higher order truncations of the closure give an infinite hierarchy of extended MHD models that allow for arbitrary mass ratio, asmore » well as perturbative deviations from charge neutrality. The closure is interpreted geometrically as an invariant slow manifold in the infinite-dimensional two-fluid phase space, on which two-fluid motions are free of high-frequency oscillations. This perspective shows that the full closure inherits a Hamiltonian structure from two-fluid theory. By employing infinite-dimensional Lie transforms, the Poisson bracket for the all-orders closure may be obtained in closed form. Thus, conservative truncations of the single-fluid closure may be obtained by simply truncating the single-fluid Hamiltonian. Moreover, the closed-form expression for the all-orders bracket gives explicit expressions for a number of the full closure’s conservation laws. Notably, the full closure, as well as any of its Hamiltonian truncations, admits a pair of independent circulation invariants.« less
Magnetohydrodynamic motion of a two-fluid plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burby, Joshua W.
Here, the two-fluid Maxwell system couples frictionless electron and ion fluids via Maxwell’s equations. When the frequencies of light waves, Langmuir waves, and single-particle cyclotron motion are scaled to be asymptotically large, the two-fluid Maxwell system becomes a fast-slow dynamical system. This fast-slow system admits a formally-exact single-fluid closure that may be computed systematically with any desired order of accuracy through the use of a functional partial differential equation. In the leading order approximation, the closure reproduces magnetohydrodynamics (MHD). Higher order truncations of the closure give an infinite hierarchy of extended MHD models that allow for arbitrary mass ratio, asmore » well as perturbative deviations from charge neutrality. The closure is interpreted geometrically as an invariant slow manifold in the infinite-dimensional two-fluid phase space, on which two-fluid motions are free of high-frequency oscillations. This perspective shows that the full closure inherits a Hamiltonian structure from two-fluid theory. By employing infinite-dimensional Lie transforms, the Poisson bracket for the all-orders closure may be obtained in closed form. Thus, conservative truncations of the single-fluid closure may be obtained by simply truncating the single-fluid Hamiltonian. Moreover, the closed-form expression for the all-orders bracket gives explicit expressions for a number of the full closure’s conservation laws. Notably, the full closure, as well as any of its Hamiltonian truncations, admits a pair of independent circulation invariants.« less