Sample records for hamiltonian isokinetic thermostat

  1. Hamiltonian dynamics of thermostated systems: two-temperature heat-conducting phi4 chains.

    PubMed

    Hoover, Wm G; Hoover, Carol G

    2007-04-28

    We consider and compare four Hamiltonian formulations of thermostated mechanics, three of them kinetic, and the other one configurational. Though all four approaches "work" at equilibrium, their application to many-body nonequilibrium simulations can fail to provide a proper flow of heat. All the Hamiltonian formulations considered here are applied to the same prototypical two-temperature "phi4" model of a heat-conducting chain. This model incorporates nearest-neighbor Hooke's-Law interactions plus a quartic tethering potential. Physically correct results, obtained with the isokinetic Gaussian and Nose-Hoover thermostats, are compared with two other Hamiltonian results. The latter results, based on constrained Hamiltonian thermostats, fail to model correctly the flow of heat.

  2. Hamiltonian thermostats fail to promote heat flow

    NASA Astrophysics Data System (ADS)

    Hoover, Wm. G.; Hoover, Carol G.

    2013-12-01

    Hamiltonian mechanics can be used to constrain temperature simultaneously with energy. We illustrate the interesting situations that develop when two different temperatures are imposed within a composite Hamiltonian system. The model systems we treat are ϕ4 chains, with quartic tethers and quadratic nearest-neighbor Hooke's-law interactions. This model is known to satisfy Fourier's law. Our prototypical problem sandwiches a Newtonian subsystem between hot and cold Hamiltonian reservoir regions. We have characterized four different Hamiltonian reservoir types. There is no tendency for any of these two-temperature Hamiltonian simulations to transfer heat from the hot to the cold degrees of freedom. Evidently steady heat flow simulations require energy sources and sinks, and are therefore incompatible with Hamiltonian mechanics.

  3. New Langevin and gradient thermostats for rigid body dynamics.

    PubMed

    Davidchack, R L; Ouldridge, T E; Tretyakov, M V

    2015-04-14

    We introduce two new thermostats, one of Langevin type and one of gradient (Brownian) type, for rigid body dynamics. We formulate rotation using the quaternion representation of angular coordinates; both thermostats preserve the unit length of quaternions. The Langevin thermostat also ensures that the conjugate angular momenta stay within the tangent space of the quaternion coordinates, as required by the Hamiltonian dynamics of rigid bodies. We have constructed three geometric numerical integrators for the Langevin thermostat and one for the gradient thermostat. The numerical integrators reflect key properties of the thermostats themselves. Namely, they all preserve the unit length of quaternions, automatically, without the need of a projection onto the unit sphere. The Langevin integrators also ensure that the angular momenta remain within the tangent space of the quaternion coordinates. The Langevin integrators are quasi-symplectic and of weak order two. The numerical method for the gradient thermostat is of weak order one. Its construction exploits ideas of Lie-group type integrators for differential equations on manifolds. We numerically compare the discretization errors of the Langevin integrators, as well as the efficiency of the gradient integrator compared to the Langevin ones when used in the simulation of rigid TIP4P water model with smoothly truncated electrostatic interactions. We observe that the gradient integrator is computationally less efficient than the Langevin integrators. We also compare the relative accuracy of the Langevin integrators in evaluating various static quantities and give recommendations as to the choice of an appropriate integrator.

  4. The Jarzynski identity derived from general Hamiltonian or non-Hamiltonian dynamics reproducing NVT or NPT ensembles

    NASA Astrophysics Data System (ADS)

    Cuendet, Michel A.

    2006-10-01

    The Jarzynski identity (JI) relates nonequilibrium work averages to thermodynamic free energy differences. It was shown in a recent contribution [M. A. Cuendet, Phys. Rev. Lett. 96, 120602 (2006)] that the JI can, in particular, be derived directly from the Nosé-Hoover thermostated dynamics. This statistical mechanical derivation is particularly relevant in the framework of molecular dynamics simulation, because it is based solely on the equations of motion considered and is free of any additional assumptions on system size or bath coupling. Here, this result is generalized to a variety of dynamics, along two directions. On the one hand, specific improved thermostating schemes used in practical applications are treated. These include Nosé-Hoover chains, higher moment thermostats, as well as an isothermal-isobaric scheme yielding the JI in the NPT ensemble. On the other hand, the theoretical generality of the new derivation is explored. Generic dynamics with arbitrary coupling terms and an arbitrary number of thermostating variables, both non-Hamiltonian and Hamiltonian, are shown to imply the JI. In particular, a nonautonomous formulation of the generalized Nosé-Poincaré thermostat is proposed. Finally, general conditions required for the JI derivation are briefly discussed.

  5. Facilitating energy savings with programmable thermostats: evaluation and guidelines for the thermostat user interface.

    PubMed

    Peffer, Therese; Perry, Daniel; Pritoni, Marco; Aragon, Cecilia; Meier, Alan

    2013-01-01

    Thermostats control heating and cooling in homes - representing a major part of domestic energy use - yet, poor ergonomics of these devices has thwarted efforts to reduce energy consumption. Theoretically, programmable thermostats can reduce energy by 5-15%, but in practice little to no savings compared to manual thermostats are found. Several studies have found that programmable thermostats are not installed properly, are generally misunderstood and have poor usability. After conducting a usability study of programmable thermostats, we reviewed several guidelines from ergonomics, general device usability, computer-human interfaces and building control sources. We analysed the characteristics of thermostats that enabled or hindered successfully completing tasks and in a timely manner. Subjects had higher success rates with thermostat displays with positive examples of guidelines, such as visibility of possible actions, consistency and standards, and feedback. We suggested other guidelines that seemed missing, such as navigation cues, clear hierarchy and simple decision paths. Our evaluation of a usability test of five residential programmable thermostats led to the development of a comprehensive set of specific guidelines for thermostat design including visibility of possible actions, consistency, standards, simple decision paths and clear hierarchy. Improving the usability of thermostats may facilitate energy savings.

  6. Field Evaluation of Programmable Thermostats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachs, O.; Tiefenbeck, V.; Duvier, C.

    2012-12-01

    Prior research suggests that poor programmable thermostats usability may prevent their effective use to save energy. We hypothesized that home occupants with a high-usability thermostats would be more likely to use them to save energy than people with a basic thermostat. We randomly installed a high-usability thermostat in half the 77 apartments of an affordable housing complex, installing a basic thermostat in the other half. During the heating season, we collected space temperature and furnace on-off data to evaluate occupant interaction with the thermostats, foremost nighttime setbacks. We found that thermostat usability did not influence energy-saving behaviors, finding no significantmore » difference in temperature maintained among apartments with high- and low-usability thermostats.« less

  7. Field Evaluation of Programmable Thermostats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachs, O.; Tiefenbeck, V.; Duvier, C.

    2012-12-01

    Prior research suggests that poor programmable thermostats usability may prevent their effective use to save energy. The Fraunhofer team hypothesized that home occupants with high-usability thermostats would be more likely to use them to save energy than people with a basic thermostats. In this report, the team discusses results of a project in which the team monitored and compared programmable thermostats with basic thermostats in an affordable housing apartment complex.

  8. Thermostat Interface and Usability: A Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, Alan; Peffer, Therese; Pritoni, Marco

    2010-09-04

    This report investigates the history of thermostats to better understand the context and legacy regarding the development of this important tool, as well as thermostats' relationships to heating, cooling, and other environmental controls. We analyze the architecture, interfaces, and modes of interaction used by different types of thermostats. For over sixty years, home thermostats have translated occupants' temperature preferences into heating and cooling system operations. In this position of an intermediary, the millions of residential thermostats control almost half of household energy use, which corresponds to about 10percent of the nation's total energy use. Thermostats are currently undergoing rapid developmentmore » in response to emerging technologies, new consumer and utility demands, and declining manufacturing costs. Energy-efficient homes require more careful balancing of comfort, energy consumption, and health. At the same time, new capabilities will be added to thermostats, including scheduling, control of humidity and ventilation, responsiveness to dynamic electricity prices, and the ability to join communication networks inside homes. Recent studies have found that as many as 50percent of residential programmable thermostats are in permanent"hold" status. Other evaluations found that homes with programmable thermostats consumed more energy than those relying on manual thermostats. Occupants find thermostats cryptic and baffling to operate because manufacturers often rely on obscure, and sometimes even contradictory, terms, symbols, procedures, and icons. It appears that many people are unable to fully exploit even the basic features in today's programmable thermostats, such as setting heating and cooling schedules. It is important that people can easily, reliably, and confidently operate thermostats in their homes so as to remain comfortable while minimizing energy use.« less

  9. Galilean-invariant Nosé-Hoover-type thermostats.

    PubMed

    Pieprzyk, S; Heyes, D M; Maćkowiak, Sz; Brańka, A C

    2015-03-01

    A new pairwise Nosé-Hoover type thermostat for molecular dynamics (MD) simulations which is similar in construction to the pair-velocity thermostat of Allen and Schmid, [Mol. Simul. 33, 21 (2007)] (AS) but is based on the configurational thermostat is proposed and tested. Both thermostats generate the canonical velocity distribution, are Galilean invariant, and conserve linear and angular momentum. The unique feature of the pairwise thermostats is an unconditional conservation of the total angular momentum, which is important for thermalizing isolated systems and those nonequilibrium bulk systems manifesting local rotating currents. These thermostats were benchmarked against the corresponding Nosé-Hoover (NH) and Braga-Travis prescriptions, being based on the kinetic and configurational definitions of temperature, respectively. Some differences between the shear-rate-dependent shear viscosity from Sllod nonequilibrium MD are observed at high shear rates using the different thermostats. The thermostats based on the configurational temperature produced very similar monotically decaying shear viscosity (shear thinning) with increasing shear rate, while the NH method showed discontinuous shear thinning into a string phase, and the AS method produced a continuous increase of viscosity (shear thickening), after a shear thinning region at lower shear rates. Both pairwise additive thermostats are neither purely kinetic nor configurational in definition, and possible directions for further improvement in certain aspects are discussed.

  10. Galilean-invariant Nosé-Hoover-type thermostats

    NASA Astrophysics Data System (ADS)

    Pieprzyk, S.; Heyes, D. M.; Maćkowiak, Sz.; Brańka, A. C.

    2015-03-01

    A new pairwise Nosé-Hoover type thermostat for molecular dynamics (MD) simulations which is similar in construction to the pair-velocity thermostat of Allen and Schmid, [Mol. Simul. 33, 21 (2007), 10.1080/08927020601052856] (AS) but is based on the configurational thermostat is proposed and tested. Both thermostats generate the canonical velocity distribution, are Galilean invariant, and conserve linear and angular momentum. The unique feature of the pairwise thermostats is an unconditional conservation of the total angular momentum, which is important for thermalizing isolated systems and those nonequilibrium bulk systems manifesting local rotating currents. These thermostats were benchmarked against the corresponding Nosé-Hoover (NH) and Braga-Travis prescriptions, being based on the kinetic and configurational definitions of temperature, respectively. Some differences between the shear-rate-dependent shear viscosity from Sllod nonequilibrium MD are observed at high shear rates using the different thermostats. The thermostats based on the configurational temperature produced very similar monotically decaying shear viscosity (shear thinning) with increasing shear rate, while the NH method showed discontinuous shear thinning into a string phase, and the AS method produced a continuous increase of viscosity (shear thickening), after a shear thinning region at lower shear rates. Both pairwise additive thermostats are neither purely kinetic nor configurational in definition, and possible directions for further improvement in certain aspects are discussed.

  11. Texas traffic thermostat software tool.

    DOT National Transportation Integrated Search

    2013-04-01

    The traffic thermostat decision tool is built to help guide the user through a logical, step-wise, process of examining potential changes to their Manage Lane/toll facility. : **NOTE: Project Title: Application of the Traffic Thermostat Framework. Ap...

  12. Texas traffic thermostat marketing package.

    DOT National Transportation Integrated Search

    2013-04-01

    The traffic thermostat decision tool is built to help guide the user through a logical, step-wise, process of examining potential changes to their Manage Lane/toll facility. : **NOTE: Project Title: Application of the Traffic Thermostat Framework. Ap...

  13. Facilitating Energy Savings through Enhanced Usability of Thermostats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, Alan; Aragon, Cecilia; Peffer, Therese

    2011-05-23

    Residential thermostats play a key role in controlling heating and cooling systems. Occupants often find the controls of programmable thermostats confusing, sometimes leading to higher heating consumption than when the buildings are controlled manually. A high degree of usability is vital to a programmable thermostat's effectiveness because, unlike a more efficient heating system, occupants must engage in specific actions after installation to obtain energy savings. We developed a procedure for measuring the usability of thermostats and tested this methodology with 31 subjects on five thermostats. The procedure requires first identifying representative tasks associated with the device and then testing themore » subjects ability to accomplish those tasks. The procedure was able to demonstrate the subjects wide ability to accomplish tasks and the influence of a device's usability on success rates. A metric based on the time to accomplish the tasks and the fraction of subjects actually completing the tasks captured the key aspects of each thermostat's usability. The procedure was recently adopted by the Energy Star Program for its thermostat specification. The approach appears suitable for quantifying usability of controls in other products, such as heat pump water heaters and commercial lighting.« less

  14. Microcomputer-based Peltier thermostat for precision optical radiation measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaosong; Krochmann, Eike; Chen, Jiashu

    1992-03-01

    We have developed a microcomputer-based thermostat for a light measuring head in precision optical radiation measurements. This thermostat consists of a single-chip microcomputer, a digital-to-analog converter, a liquid crystal display, a power operational amplifier, and a Peltier element (thermoelectric cooler). The Peltier element keeps the temperature of the photometer head at 20±0.1 °C in the ambient temperature range from -20 to 60 °C. A control algorithm which combines the ``Bang-Bang'' mode and proportional-plus-integral-plus-derivative mode is used to achieve fast and smooth thermostatic performance. This thermostat is effective, inexpensive, and easy to adjust. Several applications of the Peltier thermostat are mentioned.

  15. Isokinetic air sampler

    DOEpatents

    Sehmel, George A.

    1979-01-01

    An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.

  16. The Effects of Multiple-Joint Isokinetic Resistance Training on Maximal Isokinetic and Dynamic Muscle Strength and Local Muscular Endurance.

    PubMed

    Ratamess, Nicholas A; Beller, Noah A; Gonzalez, Adam M; Spatz, Gregory E; Hoffman, Jay R; Ross, Ryan E; Faigenbaum, Avery D; Kang, Jie

    2016-03-01

    The transfer of training effects of multiple-joint isokinetic resistance training to dynamic exercise performance remain poorly understood. Thus, the purpose of the present study was to investigate the magnitude of isokinetic and dynamic one repetition-maximum (1RM) strength and local muscular endurance increases after 6 weeks of multiple-joint isokinetic resistance training. Seventeen women were randomly assigned to either an isokinetic resistance training group (IRT) or a non-exercising control group (CTL). The IRT group underwent 6 weeks of training (2 days per week) consisting of 5 sets of 6-10 repetitions at 75-85% of subjects' peak strength for the isokinetic chest press and seated row exercises at an average linear velocity of 0.15 m s(-1) [3-sec concentric (CON) and 3-sec eccentric (ECC) phases]. Peak CON and ECC force during the chest press and row, 1RM bench press and bent-over row, and maximum number of modified push-ups were assessed pre and post training. A 2 x 2 analysis of variance with repeated measures and Tukey's post hoc tests were used for data analysis. The results showed that 1RM bench press (from 38.6 ± 6.7 to 43.0 ± 5.9 kg), 1RM bent-over row (from 40.4 ± 7.7 to 45.5 ± 7.5 kg), and the maximal number of modified push-ups (from 39.5 ± 13.6 to 55.3 ± 13.1 repetitions) increased significantly only in the IRT group. Peak isokinetic CON and ECC force in the chest press and row significantly increased in the IRT group. No differences were shown in the CTL group for any measure. These data indicate 6 weeks of multiple-joint isokinetic resistance training increases dynamic muscle strength and local muscular endurance performance in addition to specific isokinetic strength gains in women. Key pointsMultiple-joint isokinetic resistance training increases dynamic maximal muscular strength, local muscular endurance, and maximal isokinetic strength in women.Multiple-joint isokinetic resistance training increased 1RM strength in the bench press (by

  17. The Effects of Multiple-Joint Isokinetic Resistance Training on Maximal Isokinetic and Dynamic Muscle Strength and Local Muscular Endurance

    PubMed Central

    Ratamess, Nicholas A.; Beller, Noah A.; Gonzalez, Adam M.; Spatz, Gregory E.; Hoffman, Jay R.; Ross, Ryan E.; Faigenbaum, Avery D.; Kang, Jie

    2016-01-01

    The transfer of training effects of multiple-joint isokinetic resistance training to dynamic exercise performance remain poorly understood. Thus, the purpose of the present study was to investigate the magnitude of isokinetic and dynamic one repetition-maximum (1RM) strength and local muscular endurance increases after 6 weeks of multiple-joint isokinetic resistance training. Seventeen women were randomly assigned to either an isokinetic resistance training group (IRT) or a non-exercising control group (CTL). The IRT group underwent 6 weeks of training (2 days per week) consisting of 5 sets of 6-10 repetitions at 75-85% of subjects’ peak strength for the isokinetic chest press and seated row exercises at an average linear velocity of 0.15 m s-1 [3-sec concentric (CON) and 3-sec eccentric (ECC) phases]. Peak CON and ECC force during the chest press and row, 1RM bench press and bent-over row, and maximum number of modified push-ups were assessed pre and post training. A 2 x 2 analysis of variance with repeated measures and Tukey’s post hoc tests were used for data analysis. The results showed that 1RM bench press (from 38.6 ± 6.7 to 43.0 ± 5.9 kg), 1RM bent-over row (from 40.4 ± 7.7 to 45.5 ± 7.5 kg), and the maximal number of modified push-ups (from 39.5 ± 13.6 to 55.3 ± 13.1 repetitions) increased significantly only in the IRT group. Peak isokinetic CON and ECC force in the chest press and row significantly increased in the IRT group. No differences were shown in the CTL group for any measure. These data indicate 6 weeks of multiple-joint isokinetic resistance training increases dynamic muscle strength and local muscular endurance performance in addition to specific isokinetic strength gains in women. Key points Multiple-joint isokinetic resistance training increases dynamic maximal muscular strength, local muscular endurance, and maximal isokinetic strength in women. Multiple-joint isokinetic resistance training increased 1RM strength in the bench press

  18. Glaubers Ising chain between two thermostats

    NASA Astrophysics Data System (ADS)

    Cornu, F.; Hilhorst, H. J.

    2017-04-01

    We consider a one-dimensional Ising model with N spins, each in contact with two thermostats of distinct temperatures, T 1 and T 2. Under Glauber dynamics the stationary state happens to coincide with the equilibrium state at an effective intermediate temperature T≤ft({{T}1},{{T}2}\\right) . The system nevertheless carries a nontrivial energy current between the thermostats. By means of the fermionization technique, for a chain initially in equilibrium at an arbitrary temperature T 0 we calculate the Fourier transform of the probability P≤ft(Q;τ \\right) for the time-integrated energy current Q during a finite time interval τ. In the long time limit we determine the corresponding generating function for the cumulants per site and unit of time, {< {{Q}n}>\\text{c}}/(Nτ ) , and explicitly give those with n  =  1, 2, 3, 4. We exhibit various phenomena in specific regimes: kinetic mean-field effects when one thermostat flips any spin less often than the other one, as well as dissipation towards a thermostat at zero temperature. Moreover, when the system size N goes to infinity while the effective temperature T vanishes, the cumulants of Q per unit of time grow linearly with N and are equal to those of a random walk process. In two adequate scaling regimes involving T and N we exhibit the dependence of the first correction upon the ratio of the spin-spin correlation length ξ (T) and the size N.

  19. Thermostatted delta f

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krommes, J.A.

    2000-01-18

    The delta f simulation method is revisited. Statistical coarse-graining is used to rigorously derive the equation for the fluctuation delta f in the particle distribution. It is argued that completely collisionless simulation is incompatible with the achievement of true statistically steady states with nonzero turbulent fluxes because the variance of the particle weights w grows with time. To ensure such steady states, it is shown that for dynamically collisionless situations a generalized thermostat or W-stat may be used in lieu of a full collision operator to absorb the flow of entropy to unresolved fine scales in velocity space. The simplestmore » W-stat can be implemented as a self-consistently determined, time-dependent damping applied to w. A precise kinematic analogy to thermostatted nonequilibrium molecular dynamics (NEMD) is pointed out, and the justification of W-stats for simulations of turbulence is discussed. An extrapolation procedure is proposed such that the long-time, steady-state, collisionless flux can be deduced from several short W-statted runs with large effective collisionality, and a numerical demonstration is given.« less

  20. Thermostatted {delta}f

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krommes, J.A.

    1999-05-01

    The {delta}f simulation method is revisited. Statistical coarse graining is used to rigorously derive the equation for the fluctuation {delta}f in the particle distribution. It is argued that completely collisionless simulation is incompatible with the achievement of true statistically steady states with nonzero turbulent fluxes because the variance {ital W} of the particle weights {ital w} grows with time. To ensure such steady states, it is shown that for dynamically collisionless situations a generalized thermostat or {open_quotes}{ital W} stat{close_quotes} may be used in lieu of a full collision operator to absorb the flow of entropy to unresolved fine scales inmore » velocity space. The simplest {ital W} stat can be implemented as a self-consistently determined, time-dependent damping applied to {ital w}. A precise kinematic analogy to thermostatted nonequilibrium molecular dynamics is pointed out, and the justification of {ital W} stats for simulations of turbulence is discussed. An extrapolation procedure is proposed such that the long-time, steady-state, collisionless flux can be deduced from several short {ital W}-statted runs with large effective collisionality, and a numerical demonstration is given. {copyright} {ital 1999 American Institute of Physics.}« less

  1. THERMOSTAT FOR LOWER TEMPERATURES

    PubMed Central

    Stier, T. J. B.; Crozier, W. J.

    1933-01-01

    Details are given concerning the construction and operation of relatively simple thermostats which permit maintaining precise temperatures down to 0°C. (with water), or temperatures above that of the ordinary room, and in which the temperature may be quickly altered at short intervals to new levels. PMID:19872736

  2. Deterministic time-reversible thermostats: chaos, ergodicity, and the zeroth law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Patra, Puneet Kumar; Sprott, Julien Clinton; Hoover, William Graham; Griswold Hoover, Carol

    2015-09-01

    The relative stability and ergodicity of deterministic time-reversible thermostats, both singly and in coupled pairs, are assessed through their Lyapunov spectra. Five types of thermostat are coupled to one another through a single Hooke's-law harmonic spring. The resulting dynamics shows that three specific thermostat types, Hoover-Holian, Ju-Bulgac, and Martyna-Klein-Tuckerman, have very similar Lyapunov spectra in their equilibrium four-dimensional phase spaces and when coupled in equilibrium or nonequilibrium pairs. All three of these oscillator-based thermostats are shown to be ergodic, with smooth analytic Gaussian distributions in their extended phase spaces (coordinate, momentum, and two control variables). Evidently these three ergodic and time-reversible thermostat types are particularly useful as statistical-mechanical thermometers and thermostats. Each of them generates Gibbs' universal canonical distribution internally as well as for systems to which they are coupled. Thus they obey the zeroth law of thermodynamics, as a good heat bath should. They also provide dissipative heat flow with relatively small nonlinearity when two or more such temperature baths interact and provide useful deterministic replacements for the stochastic Langevin equation.

  3. Isokinetic exercise: A review of the literature

    NASA Technical Reports Server (NTRS)

    Olree, H. D.; Corbin, B.; Smith, C.

    1978-01-01

    Isokinetic muscle training has all the advantages of isometrics and isotonics while minimizing their deficiencies. By holding the speed of movement constant throughout the full range of motion, isokinetic training devices respond with increased resistance rather than acceleration when the power output of the muscle is increased. Isokinetic training is superior to isometric and isotonic training with respect to increases in strength, specificity of training, desirable changes in motor performance tasks, lack of muscle soreness, and decreases in relative body fat.

  4. Thermostatic Radiator Valve Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentz, Jordan; Ansanelli, Eric

    2015-01-01

    A large stock of multifamily buildings in the Northeast and Midwest are heated by steam distribution systems. Losses from these systems are typically high and a significant number of apartments are overheated much of the time. Thermostatically controlled radiator valves (TRVs) are one potential strategy to combat this problem, but have not been widely accepted by the residential retrofit market.

  5. Programmable Thermostats for MPLM Shell Heater Control ULF1. 1; Thermal Performances

    NASA Technical Reports Server (NTRS)

    Glasgow, Shaun; Clark, Dallas; Trichilo, Michele; Trichilo, Michele

    2007-01-01

    The Multi-Purpose Logistics Module (MPLM) is the primary carrier for "pressurized" logistics to and from the International Space Station (ISS). The MPLM is transported in the payload bay of the Space Shuttle and is docked to the ISS for unloading, and reloading, of contents within the ISS shirt sleeve environment. Foil heaters, controlled originally with bi-metallic thermostats, are distributed across the outside of the MPLM structure and are utilized to provide energy to the structure to avoid exposure to cold temperatures and prevent condensation. The existing bi-metallic, fixed temperature set point thermostats have been replaced with Programmable Thermostats Modules (PTMs) in the Passive Thermal Control Subsystem (PTCS) 28Vdc shell heater circuits. The goal of using the PTM thermostat is to improve operational efficiency of the MPLM on-orbit shell heaters by providing better shell temperature control via feedback control capability. Each heater circuit contains a programmable thermostat connected to an external temperature sensor, a Resistive Temperature Device (RTD), which is used to provide continuous temperature monitoring capability. Each thermostat has programmable temperature set points and control spans. The data acquisition system uses a standard RS-485 serial interface communications cable to provide digital control capability. The PTM system was designed by MSFC, relying upon ALTEC support for their integration within the MPLM system design, while KSC performed the installation and ground checkout testing of the thermostat and RS-485 communication cable on the MPLM FM1 flight module. The PTMs were used for the first time during the STS-121/ULF1.1 mission. This paper will describe the design, development and verification of the PTM system, as well as the PTM flight performance and comparisons with SINDA thermal model predictions.

  6. Thermostatted kinetic equations as models for complex systems in physics and life sciences.

    PubMed

    Bianca, Carlo

    2012-12-01

    Statistical mechanics is a powerful method for understanding equilibrium thermodynamics. An equivalent theoretical framework for nonequilibrium systems has remained elusive. The thermodynamic forces driving the system away from equilibrium introduce energy that must be dissipated if nonequilibrium steady states are to be obtained. Historically, further terms were introduced, collectively called a thermostat, whose original application was to generate constant-temperature equilibrium ensembles. This review surveys kinetic models coupled with time-reversible deterministic thermostats for the modeling of large systems composed both by inert matter particles and living entities. The introduction of deterministic thermostats allows to model the onset of nonequilibrium stationary states that are typical of most real-world complex systems. The first part of the paper is focused on a general presentation of the main physical and mathematical definitions and tools: nonequilibrium phenomena, Gauss least constraint principle and Gaussian thermostats. The second part provides a review of a variety of thermostatted mathematical models in physics and life sciences, including Kac, Boltzmann, Jager-Segel and the thermostatted (continuous and discrete) kinetic for active particles models. Applications refer to semiconductor devices, nanosciences, biological phenomena, vehicular traffic, social and economics systems, crowds and swarms dynamics. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Qualitative analysis of a discrete thermostatted kinetic framework modeling complex adaptive systems

    NASA Astrophysics Data System (ADS)

    Bianca, Carlo; Mogno, Caterina

    2018-01-01

    This paper deals with the derivation of a new discrete thermostatted kinetic framework for the modeling of complex adaptive systems subjected to external force fields (nonequilibrium system). Specifically, in order to model nonequilibrium stationary states of the system, the external force field is coupled to a dissipative term (thermostat). The well-posedness of the related Cauchy problem is investigated thus allowing the new discrete thermostatted framework to be suitable for the derivation of specific models and the related computational analysis. Applications to crowd dynamics and future research directions are also discussed within the paper.

  8. Isokinetic Testing in Evaluation Rehabilitation Outcome After ACL Reconstruction

    PubMed Central

    Cvjetkovic, Dragana Dragicevic; Bijeljac, Sinisa; Palija, Stanislav; Talic, Goran; Radulovic, Tatjana Nozica; Kosanovic, Milkica Glogovac; Manojlovic, Slavko

    2015-01-01

    Introduction: Numerous rehab protocols have been used in rehabilitation after ACL reconstruction. Isokinetic testing is an objective way to evaluate dynamic stability of the knee joint that estimates the quality of rehabilitation outcome after ACL reconstruction. Our investigation goal was to show importance of isokinetic testing in evaluation thigh muscle strength in patients which underwent ACL reconstruction and rehabilitation protocol. Subjects and methods: In prospective study, we evaluated 40 subjects which were divided into two groups. Experimental group consisted of 20 recreational males which underwent ACL reconstruction with hamstring tendon and rehabilitation protocol 6 months before isokinetic testing. Control group (20 subjects) consisted of healthy recreational males. In all subjects knee muscle testing was performed on a Biodex System 4 Pro isokinetic dynamo-meter et velocities of 60°/s and 180°/s. We followed average peak torque to body weight (PT/BW) and classic H/Q ratio. In statistical analysis Student’s T test was used. Results: There were statistically significant differences between groups in all evaluated parameters except of the mean value of PT/BW of the quadriceps et velocity of 60°/s (p>0.05). Conclusion: Isokinetic testing of dynamic stabilizers of the knee is need in diagnostic and treatment thigh muscle imbalance. We believe that isokinetic testing is an objective parameter for return to sport activities after ACL reconstruction. PMID:25870471

  9. Isokinetic Testing in Evaluation Rehabilitation Outcome After ACL Reconstruction.

    PubMed

    Cvjetkovic, Dragana Dragicevic; Bijeljac, Sinisa; Palija, Stanislav; Talic, Goran; Radulovic, Tatjana Nozica; Kosanovic, Milkica Glogovac; Manojlovic, Slavko

    2015-02-01

    Numerous rehab protocols have been used in rehabilitation after ACL reconstruction. Isokinetic testing is an objective way to evaluate dynamic stability of the knee joint that estimates the quality of rehabilitation outcome after ACL reconstruction. Our investigation goal was to show importance of isokinetic testing in evaluation thigh muscle strength in patients which underwent ACL reconstruction and rehabilitation protocol. In prospective study, we evaluated 40 subjects which were divided into two groups. Experimental group consisted of 20 recreational males which underwent ACL reconstruction with hamstring tendon and rehabilitation protocol 6 months before isokinetic testing. Control group (20 subjects) consisted of healthy recreational males. In all subjects knee muscle testing was performed on a Biodex System 4 Pro isokinetic dynamo-meter et velocities of 60°/s and 180°/s. We followed average peak torque to body weight (PT/BW) and classic H/Q ratio. In statistical analysis Student's T test was used. There were statistically significant differences between groups in all evaluated parameters except of the mean value of PT/BW of the quadriceps et velocity of 60°/s (p>0.05). Isokinetic testing of dynamic stabilizers of the knee is need in diagnostic and treatment thigh muscle imbalance. We believe that isokinetic testing is an objective parameter for return to sport activities after ACL reconstruction.

  10. Statistical Mechanical Derivation of Jarzynski's Identity for Thermostated Non-Hamiltonian Dynamics

    NASA Astrophysics Data System (ADS)

    Cuendet, Michel A.

    2006-03-01

    The recent Jarzynski identity (JI) relates thermodynamic free energy differences to nonequilibrium work averages. Several proofs of the JI have been provided on the thermodynamic level. They rely on assumptions such as equivalence of ensembles in the thermodynamic limit or weakly coupled infinite heat baths. However, the JI is widely applied to NVT computer simulations involving finite numbers of particles, whose equations of motion are strongly coupled to a few extra degrees of freedom modeling a thermostat. In this case, the above assumptions are no longer valid. We propose a statistical mechanical approach to the JI solely based on the specific equations of motion, without any further assumption. We provide a detailed derivation for the non-Hamiltonian Nosé-Hoover dynamics, which is routinely used in computer simulations to produce canonical sampling.

  11. The Relationships Among Isokinetic Endurance, Initial Strength Level, and Fiber Type.

    ERIC Educational Resources Information Center

    Clarkson, Priscilla M.; And Others

    1982-01-01

    Knee extension isokinetic peak torque was assessed at four angular velocities, and isokinetic endurance was assessed in eight college age men. Muscle fiber type was determined and related to isokinetic strength and fatigability. Results indicate that factors other than fiber type and initial strength level must influence the rate of isokinetic…

  12. Isokinetic Leg Strength and Power in Elite Handball Players

    PubMed Central

    González-Ravé, José M.; Juárez, Daniel; Rubio-Arias, Jacobo A.; Clemente-Suarez, Vicente J; Martinez-Valencia, María A; Abian-Vicen, Javier

    2014-01-01

    Isokinetic strength evaluation of the knee flexion and extension in concentric mode of contraction is an important part of the comprehensive evaluation of athletes. The aims of this study were to evaluate the isokinetic knee peak torque in both the extension and flexion movement in the dominant and non-dominant leg, and the relationship with jumping performance. Twelve elite male handball players from the top Spanish handball division voluntary participated in the study (age 27.68 ± 4.12 years; body mass 92.89 ± 12.34 kg; body height 1.90 ± 0.05 m). The knee extensor and flexor muscle peak torque of each leg were concentrically measured at 60º/s and 180º/s with an isokinetic dynamometer. The Squat Jump and Countermovement Jump were performed on a force platform to determine power and vertical jump height. Non-significant differences were observed between legs in the isokinetic knee extension (dominant= 2.91 ± 0.53 Nm/kg vs non-dominant = 2.70 ± 0.47 Nm/kg at 60º/s; dominant = 1.90 ± 0.31 Nm/kg vs non-dominant = 1.83 ± 0.29 Nm/kg at 180º/s) and flexion peak torques (dominant = 1.76 ± 0.29 Nm/kg vs non-dominant = 1.72 ± 0.39 Nm/kg at 60º/s; dominant = 1.30 ± 0.23 Nm/kg vs non-dominant = 1.27 ± 0.35 Nm/kg at 180º/s). Low and non-significant correlation coefficients were found between the isokinetic peak torques and vertical jumping performance (SJ = 31.21 ± 4.32 cm; CMJ = 35.89 ± 4.20 cm). Similar isokinetic strength was observed between the legs; therefore, no relationship was found between the isokinetic knee flexion and extension peak torques as well as vertical jumping performance in elite handball players. PMID:25114749

  13. Isokinetic leg strength and power in elite handball players.

    PubMed

    González-Ravé, José M; Juárez, Daniel; Rubio-Arias, Jacobo A; Clemente-Suarez, Vicente J; Martinez-Valencia, María A; Abian-Vicen, Javier

    2014-06-28

    Isokinetic strength evaluation of the knee flexion and extension in concentric mode of contraction is an important part of the comprehensive evaluation of athletes. The aims of this study were to evaluate the isokinetic knee peak torque in both the extension and flexion movement in the dominant and non-dominant leg, and the relationship with jumping performance. Twelve elite male handball players from the top Spanish handball division voluntary participated in the study (age 27.68 ± 4.12 years; body mass 92.89 ± 12.34 kg; body height 1.90 ± 0.05 m). The knee extensor and flexor muscle peak torque of each leg were concentrically measured at 60º/s and 180º/s with an isokinetic dynamometer. The Squat Jump and Countermovement Jump were performed on a force platform to determine power and vertical jump height. Non-significant differences were observed between legs in the isokinetic knee extension (dominant= 2.91 ± 0.53 Nm/kg vs non-dominant = 2.70 ± 0.47 Nm/kg at 60º/s; dominant = 1.90 ± 0.31 Nm/kg vs non-dominant = 1.83 ± 0.29 Nm/kg at 180º/s) and flexion peak torques (dominant = 1.76 ± 0.29 Nm/kg vs non-dominant = 1.72 ± 0.39 Nm/kg at 60º/s; dominant = 1.30 ± 0.23 Nm/kg vs non-dominant = 1.27 ± 0.35 Nm/kg at 180º/s). Low and non-significant correlation coefficients were found between the isokinetic peak torques and vertical jumping performance (SJ = 31.21 ± 4.32 cm; CMJ = 35.89 ± 4.20 cm). Similar isokinetic strength was observed between the legs; therefore, no relationship was found between the isokinetic knee flexion and extension peak torques as well as vertical jumping performance in elite handball players.

  14. Controller for thermostatically controlled loads

    DOEpatents

    Lu, Ning; Zhang, Yu; Du, Pengwei; Makarov, Yuri V.

    2016-06-07

    A system and method of controlling aggregated thermostatically controlled appliances (TCAs) for demand response is disclosed. A targeted load profile is formulated and a forecasted load profile is generated. The TCAs within an "on" or "off" control group are prioritized based on their operating temperatures. The "on" or "off" status of the TCAs is determined. Command signals are sent to turn on or turn off the TCAs.

  15. Isokinetic strength and endurance during 30-day 6 degrees head-down bed rest with isotonic and isokinetic exercise training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bernauer, E. M.; Ertl, A. C.; Bulbulian, R.; Bond, M.

    1994-01-01

    The purpose of our study was to determine if an intensive, intermittent, isokinetic, lower extremity exercise training program would attenuate or eliminate the decrease of muscular strength and endurance during prolonged bed rest (BR). The 19 male subjects (36 +/- 1 yr, 178 +/- 2 cm, 76.5 +/- 1.7 kg) were allocated into a no exercise (NOE) training group (N = 5), an isotonic (lower extremity cycle ergometer) exercise (ITE) training group (N = 7), and an isokinetic (isokinetic knee flexion-extension) exercise (IKE) training group (N = 7). Peak knee (flexion and extension) and shoulder (abduction-adduction) functions were measured weekly in all groups with one 5-repetition set. After BR, average knee extension total work decreased by 16% with NOE, increased by 27% with IKE, and was unchanged with ITE. Average knee flexion total work and peak torque (strength) responses were unchanged in all groups. Force production increased by 20% with IKE and was unchanged with NOE and ITE. Shoulder total work was unchanged in all groups, while gross average peak torque increased by 27% with ITE and by 22% with IKE, and was unchanged with NOE. Thus, while ITE training can maintain some isokinetic functions during BR, maximal intermittent IKE training can increase other functions above pre-BR control levels.

  16. Isokinetic Strength and Endurance During 30-day 6 deg Head-Down Bed Rest with Isotonic and Isokinetic Exercise Training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bernauer, E. M.; Ertl, A. C.; Bond, M.; Bulbulian, R.

    1994-01-01

    The purpose of our study was to determine if an intensive, intermittent, isokinetic, lower extremity exercise training program would attenuate or eliminate the decrease of muscular strength and endurance during prolonged bed rest (BR). The 19 male subjects (36 +/- 1 yr, 178 +/- 2 cm, 76.5 +/- 1.7 kg) were allocated into a no exercise (NOE) training group (N = 5), an isotonic (lower extremity cycle orgometer) exercise (ITE) training group (N = 7), and an isokinetic (isokinetic knee flexion-extension) exercise (IKE) training group (N = 7). Peak knee (flexion and extension) and shoulder (abduction-adduction) functions were measured weekly in all groups with one 5-repetition set. After BR, average knee extension total work decreased by 16% with NOE, increased by 27% with IKE, and was unchanged with ITE. Average knee flexion total work and peak torque (strength) responses were unchanged in all groups. Force production increased by 20% with IKE and was unchanged with NOE and ITE. Shoulder total work was unchanged in all groups, while gross average peak torque increased by 27% with ITE and by 22% with IKE, and was unchanged with NOE. Thus, while ITE training can maintain some isokinetic functions during BR, maximal intermittent IKE training can increase other functions above pre-BR control levels.

  17. Isokinetic Extension Strength Is Associated With Single-Leg Vertical Jump Height

    PubMed Central

    Fischer, Felix; Blank, Cornelia; Dünnwald, Tobias; Gföller, Peter; Herbst, Elmar; Hoser, Christian; Fink, Christian

    2017-01-01

    Background: Isokinetic strength testing is an important tool in the evaluation of the physical capacities of athletes as well as for decision making regarding return to sports after anterior cruciate ligament (ACL) reconstruction in both athletes and the lay population. However, isokinetic testing is time consuming and requires special testing equipment. Hypothesis: A single-jump test, regardless of leg dominance, may provide information regarding knee extension strength through the use of correlation analysis of jump height and peak torque of isokinetic muscle strength. Study Design: Cross-sectional study; Level of evidence, 3. Methods: A total of 169 patients who underwent ACL reconstruction were included in this study. Isokinetic testing was performed on the injured and noninjured legs. Additionally, a single-leg countermovement jump was performed to assess jump height using a jump accelerometer sensor. Extension strength values were used to assess the association between isokinetic muscle strength and jump height. Results: The sample consisted of 60 female (mean age, 20.8 ± 8.3 years; mean weight, 61.7 ± 6.5 kg; mean height, 167.7 ± 5.3 cm) and 109 male (mean age, 23.2 ± 7.7 years; mean weight, 74.6 ± 10.2 kg; mean height, 179.9 ± 6.9 cm) patients. Bivariate correlation analysis showed an association (r = 0.56, P < .001) between jump height and isokinetic extension strength on the noninvolved side as well as an association (r = 0.52, P < .001) for the involved side. Regression analysis showed that in addition to jump height (beta = 0.49, P < .001), sex (beta = –0.17, P = .008) and body mass index (beta = 0.37, P < .001) affected isokinetic strength. The final model explained 51.1% of the variance in isokinetic muscle strength, with jump height having the strongest impact (beta = 0.49, P < .001) and explaining 31.5% of the variance. Conclusion: Initial analysis showed a strong association between isokinetic strength and jump height. The study population

  18. Isokinetic Extension Strength Is Associated With Single-Leg Vertical Jump Height.

    PubMed

    Fischer, Felix; Blank, Cornelia; Dünnwald, Tobias; Gföller, Peter; Herbst, Elmar; Hoser, Christian; Fink, Christian

    2017-11-01

    Isokinetic strength testing is an important tool in the evaluation of the physical capacities of athletes as well as for decision making regarding return to sports after anterior cruciate ligament (ACL) reconstruction in both athletes and the lay population. However, isokinetic testing is time consuming and requires special testing equipment. A single-jump test, regardless of leg dominance, may provide information regarding knee extension strength through the use of correlation analysis of jump height and peak torque of isokinetic muscle strength. Cross-sectional study; Level of evidence, 3. A total of 169 patients who underwent ACL reconstruction were included in this study. Isokinetic testing was performed on the injured and noninjured legs. Additionally, a single-leg countermovement jump was performed to assess jump height using a jump accelerometer sensor. Extension strength values were used to assess the association between isokinetic muscle strength and jump height. The sample consisted of 60 female (mean age, 20.8 ± 8.3 years; mean weight, 61.7 ± 6.5 kg; mean height, 167.7 ± 5.3 cm) and 109 male (mean age, 23.2 ± 7.7 years; mean weight, 74.6 ± 10.2 kg; mean height, 179.9 ± 6.9 cm) patients. Bivariate correlation analysis showed an association ( r = 0.56, P < .001) between jump height and isokinetic extension strength on the noninvolved side as well as an association ( r = 0.52, P < .001) for the involved side. Regression analysis showed that in addition to jump height (beta = 0.49, P < .001), sex (beta = -0.17, P = .008) and body mass index (beta = 0.37, P < .001) affected isokinetic strength. The final model explained 51.1% of the variance in isokinetic muscle strength, with jump height having the strongest impact (beta = 0.49, P < .001) and explaining 31.5% of the variance. Initial analysis showed a strong association between isokinetic strength and jump height. The study population encompassed various backgrounds, skill levels, and activity profiles

  19. [Isokinetic testing of the shoulder of handball players].

    PubMed

    Michael, J W-P; König, D P; Bertram, C; Hessling, U; Eysel, P

    2005-09-01

    Aim of the study was to evaluate an isokinetic profile testing handball players to describe muscular imbalance. 30 athletes (15 male and 15 female) were measured at the Cybex 6000 test-unit for concentric internal and external rotation. Both shoulders, throwing arm (dominant shoulder) and the opposite shoulder were tested by speeds at 60 degrees/s and 180 degrees/s. There were sex specific differences which are also found in other sports. But these contrary data are not useful to define effective training concepts for handball-players with shoulder problems. From our point of view isokinetic testing of the shoulder joint in handball players can not reach any sufficient result. From our point of view there is no reason for using isokinetic testing to evaluate shoulder problems.

  20. Prediction of hamstring injury in professional soccer players by isokinetic measurements

    PubMed Central

    Dauty, Marc; Menu, Pierre; Fouasson-Chailloux, Alban; Ferréol, Sophie; Dubois, Charles

    2016-01-01

    Summary Objectives previous studies investigating the ability of isokinetic strength ratios to predict hamstring injuries in soccer players have reported conflicting results. Hypothesis to determine if isokinetic ratios are able to predict hamstring injury occurring during the season in professional soccer players. Study Design case-control study; Level of evidence: 3. Methods from 2001 to 2011, 350 isokinetic tests were performed in 136 professional soccer players at the beginning of the soccer season. Fifty-seven players suffered hamstring injury during the season that followed the isokinetic tests. These players were compared with the 79 uninjured players. The bilateral concentric ratio (hamstring-to-hamstring), ipsilateral concentric ratio (hamstring-to-quadriceps), and mixed ratio (eccentric/concentric hamstring-to-quadriceps) were studied. The predictive ability of each ratio was established based on the likelihood ratio and post-test probability. Results the mixed ratio (30 eccentric/240 concentric hamstring-to-quadriceps) <0.8, ipsilateral ratio (180 concentric hamstring-to-quadriceps) <0.47, and bilateral ratio (60 concentric hamstring-to-hamstring) <0.85 were the most predictive of hamstring injury. The ipsilateral ratio <0.47 allowed prediction of the severity of the hamstring injury, and was also influenced by the length of time since administration of the isokinetic tests. Conclusion isokinetic ratios are useful for predicting the likelihood of hamstring injury in professional soccer players during the competitive season. PMID:27331039

  1. A Time-Domain CMOS Oscillator-Based Thermostat with Digital Set-Point Programming

    PubMed Central

    Chen, Chun-Chi; Lin, Shih-Hao

    2013-01-01

    This paper presents a time-domain CMOS oscillator-based thermostat with digital set-point programming [without a digital-to-analog converter (DAC) or external resistor] to achieve on-chip thermal management of modern VLSI systems. A time-domain delay-line-based thermostat with multiplexers (MUXs) was used to substantially reduce the power consumption and chip size, and can benefit from the performance enhancement due to the scaling down of fabrication processes. For further cost reduction and accuracy enhancement, this paper proposes a thermostat using two oscillators that are suitable for time-domain curvature compensation instead of longer linear delay lines. The final time comparison was achieved using a time comparator with a built-in custom hysteresis to generate the corresponding temperature alarm and control. The chip size of the circuit was reduced to 0.12 mm2 in a 0.35-μm TSMC CMOS process. The thermostat operates from 0 to 90 °C, and achieved a fine resolution better than 0.05 °C and an improved inaccuracy of ± 0.6 °C after two-point calibration for eight packaged chips. The power consumption was 30 μW at a sample rate of 10 samples/s. PMID:23385403

  2. [Isokinetic profile of knee flexors and extensors in a population of rugby players].

    PubMed

    Larrat, E; Kemoun, G; Carette, P; Teffaha, D; Dugue, B

    2007-06-01

    We aimed to assess the isokinetic profile of the flexor and extensor muscles of the knee within a population of rugby players. This was a descriptive study. The rugby players underwent bilateral isokinetic assessment of knee flexion and extension on a CON-TREX MJ isokinetic dynamometer functioning at four angular frequencies - 90, 120, 180 and 240 degrees/s - in a concentric manner. The isokinetic parameters were peak torque, mean power, and mean work in relation to weight and femoral bicep: quadriceps ratio. The population included 16 "Federal 1" (semi-professional) rugby players with mean age 25 years (range 20-33 years). The players were divided into two groups: "forward" players (props, hookers, second line, third line) and "back" players (scrum, inside, center, wing, tail). The values of the isokinetic parameters did not reveal use of a preferred limb. Consequently, peak torque and mean power were higher in forward players than back players, whereas back players showed a higher relative power throughout the isokinetic test. Among rugby players, forward and back players showed differences in several isokinetic parameters. Accurate knowledge of the equilibrium between the knee's effector muscles is important for stability of the joint, to not only minimize articular accidents but also pinpoint force imbalances, thereby preventing muscular lesions during the sports season.

  3. Anaerobic Work Capacity derived from isokinetic and isoinertial cycling.

    PubMed

    Wiedemann, M S F; Bosquet, L

    2010-02-01

    The purpose of this study was to compare Anaerobic Work Capacity (AWC) measured on an isoinertial or an isokinetic bicycle ergometer. Twelve male participants completed two randomly ordered exercise testing sessions including a torque-velocity test followed by a 30-s all-out test on an isokinetic ergometer, or a force-velocity test followed by a Wingate Anaerobic Test on an isoinertial ergometer. Optimal load measured during the force-velocity test on the isoinertial ergometer was 1.13+/-0.11 N.kg(-1). Optimal cadence measured during the torque-velocity test on the isokinetic ergometer was 107+/-13 rpm. Although P(peak) measures were significantly correlated (r=0.77), we found a large difference between them (effect size=2.85) together with wide limits of agreement (bias+/-95%LOA=24+/-12%). The same observation was made with P(mean), but with a smaller magnitude of difference (bias+/-95%LOA=4.2+/-12%; effect size=0.51; r=0.73). This lack of agreement led us to the conclusion that AWC measures obtained during 30-s all-out tests performed on an isoinertial or an isokinetic bicycle ergometer are not necessarily similar and cannot be used interchangeably.

  4. 11. INTERIOR OF THERMOSTAT. Hot Springs National Park Bathhouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR OF THERMOSTAT. - Hot Springs National Park Bathhouse Row, Maurice Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  5. 9. THERMOSTAT IN LADIES MASSAGE ROOM. Hot Springs National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. THERMOSTAT IN LADIES MASSAGE ROOM. - Hot Springs National Park, Bathhouse Row, Lamar Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  6. Effects of Short-Term Isokinetic Training on Standing Long-Jump Performance in Untrained Men.

    ERIC Educational Resources Information Center

    Morriss, Calvin J.; Tolfrey, Keith; Coppack, Russell J.

    2001-01-01

    Evaluated the effects of a brief isokinetic training program on quadriceps and hamstring peak torque (PT) and standing long-jump performance. Tests on 12 untrained men indicated that the brief training program was at least as effective in improving quadriceps isokinetic (but not hamstring) PT. PT gains subsequent to isokinetic resistance training…

  7. Simulating highly nonlocal Hamiltonians with less nonlocal Hamiltonians

    NASA Astrophysics Data System (ADS)

    Subasi, Yigit; Jarzynski, Christopher

    The need for Hamiltonians with many-body interactions arises in various applications of quantum computing. However, interactions beyond two-body are difficult to realize experimentally. Perturbative gadgets were introduced to obtain arbitrary many-body effective interactions using Hamiltonians with two-body interactions only. Although valid for arbitrary k-body interactions, their use is limited to small k because the strength of interaction is k'th order in perturbation theory. Here we develop a nonperturbative technique for obtaining effective k-body interactions using Hamiltonians consisting of at most l-body interactions with l < k . This technique works best for Hamiltonians with a few interactions with very large k and can be used together with perturbative gadgets to embed Hamiltonians of considerable complexity in proper subspaces of two-local Hamiltonians. We describe how our technique can be implemented in a hybrid (gate-based and adiabatic) as well as solely adiabatic quantum computing scheme. We gratefully acknowledge financial support from the Lockheed Martin Corporation under Contract U12001C.

  8. A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger.

    PubMed

    Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Zhu, Huacheng; Yang, Yang; Liu, Changjun; Huang, Kama

    2017-10-08

    Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects.

  9. A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger

    PubMed Central

    Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Yang, Yang; Liu, Changjun; Huang, Kama

    2017-01-01

    Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects. PMID:28991195

  10. Relationships between eccentric hip isokinetic torque and functional performance.

    PubMed

    Baldon, Rodrigo de Marche; Lobato D, Ferreira Moreira; Carvalho, Lívia Pinheiro; Wun P, Yan Lam; Presotti, Cátia Valéria; Serrão, Fábio Viadanna

    2012-02-01

    Recently, attention in sports has been given to eccentric hip-muscle function, both in preventing musculoskeletal injuries and improving performance. To determine the key isokinetic variables of eccentric hip torque that predict the functional performance of women in the single-leg triple long jump (TLJ) and the timed 6-m single-leg hop (TH). Within-subject correlational study. Musculoskeletal laboratory. 32 healthy women age 18-25 y. The participants performed 2 sets of 5 eccentric hip-abductor/adductor and lateral/medial-rotator isokinetic contractions (30°/s) and 3 attempts in the TLJ and TH. The independent variables were the eccentric hip-abductor and -adductor and medial- and lateral-rotator isokinetic peak torque, normalized according to body mass (Nm/kg). The dependent variables were the longest distance achieved in the TLJ normalized according to body height and the shortest time spent during the execution of the TH. The forward-stepwise-regression analysis showed that the combination of the eccentric hip lateral-rotator and -abductor isokinetic peak torque provided the most efficient estimate of both functional tests, explaining 65% of the TLJ variance (P < .001) and 55% of the TH variance (P < .001). Higher values for eccentric hip lateral-rotator and hip-abductor torques reflected better performance. Thus, the eccentric action of these muscles should be considered in the development of physical training programs that aim to increase functional performance.

  11. Properties of Isokinetic Fatigue at Various Movement Speeds in Adult Males.

    ERIC Educational Resources Information Center

    Clarke, David H.; Manning, James M.

    1985-01-01

    Eighteen male subjects, aged 20 to 28 years, engaged in three fatigue bouts using an isokinetic dynamometer to measure knee extension contractions. Peak torque varied inversely with movement speed, and the pattern of decrement was independent of speed. Time to peak torque did not change significantly across trials in isokinetic fatigue. (Author/MT)

  12. Efficacy of isokinetic exercise on functional capacity and pain in patellofemoral pain syndrome.

    PubMed

    Alaca, Ridvan; Yilmaz, Bilge; Goktepe, A Salim; Mohur, Haydar; Kalyon, Tunc Alp

    2002-11-01

    To assess the effect of an isokinetic exercise program on symptoms and functions of patients with patellofemoral pain syndrome. A total of 22 consecutive patients with the complaint of anterior knee pain who met the inclusion criteria were recruited to assess the efficacy of isokinetic exercise on functional capacity, isokinetic parameters, and pain scores in patients with patellofemoral pain syndrome. A total of 37 knees were examined. Six-meter hopping, three-step hopping, and single-limb hopping course tests were performed for each patient with the measurements of the Lysholm scale and visual analog scale. Tested parameters were peak torque, total work, average power, and endurance ratios. Statistical analyses revealed that at the end of the 6-wk treatment period, functional and isokinetic parameters improved significantly, as did pain scores. There was not statistically significant correlation between different groups of parameters. The isokinetic exercise treatment program used in this study prevented the extensor power loss due to patellofemoral pain syndrome, but the improvement in the functional capacity was not correlated with the gained power.

  13. Isokinetic Strength and Endurance Tests used Pre- and Post-Spaceflight: Test-Retest Reliability

    NASA Technical Reports Server (NTRS)

    Laughlin, Mitzi S.; Lee, Stuart M. C.; Loehr, James A.; Amonette, William E.

    2009-01-01

    To assess changes in muscular strength and endurance after microgravity exposure, NASA measures isokinetic strength and endurance across multiple sessions before and after long-duration space flight. Accurate interpretation of pre- and post-flight measures depends upon the reliability of each measure. The purpose of this study was to evaluate the test-retest reliability of the NASA International Space Station (ISS) isokinetic protocol. Twenty-four healthy subjects (12 M/12 F, 32.0 +/- 5.6 years) volunteered to participate. Isokinetic knee, ankle, and trunk flexion and extension strength as well as endurance of the knee flexors and extensors were measured using a Cybex NORM isokinetic dynamometer. The first weekly session was considered a familiarization session. Data were collected and analyzed for weeks 2-4. Repeated measures analysis of variance (alpha=0.05) was used to identify weekly differences in isokinetic measures. Test-retest reliability was evaluated by intraclass correlation coefficients (ICC) (3,1). No significant differences were found between weeks in any of the strength measures and the reliability of the strength measures were all considered excellent (ICC greater than 0.9), except for concentric ankle dorsi-flexion (ICC=0.67). Although a significant difference was noted in weekly endurance measures of knee extension (p less than 0.01), the reliability of endurance measure by week were considered excellent for knee flexion (ICC=0.97) and knee extension (ICC=0.96). Except for concentric ankle dorsi-flexion, the isokinetic strength and endurance measures are highly reliable when following the NASA ISS protocol. This protocol should allow accurate interpretation isokinetic data even with a small number of crew members.

  14. Automatic Control via Thermostats of a Hyperbolic Stefan Problem with Memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colli, P.; Grasselli, M.; Sprekels, J.

    1999-03-15

    A hyperbolic Stefan problem based on the linearized Gurtin-Pipkin heat conduction law is considered. The temperature and free boundary are controlled by a thermostat acting on the boundary. This feedback control is based on temperature measurements performed by real thermal sensors located within the domain containing the two-phase system and/or at its boundary. Three different types of thermostats are analyzed: simple switch, relay switch, and a Preisach hysteresis operator. The resulting models lead to integrodifferential hyperbolic Stefan problems with nonlinear and nonlocal boundary conditions. Existence results are proved in all the cases. Uniqueness is also shown, except in the situationmore » corresponding to the ideal switch.« less

  15. Solving the Nose-Hoover thermostat for Nuclear Pasta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez Garcia, M. Angeles

    2006-06-19

    At densities just below nuclear saturation density, there may be possible non-uniform spatial configurations of neutron rich matter. In this work we present a calculation using molecular dynamics techniques for a nuclear system interacting via a semiclassical potential depending on both positions and momenta and kept at fixed temperature by using the Nose-Hoover Thermostat.

  16. Thermostatted molecular dynamics: How to avoid the Toda demon hidden in Nose-Hoover dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holian, B.L.; Voter, A.F.; Ravelo, R.

    The Nose-Hoover thermostat, which is often used in the hope of modifying molecular dynamics trajectories in order to achieve canonical-ensemble averages, has hidden in it a Toda ``demon,`` which can give rise to unwanted, noncanonical undulations in the instantaneous kinetic temperature. We show how these long-lived oscillations arise from insufficient coupling of the thermostat to the atoms, and give straightforward, practical procedures for avoiding this weak-coupling pathology in isothermal molecular dynamics simulations.

  17. A thermostatted kinetic theory model for event-driven pedestrian dynamics

    NASA Astrophysics Data System (ADS)

    Bianca, Carlo; Mogno, Caterina

    2018-06-01

    This paper is devoted to the modeling of the pedestrian dynamics by means of the thermostatted kinetic theory. Specifically the microscopic interactions among pedestrians and an external force field are modeled for simulating the evacuation of pedestrians from a metro station. The fundamentals of the stochastic game theory and the thermostatted kinetic theory are coupled for the derivation of a specific mathematical model which depicts the time evolution of the distribution of pedestrians at different exits of a metro station. The perturbation theory is employed in order to establish the stability analysis of the nonequilibrium stationary states in the case of a metro station consisting of two exits. A general sensitivity analysis on the initial conditions, the magnitude of the external force field and the number of exits is presented by means of numerical simulations which, in particular, show how the asymptotic distribution and the convergence time are affected by the presence of an external force field. The results show how, in evacuation conditions, the interaction dynamics among pedestrians can be negligible with respect to the external force. The important role of the thermostat term in allowing the reaching of the nonequilibrium stationary state is stressed out. Research perspectives are underlined at the end of paper, in particular for what concerns the derivation of frameworks that take into account the definition of local external actions and the introduction of the space and velocity dynamics.

  18. Isokinetic Evaluation of the Hip Flexor and Extensor Muscles: A Systematic Review.

    PubMed

    Zapparoli, Fabricio Yuri; Riberto, Marcelo

    2017-11-01

    Isokinetic dynamometry testing is a safe and reliable method accepted as the "gold standard" in the evaluation of muscle strength in the open kinetic chain. Isokinetic hip examinations face problems in the standardization of the position of the equipment axis, in the individual being examined, and in the adjustment of the lever arm and in stabilization strategies for the patients during the tests. Identification of the methodologic procedures with best reproducibility is also needed. To review the literature to evaluate the parameters used for the isokinetic evaluation of the hip flexor and extensor muscles and its reproducibility. This is a systematic literature review of the Cochrane, LILACS, PEDro, PubMed, and SciELO databases. The inclusion criteria were articles on the evaluation of hip flexor and/or extensor muscular strength with an isokinetic dynamometer and articles that analyzed the ICC or Pearson's reproducibility. The information extracted was positioning of the patient; positioning of the dynamometer axis; positioning of the lever arm; angular speed; sample size, pathology; type of contraction; and ICC and Pearson's results. 204 articles were found, from which 14 were selected that evaluated hip flexor and extensor muscles, involving 550 individuals who were submitted to an isokinetic hip evaluation. Five articles obtained the best result in reproducibility and had their methodology analyzed. To obtain better reproducibility of the isokinetic evaluation of the hip flexor and extensor muscles, the following recommendations must be followed: the individual must be positioned in the supine position and the dynamometer axis must be aligned with the greater trochanter of the femur. The positioning of the lever arm must be in the most distal region of the thigh possible. The angular speed used to analyze torque peak and muscle work was 60°/s, and to evaluate the muscle power it was 180°/s, with concentric and eccentric contractions being analyzed.

  19. Hamstrings to quadriceps peak torque ratios diverge between sexes with increasing isokinetic angular velocity.

    PubMed

    Hewett, Timothy E; Myer, Gregory D; Zazulak, Bohdanna T

    2008-09-01

    Our purpose was to determine if females demonstrate decreased hamstrings to quadriceps peak torque (H/Q) ratios compared to males and if H/Q ratios increase with increased isokinetic velocity in both sexes. Maturation disproportionately increases hamstrings peak torque at high velocity in males, but not females. Therefore, we hypothesised that mature females would demonstrate decreased H/Q ratios compared to males and the difference in H/Q ratio between sexes would increase as isokinetic velocity increased. Studies that analysed the H/Q ratio with gravity corrected isokinetic strength testing reported between 1967 and 2004 were included in our review and analysis. Keywords were hamstrings/quadriceps, isokinetics, peak torque and gravity corrected. Medline and Smart databases were searched combined with cross-checked bibliographic reference lists of the publications to determine studies to be included. Twenty-two studies were included with a total of 1568 subjects (1145 male, 423 female). Males demonstrated a significant correlation between H/Q ratio and isokinetic velocity (R=0.634, p<0.0001), and a significant difference in the isokinetic H/Q ratio at the lowest angular velocity (47.8+/-2.2% at 30 degrees /s) compared to the highest velocity (81.4+/-1.1% at 360 degrees /s, p<0.001). In contrast, females did not demonstrate a significant relationship between H/Q ratio and isokinetic velocity (R=0.065, p=0.77) or a change in relative hamstrings strength as the speed increased (49.5+/-8.8% at 30 degrees /s; 51.0+/-5.7% at 360 degrees /s, p=0.84). Gender differences in isokinetic H/Q ratios were not observed at slower angular velocities. However, at high knee flexion/extension angular velocities, approaching those that occur during sports activities, significant gender differences were observed in the H/Q ratio. Females, unlike males, do not increase hamstrings to quadriceps torque ratios at velocities that approach those of functional activities.

  20. Proprioceptive isokinetic exercise test

    NASA Technical Reports Server (NTRS)

    Dempster, P. T.; Bernauer, E. M.; Bond, M.; Greenleaf, J. E.

    1993-01-01

    Proprioception, the reception of stimuli within the body that indicates position, is an important mechanism for optimal human performance. People exposed to prolonged bed rest, microgravity, or other deconditioning situations usually experience reduced proprioceptor and kinesthetic stimuli that compromise body balance, posture, and equilibrium. A new proprioceptive test is described that utilizes the computer-driven LIDO isokinetic ergometer. An overview of the computer logic, software, and testing procedure for this proprioceptive test, which can be performed with the arms or legs, is described.

  1. Transactive control of fast-acting demand response based on thermostatic loads in real-time retail electricity markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behboodi, Sahand; Chassin, David P.; Djilali, Ned

    Coordinated operation of distributed thermostatic loads such as heat pumps and air conditioners can reduce energy costs and prevents grid congestion, while maintaining room temperatures in the comfort range set by consumers. This paper furthers efforts towards enabling thermostatically controlled loads (TCLs) to participate in real-time retail electricity markets under a transactive control paradigm. An agent-based approach is used to develop an effective and low complexity demand response control scheme for TCLs. The proposed scheme adjusts aggregated thermostatic loads according to real-time grid conditions under both heating and cooling modes. Here, a case study is presented showing the method reducesmore » consumer electricity costs by over 10% compared to uncoordinated operation.« less

  2. Transactive control of fast-acting demand response based on thermostatic loads in real-time retail electricity markets

    DOE PAGES

    Behboodi, Sahand; Chassin, David P.; Djilali, Ned; ...

    2017-07-29

    Coordinated operation of distributed thermostatic loads such as heat pumps and air conditioners can reduce energy costs and prevents grid congestion, while maintaining room temperatures in the comfort range set by consumers. This paper furthers efforts towards enabling thermostatically controlled loads (TCLs) to participate in real-time retail electricity markets under a transactive control paradigm. An agent-based approach is used to develop an effective and low complexity demand response control scheme for TCLs. The proposed scheme adjusts aggregated thermostatic loads according to real-time grid conditions under both heating and cooling modes. Here, a case study is presented showing the method reducesmore » consumer electricity costs by over 10% compared to uncoordinated operation.« less

  3. Thermostatic Radiator Valve Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentz, J.; Ansanelli, E.

    2015-01-01

    A large stock of multifamily buildings in the Northeast and Midwest are heated by steam distribution systems. Losses from these systems are typically high and a significant number of apartments are overheated much of the time. Thermostatically controlled radiator valves (TRVs) are one potential strategy to combat this problem, but have not been widely accepted by the residential retrofit market. In this project, the ARIES team sought to better understand the current usage of TRVs by key market players in steam and hot water heating and to conduct limited experiments on the effectiveness of new and old TRVs as amore » means of controlling space temperatures and reducing heating fuel consumption. The project included a survey of industry professionals, a field experiment comparing old and new TRVs, and cost-benefit modeling analysis using BEopt™ (Building Energy Optimization software).« less

  4. Relation between isokinetic muscle strength and functional capacity in recreational athletes with chondromalacia patellae.

    PubMed

    Yildiz, Y; Aydin, T; Sekir, U; Cetin, C; Ors, F; Alp Kalyon, T

    2003-12-01

    To investigate the effects of isokinetic exercise on pain and functional test scores of recreational athletes with chondromalacia patellae (CMP) and to examine the correlation between isokinetic parameters and functional tests or pain score. The functional ability of 30 recreational athletes with unilateral CMP was evaluated using six different tests. Pain scores were assessed during daily activities before and after the treatment protocol. Isokinetic exercise sessions were carried out at angular velocities of 60 degrees /s (25-90 degrees range of flexion) and 180 degrees /s (full range). These sessions were repeated three times a week for six weeks. Quadriceps and hamstring peak torque, total work, and endurance ratios had improved significantly after the treatment, as did the functional parameters and pain scores. There was a poor correlation between the extensor endurance ratio and one leg standing test. A moderate correlation between the visual analogue scale and the extensor endurance ratio or flexion endurance ratio was also found. The isokinetic exercise programme used in this study had a positive effect on muscle strength, pain score, and functional ability of knees with CMP. The improvement in the functional capacity did not correlate with the isokinetic parameters.

  5. INTERSESSION RELIABILITY OF UPPER EXTREMITY ISOKINETIC PUSH-PULL TESTING.

    PubMed

    Riemann, Bryan L; Davis, Sarah E; Huet, Kevin; Davies, George J

    2016-02-01

    Based on the frequency pushing and pulling patterns are used in functional activities, there is a need to establish an objective method of quantifying the muscle performance characteristics associated with these motions, particularly during the later stages of rehabilitation as criteria for discharge. While isokinetic assessment offers an approach to quantifying muscle performance, little is known about closed kinetic chain (CKC) isokinetic testing of the upper extremity (UE). To determine the intersession reliability of isokinetic upper extremity measurement of pushing and pulling peak force and average power at slow (0.24 m/s), medium (0.43 m/s) and fast (0.61 m/s) velocities in healthy young adults. The secondary purpose was to compare pushing and pulling peak force (PF) and average power (AP) between the upper extremity limbs (dominant, non-dominant) across the three velocities. Twenty-four physically active men and women completed a test-retest (>96 hours) protocol in order to establish isokinetic UE CKC reliability of PF and AP during five maximal push and pull repetitions at three velocities. Both limb and speed orders were randomized between subjects. High test-retest relative reliability using intraclass correlation coefficients (ICC2, 1) were revealed for PF (.91-.97) and AP (.85-.95) across velocities, limbs and directions. PF typical error (% coefficient of variation) ranged from 6.1% to 11.3% while AP ranged from 9.9% to 26.7%. PF decreased significantly (p < .05) as velocity increased whereas AP increased as velocity increased. PF and AP during pushing were significantly greater than pulling at all velocities, however the push-pull differences in PF became less as velocity increased. There were no significant differences identified between the dominant and nondominant limbs. Isokinetically derived UE CKC push-pull PF and AP are reliable measures. The lack of limb differences in healthy normal participants suggests that clinicians can

  6. Modified Nose-Hoover thermostat for solid state for constant temperature molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wen-Hwa, E-mail: whchen@pme.nthu.edu.tw; National Applied Research Laboratories, Taipei 10622, Taiwan, ROC; Wu, Chun-Hung

    2011-07-10

    Nose-Hoover (NH) thermostat methods incorporated with molecular dynamics (MD) simulation have been widely used to simulate the instantaneous system temperature and feedback energy in a canonical ensemble. The method simply relates the kinetic energy to the system temperature via the particles' momenta based on the ideal gas law. However, when used in a tightly bound system such as solids, the method may suffer from deriving a lower system temperature and potentially inducing early breaking of atomic bonds at relatively high temperature due to the neglect of the effect of the potential energy of atoms based on solid state physics. Inmore » this paper, a modified NH thermostat method is proposed for solid system. The method takes into account the contribution of phonons by virtue of the vibrational energy of lattice and the zero-point energy, derived based on the Debye theory. Proof of the equivalence of the method and the canonical ensemble is first made. The modified NH thermostat is tested on different gold nanocrystals to characterize their melting point and constant volume specific heat, and also their size and temperature dependence. Results show that the modified NH method can give much more comparable results to both the literature experimental and theoretical data than the standard NH. Most importantly, the present model is the only one, among the six thermostat algorithms under comparison, that can accurately reproduce the experimental data and also the T{sup 3}-law at temperature below the Debye temperature, where the specific heat of a solid at constant volume is proportional to the cube of temperature.« less

  7. A stochastic thermostat algorithm for coarse-grained thermomechanical modeling of large-scale soft matters: Theory and application to microfilaments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tong; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au

    As all-atom molecular dynamics method is limited by its enormous computational cost, various coarse-grained strategies have been developed to extend the length scale of soft matters in the modeling of mechanical behaviors. However, the classical thermostat algorithm in highly coarse-grained molecular dynamics method would underestimate the thermodynamic behaviors of soft matters (e.g. microfilaments in cells), which can weaken the ability of materials to overcome local energy traps in granular modeling. Based on all-atom molecular dynamics modeling of microfilament fragments (G-actin clusters), a new stochastic thermostat algorithm is developed to retain the representation of thermodynamic properties of microfilaments at extra coarse-grainedmore » level. The accuracy of this stochastic thermostat algorithm is validated by all-atom MD simulation. This new stochastic thermostat algorithm provides an efficient way to investigate the thermomechanical properties of large-scale soft matters.« less

  8. Using Evolved Fuzzy Neural Networks for Injury Detection from Isokinetic Curves

    NASA Astrophysics Data System (ADS)

    Couchet, Jorge; Font, José María; Manrique, Daniel

    In this paper we propose an evolutionary fuzzy neural networks system for extracting knowledge from a set of time series containing medical information. The series represent isokinetic curves obtained from a group of patients exercising the knee joint on an isokinetic dynamometer. The system has two parts: i) it analyses the time series input in order generate a simplified model of an isokinetic curve; ii) it applies a grammar-guided genetic program to obtain a knowledge base represented by a fuzzy neural network. Once the knowledge base has been generated, the system is able to perform knee injuries detection. The results suggest that evolved fuzzy neural networks perform better than non-evolutionary approaches and have a high accuracy rate during both the training and testing phases. Additionally, they are robust, as the system is able to self-adapt to changes in the problem without human intervention.

  9. Relationship between cardiopulmonary responses and isokinetic moments: the optimal angular velocity for muscular endurance

    PubMed Central

    Lee, Chan-Bok; Eun, Denny; Kim, Kang-Ho; Park, Jae-Wan; Jee, Yong-Seok

    2017-01-01

    Most protocols for testing and rehabilitation for recovery and improvement of muscular endurance have been set at 180°/sec, 240°/sec, and 300°/sec. These protocols can cause confusion to clinical providers or other researchers. This study was aimed at investigating the optimal isokinetic angular speed for measuring or developing muscular endurance after assessing the relationship between cardiopulmonary responses and isokinetic moments. This study was conducted with 31 male and female college students. Graded exercise test and body composition were measured as well as the isokinetic moments of the knee muscles at three angular speeds: 180°/sec, 240°/sec, and 300°/sec. The specific isokinetic moments of knee muscles that were measured included: peak torque (PT) and total work (TW) on extensor (e) and flexor (f) of knee joints, which were denoted as ePT180, fPT180, eTW180, fTW180, ePT240, fPT240, eTW240, fTW240, ePT300, fPT300, eTW300, and fTW300 according to the three angular speeds. Spearman correlation test was used to examine the relationship between the sum means of cardiopulmonary responses and the variables of isokinetic moments. This study confirmed that the optimal angular speed for testing or training for muscular endurance was 180°/sec, which showed a stronger relationship between cardiopulmonary responses and isokinetic moments. Therefore, this angular speed is recommended for testing and training for muscular endurance of the knee joints. PMID:28503531

  10. Relationship between cardiopulmonary responses and isokinetic moments: the optimal angular velocity for muscular endurance.

    PubMed

    Lee, Chan-Bok; Eun, Denny; Kim, Kang-Ho; Park, Jae-Wan; Jee, Yong-Seok

    2017-04-01

    Most protocols for testing and rehabilitation for recovery and improvement of muscular endurance have been set at 180°/sec, 240°/sec, and 300°/sec. These protocols can cause confusion to clinical providers or other researchers. This study was aimed at investigating the optimal isokinetic angular speed for measuring or developing muscular endurance after assessing the relationship between cardiopulmonary responses and isokinetic moments. This study was conducted with 31 male and female college students. Graded exercise test and body composition were measured as well as the isokinetic moments of the knee muscles at three angular speeds: 180°/sec, 240°/sec, and 300°/sec. The specific isokinetic moments of knee muscles that were measured included: peak torque (PT) and total work (TW) on extensor (e) and flexor (f) of knee joints, which were denoted as ePT180, fPT180, eTW180, fTW180, ePT240, fPT240, eTW240, fTW240, ePT300, fPT300, eTW300, and fTW300 according to the three angular speeds. Spearman correlation test was used to examine the relationship between the sum means of cardiopulmonary responses and the variables of isokinetic moments. This study confirmed that the optimal angular speed for testing or training for muscular endurance was 180°/sec, which showed a stronger relationship between cardiopulmonary responses and isokinetic moments. Therefore, this angular speed is recommended for testing and training for muscular endurance of the knee joints.

  11. Relation between isokinetic muscle strength and functional capacity in recreational athletes with chondromalacia patellae

    PubMed Central

    Yildiz, Y; Aydin, T; Sekir, U; Cetin, C; Ors, F; Alp, K

    2003-01-01

    Objectives: To investigate the effects of isokinetic exercise on pain and functional test scores of recreational athletes with chondromalacia patellae (CMP) and to examine the correlation between isokinetic parameters and functional tests or pain score. Methods: The functional ability of 30 recreational athletes with unilateral CMP was evaluated using six different tests. Pain scores were assessed during daily activities before and after the treatment protocol. Isokinetic exercise sessions were carried out at angular velocities of 60°/s (25–90° range of flexion) and 180°/s (full range). These sessions were repeated three times a week for six weeks. Results: Quadriceps and hamstring peak torque, total work, and endurance ratios had improved significantly after the treatment, as did the functional parameters and pain scores. There was a poor correlation between the extensor endurance ratio and one leg standing test. A moderate correlation between the visual analogue scale and the extensor endurance ratio or flexion endurance ratio was also found. Conclusions: The isokinetic exercise programme used in this study had a positive effect on muscle strength, pain score, and functional ability of knees with CMP. The improvement in the functional capacity did not correlate with the isokinetic parameters. PMID:14665581

  12. Effects of the bilateral isokinetic strengthening training on functional parameters, gait, and the quality of life in patients with stroke.

    PubMed

    Büyükvural Şen, Sıdıka; Özbudak Demir, Sibel; Ekiz, Timur; Özgirgin, Neşe

    2015-01-01

    To evaluate the effects of the bilateral isokinetic strengthening training applied to knee and ankle muscles on balance, functional parameters, gait, and the quality of in stroke patients. Fifty patients (33 M, 17 F) with subacute-chronic stroke and 30 healthy subjects were included. Stroke patients were allocated into isokinetic and control groups. Conventional rehabilitation program was applied to all cases; additionally maximal concentric isokinetic strengthening training was applied to the knee-ankle muscles bilaterally to the isokinetic group 5 days a week for 3 weeks. Biodex System 3 Pro Multijoint System isokinetic dynamometer was used for isokinetic evaluation. The groups were assessed by Functional Independence Measure, Stroke Specific Quality of Life Scale, Timed 10-Meter Walk Test, Six-Minute Walk Test, Stair-Climbing Test, Timed up&go Test, Berg Balance Scale, and Rivermead Mobility Index. Compared with baseline, the isokinetic PT values of the knee and ankle on both sides significantly increased in all cases. PT change values were significantly higher in the isokinetic group than the control group (P<0.025). Furthermore, the quality of life, gait, balance and mobility index values improved significantly in both groups, besides the increase levels were found significantly higher in the isokinetic group (P<0.025, P<0.05). Bilateral isokinetic strengthening training in addition to conventional rehabilitation program after stroke seems to be effective on strengthening muscles on both sides, improving functional parameters, gait, balance and life quality.

  13. Effects of the bilateral isokinetic strengthening training on functional parameters, gait, and the quality of life in patients with stroke

    PubMed Central

    Büyükvural Şen, Sıdıka; Özbudak Demir, Sibel; Ekiz, Timur; Özgirgin, Neşe

    2015-01-01

    Objective: To evaluate the effects of the bilateral isokinetic strengthening training applied to knee and ankle muscles on balance, functional parameters, gait, and the quality of in stroke patients. Methods: Fifty patients (33 M, 17 F) with subacute-chronic stroke and 30 healthy subjects were included. Stroke patients were allocated into isokinetic and control groups. Conventional rehabilitation program was applied to all cases; additionally maximal concentric isokinetic strengthening training was applied to the knee-ankle muscles bilaterally to the isokinetic group 5 days a week for 3 weeks. Biodex System 3 Pro Multijoint System isokinetic dynamometer was used for isokinetic evaluation. The groups were assessed by Functional Independence Measure, Stroke Specific Quality of Life Scale, Timed 10-Meter Walk Test, Six-Minute Walk Test, Stair-Climbing Test, Timed up&go Test, Berg Balance Scale, and Rivermead Mobility Index. Results: Compared with baseline, the isokinetic PT values of the knee and ankle on both sides significantly increased in all cases. PT change values were significantly higher in the isokinetic group than the control group (P<0.025). Furthermore, the quality of life, gait, balance and mobility index values improved significantly in both groups, besides the increase levels were found significantly higher in the isokinetic group (P<0.025, P<0.05). Conclusion: Bilateral isokinetic strengthening training in addition to conventional rehabilitation program after stroke seems to be effective on strengthening muscles on both sides, improving functional parameters, gait, balance and life quality. PMID:26629238

  14. Assessment of isokinetic knee strength in elite young female basketball players: correlation with vertical jump.

    PubMed

    Rouis, M; Coudrat, L; Jaafar, H; Filliard, J-R; Vandewalle, H; Barthelemy, Y; Driss, T

    2015-12-01

    To explore the isokinetic concentric strength of the knee muscle groups, and the relationship between the isokinetic knee extensors strength and the vertical jump performance in young elite female basketball players. Eighteen elite female basketball players performed a countermovement jump, and an isokinetic knee test using a Biodex dynamometer. The maximal isokinetic peak torque of the knee extensor and flexor muscles was recorded at four angular velocities (90°/s, 180°/s, 240°/s and 300°/s) for the dominant and non-dominant legs. The conventional hamstring/quadriceps ratio (H/Q) was assessed at each angular velocity for both legs. There was no significant difference between dominant and non-dominant leg whatever the angular velocity (all P>0.05). However, the H/Q ratio enhanced as the velocity increased from 180°/s to 300°/s (P<0.05). Furthermore, low to high significant positive correlations were detected between the isokinetic measures of the knee extensors and the vertical jump height. The highest one was found for the knee extensors peak torque at a velocity of 240°/s (r=0.88, P<0.001). The results accounted for an optimal velocity at which a strong relationship could be obtained between isokinetic knee extensors strength and vertical jump height. Interestingly, the H/Q ratio of the young elite female basketball players in the present study was unusual as it was close to that generally observed in regular sportsmen.

  15. [Reliability and validity of the analysis of hand grip and pinch force in isometric and isokinetic conditions].

    PubMed

    Benaglia, P G; Franchignoni, F; Ferriero, G; Zebellin, G; Sartorio, F

    1999-01-01

    Strength measurement of the hand grip is at the core of most protocols of functional assessment of the upper limb and in rehabilitation plays a major role in the analysis of treatment efficacy and patients' occupational ability. The aims of this study were to: a) verify the repeatability of strength measurements made during performance of the hand grip and three types of pinch, carried out under isometric and isokinetic conditions; b) compare maximal isometric strength with the corresponding isokinetic value for each of the manoeuvres studied; c) investigate the correlations between the strength expressed in the different manoeuvres, under both isometric and isokinetic conditions. We studied 14 voluntary subjects over three sessions conducted at 48-hr intervals, employing a computerized isokinetic dynamometer Lido WorkSet equipped with device N(o) 21 for the study of pinch (lateral pinch, pulp pinch, chuck pinch) and device N(o) 52 for the grip study. Isometric contractions resulted stronger than isokinetic ones, and the hand grip was found to be the manoeuvre able to produce most strength. The repeatability of each strength measurement test over the three days was high (Intraclass Correlation Coefficients: 0.89-0.93). Correlations between the isometric and isokinetic performance for each of the manoeuvres examined were always high (Pearson's r coefficients: 0.89-0.95) as were those between the different manoeuvres, whether performed in isometric or isokinetic modality (r: 0.60-0.94).

  16. Upper Limb Isokinetic Strengthening Versus Passive Mobilization in Patients With Chronic Stroke: A Randomized Controlled Trial.

    PubMed

    Coroian, Flavia; Jourdan, Claire; Bakhti, Karima; Palayer, Claire; Jaussent, Audrey; Picot, Marie-Christine; Mottet, Denis; Julia, Marc; Bonnin, Huey-Yune; Laffont, Isabelle

    2018-02-01

    To assess the benefit of isokinetic strengthening of the upper limb (UL) in patients with chronic stroke as compared to passive mobilization. Randomized blinded assessor controlled trial. Physical Medicine and Rehabilitation departments of 2 university hospitals. Patients (N=20) with incomplete hemiplegia (16 men; mean age, 64y; median time since stroke, 32mo). A 6-week comprehensive rehabilitation program, 3d/wk, 3 sessions/d. In addition, a 45-minute session per day was performed using an isokinetic dynamometer, with either isokinetic strengthening of elbow and wrist flexors/extensors (isokinetic strengthening group) or passive joint mobilization (control group). The primary endpoint was the increase in Upper Limb Fugl-Meyer Assessment (UL-FMA) score at day 45 (t1). Secondary endpoints were increases in UL-FMA scores, Box and Block Test scores, muscle strength, spasticity, and Barthel Index at t1, t2 (3mo), and t3 (6mo). Recruitment was stopped early because of excessive fatigue in the isokinetic strengthening group. The increase in UL-FMA score at t1 was 3.5±4.4 in the isokinetic strengthening group versus 6.0±4.5 in the control group (P=.2). Gains in distal UL-FMA scores were larger (3.1±2.8) in the control group versus 0.6±2.5 in the isokinetic strengthening group (P=.05). No significant group difference was observed in secondary endpoints. Mixed models confirmed those results. Regarding the whole sample, gains from baseline were significant for the UL-FMA at t1 (+4.8; P<.001), t2, and t3 and for the Box and Block Test at t1 (+3; P=.013) and t2. In a comprehensive rehabilitation program, isokinetic strengthening did not show superiority to passive mobilization for UL rehabilitation. Findings also suggest a sustained benefit in impairments and function of late UL rehabilitation programs for patients with stroke. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. A partial Hamiltonian approach for current value Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Naz, R.; Mahomed, F. M.; Chaudhry, Azam

    2014-10-01

    We develop a partial Hamiltonian framework to obtain reductions and closed-form solutions via first integrals of current value Hamiltonian systems of ordinary differential equations (ODEs). The approach is algorithmic and applies to many state and costate variables of the current value Hamiltonian. However, we apply the method to models with one control, one state and one costate variable to illustrate its effectiveness. The current value Hamiltonian systems arise in economic growth theory and other economic models. We explain our approach with the help of a simple illustrative example and then apply it to two widely used economic growth models: the Ramsey model with a constant relative risk aversion (CRRA) utility function and Cobb Douglas technology and a one-sector AK model of endogenous growth are considered. We show that our newly developed systematic approach can be used to deduce results given in the literature and also to find new solutions.

  18. The isokinetic strength profile of elite soccer players according to playing position

    PubMed Central

    Grygorowicz, Monika; Hojszyk, Radosław; Jadczak, Łukasz

    2017-01-01

    The aim of this study was to compare isokinetic strength performance profiles in elite soccer players across different field positions. A total of 111 elite international players of Polish Ekstraklasa (the top division in Poland) were examined during the 2010–2015 seasons. The players were classified into six positional roles: central defenders (CD), external defenders (ED), central midfielders (CM), external midfielders (EM), forwards (F), and goalkeepers (G). The concentric isokinetic strength (peak torque [PT] of quadriceps and hamstrings, H/Q ratios) was calculated for the dominant leg and the non-dominant leg at angular velocity of 1.05 rad ·s–1, whereas to assess isokinetic muscle endurance, the total work [TW] at angular velocity of 4.19 rad ·s–1, was taken into consideration. The results showed that isokinetic strength performance varies significantly among players in different playing positions. The analysis of PT for quadriceps (PT-Q) and hamstrings (PT-H) generally showed that the goalkeepers and central midfielders had lower strength levels compared to other playing positions. In the case of PT-H and hamstring/quadricep (H/Q) peak torque ratios, statistically significant differences were also noted for the legs, where mean values noted for the dominant leg were higher than for the non-dominant leg. For TW for quadriceps (TW-Q) and hamstrings (TW-H), statistically significant differences were noted only between playing positions. TW-Q values for goalkeepers were lower than for central defenders and external midfielders. TW-H values for goalkeepers were lower than for central midfielders, central defenders and external midfielders. This study showed that specific functional activity of players in individual positions on the field influences the varied profile of isokinetic strength performance. PMID:28759603

  19. The isokinetic strength profile of elite soccer players according to playing position.

    PubMed

    Śliwowski, Robert; Grygorowicz, Monika; Hojszyk, Radosław; Jadczak, Łukasz

    2017-01-01

    The aim of this study was to compare isokinetic strength performance profiles in elite soccer players across different field positions. A total of 111 elite international players of Polish Ekstraklasa (the top division in Poland) were examined during the 2010-2015 seasons. The players were classified into six positional roles: central defenders (CD), external defenders (ED), central midfielders (CM), external midfielders (EM), forwards (F), and goalkeepers (G). The concentric isokinetic strength (peak torque [PT] of quadriceps and hamstrings, H/Q ratios) was calculated for the dominant leg and the non-dominant leg at angular velocity of 1.05 rad ·s-1, whereas to assess isokinetic muscle endurance, the total work [TW] at angular velocity of 4.19 rad ·s-1, was taken into consideration. The results showed that isokinetic strength performance varies significantly among players in different playing positions. The analysis of PT for quadriceps (PT-Q) and hamstrings (PT-H) generally showed that the goalkeepers and central midfielders had lower strength levels compared to other playing positions. In the case of PT-H and hamstring/quadricep (H/Q) peak torque ratios, statistically significant differences were also noted for the legs, where mean values noted for the dominant leg were higher than for the non-dominant leg. For TW for quadriceps (TW-Q) and hamstrings (TW-H), statistically significant differences were noted only between playing positions. TW-Q values for goalkeepers were lower than for central defenders and external midfielders. TW-H values for goalkeepers were lower than for central midfielders, central defenders and external midfielders. This study showed that specific functional activity of players in individual positions on the field influences the varied profile of isokinetic strength performance.

  20. Reliability of a device for the knee and ankle isometric and isokinetic strength testing in older adults.

    PubMed

    Bergamin, Marco; Gobbo, Stefano; Bullo, Valentina; Vendramin, Barbara; Duregon, Federica; Frizziero, Antonio; Di Blasio, Andrea; Cugusi, Lucia; Zaccaria, Marco; Ermolao, Andrea

    2017-01-01

    Lower extremity muscle mass, strength, power, and physical performance are critical determinants of independent functioning in later life. Isokinetic dynamometers are becoming very common in assessing different features of muscle strength, in both research and clinical practice; however, reliability studies are still needed to support the extended use of those devices. The purpose of this study is to assess the test-retest reliability of knee and ankle isokinetic and isometric strength testing protocols in a sample of older healthy subjects, using a new and untested isokinetic multi-joint evaluation system. Sixteen male and fourteen female older adults (mean age 65.2 ± 4.6 years) were assessed in two testing sessions. Each participant performed a randomized testing procedure that includes different isometric and isokinetic tests for knee and ankle joints. All participants concluded the trial safety and no subject reported any discomfort throughout the overall assessment. Coefficients of correlation between measures were calculated showing moderate to strong effects among all test-retest assessments and paired-sample t test showed only one significant difference (p<0.05) in the maximal isokinetic bilateral knee flexion torque. The multi-joint evaluation system for the assessment of knee and ankle isokinetic and isometric strength provided reliable test-retest measures in healthy older adults. Ib.

  1. Thermostatic system of sensor in NIR spectrometer based on PID control

    NASA Astrophysics Data System (ADS)

    Wang, Zhihong; Qiao, Liwei; Ji, Xufei

    2016-11-01

    Aiming at the shortcomings of the primary sensor thermostatic control system in the near infrared (NIR) spectrometer, a novel thermostatic control system based on proportional-integral-derivative (PID) control technology was developed to improve the detection precision of the NIR spectrometer. There were five parts including bridge amplifier circuit, analog-digital conversion (ADC) circuit, microcontroller, digital-analog conversion (DAC) circuit and drive circuit in the system. The five parts formed a closed-loop control system based on PID algorithm that was used to control the error between the temperature calculated by the sampling data of ADC and the designed temperature to ensure the stability of the spectrometer's sensor. The experimental results show that, when the operating temperature of sensor is -11°, compared with the original system, the temperature control precision of the new control system is improved from ±0.64° to ±0.04° and the spectrum signal to noise ratio (SNR) is improved from 4891 to 5967.

  2. Capillary Tube and Thermostatic Expansion Valve Comparative Analysis in Water Chiller Air Conditioning

    NASA Astrophysics Data System (ADS)

    Wijaya Sunu, Putu; Made Rasta, I.; Anakottapary, Daud Simon; Made Suarta, I.; Cipta Santosa, I. D. M.

    2018-01-01

    The aims of this study to compares the performance characteristics of a water chiller air conditioning simulation equipped with thermostatic expansion valve (TEV) with those of a capillary tube. Water chiller system filled with the same charge of refrigerant. Comparative analyses were performed based on coefficient of performance (COP) and performance parameter of the refrigeration system, carried out at medium cooling load level with the ambient temperature of 29-31°C, constant compressor speed and fixed chilled water volume flowrate at 15 lpm. It was shown that the TEV system showed better energy consumption compared to that of capillary tube. From the coefficient of performance perspective, the thermostatic expansion valve system showed higher COP (± 21.4%) compared to that of capillary tube system.

  3. Isokinetic trunk muscle performance in pre-teens and teens with and without back pain.

    PubMed

    Bernard, J-C; Boudokhane, S; Pujol, A; Chaléat-Valayer, E; Le Blay, G; Deceuninck, J

    2014-02-01

    To assess with an isokinetic dynamometer the force and endurance of the spinal flexor and extensor muscles in pre-teens or teens aged 11 to 13 and 14 to 16 years with and without low back pain (LBP). The control group and the LBP group were homogeneous in terms of age, weight, height and Body Mass Index (BMI). Assessment was carried out with the isokinetic dynamometer Cybex Norm®. The spinal flexors and extensors were explored concentrically at speeds of 60°, 90° and 120°/sec. The parameters chosen were: maximal moment of force (MMF), mean power (MP), total work (TW), F/E ratios (between the flexors and the extensors for the aforesaid parameters). In the LBP groups, clinical information (pain, extensibility of the spinal and sub-pelvic muscles, sports practice) and sagittal radiological data were all measured. While no significant difference in isokinetic performance was found between asymptomatic and LBP children in the 11-to-13-year-old group, the isokinetic performances of the LBP children were influenced positively by BMI value, number of hours of physical activity and radiologic value of the lumbar lordosis. As regards these pre-teens, assessment with an isokinetic dynamometer does not highlight muscle characteristics that might explain LBP occurrence. As regards the 14-to-16-year-old group, muscle strength has been found to be correlated with age. LBP teens were showed to have weaker extensors and stronger flexors than the healthy teens. It is with regard to this age group that assessment with an isokinetic dynamometer clearly yields interesting results. Since we have yet to standardize our evaluation criteria (working speed, number of trials…), it is difficult to compare our results with those reported in the literature. This is a preliminary study involving a relatively low number of patients. That said, given the fact that numerous parameters are connected with the age and height of the subjects, assessment with an isokinetic dynamometer can be

  4. Interseason variability in isokinetic strength and poor correlation with Nordic hamstring eccentric strength in football players.

    PubMed

    van Dyk, N; Witvrouw, E; Bahr, R

    2018-04-25

    In elite sport, the use of strength testing to establish muscle function and performance is common. Traditionally, isokinetic strength tests have been used, measuring torque during concentric and eccentric muscle action. A device that measures eccentric hamstring muscle strength while performing the Nordic hamstring exercise is now also frequently used. The study aimed to investigate the variability of isokinetic muscle strength over time, for example, between seasons, and the relationship between isokinetic testing and the new Nordic hamstring exercise device. All teams (n = 18) eligible to compete in the premier football league in Qatar underwent a comprehensive strength assessment during their periodic health evaluation at Aspetar Orthopaedic and Sports Medicine Hospital in Qatar. Isokinetic strength was investigated for measurement error, and correlated to Nordic hamstring exercise strength. Of the 529 players included, 288 players had repeated tests with 1/2 seasons between test occasions. Variability (measurement error) between test occasions was substantial, as demonstrated by the measurement error (approximately 25 Nm, 15%), whether separated by 1 or 2 seasons. Considering hamstring injuries, the same pattern was observed among injured (n = 60) and uninjured (n = 228) players. A poor correlation (r = .35) was observed between peak isokinetic hamstring eccentric torque and Nordic hamstring exercise peak force. The strength imbalance between limbs calculated for both test modes was not correlated (r = .037). There is substantial intraindividual variability in all isokinetic test measures, whether separated by 1 or 2 seasons, irrespective of injury. Also, eccentric hamstring strength and limb-to-limb imbalance were poorly correlated between the isokinetic and Nordic hamstring exercise tests. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Effect of isokinetic training on strength, functionality and proprioception in athletes with functional ankle instability.

    PubMed

    Sekir, Ufuk; Yildiz, Yavuz; Hazneci, Bulent; Ors, Fatih; Aydin, Taner

    2007-05-01

    The purpose of this study was to investigate the effects of isokinetic exercise on strength, joint position sense and functionality in recreational athletes with functional ankle instability (FAI). Strength, proprioception and balance of 24 recreational athletes with unilateral FAI were evaluated by using isokinetic muscle strength measurement, ankle joint position sense and one leg standing test. The functional ability was evaluated using five different tests. These were; single limb hopping course (SLHC), one legged and triple legged hop for distance (OLHD-TLHD), and six and cross six meter hop for time (SMHT-CSMHT). Isokinetic peak torque of the ankle invertor and evertor muscles were assessed eccentrically and concentrically at test speeds of 120 degrees /s. Isokinetic exercise protocol was carried out at an angular velocity of 120 degrees /s. The exercise session was repeated three times a week and lasted after 6 weeks. At baseline, concentric invertor strength was found to be significantly lower in the functionally unstable ankles compared to the opposite healthy ankles (p < 0.001). This difference was not present after executing the 6 weeks exercise sessions (p > 0.05). Ankle joint position sense in the injured ankles declined significantly from 2.35 +/- 1.16 to 1.33 +/- 0.62 degrees for 10 degrees of inversion angle (p < 0.001) and from 3.10 +/- 2.16 to 2.19 +/- 0.98 degrees for 20 degrees of inversion angle (p < 0.05) following the isokinetic exercise. One leg standing test score decreased significantly from 15.17 +/- 8.50 to 11.79 +/- 7.81 in the injured ankles (p < 0.001). Following the isokinetic exercise protocol, all of the worsened functional test scores in the injured ankles as compared to the opposite healthy ankles displayed a significant improvement (p < 0.01 for OLHD and CSMHT, p < 0.001 for SLHC, TLHD, and SMHT). These results substantiate the deficits of strength, proprioception, balance and functionality in recreational athletes with FAI. The

  6. Isometric and isokinetic hip strength and agonist/antagonist ratios in symptomatic femoroacetabular impingement.

    PubMed

    Diamond, Laura E; Wrigley, Tim V; Hinman, Rana S; Hodges, Paul W; O'Donnell, John; Takla, Amir; Bennell, Kim L

    2016-09-01

    This study investigated isometric and isokinetic hip strength in individuals with and without symptomatic femoroacetabular impingement (FAI). The specific aims were to: (i) determine whether differences exist in isometric and isokinetic hip strength measures between groups; (ii) compare hip strength agonist/antagonist ratios between groups; and (iii) examine relationships between hip strength and self-reported measures of either hip pain or function in those with FAI. Cross-sectional. Fifteen individuals (11 males; 25±5 years) with symptomatic FAI (clinical examination and imaging (alpha angle >55° (cam FAI), and lateral centre edge angle >39° and/or positive crossover sign (combined FAI))) and 14 age- and sex-matched disease-free controls (no morphological FAI on magnetic resonance imaging) underwent strength testing. Maximal voluntary isometric contraction strength of hip muscle groups and isokinetic hip internal (IR) and external rotation (ER) strength (20°/s) were measured. Groups were compared with independent t-tests and Mann-Whitney U tests. Participants with FAI had 20% lower isometric abduction strength than controls (p=0.04). There were no significant differences in isometric strength for other muscle groups or peak isokinetic ER or IR strength. The ratio of isometric, but not isokinetic, ER/IR strength was significantly higher in the FAI group (p=0.01). There were no differences in ratios for other muscle groups. Angle of peak IR torque was the only feature correlated with symptoms. Individuals with symptomatic FAI demonstrate isometric hip abductor muscle weakness and strength imbalance in the hip rotators. Strength measurement, including agonist/antagonist ratios, may be relevant for clinical management of FAI. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  7. Synchronization of natural convection in thermostatically-controlled adjacent cavities

    NASA Astrophysics Data System (ADS)

    Chavez-Martinez, Rafael; Sanchez-Lopez, Mario; Solorio-Ordaz, Francisco Javier; Sen, Mihir

    2017-11-01

    Synchronization is a phenomenon observed in complex dynamical systems. It was first noticed by Huygens in the 17th century, and since then has been observed in systems of different types such as mechanical, biological and social. In thermal systems, numerical and analytical studies have found that two or more similar heat sources, with independent thermostatic temperature control and communicating with each other through a common interface, can have temperature oscillations. In the present study, laboratory experiments were carried out to study the thermal synchronization in two cuboid rooms separated by a common wall. Computer-based thermostats independently control the temperature of each cavity. The experiments show the effect of the ambient temperature and the initial condition in the cavities on the phase difference Δϕ . The results demonstrate in-phase and out-of-phase synchronization. An increase of the temperature difference between the cavity and the ambient, ΔT , increases Δϕ . When ΔT <2° C, Δϕ oscillates around zero. Δϕ is negative independently of the initial condition. The results of these experiments will be useful in the desing of heating in full-scale buildings. This work is supported by DGAPA-UNAM Grant PAPIIT-IN114216.

  8. Reliability of a device for the knee and ankle isometric and isokinetic strength testing in older adults

    PubMed Central

    Bergamin, Marco; Gobbo, Stefano; Bullo, Valentina; Vendramin, Barbara; Duregon, Federica; Frizziero, Antonio; Di Blasio, Andrea; Cugusi, Lucia; Zaccaria, Marco; Ermolao, Andrea

    2017-01-01

    Summary Background Lower extremity muscle mass, strength, power, and physical performance are critical determinants of independent functioning in later life. Isokinetic dynamometers are becoming very common in assessing different features of muscle strength, in both research and clinical practice; however, reliability studies are still needed to support the extended use of those devices. Objective The purpose of this study is to assess the test-retest reliability of knee and ankle isokinetic and isometric strength testing protocols in a sample of older healthy subjects, using a new and untested isokinetic multi-joint evaluation system. Methods Sixteen male and fourteen female older adults (mean age 65.2 ± 4.6 years) were assessed in two testing sessions. Each participant performed a randomized testing procedure that includes different isometric and isokinetic tests for knee and ankle joints. Results All participants concluded the trial safety and no subject reported any discomfort throughout the overall assessment. Coefficients of correlation between measures were calculated showing moderate to strong effects among all test-retest assessments and paired-sample t test showed only one significant difference (p<0.05) in the maximal isokinetic bilateral knee flexion torque. Conclusions The multi-joint evaluation system for the assessment of knee and ankle isokinetic and isometric strength provided reliable test-retest measures in healthy older adults. Level of evidence Ib. PMID:29264344

  9. Selective hypertrophy of the quadriceps musculature after 14 weeks of isokinetic and conventional resistance training.

    PubMed

    Matta, Thiago Torres; Nascimento, Francisco Xavier; Trajano, Gabriel S; Simão, Roberto; Willardson, Jeffrey Michael; Oliveira, Liliam Fernandes

    2017-03-01

    One of the fundamental adaptations observed with resistance training (RT) is muscle hypertrophy. Conventional and isokinetic machines provide different forms of mechanical stress, and it is possible that these two training modes could promote differing degrees of hypertrophic adaptations. There is a lack of data comparing the selective hypertrophy of the quadriceps musculature after training with a conventional knee extension machine versus an isokinetic machine. The purpose of this study was to evaluate the selective hypertrophy of the quadriceps musculature and knee extension maximal isometric torque after 14 weeks of conventional versus isokinetic RT. Thirty-five men were assigned to three groups: control group and training groups (conventional and isokinetic) performed three sets of unilateral knee extensions per session with a progressive loading scheme twice a week. Prior to and following the intervention, maximal isometric knee extensor torque was measured using an isokinetic dynamometer, and muscle thickness (MT) of quadriceps femoris muscles was assessed via ultrasound. The results indicated non-uniform changes in MT between the muscles that comprise the quadriceps femoris group. For the conventional group, significantly greater increases in rectus femoris thickness were evident versus all other quadriceps muscles (14%). For the isokinetic group, increases in RF thickness (11%) were significantly greater in comparison with the vastus intermedius only. Although the muscle thickness did not increase for all the quadriceps femoris muscles, the relative rectus femoris adaptation suggested a selective hypertrophy favouring this portion. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  10. Relative differences in strength and power from slow to fast isokinetic velocities may reflect dynapenia.

    PubMed

    Jenkins, Nathaniel D M; Housh, Terry J; Palmer, Ty B; Cochrane, Kristen C; Bergstrom, Haley C; Johnson, Glen O; Schmidt, Richard J; Cramer, Joel T

    2015-07-01

    We compared absolute and normalized values for peak torque (PT), mean power (MP), rate of velocity development, and electromyography (EMG) amplitude during maximal isometric and concentric isokinetic leg extension muscle actions, as well as the %decrease in PT and %increase in MP from 1.05 to 3.14 rad·s(-1) in younger versus older men. Measurements were performed twice for reliability. Isokinetic measurements were normalized to the isometric muscle actions. Absolute isometric PT, isokinetic PT and MP, and EMG amplitudes at 1.05 and 3.14 rad·s(-1) were greater in the younger men, although normalizing to isometric PT eliminated the age differences. The older men exhibited greater %decrease in PT (37.2% vs. 31.3%) and lower %increase in MP (87.6% vs. 126.4%) regardless of normalization. Normalization eliminated absolute differences in isokinetic strength and power, but the relative differences from slow to fast velocities may reflect dynapenia characterized by age-related decreases in fast-twitch fiber function. © 2014 Wiley Periodicals, Inc.

  11. RELATIONSHIP BETWEEN ISOKINETIC KNEE STRENGTH AND JUMP CHARACTERISTICS FOLLOWING ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION.

    PubMed

    Laudner, Kevin; Evans, Daniel; Wong, Regan; Allen, Aaron; Kirsch, Tom; Long, Brian; Meister, Keith

    2015-06-01

    Clinicians are often challenged when making return-to-play decisions following anterior cruciate ligament reconstruction (ACL-R). Isokinetic strength and jump performance testing are common tools used to make this decision. Unfortunately, vertical jump performance standards have not been clearly established and many clinicians do not have access to isokinetic testing equipment. To establish normative jump and strength characteristics in ACL-R patients cleared by an orthopedic physician to return-to-play and to determine if relationships exist between knee isokinetic strength measurements and jump characteristics described using an electronic jump map system. Descriptive laboratory study. Thirty-three ACL-R patients who had been cleared to return to athletic competition participated in this study. Twenty-six of these ACL-R participants were also matched to 26 asymptomatic athletes based on sex, limb, height, and mass to determine isokinetic strength and jump characteristic differences between groups. Jump tests consisted of single leg vertical, double leg vertical, and a 4-jump single leg vertical jump assessed using an electronic jump mat system. Independent t-tests were used to determine differences between groups and multiple regression analyses were used to identify any relationships between jump performance and knee strength (p<0.05). The ACL-R group had lower vertical jump capabilities and some bilateral knee strength deficiencies compared to the matched control group. The ACL-R group also showed several moderate-to-strong positive relationships for both knee extension and flexion strength with several jump performance characteristics, such as single and double leg vertical jump height. The current results indicate that ACL-R patients present with several knee strength and vertical jump differences compared to a matched control group at the time of return-to-play. Also, ACL-R patient's performance on an electronic jump mat system is strongly related to

  12. Pairwise adaptive thermostats for improved accuracy and stability in dissipative particle dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leimkuhler, Benedict, E-mail: b.leimkuhler@ed.ac.uk; Shang, Xiaocheng, E-mail: x.shang@brown.edu

    2016-11-01

    We examine the formulation and numerical treatment of dissipative particle dynamics (DPD) and momentum-conserving molecular dynamics. We show that it is possible to improve both the accuracy and the stability of DPD by employing a pairwise adaptive Langevin thermostat that precisely matches the dynamical characteristics of DPD simulations (e.g., autocorrelation functions) while automatically correcting thermodynamic averages using a negative feedback loop. In the low friction regime, it is possible to replace DPD by a simpler momentum-conserving variant of the Nosé–Hoover–Langevin method based on thermostatting only pairwise interactions; we show that this method has an extra order of accuracy for anmore » important class of observables (a superconvergence result), while also allowing larger timesteps than alternatives. All the methods mentioned in the article are easily implemented. Numerical experiments are performed in both equilibrium and nonequilibrium settings; using Lees–Edwards boundary conditions to induce shear flow.« less

  13. Lower-extremity isokinetic strength profiling in professional rugby league and rugby union.

    PubMed

    Brown, Scott R; Brughelli, Matt; Griffiths, Peter C; Cronin, John B

    2014-03-01

    While several studies have documented isokinetic knee strength in junior and senior rugby league players, investigations of isokinetic knee and hip strength in professional rugby union players are limited. The purpose of this study was to provide lower-extremity strength profiles and compare isokinetic knee and hip strength of professional rugby league and rugby union players. 32 professional rugby league and 25 professional rugby union players. Cross-sectional analysis. Isokinetic dynamometry was used to evaluate peak torque and strength ratios of the dominant and nondominant legs during seated knee-extension/ flexion and supine hip-extension/flexion actions at 60°/s. Forwards from both codes were taller and heavier and had a higher body-mass index than the backs of each code. Rugby union forwards produced significantly (P < .05) greater peak torque during knee flexion in the dominant and nondominant legs (ES = 1.81 and 2.02) compared with rugby league forwards. Rugby league backs produced significantly greater hip-extension peak torque in the dominant and nondominant legs (ES = 0.83 and 0.77) compared with rugby union backs. There were no significant differences in hamstring-to-quadriceps ratios between code, position, or leg. Rugby union forwards and backs produced significantly greater knee-flexion-to-hip-extension ratios in the dominant and nondominant legs (ES = 1.49-2.26) than rugby union players. It seems that the joint torque profiles of players from rugby league and union codes differ, which may be attributed to the different demands of each code.

  14. Hamiltonian purification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orsucci, Davide; Burgarth, Daniel; Facchi, Paolo

    The problem of Hamiltonian purification introduced by Burgarth et al. [Nat. Commun. 5, 5173 (2014)] is formalized and discussed. Specifically, given a set of non-commuting Hamiltonians (h{sub 1}, …, h{sub m}) operating on a d-dimensional quantum system ℋ{sub d}, the problem consists in identifying a set of commuting Hamiltonians (H{sub 1}, …, H{sub m}) operating on a larger d{sub E}-dimensional system ℋ{sub d{sub E}} which embeds ℋ{sub d} as a proper subspace, such that h{sub j} = PH{sub j}P with P being the projection which allows one to recover ℋ{sub d} from ℋ{sub d{sub E}}. The notions of spanning-set purificationmore » and generator purification of an algebra are also introduced and optimal solutions for u(d) are provided.« less

  15. A simple strategy for in situ fabrication of a smart hydrogel microvalve within microchannels for thermostatic control.

    PubMed

    Lin, Shuo; Wang, Wei; Ju, Xiao-Jie; Xie, Rui; Chu, Liang-Yin

    2014-08-07

    Self-regulation of temperature in microchip systems is crucial for their applications in biomedical fields such as cell culture and biomolecule synthesis as well as those cases that require constant temperature conditions. Here we report on a simple and versatile approach for in situ fabrication of a smart hydrogel microvalve within a microchip for thermostatic control. The thermo-responsive hydrogel microvalve enables the "on-off" switch by sensing temperature fluctuations to control the fluid flux as well as the fluid heat exchange for self-regulation of the temperature at a constant range. Such temperature self-regulation is demonstrated by integrating the microvalve-incorporated microchip into the flow circulation loop of a micro-heat-exchanging system for thermostatic control. Moreover, the microvalve-incorporated microchip is employed for culturing cells under temperature self-regulation. The smart microvalve shows great potential as a temperature controller for applications that require thermostatic conditions. This approach offers a facile and flexible strategy for in situ fabricating hydrogel microvalves within microchips as chemostats and microreactors for biomedical applications.

  16. A methodologic approach for normalizing angular work and velocity during isotonic and isokinetic eccentric training.

    PubMed

    Guilhem, Gaël; Cornu, Christophe; Guével, Arnaud

    2012-01-01

    Resistance exercise training commonly is performed against a constant external load (isotonic) or at a constant velocity (isokinetic). Researchers comparing the effectiveness of isotonic and isokinetic resistance-training protocols need to equalize the mechanical stimulus (work and velocity) applied. To examine whether the standardization protocol could be adjusted and applied to an eccentric training program. Controlled laboratory study. Controlled research laboratory. Twenty-one sport science male students (age = 20.6 ± 1.5 years, height = 178.0 ± 4.0 cm, mass = 74.5 ± 9.1 kg). Participants performed 9 weeks of isotonic (n = 11) or isokinetic (n = 10) eccentric training of knee extensors that was designed so they would perform the same amount of angular work at the same mean angular velocity. Angular work and angular velocity. The isotonic and isokinetic groups performed the same total amount of work (-185.2 ± 6.5 kJ and -184.4 ± 8.6 kJ, respectively) at the same angular velocity (21 ± 1°/s and 22°/s, respectively) with the same number of repetitions (8.0 and 8.0, respectively). Bland-Altman analysis showed that work (bias = 2.4%) and angular velocity (bias = 0.2%) were equalized over 9 weeks between the modes of training. The procedure developed allows angular work and velocity to be standardized over 9 weeks of isotonic and isokinetic eccentric training of the knee extensors. This method could be useful in future studies in which researchers compare neuromuscular adaptations induced by each type of training mode with respect to rehabilitating patients after musculoskeletal injury.

  17. Conserving the linear momentum in stochastic dynamics: Dissipative particle dynamics as a general strategy to achieve local thermostatization in molecular dynamics simulations.

    PubMed

    Passler, Peter P; Hofer, Thomas S

    2017-02-15

    Stochastic dynamics is a widely employed strategy to achieve local thermostatization in molecular dynamics simulation studies; however, it suffers from an inherent violation of momentum conservation. Although this short-coming has little impact on structural and short-time dynamic properties, it can be shown that dynamics in the long-time limit such as diffusion is strongly dependent on the respective thermostat setting. Application of the methodically similar dissipative particle dynamics (DPD) provides a simple, effective strategy to ensure the advantages of local, stochastic thermostatization while at the same time the linear momentum of the system remains conserved. In this work, the key parameters to employ the DPD thermostats in the framework of periodic boundary conditions are investigated, in particular the dependence of the system properties on the size of the DPD-region as well as the treatment of forces near the cutoff. Structural and dynamical data for light and heavy water as well as a Lennard-Jones fluid have been compared to simulations executed via stochastic dynamics as well as via use of the widely employed Nose-Hoover chain and Berendsen thermostats. It is demonstrated that a small size of the DPD region is sufficient to achieve local thermalization, while at the same time artifacts in the self-diffusion characteristic for stochastic dynamics are eliminated. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Potentiation and recovery following low- and high-speed isokinetic contractions in boys.

    PubMed

    Chaouachi, Anis; Haddad, Monoem; Castagna, Carlo; Wong, Del P; Kaouech, Fathi; Chamari, Karim; Behm, David G

    2011-02-01

    The objective of this study was to examine the response and recovery to a single set of maximal, low and high angular velocity isokinetic leg extension-flexion contractions with boys. Sixteen boys (11-14 yrs) performed 10 isokinetic contractions at 60°.s-1 (Isok60) and 300°.s-1 (Isok300). Three contractions at both velocities, blood lactate and ratings of perceived exertion were monitored pretest and at 2, 3, 4, and 5 min of recovery (RI). Participants were tested in a random counterbalanced order for each velocity and recovery period. Only a single contraction velocity (300°.s-1 or 60°.s-1) was tested during recovery at each session to remove confounding influences between the recovery intervals. Recovery results showed no change in quadriceps' power at 300°.s-1, quadriceps' power, work and torque at 60°.s-1 and hamstrings' power and work with 60°.s-1. There was an increase during the 2 min RI in hamstrings' power, work and torque and quadriceps' torque with isokinetic contractions at 300°.s-1 suggesting a potentiating effect. Performance impairments during recovery occurred for the hamstrings torque at 60°.s-1 and quadriceps work with 300°.s-1. In conclusion, 10 repetitions of either low or high velocity isokinetic contractions (Isok60 or Isok300) resulted in full recovery or potentiation of most measures within 2 min in boys. The potentiation effect predominantly occurred following the hamstrings Isok300 which might be attributed to a greater agonist-antagonist torque balance and less metabolic stress associated with the shorter duration higher velocity contractions.

  19. 21 CFR 890.1925 - Isokinetic testing and evaluation system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Isokinetic testing and evaluation system. 890.1925 Section 890.1925 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1925...

  20. 21 CFR 890.1925 - Isokinetic testing and evaluation system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Isokinetic testing and evaluation system. 890.1925 Section 890.1925 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1925...

  1. 21 CFR 890.1925 - Isokinetic testing and evaluation system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Isokinetic testing and evaluation system. 890.1925 Section 890.1925 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1925...

  2. 21 CFR 890.1925 - Isokinetic testing and evaluation system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Isokinetic testing and evaluation system. 890.1925 Section 890.1925 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1925...

  3. 21 CFR 890.1925 - Isokinetic testing and evaluation system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Isokinetic testing and evaluation system. 890.1925 Section 890.1925 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1925...

  4. Programmable Thermostat Module Upgrade for the Multipurpose Logistics Module

    NASA Technical Reports Server (NTRS)

    Clark, D. W.; Glasgow, S. d.; Reagan, S. E.; Presson, K. H.; Howard, D. E.; Smith, D. A.

    2007-01-01

    The STS-121/ULF 1.1 mission was the maiden flight of the programmable thermostat module (PTM) system used to control the 28 V shell heaters on the multi-purpose logistics module (MPLM). These PTMs, in conjunction with a data recorder module (DRM), provide continuous closed loop temperature control and data recording of MPLM on-orbit heater operations. This Technical Memorandum discusses the hardware design, development, test, and verification (DDT&V) activities performed at the Marshall Space Flight Center as well as the operational implementation and mission performance.

  5. Branched Hamiltonians and supersymmetry

    DOE PAGES

    Curtright, Thomas L.; Zachos, Cosmas K.

    2014-03-21

    Some examples of branched Hamiltonians are explored both classically and in the context of quantum mechanics, as recently advocated by Shapere and Wilczek. These are in fact cases of switchback potentials, albeit in momentum space, as previously analyzed for quasi-Hamiltonian chaotic dynamical systems in a classical setting, and as encountered in analogous renormalization group flows for quantum theories which exhibit RG cycles. In conclusion, a basic two-worlds model, with a pair of Hamiltonian branches related by supersymmetry, is considered in detail.

  6. Test-retest reliability of cardinal plane isokinetic hip torque and EMG.

    PubMed

    Claiborne, Tina L; Timmons, Mark K; Pincivero, Danny M

    2009-10-01

    The objective of the present study was to establish test-retest reliability of isokinetic hip torque and prime mover electromyogram (EMG) through the three cardinal planes of motion. Thirteen healthy young adults participated in two experimental sessions, separated by approximately one week. During each session, isokinetic hip torque was evaluated on the Biodex Isokinetic Dynamometer at a velocity of 60 deg/s. Subjects performed three maximal-effort concentric and eccentric contractions, separately, for right and left hip abduction/adduction, flexion/extension, and internal/external rotation. Surface EMGs were sampled from the gluteus maximus, gluteus medius, adductor, medial and lateral hamstring, and rectus femoris muscles during all contractions. Intraclass correlation coefficients (ICC - 2,1) and standard errors of measurement (SEM) were calculated for peak torque for each movement direction and contraction mode, while ICCs were only computed for the EMG data. Motions that demonstrated high torque reliability included concentric hip abduction (right and left), flexion (right and left), extension (right) and internal rotation (right and left), and eccentric hip abduction (left), adduction (left), flexion (right), and extension (right and left) (ICC range=0.81-0.91). Motions with moderate torque reliability included concentric hip adduction (right), extension (left), internal rotation (left), and external rotation (right), and eccentric hip abduction and adduction (right), flexion (left), internal rotation (right and left), and external rotation (right and left) (ICC range=0.49-0.79). The majority of the EMG sampled muscles (n=12 and n=11 for concentric and eccentric contractions, respectively) demonstrated high reliability (ICC=0.81-0.95). Instances of low, or unacceptable, EMG reliability values occurred for the medial hamstring muscle of the left leg (both contraction modes) and the adductor muscle of the right leg during eccentric internal rotation. The major

  7. Understanding nuclear motions in molecules: Derivation of Eckart frame ro-vibrational Hamiltonian operators via a gateway Hamiltonian operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szalay, Viktor, E-mail: szalay.viktor@wigner.mta.hu

    A new ro-vibrational Hamiltonian operator, named gateway Hamiltonian operator, with exact kinetic energy term, T-hat, is presented. It is in the Eckart frame and it is of the same form as Watson’s normal coordinate Hamiltonian. However, the vibrational coordinates employed are not normal coordinates. The new Hamiltonian is shown to provide easy access to Eckart frame ro-vibrational Hamiltonians with exact T-hat given in terms of any desired set of vibrational coordinates. A general expression of the Eckart frame ro-vibrational Hamiltonian operator is given and some of its properties are discussed.

  8. A Methodologic Approach for Normalizing Angular Work and Velocity During Isotonic and Isokinetic Eccentric Training

    PubMed Central

    Guilhem, Gaël; Cornu, Christophe; Guével, Arnaud

    2012-01-01

    Context: Resistance exercise training commonly is performed against a constant external load (isotonic) or at a constant velocity (isokinetic). Researchers comparing the effectiveness of isotonic and isokinetic resistance-training protocols need to equalize the mechanical stimulus (work and velocity) applied. Objective: To examine whether the standardization protocol could be adjusted and applied to an eccentric training program. Design: Controlled laboratory study. Setting: Controlled research laboratory. Patients or Other Participants: Twenty-one sport science male students (age = 20.6 ± 1.5 years, height = 178.0 ± 4.0 cm, mass = 74.5 ± 9.1 kg). Intervention(s): Participants performed 9 weeks of isotonic (n = 11) or isokinetic (n = 10) eccentric training of knee extensors that was designed so they would perform the same amount of angular work at the same mean angular velocity. Main Outcome Measure(s): Angular work and angular velocity. Results: The isotonic and isokinetic groups performed the same total amount of work (−185.2 ± 6.5 kJ and −184.4 ± 8.6 kJ, respectively) at the same angular velocity (21 ± 1°/s and 22°/s, respectively) with the same number of repetitions (8.0 and 8.0, respectively). Bland-Altman analysis showed that work (bias = 2.4%) and angular velocity (bias = 0.2%) were equalized over 9 weeks between the modes of training. Conclusions: The procedure developed allows angular work and velocity to be standardized over 9 weeks of isotonic and isokinetic eccentric training of the knee extensors. This method could be useful in future studies in which researchers compare neuromuscular adaptations induced by each type of training mode with respect to rehabilitating patients after musculoskeletal injury. PMID:22488276

  9. Neuromuscular and muscle-tendon system adaptations to isotonic and isokinetic eccentric exercise.

    PubMed

    Guilhem, G; Cornu, C; Guével, A

    2010-06-01

    To present the properties of an eccentric contraction and compare neuromuscular and muscle-tendon system adaptations induced by isotonic and isokinetic eccentric trainings. An eccentric muscle contraction is characterized by the production of muscle force associated to a lengthening of the muscle-tendon system. This muscle solicitation can cause micro lesions followed by a regeneration process of the muscle-tendon system. Eccentric exercise is commonly used in functional rehabilitation for its positive effect on collagen synthesis but also for resistance training to increase muscle strength and muscle mass in athletes. Indeed, eccentric training stimulates muscle hypertrophy, increases the fascicle pennation angle, fascicles length and neural activation, thus inducing greater strength gains than concentric or isometric training programs. Eccentric exercise is commonly performed either against a constant external load (isotonic) or at constant velocity (isokinetic), inducing different mechanical constraints. These different mechanical constraints could induce structural and neural adaptive strategies specific to each type of exercise. The literature tends to show that isotonic mode leads to a greater strength gain than isokinetic mode. This observation could be explained by a greater neuromuscular activation after IT training. However, the specific muscle adaptations induced by each mode remain difficult to determine due to the lack of standardized, comparative studies. 2010 Elsevier Masson SAS. All rights reserved.

  10. Isokinetic analysis of ankle and ground reaction forces in runners and triathletes

    PubMed Central

    Luna, Natália Mariana Silva; Alonso, Angelica Castilho; Brech, Guilherme Carlos; Mochizuki, Luis; Nakano, Eduardo Yoshio; Greve, Júlia Maria D'Andréa

    2012-01-01

    OBJECTIVE: To analyze and compare the vertical component of ground reaction forces and isokinetic muscle parameters for plantar flexion and dorsiflexion of the ankle between long-distance runners, triathletes, and non-athletes. METHODS: Seventy-five males with a mean age of 30.26 (±6.5) years were divided into three groups: a triathlete group (n = 26), a long-distance runner group (n = 23), and a non-athlete control group. The kinetic parameters were measured during running using a force platform, and the isokinetic parameters were measured using an isokinetic dynamometer. RESULTS: The non-athlete control group and the triathlete group exhibited smaller vertical forces, a greater ground contact time, and a greater application of force during maximum vertical acceleration than the long-distance runner group. The total work (180°/s) was greater in eccentric dorsiflexion and concentric plantar flexion for the non-athlete control group and the triathlete group than the long-distance runner group. The peak torque (60°/s) was greater in eccentric plantar flexion and concentric dorsiflexion for the control group than the athlete groups. CONCLUSIONS: The athlete groups exhibited less muscle strength and resistance than the control group, and the triathletes exhibited less impact and better endurance performance than the runners. PMID:23018298

  11. Isokinetic knee strength qualities as predictors of jumping performance in high-level volleyball athletes: multiple regression approach.

    PubMed

    Sattler, Tine; Sekulic, Damir; Spasic, Miodrag; Osmankac, Nedzad; Vicente João, Paulo; Dervisevic, Edvin; Hadzic, Vedran

    2016-01-01

    Previous investigations noted potential importance of isokinetic strength in rapid muscular performances, such as jumping. This study aimed to identify the influence of isokinetic-knee-strength on specific jumping performance in volleyball. The secondary aim of the study was to evaluate reliability and validity of the two volleyball-specific jumping tests. The sample comprised 67 female (21.96±3.79 years; 68.26±8.52 kg; 174.43±6.85 cm) and 99 male (23.62±5.27 years; 84.83±10.37 kg; 189.01±7.21 cm) high- volleyball players who competed in 1st and 2nd National Division. Subjects were randomly divided into validation (N.=55 and 33 for males and females, respectively) and cross-validation subsamples (N.=54 and 34 for males and females, respectively). Set of predictors included isokinetic tests, to evaluate the eccentric and concentric strength capacities of the knee extensors, and flexors for dominant and non-dominant leg. The main outcome measure for the isokinetic testing was peak torque (PT) which was later normalized for body mass and expressed as PT/Kg. Block-jump and spike-jump performances were measured over three trials, and observed as criteria. Forward stepwise multiple regressions were calculated for validation subsamples and then cross-validated. Cross validation included correlations between and t-test differences between observed and predicted scores; and Bland Altman graphics. Jumping tests were found to be reliable (spike jump: ICC of 0.79 and 0.86; block-jump: ICC of 0.86 and 0.90; for males and females, respectively), and their validity was confirmed by significant t-test differences between 1st vs. 2nd division players. Isokinetic variables were found to be significant predictors of jumping performance in females, but not among males. In females, the isokinetic-knee measures were shown to be stronger and more valid predictors of the block-jump (42% and 64% of the explained variance for validation and cross-validation subsample, respectively

  12. Exact Mapping from Many-Spin Hamiltonians to Giant-Spin Hamiltonians.

    PubMed

    Ghassemi Tabrizi, Shadan; Arbuznikov, Alexei V; Kaupp, Martin

    2018-03-26

    Thermodynamic and spectroscopic data of exchange-coupled molecular spin clusters (e.g. single-molecule magnets) are routinely interpreted in terms of two different models: the many-spin Hamiltonian (MSH) explicitly considers couplings between individual spin centers, while the giant-spin Hamiltonian (GSH) treats the system as a single collective spin. When isotropic exchange coupling is weak, the physical compatibility between both spin Hamiltonian models becomes a serious concern, due to mixing of spin multiplets by local zero-field splitting (ZFS) interactions ('S-mixing'). Until now, this effect, which makes the mapping MSH→GSH ('spin projection') non-trivial, had only been treated perturbationally (up to third order), with obvious limitations. Here, based on exact diagonalization of the MSH, canonical effective Hamiltonian theory is applied to construct a GSH that exactly matches the energies of the relevant (2S+1) states comprising an effective spin multiplet. For comparison, a recently developed strategy for the unique derivation of effective ('pseudospin') Hamiltonians, now routinely employed in ab initio calculations of mononuclear systems, is adapted to the problem of spin projection. Expansion of the zero-field Hamiltonian and the magnetic moment in terms of irreducible tensor operators (or Stevens operators) yields terms of all ranks k (up to k=2S) in the effective spin. Calculations employing published MSH parameters illustrate exact spin projection for the well-investigated [Ni(hmp)(dmb)Cl] 4 ('Ni 4 ') single-molecule magnet, which displays weak isotropic exchange (dmb=3,3-dimethyl-1-butanol, hmp - is the anion of 2-hydroxymethylpyridine). The performance of the resulting GSH in finite field is assessed in terms of EPR resonances and diabolical points. The large tunnel splitting in the M=± 4 ground doublet of the S=4 multiplet, responsible for fast tunneling in Ni 4 , is attributed to a Stevens operator with eightfold rotational symmetry, marking

  13. Analysis of the association between isokinetic knee strength with offensive and defensive jumping capacity in high-level female volleyball athletes.

    PubMed

    Sattler, Tine; Sekulic, Damir; Esco, Michael R; Mahmutovic, Ifet; Hadzic, Vedran

    2015-09-01

    Isokinetic-knee-strength was hypothesized to be an important factor related to jumping performance. However, studies examining this relation among elite female athletes and sport-specific jumps are lacking. This investigation determined the influence of isokinetic-knee flexor/extensor strength measures on spike-jump (offensive) and block-jump (defensive) performance among high-level female volleyball players. Cross-sectional laboratory study. Eighty-two female volleyball athletes (age = 21.3 ± 3.8 years, height = 175.4 ± 6.76 cm, and weight = 68.29 ± 8.53 kg) volunteered to participate in this study. The studied variables included spike-jump and block-jump performance and a set of isokinetic tests to evaluate the eccentric and concentric strength capacities of the knee extensors (quadriceps - Q), and flexors (hamstring - H) for both legs. Both jumping tests showed high intra-session reliability (ICC of 0.87 and 0.95 for spike-jump and block-jump, respectively). The athletes were clustered into three achievement-groups based on their spike-jump and block-jump performances. For the block-jump, ANOVA identified significant differences between achievement-groups for all isokinetic variables except the Right-Q-Eccentric-Strength. When observed for spike-jump, achievement-groups differed significantly in all tests but Right-H-Concentric-Strength. Discriminant canonical analysis showed that the isokinetic-strength variables were more associated with block-jump then spike-jump-performance. The eccentric isokinetic measures were relatively less important determinants of block-jump than for the spike-jump performance. Data support the hypothesis of the importance of isokinetic strength measures for the expression of rapid muscular performance in volleyball. The results point to the necessity of the differential approach in sport training for defensive and offensive duties. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. Results and Conclusions from the NASA Isokinetic Total Water Content Probe 2009 IRT Test

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew; Brinker, David

    2010-01-01

    The NASA Glenn Research Center has developed and tested a Total Water Content Isokinetic Sampling Probe. Since, by its nature, it is not sensitive to cloud water particle phase nor size, it is particularly attractive to support super-cooled large droplet and high ice water content aircraft icing studies. The instrument comprises the Sampling Probe, Sample Flow Control, and Water Vapor Measurement subsystems. Results and conclusions are presented from probe tests in the NASA Glenn Icing Research Tunnel (IRT) during January and February 2009. The use of reference probe heat and the control of air pressure in the water vapor measurement subsystem are discussed. Several run-time error sources were found to produce identifiable signatures that are presented and discussed. Some of the differences between measured Isokinetic Total Water Content Probe and IRT calibration seems to be caused by tunnel humidification and moisture/ice crystal blow around. Droplet size, airspeed, and liquid water content effects also appear to be present in the IRT calibration. Based upon test results, the authors provide recommendations for future Isokinetic Total Water Content Probe development.

  15. The use of honeybees reared in a thermostatic chamber for aging studies.

    PubMed

    Hsu, Chin-Yuan; Chan, Yu-Pei

    2013-02-01

    Honeybees (Apis mellifera) are an attractive model system for studying aging. However, the aging level of worker honeybees from the field hive is in dispute. To eliminate the influence of task performance and confirm the relationship between chronological age and aging, we reared newly emerged workers in a thermostat at 34°C throughout their lives. A survivorship curve was obtained, indicating that workers can be reared away from the field hive, and the only difference between these workers is age. To confirm that these workers can be used for aging studies, we assayed age-related molecules in the trophocytes and fat cells of young and old workers. Old workers expressed more senescence-associated β-galactosidase, lipofuscin granules, lipid peroxidation, and protein oxidation than young workers. Furthermore, cellular energy metabolism molecules were also assayed. Old workers exhibited less ATP concentration, β-oxidation, and microtubule-associated protein light chain 3 (LC3) than young workers. These results demonstrate that honeybees reared in a thermostatic chamber can be used for aging studies and cellular energy metabolism in the trophocytes and fat cells of workers changes with advancing age.

  16. [Results of shoulder isokinetic testing in volleyball players].

    PubMed

    Michael, J; König, D; Hessling, U; Popken, F; Eysel, P

    2003-06-01

    Isokinetic testing of the shoulder joint shows valuable indication to possible functional disorders and muscle imbalance. Concentric testing of several parameters using the Cybex 6000 practice unit was done by professional volleyball players performing external and internal rotation of the dominant and non-dominant shoulder at speeds of 60 degrees/s an 180 degrees/s. Sex-specific significant differences were shown which are comparable to other kind of sports.

  17. Efficacy of kinesio taping on isokinetic quadriceps torque in knee osteoarthritis: a double blinded randomized controlled study.

    PubMed

    Anandkumar, Sudarshan; Sudarshan, Shobhalakshmi; Nagpal, Pratima

    2014-08-01

    Double blind pre-test post-test control group design. To compare the isokinetic quadriceps torque, standardized stair-climbing task (SSCT) and pain during SSCT between subjects diagnosed with knee osteoarthritis pre and post kinesio tape (KT) application with and without tension. Strength of the quadriceps and torque producing capability is frequently found to be compromised in knee osteoarthritis. The efficacy of KT in improving isokinetic quadriceps torque in knee osteoarthritis is unknown, forming the basis for this study. Forty subjects were randomly allocated to either the experimental (therapeutic KT with tension) or control group (sham KT without tension) with the allocation being concealed. Pre and post test measurements of isokinetic quadriceps torque, SSCT and pain during SSCT were carried out by a blinded assessor. A large effect size with significant improvements in the peak quadriceps torque (concentric and eccentric at angular velocities of 90° per second and 120° per second), SSCT and pain were obtained in the experimental group when compared to the control group. Application of therapeutic KT is effective in improving isokinetic quadriceps torque, SSCT and reducing pain in knee osteoarthritis.

  18. Construction and Start-up of a Large-Volume Thermostat for Dielectric-Constant Gas Thermometry

    NASA Astrophysics Data System (ADS)

    Merlone, A.; Moro, F.; Zandt, T.; Gaiser, C.; Fellmuth, B.

    2010-07-01

    A liquid-bath thermostat with a volume of about 800 L was designed to provide a suitable thermal environment for a dielectric-constant gas thermometer (DCGT) in the range from the triple point of mercury to the melting point of gallium. In the article, results obtained with the unique, huge thermostat without the DCGT measuring chamber are reported to demonstrate the capability of controlling the temperature of very large systems at a metrological level. First tests showed that the bath together with its temperature controller provide a temperature variation of less than ±0.5mK peak-to-peak. This temperature instability could be maintained over a period of several days. In the central working volume (diameter—500mm, height—650mm), in which the vacuum chamber containing the measuring system of the DCGT will be placed later, the temperature inhomogeneity has been demonstrated to be also well below 1mK.

  19. Perspective: Quantum Hamiltonians for optical interactions

    NASA Astrophysics Data System (ADS)

    Andrews, David L.; Jones, Garth A.; Salam, A.; Woolley, R. Guy

    2018-01-01

    The multipolar Hamiltonian of quantum electrodynamics is extensively employed in chemical and optical physics to treat rigorously the interaction of electromagnetic fields with matter. It is also widely used to evaluate intermolecular interactions. The multipolar version of the Hamiltonian is commonly obtained by carrying out a unitary transformation of the Coulomb gauge Hamiltonian that goes by the name of Power-Zienau-Woolley (PZW). Not only does the formulation provide excellent agreement with experiment, and versatility in its predictive ability, but also superior physical insight. Recently, the foundations and validity of the PZW Hamiltonian have been questioned, raising a concern over issues of gauge transformation and invariance, and whether observable quantities obtained from unitarily equivalent Hamiltonians are identical. Here, an in-depth analysis of theoretical foundations clarifies the issues and enables misconceptions to be identified. Claims of non-physicality are refuted: the PZW transformation and ensuing Hamiltonian are shown to rest on solid physical principles and secure theoretical ground.

  20. Isometric and isokinetic muscle strength in the upper extremity can be reliably measured in persons with chronic stroke.

    PubMed

    Ekstrand, Elisabeth; Lexell, Jan; Brogårdh, Christina

    2015-09-01

    To evaluate the test-retest reliability of isometric and isokinetic muscle strength measurements in the upper extremity after stroke. A test-retest design. Forty-five persons with mild to moderate paresis in the upper extremity > 6 months post-stroke. Isometric arm strength (shoulder abduction, elbow flexion), isokinetic arm strength (elbow extension/flexion) and isometric grip strength were measured with electronic dynamometers. Reliability was evaluated with intra-class correlation coefficients (ICC), changes in the mean, standard error of measurements (SEM) and smallest real differences (SRD). Reliability was high (ICCs: 0.92-0.97). The absolute and relative (%) SEM ranged from 2.7 Nm (5.6%) to 3.0 Nm (9.4%) for isometric arm strength, 2.6 Nm (7.4%) to 2.9 Nm (12.6%) for isokinetic arm strength, and 22.3 N (7.6%) to 26.4 N (9.2%) for grip strength. The absolute and relative (%) SRD ranged from 7.5 Nm (15.5%) to 8.4 Nm (26.1%) for isometric arm strength, 7.1 Nm (20.6%) to 8.0 Nm (34.8%) for isokinetic arm strength, and 61.8 N (21.0%) to 73.3 N (25.6%) for grip strength. Muscle strength in the upper extremity can be reliably measured in persons with chronic stroke. Isometric measurements yield smaller measurement errors than isokinetic measurements and might be preferred, but the choice depends on the research question.

  1. Identification of cardiac repercussions after intense and prolonged concentric isokinetic exercise in young sedentary people.

    PubMed

    Le Goff, Caroline; Kaux, Jean-François; Couffignal, Vincent; Coubard, Romain; Mélon, Pierre; Cavalier, Etienne; Croisier, Jean-Louis

    2015-09-01

    Cardiopathies are the world's leading cause of mortality and morbidity. Although rare, cardiovascular accidents can occur during intense and infrequent sporting activity, particularly among those who are unaware of their heart condition. The development of cardiospecific biochemical markers has led to a reconsideration of the role of biology in the diagnosis of cardiovascular illnesses. The aim of this study therefore was, through the use of cardiac biomarker assays, to highlight the impact of sustained physical effort in the form of intense and prolonged concentric isokinetic exercise and to research potential cardiovascular risks. Eighteen subjects participated in a maximal concentric isokinetic exercise involving 30 knee flexion-extensions for each leg. Five blood tests were taken to study the kinetics of the cardiac biomarkers. Haemodynamic parameters were measured continuously using a Portapres, and respiratory parameters were measured using a Sensormedics Vmax 29C. The results showed significant increases in the creatine kinase, myoglobin, homocysteine and haemoglobin cardiac markers. Evolutionary trends were also observed for the following biomarkers: NT-proBNP, myeloperoxydase and C-reactive protein. All the physiological parameters measured presented statistically significant changes. Isokinetic effort leads to the release of cardiac markers in the blood, but these do not exceed the reference values in healthy subjects. Maximal concentric isokinetic exercise does not, therefore, lead to an increased risk of cardiovascular pathologies. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  2. Programmable Thermostat Module Upgrade for the Multi-Purpose Logistics Module

    NASA Technical Reports Server (NTRS)

    Clark, Dallas; Glasgow, Shaun; Reagan, Shawn; Presson, Keith; Howard, David; Smith, Dennis

    2007-01-01

    The STS-121/ULF1.1 mission was the maiden flight of the Programmable Thermostat Module (PTM) system used to control the 28 V shell heaters on the Multi-Purpose Logistics Module (MPLM). These PTMs, in conjunction with a Data Recorder Module (DRM), provide continuous closed loop temperature control and data recording of MPLM on-orbit heater operations. This paper will discuss the hardware design, development, test and verification (DDT&V) activities performed at the Marshall Space Flight Center (MSFC) as well as the operational implementation and mission performance.

  3. Muscle recruitment patterns of the subscapularis, serratus anterior and other shoulder girdle muscles during isokinetic internal and external rotations.

    PubMed

    Gaudet, Sylvain; Tremblay, Jonathan; Begon, Mickael

    2018-05-01

    The aims of this study were to investigate the differences in peak muscle activity and recruitment patterns during high- and low-velocity, concentric and eccentric, internal and external isokinetic shoulder rotations. Electromyographic activity of the rotator cuff and eight superficial muscles of the shoulder girdle was recorded on 25 healthy adults during isokinetic internal and external shoulder rotation at 60°/s and 240°/s. Peak muscle activity, electromyographic envelopes and peak isokinetic moments were analyzed using three-factor ANOVA and statistical parametric mapping. The subscapularis and serratus anterior showed moderate to high peak activity levels during each conditions, while the middle and posterior deltoids, upper, middle and lower trapezius, infraspinatus and supraspinatus showed higher peak activity levels during external rotations (+36.5% of maximum voluntary activation (MVA)). The pectoralis major and latissimus dorsi were more active during internal rotations (+40% of MVA). Only middle trapezius and pectoralis major electromyographic activity decreased with increasing velocity. Peak muscle activity was similar or lower during eccentric contractions, although the peak isokinetic moment increased by 35% on average. The subscapularis and serratus anterior appear to be important stabilizers of the glenohumeral joint and scapula. Isokinetic eccentric training at high velocities may allow for faster recruitment of the shoulder girdle muscles, which could improve joint stability during shoulder internal and external rotations.

  4. On the domain of the Nelson Hamiltonian

    NASA Astrophysics Data System (ADS)

    Griesemer, M.; Wünsch, A.

    2018-04-01

    The Nelson Hamiltonian is unitarily equivalent to a Hamiltonian defined through a closed, semibounded quadratic form, the unitary transformation being explicitly known and due to Gross. In this paper, we study the mapping properties of the Gross-transform in order to characterize the regularity properties of vectors in the form domain of the Nelson Hamiltonian. Since the operator domain is a subset of the form domain, our results apply to vectors in the domain of the Hamiltonian as well. This work is a continuation of our previous work on the Fröhlich Hamiltonian.

  5. Angular velocity affects trunk muscle strength and EMG activation during isokinetic axial rotation.

    PubMed

    Fan, Jian-Zhong; Liu, Xia; Ni, Guo-Xin

    2014-01-01

    To evaluate trunk muscle strength and EMG activation during isokinetic axial rotation at different angular velocities. Twenty-four healthy young men performed isokinetic axial rotation in right and left directions at 30, 60, and 120 degrees per second angular velocity. Simultaneously, surface EMG was recorded on external oblique (EO), internal oblique (IO), and latissimus dorsi (LD) bilaterally. In each direction, with the increase of angular velocity, peak torque decreased, whereas peak power increased. During isokinetic axial rotation, contralateral EO as well as ipsilateral IO and LD acted as primary agonists, whereas, ipsilateral EO as well as contralateral IO and LD acted as primary antagonistic muscles. For each primary agonist, the root mean square values decreased with the increase of angular velocity. Antagonist coactiviation was observed at each velocity; however, it appears to be higher with the increase of angular velocity. Our results suggest that velocity of rotation has great impact on the axial rotation torque and EMG activity. An inverse relationship of angular velocity was suggested with the axial rotation torque as well as root mean square value of individual trunk muscle. In addition, higher velocity is associated with higher coactivation of antagonist, leading to a decrease in torque with the increase of velocity.

  6. Test-retest reliability of lower limb isokinetic endurance in COPD: A comparison of angular velocities

    PubMed Central

    Ribeiro, Fernanda; Lépine, Pierre-Alexis; Garceau-Bolduc, Corine; Coats, Valérie; Allard, Étienne; Maltais, François; Saey, Didier

    2015-01-01

    Background The purpose of this study was to determine and compare the test-retest reliability of quadriceps isokinetic endurance testing at two knee angular velocities in patients with chronic obstructive pulmonary disease (COPD). Methods After one familiarization session, 14 patients with moderate to severe COPD (mean age 65±4 years; forced expiratory volume in 1 second (FEV1) 55%±18% predicted) performed two quadriceps isokinetic endurance tests on two separate occasions within a 5–7-day interval. Quadriceps isokinetic endurance tests consisted of 30 maximal knee extensions at angular velocities of 90° and 180° per second, performed in random order. Test-retest reliability was assessed for peak torque, muscle endurance, work slope, work fatigue index, and changes in FEV1 for dyspnea and leg fatigue from rest to the end of the test. The intraclass correlation coefficient, minimal detectable change, and limits of agreement were calculated. Results High test-retest reliability was identified for peak torque and muscle total work at both velocities. Work fatigue index was considered reliable at 90° per second but not at 180° per second. A lower reliability was identified for dyspnea and leg fatigue scores at both angular velocities. Conclusion Despite a limited sample size, our findings support the use of a 30-maximal repetition isokinetic muscle testing procedure at angular velocities of 90° and 180° per second in patients with moderate to severe COPD. Endurance measurement (total isokinetic work) at 90° per second was highly reliable, with a minimal detectable change at the 95% confidence level of 10%. Peak torque and fatigue index could also be assessed reliably at 90° per second. Evaluation of dyspnea and leg fatigue using the modified Borg scale of perceived exertion was poorly reliable and its clinical usefulness is questionable. These results should be useful in the design and interpretation of future interventions aimed at improving muscle

  7. Absolute and relative reliability of isokinetic and isometric trunk strength testing using the IsoMed-2000 dynamometer.

    PubMed

    Roth, Ralf; Donath, Lars; Kurz, Eduard; Zahner, Lukas; Faude, Oliver

    2017-03-01

    The present study aimed to assess the between day reliability of isokinetic and isometric peak torque (PT) during trunk measurement on an isokinetic device (IsoMed 2000). Test-retest-protocol on five separate days. Fifteen healthy sport students (8 female and 7 male) aged 21 to 26. PT was assessed in isometric back extension and flexion as well as right and left rotation. Isokinetic strength was captured at a speed of 60°/s and 150°/s for all tasks. For none of the assessed parameters a meaningful variation in PT during test days was observed. Relative reliability (ICC = 0.85-0.96) was excellent for all tasks. Estimates of absolute reliability as Coefficient of Variation (CoV) and Standard Error of Measurement (SEM in Nm/kg lean body mass) remained stable for isometric (6.9% < CoV < 9.4%; 0.15 < SEM < 0.23) and isokinetic mode (60°/s: 3.7% < CoV < 8.6%; 0.08 < SEM < 0.24; 150°/s: 6.9% < CoV < 12.4%; 0.10 < SEM < 0.31). In contrast, reliability between familiarization day and day 1 was lower (6.6% < CoV < 26.2%; 0.10 < SEM < 0.65). Trunk strength measurement in flexion and extension or trunk rotation in either isometric or isokinetic condition is highly reliable. Therefore, it seems possible to elucidate changes which are smaller than 10% due to intervention programs when a preceding familiarization condition was applied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Parallel array of independent thermostats for column separations

    DOEpatents

    Foret, Frantisek; Karger, Barry L.

    2005-08-16

    A thermostat array including an array of two or more capillary columns (10) or two or more channels in a microfabricated device is disclosed. A heat conductive material (12) surrounded each individual column or channel in array, each individual column or channel being thermally insulated from every other individual column or channel. One or more independently controlled heating or cooling elements (14) is positioned adjacent to individual columns or channels within the heat conductive material, each heating or cooling element being connected to a source of heating or cooling, and one or more independently controlled temperature sensing elements (16) is positioned adjacent to the individual columns or channels within the heat conductive material. Each temperature sensing element is connected to a temperature controller.

  9. Association with isokinetic ankle strength measurements and normal clinical muscle testing in sciatica patients.

    PubMed

    Ustun, N; Erol, O; Ozcakar, L; Ceceli, E; Ciner, O Akar; Yorgancioglu, Z R

    2013-01-01

    Sensitive muscle strength tests are needed to measure muscle strength in the diagnosis and management of sciatica patients. The aim of this study was to assess the isokinetic muscle strength in sciatica patients' and control subjects' ankles that exhibited normal ankle muscle strength when measured clinically. Forty-six patients with L5 and/or S1 nerve compression, and whose age, sex, weight, and height matched 36 healthy volunteers, were recruited to the study. Heel-walking, toe-walking, and manual muscle testing were used to perform ankle dorsiflexion and plantar flexion strengths in clinical examination. Patients with normal ankle dorsiflexion and plantar flexion strengths assessed by manual muscle testing and heel-and toe-walking tests were included in the study. Bilateral isokinetic (concentric/concentric) ankle plantar-flexion-dorsiflexion measurements of the patients and controls were performed within the protocol of 30°/sec (5 repetitions). Peak torque and peak torque/body weight were obtained for each ankle motion of the involved limb at 30°/s speed. L5 and/or S1 nerve compression was evident in 46 patients (76 injured limbs). Mean disease duration was two years. The plantar flexion muscle strength of the patients was found to be lower than that of the controls (p=0.036). The dorsiflexion muscle strength of the patients was found to be the same as that of the controls (p=0.211). Isokinetic testing is superior to clinical muscle testing when evaluating ankle plantar flexion torque in sciatica patients. Therefore, isokinetic muscle testing may be helpful when deciding whether to place a patient into a focused rehabilitation program.

  10. Singular reduction of resonant Hamiltonians

    NASA Astrophysics Data System (ADS)

    Meyer, Kenneth R.; Palacián, Jesús F.; Yanguas, Patricia

    2018-06-01

    We investigate the dynamics of resonant Hamiltonians with n degrees of freedom to which we attach a small perturbation. Our study is based on the geometric interpretation of singular reduction theory. The flow of the Hamiltonian vector field is reconstructed from the cross sections corresponding to an approximation of this vector field in an energy surface. This approximate system is also built using normal forms and applying reduction theory obtaining the reduced Hamiltonian that is defined on the orbit space. Generically, the reduction is of singular character and we classify the singularities in the orbit space, getting three different types of singular points. A critical point of the reduced Hamiltonian corresponds to a family of periodic solutions in the full system whose characteristic multipliers are approximated accordingly to the nature of the critical point.

  11. Hamiltonian closures in fluid models for plasmas

    NASA Astrophysics Data System (ADS)

    Tassi, Emanuele

    2017-11-01

    This article reviews recent activity on the Hamiltonian formulation of fluid models for plasmas in the non-dissipative limit, with emphasis on the relations between the fluid closures adopted for the different models and the Hamiltonian structures. The review focuses on results obtained during the last decade, but a few classical results are also described, in order to illustrate connections with the most recent developments. With the hope of making the review accessible not only to specialists in the field, an introduction to the mathematical tools applied in the Hamiltonian formalism for continuum models is provided. Subsequently, we review the Hamiltonian formulation of models based on the magnetohydrodynamics description, including those based on the adiabatic and double adiabatic closure. It is shown how Dirac's theory of constrained Hamiltonian systems can be applied to impose the incompressibility closure on a magnetohydrodynamic model and how an extended version of barotropic magnetohydrodynamics, accounting for two-fluid effects, is amenable to a Hamiltonian formulation. Hamiltonian reduced fluid models, valid in the presence of a strong magnetic field, are also reviewed. In particular, reduced magnetohydrodynamics and models assuming cold ions and different closures for the electron fluid are discussed. Hamiltonian models relaxing the cold-ion assumption are then introduced. These include models where finite Larmor radius effects are added by means of the gyromap technique, and gyrofluid models. Numerical simulations of Hamiltonian reduced fluid models investigating the phenomenon of magnetic reconnection are illustrated. The last part of the review concerns recent results based on the derivation of closures preserving a Hamiltonian structure, based on the Hamiltonian structure of parent kinetic models. Identification of such closures for fluid models derived from kinetic systems based on the Vlasov and drift-kinetic equations are presented, and

  12. A Novel Two-Velocity Method for Elaborate Isokinetic Testing of Knee Extensors.

    PubMed

    Grbic, Vladimir; Djuric, Sasa; Knezevic, Olivera M; Mirkov, Dragan M; Nedeljkovic, Aleksandar; Jaric, Slobodan

    2017-09-01

    Single outcomes of standard isokinetic dynamometry tests do not discern between various muscle mechanical capacities. In this study, we aimed to (1) evaluate the shape and strength of the force-velocity relationship of knee extensors, as observed in isokinetic tests conducted at a wide range of angular velocities, and (2) explore the concurrent validity of a simple 2-velocity method. Thirteen physically active females were tested for both the peak and averaged knee extensor concentric force exerted at the angular velocities of 30°-240°/s recorded in the 90°-170° range of knee extension. The results revealed strong (0.960isokinetic testing of mechanical capacities of knee extensors and, if supported by further research, other muscles. This brief and fatigue-free testing procedure could discern between muscle force, velocity, and power-producing capacities. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Single-Leg Hop Test Performance and Isokinetic Knee Strength After Anterior Cruciate Ligament Reconstruction in Athletes

    PubMed Central

    Sueyoshi, Ted; Nakahata, Akihiro; Emoto, Gen; Yuasa, Tomoki

    2017-01-01

    Background: Isokinetic strength and hop tests are commonly used to assess athletes’ readiness to return to sport after knee surgery. Purpose/Hypothesis: The purpose of this study was to investigate the results of single-leg hop and isokinetic knee strength testing in athletes who underwent anterior cruciate ligament reconstruction (ACLR) upon returning to sport participation as well as to study the correlation between these 2 test batteries. The secondary purpose was to compare the test results by graft type (patellar tendon or hamstring). It was hypothesized that there would be no statistically significant limb difference in either isokinetic knee strength or single-leg hop tests, that there would be a moderate to strong correlation between the 2 test batteries, and that there would be no significant difference between graft types. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Twenty-nine high school and collegiate athletes who underwent ACLR participated in this study. At the time of return to full sport participation, a series of hop tests and knee extension/flexion isokinetic strength measurements were conducted. The results were analyzed using analysis of variance and Pearson correlation (r). Results: The timed 6-m hop test was the only hop test that showed a significant difference between the involved and uninvolved limbs (2.3 and 2.2 seconds, respectively; P = .02). A significant difference between limbs in knee strength was found for flexion peak torque/body weight at 180 deg/s (P = .03), flexion total work/body weight at 180 deg/s (P = .04), and flexion peak torque/body weight at 300 deg/s (P = .03). The strongest correlation between the hop tests and knee strength was found between the total distance of the hop tests and flexion total work/body weight at 300 deg/s (r = 0.69) and between the timed 6-m hop test and flexion peak torque/body weight at 300 deg/s (r = –0.54). There was no statistically significant difference in hop

  14. The isokinetic rotator cuff strength ratios in overhead athletes: Assessment and exercise effect.

    PubMed

    Berckmans, Kelly; Maenhout, Annelies G; Matthijs, Lien; Pieters, Louise; Castelein, Birgit; Cools, Ann M

    2017-09-01

    Muscle strength imbalance in the shoulder region can be considered as a predisposing factor in the development of movement dysfunctions, possibly leading to overuse injuries. Repetitive overhead throwing, performed in sports, may result in muscle imbalance between the external (ER) and internal (IR) rotators. Muscle strength measured with an isokinetic device, is reported as a concentric (CON) or eccentric (ECC) force. The balance between an agonist and an antagonist is mentioned as a ratio (CON/CON or ECC/CON). The aim of this systematic literature review is to provide an overview of the existing evidence considering the isokinetic muscle strength ratios of ER and IR of the shoulder in healthy overhead athletes. In addition, the effect of exercise programs on these ratios was investigated. Two online databases (Web of Science and PubMed) were consulted using different search strategies. Articles were selected based on inclusion and exclusion criteria. All included articles were assessed on their methodological quality. There is moderate evidence for a lower functional deceleration ratio (ECC ER/CON IR) at the dominant side. This lower ratio is due to a large overweight of CON IR strength on that side. There is no consensus about which exercise program is the most effective in altering the shoulder isokinetic strength ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Hamiltonian approach to slip-stacking dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. Y.; Ng, K. Y.

    Hamiltonian dynamics has been applied to study the slip-stacking dynamics. The canonical-perturbation method is employed to obtain the second-harmonic correction term in the slip-stacking Hamiltonian. The Hamiltonian approach provides a clear optimal method for choosing the slip-stacking parameter and improving stacking efficiency. The dynamics are applied specifically to the Fermilab Booster-Recycler complex. As a result, the dynamics can also be applied to other accelerator complexes.

  16. Hamiltonian approach to slip-stacking dynamics

    DOE PAGES

    Lee, S. Y.; Ng, K. Y.

    2017-06-29

    Hamiltonian dynamics has been applied to study the slip-stacking dynamics. The canonical-perturbation method is employed to obtain the second-harmonic correction term in the slip-stacking Hamiltonian. The Hamiltonian approach provides a clear optimal method for choosing the slip-stacking parameter and improving stacking efficiency. The dynamics are applied specifically to the Fermilab Booster-Recycler complex. As a result, the dynamics can also be applied to other accelerator complexes.

  17. Isokinetic muscle performance of the hip and ankle muscles in women with fibromyalgia.

    PubMed

    Yetişgin, Alparslan; Tiftik, Tülay; Kara, Murat; Karabay, İlkay; Akkuş, Selami; Ersöz, Murat

    2016-06-01

    To compare isokinetic muscle performances of a proximal (hip) and a distal (ankle) muscle of fibromyalgia syndrome (FMS) patients with those of age- and body mass index (BMI)-matched healthy subjects. Thirty female patients with FMS (mean age: 41.5 ± 6.7 years [range, 27-54]) and 30 age- (mean age: 40.6 ± 6.0 years [range, 27-54]) and BMI-matched female healthy controls were consecutively enrolled. Demographic and clinical characteristics of the subjects were recorded. Isokinetic measurements of hip and ankle flexion and extension at angular velocities of 60°/s and 180°/s, peak torques, flexor-extensor torque ratios, muscle fatigue resistance values and average power were obtained. Mean disease duration of FMS patients was 2.4 ± 1.9 years. Mean weight, height and BMI values were 70.4 ± 12.5 kg, 159.5 ± 6.0 cm and 27.7 ± 4.7 kg/m² (FMS patients) and 69.3 ± 10.1 kg, 161.7 ± 6.2 cm and 26.6 ± 4.3 kg/m² (control subjects), respectively (all P > 0.05). All isokinetic values were statistically decreased in the FMS group when compared with the control group, except for the peak torques at angular velocity of 180°/s on flexion of the hip and extension of the ankle and the total work and average power on extension of the ankle. We did not find any correlation between isokinetic values and disease related parameters of FMS patients. In the light of our results, we may conclude that muscle strength and muscle fatigue seem to decrease in FMS patients' both proximal and distal lower extremity muscles. © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  18. Effects of isokinetic calf muscle exercise program on muscle strength and venous function in patients with chronic venous insufficiency.

    PubMed

    Ercan, Sabriye; Çetin, Cem; Yavuz, Turhan; Demir, Hilmi M; Atalay, Yurdagül B

    2018-05-01

    Objective The aim of this study was to observe the change of the ankle joint range of motion, the muscle strength values measured with an isokinetic dynamometer, pain scores, quality of life scale, and venous return time in chronic venous insufficiency diagnosed patients by prospective follow-up after 12-week exercise program including isokinetic exercises. Methods The patient group of this study comprised 27 patients (23 female, 4 male) who were diagnosed with chronic venous insufficiency. An exercise program including isokinetic exercise for the calf muscle was given to patients three days per week for 12 weeks. At the end of 12 weeks, five of the patients left the study due to inadequate compliance with the exercise program. As a result, control data of 22 patients were included. Ankle joint range of active motion, isokinetic muscle strength, pain, quality of life, and photoplethysmography measurements were assessed before starting and after the exercise program. Results Evaluating changes of the starting and control data depending on time showed that all isokinetic muscle strength measurement parameters, range of motion, and overall quality of life values of patients improved. Venous return time values have also increased significantly ( p < 0.05). Conclusion In conclusion, increase in muscle strength has been provided with exercise therapy in patients with chronic venous insufficiency. It has been determined that the increase in muscle strength affected the venous pump and this ensured improvement in venous function and range of motion of the ankle. In addition, it has been detected that pain reduced and quality of life improved after the exercise program.

  19. Hamiltonian identifiability assisted by single-probe measurement

    NASA Astrophysics Data System (ADS)

    Sone, Akira; Cappellaro, Paola; Quantum Engineering Group Team

    2017-04-01

    We study the Hamiltonian identifiability of a many-body spin- 1 / 2 system assisted by the measurement on a single quantum probe based on the eigensystem realization algorithm (ERA) approach employed in. We demonstrate a potential application of Gröbner basis to the identifiability test of the Hamiltonian, and provide the necessary experimental resources, such as the lower bound in the number of the required sampling points, the upper bound in total required evolution time, and thus the total measurement time. Focusing on the examples of the identifiability in the spin chain model with nearest-neighbor interaction, we classify the spin-chain Hamiltonian based on its identifiability, and provide the control protocols to engineer the non-identifiable Hamiltonian to be an identifiable Hamiltonian.

  20. Constructing Dense Graphs with Unique Hamiltonian Cycles

    ERIC Educational Resources Information Center

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  1. Shoulder isokinetic profile of male handball players of the Brazilian National Team

    PubMed Central

    Andrade, Marília S.; Vancini, Rodrigo L.; de Lira, Claudio A. B.; Mascarin, Naryana C.; Fachina, Rafael J. F. G.; da Silva, Antonio C.

    2013-01-01

    Background Data obtained on an isokinetic dynamometer are useful to characterize muscle status and have been reported in muscle imbalance studies in different types of sport. However, few studies have assessed elite handball players to establish reference values. Objective The purpose of this study was to compare, for the dominant (D) and non-dominant (ND) side, the isokinetic profile of shoulder rotator muscle strength between male handball players (H) and asymptomatic non-athletes (NA). Method Isokinetic concentric and eccentric strength tests for D upper limbs were performed by the H group (n=20) and the NA group (n=12). Internal and external rotator muscle peak torque in concentric action was assessed at 60°/s and 300°/s and in eccentric action at 300°/s. We also calculated conventional balance (the ratio of external rotator peak torque to internal rotator peak torque in concentric action) and functional balance (the ratio of external rotator peak torque in eccentric action to internal rotator peak torque in concentric action). Results In the H group, dominant limbs were stronger in concentric action for external rotation at 60 and 300°/s. The conventional balance ratio for the D side was significantly lower at 60 and 300°/s for H compared to NA. The functional ratio for the D side was significantly lower at 300º/s for H compared to NA. Conclusions Compared to asymptomatic non-athletes, handball players presented significant muscular imbalance resulting from daily sports practice, a known risk factor for shoulder injuries. PMID:24271090

  2. Molecular shear heating and vortex dynamics in thermostatted two dimensional Yukawa liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Akanksha; Ganesh, Rajaraman, E-mail: ganesh@ipr.res.in; Joy, Ashwin

    2016-07-15

    It is well known that two-dimensional macroscale shear flows are susceptible to instabilities leading to macroscale vortical structures. The linear and nonlinear fate of such a macroscale flow in a strongly coupled medium is a fundamental problem. A popular example of a strongly coupled medium is a dusty plasma, often modelled as a Yukawa liquid. Recently, laboratory experiments and molecular dynamics (MD) studies of shear flows in strongly coupled Yukawa liquids indicated the occurrence of strong molecular shear heating, which is found to reduce the coupling strength exponentially leading to the destruction of macroscale vorticity. To understand the vortex dynamicsmore » of strongly coupled molecular fluids undergoing macroscale shear flows and molecular shear heating, MD simulation has been performed, which allows the macroscopic vortex dynamics to evolve, while at the same time “removes” the microscopically generated heat without using the velocity degrees of freedom. We demonstrate that by using a configurational thermostat in a novel way, the microscale heat generated by shear flow can be thermostatted out efficiently without compromising the large scale vortex dynamics. In the present work, using MD simulations, a comparative study of shear flow evolution in Yukawa liquids in the presence and absence of molecular or microscopic heating is presented for a prototype shear flow, namely, Kolmogorov flow.« less

  3. Validity and reliability of isometric, isokinetic and isoinertial modalities for the assessment of quadriceps muscle strength in patients with total knee arthroplasty.

    PubMed

    Lienhard, K; Lauermann, S P; Schneider, D; Item-Glatthorn, J F; Casartelli, N C; Maffiuletti, N A

    2013-12-01

    Reliability of isometric, isokinetic and isoinertial modalities for quadriceps strength evaluation, and the relation between quadriceps strength and physical function was investigated in 29 total knee arthroplasty (TKA) patients, with an average age of 63 years. Isometric maximal voluntary contraction torque, isokinetic peak torque, and isoinertial one-repetition maximum load of the involved and uninvolved quadriceps were evaluated as well as objective (walking parameters) and subjective physical function (WOMAC). Reliability was good and comparable for the isometric, isokinetic, and isoinertial strength outcomes on both sides (intraclass correlation coefficient range: 0.947-0.966; standard error of measurement range: 5.1-9.3%). Involved quadriceps strength was significantly correlated to walking speed (r range: 0.641-0.710), step length (r range: 0.685-0.820) and WOMAC function (r range: 0.575-0.663), independent from the modality (P < 0.05). Uninvolved quadriceps strength was also significantly correlated to walking speed (r range: 0.413-0.539), step length (r range: 0.514-0.608) and WOMAC function (r range: 0.374-0.554) (P < 0.05), except for WOMAC function/isokinetic peak torque (P > 0.05). In conclusion, isometric, isokinetic, and isoinertial modalities ensure valid and reliable assessment of quadriceps muscle strength in TKA patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The effects of creatine supplementation on thermoregulation and isokinetic muscular performance following acute (3-day) supplementation.

    PubMed

    Rosene, J M; Matthews, T D; Mcbride, K J; Galla, A; Haun, M; Mcdonald, K; Gagne, N; Lea, J; Kasen, J; Farias, C

    2015-12-01

    The purpose of this investigation was to determine the effects of 3 d of creatine supplementation on thermoregulation and isokinetic muscular performance. Fourteen males performed two exercise bouts following 3 d of creatine supplementation and placebo. Subjects exercised for 60 min at 60-65% of VO2max in the heat followed by isokinetic muscular performance at 60, 180, and 300°·s(-1). Dependent variables for pre- and postexercise included nude body weight, urine specific gravity, and serum creatinine levels. Total body water, extracellular water and intracellular water were measured pre-exercise. Core temperature was assessed every 5 min during exercise. Peak torque and Fatigue Index were used to assess isokinetic muscular performance. Core temperature increased during the run for both conditions. Total body water and extracellular water were significantly greater (P<0.05) following creatine supplementation. No significant difference (P>0.05) was found between conditions for intracellular water, nude body weight, urine specific gravity, and serum creatinine. Pre-exercise scores for urine specific gravity and serum creatinine were significantly less (P<0.05) versus post-exercise. No significant differences (P>0.05) were found in peak torque values or Fatigue Index between conditions for each velocity. A significant (P<0.05) overall velocity effect was found for both flexion and extension. As velocity increased, mean peak torque values decreased. Three d of creatine supplementation does not affect thermoregulation during submaximal exercise in the heat and is not enough to elicit an ergogenic effect for isokinetic muscle performance following endurance activity.

  5. The Effect of Concentric Isokinetic Strength Training of the Quadriceps Femoris on Electromyography and Muscle Strength in the Trained and Untrained Limb.

    ERIC Educational Resources Information Center

    Evetovich, Tammy K.; Housh, Terry J.; Housh, Dona J.; Johnson, Glen O.; Smith, Douglas B.; Ebersole, Kyle T.

    2001-01-01

    Examined the effects of unilateral concentric isokinetic leg extension training on peak torque and electromyographic (EMG) responses in trained and untrained limbs. Adult men participated in training and control groups. Overall, unilateral concentric isokinetic strength training induced strength increases in trained as well as untrained limbs.…

  6. Hamiltonian quantum simulation with bounded-strength controls

    NASA Astrophysics Data System (ADS)

    Bookatz, Adam D.; Wocjan, Pawel; Viola, Lorenza

    2014-04-01

    We propose dynamical control schemes for Hamiltonian simulation in many-body quantum systems that avoid instantaneous control operations and rely solely on realistic bounded-strength control Hamiltonians. Each simulation protocol consists of periodic repetitions of a basic control block, constructed as a modification of an ‘Eulerian decoupling cycle,’ that would otherwise implement a trivial (zero) target Hamiltonian. For an open quantum system coupled to an uncontrollable environment, our approach may be employed to engineer an effective evolution that simulates a target Hamiltonian on the system while suppressing unwanted decoherence to the leading order, thereby allowing for dynamically corrected simulation. We present illustrative applications to both closed- and open-system simulation settings, with emphasis on simulation of non-local (two-body) Hamiltonians using only local (one-body) controls. In particular, we provide simulation schemes applicable to Heisenberg-coupled spin chains exposed to general linear decoherence, and show how to simulate Kitaev's honeycomb lattice Hamiltonian starting from Ising-coupled qubits, as potentially relevant to the dynamical generation of a topologically protected quantum memory. Additional implications for quantum information processing are discussed.

  7. Lagrangian and Hamiltonian constraints for guiding-center Hamiltonian theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tronko, Natalia; Brizard, Alain J.

    A consistent guiding-center Hamiltonian theory is derived by Lie-transform perturbation method, with terms up to second order in magnetic-field nonuniformity. Consistency is demonstrated by showing that the guiding-center transformation presented here satisfies separate Jacobian and Lagrangian constraints that have not been explored before. A new first-order term appearing in the guiding-center phase-space Lagrangian is identified through a calculation of the guiding-center polarization. It is shown that this new polarization term also yields a simpler expression of the guiding-center toroidal canonical momentum, which satisfies an exact conservation law in axisymmetric magnetic geometries. Finally, an application of the guiding-center Lagrangian constraint onmore » the guiding-center Hamiltonian yields a natural interpretation for its higher-order corrections.« less

  8. Beta-alanine supplementation improves isometric, but not isotonic or isokinetic strength endurance in recreationally strength-trained young men.

    PubMed

    Bassinello, Diogo; de Salles Painelli, Vitor; Dolan, Eimear; Lixandrão, Manoel; Cajueiro, Monique; de Capitani, Mariana; Saunders, Bryan; Sale, Craig; Artioli, Guilherme G; Gualano, Bruno; Roschel, Hamilton

    2018-06-15

    β-Alanine (BA) supplementation may be ergogenic during high-intensity exercise, primarily due to the buffering of hydrogen cations, although the effects of beta-alanine supplementation on strength endurance are equivocal. The aim of the study was to determine the effects of 4 weeks of beta-alanine supplementation on skeletal muscle endurance using a battery of performance tests. This study employed a parallel group, repeated measures, randomised, double-blinded and placebo-controlled design. Twenty recreationally strength-trained healthy males completed tests of isotonic strength endurance (repeated bench and leg press), along with tests of isometric and isokinetic endurance conducted using an isokinetic dynamometer. Tests were performed before and after a 4 week intervention, comprising an intake of 6.4 g day -1 of BA (n = 9) or placebo (maltodextrin, n = 11). Time-to-exhaustion during the isometric endurance test improved by ~ 17% in the BA group (p < 0.01), while PL remained unchanged. No significant within-group differences (p > 0.1) were shown for any of the performance variables in the isokinetic test (peak torque, fatigue index, total work) nor for the total number of repetitions performed in the isotonic endurance tests (leg or bench press). Four weeks of BA supplementation (6.4 g day -1 ) improved isometric, but not isokinetic or isotonic endurance performance.

  9. Poor correlation between handgrip strength and isokinetic performance of knee flexor and extensor muscles in community-dwelling elderly women.

    PubMed

    Felicio, Diogo Carvalho; Pereira, Daniele Sirineu; Assumpção, Alexandra Miranda; de Jesus-Moraleida, Fabianna Resende; de Queiroz, Barbara Zille; da Silva, Juscelio Pereira; de Brito Rosa, Naysa Maciel; Dias, João Marcos Domingues; Pereira, Leani Souza Máximo

    2014-01-01

    To investigate the correlation between handgrip strength and performance of knee flexor and extensor muscles determined using an isokinetic dynamometer in community-dwelling elderly women. This was a cross-sectional study. Sample selection for the study was made by convenience, and 221 (71.07 ± 4.93 years) community-dwelling elderly women were included. Knee flexor and extensor muscle performance was measured using an isokinetic dynamometer Biodex System 3 Pro. The isokinetic variables chosen for analysis were peak torque, peak torque/bodyweight, total work/bodyweight, total work, average power, and agonist/antagonist ratio at the angular velocities of 60°/s and 180°/s. Assessment of handgrip strength was carried out using the Jamar dynamometer. Spearman's correlation coefficient was calculated to identify intervariable correlations. Only knee flexor peak torque (60°/s) and average power (60°/s), and knee extensor peak torque (180°/s) and total work (180°/s) were significantly (P < 0.05), yet poorly, correlated with handgrip strength (r < 0.30). The majority of analyses did not show any correlation between variables assessed by isokinetic dynamometer and handgrip dynamometer. Caution is required when generalizing handgrip strength as a predictor of global muscle strength in community-dwelling elderly women. © 2013 Japan Geriatrics Society.

  10. Space thermostat for the sight handicapped

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odom, J.A. Jr.; Wolfe, N.T.

    1986-04-15

    A space thermostat is described for the sight handicapped comprising a base member adapted to be mounted on a wall of a space, temperature responsive control means mounted on the base member adapted to control temperature conditioning apparatus supplying temperature conditioned medium to a space, temperature control point adjusting means attached to the base member and connected to the temperature responsive control means for adjusting the temperature to be maintained in the space, the adjusting means having a raised control temperature reference portion, indicia support means attached to the base member and cooperating with the reference portion, raised indicia meansmore » on the indicia support means corresponding with temperature whereby a person with sight handicap can feel the reference portion and the indicia means to position the reference portion to the desired temperature control set point, the indicia support means comprises a cover ring mounted on the base member and surrounding the adjusting means, and raised indication marks on the cover ring between raised reference temperature numbers, the marks corresponding to two temperature degree steps in the movement of the adjusting means.« less

  11. Thermostatic Valves Containing Silicone-Oil Actuators

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Birur, Gajanana C.; Bame, David P.; Karlmann, Paul B.; Prina, Mauro; Young, William; Fisher, Richard

    2009-01-01

    Flow-splitting and flow-mixing thermally actuated spool valves have been developed for controlling flows of a heat-transfer fluid in a temperature-regulation system aboard the Mars Science Laboratory (MSL) rover. Valves like these could also be useful in terrestrial temperature-regulation systems, including automobile air-conditioning systems and general refrigeration systems. These valves are required to provide smoother actuation over a wider temperature range than the flow-splitting, thermally actuated spool valves used in the Mars Explorer Rover (MER). Also, whereas the MER valves are unstable (tending to oscillate) in certain transition temperature ranges, these valves are required not to oscillate. The MER valves are actuated by thermal expansion of a wax against spring-loaded piston rods (as in common automotive thermostats). The MSL valves contain similar actuators that utilize thermal expansion of a silicone oil, because silicone-oil actuators were found to afford greater and more nearly linear displacements, needed for smoother actuation, over the required wider temperature range. The MSL valves also feature improved spool designs that reflect greater understanding of fluid dynamics, consideration of pressure drops in valves, and a requirement for balancing of pressures in different flow branches.

  12. Effects of nine weeks isokinetic training on power, golf kinematics, and driver performance in pre-elite golfers.

    PubMed

    Parker, James; Lagerhem, Charlie; Hellström, John; Olsson, M Charlotte

    2017-01-01

    It has previously been shown that isotonic strength training can improve driver performance among golfers, though few studies have investigated effects of strength training on swing kinematics together with driver performance. In this study we investigated whether isokinetic rotational training could improve driver performance and swing kinematic variables amongst elite golfers. Twenty competitive pre-elite golfers (handicap better than -3.0), 13 men and 7 women, were split into two groups, one group received the isokinetic power training (IK) alongside their normal isotonic pre-season strength-training and the other group continued with their normal isotonic pre-season strength-training regime (IT). The IK group completed 12 sessions of isokinetic power training on a standing rotation exercise (10% body weight at 1 m/s) and barbell squat (25 kg plus 10% body weight at 0.5 m/s). The IT group continued with their normal isotonic pre-season strength-training regime. Participants were tested for rotational power, lower body power, golf swing kinematics, and driver performance before and after a nine-week training period. After the nine-week training period both the IK and the IT groups increased their dominant side rotational force and power (effect sizes between 0.50-0.96) and magnitude based inference indicated that IK had a likely (> 80%) more beneficial increase in dominant side rotational force and power. For swing kinematics, IK had a likely (> 80%) more beneficial improvement in lead arm speed and acceleration compared to the IT group. For driver performance, IK had a possible (65%) beneficial effect on ball speed and likely (78%) beneficial effect on carry distance when compared to IT, whereas neither of the groups improved club head speed. In the present study on pre-elite golfers we found that 9 weeks of isokinetic training increased seated rotational force and power, peak arm speed and arm acceleration, ball speed, and carry distance more compared to

  13. Hamiltonian structure of the Lotka-Volterra equations

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1990-03-01

    The Lotka-Volterra equations governing predator-prey relations are shown to admit Hamiltonian structure with respect to a generalized Poisson bracket. These equations provide an example of a system for which the naive criterion for the existence of Hamiltonian structure fails. We show further that there is a three-component generalization of the Lotka-Volterra equations which is a bi-Hamiltonian system.

  14. The acute effect of the tongue position in the mouth on knee isokinetic test performance: a highly surprising pilot study

    PubMed Central

    di Vico, Rosa; Ardigò, Luca Paolo; Salernitano, Gianluca; Chamari, Karim; Padulo, Johnny

    2013-01-01

    Summary The tongue involvement within the isokinetic knee extension/flexion exercises has been investigated. Eighteen participants randomly underwent isokinetic testing at 90 and 180°/s with three different tongue positions: middle position (MID, thrusting on the lingual surface of incisive teeth), lying on the lower arch of the mouth (LOW) and extended up to the palatine spot (UP). Statistical analysis of the data revealed an about 30% significant increase of knee flexion peak torque in UP with respect to MID at both angular speeds. Such a difference could have had a confounding effect on results from numerous past studies using isokinetic knee flexion testing. This study alerts future researchers about standardization of tongue position and warrants further investigations on the explicative processes of this phenomenon. PMID:24596696

  15. The effect of peculiar complex core balance training on isokinetic muscle functions of the knee and lumbus.

    PubMed

    Lee, Myungsun; Han, Gunsoo

    2016-04-01

    [Purpose] This study aimed to investigate the effect of peculiar complex core balance training on the isokinetic muscle function of the knee joint and lumbus to provide fundamental data for establishing a training program that focuses on improving the performance and prevention of injury by developing the core and low extremity muscles. [Subjects and Methods] The participants in this study included a total of ten high school athletes involved in a throwing event for over five years. The subjects were randomly divided into two groups: The experimental group (N=5) and the control group (N=5). The experimental group underwent peculiar complex core balance training. [Results] According to the analysis of covariance, there was a significant effect of peculiar complex core balance training. Therefore, the isokinetic muscle function of the knee joint and lumbus in the experimental group participating in peculiar complex core balance training was significantly increased compared to the control group. [Conclusion] It is concluded that peculiar complex core balance training had a positive effect on the isokinetic muscle function of the knee and lumbus in throwing event athletes.

  16. [Chronic chondromalacia of the patella: comparison of morphological (magnetic resonance) and functional findings (isokinetic parameters) after rehabilitation].

    PubMed

    Felicetti, G; Avanza, F; Fiori, M; Brignoli, E; Rovescala, R

    1996-01-01

    The knee is a common site for injuries of the cartilage, capsule and ligament, which calls for the use of noninvasive techniques to assess injury severity properly and to plan adequate rehabilitation. Our study was aimed at comparing MR with isokinetic findings. To this purpose, 40 patients were examined; they were all affected with chondromalacia patellae, grades I-III, previously diagnosed at arthroscopy. Namely, 8 patients had grade I and 32 grades II and III chondromalacia. After MR and isokinetic exams, all patients were submitted to a standardized rehabilitation program. Our results indicate a marked decrease in quadriceps strength, especially in the most severe cases; in less severe cases, recovery was complete at 6 months, while the deficit remained in grades II and III injuries. MR yield was not relevant in 4 of 8 cases, while isokinetic findings were negative in one case. Both methods were positive in the most severe cases. At 6 months, both functional and MR findings were normal in grade I injuries, while some alterations remained in the others.

  17. The effect of peculiar complex core balance training on isokinetic muscle functions of the knee and lumbus

    PubMed Central

    Lee, Myungsun; Han, Gunsoo

    2016-01-01

    [Purpose] This study aimed to investigate the effect of peculiar complex core balance training on the isokinetic muscle function of the knee joint and lumbus to provide fundamental data for establishing a training program that focuses on improving the performance and prevention of injury by developing the core and low extremity muscles. [Subjects and Methods] The participants in this study included a total of ten high school athletes involved in a throwing event for over five years. The subjects were randomly divided into two groups: The experimental group (N=5) and the control group (N=5). The experimental group underwent peculiar complex core balance training. [Results] According to the analysis of covariance, there was a significant effect of peculiar complex core balance training. Therefore, the isokinetic muscle function of the knee joint and lumbus in the experimental group participating in peculiar complex core balance training was significantly increased compared to the control group. [Conclusion] It is concluded that peculiar complex core balance training had a positive effect on the isokinetic muscle function of the knee and lumbus in throwing event athletes. PMID:27190470

  18. Isokinetic Strength Profile of Elite Female Handball Players

    PubMed Central

    Xaverova, Zuzana; Dirnberger, Johannes; Lehnert, Michal; Belka, Jan; Wagner, Herbert; Orechovska, Karolina

    2015-01-01

    Systematic assessment of muscle strength of the lower extremities throughout the annual training cycle in athletes is crucial from a performance perspective for the optimization of the training process, as well as a health perspective with regard to injury prevention. The main aim of the present study was to determine isokinetic muscle strength of the knee flexors and extensors in female handball players at the beginning of a preparatory period and to assess whether there were any differences between players of different performance levels. The performance level was expressed by means of membership of the Women’s Junior National Handball Team (JNT, n=8) or the Women’s National Handball Team (NT, n=9). The isokinetic peak torque during concentric and eccentric single-joint knee flexion and extension was measured at angular velocities of 60, 180, 240°/s (concentric) and 60°/s (eccentric). The Mann-Whitney test showed no significant differences in the peak torques or ipsilateral ratios between the two groups. The bilateral force deficit (BFD) for concentric extension at 240°/s was significantly higher in the JNT compared with the NT (p=0.04; d=1.02). However, the results of individual evaluation show that the BFD was more frequent in the NT in most measurements. A high BFD was evident in the eccentric mode in both groups highlighting a need for particular strengthening. With regard to low strength ratios a prevention programme should be suggested for both observed groups of professional female handball players to reduce the risk of injury. PMID:26839626

  19. Isokinetic Strength Profile of Elite Female Handball Players.

    PubMed

    Xaverova, Zuzana; Dirnberger, Johannes; Lehnert, Michal; Belka, Jan; Wagner, Herbert; Orechovska, Karolina

    2015-12-22

    Systematic assessment of muscle strength of the lower extremities throughout the annual training cycle in athletes is crucial from a performance perspective for the optimization of the training process, as well as a health perspective with regard to injury prevention. The main aim of the present study was to determine isokinetic muscle strength of the knee flexors and extensors in female handball players at the beginning of a preparatory period and to assess whether there were any differences between players of different performance levels. The performance level was expressed by means of membership of the Women's Junior National Handball Team (JNT, n=8) or the Women's National Handball Team (NT, n=9). The isokinetic peak torque during concentric and eccentric single-joint knee flexion and extension was measured at angular velocities of 60, 180, 240°/s (concentric) and 60°/s (eccentric). The Mann-Whitney test showed no significant differences in the peak torques or ipsilateral ratios between the two groups. The bilateral force deficit (BFD) for concentric extension at 240°/s was significantly higher in the JNT compared with the NT (p=0.04; d=1.02). However, the results of individual evaluation show that the BFD was more frequent in the NT in most measurements. A high BFD was evident in the eccentric mode in both groups highlighting a need for particular strengthening. With regard to low strength ratios a prevention programme should be suggested for both observed groups of professional female handball players to reduce the risk of injury.

  20. Quasi-Hamiltonian structure and Hojman construction

    NASA Astrophysics Data System (ADS)

    Carinena, Jose F.; Guha, Partha; Ranada, Manuel F.

    2007-08-01

    Given a smooth vector field [Gamma] and assuming the knowledge of an infinitesimal symmetry X, Hojman [S. Hojman, The construction of a Poisson structure out of a symmetry and a conservation law of a dynamical system, J. Phys. A Math. Gen. 29 (1996) 667-674] proposed a method for finding both a Poisson tensor and a function H such that [Gamma] is the corresponding Hamiltonian system. In this paper, we approach the problem from geometrical point of view. The geometrization leads to the clarification of several concepts and methods used in Hojman's paper. In particular, the relationship between the nonstandard Hamiltonian structure proposed by Hojman and the degenerate quasi-Hamiltonian structures introduced by Crampin and Sarlet [M. Crampin, W. Sarlet, Bi-quasi-Hamiltonian systems, J. Math. Phys. 43 (2002) 2505-2517] is unveiled in this paper. We also provide some applications of our construction.

  1. Non-isospectral Hamiltonians, intertwining operators and hidden hermiticity

    NASA Astrophysics Data System (ADS)

    Bagarello, F.

    2011-12-01

    We have recently proposed a strategy to produce, starting from a given Hamiltonian h and a certain operator x for which [h,xx]=0 and xx is invertible, a second Hamiltonian h with the same eigenvalues as h and whose eigenvectors are related to those of h by x. Here we extend this procedure to build up a second Hamiltonian, whose eigenvalues are different from those of h, and whose eigenvectors are still related as before. This new procedure is also extended to crypto-hermitian Hamiltonians.

  2. sdg Interacting boson hamiltonian in the seniority scheme

    NASA Astrophysics Data System (ADS)

    Yoshinaga, N.

    1989-03-01

    The sdg interacting boson hamiltonian is derived in the seniority scheme. We use the method of Otsuka, Arima and Iachello in order to derive the boson hamiltonian from the fermion hamiltonian. To examine how good is the boson approximation in the zeroth-order, we carry out the exact shell model calculations in a single j-shell. It is found that almost all low-lying levels are reproduced quite well by diagonalizing the sdg interacting boson hamiltonian in the vibrational case. In the deformed case the introduction of g-bosons improves the reproduction of the spectra and of the binding energies which are obtained by diagonalizing the exact shell model hamiltonian. In particular the sdg interacting boson model reproduces well-developed rotational bands.

  3. Knee Extensor and Flexor Torque Development with Concentric and Eccentric Isokinetic Training

    ERIC Educational Resources Information Center

    Miller, Larry E.; Pierson, Lee M.; Nickols-Richardson, Sharon M.; Wootten, David F.; Selmon, Serah E.; Ramp, Warren K.; Herbert, William G.

    2006-01-01

    This study assessed muscular torque and rate of torque development following concentric (CON) or eccentric (ECC) isokinetic training. Thirty-eight women were randomly assigned to either CON or ECC training groups. Training consisted of knee extension and flexion of the nondominant leg three times per week for 20 weeks (SD = 1). Eccentric training…

  4. Dynamical decoupling of unbounded Hamiltonians

    NASA Astrophysics Data System (ADS)

    Arenz, Christian; Burgarth, Daniel; Facchi, Paolo; Hillier, Robin

    2018-03-01

    We investigate the possibility to suppress interactions between a finite dimensional system and an infinite dimensional environment through a fast sequence of unitary kicks on the finite dimensional system. This method, called dynamical decoupling, is known to work for bounded interactions, but physical environments such as bosonic heat baths are usually modeled with unbounded interactions; hence, here, we initiate a systematic study of dynamical decoupling for unbounded operators. We develop a sufficient decoupling criterion for arbitrary Hamiltonians and a necessary decoupling criterion for semibounded Hamiltonians. We give examples for unbounded Hamiltonians where decoupling works and the limiting evolution as well as the convergence speed can be explicitly computed. We show that decoupling does not always work for unbounded interactions and we provide both physically and mathematically motivated examples.

  5. Construction of an isokinetic eccentric cycle ergometer for research and training.

    PubMed

    Elmer, Steven J; Martin, James C

    2013-08-01

    Eccentric cycling serves a useful exercise modality in clinical, research, and sport training settings. However, several constraints can make it difficult to use commercially available eccentric cycle ergometers. In this technical note, we describe the process by which we built an isokinetic eccentric cycle ergometer using exercise equipment modified with commonly available industrial parts. Specifically, we started with a used recumbent cycle ergometer and removed all the original parts leaving only the frame and seat. A 2.2 kW electric motor was attached to a transmission system that was then joined with the ergometer. The motor was controlled using a variable frequency drive, which allowed for control of a wide range of pedaling rates. The ergometer was also equipped with a power measurement device that quantified work, power, and pedaling rate and provided feedback to the individual performing the exercise. With these parts along with some custom fabrication, we were able to construct an isokinetic eccentric cycle ergometer suitable for research and training. This paper offers a guide for those individuals who plan to use eccentric cycle ergometry as an exercise modality and wish to construct their own ergometer.

  6. Effects of rest interval on isokinetic strength and functional performance after short-term high intensity training.

    PubMed

    Pincivero, D M; Lephart, S M; Karunakara, R G

    1997-09-01

    The ability to maximally generate active muscle tension during resistance training has been established to be a primary determinant for strength development. The influence of intrasession rest intervals may have a profound effect on strength gains subsequent to short-term high intensity training. The purpose of this study was to examine the effects of rest interval on strength and functional performance after four weeks of isokinetic training. Fifteen healthy college aged individuals were randomly assigned to either a short rest interval group (group 1, n = 8) or a long rest interval group (group 2, n = 7). Subjects were evaluated for quadriceps and hamstring isokinetic strength at 60 (five repetitions) and 180 (30 repetitions) degrees/second and functional performance with the single leg hop for distance test. One leg of each subject was randomly assigned to a four week, three days/week isokinetic strength training programme for concentric knee extension and flexion performed at 90 degrees/second. Subjects in group 1 received a 40 second rest interval in between exercise sets, whereas subjects in group 2 received a 160 second rest period. A two factor analysis of variance for the pre-test--post-test gain scores (%) showed significantly greater improvements for isokinetic hamstring total work and average power at 180 degrees/second for the trained limb of subjects in group 2 than their contralateral non-trained limb and the subjects in group 1. Significantly greater improvements for the single leg hop for distance were also found for the trained limbs of subjects in both groups as compared with the non-trained limbs. The findings indicate that a relatively longer intrasession rest period resulted in a greater improvement in hamstring muscle strength during short term high intensity training.

  7. Evaluation of Suited and Unsuited Human Functional Strength Using Multipurpose, Multiaxial Isokinetic Dynamometer

    NASA Technical Reports Server (NTRS)

    Aghazadeh, Fred

    2005-01-01

    The objective of the planned summer research was to develop a procedure to determine the isokinetic functional strength of suited and unsuited participants in order to estimate the coefficient of micro-gravity suit on human strength. To accomplish this objective, the Anthropometry and Biomechanics Facility's Multipurpose, Multiaxial Isokinetic dynamometer (MMID) was used. Development of procedure involved selection and testing of seven routines to be tested on MMID. We conducted the related experiments and collected the data for 12 participants. In addition to the above objective, we developed a procedure to assess the fatiguing characteristics of suited and unsuited participants using EMG technique. We collected EMG data on 10 participants while performing a programmed routing on MMID. EMG data along with information on the exerted forces, effector speed, number of repetitions, and duration of each routine were recorded for further analysis. Finally, gathering and tabulation Of data for various human strengths for updating of MSIS (HSIS) strength requirement, which started in summer 2003, also continued.

  8. Isokinetic and isometric strength in osteoarthrosis of the knee. A comparative study with healthy women.

    PubMed

    Tan, J; Balci, N; Sepici, V; Gener, F A

    1995-01-01

    Dynamic stability of the knee joint depends on the appropriate strength ratio of quadriceps and hamstring muscles. The purpose of this investigation was to determine the maximum peak torque (MPT) and MPT ratios of hamstrings to quadriceps (H/Q) muscles in patients with knee osteoarthritis (OA). Two groups of patients were included in the study. The first group consisted of 30 patients (Group A) with the clinical and radiologic findings of knee OA. The second group consisted of 30 patients (Group B) exhibiting knee joint pain without roentgenologic findings of knee OA. The findings of two patient groups were compared with each other and also with 30 healthy subjects (Group C). Isokinetic (at 60 degrees/s and at 180 degrees/s) and isometric (at 30 degrees and at 60 degrees of knee flexion) tests were performed by the rate-limiting isokinetic dynamometer system. Isokinetic and isometric MPT loss of knee flexors and extensors was found in both patient groups with respect to controls, but MPT ratios of H/Q muscles did not show a statistically significant difference compared with the control group. This may be related to the equal strength loss of knee flexors and knee extensors in patients with knee OA. It is concluded that strengthening exercises of hamstring muscles is as important as quadriceps strengthening in rehabilitation of knee OA.

  9. Thermal response of a Fermi-Pasta-Ulam chain with Andersen thermostats

    NASA Astrophysics Data System (ADS)

    D'Ambrosio, Federico; Baiesi, Marco

    2017-11-01

    The linear response to temperature variations is well characterised for equilibrium systems but a similar theory is not available, for example, for inertial heat conducting systems, whose paradigm is the Fermi-Pasta-Ulam (FPU) model driven by two different boundary temperatures. For models of inertial systems out of equilibrium, including relaxing systems, we show that Andersen thermostats are a natural tool for studying the thermal response. We derive a fluctuation-response relation that allows to predict thermal expansion coefficients or the heat capacitance in nonequilibrium regimes. Simulations of the FPU chain of oscillators suggest that estimates of susceptibilities obtained with our relation are better than those obtained via a small perturbation.

  10. Classification of three-state Hamiltonians solvable by the coordinate Bethe ansatz

    NASA Astrophysics Data System (ADS)

    Crampé, N.; Frappat, L.; Ragoucy, E.

    2013-10-01

    We classify ‘all’ Hamiltonians with rank 1 symmetry and nearest-neighbour interactions, acting on a periodic three-state spin chain, and solvable through (generalization of) the coordinate Bethe ansatz (CBA). In this way we obtain four multi-parametric extensions of the known 19-vertex Hamiltonians (such as Zamolodchikov-Fateev, Izergin-Korepin and Bariev Hamiltonians). Apart from the 19-vertex Hamiltonians, there exist 17-vertex and 14-vertex Hamiltonians that cannot be viewed as subcases of the 19-vertex ones. In the case of 17-vertex Hamiltonians, we get a generalization of the genus 5 special branch found by Martins, plus three new ones. We also get two 14-vertex Hamiltonians. We solve all these Hamiltonians using CBA, and provide their spectrum, eigenfunctions and Bethe equations. Special attention is given to provide the specifications of our multi-parametric Hamiltonians that give back known Hamiltonians.

  11. Extended Hamiltonian approach to continuous tempering

    NASA Astrophysics Data System (ADS)

    Gobbo, Gianpaolo; Leimkuhler, Benedict J.

    2015-06-01

    We introduce an enhanced sampling simulation technique based on continuous tempering, i.e., on continuously varying the temperature of the system under investigation. Our approach is mathematically straightforward, being based on an extended Hamiltonian formulation in which an auxiliary degree of freedom, determining the effective temperature, is coupled to the physical system. The physical system and its temperature evolve continuously in time according to the equations of motion derived from the extended Hamiltonian. Due to the Hamiltonian structure, it is easy to show that a particular subset of the configurations of the extended system is distributed according to the canonical ensemble for the physical system at the correct physical temperature.

  12. Entanglement Hamiltonians for Chiral Fermions with Zero Modes.

    PubMed

    Klich, Israel; Vaman, Diana; Wong, Gabriel

    2017-09-22

    In this Letter, we study the effect of topological zero modes on entanglement Hamiltonians and the entropy of free chiral fermions in (1+1)D. We show how Riemann-Hilbert solutions combined with finite rank perturbation theory allow us to obtain exact expressions for entanglement Hamiltonians. In the absence of the zero mode, the resulting entanglement Hamiltonians consist of local and bilocal terms. In the periodic sector, the presence of a zero mode leads to an additional nonlocal contribution to the entanglement Hamiltonian. We derive an exact expression for this term and for the resulting change in the entanglement entropy.

  13. Multi-Hamiltonian structure of equations of hydrodynamic type

    NASA Astrophysics Data System (ADS)

    Gümral, H.; Nutku, Y.

    1990-11-01

    The discussion of the Hamiltonian structure of two-component equations of hydrodynamic type is completed by presenting the Hamiltonian operators for Euler's equation governing the motion of plane sound waves of finite amplitude and another quasilinear second-order wave equation. There exists a doubly infinite family of conserved Hamiltonians for the equations of gas dynamics that degenerate into one, namely, the Benney sequence, for shallow-water waves. Infinite sequences of conserved quantities for these equations are also presented. In the case of multicomponent equations of hydrodynamic type, it is shown, that Kodama's generalization of the shallow-water equations admits bi-Hamiltonian structure.

  14. Covariant hamiltonian spin dynamics in curved space-time

    NASA Astrophysics Data System (ADS)

    d'Ambrosi, G.; Satish Kumar, S.; van Holten, J. W.

    2015-04-01

    The dynamics of spinning particles in curved space-time is discussed, emphasizing the hamiltonian formulation. Different choices of hamiltonians allow for the description of different gravitating systems. We give full results for the simplest case with minimal hamiltonian, constructing constants of motion including spin. The analysis is illustrated by the example of motion in Schwarzschild space-time. We also discuss a non-minimal extension of the hamiltonian giving rise to a gravitational equivalent of the Stern-Gerlach force. We show that this extension respects a large class of known constants of motion for the minimal case.

  15. Optimal adaptive control for quantum metrology with time-dependent Hamiltonians.

    PubMed

    Pang, Shengshi; Jordan, Andrew N

    2017-03-09

    Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T 2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T 4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case.

  16. Optimal adaptive control for quantum metrology with time-dependent Hamiltonians

    PubMed Central

    Pang, Shengshi; Jordan, Andrew N.

    2017-01-01

    Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case. PMID:28276428

  17. Hamiltonian identifiability assisted by a single-probe measurement

    NASA Astrophysics Data System (ADS)

    Sone, Akira; Cappellaro, Paola

    2017-02-01

    We study the Hamiltonian identifiability of a many-body spin-1 /2 system assisted by the measurement on a single quantum probe based on the eigensystem realization algorithm approach employed in Zhang and Sarovar, Phys. Rev. Lett. 113, 080401 (2014), 10.1103/PhysRevLett.113.080401. We demonstrate a potential application of Gröbner basis to the identifiability test of the Hamiltonian, and provide the necessary experimental resources, such as the lower bound in the number of the required sampling points, the upper bound in total required evolution time, and thus the total measurement time. Focusing on the examples of the identifiability in the spin-chain model with nearest-neighbor interaction, we classify the spin-chain Hamiltonian based on its identifiability, and provide the control protocols to engineer the nonidentifiable Hamiltonian to be an identifiable Hamiltonian.

  18. Non-commuting two-local Hamiltonians for quantum error suppression

    NASA Astrophysics Data System (ADS)

    Jiang, Zhang; Rieffel, Eleanor G.

    2017-04-01

    Physical constraints make it challenging to implement and control many-body interactions. For this reason, designing quantum information processes with Hamiltonians consisting of only one- and two-local terms is a worthwhile challenge. Enabling error suppression with two-local Hamiltonians is particularly challenging. A no-go theorem of Marvian and Lidar (Phys Rev Lett 113(26):260504, 2014) demonstrates that, even allowing particles with high Hilbert space dimension, it is impossible to protect quantum information from single-site errors by encoding in the ground subspace of any Hamiltonian containing only commuting two-local terms. Here, we get around this no-go result by encoding in the ground subspace of a Hamiltonian consisting of non-commuting two-local terms arising from the gauge operators of a subsystem code. Specifically, we show how to protect stored quantum information against single-qubit errors using a Hamiltonian consisting of sums of the gauge generators from Bacon-Shor codes (Bacon in Phys Rev A 73(1):012340, 2006) and generalized-Bacon-Shor code (Bravyi in Phys Rev A 83(1):012320, 2011). Our results imply that non-commuting two-local Hamiltonians have more error-suppressing power than commuting two-local Hamiltonians. While far from providing full fault tolerance, this approach improves the robustness achievable in near-term implementable quantum storage and adiabatic quantum computations, reducing the number of higher-order terms required to encode commonly used adiabatic Hamiltonians such as the Ising Hamiltonians common in adiabatic quantum optimization and quantum annealing.

  19. A Comparison of Isotonic, Isokinetic, and Plyometric Training Methods for Vertical Jump Improvement.

    ERIC Educational Resources Information Center

    Miller, Christine D.

    This annotated bibliography documents three training methods used to develop vertical jumping ability and power: isotonic, isokinetics, and plyometric training. Research findings on all three forms of training are summarized and compared. A synthesis of conclusions drawn from the annotated writings is presented. The report includes a glossary of…

  20. Knee-joint proprioception during 30-day 6 degrees head-down bed rest with isotonic and isokinetic exercise training

    NASA Technical Reports Server (NTRS)

    Bernauer, E. M.; Walby, W. F.; Ertl, A. C.; Dempster, P. T.; Bond, M.; Greenleaf, J. E.

    1994-01-01

    To determine if daily isotonic exercise or isokinetic exercise training coupled with daily leg proprioceptive training, would influence leg proprioceptive tracking responses during bed rest (BR), 19 men (36 +/- SD 4 years, 178 +/- 7 cm, 76.8 +/- 7.8 kg) were allocated into a no-exercise (NOE) training control group (n = 5), and isotonic exercise (ITE, n = 7) and isokinetic exercise (IKE, n = 7) training groups. Exercise training was conducted during BR for two 30-min periods.d-1, 5 d.week-1. Only the IKE group performed proprioceptive training using a new isokinetic procedure with each lower extremity for 2.5 min before and after the daily exercise training sessions; proprioceptive testing occurred weekly for all groups. There were no significant differences in proprioceptive tracking scores, expressed as a percentage of the perfect score of 100, in the pre-BR ambulatory control period between the three groups. Knee extension and flexion tracking responses were unchanged with NOE during BR, but were significantly greater (*p < 0.05) at the end of BR in both exercise groups when compared with NOE responses (extension: NOE 80.7 +/- 0.7%, ITE 82.9* +/- 0.6%, IKE 86.5* +/- 0.7%; flexion: NOE 77.6 +/- 1.5%, ITE 80.0 +/- 0.8% (NS), IKE 83.6* +/- 0.8%). Although proprioceptive tracking was unchanged during BR with NOE, both isotonic exercise training (without additional proprioceptive training) and especially isokinetic exercise training when combined with daily proprioceptive training, significantly improved knee proprioceptive tracking responses after 30 d of BR.

  1. Knee-joint proprioception during 30-day 6 degrees head-down bed rest with isotonic and isokinetic exercise training.

    PubMed

    Bernauer, E M; Walby, W F; Ertl, A C; Dempster, P T; Bond, M; Greenleaf, J E

    1994-12-01

    To determine if daily isotonic exercise or isokinetic exercise training coupled with daily leg proprioceptive training, would influence leg proprioceptive tracking responses during bed rest (BR), 19 men (36 +/- SD 4 years, 178 +/- 7 cm, 76.8 +/- 7.8 kg) were allocated into a no-exercise (NOE) training control group (n = 5), and isotonic exercise (ITE, n = 7) and isokinetic exercise (IKE, n = 7) training groups. Exercise training was conducted during BR for two 30-min periods.d-1, 5 d.week-1. Only the IKE group performed proprioceptive training using a new isokinetic procedure with each lower extremity for 2.5 min before and after the daily exercise training sessions; proprioceptive testing occurred weekly for all groups. There were no significant differences in proprioceptive tracking scores, expressed as a percentage of the perfect score of 100, in the pre-BR ambulatory control period between the three groups. Knee extension and flexion tracking responses were unchanged with NOE during BR, but were significantly greater (*p < 0.05) at the end of BR in both exercise groups when compared with NOE responses (extension: NOE 80.7 +/- 0.7%, ITE 82.9* +/- 0.6%, IKE 86.5* +/- 0.7%; flexion: NOE 77.6 +/- 1.5%, ITE 80.0 +/- 0.8% (NS), IKE 83.6* +/- 0.8%). Although proprioceptive tracking was unchanged during BR with NOE, both isotonic exercise training (without additional proprioceptive training) and especially isokinetic exercise training when combined with daily proprioceptive training, significantly improved knee proprioceptive tracking responses after 30 d of BR.

  2. Knee-Joint Proprioception During 30-Day 6 deg Head-Down Bed Rest with Isotonic and Isokinetic Exercise Training

    NASA Technical Reports Server (NTRS)

    Bernauer, E. M.; Walby, W. F.; Ertl, A. C.; Dempster, P. T.; Bond, M.; Greenleaf, J. E.

    1994-01-01

    To determine if daily isotonic exercise or isokinetic exercise training coupled with daily log proprioceptive training, would influence log proprioceptive tracking responses during Bed Rest (BR), 19 men (36 +/- SD 4 years, 178 +/- 7 cm, 76.8 +/- 7.8 kg) were allocated into a NO-Exercise (NOE) training control group (n = 5), and IsoTanic Exercise (ITE, n = 7) and IsoKinetic Exercise (IKE, n = 7) training groups. Exercise training was conducted during BR for two 30-min period / d, 5 d /week. Only the IKE group performed proprioceptive training using a now isokinetic procedure with each lower extremity for 2.5 min before and after the daily exercise training sessions; proprioceptive testing occurred weekly for all groups. There were no significant differences in proprioceptive tracking scores, expressed as a percentage of the perfect score of 100, in the pro-BR ambulatory control period between the three groups. Knee extension and flexion tracking responses were unchanged with NOE during BR, but were significantly greater (*p less than 0.05) at the end of BR in both exercise groups when compared with NOE responses (extension: NOE 80.7 +/- 0.7%, ITE 82.9 +/- 0.6%, IKE 86.5* +/- 0.7%; flexion: NOE 77.6 +/- 1.50, ITE 80.0 +/- 0.8% (NS), IKE 83.6* +/- 0.8%). Although proprioceptive tracking was unchanged during BR with NOE, both lsotonic exercise training (without additional propriaceptive training) and especially isokinetic exercise training when combined with daily proprioceptive training, significantly improved knee proprioceptive tracking responses after 30 d of BR.

  3. Mechanical design and driving mechanism of an isokinetic functional electrical stimulation-based leg stepping trainer.

    PubMed

    Hamzaid, N A; Fornusek, C; Ruys, A; Davis, G M

    2007-12-01

    The mechanical design of a constant velocity (isokinetic) leg stepping trainer driven by functional electrical stimulation-evoked muscle contractions was the focus of this paper. The system was conceived for training the leg muscles of neurologically-impaired patients. A commercially available slider crank mechanism for elliptical stepping exercise was adapted to a motorized isokinetic driving mechanism. The exercise system permits constant-velocity pedalling at cadences of 1-60 rev x min(-1). The variable-velocity feature allows low pedalling forces for individuals with very weak leg muscles, yet provides resistance to higher pedalling effort in stronger patients. In the future, the system will be integrated with a computer-controlled neuromuscular stimulator and a feedback control unit to monitor training responses of spinal cord-injured, stroke and head injury patients.

  4. Comparing passive angle-torque curves recorded simultaneously with a load cell versus an isokinetic dynamometer during dorsiflexion stretch tolerance assessments.

    PubMed

    Buckner, Samuel L; Jenkins, Nathaniel D M; Costa, Pablo B; Ryan, Eric D; Herda, Trent J; Cramer, Joel T

    2015-05-01

    The purpose of the present study was to compare the passive angle-torque curves and the passive stiffness (PS, N m °(-)(1)) values recorded simultaneously from a load cell versus an isokinetic dynamometer during dorsiflexion stretch tolerance assessments in vivo. Nine healthy men (mean ± SD age = 21.4 ± 1.6 years) completed stretch tolerance assessments on a custom-built apparatus where passive torque was measured simultaneously from an isokinetic dynamometer and a load cell. Passive torque values that corresponded with the last 10° of dorsiflexion, verified by surface electromyographic amplitude, were analyzed for each device (θ1, θ2, θ3, …, θ10). Passive torque values measured with the load cell were greater (p ≤ 0.05) than the dynamometer torque values for θ4 through θ10. There were more statistical differentiations among joint angles for passive torque measured by the load cell, and the load cell measured a greater (p ≤ 0.01) increase in passive torque and PS than the isokinetic dynamometer. These findings suggested that when examining the angle-torque curves from passive dorsiflexion stretch tolerance tests, a load cell placed under the distal end of the foot may be more sensitive than the torque recorded from an isokinetic dynamometer. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. The gravity duals of modular Hamiltonians

    DOE PAGES

    Jafferis, Daniel L.; Suh, S. Josephine

    2016-09-12

    In this study, we investigate modular Hamiltonians defined with respect to arbitrary spatial regions in quantum field theory states which have semi-classical gravity duals. We find prescriptions in the gravity dual for calculating the action of the modular Hamiltonian on its defining state, including its dual metric, and also on small excitations around the state. Curiously, use of the covariant holographic entanglement entropy formula leads us to the conclusion that the modular Hamiltonian, which in the quantum field theory acts only in the causal completion of the region, does not commute with bulk operators whose entire gauge-invariant description is space-likemore » to the causal completion of the region.« less

  6. The gravity duals of modular Hamiltonians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafferis, Daniel L.; Suh, S. Josephine

    In this study, we investigate modular Hamiltonians defined with respect to arbitrary spatial regions in quantum field theory states which have semi-classical gravity duals. We find prescriptions in the gravity dual for calculating the action of the modular Hamiltonian on its defining state, including its dual metric, and also on small excitations around the state. Curiously, use of the covariant holographic entanglement entropy formula leads us to the conclusion that the modular Hamiltonian, which in the quantum field theory acts only in the causal completion of the region, does not commute with bulk operators whose entire gauge-invariant description is space-likemore » to the causal completion of the region.« less

  7. Symmetric quadratic Hamiltonians with pseudo-Hermitian matrix representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar

    2016-06-15

    We prove that any symmetric Hamiltonian that is a quadratic function of the coordinates and momenta has a pseudo-Hermitian adjoint or regular matrix representation. The eigenvalues of the latter matrix are the natural frequencies of the Hamiltonian operator. When all the eigenvalues of the matrix are real, then the spectrum of the symmetric Hamiltonian is real and the operator is Hermitian. As illustrative examples we choose the quadratic Hamiltonians that model a pair of coupled resonators with balanced gain and loss, the electromagnetic self-force on an oscillating charged particle and an active LRC circuit. -- Highlights: •Symmetric quadratic operators aremore » useful models for many physical applications. •Any such operator exhibits a pseudo-Hermitian matrix representation. •Its eigenvalues are the natural frequencies of the Hamiltonian operator. •The eigenvalues may be real or complex and describe a phase transition.« less

  8. Hamiltonian analysis of higher derivative scalar-tensor theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langlois, David; Noui, Karim, E-mail: langlois@apc.univ-paris7.fr, E-mail: karim.noui@lmpt.univ-tours.fr

    2016-07-01

    We perform a Hamiltonian analysis of a large class of scalar-tensor Lagrangians which depend quadratically on the second derivatives of a scalar field. By resorting to a convenient choice of dynamical variables, we show that the Hamiltonian can be written in a very simple form, where the Hamiltonian and the momentum constraints are easily identified. In the case of degenerate Lagrangians, which include the Horndeski and beyond Horndeski quartic Lagrangians, our analysis confirms that the dimension of the physical phase space is reduced by the primary and secondary constraints due to the degeneracy, thus leading to the elimination of themore » dangerous Ostrogradsky ghost. We also present the Hamiltonian formulation for nondegenerate theories and find that they contain four degrees of freedom, including a ghost, as expected. We finally discuss the status of the unitary gauge from the Hamiltonian perspective.« less

  9. Hamiltonian modelling of relative motion.

    PubMed

    Kasdin, N Jeremy; Gurfil, Pini

    2004-05-01

    This paper presents a Hamiltonian approach to modelling relative spacecraft motion based on derivation of canonical coordinates for the relative state-space dynamics. The Hamiltonian formulation facilitates the modelling of high-order terms and orbital perturbations while allowing us to obtain closed-form solutions to the relative motion problem. First, the Hamiltonian is partitioned into a linear term and a high-order term. The Hamilton-Jacobi equations are solved for the linear part by separation, and new constants for the relative motions are obtained, they are called epicyclic elements. The influence of higher order terms and perturbations, such as the oblateness of the Earth, are incorporated into the analysis by a variation of parameters procedure. Closed-form solutions for J(2-) and J(4-)invariant orbits and for periodic high-order unperturbed relative motion, in terms of the relative motion elements only, are obtained.

  10. Geometric construction of quantum hall clustering Hamiltonians

    DOE PAGES

    Lee, Ching Hua; Papić, Zlatko; Thomale, Ronny

    2015-10-08

    In this study, many fractional quantum Hall wave functions are known to be unique highest-density zero modes of certain “pseudopotential” Hamiltonians. While a systematic method to construct such parent Hamiltonians has been available for the infinite plane and sphere geometries, the generalization to manifolds where relative angular momentum is not an exact quantum number, i.e., the cylinder or torus, remains an open problem. This is particularly true for non-Abelian states, such as the Read-Rezayi series (in particular, the Moore-Read and Read-Rezayi Z 3 states) and more exotic nonunitary (Haldane-Rezayi and Gaffnian) or irrational (Haffnian) states, whose parent Hamiltonians involve complicatedmore » many-body interactions. Here, we develop a universal geometric approach for constructing pseudopotential Hamiltonians that is applicable to all geometries. Our method straightforwardly generalizes to the multicomponent SU(n) cases with a combination of spin or pseudospin (layer, subband, or valley) degrees of freedom. We demonstrate the utility of our approach through several examples, some of which involve non-Abelian multicomponent states whose parent Hamiltonians were previously unknown, and we verify the results by numerically computing their entanglement properties.« less

  11. Action with Acceleration II: Euclidean Hamiltonian and Jordan Blocks

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.

    2013-10-01

    The Euclidean action with acceleration has been analyzed in Ref. 1, and referred to henceforth as Paper I, for its Hamiltonian and path integral. In this paper, the state space of the Hamiltonian is analyzed for the case when it is pseudo-Hermitian (equivalent to a Hermitian Hamiltonian), as well as the case when it is inequivalent. The propagator is computed using both creation and destruction operators as well as the path integral. A state space calculation of the propagator shows the crucial role played by the dual state vectors that yields a result impossible to obtain from a Hermitian Hamiltonian. When it is not pseudo-Hermitian, the Hamiltonian is shown to be a direct sum of Jordan blocks.

  12. Strength deficits of the shoulder complex during isokinetic testing in people with chronic stroke

    PubMed Central

    Nascimento, Lucas R.; Teixeira-Salmela, Luci F.; Polese, Janaine C.; Ada, Louise; Faria, Christina D. C. M.; Laurentino, Glória E. C.

    2014-01-01

    OBJECTIVES: To examine the strength deficits of the shoulder complex after stroke and to characterize the pattern of weakness according to type of movement and type of isokinetic parameter. METHOD: Twelve chronic stroke survivors and 12 age-matched healthy controls had their shoulder strength measured using a Biodex isokinetic dynamometer. Concentric measures of peak torque and work during shoulder movements were obtained in random order at speeds of 60°/s for both groups and sides. Type of movement was defined as scapulothoracic (protraction and retraction), glenohumeral (shoulder internal and external rotation) or combined (shoulder flexion and extension). Type of isokinetic parameter was defined as maximum (peak torque) or sustained (work). Strength deficits were calculated using the control group as reference. RESULTS: The average strength deficit for the paretic upper limb was 52% for peak torque and 56% for work. Decreases observed in the non-paretic shoulder were 21% and 22%, respectively. Strength deficit of the scapulothoracic muscles was similar to the glenohumeral muscles, with a mean difference of 6% (95% CI -5 to 17). Ability to sustain torque throughout a given range of motion was decreased as much as the peak torque, with a mean difference of 4% (95% CI -2 to 10). CONCLUSIONS: The findings suggest that people after stroke might benefit from strengthening exercises directed at the paretic scapulothoracic muscles in addition to exercises of arm elevation. Clinicians should also prescribe different exercises to improve the ability to generate force and the ability to sustain the torque during a specific range of motion. PMID:25003280

  13. A New Scheme of Integrability for (bi)Hamiltonian PDE

    NASA Astrophysics Data System (ADS)

    De Sole, Alberto; Kac, Victor G.; Valeri, Daniele

    2016-10-01

    We develop a new method for constructing integrable Hamiltonian hierarchies of Lax type equations, which combines the fractional powers technique of Gelfand and Dickey, and the classical Hamiltonian reduction technique of Drinfeld and Sokolov. The method is based on the notion of an Adler type matrix pseudodifferential operator and the notion of a generalized quasideterminant. We also introduce the notion of a dispersionless Adler type series, which is applied to the study of dispersionless Hamiltonian equations. Non-commutative Hamiltonian equations are discussed in this framework as well.

  14. Gravitational surface Hamiltonian and entropy quantization

    NASA Astrophysics Data System (ADS)

    Bakshi, Ashish; Majhi, Bibhas Ranjan; Samanta, Saurav

    2017-02-01

    The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure where p is conjugate momentum of x. Moreover, it leads to TS on the horizon of a black hole. Here T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos-Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein's observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.

  15. Linear transformation and oscillation criteria for Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Zheng, Zhaowen

    2007-08-01

    Using a linear transformation similar to the Kummer transformation, some new oscillation criteria for linear Hamiltonian systems are established. These results generalize and improve the oscillation criteria due to I.S. Kumari and S. Umanaheswaram [I. Sowjaya Kumari, S. Umanaheswaram, Oscillation criteria for linear matrix Hamiltonian systems, J. Differential Equations 165 (2000) 174-198], Q. Yang et al. [Q. Yang, R. Mathsen, S. Zhu, Oscillation theorems for self-adjoint matrix Hamiltonian systems, J. Differential Equations 190 (2003) 306-329], and S. Chen and Z. Zheng [Shaozhu Chen, Zhaowen Zheng, Oscillation criteria of Yan type for linear Hamiltonian systems, Comput. Math. Appl. 46 (2003) 855-862]. These criteria also unify many of known criteria in literature and simplify the proofs.

  16. First principles of Hamiltonian medicine.

    PubMed

    Crespi, Bernard; Foster, Kevin; Úbeda, Francisco

    2014-05-19

    We introduce the field of Hamiltonian medicine, which centres on the roles of genetic relatedness in human health and disease. Hamiltonian medicine represents the application of basic social-evolution theory, for interactions involving kinship, to core issues in medicine such as pathogens, cancer, optimal growth and mental illness. It encompasses three domains, which involve conflict and cooperation between: (i) microbes or cancer cells, within humans, (ii) genes expressed in humans, (iii) human individuals. A set of six core principles, based on these domains and their interfaces, serves to conceptually organize the field, and contextualize illustrative examples. The primary usefulness of Hamiltonian medicine is that, like Darwinian medicine more generally, it provides novel insights into what data will be productive to collect, to address important clinical and public health problems. Our synthesis of this nascent field is intended predominantly for evolutionary and behavioural biologists who aspire to address questions directly relevant to human health and disease.

  17. Uncertainty relation for non-Hamiltonian quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasov, Vasily E.

    2013-01-15

    General forms of uncertainty relations for quantum observables of non-Hamiltonian quantum systems are considered. Special cases of uncertainty relations are discussed. The uncertainty relations for non-Hamiltonian quantum systems are considered in the Schroedinger-Robertson form since it allows us to take into account Lie-Jordan algebra of quantum observables. In uncertainty relations, the time dependence of quantum observables and the properties of this dependence are discussed. We take into account that a time evolution of observables of a non-Hamiltonian quantum system is not an endomorphism with respect to Lie, Jordan, and associative multiplications.

  18. Analysis of isokinetic muscle strength for sports physiotherapy research in Korean ssireum athletes

    PubMed Central

    Noh, Ji-Woong; Park, Byoung-Sun; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Park, Jaehong; Kim, Junghwan

    2015-01-01

    [Purpose] The purpose of the present study was to elucidate the muscle conditions such as the isokinetic muscle of Korean ssireum athletes. [Subjects and Methods] This study enrolled 25 elite ssireum athletes. We measured body composition and peak torque at an angular speed at 60°/s using an isokinetic muscle strength dynamometer. [Results] The lean body mass of the left upper limb was significantly higher than that of the right upper limb. However, the lean body mass of the left lower limb was significantly lower than that of the right lower limb. The peak torque for left elbow flexion was significantly higher than that for right elbow flexion. Conversely, the peak torque for left elbow extension was significantly lower than that for right elbow extension. Furthermore, the peak torque for the left knee was significantly lower than that for the right knee for both flexion and extension. [Conclusion] The data from this study elucidate in part the muscle conditions of Korean ssireum athletes, which can be used to establish a reference for the scientific study of sports physiotherapy. PMID:26644679

  19. Analysis of isokinetic muscle strength for sports physiotherapy research in Korean ssireum athletes.

    PubMed

    Noh, Ji-Woong; Park, Byoung-Sun; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Park, Jaehong; Kim, Junghwan

    2015-10-01

    [Purpose] The purpose of the present study was to elucidate the muscle conditions such as the isokinetic muscle of Korean ssireum athletes. [Subjects and Methods] This study enrolled 25 elite ssireum athletes. We measured body composition and peak torque at an angular speed at 60°/s using an isokinetic muscle strength dynamometer. [Results] The lean body mass of the left upper limb was significantly higher than that of the right upper limb. However, the lean body mass of the left lower limb was significantly lower than that of the right lower limb. The peak torque for left elbow flexion was significantly higher than that for right elbow flexion. Conversely, the peak torque for left elbow extension was significantly lower than that for right elbow extension. Furthermore, the peak torque for the left knee was significantly lower than that for the right knee for both flexion and extension. [Conclusion] The data from this study elucidate in part the muscle conditions of Korean ssireum athletes, which can be used to establish a reference for the scientific study of sports physiotherapy.

  20. Model Hamiltonian Calculations of the Nonlinear Polarizabilities of Conjugated Molecules.

    NASA Astrophysics Data System (ADS)

    Risser, Steven Michael

    This dissertation advances the theoretical knowledge of the nonlinear polarizabilities of conjugated molecules. The unifying feature of these molecules is an extended delocalized pi electron structure. The pi electrons dominate the electronic properties of the molecules, allowing prediction of molecular properties based on the treatment of just the pi electrons. Two separate pi electron Hamiltonians are used in the research. The principal Hamiltonian used is the non-interacting single-particle Huckel Hamiltonian, which replaces the Coulomb interaction among the pi electrons with a mean field interaction. The simplification allows for exact solution of the Hamiltonian for large molecules. The second Hamiltonian used for this research is the interacting multi-particle Pariser-Parr-Pople (PPP) Hamiltonian, which retains explicit Coulomb interactions. This limits exact solutions to molecules containing at most eight electrons. The molecular properties being investigated are the linear polarizability, and the second and third order hyperpolarizabilities. The hyperpolarizabilities determine the nonlinear optical response of materials. These molecular parameters are determined by two independent approaches. The results from the Huckel Hamiltonian are obtained through first, second and third order perturbation theory. The results from the PPP Hamiltonian are obtained by including the applied field directly in the Hamiltonian and determining the ground state energy at a series of field strengths. By fitting the energy to a polynomial in field strength, the polarizability and hyperpolarizabilities are determined. The Huckel Hamiltonian is used to calculate the third order hyperpolarizability of polyenes. These calculations were the first to show the average hyperpolarizability of the polyenes to be positive, and also to show the saturation of the hyperpolarizability. Comparison of these Huckel results to those from the PPP Hamiltonian shows the lack of explicit Coulomb

  1. Alternative bi-Hamiltonian structures for WDVV equations of associativity

    NASA Astrophysics Data System (ADS)

    Kalayci, J.; Nutku, Y.

    1998-01-01

    The WDVV equations of associativity in two-dimensional topological field theory are completely integrable third-order Monge-Ampère equations which admit bi-Hamiltonian structure. The time variable plays a distinguished role in the discussion of Hamiltonian structure, whereas in the theory of WDVV equations none of the independent variables merits such a distinction. WDVV equations admit very different alternative Hamiltonian structures under different possible choices of the time variable, but all these various Hamiltonian formulations can be brought together in the framework of the covariant theory of symplectic structure. They can be identified as different components of the covariant Witten-Zuckerman symplectic 2-form current density where a variational formulation of the WDVV equation that leads to the Hamiltonian operator through the Dirac bracket is available.

  2. Local Hamiltonians for maximally multipartite-entangled states

    NASA Astrophysics Data System (ADS)

    Facchi, P.; Florio, G.; Pascazio, S.; Pepe, F.

    2010-10-01

    We study the conditions for obtaining maximally multipartite-entangled states (MMESs) as nondegenerate eigenstates of Hamiltonians that involve only short-range interactions. We investigate small-size systems (with a number of qubits ranging from 3 to 5) and show some example Hamiltonians with MMESs as eigenstates.

  3. Hamiltonian structure of the guiding center plasma model

    NASA Astrophysics Data System (ADS)

    Burby, J. W.; Sengupta, W.

    2018-02-01

    The guiding center plasma model (also known as kinetic MHD) is a rigorous sub-cyclotron-frequency closure of the Vlasov-Maxwell system. While the model has been known for decades and it plays a fundamental role in describing the physics of strongly magnetized collisionless plasmas, its Hamiltonian structure has never been found. We provide explicit expressions for the model's Poisson bracket and Hamiltonian and thereby prove that the model is an infinite-dimensional Hamiltonian system. The bracket is derived in a manner which ensures that it satisfies the Jacobi identity. We also report on several previously unknown circulation theorems satisfied by the guiding center plasma model. Without knowledge of the Hamiltonian structure, these circulation theorems would be difficult to guess.

  4. Greenberger-Horne-Zeilinger States and Few-Body Hamiltonians

    NASA Astrophysics Data System (ADS)

    Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio; Pepe, Francesco V.

    2011-12-01

    The generation of Greenberger-Horne-Zeilinger (GHZ) states is a crucial problem in quantum information. We derive general conditions for obtaining GHZ states as eigenstates of a Hamiltonian. We find that a necessary condition for an n-qubit GHZ state to be a nondegenerate eigenstate of a Hamiltonian is the presence of m-qubit couplings with m≥[(n+1)/2]. Moreover, we introduce a Hamiltonian with a GHZ eigenstate and derive sufficient conditions for the removal of the degeneracy.

  5. Greenberger-Horne-Zeilinger states and few-body Hamiltonians.

    PubMed

    Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio; Pepe, Francesco V

    2011-12-23

    The generation of Greenberger-Horne-Zeilinger (GHZ) states is a crucial problem in quantum information. We derive general conditions for obtaining GHZ states as eigenstates of a Hamiltonian. We find that a necessary condition for an n-qubit GHZ state to be a nondegenerate eigenstate of a Hamiltonian is the presence of m-qubit couplings with m≥[(n+1)/2]. Moreover, we introduce a Hamiltonian with a GHZ eigenstate and derive sufficient conditions for the removal of the degeneracy.

  6. Effective Hamiltonian for travelling discrete breathers

    NASA Astrophysics Data System (ADS)

    MacKay, Robert S.; Sepulchre, Jacques-Alexandre

    2002-05-01

    Hamiltonian chains of oscillators in general probably do not sustain exact travelling discrete breathers. However solutions which look like moving discrete breathers for some time are not difficult to observe in numerics. In this paper we propose an abstract framework for the description of approximate travelling discrete breathers in Hamiltonian chains of oscillators. The method is based on the construction of an effective Hamiltonian enabling one to describe the dynamics of the translation degree of freedom of moving breathers. Error estimate on the approximate dynamics is also studied. The concept of the Peierls-Nabarro barrier can be made clear in this framework. We illustrate the method with two simple examples, namely the Salerno model which interpolates between the Ablowitz-Ladik lattice and the discrete nonlinear Schrödinger system, and the Fermi-Pasta-Ulam chain.

  7. Approximate symmetries of Hamiltonians

    NASA Astrophysics Data System (ADS)

    Chubb, Christopher T.; Flammia, Steven T.

    2017-08-01

    We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.

  8. Finite Nilpotent BRST Transformations in Hamiltonian Formulation

    NASA Astrophysics Data System (ADS)

    Rai, Sumit Kumar; Mandal, Bhabani Prasad

    2013-10-01

    We consider the finite field dependent BRST (FFBRST) transformations in the context of Hamiltonian formulation using Batalin-Fradkin-Vilkovisky method. The non-trivial Jacobian of such transformations is calculated in extended phase space. The contribution from Jacobian can be written as exponential of some local functional of fields which can be added to the effective Hamiltonian of the system. Thus, FFBRST in Hamiltonian formulation with extended phase space also connects different effective theories. We establish this result with the help of two explicit examples. We also show that the FFBRST transformations is similar to the canonical transformations in the sector of Lagrange multiplier and its corresponding momenta.

  9. Effects of Static and Dynamic Stretching on the Isokinetic Peak Torques and Electromyographic Activities of the Antagonist Muscles.

    PubMed

    Serefoglu, Abdullah; Sekir, Ufuk; Gür, Hakan; Akova, Bedrettin

    2017-03-01

    The aim of this study was to investigate if static and dynamic stretching exercises of the knee muscles (quadriceps and hamstring muscles) have any effects on concentric and eccentric isokinetic peak torques and electromyographic amplitudes (EMG) of the antagonist muscles. Twenty healthy male athletes (age between 18-30 years) voluntarily participated in this study. All of the subjects visited the laboratory to complete the following intervention in a randomized order on 5 separate days; (a) non-stretching (control), (b) static stretching of the quadriceps muscles, (c) static stretching of the hamstring muscles, (d) dynamic stretching of the quadriceps muscles, and (e) dynamic stretching of the hamstring muscles. Static stretching exercises either for the quadriceps or the hamstring muscles were carried out at the standing and sitting positions. Subjects performed four successive repetitions of each stretching exercises for 30 seconds in both stretching positions. Similar to static stretching exercises two different stretching modes were designed for dynamic stretching exercises. Concentric and eccentric isokinetic peak torque for the non-stretched antagonist quadriceps or hamstring muscles at angular velocities of 60°/sec and 240°/sec and their concurrent electromyographic (EMG) activities were measured before and immediately after the intervention. Isokinetic peak torques of the non-stretched agonist hamstring and quadriceps muscles did not represent any significant (p > 0.05) differences following static and dynamic stretching of the antagonist quadriceps and hamstring muscles, respectively. Similarly, the EMG activities of the agonist muscles exhibited no significant alterations (p > 0.05) following both stretching exercises of the antagonist muscles. According to the results of the present study it is possible to state that antagonist stretching exercises either in the static or dynamic modes do not affect the isokinetic peak torques and the EMG activities

  10. Isokinetic and Electromyographic Properties of Muscular Endurance in Short and Long-Term Type 2 Diabetes

    PubMed Central

    Hatef, Boshra; Ghanjal, Ali; Meftahi, Gholam Hossein; Askary-Ashtiani, Ahmadreza

    2016-01-01

    Background: Patients with type 2 diabetes mellitus (T2DM) are subject to progressive reduction of muscle mass and strength. The aim of this study was to assess muscle forces and electromyography (EMG) indices in short and long-term diabetes during an isokinetic exercise. Methods: The peak torque, work, mean power frequency (MPF) and root mean square (RMS) of knee flexors and extensors during 40 isokinetic knee extension-flexion repetitions with a velocity of 150 degree/s were recorded. 18 patients with less than 10 years with T2DM and 12 patients with equal and more than 10 years of disease were compared with 20 gender, body mass index, physical activity and peripheral circulation matched healthy controls. Results: The fatigue index and slope of line across the peak torque values of the knee flexor indicate that patients with long-term T2DM were significantly more resistant to fatigue in comparison with the two other groups (p<0.009). Whereas the MPF decrease during isokinetic protocol interact with grouping in the medial hamstring (p<0.042), but it was independent to groups in other muscles (p<0.0001). The increase of RMS after fatigue protocol interacted with sex for the medial hamstring and vastus lateralis (p<0.039) and interacted with group for the extensor muscles (p<0.045). Discussion & Conclusion: It seems that long-term T2DM cause some neuromuscular adaptations to maintain knee flexor muscle performance during functional activity especially postural control. PMID:27045412

  11. Building America Case Study: The Impact of Thermostat Placement in Low-Load Homes in Sunny Climates, Denver, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modern, energy-efficient homes conforming to the Zero Energy Ready Home standard face the challenge of meeting high customer expectations for comfort. Traditional heating, ventilation, and air conditioning (HVAC) sizing and control strategies may be insufficient to adequately condition each zone due to unique load patterns in each room caused by a number of factors. These factors include solar heat gains, occupant-related gains, and gains associated with appliances and electronics. Because of shrinking shell loads, these intermittent factors are having an increasingly significant impact on the thermal load in each zone. Consequently, occupant comfort can be compromised. To evaluate the impactmore » of climate and house geometry, as well as HVAC system and control strategies on comfort conditions, IBACOS analyzed the results of 99 TRNSYS multiple-zone simulations. The results of this analysis indicate that for simple-geometry and single-story plans, a single zone and thermostat can adequately condition the entire house. Demanding house geometry and houses with multiple stories require the consideration of multiple thermostats and multiple zones.« less

  12. Exploring corrections to the Optomechanical Hamiltonian.

    PubMed

    Sala, Kamila; Tufarelli, Tommaso

    2018-06-14

    We compare two approaches for deriving corrections to the "linear model" of cavity optomechanics, in order to describe effects that are beyond first order in the radiation pressure coupling. In the regime where the mechanical frequency is much lower than the cavity one, we compare: (I) a widely used phenomenological Hamiltonian conserving the photon number; (II) a two-mode truncation of C. K. Law's microscopic model, which we take as the "true" system Hamiltonian. While these approaches agree at first order, the latter model does not conserve the photon number, resulting in challenging computations. We find that approach (I) allows for several analytical predictions, and significantly outperforms the linear model in our numerical examples. Yet, we also find that the phenomenological Hamiltonian cannot fully capture all high-order corrections arising from the C. K. Law model.

  13. Hamstring and Quadriceps Isokinetic Strength Deficits Are Weak Risk Factors for Hamstring Strain Injuries: A 4-Year Cohort Study.

    PubMed

    van Dyk, Nicol; Bahr, Roald; Whiteley, Rodney; Tol, Johannes L; Kumar, Bhavesh D; Hamilton, Bruce; Farooq, Abdulaziz; Witvrouw, Erik

    2016-07-01

    A hamstring strain injury (HSI) has become the most common noncontact injury in soccer. Isokinetic muscle strength deficits are considered a risk factor for HSIs. However, underpowered studies with small sample sizes unable to determine small associations have led to inconclusive results regarding the role of isokinetic strength and strength testing in HSIs. To examine whether differences in isokinetic strength measures of knee flexion and extension represent risk factors for hamstring injuries in a large cohort of professional soccer players in an adequately powered study design. Cohort study; Level of evidence, 2. A total of 614 professional soccer players from 14 teams underwent isokinetic strength testing during preseason screening. Testing consisted of concentric knee flexion and extension at 60 deg/s and 300 deg/s and eccentric knee extension at 60 deg/s. A clustered multiple logistic regression analysis was used to identify variables associated with the risk of HSIs. Receiver operating characteristic (ROC) curves were calculated to determine sensitivity and specificity. Of the 614 players, 190 suffered an HSI during the 4 seasons. Quadriceps concentric strength at 60 deg/s (odds ratio [OR], 1.41; 95% CI, 1.03-1.92; P = .03) and hamstring eccentric strength at 60 deg/s (OR, 1.37; 95% CI, 1.01-1.85; P = .04) adjusted for bodyweight were independently associated with the risk of injuries. The absolute differences between the injured and uninjured players were 6.9 N·m and 9.1 N·m, with small effect sizes (d < 0.2). The ROC analyses showed an area under the curve of 0.54 and 0.56 for quadriceps concentric strength and hamstring eccentric strength, respectively, indicating a failed combined sensitivity and specificity of the 2 strength variables identified in the logistic regression models. This study identified small absolute strength differences and a wide overlap of the absolute strength measurements at the group level. The small associations between lower

  14. Validity of trunk extensor and flexor torque measurements using isokinetic dynamometry.

    PubMed

    Guilhem, Gaël; Giroux, Caroline; Couturier, Antoine; Maffiuletti, Nicola A

    2014-12-01

    This study aimed to evaluate the validity and test-retest reliability of trunk muscle strength testing performed with a latest-generation isokinetic dynamometer. Eccentric, isometric, and concentric peak torque of the trunk flexor and extensor muscles was measured in 15 healthy subjects. Muscle cross sectional area (CSA) and surface electromyographic (EMG) activity were respectively correlated to peak torque and submaximal isometric torque for erector spinae and rectus abdominis muscles. Reliability of peak torque measurements was determined during test and retest sessions. Significant correlations were consistently observed between muscle CSA and peak torque for all contraction types (r=0.74-0.85; P<0.001) and between EMG activity and submaximal isometric torque (r ⩾ 0.99; P<0.05), for both extensor and flexor muscles. Intraclass correlation coefficients were comprised between 0.87 and 0.95, and standard errors of measurement were lower than 9% for all contraction modes. The mean difference in peak torque between test and retest ranged from -3.7% to 3.7% with no significant mean directional bias. Overall, our findings establish the validity of torque measurements using the tested trunk module. Also considering the excellent test-retest reliability of peak torque measurements, we conclude that this latest-generation isokinetic dynamometer could be used with confidence to evaluate trunk muscle function for clinical or athletic purposes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Gas exchange kinetics following concentric-eccentric isokinetic arm and leg exercise.

    PubMed

    Drescher, U; Mookerjee, S; Steegmanns, A; Knicker, A; Hoffmann, U

    2017-06-01

    To evaluate the effects of exercise velocity (60, 150, 240deg∙s -1 ) and muscle mass (arm vs leg) on changes in gas exchange and arterio-venous oxygen content difference (avDO 2 ) following high-intensity concentric-eccentric isokinetic exercise. Fourteen subjects (26.9±3.1years) performed a 3×20-repetition isokinetic exercise protocol. Recovery beat-to-beat cardiac output (CO) and breath-by-breath gas exchange were recorded to determine post-exercise half-time (t 1/2 ) for oxygen uptake (V˙O 2 pulm), carbon dioxide output (V˙CO 2 pulm), and ventilation (V˙ E ). Significant differences of the t 1/2 values were identified between 60 and 150deg∙s -1 . Significant differences in the t 1/2 values were observed between V˙O 2 pulm and V˙CO 2 pulm and between V˙CO 2 pulm and V˙ E . The time to attain the first avDO 2 -peak showed significant differences between arm and leg exercise. The present study illustrates, that V˙O 2 pulm kinetics are distorted due to non-linear CO dynamics. Therefore, it has to be taken into account, that V˙O 2 pulm may not be a valuable surrogate for muscular oxygen uptake kinetics in the recovery phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Finite Group Invariance and Solution of Jaynes-Cummings Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haydargil, Derya; Koc, Ramazan

    2004-10-04

    The finite group invariance of the E x {beta} and Jaynes-Cummings models are studied. A method is presented to obtain finite group invariance of the E x {beta} system.A suitable transformation of a Jaynes-Cummings Hamiltonian leads to equivalence of E x {beta} system. Then a general method is applied to obtain the solution of Jaynes-Cummings Hamiltonian with Kerr nonlinearity. Number operator for this structure and the generators of su(2) algebra are used to find the eigenvalues of the Jaynes-Cummings Hamiltonian for different states. By using the invariance of number operator the solution of modified Jaynes-Cummings Hamiltonian is also discussed.

  17. Does finite-temperature decoding deliver better optima for noisy Hamiltonians?

    NASA Astrophysics Data System (ADS)

    Ochoa, Andrew J.; Nishimura, Kohji; Nishimori, Hidetoshi; Katzgraber, Helmut G.

    The minimization of an Ising spin-glass Hamiltonian is an NP-hard problem. Because many problems across disciplines can be mapped onto this class of Hamiltonian, novel efficient computing techniques are highly sought after. The recent development of quantum annealing machines promises to minimize these difficult problems more efficiently. However, the inherent noise found in these analog devices makes the minimization procedure difficult. While the machine might be working correctly, it might be minimizing a different Hamiltonian due to the inherent noise. This means that, in general, the ground-state configuration that correctly minimizes a noisy Hamiltonian might not minimize the noise-less Hamiltonian. Inspired by rigorous results that the energy of the noise-less ground-state configuration is equal to the expectation value of the energy of the noisy Hamiltonian at the (nonzero) Nishimori temperature [J. Phys. Soc. Jpn., 62, 40132930 (1993)], we numerically study the decoding probability of the original noise-less ground state with noisy Hamiltonians in two space dimensions, as well as the D-Wave Inc. Chimera topology. Our results suggest that thermal fluctuations might be beneficial during the optimization process in analog quantum annealing machines.

  18. Bi-Hamiltonian Structure in 2-d Field Theory

    NASA Astrophysics Data System (ADS)

    Ferapontov, E. V.; Galvão, C. A. P.; Mokhov, O. I.; Nutku, Y.

    We exhibit the bi-Hamiltonian structure of the equations of associativity (Witten-Dijkgraaf-Verlinde-Verlinde-Dubrovin equations) in 2-d topological field theory, which reduce to a single equation of Monge-Ampère type $ fttt}=f{xxt;;;;;2 - fxxx}f{xtt ,$ in the case of three primary fields. The first Hamiltonian structure of this equation is based on its representation as a 3-component system of hydrodynamic type and the second Hamiltonian structure follows from its formulation in terms of a variational principle with a degenerate Lagrangian.

  19. Effects of the application of ankle functional rehabilitation exercise on the ankle joint functional movement screen and isokinetic muscular function in patients with chronic ankle sprain.

    PubMed

    Ju, Sung-Bum; Park, Gi Duck

    2017-02-01

    [Purpose] This study was conducted to investigate the effects of ankle functional rehabilitation exercise on ankle joint functional movement screen results and isokinetic muscular function in patients with chronic ankle sprain patients. [Subjects and Methods] In this study, 16 patients with chronic ankle sprain were randomized to an ankle functional rehabilitation exercise group (n=8) and a control group (n=8). The ankle functional rehabilitation exercise centered on a proprioceptive sense exercise program, which was applied 12 times for 2 weeks. To verify changes after the application, ankle joint functional movement screen scores and isokinetic muscular function were measured and analyzed. [Results] The ankle functional rehabilitation exercise group showed significant improvements in all items of the ankle joint functional movement screen and in isokinetic muscular function after the exercise, whereas the control group showed no difference after the application. [Conclusion] The ankle functional rehabilitation exercise program can be effectively applied in patients with chronic ankle sprain for the improvement of ankle joint functional movement screen score and isokinetic muscular function.

  20. Effects of the application of ankle functional rehabilitation exercise on the ankle joint functional movement screen and isokinetic muscular function in patients with chronic ankle sprain

    PubMed Central

    Ju, Sung-Bum; Park, Gi Duck

    2017-01-01

    [Purpose] This study was conducted to investigate the effects of ankle functional rehabilitation exercise on ankle joint functional movement screen results and isokinetic muscular function in patients with chronic ankle sprain patients. [Subjects and Methods] In this study, 16 patients with chronic ankle sprain were randomized to an ankle functional rehabilitation exercise group (n=8) and a control group (n=8). The ankle functional rehabilitation exercise centered on a proprioceptive sense exercise program, which was applied 12 times for 2 weeks. To verify changes after the application, ankle joint functional movement screen scores and isokinetic muscular function were measured and analyzed. [Results] The ankle functional rehabilitation exercise group showed significant improvements in all items of the ankle joint functional movement screen and in isokinetic muscular function after the exercise, whereas the control group showed no difference after the application. [Conclusion] The ankle functional rehabilitation exercise program can be effectively applied in patients with chronic ankle sprain for the improvement of ankle joint functional movement screen score and isokinetic muscular function. PMID:28265157

  1. Finite-dimensional Liouville integrable Hamiltonian systems generated from Lax pairs of a bi-Hamiltonian soliton hierarchy by symmetry constraints

    NASA Astrophysics Data System (ADS)

    Manukure, Solomon

    2018-04-01

    We construct finite-dimensional Hamiltonian systems by means of symmetry constraints from the Lax pairs and adjoint Lax pairs of a bi-Hamiltonian hierarchy of soliton equations associated with the 3-dimensional special linear Lie algebra, and discuss the Liouville integrability of these systems based on the existence of sufficiently many integrals of motion.

  2. Local modular Hamiltonians from the quantum null energy condition

    NASA Astrophysics Data System (ADS)

    Koeller, Jason; Leichenauer, Stefan; Levine, Adam; Shahbazi-Moghaddam, Arvin

    2018-03-01

    The vacuum modular Hamiltonian K of the Rindler wedge in any relativistic quantum field theory is given by the boost generator. Here we investigate the modular Hamiltonian for more general half-spaces which are bounded by an arbitrary smooth cut of a null plane. We derive a formula for the second derivative of the modular Hamiltonian with respect to the coordinates of the cut which schematically reads K''=Tv v . This formula can be integrated twice to obtain a simple expression for the modular Hamiltonian. The result naturally generalizes the standard expression for the Rindler modular Hamiltonian to this larger class of regions. Our primary assumptions are the quantum null energy condition—an inequality between the second derivative of the von Neumann entropy of a region and the stress tensor—and its saturation in the vacuum for these regions. We discuss the validity of these assumptions in free theories and holographic theories to all orders in 1 /N .

  3. Hamiltonian surface charges using external sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troessaert, Cédric, E-mail: troessaert@cecs.cl

    2016-05-15

    In this work, we interpret part of the boundary conditions as external sources in order to partially solve the integrability problem present in the computation of surface charges associated to gauge symmetries in the hamiltonian formalism. We start by describing the hamiltonian structure of external symmetries preserving the action up to a transformation of the external sources of the theory. We then extend these results to the computation of surface charges for field theories with non-trivial boundary conditions.

  4. Contact Hamiltonian systems and complete integrability

    NASA Astrophysics Data System (ADS)

    Visinescu, Mihai

    2017-12-01

    We summarize recent results on the integrability of Hamiltonian systems on contact manifolds. We explain how to extend the classical formulation of action-angle variables to contact integrable systems. Using the Jacobi brackets defined on contact manifolds, we discuss the commutativity of first integrals for contact Hamiltonian systems and present the construction of generalized contact action-angle variables. We illustrate the integrability in the contact geometry on the five-dimensional Sasaki-Einstein spaces T1,1 and Yp,q.

  5. Hamiltonian structure of real Monge - Ampère equations

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1996-06-01

    The variational principle for the real homogeneous Monge - Ampère equation in two dimensions is shown to contain three arbitrary functions of four variables. There exist two different specializations of this variational principle where the Lagrangian is degenerate and furthermore contains an arbitrary function of two variables. The Hamiltonian formulation of these degenerate Lagrangian systems requires the use of Dirac's theory of constraints. As in the case of most completely integrable systems the constraints are second class and Dirac brackets directly yield the Hamiltonian operators. Thus the real homogeneous Monge - Ampère equation in two dimensions admits two classes of infinitely many Hamiltonian operators, namely a family of local, as well as another family non-local Hamiltonian operators and symplectic 2-forms which depend on arbitrary functions of two variables. The simplest non-local Hamiltonian operator corresponds to the Kac - Moody algebra of vector fields and functions on the unit circle. Hamiltonian operators that belong to either class are compatible with each other but between classes there is only one compatible pair. In the case of real Monge - Ampère equations with constant right-hand side this compatible pair is the only pair of Hamiltonian operators that survives. Then the complete integrability of all these real Monge - Ampère equations follows by Magri's theorem. Some of the remarkable properties we have obtained for the Hamiltonian structure of the real homogeneous Monge - Ampère equation in two dimensions turn out to be generic to the real homogeneous Monge - Ampère equation and the geodesic flow for the complex homogeneous Monge - Ampère equation in arbitrary number of dimensions. Hence among all integrable nonlinear evolution equations in one space and one time dimension, the real homogeneous Monge - Ampère equation is distinguished as one that retains its character as an integrable system in multiple dimensions.

  6. Quasi-hamiltonian quotients as disjoint unions of symplectic manifolds

    NASA Astrophysics Data System (ADS)

    Schaffhauser, Florent

    2007-08-01

    The main result of this paper is Theorem 2.12 which says that the quotient μ-1({1})/U associated to a quasi-hamiltonian space (M, ω, μ: M → U) has a symplectic structure even when 1 is not a regular value of the momentum map μ. Namely, it is a disjoint union of symplectic manifolds of possibly different dimensions, which generalizes the result of Alekseev, Malkin and Meinrenken in [AMM98]. We illustrate this theorem with the example of representation spaces of surface groups. As an intermediary step, we give a new class of examples of quasi-hamiltonian spaces: the isotropy submanifold MK whose points are the points of M with isotropy group K ⊂ U. The notion of quasi-hamiltonian space was introduced by Alekseev, Malkin and Meinrenken in their paper [AMM98]. The main motivation for it was the existence, under some regularity assumptions, of a symplectic structure on the associated quasi-hamiltonian quotient. Throughout their paper, the analogy with usual hamiltonian spaces is often used as a guiding principle, replacing Lie-algebra-valued momentum maps with Lie-group-valued momentum maps. In the hamiltonian setting, when the usual regularity assumptions on the group action or the momentum map are dropped, Lerman and Sjamaar showed in [LS91] that the quotient associated to a hamiltonian space carries a stratified symplectic structure. In particular, this quotient space is a disjoint union of symplectic manifolds. In this paper, we prove an analogous result for quasi-hamiltonian quotients. More precisely, we show that for any quasi-hamiltonian space (M, ω, μ: M → U), the associated quotient M//U := μ-1({1})/U is a disjoint union of symplectic manifolds (Theorem 2.12): [ mu^{-1}(\\{1\\})/U = bigsqcup_{jin J} (mu^{-1}(\\{1\\})\\cap M_{K_j})/L_{K_j} . ] Here Kj denotes a closed subgroup of U and MKj denotes the isotropy submanifold of type Kj: MKj = {x ∈ M | Ux = Kj}. Finally, LKj is the quotient group LKj = { N

  7. Hamiltonian formulation of the KdV equation

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1984-06-01

    We consider the canonical formulation of Whitham's variational principle for the KdV equation. This Lagrangian is degenerate and we have found it necessary to use Dirac's theory of constrained systems in constructing the Hamiltonian. Earlier discussions of the Hamiltonian structure of the KdV equation were based on various different decompositions of the field which is avoided by this new approach.

  8. Intertwined Hamiltonians in two-dimensional curved spaces

    NASA Astrophysics Data System (ADS)

    Aghababaei Samani, Keivan; Zarei, Mina

    2005-04-01

    The problem of intertwined Hamiltonians in two-dimensional curved spaces is investigated. Explicit results are obtained for Euclidean plane, Minkowski plane, Poincaré half plane (AdS2), de Sitter plane (dS2), sphere, and torus. It is shown that the intertwining operator is related to the Killing vector fields and the isometry group of corresponding space. It is shown that the intertwined potentials are closely connected to the integral curves of the Killing vector fields. Two problems are considered as applications of the formalism presented in the paper. The first one is the problem of Hamiltonians with equispaced energy levels and the second one is the problem of Hamiltonians whose spectrum is like the spectrum of a free particle.

  9. Contact symmetries and Hamiltonian thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bravetti, A., E-mail: bravetti@correo.nucleares.unam.mx; Lopez-Monsalvo, C.S., E-mail: cesar.slm@correo.nucleares.unam.mx; Nettel, F., E-mail: Francisco.Nettel@roma1.infn.it

    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendremore » symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production.« less

  10. Overview of Existing and Future Residential Use Cases for Connected Thermostats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotondo, Julia; Johnson, Robert; Gonzales, Nancy

    This paper is intended to help inform future technology deployment opportunities for connected thermostats (CTs), based on investigation and review of the U.S. residential housing and CT markets, as well as existing, emerging, and future use cases for CT hardware and CT-generated data. The CT market has experienced tremendous growth over the last five years — both in terms of the number of units sold and the number of firms offering competing products — and can be characterized by its rapid pace of technological innovation. Despite many assuming CTs would become powerful tools for increasing comfort while saving energy, theremore » remains a great deal of uncertainty about the actual energy and cost savings that are likely to be realized from deployment of CTs, particularly under different conditions.« less

  11. Overview of Existing and Future Residential Use Cases for Connected Thermostats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotondo, Julia; Johnson, Robert; Gonzalez, Nancy

    This paper is intended to help inform future technology deployment opportunities for connected thermostats (CTs), based on investigation and review of the U.S. residential housing and CT markets, as well as existing, emerging, and future use cases for CT hardware and CT-generated data. The CT market has experienced tremendous growth over the last 5 years—both in terms of the number of units sold and the number of firms offering competing products—and can be characterized by its rapid pace of technological innovation. Despite many assuming CTs would become powerful tools for increasing comfort while saving energy, there remains a great dealmore » of uncertainty about the actual energy and cost savings that are likely to be realized from deployment of CTs, particularly under different conditions.« less

  12. Explicit methods in extended phase space for inseparable Hamiltonian problems

    NASA Astrophysics Data System (ADS)

    Pihajoki, Pauli

    2015-03-01

    We present a method for explicit leapfrog integration of inseparable Hamiltonian systems by means of an extended phase space. A suitably defined new Hamiltonian on the extended phase space leads to equations of motion that can be numerically integrated by standard symplectic leapfrog (splitting) methods. When the leapfrog is combined with coordinate mixing transformations, the resulting algorithm shows good long term stability and error behaviour. We extend the method to non-Hamiltonian problems as well, and investigate optimal methods of projecting the extended phase space back to original dimension. Finally, we apply the methods to a Hamiltonian problem of geodesics in a curved space, and a non-Hamiltonian problem of a forced non-linear oscillator. We compare the performance of the methods to a general purpose differential equation solver LSODE, and the implicit midpoint method, a symplectic one-step method. We find the extended phase space methods to compare favorably to both for the Hamiltonian problem, and to the implicit midpoint method in the case of the non-linear oscillator.

  13. NLO renormalization in the Hamiltonian truncation

    NASA Astrophysics Data System (ADS)

    Elias-Miró, Joan; Rychkov, Slava; Vitale, Lorenzo G.

    2017-09-01

    Hamiltonian truncation (also known as "truncated spectrum approach") is a numerical technique for solving strongly coupled quantum field theories, in which the full Hilbert space is truncated to a finite-dimensional low-energy subspace. The accuracy of the method is limited only by the available computational resources. The renormalization program improves the accuracy by carefully integrating out the high-energy states, instead of truncating them away. In this paper, we develop the most accurate ever variant of Hamiltonian Truncation, which implements renormalization at the cubic order in the interaction strength. The novel idea is to interpret the renormalization procedure as a result of integrating out exactly a certain class of high-energy "tail states." We demonstrate the power of the method with high-accuracy computations in the strongly coupled two-dimensional quartic scalar theory and benchmark it against other existing approaches. Our work will also be useful for the future goal of extending Hamiltonian truncation to higher spacetime dimensions.

  14. An algorithm for finding a similar subgraph of all Hamiltonian cycles

    NASA Astrophysics Data System (ADS)

    Wafdan, R.; Ihsan, M.; Suhaimi, D.

    2018-01-01

    This paper discusses an algorithm to find a similar subgraph called findSimSubG algorithm. A similar subgraph is a subgraph with a maximum number of edges, contains no isolated vertex and is contained in every Hamiltonian cycle of a Hamiltonian Graph. The algorithm runs only on Hamiltonian graphs with at least two Hamiltonian cycles. The algorithm works by examining whether the initial subgraph of the first Hamiltonian cycle is a subgraph of comparison graphs. If the initial subgraph is not in comparison graphs, the algorithm will remove edges and vertices of the initial subgraph that are not in comparison graphs. There are two main processes in the algorithm, changing Hamiltonian cycle into a cycle graph and removing edges and vertices of the initial subgraph that are not in comparison graphs. The findSimSubG algorithm can find the similar subgraph without using backtracking method. The similar subgraph cannot be found on certain graphs, such as an n-antiprism graph, complete bipartite graph, complete graph, 2n-crossed prism graph, n-crown graph, n-möbius ladder, prism graph, and wheel graph. The complexity of this algorithm is O(m|V|), where m is the number of Hamiltonian cycles and |V| is the number of vertices of a Hamiltonian graph.

  15. Hamiltonian description of closed configurations of the vacuum magnetic field

    NASA Astrophysics Data System (ADS)

    Skovoroda, A. A.

    2015-05-01

    Methods of obtaining and using the Hamiltonians of closed vacuum magnetic configurations of fusion research systems are reviewed. Various approaches to calculate the flux functions determining the Hamiltonian are discussed. It is shown that the Hamiltonian description allows one not only to reproduce all traditional results, but also to study the behavior of magnetic field lines by using the theory of dynamic systems. The potentialities of the Hamiltonian formalism and its close relation to traditional methods are demonstrated using a large number of classical examples adopted from the fundamental works by A.I. Morozov, L.S. Solov'ev, and V.D. Shafranov.

  16. Non-stoquastic Hamiltonians in quantum annealing via geometric phases

    NASA Astrophysics Data System (ADS)

    Vinci, Walter; Lidar, Daniel A.

    2017-09-01

    We argue that a complete description of quantum annealing implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan geometric phase that arises when the system Hamiltonian changes during the anneal. We show that this geometric effect leads to the appearance of non-stoquasticity in the effective quantum Ising Hamiltonians that are typically used to describe quantum annealing with flux qubits. We explicitly demonstrate the effect of this geometric non-stoquasticity when quantum annealing is performed with a system of one and two coupled flux qubits. The realization of non-stoquastic Hamiltonians has important implications from a computational complexity perspective, since it is believed that in many cases quantum annealing with stoquastic Hamiltonians can be efficiently simulated via classical algorithms such as Quantum Monte Carlo. It is well known that the direct implementation of non-stoquastic Hamiltonians with flux qubits is particularly challenging. Our results suggest an alternative path for the implementation of non-stoquasticity via geometric phases that can be exploited for computational purposes.

  17. Short-term effects of kinesio tape on joint position sense, isokinetic measurements, and clinical parameters in patellofemoral pain syndrome

    PubMed Central

    Kurt, Emine Eda; Büyükturan, Öznur; Erdem, Hatice Rana; Tuncay, Figen; Sezgin, Hicabi

    2016-01-01

    [Purpose] To evaluate the short-term effects of kinesio tape on joint position sense, isokinetic measurements, kinesiophobia, symptoms, and functional limitations in patients with patellofemoral pain syndrome. [Subjects and Methods] A total of 90 patients (112 knees) with patellofemoral pain syndrome were randomized into a kinesio tape group (n=45) or placebo kinesio tape group (n=45). Baseline isokinetic quadriceps muscle tests and measurements of joint position sense were performed in both groups. Pain was measured with a Visual Analog Scale, kinesiophobia with the Tampa kinesiophobia scale, and symptoms and functional limitations with the Kujala pain scale. Measurements were repeated 2 days after kinesio tape application. [Results] No differences were found between baseline isokinetic muscle measurements and those taken 2 days after application. However, significant improvements were observed in the kinesio tape group, with regard to joint position sense, pain, kinesiophobia, symptoms, and functional limitations after treatment. Examination of the differences between pre- and post-treatment values in both groups revealed that the kinesio tape group demonstrated greater improvements compared to the placebo kinesio tape group. [Conclusion] Although short-term kinesio tape application did not increase hamstring muscle strength, it may have improved joint position sense, pain, kinesiophobia, symptoms, and daily limitations. PMID:27512259

  18. An electromechanical Ising Hamiltonian

    PubMed Central

    Mahboob, Imran; Okamoto, Hajime; Yamaguchi, Hiroshi

    2016-01-01

    Solving intractable mathematical problems in simulators composed of atoms, ions, photons, or electrons has recently emerged as a subject of intense interest. We extend this concept to phonons that are localized in spectrally pure resonances in an electromechanical system that enables their interactions to be exquisitely fashioned via electrical means. We harness this platform to emulate the Ising Hamiltonian whose spin 1/2 particles are replicated by the phase bistable vibrations from the parametric resonances of multiple modes. The coupling between the mechanical spins is created by generating two-mode squeezed states, which impart correlations between modes that can imitate a random, ferromagnetic state or an antiferromagnetic state on demand. These results suggest that an electromechanical simulator could be built for the Ising Hamiltonian in a nontrivial configuration, namely, for a large number of spins with multiple degrees of coupling. PMID:28861469

  19. An electromechanical Ising Hamiltonian.

    PubMed

    Mahboob, Imran; Okamoto, Hajime; Yamaguchi, Hiroshi

    2016-06-01

    Solving intractable mathematical problems in simulators composed of atoms, ions, photons, or electrons has recently emerged as a subject of intense interest. We extend this concept to phonons that are localized in spectrally pure resonances in an electromechanical system that enables their interactions to be exquisitely fashioned via electrical means. We harness this platform to emulate the Ising Hamiltonian whose spin 1/2 particles are replicated by the phase bistable vibrations from the parametric resonances of multiple modes. The coupling between the mechanical spins is created by generating two-mode squeezed states, which impart correlations between modes that can imitate a random, ferromagnetic state or an antiferromagnetic state on demand. These results suggest that an electromechanical simulator could be built for the Ising Hamiltonian in a nontrivial configuration, namely, for a large number of spins with multiple degrees of coupling.

  20. The Artificial Hamiltonian, First Integrals, and Closed-Form Solutions of Dynamical Systems for Epidemics

    NASA Astrophysics Data System (ADS)

    Naz, Rehana; Naeem, Imran

    2018-03-01

    The non-standard Hamiltonian system, also referred to as a partial Hamiltonian system in the literature, of the form {\\dot q^i} = {partial H}/{partial {p_i}},\\dot p^i = - {partial H}/{partial {q_i}} + {Γ ^i}(t,{q^i},{p_i}) appears widely in economics, physics, mechanics, and other fields. The non-standard (partial) Hamiltonian systems arise from physical Hamiltonian structures as well as from artificial Hamiltonian structures. We introduce the term `artificial Hamiltonian' for the Hamiltonian of a model having no physical structure. We provide here explicitly the notion of an artificial Hamiltonian for dynamical systems of ordinary differential equations (ODEs). Also, we show that every system of second-order ODEs can be expressed as a non-standard (partial) Hamiltonian system of first-order ODEs by introducing an artificial Hamiltonian. This notion of an artificial Hamiltonian gives a new way to solve dynamical systems of first-order ODEs and systems of second-order ODEs that can be expressed as a non-standard (partial) Hamiltonian system by using the known techniques applicable to the non-standard Hamiltonian systems. We employ the proposed notion to solve dynamical systems of first-order ODEs arising in epidemics.

  1. Boson Hamiltonians and stochasticity for the vorticity equation

    NASA Technical Reports Server (NTRS)

    Shen, Hubert H.

    1990-01-01

    The evolution of the vorticity in time for two-dimensional inviscid flow and in Lagrangian time for three-dimensional viscous flow is written in Hamiltonian form by introducing Bose operators. The addition of the viscous and convective terms, respectively, leads to an interpretation of the Hamiltonian contribution to the evolution as Langevin noise.

  2. Influence of Isokinetic Strength Training of Unilateral Ankle on Ipsilateral One-legged Standing Balance of Adults

    PubMed Central

    Son, Sung Min; Kang, Kyung Woo; Lee, Na Kyung; Nam, Seok Hyun; Kwon, Jung Won; Kim, Kyoung

    2013-01-01

    [Purpose] The purpose of the current study was to investigate the changes in one-legged standing balance of the ipsilateral lower limb following unilateral isokinetic strength training. [Subjects and Methods] Thirty healthy adult volunteers were randomly assigned to either a training group or a control group, so that each group included 15 subjects. Subjects in the training group performed unilateral ankle isokinetic exercises of the dominant leg using the Biodex 3 PRO System for a period of four weeks. Ipsilateral one-legged standing balance was evaluated before and after the intervention with three stability indexes of balance using the Biodex System: Anterior-Posterior Stability Index (APSI), Medial-Lateral Stability Index (MLSI), and Overall Stability Index (OSI). [Results] Comparison of pre- and post-test data revealed significant improvements in strength values (dorsiflexion, plantarflexion, eversion, and inversion) and stability indexes (APSI, MLSI, OSI). [Conclusion] These results suggest that ankle strengthening exercise can be considered as a form of exercise that may assist individuals with improvement of balance. PMID:24259783

  3. Nonunitary quantum computation in the ground space of local Hamiltonians

    NASA Astrophysics Data System (ADS)

    Usher, Naïri; Hoban, Matty J.; Browne, Dan E.

    2017-09-01

    A central result in the study of quantum Hamiltonian complexity is that the k -local Hamiltonian problem is quantum-Merlin-Arthur-complete. In that problem, we must decide if the lowest eigenvalue of a Hamiltonian is bounded below some value, or above another, promised one of these is true. Given the ground state of the Hamiltonian, a quantum computer can determine this question, even if the ground state itself may not be efficiently quantum preparable. Kitaev's proof of QMA-completeness encodes a unitary quantum circuit in QMA into the ground space of a Hamiltonian. However, we now have quantum computing models based on measurement instead of unitary evolution; furthermore, we can use postselected measurement as an additional computational tool. In this work, we generalize Kitaev's construction to allow for nonunitary evolution including postselection. Furthermore, we consider a type of postselection under which the construction is consistent, which we call tame postselection. We consider the computational complexity consequences of this construction and then consider how the probability of an event upon which we are postselecting affects the gap between the ground-state energy and the energy of the first excited state of its corresponding Hamiltonian. We provide numerical evidence that the two are not immediately related by giving a family of circuits where the probability of an event upon which we postselect is exponentially small, but the gap in the energy levels of the Hamiltonian decreases as a polynomial.

  4. Do isokinetic angular velocity and contraction types affect the predictors of different anaerobic power tests?

    PubMed

    Yapici, Aysegul; Findikoglu, Gulin; Dundar, Ugur

    2016-04-01

    The purpose of this study was to investigate the most important predictor isokinetic muscle strength determined by different angular velocities and contraction types (i.e. concentric and eccentric) for selected anaerobic power tests in volleyball players. Twenty male and ten female amateur volleyball players participated in this study. Selected anaerobic power tests included Wingate Anaerobic Test (WAnT), squat jump (SJ) and countermovement jump (CMJ). Peak torque values were obtained at 60, 120, 240˚/s for concentric contraction of quadriceps (Qconc) and Hamstring (Hconc) and at 60˚/s for eccentric contraction of quadriceps (Qecc) and Hconc. Moderate to good correlations (r:0.409 to r:0.887) were found between anaerobic tests and isokinetic data including peak torque and total work of both Hconc and Qconc at 60, 120, 240°/s and Qecc at 60°/s (P<0.05). Qconc measured at each of 60, 120, 240°/s was found to be the only significant predictor for anaerobic tests in linear regression models (P<0.05). Correlation coefficient s for Qconc increased with increasing velocity for each of the anaerobic tests. Correlation coefficient of Qconc was highest for CMJ followed by SJ and WAnT at the same angular velocity. As a distinctive feature, both Qecc and Hconc at 60˚/s were significantly predictors for CMJ and SJ. Qconc peak torque was the single significant predictor for WAnT, SJ and CMJ and strength of the relation increases with increasing angular velocity. However, both Qecc and Hconc were significant indicators for CMJ and SJ. Training with higher isokinetic angular velocities and with eccentric contraction is desirable in a training program that has a goal of improving anaerobic performance in volleyball players.

  5. Multi-Hamiltonian structure of the Born-Infeld equation

    NASA Astrophysics Data System (ADS)

    Arik, Metin; Neyzi, Fahrünisa; Nutku, Yavuz; Olver, Peter J.; Verosky, John M.

    1989-06-01

    The multi-Hamiltonian structure, conservation laws, and higher order symmetries for the Born-Infeld equation are exhibited. A new transformation of the Born-Infeld equation to the equations of a Chaplygin gas is presented and explored. The Born-Infeld equation is distinguished among two-dimensional hyperbolic systems by its wealth of such multi-Hamiltonian structures.

  6. The Advantages of Normalizing Electromyography to Ballistic Rather than Isometric or Isokinetic Tasks.

    PubMed

    Suydam, Stephen M; Manal, Kurt; Buchanan, Thomas S

    2017-07-01

    Isometric tasks have been a standard for electromyography (EMG) normalization stemming from anatomic and physiologic stability observed during contraction. Ballistic dynamic tasks have the benefit of eliciting maximum EMG signals for normalization, despite having the potential for greater signal variability. It is the purpose of this study to compare maximum voluntary isometric contraction (MVIC) to nonisometric tasks with increasing degrees of extrinsic variability, ie, joint range of motion, velocity, rate of contraction, etc., to determine if the ballistic tasks, which elicit larger peak EMG signals, are more reliable than the constrained MVIC. Fifteen subjects performed MVIC, isokinetic, maximum countermovement jump, and sprint tasks while EMG was collected from 9 muscles in the quadriceps, hamstrings, and lower leg. The results revealed the unconstrained ballistic tasks were more reliable compared to the constrained MVIC and isokinetic tasks for all triceps surae muscles. The EMG from sprinting was more reliable than the constrained cases for both the hamstrings and vasti. The most reliable EMG signals occurred when the body was permitted its natural, unconstrained motion. These results suggest that EMG is best normalized using ballistic tasks to provide the greatest within-subject reliability, which beneficially yield maximum EMG values.

  7. Dynamics of muscle strength improvement during isokinetic rehabilitation of athletes with ACL rupture and chondromalacia patellae.

    PubMed

    Desnica Bakrac, N

    2003-03-01

    To assess quantitatively dynamics and extent of the increase in muscle strength during isokinetic rehabilitation. daily measurements of muscle strength; detailed testing at the beginning and at the end of rehabilitation. Cybex Rehabilitation Center, Zagreb. 44 athletes (31 m, 13 F, age 16-35), 3 injury-defined groups: athletes with ACL rupture (non-reconstructed and reconstructed) and chondromalacia patellae. all subjects underwent isokinetic rehabilitation on Cybex Orthotron KT2 device, using individually designed protocols (extension and flexion exercises, concentric muscle contractions, 15 treatments). monitoring of daily progress on rehabilitation device and detailed testing on diagnostic device. All patients showed considerable improvement. Muscle strength improved on average 141% (SD=110) in ACL-reconstructed group, 144% (SD=130) for chondromalacia patellae group and 150% (SD=74) for ACL-non-reconstructed group, comparing to initial strength. Dynamic status tested on Cybex Otrhotron diagnostic device prior and after rehabilitation strongly correlated with final progress monitored on the rehabilitation device. Isokinetic rehabilitation is a quick and effective method in treating knee injuries in athletes. Both types of objective criteria have shown significant increase in muscle strength. The improvement of muscle strength was on the average 149% (SD=101), which is about 10% daily for 15 treatments. The greatest progress, 19% per day, occurred during first five days. The athletes were able to resume their sport activities as follows: patients from chondromalacia patellae group, and most of them from the non-reconstructed ACL group were back in competition within a month, while 75% from the ACL reconstructed group came back within 3 months, and the rest of them within 5 months.

  8. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity

    NASA Astrophysics Data System (ADS)

    Bridges, Thomas J.; Reich, Sebastian

    2001-06-01

    The symplectic numerical integration of finite-dimensional Hamiltonian systems is a well established subject and has led to a deeper understanding of existing methods as well as to the development of new very efficient and accurate schemes, e.g., for rigid body, constrained, and molecular dynamics. The numerical integration of infinite-dimensional Hamiltonian systems or Hamiltonian PDEs is much less explored. In this Letter, we suggest a new theoretical framework for generalizing symplectic numerical integrators for ODEs to Hamiltonian PDEs in R2: time plus one space dimension. The central idea is that symplecticity for Hamiltonian PDEs is directional: the symplectic structure of the PDE is decomposed into distinct components representing space and time independently. In this setting PDE integrators can be constructed by concatenating uni-directional ODE symplectic integrators. This suggests a natural definition of multi-symplectic integrator as a discretization that conserves a discrete version of the conservation of symplecticity for Hamiltonian PDEs. We show that this approach leads to a general framework for geometric numerical schemes for Hamiltonian PDEs, which have remarkable energy and momentum conservation properties. Generalizations, including development of higher-order methods, application to the Euler equations in fluid mechanics, application to perturbed systems, and extension to more than one space dimension are also discussed.

  9. On a new class of completely integrable nonlinear wave equations. II. Multi-Hamiltonian structure

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1987-11-01

    The multi-Hamiltonian structure of a class of nonlinear wave equations governing the propagation of finite amplitude waves is discussed. Infinitely many conservation laws had earlier been obtained for these equations. Starting from a (primary) Hamiltonian formulation of these equations the necessary and sufficient conditions for the existence of bi-Hamiltonian structure are obtained and it is shown that the second Hamiltonian operator can be constructed solely through a knowledge of the first Hamiltonian function. The recursion operator which first appears at the level of bi-Hamiltonian structure gives rise to an infinite sequence of conserved Hamiltonians. It is found that in general there exist two different infinite sequences of conserved quantities for these equations. The recursion relation defining higher Hamiltonian structures enables one to obtain the necessary and sufficient conditions for the existence of the (k+1)st Hamiltonian operator which depends on the kth Hamiltonian function. The infinite sequence of conserved Hamiltonians are common to all the higher Hamiltonian structures. The equations of gas dynamics are discussed as an illustration of this formalism and it is shown that in general they admit tri-Hamiltonian structure with two distinct infinite sets of conserved quantities. The isothermal case of γ=1 is an exceptional one that requires separate treatment. This corresponds to a specialization of the equations governing the expansion of plasma into vacuum which will be shown to be equivalent to Poisson's equation in nonlinear acoustics.

  10. Hamiltonian thermodynamics of three-dimensional dilatonic black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dias, Goncalo A. S.; Lemos, Jose P. S.

    2008-08-15

    The action for a class of three-dimensional dilaton-gravity theories with a negative cosmological constant can be recast in a Brans-Dicke type action, with its free {omega} parameter. These theories have static spherically symmetric black holes. Those with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found out. The theories studied are general relativity ({omega}{yields}{infinity}), a dimensionally reduced cylindrical four-dimensional general relativity theory ({omega}=0), and a theory representing a class of theories ({omega}=-3). The Hamiltonian formalism is set up in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcationmore » 1-sphere as the left boundary, and anti-de Sitter infinity as the right boundary. The metric functions on the foliated hypersurfaces are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unconstrained theory with one pair of canonical coordinates (M,P{sub M}), M being the mass parameter and P{sub M} its conjugate momenta The resulting Hamiltonian is a sum of boundary terms only. A quantization of the theory is performed. The Schroedinger evolution operator is constructed, the trace is taken, and the partition function of the canonical ensemble is obtained. The black hole entropies differ, in general, from the usual quarter of the horizon area due to the dilaton.« less

  11. Exploring Hamiltonian dielectric solvent molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bauer, Sebastian; Tavan, Paul; Mathias, Gerald

    2014-09-01

    Hamiltonian dielectric solvent (HADES) is a recent method [7,25], which enables Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric continua. Sample simulations of an α-helical decapeptide with and without explicit solvent demonstrate the high efficiency of HADES-MD. Addressing the folding of this peptide by replica exchange MD we study the properties of HADES by comparing melting curves, secondary structure motifs and salt bridges with explicit solvent results. Despite the unoptimized ad hoc parametrization of HADES, calculated reaction field energies correlate well with numerical grid solutions of the dielectric Poisson equation.

  12. Hamiltonian dynamics for complex food webs

    NASA Astrophysics Data System (ADS)

    Kozlov, Vladimir; Vakulenko, Sergey; Wennergren, Uno

    2016-03-01

    We investigate stability and dynamics of large ecological networks by introducing classical methods of dynamical system theory from physics, including Hamiltonian and averaging methods. Our analysis exploits the topological structure of the network, namely the existence of strongly connected nodes (hubs) in the networks. We reveal new relations between topology, interaction structure, and network dynamics. We describe mechanisms of catastrophic phenomena leading to sharp changes of dynamics and hence completely altering the ecosystem. We also show how these phenomena depend on the structure of interaction between species. We can conclude that a Hamiltonian structure of biological interactions leads to stability and large biodiversity.

  13. Validation of a Compact Isokinetic Total Water Content Probe for Wind Tunnel Characterization at NASA Glenn Icing Research Tunnel and at NRC Ice Crystal Tunnel

    NASA Technical Reports Server (NTRS)

    Davison, Craig R.; Landreville, Charles; Ratvasky, Thomas P.

    2017-01-01

    A new compact isokinetic probe to measure total water content in a wind tunnel environment has been developed. The probe has been previously tested under altitude conditions. This paper presents a comprehensive validation of the probe under a range of liquid water conditions at sea level in the NASA Glenn Icing Research Tunnel and with ice crystals at sea level at the NRC wind tunnel. The compact isokinetic probe is compared to tunnel calibrations and other probes.

  14. Hamiltonian Analysis of Subcritical Stochastic Epidemic Dynamics

    PubMed Central

    2017-01-01

    We extend a technique of approximation of the long-term behavior of a supercritical stochastic epidemic model, using the WKB approximation and a Hamiltonian phase space, to the subcritical case. The limiting behavior of the model and approximation are qualitatively different in the subcritical case, requiring a novel analysis of the limiting behavior of the Hamiltonian system away from its deterministic subsystem. This yields a novel, general technique of approximation of the quasistationary distribution of stochastic epidemic and birth-death models and may lead to techniques for analysis of these models beyond the quasistationary distribution. For a classic SIS model, the approximation found for the quasistationary distribution is very similar to published approximations but not identical. For a birth-death process without depletion of susceptibles, the approximation is exact. Dynamics on the phase plane similar to those predicted by the Hamiltonian analysis are demonstrated in cross-sectional data from trachoma treatment trials in Ethiopia, in which declining prevalences are consistent with subcritical epidemic dynamics. PMID:28932256

  15. Potentials of Mean Force With Ab Initio Mixed Hamiltonian Models of Solvation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupuis, Michel; Schenter, Gregory K.; Garrett, Bruce C.

    2003-08-01

    We give an account of a computationally tractable and efficient procedure for the calculation of potentials of mean force using mixed Hamiltonian models of electronic structure where quantum subsystems are described with computationally intensive ab initio wavefunctions. The mixed Hamiltonian is mapped into an all-classical Hamiltonian that is amenable to a thermodynamic perturbation treatment for the calculation of free energies. A small number of statistically uncorrelated (solute-solvent) configurations are selected from the Monte Carlo random walk generated with the all-classical Hamiltonian approximation. Those are used in the averaging of the free energy using the mixed quantum/classical Hamiltonian. The methodology ismore » illustrated for the micro-solvated SN2 substitution reaction of methyl chloride by hydroxide. We also compare the potential of mean force calculated with the above protocol with an approximate formalism, one in which the potential of mean force calculated with the all-classical Hamiltonian is simply added to the energy of the isolated (non-solvated) solute along the reaction path. Interestingly the latter approach is found to be in semi-quantitative agreement with the full mixed Hamiltonian approximation.« less

  16. Is the addition of an assisted driving Hamiltonian always useful for adiabatic evolution?

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Lu, Songfeng; Li, Li

    2017-04-01

    It has been known that when an assisted driving item is added to the main system Hamiltonian, the efficiency of the resultant adiabatic evolution can be significantly improved. In some special cases, it can be seen that only through adding an assisted driving Hamiltonian can the resulting adiabatic evolution be made not to fail. Thus the additional driving Hamiltonian plays an important role in adiabatic computing. In this paper, we show that if the driving Hamiltonian is chosen inappropriately, the adiabatic computation may still fail. More importantly, we find that the adiabatic computation can only succeed if the assisted driving Hamiltonian has a relatively fixed form. This may help us understand why in the related literature all of the driving Hamiltonians used share the same form.

  17. [Correlation of age, IGF-1 serum levels, muscular mass index and their influence as determinants of isokinetic variables in patients with osteoporosis].

    PubMed

    Coronado-Zarco, Roberto; Diez-García, María del Pilar; Chávez-Arias, Daniel; León-Hernández, Saúl Renán; Cruz-Medina, Eva; Arellano-Hernández, Aurelia

    2005-01-01

    Bone and skeletal muscle mass loss is related to age. Mechanisms by which they interact have not been well established. To establish a relationship of age with serum levels of IGF-1, skeletal muscle and appendicular muscle mass index, and their influence in isokinetic parameters in osteoporotic female patients. Pearson correlation coefficient and linear regression analyses were used. There were 38 patients with a mean age of 65.16 years (range: 50-84 years), mean appendicular skeletal mass index (ASMI) of 6.3 kg/m2 (range: 4.3-8.3) and mean skeletal mass index (SMI) of 12.4 kg/m2 (range: 9.6-15.7), mean serum IGF-1 levels of 82.97 ng/ml (range: 22-177). Linear regression predicted hip mineral bone density by SMI (p = 0.19) and age (p = 0.017, r = 0.50). Some isokinetic parameters had a positive correlation for work with age. Knee acceleration time had a positive correlation with age. Osteoporosis and sarcopenia may have related pathophysiologic mechanisms. Growth factor study must include the influence of sex hormones. Some isokinetic parameters are determined by the predominant muscle fiber, skeletal mass index and age.

  18. Comparison of whole-body vibration exercise and plyometric exercise to improve isokinetic muscular strength, jumping performance and balance of female volleyball players

    PubMed Central

    Kim, Yong-Youn; Park, Si-Eun

    2016-01-01

    [Purpose] The purpose of this study was to assess the effect of whole-body vibration exercise and plyometric exercise on female volleyball players. [Subjects and Methods] Subjects were randomly allocated to two exercise groups (whole-body vibration exercise group and plyometric exercise group). The exercise was conducted three times each week for 8 weeks. Isokinetic muscular strength, jumping performance, and balance were measured before starting the exercise and after finishing the 8 weeks of exercise. [Results] Measurements of isokinetic muscular strength revealed that the whole-body vibration exercise group showed significant increase after the exercise. However, the plyometric exercise group had no significant increase in lumbar flexion, extension, and knee flexion. Measurements of vertical jumping revealed that, the whole-body vibration exercise group had no significant increase after the exercise. However, the plyometric exercise group showed significant increase. Measurements of balance revealed that, the whole-body vibration exercise group showed significant increase. However, the plyometric exercise group showed no significant increase. [Conclusion] Although both whole-body vibration and plyometric exercises are effective intervention methods, the two methods have different effects on the improvement of isokinetic muscular strength, jumping performance, and balance of female volleyball players. PMID:27942136

  19. Comparison of whole-body vibration exercise and plyometric exercise to improve isokinetic muscular strength, jumping performance and balance of female volleyball players.

    PubMed

    Kim, Yong-Youn; Park, Si-Eun

    2016-11-01

    [Purpose] The purpose of this study was to assess the effect of whole-body vibration exercise and plyometric exercise on female volleyball players. [Subjects and Methods] Subjects were randomly allocated to two exercise groups (whole-body vibration exercise group and plyometric exercise group). The exercise was conducted three times each week for 8 weeks. Isokinetic muscular strength, jumping performance, and balance were measured before starting the exercise and after finishing the 8 weeks of exercise. [Results] Measurements of isokinetic muscular strength revealed that the whole-body vibration exercise group showed significant increase after the exercise. However, the plyometric exercise group had no significant increase in lumbar flexion, extension, and knee flexion. Measurements of vertical jumping revealed that, the whole-body vibration exercise group had no significant increase after the exercise. However, the plyometric exercise group showed significant increase. Measurements of balance revealed that, the whole-body vibration exercise group showed significant increase. However, the plyometric exercise group showed no significant increase. [Conclusion] Although both whole-body vibration and plyometric exercises are effective intervention methods, the two methods have different effects on the improvement of isokinetic muscular strength, jumping performance, and balance of female volleyball players.

  20. ARE THERE DIFFERENCES IN STRENGTH TESTS USING ISOKINETIC DYNAMOMETRY BETWEEN FIELD AND INDOOR PROFESSIONAL SOCCER PLAYERS?

    PubMed Central

    de Aguiar Leonardi, Adriano Barros; Martinelli, Mauro Olivio; Junior, Aires Duarte

    2015-01-01

    Objective: The objective of this study was to conduct a comparative analysis on isokinetic strength assessments between field and indoor male professional soccer players and correlate the findings with the higher levels of injury risk described in the literature. Methods: We analyzed 16 field soccer players and 15 indoor soccer players. All these professionals were male. Isokinetic muscle strength assessments were made on their knees. Results: The mean weight was 81.81 kg for field soccer and 80.33 kg for indoor soccer. The right and left peak extensor torque left and right for field soccer and indoor soccer were, respectively, 302.50 and 313.31 Nm and 265.20 and 279.80 Nm, and for flexors, 178 and 184.88 Nm and 158.27 and 154 Nm. The peak torque rates according to body weight for the left and right extensors for field soccer and indoor soccer were, respectively, 3.84 and 3.7 Nm/kg and 3.32 and 3.52 Nm/kg, and for flexors, 2.17 and 2.26 Nm/kg and 1.98 and 1.93 Nm/kg. The balance relationships between flexors and extensors on the right and left sides for field soccer and indoor soccer were, respectively, 59.81 and 59.44% and 60.47% and 54.80%. The relationships for extensors between the right and left sides for field soccer and indoor soccer were, respectively, 11.44 and 9.20%, and for the flexors, 7.31 and 8.80%. Conclusions: In accordance with international parameters, comparative analysis on isokinetic strength assessments between field and indoor male professional soccer players before the season showed that there was muscle balance and low probability of injury. There were no statistically significant differences in the parameters analyzed between the players of the two types of soccer. PMID:27042649

  1. Isokinetic hamstrings-to-quadriceps peak torque ratio: the influence of sport modality, gender, and angular velocity.

    PubMed

    Andrade, Marilia Dos Santos; De Lira, Claudio Andre Barbosa; Koffes, Fabiana De Carvalho; Mascarin, Naryana Cristina; Benedito-Silva, Ana Amélia; Da Silva, Antonio Carlos

    2012-01-01

    The purpose of this study was to determine differences in hamstrings-to-quadriceps (H/Q) peak torque ratios evaluated at different angular velocities between men and women who participate in judo, handball or soccer. A total of 166 athletes, including 58 judokas (26 females and 32 males), 39 handball players (22 females and 17 males), and 69 soccer players (17 females and 52 males), were evaluated using an isokinetic dynamometer. The H/Q isokinetic peak torque ratios were calculated at angular velocities of 1.05 rad · s⁻¹ and 5.23 rad · s⁻¹. In the analysis by gender, female soccer players produced lower H/Q peak torque ratios at 1.05 rad · s⁻¹ than males involved in the same sport. However, when H/Q peak torque ratio was assessed at 5.23 rad · s⁻¹, there were no significant differences between the sexes. In the analysis by sport, there were no differences among females at 1.05 rad · s⁻¹. In contrast, male soccer players had significantly higher H/Q peak torque ratios than judokas (66 ± 12% vs. 57 ± 14%, respectively). Female handball players produced significantly lower peak torque ratios at 5.23 rad · s⁻¹ than judokas or soccer players, whereas males presented no ratio differences among sports At 5.23 rad · s⁻¹. In the analysis by velocity, women's muscular ratios assessed at 1.05 rad · s⁻¹ were significantly lower than at 5.23 rad · s⁻¹ for all sports; among men, only judokas presented lower ratios at 1.05 rad · s⁻¹ than at 5.23 rad · s⁻¹. The present results suggest that sport modality and angular velocity influence the isokinetic strength profiles of men and women.

  2. Phase space flows for non-Hamiltonian systems with constraints

    NASA Astrophysics Data System (ADS)

    Sergi, Alessandro

    2005-09-01

    In this paper, non-Hamiltonian systems with holonomic constraints are treated by a generalization of Dirac’s formalism. Non-Hamiltonian phase space flows can be described by generalized antisymmetric brackets or by general Liouville operators which cannot be derived from brackets. Both situations are treated. In the first case, a Nosé-Dirac bracket is introduced as an example. In the second one, Dirac’s recipe for projecting out constrained variables from time translation operators is generalized and then applied to non-Hamiltonian linear response. Dirac’s formalism avoids spurious terms in the response function of constrained systems. However, corrections coming from phase space measure must be considered for general perturbations.

  3. Effects of Static and Dynamic Stretching on the Isokinetic Peak Torques and Electromyographic Activities of the Antagonist Muscles

    PubMed Central

    Serefoglu, Abdullah; Sekir, Ufuk; Gür, Hakan; Akova, Bedrettin

    2017-01-01

    The aim of this study was to investigate if static and dynamic stretching exercises of the knee muscles (quadriceps and hamstring muscles) have any effects on concentric and eccentric isokinetic peak torques and electromyographic amplitudes (EMG) of the antagonist muscles. Twenty healthy male athletes (age between 18-30 years) voluntarily participated in this study. All of the subjects visited the laboratory to complete the following intervention in a randomized order on 5 separate days; (a) non-stretching (control), (b) static stretching of the quadriceps muscles, (c) static stretching of the hamstring muscles, (d) dynamic stretching of the quadriceps muscles, and (e) dynamic stretching of the hamstring muscles. Static stretching exercises either for the quadriceps or the hamstring muscles were carried out at the standing and sitting positions. Subjects performed four successive repetitions of each stretching exercises for 30 seconds in both stretching positions. Similar to static stretching exercises two different stretching modes were designed for dynamic stretching exercises. Concentric and eccentric isokinetic peak torque for the non-stretched antagonist quadriceps or hamstring muscles at angular velocities of 60°/sec and 240°/sec and their concurrent electromyographic (EMG) activities were measured before and immediately after the intervention. Isokinetic peak torques of the non-stretched agonist hamstring and quadriceps muscles did not represent any significant (p > 0.05) differences following static and dynamic stretching of the antagonist quadriceps and hamstring muscles, respectively. Similarly, the EMG activities of the agonist muscles exhibited no significant alterations (p > 0.05) following both stretching exercises of the antagonist muscles. According to the results of the present study it is possible to state that antagonist stretching exercises either in the static or dynamic modes do not affect the isokinetic peak torques and the EMG activities

  4. Comparison of isokinetic muscle strength and muscle power by types of warm-up.

    PubMed

    Sim, Young-Je; Byun, Yong-Hyun; Yoo, Jaehyun

    2015-05-01

    [Purpose] The purpose of this study was to clarify the influence of static stretching at warm-up on the isokinetic muscle torque (at 60°/sec) and muscle power (at 180°/sec) of the flexor muscle and extensor muscle of the knee joint. [Subjects and Methods] The subjects of this study were 10 healthy students with no medically specific findings. The warm-up group and warm-up with stretching group performed their respective warm-up prior to the isokinetic muscle torque evaluation of the knee joint. One-way ANOVA was performed by randomized block design for each variable. [Results] The results were as follows: First, the flexor peak torque and extensor peak torque of the knee joint tended to decrease at 60°/sec in the warm-up with stretching group compared with the control group and warm-up group, but without statistical significance. Second, extensor power at 180°/sec was also not statistically significant. However, it was found that flexor power increased significantly in the warm-up with stretching group at 180°/sec compared with the control group and warm-up group in which stretching was not performed. [Conclusion] Therefore, it is considered that in healthy adults, warm-up including two sets of stretching for 20 seconds per muscle group does not decrease muscle strength and muscle power.

  5. Effects of lower extremity injuries on aerobic exercise capacity, anaerobic power, and knee isokinetic muscular function in high school soccer players.

    PubMed

    Ko, Kwang-Jun; Ha, Gi-Chul; Kim, Dong-Woo; Kang, Seol-Jung

    2017-10-01

    [Purpose] The study investigated the effects of lower extremity injuries on aerobic exercise capacity, anaerobic power, and knee isokinetic muscular function in high school soccer players. [Subjects and Methods] The study assessed U High School soccer players (n=40) in S area, South Korea, divided into 2 groups: a lower extremity injury group (n=16) comprising those with knee and ankle injuries and a control group (n=24) without injury. Aerobic exercise capacity, anaerobic power, and knee isokinetic muscular function were compared and analyzed. [Results] Regarding the aerobic exercise capacity test, significant differences were observed in maximal oxygen uptake and anaerobic threshold between both groups. For the anaerobic power test, no significant difference was observed in peak power and average power between the groups; however, a significant difference in fatigue index was noted. Regarding the knee isokinetic muscular test, no significant difference was noted in knee flexion, extension, and flexion/extension ratio between both groups. [Conclusion] Lower extremity injury was associated with reduced aerobic exercise capacity and a higher fatigue index with respect to anaerobic exercise capacity. Therefore, it seems necessary to establish post-injury training programs that improve aerobic and anaerobic exercise capacity for soccer players who experience lower extremity injury.

  6. An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation.

    PubMed

    Ilias, Miroslav; Saue, Trond

    2007-02-14

    The authors report the implementation of a simple one-step method for obtaining an infinite-order two-component (IOTC) relativistic Hamiltonian using matrix algebra. They apply the IOTC Hamiltonian to calculations of excitation and ionization energies as well as electric and magnetic properties of the radon atom. The results are compared to corresponding calculations using identical basis sets and based on the four-component Dirac-Coulomb Hamiltonian as well as Douglas-Kroll-Hess and zeroth-order regular approximation Hamiltonians, all implemented in the DIRAC program package, thus allowing a comprehensive comparison of relativistic Hamiltonians within the finite basis approximation.

  7. Hamiltonian structures for systems of hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Olver, Peter J.; Nutku, Yavuz

    1988-07-01

    The bi-Hamiltonian structure for a large class of one-dimensional hyberbolic systems of conservation laws in two field variables, including the equations of gas dynamics, shallow water waves, one-dimensional elastic media, and the Born-Infeld equation from nonlinear electrodynamics, is exhibited. For polytropic gas dynamics, these results lead to a quadri-Hamiltonian structure. New higher-order entropy-flux pairs (conservation laws) and higher-order symmetries are exhibited.

  8. R matrices of three-state Hamiltonians solvable by coordinate Bethe ansatz

    NASA Astrophysics Data System (ADS)

    Fonseca, T.; Frappat, L.; Ragoucy, E.

    2015-01-01

    We review some of the strategies that can be implemented to infer an R-matrix from the knowledge of its Hamiltonian. We apply them to the classification achieved in Crampé, Frappat, and Ragoucy, J. Phys. A 46, 405001 (2013), on three state U(1)-invariant Hamiltonians solvable by coordinate Bethe ansatz, focusing on models for which the S-matrix is not trivial. For the 19-vertex solutions, we recover the R-matrices of the well-known Zamolodchikov-Fateev and Izergin-Korepin models. We point out that the generalized Bariev Hamiltonian is related to both main and special branches studied by Martins in Nucl. Phys. B 874, 243 (2013), that we prove to generate the same Hamiltonian. The 19-vertex SpR model still resists to the analysis, although we are able to state some no-go theorems on its R-matrix. For 17-vertex Hamiltonians, we produce a new R-matrix.

  9. Dynamical tunneling versus fast diffusion for a non-convex Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pittman, S. M.; Tannenbaum, E.; Heller, E. J.

    This paper attempts to resolve the issue of the nature of the 0.01-0.1 cm{sup −1} peak splittings observed in high-resolution IR spectra of polyatomic molecules. One hypothesis is that these splittings are caused by dynamical tunneling, a quantum-mechanical phenomenon whereby energy flows between two disconnected regions of phase-space across dynamical barriers. However, a competing classical mechanism for energy flow is Arnol’d diffusion, which connects different regions of phase-space by a resonance network known as the Arnol’d web. The speed of diffusion is bounded by the Nekhoroshev theorem, which guarantees stability on exponentially long time scales if the Hamiltonian is steep.more » Here we consider a non-convex Hamiltonian that contains the characteristics of a molecular Hamiltonian, but does not satisfy the Nekhoroshev theorem. The diffusion along the Arnol’d web is expected to be fast for a non-convex Hamiltonian. While fast diffusion is an unlikely competitor for longtime energy flow in molecules, we show how dynamical tunneling dominates compared to fast diffusion in the nearly integrable regime for a non-convex Hamiltonian, as well as present a new kind of dynamical tunneling.« less

  10. Hamiltonian dynamics of extended objects

    NASA Astrophysics Data System (ADS)

    Capovilla, R.; Guven, J.; Rojas, E.

    2004-12-01

    We consider relativistic extended objects described by a reparametrization-invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behaviour under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory is described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations are shown to be consistent with the Euler Lagrange equations.

  11. Torque, power and muscle activation of eccentric and concentric isokinetic cycling.

    PubMed

    Green, David J; Thomas, Kevin; Ross, Emma Z; Green, Steven C; Pringle, Jamie S M; Howatson, Glyn

    2018-06-01

    This study aimed to establish the effect of cycling mode and cadence on torque, external power output, and lower limb muscle activation during maximal, recumbent, isokinetic cycling. After familiarisation, twelve healthy males completed 6 × 10 s of maximal eccentric (ECC) and concentric (CON) cycling at 20, 40, 60, 80, 100, and 120 rpm with five minutes recovery. Vastus lateralis, medial gastrocnemius, rectus femoris, and biceps femoris surface electromyography was recorded throughout. As cadence increased, peak torque linearly decreased during ECC (350-248 N·m) and CON (239-117 N·m) and peak power increased in a parabolic manner. Crank angle at peak torque increased with cadence in CON (+13°) and decreased in ECC (-9.0°). At all cadences, peak torque (mean +129 N·m, range 111-143 N·m), and power (mean +871 W, range 181-1406 W), were greater during ECC compared to CON. For all recorded muscles the crank angle at peak muscle activation was greater during ECC compared to CON. This difference increased with cadence in all muscles except the vastus lateralis. Additionally, peak vastus laterallis and biceps femoris activation was greater during CON compared to ECC. Eccentric cycling offers a greater mechanical stimulus compared to concentric cycling but the effect of cadence is similar between modalities. Markers of technique (muscle activation, crank angle at peak activation and torque) were different between eccentric and concentric cycling and respond differently to changes in cadence. Such data should be considered when comparing between, and selecting cadences for, recumbent, isokinetic, eccentric and concentric cycling. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  12. Comparison of basic physical fitness, aerobic capacity, and isokinetic strength between national and international level high school freestyle swimmers

    PubMed Central

    Bae, Young-Hyeon; Yu, Jae-Ho; Lee, Suk Min

    2016-01-01

    [Purpose] This study aimed to compare basic physical fitness, aerobic capacity, and isokinetic strength between international and national level freestyle high school student swimmers. [Subjects and Methods] A total of 28 participants (14 international level swimmers and 14 national level freestyle high school student swimmers) with no known pathology were included. We used a cross-sectional study to examine three variables: basic physical fitness, aerobic capacity, and isokinetic strength. [Results] The mean values of these variables in the international level swimmers were higher than those in the national level swimmers. Swimmers are generally physically fit with a good competition record. [Conclusion] An appropriate training program, which considers specific individual characteristics is likely to have a positive impact on the improvement of total physical fitness, and subsequently, on the performance of the freestyle high school swimmer. PMID:27134379

  13. On Market-Based Coordination of Thermostatically Controlled Loads With User Preference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sen; Zhang, Wei; Lian, Jianming

    2014-12-15

    This paper presents a market-based control framework to coordinate a group of autonomous Thermostatically Controlled Loads (TCL) to achieve the system-level objectives with pricing incentives. The problem is formulated as maximizing the social welfare subject to feeder power constraint. It allows the coordinator to affect the aggregated power of a group of dynamical systems, and creates an interactive market where the users and the coordinator cooperatively determine the optimal energy allocation and energy price. The optimal pricing strategy is derived, which maximizes social welfare while respecting the feeder power constraint. The bidding strategy is also designed to compute the optimalmore » price in real time (e.g., every 5 minutes) based on local device information. The coordination framework is validated with realistic simulations in GridLab-D. Extensive simulation results demonstrate that the proposed approach effectively maximizes the social welfare and decreases power congestion at key times.« less

  14. Cluster expansion for ground states of local Hamiltonians

    NASA Astrophysics Data System (ADS)

    Bastianello, Alvise; Sotiriadis, Spyros

    2016-08-01

    A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  15. Ensemble of Thermostatically Controlled Loads: Statistical Physics Approach.

    PubMed

    Chertkov, Michael; Chernyak, Vladimir

    2017-08-17

    Thermostatically controlled loads, e.g., air conditioners and heaters, are by far the most widespread consumers of electricity. Normally the devices are calibrated to provide the so-called bang-bang control - changing from on to off, and vice versa, depending on temperature. We considered aggregation of a large group of similar devices into a statistical ensemble, where the devices operate following the same dynamics, subject to stochastic perturbations and randomized, Poisson on/off switching policy. Using theoretical and computational tools of statistical physics, we analyzed how the ensemble relaxes to a stationary distribution and established a relationship between the relaxation and the statistics of the probability flux associated with devices' cycling in the mixed (discrete, switch on/off, and continuous temperature) phase space. This allowed us to derive the spectrum of the non-equilibrium (detailed balance broken) statistical system and uncover how switching policy affects oscillatory trends and the speed of the relaxation. Relaxation of the ensemble is of practical interest because it describes how the ensemble recovers from significant perturbations, e.g., forced temporary switching off aimed at utilizing the flexibility of the ensemble to provide "demand response" services to change consumption temporarily to balance a larger power grid. We discuss how the statistical analysis can guide further development of the emerging demand response technology.

  16. Ensemble of Thermostatically Controlled Loads: Statistical Physics Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chertkov, Michael; Chernyak, Vladimir

    Thermostatically Controlled Loads (TCL), e.g. air-conditioners and heaters, are by far the most wide-spread consumers of electricity. Normally the devices are calibrated to provide the so-called bang-bang control of temperature - changing from on to off , and vice versa, depending on temperature. Aggregation of a large group of similar devices into a statistical ensemble is considered, where the devices operate following the same dynamics subject to stochastic perturbations and randomized, Poisson on/off switching policy. We analyze, using theoretical and computational tools of statistical physics, how the ensemble relaxes to a stationary distribution and establish relation between the re- laxationmore » and statistics of the probability flux, associated with devices' cycling in the mixed (discrete, switch on/off , and continuous, temperature) phase space. This allowed us to derive and analyze spec- trum of the non-equilibrium (detailed balance broken) statistical system. and uncover how switching policy affects oscillatory trend and speed of the relaxation. Relaxation of the ensemble is of a practical interest because it describes how the ensemble recovers from significant perturbations, e.g. forceful temporary switching o aimed at utilizing flexibility of the ensemble in providing "demand response" services relieving consumption temporarily to balance larger power grid. We discuss how the statistical analysis can guide further development of the emerging demand response technology.« less

  17. Ensemble of Thermostatically Controlled Loads: Statistical Physics Approach

    DOE PAGES

    Chertkov, Michael; Chernyak, Vladimir

    2017-01-17

    Thermostatically Controlled Loads (TCL), e.g. air-conditioners and heaters, are by far the most wide-spread consumers of electricity. Normally the devices are calibrated to provide the so-called bang-bang control of temperature - changing from on to off , and vice versa, depending on temperature. Aggregation of a large group of similar devices into a statistical ensemble is considered, where the devices operate following the same dynamics subject to stochastic perturbations and randomized, Poisson on/off switching policy. We analyze, using theoretical and computational tools of statistical physics, how the ensemble relaxes to a stationary distribution and establish relation between the re- laxationmore » and statistics of the probability flux, associated with devices' cycling in the mixed (discrete, switch on/off , and continuous, temperature) phase space. This allowed us to derive and analyze spec- trum of the non-equilibrium (detailed balance broken) statistical system. and uncover how switching policy affects oscillatory trend and speed of the relaxation. Relaxation of the ensemble is of a practical interest because it describes how the ensemble recovers from significant perturbations, e.g. forceful temporary switching o aimed at utilizing flexibility of the ensemble in providing "demand response" services relieving consumption temporarily to balance larger power grid. We discuss how the statistical analysis can guide further development of the emerging demand response technology.« less

  18. Chaos, ergodic convergence, and fractal instability for a thermostated canonical harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Hoover, Wm. G.; Hoover, Carol G.; Isbister, Dennis J.

    2001-02-01

    The authors thermostat a qp harmonic oscillator using the two additional control variables ζ and ξ to simulate Gibbs' canonical distribution. In contrast to the motion of purely Hamiltonian systems, the thermostated oscillator motion is completely ergodic, covering the full four-dimensional \\{q,p,ζ,ξ\\} phase space. The local Lyapunov spectrum (instantaneous growth rates of a comoving corotating phase-space hypersphere) exhibits singularities like those found earlier for Hamiltonian chaos, reinforcing the notion that chaos requires kinetic-as opposed to statistical-study, both at and away from equilibrium. The exponent singularities appear to have a fractal character.

  19. A theorem about Hamiltonian systems.

    PubMed

    Case, K M

    1984-09-01

    A simple theorem in Hamiltonian mechanics is pointed out. One consequence is a generalization of the classical result that symmetries are generated by Poisson brackets of conserved functionals. General applications are discussed. Special emphasis is given to the Kadomtsev-Petviashvili equation.

  20. Isokinetic strength assessment offers limited predictive validity for detecting risk of future hamstring strain in sport: a systematic review and meta-analysis.

    PubMed

    Green, Brady; Bourne, Matthew N; Pizzari, Tania

    2018-03-01

    To examine the value of isokinetic strength assessment for predicting risk of hamstring strain injury, and to direct future research into hamstring strain injuries. Systematic review. Database searches for Medline, CINAHL, Embase, AMED, AUSPORT, SPORTDiscus, PEDro and Cochrane Library from inception to April 2017. Manual reference checks, ahead-of-press and citation tracking. Prospective studies evaluating isokinetic hamstrings, quadriceps and hip extensor strength testing as a risk factor for occurrence of hamstring muscle strain. Independent search result screening. Risk of bias assessment by independent reviewers using Quality in Prognosis Studies tool. Best evidence synthesis and meta-analyses of standardised mean difference (SMD). Twelve studies were included, capturing 508 hamstring strain injuries in 2912 athletes. Isokinetic knee flexor, knee extensor and hip extensor outputs were examined at angular velocities ranging 30-300°/s, concentric or eccentric, and relative (Nm/kg) or absolute (Nm) measures. Strength ratios ranged between 30°/s and 300°/s. Meta-analyses revealed a small, significant predictive effect for absolute (SMD=-0.16, P=0.04, 95% CI -0.31 to -0.01) and relative (SMD=-0.17, P=0.03, 95% CI -0.33 to -0.014) eccentric knee flexor strength (60°/s). No other testing speed or strength ratio showed statistical association. Best evidence synthesis found over half of all variables had moderate or strong evidence for no association with future hamstring injury. Despite an isolated finding for eccentric knee flexor strength at slow speeds, the role and application of isokinetic assessment for predicting hamstring strain risk should be reconsidered, particularly given costs and specialised training required. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. A theorem about Hamiltonian systems

    PubMed Central

    Case, K. M.

    1984-01-01

    A simple theorem in Hamiltonian mechanics is pointed out. One consequence is a generalization of the classical result that symmetries are generated by Poisson brackets of conserved functionals. General applications are discussed. Special emphasis is given to the Kadomtsev-Petviashvili equation. PMID:16593515

  2. Convergence to equilibrium under a random Hamiltonian.

    PubMed

    Brandão, Fernando G S L; Ćwikliński, Piotr; Horodecki, Michał; Horodecki, Paweł; Korbicz, Jarosław K; Mozrzymas, Marek

    2012-09-01

    We analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we compute the inverse of a matrix of overlaps of operators which permute four systems. We first obtain results on such a matrix for a representation of an arbitrary finite group and then apply it to the particular representation of the permutation group under consideration.

  3. Convergence to equilibrium under a random Hamiltonian

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Ćwikliński, Piotr; Horodecki, Michał; Horodecki, Paweł; Korbicz, Jarosław K.; Mozrzymas, Marek

    2012-09-01

    We analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we compute the inverse of a matrix of overlaps of operators which permute four systems. We first obtain results on such a matrix for a representation of an arbitrary finite group and then apply it to the particular representation of the permutation group under consideration.

  4. Effect of eccentric isokinetic strengthening in the rehabilitation of patients with knee osteoarthritis: Isogo, a randomized trial

    PubMed Central

    2014-01-01

    Background Femorotibial knee osteoarthritis is associated with muscle weakness in the lower limbs, particularly in the quadriceps, which results in disease progression. The interest of having muscular strengthening as part of the therapeutic arsenal for the medical treatment of knee osteoarthritis is now well established. The functional disability induced by knee osteoarthritis manifests itself principally when walking, notably downhill, during which the muscles are called upon to contract eccentrically. We can therefore think that eccentric muscular strengthening could bring a functional benefit that is superior to concentric muscular strengthening. Methods/Design This is a prospective, randomized, bicenter, parallel-group, international study. Eighty patients aged from 40 to 75 years old, suffering from medical-stage knee osteoarthritis, will undertake 6 weeks of isokinetic muscular strengthening. Randomization determines the mode of muscular strengthening: either exclusively eccentric or exclusively concentric. The principal objective is to demonstrate the superiority of the improvement in the quadriceps isokinetic torque after isokinetic muscular strengthening by the eccentric mode compared to the concentric mode. The following parameters are also evaluated: the variations in the level of pain, the parameters of walking (maximum speed over 10 and 200 meters, analysis on a computerized Gaitrite™ treadmill), static equilibrium (on a FUSYO™ force platform), and the functional status of the patient using the Western Ontario and MacMaster Universities osteoarthritis index (WOMAC) questionnaire after the strengthening period and at 6 months. Discussion A better knowledge of the most effective mode of muscular strengthening is needed to optimize the functional benefits to the patients. In case of superiority in terms of efficacy of the eccentric mode, the latter could be given priority in the rehabilitation treatment of knee osteoarthritis patients. Trial

  5. Effect of eccentric isokinetic strengthening in the rehabilitation of patients with knee osteoarthritis: Isogo, a randomized trial.

    PubMed

    Jegu, Anne-Gaëlle; Pereira, Bruno; Andant, Nicolas; Coudeyre, Emmanuel

    2014-04-02

    Femorotibial knee osteoarthritis is associated with muscle weakness in the lower limbs, particularly in the quadriceps, which results in disease progression. The interest of having muscular strengthening as part of the therapeutic arsenal for the medical treatment of knee osteoarthritis is now well established.The functional disability induced by knee osteoarthritis manifests itself principally when walking, notably downhill, during which the muscles are called upon to contract eccentrically.We can therefore think that eccentric muscular strengthening could bring a functional benefit that is superior to concentric muscular strengthening. This is a prospective, randomized, bicenter, parallel-group, international study. Eighty patients aged from 40 to 75 years old, suffering from medical-stage knee osteoarthritis, will undertake 6 weeks of isokinetic muscular strengthening. Randomization determines the mode of muscular strengthening: either exclusively eccentric or exclusively concentric.The principal objective is to demonstrate the superiority of the improvement in the quadriceps isokinetic torque after isokinetic muscular strengthening by the eccentric mode compared to the concentric mode.The following parameters are also evaluated: the variations in the level of pain, the parameters of walking (maximum speed over 10 and 200 meters, analysis on a computerized Gaitrite™ treadmill), static equilibrium (on a FUSYO™ force platform), and the functional status of the patient using the Western Ontario and MacMaster Universities osteoarthritis index (WOMAC) questionnaire after the strengthening period and at 6 months. A better knowledge of the most effective mode of muscular strengthening is needed to optimize the functional benefits to the patients. In case of superiority in terms of efficacy of the eccentric mode, the latter could be given priority in the rehabilitation treatment of knee osteoarthritis patients. Clinical trials.gov number: NCT01586130.

  6. BRST theory without Hamiltonian and Lagrangian

    NASA Astrophysics Data System (ADS)

    Lyakhovich, S. L.; Sharapov, A. A.

    2005-03-01

    We consider a generic gauge system, whose physical degrees of freedom are obtained by restriction on a constraint surface followed by factorization with respect to the action of gauge transformations; in so doing, no Hamiltonian structure or action principle is supposed to exist. For such a generic gauge system we construct a consistent BRST formulation, which includes the conventional BV Lagrangian and BFV Hamiltonian schemes as particular cases. If the original manifold carries a weak Poisson structure (a bivector field giving rise to a Poisson bracket on the space of physical observables) the generic gauge system is shown to admit deformation quantization by means of the Kontsevich formality theorem. A sigma-model interpretation of this quantization algorithm is briefly discussed.

  7. Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians

    NASA Astrophysics Data System (ADS)

    Bringewatt, Jacob; Dorland, William; Jordan, Stephen P.; Mink, Alan

    2018-02-01

    Most research regarding quantum adiabatic optimization has focused on stoquastic Hamiltonians, whose ground states can be expressed with only real non-negative amplitudes and thus for whom destructive interference is not manifest. This raises the question of whether classical Monte Carlo algorithms can efficiently simulate quantum adiabatic optimization with stoquastic Hamiltonians. Recent results have given counterexamples in which path-integral and diffusion Monte Carlo fail to do so. However, most adiabatic optimization algorithms, such as for solving MAX-k -SAT problems, use k -local Hamiltonians, whereas our previous counterexample for diffusion Monte Carlo involved n -body interactions. Here we present a 6-local counterexample which demonstrates that even for these local Hamiltonians there are cases where diffusion Monte Carlo cannot efficiently simulate quantum adiabatic optimization. Furthermore, we perform empirical testing of diffusion Monte Carlo on a standard well-studied class of permutation-symmetric tunneling problems and similarly find large advantages for quantum optimization over diffusion Monte Carlo.

  8. Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics

    NASA Astrophysics Data System (ADS)

    Tao, Xuecheng; Shushkov, Philip; Miller, Thomas F.

    2018-03-01

    We describe a path-integral approach for including nuclear quantum effects in non-adiabatic chemical dynamics simulations. For a general physical system with multiple electronic energy levels, a corresponding isomorphic Hamiltonian is introduced such that Boltzmann sampling of the isomorphic Hamiltonian with classical nuclear degrees of freedom yields the exact quantum Boltzmann distribution for the original physical system. In the limit of a single electronic energy level, the isomorphic Hamiltonian reduces to the familiar cases of either ring polymer molecular dynamics (RPMD) or centroid molecular dynamics Hamiltonians, depending on the implementation. An advantage of the isomorphic Hamiltonian is that it can easily be combined with existing mixed quantum-classical dynamics methods, such as surface hopping or Ehrenfest dynamics, to enable the simulation of electronically non-adiabatic processes with nuclear quantum effects. We present numerical applications of the isomorphic Hamiltonian to model two- and three-level systems, with encouraging results that include improvement upon a previously reported combination of RPMD with surface hopping in the deep-tunneling regime.

  9. Resolving the issue of branched Hamiltonian in modified Lanczos-Lovelock gravity

    NASA Astrophysics Data System (ADS)

    Ruz, Soumendranath; Mandal, Ranajit; Debnath, Subhra; Sanyal, Abhik Kumar

    2016-07-01

    The Hamiltonian constraint H_c = N{H} = 0, defines a diffeomorphic structure on spatial manifolds by the lapse function N in general theory of relativity. However, it is not manifest in Lanczos-Lovelock gravity, since the expression for velocity in terms of the momentum is multivalued. Thus the Hamiltonian is a branch function of momentum. Here we propose an extended theory of Lanczos-Lovelock gravity to construct a unique Hamiltonian in its minisuperspace version, which results in manifest diffeomorphic invariance and canonical quantization.

  10. Muscle activation and the isokinetic torque-velocity relationship of the human triceps surae.

    PubMed

    Harridge, S D; White, M J

    1993-01-01

    The influence of muscle activation and the time allowed for torque generation on the angle-specific torque-velocity relationship of the triceps surae was studied during plantar flexion using supramaximal electrical stimulation and a release technique on six male subjects [mean (SD) age 25 (4) years]. Torque-velocity data were obtained under different levels of constant muscle activation by varying the stimulus frequency and the time allowed for isometric torque generation prior to release and isokinetic shortening. To eliminate the effects of the frequency response on absolute torque the isokinetic data were normalized to the maximum isometric torque values at 0.44 rad. There were no significant differences in the normalized torques generated at any angular velocity using stimulus frequencies of 20, 50 or 80 Hz. When the muscle was stimulated at 50 Hz the torques obtained after a 400 ms and 1 s pre-release isometric contraction did not differ significantly. However, with no pre-release contraction significantly less torque was generated at all angular velocities beyond 1.05 rad.s-1 when compared with either the 200, 400 ms or 1 s condition. With a 200 ms pre-release contraction significantly less torque was generated at angular velocities beyond 1.05 rad.s-1 when compared with the 400 ms or 1 s conditions. It would seem that the major factor governing the shape of the torque-velocity curve at a constant level of muscle activation is the time allowed for torque generation.

  11. Comparison of knee function after antegrade and retrograde intramedullary nailing for diaphyseal femoral fractures: results of isokinetic evaluation.

    PubMed

    Daglar, Bulent; Gungor, Ertugrul; Delialioglu, Onder M; Karakus, Dilek; Ersoz, Murat; Tasbas, Bulent Adil; Bayrakci, Kenan; Gunel, Ugur

    2009-10-01

    To evaluate knee function in patients having femoral diaphyseal fractures treated with antegrade or retrograde intramedullary nail insertion. Prospective. Level I referral center. Seventy patients having 71 OTA 32 fractures were randomly allocated into 2 groups to be treated with either antegrade or retrograde intramedullary nails inserted with reaming. Antegrade nail in 41 fractures and retrograde femoral intramedullary nails in 30 fractures. Postoperative knee range of motion, Lysholm Knee Score, and isokinetic knee muscle function testing at least 6 months after documented fracture healing, minimum 1 year postoperatively. Groups had similar data with regard to demographics and injury patterns. Mean follow-up time was 44 (range: 25-80) months. Mean knee flexion angle was 132 and 134 degrees, and mean Lysholm Score was 84 and 83.1 in antegrade and retrograde groups, respectively (P = 0.893 and P = 0.701). Isokinetic evaluation revealed similar results for peak torque deficiencies at 30 and 180 degrees per second and total work deficiencies at 180 degrees per second (P > 0.05). Age affected the knee functioning as the higher the age of the patient is, the lower the Lysholm Score and knee flexion angle (r = -0.449, P = 0.0321 and r = -0.568, P = 0.001, respectively). Knee function seems to have similar clinical results after either antegrade or retrograde nail insertion for femoral diaphyseal fractures when knee range of motion, Lysholm Scores, and isokinetic knee evaluation are considered as outcome measures. With increasing patient age, a decrease in knee functioning should be anticipated in patients with femoral fractures treated with intramedullary nails regardless of technique.

  12. Time and a physical Hamiltonian for quantum gravity.

    PubMed

    Husain, Viqar; Pawłowski, Tomasz

    2012-04-06

    We present a nonperturbative quantization of general relativity coupled to dust and other matter fields. The dust provides a natural time variable, leading to a physical Hamiltonian with spatial diffeomorphism symmetry. The surprising feature is that the Hamiltonian is not a square root. This property, together with the kinematical structure of loop quantum gravity, provides a complete theory of quantum gravity, and puts applications to cosmology, quantum gravitational collapse, and Hawking radiation within technical reach. © 2012 American Physical Society

  13. The Lagrangian-Hamiltonian formalism for higher order field theories

    NASA Astrophysics Data System (ADS)

    Vitagliano, Luca

    2010-06-01

    We generalize the Lagrangian-Hamiltonian formalism of Skinner and Rusk to higher order field theories on fiber bundles. As a byproduct we solve the long standing problem of defining, in a coordinate free manner, a Hamiltonian formalism for higher order Lagrangian field theories. Namely, our formalism does only depend on the action functional and, therefore, unlike previously proposed ones, is free from any relevant ambiguity.

  14. Effective Hamiltonian for protected edge states in graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, R.; Deshpande, H.

    Edge states in topological insulators (TIs) disperse symmetrically about one of the time-reversal invariant momenta Λ in the Brillouin zone (BZ) with protected degeneracies at Λ. Commonly TIs are distinguished from trivial insulators by the values of one or multiple topological invariants that require an analysis of the bulk band structure across the BZ. We propose an effective two-band Hamiltonian for the electronic states in graphene based on a Taylor expansion of the tight-binding Hamiltonian about the time-reversal invariant M point at the edge of the BZ. This Hamiltonian provides a faithful description of the protected edge states for bothmore » zigzag and armchair ribbons, though the concept of a BZ is not part of such an effective model. In conclusion, we show that the edge states are determined by a band inversion in both reciprocal and real space, which allows one to select Λ for the edge states without affecting the bulk spectrum.« less

  15. Birkhoffian symplectic algorithms derived from Hamiltonian symplectic algorithms

    NASA Astrophysics Data System (ADS)

    Xin-Lei, Kong; Hui-Bin, Wu; Feng-Xiang, Mei

    2016-01-01

    In this paper, we focus on the construction of structure preserving algorithms for Birkhoffian systems, based on existing symplectic schemes for the Hamiltonian equations. The key of the method is to seek an invertible transformation which drives the Birkhoffian equations reduce to the Hamiltonian equations. When there exists such a transformation, applying the corresponding inverse map to symplectic discretization of the Hamiltonian equations, then resulting difference schemes are verified to be Birkhoffian symplectic for the original Birkhoffian equations. To illustrate the operation process of the method, we construct several desirable algorithms for the linear damped oscillator and the single pendulum with linear dissipation respectively. All of them exhibit excellent numerical behavior, especially in preserving conserved quantities. Project supported by the National Natural Science Foundation of China (Grant No. 11272050), the Excellent Young Teachers Program of North China University of Technology (Grant No. XN132), and the Construction Plan for Innovative Research Team of North China University of Technology (Grant No. XN129).

  16. Effective Hamiltonian for protected edge states in graphene

    DOE PAGES

    Winkler, R.; Deshpande, H.

    2017-06-15

    Edge states in topological insulators (TIs) disperse symmetrically about one of the time-reversal invariant momenta Λ in the Brillouin zone (BZ) with protected degeneracies at Λ. Commonly TIs are distinguished from trivial insulators by the values of one or multiple topological invariants that require an analysis of the bulk band structure across the BZ. We propose an effective two-band Hamiltonian for the electronic states in graphene based on a Taylor expansion of the tight-binding Hamiltonian about the time-reversal invariant M point at the edge of the BZ. This Hamiltonian provides a faithful description of the protected edge states for bothmore » zigzag and armchair ribbons, though the concept of a BZ is not part of such an effective model. In conclusion, we show that the edge states are determined by a band inversion in both reciprocal and real space, which allows one to select Λ for the edge states without affecting the bulk spectrum.« less

  17. Lagrangian-Hamiltonian unified formalism for autonomous higher order dynamical systems

    NASA Astrophysics Data System (ADS)

    Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso

    2011-09-01

    The Lagrangian-Hamiltonian unified formalism of Skinner and Rusk was originally stated for autonomous dynamical systems in classical mechanics. It has been generalized for non-autonomous first-order mechanical systems, as well as for first-order and higher order field theories. However, a complete generalization to higher order mechanical systems is yet to be described. In this work, after reviewing the natural geometrical setting and the Lagrangian and Hamiltonian formalisms for higher order autonomous mechanical systems, we develop a complete generalization of the Lagrangian-Hamiltonian unified formalism for these kinds of systems, and we use it to analyze some physical models from this new point of view.

  18. A Hamiltonian approach to Thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldiotti, M.C., E-mail: baldiotti@uel.br; Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br; Molina, C., E-mail: cmolina@usp.br

    In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensivelymore » used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.« less

  19. Bi-Hamiltonian structure of the Kermack-McKendrick model for epidemics

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1990-11-01

    The dynamical system proposed by Kermack and McKendrick (1933) to model the spread of epidemics is shown to admit bi-Hamiltonian structure without any restrictions on the rate constants. These two inequivalent Hamiltonian structures are compatible.

  20. Gapped two-body Hamiltonian for continuous-variable quantum computation.

    PubMed

    Aolita, Leandro; Roncaglia, Augusto J; Ferraro, Alessandro; Acín, Antonio

    2011-03-04

    We introduce a family of Hamiltonian systems for measurement-based quantum computation with continuous variables. The Hamiltonians (i) are quadratic, and therefore two body, (ii) are of short range, (iii) are frustration-free, and (iv) possess a constant energy gap proportional to the squared inverse of the squeezing. Their ground states are the celebrated Gaussian graph states, which are universal resources for quantum computation in the limit of infinite squeezing. These Hamiltonians constitute the basic ingredient for the adiabatic preparation of graph states and thus open new venues for the physical realization of continuous-variable quantum computing beyond the standard optical approaches. We characterize the correlations in these systems at thermal equilibrium. In particular, we prove that the correlations across any multipartition are contained exactly in its boundary, automatically yielding a correlation area law.

  1. Multidimensional supersymmetric quantum mechanics: spurious states for the tensor sector two Hamiltonian.

    PubMed

    Chou, Chia-Chun; Kouri, Donald J

    2013-04-25

    We show that there exist spurious states for the sector two tensor Hamiltonian in multidimensional supersymmetric quantum mechanics. For one-dimensional supersymmetric quantum mechanics on an infinite domain, the sector one and two Hamiltonians have identical spectra with the exception of the ground state of the sector one. For tensorial multidimensional supersymmetric quantum mechanics, there exist normalizable spurious states for the sector two Hamiltonian with energy equal to the ground state energy of the sector one. These spurious states are annihilated by the adjoint charge operator, and hence, they do not correspond to physical states for the original Hamiltonian. The Hermitian property of the sector two Hamiltonian implies the orthogonality between spurious and physical states. In addition, we develop a method for construction of a specific form of the spurious states for any quantum system and also generate several spurious states for a two-dimensional anharmonic oscillator system and for the hydrogen atom.

  2. Recursion Operators and Tri-Hamiltonian Structure of the First Heavenly Equation of Plebański

    NASA Astrophysics Data System (ADS)

    Sheftel, Mikhail; Yazıcı, Devrim

    2016-09-01

    We present first heavenly equation of Plebański in a two-component evolutionary form and obtain Lagrangian and Hamiltonian representations of this system. We study all point symmetries of the two-component system and, using the inverse Noether theorem in the Hamiltonian form, obtain all the integrals of motion corresponding to each variational (Noether) symmetry. We derive two linearly independent recursion operators for symmetries of this system related by a discrete symmetry of both the two-component system and its symmetry condition. Acting by these operators on the first Hamiltonian operator J_0 we obtain second and third Hamiltonian operators. However, we were not able to find Hamiltonian densities corresponding to the latter two operators. Therefore, we construct two recursion operators, which are either even or odd, respectively, under the above-mentioned discrete symmetry. Acting with them on J_0, we generate another two Hamiltonian operators J_+ and J_- and find the corresponding Hamiltonian densities, thus obtaining second and third Hamiltonian representations for the first heavenly equation in a two-component form. Using P. Olver's theory of the functional multi-vectors, we check that the linear combination of J_0, J_+ and J_- with arbitrary constant coefficients satisfies Jacobi identities. Since their skew symmetry is obvious, these three operators are compatible Hamiltonian operators and hence we obtain a tri-Hamiltonian representation of the first heavenly equation. Our well-founded conjecture applied here is that P. Olver's method works fine for nonlocal operators and our proof of the Jacobi identities and bi-Hamiltonian structures crucially depends on the validity of this conjecture.

  3. Hamiltonian stability for weighted measure and generalized Lagrangian mean curvature flow

    NASA Astrophysics Data System (ADS)

    Kajigaya, Toru; Kunikawa, Keita

    2018-06-01

    In this paper, we generalize several results for the Hamiltonian stability and the mean curvature flow of Lagrangian submanifolds in a Kähler-Einstein manifold to more general Kähler manifolds including a Fano manifold equipped with a Kähler form ω ∈ 2 πc1(M) by using the method proposed by Behrndt (2011). Namely, we first consider a weighted measure on a Lagrangian submanifold L in a Kähler manifold M and investigate the variational problem of L for the weighted volume functional. We call a stationary point of the weighted volume functional f-minimal, and define the notion of Hamiltonian f-stability as a local minimizer under Hamiltonian deformations. We show such examples naturally appear in a toric Fano manifold. Moreover, we consider the generalized Lagrangian mean curvature flow in a Fano manifold which is introduced by Behrndt and Smoczyk-Wang. We generalize the result of H. Li, and show that if the initial Lagrangian submanifold is a small Hamiltonian deformation of an f-minimal and Hamiltonian f-stable Lagrangian submanifold, then the generalized MCF converges exponentially fast to an f-minimal Lagrangian submanifold.

  4. Regime of validity of the pairing Hamiltonian in the study of Fermi gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, S. Y.; Pandharipande, V. R.

    2006-06-01

    The ground state energy and pairing gap of the interacting Fermi gases calculated by the ab initio stochastic method are compared with those estimated from the Bardeen-Cooper-Schrieffer pairing Hamiltonian. We discuss the ingredients of this Hamiltonian in various regimes of interaction strength. In the weakly interacting (1/ak{sub F}<<0) regime the BCS Hamiltonian should describe Landau quasiparticle energies and interactions, on the other hand, in the strongly pairing regime, that is, 1/ak{sub F} > or approx. 0, it becomes part of the bare Hamiltonian. However, the bare BCS Hamiltonian is not adequate for describing atomic gases in the regime of weakmore » to moderate interaction strength -{infinity}<1/ak{sub F}<0 such as ak{sub F}{approx}-1.« less

  5. Isokinetic Hamstrings:Quadriceps Ratios in Intercollegiate Athletes

    PubMed Central

    Fogarty, Tracey D.; Mahaffey, Brian L.

    2001-01-01

    Objective: To compare the differences in the concentric hamstrings:quadriceps (H:Q) ratio among athletes in different sports at 3 velocities. Design and Setting: We measured the H:Q ratio of both knees using the Biodex Pro Isokinetic Device. Subjects: Eighty-one male and female collegiate athletes. Measurements: We performed analyses for sport, velocity, and side of body for each sex. To compare the means of the concentric H:Q ratios for mean peak torque and mean total work, a 2 × 3 × 4 mixed-factorial analysis of variance was computed for women and a 2 × 2 × 3 mixed-factorial analysis of variance was computed for men. Results: We observed no significant interactions for men and women for the concentric H:Q ratio for mean peak torque. There was a significant mean difference among velocity conditions and a significant difference for men with respect to velocity. No significant differences were found for side of body or sport. Conclusions: The H:Q ratio increased as velocity increased. No differences existed for the H:Q ratio for sport or side of body. PMID:12937479

  6. Molecular dynamics simulations in hybrid particle-continuum schemes: Pitfalls and caveats

    NASA Astrophysics Data System (ADS)

    Stalter, S.; Yelash, L.; Emamy, N.; Statt, A.; Hanke, M.; Lukáčová-Medvid'ová, M.; Virnau, P.

    2018-03-01

    Heterogeneous multiscale methods (HMM) combine molecular accuracy of particle-based simulations with the computational efficiency of continuum descriptions to model flow in soft matter liquids. In these schemes, molecular simulations typically pose a computational bottleneck, which we investigate in detail in this study. We find that it is preferable to simulate many small systems as opposed to a few large systems, and that a choice of a simple isokinetic thermostat is typically sufficient while thermostats such as Lowe-Andersen allow for simulations at elevated viscosity. We discuss suitable choices for time steps and finite-size effects which arise in the limit of very small simulation boxes. We also argue that if colloidal systems are considered as opposed to atomistic systems, the gap between microscopic and macroscopic simulations regarding time and length scales is significantly smaller. We propose a novel reduced-order technique for the coupling to the macroscopic solver, which allows us to approximate a non-linear stress-strain relation efficiently and thus further reduce computational effort of microscopic simulations.

  7. On time-dependent Hamiltonian realizations of planar and nonplanar systems

    NASA Astrophysics Data System (ADS)

    Esen, Oğul; Guha, Partha

    2018-04-01

    In this paper, we elucidate the key role played by the cosymplectic geometry in the theory of time dependent Hamiltonian systems in 2 D. We generalize the cosymplectic structures to time-dependent Nambu-Poisson Hamiltonian systems and corresponding Jacobi's last multiplier for 3 D systems. We illustrate our constructions with various examples.

  8. Hamiltonian methods: BRST, BFV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, J. Antonio

    2006-09-25

    The range of applicability of Hamiltonian methods to gauge theories is very diverse and cover areas of research from phenomenology to mathematical physics. We review some of the areas developed in Mexico in the last decades. They cover the study of symplectic methods, BRST-BFV and BV approaches, Klauder projector program, and non perturbative technics used in the study of bound states in relativistic field theories.

  9. Hamiltonian methods: BRST, BFV

    NASA Astrophysics Data System (ADS)

    García, J. Antonio

    2006-09-01

    The range of applicability of Hamiltonian methods to gauge theories is very diverse and cover areas of research from phenomenology to mathematical physics. We review some of the areas developed in México in the last decades. They cover the study of symplectic methods, BRST-BFV and BV approaches, Klauder projector program, and non perturbative technics used in the study of bound states in relativistic field theories.

  10. Effects of the Competitive Season on the Isokinetic Muscle Parameters Changes in World-Class Handball Players.

    PubMed

    Maurelli, Olivier; Bernard, Pierre L; Dubois, Romain; Ahmaidi, Said; Prioux, Jacques

    2018-05-25

    Maurelli, O, Bernard, PL, Dubois, R, Ahmaidi, S, and Prioux, J. Effects of the competitive season on the isokinetic muscle parameters changes in world-class handball players. J Strength Cond Res XX(X): 000-000, 2018-The aim of this study is to investigate the effects of the competitive season on isokinetic muscular parameters of the lower limbs in world-class handball players. Nineteen, male, world-class, handball players (age, 26.6 ± 5.4 years) participated in the study. Two bilateral isokinetic tests of knee joint flexors (H; hamstring) and extensors (Q; quadriceps) were performed in the beginning and end of the competitive season to determine the peak torque (PT), the mean power, and agonist-antagonist ratio, dominant-nondominant ratio (DNDR), and combined ratio. The results showed a significant decrease in PT values at low angular velocity (60°·s) in concentric mode for Q on dominant leg (p < 0.001). The other PT values for dominant and nondominant legs at low and high angular velocities (240°·s) and in eccentric mode (30°·s) were not significantly different for Q and H. For mean power, values did not change at 60°·s. At 240°·s, we found a significant decrease in H for dominant leg (p < 0.001) but not for nondominant leg. In eccentric mode, the results showed a significant increase on both legs (p < 0.001). For the ratios, values significantly decreased for DNDR at 60°·s for Q (p < 0.03) and for agonist/antagonist ratio at 240°·s for the dominant leg (p < 0.01). The present results highlight the importance of integrating regular strength training sessions during the competitive season in world-class handball players. Accordingly, this study should help trainers to modify their planning to maximize strength and power qualities of the lower limbs of their players in addition to avoiding injuries.

  11. Profiling Isokinetic Strength by Leg Preference and Position in Rugby Union Athletes.

    PubMed

    Brown, Scott R; Brughelli, Matt; Bridgeman, Lee A

    2016-05-01

    Muscle imbalances aid in the identification of athletes at risk for lower-extremity injury. Little is known regarding the influence that leg preference or playing position may have on lower-extremity muscle strength and asymmetry. To investigate lower-extremity strength profiles in rugby union athletes and compare isokinetic knee- and hip-strength variables between legs and positions. Thirty male academy rugby union athletes, separated into forwards (n = 15) and backs (n = 15), participated in this cross-sectional analysis. Isokinetic dynamometry was used to evaluate peak torque, angle of peak torque, and strength ratios of the preferred and nonpreferred legs during seated knee extension/flexion and supine hip extension/flexion at 60°/s. Backs were older (ES = 1.6) but smaller in stature (ES = -0.47) and body mass (ES = -1.3) than the forwards. The nonpreferred leg was weaker than the preferred leg for forwards during extension (ES = -0.37) and flexion (ES = -0.21) actions and for backs during extension (ES = -0.28) actions. Backs were weaker at the knee than forwards in the preferred leg during extension (ES = -0.50) and flexion (ES = -0.66) actions. No differences were observed in strength ratios between legs or positions. Backs produced peak torque at longer muscle lengths in both legs at the knee (ES = -0.93 to -0.94) and hip (ES = -0.84 to -1.17) than the forwards. In this sample of male academy rugby union athletes, the preferred leg and forwards displayed superior strength compared with the nonpreferred leg and backs. These findings highlight the importance of individualized athletic assessments to detect crucial strength differences in male rugby union athletes.

  12. An isokinetic training program for reducing falls in a community-dwelling older adult: a case report.

    PubMed

    Beebe, Justin A; Hines, Roger W; McDaniel, Laura T; Shelden, Brenda L

    2013-01-01

    With the population older than 65 years, projected to double by the year 2030, falls in older adults are a substantial health concern. Muscle strength deficits are one of the multifactorial components linked to increased fall risk, and decreasing these deficits has been one of the goals of interventions designed to decrease fall risk. These interventions have traditionally focused on improving peak torque; however, recent research suggests that exercise protocols that focus on the rate of torque development (RTD) may be more effective in decreasing fall risk. This case report examines clinical outcomes following implementation of an isokinetic strengthening protocol coupled with a balance program designed to reduce fall risk in a community-dwelling older adult. The individual was a 70-year-old woman with a history of 3 falls over the past 8 months and no related medical etiology who had self-limited her activities because of fear of another fall. She was classified as having substantial risk for future falls because of fall history, increased fear of falling, and below age norms on the Berg Balance Scale (BBS), and the Timed Up and Go (TUG). The treatment program consisted of 12 weeks of high-intensity isokinetic knee extensor training, high challenge dynamic gait and balance activities, and core strengthening. The isokinetic protocol consisted of 4 sets of 10 concentric-only repetitions at speeds of 240°/sec and 300°/sec for a total of 8 work sets. Dynamic gait activities incorporating directional and obstacle drills, and rocker and balance boards were used for balance training activities. Progressive theraband exercises were used for core strengthening. As her home program, the participant was encouraged to return to line dancing twice per week. During the 12-week protocol, the participant completed two 90-minute therapy sessions and two 90-minute dance classes per week. After the 12 weeks of treatment, knee extensor peak torque at 150 ms improved on the right

  13. Market-Based Coordination of Thermostatically Controlled Loads—Part I: A Mechanism Design Formulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sen; Zhang, Wei; Lian, Jianming

    This paper focuses on the coordination of a population of Thermostatically Controlled Loads (TCLs) with unknown parameters to achieve group objectives. The problem involves designing the bidding and market clearing strategy to motivate self-interested users to realize efficient energy allocation subject to a peak power constraint. Using the mechanism design approach, we propose a market-based coordination framework, which can effectively incorporate heterogeneous load dynamics, systematically deal with user preferences, account for the unknown load model parameters, and enable the real-world implementation with limited communication resources. This paper is divided into two parts. Part I presents a mathematical formulation of themore » problem and develops a coordination framework using the mechanism design approach. Part II presents a learning scheme to account for the unknown load model parameters, and evaluates the proposed framework through realistic simulations.« less

  14. Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes

    NASA Astrophysics Data System (ADS)

    Marvian, Milad; Lidar, Daniel A.

    2017-01-01

    We present general conditions for quantum error suppression for Hamiltonian-based quantum computation using subsystem codes. This involves encoding the Hamiltonian performing the computation using an error detecting subsystem code and the addition of a penalty term that commutes with the encoded Hamiltonian. The scheme is general and includes the stabilizer formalism of both subspace and subsystem codes as special cases. We derive performance bounds and show that complete error suppression results in the large penalty limit. To illustrate the power of subsystem-based error suppression, we introduce fully two-local constructions for protection against local errors of the swap gate of adiabatic gate teleportation and the Ising chain in a transverse field.

  15. Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes.

    PubMed

    Marvian, Milad; Lidar, Daniel A

    2017-01-20

    We present general conditions for quantum error suppression for Hamiltonian-based quantum computation using subsystem codes. This involves encoding the Hamiltonian performing the computation using an error detecting subsystem code and the addition of a penalty term that commutes with the encoded Hamiltonian. The scheme is general and includes the stabilizer formalism of both subspace and subsystem codes as special cases. We derive performance bounds and show that complete error suppression results in the large penalty limit. To illustrate the power of subsystem-based error suppression, we introduce fully two-local constructions for protection against local errors of the swap gate of adiabatic gate teleportation and the Ising chain in a transverse field.

  16. Divide and conquer approach to quantum Hamiltonian simulation

    NASA Astrophysics Data System (ADS)

    Hadfield, Stuart; Papageorgiou, Anargyros

    2018-04-01

    We show a divide and conquer approach for simulating quantum mechanical systems on quantum computers. We can obtain fast simulation algorithms using Hamiltonian structure. Considering a sum of Hamiltonians we split them into groups, simulate each group separately, and combine the partial results. Simulation is customized to take advantage of the properties of each group, and hence yield refined bounds to the overall simulation cost. We illustrate our results using the electronic structure problem of quantum chemistry, where we obtain significantly improved cost estimates under very mild assumptions.

  17. Simple model for deriving sdg interacting boson model Hamiltonians: 150Nd example

    NASA Astrophysics Data System (ADS)

    Devi, Y. D.; Kota, V. K. B.

    1993-07-01

    A simple and yet useful model for deriving sdg interacting boson model (IBM) Hamiltonians is to assume that single-boson energies derive from identical particle (pp and nn) interactions and proton, neutron single-particle energies, and that the two-body matrix elements for bosons derive from pn interaction, with an IBM-2 to IBM-1 projection of the resulting p-n sdg IBM Hamiltonian. The applicability of this model in generating sdg IBM Hamiltonians is demonstrated, using a single-j-shell Otsuka-Arima-Iachello mapping of the quadrupole and hexadecupole operators in proton and neutron spaces separately and constructing a quadrupole-quadrupole plus hexadecupole-hexadecupole Hamiltonian in the analysis of the spectra, B(E2)'s, and E4 strength distribution in the example of 150Nd.

  18. The LISST-SL streamlined isokinetic suspended-sediment profiler

    USGS Publications Warehouse

    Gray, John R.; Agrawal, Yogesh C.; Pottsmith, H. Charles

    2004-01-01

    The new manually deployed Laser In Situ Scattering Transmissometer-StreamLined profiler (LISST-SL) represents a major technological advance for suspended-sediment measurements in rivers. The LISST-SL is being designed to provide real-time data on sediment concentrations and particle-size distributions. A pressure sensor and current meter provide real-time depth and ambient velocity data, respectively. The velocity data are also used to control pumpage across an internal laser so that the intake velocity is constantly adjusted to match the ambient stream velocity. Such isokinetic withdrawal is necessary for obtaining representative sedimentary measurements in streamflow, and ensures compliance with established practices. The velocity and sediment-concentration data are used to compute fluxes for up to 32 particle-size classes at points, verticals, or in the entire stream cross section. All data are stored internally, as well as transmitted via a 2-wire conductor to the operator using a specially developed communication protocol. The LISST-SL's performance will be measured and compared to published sedimentological accuracy criteria, and a performance summary will be placed on-line.

  19. Analysis of isokinetic muscle function and postural control in individuals with intermittent claudication

    PubMed Central

    Lanzarin, Morgan; Parizoto, Patricia; Santos, Gilmar M.

    2016-01-01

    BACKGROUND: Intermittent claudication (IC) is a debilitating condition that mostly affects elderly people. IC is manifested by a decrease in ambulatory function. Individuals with IC present with motor and sensory nerve dysfunction in the lower extremities, which may lead to deficits in balance. OBJECTIVE: This study aimed to measure postural control and isokinetic muscle function in individuals with intermittent claudication. METHOD: The study included 32 participants of both genders, 16 IC participants (mean age: 64 years, SD=6) and 16 healthy controls (mean age: 67 years, SD=5), which were allocated into two groups: intermittent claudication group (ICG) and control group (CG). Postural control was assessed using the displacement and velocity of the center of pressure (COP) during the sensory organization test (SOT) and the motor control test (MCT). Muscle function of the flexor and extensor muscles of the knee and ankle was measured by an isokinetic dynamometer. Independent t tests were used to calculate the between-group differences. RESULTS: The ICG presented greater displacement (p =0.027) and speed (p =0.033) of the COP in the anteroposterior direction (COPap) during the MCT, as well as longer latency (p =0.004). There were no between-group differences during the SOT. The ICG showed decreased muscle strength and power in the plantar flexors compared to the CG. CONCLUSION: Subjects with IC have lower values of strength and muscle power of plantiflexores, as well as changes in postural control in dynamic conditions. These individuals may be more vulnerable to falls than healthy subjects. PMID:26786077

  20. Test-Retest Reliability of a Novel Isokinetic Squat Device With Strength-Trained Athletes.

    PubMed

    Bridgeman, Lee A; McGuigan, Michael R; Gill, Nicholas D; Dulson, Deborah K

    2016-11-01

    Bridgeman, LA, McGuigan, MR, Gill, ND, and Dulson, DK. Test-retest reliability of a novel isokinetic squat device with strength-trained athletes. J Strength Cond Res 30(11): 3261-3265, 2016-The aim of this study was to investigate the test-retest reliability of a novel multijoint isokinetic squat device. The subjects in this study were 10 strength-trained athletes. Each subject completed 3 maximal testing sessions to assess peak concentric and eccentric force (N) over a 3-week period using the Exerbotics squat device. Mean differences between eccentric and concentric force across the trials were calculated. Intraclass correlation coefficients (ICCs) and coefficients of variation (CVs) for the variables of interest were calculated using an excel reliability spreadsheet. Between trials 1 and 2 an 11.0 and 2.3% increase in mean concentric and eccentric forces, respectively, was reported. Between trials 2 and 3 a 1.35% increase in the mean concentric force production and a 1.4% increase in eccentric force production was reported. The mean concentric peak force CV and ICC across the 3 trials was 10% (7.6-15.4) and 0.95 (0.87-0.98) respectively. However, the mean eccentric peak force CV and ICC across the trials was 7.2% (5.5-11.1) and 0.90 (0.76-0.97), respectively. Based on these findings it is suggested that the Exerbotics squat device shows good test-retest reliability. Therefore practitioners and investigators may consider its use to monitor changes in concentric and eccentric peak force.

  1. A Hamiltonian electromagnetic gyrofluid model

    NASA Astrophysics Data System (ADS)

    Waelbroeck, F. L.; Hazeltine, R. D.; Morrison, P. J.

    2009-03-01

    An isothermal truncation of the electromagnetic gyrofluid model of Snyder and Hammett [Phys. Plasmas 8, 3199 (2001)] is shown to be Hamiltonian. The corresponding noncanonical Lie-Poisson bracket and its Casimir invariants are presented. The invariants are used to obtain a set of coupled Grad-Shafranov equations describing equilibria and propagating coherent structures.

  2. Effective Hamiltonian Approach to Optical Activity in Weyl Spin–Orbit System

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Hideo; Tatara, Gen

    2018-06-01

    Chirality or handedness in condensed matter induces anomalous optical responses such as natural optical activity, rotation of the plane of light polarization, as a result of breaking of spatial-inversion symmetry. In this study, optical properties of a Weyl spin-orbit system with quadratic dispersion, a typical chiral system invariant under time-reversal, are investigated theoretically by deriving an effective Hamiltonian based on an imaginary-time path-integral formalism. We show that the effective Hamiltonian can indeed be written in terms of an optical chirality order parameter suggested by Lipkin. The natural optical activity is discussed on the basis of the Hamiltonian.

  3. Quantum error suppression with commuting Hamiltonians: two local is too local.

    PubMed

    Marvian, Iman; Lidar, Daniel A

    2014-12-31

    We consider error suppression schemes in which quantum information is encoded into the ground subspace of a Hamiltonian comprising a sum of commuting terms. Since such Hamiltonians are gapped, they are considered natural candidates for protection of quantum information and topological or adiabatic quantum computation. However, we prove that they cannot be used to this end in the two-local case. By making the favorable assumption that the gap is infinite, we show that single-site perturbations can generate a degeneracy splitting in the ground subspace of this type of Hamiltonian which is of the same order as the magnitude of the perturbation, and is independent of the number of interacting sites and their Hilbert space dimensions, just as in the absence of the protecting Hamiltonian. This splitting results in decoherence of the ground subspace, and we demonstrate that for natural noise models the coherence time is proportional to the inverse of the degeneracy splitting. Our proof involves a new version of the no-hiding theorem which shows that quantum information cannot be approximately hidden in the correlations between two quantum systems. The main reason that two-local commuting Hamiltonians cannot be used for quantum error suppression is that their ground subspaces have only short-range (two-body) entanglement.

  4. Solving a Hamiltonian Path Problem with a bacterial computer

    PubMed Central

    Baumgardner, Jordan; Acker, Karen; Adefuye, Oyinade; Crowley, Samuel Thomas; DeLoache, Will; Dickson, James O; Heard, Lane; Martens, Andrew T; Morton, Nickolaus; Ritter, Michelle; Shoecraft, Amber; Treece, Jessica; Unzicker, Matthew; Valencia, Amanda; Waters, Mike; Campbell, A Malcolm; Heyer, Laurie J; Poet, Jeffrey L; Eckdahl, Todd T

    2009-01-01

    Background The Hamiltonian Path Problem asks whether there is a route in a directed graph from a beginning node to an ending node, visiting each node exactly once. The Hamiltonian Path Problem is NP complete, achieving surprising computational complexity with modest increases in size. This challenge has inspired researchers to broaden the definition of a computer. DNA computers have been developed that solve NP complete problems. Bacterial computers can be programmed by constructing genetic circuits to execute an algorithm that is responsive to the environment and whose result can be observed. Each bacterium can examine a solution to a mathematical problem and billions of them can explore billions of possible solutions. Bacterial computers can be automated, made responsive to selection, and reproduce themselves so that more processing capacity is applied to problems over time. Results We programmed bacteria with a genetic circuit that enables them to evaluate all possible paths in a directed graph in order to find a Hamiltonian path. We encoded a three node directed graph as DNA segments that were autonomously shuffled randomly inside bacteria by a Hin/hixC recombination system we previously adapted from Salmonella typhimurium for use in Escherichia coli. We represented nodes in the graph as linked halves of two different genes encoding red or green fluorescent proteins. Bacterial populations displayed phenotypes that reflected random ordering of edges in the graph. Individual bacterial clones that found a Hamiltonian path reported their success by fluorescing both red and green, resulting in yellow colonies. We used DNA sequencing to verify that the yellow phenotype resulted from genotypes that represented Hamiltonian path solutions, demonstrating that our bacterial computer functioned as expected. Conclusion We successfully designed, constructed, and tested a bacterial computer capable of finding a Hamiltonian path in a three node directed graph. This proof

  5. Intrarater reliability of the Humac NORM isokinetic dynamometer for strength measurements of the knee and shoulder muscles.

    PubMed

    Habets, Bas; Staal, J Bart; Tijssen, Marsha; van Cingel, Robert

    2018-01-10

    To determine the intrarater reliability of the Humac NORM isokinetic dynamometer for concentric and eccentric strength tests of knee and shoulder muscles. 54 participants (50% female, average age 20.9 ± 3.1 years) performed concentric and eccentric strength measures of the knee extensors and flexors, and the shoulder internal and external rotators on two different Humac NORM isokinetic dynamometers, which were situated at two different centers. The knee extensors and flexors were tested concentrically at 60° and 180°/s, and eccentrically at 60° s. Concentric strength of the shoulder internal and external rotators, and eccentric strength of the external rotators were measured at 60° and 120°/s. We calculated intraclass correlation coefficients (ICCs), standard error of measurement, standard error of measurement expressed as a %, and the smallest detectable change to determine reliability and measurement error. ICCs for the knee tests ranged from 0.74 to 0.89, whereas ICC values for the shoulder tests ranged from 0.72 to 0.94. Measurement error was highest for the concentric test of the knee extensors and lowest for the concentric test of shoulder external rotators.

  6. A Note on Hamiltonian Graphs

    ERIC Educational Resources Information Center

    Skurnick, Ronald; Davi, Charles; Skurnick, Mia

    2005-01-01

    Since 1952, several well-known graph theorists have proven numerous results regarding Hamiltonian graphs. In fact, many elementary graph theory textbooks contain the theorems of Ore, Bondy and Chvatal, Chvatal and Erdos, Posa, and Dirac, to name a few. In this note, the authors state and prove some propositions of their own concerning Hamiltonian…

  7. Total Water Content Measurements with an Isokinetic Sampling Probe

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Miller, Dean R.; Bidwell, Colin S.

    2010-01-01

    The NASA Glenn Research Center has developed a Total Water Content (TWC) Isokinetic Sampling Probe. Since it is not sensitive to cloud water particle phase nor size, it is particularly attractive to support super-cooled large droplet and high ice water content aircraft icing studies. The instrument is comprised of the Sampling Probe, Sample Flow Control, and Water Vapor Measurement subsystems. Analysis and testing have been conducted on the subsystems to ensure their proper function and accuracy. End-to-end bench testing has also been conducted to ensure the reliability of the entire instrument system. A Stokes Number based collection efficiency correction was developed to correct for probe thickness effects. The authors further discuss the need to ensure that no condensation occurs within the instrument plumbing. Instrument measurements compared to facility calibrations from testing in the NASA Glenn Icing Research Tunnel are presented and discussed. There appears to be liquid water content and droplet size effects in the differences between the two measurement techniques.

  8. Isokinetic Dynamometry in Healthy Versus Sarcopenic and Malnourished Elderly: Beyond Simple Measurements of Muscle Strength.

    PubMed

    Cramer, Joel T; Jenkins, Nathaniel D M; Mustad, Vikkie A; Weir, Joseph P

    2017-06-01

    This study quantified systematic and intraindividual variability among three repetitions of concentric isokinetic knee extension and flexion tests to determine velocity-related differences in peak torque (PT) and mean power (MP) in healthy elderly (HE) versus sarcopenic and malnourished elderly (SME). In total, 107 HE ( n = 54 men, n = 53 women) and 261 SME ( n = 101 men, n = 160 women) performed three maximal concentric isokinetic knee extension and flexion repetitions at 60°·s -1 and 180°·s -1 . PT for Repetition 3 was lower than Repetitions 1 and 2, while MP for Repetition 1 was lower than Repetitions 2 and 3 in SME. Intraindividual variability among repetitions was correlated with strength, but not age, and was greater in SME, during knee flexion, and at 180°·s -1 . Velocity-related decreases in PT from 60°·s -1 to 180°·s -1 were more pronounced in SME. In summary, (a) the repetition with the highest PT value may be the best indicator of maximal strength, while the average may indicate strength maintenance in SME; (b) intraindividual variability among repetitions reflects functional decrements from HE to SME; and (c) decreases in PT from 60°·s to 180°·s may reflect greater losses of fast-twitch (type II) fiber function.

  9. Quantum finance Hamiltonian for coupon bond European and barrier options.

    PubMed

    Baaquie, Belal E

    2008-03-01

    Coupon bond European and barrier options are financial derivatives that can be analyzed in the Hamiltonian formulation of quantum finance. Forward interest rates are modeled as a two-dimensional quantum field theory and its Hamiltonian and state space is defined. European and barrier options are realized as transition amplitudes of the time integrated Hamiltonian operator. The double barrier option for a financial instrument is "knocked out" (terminated with zero value) if the price of the underlying instrument exceeds or falls below preset limits; the barrier option is realized by imposing boundary conditions on the eigenfunctions of the forward interest rates' Hamiltonian. The price of the European coupon bond option and the zero coupon bond barrier option are calculated. It is shown that, is general, the constraint function for a coupon bond barrier option can -- to a good approximation -- be linearized. A calculation using an overcomplete set of eigenfunctions yields an approximate price for the coupon bond barrier option, which is given in the form of an integral of a factor that results from the barrier condition times another factor that arises from the payoff function.

  10. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    NASA Astrophysics Data System (ADS)

    Szederkényi, Gábor; Hangos, Katalin M.

    2004-04-01

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.

  11. Hamiltonian BVMs (HBVMs): Implementation Details and Applications

    NASA Astrophysics Data System (ADS)

    Brugnano, Luigi; Iavernaro, Felice; Susca, Tiziana

    2009-09-01

    Hamiltonian Boundary Value Methods are one step schemes of high order where the internal stages are partly exploited to impose the order conditions (fundamental stages) and partly to confer the formula the property of conserving the Hamiltonian function when this is a polynomial with a given degree v. The term "silent stages" has been coined for these latter set of extra-stages to mean that their presence does not cause an increase of the dimension of the associated nonlinear system to be solved at each step. By considering a specific method in this class, we give some details about how the solution of the nonlinear system may be conveniently carried out and how to compensate the effect of roundoff errors.

  12. Combined Effects of Lignosus rhinocerotis Supplementation and Resistance Training on Isokinetic Muscular Strength and Power, Anaerobic and Aerobic Fitness Level, and Immune Parameters in Young Males.

    PubMed

    Chen, Chee Keong; Hamdan, Nor Faeiza; Ooi, Foong Kiew; Wan Abd Hamid, Wan Zuraida

    2016-01-01

    This study investigated the effects of Lignosus rhinocerotis (LRS) supplementation and resistance training (RT) on isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters in young males. Participants were randomly assigned to four groups: Control (C), LRS, RT, and combined RT-LRS (RT-LRS). Participants in the LRS and RT-LRS groups consumed 500 mg of LRS daily for 8 weeks. RT was conducted 3 times/week for 8 weeks for participants in the RT and RT-LRS groups. The following parameters were measured before and after the intervention period: Anthropometric data, isokinetic muscular strength and power, and anaerobic and aerobic fitness. Blood samples were also collected to determine immune parameters. Isokinetic muscular strength and power were increased ( P < 0.05) in participants of both RT and RT-LRS groups. RT-LRS group had shown increases ( P < 0.05) in shoulder extension peak torque, shoulder flexion and extension average power, knee flexion peak torque, and knee flexion and extension average power. There were also increases ( P < 0.05) in anaerobic power and capacity and aerobic fitness in this group. Similarly, RT group had increases ( P < 0.05) in shoulder flexion average power, knee flexion and extension peak torque, and knee flexion and extension average power. In addition, increases ( P < 0.05) in anaerobic power and capacity, aerobic fitness, T lymphocytes (CD3 and CD4), and B lymphocytes (CD19) counts were observed in the RT group. RT elicited increased isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters among young males. However, supplementation with LRS during RT did not provide additive benefits.

  13. Combined Effects of Lignosus rhinocerotis Supplementation and Resistance Training on Isokinetic Muscular Strength and Power, Anaerobic and Aerobic Fitness Level, and Immune Parameters in Young Males

    PubMed Central

    Chen, Chee Keong; Hamdan, Nor Faeiza; Ooi, Foong Kiew; Wan Abd Hamid, Wan Zuraida

    2016-01-01

    Background: This study investigated the effects of Lignosus rhinocerotis (LRS) supplementation and resistance training (RT) on isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters in young males. Methods: Participants were randomly assigned to four groups: Control (C), LRS, RT, and combined RT-LRS (RT-LRS). Participants in the LRS and RT-LRS groups consumed 500 mg of LRS daily for 8 weeks. RT was conducted 3 times/week for 8 weeks for participants in the RT and RT-LRS groups. The following parameters were measured before and after the intervention period: Anthropometric data, isokinetic muscular strength and power, and anaerobic and aerobic fitness. Blood samples were also collected to determine immune parameters. Results: Isokinetic muscular strength and power were increased (P < 0.05) in participants of both RT and RT-LRS groups. RT-LRS group had shown increases (P < 0.05) in shoulder extension peak torque, shoulder flexion and extension average power, knee flexion peak torque, and knee flexion and extension average power. There were also increases (P < 0.05) in anaerobic power and capacity and aerobic fitness in this group. Similarly, RT group had increases (P < 0.05) in shoulder flexion average power, knee flexion and extension peak torque, and knee flexion and extension average power. In addition, increases (P < 0.05) in anaerobic power and capacity, aerobic fitness, T lymphocytes (CD3 and CD4), and B lymphocytes (CD19) counts were observed in the RT group. Conclusions: RT elicited increased isokinetic muscular strength and power, anaerobic and aerobic fitness, and immune parameters among young males. However, supplementation with LRS during RT did not provide additive benefits. PMID:27833721

  14. Can model Hamiltonians describe the electron-electron interaction in π-conjugated systems?: PAH and graphene

    NASA Astrophysics Data System (ADS)

    Chiappe, G.; Louis, E.; San-Fabián, E.; Vergés, J. A.

    2015-11-01

    Model Hamiltonians have been, and still are, a valuable tool for investigating the electronic structure of systems for which mean field theories work poorly. This review will concentrate on the application of Pariser-Parr-Pople (PPP) and Hubbard Hamiltonians to investigate some relevant properties of polycyclic aromatic hydrocarbons (PAH) and graphene. When presenting these two Hamiltonians we will resort to second quantisation which, although not the way chosen in its original proposal of the former, is much clearer. We will not attempt to be comprehensive, but rather our objective will be to try to provide the reader with information on what kinds of problems they will encounter and what tools they will need to solve them. One of the key issues concerning model Hamiltonians that will be treated in detail is the choice of model parameters. Although model Hamiltonians reduce the complexity of the original Hamiltonian, they cannot be solved in most cases exactly. So, we shall first consider the Hartree-Fock approximation, still the only tool for handling large systems, besides density functional theory (DFT) approaches. We proceed by discussing to what extent one may exactly solve model Hamiltonians and the Lanczos approach. We shall describe the configuration interaction (CI) method, a common technology in quantum chemistry but one rarely used to solve model Hamiltonians. In particular, we propose a variant of the Lanczos method, inspired by CI, that has the novelty of using as the seed of the Lanczos process a mean field (Hartree-Fock) determinant (the method will be named LCI). Two questions of interest related to model Hamiltonians will be discussed: (i) when including long-range interactions, how crucial is including in the Hamiltonian the electronic charge that compensates ion charges? (ii) Is it possible to reduce a Hamiltonian incorporating Coulomb interactions (PPP) to an ‘effective’ Hamiltonian including only on-site interactions (Hubbard)? The

  15. Hamiltonian approach to second order gauge invariant cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Domènech, Guillem; Sasaki, Misao

    2018-01-01

    In view of growing interest in tensor modes and their possible detection, we clarify the definition of tensor modes up to 2nd order in perturbation theory within the Hamiltonian formalism. Like in gauge theory, in cosmology the Hamiltonian is a suitable and consistent approach to reduce the gauge degrees of freedom. In this paper we employ the Faddeev-Jackiw method of Hamiltonian reduction. An appropriate set of gauge invariant variables that describe the dynamical degrees of freedom may be obtained by suitable canonical transformations in the phase space. We derive a set of gauge invariant variables up to 2nd order in perturbation expansion and for the first time we reduce the 3rd order action without adding gauge fixing terms. In particular, we are able to show the relation between the uniform-ϕ and Newtonian slicings, and study the difference in the definition of tensor modes in these two slicings.

  16. The effects of whole-body vibration exercise on isokinetic muscular function of the knee and jump performance depending on squatting position

    PubMed Central

    Kim, Jaeyuong; Park, Yunjin; Seo, Yonggon; Kang, Gyumin; Park, Sangseo; Cho, Hyeyoung; Moon, Hyunghoon; Kim, Myungki; Yu, Jaeho

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effects of whole-body vibration exercise (WBVE) on isokinetic muscular function of the knee and jump performance depending on different squatting positions. [Subjects] The subjects were 12 healthy adult men who did not exercise regularly between the ages of 27 and 34. [Methods] WBVE was performed with high squat position (SP), middle SP, and low SP. Before and after the intervention, isokinetic muscular function of the knees and jump performance were measured. [Results] Knee flexion peak torque at 60°/s and total work at 180°/s were significantly increased after implementing WBVE. Jump height also significantly increased after completing the exercise at all positions in comparison with the pre-exercise programs. [Conclusion] The results of this study suggest that SP during WBVE is an important factor stimulating positive effects on muscular function. PMID:26957749

  17. How the Invisible Hand is Supposed to Adjust the Natural Thermostat: A Guide for the Perplexed.

    PubMed

    Storm, Servaas

    2017-10-01

    Mainstream climate economics takes global warming seriously, but perplexingly concludes that the optimal economic policy is to almost do nothing about it. This conclusion can be traced to just a few "normative" assumptions, over which there exists fundamental disagreement amongst economists. This paper explores two axes of this disagreement. The first axis ("market vs. regulation") measures faith in the invisible hand to adjust the natural thermostat. The second axis expresses differences in views on the efficiency and equity implications of climate action. The two axes combined lead to a classification of conflicting approaches in climate economics. The variety of approaches does not imply a post-modern "anything goes", as the contradictions between climate and capitalism cannot be wished away.

  18. Integrated Hamiltonian sampling: a simple and versatile method for free energy simulations and conformational sampling.

    PubMed

    Mori, Toshifumi; Hamers, Robert J; Pedersen, Joel A; Cui, Qiang

    2014-07-17

    Motivated by specific applications and the recent work of Gao and co-workers on integrated tempering sampling (ITS), we have developed a novel sampling approach referred to as integrated Hamiltonian sampling (IHS). IHS is straightforward to implement and complementary to existing methods for free energy simulation and enhanced configurational sampling. The method carries out sampling using an effective Hamiltonian constructed by integrating the Boltzmann distributions of a series of Hamiltonians. By judiciously selecting the weights of the different Hamiltonians, one achieves rapid transitions among the energy landscapes that underlie different Hamiltonians and therefore an efficient sampling of important regions of the conformational space. Along this line, IHS shares similar motivations as the enveloping distribution sampling (EDS) approach of van Gunsteren and co-workers, although the ways that distributions of different Hamiltonians are integrated are rather different in IHS and EDS. Specifically, we report efficient ways for determining the weights using a combination of histogram flattening and weighted histogram analysis approaches, which make it straightforward to include many end-state and intermediate Hamiltonians in IHS so as to enhance its flexibility. Using several relatively simple condensed phase examples, we illustrate the implementation and application of IHS as well as potential developments for the near future. The relation of IHS to several related sampling methods such as Hamiltonian replica exchange molecular dynamics and λ-dynamics is also briefly discussed.

  19. Hermitian Hamiltonian equivalent to a given non-Hermitian one: manifestation of spectral singularity.

    PubMed

    Samsonov, Boris F

    2013-04-28

    One of the simplest non-Hermitian Hamiltonians, first proposed by Schwartz in 1960, that may possess a spectral singularity is analysed from the point of view of the non-Hermitian generalization of quantum mechanics. It is shown that the η operator, being a second-order differential operator, has supersymmetric structure. Asymptotic behaviour of the eigenfunctions of a Hermitian Hamiltonian equivalent to the given non-Hermitian one is found. As a result, the corresponding scattering matrix and cross section are given explicitly. It is demonstrated that the possible presence of a spectral singularity in the spectrum of the non-Hermitian Hamiltonian may be detected as a resonance in the scattering cross section of its Hermitian counterpart. Nevertheless, just at the singular point, the equivalent Hermitian Hamiltonian becomes undetermined.

  20. Optimal feedback scheme and universal time scaling for Hamiltonian parameter estimation.

    PubMed

    Yuan, Haidong; Fung, Chi-Hang Fred

    2015-09-11

    Time is a valuable resource and it is expected that a longer time period should lead to better precision in Hamiltonian parameter estimation. However, recent studies in quantum metrology have shown that in certain cases more time may even lead to worse estimations, which puts this intuition into question. In this Letter we show that by including feedback controls this intuition can be restored. By deriving asymptotically optimal feedback controls we quantify the maximal improvement feedback controls can provide in Hamiltonian parameter estimation and show a universal time scaling for the precision limit under the optimal feedback scheme. Our study reveals an intriguing connection between noncommutativity in the dynamics and the gain of feedback controls in Hamiltonian parameter estimation.

  1. Effective Hamiltonians for phosphorene and silicene

    DOE PAGES

    Lew Yan Voon, L. C.; Lopez-Bezanilla, A.; Wang, J.; ...

    2015-02-04

    Here, we derived the effective Hamiltonians for silicene and phosphorene with strain, electric field and magnetic field using the method of invariants. Our paper extends the work on silicene, and on phosphorene. Our Hamiltonians are compared to an equivalent one for graphene. For silicene, the expression for band warping is obtained analytically and found to be of different order than for graphene.We prove that a uniaxial strain does not open a gap, resolving contradictory numerical results in the literature. For phosphorene, it is shown that the bands near the Brillouin zone center only have terms in even powers of themore » wave vector.We predict that the energies change quadratically in the presence of a perpendicular external electric field but linearly in a perpendicular magnetic field, as opposed to those for silicene which vary linearly in both cases. Preliminary ab initio calculations for the intrinsic band structures have been carried out in order to evaluate some of the k · p parameters.« less

  2. Multiple Time-Step Dual-Hamiltonian Hybrid Molecular Dynamics — Monte Carlo Canonical Propagation Algorithm

    PubMed Central

    Weare, Jonathan; Dinner, Aaron R.; Roux, Benoît

    2016-01-01

    A multiple time-step integrator based on a dual Hamiltonian and a hybrid method combining molecular dynamics (MD) and Monte Carlo (MC) is proposed to sample systems in the canonical ensemble. The Dual Hamiltonian Multiple Time-Step (DHMTS) algorithm is based on two similar Hamiltonians: a computationally expensive one that serves as a reference and a computationally inexpensive one to which the workload is shifted. The central assumption is that the difference between the two Hamiltonians is slowly varying. Earlier work has shown that such dual Hamiltonian multiple time-step schemes effectively precondition nonlinear differential equations for dynamics by reformulating them into a recursive root finding problem that can be solved by propagating a correction term through an internal loop, analogous to RESPA. Of special interest in the present context, a hybrid MD-MC version of the DHMTS algorithm is introduced to enforce detailed balance via a Metropolis acceptance criterion and ensure consistency with the Boltzmann distribution. The Metropolis criterion suppresses the discretization errors normally associated with the propagation according to the computationally inexpensive Hamiltonian, treating the discretization error as an external work. Illustrative tests are carried out to demonstrate the effectiveness of the method. PMID:26918826

  3. Hamiltonian Cycle Enumeration via Fermion-Zeon Convolution

    NASA Astrophysics Data System (ADS)

    Staples, G. Stacey

    2017-12-01

    Beginning with a simple graph having finite vertex set V, operators are induced on fermion and zeon algebras by the action of the graph's adjacency matrix and combinatorial Laplacian on the vector space spanned by the graph's vertices. When the graph is simple (undirected with no loops or multiple edges), the matrices are symmetric and the induced operators are self-adjoint. The goal of the current paper is to recover a number of known graph-theoretic results from quantum observables constructed as linear operators on fermion and zeon Fock spaces. By considering an "indeterminate" fermion/zeon Fock space, a fermion-zeon convolution operator is defined whose trace recovers the number of Hamiltonian cycles in the graph. This convolution operator is a quantum observable whose expectation reveals the number of Hamiltonian cycles in the graph.

  4. The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate.

    PubMed

    Dridi, G; Julien, R; Hliwa, M; Joachim, C

    2015-08-28

    The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor.

  5. Construction of Hamiltonians by supervised learning of energy and entanglement spectra

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroyuki; Nakagawa, Yuya O.; Sugiura, Sho; Oshikawa, Masaki

    2018-02-01

    Correlated many-body problems ubiquitously appear in various fields of physics such as condensed matter, nuclear, and statistical physics. However, due to the interplay of the large number of degrees of freedom, it is generically impossible to treat these problems from first principles. Thus the construction of a proper model, namely, effective Hamiltonian, is essential. Here, we propose a simple supervised learning algorithm for constructing Hamiltonians from given energy or entanglement spectra. We apply the proposed scheme to the Hubbard model at the half-filling, and compare the obtained effective low-energy spin model with several analytic results based on the high-order perturbation theory, which have been inconsistent with each other. We also show that our approach can be used to construct the entanglement Hamiltonian of a quantum many-body state from its entanglement spectrum as well. We exemplify this using the ground states of the S =1 /2 two-leg Heisenberg ladders. We observe a qualitative difference between the entanglement Hamiltonians of the two phases (the Haldane and the rung singlet phase) of the model due to the different origin of the entanglement. In the Haldane phase, we find that the entanglement Hamiltonian is nonlocal by nature, and the locality can be restored by introducing the anisotropy and turning the ground state into the large-D phase. Possible applications to the model construction from experimental data and to various problems of strongly correlated systems are discussed.

  6. Symmetries of SU(2) Skyrmion in Hamiltonian and Lagrangian Approaches

    NASA Astrophysics Data System (ADS)

    Hong, Soon-Tae; Kim, Yong-Wan; Park, Young-Jai

    We apply the Batalin-Fradkin-Tyutin (BFT) method to the SU(2) Skyrmion to study the full symmetry structure of the model at the first-class Hamiltonian level. On the other hand, we also analyze the symmetry structure of the action having the WZ term, which corresponds to this Hamiltonian, in the framework of the Lagrangian approach. Furthermore, following the BFV formalism we derive the BRST invariant gauge fixed Lagrangian from the above extended action.

  7. The Hamiltonian structure of the (2+1)-dimensional Ablowitz--Kaup--Newell--Segur hierarchy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Athorne, C.; Dorfman, I.Y.

    1993-08-01

    By considering Hamiltonian theory over a suitable (noncommutative) ring the nonlinear evolution equations of the Ablowitz--Kaup--Newell--Segur (2+1) hierarchy are incorporated into a Hamiltonian framework and a modified Lenard scheme.

  8. Hamiltonian structure of Dubrovin's equation of associativity in 2-d topological field theory

    NASA Astrophysics Data System (ADS)

    Galvão, C. A. P.; Nutku, Y.

    1996-12-01

    A third order Monge-Ampère type equation of associativity that Dubrovin has obtained in 2-d topological field theory is formulated in terms of a variational principle subject to second class constraints. Using Dirac's theory of constraints this degenerate Lagrangian system is cast into Hamiltonian form and the Hamiltonian operator is obtained from the Dirac bracket. There is a new type of Kac-Moody algebra that corresponds to this Hamiltonian operator. In particular, it is not a W-algebra.

  9. Hamiltonian thermodynamics of charged three-dimensional dilatonic black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dias, Goncalo A. S.; Lemos, Jose P. S.; Centro Multidisciplinar de Astrofisica-CENTRA, Departamento de Fisica, Instituto Superior Tecnico-IST, Universidade Tecnica de Lisboa-UTL, Avenida Rovisco Pais 1, 1049-001 Lisboa

    2008-10-15

    The action for a class of three-dimensional dilaton-gravity theories, with an electromagnetic Maxwell field and a cosmological constant, can be recast in a Brans-Dicke-Maxwell type action, with its free {omega} parameter. For a negative cosmological constant, these theories have static, electrically charged, and spherically symmetric black hole solutions. Those theories with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found out. The theories studied are general relativity ({omega}{yields}{+-}{infinity}), a dimensionally reduced cylindrical four-dimensional general relativity theory ({omega}=0), and a theory representing a class of theories ({omega}=-3), all with a Maxwell term. The Hamiltonian formalismmore » is set up in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcation 1-sphere as the left boundary, and anti-de Sitter infinity as the right boundary. The metric functions on the foliated hypersurfaces and the radial component of the vector potential one-form are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unconstrained theory with two pairs of canonical coordinates (M,P{sub M};Q,P{sub Q}), where M is the mass parameter, which for {omega}<-(3/2) and for {omega}={+-}{infinity} needs a careful renormalization, P{sub M} is the conjugate momenta of M, Q is the charge parameter, and P{sub Q} is its conjugate momentum. The resulting Hamiltonian is a sum of boundary terms only. A quantization of the theory is performed. The Schroedinger evolution operator is constructed, the trace is taken, and the partition function of the grand canonical ensemble is obtained, where the chemical potential is the scalar electric field {phi}. Like the uncharged cases studied previously, the charged black hole entropies differ, in general, from the usual quarter of

  10. The Schwinger Model on S 1: Hamiltonian Formulation, Vacuum and Anomaly

    NASA Astrophysics Data System (ADS)

    Stuart, David

    2014-12-01

    We present a Hamiltonian formulation of the Schwinger model with spatial domain taken to be the circle. It is shown that, in Coulomb gauge, the Hamiltonian is a semi-bounded, self-adjoint operator which is invariant under the group of large gauge transformations. There is a nontrivial action of on fermionic Fock space and its vacuum. This action plays a role analogous to that played by the spectral flow in the infinite Dirac sea formalism. The formulation allows (1) a description of the anomaly and its relation to the group action, and (2) an explicit identification of the vacuum. The anomaly in the chiral conservation law appears as a consequence of insisting upon semi-boundedness and gauge invariance of the quantized Hamiltonian.

  11. Finite-error metrological bounds on multiparameter Hamiltonian estimation

    NASA Astrophysics Data System (ADS)

    Kura, Naoto; Ueda, Masahito

    2018-01-01

    Estimation of multiple parameters in an unknown Hamiltonian is investigated. We present upper and lower bounds on the time required to complete the estimation within a prescribed error tolerance δ . The lower bound is given on the basis of the Cramér-Rao inequality, where the quantum Fisher information is bounded by the squared evolution time. The upper bound is obtained by an explicit construction of estimation procedures. By comparing the cases with different numbers of Hamiltonian channels, we also find that the few-channel procedure with adaptive feedback and the many-channel procedure with entanglement are equivalent in the sense that they require the same amount of time resource up to a constant factor.

  12. Reverse engineering of a Hamiltonian by designing the evolution operators

    NASA Astrophysics Data System (ADS)

    Kang, Yi-Hao; Chen, Ye-Hong; Wu, Qi-Cheng; Huang, Bi-Hua; Xia, Yan; Song, Jie

    2016-07-01

    We propose an effective and flexible scheme for reverse engineering of a Hamiltonian by designing the evolution operators to eliminate the terms of Hamiltonian which are hard to be realized in practice. Different from transitionless quantum driving (TQD), the present scheme is focus on only one or parts of moving states in a D-dimension (D ≥ 3) system. The numerical simulation shows that the present scheme not only contains the results of TQD, but also has more free parameters, which make this scheme more flexible. An example is given by using this scheme to realize the population transfer for a Rydberg atom. The influences of various decoherence processes are discussed by numerical simulation and the result shows that the scheme is fast and robust against the decoherence and operational imperfection. Therefore, this scheme may be used to construct a Hamiltonian which can be realized in experiments.

  13. Riemannian geometry of Hamiltonian chaos: hints for a general theory.

    PubMed

    Cerruti-Sola, Monica; Ciraolo, Guido; Franzosi, Roberto; Pettini, Marco

    2008-10-01

    We aim at assessing the validity limits of some simplifying hypotheses that, within a Riemmannian geometric framework, have provided an explanation of the origin of Hamiltonian chaos and have made it possible to develop a method of analytically computing the largest Lyapunov exponent of Hamiltonian systems with many degrees of freedom. Therefore, a numerical hypotheses testing has been performed for the Fermi-Pasta-Ulam beta model and for a chain of coupled rotators. These models, for which analytic computations of the largest Lyapunov exponents have been carried out in the mentioned Riemannian geometric framework, appear as paradigmatic examples to unveil the reason why the main hypothesis of quasi-isotropy of the mechanical manifolds sometimes breaks down. The breakdown is expected whenever the topology of the mechanical manifolds is nontrivial. This is an important step forward in view of developing a geometric theory of Hamiltonian chaos of general validity.

  14. Extended hamiltonian formalism and Lorentz-violating lagrangians

    NASA Astrophysics Data System (ADS)

    Colladay, Don

    2017-09-01

    A new perspective on the classical mechanical formulation of particle trajectories in Lorentz-violating theories is presented. Using the extended hamiltonian formalism, a Legendre Transformation between the associated covariant lagrangian and hamiltonian varieties is constructed. This approach enables calculation of trajectories using Hamilton's equations in momentum space and the Euler-Lagrange equations in velocity space away from certain singular points that arise in the theory. Singular points are naturally de-singularized by requiring the trajectories to be smooth functions of both velocity and momentum variables. In addition, it is possible to identify specific sheets of the dispersion relations that correspond to specific solutions for the lagrangian. Examples corresponding to bipartite Finsler functions are computed in detail. A direct connection between the lagrangians and the field-theoretic solutions to the Dirac equation is also established for a special case.

  15. On the exactness of effective Floquet Hamiltonians employed in solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Garg, Rajat; Ramachandran, Ramesh

    2017-05-01

    Development of theoretical models based on analytic theory has remained an active pursuit in molecular spectroscopy for its utility both in the design of experiments as well as in the interpretation of spectroscopic data. In particular, the role of "Effective Hamiltonians" in the evolution of theoretical frameworks is well known across all forms of spectroscopy. Nevertheless, a constant revalidation of the approximations employed in the theoretical frameworks is necessitated by the constant improvements on the experimental front in addition to the complexity posed by the systems under study. Here in this article, we confine our discussion to the derivation of effective Floquet Hamiltonians based on the contact transformation procedure. While the importance of the effective Floquet Hamiltonians in the qualitative description of NMR experiments has been realized in simpler cases, its extension in quantifying spectral data deserves a cautious approach. With this objective, the validity of the approximations employed in the derivation of the effective Floquet Hamiltonians is re-examined through a comparison with exact numerical methods under differing experimental conditions. The limitations arising from the existing analytic methods are outlined along with remedial measures for improving the accuracy of the derived effective Floquet Hamiltonians.

  16. Age, weight, and the front abdominal power test as predictors of isokinetic trunk strength and work in young men and women.

    PubMed

    Cowley, Patrick M; Fitzgerald, Sharon; Sottung, Kyle; Swensen, Thomas

    2009-05-01

    First we tested the reliability of two new field tests of core stability (plank to fatigue test [PFT] and front abdominal power test [FAPT]), as well as established measures of core stability (isokinetic trunk extension and flexion strength [TES and TFS] and work [TEW and TFW]) over 3 days in 8 young men and women (24.0 +/- 3.1 years). The TES, TFS, TFW, and FAPT were highly reliable, TEW was moderately reliable, and PFT were unreliable for use during a single testing session. Next, we determined if age, weight, and the data from the reliable field test (FAPT) were predictive of TES, TEW, TFS, and TFW in 50 young men and women (19.0 +/- 1.2 years). The FAPT was the only significant predictor of TES and TEW in young women, explaining 16 and 15% of the variance in trunk performance, respectively. Weight was the only significant predictor of TFS and TFW in young women, explaining 28 and 14% of the variance in trunk performance, respectively. In young men, weight was the only significant predictor of TES, TEW, TFS, and TFW, and explained 27, 35, 42, and 33%, respectively, of the variance in trunk performance. In conclusion, the ability of weight and the FAPT to predict TES, TEW, TFS, and TFW was more frequent in young men than women. Additionally, because the FAPT requires few pieces of equipment, is fast to administer, and predicts isokinetic TES and TEW in young women, it can be used to provide a field-based estimate of isokinetic TES and TEW in women without history of back or lower-extremity injury.

  17. Hamiltonian General Relativity in Finite Space and Cosmological Potential Perturbations

    NASA Astrophysics Data System (ADS)

    Barbashov, B. M.; Pervushin, V. N.; Zakharov, A. F.; Zinchuk, V. A.

    The Hamiltonian formulation of general relativity is considered in finite space-time and a specific reference frame given by the diffeo-invariant components of the Fock simplex in terms of the Dirac-ADM variables. The evolution parameter and energy invariant with respect to the time-coordinate transformations are constructed by the separation of the cosmological scale factor a(x0) and its identification with the spatial averaging of the metric determinant, so that the dimension of the kinemetric group of diffeomorphisms coincides with the dimension of a set of variables whose velocities are removed by the Gauss-type constraints in accordance with the second Nöther theorem. This coincidence allows us to solve the energy constraint, fulfil Dirac's Hamiltonian reduction, and to describe the potential perturbations in terms of the Lichnerowicz scale-invariant variables distinguished by the absence of the time derivatives of the spatial metric determinant. It was shown that the Hamiltonian version of the cosmological perturbation theory acquires attributes of the theory of superfluid liquid, and it leads to a generalization of the Schwarzschild solution. The astrophysical application of this approach to general relativity is considered under supposition that the Dirac-ADM Hamiltonian frame is identified with that of the Cosmic Microwave Background radiation distinguished by its dipole component in the frame of an Earth observer.

  18. Market-Based Coordination of Thermostatically Controlled Loads—Part II: Unknown Parameters and Case Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sen; Zhang, Wei; Lian, Jianming

    This two-part paper considers the coordination of a population of Thermostatically Controlled Loads (TCLs) with unknown parameters to achieve group objectives. The problem involves designing the bidding and market clearing strategy to motivate self-interested users to realize efficient energy allocation subject to a peak power constraint. The companion paper (Part I) formulates the problem and proposes a load coordination framework using the mechanism design approach. To address the unknown parameters, Part II of this paper presents a joint state and parameter estimation framework based on the expectation maximization algorithm. The overall framework is then validated using real-world weather data andmore » price data, and is compared with other approaches in terms of aggregated power response. Simulation results indicate that our coordination framework can effectively improve the efficiency of the power grid operations and reduce power congestion at key times.« less

  19. Haptic control of a pneumatic muscle actuator to provide resistance for simulated isokinetic exercise; part II: control development and testing.

    PubMed

    Hall, Kara L; Phillips, Chandler A; Reynolds, David B; Mohler, Stanley R; Rogers, Dana B; Neidhard-Doll, Amy T

    2015-01-01

    Pneumatic muscle actuators (PMAs) have a high power to weight ratio and possess unique characteristics which make them ideal actuators for applications involving human interaction. PMAs are difficult to control due to nonlinear dynamics, presenting challenges in system implementation. Despite these challenges, PMAs have great potential as a source of resistance for strength training and rehabilitation. The objective of this work was to control a PMA for use in isokinetic exercise, potentially benefiting anyone in need of optimal strength training through a joint's range of motion. The controller, based on an inverse three-element phenomenological model and adaptive nonlinear control, allows the system to operate as a type of haptic device. A human quadriceps dynamic simulator was developed (as described in Part I of this work) so that control effectiveness and accommodation could be tested prior to human implementation. Tracking error results indicate that the control system is effective at producing PMA displacement and resistance necessary for a scaled, simulated neuromuscular actuator to maintain low-velocity isokinetic movement during simulated concentric and eccentric knee extension.

  20. A 2-dimensional optical architecture for solving Hamiltonian path problem based on micro ring resonators

    NASA Astrophysics Data System (ADS)

    Shakeri, Nadim; Jalili, Saeed; Ahmadi, Vahid; Rasoulzadeh Zali, Aref; Goliaei, Sama

    2015-01-01

    The problem of finding the Hamiltonian path in a graph, or deciding whether a graph has a Hamiltonian path or not, is an NP-complete problem. No exact solution has been found yet, to solve this problem using polynomial amount of time and space. In this paper, we propose a two dimensional (2-D) optical architecture based on optical electronic devices such as micro ring resonators, optical circulators and MEMS based mirror (MEMS-M) to solve the Hamiltonian Path Problem, for undirected graphs in linear time. It uses a heuristic algorithm and employs n+1 different wavelengths of a light ray, to check whether a Hamiltonian path exists or not on a graph with n vertices. Then if a Hamiltonian path exists, it reports the path. The device complexity of the proposed architecture is O(n2).

  1. Bounded Hamiltonian in the Fourth-Order Extension of the Chern-Simons Theory

    NASA Astrophysics Data System (ADS)

    Abakumova, V. A.; Kaparulin, D. S.; Lyakhovich, S. L.

    2018-04-01

    The problem of constructing alternative Hamiltonian formulations in the extended Chern-Simons theory with higher derivatives is considered. It is shown that the fourth-order extended theory admits a four-parameter series of alternative Hamiltonians which can be bounded from below, even if the canonical energy of the model is unbounded from below.

  2. Hamiltonian models for topological phases of matter in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Williamson, Dominic J.; Wang, Zhenghan

    2017-02-01

    We present commuting projector Hamiltonian realizations of a large class of (3 + 1)D topological models based on mathematical objects called unitary G-crossed braided fusion categories. This construction comes with a wealth of examples from the literature of symmetry-enriched topological phases. The spacetime counterparts to our Hamiltonians are unitary state sum topological quantum fields theories (TQFTs) that appear to capture all known constructions in the literature, including the Crane-Yetter-Walker-Wang and 2-Group gauge theory models. We also present Hamiltonian realizations of a state sum TQFT recently constructed by Kashaev whose relation to existing models was previously unknown. We argue that this TQFT is captured as a special case of the Crane-Yetter-Walker-Wang model, with a premodular input category in some instances.

  3. Hamiltonian formalism for f (T ) gravity

    NASA Astrophysics Data System (ADS)

    Ferraro, Rafael; Guzmán, María José

    2018-05-01

    We present the Hamiltonian formalism for f (T ) gravity, and prove that the theory has n/(n -3 ) 2 +1 degrees of freedom (d.o.f.) in n dimensions. We start from a scalar-tensor action for the theory, which represents a scalar field minimally coupled with the torsion scalar T that defines the teleparallel equivalent of general relativity (TEGR) Lagrangian. T is written as a quadratic form of the coefficients of anholonomy of the vierbein. We obtain the primary constraints through the analysis of the structure of the eigenvalues of the multi-index matrix involved in the definition of the canonical momenta. The auxiliary scalar field generates one extra primary constraint when compared with the TEGR case. The secondary constraints are the super-Hamiltonian and supermomenta constraints, that are preserved from the Arnowitt-Deser-Misner formulation of GR. There is a set of n/(n -1 ) 2 primary constraints that represent the local Lorentz transformations of the theory, which can be combined to form a set of n/(n -1 ) 2 -1 first-class constraints, while one of them becomes second class. This result is irrespective of the dimension, due to the structure of the matrix of the brackets between the constraints. The first-class canonical Hamiltonian is modified due to this local Lorentz violation, and the only one local Lorentz transformation that becomes second-class pairs up with the second-class constraint π ≈0 to remove one d.o.f. from the n2+1 pairs of canonical variables. The remaining n/(n -1 ) 2 +2 n -1 primary constraints remove the same number of d.o.f., leaving the theory with n/(n -3 ) 2 +1 d.o.f. This means that f (T ) gravity has only one extra d.o.f., which could be interpreted as a scalar d.o.f.

  4. Hamiltonian vs Lagrangian Embedding of a Massive Spin-One Theory Involving Two-Form Field

    NASA Astrophysics Data System (ADS)

    Harikumar, E.; Sivakumar, M.

    We consider the Hamiltonian and Lagrangian embedding of a first-order, massive spin-one, gauge noninvariant theory involving antisymmetric tensor field. We apply the BFV-BRST generalized canonical approach to convert the model to a first class system and construct nilpotent BFV-BRST charge and a unitarizing Hamiltonian. The canonical analysis of the Stückelberg formulation of this model is presented. We bring out the contrasting feature in the constraint structure, specifically with respect to the reducibility aspect, of the Hamiltonian and the Lagrangian embedded model. We show that to obtain manifestly covariant Stückelberg Lagrangian from the BFV embedded Hamiltonian, phase space has to be further enlarged and show how the reducible gauge structure emerges in the embedded model.

  5. Hamiltonian Anomalies from Extended Field Theories

    NASA Astrophysics Data System (ADS)

    Monnier, Samuel

    2015-09-01

    We develop a proposal by Freed to see anomalous field theories as relative field theories, namely field theories taking value in a field theory in one dimension higher, the anomaly field theory. We show that when the anomaly field theory is extended down to codimension 2, familiar facts about Hamiltonian anomalies can be naturally recovered, such as the fact that the anomalous symmetry group admits only a projective representation on the Hilbert space, or that the latter is really an abelian bundle gerbe over the moduli space. We include in the discussion the case of non-invertible anomaly field theories, which is relevant to six-dimensional (2, 0) superconformal theories. In this case, we show that the Hamiltonian anomaly is characterized by a degree 2 non-abelian group cohomology class, associated to the non-abelian gerbe playing the role of the state space of the anomalous theory. We construct Dai-Freed theories, governing the anomalies of chiral fermionic theories, and Wess-Zumino theories, governing the anomalies of Wess-Zumino terms and self-dual field theories, as extended field theories down to codimension 2.

  6. Separate spatial Holographic-Hamiltonian soliton pairs and solitons interaction in an unbiased series photorefractive crystal circuit.

    PubMed

    Cai, Xin; Liu, Jinsong; Wang, Shenglie

    2009-02-16

    This paper presents calculations for an idea in photorefractive spatial soliton, namely, a dissipative holographic soliton and a Hamiltonian soliton in one dimension form in an unbiased series photorefractive crystal circuit consisting of two photorefractive crystals of which at least one must be photovoltaic. The two solitons are known collectively as a separate Holographic-Hamiltonian spatial soliton pair and there are two types: dark-dark and bright-dark if only one crystal of the circuit is photovoltaic. The numerical results show that the Hamiltonian soliton in a soliton pair can affect the holographic one by the light-induced current whereas the effect of the holographic soliton on the Hamiltonian soliton is too weak to be ignored, i.e., the holographic soliton cannot affect the Hamiltonian one.

  7. Hyperventilation-induced respiratory alkalosis falls short of countering fatigue during repeated maximal isokinetic contractions.

    PubMed

    Sakamoto, Akihiro; Naito, Hisashi; Chow, Chin Moi

    2015-07-01

    Hyperventilation, implemented during recovery of repeated maximal sprints, has been shown to attenuate performance decrement. This study evaluated the effects of hyperventilation, using strength exercises, on muscle torque output and EMG amplitude. Fifteen power-trained athletes underwent maximal isokinetic knee extensions consisting of 12 repetitions × 8 sets at 60°/s and 25 repetitions × 8 sets at 300°/s. The inter-set interval was 40 s for both speeds. For the control condition, subjects breathed spontaneously during the interval period. For the hyperventilation condition, subjects hyperventilated for 30 s before each exercise set (50 breaths/min, PETCO2: 20-25 mmHg). EMG was recorded from the vastus medialis and lateralis muscles to calculate the mean amplitude for each contraction. Hyperventilation increased blood pH by 0.065-0.081 and lowered PCO2 by 8.3-10.3 mmHg from the control values (P < 0.001). Peak torque declined with repetition and set numbers for both speeds (P < 0.001), but the declining patterns were similar between conditions. A significant, but small enhancement in peak torque was observed with hyperventilation at 60°/s during the initial repetition phase of the first (P = 0.032) and fourth sets (P = 0.040). EMG amplitude also declined with set number (P < 0.001) for both speeds and muscles, which was, however, not attenuated by hyperventilation. Despite a minor ergogenic effect in peak torque at 60°/s, hyperventilation was not effective in attenuating the decrement in torque output at 300°/s and decrement in EMG amplitude at both speeds during repeated sets of maximal isokinetic knee extensions.

  8. Phase equilibria in polymer blend thin films: A Hamiltonian approach

    NASA Astrophysics Data System (ADS)

    Souche, M.; Clarke, N.

    2009-12-01

    We propose a Hamiltonian formulation of the Flory-Huggins-de Gennes theory describing a polymer blend thin film. We then focus on the case of 50:50 polymer blends confined between antisymmetric walls. The different phases of the system and the transitions between them, including finite-size effects, are systematically studied through their relation with the geometry of the Hamiltonian flow in phase space. This method provides an easy and efficient way, with strong graphical insight, to infer the qualitative physical behavior of polymer blend thin films.

  9. An integrable family of Monge-Ampère equations and their multi-Hamiltonian structure

    NASA Astrophysics Data System (ADS)

    Nutku, Y.; Sarioǧlu, Ö.

    1993-02-01

    We have identified a completely integrable family of Monge-Ampère equations through an examination of their Hamiltonian structure. Starting with a variational formulation of the Monge-Ampère equations we have constructed the first Hamiltonian operator through an application of Dirac's theory of constraints. The completely integrable class of Monge-Ampère equations are then obtained by solving the Jacobi identities for a sufficiently general form of the second Hamiltonian operator that is compatible with the first.

  10. Higher-dimensional Wannier functions of multiparameter Hamiltonians

    NASA Astrophysics Data System (ADS)

    Hanke, Jan-Philipp; Freimuth, Frank; Blügel, Stefan; Mokrousov, Yuriy

    2015-05-01

    When using Wannier functions to study the electronic structure of multiparameter Hamiltonians H(k ,λ ) carrying a dependence on crystal momentum k and an additional periodic parameter λ , one usually constructs several sets of Wannier functions for a set of values of λ . We present the concept of higher-dimensional Wannier functions (HDWFs), which provide a minimal and accurate description of the electronic structure of multiparameter Hamiltonians based on a single set of HDWFs. The obstacle of nonorthogonality of Bloch functions at different λ is overcome by introducing an auxiliary real space, which is reciprocal to the parameter λ . We derive a generalized interpolation scheme and emphasize the essential conceptual and computational simplifications in using the formalism, for instance, in the evaluation of linear response coefficients. We further implement the necessary machinery to construct HDWFs from ab initio within the full potential linearized augmented plane-wave method (FLAPW). We apply our implementation to accurately interpolate the Hamiltonian of a one-dimensional magnetic chain of Mn atoms in two important cases of λ : (i) the spin-spiral vector q and (ii) the direction of the ferromagnetic magnetization m ̂. Using the generalized interpolation of the energy, we extract the corresponding values of magnetocrystalline anisotropy energy, Heisenberg exchange constants, and spin stiffness, which compare very well with the values obtained from direct first principles calculations. For toy models we demonstrate that the method of HDWFs can also be used in applications such as the virtual crystal approximation, ferroelectric polarization, and spin torques.

  11. Hamiltonian formulation of systems with balanced loss-gain and exactly solvable models

    NASA Astrophysics Data System (ADS)

    Ghosh, Pijush K.; Sinha, Debdeep

    2018-01-01

    A Hamiltonian formulation of generic many-body systems with balanced loss and gain is presented. It is shown that a Hamiltonian formulation is possible only if the balancing of loss and gain terms occurs in a pairwise fashion. It is also shown that with the choice of a suitable co-ordinate, the Hamiltonian can always be reformulated in the background of a pseudo-Euclidean metric. If the equations of motion of some of the well-known many-body systems like Calogero models are generalized to include balanced loss and gain, it appears that the same may not be amenable to a Hamiltonian formulation. A few exactly solvable systems with balanced loss and gain, along with a set of integrals of motion are constructed. The examples include a coupled chain of nonlinear oscillators and a many-particle Calogero-type model with four-body inverse square plus two-body pair-wise harmonic interactions. For the case of nonlinear oscillators, stable solution exists even if the loss and gain parameter has unbounded upper range. Further, the range of the parameter for which the stable solutions are obtained is independent of the total number of the oscillators. The set of coupled nonlinear equations are solved exactly for the case when the values of all the constants of motions except the Hamiltonian are equal to zero. Exact, analytical classical solutions are presented for all the examples considered.

  12. Representation of the exact relativistic electronic Hamiltonian within the regular approximation

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Cremer, Dieter

    2003-12-01

    The exact relativistic Hamiltonian for electronic states is expanded in terms of energy-independent linear operators within the regular approximation. An effective relativistic Hamiltonian has been obtained, which yields in lowest order directly the infinite-order regular approximation (IORA) rather than the zeroth-order regular approximation method. Further perturbational expansion of the exact relativistic electronic energy utilizing the effective Hamiltonian leads to new methods based on ordinary (IORAn) or double [IORAn(2)] perturbation theory (n: order of expansion), which provide improved energies in atomic calculations. Energies calculated with IORA4 and IORA3(2) are accurate up to c-20. Furthermore, IORA is improved by using the IORA wave function to calculate the Rayleigh quotient, which, if minimized, leads to the exact relativistic energy. The outstanding performance of this new IORA method coined scaled IORA is documented in atomic and molecular calculations.

  13. Hamiltonian structure of three-dimensional gravity in Vielbein formalism

    NASA Astrophysics Data System (ADS)

    Hajihashemi, Mahdi; Shirzad, Ahmad

    2018-01-01

    Considering Chern-Simons like gravity theories in three dimensions as first order systems, we analyze the Hamiltonian structure of three theories Topological massive gravity, New massive gravity, and Zwei-Dreibein Gravity. We show that these systems demonstrate a new feature of the constrained systems in which a new kind of constraints emerge due to factorization of determinant of the matrix of Poisson brackets of constraints. We find the desired number of degrees of freedom as well as the generating functional of local Lorentz transformations and diffeomorphism through canonical structure of the system. We also compare the Hamiltonian structure of linearized version of the considered models with the original ones.

  14. Multisymplectic Lagrangian and Hamiltonian Formalisms of Classical Field Theories

    NASA Astrophysics Data System (ADS)

    Román-Roy, Narciso

    2009-11-01

    This review paper is devoted to presenting the standard multisymplectic formulation for describing geometrically classical field theories, both the regular and singular cases. First, the main features of the Lagrangian formalism are revisited and, second, the Hamiltonian formalism is constructed using Hamiltonian sections. In both cases, the variational principles leading to the Euler-Lagrange and the Hamilton-De Donder-Weyl equations, respectively, are stated, and these field equations are given in different but equivalent geometrical ways in each formalism. Finally, both are unified in a new formulation (which has been developed in the last years), following the original ideas of Rusk and Skinner for mechanical systems.

  15. Centrifugal distortion coefficients of asymmetric-top molecules: Reduction of the octic terms of the rotational Hamiltonian

    NASA Astrophysics Data System (ADS)

    Ramachandra Rao, Ch. V. S.

    1983-11-01

    The rotational Hamiltonian of an asymmetric-top molecule in its standard form, containing terms up to eighth degree in the components of the total angular momentum, is transformed by a unitary transformation with parameters Spqr to a reduced Hamiltonian so as to avoid the indeterminacies inherent in fitting the complete Hamiltonian to observed energy levels. Expressions are given for the nine determinable combinations of octic constants Θ' i ( i = 1 to 9) which are invariant under the unitary transformation. A method of reduction suitable for energy calculations by matrix diagonalization is considered. The relations between the coefficients of the transformed Hamiltonian, for suitable choice of the parameters Spqr, and those of the reduced Hamiltonian are given. This enables the determination of the nine octic constants Θ' i in terms of the experimental constants.

  16. Entanglement Entropy of Eigenstates of Quadratic Fermionic Hamiltonians.

    PubMed

    Vidmar, Lev; Hackl, Lucas; Bianchi, Eugenio; Rigol, Marcos

    2017-07-14

    In a seminal paper [D. N. Page, Phys. Rev. Lett. 71, 1291 (1993)PRLTAO0031-900710.1103/PhysRevLett.71.1291], Page proved that the average entanglement entropy of subsystems of random pure states is S_{ave}≃lnD_{A}-(1/2)D_{A}^{2}/D for 1≪D_{A}≤sqrt[D], where D_{A} and D are the Hilbert space dimensions of the subsystem and the system, respectively. Hence, typical pure states are (nearly) maximally entangled. We develop tools to compute the average entanglement entropy ⟨S⟩ of all eigenstates of quadratic fermionic Hamiltonians. In particular, we derive exact bounds for the most general translationally invariant models lnD_{A}-(lnD_{A})^{2}/lnD≤⟨S⟩≤lnD_{A}-[1/(2ln2)](lnD_{A})^{2}/lnD. Consequently, we prove that (i) if the subsystem size is a finite fraction of the system size, then ⟨S⟩Hamiltonian departs from the result for typical pure states, and (ii) in the limit in which the subsystem size is a vanishing fraction of the system size, the average entanglement entropy is maximal; i.e., typical eigenstates of such Hamiltonians exhibit eigenstate thermalization.

  17. ACL deficient potential copers and non-copers reveal different isokinetic quadriceps strength profiles in the early stage after injury

    PubMed Central

    Eitzen, I; Eitzen, TJ; Holm, I; Snyder-Mackler, L; Risberg, MA

    2011-01-01

    Background Isokinetic muscle strength tests using the peak torque value is the most frequently included quadriceps muscle strength measurement for anterior cruciate ligament (ACL) injured subjects. Aims The purpose of this study was to investigate quadriceps muscle performance during the whole isokinetic curve in ACL deficient subjects classified as potential copers or non-copers, and investigate whether these curve profiles were associated with single-leg hop performance. We hypothesized that quadriceps muscle torque at other knee flexion angles than peak torque would give more information about quadriceps muscle strength deficits. Furthermore, we hypothesized that there would be significant torque differences between potential copers and non-copers, and a significant relationship between angle specific torque values and single-leg hop performance. Study Design Cross-sectional study; Level of evidence, 2 Methods Seventy-six individuals with a complete unilateral ACL rupture within the last 3 months were included. The subjects were classified into potential copers and non-copers according to the criteria from Fitzgerald et al12. Isokinetic quadriceps muscle tests were performed at 60°/sec (Biodex 6000). Mean torque values were calculated for peak torque as well as for specific knee flexion angles. The one-leg hop and the 6 meter timed hop tests were included and symmetry indices were used. Results The peak torque value did not identify the largest quadriceps muscle strength deficit. Rather, these were established at knee flexion angles of less than 40°. There were significant differences in angle specific torque values between potential copers and non-copers (p<0.05). Moderate to strong associations were disclosed between angle specific torque values and single-leg hop performance, but only for non-copers (r≥0.32– 0.58). Conclusions Angle specific quadriceps muscle torque values of less than 40° of knee flexion provide more information on the quadriceps

  18. Quantum recurrence and fractional dynamic localization in ac-driven perfect state transfer Hamiltonians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhi, Stefano, E-mail: stefano.longhi@fisi.polimi.it

    Quantum recurrence and dynamic localization are investigated in a class of ac-driven tight-binding Hamiltonians, the Krawtchouk quantum chain, which in the undriven case provides a paradigmatic Hamiltonian model that realizes perfect quantum state transfer and mirror inversion. The equivalence between the ac-driven single-particle Krawtchouk Hamiltonian H{sup -hat} (t) and the non-interacting ac-driven bosonic junction Hamiltonian enables to determine in a closed form the quasi energy spectrum of H{sup -hat} (t) and the conditions for exact wave packet reconstruction (dynamic localization). In particular, we show that quantum recurrence, which is predicted by the general quantum recurrence theorem, is exact for themore » Krawtchouk quantum chain in a dense range of the driving amplitude. Exact quantum recurrence provides perfect wave packet reconstruction at a frequency which is fractional than the driving frequency, a phenomenon that can be referred to as fractional dynamic localization.« less

  19. Continuation of periodic orbits in symmetric Hamiltonian and conservative systems

    NASA Astrophysics Data System (ADS)

    Galan-Vioque, J.; Almaraz, F. J. M.; Macías, E. F.

    2014-12-01

    We present and review results on the continuation and bifurcation of periodic solutions in conservative, reversible and Hamiltonian systems in the presence of symmetries. In particular we show how two-point boundary value problem continuation software can be used to compute families of periodic solutions of symmetric Hamiltonian systems. The technique is introduced with a very simple model example (the mathematical pendulum), justified with a theoretical continuation result and then applied to two non trivial examples: the non integrable spring pendulum and the continuation of the figure eight solution of the three body problem.

  20. Fine tuning classical and quantum molecular dynamics using a generalized Langevin equation

    NASA Astrophysics Data System (ADS)

    Rossi, Mariana; Kapil, Venkat; Ceriotti, Michele

    2018-03-01

    Generalized Langevin Equation (GLE) thermostats have been used very effectively as a tool to manipulate and optimize the sampling of thermodynamic ensembles and the associated static properties. Here we show that a similar, exquisite level of control can be achieved for the dynamical properties computed from thermostatted trajectories. We develop quantitative measures of the disturbance induced by the GLE to the Hamiltonian dynamics of a harmonic oscillator, and show that these analytical results accurately predict the behavior of strongly anharmonic systems. We also show that it is possible to correct, to a significant extent, the effects of the GLE term onto the corresponding microcanonical dynamics, which puts on more solid grounds the use of non-equilibrium Langevin dynamics to approximate quantum nuclear effects and could help improve the prediction of dynamical quantities from techniques that use a Langevin term to stabilize dynamics. Finally we address the use of thermostats in the context of approximate path-integral-based models of quantum nuclear dynamics. We demonstrate that a custom-tailored GLE can alleviate some of the artifacts associated with these techniques, improving the quality of results for the modeling of vibrational dynamics of molecules, liquids, and solids.

  1. Asymmetries in functional hop tests, lower extremity kinematics, and isokinetic strength persist 6 to 9 months following anterior cruciate ligament reconstruction.

    PubMed

    Xergia, Sofia A; Pappas, Evangelos; Zampeli, Franceska; Georgiou, Spyros; Georgoulis, Anastasios D

    2013-03-01

    Within-subject and between-subject cross-sectional study. To investigate symmetry in hop-test performance, strength, and lower extremity kinematics 6 to 9 months following anterior cruciate ligament reconstruction (ACLR). Despite the extensive body of literature involving persons following ACLR, no study has comprehensively evaluated measures of strength, lower extremity kinematics, and functional performance of functional hop tests in this population. The subjects were 22 men (mean ± SD age, 28.8 ± 11.2 years) who had ACLR using a bone-patellar tendon-bone autograft 6 to 9 (7.01 ± 0.93) months previously and 22 healthy male controls (age, 24.8 ± 9.1 years). Participants completed a self-report questionnaire and underwent isokinetic strength testing and functional and kinematic assessment of the single-, triple-, and crossover-hop tests. Two-way analyses of variance were used to test for differences between the ACLR group and the control group, and between the 2 lower extremities of the ACLR group. Compared to the control group, the ACLR group had greater isokinetic knee extension torque deficits at all speeds (P ≤.001) and greater performance asymmetry for all 3 hop tests (P<.001). Compared to the noninvolved lower extremity, the involved lower extremity of the ACLR group exhibited less ankle dorsiflexion and knee flexion in the phases of propulsion (P ≤.014) and landing (P ≤.032). When compared to the control group, the involved lower extremity exhibited less ankle dorsiflexion in the propulsion phase (P<.001) but higher hip flexion in the landing phase (P = .014). Six to 9 months following ACLR, patients continue to demonstrate functional hop and isokinetic knee extension deficits, as well as kinematic differences, during the propulsion and landing phases of the hop tests.

  2. The Nosé–Hoover looped chain thermostat for low temperature thawed Gaussian wave-packet dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughtrie, David J.; Tew, David P.

    2014-05-21

    We have used a generalised coherent state resolution of the identity to map the quantum canonical statistical average for a general system onto a phase-space average over the centre and width parameters of a thawed Gaussian wave packet. We also propose an artificial phase-space density that has the same behaviour as the canonical phase-space density in the low-temperature limit, and have constructed a novel Nosé–Hoover looped chain thermostat that generates this density in conjunction with variational thawed Gaussian wave-packet dynamics. This forms a new platform for evaluating statistical properties of quantum condensed-phase systems that has an explicit connection to themore » time-dependent Schrödinger equation, whilst retaining many of the appealing features of path-integral molecular dynamics.« less

  3. Equilibrium Solutions of the Logarithmic Hamiltonian Leapfrog for the N-body Problem

    NASA Astrophysics Data System (ADS)

    Minesaki, Yukitaka

    2018-04-01

    We prove that a second-order logarithmic Hamiltonian leapfrog for the classical general N-body problem (CGNBP) designed by Mikkola and Tanikawa and some higher-order logarithmic Hamiltonian methods based on symmetric multicompositions of the logarithmic algorithm exactly reproduce the orbits of elliptic relative equilibrium solutions in the original CGNBP. These methods are explicit symplectic methods. Before this proof, only some implicit discrete-time CGNBPs proposed by Minesaki had been analytically shown to trace the orbits of elliptic relative equilibrium solutions. The proof is therefore the first existence proof for explicit symplectic methods. Such logarithmic Hamiltonian methods with a variable time step can also precisely retain periodic orbits in the classical general three-body problem, which generic numerical methods with a constant time step cannot do.

  4. A unified theoretical framework for mapping models for the multi-state Hamiltonian.

    PubMed

    Liu, Jian

    2016-11-28

    We propose a new unified theoretical framework to construct equivalent representations of the multi-state Hamiltonian operator and present several approaches for the mapping onto the Cartesian phase space. After mapping an F-dimensional Hamiltonian onto an F+1 dimensional space, creation and annihilation operators are defined such that the F+1 dimensional space is complete for any combined excitation. Commutation and anti-commutation relations are then naturally derived, which show that the underlying degrees of freedom are neither bosons nor fermions. This sets the scene for developing equivalent expressions of the Hamiltonian operator in quantum mechanics and their classical/semiclassical counterparts. Six mapping models are presented as examples. The framework also offers a novel way to derive such as the well-known Meyer-Miller model.

  5. A Synthetical Two-Component Model with Peakon Solutions: One More Bi-Hamiltonian Case

    NASA Astrophysics Data System (ADS)

    Mengxia, Zhang; Xiaomin, Yang

    2018-05-01

    Compatible pairs of Hamiltonian operators for the synthetical two-component model of Xia, Qiao, and Zhou are derived systematically by means of the spectral gradient method. A new two-component system, which is bi-Hamiltonian, is presented. For this new system, the construction of its peakon solutions is considered.

  6. An inquiry into the cirrus-cloud thermostat effect for tropical sea surface temperature

    NASA Technical Reports Server (NTRS)

    Lau, K.-M.; Sui, C.-H.; Chou, M.-D.; Tao, W.-K.

    1994-01-01

    In this paper, we investigate the relative importance of local vs remote control on cloud radiative forcing using a cumulus ensemble model. It is found that cloud and surface radiation forcings are much more sensitive to the mean vertical motion assoicated with large scale tropical circulation than to the local SST (sea surface temperature). When the local SST is increased with the mean vertical motion held constant, increased surface latent and sensible heat flux associated with enhanced moisture recycling is found to be the primary mechanism for cooling the ocean surface. Large changes in surface shortwave fluxes are related to changes in cloudiness induced by changes in the large scale circulation. These results are consistent with a number of earlier empirical studies, which raised concerns regarding the validity of the cirrus-thermostat hypothesis (Ramanathan and Collins, 1991). It is argued that for a better understanding of cloud feedback, both local and remote controls need to be considered and that a cumulus ensemble model is a powerful tool that should be explored for such purpose.

  7. Tsallis thermostatistics for finite systems: a Hamiltonian approach

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.; Moreira, Andrã© A.; Andrade, José S., Jr.; Almeida, Murilo P.

    2003-05-01

    The derivation of the Tsallis generalized canonical distribution from the traditional approach of the Gibbs microcanonical ensemble is revisited (Phys. Lett. A 193 (1994) 140). We show that finite systems whose Hamiltonians obey a generalized homogeneity relation rigorously follow the nonextensive thermostatistics of Tsallis. In the thermodynamical limit, however, our results indicate that the Boltzmann-Gibbs statistics is always recovered, regardless of the type of potential among interacting particles. This approach provides, moreover, a one-to-one correspondence between the generalized entropy and the Hamiltonian structure of a wide class of systems, revealing a possible origin for the intrinsic nonlinear features present in the Tsallis formalism that lead naturally to power-law behavior. Finally, we confirm these exact results through extensive numerical simulations of the Fermi-Pasta-Ulam chain of anharmonic oscillators.

  8. An Exact Separation of the Spin-Free and Spin-Dependent Terms of the Dirac-Coulomb-Breit Hamiltonian

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.

    1994-01-01

    The Dirac Hamiltonian is transformed by extracting the operator (sigma x p)/2mc from the small component of the wave function and applying it to the operators of the original Hamiltonian. The resultant operators contain products of Paull matrices that can be rearranged to give spin-free and spin-dependent operators. These operators are the ones encountered in the Breit-Pauli Hamiltonian, as well as some of higher order in alpha(sup 2). However, since the transformation of the original Dirac Hamiltonian is exact, the new Hamiltonian can be used in variational calculations, with or without the spin-dependent terms. The new small component functions have the same symmetry properties as the large component. Use of only the spin-free terms of the new Hamiltonian permits the same factorization over spin variables as in nonrelativistic theory, and therefore all the post-Self-Consistent Field (SCF) machinery of nonrelativistic calculations can be applied. However, the single-particle functions are two-component orbitals having a large and small component, and the SCF methods must be modified accordingly. Numerical examples are presented, and comparisons are made with the spin-free second-order Douglas-Kroll transformed Hamiltonian of Hess.

  9. Iterated Hamiltonian type systems and applications

    NASA Astrophysics Data System (ADS)

    Tiba, Dan

    2018-04-01

    We discuss, in arbitrary dimension, certain Hamiltonian type systems and prove existence, uniqueness and regularity properties, under the independence condition. We also investigate the critical case, define a class of generalized solutions and prove existence and basic properties. Relevant examples and counterexamples are also indicated. The applications concern representations of implicitly defined manifolds and their perturbations, motivated by differential systems involving unknown geometries.

  10. Conformal killing tensors and covariant Hamiltonian dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cariglia, M., E-mail: marco@iceb.ufop.br; Gibbons, G. W., E-mail: G.W.Gibbons@damtp.cam.ac.uk; LE STUDIUM, Loire Valley Institute for Advanced Studies, Tours and Orleans

    2014-12-15

    A covariant algorithm for deriving the conserved quantities for natural Hamiltonian systems is combined with the non-relativistic framework of Eisenhart, and of Duval, in which the classical trajectories arise as geodesics in a higher dimensional space-time, realized by Brinkmann manifolds. Conserved quantities which are polynomial in the momenta can be built using time-dependent conformal Killing tensors with flux. The latter are associated with terms proportional to the Hamiltonian in the lower dimensional theory and with spectrum generating algebras for higher dimensional quantities of order 1 and 2 in the momenta. Illustrations of the general theory include the Runge-Lenz vector formore » planetary motion with a time-dependent gravitational constant G(t), motion in a time-dependent electromagnetic field of a certain form, quantum dots, the Hénon-Heiles and Holt systems, respectively, providing us with Killing tensors of rank that ranges from one to six.« less

  11. Two-layer interfacial flows beyond the Boussinesq approximation: a Hamiltonian approach

    NASA Astrophysics Data System (ADS)

    Camassa, R.; Falqui, G.; Ortenzi, G.

    2017-02-01

    The theory of integrable systems of Hamiltonian PDEs and their near-integrable deformations is used to study evolution equations resulting from vertical-averages of the Euler system for two-layer stratified flows in an infinite two-dimensional channel. The Hamiltonian structure of the averaged equations is obtained directly from that of the Euler equations through the process of Hamiltonian reduction. Long-wave asymptotics together with the Boussinesq approximation of neglecting the fluids’ inertia is then applied to reduce the leading order vertically averaged equations to the shallow-water Airy system, albeit in a non-trivial way. The full non-Boussinesq system for the dispersionless limit can then be viewed as a deformation of this well known equation. In a perturbative study of this deformation, a family of approximate constants of the motion are explicitly constructed and used to find local solutions of the evolution equations by means of hodograph-like formulae.

  12. Reductions of topologically massive gravity I: Hamiltonian analysis of second order degenerate Lagrangians

    NASA Astrophysics Data System (ADS)

    Ćaǧatay Uçgun, Filiz; Esen, Oǧul; Gümral, Hasan

    2018-01-01

    We present Skinner-Rusk and Hamiltonian formalisms of second order degenerate Clément and Sarıoğlu-Tekin Lagrangians. The Dirac-Bergmann constraint algorithm is employed to obtain Hamiltonian realizations of Lagrangian theories. The Gotay-Nester-Hinds algorithm is used to investigate Skinner-Rusk formalisms of these systems.

  13. On the Existence of Star Products on Quotient Spaces of Linear Hamiltonian Torus Actions

    NASA Astrophysics Data System (ADS)

    Herbig, Hans-Christian; Iyengar, Srikanth B.; Pflaum, Markus J.

    2009-08-01

    We discuss BFV deformation quantization (Bordemann et al. in A homological approach to singular reduction in deformation quantization, singularity theory, pp. 443-461. World Scientific, Hackensack, 2007) in the special case of a linear Hamiltonian torus action. In particular, we show that the Koszul complex on the moment map of an effective linear Hamiltonian torus action is acyclic. We rephrase the nonpositivity condition of Arms and Gotay (Adv Math 79(1):43-103, 1990) for linear Hamiltonian torus actions. It follows that reduced spaces of such actions admit continuous star products.

  14. Isokinetic strength and endurance after percutaneous and open surgical repair of Achilles tendon ruptures.

    PubMed

    Goren, David; Ayalon, Moshe; Nyska, Meir

    2005-04-01

    Reports on complete spontaneous Achilles tendon ruptures and associated treatment have become more frequent in the literature in the past two decades, as has the request for treatments that enable the finest possible functional recovery. The best available treatment is a matter of considerable controversy in the literature. The purpose of this study was to compare the isokinetic strength and endurance of the plantarflexor muscle-tendon unit in subjects who sustained rupture of the Achilles tendon and underwent either open surgery or closed percutaneous repair of the Achilles tendon. Twenty patients (18 males, 2 females) with spontaneous ruptures of the Achilles tendon were included in this study. Ten patients were treated by open surgery, and 10 patients were treated percutaneously. All patients had ruptured their Achilles tendon more than 6 months before the study, and all of the ruptures occurred 3.5 years or less before the day of the testing. All patients underwent an oriented physical examination. An isokinetic Biodex dynamometer (Biodex Medical System, Shirley, NY) was used to measure ankle joint angle, and in plantarflexion to calculate the torque at the ankle joint (Newton/meter), and the average work (jouls) for both maximal power and endurance. Each measurement was compared to the normal ankle. Biodex dynamometer evaluations at 90 deg/sec demonstrated a significant difference of maximal voluntary plantarflexor torque, endurance performance and range of motion at the ankle joint between the involved and uninvolved sides in patients treated by either mode of treatment. Yet, no statistically significant differences were revealed for the parameters mentioned above between the subjects that were treated either percutaneously or by an open surgery. In functional terms, the biomechanical outcomes of open surgery and percutaneous repair for acute ruptures of the Achilles tendon are both effective.

  15. Tennis players show a lower coactivation of the elbow antagonist muscles during isokinetic exercises.

    PubMed

    Bazzucchi, Ilenia; Riccio, Maria Elena; Felici, Francesco

    2008-10-01

    Previous studies have suggested that muscle coactivation could be reduced by a recurrent activity (training, daily activities). If this was correct, skilled athletes should show a specific muscle activation pattern with a low level of coactivation of muscles which are typically involved in their discipline. In particular, the aim of this study was to verify the hypothesis that the amount of antagonist activation of biceps brachii (BB) and triceps brachii (TB) is different between tennis players and non-players individuals during maximal isokinetic contractions. Ten young healthy men and eight male tennis players participated in the study. The surface electromyographic signals (sEMG) were recorded from the BB and TB muscles during three maximal voluntary isometric contractions (MVC) of elbow flexors and extensors and a set of three maximal elbow flexions and extensions at 15 degrees , 30 degrees , 60 degrees , 120 degrees , 180 degrees and 240 degrees /s. Normalized root mean square (RMS) of sEMG was calculated as an index of sEMG amplitude. Antagonist activation (%RMSmax) of TB was significantly lower in tennis players (from 14.0+/-7.9% at MVC to 16.3+/-8.9% at 240 degrees /s) with respect to non-players (from 27.7+/-19.7% at MVC to 38.7+/-17.6% at 240 degrees /s) at all angular velocities. Contrary to non-players, tennis players did not show any difference in antagonist activation between BB and TB muscles. Tennis players, with a constant practice in controlling forces around the elbow joint, learn how to reduce coactivation of muscles involved in the control of this joint. This has been shown by the lower antagonist muscular activity of triceps brachii muscle during isokinetic elbow flexion found in tennis players with respect to non-players.

  16. Universal adiabatic quantum computation via the space-time circuit-to-Hamiltonian construction.

    PubMed

    Gosset, David; Terhal, Barbara M; Vershynina, Anna

    2015-04-10

    We show how to perform universal adiabatic quantum computation using a Hamiltonian which describes a set of particles with local interactions on a two-dimensional grid. A single parameter in the Hamiltonian is adiabatically changed as a function of time to simulate the quantum circuit. We bound the eigenvalue gap above the unique ground state by mapping our model onto the ferromagnetic XXZ chain with kink boundary conditions; the gap of this spin chain was computed exactly by Koma and Nachtergaele using its q-deformed version of SU(2) symmetry. We also discuss a related time-independent Hamiltonian which was shown by Janzing to be capable of universal computation. We observe that in the limit of large system size, the time evolution is equivalent to the exactly solvable quantum walk on Young's lattice.

  17. Universal Adiabatic Quantum Computation via the Space-Time Circuit-to-Hamiltonian Construction

    NASA Astrophysics Data System (ADS)

    Gosset, David; Terhal, Barbara M.; Vershynina, Anna

    2015-04-01

    We show how to perform universal adiabatic quantum computation using a Hamiltonian which describes a set of particles with local interactions on a two-dimensional grid. A single parameter in the Hamiltonian is adiabatically changed as a function of time to simulate the quantum circuit. We bound the eigenvalue gap above the unique ground state by mapping our model onto the ferromagnetic X X Z chain with kink boundary conditions; the gap of this spin chain was computed exactly by Koma and Nachtergaele using its q -deformed version of SU(2) symmetry. We also discuss a related time-independent Hamiltonian which was shown by Janzing to be capable of universal computation. We observe that in the limit of large system size, the time evolution is equivalent to the exactly solvable quantum walk on Young's lattice.

  18. Complete Hamiltonian analysis of cosmological perturbations at all orders II: non-canonical scalar field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, Debottam; Shankaranarayanan, S., E-mail: debottam@iisertvm.ac.in, E-mail: shanki@iisertvm.ac.in

    2016-10-01

    In this work, we present a consistent Hamiltonian analysis of cosmological perturbations for generalized non-canonical scalar fields. In order to do so, we introduce a new phase-space variable that is uniquely defined for different non-canonical scalar fields. We also show that this is the simplest and efficient way of expressing the Hamiltonian. We extend the Hamiltonian approach of [1] to non-canonical scalar field and obtain an unique expression of speed of sound in terms of phase-space variable. In order to invert generalized phase-space Hamilton's equations to Euler-Lagrange equations of motion, we prescribe a general inversion formulae and show that ourmore » approach for non-canonical scalar field is consistent. We also obtain the third and fourth order interaction Hamiltonian for generalized non-canonical scalar fields and briefly discuss the extension of our method to generalized Galilean scalar fields.« less

  19. Hamiltonian theory of guiding-center motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Littlejohn, R.G.

    1980-05-01

    A Hamiltonian treatment of the guiding center problem is given which employs noncanonical coordinates in phase space. Separation of the unperturbed system from the perturbation is achieved by using a coordinate transformation suggested by a theorem of Darboux. As a model to illustrate the method, motion in the magnetic field B=B(x,y)z is studied. Lie transforms are used to carry out the perturbation expansion.

  20. Witnessing eigenstates for quantum simulation of Hamiltonian spectra

    PubMed Central

    Santagati, Raffaele; Wang, Jianwei; Gentile, Antonio A.; Paesani, Stefano; Wiebe, Nathan; McClean, Jarrod R.; Morley-Short, Sam; Shadbolt, Peter J.; Bonneau, Damien; Silverstone, Joshua W.; Tew, David P.; Zhou, Xiaoqi; O’Brien, Jeremy L.; Thompson, Mark G.

    2018-01-01

    The efficient calculation of Hamiltonian spectra, a problem often intractable on classical machines, can find application in many fields, from physics to chemistry. We introduce the concept of an “eigenstate witness” and, through it, provide a new quantum approach that combines variational methods and phase estimation to approximate eigenvalues for both ground and excited states. This protocol is experimentally verified on a programmable silicon quantum photonic chip, a mass-manufacturable platform, which embeds entangled state generation, arbitrary controlled unitary operations, and projective measurements. Both ground and excited states are experimentally found with fidelities >99%, and their eigenvalues are estimated with 32 bits of precision. We also investigate and discuss the scalability of the approach and study its performance through numerical simulations of more complex Hamiltonians. This result shows promising progress toward quantum chemistry on quantum computers. PMID:29387796

  1. The Effect of Eight Weeks Plyometric Training on Anaerobic Power, Counter Movement Jumping and Isokinetic Strength in 15-18 Years Basketball Players

    ERIC Educational Resources Information Center

    Adigüzel, Niyazi Sidki; Günay, Mehmet

    2016-01-01

    The purpose of this study was to investigate the effect of eight weeks plyometric training on anaerobic power, counter movement jumping and isokinetic strength in 15-18 years aged basketball players. This study was including 30 male Basketball players. The subjects were divided into two groups as: the experimental group (n = 15) and the control…

  2. Integrable Time-Dependent Quantum Hamiltonians

    NASA Astrophysics Data System (ADS)

    Sinitsyn, Nikolai A.; Yuzbashyan, Emil A.; Chernyak, Vladimir Y.; Patra, Aniket; Sun, Chen

    2018-05-01

    We formulate a set of conditions under which the nonstationary Schrödinger equation with a time-dependent Hamiltonian is exactly solvable analytically. The main requirement is the existence of a non-Abelian gauge field with zero curvature in the space of system parameters. Known solvable multistate Landau-Zener models satisfy these conditions. Our method provides a strategy to incorporate time dependence into various quantum integrable models while maintaining their integrability. We also validate some prior conjectures, including the solution of the driven generalized Tavis-Cummings model.

  3. Modular Hamiltonians on the null plane and the Markov property of the vacuum state

    NASA Astrophysics Data System (ADS)

    Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo

    2017-09-01

    We compute the modular Hamiltonians of regions having the future horizon lying on a null plane. For a CFT this is equivalent to regions with a boundary of arbitrary shape lying on the null cone. These Hamiltonians have a local expression on the horizon formed by integrals of the stress tensor. We prove this result in two different ways, and show that the modular Hamiltonians of these regions form an infinite dimensional Lie algebra. The corresponding group of unitary transformations moves the fields on the null surface locally along the null generators with arbitrary null line dependent velocities, but act non-locally outside the null plane. We regain this result in greater generality using more abstract tools on the algebraic quantum field theory. Finally, we show that modular Hamiltonians on the null surface satisfy a Markov property that leads to the saturation of the strong sub-additive inequality for the entropies and to the strong super-additivity of the relative entropy.

  4. Model many-body Stoner Hamiltonian for binary FeCr alloys

    NASA Astrophysics Data System (ADS)

    Nguyen-Manh, D.; Dudarev, S. L.

    2009-09-01

    We derive a model tight-binding many-body d -electron Stoner Hamiltonian for FeCr binary alloys and investigate the sensitivity of its mean-field solutions to the choice of hopping integrals and the Stoner exchange parameters. By applying the local charge-neutrality condition within a self-consistent treatment we show that the negative enthalpy-of-mixing anomaly characterizing the alloy in the low chromium concentration limit is due entirely to the presence of the on-site exchange Stoner terms and that the occurrence of this anomaly is not specifically related to the choice of hopping integrals describing conventional chemical bonding between atoms in the alloy. The Bain transformation pathway computed, using the proposed model Hamiltonian, for the Fe15Cr alloy configuration is in excellent agreement with ab initio total-energy calculations. Our investigation also shows how the parameters of a tight-binding many-body model Hamiltonian for a magnetic alloy can be derived from the comparison of its mean-field solutions with other, more accurate, mean-field approximations (e.g., density-functional calculations), hence stimulating the development of large-scale computational algorithms for modeling radiation damage effects in magnetic alloys and steels.

  5. Multi-Hamiltonian structure of Plebanski's second heavenly equation

    NASA Astrophysics Data System (ADS)

    Neyzi, F.; Nutku, Y.; Sheftel, M. B.

    2005-09-01

    We show that Plebanski's second heavenly equation, when written as a first-order nonlinear evolutionary system, admits multi-Hamiltonian structure. Therefore by Magri's theorem it is a completely integrable system. Thus it is an example of a completely integrable system in four dimensions.

  6. Thermalization Time Bounds for Pauli Stabilizer Hamiltonians

    NASA Astrophysics Data System (ADS)

    Temme, Kristan

    2017-03-01

    We prove a general lower bound to the spectral gap of the Davies generator for Hamiltonians that can be written as the sum of commuting Pauli operators. These Hamiltonians, defined on the Hilbert space of N-qubits, serve as one of the most frequently considered candidates for a self-correcting quantum memory. A spectral gap bound on the Davies generator establishes an upper limit on the life time of such a quantum memory and can be used to estimate the time until the system relaxes to thermal equilibrium when brought into contact with a thermal heat bath. The bound can be shown to behave as {λ ≥ O(N^{-1} exp(-2β overline{ɛ}))}, where {overline{ɛ}} is a generalization of the well known energy barrier for logical operators. Particularly in the low temperature regime we expect this bound to provide the correct asymptotic scaling of the gap with the system size up to a factor of N -1. Furthermore, we discuss conditions and provide scenarios where this factor can be removed and a constant lower bound can be proven.

  7. The Modified Hartmann Potential Effects on γ-rigid Bohr Hamiltonian

    NASA Astrophysics Data System (ADS)

    Suparmi, A.; Cari, C.; Nur Pratiwi, Beta

    2018-04-01

    In this paper, we present the solution of Bohr Hamiltonian in the case of γ-rigid for the modified Hartmann potential. The modified Hartmann potential was formed from the original Hartmann potential, consists of β function and θ function. By using the separation method, the three-dimensional Bohr Hamiltonian equation was reduced into three one-dimensional Schrodinger-like equation which was solved analytically. The results for the wavefunction were shown in mathematically, while for the binding energy was solved numerically. The numerical binding energy for the presence of the modified Hartmann potential is lower than the binding energy value in the absence of modified Hartmann potential effect.

  8. Nonholonomic Hamiltonian Method for Meso-macroscale Simulations of Reacting Shocks

    NASA Astrophysics Data System (ADS)

    Fahrenthold, Eric; Lee, Sangyup

    2015-06-01

    The seamless integration of macroscale, mesoscale, and molecular scale models of reacting shock physics has been hindered by dramatic differences in the model formulation techniques normally used at different scales. In recent research the authors have developed the first unified discrete Hamiltonian approach to multiscale simulation of reacting shock physics. Unlike previous work, the formulation employs reacting themomechanical Hamiltonian formulations at all scales, including the continuum. Unlike previous work, the formulation employs a nonholonomic modeling approach to systematically couple the models developed at all scales. Example applications of the method show meso-macroscale shock to detonation simulations in nitromethane and RDX. Research supported by the Defense Threat Reduction Agency.

  9. Steepest entropy ascent for two-state systems with slowly varying Hamiltonians

    NASA Astrophysics Data System (ADS)

    Militello, Benedetto

    2018-05-01

    The steepest entropy ascent approach is considered and applied to two-state systems. When the Hamiltonian of the system is time-dependent, the principle of maximum entropy production can still be exploited; arguments to support this fact are given. In the limit of slowly varying Hamiltonians, which allows for the adiabatic approximation for the unitary part of the dynamics, the system exhibits significant robustness to the thermalization process. Specific examples such as a spin in a rotating field and a generic two-state system undergoing an avoided crossing are considered.

  10. Gender Differences in Isokinetic Strength after 60 and 90 d Bed Rest

    NASA Technical Reports Server (NTRS)

    English, K. L.; Ploutz-Snyder, R. J.; Cromwell, R. L.; Ploutz-Snyder, L. L.

    2010-01-01

    Recent reports suggest that changes in muscle strength following disuse may differ between males and females. PURPOSE: To examine potential gender differences in strength changes following 60 and 90 d of experimental bed rest. METHODS: Isokinetic extensor and flexor strength of the knee (60deg and 180deg/s, concentric only), ankle (30deg/s, concentric and eccentric), and trunk (60deg/s, concentric only) were measured following 60 d (males: n=4, 34.5+/-9.6 y; females: n=4, 35.5+/-8.2 y) and 90 d (males: n=10, 31.4+/-4.8 y; females: n=5, 37.6+/-9.9 y) of 6-degree head-down-tilt bed rest (BR; N=23). Subjects were fed a controlled diet (55%/15%/ 30%, CHO/PRO/FAT) that maintained body weight within 3% of the weight recorded on Day 3 of bed rest. After a familiarization session, testing was conducted 6 d before BR and 2 d after BR completion. Peak torque and total work were calculated for the tests performed. To allow us to combine data from both 60- and 90-d subjects, we used a mixed-model statistical analysis in which time and gender were fixed effects and bed rest duration was a random effect. Log-transformations of strength measures were utilized when necessary in order to meet statistical assumptions. RESULTS: Main effects were seen for both time and gender (p<0.05), showing decreased strength in response to bed rest for both males and females, and males stronger than females for most strength measures. Only one interaction effect was observed: females exhibited a greater loss of trunk extensor peak torque at 60 d versus pre-BR, relative to males (p=0.004). CONCLUSION: Sixty and 90 d of BR induced significant losses in isokinetic muscle strength of the locomotor and postural muscles of the knee, ankle, and trunk. Although males were stronger than females for most of the strength measures that we examined, only changes in trunk extensor peak torque were greater for females than males at day 60 of bed rest

  11. Dynamics, integrability and topology for some classes of Kolmogorov Hamiltonian systems in R+4

    NASA Astrophysics Data System (ADS)

    Llibre, Jaume; Xiao, Dongmei

    2017-02-01

    In this paper we first give the sufficient and necessary conditions in order that two classes of polynomial Kolmogorov systems in R+4 are Hamiltonian systems. Then we study the integrability of these Hamiltonian systems in the Liouville sense. Finally, we investigate the global dynamics of the completely integrable Lotka-Volterra Hamiltonian systems in R+4. As an application of the invariant subsets of these systems, we obtain topological classifications of the 3-submanifolds in R+4 defined by the hypersurfaces axy + bzw + cx2 y + dxy2 + ez2 w + fzw2 = h, where a , b , c , d , e , f , w and h are real constants.

  12. Controlling effect of geometrically defined local structural changes on chaotic Hamiltonian systems.

    PubMed

    Ben Zion, Yossi; Horwitz, Lawrence

    2010-04-01

    An effective characterization of chaotic conservative Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor derived from the structure of the Hamiltonian has been extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce the Hamilton equations of the original potential model through an inverse map in the tangent space. The second covariant derivative of the geodesic deviation in this space generates a dynamical curvature, resulting in (energy-dependent) criteria for unstable behavior different from the usual Lyapunov criteria. We show here that this criterion can be constructively used to modify locally the potential of a chaotic Hamiltonian model in such a way that stable motion is achieved. Since our criterion for instability is local in coordinate space, these results provide a minimal method for achieving control of a chaotic system.

  13. Similarity-transformed dyson mapping and SDG-interacting boson hamiltonian

    NASA Astrophysics Data System (ADS)

    Navrátil, P.; Dobeš, J.

    1991-10-01

    The sdg-interacting boson hamiltonian is constructed from the fermion shell-model input. The seniority boson mapping as given by the similarity-transformed Dyson boson mapping is used. The s, d, and g collective boson amplitudes are determined consistently from the mapped hamiltonian. Influence of the starting shell-model parameters is discussed. Calculations for the Sm isotopic chain and for the 148Sm, 150Nd, and 196Pt nuclei are presented. Calculated energy levels as well as E2 and E4 properties agree rather well with experimental ones. To obtain such agreement, the input shell-model parameters cannot be fixed at a constant set for several nuclei but have to be somewhat varied, especially in the deformed region. Possible reasons for this variation are discussed. Effects of the explicit g-boson consideration are shown.

  14. Quadriceps Strength in Patients With Isolated Cartilage Defects of the Knee: Results of Isokinetic Strength Measurements and Their Correlation With Clinical and Functional Results

    PubMed Central

    Hirschmüller, Anja; Andres, Tasja; Schoch, Wolfgang; Baur, Heiner; Konstantinidis, Lukas; Südkamp, Norbert P.; Niemeyer, Philipp

    2017-01-01

    Background: Recent studies have found a significant deficit of maximum quadriceps strength after autologous chondrocyte implantation (ACI) of the knee. However, it is unclear whether muscular strength deficits in patients with cartilage damage exist prior to operative treatment. Purpose: To isokinetically test maximum quadriceps muscle strength and quantify the impact of possible strength deficits on functional and clinical test results. Study Design: Cross-sectional study; Level of evidence, 3. Methods: To identify clinically relevant muscular strength deficits, 24 patients (5 females, 19 males; mean age, 34.5 years; body mass index, 25.9 kg/m2) with isolated cartilage defects (mean onset, 5.05 years; SD, 7.8 years) in the knee joint underwent isokinetic strength measurements. Maximal quadriceps strength was recorded in 3 different testing modes: pure concentric contraction (flexors and extensors alternating work; con1), concentric-eccentric (only the extensors work concentrically and eccentrically; con2), and eccentric contraction in the alternating mode (ecc). Results were compared for functional performance (single-leg hop test), pain scales (visual analog scale [VAS], numeric rating scale [NRS]), self-reported questionnaires (International Knee Documentation Committee [IKDC], Knee Injury and Osteoarthritis Outcome Scale [KOOS]), and defect size (cm2). Results: Compared with the uninjured leg, significantly lower quadriceps strength was detected in the injured leg in all isokinetic working modes (con1 difference, 27.76 N·m [SD 17.47; P = .003]; con2 difference, 21.45 N·m [SD, 18.45; P =.025]; ecc difference, 29.48 N·m [SD, 21.51; P = .001]), with the largest deficits found for eccentric muscle performance. Moderate negative correlations were observed for the subjective pain scales NRS and VAS. The results of the IKDC and KOOS questionnaires showed low, nonsignificant correlations with findings in the isokinetic measurement. Moreover, defect sizes (mean, 3

  15. BRST quantization of Yang-Mills theory: A purely Hamiltonian approach on Fock space

    NASA Astrophysics Data System (ADS)

    Öttinger, Hans Christian

    2018-04-01

    We develop the basic ideas and equations for the BRST quantization of Yang-Mills theories in an explicit Hamiltonian approach, without any reference to the Lagrangian approach at any stage of the development. We present a new representation of ghost fields that combines desirable self-adjointness properties with canonical anticommutation relations for ghost creation and annihilation operators, thus enabling us to characterize the physical states on a well-defined Fock space. The Hamiltonian is constructed by piecing together simple BRST invariant operators to obtain a minimal invariant extension of the free theory. It is verified that the evolution equations implied by the resulting minimal Hamiltonian provide a quantum version of the classical Yang-Mills equations. The modifications and requirements for the inclusion of matter are discussed in detail.

  16. Hamiltonian Effective Field Theory Study of the N^{*}(1535) Resonance in Lattice QCD.

    PubMed

    Liu, Zhan-Wei; Kamleh, Waseem; Leinweber, Derek B; Stokes, Finn M; Thomas, Anthony W; Wu, Jia-Jun

    2016-02-26

    Drawing on experimental data for baryon resonances, Hamiltonian effective field theory (HEFT) is used to predict the positions of the finite-volume energy levels to be observed in lattice QCD simulations of the lowest-lying J^{P}=1/2^{-} nucleon excitation. In the initial analysis, the phenomenological parameters of the Hamiltonian model are constrained by experiment and the finite-volume eigenstate energies are a prediction of the model. The agreement between HEFT predictions and lattice QCD results obtained on volumes with spatial lengths of 2 and 3 fm is excellent. These lattice results also admit a more conventional analysis where the low-energy coefficients are constrained by lattice QCD results, enabling a determination of resonance properties from lattice QCD itself. Finally, the role and importance of various components of the Hamiltonian model are examined.

  17. Quadratic time dependent Hamiltonians and separation of variables

    NASA Astrophysics Data System (ADS)

    Anzaldo-Meneses, A.

    2017-06-01

    Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green's function is obtained and a comparison with the classical Hamilton-Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei-Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü-Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems.

  18. Quantum gates by inverse engineering of a Hamiltonian

    NASA Astrophysics Data System (ADS)

    Santos, Alan C.

    2018-01-01

    Inverse engineering of a Hamiltonian (IEH) from an evolution operator is a useful technique for the protocol of quantum control with potential applications in quantum information processing. In this paper we introduce a particular protocol to perform IEH and we show how this scheme can be used to implement a set of quantum gates by using minimal quantum resources (such as entanglement, interactions between more than two qubits or auxiliary qubits). Remarkably, while previous protocols request three-qubit interactions and/or auxiliary qubits to implement such gates, our protocol requires just two-qubit interactions and no auxiliary qubits. By using this approach we can obtain a large class of Hamiltonians that allow us to implement single and two-qubit gates necessary for quantum computation. To conclude this article we analyze the performance of our scheme against systematic errors related to amplitude noise, where we show that the free parameters introduced in our scheme can be useful for enhancing the robustness of the protocol against such errors.

  19. Hamiltonian analysis of non-relativistic non-BPS Dp-brane

    NASA Astrophysics Data System (ADS)

    Klusoň, J.

    2017-07-01

    We perform Hamiltonian analysis of non-relativistic non-BPS Dp-brane. We find the constraint structure of this theory and determine corresponding equations of motion. We further discuss property of this theory at the tachyon vacuum.

  20. Weak hamiltonian Wilson Coefficients from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Bruno, Mattia

    2018-03-01

    n this work we present a calculation of the Wilson Coefficients C1 and C2 of the Effective Weak Hamiltonian to all-orders in αs, using lattice simulations. Given the current availability of lattice spacings we restrict our calculation to unphysically light W bosons around 2 GeV and we study the systematic uncertainties of the two Wilson Coefficients.

  1. Effective Hamiltonian approach to the Kerr nonlinearity in an optomechanical system

    NASA Astrophysics Data System (ADS)

    Gong, Z. R.; Ian, H.; Liu, Yu-Xi; Sun, C. P.; Nori, Franco

    2009-12-01

    Using the Born-Oppenheimer approximation, we derive an effective Hamiltonian for an optomechanical system that leads to a nonlinear Kerr effect in the system’s vacuum. The oscillating mirror at one edge of the optomechanical system induces a squeezing effect in the intensity spectrum of the cavity field. A near-resonant laser field is applied at the other edge to drive the cavity field in order to enhance the Kerr effect. We also propose a quantum-nondemolition-measurement setup to monitor a system with two cavities separated by a common oscillating mirror based on our effective Hamiltonian approach.

  2. Does choice of angular velocity affect pain level during isokinetic strength testing of knee osteoarthritis patients?

    PubMed

    Almosnino, S; Brandon, S C E; Sled, E A

    2012-12-01

    Thigh musculature strength assessment in individuals with knee osteoarthritis is routinely performed in rehabilitative settings. A factor that may influence results is pain experienced during testing. To assess whether pain experienced during isokinetic testing in individuals with knee osteoarthritis is dependent on the angular velocity prescribed. Experimental, repeated measures. University laboratory. Thirty-five individuals (19 women, 16 men) with tibiofemoral osteoarthritis. Participants performed three randomized sets of five maximal concentric extension-flexion repetitions at 60°/s, 90°/s and 120°/s. Pain intensity was measured immediately after the completion of each set. Strength outcomes for each set were the average peak moment. Across gender, pain level was not significantly affected by testing velocity (P=0.18, η(p)(2) =0.05). There was a trend of women reporting more pain than men across all testing velocities, however this comparison did not reach statistical significance (P=0.18, η(p)(2)=0.05). There was a significant main effect of testing velocity on strength, with the highest level attained at 60°/s. However, no difference in strength was noted when testing was performed at 90°/s or 120°/s. A large variation in pain scores within and across conditions and gender was noted, suggesting that at the current stage: 1) isokinetic angular velocity prescription be performed on an individual patient basis; and 2) improvements in the manner pain is recorded are needed in order to reduce the variations in pain scores. Individual prescription of angular velocity may be necessary for optimal strength output and reduction of pain during effort exertion in this patient population.

  3. Trojan dynamics well approximated by a new Hamiltonian normal form

    NASA Astrophysics Data System (ADS)

    Páez, Rocío Isabel; Locatelli, Ugo

    2015-10-01

    We revisit a classical perturbative approach to the Hamiltonian related to the motions of Trojan bodies, in the framework of the planar circular restricted three-body problem, by introducing a number of key new ideas in the formulation. In some sense, we adapt the approach of Garfinkel to the context of the normal form theory and its modern techniques. First, we make use of Delaunay variables for a physically accurate representation of the system. Therefore, we introduce a novel manipulation of the variables so as to respect the natural behaviour of the model. We develop a normalization procedure over the fast angle which exploits the fact that singularities in this model are essentially related to the slow angle. Thus, we produce a new normal form, i.e. an integrable approximation to the Hamiltonian. We emphasize some practical examples of the applicability of our normalizing scheme, e.g. the estimation of the stable libration region. Finally, we compare the level curves produced by our normal form with surfaces of section provided by the integration of the non-normalized Hamiltonian, with very good agreement. Further precision tests are also provided. In addition, we give a step-by-step description of the algorithm, allowing for extensions to more complicated models.

  4. Stability of Inhomogeneous Equilibria of Hamiltonian Continuous Media Field Theories

    NASA Astrophysics Data System (ADS)

    Hagstrom, George

    2013-10-01

    There are a wide variety of 1 + 1 Hamiltonian continuous media field theories that exhibit phase space pattern formation. In plasma physics, the most famous of these is the Vlasov-Poisson equation, but other examples include the incompressible Euler equation in two-dimensions and the Hamiltonian Mean Field (or XY) model. One of the characteristic phenomenon that occurs in systems described by these equations is the formation of cat's eye patterns in phase space as a result of the nonlinear saturation of instabilities. Corresponding to each of these cat's eyes is a spatially inhomogeneous equilibrium solution of the underlying model, in plasma physics these are called BGK modes, but analogous solutions exist in all of the above systems. Here we analyze the stability of inhomogeneous equilibria in the Hamiltonian Mean Field model and in the Single Wave model, which is an equation that was derived to provide a model of the formation of electron holes in plasmas. We use action angle variables and the properties of elliptic functions to analyze the resulting dispersion relation construct linearly stable inhomogeneous equilibria for in the limit of small numbers of particles and study the behavior of solutions near these equilibria. Work supported by USDOE grant no. DE-FG02-ER53223.

  5. Profile of isokinetic eccentric-to-concentric strength ratios of shoulder rotator muscles in elite female team handball players.

    PubMed

    Andrade, Marilia Dos Santos; Fleury, Anna Maria; de Lira, Claudio Andre Barbosia; Dubas, Joao Paulo; da Silva, Antonio Carlos

    2010-05-01

    The purpose of this study was to establish the isokinetic profile of shoulder rotator muscles strength in female handball players. Twenty-seven handball players performed concentric and eccentric strength tests of both dominant and non-dominant upper limbs on an isokinetic dynamometer. Internal and external rotator muscles peak torque was assessed at 1.05, 3.14, and 5.23 rad . s(-1) in concentric mode and at 3.14 and 5.23 rad . s(-1) in eccentric mode. Concentric balance ratio and functional ratio were obtained. Bi-lateral deficiency was compared. Concentric strength for internal and external rotation was significantly greater for the dominant than for the non-dominant limb for all speeds (P < or = 0.0001). For eccentric actions, internal rotator muscles were stronger in the dominant than the non-dominant limb (P < or = 0.0001) at both speeds. Concentric balance and functional balance ratios did not differ between sides at 3.14 rad . s(-1) (P = 0.1631), but at 5.23 rad . s(-1) the functional balance ratio in the dominant limb was lower than for the non-dominant limb (P = 0.0500). Although the dominant side was stronger than the non-dominant side, balance concentric ratios remained the same, with only the functional strength ratio different at 5.23 rad . s(-1). Our results suggest that concentric strength exercises be used for internal and external rotators on the non-dominant side, and functional exercise that improves eccentric rotation strength for prevention programmes.

  6. Hamiltonian model and dynamic analyses for a hydro-turbine governing system with fractional item and time-lag

    NASA Astrophysics Data System (ADS)

    Xu, Beibei; Chen, Diyi; Zhang, Hao; Wang, Feifei; Zhang, Xinguang; Wu, Yonghong

    2017-06-01

    This paper focus on a Hamiltonian mathematical modeling for a hydro-turbine governing system including fractional item and time-lag. With regards to hydraulic pressure servo system, a universal dynamical model is proposed, taking into account the viscoelastic properties and low-temperature impact toughness of constitutive materials as well as the occurrence of time-lag in the signal transmissions. The Hamiltonian model of the hydro-turbine governing system is presented using the method of orthogonal decomposition. Furthermore, a novel Hamiltonian function that provides more detailed energy information is presented, since the choice of the Hamiltonian function is the key issue by putting the whole dynamical system to the theory framework of the generalized Hamiltonian system. From the numerical experiments based on a real large hydropower station, we prove that the Hamiltonian function can describe the energy variation of the hydro-turbine suitably during operation. Moreover, the effect of the fractional α and the time-lag τ on the dynamic variables of the hydro-turbine governing system are explored and their change laws identified, respectively. The physical meaning between fractional calculus and time-lag are also discussed in nature. All of the above theories and numerical results are expected to provide a robust background for the safe operation and control of large hydropower stations.

  7. [Sincerity of effort: isokinetic evaluation of knee extension].

    PubMed

    Colombo, R; Demaiti, G; Sartorio, F; Orlandini, D; Vercelli, S; Ferriero, G

    2008-01-01

    The aim of this study was to find a reliable method to evaluate the sincerity of the muscular maximal effort performed in a dynamometric isokinetic test of knee flexion-extension. The coefficient of variation of the peak torque (CV) and 3 new indices were analysed: (1) the average coefficient of variation calculated on the complete peak torque curve (CVM); (2) the slope of the regression line in an endurance test (PRR); (3) the correlation coefficient of the peak torques in the same endurance test (CCR). Twenty healthy subjects underwent assessment in two different trials, maximal (MX) and 50% submaximal (SMX), with 20 minutes of rest between trials. Each trial consisted of 4 tests, each of 3 repetitions, at angular speed of 30, 180, 30, and 180 degrees/s, respectively, and 1 test of 15 repetitions at 240 degrees/s. Our findings confirmed the ability of CV to detect a high percentage of sincere efforts: at 30 degrees/s Sensibility (Sns)=100% and Specificity (Spc)=70%; at 180 degrees/s Sns=75%, Spc=95%. The 3 new indices here proposed showed high characteristics of Sns and Spc, generally better than those of CV. CVM showed at 180 degrees/s Sns=90% and Spc=100%, while at 30 degrees/s Sns=90%, Spc=75%. PRR was the best index identifying all the efforts, except one (Sns=100%, Spc=95%). The CCR coefficient showed Sns and Spc values both of 90%.

  8. Intramuscular pressure and electromyography as indexes of force during isokinetic exercise

    NASA Technical Reports Server (NTRS)

    Aratow, M.; Ballard, R. E.; Grenshaw, A. G.; Styf, J.; Watenpaugh, D. E.; Kahan, N. J.; Hargens, A. R.

    1993-01-01

    A direct method for measuring force production of specific muscles during dynamic exercise is presently unavailable. Previous studies indicate that both intramuscular pressure (IMP) and electromyography (EMG) correlate linearly with muscle contraction force during isometric exercise. The objective of this study was to compare IMP and EMG as linear assessors of muscle contraction force during dynamic exercise. IMP and surface EMG activity were recorded during concentric and eccentric isokinetic plantarflexion and dorsiflexion of the ankle joint from the tibialis anterior (TA) and soleus (SOL) muscles of nine male volunteers. Ankle torque was measured using a dynamometer, and IMP was measured via catheterization. IMP exhibited better linear correlation than EMG with ankle joint torque during concentric contractions of the SOL and the TA, as well as during eccentric contractions. IMP provides a better index of muscle contraction force than EMG during concentric and eccentric exercise through the entire range of torque. IMP reflects intrinsic mechanical properties of individual muscles, such as length-tension relationships, which EMG is unable to assess.

  9. Hamiltonian structure of Dubrovin{close_quote}s equation of associativity in 2-d topological field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galvao, C.A.; Nutku, Y.

    1996-12-01

    mA third order Monge-Amp{grave e}re type equation of associativity that Dubrovin has obtained in 2-d topological field theory is formulated in terms of a variational principle subject to second class constraints. Using Dirac{close_quote}s theory of constraints this degenerate Lagrangian system is cast into Hamiltonian form and the Hamiltonian operator is obtained from the Dirac bracket. There is a new type of Kac-Moody algebra that corresponds to this Hamiltonian operator. In particular, it is not a W-algebra. {copyright} {ital 1996 American Institute of Physics.}

  10. On the paradoxical evolution of the number of photons in a new model of interpolating Hamiltonians

    NASA Astrophysics Data System (ADS)

    Valverde, Clodoaldo; Baseia, Basílio

    2018-01-01

    We introduce a new Hamiltonian model which interpolates between the Jaynes-Cummings model (JCM) and other types of such Hamiltonians. It works with two interpolating parameters, rather than one as traditional. Taking advantage of this greater degree of freedom, we can perform continuous interpolation between the various types of these Hamiltonians. As applications, we discuss a paradox raised in literature and compare the time evolution of the photon statistics obtained in the various interpolating models. The role played by the average excitation in these comparisons is also highlighted.

  11. Size Reduction of Hamiltonian Matrix for Large-Scale Energy Band Calculations Using Plane Wave Bases

    NASA Astrophysics Data System (ADS)

    Morifuji, Masato

    2018-01-01

    We present a method of reducing the size of a Hamiltonian matrix used in calculations of electronic states. In the electronic states calculations using plane wave basis functions, a large number of plane waves are often required to obtain precise results. Even using state-of-the-art techniques, the Hamiltonian matrix often becomes very large. The large computational time and memory necessary for diagonalization limit the widespread use of band calculations. We show a procedure of deriving a reduced Hamiltonian constructed using a small number of low-energy bases by renormalizing high-energy bases. We demonstrate numerically that the significant speedup of eigenstates evaluation is achieved without losing accuracy.

  12. Sqeezing generated by a nonlinear master equation and by amplifying-dissipative Hamiltonians

    NASA Technical Reports Server (NTRS)

    Dodonov, V. V.; Marchiolli, M. A.; Mizrahi, Solomon S.; Moussa, M. H. Y.

    1994-01-01

    In the first part of this contribution we show that the master equation derived from the generalized version of the nonlinear Doebner-Goldin equation leads to the squeezing of one of the quadratures. In the second part we consider two familiar Hamiltonians, the Bateman- Caldirola-Kanai and the optical parametric oscillator; going back to their classical Lagrangian form we introduce a stochastic force and a dissipative factor. From this new Lagrangian we obtain a modified Hamiltonian that treats adequately the simultaneous amplification and dissipation phenomena, presenting squeezing, too.

  13. Construction of Lagrangians and Hamiltonians from the Equation of Motion

    ERIC Educational Resources Information Center

    Yan, C. C.

    1978-01-01

    Demonstrates that infinitely many Lagrangians and Hamiltonians can be constructed from a given equation of motion. Points out the lack of an established criterion for making a proper selection. (Author/GA)

  14. Experimental quantification of decoherence via the Loschmidt echo in a many spin system with scaled dipolar Hamiltonians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buljubasich, Lisandro; Dente, Axel D.; Levstein, Patricia R.

    2015-10-28

    We performed Loschmidt echo nuclear magnetic resonance experiments to study decoherence under a scaled dipolar Hamiltonian by means of a symmetrical time-reversal pulse sequence denominated Proportionally Refocused Loschmidt (PRL) echo. The many-spin system represented by the protons in polycrystalline adamantane evolves through two steps of evolution characterized by the secular part of the dipolar Hamiltonian, scaled down with a factor |k| and opposite signs. The scaling factor can be varied continuously from 0 to 1/2, giving access to a range of complexity in the dynamics. The experimental results for the Loschmidt echoes showed a spreading of the decay rates thatmore » correlate directly to the scaling factors |k|, giving evidence that the decoherence is partially governed by the coherent dynamics. The average Hamiltonian theory was applied to give an insight into the spin dynamics during the pulse sequence. The calculations were performed for every single radio frequency block in contrast to the most widely used form. The first order of the average Hamiltonian numerically computed for an 8-spin system showed decay rates that progressively decrease as the secular dipolar Hamiltonian becomes weaker. Notably, the first order Hamiltonian term neglected by conventional calculations yielded an explanation for the ordering of the experimental decoherence rates. However, there is a strong overall decoherence observed in the experiments which is not reflected by the theoretical results. The fact that the non-inverted terms do not account for this effect is a challenging topic. A number of experiments to further explore the relation of the complete Hamiltonian with this dominant decoherence rate are proposed.« less

  15. Léon Rosenfeld's general theory of constrained Hamiltonian dynamics

    NASA Astrophysics Data System (ADS)

    Salisbury, Donald

    Léon Rosenfeld published in Annalen der Physik in 1930 a groundbreaking paper showing how to construct a Hamiltonian formalism for Lagrangian theories which admitted an underlying local gauge symmetry. The theory included both ``internal'' transformations such as the U(1) symmetry group of electromagnetism, and ``external'' symmetries typified by Einstein's general theory of relativity. His comprehensive analysis predated by two decades the formalism known as the Dirac-Bergmann approach, and I will present evidence that each of these giants were to some extent influenced by Rosenfeld's theory. Of particular significance is Rosenfeld's incorporation of arbitrary functions into the phase space generator of temporal evolution, and his construction of the phase space generator of symmetry transformations. The existing Hamiltonian formalisms have of course played a central role both in the demonstration of the renormalizability of Yang-Mills theories and current efforts in constructing a quantum theory of gravity.

  16. Entangled trajectories Hamiltonian dynamics for treating quantum nuclear effects

    NASA Astrophysics Data System (ADS)

    Smith, Brendan; Akimov, Alexey V.

    2018-04-01

    A simple and robust methodology, dubbed Entangled Trajectories Hamiltonian Dynamics (ETHD), is developed to capture quantum nuclear effects such as tunneling and zero-point energy through the coupling of multiple classical trajectories. The approach reformulates the classically mapped second-order Quantized Hamiltonian Dynamics (QHD-2) in terms of coupled classical trajectories. The method partially enforces the uncertainty principle and facilitates tunneling. The applicability of the method is demonstrated by studying the dynamics in symmetric double well and cubic metastable state potentials. The methodology is validated using exact quantum simulations and is compared to QHD-2. We illustrate its relationship to the rigorous Bohmian quantum potential approach, from which ETHD can be derived. Our simulations show a remarkable agreement of the ETHD calculation with the quantum results, suggesting that ETHD may be a simple and inexpensive way of including quantum nuclear effects in molecular dynamics simulations.

  17. Gyroaverage effects on nontwist Hamiltonians: Separatrix reconnection and chaos suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del-Castillo-Negrete, Diego B; Martinell, J.

    2012-01-01

    A study of finite Larmor radius (FLR) effects on E x B test particle chaotic transport in non-monotonic zonal flows with drift waves in magnetized plasmas is presented. Due to the non-monotonicity of the zonal flow, the Hamiltonian does not satisfy the twist condition. The electrostatic potential is modeled as a linear superposition of a zonal flow and the regular neutral modes of the Hasegawa-Mima equation. FLR effects are incorporated by gyro-averaging the E x B Hamiltonian. It is shown that there is a critical value of the Larmor radius for which the zonal flow transitions from a profile withmore » one maximum to a profile with two maxima and a minimum. This bifurcation leads to the creation of additional shearless curves and resonances. The gyroaveraged nontwist Hamiltonian exhibits complex patterns of separatrix reconnection. A change in the Larmor radius can lead to heteroclinic-homoclinic bifurcations and dipole formation. For Larmor radii for which the zonal flow has bifurcated, double heteroclinic-heteroclinic, homoclinic-homoclinic and heteroclinic-homoclinic separatrix topologies are observed. It is also shown that chaotic transport is typically reduced as the Larmor radius increases. Poincare sections show that, for large enough Larmor radius, chaos can be practically suppressed. In particular, changes of the Larmor radius can restore the shearless curve.« less

  18. Gyroaverage effects on nontwist Hamiltonians: separatrix reconnection and chaos suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del-Castillo-Negrete, Diego B; Martinell, J.

    2012-01-01

    A study of nite Larmor radius (FLR) eects on E B test particle chaotic transport in non- monotonic zonal ows with drift waves in magnetized plasmas is presented. Due to the non- monotonicity of the zonal ow, the Hamiltonian does not satisfy the twist condition. The electro- static potential is modeled as a linear superposition of a zonal ow and regular neutral modes of the Hasegawa-Mima equation. FLR eects are incorporated by gyro-averaging the EB Hamiltonian. It is shown that there is a critical value the Larmor radius for which the zonal ow transitions from a prole with one maximummore » to a prole with two maxima and a minimum. This bifurcation leads to the creation of additional shearless curves and resonances. The gyroaveraged nontwist Hamiltonian exhibits complex patterns of separatrix reconnection. A change in the Larmor ra- dius can lead to heteroclinic-homoclinic bifurcations and dipole formation. For Larmor radii for which the zonal ow has bifurcated, double heteroclinic-heteroclinic, homoclinic-homoclinic and heteroclinic-homoclinic topologies are observed. It is also shown that chaotic transport is typically reduced as the Larmor radius increases. Poincare sections shows that, for large enough Larmor radius, chaos can be practically suppressed. In particular, small changes on the Larmor radius can restore the shearless curve.« less

  19. On the chaotic diffusion in multidimensional Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Cincotta, P. M.; Giordano, C. M.; Martí, J. G.; Beaugé, C.

    2018-01-01

    We present numerical evidence that diffusion in the herein studied multidimensional near-integrable Hamiltonian systems departs from a normal process, at least for realistic timescales. Therefore, the derivation of a diffusion coefficient from a linear fit on the variance evolution of the unperturbed integrals fails. We review some topics on diffusion in the Arnold Hamiltonian and yield numerical and theoretical arguments to show that in the examples we considered, a standard coefficient would not provide a good estimation of the speed of diffusion. However, numerical experiments concerning diffusion would provide reliable information about the stability of the motion within chaotic regions of the phase space. In this direction, we present an extension of previous results concerning the dynamical structure of the Laplace resonance in Gliese-876 planetary system considering variations of the orbital parameters accordingly to the error introduced by the radial velocity determination. We found that a slight variation of the eccentricity of planet c would destabilize the inner region of the resonance that, though chaotic, shows stable when adopting the best fit values for the parameters.

  20. Hamiltonian derivation of the nonhydrostatic pressure-coordinate model

    NASA Astrophysics Data System (ADS)

    Salmon, Rick; Smith, Leslie M.

    1994-07-01

    In 1989, the Miller-Pearce (MP) model for nonhydrostatic fluid motion governed by equations written in pressure coordinates was extended by removing the prescribed reference temperature, T(sub s)(p), while retaining the conservation laws and other desirable properties. It was speculated that this extension of the MP model had a Hamiltonian structure and that a slick derivation of the Ertel property could be constructed if the relevant Hamiltonian were known. In this note, the extended equations are derived using Hamilton's principle. The potential vorticity law arises from the usual particle-relabeling symmetry of the Lagrangian, and even the absence of sound waves is anticipated from the fact that the pressure inside the free energy G(p, theta) in the derived equation is hydrostatic and thus G is insensitive to local pressure fluctuations. The model extension is analogous to the semigeostrophic equations for nearly geostrophic flow, which do not incorporate a prescribed reference state, while the earlier MP model is analogous to the quasigeostrophic equations, which become highly inaccurate when the flow wanders from a prescribed state with nearly flat isothermal surfaces.

  1. Output of skeletal muscle contractions. a study of isokinetic plantar flexion in athletes.

    PubMed

    Fugl-Meyer, A R; Mild, K H; Hörnsten, J

    1982-06-01

    Maximum torques, total work and mean power of isokinetic plantar flexions were measured with simultaneous registrations. The integrated electromyograms (iEMG) were obtained by surface electrodes from all three heads of the m. triceps surae. The method applied offers possibilities for adequate description of dynamic muscular work which in the case of plantar flexion in trained man declines as a negative exponential function of angular motion velocity. The decline is parallel to that of maximum torques. The summed triceps surae iEMG was inversely proportional to the velocity and direct proportional to time suggesting that structural rather than neural factors determine the relationships between velocity of angular motion and maximum torque/total work of single Mmaneuvers. Moreover, the fact that maximum mean power as well as maximum electrical efficiency were reached at the functional velocity of toe-off during gait suggests an influence of pragmatic demands on plantar flexion mechanical output.

  2. Modular Hamiltonians for deformed half-spaces and the averaged null energy condition

    NASA Astrophysics Data System (ADS)

    Faulkner, Thomas; Leigh, Robert G.; Parrikar, Onkar; Wang, Huajia

    2016-09-01

    We study modular Hamiltonians corresponding to the vacuum state for deformed half-spaces in relativistic quantum field theories on {{R}}^{1,d-1} . We show that in addition to the usual boost generator, there is a contribution to the modular Hamiltonian at first order in the shape deformation, proportional to the integral of the null components of the stress tensor along the Rindler horizon. We use this fact along with monotonicity of relative entropy to prove the averaged null energy condition in Minkowski space-time. This subsequently gives a new proof of the Hofman-Maldacena bounds on the parameters appearing in CFT three-point functions. Our main technical advance involves adapting newly developed perturbative methods for calculating entanglement entropy to the problem at hand. These methods were recently used to prove certain results on the shape dependence of entanglement in CFTs and here we generalize these results to excited states and real time dynamics. We also discuss the AdS/CFT counterpart of this result, making connection with the recently proposed gravitational dual for modular Hamiltonians in holographic theories.

  3. On Reverse Stackelberg Game and Optimal Mean Field Control for a Large Population of Thermostatically Controlled Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sen; Zhang, Wei; Lian, Jianming

    This paper studies a multi-stage pricing problem for a large population of thermostatically controlled loads. The problem is formulated as a reverse Stackelberg game that involves a mean field game in the hierarchy of decision making. In particular, in the higher level, a coordinator needs to design a pricing function to motivate individual agents to maximize the social welfare. In the lower level, the individual utility maximization problem of each agent forms a mean field game coupled through the pricing function that depends on the average of the population control/state. We derive the solution to the reverse Stackelberg game bymore » connecting it to a team problem and the competitive equilibrium, and we show that this solution corresponds to the optimal mean field control that maximizes the social welfare. Realistic simulations are presented to validate the proposed methods.« less

  4. Magnetic anisotropy in binuclear complexes in the weak-exchange limit: From the multispin to the giant-spin Hamiltonian

    NASA Astrophysics Data System (ADS)

    Maurice, Rémi; de Graaf, Coen; Guihéry, Nathalie

    2010-06-01

    This paper studies the physical basis of the giant-spin Hamiltonian, which is usually used to describe the anisotropy of single-molecule magnets. A rigorous extraction of the model has been performed in the weak-exchange limit of a binuclear centrosymmetric Ni(II) complex, using correlated ab initio calculations and effective Hamiltonian theory. It is shown that the giant-spin Hamiltonian is not appropriate to describe polynuclear complexes as soon as spin mixing becomes non-negligible. A relevant model is proposed involving fourth-order operators, different from the traditionally used Stevens operators. The new giant-spin Hamiltonian correctly reproduces the effects of the spin mixing in the weak-exchange limit. A procedure to switch on and off the spin mixing in the extraction has been implemented in order to separate this effect from other anisotropic effects and to numerically evaluate both contributions to the tunnel splitting. Furthermore, the new giant-spin Hamiltonian has been derived analytically from the multispin Hamiltonian at the second order of perturbation and the theoretical link between the two models is studied to gain understanding concerning the microscopic origin of the fourth-order interaction in terms of axial, rhombic, or mixed (axial-rhombic) character. Finally, an adequate method is proposed to extract the proper magnetic axes frame for polynuclear anisotropic systems.

  5. Hamiltonian approach to continuum dynamics

    NASA Astrophysics Data System (ADS)

    Isaev, A. A.; Kovalevskii, M. Yu.; Peletminskii, S. V.

    1995-02-01

    A study is made of the problem of obtaining the Poisson-bracket algebra of the dynamical variables of continuous media on the basis of specification of the kinematic part of the Lagrangian in terms of generalized coordinates and momenta. Within this algebra, subalgebras of variables corresponding to the description of elastic media, the hydrodynamics of ordinary liquids, and the dynamics of some phases of liquid crystals are identified. The differential conservation laws associated with the symmetries of the Hamiltonian of the system are studied. The dynamics of nematics is considered, and features of the dynamics of the cholesteric, smectic, and discotic phases are noted.

  6. Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order.

    PubMed

    Reiher, Markus; Wolf, Alexander

    2004-12-08

    In order to achieve exact decoupling of the Dirac Hamiltonian within a unitary transformation scheme, we have discussed in part I of this series that either a purely numerical iterative technique (the Barysz-Sadlej-Snijders method) or a stepwise analytic approach (the Douglas-Kroll-Hess method) are possible. For the evaluation of Douglas-Kroll-Hess Hamiltonians up to a pre-defined order it was shown that a symbolic scheme has to be employed. In this work, an algorithm for this analytic derivation of Douglas-Kroll-Hess Hamiltonians up to any arbitrary order in the external potential is presented. We discuss how an estimate for the necessary order for exact decoupling (within machine precision) for a given system can be determined from the convergence behavior of the Douglas-Kroll-Hess expansion prior to a quantum chemical calculation. Once this maximum order has been accomplished, the spectrum of the positive-energy part of the decoupled Hamiltonian, e.g., for electronic bound states, cannot be distinguished from the corresponding part of the spectrum of the Dirac operator. An efficient scalar-relativistic implementation of the symbolic operations for the evaluation of the positive-energy part of the block-diagonal Hamiltonian is presented, and its accuracy is tested for ground-state energies of one-electron ions over the whole periodic table. Furthermore, the first many-electron calculations employing sixth up to fourteenth order DKH Hamiltonians are presented. (c) 2004 American Institute of Physics.

  7. Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiher, Markus; Wolf, Alexander

    In order to achieve exact decoupling of the Dirac Hamiltonian within a unitary transformation scheme, we have discussed in part I of this series that either a purely numerical iterative technique (the Barysz-Sadlej-Snijders method) or a stepwise analytic approach (the Douglas-Kroll-Hess method) are possible. For the evaluation of Douglas-Kroll-Hess Hamiltonians up to a pre-defined order it was shown that a symbolic scheme has to be employed. In this work, an algorithm for this analytic derivation of Douglas-Kroll-Hess Hamiltonians up to any arbitrary order in the external potential is presented. We discuss how an estimate for the necessary order for exactmore » decoupling (within machine precision) for a given system can be determined from the convergence behavior of the Douglas-Kroll-Hess expansion prior to a quantum chemical calculation. Once this maximum order has been accomplished, the spectrum of the positive-energy part of the decoupled Hamiltonian, e.g., for electronic bound states, cannot be distinguished from the corresponding part of the spectrum of the Dirac operator. An efficient scalar-relativistic implementation of the symbolic operations for the evaluation of the positive-energy part of the block-diagonal Hamiltonian is presented, and its accuracy is tested for ground-state energies of one-electron ions over the whole periodic table. Furthermore, the first many-electron calculations employing sixth up to fourteenth order DKH Hamiltonians are presented.« less

  8. On the Perturbative Equivalence Between the Hamiltonian and Lagrangian Quantizations

    NASA Astrophysics Data System (ADS)

    Batalin, I. A.; Tyutin, I. V.

    The Hamiltonian (BFV) and Lagrangian (BV) quantization schemes are proved to be perturbatively equivalent to each other. It is shown in particular that the quantum master equation being treated perturbatively possesses a local formal solution.

  9. Weak form of Stokes-Dirac structures and geometric discretization of port-Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Kotyczka, Paul; Maschke, Bernhard; Lefèvre, Laurent

    2018-05-01

    We present the mixed Galerkin discretization of distributed parameter port-Hamiltonian systems. On the prototypical example of hyperbolic systems of two conservation laws in arbitrary spatial dimension, we derive the main contributions: (i) A weak formulation of the underlying geometric (Stokes-Dirac) structure with a segmented boundary according to the causality of the boundary ports. (ii) The geometric approximation of the Stokes-Dirac structure by a finite-dimensional Dirac structure is realized using a mixed Galerkin approach and power-preserving linear maps, which define minimal discrete power variables. (iii) With a consistent approximation of the Hamiltonian, we obtain finite-dimensional port-Hamiltonian state space models. By the degrees of freedom in the power-preserving maps, the resulting family of structure-preserving schemes allows for trade-offs between centered approximations and upwinding. We illustrate the method on the example of Whitney finite elements on a 2D simplicial triangulation and compare the eigenvalue approximation in 1D with a related approach.

  10. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t tomore » be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.« less

  11. Fermion bag approach to Hamiltonian lattice field theories in continuous time

    NASA Astrophysics Data System (ADS)

    Huffman, Emilie; Chandrasekharan, Shailesh

    2017-12-01

    We extend the idea of fermion bags to Hamiltonian lattice field theories in the continuous time formulation. Using a class of models we argue that the temperature is a parameter that splits the fermion dynamics into small spatial regions that can be used to identify fermion bags. Using this idea we construct a continuous time quantum Monte Carlo algorithm and compute critical exponents in the 3 d Ising Gross-Neveu universality class using a single flavor of massless Hamiltonian staggered fermions. We find η =0.54 (6 ) and ν =0.88 (2 ) using lattices up to N =2304 sites. We argue that even sizes up to N =10 ,000 sites should be accessible with supercomputers available today.

  12. Implementation of the SU(2) Hamiltonian Symmetry for the DMRG Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, Gonzalo

    2012-01-01

    In the Density Matrix Renormalization Group (DMRG) algorithm (White, 1992, 1993) and Hamiltonian symmetries play an important role. Using symmetries, the matrix representation of the Hamiltonian can be blocked. Diagonalizing each matrix block is more efficient than diagonalizing the original matrix. This paper explains how the the DMRG++ code (Alvarez, 2009) has been extended to handle the non-local SU(2) symmetry in a model independent way. Improvements in CPU times compared to runs with only local symmetries are discussed for the one-orbital Hubbard model, and for a two-orbital Hubbard model for iron-based superconductors. The computational bottleneck of the algorithm and themore » use of shared memory parallelization are also addressed.« less

  13. Léon Rosenfeld's general theory of constrained Hamiltonian dynamics

    NASA Astrophysics Data System (ADS)

    Salisbury, Donald; Sundermeyer, Kurt

    2017-04-01

    This commentary reflects on the 1930 general theory of Léon Rosenfeld dealing with phase-space constraints. We start with a short biography of Rosenfeld and his motivation for this article in the context of ideas pursued by W. Pauli, F. Klein, E. Noether. We then comment on Rosenfeld's General Theory dealing with symmetries and constraints, symmetry generators, conservation laws and the construction of a Hamiltonian in the case of phase-space constraints. It is remarkable that he was able to derive expressions for all phase space symmetry generators without making explicit reference to the generator of time evolution. In his Applications, Rosenfeld treated the general relativistic example of Einstein-Maxwell-Dirac theory. We show, that although Rosenfeld refrained from fully applying his general findings to this example, he could have obtained the Hamiltonian. Many of Rosenfeld's discoveries were re-developed or re-discovered by others two decades later, yet as we show there remain additional firsts that are still not recognized in the community.

  14. Applications of the trilinear Hamiltonian with three trapped ions

    NASA Astrophysics Data System (ADS)

    Hablutzel Marrero, Roland Esteban; Ding, Shiqian; Maslennikov, Gleb; Gan, Jaren; Nimmrichter, Stefan; Roulet, Alexandre; Dai, Jibo; Scarani, Valerio; Matsukevich, Dzmitry

    2017-04-01

    The trilinear Hamiltonian a† bc + ab†c† , which describes a nonlinear interaction between harmonic oscillators, can be implemented to study different phenomena ranging from simple quantum models to quantum thermodynamics. We engineer this coupling between three modes of motion of three trapped 171Yb+ ions, where the interaction arises naturally from their mutual (anharmonic) Coulomb repulsion. By tuning our trapping parameters we are able to turn on / off resonant exchange of energy between the modes on demand. We present applications of this Hamiltonian for simulations of the parametric down conversion process in the regime of depleted pump, a simple model of Hawking radiation, and the Tavis-Cummings model. We also discuss the implementation of the quantum absorption refrigerator in such system and experimentally study effects of quantum coherence on its performance. This research is supported by the National Research Foundation, Prime Minister's Office, Singapore and the Ministry of Education, Singapore under the Research Centres of Excellence programme.

  15. Clocks in Feynman's computer and Kitaev's local Hamiltonian: Bias, gaps, idling, and pulse tuning

    NASA Astrophysics Data System (ADS)

    Caha, Libor; Landau, Zeph; Nagaj, Daniel

    2018-06-01

    We present a collection of results about the clock in Feynman's computer construction and Kitaev's local Hamiltonian problem. First, by analyzing the spectra of quantum walks on a line with varying end-point terms, we find a better lower bound on the gap of the Feynman Hamiltonian, which translates into a less strict promise gap requirement for the quantum-Merlin-Arthur-complete local Hamiltonian problem. We also translate this result into the language of adiabatic quantum computation. Second, introducing an idling clock construction with a large state space but fast Cesaro mixing, we provide a way for achieving an arbitrarily high success probability of computation with Feynman's computer with only a logarithmic increase in the number of clock qubits. Finally, we tune and thus improve the costs (locality and gap scaling) of implementing a (pulse) clock with a single excitation.

  16. Isospectral Hamiltonian for position-dependent mass for an arbitrary quantum system and coherent states

    NASA Astrophysics Data System (ADS)

    Yahiaoui, Sid-Ahmed; Bentaiba, Mustapha

    2017-06-01

    By means of the unitary transformation, a new way for discussing the ordering prescription of the Schrödinger equation with a position-dependent mass (PDM) for isospectral Hamiltonian operators is presented. We show that the ambiguity parameter choices in the kinetic part of the Hamiltonian can be explained through an exact SUSY QM symmetry as well as a consequence of an accidental symmetry under the Z2 action. By making use of the unitary transformation, we construct coherent states for a family of PDM isospectral Hamiltonians from a suitable choice of ladder operators. We show that these states preserve the usual structure of Klauder-Perelomov's states and thus saturate and minimize the position-momentum uncertainty relation (PMUR) under some special restrictions. We show that PMUR properties can be used to determine the sign of the superpotential.

  17. Hamiltonian description and quantization of dissipative systems

    NASA Astrophysics Data System (ADS)

    Enz, Charles P.

    1994-09-01

    Dissipative systems are described by a Hamiltonian, combined with a “dynamical matrix” which generalizes the simplectic form of the equations of motion. Criteria for dissipation are given and the examples of a particle with friction and of the Lotka-Volterra model are presented. Quantization is first introduced by translating generalized Poisson brackets into commutators and anticommutators. Then a generalized Schrödinger equation expressed by a dynamical matrix is constructed and discussed.

  18. Nonlinear dynamics of a semiquantum Hamiltonian in the vicinity of quantum unstable regimes

    NASA Astrophysics Data System (ADS)

    Kowalski, A. M.; Rossignoli, R.

    2018-04-01

    We examine the emergence of chaos in a non-linear model derived from a semiquantum Hamiltonian describing the coupling between a classical field and a quantum system. The latter corresponds to a bosonic version of a BCS-like Hamiltonian, and possesses stable and unstable regimes. The dynamics of the whole system is shown to be strongly influenced by the quantum subsystem. In particular, chaos is seen to arise in the vicinity of a quantum critical case, which separates the stable and unstable regimes of the bosonic system.

  19. Isokinetic peak torque and flexibility changes of the hamstring muscles after eccentric training: Trained versus untrained subjects.

    PubMed

    Abdel-Aziem, Amr Almaz; Soliman, Elsadat Saad; Abdelraouf, Osama Ragaa

    2018-05-23

    The aim of this study was to examine the effect of eccentric isotonic training on hamstring flexibility and eccentric and concentric isokinetic peak torque in trained and untrained subjects. Sixty healthy subjects (mean age: 21.66 ± 2.64) were divided into three equal groups, each with 20 voluntary participants. Two experimental groups (untrained and trained groups) participated in a hamstring eccentric isotonic strengthening program (five days/week) for a six-week period and one control group that was not involved in the training program. The passive knee extension range of motion and hamstring eccentric and concentric isokinetic peak torque were measured at angular velocities 60° and 120°/s for all groups before and after the training period. Two-way analysis of variance showed that there was a significant increase in the hamstring flexibility of the untrained and trained groups (25.65 ± 6.32°, 26.55 ± 5.99°, respectively), (p < 0.05) without a significant increase in the control group (31.55 ± 5.84°), (p > 0.05). Moreover, there was a significant increase in eccentric isokinetic peak torque of both the untrained and trained groups (127.25 ± 22.60Nm, 139.65 ± 19.15Nm, 125.40 ± 21.61Nm, 130.90 ± 18.71Nm, respectively), (p < 0.05) without a significant increase in the control group (109.15 ± 20.89Nm, 105.70 ± 21.31Nm, respectively), (p > 0.05) at both angular velocities. On the other hand, there was no significant increase in the concentric isokinetic peak torque of the three groups (92.50 ± 20.50Nm, 79.05 ± 18.95Nm, 92.20 ± 21.96Nm, 79.85 ± 18.97Nm, 100.45 ± 25.78Nm, 83.40 ± 23.73Nm, respectively), (p > 0.05) at both angular velocities. The change scores in the hamstring flexibility (06.25 ± 1.86°) and eccentric peak torque of the untrained group (16.60 ± 4.81Nm, 17.45 ± 5.40Nm, respectively) were significantly higher (p < 0.05) than those of the trained group (03.40 ± 1.14°, 9.90

  20. A finite-temperature Hartree-Fock code for shell-model Hamiltonians

    NASA Astrophysics Data System (ADS)

    Bertsch, G. F.; Mehlhaff, J. M.

    2016-10-01

    The codes HFgradZ.py and HFgradT.py find axially symmetric minima of a Hartree-Fock energy functional for a Hamiltonian supplied in a shell model basis. The functional to be minimized is the Hartree-Fock energy for zero-temperature properties or the Hartree-Fock grand potential for finite-temperature properties (thermal energy, entropy). The minimization may be subjected to additional constraints besides axial symmetry and nucleon numbers. A single-particle operator can be used to constrain the minimization by adding it to the single-particle Hamiltonian with a Lagrange multiplier. One can also constrain its expectation value in the zero-temperature code. Also the orbital filling can be constrained in the zero-temperature code, fixing the number of nucleons having given Kπ quantum numbers. This is particularly useful to resolve near-degeneracies among distinct minima.

  1. De Donder-Weyl Hamiltonian formalism of MacDowell-Mansouri gravity

    NASA Astrophysics Data System (ADS)

    Berra-Montiel, Jasel; Molgado, Alberto; Serrano-Blanco, David

    2017-12-01

    We analyse the behaviour of the MacDowell-Mansouri action with internal symmetry group SO(4, 1) under the De Donder-Weyl Hamiltonian formulation. The field equations, known in this formalism as the De Donder-Weyl equations, are obtained by means of the graded Poisson-Gerstenhaber bracket structure present within the De Donder-Weyl formulation. The decomposition of the internal algebra so(4, 1)≃so(3, 1)\\oplus{R}3, 1 allows the symmetry breaking SO(4, 1)\\toSO(3, 1) , which reduces the original action to the Palatini action without the topological term. We demonstrate that, in contrast to the Lagrangian approach, this symmetry breaking can be performed indistinctly in the polysymplectic formalism either before or after the variation of the De Donder-Weyl Hamiltonian has been done, recovering Einstein’s equations via the Poisson-Gerstenhaber bracket.

  2. The limits of hamiltonian structures in three-dimensional elasticity, shells, and rods

    NASA Astrophysics Data System (ADS)

    Ge, Z.; Kruse, H. P.; Marsden, J. E.

    1996-01-01

    This paper uses Hamiltonian structures to study the problem of the limit of three-dimensional (3D) elastic models to shell and rod models. In the case of shells, we show that the Hamiltonian structure for a three-dimensional elastic body converges, in a sense made precise, to that for a shell model described by a one-director Cosserat surface as the thickness goes to zero. We study limiting procedures that give rise to unconstrained as well as constrained Cosserat director models. The case of a rod is also considered and similar convergence results are established, with the limiting model being a geometrically exact director rod model (in the framework developed by Antman, Simo, and coworkers). The resulting model may or may not have constraints, depending on the nature of the constitutive relations and their behavior under the limiting procedure. The closeness of Hamiltonian structures is measured by the closeness of Poisson brackets on certain classes of functions, as well as the Hamiltonians. This provides one way of justifying the dynamic one-director model for shells. Another way of stating the convergence result is that there is an almost-Poisson embedding from the phase space of the shell to the phase space of the 3D elastic body, which implies that, in the sense of Hamiltonian structures, the dynamics of the elastic body is close to that of the shell. The constitutive equations of the 3D model and their behavior as the thickness tends to zero dictates whether the limiting 2D model is a constrained or an unconstrained director model. We apply our theory in the specific case of a 3D Saint Venant-Kirchhoff material and derive the corresponding limiting shell and rod theories. The limiting shell model is an interesting Kirchhoff-like shell model in which the stored energy function is explicitly derived in terms of the shell curvature. For rods, one gets (with an additional inextensibility constraint) a one-director Kirchhoff elastic rod model, which reduces to

  3. Diagonalizing the Hamiltonian of λϕ4 theory in 2 space-time dimensions

    NASA Astrophysics Data System (ADS)

    Christensen, Neil

    2018-01-01

    We propose a new non-perturbative technique for calculating the scattering amplitudes of field-theory directly from the eigenstates of the Hamiltonian. Our method involves a discretized momentum space and a momentum cutoff, thereby truncating the Hilbert space and making numerical diagonalization of the Hamiltonian achievable. We show how to do this in the context of a simplified λϕ4 theory in two space-time dimensions. We present the results of our diagonalization, its dependence on time, its dependence on the parameters of the theory and its renormalization.

  4. Modular Hamiltonians for deformed half-spaces and the averaged null energy condition

    DOE PAGES

    Faulkner, Thomas; Leigh, Robert G.; Parrikar, Onkar; ...

    2016-09-08

    We study modular Hamiltonians corresponding to the vacuum state for deformed half-spaces in relativistic quantum field theories on R 1,d-1. We show that in addition to the usual boost generator, there is a contribution to the modular Hamiltonian at first order in the shape deformation, proportional to the integral of the null components of the stress tensor along the Rindler horizon. We use this fact along with monotonicity of relative entropy to prove the averaged null energy condition in Minkowski space-time. This subsequently gives a new proof of the Hofman-Maldacena bounds on the parameters appearing in CFT three-point functions. Ourmore » main technical advance involves adapting newly developed perturbative methods for calculating entanglement entropy to the problem at hand. Our methods were recently used to prove certain results on the shape dependence of entanglement in CFTs and here we generalize these results to excited states and real time dynamics. Finally, we discuss the AdS/CFT counterpart of this result, making connection with the recently proposed gravitational dual for modular Hamiltonians in holographic theories.« less

  5. Modular Hamiltonians for deformed half-spaces and the averaged null energy condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulkner, Thomas; Leigh, Robert G.; Parrikar, Onkar

    We study modular Hamiltonians corresponding to the vacuum state for deformed half-spaces in relativistic quantum field theories on R 1,d-1. We show that in addition to the usual boost generator, there is a contribution to the modular Hamiltonian at first order in the shape deformation, proportional to the integral of the null components of the stress tensor along the Rindler horizon. We use this fact along with monotonicity of relative entropy to prove the averaged null energy condition in Minkowski space-time. This subsequently gives a new proof of the Hofman-Maldacena bounds on the parameters appearing in CFT three-point functions. Ourmore » main technical advance involves adapting newly developed perturbative methods for calculating entanglement entropy to the problem at hand. Our methods were recently used to prove certain results on the shape dependence of entanglement in CFTs and here we generalize these results to excited states and real time dynamics. Finally, we discuss the AdS/CFT counterpart of this result, making connection with the recently proposed gravitational dual for modular Hamiltonians in holographic theories.« less

  6. Dynamics and Self-consistent Chaos in a Mean Field Hamiltonian Model

    NASA Astrophysics Data System (ADS)

    del-Castillo-Negrete, Diego

    We study a mean field Hamiltonian model that describes the collective dynamics of marginally stable fluids and plasmas in the finite N and N-> infty kinetic limit (where N is the number of particles). The linear stability of equilibria in the kinetic model is studied as well as the initial value problem including Landau damping . Numerical simulations show the existence of coherent, rotating dipole states. We approximate the dipole as two macroparticles and show that the N=2 limit has a family of rotating integrable solutions that provide an accurate description of the dynamics. We discuss the role of self-consistent Hamiltonian chaos in the formation of coherent structures, and discuss a mechanism of "violent" mixing caused by a self-consistent elliptic-hyperbolic bifurcation in phase space.

  7. Competition Between Two Large-Amplitude Motion Models: New Hybrid Hamiltonian Versus Old Pure-Tunneling Hamiltonian

    NASA Astrophysics Data System (ADS)

    Kleiner, Isabelle; Hougen, Jon T.

    2017-06-01

    In this talk we report on our progress in trying to make the hybrid Hamiltonian competitive with the pure-tunneling Hamiltonian for treating large-amplitude motions in methylamine. A treatment using the pure-tunneling model has the advantages of: (i) requiring relatively little computer time, (ii) working with relatively uncorrelated fitting parameters, and (iii) yielding in the vast majority of cases fits to experimental measurement accuracy. These advantages are all illustrated in the work published this past year on a gigantic v_{t} = 1 data set for the torsional fundamental band in methyl amine. A treatment using the hybrid model has the advantages of: (i) being able to carry out a global fit involving both v_{t} = 0 and v_{t} = 1 energy levels and (ii) working with fitting parameters that have a clearer physical interpretation. Unfortunately, a treatment using the hybrid model has the great disadvantage of requiring a highly correlated set of fitting parameters to achieve reasonable fitting accuracy, which complicates the search for a good set of molecular fitting parameters and a fit to experimental accuracy. At the time of writing this abstract, we have been able to carry out a fit with J up to 15 that includes all available infrared data in the v_{t} = 1-0 torsional fundamental band, all ground-state microwave data with K up to 10 and J up to 15, and about a hundred microwave lines within the v_{t} = 1 torsional state, achieving weighted root-mean-square (rms) deviations of about 1.4, 2.8, and 4.2 for these three categories of data. We will give an update of this situation at the meeting. I. Gulaczyk, M. Kreglewski, V.-M. Horneman, J. Mol. Spectrosc., in Press (2017).

  8. Isokinetic TWC Evaporator Probe: Calculations and Systemic Uncertainty Analysis

    NASA Technical Reports Server (NTRS)

    Davison, Craig R.; Strapp, J. Walter; Lilie, Lyle; Ratvasky, Thomas P.; Dumont, Christopher

    2016-01-01

    A new Isokinetic Total Water Content Evaporator (IKP2) was downsized from a prototype instrument, specifically to make airborne measurements of hydrometeor total water content (TWC) in deep tropical convective clouds to assess the new ice crystal Appendix D icing envelope. The probe underwent numerous laboratory and wind tunnel investigations to ensure reliable operation under the difficult high altitude/speed/TWC conditions under which other TWC instruments have been known to either fail, or have unknown performance characteristics and the results are presented in a companion paper. This paper presents the equations used to determine the total water content (TWC) of the sampled atmosphere from the values measured by the IKP2 or necessary ancillary data from other instruments. The uncertainty in the final TWC is determined by propagating the uncertainty in the measured values through the calculations to the final result. Two techniques were used and the results compared. The first is a typical analytical method of propagating uncertainty and the second performs a Monte Carlo simulation. The results are very similar with differences that are insignificant for practical purposes. The uncertainty is between 2 percent and 3 percent at most practical operating conditions. The capture efficiency of the IKP2 was also examined based on a computational fluid dynamic simulation of the original IKP and scaled down to the IKP2. Particles above 24 microns were found to have a capture efficiency greater than 99 percent at all operating conditions.

  9. Isokinetic TWC Evaporator Probe: Calculations and Systemic Uncertainty Analysis

    NASA Technical Reports Server (NTRS)

    Davison, Craig R.; Strapp, John W.; Lilie, Lyle E.; Ratvasky, Thomas P.; Dumont, Christopher

    2016-01-01

    A new Isokinetic Total Water Content Evaporator (IKP2) was downsized from a prototype instrument, specifically to make airborne measurements of hydrometeor total water content (TWC) in deep tropical convective clouds to assess the new ice crystal Appendix D icing envelope. The probe underwent numerous laboratory and wind tunnel investigations to ensure reliable operation under the difficult high altitude/speed/TWC conditions under which other TWC instruments have been known to either fail, or have unknown performance characteristics and the results are presented in a companion paper (Ref. 1). This paper presents the equations used to determine the total water content (TWC) of the sampled atmosphere from the values measured by the IKP2 or necessary ancillary data from other instruments. The uncertainty in the final TWC is determined by propagating the uncertainty in the measured values through the calculations to the final result. Two techniques were used and the results compared. The first is a typical analytical method of propagating uncertainty and the second performs a Monte Carlo simulation. The results are very similar with differences that are insignificant for practical purposes. The uncertainty is between 2 and 3 percent at most practical operating conditions. The capture efficiency of the IKP2 was also examined based on a computational fluid dynamic simulation of the original IKP and scaled down to the IKP2. Particles above 24 micrometers were found to have a capture efficiency greater than 99 percent at all operating conditions.

  10. Isokinetic knee joint evaluation in track and field events.

    PubMed

    Deli, Chariklia K; Paschalis, Vassilis; Theodorou, Anastasios A; Nikolaidis, Michalis G; Jamurtas, Athanasios Z; Koutedakis, Yiannis

    2011-09-01

    The purpose of this study was to evaluate maximal torque of the knee flexors and extensors, flexor/extensor ratios, and maximal torque differences between the 2 lower extremities in young track and field athletes. Forty male track and field athletes 13-17 years old and 20 male nonathletes of the same age participated in the study. Athletes were divided into 4 groups according to their age and event (12 runners and 10 jumpers 13-15 years old, 12 runners and 6 jumpers 16-17 years old) and nonathletes into 2 groups of the same age. Maximal torque evaluation of knee flexors and extensors was performed on an isokinetic dynamometer at 60°·s(-1). At the age of 16-17 years, jumpers exhibited higher strength values at extension than did runners and nonathletes, whereas at the age of 13-15 years, no significant differences were found between events. Younger athletes were weaker than older athletes at flexion. Runners and jumpers were stronger than nonathletes in all relative peak torque parameters. Nonathletes exhibited a higher flexor/extensor ratio compared with runners and jumpers. Strength imbalance in athletes was found between the 2 lower extremities in knee flexors and extensors and also at flexor/extensor ratio of the same extremity. Young track and field athletes exhibit strength imbalances that could reduce their athletic performance, and specific strength training for the weak extremity may be needed.

  11. PREFACE: 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics

    NASA Astrophysics Data System (ADS)

    Fring, Andreas; Jones, Hugh; Znojil, Miloslav

    2008-06-01

    Attempts to understand the quantum mechanics of non-Hermitian Hamiltonian systems can be traced back to the early days, one example being Heisenberg's endeavour to formulate a consistent model involving an indefinite metric. Over the years non-Hermitian Hamiltonians whose spectra were believed to be real have appeared from time to time in the literature, for instance in the study of strong interactions at high energies via Regge models, in condensed matter physics in the context of the XXZ-spin chain, in interacting boson models in nuclear physics, in integrable quantum field theories as Toda field theories with complex coupling constants, and also very recently in a field theoretical scenario in the quantization procedure of strings on an AdS5 x S5 background. Concrete experimental realizations of these types of systems in the form of optical lattices have been proposed in 2007. In the area of mathematical physics similar non-systematic results appeared sporadically over the years. However, intensive and more systematic investigation of these types of non- Hermitian Hamiltonians with real eigenvalue spectra only began about ten years ago, when the surprising discovery was made that a large class of one-particle systems perturbed by a simple non-Hermitian potential term possesses a real energy spectrum. Since then regular international workshops devoted to this theme have taken place. This special issue is centred around the 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics held in July 2007 at City University London. All the contributions contain significant new results or alternatively provide a survey of the state of the art of the subject or a critical assessment of the present understanding of the topic and a discussion of open problems. Original contributions from non-participants were also invited. Meanwhile many interesting results have been obtained and consensus has been reached on various central conceptual issues in the

  12. Integrable and superintegrable Hamiltonian systems with four dimensional real Lie algebras as symmetry of the systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abedi-Fardad, J., E-mail: j.abedifardad@bonabu.ac.ir; Rezaei-Aghdam, A., E-mail: rezaei-a@azaruniv.edu; Haghighatdoost, Gh., E-mail: gorbanali@azaruniv.edu

    2014-05-15

    We construct integrable and superintegrable Hamiltonian systems using the realizations of four dimensional real Lie algebras as a symmetry of the system with the phase space R{sup 4} and R{sup 6}. Furthermore, we construct some integrable and superintegrable Hamiltonian systems for which the symmetry Lie group is also the phase space of the system.

  13. FAST TRACK COMMUNICATION: Superintegrability of the Tremblay-Turbiner-Winternitz quantum Hamiltonians on a plane for odd k

    NASA Astrophysics Data System (ADS)

    Quesne, C.

    2010-02-01

    In a recent communication paper by Tremblay et al (2009 J. Phys. A: Math. Theor. 42 205206), it has been conjectured that for any integer value of k, some novel exactly solvable and integrable quantum Hamiltonian Hk on a plane is superintegrable and that the additional integral of motion is a 2kth-order differential operator Y2k. Here we demonstrate the conjecture for the infinite family of Hamiltonians Hk with odd k >= 3, whose first member corresponds to the three-body Calogero-Marchioro-Wolfes model after elimination of the centre-of-mass motion. Our approach is based on the construction of some D2k-extended and invariant Hamiltonian {\\cal H}_k, which can be interpreted as a modified boson oscillator Hamiltonian. The latter is then shown to possess a D2k-invariant integral of motion {\\cal Y}_{2k}, from which Y2k can be obtained by projection in the D2k identity representation space.

  14. Improving long time behavior of Poisson bracket mapping equation: A non-Hamiltonian approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyun Woo; Rhee, Young Min, E-mail: ymrhee@postech.ac.kr

    2014-05-14

    Understanding nonadiabatic dynamics in complex systems is a challenging subject. A series of semiclassical approaches have been proposed to tackle the problem in various settings. The Poisson bracket mapping equation (PBME) utilizes a partial Wigner transform and a mapping representation for its formulation, and has been developed to describe nonadiabatic processes in an efficient manner. Operationally, it is expressed as a set of Hamilton's equations of motion, similar to more conventional classical molecular dynamics. However, this original Hamiltonian PBME sometimes suffers from a large deviation in accuracy especially in the long time limit. Here, we propose a non-Hamiltonian variant ofmore » PBME to improve its behavior especially in that limit. As a benchmark, we simulate spin-boson and photosynthetic model systems and find that it consistently outperforms the original PBME and its Ehrenfest style variant. We explain the source of this improvement by decomposing the components of the mapping Hamiltonian and by assessing the energy flow between the system and the bath. We discuss strengths and weaknesses of our scheme with a viewpoint of offering future prospects.« less

  15. Formalism for the solution of quadratic Hamiltonians with large cosine terms

    NASA Astrophysics Data System (ADS)

    Ganeshan, Sriram; Levin, Michael

    2016-02-01

    We consider quantum Hamiltonians of the form H =H0-U ∑jcos(Cj) , where H0 is a quadratic function of position and momentum variables {x1,p1,x2,p2,⋯} and the Cj's are linear in these variables. We allow H0 and Cj to be completely general with only two restrictions: we require that (1) the Cj's are linearly independent and (2) [Cj,Ck] is an integer multiple of 2 π i for all j ,k so that the different cosine terms commute with one another. Our main result is a recipe for solving these Hamiltonians and obtaining their exact low-energy spectrum in the limit U →∞ . This recipe involves constructing creation and annihilation operators and is similar in spirit to the procedure for diagonalizing quadratic Hamiltonians. In addition to our exact solution in the infinite U limit, we also discuss how to analyze these systems when U is large but finite. Our results are relevant to a number of different physical systems, but one of the most natural applications is to understanding the effects of electron scattering on quantum Hall edge modes. To demonstrate this application, we use our formalism to solve a toy model for a fractional quantum spin Hall edge with different types of impurities.

  16. Randomised controlled trial of thermostatic mixer valves in reducing bath hot tap water temperature in families with young children in social housing: A protocol

    PubMed Central

    Kendrick, Denise; Stewart, Jane; Coupland, Carol; Hayes, Michael; Hopkins, Nick; McCabe, Debbie; Murphy, Robert; O'Donnell, George; Phillips, Ceri; Radford, David; Ryan, Jackie; Smith, Sherie; Groom, Lindsay; Towner, Elizabeth

    2008-01-01

    Background Each year in the UK 2000 children attend emergency departments and 500 are admitted to hospital following a bath water scald. The long term effects can include disability, disfigurement or psychological harm and repeated skin grafts may be required as the child grows. The costs of treating a severe scald are estimated at 250,000 GBP. Children living in the most deprived wards are at greatest risk of thermal injuries; hospital admission rates are three times that for children living in the least deprived wards. Domestic hot water, which is usually stored at around 60 degrees Celsius, can result in a second-degree burn after 3 seconds and a third-degree burn after 5 seconds. Educational strategies to encourage testing of tap water temperature and reduction of hot water thermostat settings have largely proved unsuccessful. Legislation in the USA mandating pre-setting hot water heater thermostats at 49 degrees Celsius was effective in reducing scald injuries, suggesting passive measures may have a greater impact. Thermostatic mixer valves (TMVs), recently developed for the domestic market, fitted across the hot and cold water supply pipes of the bath, allow delivery of water set at a fixed temperature from the hot bath tap. These valves therefore offer the potential to reduce scald injuries. Design/Methods A pragmatic, randomised controlled trial to assess the effectiveness of TMVs in reducing bath hot tap water temperatures in the homes of families with young children in rented social housing. Two parallel arms include an intervention group and a control group where the intervention will be deferred. The intervention will consist of fitting a TMV (set at 44 degrees Celsius) by a qualified plumber and provision of educational materials. The control arm will not receive a TMV or the educational materials for the study duration but will be offered the intervention after collection of follow-up data 12 months post randomisation. The primary outcome measure will

  17. Io - A volcanic flow model for the hot spot emission spectrum and a thermostatic mechanism

    NASA Technical Reports Server (NTRS)

    Sinton, V. M.

    1982-01-01

    The hot spots of Io are modeled as a steady state of active areas at 600 K, continuing creation of new lava flows and calderas, cooling off of recent flows and calderas, and the cessation of radiation of old flows and calderas from the accumulation of insulation added by resurfacing. There are three adjustable parameters in this model: the area of active sources at 600 K, the rate of production of new area that is cooling, and the temperature of cessation of emission as the result of resurfacing. The resurfacing rate sets constrains on this last parameter. The emission spectrum computed with reasonable values for these parameters is an excellent match to the spectrum from recent observations. A thermostatic mechanism is described whereby the volcanic activity is turned on for a long period of time and is then turned off for a nearly equal period. As a result the presently observed internal heat flow of approximately 1.5 W/sq m may be as much as twice the rate of production of internal heat. Thus the restrictions placed on theories of tidal dissipation by the observed heat flow may be partially relieved.

  18. Analysis of Franck-Condon factors for CO+ molecule using the Fourier Grid Hamiltonian method

    NASA Astrophysics Data System (ADS)

    Syiemiong, Arnestar; Swer, Shailes; Jha, Ashok Kumar; Saxena, Atul

    2018-04-01

    Franck-Condon factors (FCFs) are important parameters and it plays a very important role in determining the intensities of the vibrational bands in electronic transitions. In this paper, we illustrate the Fourier Grid Hamiltonian (FGH) method, a relatively simple method to calculate the FCFs. The FGH is a method used for calculating the vibrational eigenvalues and eigenfunctions of bound electronic states of diatomic molecules. The obtained vibrational wave functions for the ground and the excited states are used to calculate the vibrational overlap integral and then the FCFs. In this computation, we used the Morse potential and Bi-Exponential potential model for constructing and diagonalizing the molecular Hamiltonians. The effects of the change in equilibrium internuclear distance (xe), dissociation energy (De), and the nature of the excited state electronic energy curve on the FCFs have been determined. Here we present our work for the qualitative analysis of Franck-Condon Factorsusing this Fourier Grid Hamiltonian Method.

  19. Equivalent Theories and Changing Hamiltonian Observables in General Relativity

    NASA Astrophysics Data System (ADS)

    Pitts, J. Brian

    2018-03-01

    Change and local spatial variation are missing in Hamiltonian general relativity according to the most common definition of observables as having 0 Poisson bracket with all first-class constraints. But other definitions of observables have been proposed. In pursuit of Hamiltonian-Lagrangian equivalence, Pons, Salisbury and Sundermeyer use the Anderson-Bergmann-Castellani gauge generator G, a tuned sum of first-class constraints. Kuchař waived the 0 Poisson bracket condition for the Hamiltonian constraint to achieve changing observables. A systematic combination of the two reforms might use the gauge generator but permit non-zero Lie derivative Poisson brackets for the external gauge symmetry of General Relativity. Fortunately one can test definitions of observables by calculation using two formulations of a theory, one without gauge freedom and one with gauge freedom. The formulations, being empirically equivalent, must have equivalent observables. For de Broglie-Proca non-gauge massive electromagnetism, all constraints are second-class, so everything is observable. Demanding equivalent observables from gauge Stueckelberg-Utiyama electromagnetism, one finds that the usual definition fails while the Pons-Salisbury-Sundermeyer definition with G succeeds. This definition does not readily yield change in GR, however. Should GR's external gauge freedom of general relativity share with internal gauge symmetries the 0 Poisson bracket (invariance), or is covariance (a transformation rule) sufficient? A graviton mass breaks the gauge symmetry (general covariance), but it can be restored by parametrization with clock fields. By requiring equivalent observables, one can test whether observables should have 0 or the Lie derivative as the Poisson bracket with the gauge generator G. The latter definition is vindicated by calculation. While this conclusion has been reported previously, here the calculation is given in some detail.

  20. Equivalent Theories and Changing Hamiltonian Observables in General Relativity

    NASA Astrophysics Data System (ADS)

    Pitts, J. Brian

    2018-05-01

    Change and local spatial variation are missing in Hamiltonian general relativity according to the most common definition of observables as having 0 Poisson bracket with all first-class constraints. But other definitions of observables have been proposed. In pursuit of Hamiltonian-Lagrangian equivalence, Pons, Salisbury and Sundermeyer use the Anderson-Bergmann-Castellani gauge generator G, a tuned sum of first-class constraints. Kuchař waived the 0 Poisson bracket condition for the Hamiltonian constraint to achieve changing observables. A systematic combination of the two reforms might use the gauge generator but permit non-zero Lie derivative Poisson brackets for the external gauge symmetry of General Relativity. Fortunately one can test definitions of observables by calculation using two formulations of a theory, one without gauge freedom and one with gauge freedom. The formulations, being empirically equivalent, must have equivalent observables. For de Broglie-Proca non-gauge massive electromagnetism, all constraints are second-class, so everything is observable. Demanding equivalent observables from gauge Stueckelberg-Utiyama electromagnetism, one finds that the usual definition fails while the Pons-Salisbury-Sundermeyer definition with G succeeds. This definition does not readily yield change in GR, however. Should GR's external gauge freedom of general relativity share with internal gauge symmetries the 0 Poisson bracket (invariance), or is covariance (a transformation rule) sufficient? A graviton mass breaks the gauge symmetry (general covariance), but it can be restored by parametrization with clock fields. By requiring equivalent observables, one can test whether observables should have 0 or the Lie derivative as the Poisson bracket with the gauge generator G. The latter definition is vindicated by calculation. While this conclusion has been reported previously, here the calculation is given in some detail.

  1. New quantum number for the many-electron Dirac-Coulomb Hamiltonian

    NASA Astrophysics Data System (ADS)

    Komorovsky, Stanislav; Repisky, Michal; Bučinský, Lukáš

    2016-11-01

    By breaking the spin symmetry in the relativistic domain, a powerful tool in physical sciences was lost. In this work, we examine an alternative of spin symmetry for systems described by the many-electron Dirac-Coulomb Hamiltonian. We show that the square of many-electron operator K+, defined as a sum of individual single-electron time-reversal (TR) operators, is a linear Hermitian operator which commutes with the Dirac-Coulomb Hamiltonian in a finite Fock subspace. In contrast to the square of a standard unitary many-electron TR operator K , the K+2 has a rich eigenspectrum having potential to substitute spin symmetry in the relativistic domain. We demonstrate that K+ is connected to K through an exponential mapping, in the same way as spin operators are mapped to the spin rotational group. Consequently, we call K+ the generator of the many-electron TR symmetry. By diagonalizing the operator K+2 in the basis of Kramers-restricted Slater determinants, we introduce the relativistic variant of configuration state functions (CSF), denoted as Kramers CSF. A new quantum number associated with K+2 has potential to be used in many areas, for instance, (a) to design effective spin Hamiltonians for electron spin resonance spectroscopy of heavy-element containing systems; (b) to increase efficiency of methods for the solution of many-electron problems in relativistic computational chemistry and physics; (c) to define Kramers contamination in unrestricted density functional and Hartree-Fock theory as a relativistic analog of the spin contamination in the nonrelativistic domain.

  2. Hybrid Topological Lie-Hamiltonian Learning in Evolving Energy Landscapes

    NASA Astrophysics Data System (ADS)

    Ivancevic, Vladimir G.; Reid, Darryn J.

    2015-11-01

    In this Chapter, a novel bidirectional algorithm for hybrid (discrete + continuous-time) Lie-Hamiltonian evolution in adaptive energy landscape-manifold is designed and its topological representation is proposed. The algorithm is developed within a geometrically and topologically extended framework of Hopfield's neural nets and Haken's synergetics (it is currently designed in Mathematica, although with small changes it could be implemented in Symbolic C++ or any other computer algebra system). The adaptive energy manifold is determined by the Hamiltonian multivariate cost function H, based on the user-defined vehicle-fleet configuration matrix W, which represents the pseudo-Riemannian metric tensor of the energy manifold. Search for the global minimum of H is performed using random signal differential Hebbian adaptation. This stochastic gradient evolution is driven (or, pulled-down) by `gravitational forces' defined by the 2nd Lie derivatives of H. Topological changes of the fleet matrix W are observed during the evolution and its topological invariant is established. The evolution stops when the W-topology breaks down into several connectivity-components, followed by topology-breaking instability sequence (i.e., a series of phase transitions).

  3. Application of Dirac's Generalized Hamiltonian Dynamics to Atomic and Molecular Systems

    NASA Astrophysics Data System (ADS)

    Uzer, Turgay

    2002-10-01

    Incorporating electronic degrees of freedom into classical treatments of atoms and molecules is a challenging problem from both the practical and fundamental points of view. Because it goes to the heart of classical-quantal correspondence, there are now a number of prescriptions which differ by the extent of quantal information that they include. We reach back to Dirac for inspiration, who, half a century ago, designed a so-called Generalized Hamiltonian Dynamics (GHD) with applications to field theory in mind. Physically, the GHD is a purely classical formalism for systems with constraints; it incorporates the constraints into the Hamiltonian. We apply the GHD to atomic and molecular physics by choosing integrals of motion as the constraints. We show that this purely classical formalism allows the derivation of energies of non-radiating states.

  4. Quantum theory of atoms in molecules: results for the SR-ZORA Hamiltonian.

    PubMed

    Anderson, James S M; Ayers, Paul W

    2011-11-17

    The quantum theory of atoms in molecules (QTAIM) is generalized to include relativistic effects using the popular scalar-relativistic zeroth-order regular approximation (SR-ZORA). It is usually assumed that the definition of the atom as a volume bounded by a zero-flux surface of the electron density is closely linked to the form of the kinetic energy, so it is somewhat surprising that the atoms corresponding to the relativistic kinetic-energy operator in the SR-ZORA Hamiltonian are also bounded by zero-flux surfaces. The SR-ZORA Hamiltonian should be sufficient for qualitative descriptions of molecular electronic structure across the periodic table, which suggests that QTAIM-based analysis can be useful for molecules and solids containing heavy atoms.

  5. Interacting quantum dot coupled to a kondo spin: a universal Hamiltonian study.

    PubMed

    Rotter, Stefan; Türeci, Hakan E; Alhassid, Y; Stone, A Douglas

    2008-04-25

    We study a Kondo spin coupled to a mesoscopic interacting quantum dot that is described by the "universal Hamiltonian." The problem is solved numerically by diagonalizing the system Hamiltonian in a good-spin basis and analytically in the weak and strong Kondo coupling limits. The ferromagnetic exchange interaction within the dot leads to a stepwise increase of the ground-state spin (Stoner staircase), which is modified nontrivially by the Kondo interaction. We find that the spin-transition steps move to lower values of the exchange coupling for weak Kondo interaction, but shift back up for sufficiently strong Kondo coupling. The interplay between Kondo and ferromagnetic exchange correlations can be probed with experimentally tunable parameters.

  6. Physiological Interpretation of the Slope during an Isokinetic Fatigue Test.

    PubMed

    Bosquet, L; Gouadec, K; Berryman, N; Duclos, C; Gremeaux, V; Croisier, J-L

    2015-07-01

    To assess the relationship between selected measures (the slope and average performance) obtained during a high intensity isokinetic fatigue test of the knee (FAT) and relevant measures of anaerobic and aerobic capacities. 20 well-trained cyclists performed 3 randomly ordered sessions involving a FAT consisting in 30 reciprocal maximal concentric contractions of knee flexors and extensors at 180°.s(-1), a maximal continuous graded exercise test (GXT), and a Wingate anaerobic test (WAnT). The slope calculated from peak torque (PT) and total work (TW) of knee extensors was highly associated to maximal PT (r=-0.86) and maximal TW (r=-0.87) measured during FAT, and moderately associated to peak power output measured during the WAnT (r=-0.64 to -0.71). Average PT and average TW were highly associated to maximal PT (r=0.93) and maximal TW (r=0.96), to mean power output measured during WAnT (r=0.83-0.90) and moderately associated to maximal oxygen uptake (0.58-0.67). In conclusion, the slope is mainly determined by maximal anaerobic power, while average performance is a composite measure depending on both aerobic and anaerobic energy systems according to proportions that are determined by the duration of the test. © Georg Thieme Verlag KG Stuttgart · New York.

  7. No Differences Between Alter G-Trainer and Active and Passive Recovery Strategies on Isokinetic Strength, Systemic Oxidative Stress and Perceived Muscle Soreness After Exercise-Induced Muscle Damage.

    PubMed

    Cooke, Matthew B; Nix, Carrie M; Greenwood, Lori D; Greenwood, Mike C

    2018-03-01

    Cooke, MB, Nix, C, Greenwood, L, and Greenwood, M. No Differences Between Alter G-Trainer and Active and Passive Recovery Strategies on Isokinetic Strength, Systemic Oxidative Stress and Perceived Muscle Soreness After Exercise-Induced Muscle Damage. J Strength Cond Res 32(3): 736-747, 2018-The incidence of muscle injuries is prevalent in elite sport athletes and weekend warriors and strategies that safely and effectively hasten recovery are highly desirable. The purpose of this study was to examine the differences between 3 recovery methods after eliciting muscle damage in recreationally active men relative to maximal isokinetic contractions, perceived muscle soreness, and psychological mood states. Twenty-five recreationally active men (22.15 ± 3.53 years, 75.75 ± 11.91 kg, 180.52 ± 7.3 cm) were randomly matched by V[Combining Dot Above]O2 peak (53.86 ± 6.65 ml·kg·min) and assigned to one of 3 recovery methods: anti-gravity treadmill (G-Trainer) (N = 8), conventional treadmill (N = 8) or static stretching (N = 9). Recovery methods were performed 30 minutes, 24, 48, and 72 hours after a 45-minute downhill run. Following eccentrically biased running, no significant differences were noted in isokinetic knee flexion and extension peak torque, systemic markers of muscle damage, oxidative stress and lipid peroxidation such as serum creatine kinase (CK), superoxide dismutase (SOD), and malondialdehyde (MDA), respectively, and subjective ratings of perceived muscle soreness between recovery methods. The G-Trainer group did however display a higher mood state as indicated by the Profile of Mood State global scores at 24 hours postexercise when compared to the conventional treadmill recovery group (p = 0.035). The improved mood state after the use of the anti-gravity treadmill may provide clinical relevance to other populations.

  8. The Electromagnetic Dipole Radiation Field through the Hamiltonian Approach

    ERIC Educational Resources Information Center

    Likar, A.; Razpet, N.

    2009-01-01

    The dipole radiation from an oscillating charge is treated using the Hamiltonian approach to electrodynamics where the concept of cavity modes plays a central role. We show that the calculation of the radiation field can be obtained in a closed form within this approach by emphasizing the role of coherence between the cavity modes, which is…

  9. Self-duality of the compactified Ruijsenaars-Schneider system from quasi-Hamiltonian reduction

    NASA Astrophysics Data System (ADS)

    Fehér, L.; Klimčík, C.

    2012-07-01

    The Delzant theorem of symplectic topology is used to derive the completely integrable compactified Ruijsenaars-Schneider IIIb system from a quasi-Hamiltonian reduction of the internally fused double SU(n)×SU(n). In particular, the reduced spectral functions depending respectively on the first and second SU(n) factor of the double engender two toric moment maps on the IIIb phase space CP(n-1) that play the roles of action-variables and particle-positions. A suitable central extension of the SL(2,Z) mapping class group of the torus with one boundary component is shown to act on the quasi-Hamiltonian double by automorphisms and, upon reduction, the standard generator S of the mapping class group is proved to descend to the Ruijsenaars self-duality symplectomorphism that exchanges the toric moment maps. We give also two new presentations of this duality map: one as the composition of two Delzant symplectomorphisms and the other as the composition of three Dehn twist symplectomorphisms realized by Goldman twist flows. Through the well-known relation between quasi-Hamiltonian manifolds and moduli spaces, our results rigorously establish the validity of the interpretation [going back to Gorsky and Nekrasov] of the IIIb system in terms of flat SU(n) connections on the one-holed torus.

  10. Myocellular enzyme leakage, polymorphonuclear neutrophil activation and delayed onset muscle soreness induced by isokinetic eccentric exercise.

    PubMed

    Croisier, J L; Camus, G; Deby-Dupont, G; Bertrand, F; Lhermerout, C; Crielaard, J M; Juchmès-Ferir, A; Deby, C; Albert, A; Lamy, M

    1996-01-01

    To address the question of whether delayed onset muscular soreness (DOMS) following intense eccentric muscle contraction could be due to increased production of the arachidonic acid derived product prostaglandin E2 (PGE2). 10 healthy male subjects were submitted to eccentric and concentric isokinetic exercises on a Kin Trex device at 60 degrees/s angular velocity. Exercise consisted of 8 stages of 5 maximal contractions of the knee extensor and flexor muscle groups of both legs separated by 1 min rest phases. There was an interval of at least 30 days between eccentric and concentric testing, and the order of the two exercise sessions was randomly assigned. The subjective presence and intensity of DOMS was evaluated using a visual analogue scale, immediately, following 24 h and 48 h after each test. Five blood samples were drawn from an antecubital vein: at rest before exercise, immediately after, after 30 min recovery, 24 h and 48 h after the tests. The magnitude of the acute inflammatory response to exercise was assessed by measuring plasma levels of polymorphonuclear elastase ([EL]), myeloperoxidase ([MPO]) and PGE2 ([PGE2]). Using two way analysis of variance, it appeared that only eccentric exercise significantly increased [EL] and DOMS, especially of the hamstring muscles. Furthermore, a significant decrease in eccentric peak torque of this muscle group only was observed on day 2 after eccentric work (- 21%; P < 0.002). Serum activity of creatine kinase and serum concentration of myoglobin increased significantly 24 and 48 h after both exercise tests. However, these variables reached significantly higher values following eccentric contractions 48 h after exercise. Mean [PGE2] in the two exercise modes remained unchanged over time and were practically equal at each time point. On the basis of these findings, we conclude that the magnitude of polymorphonuclear (PMN) activation, muscle damage, and DOMS are greater after eccentric than after concentric muscle

  11. Focal points and principal solutions of linear Hamiltonian systems revisited

    NASA Astrophysics Data System (ADS)

    Šepitka, Peter; Šimon Hilscher, Roman

    2018-05-01

    In this paper we present a novel view on the principal (and antiprincipal) solutions of linear Hamiltonian systems, as well as on the focal points of their conjoined bases. We present a new and unified theory of principal (and antiprincipal) solutions at a finite point and at infinity, and apply it to obtain new representation of the multiplicities of right and left proper focal points of conjoined bases. We show that these multiplicities can be characterized by the abnormality of the system in a neighborhood of the given point and by the rank of the associated T-matrix from the theory of principal (and antiprincipal) solutions. We also derive some additional important results concerning the representation of T-matrices and associated normalized conjoined bases. The results in this paper are new even for completely controllable linear Hamiltonian systems. We also discuss other potential applications of our main results, in particular in the singular Sturmian theory.

  12. Maximum Renyi entropy principle for systems with power-law Hamiltonians.

    PubMed

    Bashkirov, A G

    2004-09-24

    The Renyi distribution ensuring the maximum of Renyi entropy is investigated for a particular case of a power-law Hamiltonian. Both Lagrange parameters alpha and beta can be eliminated. It is found that beta does not depend on a Renyi parameter q and can be expressed in terms of an exponent kappa of the power-law Hamiltonian and an average energy U. The Renyi entropy for the resulting Renyi distribution reaches its maximal value at q=1/(1+kappa) that can be considered as the most probable value of q when we have no additional information on the behavior of the stochastic process. The Renyi distribution for such q becomes a power-law distribution with the exponent -(kappa+1). When q=1/(1+kappa)+epsilon (0

  13. Hamiltonian approach to Ehrenfest expectation values and Gaussian quantum states

    PubMed Central

    Bonet-Luz, Esther

    2016-01-01

    The dynamics of quantum expectation values is considered in a geometric setting. First, expectation values of the canonical observables are shown to be equivariant momentum maps for the action of the Heisenberg group on quantum states. Then, the Hamiltonian structure of Ehrenfest’s theorem is shown to be Lie–Poisson for a semidirect-product Lie group, named the Ehrenfest group. The underlying Poisson structure produces classical and quantum mechanics as special limit cases. In addition, quantum dynamics is expressed in the frame of the expectation values, in which the latter undergo canonical Hamiltonian motion. In the case of Gaussian states, expectation values dynamics couples to second-order moments, which also enjoy a momentum map structure. Eventually, Gaussian states are shown to possess a Lie–Poisson structure associated with another semidirect-product group, which is called the Jacobi group. This structure produces the energy-conserving variant of a class of Gaussian moment models that have previously appeared in the chemical physics literature. PMID:27279764

  14. A new approach in the design of an interactive environment for teaching Hamiltonian digraphs

    NASA Astrophysics Data System (ADS)

    Iordan, A. E.; Panoiu, M.

    2014-03-01

    In this article the authors present the necessary steps in object orientated design of an interactive environment that is dedicated to the process of acquaintances assimilation in Hamiltonian graphs theory domain, especially for the simulation of algorithms which determine the Hamiltonian trails and circuits. The modelling of the interactive environment is achieved through specific UML diagrams representing the steps of analysis, design and implementation. This interactive environment is very useful for both students and professors, because computer programming domain, especially digraphs theory domain is comprehended and assimilated with difficulty by students.

  15. Hamiltonian structure of classical N-body systems of finite-size particles subject to EM interactions

    NASA Astrophysics Data System (ADS)

    Cremaschini, C.; Tessarotto, M.

    2012-01-01

    An open issue in classical relativistic mechanics is the consistent treatment of the dynamics of classical N-body systems of mutually interacting particles. This refers, in particular, to charged particles subject to EM interactions, including both binary interactions and self-interactions ( EM-interacting N- body systems). The correct solution to the question represents an overriding prerequisite for the consistency between classical and quantum mechanics. In this paper it is shown that such a description can be consistently obtained in the context of classical electrodynamics, for the case of a N-body system of classical finite-size charged particles. A variational formulation of the problem is presented, based on the N -body hybrid synchronous Hamilton variational principle. Covariant Lagrangian and Hamiltonian equations of motion for the dynamics of the interacting N-body system are derived, which are proved to be delay-type ODEs. Then, a representation in both standard Lagrangian and Hamiltonian forms is proved to hold, the latter expressed by means of classical Poisson Brackets. The theory developed retains both the covariance with respect to the Lorentz group and the exact Hamiltonian structure of the problem, which is shown to be intrinsically non-local. Different applications of the theory are investigated. The first one concerns the development of a suitable Hamiltonian approximation of the exact equations that retains finite delay-time effects characteristic of the binary interactions and self-EM-interactions. Second, basic consequences concerning the validity of Dirac generator formalism are pointed out, with particular reference to the instant-form representation of Poincaré generators. Finally, a discussion is presented both on the validity and possible extension of the Dirac generator formalism as well as the failure of the so-called Currie "no-interaction" theorem for the non-local Hamiltonian system considered here.

  16. Isokinetic Assessment and Musculoskeletal Complaints in Paralympic Athletes: A Longitudinal Study.

    PubMed

    Silva, Andressa; Zanca, Gisele; Alves, Eduardo Silva; Lemos, Valdir de Aquino; Gávea, Sebastião Augusto; Winckler, Ciro; Mattiello, Stela Márcia; Peterson, Ronnie; Vital, Roberto; Tufik, Sergio; De Mello, Marco Túlio

    2015-10-01

    The aim of this study was to assess and monitor the peak torque of the knee extensor and flexor muscles in flexion and extension and the reports of musculoskeletal complaints in members of the main Brazilian Paralympic athletics team through 1 yr. Fourteen healthy athletes from both sexes were assessed three times in 1 yr. The volunteers were assessed for the presence of musculoskeletal complaints and muscle strength at three time points: (1) at the onset of the preparatory phase on December 2009, (2) at a follow-up assessment on June 2010, and (3) before actual competition on December 2010. The athletes' self-reported musculoskeletal complaints were assessed in structured interviews, and the muscle strength was assessed by means of isokinetic dynamometry. The knee flexor and extensor muscle strength exhibited significant increase in both the right and left lower limbs at the second and third assessments compared with the first one (P < 0.05). Muscle imbalance was associated with knee and thigh complaints at all three assessments (P < 0.05). The knee flexor and extensor muscle strength exhibited a gradual increase in both lower limbs during the course of the three assessments. In parallel, muscle imbalance was associated with the occurrence of knee and thigh complaints.

  17. Collective coordinates and constrained hamiltonian systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dayi, O.F.

    1992-07-01

    A general method of incorporating collective coordinates (transformation of fields into an overcomplete basis) with constrained hamiltonian systems is given where the original phase space variables and collective coordinates can be bosonic or/and fermionic. This method is illustrated by applying it to the SU(2) Yang-Mills-Higgs theory and its BFV-BRST quantization is discussed. Moreover, this formalism is used to give a systematic way of converting second class constraints into effectively first class ones, by considering second class constraints as first class constraints and gauge fixing conditions. This approach is applied to the massive superparticle. Proca lagrangian, and some topological quantum fieldmore » theories.« less

  18. Functional evaluation of anterolateral thigh flap donor sites: isokinetic torque comparisons for knee function.

    PubMed

    Tsuji, Naoko; Suga, Hirotaka; Uda, Koichi; Sugawara, Yasushi

    2008-01-01

    The anterolateral thigh flap is thought to have minor donor site morbidity, but muscle dissection is unavoidable when skin perforator vessels run through the vastus lateralis muscle. The purpose of this study was to investigate the functional problems associated with the anterolateral thigh flap donor site. We evaluated 12 patients who underwent free anterolateral thigh flap transfer between March 2003 and November 2005. A questionnaire and dynamic functional evaluation of the knee joint using the Biodex System were performed preoperatively and 6 months postoperatively. No patients reported any disturbance in their daily life. No significant differences were found between donor and normal thighs on isokinetic power tests of the quadriceps muscle. The function of the donor site after harvesting the anterolateral thigh flap was maintained. Damage to or functional disturbance of the donor site is minimal even if muscle is injured when harvesting the flap. (c) 2008 Wiley-Liss, Inc. Microsurgery, 2008

  19. Superfield Hamiltonian quantization in terms of quantum antibrackets

    NASA Astrophysics Data System (ADS)

    Batalin, Igor A.; Lavrov, Peter M.

    2016-04-01

    We develop a new version of the superfield Hamiltonian quantization. The main new feature is that the BRST-BFV charge and the gauge fixing Fermion are introduced on equal footing within the sigma model approach, which provides for the actual use of the quantum/derived antibrackets. We study in detail the generating equations for the quantum antibrackets and their primed counterparts. We discuss the finite quantum anticanonical transformations generated by the quantum antibracket.

  20. Integrable time-dependent Hamiltonians, solvable Landau-Zener models and Gaudin magnets

    NASA Astrophysics Data System (ADS)

    Yuzbashyan, Emil A.

    2018-05-01

    We solve the non-stationary Schrödinger equation for several time-dependent Hamiltonians, such as the BCS Hamiltonian with an interaction strength inversely proportional to time, periodically driven BCS and linearly driven inhomogeneous Dicke models as well as various multi-level Landau-Zener tunneling models. The latter are Demkov-Osherov, bow-tie, and generalized bow-tie models. We show that these Landau-Zener problems and their certain interacting many-body generalizations map to Gaudin magnets in a magnetic field. Moreover, we demonstrate that the time-dependent Schrödinger equation for the above models has a similar structure and is integrable with a similar technique as Knizhnik-Zamolodchikov equations. We also discuss applications of our results to the problem of molecular production in an atomic Fermi gas swept through a Feshbach resonance and to the evaluation of the Landau-Zener transition probabilities.