Science.gov

Sample records for hamster ovary cells

  1. Proteomic analysis of Chinese hamster ovary cells.

    PubMed

    Baycin-Hizal, Deniz; Tabb, David L; Chaerkady, Raghothama; Chen, Lily; Lewis, Nathan E; Nagarajan, Harish; Sarkaria, Vishaldeep; Kumar, Amit; Wolozny, Daniel; Colao, Joe; Jacobson, Elena; Tian, Yuan; O'Meally, Robert N; Krag, Sharon S; Cole, Robert N; Palsson, Bernhard O; Zhang, Hui; Betenbaugh, Michael

    2012-11-01

    To complement the recent genomic sequencing of Chinese hamster ovary (CHO) cells, proteomic analysis was performed on CHO cells including the cellular proteome, secretome, and glycoproteome using tandem mass spectrometry (MS/MS) of multiple fractions obtained from gel electrophoresis, multidimensional liquid chromatography, and solid phase extraction of glycopeptides (SPEG). From the 120 different mass spectrometry analyses generating 682,097 MS/MS spectra, 93,548 unique peptide sequences were identified with at most 0.02 false discovery rate (FDR). A total of 6164 grouped proteins were identified from both glycoproteome and proteome analysis, representing an 8-fold increase in the number of proteins currently identified in the CHO proteome. Furthermore, this is the first proteomic study done using the CHO genome exclusively, which provides for more accurate identification of proteins. From this analysis, the CHO codon frequency was determined and found to be distinct from humans, which will facilitate expression of human proteins in CHO cells. Analysis of the combined proteomic and mRNA data sets indicated the enrichment of a number of pathways including protein processing and apoptosis but depletion of proteins involved in steroid hormone and glycosphingolipid metabolism. Five-hundred four of the detected proteins included N-acetylation modifications, and 1292 different proteins were observed to be N-glycosylated. This first large-scale proteomic analysis will enhance the knowledge base about CHO capabilities for recombinant expression and provide information useful in cell engineering efforts aimed at modifying CHO cellular functions. PMID:22971049

  2. Quantitative mutagenesis and mutagen screening with Chinese hamster ovary cells

    SciTech Connect

    Hsie, A.W.; San Sebastian, J.R.; Tan, E.L.

    1980-01-01

    A summary is presented on the development of a specific gene mutation assay, the Chinese hamster ovary cells/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) system, and the utilization of this system to study structure-activity relationship affecting cytotoxicity and gene mutation by various carcinogens. Then, preliminary development and validation of a Multiplex CHO System for the simultaneous determination of chromosome aberration, sister chromatid exchange in addition to cytotoxicity and gene mutation is presented. The potential use of a CHO/human cell hybrid system for measuring chromosomal deletion and loss is discussed.

  3. Chinese hamster ovary cell mutants defective in heparan sulfate biosynthesis

    SciTech Connect

    Bame, K.J.; Kiser, C.S.; Esko, J.D.

    1987-05-01

    The authors have isolated Chinese hamster ovary cell mutants defective in proteoglycan synthesis by radiographic screening for cells unable to incorporate TVSO4 into acid-precipitable material. Some mutants did not incorporate TVSO4 into acid-precipitable material, whereas others incorporated about 3-fold less radioactivity. HPLC anion exchange chromatographic analysis of radiolabelled glycosaminoglycans isolated from these mutants revealed many are defective in heparan sulfate biosynthesis. Mutants 803 and 677 do not synthesize heparan sulfate, although they produce chondroitin sulfate: strain 803 makes chondroitin sulfate normally, whereas 677 overaccumulates chondroitin sulfate by a factor of three. These mutants fall into the same complementation group, suggesting that the mutations are allelic. A second group of heparan sulfate biosynthetic mutants, consisting of cell lines 625, 668 and 679, produce undersulfated heparan sulfate and normal chondroitin sulfate. Treatment of the chains with nitrous acid should determine the position of the sulfate groups along the chain. These mutants may define a complementation group that is defective in the enzymes which modify the heparan sulfate chain. To increase the authors repertoire of heparan sulfate mutants, they are presently developing an in situ enzyme assay to screen colonies replica plated on filter discs for sulfotransferase defects.

  4. Superoxide Mediates the Toxicity of Paraquat for Chinese Hamster Ovary Cells

    NASA Astrophysics Data System (ADS)

    Bagley, Ann C.; Krall, Judith; Lynch, Robert E.

    1986-05-01

    The roles of superoxide and H2O2 in the cytotoxicity of paraquat were assessed in Chinese hamster ovary cells. Neither catalase nor superoxide dismutase inhibited the loss of ability to form colonies when added to the medium. When introduced into the cells, superoxide dismutase but not catalase inhibited the toxicity of paraquat. That superoxide dismutase acted by its known catalytic action is shown by the loss of inhibition when the enzyme was inactivated by H2O2 before being introduced into the cells. The lack of inhibition by catalase, by dimethyl sulfoxide, and by desferoxamine suggests that the toxicity is not mediated by a reaction between H2O2 and superoxide to engender the hydroxyl radical. Exposure of Chinese hamster ovary cells to paraquat may be a suitable means to determine the effects of superoxide anion in cultured cells and the ways in which cells can resist this toxic action.

  5. Induction of sister-chromatid exchanges in Chinese hamster ovary cells by the biotic ketoaldehyde methylglyoxal.

    PubMed

    Faggin, P; Bassi, A M; Finollo, R; Brambilla, G

    1985-11-01

    The number of sister-chromatid exchanges (SCEs) per metaphase was determined in Chinese hamster ovary cells after 16 h exposure to methylglyoxal (MG) concentrations ranging from 0.1 to 0.75 mM. MG produced an increase of SCE frequency that proved to be dose-dependent, and to reach a maximum of 2 X baseline at the highest nontoxic concentration (0.5 mM).

  6. In vitro infection by Ehrlichia ruminantium of baby hamster kidney (BHK), Chinese hamster ovary (CHO-K1) and Madin Darby bovine kidney (MDBK) cells.

    PubMed

    Zweygarth, E; Josemans, A I

    2003-06-01

    The Welgevonden stock of Ehrlichia ruminantium, aetiological agent of heartwater, was propagated in baby hamster kidney (BHK) cells, Chinese hamster ovary (CHO-K1) cells and Madin Darby bovine kidney (MDBK) cells. The cultures required supplementation of the medium with cycloheximide for reliable growth of E. ruminantium. Growth of the Welgevonden stock in BHK and CHO-K1 cells could lead to the development of suspension cultures suitable for the mass production of E. ruminantium for an inactivated elementary body vaccine.

  7. Mutation Detection in an Antibody-Producing Chinese Hamster Ovary Cell Line by Targeted RNA Sequencing

    PubMed Central

    Zhang, Siyan; Hughes, Jason D.; Murgolo, Nicholas; Levitan, Diane; Chen, Janice; Liu, Zhong

    2016-01-01

    Chinese hamster ovary (CHO) cells have been used widely in the pharmaceutical industry for production of biological therapeutics including monoclonal antibodies (mAb). The integrity of the gene of interest and the accuracy of the relay of genetic information impact product quality and patient safety. Here we employed next-generation sequencing, particularly RNA-seq, and developed a method to systematically analyze the mutation rate of the mRNA of CHO cell lines producing a mAb. The effect of an extended culturing period to mimic the scale of cell expansion in a manufacturing process and varying selection pressure in the cell culture were also closely examined. PMID:27088091

  8. Inositol metabolism and cell growth in a Chinese hamster ovary cell myo-inositol auxotroph.

    PubMed

    Jackowski, S; Voelker, D R; Rock, C O

    1988-11-15

    The intracellular concentrations of polyphosphoinositides and inositol phosphates were determined, and their role in growth factor-initiated cell division was investigated in a Chinese hamster ovary cell inositol auxotroph (CHO-K1-Ins). Metabolic labeling experiments during inositol starvation of CHO-K1-Ins cells showed that 1) the lipid-linked inositol component was maintained at the expense of the soluble inositol pool, 2) the decreasing cellular content of phosphatidylinositol was replaced by phosphatidylglycerol, and 3) the concentrations of inositol polyphosphates and polyphosphoinositides were conserved at the expense of inositol and phosphatidylinositol. These data show that homeostatic mechanisms exist for the maintenance of the polyphosphoinositide and inositol phosphate pools at the expense of inositol and phosphatidylinositol. The addition of alpha-thrombin to growth-arrested (serum-starved) CHO-K1-Ins cells stimulated the incorporation of [3H]thymidine into DNA to the same extent as that observed following serum readdition. gamma-Thrombin was also an effective mitogen, but active site-inhibited alpha-thrombin was not. Both alpha- and gamma-thrombin, but not catalytic site-inhibited alpha-thrombin, initiated phosphatidylinositol turnover in vivo and increased phosphatidylinositol 4,5-bisphosphate phospholipase C activity in vitro. Serum and insulin were potent CHO-K1-Ins cell mitogens, but neither triggered phosphatidylinositol turnover in vivo nor activated phospholipase C in vitro. The activation of phospholipase C plays a determinant role in thrombin-initiated cell cycle progression in Chinese hamster ovary cells, although other growth factor-signaling pathways exist that are independent of polyphosphoinositide catabolism.

  9. Recent progress with the DNA repair mutants of Chinese hamster ovary cells

    SciTech Connect

    Thompson, L.H.; Salazar, E.P.; Brookman, K.W.; Collins, C.C.; Stewart, S.A.; Busch, D.B.; Weber, C.A.

    1986-04-02

    Repair deficient mutants of Chinese hamster ovary (CHO) cells are being used to identify human genes that correct the repair defects and to study mechanisms of DNA repair and mutagenesis. Five independent tertiary DNA transformants were obtained from the EM9 mutant. In these clones a human DNA sequence was identified that correlated with the resistance of the cells to CldUrd. After Eco RI digestion, Southern transfer, and hybridization of transformant DNAs with the BLUR-8 Alu family sequence, a common fragment of 25 to 30 kb was present. 37 refs., 4 figs., 3 tabs.

  10. Methylglyoxal-induced DNA-protein cross-links and cytotoxicity in Chinese hamster ovary cells.

    PubMed

    Brambilla, G; Sciabà, L; Faggin, P; Finollo, R; Bassi, A M; Ferro, M; Marinari, U M

    1985-05-01

    The technique of alkaline elution was applied to study the capacity of methylglyoxal to induce DNA damage and repair in Chinese hamster ovary cells. DNA cross-linking was observed after a 90-min exposure to a subtoxic dose (1.5 mM), and the cross-links were fully repaired by 24 h. The cross-linking appeared to be DNA-protein in nature, since proteinase treatment removed the effect. When the same cells were exposed to methylglyoxal in the presence of a rat liver metabolic system, both cytotoxicity and cross-linking frequency were significantly reduced.

  11. Genotoxicity studies of methyl isocyanate in Salmonella, Drosophila, and cultured Chinese hamster ovary cells

    SciTech Connect

    Mason, J.M.; Zeiger, E.; Haworth, S.; Ivett, J.; Valencia, R.

    1987-01-01

    The genotoxic effects of methyl isocyanate (MIC) were investigated using four short-term tests: the Salmonella reversion assay (Ames test), the Drosophila sex-linked recessive lethal assay, and the sister chromatic exchange (SCE) and chromosomal aberration assays in cultured Chinese hamster ovary (CHO) cells. No evidence was found for the induction of mutations in either Salmonella or Drosophila. MIC did, however, induce SCEs and chromosomal aberrations in CHO cells both in the presence and absence of Aroclor-induced rat liver S-9.

  12. Apoptosis induced by different doses of caffeine on Chinese hamster ovary cells.

    PubMed

    Fernández, M J; López, A; Santa-Maria, A

    2003-01-01

    Caffeine has been investigated for its potential mutagenic activity to bacteria, fungi and mammalian cells in culture, and at high concentrations it is also an inducer of apoptosis. Caffeine can exert acute cellular toxicity, including inhibition of cell growth and cell death, in Chinese hamster ovary cells. The aim of this study was to evaluate the cell survival and apoptotic or non-apoptotic effects of caffeine to different concentrations in Chinese hamster ovary cells (CHO-K1). These effects were evaluated by measuring cell viability, caspase 8 activity and fragmented DNA. This study suggests that the concentration of caffeine is of critical importance because high doses of caffeine induce apoptosis and low concentrations can act as an antioxidant. Previously, the cytotoxicity of caffeine was evaluated using a wide range of concentrations by the neutral red test. From this screening, adequate doses were selected to perform the caspase activity and fragmentation DNA studies. The potential antioxidant effect of caffeine was studied using tert-butyl-hydroperoxide as a free-radical generator. The repeatability was checked through three separate tests with the same concentration.

  13. Observation of Chinese Hamster Ovary Cells retained inside the non-woven fiber matrix of the CellTank bioreactor

    PubMed Central

    Zhang, Ye; Chotteau, Véronique

    2015-01-01

    This data article shows how the recombinant Chinese Hamster Ovary (CHO) cells are located in the interstices of the matrix fibers of a CellTank bioreactor after completion of a perfusion culture, supporting the article entitled “Very high cell density perfusion of CHO cells anchored in a non-woven matrix-based bioreactor” by Zhang et al. [1]. It provides a visualization of the cell distribution in the non-woven fiber matrix in a deeper view. PMID:26958613

  14. Ca2+ triggers massive exocytosis in Chinese hamster ovary cells.

    PubMed Central

    Coorssen, J R; Schmitt, H; Almers, W

    1996-01-01

    We have tracked the cell surface area of CHO cells by measuring the membrane capacitance, Cm. An increase in cytosolic [Ca2+], [Ca2+]i, increased the cell surface area by 20-30%. At micromolar [Ca2+]i the increase occurred in minutes, while at 20 microM or higher [Ca2+]i it occurred in seconds and was transient. GTPgammaS caused a 3% increase even at 0.1 microM [Ca2+]i. We conclude that CHO cells, previously thought capable only of constitutive exocytosis, can perform Ca2+-triggered exocytosis that is both massive and rapid. Ca2+-triggered exocytosis was also observed in 3T3 fibroblasts. Our findings add evidence to the view that Ca induces exocytosis in cells other than known secretory cells. PMID:8670883

  15. Contamination of genetically engineered Chinese hamster ovary cells.

    PubMed

    Burstyn, D G

    1996-01-01

    In late 1988, during production of a recombinant protein for phase I clinical trials, a failure of the cell culture production system occurred due to contamination of the cells by an orbivirus [1]. The incident occurred at Bioferon GmbH & Co, Laupheim, Germany, a joint venture of Biogen, Inc., Cambridge, MA, and Dr. Renstschler Arzneimittel GmbH & Co (Bioferon is currently a wholly owned subsidiary of Rentschler and is now known as Dr. Rentschler Biotechnologie GmbH). The investigation into, and the subsequent response to, the infection can be divided into three stages: Stage I, Investigation and initial response; Stage II, Secondary response; and Stage III: Continuing response.

  16. Membrane proteins of dense lysosomes from Chinese hamster ovary cells

    SciTech Connect

    Chance, S.C.

    1987-01-01

    In this work membrane proteins from lysosomes were studied in order to gain more information on the biogenesis and intracellular sorting of this class of membrane proteins. Membrane proteins were isolated from a purified population of lysosomes. These proteins were then examined for various co- and post-translational modifications which could serve as potential intracellular sorting signals. Biochemical analysis using marker enzymatic activities detected no plasma membrane, Golgi, endoplasmic reticulum, peroxisomes, mitochondria, or cytosol. Analysis after incorporation of ({sup 3}H)thymidine or ({sup 3}H)uridine detected no nuclei or ribosomes. A fraction containing integral membrane proteins was obtained from the dense lysosomes by extraction with Triton X-114. Twenty-three polypeptides which incorporated both ({sup 35}S)methionine and ({sup 3}H)leucine were detected by SDS PAGE in this membrane fraction, and ranged in molecular weight from 30-130 kDa. After incorporation by cells of various radioactive metabolic precursors, the membrane fraction from dense lysosomes was examined and was found to be enriched in mannose, galactose, fucose, palmitate, myristate, and sulfate, but was depleted in phosphate. The membrane fraction from dense lysosomes was then analyzed by SDS PAGE to determine the apparent molecular weights of modified polypepties.

  17. Stable Expression of the Motor Protein Prestin in Chinese Hamster Ovary Cells

    NASA Astrophysics Data System (ADS)

    Iida, Koji; Konno, Kazuaki; Oshima, Takeshi; Tsumoto, Kouhei; Ikeda, Katsuhisa; Kumagai, Izumi; Kobayashi, Toshimitsu; Wada, Hiroshi

    Mammalian hearing sensitivity relies on a mechanical amplification mechanism involving the outer hair cells (OHCs), which rapidly alter their longitudinal length in response to changes in their membrane potential. The molecular basis of this mechanism is thought to be a motor protein embedded in the lateral membrane of the OHCs. Recently, this motor protein was identified and termed prestin. Since then, prestin has been researched intensively to elucidate the behavior of the OHCs. However, little progress in the study of prestin at the molecular level has been made because no method of obtaining an adequate amount of prestin has been established. In this study, therefore, an attempt was made to construct a stable expression system of prestin using Chinese hamster ovary (CHO) cells. The expression of prestin in the transfected CHO cells and the activity of prestin on CHO cells were confirmed by immunofluorescence and whole-cell patch-clamp measurements, respectively.

  18. Amplification and loss of dihydrofolate reductase genes in a Chinese hamster ovary cell line

    SciTech Connect

    Kaufman, R.J.; Schimke, R.T.

    1981-12-01

    During stepwise increases in the methotrexate concentration in culture medium, the authors selected Chinese hamster ovary cells that contained elevated dihydrofolate reductase levels which were proportional to the number of dihydrofolate reductase gene copies (i.e., gene amplification). The authors studied the dihydrofolate reductase levels in individual cells that underwent the initial steps of methotrexate resistance by using the fluorescence-activated cell sorter technique. Such cells constituted a heterogeneous population with differing dihydrofolate reductase levels, and they characteristically lost the elevated enzyme levels when they were grown in the absence of methotrexate. The progeny of individual cells with high enzyme levels behaved differently and could lose all or variable numbers of the amplified genes.

  19. Dielectric model for Chinese hamster ovary cells obtained by dielectrophoresis cytometry.

    PubMed

    Salimi, E; Braasch, K; Butler, M; Thomson, D J; Bridges, G E

    2016-01-01

    We present a dielectric model and its parameters for Chinese hamster ovary (CHO) cells based on a double-shell structure which includes the cell membrane, cytoplasm, nuclear envelope, and nucleoplasm. Employing a dielectrophoresis (DEP) based technique and a microfluidic system, the DEP response of many single CHO cells is measured and the spectrum of the Clausius-Mossotti factor is obtained. The dielectric parameters of the model are then extracted by curve-fitting to the measured spectral data. Using this approach over the 0.6-10 MHz frequency range, we report the values for CHO cells' membrane permittivity, membrane thickness, cytoplasm conductivity, nuclear envelope permittivity, and nucleoplasm conductivity. The size of the cell and its nuclei are obtained using optical techniques. PMID:26858823

  20. The RNA polymerase II of an alpha-amanitin-resistant Chinese hamster ovary cell line.

    PubMed

    Lobban, P E; Siminovitch, L; Ingles, C J

    1976-05-01

    Amal, an alpha-amanitin-resistant mutant of the Chinese hamster ovary cell line, contains an RNA polymerase activity which elutes from DEAE-Sephadex at a salt concentration characteristic of an RNA polymerase II, but which is not sensitive to alpha-amanitin at levels where the polymerase II of wild-type cells is strongly inhibited. This result suggests that Amal owes its amanitin-resistant phenotype to a mutation affecting one of its genes for RNA polymerase II. To test this hypothesis, we purified the enzyme from Amal and then compared its properties with those of the wild-type enzyme. The mutant enzyme is indeed a polymerase II, and is over 600 times less sensitive to alpha-amanitin and more thermolabile than the wild-type enzyme. PMID:954093

  1. Host range restriction of vaccinia virus in Chinese hamster ovary cells: relationship to shutoff of protein synthesis.

    PubMed

    Drillien, R; Spehner, D; Kirn, A

    1978-12-01

    Chinese hamster ovary cells were found to be nonpermissive for vaccinia virus. Although early virus-induced events occurred in these cells (RNA and polypeptide synthesis), subsequent events appeared to be prevented by a very rapid and nonselective shutoff of protein synthesis. Within less than 2 h after infection, both host and viral protein syntheses were arrested. At low multiplicities of infection, inhibition of RNA synthesis with cordycepin resulted in failure of the virus to block protein synthesis. Moreover, infection of the cells in the presence of cycloheximide prevented the immediate onset of shutoff after reversal of cycloheximide. Inactivation of virus particles by UV irradiation also impaired the capacity of the virus to inhibit protein synthesis. These results suggested that an early vaccinia virus-coded product was implicated in the shutoff of protein synthesis. Either the nonpermissive Chinese hamster ovary cells were more sensitive to this inhibition than permissive cells, or a regulatory control of the vaccinia shutoff function was defective.

  2. Detection of biosynthetic intermediates in proteoglycan-deficient mutants of Chinese hamster ovary cells

    SciTech Connect

    Montgomery, R.I.; Esko, J.D.

    1987-05-01

    Chinese hamster ovary cell mutants lacking xylosyltransferase or galactosyltransferase I do not synthesize mature proteoglycans. The authors predicted that the mutants would accumulate biosynthetic intermediates upstream from the block imposed by mutation. Using the fusogenic properties of vesicular stomatitis virus, the authors fused monolayers composed of galactosyltransferase I-deficient cells with virus-infected xylosyltransferase-deficient cells. Immediately following fusion the cells were pulse-labelled with /sup 35/SO/sub 4/ for one hour. Quantification of radioactive products showed that the mutants contained biosynthetically active intermediates that proceeded to mature glycosaminoglycans. The production of glycosaminoglycan was dependent on fusion, and fusion of each mutant to itself did not result in radioactive product. Analysis of the newly made glycosaminoglycans through HPLC anion-exchange chromatography showed that the fused cells synthesized heparan sulfate and chondroitin sulfate in about the same proportion as wildtype cells. These findings suggest that the mutants accumulate precursors to both families of proteoglycans. They also found that progeny virus from infected CHO cells contain proteoglycans, presumably derived from the plasma membrane. This observation suggests that the virus can be used to isolate intermediates accumulating in the mutants.

  3. Optimization of chemically defined feed media for monoclonal antibody production in Chinese hamster ovary cells.

    PubMed

    Kishishita, Shohei; Katayama, Satoshi; Kodaira, Kunihiko; Takagi, Yoshinori; Matsuda, Hiroki; Okamoto, Hiroshi; Takuma, Shinya; Hirashima, Chikashi; Aoyagi, Hideki

    2015-07-01

    Chinese hamster ovary (CHO) cells are the most commonly used mammalian host for large-scale commercial production of therapeutic monoclonal antibodies (mAbs). Chemically defined media are currently used for CHO cell-based mAb production. An adequate supply of nutrients, especially specific amino acids, is required for cell growth and mAb production, and chemically defined fed-batch processes that support rapid cell growth, high cell density, and high levels of mAb production is still challenging. Many studies have highlighted the benefits of various media designs, supplements, and feed addition strategies in cell cultures. In the present study, we used a strategy involving optimization of a chemically defined feed medium to improve mAb production. Amino acids that were consumed in substantial amounts during a control culture were added to the feed medium as supplements. Supplementation was controlled to minimize accumulation of waste products such as lactate and ammonia. In addition, we evaluated supplementation with tyrosine, which has poor solubility, in the form of a dipeptide or tripeptide to improve its solubility. Supplementation with serine, cysteine, and tyrosine enhanced mAb production, cell viability, and metabolic profiles. A cysteine-tyrosine-serine tripeptide showed high solubility and produced beneficial effects similar to those observed with the free amino acids and with a dipeptide in improving mAb titers and metabolic profiles.

  4. Overexpression of microRNAs enhances recombinant protein production in Chinese hamster ovary cells.

    PubMed

    Loh, Wan Ping; Loo, Bernard; Zhou, Lihan; Zhang, Peiqing; Lee, Dong-Yup; Yang, Yuansheng; Lam, Kong Peng

    2014-09-01

    MicroRNAs (miRNAs) are short, non-coding RNAs that can negatively regulate expression of multiple genes at post-transcriptional levels. Using miRNAs to target multiple genes and pathways is a promising cell-engineering strategy to increase recombinant protein production in mammalian cells. Here, we identified miRs-17, -19b, -20a, and -92a to be differentially expressed between high- and low- monoclonal antibody-producing Chinese hamster ovary (CHO) cell clones using next-generation sequencing and quantitative real-time PCR. These miRNAs were stably overexpressed individually and in combination in a high-producing clone to assess their effects on CHO cell growth, recombinant protein productivity and product quality. Stably transfected pools demonstrated 24-34% increases in specific productivity (qP) and 21-31% increases in titer relative to the parental clone, without significant alterations in proliferation rates. The highest protein-producing clones isolated from these pools exhibited 130-140% increases in qP and titer compared to the parental clone, without major changes in product aggregation and N-glycosylation profile. From our clonal data, correlations between enhanced qP/titer and increased levels of miRs-17, -19b, and -92a were observed. Our results demonstrate the potential of miRs-17, -19b, and -92a as cell-engineering targets to increase recombinant protein production in mammalian cells. PMID:24819042

  5. Versatile microscale screening platform for improving recombinant protein productivity in Chinese hamster ovary cells

    PubMed Central

    Hansen, Henning Gram; Nilsson, Claes Nymand; Lund, Anne Mathilde; Kol, Stefan; Grav, Lise Marie; Lundqvist, Magnus; Rockberg, Johan; Lee, Gyun Min; Andersen, Mikael Rørdam; Kildegaard, Helene Faustrup

    2015-01-01

    Chinese hamster ovary (CHO) cells are widely used as cell factories for the production of biopharmaceuticals. In contrast to the highly optimized production processes for monoclonal antibody (mAb)-based biopharmaceuticals, improving productivity of non-mAb therapeutic glycoproteins is more likely to reduce production costs significantly. The aim of this study was to establish a versatile target gene screening platform for improving productivity for primarily non-mAb glycoproteins with complete interchangeability of model proteins and target genes using transient expression. The platform consists of four techniques compatible with 96-well microplates: lipid-based transient transfection, cell cultivation in microplates, cell counting and antibody-independent product titer determination based on split-GFP complementation. We were able to demonstrate growth profiles and volumetric productivity of CHO cells in 96-half-deepwell microplates comparable with those obtained in shake flasks. In addition, we demonstrate that split-GFP complementation can be used to accurately measure relative titers of therapeutic glycoproteins. Using this platform, we were able to detect target gene-specific increase in titer and specific productivity of two non-mAb glycoproteins. In conclusion, the platform provides a novel miniaturized and parallelisable solution for screening target genes and holds the potential to unravel genes that can enhance the secretory capacity of CHO cells. PMID:26657798

  6. Xbp1-based engineering of secretory capacity enhances the productivity of Chinese hamster ovary cells.

    PubMed

    Tigges, Marcel; Fussenegger, Martin

    2006-05-01

    A variety of successful transcription and translation engineering strategies implemented during the past decade have driven the specific productivity of mammalian cells to an apparent limit. Restricted post-translation competence has since been considered the major bottleneck preventing mammalian cells from fully exploiting their physiologic production capacity in a biopharmaceutical manufacturing scenario. Through ectopic expression of the human transcription factor Xbp1 (X-box-binding-protein 1), evolved to manage plasma cell differentiation and coordinate the unfolded protein response, we have specifically expanded the endoplasmic reticulum and the Golgi of transgenic Chinese hamster ovary (CHO-K1)-derived cell lines with a resulting increase in overall production capacity. Xbp-1-based engineering of secretory bottlenecks was compatible with a variety of different promoter–product gene configurations suggesting that Xbp-1 induces generic production increases in CHO-K1 cell derivatives. Secretion engineering, illustrated here by Xbp1-based reprogramming of the post-translational processing machinery, provides a first insight into mastering a major system bottleneck which impacts biopharmaceutical manufacturing of secreted protein therapeutics.

  7. Endogenous TRPM4-like channel in Chinese hamster ovary (CHO) cells

    SciTech Connect

    Yarishkin, Oleg V.; Hwang, Eun-Mi; Park, Jae-Yong; Kang, Dawon; Han, Jaehee; Hong, Seong-Geun

    2008-05-02

    Chinese hamster ovary (CHO) cells used in many transfection studies have been found to endogenously express channels permeable to monovalent cations, but not to divalent cations. In the presence of intracellular Ca{sup 2+}, 23-pS channel with a linear current-voltage (I-V) relationship could be frequently observed in inside-out patches but not in cell-attached patches. The open probability was voltage-dependent, which is higher at positive potentials. The channel was dose-dependently activated by relatively high level of Ca{sup 2+} (EC{sub 50} = 1.04 {+-} 0.08 mM), and sensitively inhibited by 100 {mu}M ATP, ADP, AMP, and 1 mM spermine. However, ruthenium red (2 {mu}M) had no effect. Reverse transcript polymerase chain reaction (RT-PCR) supported the presence of mRNA encoding TRPM4b channel protein. Western blot assay finally confirmed the presence of this channel protein in membrane fraction of CHO cells. These results provide evidence that CHO cells express an endogenous TRPM4b-like channel, and thereby can be used as a tool to study de novo regulation/modulation of TRPM4 channel.

  8. Cytogenetic response to coffee in Chinese hamster ovary AUXB1 cells and human peripheral lymphocytes.

    PubMed

    Tucker, J D; Taylor, R T; Christensen, M L; Strout, C L; Hanna, M L

    1989-09-01

    We have investigated the genotoxic effects of three different brands and three types of coffee (freshly brewed regular, instant regular and freshly brewed decaffeinated) in two mammalian systems: the Chinese hamster ovary (CHO) AUXB1 cell line and human peripheral lymphocytes. Sister-chromatid exchanges (SCEs) and endoreduplicated cells (ERCs) were used as the endpoints. Coffee was prepared according to the manufacturer's suggestions, and after cooling, administered to cultured cells at dilutions ranging up to 11% that of full-strength coffee. Each brand and type of coffee induced significant levels of SCEs and ERCs in AUXB1 cells. SCEs, but not ERCs, were induced in human peripheral lymphocytes. Bisulfite, which complexes with carbonyls and reduces their genotoxicity, significantly diminished the number of SCEs and ERCs found after administration of coffee. Catalase and peroxidase, enzymes that destroy hydrogen peroxide activity, had no significant effect upon the SCE and ERC frequencies in AUXB1 cultures treated with freshly brewed regular coffee. These experiments indicate that different brands and types of coffee have sufficient genotoxic activity to increase SCEs and ERCs at levels only a fraction of those normally consumed. 1,2-Dicarbonyls alone and peroxides alone do not appear to be responsible for the majority of SCEs and ERCs that were observed to be induced by dilute coffee.

  9. Overexpressed human metallothionein IIA gene protects Chinese hamster ovary cells from killing by alkylating agents

    SciTech Connect

    Kaina, B.; Lohrer, H.; Karin, M.; Herrlich, P. )

    1990-04-01

    Experiments were designed to detect survival advantages that cells gain by overexpressing metallothionein (MT). Chinese hamster ovary K1-2 cells and an x-ray-sensitive derivative were transfected with a bovine papillomavirus (BPV)-linked construct carrying the human metallothionein IIA (hMT-IIA) gene. Transfectants survived 40-fold higher levels of cadmium chloride, harbored at least 30 copies of hMT-IIA, and contained 25- to 166-fold more MT than the parent cells. Even under conditions of reduced glutathione synthesis, the transfectants were not more resistant to the lethal effects of ionizing radiation and bleomycin than the parent cells. Thus free radicals generated by these agents cannot be scavenged efficiently by MT in vivo. The hMT-IIA transfectants, however, but not control transfectants harboring a BPV-MT promoter-neo construct, tolerated significantly higher doses of the alkylating agents N-methyl-N-nitrosourea and N-methyl-N'-nitro-N-nitrosoguanidine. Resistance and MT overexpression occurred irrespective of selection and cultivation in cadmium and zinc. There was no increase in resistance to methyl methanesulfonate and N-hydroxyethyl-N-chloroethylnitrosourea. MT did not affect the degree of overall DNA methylation after N-methyl-N-nitrosourea treatment nor the level of O6-methylguanine-DNA methyltransferase. The results suggest that MT participates as a cofactor or regulatory element in repair or tolerance of toxic alkylation lesions.

  10. Mutant Chinese hamster ovary cells pleiotropically defective in receptor-mediated endocytosis

    PubMed Central

    1983-01-01

    Populations of Chinese hamster ovary cells selected for resistance to diphtheria toxin were found to be highly enriched for mutants deficient in the uptake of lysosomal hydrolases via the mannose 6-phosphate receptor. One doubly defective mutant, DTF 1-5-1, exhibited increased resistance to Sindbis virus, although it was able to bind and internalize virus normally. Normal production of virus was obtained when, subsequent to virus binding, the mutant was exposed for 2 min to acidic pH. Similarly, a shift to acidic pH increased the sensitivity of DTF 1-5-1 to diphtheria toxin 12-fold. Decreased uptake of lysosomal hydrolases by the mutant correlated with decreased mannose 6-phosphate receptor activity at the cell surface; results of lactoperoxidase- catalyzed iodination indicated that the surface-associated receptor was present but inactive on DTF 1-5-1. Total mannose 6-phosphate receptor activity was also decreased in the mutant and this decrease was reflected by increased secretion of lysosomal hydrolases. The phenotype of DTF 1-5-1 resembles in many ways that of cells treated with ammonia. We suggest that the defect in DTF 1-5-1 stems from an inability to deliver virus, diphtheria toxin, and lysosomal hydrolases to an acidic compartment. Other ligands may be endocytosed through a different pathway since the defect of DTF 1-5-1 did not decrease the endocytosis of ricin, modeccin, or Pseudomonas toxin and had minimal effects on uptake and degradation of low density lipoprotein. PMID:6300143

  11. Characterization of recombinant human diamine oxidase (rhDAO) produced in Chinese Hamster Ovary (CHO) cells.

    PubMed

    Gludovacz, Elisabeth; Maresch, Daniel; Bonta, Maximilian; Szöllösi, Helen; Furtmüller, Paul G; Weik, Robert; Altmann, Friedrich; Limbeck, Andreas; Borth, Nicole; Jilma, Bernd; Boehm, Thomas

    2016-06-10

    Human diamine oxidase (hDAO) efficiently degrades polyamines and histamine. Reduced enzyme activities might cause complications during pregnancy and be involved in histamine intolerance. So far hDAO has been characterized after isolation from either native sources or the heterologous production in insect cells. Accessibility to human enzyme is limited and insect cells produce non-human glycosylation patterns that may alter its biochemical properties. We present the heterologous expression of hDAO in Chinese Hamster Ovary (CHO) cells and a three step purification protocol. Analysis of metal content using ICP-MS revealed that 93% of the active sites were occupied by copper. Topaquinone (TPQ) cofactor content was determined using phenylhydrazine titration. Ninety-four percent of DAO molecules contained TPQ and therefore the copper content at the active site was indirectly confirmed. Mass spectrometric analysis was conducted to verify sequence integrity of the protein and to assess the glycosylation profile. Electronic circular dichroism and UV-vis spectra data were used to characterize structural properties. The substrate preference and kinetic parameters were in accordance with previous publications. The establishment of a recombinant production system for hDAO enables us to generate decent amounts of protein with negligible impurities to address new scientific questions.

  12. DNA damage kinetics and apoptosis in ivermectin-treated Chinese hamster ovary cells.

    PubMed

    Molinari, Gabriela; Kujawski, Maciej; Scuto, Anna; Soloneski, Sonia; Larramendy, Marcelo L

    2013-11-01

    A comet assay was used to analyze DNA damage kinetics in Chinese hamster ovary (CHO-K1) cells induced by antiparasitic ivermectin (IVM) and the IVM-containing technical formulation Ivomec® (IVO; 1% IVM). Cells were treated with 50 µg ml(-1) IVM and IVO for 80 min, washed and re-incubated in antiparasiticide-free medium for 0-24 h until assayed using the single-cell gel electrophoresis assay (SCGE). Cell viability remained unchanged up to 3 h of incubation. After 6 h of treatment, cell survival decreased up to 75% and 79% in IVM- and IVO-treated cultures, respectively, remaining unchanged within 12-24 h after treatment. For both anthelmintics, biphasic behavior in DNA damage occurred during the incubation time. A time-dependent increase of IVM- and IVO-induced DNA damage was observed within 0 to 3 h after pulse treatment, revealed by a progressive decrease of undamaged cells and an increase in slightly damaged and damaged cells. Finally, a time-dependent decrease in IVM- and IVO-induced DNA damage was revealed by a progressive decrease of slightly damaged cells and the absence of damaged cells simultaneously with an increase in the frequency of undamaged cells during the final 18 h of incubation. Flow cytometry analysis revealed that both compounds are able to induce a marked increase in early and late apoptosis. Based on our observations, we could conclude that the decrease in DNA lesions is mostly related to IVM-induced cytotoxicity rather than attributable to a repair process.

  13. Genotoxic effects induced in cultured Chinese hamster ovary (CHO) cells by contaminated aquatic environments.

    PubMed

    Venegas, W; Garcia, M D

    1994-01-01

    The Bio-Bio river, running through one of the most important hydrographic basins in Chile, presents concentrations of some chemical agents exceeding the accepted values for continental aquatic environments. The area near to the mouth of the river is highly industrialized and the industrial effluents are discharge directly into the river, most of them without any previous treatment. This river provides the principal source of drinking water for a population of more than one million inhabitants in the region. To evaluate the genotoxic effects of liquid effluents from a cellulose industry and the surface waters of the Bio-Bio river obtained near to the river mouth in the proximity of Concepción city, a short-term bio-assay with cultured Chinese hamster ovary (CHO) cells was used. The frequency of cells with chromosome aberrations in metaphase, anaphase and telophase was determined at different concentrations of the liquid samples. The results show a significant increase in chromosomal damage. The frequency of chromosomal aberrations observed both in metaphase and ana-telophase is dose-related to the concentrations of liquid samples tested. The superficial water shows a significant genotoxic effect. The scope of these results is discussed and compared to results obtained in other biological models. PMID:8728834

  14. Isolation and characterization of Chinese hamster ovary cell lines sensitive to mitomycin C and bleomycin

    SciTech Connect

    Robson, C.N.; Harris, A.L.; Hickson, I.D.

    1985-11-01

    Seven Chinese hamster ovary K1 cell lines exhibiting sensitivity to anticancer drugs have been isolated by a replica-plating technique. Five of the mutants are hypersensitive to the DNA cross-linking agent mitomycin C. Of these, one is also appreciably sensitive to UV light. Significant variations in their cross-sensitivity to cis-platinum(II) diammine dichloride, chlorambucil, and Adriamycin have also been observed. Two additional mutants have been isolated on the basis of sensitivity to the radiomimetic agent bleomycin. One of these shows greater than 6-fold sensitivity to bleomycin, while the other is approximately 14 times more sensitive than the parental strain to bleomycin and is also hypersensitive to a number of other DNA-damaging agents, including cis-platinum(II) diammine dichloride, chlorambucil, X-rays, and UV light. Both bleomycin-sensitive mutants also exhibit some degree of sensitivity to Adriamycin. In all cases, the cell lines have been grown in continuous culture for 3 months without evidence of reversion and should act as suitable recipients in DNA transfection experiments aimed at identifying human DNA repair genes.

  15. Rapid amplification system for recombinant protein production in Chinese Hamster Ovary (CHO) Cells.

    PubMed

    Metta, M K; Kunaparaju, R K; Tantravahi, S

    2016-01-01

    Recombinant therapeutic proteins have changed the face of modern medicine in the present trend and they continue to provide innovative therapies for deadly diseases. This study describes the development of a novel stable expression system for rapid amplification of genes in Chinese Hamster Ovary (CHO) cells. The expression system consists of a host CHO cell line and an expression vector (pUB-PyOri-D-C) which encodes for Polyomavirus (Py) Origin of Replication (PyOri) for amplification of integrated genes in the presence of Py Large T Antigen (PyLT) and Dihydrofolate Reductase (DHFR) selectable marker gene for selection in the presence of Methotrexate (MTX). Use of both PyOri/PyLT and DHFR can reduce the number of rounds of selection and amplification required for isolation of high producing clones. The efficiency of pUB-PyOri-D-C was compared with that of pUB-D-C plasmid using Green fluorescent protein (GFP) and Erythropoietin (EPO) as reporter proteins. Our results showed that pUB-PyOri-D-C-EPO can help development of high expressing clone in one round of selection/amplification as compared to multiple rounds of selection/amplification with pUB-D-C-EPO plasmid. CHO-DG44/EPO clone generated using pUB-PyOri-D-C-EPO gave a productivity of 119 mg/L in shake flask. PMID:26950459

  16. Effects of selenocystine on lead-exposed Chinese hamster ovary (CHO) and PC-12 cells

    SciTech Connect

    Aykin-Burns, Nukhet; Ercal, Nuran . E-mail: nercal@umr.edu

    2006-07-15

    Lead is a pervasive environmental toxin that affects multiple organ systems, including the nervous, renal, reproductive, and hematological systems. Even though it is probably the most studied toxic metal, some of the symptoms of lead toxicity still cannot be explained by known molecular mechanisms. Therefore, lead-induced oxidative stress has recently started to gain attention. This in vitro study confirms the existence of oxidative stress due to lead exposure. Administration of lead acetate (PbA) to cultures of Chinese hamster ovary cells (CHO) had a concentration-dependent inhibitory effect on colony formation and cell proliferation. This inhibition was eliminated by 5 {mu}M selenocystine (SeCys). In order to evaluate the nature of SeCys's effect, we measured glutathione (GSH), its oxidized form glutathione disulfide (GSSG), malondialdehyde (MDA), catalase, and GSH peroxidase (GPx) activities in lead-exposed CHO cells both in the presence and absence of SeCys. Increases in MDA, catalase, and GPx activities were observed in cultures that received only PbA, but supplementation with SeCys returned these measures to pretreatment levels. The ratio of GSH to GSSG increased in lead-exposed cells incubated in SeCys-enhanced media but declined in cultures treated with PbA only. In order to determine whether SeCys also reverses lead-induced neurotoxicity, a neuronal cell line, PC-12 cells, was used. Lead's inhibition on neurite formation was significantly eliminated by SeCys in PC-12 cells. Our results suggest that SeCys can confer protection against lead-induced toxicity in CHO cells and neurotoxicity in PC-12 cells.

  17. Metabolic analysis of antibody producing Chinese hamster ovary cell culture under different stresses conditions.

    PubMed

    Badsha, Md Bahadur; Kurata, Hiroyuki; Onitsuka, Masayoshi; Oga, Takushi; Omasa, Takeshi

    2016-07-01

    Chinese hamster ovary (CHO) cells are commonly used as the host cell lines concerning their ability to produce therapeutic proteins with complex post-translational modifications. In this study, we have investigated the time course extra- and intracellular metabolome data of the CHO-K1 cell line, under a control and stress conditions. The addition of NaCl and trehalose greatly suppressed cell growth, where the maximum viable cell density of NaCl and trehalose cultures were 2.2-fold and 2.8-fold less than that of a control culture. Contrariwise, the antibody production of both the NaCl and trehalose cultures was sustained for a longer time to surpass that of the control culture. The NaCl and trehalose cultures showed relatively similar dynamics of cell growth, antibody production, and substrate/product concentrations, while they indicated different dynamics from the control culture. The principal component analysis of extra- and intracellular metabolome dynamics indicated that their dynamic behaviors were consistent with biological functions. The qualitative pattern matching classification and hierarchical clustering analyses for the intracellular metabolome identified the metabolite clusters whose dynamic behaviors depend on NaCl and trehalose. The volcano plot revealed several reporter metabolites whose dynamics greatly change between in the NaCl and trehalose cultures. The elastic net identified some critical, intracellular metabolites that are distinct between the NaCl and trehalose. While a relatively small number of intracellular metabolites related to the cell growth, glucose, glutamine, lactate and ammonium ion concentrations, the mechanism of antibody production was suggested to be very complicated or not to be explained by elastic net regression analysis. PMID:26803706

  18. Diversity in host clone performance within a Chinese hamster ovary cell line.

    PubMed

    O'Callaghan, Peter M; Berthelot, Maud E; Young, Robert J; Graham, James W A; Racher, Andrew J; Aldana, Dulce

    2015-01-01

    Much effort has been expended to improve the capabilities of individual Chinese hamster ovary (CHO) host cell lines to synthesize recombinant therapeutic proteins (rPs). However, given the increasing variety in rP molecular types and formats it may be advantageous to employ a toolbox of CHO host cell lines in biomanufacturing. Such a toolbox would contain a panel of hosts with specific capabilities to synthesize certain molecular types at high volumetric concentrations and with the correct product quality (PQ). In this work, we examine a panel of clonally derived host cell lines isolated from CHOK1SV for the ability to manufacture two model proteins, an IgG4 monoclonal antibody (Mab) and an Fc-fusion protein (etanercept). We show that these host cell lines vary in their relative ability to synthesize these proteins in transient and stable pool production format. Furthermore, we examined the PQ attributes of the stable pool-produced Mab and etanercept (by N-glycan ultra performance liquid chromatography (UPLC) and liquid chromatography - tandem mass spectrometry (LC-MS/MS), respectively), and uncovered substantial variation between the host cell lines in Mab N-glycan micro-heterogeneity and etanercept N and O-linked macro-heterogeneity. To further investigate the capabilities of these hosts to act as cell factories, we examined the glycosylation pathway gene expression profiles as well as the levels of endoplasmic reticulum (ER) and mitochondria in the untransfected hosts. We uncovered a moderate correlation between ER mass and the volumetric product concentration in transient and stable pool Mab production. This work demonstrates the utility of leveraging diversity within the CHOK1SV pool to identify new host cell lines with different performance characteristics.

  19. Metabolic engineering of Chinese hamster ovary cells: towards a bioengineered heparin.

    PubMed

    Baik, Jong Youn; Gasimli, Leyla; Yang, Bo; Datta, Payel; Zhang, Fuming; Glass, Charles A; Esko, Jeffrey D; Linhardt, Robert J; Sharfstein, Susan T

    2012-03-01

    Heparin is the most widely used pharmaceutical to control blood coagulation in modern medicine. A health crisis that took place in 2008 led to a demand for production of heparin from non-animal sources. Chinese hamster ovary (CHO) cells, commonly used mammalian host cells for production of foreign pharmaceutical proteins in the biopharmaceutical industry, are capable of producing heparan sulfate (HS), a related polysaccharide naturally. Since heparin and HS share the same biosynthetic pathway, we hypothesized that heparin could be produced in CHO cells by metabolic engineering. Based on the expression of endogenous enzymes in the HS/heparin pathways of CHO-S cells, human N-deacetylase/N-sulfotransferase (NDST2) and mouse heparan sulfate 3-O-sulfotransferase 1 (Hs3st1) genes were transfected sequentially into CHO host cells growing in suspension culture. Transfectants were screened using quantitative RT-PCR and Western blotting. Out of 120 clones expressing NDST2 and Hs3st1, 2 clones, Dual-3 and Dual-29, were selected for further analysis. An antithrombin III (ATIII) binding assay using flow cytometry, designed to recognize a key sugar structure characteristic of heparin, indicated that Hs3st1 transfection was capable of increasing ATIII binding. An anti-factor Xa assay, which affords a measure of anticoagulant activity, showed a significant increase in activity in the dual-expressing cell lines. Disaccharide analysis of the engineered HS showed a substantial increase in N-sulfo groups, but did not show a pattern consistent with pharmacological heparin, suggesting that further balancing the expression of transgenes with the expression levels of endogenous enzymes involved in HS/heparin biosynthesis might be necessary. PMID:22326251

  20. Examination of Inertial Cavitation of Optison™ in Producing Sonoporation of Chinese Hamster Ovary Cells

    PubMed Central

    Forbes, Monica M.; Steinberg, Ryan L.; O’Brien, William D.

    2008-01-01

    The objective of this project is to elucidate the relationship between ultrasound contrast agents (UCAs) and sonoporation. Sonoporation is an ultrasound-induced, transient cell membrane permeability change, which allows for the uptake of normally impermeable macromolecules. Specifically, this study will determine the role that inertial cavitation plays in eliciting sonoporation. The inertial cavitation thresholds of the UCA, Optison™, are directly compared to the results of sonoporation in order to determine the involvement of inertial cavitation in sonoporation. Chinese Hamster Ovary (CHO) cells were exposed as a monolayer, in a solution of Optison™, 500,000 Da Fluorescein isothiocyanate-dextran (FITC-dextran), and Phosphate Buffered Saline (PBS) to 30 seconds of pulsed ultrasound (US) at 3.15-MHz center frequency, 5-cycle pulse duration, and 10-Hz pulse repetition frequency. The peak rarefactional pressure (Pr) was varied over a range from 120 kPa to 3.5 MPa, and five independent replicates were performed at each pressure. As the Pr was increased, from 120 kPa to 3.5 MPa, the fraction of sonoporated cells among the total viable population increased from 0.63% to 10.21%, with the maximum occurring at 2.4 MPa. The inertial cavitation threshold for Optison™ at these exposure conditions has previously been shown to be in the range 0.77–0.83 MPa, at which sonoporation activity was found to be 50% of its maximum level. Furthermore, significant sonoporation activity was observed at pressure levels below the threshold for inertial cavitation of Optison™. Above 2.4 MPa, a significant drop in sonoporation activity occurred, corresponding to pressures where >95% of the Optison™ was collapsing. These results demonstrate that sonoporation is not directly due to inertial cavitation of the UCA, rather that the effect was related to linear and/or nonlinear oscillation of the UCA occurring at pressure levels below the inertial cavitation threshold. PMID:18692296

  1. Evidence of high levels of methylglyoxal in cultured Chinese hamster ovary cells.

    PubMed

    Chaplen, F W; Fahl, W E; Cameron, D C

    1998-05-12

    Methylglyoxal is an alpha-ketoaldehyde and dicarbonyl formed in cells as a side product of normal metabolism. Endogenously produced dicarbonyls, such as methylglyoxal, are involved in numerous pathogenic processes in vivo, including carcinogenesis and advanced glycation end-product formation; advanced glycation end-products are contributors to the pathophysiology of aging and chronic diabetes. Despite recent advances in understanding of the systemic effects of methylglyoxal, the full significance of this compound remains unknown. Herein we provide evidence that the majority of the methylglyoxal present in vivo is bound to biological ligands. The basis for our finding is an experimental approach that provides a measure of the bound methylglyoxal present in living systems, in this instance Chinese hamster ovary cells; with our approach, as much as 310 microM methylglyoxal was detected, 100- to 1,000-fold more than observed previously in biological systems. Several artifacts were considered before concluding that the methylglyoxal was associated with cellular structures, including phosphate elimination from triose phosphates, carbohydrate degradation under the assay conditions, and interference from the derivatizing agent used as part of the assay procedure. A major source of the recovered methylglyoxal is most probably modified cellular proteins. With methylglyoxal at about 300 microM, 0.02% of cellular amino acid residues could be modified. As few as one or two "hits" with methylglyoxal per protein molecule have previously been reported to be sufficient to cause protein endocytosis and subsequent degradation. Thus, 5-10% of cellular proteins may be modified to physiologically significant levels.

  2. Evidence of high levels of methylglyoxal in cultured Chinese hamster ovary cells

    PubMed Central

    Chaplen, Frank W. R.; Fahl, William E.; Cameron, Douglas C.

    1998-01-01

    Methylglyoxal is an α-ketoaldehyde and dicarbonyl formed in cells as a side product of normal metabolism. Endogenously produced dicarbonyls, such as methylglyoxal, are involved in numerous pathogenic processes in vivo, including carcinogenesis and advanced glycation end-product formation; advanced glycation end-products are contributors to the pathophysiology of aging and chronic diabetes. Despite recent advances in understanding of the systemic effects of methylglyoxal, the full significance of this compound remains unknown. Herein we provide evidence that the majority of the methylglyoxal present in vivo is bound to biological ligands. The basis for our finding is an experimental approach that provides a measure of the bound methylglyoxal present in living systems, in this instance Chinese hamster ovary cells; with our approach, as much as 310 μM methylglyoxal was detected, 100- to 1,000-fold more than observed previously in biological systems. Several artifacts were considered before concluding that the methylglyoxal was associated with cellular structures, including phosphate elimination from triose phosphates, carbohydrate degradation under the assay conditions, and interference from the derivatizing agent used as part of the assay procedure. A major source of the recovered methylglyoxal is most probably modified cellular proteins. With methylglyoxal at about 300 μM, 0.02% of cellular amino acid residues could be modified. As few as one or two “hits” with methylglyoxal per protein molecule have previously been reported to be sufficient to cause protein endocytosis and subsequent degradation. Thus, 5–10% of cellular proteins may be modified to physiologically significant levels. PMID:9576917

  3. Understanding Transcriptional Enhancement in Monoclonal Antibody-Producing Chinese Hamster Ovary Cells

    NASA Astrophysics Data System (ADS)

    Nicoletti, Sarah E.

    With the demand for monoclonal antibody (mAB) therapeutics continually increasing, the need to better understand what makes a high productivity clone has gained substantial interest. Monoclonal antibody producing Chinese hamster ovary (CHO) cells with different productivities were provided by a biopharmaceutical company for investigation. Gene copy numbers, mRNA levels, and mAb productivities were previously determined for two low producing clones and their amplified progeny. These results showed an increase in mRNA copy number in amplified clones, which correlated to the observed increases in specific productivity of these clones. The presence of multiple copies of mRNA per one copy of DNA in the higher productivity clones has been coined as transcriptional enhancement. The methylation status of the CMV promoter as well as transcription factor/promoter interactions were evaluated to determine the cause of transcriptional enhancement. Methylation analysis via bisulfite sequencing revealed no significant difference in overall methylation status of the CMV promoter. These data did, however, reveal the possibility of differential interactions of transcription factors between the high and low productivity cell clones. This finding was further supported by chromatin immunoprecipitations previously performed in the lab, as well as literature studies. Transcription activator-like effector (TALE) binding proteins were constructed and utilized to selectively immunoprecipitate the CMV promoter along with its associated transcription factors in the different CHO cell clones. Cells were transfected with the TALE proteins, harvested and subjected to a ChIP-like procedure. Results obtained from the TALE ChIP demonstrated the lack of binding of the protein to the promoter and the need to redesign the TALE. Overall, results obtained from this study were unable to give a clear indication as to the causes of transcriptional enhancement in the amplified CHO cell clones. Further

  4. Cell-cycle specific expression of a small proline-rich protein in Chinese hamster ovary cells

    SciTech Connect

    Tesfaigzi, J.

    1994-11-01

    Squamous metaplasia of the bronchial epithelium is generally believed to be involved in the neoplastic progression toward squamous cell carcinomas. Thus, it is important to understand the mechanisms controlling this type of differentiation. The induction of two families of cDNAs encoding a small proline-rich protein (sPRP), sprI and sprII, was first identified in human keratinocytes exhibiting squamous differentiation. cDNAs similar to sprI have also been identified in cultured tracheal epithelial cells undergoing squamous differentiation. The first step during the squamous differentiation process is the inhibition of cell growth; it has also been noted that a sPRP mRNA in Chinese hamster ovary (CHO) cells is induced 10-fold just before the cultures reach confluence. Thus, sPRP may stop cell division in cells undergoing squamous differentation. In support of this possibility are the recent investigations correlating expression of sPRP with cell morphology. Specific immunoreactivity to sPRP, using affinity-purified antibodies, showed a strong immunostaining in cells with a round configuration, while less staining was observed in other cells. The major part of the CHO population showed no immunoreactivity. One interpretation of this observation is that the expression of sPRP may be cell-cyle regulated. The purpose of this investigation was to determine the phase of the cell cycle where induced synthesis of sPRP mRNA occurs.

  5. Cell growth stimulating effect of Ganoderma lucidum spores and their potential application for Chinese hamster ovary K1 cell cultivation.

    PubMed

    Li, Ding; Zhong, Qi; Liu, Tingting; Wang, Jufang

    2016-06-01

    In this work, water-soluble extracts of Ganoderma lucidum spores (Gls), a Chinese medicinal herb that possesses cell growth stimulating function, were found to be an effective growth factor for Chinese hamster ovary (CHO) cell cultivation. The Gls extract was prepared and supplemented to CHO K1 cell culture media with various serum levels. Our results obtained from both the static culture and the spinner-flask suspension culture showed that use of small-amount Gls extract effectively promoted cell growth and suppressed cell apoptosis induced by serum deprivation with normal cell cycle maintained in a low-serum medium. The low-serum medium containing 1 % (v/v) fetal bovine serum (FBS) and 0.01 % (w/v) Gls extract showed a comparable performance on both cell growth and fusion protein productivity with the conventional CHO culture medium containing 10 % (v/v) FBS and a commercial serum-free medium. This is the first study of the potential of Gls extracts for use as an alternative cell growth factor and nutrient for CHO cells. The findings have presented a new approach to economic cultivation of CHO cells for therapeutic protein production. PMID:26921102

  6. Cell growth stimulating effect of Ganoderma lucidum spores and their potential application for Chinese hamster ovary K1 cell cultivation.

    PubMed

    Li, Ding; Zhong, Qi; Liu, Tingting; Wang, Jufang

    2016-06-01

    In this work, water-soluble extracts of Ganoderma lucidum spores (Gls), a Chinese medicinal herb that possesses cell growth stimulating function, were found to be an effective growth factor for Chinese hamster ovary (CHO) cell cultivation. The Gls extract was prepared and supplemented to CHO K1 cell culture media with various serum levels. Our results obtained from both the static culture and the spinner-flask suspension culture showed that use of small-amount Gls extract effectively promoted cell growth and suppressed cell apoptosis induced by serum deprivation with normal cell cycle maintained in a low-serum medium. The low-serum medium containing 1 % (v/v) fetal bovine serum (FBS) and 0.01 % (w/v) Gls extract showed a comparable performance on both cell growth and fusion protein productivity with the conventional CHO culture medium containing 10 % (v/v) FBS and a commercial serum-free medium. This is the first study of the potential of Gls extracts for use as an alternative cell growth factor and nutrient for CHO cells. The findings have presented a new approach to economic cultivation of CHO cells for therapeutic protein production.

  7. Induction of apoptosis in cultured Chinese hamster ovary cells by Ukrain and its synergistic action with etoposide.

    PubMed

    Kurochkin, S N; Kolobkov, S L; Votrin, I I; Voltchek, I V

    2000-01-01

    The induction of apoptosis by Ukrain, a novel antitumor drug, was studied in Chinese hamster ovary (CHO) cells bearing multiple copies of recombinant human erythropoietin gene incorporated into their genome (cell lines CHO-k38 and -k38/12). Ukrain was found to be capable of the in vitro induction of apoptosis in the cell lines studied. The effect was less expressed in cells with type I multiple drug resistance (k38/12). Ukrain acted synergistically with etoposide, i.e., the combined effect of both agents was evident at significantly reduced concentrations. This suggests that pharmacological compositions of the drugs may reduce the effective doses used in chemotherapy and thus significantly diminish its toxic side effects. Ukrain was found to exert an unusual effect, manifested as the inhibition of protein secretion by target cells. This phenomenon may be used for the express determination of cell sensitivity to colchicine-like cytostatics, including Ukrain.

  8. Metabolic activation of chemicals to mutagenic carcinogens by human hepatoma microsomal extracts in Chinese hamster ovary cells (in vitro).

    PubMed

    Darroudi, F; Natarajan, A T

    1993-01-01

    The efficiency of human hepatoma (Hep G2) S9 microsomal fractions to activate indirectly acting genotoxic carcinogens was evaluated. The extract was prepared from Hep G2 epithelial cells, following sonication and centrifugation. The mutagenic activity of cyclophosphamide, benzo[a]pyrene, pyrene, hexamethylphosphoramide and safrole was assessed by the ability of their activated metabolites to induce sister chromatid exchange (SCE) and micronuclei (MN) in Chinese hamster ovary cells (CHO) (treated in vitro). All promutagenic carcinogens tested were found to be effective only following metabolic activation by Hep G2 cell extracts. Non-carcinogen pyrene was not able to induce an increase in the frequencies of SCE or MN in CHO cells even in the presence of Hep G2 S9 microsomal fractions. Parallel experiments were carried out using rat liver homogenate (S9 fraction) as an exogenous activation system, and comparisons were made between these two in vitro systems and in vivo assays using the rodent.

  9. New cell line development for antibody-producing Chinese hamster ovary cells using split green fluorescent protein

    PubMed Central

    2012-01-01

    Background The establishment of high producer is an important issue in Chinese hamster ovary (CHO) cell culture considering increased heterogeneity by the random integration of a transfected foreign gene and the altered position of the integrated gene. Fluorescence-activated cell sorting (FACS)-based cell line development is an efficient strategy for the selection of CHO cells in high therapeutic protein production. Results An internal ribosome entry site (IRES) was introduced for using two green fluorescence protein (GFP) fragments as a reporter to both antibody chains, the heavy chain and the light chain. The cells co-transfected with two GFP fragments showed the emission of green fluorescence by the reconstitution of split GFP. The FACS-sorted pool with GFP expression had a higher specific antibody productivity (qAb) than that of the unsorted pool. The qAb was highly correlated with the fluorescence intensity with a high correlation coefficient, evidenced from the analysis of median GFP and qAb in individual selected clones. Conclusions This study proved that the fragment complementation for split GFP could be an efficient indication for antibody production on the basis of high correlation of qAb with reconstitution of GFP. Taken together, we developed an efficient FACS-based screening method for high antibody-producing CHO cells with the benefits of the split GFP system. PMID:22587529

  10. Increased recombinant protein production owing to expanded opportunities for vector integration in high chromosome number Chinese hamster ovary cells.

    PubMed

    Yamano, Noriko; Takahashi, Mai; Ali Haghparast, Seyed Mohammad; Onitsuka, Masayoshi; Kumamoto, Toshitaka; Frank, Jana; Omasa, Takeshi

    2016-08-01

    Chromosomal instability is a characteristic of Chinese hamster ovary (CHO) cells. Cultures of these cells gradually develop heterogeneity even if established from a single cell clone. We isolated cells containing different numbers of chromosomes from a CHO-DG44-based human granulocyte-macrophage colony stimulating factor (hGM-CSF)-producing cell line and found that high chromosome number cells showed higher hGM-CSF productivity. Therefore, we focused on the relationship between chromosome aneuploidy of CHO cells and high recombinant protein-producing cell lines. Distribution and stability of chromosomes were examined in CHO-DG44 cells, and two cell lines expressing different numbers of chromosomes were isolated from the original CHO-DG44 cell line to investigate the effect of aneuploid cells on recombinant protein production. Both cell lines were stably transfected with a vector that expresses immunoglobulin G3 (IgG3), and specific antibody production rates were compared. Cells containing more than 30 chromosomes had higher specific antibody production rates than those with normal chromosome number. Single cell analysis of enhanced green fluorescent protein (Egfp)-gene transfected cells revealed that increased GFP expression was relative to the number of gene integration sites rather than the difference in chromosome numbers or vector locations. Our results suggest that CHO cells with high numbers of chromosomes contain more sites for vector integration, a characteristic that could be advantageous in biopharmaceutical production.

  11. Development of Genetically Modified Chinese Hamster Ovary Host Cells for the Enhancement of Recombinant Tissue Plasminogen Activator Expression

    PubMed Central

    Rahimpour, Azam; Ahani, Roshanak; Najaei, Azita; Adeli, Ahmad; Barkhordari, Farzaneh; Mahboudi, Fereidoun

    2016-01-01

    Background Chinese hamster ovary (CHO) cells are the most commonly used host system for the expression of high quality recombinant proteins. However, the development of stable, high-yielding CHO cell lines is a major bottleneck in the industrial manufacturing of therapeutic proteins. Therefore, different strategies such as the generation of more efficient expression vectors and establishment of genetically engineered host cells have been employed to increase the efficiency of cell line development. In order to examine the possibility of generating improved CHO host cells, cell line engineering approaches were developed based on ceramide transfer protein (CERT), and X-box binding protein 1s (XBP1s). Methods CHO cells were transfected with CERT S132A, a mutant variant of CERT which is resistant to phosphorylation, or XBP1s expression plasmids, and then stable cell pools were generated. Transient expression of t-PA was examined in engineered cell pools in comparison to un-modified CHO host cells. Results Overexpression of CERT S132A led to the enhancement of recombinant tissue plasminogen activator (t-PA) expression in transient expression by 50%. On the other hand, it was observed that the ectopic expression of the XBP1s, did not improve the t-PA expression level. Conclusion The results obtained in this study indicate successful development of the improved CHO host cells through CERT S132A overexpression. PMID:27547109

  12. Free and polymerized tubulin in cultured bone cells and Chinese hamster ovary cells: the influence of cold and hormones

    PubMed Central

    Beertsen, W; Heersche, JNM; Aubin, JE

    1982-01-01

    Free and polymerized tubulin were measured in bone cells and Chinese hamster ovary (CHO) cells cultured on plastic substrata. Polymerized tubulin was stabilized in a microtubule- stabilizing medium (MSM) containing 50 percent glycerol and separated from free tubulin by centrifugation. Tubulin content was assayed in both fractions by the colchicines- binding assay. The measured degree of polymerization in both bone cells and CHO cells varied with stabilixation conditions. The degree of polymerization in both bone cells and CHO cells varied with stabilization conditions. The degree of polymerization in both bone cells and CHO cells varied with stabilization conditions. The degree of polymerization in attached cells was found to increase up to 73 percent during the first 20 min after addition of the MSM at 24 degrees C, and remained constant thereafter. Stabilization of 0 degrees C resulted in a decrease down to 62 percent in the degree of constant thereafter. Stabilization at 0 degrees C resulted in a decrease down to 62 percent in the degree of polymerization during the first 20 min after addition of the MSM at 24 degrees C, and remained constant thereafter. Confluent bone cells maintained at 0 degrees C for 1 h before stabilization contained significantly less polymerized tubulin than control cells kept at 37 degrees C using stabilization both at 0 degrees C and at 24 degrees C. Changes in bone cell morphology induced by incubation of cells with prostaglandin E(1) or E(2), parthyroid hormone, and dibutyryl cyclic AMP were not associated with a change in the degree of tubulin polymerization. This was confirmed morphologically by immunofluorescence using affinity-purified tubulin antibodies: microtubules in hormone- treated cells were not noticeably reorganized when compared to microtubule organization in control cells. They were, however, squeezed closer together in cellular pseudopods due to the altered cell shape. This altered cell shape appears to be correlated

  13. N-acetylcysteine protects Chinese Hamster ovary cells from oxidative injury and apoptosis induced by microcystin-LR

    PubMed Central

    Xue, Lijian; Li, Jinhui; Li, Yang; Chu, Chu; Xie, Guantao; Qin, Jin; Yang, Mingfeng; Zhuang, Donggang; Cui, Liuxin; Zhang, Huizhen; Fu, Xiaoli

    2015-01-01

    This study aimed to investigate the MC-LR induced oxidative injury and apoptosis in Chinese hamster ovary (CHO) cells, and the protective effects of N-acetylcysteine (NAC) on these cells. Cell viability was determined by MTT assay after exposure to NAC at various concentrations (0, 1, 5, 10, 20, 30, 40, 50, 60 and 80 mmol/L) alone, or NAC (0, 1 and 5 mmol/L) plus MC-LR (0, 2.5, 5 and 10 μg/ml) for 24 h. The reactive oxygen species (ROS) in CHO cells were measured by DCFH-DA, mitochondrial membrane potential (MMP) by fluorescence probe JC-1 staining, and apoptosis index determined by Annexin V-PI staining. Results showed, following exposure to NAC alone for 24 h, cell viability remains higher than 80% at 1 and 5 mmol/L. After exposure to NAC at different concentrations plus MC-LR, cell viability increased, ROS decreased, MMP elevated, and apoptosis index reduced to a certain extent. In conclusion, MC-LR may induce the apoptosis of CHO cells by inducing ROS production which is protected by NAC. PMID:26131064

  14. Characteristic element of matrix attachment region mediates vector attachment and enhances nerve growth factor expression in Chinese hamster ovary cells.

    PubMed

    Wang, X Y; Zhang, J H; Sun, Q L; Yao, Z Y; Deng, B G; Guo, W Y; Wang, L; Dong, W H; Wang, F; Zhao, C P; Wang, T Y

    2015-08-07

    Preliminary studies have suggested that a characteristic element of the matrix attachment region (MAR) in human interferon-β mediates the adhesion of vectors to Chinese hamster ovary (CHO) cells. In this study, we investigated if vector adhesion increased nerve growth factor (NGF) expression in CHO cells. The MAR characteristic element sequence of human interferon-β was inserted into the multiple-cloning site of the pEGFP-C1 vector. The target NGF gene was inserted upstream of the MAR characteristic element sequence to construct the MAR/NGF expression vector. The recombinant plasmid was transfected into CHO cells and stable monoclonal cells were selected using G418. NGF mRNA and protein expression was detected by reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Plasmid reduction experiments were used to determine the state of transfected plasmid in mammalian cells. The insertion of MAR into the vector increased NGF expression levels in CHO cells (1.93- fold) compared to the control. The recombinant plasmid expressing the MAR sequence was digested into a linear space vector. The inserted MAR and NGF sequences were consistent with those inserted into the plasmid before recombination. Therefore, we concluded that the MAR characteristic element mediates vector adhesion to CHO cells and enhances the stability and efficiency of the target gene expression.

  15. N-acetylcysteine protects Chinese Hamster ovary cells from oxidative injury and apoptosis induced by microcystin-LR.

    PubMed

    Xue, Lijian; Li, Jinhui; Li, Yang; Chu, Chu; Xie, Guantao; Qin, Jin; Yang, Mingfeng; Zhuang, Donggang; Cui, Liuxin; Zhang, Huizhen; Fu, Xiaoli

    2015-01-01

    This study aimed to investigate the MC-LR induced oxidative injury and apoptosis in Chinese hamster ovary (CHO) cells, and the protective effects of N-acetylcysteine (NAC) on these cells. Cell viability was determined by MTT assay after exposure to NAC at various concentrations (0, 1, 5, 10, 20, 30, 40, 50, 60 and 80 mmol/L) alone, or NAC (0, 1 and 5 mmol/L) plus MC-LR (0, 2.5, 5 and 10 μg/ml) for 24 h. The reactive oxygen species (ROS) in CHO cells were measured by DCFH-DA, mitochondrial membrane potential (MMP) by fluorescence probe JC-1 staining, and apoptosis index determined by Annexin V-PI staining. Results showed, following exposure to NAC alone for 24 h, cell viability remains higher than 80% at 1 and 5 mmol/L. After exposure to NAC at different concentrations plus MC-LR, cell viability increased, ROS decreased, MMP elevated, and apoptosis index reduced to a certain extent. In conclusion, MC-LR may induce the apoptosis of CHO cells by inducing ROS production which is protected by NAC. PMID:26131064

  16. Isolation and characterization of a Chinese hamster ovary cell line deficient in fatty alcohol:NAD+ oxidoreductase activity.

    PubMed Central

    James, P F; Rizzo, W B; Lee, J; Zoeller, R A

    1990-01-01

    We have isolated a mutant Chinese hamster ovary cell line that is defective in long-chain fatty alcohol oxidation. The ability of the mutant cells to convert labeled hexadecanol to the corresponding fatty acid in vivo was reduced to 5% of the parent strain. Whole-cell homogenates from the mutant strain, FAA.1, were deficient in long-chain fatty alcohol:NAD+ oxidoreductase (FAO; EC 1.1.1.192) activity, which catalyzes the oxidation of hexadecanol to hexadecanoic acid, although the intermediate fatty aldehyde was formed normally. A direct measurement of fatty aldehyde dehydrogenase showed that the FAA.1 strain was defective in this component of FAO activity. FAA.1 is a two-stage mutant that was selected from a previously described parent strain, ZR-82, which is defective in ether lipid biosynthesis and peroxisome assembly. Because of combined defects in ether lipid biosynthesis and fatty alcohol oxidation, the ability of the FAA.1 cells to incorporate hexadecanol into complex lipids was greatly impaired, resulting in a 60-fold increase in cellular fatty alcohol levels. As the FAO deficiency in FAA.1 cells appears to be identical to the defect associated with the human genetic disorder Sjögren-Larsson syndrome, the FAA.1 cell line may be useful in studying this disease. Images PMID:2201021

  17. Overexpression of Serpinb1 in Chinese hamster ovary cells increases recombinant IgG productivity.

    PubMed

    Lin, Nan; Brooks, Jeanne; Sealover, Natalie; George, Henry J; Kayser, Kevin J

    2015-01-10

    We report the discovery and validation of a novel CHO cell engineering target for improving IgG expression, serpin peptidase inhibitor, clade B, member 1 (Serpinb1). Transcriptomic studies using microarrays revealed that Serpinb1 was up-regulated in cultures with IgG heavy and light chain transcription transiently repressed compared with cultures treated with non-targeting siRNA. As proof of concept, a lentiviral vector was employed to overexpress the Chinese Hamster Serpinb1 in a CHOZN(®) Glutamine Synthetase (-/-) recombinant IgG producing CHO line. The lentiviral stable pool demonstrated 4.2-fold SERPINB1 overexpression compared with the non-transduced control. The peak viable cell density (VCD) and peak IgG volumetric productivity of the lentiviral stable pool increased 1.3 and 2.0 fold, respectively, compared with the non-transduced control. For host cell engineering, a plasmid encoding SERPINB1 was transfected into the CHOZN(®) GS (-/-) host cell line to create several stable pools. Single-cell clones isolated from the pools were characterized for their SERPINB1 expression levels and growth. The clone (SERPINB1_OE_27) with the highest SERPINB1 expression had decreased peak viable cell density and exponential phase growth rate. Selected SERPINB1 OE clones were subsequently evaluated for their IgG expression capabilities using GS selection. Clone SERPINB1_OE_42 with moderate SERPINB1 overexpression demonstrated increased IgG productivity in "bulk" selection. We conclude that manipulating Serpinb1 expression can lead to increased recombinant IgG productivity, but the effect in host cell lines may vary by clone and by overexpression level. This work represents the ongoing effort in applying "-omics" findings to novel CHO host cell line engineering.

  18. Carbamates: A study on genotoxic, cytotoxic, and apoptotic effects induced in Chinese hamster ovary (CHO-K1) cells.

    PubMed

    Soloneski, Sonia; Kujawski, Maciej; Scuto, Anna; Larramendy, Marcelo L

    2015-08-01

    In vitro effects of the carbamates pirimicarb and zineb and their formulations Aficida® (50% pirimicarb) and Azzurro® (70% zineb), respectively, were evaluated in Chinese hamster ovary (CHO-K1) cells. Whereas the cytokinesis-blocked micronucleus cytome assay was employed to test for genotoxicity, MTT, neutral red (NR), and apoptosis evaluation were used as tests for estimating cell viability and succinic dehydrogenase activity, respectively. Concentrations tested were 10-300 μg/ml for pirimicarb and Aficida®, and 1-50 μg/ml for zineb and Azzurro®. All compounds were able to increase the frequency of micronuclei. A marked reduction in the nuclear division index was observed after treatment with 5 μg/ml of zineb and Azzurro® and 10 μg/ml of Azzurro®. Alterations in the cellular morphology not allowing the recognition of binucleated cells exposed to 300 μg/ml pirimicarb and Aficida® as well as 10-50 μg/ml zineb and Azzurro®. All four compounds induced inhibition of both cell viability and succinic dehydrogenase activity and trigger apoptosis in CHO-K1 cells, at least when exposed for 24 h. The data herein demonstrate the genotoxic and cytotoxic effects exerted by these carbamates and reveal the potential risk factor of these pesticides, still extensively used worldwide, for both human health and the environment.

  19. Isolation of a taxol-resistant Chinese hamster ovary cell mutant that has an alteration in alpha-tubulin.

    PubMed Central

    Cabral, F; Abraham, I; Gottesman, M M

    1981-01-01

    Taxol is a plant alkaloid that has antimitotic activity and appears to stabilize microtubules [Schiff, P. B., Fant, J. & Horwitz, S. B. (1979) Nature (London) 277, 665-667]. Taxol-resistant cells were selected from a population of UV-mutagen-treated Chinese hamster ovary cells by a single-step procedure. These mutants have normal morphologies and growth rates but are 2- to 3-fold more resistant to the toxic effects of the drug than the wild-type parent. One out of 20 mutants screened by two-dimensional electrophoresis for chemical alterations in tubulin had an "extra" spot with a more acidic isoelectric point that alpha-tubulin. This extra spot was shown to be an electrophoretic variant alpha-tubulin by its copurification with tubulin in crude microtubule-containing preparations and by one-dimensional peptide mapping. The alpha-tubulin mutant was found to be temperature sensitive for growth, and this property was used as the basis for the selection of revertants. Seventeen temperature-resistant revertants of the alpha-tubulin mutant were selected for their ability to grow at 40 degrees C and three of these revertants were found to have simultaneously lost their taxol resistance and the electrophoretic variant alpha-tubulin. These results provide evidence that an alteration in alpha-tubulin can confer taxon resistance on a mammalian cell line and suggest that alpha-tubulin is essential for cell viability. Images PMID:6117076

  20. Coamplification and coexpression of human tissue-type plasminogen activator and murine dihydrofolate reductase sequences in Chinese hamster ovary cells.

    PubMed Central

    Kaufman, R J; Wasley, L C; Spiliotes, A J; Gossels, S D; Latt, S A; Larsen, G R; Kay, R M

    1985-01-01

    Expression of human tissue-type plasminogen activator (t-PA) at high levels has been achieved in Chinese hamster ovary (CHO) cells by cotransfection and subsequent coamplification of the transfected sequences. Expression vectors containing the t-PA cDNA gene and dihydrofolate reductase (DHFR) cDNA gene were cotransfected into CHO DHFR-deficient cells. Transformants expressing DHFR were selected by growth in media lacking nucleosides and contained low numbers of t-PA genes and DHFR genes. Stepwise selection of the DHFR+ transformants in increasing concentrations of methotrexate generated cells which had amplified both DHFR genes and t-PA genes over 100-fold. These cell lines expressed elevated levels of enzymatically active t-PA. To optimize both t-PA sequence amplification and t-PA expression, various modifications of the original procedure were used. These included alterations to the DHFR expression vector, optimization of the molar ratio of t-PA to DHFR sequences in the cotransfection, and modification of the methotrexate resistance selection procedure. The structure of the amplified DNA, its chromosomal location, and its stability during growth in the absence of methotrexate are reported. Images PMID:4040603

  1. Chromosome aberration and sister chromatid exchange tests in Chinese hamster ovary cells in vitro III: Results with 27 chemicals

    SciTech Connect

    Gulati, D.K. ); Witt, K.; Anderson, B.; Zeiger, E.; Shelby, M.D. )

    1989-01-01

    Twenty-seven chemicals previously tested in rodent carcinogenicity assays were tested for induction of chromosomal aberrations (ABS) and sister chromatid exchanges (SCE) in Chinese hamster ovary (CHO) cells as part of a larger analysis of the correlation between results of in vitro genetic toxicity assays and carcinogenicity bioassays. Chemicals were tested up to toxic doses with and without exogenous metabolic activation. Seventeen of the chemicals tested were carcinogens; only two of these were negative for both ABS and SCE. Of the eight noncarcinogens tested, four were negative for both endpoints and four gave a positive response for at least one endpoint. Of the remaining two chemicals, one, diallylphthalate, gave an equivocal response in the bioassay and a positive response in these CHO cell cytogenetics tests. The other chemical, 2,4-toluene diisocyanate, was tested for carcinogenicity as a mixture with the 2,6-isomer; the mixture was carinogenic, but the cytogenetic test results for the 2,4-isomer were negative. Experiments with unsynchronized CHO cells demonstrated that mean SCE frequency increased with increasing culture time, and this may have been a factor in the positive results obtained for five chemicals in the SCE test under conditions of delayed harvest.

  2. TOXICOLOGY STUDIES OF LEWISITE AND SULFUR MUSTARD AGENTS:GENETIC TOXICITY OF LEWISITE (L) IN CHINESE HAMSTER OVARY CELLS

    SciTech Connect

    Jostes,R.F. Jr.; Sasser, LB; Rausch, R.J.

    1989-05-31

    The cytotoxic clastogenic and mutagenic effects of the arsenic containing vesicant, Lewisite (L) [dichloro(2-chlorovinyl) arsine], have been investigated using Chinese hamster ovary cells. One hour exposures to Lewisite were cytotoxic in uM amounts. The cell survival response yields a D37 of 0.6 uM and an extrapolation number of 2.5. The mutagenic response at the hypoxantnine-guanine phosporibosyl transferase (HGPRT) locus was sporadic and not significantly greater than control values when cells were exposed over a range of 0.125 to2.0 uM. Sister chromatid exchange (SCE) induction, a measure of chromosomal rearrangement, was weakly positive over a range of 0.25 to 1.0 uM but the values were not significantly greater than the control response. Chromosomal aberrations were induced at 0.75 and 1.0 UMin one experiment and 0.5 and 0.75 uM in another experiment. The Induced values were significantly greater than the control values. Lewisite appears to be cytotoxic and clastogenic in our investigations but SCE and mutation at the HGPRT locus are not significantly greater than control values. Lewisita toxicity was in some ways similar to radiomimetic chemicals such as bleomycin.

  3. Chinese hamster ovary cell performance enhanced by a rational divide-and-conquer strategy for chemically defined medium development.

    PubMed

    Liu, Yaya; Zhang, Weiyan; Deng, Xiancun; Poon, Hong Fai; Liu, Xuping; Tan, Wen-Song; Zhou, Yan; Fan, Li

    2015-12-01

    Basal medium design is considered one of the most important steps in process development. To optimize chemically defined (CD) media efficiently and effectively for the biopharmaceutical industry, a two-step rational strategy was applied to optimize four antibody producing Chinese hamster ovary (CHO) cell lines. In the first step, 48 of 52 components of our in-house medium were divided into three groups according to their characteristics. In the next step, these groups were optimized by spent medium analysis, response surface methodology and mixture design. Because these steps in our strategy involved dividing medium components into groups and subsequently adjusting the concentration of the components, we termed this medium development strategy "divide and conquer". By applying the strategy, we were able to improve the titers of CHO-S, CHO-DG44 and two CHO-K1 cell lines 1.92, 1.86, 2.92 and 1.62-fold, respectively, in 8 weeks with fewer than 60 tests. This divide-and-conquer strategy was efficient, effective, scalable and universal in our current study and offered a new approach to CD media development.

  4. High-level stable expression of recombinant 5-HT1A 5-hydroxytryptamine receptors in Chinese hamster ovary cells.

    PubMed Central

    Newman-Tancredi, A; Wootton, R; Strange, P G

    1992-01-01

    The human 5-hydroxytryptamine 5-HT1A receptor gene was transfected into Chinese hamster ovary cells. A series of recombinant monoclonal cell lines expressing the receptor were isolated and the properties of one cell line that expressed receptors at a high level (2.8 pmol/mg) were studied in detail. In ligand binding assays with the selective 5-HT1A receptor agonist 2-(NN-di[3H]propylamino)-8-hydroxy-1,2,3,4-tetrahydronaphthalene ([3H]8-OH-DPAT) only a single class of saturable high-affinity binding sites was detected, with a pharmacological profile in competition experiments essentially identical to that of the 5-HT1A receptor of bovine hippocampus. [3H]8-OH-DPAT binding to the recombinant cell membranes was inhibited by GTP, showing that the receptors in the transfected cells couple to G-proteins. A series of 5-hydroxytryptamine agonists inhibited forskolin-stimulated adenylate cyclase activity in the cells and, despite the high level of receptor expression, their apparent efficacies were similar to those observed for inhibition of adenylate cyclase in brain. This recombinant cell line provides a complete model system for studying the 5-HT1A receptor and its transmembrane signalling system. The recombinant cells can also be grown in suspension culture for long periods but, whereas 5-HT1A receptor numbers and receptor regulation by guanine nucleotides are maintained in suspension-grown cells, the inhibition of adenylate cyclase by the 5-HT1A receptor is gradually lost. Images Fig. 1. PMID:1386736

  5. A reverse genetic study of the adaptation of human enterovirus 71 to growth in Chinese hamster ovary cell cultures.

    PubMed

    Zaini, Zainun; Phuektes, Patchara; McMinn, Peter

    2012-05-01

    We selected Chinese hamster ovary (CHO) cell-adapted strains of human enterovirus 71 (HEV71) belonging to sub-genogroups B5 (HEV71-B5) and C2 (HEV71-C2) by serial passage in CHO cells at a high multiplicity of infection. During the course of CHO cell passage, virus growth improved significantly, with increasing virus titres and the presence of cytopathic effect observed. A study of virus growth kinetics revealed that the CHO cell-adapted strains of HEV71-B5 (CHO-B5) and HEV71-C2 (CHO-C2) grew efficiently in CHO cells with maximum titres >100-fold higher than unadapted parental virus. Both CHO-B5 and CHO-C2 harboured single amino acid mutations within the VP2 capsid protein gene. CHO-B5 has an amino acid substitution of K(149)→I in VP2 and CHO-C2 has an amino acid substitution of K(149)→M in VP2. An isolate of sub-genogroup C4 (HEV71-C4) failed to adapt to CHO cells during serial passage. Infectious cDNA clone-derived populations of HEV71-C4 containing the mutations K(149)→I or K(149)→M in VP2 were generated by site-directed mutagenesis. Both mutations resulted in the ability of the virus to replicate efficiently in CHO cells, indicating that amino acid position 149 in VP2 is critical for the adaptation of HEV71 to growth in CHO cells.

  6. Model-directed engineering of "difficult-to-express" monoclonal antibody production by Chinese hamster ovary cells.

    PubMed

    Pybus, Leon P; Dean, Greg; West, Nathan R; Smith, Andrew; Daramola, Olalekan; Field, Ray; Wilkinson, Stephen J; James, David C

    2014-02-01

    Despite improvements in volumetric titer for monoclonal antibody (MAb) production processes using Chinese hamster ovary (CHO) cells, some "difficult-to-express" (DTE) MAbs inexplicably reach much lower process titers. These DTE MAbs require intensive cell line and process development activity, rendering them more costly or even unsuitable to manufacture. To rapidly and rationally identify an optimal strategy to improve production of DTE MAbs, we have developed an engineering design platform combining high-yielding transient production, empirical modeling of MAb synthesis incorporating an unfolded protein response (UPR) regulatory loop with directed expression and cell engineering approaches. Utilizing a panel of eight IgG1 λ MAbs varying >4-fold in volumetric titer, we showed that MAb-specific limitations on folding and assembly rate functioned to induce a proportionate UPR in host CHO cells with a corresponding reduction in cell growth rate. Derived from comparative empirical modeling of cellular constraints on the production of each MAb we employed two strategies to increase production of DTE MAbs designed to avoid UPR induction through an improvement in the rate/cellular capacity for MAb folding and assembly reactions. Firstly, we altered the transfected LC:HC gene ratio and secondly, we co-expressed a variety of molecular chaperones, foldases or UPR transactivators (BiP, CypB, PDI, and active forms of ATF6 and XBP1) with recombinant MAbs. DTE MAb production was significantly improved by both strategies, although the mode of action was dependent upon the approach employed. Increased LC:HC ratio or CypB co-expression improved cell growth with no effect on qP. In contrast, BiP, ATF6c and XBP1s co-expression increased qP and reduced cell growth. This study demonstrates that expression-engineering strategies to improve production of DTE proteins in mammalian cells should be product specific, and based on rapid predictive tools to assess the relative impact of

  7. Cell separator operation within temperature ranges to minimize effects on Chinese hamster ovary cell perfusion culture.

    PubMed

    Drouin, Hans; Ritter, Joachim B; Gorenflo, Volker M; Bowen, Bruce D; Piret, James M

    2007-01-01

    A cell retention device that provides reliable high-separation efficiency with minimal negative effects on the cell culture is essential for robust perfusion culture processes. External separation devices generally expose cells to periodic variations in temperature, most commonly temperatures below 37 degrees C, while the cells are outside the bioreactor. To examine this phenomenon, aliquots of approximately 5% of a CHO cell culture were exposed to 60 s cyclic variations of temperature simulating an acoustic separator environment. It was found that, for average exposure temperatures between 31.5 and 38.5 degrees C, there were no significant impacts on the rates of growth, glucose consumption, or t-PA production, defining an acceptable range of operating temperatures. These results were subsequently confirmed in perfusion culture experiments for average exposure temperatures between 31.6 and 38.1 degrees C. A 2(5-1) central composite factorial design experiment was then performed to systematically evaluate the effects of different operating variables on the inlet and outlet temperatures of a 10L acoustic separator. The power input, ambient temperature, as well as the perfusion and recycle flow rates significantly influenced the temperature, while the cell concentration did not. An empirical model was developed that predicted the temperature changes between the inlet and the outlet of the acoustic separator within +/-0.5 degrees C. A series of perfusion experiments determined the ranges of the significant operational settings that maintained the acoustic separator inlet and outlet temperatures within the acceptable range. For example, these objectives were always met by using the manufacturer-recommended operational settings as long as the recirculation flow rate was maintained above 15 L day(-1) and the ambient temperature was near 22 degrees C.

  8. Contribution of chlorination to the mutagenic activity of drinking water extracts in Salmonella and Chinese hamster ovary cells

    SciTech Connect

    Douglas, G.R.; Nestmann, E.R.; Lebel, G.

    1986-11-01

    The production of chlorinated by-products through chlorine disinfection of drinking water has been well documented. Natural organic precursors for these chemicals include fulvic and humic acids, the chlorination of which leads to the production of mutagenic compounds. Comparisons of extracts of raw versus treated waters have confirmed that clorination during water treatment produces mutagenic activity in the Salmonella (Ames) test. Present work on XAD-2 extracts of raw and chlorinated water from six municipalities in the Great Lakes region of Canada has involved a battery of mutagenicity assays for various genetic endpoints: the Salmonella test, the sister-chromatid exchange (SCE) and the micronucleus (MN) induction in Chinese hamster ovary (CHO) cells. All extracts of treated (chlorinated), but none of untreated, water were mutagenic in the Salmonella assay. On the other hand, extracts of both treated and untreated water samples showed activity in the SCE and MN assays, but no consistent pattern of response with regard to treatment (chlorination) was evident. These data show that chlorination contributes mutagens to drinking water and suggest that mammalian in vitro assays may be more sensitive for detecting mutagenicity in water samples than the Salmonella test.

  9. Radioprotective action of WR-1065 on radiation-induced DNA strand breaks in cultured Chinese hamster ovary cells

    SciTech Connect

    Murray, D.; VanAnkeren, S.C.; Milas, L.; Meyn, R.E.

    1988-01-01

    We have examined the radioprotective effect of WR-1065 on cultured Chinese hamster ovary cells. The effects of the drug on the induction and rejoining of gamma-ray-induced DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) were measured using alkaline (pH 12.1) and neutral (pH 7.0) elution, respectively. Molecular protection factors (PFs) calculated from these data allowed us to determine whether the degree of modification of strand breakage accurately predicted the PFs measured using the biological end point of cell survival. The drug did protect against the induction of both SSBs and DSBs, although to an extent that did not appear to fully account for the degree of radioprotection in terms of cell killing measured under identical conditions. It is therefore unlikely that radioprotection by WR-1065 occurs simply as a consequence of a general lowering of all types of gamma-ray-induced DNA lesions, and it is possible that the drug could differentially protect against the induction of subsets of these DNA lesions. The rate of SSB rejoining was retarded following preirradiation treatment of cells with WR-1065, but there was no effect on DSB rejoining. Postirradiation treatment with WR-1065 also appeared to retard SSB rejoining but without an accompanying effect on either DSB rejoining or cell survival; however, this effect was largely reversed by the addition of catalase and was, therefore, probably a result of H/sub 2/O/sub 2/ generated by autoxidation of the drug. Based on these observations, it would appear that the molecular actions of aminothiol radioprotective compounds that lead to reduced cell killing are much more complex than previously thought.

  10. Three enzymes involved in oligosaccharide-lipid assembly in Chinese hamster ovary cells differ in lipid substrate preference.

    PubMed

    McLachlan, K R; Krag, S S

    1994-10-01

    Initial steps in N-linked glycosylation involve formation of a large oligosaccharide structure on a lipid carrier, dolichyl phosphate. We have previously characterized Chinese hamster ovary (CHO) glycosylation mutants (Lec9 cells) that utilize the polyisoprenoid lipid polyprenyl phosphate rather than dolichyl phosphate in these glycosylation reactions. Polyprenyl phosphate differs from dolichyl phosphate only in the degree of saturation of its terminal isoprenyl unit. Our goal was to determine whether the glycosylation defect of Lec9 cells could be explained simply by knowing lipid substrate preferences of the enzymes involved in the assembly of oligosaccharide-lipid (OSL) intermediates. In this study, we have used in vitro assay systems to compare the ability of dolichyl phosphate and polyprenyl phosphate to act as substrates for three glycosyl transferase enzymes involved in OSL assembly. In order to insure that we were only examining lipid substrate preferences of the enzymes and not other potential defects present in Lec9 cells, we used membranes prepared from wild-type cells in these in vitro reactions. Our results indicate that one of the enzymes, mannosylphosphoryldolichol (MPD) synthase, exhibited a significant preference for the dolichol substrate. Glucosylphosphoryldolichol (GPD) synthase, on the other hand, showed no binding specificity for the dolichol substrate, although the enzyme used the dolichol substrate at a twofold higher rate. N,N'-diacetyl-chitobiosylpyrophosphoryldolichol (CPD) synthase was able to use either lipid substrate with equal efficiency. These results suggest that not all glycosyl transferases in this pathway show a preference for dolichol derivatives.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Molecular structural analysis of HPRT mutations induced by thermal and epithermal neutrons in Chinese hamster ovary cells.

    PubMed

    Kinashi, Y; Sakurai, Y; Masunaga, S; Suzuki, M; Takagaki, M; Akaboshi, M; Ono, K

    2000-09-01

    Chinese hamster ovary (CHO) cells were exposed to thermal and epithermal neutrons, and the occurrence of mutations at the HPRT locus was investigated. The Kyoto University Research Reactor (KUR), which has been improved for use in neutron capture therapy, was the neutron source. Neutron energy spectra ranging from nearly pure thermal to epithermal can be chosen using the spectrum shifters and thermal neutron filters. To determine mutant frequency and cell survival, cells were irradiated with thermal and epithermal neutrons under three conditions: thermal neutron mode, mixed mode with thermal and epithermal neutrons, and epithermal neutron mode. The mutagenicity was different among the three irradiation modes, with the epithermal neutrons showing a mutation frequency about 5-fold that of the thermal neutrons and about 1.5-fold that of the mixed mode. In the thermal neutron and mixed mode, boron did not significantly increase the frequency of the mutants at the same dose. Therefore, the effect of boron as used in boron neutron capture therapy (BNCT) is quantitatively minimal in terms of mutation induction. Over 300 independent neutron-induced mutant clones were isolated from 12 experiments. The molecular structure of HPRT mutations was determined by analysis of all nine exons by multiplex polymerase chain reaction. In the thermal neutron and mixed modes, total and partial deletions were dominant and the fraction of total deletions was increased in the presence of boron. In the epithermal neutron mode, more than half of the mutations observed were total deletions. Our results suggest that there are clear differences between thermal and epithermal neutron beams in their mutagenicity and in the structural pattern of the mutants that they induce. Mapping of deletion breakpoints of 173 partial-deletion mutants showed that regions of introns 3-4, 7/8-9 and 9-0 are sensitive to the induction of mutants by neutron irradiation.

  12. Localization and functional analysis of CHIP28k water channels in stably transfected Chinese hamster ovary cells.

    PubMed

    Ma, T; Frigeri, A; Tsai, S T; Verbavatz, J M; Verkman, A S

    1993-10-25

    CHIP28 is a major water transporting protein in erythrocytes and plasma membranes in kidney proximal tubule and thin descending limb of Henle. Chinese hamster ovary cells were stably transfected with the coding sequence of cloned rat kidney CHIP28k using expression vectors containing cytomegalovirus or Rous sarcoma virus promoters. Clonal cell populations expressed a 1.3-kilobase mRNA on Northern blot probed by CHIP28k cDNA and a 28-kDa protein on immunoblot probed by a polyclonal CHIP28 antibody. The clone with greatest expression produced approximately 8 x 10(6) copies of CHIP28k protein/cell. Plasma membrane osmotic water permeability (Pf), measured by stopped-flow light scattering, was 0.004 cm/s in control (vector-transfected) cells (10 degrees C) and 0.014 cm/s in the CHIP28k-transfected cells. Pf in CHIP28k-transfected cells had an activation energy of 4.9 kcal/mol and was reversibly inhibited by HgCl2. CHIP28k expression did not affect the transport of protons and the small polar non-electrolytes urea and formamide. CHIP28k immunoreactivity and function was then determined in subcellular fractions. Pf in 6-carboxyfluorescein-labeled endocytic vesicles, measured by a stopped-flow fluorescence quenching assay, was 0.002 cm/s (control cells) and 0.011 cm/s (CHIP28k-transfected cells); Pf in transfected cells was inhibited by HgCl2. Immunoblotting of fractionated endoplasmic reticulum, Golgi, and plasma membranes revealed high densities of CHIP28k (approximately 5000 monomers/microns 2 in plasma membrane) with different glycosylation patterns; functional water transport activity was present only in Golgi and plasma membrane vesicles. Antibody detection of CHIP28k by confocal fluorescence microscopy and immunogold electron microscopy revealed localization to plasma membrane and intracellular vesicles. These studies establish a stably transfected somatic cell line that strongly expresses functional CHIP28k water channels. As in the original proximal tubule cells

  13. DNA adduct formation and mutation induction by nitropyrenes in Salmonella and Chinese hamster ovary cells: relationships with nitroreduction and acetylation.

    PubMed Central

    Heflich, R H; Fifer, E K; Djuric, Z; Beland, F A

    1985-01-01

    Nitrated pyrenes are environmental pollutants and potent mutagens in the Salmonella reversion assay. In this study reversion induction by 1-nitropyrene and 1,8-dinitropyrene in Salmonella typhimurium TA1538 and mutation induction by 1-nitropyrene in Chinese hamster ovary (CHO) cells were related to the extent of metabolism and DNA adduct formation. In suspension cultures of Salmonella typhimurium TA1538, 1,8-dinitropyrene was up to 40-fold more mutagenic than 1-nitropyrene, although both compounds were metabolized at similar rates with nitroreduction being the major pathway. The major metabolite formed from 1-nitropyrene after 2 hr of incubation was 1-nitrosopyrene, while 1-amino-8-nitropyrene was the major metabolite formed from 1,8-dinitropyrene. 1-Nitrosopyrene and 1-nitro-8-nitrosopyrene elicited mutation values consistent with their being intermediates in the activation pathways. However, subsequent to nitroreduction, 1,8-dinitropyrene appeared to be further activated by acetylation, while 1-nitropyrene was not. Each nitrated pyrene produced a major DNA adduct substituted at the C8-position of deoxyguanosine. Although 1,8-dinitropyrene was more mutagenic than 1-nitropyrene, both compounds induced a similar number of revertants per adduct. Incubation of 1-nitrosopyrene with CHO cells produced a rapid concentration- and time-dependent induction of mutations and the conversion of 1-nitrosopyrene to 1-aminopyrene. In contrast, 1-nitropyrene did not induce mutations and was not converted to 1-aminopyrene. Both compounds produced the same major adduct, but adduct formation by 1-nitropyrene was much lower than by 1-nitrosopyrene.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3910415

  14. Kinetic mechanism and characterization of human beta-galactosidase precursor secreted by permanently transfected Chinese hamster ovary cells.

    PubMed

    Zhang, S; McCarter, J D; Okamura-Oho, Y; Yaghi, F; Hinek, A; Withers, S G; Callahan, J W

    1994-11-15

    Chinese hamster ovary cell clones permanently transfected with the cDNA for human lysosomal beta-galactosidase secrete the enzyme precursor into the cell medium, from which it is purified to apparent homogeneity in a single step by affinity chromatography. The purified precursor is fully active, displays the same pH optimum and Km values as the mature placental enzyme, and has an intact C-terminus. The intact enzyme when chromatographed on a Sephacryl S-200 molecular-sieve column elutes as a 105,500 Da monomer, whereas on SDS/PAGE gels the polypeptide migrates as an 88 kDa polypeptide. A time course of digestion with glycopeptide-N-glycanase shows the gradual conversion of the precursor from an 88 to a 72 kDa protein, suggesting the presence of five N-linked oligosaccharides in the protein. The precursor is readily taken up in a mannose-6-phosphate-dependent manner into beta-galactosidase-deficient, GM1-gangliosidosis fibroblasts, and the enzyme activity is returned to normal levels. We show that the stereochemical course of enzymic hydrolysis involves the retention of the beta-configuration at the anomeric centre, suggesting a double-displacement mechanism. Furthermore, the enzyme is rapidly and irreversibly inactivated in the presence of the mechanism-based inactivator 2,4-dinitrophenyl-2-deoxy-2-fluoro-beta-D-galactopyranoside, which implicates a covalent intermediate. The enzyme is also inactivated by 1-ethyl-3(3-dimethylamino-propyl)carbodi-imide and by phenylglyoxal, which implicates carboxylate and arginine residues respectively in the active site. We conclude that the beta-galactosidase precursor is functionally identical to the mature lysosomal form of the enzyme and serves as an excellent enzyme source for investigation of structure-function relationships in the protein.

  15. Hyperthermic killing and hyperthermic radiosensitization in Chinese hamster ovary cells: effects of pH and thermal tolerance

    SciTech Connect

    Holahan, E.V.; Highfield, D.P.; Holahan, P.K.; Dewey, W.C.

    1984-01-01

    To quantitatively relate heat killing and heat radiosensitization, asynchronous or G/sub 1/ Chinese hamster ovary (CHO) at pH 7.1 or 6.75 were heated and/or X-irradiated 10 min. later. Since no progression of G/sub 1/cells into S phase occurred during the heat and radiation treatments, cell cycle artifacts were minimized. Hyperthermic radiosensitizaiton was expressed as the thermal enhancement factor (TEF), defined as the ratio of the D/sub 0/ of the radiation survival curve to that of the D/sub 0/ radiation survival curve for heat plus radiation. The TEF increased continuously with increased of the heat killing at 45.5/sup 0/ C, and for a given amount of heat killing, the amount of heat radiosensitization was the same for both pH's. When cells were heated chronically at 42.4/sup 0/ C at pH 7.4, the TEF increased initially to 2.0-2.5 and then returned to near 1.0 during continued heating as thermal tolerance developed for both heat killing and heat radiosensitization. However, the shoulder (D/sub q/) of the radiation survival curve for heat plus radiation did not manifest thermal tolerance. These results suggest that heat killing and heat radiosensitization have a target(s) in common (TEF results), along with either a different target(s) or a difference in the manifestation of heat damage (D/sub q/ results). Since low pH reduced the rate of development of thermal tolerance during heating at low temperatures, low pH enhanced heat killing more at 42-42.5/sup 0/ C than at 45.5 C where thermal tolerance did not develop. These findings agree with animal experiments suggesting that in the clinic, a therapeutic gain for tumor cells at low pH may be greater for temperatures of 42-42.5/sup 0/ C than of 45.5/sup 0/ C.

  16. The mechanisms of cytotoxicity of urethane dimethacrylate to Chinese hamster ovary cells.

    PubMed

    Chang, Hsiao-Hua; Chang, Mei-Chi; Lin, Li-Deh; Lee, Jang-Jaer; Wang, Tong-Mei; Huang, Chun-Hsun; Yang, Ting-Ting; Lin, Hsueh-Jen; Jeng, Jiiang-Huei

    2010-09-01

    Monomers released from resin-containing products may cause various adverse effects. Urethane dimethacrylate (UDMA) is a principal resin monomer and also a major component released from various dental resin materials. Thus the toxic effects and mechanisms should be elucidated for improving of its safety use. Here we investigated the effects of UDMA on the growth, cell cycle progression, reactive oxygen species (ROS) production and glutathione (GSH) alteration in CHO-K1 cells, and the preventive effects by antioxidants (NAC and catalase) were also evaluated. UDMA elicited growth inhibition (>0.025 mm) of CHO-K1 cells in a clearly dose-dependent manner. Cell cycle perturbation and ROS overproduction were also observed. A 0.1 mm UDMA-induced S-phase cell cycle arrest and ROS accumulation. Cell apoptosis and necrosis became significant when UDMA concentration was 0.25 mm. GSH depletion occurred at cells treated with 0.25 mm UDMA, a highly cytotoxic concentration at which point myriad cells were under apoptosis or necrosis. Thus GSH depletion can be crucial for the death of CHO-K1 cells. Furthermore NAC (0.5-10 mm) and catalase (250-1000 U/ml) obviously attenuated the UDMA-induced toxicity by reducing ROS generation and cell cycle disturbance, and the effects were dose-related. These results suggest that UDMA toxicity is associated with ROS production, GSH depletion, cell cycle disturbance and cell apoptosis/necrosis. PMID:20579731

  17. Cytotoxicity and mutagenicity of vapor-phase pollutants in rat lung epithelial cells and Chinese hamster ovary cells grown on collagen gels

    SciTech Connect

    Zamora, P.O.; Benson, J.M.; Marshall, T.C.; Mokler, B.V.; Li, A.P.; Dahl, A.R.; Brooks, A.L.; McClellan, R.O.

    1983-01-01

    Lung epithelial cell (cell line designated LEC) and Chinese hamster ovary (CHO) cells were grown on hydrated collagen gels and exposed directly to toxic vapor-phase pollutants. The cells were exposed to graded concentrations of phenol, formaldehyde, a volatile fraction of process stream material from an experimental coal gasifier, and the nonparticulate, vapor phase of diesel engine exhaust. During exposures, the cells were maintained at an air/collagen interface by removing the medium overlying the hydrated collagen gel. Morphological changes indicative of cell retraction were found in LEC cell cultures exposed to phenol, formaldehyde, or diesel exhaust. Damage following exposure to the toxicants was quantitated in LEC and CHO cells by Trypan blue dye exclusion, a measure of plasma membrane integrity. Clone-forming ability was also used to measure cell survival in CHO cells. When measured by Trypan blue dye exclusion, phenol (EC50 = 2.1 mg/l) caused membrane damage to LEC cells but not CHO cells, while formaldehyde (EC50 = 31 and 42 ..mu..g/l for LEC and CHO, respectively) and diesel exhaust (EC50 = 11 and 29% of tailpipe exhaust in LEC and CHO cells, respectively) caused damage to both cell types. No cytotoxicity was observed in LEC or CHO cells exposed to the fraction from the coal gasifier. Essentially no mutagenic activity was associated with the exposure of CHO cells to formaldehyde or the vapor phase of diesel exhaust. Mutagenic activity was found in CHO cells exposed to ethylene oxide, the positive control.

  18. Nonglucosylated oligosaccharides are transferred to protein in MI8-5 Chinese hamster ovary cells.

    PubMed

    Quellhorst, G J; O'Rear, J L; Cacan, R; Verbert, A; Krag, S S

    1999-01-01

    A CHO mutant MI8-5 was found to synthesize Man9-GlcNAc2-P-P-dolichol rather than Glc3Man9GlcNAc2-P-P-dolichol as the oligosaccharide-lipid intermediate in N-glycosylation of proteins. MI8-5 cells were incubated with labeled mevalonate, and the prenol was found to be dolichol. The mannose-labeled oligosaccharide released from oligosaccharide-lipid of MI8-5 cells was analyzed by HPLC and alpha-mannosidase treatment, and the data were consistent with a structure of Man9GlcNAc2. In addition, MI8-5 cells did not incorporate radioactivity into oligosaccharide-lipid during an incubation with tritiated galactose, again consistent with MI8-5 cells synthesizing an unglucosylated oligosaccharide-lipid. MI8-5 cells had parental levels of glucosylphosphoryldolichol synthase activity. However, in two different assays, MI8-5 cells lacked dolichol-P-Glc:Man9GlcNAc2-P-P-dolichol glucosyltransferase activity. MI8-5 cells were found to synthesize glucosylated oligosaccharide after they were transfected with Saccharomyces cerevisiae ALG 6, the gene for dolichol-P-Glc:Man9GlcNAc2-P-P-dolichol glucosyltransferase. MI8-5 cells were found to incorporate mannose into protein 2-fold slower than parental cells and to approximately a 2-fold lesser extent.

  19. Increase in clonal variation in Chinese hamster ovary cells after treatment with mutagens

    SciTech Connect

    Zdzienicka, M.; Cupido, M.; Simons, J.W.

    1985-03-01

    Clonal variation has been studied in CHO cells. The variant phenotype was an altered morphology of clones in agar: the parental CHO cells give rise to solid clumps of cells (wild-type colonies); occasionally, dispersed colonies arise, and the cells display an invasive growth in agar (INGA-type colonies). The frequency of this altered phenotype can be enhanced by treatment with a variety of mutagens (EMS, ENU, 4NQO, N-Ac-AAF, ultraviolet light, and X-irradiation). Enhancement was not due to a selective killing of wild-type cells or to a side-effect of cytotoxicity, which suggests that DNA damage is the cause of the altered phenotype. The INGA-trait breeds true, but most of the isolated clones have an inherent instability.

  20. Stable expression of functional mitochondrial uncoupling protein in Chinese hamster ovary cells.

    PubMed Central

    Casteilla, L; Blondel, O; Klaus, S; Raimbault, S; Diolez, P; Moreau, F; Bouillaud, F; Ricquier, D

    1990-01-01

    The mitochondrial uncoupling protein (UCP) is a membranous proton carrier exclusively synthesized in brown adipocytes. The cDNA for the rat UCP was placed in an expression vector and transfected into mammalian cells. Its expression was tested in transiently transfected CHO cells. In these cells the UCP was detected in mitochondria by using antibodies. Permanent expression of the UCP was achieved in stable transformed CHO cell lines. In these cells the UCP was characterized in mitochondrial membranes, by using antibodies and hydroxyapatite purification. The protein expressed in CHO cells displayed the functional characteristics of brown adipocyte UCP. It induced the uncoupling of respiration in isolated CHO mitochondria. The membrane potential of transformed mitochondria was also significantly lowered, as a result of the proton translocating activity of the UCP. GDP is known to inhibit the proton pathway in brown fat mitochondria. Addition of GDP to CHO mitochondria containing UCP resulted in a recoupling of respiration and an increase in membrane potential. Thus we conclude that functional UCP is expressed in CHO cells and that the insertion of the UCP alone in any mitochondria is sufficient to induce the uncoupling of respiration. This approach should allow studies on the structure-function relationship of the UCP and of several other related mitochondrial carriers. Images PMID:2367527

  1. Simultaneous targeting of Requiem & Alg-2 in Chinese hamster ovary cells for improved recombinant protein production.

    PubMed

    Lim, Yiping; Mantalaris, Athanasios; Yap, Miranda G S; Wong, Danny C F

    2010-11-01

    Apoptosis is known to be the main cause of cell death in the bioreactor environment, leading to the loss of recombinant protein productivity. In a previous study, transcriptional profiling was used to identify and target four early apoptosis-signaling genes: FADD, FAIM, Alg-2, and Requiem. The resulting cell lines had increased viable cell numbers and extended culture viability, which translated to increased protein productivity. Combinatorial targeting of two genes simultaneously has previously been shown to be more effective than targeting one gene alone. In this study, we sought to determine if targeting Requiem and Alg-2 was more effective than targeting Requiem alone. We found that targeting Requiem and Alg-2 did not result in extended culture viability, but resulted in an increase in maximum viable cell numbers and cumulative IVCD under fed-batch conditions. This in turn led to an approximately 1.5-fold increase in recombinant protein productivity.

  2. Functional nucleotide excision repair is required for the preferential removal of N-ethylpurines from the transcribed strand of the dihydrofolate reductase gene of Chinese hamster ovary cells.

    PubMed Central

    Sitaram, A; Plitas, G; Wang, W; Scicchitano, D A

    1997-01-01

    Transcription-coupled repair of DNA adducts is an essential factor that must be considered when one is elucidating biological endpoints resulting from exposure to genotoxic agents. Alkylating agents comprise one group of chemical compounds which modify DNA by reacting with oxygen and nitrogen atoms in the bases of the double helix. To discern the role of transcription-coupled DNA repair of N-ethylpurines present in discrete genetic domains, Chinese hamster ovary cells were exposed to N-ethyl-N-nitrosourea, and the clearance of the damage from the dihydrofolate reductase gene was investigated. The results indicate that N-ethylpurines were removed from the dihydrofolate reductase gene of nucleotide excision repair-proficient Chinese hamster ovary cells; furthermore, when repair rates in the individual strands were determined, a statistically significant bias in the removal of ethyl-induced, alkali-labile sites was observed, with clearance occurring 30% faster from the transcribed strand than from its nontranscribed counterpart at early times after exposure. In contrast, removal of N-ethylpurines was observed in the dihydrofolate reductase locus in cells that lacked nucleotide excision repair, but both strands were repaired at the same rate, indicating that transcription-coupled clearance of these lesions requires the presence of active nucleotide excision repair. PMID:9001209

  3. Isolation of the amplified dihydrofolate reductase domain from methotrexate-resistant Chinese hamster ovary cells.

    PubMed Central

    Looney, J E; Hamlin, J L

    1987-01-01

    We isolated overlapping recombinant cosmids that represent the equivalent of two complete dihydrofolate reductase amplicon types from the methotrexate-resistant CHO cell line CHOC400. The type I amplicons are 260 kilobases long, are arranged in head-to-tail fashion, and represent 10 to 15% of the amplicons in the CHOC400 genome. The type II amplicons are 220 kilobases long, are arranged in head-to-head and tail-to-tail configurations, and constituted the majority of the remaining amplicons in CHOC400 cells. The type II amplicon sequences are represented entirely within the type I unit. These are the first complete amplicons to be cloned from a mammalian cell line. Images PMID:3821723

  4. Isolation of a human DNA repair gene by selection in Chinese hamster ovary cells

    SciTech Connect

    Ding, R.C.; Eastman, A.; Bresnick, E.

    1987-05-01

    Alkylation of DNA at the O/sup 6/-position of guanine represents a potent mutagenic and carcinogenic lesion. O/sup 6/-Methylguanine DNA methyltransferase is the repair system responsible for catalyzing the transfer of the methyl group to a cysteine of the protein in a suicide reaction. The gene controlling its expression in mammalian systems is designated mex. Resistance to chloroethylnitrosourea (CNU) is also mediated by this protein; this was used to select cells into which the max gene has been introduced. DNA purified from human liver has been transfected into mex/sup -/ CHO cells by the CaPO/sub 4/ method. pSV2gpt, containing a marker gene, gpt, was cotransfected. The transformed cells were initially selected for the expression of gpt (mycophenolic acid resistance) and reselected in CNU for mex/sup +/. Several clones were resistant to both demonstrating the linkage of these genes. A cosmid library was made from a mex/sup +/gpt/sup +/ clone and grown in a gpt/sup -/ strain of E. coli. gpt/sup +/ colonies were selected and the cosmid DNA rescued. One of the tested cosmid DNA's produced CNU resistance upon introduction into CHO cells. This cosmid was subcloned, restriction endonuclease-treated and a 5.3 kb fragment showed mex activity. This fragment is being further characterized and the DNA sequenced.

  5. uv excision-repair gene transfer in Chinese hamster ovary (CHO) cells

    SciTech Connect

    MacInnes, M.A.; Bingham, J.M.; Strniste, G.F.; Thompson, L.H.

    1983-01-01

    uvc-sensitive mutants of CHO cells provide a model system for molecular studies of DNA repair. We present our recent results which show that these mutants are competent recipients for plasmid marker gene transfer and incorporation of a putative CHO repair gene. The applicability and advantages of this system for interspecies human repair gene identification are discussed.

  6. The impact of homologous recombination repair deficiency on depleted uranium clastogenicity in Chinese hamster ovary cells: XRCC3 protects cells from chromosome aberrations, but increases chromosome fragmentation.

    PubMed

    Holmes, Amie L; Joyce, Kellie; Xie, Hong; Falank, Carolyne; Hinz, John M; Wise, John Pierce

    2014-04-01

    Depleted uranium (DU) is extensively used in both industry and military applications. The potential for civilian and military personnel exposure to DU is rising, but there are limited data on the potential health hazards of DU exposure. Previous laboratory research indicates DU is a potential carcinogen, but epidemiological studies remain inconclusive. DU is genotoxic, inducing DNA double strand breaks, chromosome damage and mutations, but the mechanisms of genotoxicity or repair pathways involved in protecting cells against DU-induced damage remain unknown. The purpose of this study was to investigate the effects of homologous recombination repair deficiency on DU-induced genotoxicity using RAD51D and XRCC3-deficient Chinese hamster ovary (CHO) cell lines. Cells deficient in XRCC3 (irs1SF) exhibited similar cytotoxicity after DU exposure compared to wild-type (AA8) and XRCC3-complemented (1SFwt8) cells, but DU induced more break-type and fusion-type lesions in XRCC3-deficient cells compared to wild-type and XRCC3-complemented cells. Surprisingly, loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. DU induced selective X-chromosome fragmentation irrespective of RAD51D status, but loss of XRCC3 nearly eliminated fragmentation observed after DU exposure in wild-type and XRCC3-complemented cells. Thus, XRCC3, but not RAD51D, protects cells from DU-induced breaks and fusions and also plays a role in DU-induced chromosome fragmentation. PMID:24561002

  7. Highly Efficient Transfer of Chromosomes to a Broad Range of Target Cells Using Chinese Hamster Ovary Cells Expressing Murine Leukemia Virus-Derived Envelope Proteins

    PubMed Central

    Kazuki, Yasuhiro; Oshimura, Mitsuo; Hara, Takahiko

    2016-01-01

    Microcell-mediated chromosome transfer (MMCT) is an essential step for introducing chromosomes from donor cells to recipient cells. MMCT allows not only for genetic/epigenetic analysis of specific chromosomes, but also for utilization of human and mouse artificial chromosomes (HACs/MACs) as gene delivery vectors. Although the scientific demand for genome scale analyses is increasing, the poor transfer efficiency of the current method has hampered the application of chromosome engineering technology. Here, we developed a highly efficient chromosome transfer method, called retro-MMCT, which is based on Chinese hamster ovary cells expressing envelope proteins derived from ecotropic or amphotropic murine leukemia viruses. Using this method, we transferred MACs to NIH3T3 cells with 26.5 times greater efficiency than that obtained using the conventional MMCT method. Retro-MMCT was applicable to a variety of recipient cells, including embryonic stem cells. Moreover, retro-MMCT enabled efficient transfer of MAC to recipient cells derived from humans, monkeys, mice, rats, and rabbits. These results demonstrate the utility of retro-MMCT for the efficient transfer of chromosomes to various types of target cell. PMID:27271046

  8. Highly Efficient Transfer of Chromosomes to a Broad Range of Target Cells Using Chinese Hamster Ovary Cells Expressing Murine Leukemia Virus-Derived Envelope Proteins.

    PubMed

    Suzuki, Teruhiko; Kazuki, Yasuhiro; Oshimura, Mitsuo; Hara, Takahiko

    2016-01-01

    Microcell-mediated chromosome transfer (MMCT) is an essential step for introducing chromosomes from donor cells to recipient cells. MMCT allows not only for genetic/epigenetic analysis of specific chromosomes, but also for utilization of human and mouse artificial chromosomes (HACs/MACs) as gene delivery vectors. Although the scientific demand for genome scale analyses is increasing, the poor transfer efficiency of the current method has hampered the application of chromosome engineering technology. Here, we developed a highly efficient chromosome transfer method, called retro-MMCT, which is based on Chinese hamster ovary cells expressing envelope proteins derived from ecotropic or amphotropic murine leukemia viruses. Using this method, we transferred MACs to NIH3T3 cells with 26.5 times greater efficiency than that obtained using the conventional MMCT method. Retro-MMCT was applicable to a variety of recipient cells, including embryonic stem cells. Moreover, retro-MMCT enabled efficient transfer of MAC to recipient cells derived from humans, monkeys, mice, rats, and rabbits. These results demonstrate the utility of retro-MMCT for the efficient transfer of chromosomes to various types of target cell. PMID:27271046

  9. Evaluation of pseudorabies virus glycoprotein gp50 as a vaccine for Aujeszky's disease in mice and swine: expression by vaccinia virus and Chinese hamster ovary cells.

    PubMed Central

    Marchioli, C C; Yancey, R J; Petrovskis, E A; Timmins, J G; Post, L E

    1987-01-01

    Pseudorabies virus (PRV) is an alphaherpesvirus which causes an economically important disease of swine. One of the PRV glycoproteins, gp50, was previously identified as the sequence homolog of herpes simplex virus glycoprotein gD (E.A. Petrovskis, J.G. Timmins, M.A. Armentrout, C.C. Marchioli, R.J. Yancey, Jr., and L.E. Post, J. Virol. 59:216-223, 1986). gp50 was evaluated as a PRV subunit vaccine candidate. gp50 protected mice from PRV-induced mortality either when delivered via infection with a recombinant vaccinia virus or when administered as a subunit vaccine produced in a eucaryotic cell line, Chinese hamster ovary (CHO) cells. In addition, gp50 synthesized in CHO cells protected pigs from lethal infection with PRV. This result demonstrates that a single viral glycoprotein could induce a protective immune response in the natural host of a herpesvirus infection. Images PMID:2824827

  10. Evaluation of cytogenetic effects of a naturally occurring non-ice-nucleation Pseudomonas fluorescens strain in Chinese hamster ovary (CHO) cells.

    PubMed

    Caruso, P; Andreozzi, L; Motta, S; Mosesso, P

    1995-01-01

    One of the main methods for eliminating ice-nucleation-active (INA+) bacteria the micro-organisms responsible for frost injuries to plants at mild freezing temperatures, is the use, as competitors, of other naturally occurring non-nucleating strains (non-INA). In the present article we investigated the cytogenetic effects of a naturally occurring non-INA strain of Pseudomonas fluorescens (MS 1640 R3), evaluating the induction of chromosomal aberrations and sister chromatid exchanges (SCEs) in Chinese hamster ovary (CHO) cells in the absence and presence of rat S9 metabolism. The results obtained did not show any increase in either chromosomal aberrations or SCEs, both in the absence and presence of rat S9 metabolism when used as i) intact bacteria cells, ii) sonicated bacteria (i.e., potential endotoxins), or iii) metabolic bacterial products (i.e., potential exotoxins) released in the growth medium. PMID:8584981

  11. Biologically active constituents from Salix viminalis bio-oil and their protective activity against hydrogen peroxide-induced oxidative stress in Chinese hamster ovary cells.

    PubMed

    Ilnicka, Anna; Roszek, Katarzyna; Olejniczak, Andrzej; Komoszynski, Michal; Lukaszewicz, Jerzy P

    2014-11-01

    The protective antioxidative effect of the phenolic extract (PE) isolated from Salix viminalis pyrolysis derived bio-oil was shown in vitro on the Chinese hamster ovary (CHO) cells exposed to hydrogen peroxide (H2O2). Cells pretreated with 0.05 μg/ml PE after exposure to different concentrations of H2O2 (300-900 μM) showed up to 25 % higher viability than the unpretreated ones. The antioxidative effect of PE was also observed in a time-dependent manner. The results were confirmed by visual examination of the specimens using microscopy. Finally, superoxide dismutase (SOD) activity modulation was shown by SOD assay, designed to determine the activity of enzymes removing free radicals.

  12. The zinc ionophore clioquinol reverses autophagy arrest in chloroquine-treated ARPE-19 cells and in APP/mutant presenilin-1-transfected Chinese hamster ovary cells.

    PubMed

    Seo, Bo-Ra; Lee, Sook-Jeong; Cho, Kyung Sook; Yoon, Young Hee; Koh, Jae-Young

    2015-12-01

    Arrested autophagy may contribute to the pathogenesis of Alzheimer's disease. Because we found that chloroquine (CQ) causes arrested autophagy but clioquinol (ClioQ), a zinc ionophore, activates autophagic flux, in the present study, we examined whether ClioQ can overcome arrested autophagy induced by CQ or mutant presenilin-1 (mPS1). CQ induced vacuole formation and cell death in adult retinal pigment epithelial (ARPE-19) cells, but co-treatment with ClioQ attenuated CQ-associated toxicity in a zinc-dependent manner. Increases in lysosome dilation and blockage of autophagic flux by CQ were also markedly attenuated by ClioQ treatment. Interestingly, CQ increased lysosomal pH in amyloid precursor protein (APP)/mPS1-expressing Chinese hamster ovary 7WΔE9 (CHO-7WΔE9) cell line, and ClioQ partially re-acidified lysosomes. Furthermore, accumulation of amyloid-β (Aβ) oligomers in CHO-7WΔE9 cells was markedly attenuated by ClioQ. Moreover, intracellular accumulation of exogenously applied fluorescein isothiocyanate-conjugated Aβ(1-42) was also increased by CQ but was returned to control levels by ClioQ. These results suggest that modulation of lysosomal functions by manipulating lysosomal zinc levels may be a useful strategy for clearing intracellular Aβ oligomers. PMID:26453000

  13. Toxicology Studies on Lewisite and Sulfur Mustard Agents: Genetic Toxicity of Sulfur Mustard (HD) in Chinese Hamster Ovary Cells Final Report

    SciTech Connect

    Jostes, Jr., R. F.; Sasser, L. B.; Rausch, R. J.

    1989-05-01

    The cytotoxic, clastogenic and mutagenic effects of sulfur nustard in Chinese hamster ovary cells are described in this reoort. The cytotoxicity data indicate that micromolar amounts of HC are highly toxic in microrolar amounts. Chromosone aberration frequencies increased in a dose-dependent manner over a dose range of 0. 5 to 1.0 {micro}m and SCE increased in a dose-dependent fashion in the dose range of 0.0625 to 0.25 {micro}M. Mutation induction at the HGPRT locus was sporadic, but the majority of the exoosures resulted in mutation frequencies which were 1.2 to 4.3 fold higher than the spontaneous frequencies.

  14. Chinese Hamster Ovary (CHO) Host Cell Engineering to Increase Sialylation of Recombinant Therapeutic Proteins by Modulating Sialyltransferase Expression

    PubMed Central

    Lin, Nan; Mascarenhas, Joaquina; Sealover, Natalie R.; George, Henry J.; Brooks, Jeanne; Kayser, Kevin J.; Gau, Brian; Yasa, Isil; Azadi, Parastoo; Archer-Hartmann, Stephanie

    2015-01-01

    N-Glycans of human proteins possess both α2,6- and α2,3-linked terminal sialic acid (SA). Recombinant glycoproteins produced in Chinese hamster overy (CHO) only have α2,3-linkage due to the absence of α2,6-sialyltransferase (St6gal1) expression. The Chinese hamster ST6GAL1 was successfully overexpressed using a plasmid expression vector in three recombinant immunoglobulin G (IgG)-producing CHO cell lines. The stably transfected cell lines were enriched for ST6GAL1 overexpression using FITC-Sambucus nigra (SNA) lectin that preferentially binds α2,6-linked SA. The presence of α2,6-linked SA was confirmed using a novel LTQ Linear Ion Trap Mass Spectrometry (LTQ MS) method including MSn fragmentation in the enriched ST6GAL1 Clone 27. Furthermore, the total SA (mol/mol) in IgG produced by the enriched ST6GAL1 Clone 27 increased by 2-fold compared to the control. For host cell engineering, the CHOZN® GS host cell line was transfected and enriched for ST6GAL1 overexpression. Single-cell clones were derived from the enriched population and selected based on FITC-SNA staining and St6gal1 expression. Two clones (“ST6GAL1 OE Clone 31 and 32”) were confirmed for the presence of α2,6-linked SA in total host cell protein extracts. ST6GAL1 OE Clone 32 was subsequently used to express SAFC human IgG1. The recombinant IgG expressed in this host cell line was confirmed to have α2,6-linked SA and increased total SA content. In conclusion, overexpression of St6gal1 is sufficient to produce recombinant proteins with increased sialylation and more human-like glycoprofiles without combinatorial engineering of other sialylation pathway genes. This work represents our ongoing effort of glycoengineering in CHO host cell lines for the development of “bio-better” protein therapeutics and cell culture vaccine production. PMID:25641927

  15. Preferential DNA-protein cross-linking by NiCl2 in magnesium-insoluble regions of fractionated Chinese hamster ovary cell chromatin.

    PubMed

    Patierno, S R; Sugiyama, M; Basilion, J P; Costa, M

    1985-11-01

    Intracellular nickel ions (Ni2+) have been shown to cause single-strand breaks in DNA, that were rapidly repaired, and DNA-protein cross-links, that persisted for at least 24 h following removal of extracellular ionic nickel. In this study, we have used the techniques of alkaline elution, chromatin fractionation, and sodium dodecyl sulfate:polyacrylamide gel electrophoresis to examine the DNA-protein cross-linking induced by NiCl2 in Chinese hamster ovary cells. Continuous treatment of logarithmically growing Chinese hamster ovary cells with 2.5 mM NiCl2 in complete medium resulted in DNA single-strand breaks within 1 h, followed by a time-dependent increase in the induction of DNA-protein cross-links at 2, 3, and 6 h. Since the entry of nickel into cells was maximal within 2 h of exposure, the time delay for the formation of DNA-protein cross-links was not limited by metal uptake. The nickel-induced DNA-protein cross-linking appeared to require active cell cycling, since single-strand breaks but no cross-linking could be detected in confluent cells treated with 1, 2.5, or 5 mM NiCl2 for 3 h. DNA-protein cross-linking induced by nickel occurred in late S phase of the cell cycle. High-molecular-weight nonhistone chromatin proteins and possibly histone H1 migrating at the Mr 30,000 range became cross-linked to DNA after treatment of cells with NiCl2. All nickel-cross-linked proteins were concentrated in the magnesium-insoluble regions of fractionated chromatin and were stable to urea, 2-mercaptoethanol, and Nonidet P-40. Some proteins (Mr 48,000, 52,000, 55,000, 70,000, and 95,000), the association of which with DNA was also stable to Sarkosyl, salt, and EDTA, were detectable in DNA rigorously fractionated from untreated cells. Nickel therefore appeared to cause the cross-linking of proteins that normally reside in close association with DNA. Alterations of the normal association of these proteins with DNA by nickel may be an early event in the nickel transformation

  16. A novel regulatory element (E77) isolated from CHO‐K1 genomic DNA enhances stable gene expression in Chinese hamster ovary cells

    PubMed Central

    Kang, Shin‐Young; Kim, Yeon‐Gu; Kang, Seunghee; Lee, Hong Weon

    2016-01-01

    Abstract Vectors flanked by regulatory DNA elements have been used to generate stable cell lines with high productivity and transgene stability; however, regulatory elements in Chinese hamster ovary (CHO) cells, which are the most widely used mammalian cells in biopharmaceutical production, are still poorly understood. We isolated a novel gene regulatory element from CHO‐K1 cells, designated E77, which was found to enhance the stable expression of a transgene. A genomic library was constructed by combining CHO‐K1 genomic DNA fragments with a CMV promoter‐driven GFP expression vector, and the E77 element was isolated by screening. The incorporation of the E77 regulatory element resulted in the generation of an increased number of clones with high expression, thereby enhancing the expression level of the transgene in the stable transfectant cell pool. Interestingly, the E77 element was found to consist of two distinct fragments derived from different locations in the CHO genome shotgun sequence. High and stable transgene expression was obtained in transfected CHO cells by combining these fragments. Additionally, the function of E77 was found to be dependent on its site of insertion and specific orientation in the vector construct. Our findings demonstrate that stable gene expression mediated by the CMV promoter in CHO cells may be improved by the isolated novel gene regulatory element E77 identified in the present study. PMID:26762773

  17. Okadaic acid induces DNA fragmentation via caspase-3-dependent and caspase-3-independent pathways in Chinese hamster ovary (CHO)-K1 cells.

    PubMed

    Kitazumi, Ikuko; Maseki, Yoko; Nomura, Yoshiko; Shimanuki, Akiko; Sugita, Yumi; Tsukahara, Masayoshi

    2010-01-01

    DNA fragmentation is a hallmark of apoptosis that occurs in a variety of cell types; however, it remains unclear whether caspase-3 is required for its induction. To investigate this, we produced caspase-3 knockout Chinese hamster ovary (CHO)-K1 cells and examined the effects of gene knockout and treatment with caspase-3 inhibitors. Okadaic acid (OA) is a potent inhibitor of the serine/threonine protein phosphatases (PPs) PP1 and PP2A, which induce apoptotic cellular reactions. Treatment of caspase-3(-/-) cells with OA induced DNA fragmentation, indicating that caspase-3 is not an essential requirement. However, in the presence of benzyloxycarbonyl-Asp-Glu-Val-Asp (OMe) fluoromethylketone (z-DEVD-fmk), DNA fragmentation occurred in CHO-K1 cells but not in caspase-3(-/-) cells, suggesting that caspase-3 is involved in OA-induced DNA fragmentation that does not utilize DEVDase activity. In the absence of caspase-3, DEVDase activity may play an important role. In addition, OA-induced DNA fragmentation was reduced but not blocked in CHO-K1 cells, suggesting that caspase-3 is involved in caspase-independent OA-induced DNA fragmentation. Furthermore, OA-induced cleavage of caspase-3 and DNA fragmentation were blocked by pretreatment with the wide-ranging serine protease inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride. These results suggest that serine proteases regulate DNA fragmentation upstream of caspase-3.

  18. Relationship between Fluorescence Intensity of GFP and the Expression Level of Prestin in a Prestin-Expressing Chinese Hamster Ovary Cell Line

    NASA Astrophysics Data System (ADS)

    Iida, Koji; Nagaoka, Tomoyuki; Tsumoto, Kouhei; Ikeda, Katsuhisa; Kumagai, Izumi; Kobayashi, Toshimitsu; Wada, Hiroshi

    Outer hair cells (OHCs) in mammals can elongate and contract at frequencies up to 100kHz in response to changes in their membrane potential. The origin of this unique motility is the motor protein prestin, which is densely packed in the lateral membrane of the OHCs. In a previous work, we constructed a prestin-expressing cell line using Chinese hamster ovary (CHO) cells to obtain a stable supply of prestin. When we research prestin using constructed cells, it is necessary to estimate the expression level of prestin in the cells easily and non-invasively. As the prestin gene and a green fluorescent protein (GFP) gene were introduced into constructed cells using the same vector, the expression level of prestin and fluorescence intensity of GFP are possibly correlated. Since this correlation is not clear, however, in this study, we therefore investigated whether the expression level of prestin evaluated by patch-clamp recording and the fluorescence intensity of GFP obtained from fluorescence images are correlated or not. As a result, it was demonstrated that they were correlated. The expression level of prestin can therefore be evaluated by measuring the fluorescence intensity of GFP.

  19. Identification of shed proteins from Chinese hamster ovary cells: Application of statistical confidence using human and mouse protein databases

    SciTech Connect

    Ahram, Mamoun; Strittmatter, Eric F.; Monroe, Matthew E.; Adkins, Joshua N.; Hunter, Joel C.; Miller, John H.; Springer, David L.

    2005-05-01

    The shedding process releases ligands, receptors, and other proteins from the surface of the cell and is a mechanism whereby cells communicate. Even though altered regulation of this process has been implicated in several diseases, global approaches to evaluate shed proteins have not been developed. A goal of this study was to identify global changes in shed proteins in media taken from cells exposed to low-doses of radiation in an effort to develop a fundamental understanding of the bystander response. CHO cells were chosen for this study because they have been widely used for radiation studies and since they have been reported to respond to radiation by releasing factors into the media that cause genomic instability and cytotoxicity in unexposed cells, i.e., a bystander effect. Media samples taken for irradiated cells were evaluated using a combination of tandem- and FTICR-mass spectrometry analysis. Since the hamster genome has not been sequenced, mass spectrometry data was searched against the mouse and human proteins databases. Nearly 150 proteins that were identified by tandem mass spectrometry were confirmed by FTICR. When both types of mass spectrometry data were evaluated with a new confidence scoring tool, which is based on discriminant analyses, about 500 protein were identified. Approximately 20% of these identifications were either integral membrane proteins or membrane associated proteins, suggesting that they were derived from the cell surface, hence were likely shed. However, estimates of quantitative changes, based on two independent mass spectrometry approaches, did not identify any protein abundance changes attributable to the bystander effect. Results from this study demonstrate the feasibility of global evaluation of shed proteins using mass spectrometry in conjunction with cross-species protein databases and that significant improvement in peptide/protein identifications is provided by the confidence scoring tool.

  20. Optimization of heterologous protein production in Chinese hamster ovary cells under overexpression of spliced form of human X-box binding protein

    PubMed Central

    2014-01-01

    Background The optimization of protein production is a complex and challenging problem in biotechnology. Different techniques for transcription, translation engineering and the optimization of cell culture conditions have been used to improve protein secretion, but there remain many open problems involving post-translational modifications of the secreted protein and cell line stability. Results In this work, we focus on the regulation of secreted protein specific productivity (using a recombinant human immunoglobulin G (IgG)) by controlling the expression of the spliced form of human X-box binding protein (XBP-(s)) in Chinese hamster ovary cells (CHO-K1) under doxycycline (DOX) induction at different temperatures. We observed a four-fold increase in specific IgG productivity by CHO cells under elevated concentrations of DOX at 30°C compared to 37°C, without detectable differences in binding activity in vitro or changes in the structural integrity of IgG. In addition, we found a correlation between the overexpression of human XBP-1(s) (and, as a consequence, endoplasmic reticulum (ER) size expansion) and the specific IgG productivity under DOX induction. Conclusions Our data suggest the T-REx system overexpressing human XBP-1(s) can be successfully used in CHO-K1 cells for human immunoglobulin production. PMID:24725707

  1. Monitoring utilizations of amino acids and vitamins in culture media and Chinese hamster ovary cells by liquid chromatography tandem mass spectrometry.

    PubMed

    Qiu, Jinshu; Chan, Pik Kay; Bondarenko, Pavel V

    2016-01-01

    Monitoring amino acids and vitamins is important for understanding human health, food nutrition and the culture of mammalian cells used to produce therapeutic proteins in biotechnology. A method including ion pairing reversed-phase liquid chromatography with tandem mass spectrometry was developed and optimized to quantify 21 amino acids and 9 water-soluble vitamins in Chinese hamster ovary (CHO) cells and culture media. By optimizing the chromatographic separation, scan time, monitoring time window, and sample preparation procedure, and using isotopically labeled (13)C, (15)N and (2)H internal standards, low limits of quantitation (≤0.054 mg/L), good precision (<10%) and good accuracy (100±10%) were achieved for nearly all the 30 compounds. Applying this method to CHO cell extracts, statistically significant differences in the metabolite levels were measured between two cell lines originated from the same host, indicating differences in genetic makeup or metabolic activities and nutrient supply levels in the culture media. In a fed-batch process of manufacturing scale bioreactors, two distinguished trends for changes in amino acid concentrations were identified in response to feeding. Ten essential amino acids showed a zigzag pattern with maxima at the feeding days, and 9 non-essential amino acids displayed a smoothly changing profile as they were mainly products of cellular metabolism. Five of 9 vitamins accumulated continuously during the culture period, suggesting that they were fed in access. The method serves as an effective tool for the development and optimization of mammalian cell cultures. PMID:26355770

  2. Use of an antikinetochore antibody and DNA probes to measure aneuploidy induction in interphase human lymphocytes and Chinese hamster ovary cells

    SciTech Connect

    Eastmond, D.A.; Tucker, J.D.; Pinkel, D.

    1988-12-05

    Aneuploidy in germ cells is associated with birth defects, spontaneous abortions, and infertility, whereas in somatic cells aneuploidy may lead to cell death and carcinogenesis. The nonrandom numerical chromosomal changes that are often observed in tumors or transformed cells suggest that aneuploidy induction by chemicals may be involved in carcinogenesis. The identification of aneuploidy inducing agents (aneuploidogens) and studies into the mechanisms by which aneuploidy may be involved in carcinogenesis are currently limited in that standard cytogenetic techniques are time consuming, require highly skilled personnel and are prone to technical artifacts. Recent developments in immunology and molecular biology have resulted in new techniques which may allow simple and rapid identification of aneuploidogens. We report the development of two new approaches to determine the aneuploidy-inducing potential of chemicals. The first approach involves the induction of micronuclei in human lymphocytes and Chinese hamster ovary (CHO) cells and the use of an antikinetochore antibody to determine whether micronuclei contain centromeres---a condition indicating potential aneuploidy. The second approach involves the use of in situ hybridization with fluorescently labeled chromosome-specific DNA probes and the subsequent counting of the number of copies of that chromosome in the interphase nuclei of human lymphocytes. 8 refs., 1 fig., 1 tab.

  3. Cytogenetic response to 1,2-dicarbonyls and hydrogen peroxide in Chinese hamster ovary AUXB1 cells and human peripheral lymphocytes.

    PubMed

    Tucker, J D; Taylor, R T; Christensen, M L; Strout, C L; Hanna, M L; Carrano, A V

    1989-10-01

    Mutagenic 1,2-dicarbonyls have been reported to occur in coffee and other beverages and in various foods. We have measured the induction of sister-chromatid exchanges (SCEs) and endoreduplicated cells (ERCs) to determine the genotoxicity of various 1,2-dicarbonyl compounds in Chinese hamster ovary (CHO) AUXB1 cells and human peripheral lymphocytes. The 1,2-dicarbonyls glyoxal, methylglyoxal and kethoxal each induced highly significant increases in both SCEs and ERCs in AUXB1 cells. Glyoxal and kethoxal induced SCEs but not ERCs in human peripheral lymphocytes. In addition, hydrogen peroxide induced highly significant levels of SCEs and ERCs in AUXB1 cells. Bisulfite, which reacts with carbonyl groups to form addition products, significantly reduced the frequency of SCEs and the proportion of ERCs when glyoxal, methylglyoxal, kethoxal and diacetyl were administered to AUXB1 cells. In addition, bisulfite blocked the formation of ERCs, but not SCEs, induced by hydrogen peroxide. These in vitro results suggest that 1,2-dicarbonyls may play an important role in the genotoxicity of some foods and beverages.

  4. Growth as a solid tumor or reduced glucose concentrations in culture reversibly induce CD44-mediated hyaluronan recognition by Chinese hamster ovary cells.

    PubMed Central

    Zheng, Z; Cummings, R D; Pummill, P E; Kincade, P W

    1997-01-01

    The density, molecular isoform, and posttranslational modifications of CD44 can markedly influence growth and metastatic behavior of tumors. Many CD44 functions, including some involving tumors, have been attributed to its ability to recognize hyaluronan (HA). However, only certain CD44-bearing cells bind soluble or immobilized HA. We now show that CD44 made by wild-type Chinese hamster ovary (CHO-K1) cells and a ligand-binding subclone differ with respect to N-linked glycosylation. While both bear CD44 with highly branched, complex-type glycoforms, CD44 expressed by the wild type was more extensively sialylated. CHO-K1 cells which failed to recognize HA when grown in culture gained this ability when grown as a solid tumor and reverted to a non-HA-binding state when returned to culture. The ability of CHO-K1 cells to recognize HA was also reversibly induced when glucose concentrations in the medium were reduced. Glucose restriction influenced CD44-mediated HA binding by many but not all, of a series of murine tumors. Glucose concentrations and glycosylation inhibitors only partially influenced CD44 receptor function on resting murine B lymphocytes. These observations suggest that glucose levels or other local environmental conditions may markedly influence glycosylation pathways used by some tumor cells, resulting in dramatic alteration of CD44-mediated functions. PMID:9276740

  5. GeneOptimizer program-assisted cDNA reengineering enhances sRAGE autologous expression in Chinese hamster ovary cells.

    PubMed

    Wei, Wen; Kim, Ji Min; Medina, Danny; Lakatta, Edward G; Lin, Li

    2014-03-01

    Soluble receptor for advanced glycation end products (sRAGE) is a secreted mammalian protein that functions as a decoy to counter-react RAGE signaling-resultant pathological conditions, and has high therapeutic potentials. Our prior studies showed that recombinant human sRAGE expressed in Chinese hamster, Ceanothus griseus, ovary (CHO) cells is modified by specific N-glycosylation, and exhibits higher bioactivity than that expressed in other host systems including insect Spodoptera frugiperda cells. Here, we show that GeneOptimizer software program-assisted, reengineered sRAGE cDNA enhances the recombinant protein expression in CHO cells. The cDNA sequence encoding human sRAGE was optimized for RNA structure, stability, and codon usages in CHO cells. We found that such optimization augmented sRAGE expression over 2 folds of its wild-type counterpart. We also studied how individual parameter impacted sRAGE autologous expression in CHO cells, and whether sRAGE bioactivity was compromised. We found that the enhanced expression appeared not to affect sRAGE N-glycosylation and bioactivity. Optimization of sRAGE expression provides a basis for future large-scale production of this protein to meet medical needs. PMID:24373844

  6. Monitoring utilizations of amino acids and vitamins in culture media and Chinese hamster ovary cells by liquid chromatography tandem mass spectrometry.

    PubMed

    Qiu, Jinshu; Chan, Pik Kay; Bondarenko, Pavel V

    2016-01-01

    Monitoring amino acids and vitamins is important for understanding human health, food nutrition and the culture of mammalian cells used to produce therapeutic proteins in biotechnology. A method including ion pairing reversed-phase liquid chromatography with tandem mass spectrometry was developed and optimized to quantify 21 amino acids and 9 water-soluble vitamins in Chinese hamster ovary (CHO) cells and culture media. By optimizing the chromatographic separation, scan time, monitoring time window, and sample preparation procedure, and using isotopically labeled (13)C, (15)N and (2)H internal standards, low limits of quantitation (≤0.054 mg/L), good precision (<10%) and good accuracy (100±10%) were achieved for nearly all the 30 compounds. Applying this method to CHO cell extracts, statistically significant differences in the metabolite levels were measured between two cell lines originated from the same host, indicating differences in genetic makeup or metabolic activities and nutrient supply levels in the culture media. In a fed-batch process of manufacturing scale bioreactors, two distinguished trends for changes in amino acid concentrations were identified in response to feeding. Ten essential amino acids showed a zigzag pattern with maxima at the feeding days, and 9 non-essential amino acids displayed a smoothly changing profile as they were mainly products of cellular metabolism. Five of 9 vitamins accumulated continuously during the culture period, suggesting that they were fed in access. The method serves as an effective tool for the development and optimization of mammalian cell cultures.

  7. Complete sequence of three alpha-tubulin cDNAs in Chinese hamster ovary cells: each encodes a distinct alpha-tubulin isoprotein.

    PubMed Central

    Elliott, E M; Henderson, G; Sarangi, F; Ling, V

    1986-01-01

    The genome of Chinese hamster ovary (CHO) cells contains a complex family of approximately 16 alpha-tubulin genes, many of which may be pseudogenes. We present here the complete cDNA sequences of three expressed alpha-tubulin genes; one of these genes has been identified only in CHO cells. The noncoding regions of these three CHO alpha-tubulin genes differed significantly, but their coding regions were highly conserved. Nevertheless, we observed differences in the predicted amino acid sequences for the three genes. A comparison of the CHO alpha-tubulin sequences with all of the sequences available for mammals allowed assignment of the alpha-tubulin genes to three classes. The proteins encoded by the members of two of these classes showed no class-specific amino acids among the mammalian species examined. The gene belonging to the third class encoded an isoprotein which was clearly distinct, and members of this class may play a unique role in vivo. Sequencing of the three alpha-tubulin genes was also undertaken in CMR795, a colcemid-resistant clonal CHO cell line which has previously been shown to have structural and functional alterations in its tubulin proteins. We found differences in the tubulin nucleotide sequence compared with the parental line; however, no differences in the alpha-tubulin proteins encoded in the two cell lines were observed. PMID:3773896

  8. Understanding the intracellular effects of yeast extract on the enhancement of Fc-fusion protein production in Chinese hamster ovary cell culture.

    PubMed

    Hu, Dongdong; Sun, Yating; Liu, Xuping; Liu, Jintao; Zhang, Xintao; Zhao, Liang; Wang, Haibin; Tan, Wen-Song; Fan, Li

    2015-10-01

    Yeast extract (YE), as a non-animal source additive for mammalian cell culture medium, has been widely used for manufacturing of therapeutic proteins. In the present study, one particular YE was found to have significantly improved the specific productivity (q p) of Fc-fusion protein in recombinant Chinese hamster ovary (rCHO) cell culture. In order to elucidate the intracellular effects of YE on protein productivity, steps of the target protein synthesis process were investigated to unveil their variations caused by YE addition. Stepwise analysis on Fc-fusion protein synthesis process showed that YE enhanced Fc-fusion protein gene transcription with cell cycle arrest at G1 phase; mammalian target of rapamycin (mTOR) signaling pathway was activated to enhance the translation of Fc-fusion protein, and the block in post-translational steps of Fc-fusion protein was alleviated by YE addition as well. Our results revealed the responses of multiple protein production steps to the addition of YE and provided a practical guidance for the separation and application of active compounds from hydrolysates. PMID:26162671

  9. Transfer of two oligosaccharides to protein in a Chinese hamster ovary cell B211 which utilizes polyprenol for its N-linked glycosylation intermediates.

    PubMed

    Kaiden, A; Rosenwald, A G; Cacan, R; Verbert, A; Krag, S S

    1998-10-15

    B211, a glycosylation mutant isolated from Chinese hamster ovary cells, synthesizes 10- to 15-fold less Glc3Man9GlcNAc2-P-P-lipid, the substrate used by the oligosaccharide transferase in the synthesis of asparagine-linked glycoproteins. B211 cells are also 10- to 15-fold deficient in the glucosylation of oligosaccharide-lipid. Despite these properties, protein glycosylation in B211 cells proceeds at a level similar to (50% of) parental cells. We asked whether the near wild-type level of glycosylation was due to the transfer of alternative oligosaccharide structures to protein in B211 cells. The aberrant size of [35S]methionine-labeled VSV G protein and the increased percentage of endoglycosidase H-resistant tryptic peptides as compared to parental cells supported this hypothesis. B211 cells were labeled with [2-3H]mannose either for 1 min or for 1 h in the presence of glycoprotein-processing inhibitors so that the oligosaccharides initially transferred to protein could be analyzed. In addition to Glc3Man9GlcNAc2, a second, endoglycosidase H-resistant oligosaccharide was transferred whose structure was determined by alpha-mannosidase digestion, gel filtration chromatography, and HPLC to be Glc0,1Man5GlcNAc2. Finally, since the synthesis of reduced amounts of Glc3Man9GlcNAc2-P-P-lipid was also a phenotype seen in another glycosylation mutant, Lec9, we analyzed the long-chain prenol in B211 cells. B211 cells synthesized and utilized polyprenol rather than dolichol for all N-linked glycosylation intermediates as determined by HPLC analysis of [3H]mevalonate-labeled lipids. Cell fusions analyzed by similar techniques indicated that B211, originally isolated as a concanavalin A-resistant cell line, is in the Lec9 complementation group.

  10. Chemometrics and in-line near infrared spectroscopic monitoring of a biopharmaceutical Chinese hamster ovary cell culture: prediction of multiple cultivation variables.

    PubMed

    Clavaud, Matthieu; Roggo, Yves; Von Daeniken, Ralph; Liebler, André; Schwabe, Jan-Oliver

    2013-07-15

    In the present study near infrared (NIR) spectroscopy was used to monitor the cultivation of mammalian Chinese hamster ovary (CHO) cells producing a monoclonal antibody in a fed-batch cell culture process. A temperature shift was applied during the cultivation. The cells were incubated at 37 °C and 33 °C. The Fourier transform near infrared (FT-NIR) multiplex process analyzer spectroscopy was investigated to monitor cultivation variables of the CHO cell culture from 10 independent batches using two channels of the FT-NIR. The measurements were performed on production scale bioreactors of 12,500 L. The cell cultures were analyzed with the spectrometer coupled to a transflection sterilizable fiber optic probe inserted into the bioreactors. Multivariate data analysis (MVDA) employing unsupervised principal component analysis (PCA) and partial least squares regression methods (PLS) were applied. PCA demonstrated that 96% of the observed variability was explained by the process trajectory and the inter-batch variability. PCA was found to be a significant tool in identifying batch homogeneity between lots and in detecting abnormal fermentation runs. Seven different cell culture parameters such as osmolality, glucose concentration, product titer, packed cell volume (PCV), integrated viable packed cell volume (ivPCV), viable cell density (VCD), and integrated viable cell count (iVCC) were monitored inline and predicted by NIR. NIR spectra and reference analytics data were computed using control charts to evaluate the monitoring abilities. Control charts of each media component were under control by NIR spectroscopy. The PLS calibration plots offered accurate predictive capabilities for each media. This paper underlines the capability for inline prediction of multiple cultivation variables during bioprocess monitoring.

  11. Inhibition of serine palmitoyltransferase in vitro and long-chain base biosynthesis in intact Chinese hamster ovary cells by. beta. -Cl-alanine

    SciTech Connect

    Medlock, K.A.; Merrill, A.H. Jr.

    1987-05-01

    Serine palmitoyltransferase (SPT) is a pyridoxal-5'-phosphate dependent enzyme that catalyzes the first committed step of long-chain base (LCB) synthesis. Inhibition of SPT activity and de novo biosynthesis of sphinganine and sphingosine was observed in vitro and in intact Chinese hamster ovary cells (CHO). In vitro studies revealed that inhibition was irreversible and concentration- and time-dependent, which are characteristics of suicide inhibition. Incubation of intact CHO cells with 5 mM ..beta..-Cl-alanine for 15 min completely inhibited SPT activity and LCB synthesis from (/sup 14/C)serine. The concentration dependences of inhibition of SPT activity and LCB formation were identical. There was no loss of viability of recovery of SPT activity over the 2 hour time course of these experiments. The synthesis of several other lipids was not affected by the same treatment. These results establish the association between the activity of SPT and the cellular rate of LCB formation and indicate that ..beta..-Cl-alanine can be used to study alterations in cellular LCB synthesis.

  12. Comparison of the kinetics and extent of muscarinic M1-M5receptor internalization, recycling and downregulation in Chinese Hamster Ovary cells

    PubMed Central

    Thangaraju, Arunkumar; Sawyer, Gregory W.

    2010-01-01

    We characterized agonist-induced internalization, recycling and downregulation of each muscarinic receptor subtype (M1 – M5) stably expressed in Chinese hamster ovary (CHO) cells. The radioligands [3H]QNB and [3H]NMS were used to measure the total and plasma membrane populations of muscarinic receptors, respectively. Following carbachol treatment (1 mM), the rank orders for the rate of carbachol-induced internalization of the muscarinic subtypes were M2 > M4 = M5 > M3 = M1, respectively. Unlike the M2 receptor, M1, M3, M4 and M5 receptors recycled back to the plasma membrane after one-hour carbachol treatment. The receptor downregulation elicited to 24-hour carbachol treatment was similar for M2, M3, M4 and M5 receptors, whereas that for the M1 receptor was greater. Our results indicate that there are subtype-specific differences in the rate and extent of agonist-induced muscarinic receptor internalization, recycling and downregulation in CHO cells. PMID:21044619

  13. Molecular cloning and functional expression of a chicken intestinal peptide transporter (cPepT1) in Xenopus oocytes and Chinese hamster ovary cells.

    PubMed

    Chen, Hong; Pan, YuanXiang; Wong, Eric A; Bloomquist, Jeffrey R; Webb, Kenneth E

    2002-03-01

    To study peptide absorption in chickens, an intestinal peptide transporter cDNA (cPepT1) was isolated from a chicken duodenal cDNA library. The cDNA was 2914 bp long and encoded a protein of 714 amino acid residues with an estimated molecular size of 79.3 kDa and an isoelectric point of 7.48. cPepT1 protein is similar60% identical to PepT1 from rabbits, humans, mice, rats and sheep. Sixteen dipeptides, three tripeptides and four tetrapeptides that contained the essential amino acids Met, Lys and(or) Trp were used for functional analysis of cPepT1 in Xenopus oocytes and Chinese hamster ovary cells. For most di- and tripeptides tested, the substrate affinities were in the micromolar range, indicating that cPepT1 has high affinity for these peptides. Lys-Lys and Lys-Trp-Lys were exceptions, with substrate affinities in the millimolar range. Neither free amino acids nor tetrapeptides were transported by cPepT1. Northern blot analysis using a full-length cPepT1 cDNA as the probe demonstrated that cPepT1 is expressed strongly in the duodenum, jejunum and ileum, and at lower levels in kidney and ceca. The present study demonstrated for the first time the presence and functional characteristics of a peptide transport system from an avian species.

  14. Effect of Temperature Downshift on the Transcriptomic Responses of Chinese Hamster Ovary Cells Using Recombinant Human Tissue Plasminogen Activator Production Culture

    PubMed Central

    Bedoya-López, Andrea; Estrada, Karel; Sanchez-Flores, Alejandro; Ramírez, Octavio T.; Altamirano, Claudia; Segovia, Lorenzo; Miranda-Ríos, Juan; Trujillo-Roldán, Mauricio A.; Valdez-Cruz, Norma A.

    2016-01-01

    Recombinant proteins are widely used as biopharmaceuticals, but their production by mammalian cell culture is expensive. Hence, improvement of bioprocess productivity is greatly needed. A temperature downshift (TDS) from 37°C to 28–34°C is an effective strategy to expand the productive life period of cells and increase their productivity (qp). Here, TDS in Chinese hamster ovary (CHO) cell cultures, initially grown at 37°C and switched to 30°C during the exponential growth phase, resulted in a 1.6-fold increase in the qp of recombinant human tissue plasminogen activator (rh-tPA). The transcriptomic response using next-generation sequencing (NGS) was assessed to characterize the cellular behavior associated with TDS. A total of 416 (q > 0.8) and 3,472 (q > 0.9) differentially expressed transcripts, with more than a 1.6-fold change at 24 and 48 h post TDS, respectively, were observed in cultures with TDS compared to those at constant 37°C. In agreement with the extended cell survival resulting from TDS, transcripts related to cell growth arrest that controlled cell proliferation without the activation of the DNA damage response, were differentially expressed. Most upregulated genes were related to energy metabolism in mitochondria, mitochondrial biogenesis, central metabolism, and avoidance of apoptotic cell death. The gene coding for rh-tPA was not differentially expressed, but fluctuations were detected in the transcripts encoding proteins involved in the secretory machinery, particularly in glycosylation. Through NGS the dynamic processes caused by TDS were assessed in this biological system. PMID:26991106

  15. Effect of Temperature Downshift on the Transcriptomic Responses of Chinese Hamster Ovary Cells Using Recombinant Human Tissue Plasminogen Activator Production Culture.

    PubMed

    Bedoya-López, Andrea; Estrada, Karel; Sanchez-Flores, Alejandro; Ramírez, Octavio T; Altamirano, Claudia; Segovia, Lorenzo; Miranda-Ríos, Juan; Trujillo-Roldán, Mauricio A; Valdez-Cruz, Norma A

    2016-01-01

    Recombinant proteins are widely used as biopharmaceuticals, but their production by mammalian cell culture is expensive. Hence, improvement of bioprocess productivity is greatly needed. A temperature downshift (TDS) from 37°C to 28-34°C is an effective strategy to expand the productive life period of cells and increase their productivity (qp). Here, TDS in Chinese hamster ovary (CHO) cell cultures, initially grown at 37°C and switched to 30°C during the exponential growth phase, resulted in a 1.6-fold increase in the qp of recombinant human tissue plasminogen activator (rh-tPA). The transcriptomic response using next-generation sequencing (NGS) was assessed to characterize the cellular behavior associated with TDS. A total of 416 (q > 0.8) and 3,472 (q > 0.9) differentially expressed transcripts, with more than a 1.6-fold change at 24 and 48 h post TDS, respectively, were observed in cultures with TDS compared to those at constant 37°C. In agreement with the extended cell survival resulting from TDS, transcripts related to cell growth arrest that controlled cell proliferation without the activation of the DNA damage response, were differentially expressed. Most upregulated genes were related to energy metabolism in mitochondria, mitochondrial biogenesis, central metabolism, and avoidance of apoptotic cell death. The gene coding for rh-tPA was not differentially expressed, but fluctuations were detected in the transcripts encoding proteins involved in the secretory machinery, particularly in glycosylation. Through NGS the dynamic processes caused by TDS were assessed in this biological system.

  16. Analysis of restriction enzyme-induced DNA double-strand breaks in Chinese hamster ovary cells by pulsed-field gel electrophoresis: implications for chromosome damage.

    PubMed

    Ager, D D; Phillips, J W; Columna, E A; Winegar, R A; Morgan, W F

    1991-11-01

    Restriction enzymes can be electroporated into mammalian cells, and the induced DNA double-strand breaks can lead to aberrations in metaphase chromosomes. Chinese hamster ovary cells were electroporated with PstI, which generates 3' cohesive-end breaks, PvuII, which generates blunt-end breaks, or XbaI, which generates 5' cohesive-end breaks. Although all three restriction enzymes induced similar numbers of aberrant metaphase cells, PvuII was dramatically more effective at inducing both exchange-type and deletion-type chromosome aberrations. Our cytogenetic studies also indicated that enzymes are active within cells for only a short time. We used pulsed-field gel electrophoresis to investigate (i) how long it takes for enzymes to cleave DNA after electroporation into cells, (ii) how long enzymes are active in the cells, and (iii) how the DNA double-strand breaks induced are related to the aberrations observed in metaphase chromosomes. At the same concentrations used in the cytogenetic studies, all enzymes were active within 10 min of electroporation. PstI and PvuII showed a distinct peak in break formation at 20 min, whereas XbaI showed a gradual increase in break frequency over time. Another increase in the number of breaks observed with all three enzymes at 2 and 3 h after electroporation was probably due to nonspecific DNA degradation in a subpopulation of enzyme-damaged cells that lysed after enzyme exposure. Break frequency and chromosome aberration frequency were inversely related: The blunt-end cutter PvuII gave rise to the most aberrations but the fewest breaks, suggesting that it is the type of break rather than the break frequency that is important for chromosome aberration formation.

  17. Effect of Temperature Downshift on the Transcriptomic Responses of Chinese Hamster Ovary Cells Using Recombinant Human Tissue Plasminogen Activator Production Culture.

    PubMed

    Bedoya-López, Andrea; Estrada, Karel; Sanchez-Flores, Alejandro; Ramírez, Octavio T; Altamirano, Claudia; Segovia, Lorenzo; Miranda-Ríos, Juan; Trujillo-Roldán, Mauricio A; Valdez-Cruz, Norma A

    2016-01-01

    Recombinant proteins are widely used as biopharmaceuticals, but their production by mammalian cell culture is expensive. Hence, improvement of bioprocess productivity is greatly needed. A temperature downshift (TDS) from 37°C to 28-34°C is an effective strategy to expand the productive life period of cells and increase their productivity (qp). Here, TDS in Chinese hamster ovary (CHO) cell cultures, initially grown at 37°C and switched to 30°C during the exponential growth phase, resulted in a 1.6-fold increase in the qp of recombinant human tissue plasminogen activator (rh-tPA). The transcriptomic response using next-generation sequencing (NGS) was assessed to characterize the cellular behavior associated with TDS. A total of 416 (q > 0.8) and 3,472 (q > 0.9) differentially expressed transcripts, with more than a 1.6-fold change at 24 and 48 h post TDS, respectively, were observed in cultures with TDS compared to those at constant 37°C. In agreement with the extended cell survival resulting from TDS, transcripts related to cell growth arrest that controlled cell proliferation without the activation of the DNA damage response, were differentially expressed. Most upregulated genes were related to energy metabolism in mitochondria, mitochondrial biogenesis, central metabolism, and avoidance of apoptotic cell death. The gene coding for rh-tPA was not differentially expressed, but fluctuations were detected in the transcripts encoding proteins involved in the secretory machinery, particularly in glycosylation. Through NGS the dynamic processes caused by TDS were assessed in this biological system. PMID:26991106

  18. Inhibition of serine palmitoyltransferase in vitro and long-chain base biosynthesis in intact Chinese hamster ovary cells by. beta. -chloroalanine

    SciTech Connect

    Medlock, K.A.; Merrill, A.H. Jr.

    1988-09-06

    The effects of ..beta..-chloroalanine (..beta..-Cl-alanine) on the serine palmitoyltransferase activity and the de novo biosynthesis of sphinganine and sphingenine were investigated in vitro with rat liver microsomes and in vivo with intact Chinese hamster ovary (CHO) cells. The inhibition in vitro was rapid, irreversible, and concentration and time dependent and apparently involved the active site because inactivation only occurred with ..beta..-Cl-L-alanine and was blocked by L-serine. These are characteristics of mechanism-based (suicide) inhibition. Serine palmitoyltransferase (SPT) was also inhibited when intact CHO cells were incubated with ..beta..-Cl-alanine and this treatment inhibited (/sup 14/C)serine incorporation into long-chain bases by intact cells. The concentration dependence of the loss of SPT activity and of long-chain base synthesis was identical. The effects of ..beta..-Cl-alanine appeared to occur with little perturbation of other cell functions: the cells exhibited no loss in cell viability, (/sup 14/C)serine uptake was not blocked, total lipid biosynthesis from (/sup 14/C)acetic acid was not decreased (nor was the appearance of radiolabel in cholesterol and phosphatidylcholine), and (/sup 3/H)thymidine incorporation into DNA was not affected. There appeared to be little effect on protein synthesis based on the incorporation of (/sup 3/H)leucine, which was only decreased by 14%. Although ..beta..-Cl-L-alanine is known to inhibit other pyridoxal 5'-phosphate dependent enzymes, alanine and aspartate transaminases were not inhibited under these conditions. These results establish the close association between the activity of serine palmitoyltransferase and the cellular rate of long-chain base formation and indicate that ..beta..-Cl-alanine and other mechanism-based inhibitors might be useful to study alterations in cellular long-chain base synthesis.

  19. Multi‐omic profiling ­of EPO‐producing Chinese hamster ovary cell panel reveals metabolic adaptation to heterologous protein production

    PubMed Central

    Ley, Daniel; Seresht, Ali Kazemi; Engmark, Mikael; Magdenoska, Olivera; Nielsen, Kristian Fog; Kildegaard, Helene Faustrup

    2015-01-01

    ABSTRACT Chinese hamster ovary (CHO) cells are the preferred production host for many therapeutic proteins. The production of heterologous proteins in CHO cells imposes a burden on the host cell metabolism and impact cellular physiology on a global scale. In this work, a multi‐omics approach was applied to study the production of erythropoietin (EPO) in a panel of CHO‐K1 cells under growth‐limited and unlimited conditions in batch and chemostat cultures. Physiological characterization of the EPO‐producing cells included global transcriptome analysis, targeted metabolome analysis, including intracellular pools of glycolytic intermediates, NAD(P)H/NAD(P)+, adenine nucleotide phosphates (ANP), and extracellular concentrations of sugars, organic acids, and amino acids. Potential impact of EPO expression on the protein secretory pathway was assessed at multiple stages using quantitative PCR (qPCR), reverse transcription PCR (qRT‐PCR), Western blots (WB), and global gene expression analysis to assess EPO gene copy numbers, EPO gene expression, intracellular EPO retention, and differentially expressed genes functionally related to secretory protein processing, respectively. We found no evidence supporting the existence of production bottlenecks in energy metabolism (i.e., glycolytic metabolites, NAD(P)H/NAD(P)+ and ANPs) in batch culture or in the secretory protein production pathway (i.e., gene dosage, transcription and post‐translational processing of EPO) in chemostat culture at specific productivities up to 5 pg/cell/day. Time‐course analysis of high‐ and low‐producing clones in chemostat culture revealed rapid adaptation of transcription levels of amino acid catabolic genes in favor of EPO production within nine generations. Interestingly, the adaptation was followed by an increase in specific EPO productivity. Biotechnol. Bioeng. 2015;112: 2373–2387. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID

  20. Folate-dependent enzymes in cultured Chinese hamster ovary cells: impaired mitochondrial serine hydroxymethyltransferase activity in two additional glycine-auxotroph complementation classes

    SciTech Connect

    Taylor, R.T.; Hanna, M.L.

    1982-09-01

    Two glycine-requiring Chinese hamster ovary (CHO) auxotrophs (GLYB and AUXB2) representative of the Gly/sup -/ mutant classes B and C are shown to have defects in folate metabolism. These defects result in 10-fold lower rates of whole cell L-(U-/sup 14/C)serine-to-(/sup 14/C)glycine conversion relative to the parental CHO lines (2 vs 20 nmol/h/10/sup 6/ cells). This restriction in serine hydroxymethyltransferase (SHMT) activity is localized in the mitochondria. Intact mitochondria from GLYB and AUXB2 convert labeled serine to glycine at 1-4% the rate and with only 1-3% of the total capacity of parental CHO mitochondria. Yet, GLYB and AUXB2 contain parental cell amounts of cytosolic and mitochondrial SHMT, the latter displaying normal substrate K/sub m/ values. The whole cell and mitochondrial impairments in glycine formation are corrected in GLYB (but not AUXB2) by a prior growth with 100 ..mu..M dl-folinate. They are also partially restored in spontaneous or chemically induced Gly/sup +/ revertants of GLYB and AUXB2. Subcellular fractionation experiments suggest that a low content (one-fifth parental) of mitochondrial folylpolyglutamates contributes to the auxotrophy of GLYB. These studies demonstrate that mitochondrial SHMT is potentially functional in the Gly/sup -/ mutant classes B (GLYB) and C (AUXB2). The impaired SHMT activity in vivo and in isolated mitochondria may result from a deficiency in mitochondrial recycling of 5,10-methylenetetrahydrofolate back to tetrahydrofolate.

  1. Recombinant MUC1 mucin with a breast cancer-like O-glycosylation produced in large amounts in Chinese-hamster ovary cells.

    PubMed Central

    Bäckström, Malin; Link, Thomas; Olson, Fredrik J; Karlsson, Hasse; Graham, Rosalind; Picco, Gianfranco; Burchell, Joy; Taylor-Papadimitriou, Joyce; Noll, Thomas; Hansson, Gunnar C

    2003-01-01

    We have developed an expression system for the production of large quantities of recombinant MUC1 mucin in CHO-K1 (Chinese-hamster ovary K1) cells. The extracellular part of human MUC1, including 16 MUC1 tandem repeats, was produced as a fusion protein with murine IgG Fc, with an intervening enterokinase cleavage site for the removal of the Fc tail. Stable MUC1-IgG-producing CHO-K1 clones were generated and were found to secrete MUC1-IgG into the culture medium. After adaptation to suspension culture in protein-free medium in a bioreactor, the fusion protein was secreted in large quantities (100 mg/l per day) into the culture supernatant. From there, MUC1 could be purified to homogeneity using a two-step procedure including enterokinase cleavage and ion-exchange chromatography. Capillary liquid chromatography MS of released oligosaccharides from CHO-K1-produced MUC1 identified the main O-glycans as Galbeta1-3GalNAc (core 1) and mono- and di-sialylated core 1. The glycans occupied on average 4.3 of the five potential O-glycosylation sites in the tandem repeats, as determined by nano-liquid chromatography MS of partially deglycosylated Clostripain-digested protein. A very similar O-glycan profile and site occupancy was found in MUC1-IgG produced in the breast carcinoma cell line T47D, which has O-glycosylation typical for breast cancer. In contrast, MUC1-IgG produced in another breast cancer cell line, MCF-7, showed a more complex pattern with both core 1- and core 2-based O-glycans. This is the first reported production of large quantities of recombinant MUC1 with a breast cancer-like O-glycosylation that could be used for the immunotherapy of breast cancer. PMID:12950230

  2. Expression of FSH receptor in the hamster ovary during perinatal development

    PubMed Central

    Chakraborty, Prabuddha; Roy, Shyamal K.

    2014-01-01

    FSH plays an important role in ovarian follicular development, and it functions via the G-protein coupled FSH receptor. The objectives of the present study were to determine if full-length FSHR mRNA and corresponding protein were expressed in fetal through postnatal hamster ovaries to explain the FSH-induced primordial follicle formation, and if FSH or estrogen (E) would affect the expression. A full-length and two alternately spliced FSHR transcripts were expressed from E14 through P20. The level of the full-length FSHR mRNA increased markedly through P7 before stabilizing at a lower level with the formation and activation of primordial follicles. A predicted 87kDa FSHR protein band was detected in fetal through P4 ovaries, but additional bands appeared as ovary developed. FSHR immunosignal was present in undifferentiated somatic cells and oocytes in early postnatal ovaries, but was granulosa cells specific after follicles formed. Both eCG and E significantly up-regulated full-length FSHR mRNA levels. Therefore, FSHR is expressed in the hamster ovary from the fetal life to account for FSH-induced primordial follicle formation and cAMP production. Further, FSH or E regulates the receptor expression. PMID:25462586

  3. Pre-UV-treatment of cells results in enhanced host cell reactivation of a UV damaged reporter gene in CHO-AA8 chinese hamster ovary cells but not in transcription-coupled repair deficient CHO-UV61 cells.

    PubMed

    Liu, Lili; Rainbow, Andrew J

    2004-12-01

    We have used a non-replicating recombinant adenovirus, Ad5MCMVlacZ, which expresses the beta-galactosidase reporter gene, to examine both constitutive and inducible repair of UV-damaged DNA in repair proficient CHO-AA8 Chinese hamster ovary cells and in mutant CHO-UV61 cells which are deficient in the transcription-coupled repair (TCR) pathway of nucleotide excision repair. Host cell reactivation (HCR) of beta-galactosidase activity for UV-irradiated Ad5MCMVlacZ was significantly reduced in non-irradiated CHO-UV61 cells compared to that in non-irradiated CHO-AA8 cells suggesting that repair in the transcribed strand of the UV-damaged reporter gene in untreated cells utilizes TCR. Prior UV-irradiation of cells with low UV fluences resulted in a transient enhancement of HCR for expression of the UV-damaged reporter gene in CHO-AA8 cells but not in TCR deficient CHO-UV61 cells. These results suggest the presence of an inducible DNA pathway in CHO cells that results from an enhancement of TCR or a mechanism that involves the TCR pathway. PMID:16158195

  4. Molecular polygamy: The promiscuity of l-phenylalanyl-tRNA-synthetase triggers misincorporation of meta- and ortho-tyrosine in monoclonal antibodies expressed by Chinese hamster ovary cells.

    PubMed

    Popp, Oliver; Larraillet, Vincent; Kettenberger, Hubert; Gorr, Ingo H; Hilger, Maximiliane; Lipsmeier, Florian; Zeck, Anne; Beaucamp, Nicola

    2015-06-01

    In-depth analytical characterization of biotherapeutics originating from different production batches is mandatory to ensure product safety and consistent molecule efficacy. Previously, we have shown unintended incorporation of tyrosine (Tyr) and leucine/isoleucine (Leu/Ile) at phenylalanine (Phe) positions in a recombinant produced monoclonal antibody (mAb) using an orthogonal MASCOT/SIEVE based approach for mass spectrometry data analysis. The misincorporation could be avoided by sufficient supply of phenylalanine throughout the process. Several non-annotated signals in the primarily chromatographic peptide separation step for apparently single Phe→Tyr sequence variants (SVs) suggest a role for isobar tyrosine isoforms. Meta- and ortho-Tyr are spontaneously generated during aerobic fed-batch production processes using Chinese hamster ovary (CHO) cell lines. Process induced meta- and ortho-Tyr but not proteinogenic para-Tyr are incorporated at Phe locations in Phe-starved CHO cultures expressing a recombinant mAb. Furthermore, meta- and ortho-Tyr are preferably misincorporated over Leu. Structural modeling of the l-phenylalanyl-tRNA-synthetase (PheRS) substrate activation site indicates a possible fit of non-cognate ortho-Tyr and meta-Tyr substrates. Dose-dependent misincorporations of Tyr isoforms support the hypothesis that meta- and ortho-Tyr are competing, alternative substrates for PheRS in CHO processes. Finally, easily accessible at-line surrogate markers for Phe→Tyr SV formation in biotherapeutic production were defined by the calculation of critical ratios for meta-Tyr/Phe and ortho-Tyr/Phe to support early prediction of SV probability, and finally, to allow for immediate process controlled Phe→Tyr SV prevention.

  5. Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells.

    PubMed Central

    Kojima, Hiroyuki; Katsura, Eiji; Takeuchi, Shinji; Niiyama, Kazuhito; Kobayashi, Kunihiko

    2004-01-01

    We tested 200 pesticides, including some of their isomers and metabolites, for agonism and antagonism to two human estrogen receptor (hER) subtypes, hERalpha and hERbeta, and a human androgen receptor (hAR) by highly sensitive transactivation assays using Chinese hamster ovary cells. The test compounds were classified into nine groups: organochlorines, diphenyl ethers, organophosphorus pesticides, pyrethroids, carbamates, acid amides, triazines, ureas, and others. These pesticides were tested at concentrations < 10-5 M. Of the 200 pesticides tested, 47 and 33 showed hER- and hERbeta-mediated estrogenic activities, respectively. Among them, 29 pesticides had both hERalpha and hERbeta agonistic activities, and the effects of the organochlorine insecticides beta-benzene hexachloride (BHC) and delta-BHC and the carbamate insecticide methiocarb were predominantly hERbeta rather than hERalpha agonistic. Weak antagonistic effects toward hERalpha and hERbeta were shown in five and two pesticides, respectively. On the other hand, none of tested pesticides showed hAR-mediated androgenic activity, but 66 of 200 pesticides exhibited inhibitory activity against the transcriptional activity induced by 5alpha-dihydrotestosterone. In particular, the antiandrogenic activities of two diphenyl ether herbicides, chlornitrofen and chlomethoxyfen, were higher than those of vinclozolin and p,p -dichlorodiphenyl dichloroethylene, known AR antagonists. The results of our ER and AR assays show that 34 pesticides possessed both estrogenic and antiandrogenic activities, indicating pleiotropic effects on hER and hAR. We also discussed chemical structures related to these activities. Taken together, our findings suggest that a variety of pesticides have estrogenic and/or antiandrogenic potential via ER and/or AR, and that numerous other manmade chemicals may also possess such estrogenic and antiandrogenic activities. PMID:15064155

  6. Predicting the expression of recombinant monoclonal antibodies in Chinese hamster ovary cells based on sequence features of the CDR3 domain.

    PubMed

    Pybus, Leon P; James, David C; Dean, Greg; Slidel, Tim; Hardman, Colin; Smith, Andrew; Daramola, Olalekan; Field, Ray

    2014-01-01

    Despite the development of high-titer bioprocesses capable of producing >10 g L(-1) of recombinant monoclonal antibody (MAb), some so called "difficult-to-express" (DTE) MAbs only reach much lower process titers. For widely utilized "platform" processes the only discrete variable is the protein coding sequence of the recombinant product. However, there has been little systematic study to identify the sequence parameters that affect expression. This information is vital, as it would allow us to rationally design genetic sequence and engineering strategies for optimal bioprocessing. We have therefore developed a new computational tool that enables prediction of MAb titer in Chinese hamster ovary (CHO) cells based on the recombinant coding sequence of the expressed MAb. Model construction utilized a panel of MAbs, which following a 10-day fed-batch transient production process varied in titer 5.6-fold, allowing analysis of the sequence features that impact expression over a range of high and low MAb productivity. The model identified 18 light chain (LC)-specific sequence features within complementarity determining region 3 (CDR3) capable of predicting MAb titer with a root mean square error of 0.585 relative expression units. Furthermore, we identify that CDR3 variation influences the rate of LC-HC dimerization during MAb synthesis, which could be exploited to improve the production of DTE MAb variants via increasing the transfected LC:HC gene ratio. Taken together these data suggest that engineering intervention strategies to improve the expression of DTE recombinant products can be rationally implemented based on an identification of the sequence motifs that render a recombinant product DTE.

  7. Cloning and Expression of Major Surface Antigen 1 Gene of Toxoplasma gondii RH Strain Using the Expression Vector pVAX1 in Chinese Hamster Ovary Cells

    PubMed Central

    Abdizadeh, Rahman; Maraghi, Sharif; Ghadiri, Ata A.; Tavalla, Mehdi; Shojaee, Saeedeh

    2015-01-01

    Background: Toxoplasmosis is an opportunistic protozoan infection with a high prevalence in a broad range of hosts infecting up to one-third of the world human population. Toxoplasmosis leads to serious medical problems in immunocompromised individuals and fetuses and also induces abortion and mortality in domestic animals. Therefore, there is a huge demand for the development of an effective vaccine. Surface Antigen 1 (SAG1) is one of the important immunodominant surface antigens of Toxoplasma gondii, which interacts with host cells and primarily involved in adhesion, invasion and stimulation of host immune response. Surface antigen 1 is considered as the leading candidate for development of an effective vaccine against toxoplasmosis. Objectives: The purpose of this study was to clone the major surface antigen1 gene (SAG1) from the genotype 1 of T. gondii, RH strain into the eukaryotic expression vector pVAX1 in order to use for a DNA vaccine. Materials and Methods: Genomic DNA was extracted from tachyzoite of the parasite using the QIAamp DNA mini kit. After designing the specific primers, SAG1 gene was amplified by Polymerase Chain Reaction (PCR). The purified PCR products were then cloned into a pPrime plasmid vector. The aforementioned product was subcloned into the pVAX1 eukaryotic expression vector. The recombinant pVAX1-SAG1 was then transfected into Chinese Hamster Ovary (CHO) cells and expression of SAG1 antigen was evaluated using Reverse Transcriptase Polymerase Chain Reaction (RT-PCR), Immunofluorescence Assay (IFA) and Western Blotting (WB). Results: The cloning and subcloning products (pPrime-SAG1 and pVAX1-SAG1 plasmid vectors) of SAG1 gene were verified and confirmed by enzyme digestion and sequencing. A 30 kDa recombinant protein was expressed in CHO cells as shown by IFA and WB methods. Conclusions: The pVAX1 expression vector and CHO cells are a suitable system for high-level recombinant protein production for SAG1 gene from T. gondii parasites

  8. PDADMAC flocculation of Chinese hamster ovary cells: Enabling a centrifuge-less harvest process for monoclonal antibodies

    PubMed Central

    McNerney, Thomas; Thomas, Anne; Senczuk, Anna; Petty, Krista; Zhao, Xiaoyang; Piper, Rob; Carvalho, Juliane; Hammond, Matthew; Sawant, Satin; Bussiere, Jeanine

    2015-01-01

    High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed. PMID:25706650

  9. PDADMAC flocculation of Chinese hamster ovary cells: enabling a centrifuge-less harvest process for monoclonal antibodies.

    PubMed

    McNerney, Thomas; Thomas, Anne; Senczuk, Anna; Petty, Krista; Zhao, Xiaoyang; Piper, Rob; Carvalho, Juliane; Hammond, Matthew; Sawant, Satin; Bussiere, Jeanine

    2015-01-01

    High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed.

  10. Carboxypeptidase D is the only enzyme responsible for antibody C-terminal lysine cleavage in Chinese hamster ovary (CHO) cells.

    PubMed

    Hu, Zhilan; Zhang, Henry; Haley, Benjamin; Macchi, Frank; Yang, Feng; Misaghi, Shahram; Elich, Joseph; Yang, Renee; Tang, Yun; Joly, John C; Snedecor, Bradley R; Shen, Amy

    2016-10-01

    Heterogeneity of C-terminal lysine levels often observed in therapeutic monoclonal antibodies is believed to result from the proteolysis by endogenous carboxypeptidase(s) during cell culture production. Identifying the responsible carboxypeptidase(s) for C-terminal lysine cleavage in CHO cells would provide valuable insights for antibody production cell culture processes development and optimization. In this study, five carboxypeptidases, CpD, CpM, CpN, CpB, and CpE, were studied for message RNA (mRNA) expression by qRT-PCR analysis in two most commonly used blank hosts (DUXB-11 derived DHFR-deficient DP12 host and DHFR-positive CHOK1 host), used for therapeutic antibody production, as well an antibody-expressing cell line derived from each host. Our results showed that CpD had the highest mRNA expression. When CpD mRNA levels were reduced by RNAi (RNA interference) technology, C-terminal lysine levels increased, whereas there was no obvious change in C-terminal lysine levels when a different carboxypeptidase mRNA level was knocked down suggesting that carboxypeptidase D is the main contributor for C-terminal lysine processing. Most importantly, when CpD expression was knocked out by CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technology, C-terminal lysine cleavage was completely abolished in CpD knockout cells based on mass spectrometry analysis, demonstrating that CpD is the only endogenous carboxypeptidase that cleaves antibody heavy chain C-terminal lysine in CHO cells. Hence, our work showed for the first time that the cleavage of antibody heavy chain C-terminal lysine is solely mediated by the carboxypeptidase D in CHO cells and our finding provides one solution to eliminating C-terminal lysine heterogeneity for therapeutic antibody production by knocking out CpD gene expression. Biotechnol. Bioeng. 2016;113: 2100-2106. © 2016 Wiley Periodicals, Inc.

  11. The Effects of Culture Conditions on the Glycosylation of Secreted Human Placental Alkaline Phosphatase Produced in Chinese Hamster Ovary Cells

    PubMed Central

    Nam, Jong Hyun; Zhang, Fuming; Ermonval, Myriam; Linhardt, Robert J.; Sharfstein, Susan T.

    2009-01-01

    The effects of different culture conditions, suspension and microcarrier culture and temperature reduction on the structures of N-linked glycans attached to secreted human placental alkaline phosphatase (SEAP) were investigated for CHO cells grown in a controlled bioreactor. Both mass spectrometry and anion-exchange chromatography were used to probe the N-linked glycan structures and distribution. Complex-type glycans were the dominant structures with small amounts of high mannose glycans observed in suspension and reduced temperature cultures. Biantennary glycans were the most common structures detected by mass spectrometry, but triantennary and tetraantennary forms were also detected. The amount of sialic acid present was relatively low, approximately 0.4 mol sialic acid/mol SEAP for suspension cultures. Microcarrier cultures exhibited a decrease in productivity compared with suspension culture due to a decrease in both maximum viable cell density (15-20%) and specific productivity (30-50%). In contrast, a biphasic suspension culture in which the temperature was reduced at the beginning of the stationary phase from 37 to 33°C, showed a 7% increase in maximum viable cell density, a 62% increase in integrated viable cell density, and a 133% increase in specific productivity, leading to greater than threefold increase in total productivity. Both microcarrier and reduced temperature cultures showed increased sialylation and decreased fucosylation when compared to suspension culture. Our results highlight the importance of glycoform analysis after process modification as even subtle changes (e.g., changing from one microcarrier to another) may affect glycan distributions. PMID:18553404

  12. Antagonistic effect of magnesium chloride on the nickel chloride-induced inhibition of DNA replication in Chinese hamster ovary cells.

    PubMed

    Conway, K; Sen, P; Costa, M

    1986-06-01

    The degree of inhibition of semiconservative DNA replication induced by nickel chloride (NiCl2) was analyzed by radiolabeled-thymidine incorporation alone or with cesium chloride (CsCl) density gradient centrifugation. The onset and duration of this Ni2+-induced inhibition was time- and concentration-dependent, but the degree of inhibition was not. A maximal reduction in the rate of DNA synthesis was observed within the first hour of treatment with 2.5 mM NiCl2, which was the highest noncytotoxic concentration utilized. After six hours, 500 microM and 1 mM as well as 2.5 mM NiCl2 all produced the same 50% to 60% reduction in [3H]-thymidine incorporation into DNA. The inhibitory effect of nickel ions on DNA synthesis was reversible. The rate of DNA synthesis following a 500 microM or 1 mM NiCl2 treatment began to increase after washout of nickel, but a six-hour exposure of cells to 2.5 mM NiCl2 produced a sustained 50% to 60% suppression of DNA synthetic activity for at least 36 hours. At all concentrations of NiCl2 used in this study, some inhibition of DNA synthesis persisted for at least 48 hours, but by 72 hours after treatment, the rate of [3H]-thymidine incorporation was actually 10% above the control. Examination of autoradiographic slides of cells treated with 2.5 mM NiCl2 for six hours demonstrated a 60% reduction of silver grains, but there was no preferential reduction in the quantity of grains in the nucleolus or any other region. Cesium chloride density gradient analysis of the replication of nucleolar DNA in cells treated with 2.5 mM nickel supported the autoradiographic findings. The inhibitory effect of NiCl2 on DNA replication was prevented by the addition of magnesium chloride (MgCl2) to cells maintained in a simple salts/glucose medium (SGM). This effect did not appear to be due to an antagonism of the cellular uptake of nickel by Mg2+, since the maximally effective dose of Mg2+ reduced 63Ni2+ uptake by no more than 25% while the inhibition of

  13. Uptake of inorganic and organic derivatives of arsenic associated with induced cytotoxic and genotoxic effects in Chinese hamster ovary (CHO) cells.

    PubMed

    Dopp, E; Hartmann, L M; Florea, A-M; von Recklinghausen, U; Pieper, R; Shokouhi, B; Rettenmeier, A W; Hirner, A V; Obe, G

    2004-12-01

    Humans are exposed to arsenic and their organic derivatives, which are widely distributed in the environment, via food, water, and to a lesser extent, via air. Following uptake, inorganic arsenic undergoes biotransformation to mono- and dimethylated metabolites. Recent findings suggest that the methylation reactions represent a toxification rather than a detoxification pathway. In the present study, the genotoxic effects and the cellular uptake of inorganic arsenic [arsenate, As(i)(V); arsenite, As(i)(III)] and the methylated arsenic species monomethylarsonic acid [MMA(V)], monomethylarsonous acid [MMA(III)], dimethylarsinic acid [DMA(V)], dimethylarsinous acid [DMA(III)], trimethylarsenic oxide [TMAO(V)] were investigated in Chinese hamster ovary (CHO-9) cells. The chemicals were applied at different concentrations (0.1 microM to 10 mM) for 30 min and 1 h, respectively. Cytotoxic effects were investigated by the trypan blue extrusion test and genotoxic effects by the assessment of micronucleus (MN) induction, chromosome aberrations (CA), and sister chromatid exchanges (SCE). Intracellular arsenic concentrations were determined by ICP-MS techniques. Our results show that MMA(III) and DMA(III) induce cytotoxic and genotoxic effects to a greater extent than MMA(V) or DMA(V). Viability was significantly decreased after incubation (1 h) of the cells with > or = 1 microM As(i)(III), > or = 1 microM As(i)(V), > or = 500 microM MMA(III), > or = 100 microM MMA(V), and 500 microM DMA(V) and > or = 0.1 microM DMA(III). TMAO(V) was not cytotoxic at concentrations up to 10 mM. A significant increase of the number of MN, CA and SCE was found for DMA(III) and MMA(III). As(i)(III + V) induced CA and SCE but no MN. TMAO(V), MMA(V) and DMA(V) were not genotoxic in the concentration range tested (up to 5 mM). The nuclear division index (NDI) was not affected by any of the tested arsenic compounds after a recovery period of 14 to 35 h. When the uptake of the chemicals was measured by

  14. G Protein-Coupled Receptor 30 Expression Is Required for Estrogen Stimulation of Primordial Follicle Formation in the Hamster Ovary

    PubMed Central

    Wang, Cheng; Prossnitz, Eric R.; Roy, Shyamal K.

    2008-01-01

    Estradiol-17β (E2) plays an important role in the formation and development of primordial follicles, but the mechanisms remain unclear. G protein-coupled receptor 30 (GPR30) can mediate a rapid and transcription-independent E2 signaling in various cells. The objectives of this study were to examine whether GPR30 was expressed in the neonatal hamster ovary and whether it could mediate estrogen action during the formation of primordial follicles. GPR30 mRNA levels decreased from the 13th day of gestation (E13) through the second day of postnatal (P2) life, followed by steady increases from P3 through P6. Consistent with the changes in mRNA levels, GPR30 protein expression decreased from E13 to P2 followed by a significant increase by P7, the day before the first appearance of primordial follicles in the hamster ovary. GPR30 was expressed both in the oocytes and somatic cells, although the expression in the oocytes was low. GPR30 protein was located primarily in the perinuclear endoplasmic reticulum, which was also the site of E2-BSA-FITC (E2-BSA-fluorescein isothiocyanate) binding. E2 or E2-BSA increased intracellular calcium in neonatal hamster ovary cells in vitro. Exposure to GPR30 small interfering RNA in vitro significantly reduced GPR30 mRNA and protein levels in cultured hamster ovaries, attenuated E-BSA binding to cultured P6 ovarian cells, and markedly suppressed estrogen-stimulated primordial follicle formation. These results suggest that a membrane estrogen receptor, GPR30, is expressed in the ovary during perinatal development and mediates E2 action on primordial follicle formation. PMID:18499747

  15. Comparison of protein patterns of xrs-5, a radiosensitive Chinese hamster ovary cell line, and CHO-K1, its radioresistant parent, using two-dimensional gel-electrophoresis

    SciTech Connect

    Kramer, J.M. . Dept. of Zoology)

    1991-01-01

    X-ray sensitive strains of Chinese hamster ovary cell lines have been used to analyze radiation repair mechanisms. One cell line, xrs-5, has been shown to be very sensitive to ionizing radiation and radical forming chemical mutagens. This sensitivity is thought to be a result a mutation in the DNA double strand break (DSB) repair mechanism, and its characterization has been a goal of several repair mechanism studies. Using two-dimensional gel electrophoresis, we have detected a protein (MW approximately 55KD) in the DNA/Nuclear Matrix (nucleoid) cell fraction of CHO-Kl cells that is absent in the nucleoid fraction of xrs-5. This protein is present, however, in both CHO-Kl and xrs-5 whole cell protein maps. To determine whether the 55KD protein is responsible for the radiosensitive and defective DSB repair phenotype of xrs-5 cells, studies are now underway to analyze revertants of xrs-5 that are proficient in DSB repair. Furthermore, an effort to sequence the protein in question is planned. 23 refs., 2 figs.

  16. Down-regulation of the G-proteins Gq alpha and G11 alpha by transfected human M3 muscarinic acetylcholine receptors in Chinese hamster ovary cells is independent of receptor down-regulation.

    PubMed Central

    van de Westerlo, E; Yang, J; Logsdon, C; Williams, J A

    1995-01-01

    Chinese hamster ovary cells stably transfected with human M3 muscarinic acetylcholine receptors show a 40-50% reduction in the immunoreactive G-proteins Gq alpha and G11 alpha when stimulated with the cholinergic agonist carbachol. This effect is seen after 9 h, is maximal after 24 h, and occurs over a range of carbachol concentrations that activate phosphoinositide hydrolysis in these cells. The effect is specific for Gq alpha family proteins as Gs alpha was slightly increased after carbachol treatment and G13 alpha was unchanged. Using a urea gel system, we were able to resolve Gq alpha and G11 alpha, both of which were down-regulated by carbachol. An M3 receptor mutant, with C-terminal threonines changed to alanines as described previously, binds ligand and activates phosphoinositide hydrolysis normally but is not down-regulated in response to carbachol. This receptor, however, induces Gq alpha/G11 alpha down-regulation similarly to wild-type M3 receptors, indicating that G-protein down-regulation is not directly coupled to receptor down-regulation. Thus down-regulation of Gq alpha and G11 alpha may contribute to heterologous desensitization particularly at longer times of agonist exposure. Images Figure 1 Figure 4 PMID:7654194

  17. Direct biochemical measurements of microtubule assembly and disassembly in Chinese hamster ovary cells. The effect of intercellular contact, cold, D2O, and N6,O2'-dibutyryl cyclic adenosine monophosphate

    PubMed Central

    1975-01-01

    A study was undertaken to develop a means of quantitating the amount of tubulin present as a soluble pool and as intact microtubules in cultured Chinese hamster ovary cells. A procedure was developed in which these cells grown on monolayer culture in Petri dishes were placed in a "microtubule stabilizing medium" (MTM) consisting of 50% glycerol, 10% dimethylsulfoxide and sodium phosphate magnesium buffer, as described previously by Filner and Behnke. These cells then were homogenized and the homogenate was spun in the ultracentrifuge. Colchicine binding activity was then determined in the supernates and the pellets. The values, when compared with total colchicine binding activity present in replicate homogenates, were used to determine the percentage of tubulin present as intact microtubules. A statistical analysis of thin sections of cells treated with MTM revealed no statistically significant difference between MTM-treated cells and untreated controls. It was further discovered that the relative amount of colchicine binding activity recovered in the high speed pellet varied dramatically, depending upon the cell number of the culture being studied. Preconfluent cultures showed very low colchicine binding activity averaging less than 5%, while confluent and postconfluent cultures often possessed as high as 25% of their total colchicine binding activity in pelletable material. Although cold and D2O treatment had little or no effect on these values, N6,O2'-dibutyryl cyclic adenosine monophosphate increased them. It is hoped that this study will serve as the basis for a reliable quantitative procedure for measuring microtubule polymerization and depolymerization in vivo. PMID:162792

  18. Reduced utilization of Man5GlcNAc2-P-P-lipid in a Lec9 mutant of Chinese hamster ovary cells: analysis of the steps in oligosaccharide-lipid assembly.

    PubMed

    Hall, C W; McLachlan, K R; Krag, S S; Robbins, A R

    1997-11-01

    Recently we reported that CHB11-1-3, a Chinese hamster ovary cell mutant defective in glycosylation of asparagine-linked proteins, is defective in the synthesis of dolichol [Quellhorst et al., 343:19-26, 1997: Arch Biochem Biophys]. CHB11-1-3 was found to be in the Lec9 complementation group, which synthesizes polyprenol rather than dolichol. In this paper, levels of various polyprenyl derivatives in CHB11-1-3 are compared to levels of the corresponding dolichyl derivatives in parental cells. CHB11-1-3 was found to maintain near normal levels of Man5GlcNAc2-P-P-polyprenol and mannosylphosphorylpolyprenol, despite reduced rates of synthesis, by utilizing those intermediates at a reduced rate. The Man5GlcNAc2 oligosaccharide attached to prenol in CHB11-1-3 cells and to dolichol in parental cells is the same structure, as determined by acetolysis. Man5GlcNAc2-P-P-polyprenol and Man5GlcNAc5-P-P-dolichol both appeared to be translocated efficiently in an in vitro reaction. Glycosylation of G protein was compared in vesicular stomatitus virus (VSV)-infected parent and mutant; although a portion of G protein was compared in vesicular stomatitus virus (VSV)-infected parent and mutant; although a portion of G protein was normally glycosylated in CHB11-1-3 cells, a large portion of G was underglycosylated, resulting in the addition of either one or no oligosaccharide to G. Addition of a single oligosaccharide occurred randomly rather than preferentially at one of the two sites.

  19. Cocytotoxicity/comutagenicity of arsenic in a Chinese hamster ovary triple auxotroph

    SciTech Connect

    Taylor, R.T.; Stewart, S.A.; Hanna, M.L.

    1984-06-04

    Among four forms of As that are measurable in human tissues (arsenite, arsenate, monomethylarsonate, and dimethylarsinate), non-cytotoxic concentrations of arsenite specifically enhance cell killing by various mutagenic agents in a Chinese hamster ovary auxotroph that requires glycine + adenosine + thymidine (CHO AUXB1). Arsenite is cocytotoxic at low concentrations of 2 to 12 ..mu..M. It is also the most growth rate inhibitory and cytotoxic of these As compounds, when each is incubated alone in AUXB1 cell cultures. None of these four As compounds are mutagenic per se, using an assay that we have developed to measure reversion to prototrophy at the FPGS gene locus. But arsenite (10 ..mu..M) specifically enhances induced reversion by the direct acting chemical mutagens cis-Pt(NH/sub 3/)/sub 2/Cl/sub 2/, methylglyoxal, and glycidal with which it is also cocytotoxic. Its comutagenicity with other agents is being tested. The foregoing experiments represent the first systematic comparison in mammalian cells of As growth inhibition, cytotoxicity, and mutagenicity versus its chemical form. Moreover, they provide the first evidence for the specific cocytotoxicity/comutagenicity of trivalent As in a mammalian cell line. Our findings support the suggestion that one role of As in its association with cancer could be to serve as a cocarcinogen. By functioning as a comutagen, perhaps through the inhibition of DNA repair, trivalent As may increase the initiation of tumor formation by enhancing the mutagenic activities of a large collection of primary environmental carcinogens. 55 references, 11 figures.

  20. Complementary histological and genomic analyses reveal marked differences in the developmental trajectories of ovaries in Siberian hamsters raised in long- and short-day lengths.

    PubMed

    Park, Sung-Un; Bernstein, Adrien N; Place, Ned J

    2014-03-01

    Siberian hamsters (Phodopus sungorus) delay sexual development when raised in short-day (SD; 10 hr light: 14 hr dark) conditions, which leads to delayed onset of estrous cycles and ovulations as compared to females raised in long-day (LD; 16 hr light: 8 hr dark) conditions. In addition to the absence of pre-ovulatory follicles and corpora lutea, the ovaries of SD-reared Siberian hamsters are characterized by an abundance of hypertrophied granulosa cells (HGCs) that surround atretic oocytes. To determine the age at which the histology of LD and SD ovaries first diverge, including the initial appearance of HGCs in SD conditions, we examined hamster ovaries histologically at 1, 2, 3, 4, 6, 8, 10, and 12 weeks of age. After identifying subtle differences in LD and SD ovarian histology at 4 weeks of age, we searched for differences in ovarian gene expression at 3 and 8 weeks of age, which correspond to the ages when ovarian histology do not differ (3 weeks) versus the earliest age when HGCs were observed (8 weeks). At 3 weeks, only 14 genes were differentially expressed in LD and SD ovaries, whereas 183 genes were differentially expressed at 8 weeks. Overall, our findings demonstrate that ovarian development under SD conditions is not simply arrested at an early stage of LD development, but rather utilizes a developmental path that is distinct from that used in LD ovaries.

  1. Role of protein synthesis in the repair of sublethal x-ray damage in a mutant Chinese hamster ovary cell line

    SciTech Connect

    Yezzi, M.J.

    1985-04-01

    A temperature-sensitive mutant for protein synthesis, CHO-TSH1, has been compared to the wild-type cell, CHO-sC1, in single- and split-radiation-dose schemes. When the exponentially growing TS mutant and the wild-type cells were treated at 40/sub 0/C for up to 2 hrs prior to graded doses of x rays, the survival curves were identical and were the same as those obtained without heat treatment. If the cultures were incubated at 40/sup 0/C for 2 hrs before a first dose and maintained at 40/sup 0/C during a 2 hr dose fractionation interval, repair of radiation damage was reduced in the mutant compared to the wild type. These observations implied that a pool of proteins was involved in the repair of sublethal x-ray damage. However, if repair was measured by the alkaline-unwinding technique under the same time and temperature schemes, no difference in the kientics of DNA strand rejoining was observed. Misrepair processes may permit restoration of DNA strand integrity but not allow functional repair. The effect of diminished repair under conditions of inhibition of protein synthesis was found to be cell-cycle dependent in survival studies with synchronized mutant cell populations. Repair was found to be almost completely eliminated if the temperature sequence described above was applied in the middle of the DNA synthetic phase. Treatment of cell populations in the middle of G/sub 1/-phase yielded repair inhibition comparable to that observed with the asynchronous cells. Splitdose experiments were done using pre-incubation with cycloheximide to chemically inhibit protein synthesis. WT cells and TS cells were treated with cycloheximide at 35/sup 0/C for 2 hrs before a first dose and during a 2 hr dose fractionation interval. 23 figs., 7 tabs.

  2. Titer of trastuzumab produced by a Chinese hamster ovary cell line is associated with tricarboxylic acid cycle activity rather than lactate metabolism.

    PubMed

    Ishii, Yoichi; Imamoto, Yasufumi; Yamamoto, Rie; Tsukahara, Masayoshi; Wakamatsu, Kaori

    2015-04-01

    Achieving high productivity and quality is the final goal of therapeutic antibody development, but the productivity and quality of antibodies are known to be substantially dependent on the nature of the cell lines expressing the antibodies. We characterized two contrasting cell lines that produce trastuzumab, namely cell line A with a high titer and a low aggregate content and cell line B with a low titer and a high aggregate content to identify the causes of the differences. We observed the following differences: cell growth (A > B), proportion of defucosylated oligosaccharides on antibodies (A < B), and proportion of covalent antibody aggregates (A > B). Our results suggest that the high monoclonal antibody (mAb) titers in cell line A is associated with the high proliferation and is not caused by the lactate metabolism shift (switching from lactate production to net lactate consumption). Rather, these differences can be accounted for by the following: levels of tricarboxylic acid cycle intermediates (A > B), ammonium ion levels (A ≤ B), and oxidative stress (A > B). PMID:25449760

  3. Intracellular transactivation of epidermal growth factor receptor by α1A-adrenoceptor is mediated by phosphatidylinositol 3-kinase independently of activation of extracellular signal regulated kinases 1/2 and serine-threonine kinases in Chinese hamster ovary cells.

    PubMed

    Ulu, Nadir; Henning, Robert H; Guner, Sahika; Zoto, Teuta; Duman-Dalkilic, Basak; Duin, Marry; Gurdal, Hakan

    2013-10-01

    Transactivation of epidermal growth factor receptor (EGFR) by α1-adrenoceptor (α1-AR) is implicated in contraction and hypertrophy of vascular smooth muscle (VSM). We examine whether all α1-AR subtypes transactivate EGFR and explore the mechanism of transactivation. Chinese hamster ovary (CHO) cells stably expressing one subtype of α1-AR were transiently transfected with EGFR. The transactivation mechanism was examined both by coexpression of a chimeric erythropoietin (EPO)-EGFR with an extracellular EPO and intracellular EGFR domain, and by pharmacologic inhibition of external and internal signaling routes. All three α1-AR subtypes transactivated EGFR, which was dependent on the increase in intracellular calcium. The EGFR kinase inhibitor AG1478 [4-(3'-chloroanilino)-6,7-dimethoxyquinazoline] abrogated α1A-AR and α1D-AR induced phosphorylation of EGFR, but both the inhibition of matrix metalloproteinases by GM6001 [(R)-N4-hydroxy-N(1)-[(S)-2-(1H-indol-3-yl)-1-methylcarbamoyl-ethyl]-2-isobutyl-succinamide] or blockade of EGFR by cetuximab did not. Stimulation of α1A-AR and α1D-AR also induced phosphorylation of EPO-EGFR chimeric receptors. Moreover, α1A-AR stimulation enhanced phosphorylation of extracellular signal regulated kinase (ERK) 1/2 and serine-threonine kinases (Akt), which were both unaffected by AG1478, indicating that ERK1/2 and Akt phosphorylation is independent of EGFR transactivation. Accordingly, inhibitors of ERK1/2 or Akt did not influence the α1A-AR-mediated EGFR transactivation. Inhibition of calcium/calmodulin-dependent kinase II (CaMKII), phosphatidylinositol 3-kinase (PI3K), and Src, however, did block EGFR transactivation by α1A-AR and α1D-AR. These findings demonstrate that all α1-AR subtypes transactivate EGFR, which is dependent on an intracellular signaling route involving an increase in calcium and activation of CaMKII, PI3K, and Src, but not the of ERK1/2 and Akt pathways.

  4. Analysis of possible genotoxicity of the herbicide flurochloridone and its commercial formulations: Endo III and Fpg alkaline comet assays in Chinese hamster ovary (CHO-K1) cells.

    PubMed

    Soloneski, Sonia; Nikoloff, Noelia; Larramendy, Marcelo L

    2016-02-01

    Cytotoxic and genotoxic effects of flurochloridone (FLC) and its formulations Twin Pack Gold(®) and Rainbow(®) were evaluated in CHO-K1 cells. Using the alkaline single-cell gel electrophoresis (SCGE) assay, we observed that FLC (15 μg/ml), Twin Pack Gold(®) or Rainbow(®) induced primary DNA damage, increasing the frequency of damaged nucleoids. Vitamin E pretreatment did not modify the effect. Decreased cell viability was observed only in Twin Pack Gold(®)-treated cultures and was significantly ameliorated by vitamin E. Post-treatment of herbicide-damaged CHO-K1 cells with the enzymes Endo III or Fpg did not increase FLC-, Twin Pack Gold(®)-, or Rainbow(®)-induced DNA damage. These results demonstrate that neither FLC nor FLC-based formulations induce DNA damage through hydroxyl radical or lipid alkoxyl radical production, and that the induced DNA lesions were not related to oxidative damage at the purine/pyrimidine level. Our observations strongly suggest that the cytotoxic effects observed after Twin Pack Gold(®) exposure are due to the excipients contained within the technical formulation rather than FLC itself.

  5. Analysis of possible genotoxicity of the herbicide flurochloridone and its commercial formulations: Endo III and Fpg alkaline comet assays in Chinese hamster ovary (CHO-K1) cells.

    PubMed

    Soloneski, Sonia; Nikoloff, Noelia; Larramendy, Marcelo L

    2016-02-01

    Cytotoxic and genotoxic effects of flurochloridone (FLC) and its formulations Twin Pack Gold(®) and Rainbow(®) were evaluated in CHO-K1 cells. Using the alkaline single-cell gel electrophoresis (SCGE) assay, we observed that FLC (15 μg/ml), Twin Pack Gold(®) or Rainbow(®) induced primary DNA damage, increasing the frequency of damaged nucleoids. Vitamin E pretreatment did not modify the effect. Decreased cell viability was observed only in Twin Pack Gold(®)-treated cultures and was significantly ameliorated by vitamin E. Post-treatment of herbicide-damaged CHO-K1 cells with the enzymes Endo III or Fpg did not increase FLC-, Twin Pack Gold(®)-, or Rainbow(®)-induced DNA damage. These results demonstrate that neither FLC nor FLC-based formulations induce DNA damage through hydroxyl radical or lipid alkoxyl radical production, and that the induced DNA lesions were not related to oxidative damage at the purine/pyrimidine level. Our observations strongly suggest that the cytotoxic effects observed after Twin Pack Gold(®) exposure are due to the excipients contained within the technical formulation rather than FLC itself. PMID:26921020

  6. Effect of Brazilian propolis (AF-08) on genotoxicity, cytotoxicity and clonogenic death of Chinese hamster ovary (CHO-K1) cells irradiated with (60)Co gamma-radiation.

    PubMed

    Santos, Geyza Spigoti; Tsutsumi, Shigetoshi; Vieira, Daniel Perez; Bartolini, Paolo; Okazaki, Kayo

    2014-03-01

    The present study was conducted in order to evaluate the effect of Brazilian propolis (AF-08; 5, 10, 15, 30, 50, 100, and 200μg/mL) in protecting CHO-K1 cells against genotoxic and cytotoxic damage and clonogenic death induced by (60)Co gamma-radiation (1.0, 2.0, 4.0, and 6.0Gy). For this purpose, three interlinked endpoints were analyzed: induction of DNA damage by use of the micronucleus (MN) test (genotoxic damage), cell viability by means of the MTS assay, and differential staining (cytotoxic damage) and clonogenic death via the colony-formation test (cytotoxic damage). The MN test revealed that propolis alone (5-100μg/mL) was not genotoxic up to 100μg/mL and that 30μg/mL of propolis reduced the radiation-induced DNA damage (∼56% reduction, p<0.05), exhibiting a radio-protective effect on irradiated CHO-K1 cells. On the other hand, analysis of cytotoxicity showed that a concentration of 50μg/mL presented a significant proliferative effect (p<0.001) when associated with radiation, decreasing the percentage of necrotic cells (p<0.01). No mediated cytotoxic effect was found, but the concentration of 200μg/mL was toxic when analyzed at 24 and 48h via the differential staining technique, but not at 72h after irradiation, analyzed with the MTS assay. Differential staining also showed that necrosis was the main death modality in irradiated cells and that apoptosis was induced only at the toxic concentration of propolis (200μg/mL). Concerning the clonogenic capacity, a concentration of 50μg/mL also exhibited a significant stimulating effect on cell proliferation (p<0.001), in agreement with the data from differential staining. Taken together, these data suggest that the use of propolis AF-08 for the prevention of the adverse effects of ionizing radiation is promising. Nevertheless, additional investigations are necessary for a better understanding of potential applications of propolis to improve human health.

  7. Butylated hydroxytoluene does not protect Chinese hamster ovary cells from chromosomal damage induced by high-dose rate 192Ir irradiation.

    PubMed

    Grillo, C A; Dulout, F N

    2006-11-01

    Previous reports showed the protective effect of the synthetic antioxidant butylated hydroxytoluene (BHT) against the chromosomal damage induced by bleomycin (BLM), cadmium chloride and potassium dichromate. To test the hypothesis that this effect was exerted by inhibition and/or scavenging of reactive oxygen species (ROS), the effect of BHT on the chromosomal damage induced by a high dose-rate gamma rays (HDR (192)Ir). Experiments were carried out by irradiating G(1) CHO cells with nominal doses of 1, 2 or 3 Gy. BHT (doses of 1.0, 2.5 or 5.0 microg/ml) was added to the culture immediately before or immediately after irradiation. Cells were then incubated in the presence of BHT for 13 h until harvesting and fixation. Results obtained showed that BHT did not decrease the chromosomal damage induced by radiation in any consistent fashion. On the contrary, in cells post-treated with 5.0 microg/ml of BHT the yield of chromosomal aberrations increased in several experimental points. These results with ionizing radiation suggest that the previous observed protective effects of BHT on the chromosomal damage induced by chemical genotoxicants may not be mediated solely through the scavenging or inactivating reactive oxidative species. The decrease of the yield of chromosomal damage induced by BLM could be due to the union of BHT with a metallic ion, in this case Fe (II), required for the activation of BLM. In the same way, the protective effect of BHT on the chromosomal damage induced by cadmium chloride and potassium dichromate could be due to the decrease of the effective dose of both salts in the cell through the chelation of the cations by BHT.

  8. Successful construction and stable expression of an anti-CD45RA scFv-EGFP fusion protein in Chinese hamster ovary cells.

    PubMed

    Wang, Zhujun; Chen, Yuanyuan; Li, Sisi; Cheng, Yuping; Zhao, Haizhao; Jia, Ming; Luo, Zebin; Tang, Yongmin

    2014-02-01

    CD45RA has been found highly expressed on leukemia cells and may be a potential target of the disease. In this study, an anti-CD45RA single-chain antibody fragment (scFv3A4) was genetically linked to the N terminus of the enhanced green fluorescent protein (EGFP) to generate a scFv3A4-EGFP fusion protein. The scFv3A4-EGFP with a molecular weight of 57kDa was stably expressed and secreted from the transfected CHO cells through the ER/Golgi-dependent pathway. The fusion protein was soluble in the culture supernatant and the yield was 1350μg/L. Flow cytometry analysis showed that the scFv3A4-EGFP had the same binding site and a very similar reactivity pattern with its parental murine monoclonal antibody (mAb) 3A4. Furthermore, comparing to conventional labeled 3A4-FITC antibody, the scFv3A4-EGFP was more resistant to illumination and more suitable for immunofluorescence histology (IFH) detection. Therefore, the scFv3A4-EGFP fusion protein can be a powerful tool to investigate the targeting of CD45RA on leukemia cells, biological activity of the target and possibly for the genetic manipulation of the antibody.

  9. Inhibition of matrix metalloproteinases in Siberian hamsters impedes photostimulated recrudescence of ovaries.

    PubMed

    Whited, Julie; Shahed, Asha; McMichael, Carling F; Young, Kelly A

    2010-12-01

    Exposure of Siberian hamsters to short photoperiod for 14 weeks induces ovarian regression. Subsequent transfer to long photoperiod restores ovarian function, and 2 weeks of photostimulation increases plasma estradiol (E(2)), antral follicles, and corpora lutea (CL). Because tissue remodeling involved with photostimulated ovarian recrudescence is associated with differential expression of matrix metalloproteinases (MMPs), we hypothesized that inhibiting MMP activity using a broad-spectrum in vivo MMP inhibitor, GM6001, would curtail recrudescence. One group of hamsters was placed in long days (LD; 16 h light:8 h darkness) for 16 weeks. Another group was placed in inhibitory short days (SD; 8 h light:16 h darkness) for 14 weeks. A third group was placed in SD for 14 weeks and transferred to LD for 2 weeks to stimulate recrudescence. During weeks 14-16, animals were either not treated or treated daily with i.p. injections of GM6001 (20 mg/kg) or vehicle (DMSO). GM6001 reduced gelatinase activity and decreased immunohistochemical staining for MMP1, MMP2, and MMP3 compared with vehicle. No differences between controls, vehicle, or GM6001 treatment were observed among LD animals, despite a trend toward reduction in CL and E(2) with GM6001. Although SD reduced ovarian function, photostimulation of transferred controls increased uterine mass, plasma E(2), appearance of antral follicles, and CL. With GM6001 treatment, photostimulation failed to increase uterine mass, plasma E(2), antral follicles, or CL. These data show, for the first time, that in vivo GM6001 administration inhibits MMP activity in hamster ovaries during photostimulation, and indicate that this inhibition may impede photostimulated recrudescence of ovaries. This study suggests an intriguing link between MMP activity and return to ovarian function during photostimulated recrudescence.

  10. The use of primary rat hepatocytes to achieve metabolic activation of promutagens in the Chinese hamster ovary/hypoxantine-guanine phosphoribosyl transferase mutational assay

    SciTech Connect

    Bermudez, E.; Couch, D.B.; Tillery, D.

    1982-01-01

    A method is described in which primary rat hepatocytes have been cocultured with chinese hamster ovary (CHO) cells to provide metabolic activation of promutgens in the Chinese hamster ovary/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) mutational assay. Single cell hepatocyte suspensions were prepared from male Fisher-344 rats using the in situ collagenase perfusion technique. Hepatocytes were allowed to attach for 1.5 hours in tissue culture dishes containing an approximately equal number of CHO cells in log growth. The cocultures were exposed to promutagens for up to 20 hours in serum-free medium. The survival and 6-thioguanine-resistant fraction of treated CHO cells were then determined as in the standard CHO/HGPRT assay. Aflatoxin B/sub 1/ (AFB/sub 1/) 7,12-dimethylbenz(a)anthracene (DMBA) and benzo(a)pyrene (B(a)P) were found to produce increases in the mutant fractions of treated CHO cells as a function of concentration. The time required for optimum expression of the mutant phenotype following exposure to DMBA and AFB/sub 1/ was approximately 8 days. Primary cell-mediated mutagenesis may be useful in elucidating methobolic pathways important in the production and detoxification of genotoxic products in vivo.

  11. Cell killing and mutation induction on Chinese hamster cells by photoradiations

    SciTech Connect

    Lam, C.K.C.

    1982-11-01

    Applying radiation directly on cells, far-uv is more effective than black light, and black light is more effective than white light in inducing proliferative death and in inducing resistance to 6-thioguanine (6-TG), ouabain and diptheria toxin (DT). Gold light has no killing and mutagenic effects on CHO (Chinese hamster ovary) cells. Use of filters showed that a small percentage of shorter wavelengths in the far-uv region is responsible for most of the killing and mutagenic effects in the unfiltered broad spectra of black and white light.

  12. Biochemical and cytogenetical characterization of Chinese hamster ovary X-ray-sensitive mutant cells xrs 5 and xrs 6. V. The correlation of DNA strand breaks and base damage to chromosomal aberrations and sister-chromatid exchanges induced by X-irradiation.

    PubMed

    Darroudi, F; Natarajan, A T; van der Schans, G P; van Loon, A A

    1990-03-01

    The X-ray-sensitive Chinese hamster ovary (CHO) mutant cell lines xrs 5 and xrs 6 were used to study the relation between X-ray-induced DNA lesions and biological effects. The frequencies of chromosomal aberrations and sister-chromatid exchanges (SCE) were determined in wild-type CHO-K1 as well as mutants xrs 5 and xrs 6 cells following X-irradiation under aerobic and anaerobic conditions. Furthermore, we used a newly developed immunochemical method (based on the binding of a monoclonal antibody to single-stranded DNA) to assay DNA single-strand breaks (SSBs) induced by gamma-rays in these CHO cells, after a repair time of up to 4 h. For all cell lines tested the frequency of X-ray-induced chromosomal aberrations was strongly increased after irradiation in air compared with hypoxic conditions. When compared to the wild-type line, the xrs mutants known to have a defect in repair of DNA double-strand breaks (DSBs) exhibited a markedly enhanced sensitivity to aerobic irradiation, and a high OER (oxygen enhancement ratio) of 2.8-3.5, compared with 1.8-2 in CHO-K1 cells. The induction of SCE by X-rays was relatively little affected in CHO-K1 irradiated in air compared with hypoxic conditions (OER = 0.8), and in xrs 5 (OER = 0.7). A dose-dependent increase in the frequency of SCEs was obtained in xrs 6 cells treated with X-rays in air, and a further increase by a factor of 2 was evident under hypoxic conditions (OER = 0.4). With the immunochemical assay of SSB following gamma-irradiation, no difference was found between wild-type and mutant strains in the number of SSBs induced. The observed rate of rejoining of SSBs was also the same for all cell lines studied. PMID:2407948

  13. Expression of Bone Morphogenetic Protein Receptor (BMPR) during Perinatal Ovary Development and Primordial Follicle Formation in the Hamster: Possible Regulation by FSH

    PubMed Central

    Wang, Cheng; Roy, Shyamal K.

    2009-01-01

    To understand whether bone morphogenetic protein plays any role in the formation of primordial follicles in the hamster, we examined the temporal and spatial expression of bone morphogenetic protein receptor (BMPR) mRNA and protein in embryonic (E) 13 through postnatal day (P) 15 ovarian cells and a possible regulation by FSH during the formation of primordial follicles on P8. BMPRIA and BMPRII mRNA levels were significantly higher than that of BMPR1B throughout ovary development. BMPRIA and BMPRII mRNA levels increased significantly on E14 and declined by P5 through P6. Whereas BMPRII mRNA increased again by P7, BMPRIA mRNA levels increased through P8 concurrent with primordial follicle formation. In contrast, BMPRIB mRNA levels increased greater than 10-fold on P7-9, with a further 3-fold increase by P10. BMPR proteins were low in the somatic cells and oocytes on E13 but increased progressively during postnatal development. BMPR expression in somatic cells increased markedly on P8. Whereas BMPRII expression declined by P10 and remained steady thereafter, BMPRIA protein expression fluctuated until P15 when it became low and steady. Overall, BMPRIB immunoreactivity also declined by P10 and then remained low in the interstitial cells through P15. FSH antiserum treatment on E12 significantly attenuated receptor mRNA and protein levels by P8, but equine chorionic gonadotropin replacement on P1 reversed the inhibition. Furthermore, FSH in vitro up-regulated BMPR levels in P4 ovaries. This unique pattern of BMPR expression in the oocytes and somatic cells during perinatal ovary development suggests that BMP may play a regulatory role in primordial follicle formation. Furthermore, FSH may regulate BMP action by modulating the expression of its receptors. PMID:19074578

  14. A rapid method for simultaneous evaluation of free light chain content and aggregate content in culture media of Chinese hamster ovary cells expressing monoclonal antibodies for cell line screening.

    PubMed

    Ishii, Yoichi; Tsukahara, Masayoshi; Wakamatsu, Kaori

    2016-04-01

    The goal of developing a monoclonal antibody (mAb) production process is high productivity and high quality. Because the productivity and quality of mAbs depend on cell line properties, the selection of cell lines suitable for large-scale production is an important stage in process development for mAb production. The light chain (LC) is important for antibody folding and assembly in the endoplasmic reticulum; cell lines that secrete a large amount of LCs in the medium secrete high-quality antibodies with high productivity. LC contents in culture media have been estimated by western blotting, reverse-phase high-performance liquid chromatography, and enzyme-linked immunosorbent assay. However, these analyses require fine tuning of experimental conditions for each antibody analyzed. Here we report a rapid and simple high-sensitivity size-exclusion chromatography (HS-SEC) method to evaluate the contents of low-molecular weight species (LMWS, mainly consisting of LC monomers and dimers) and high-molecular weight species (HMWS, aggregates) in the media for cell line screening. Because LMWS and HMWS are important indicators of productivity and quality, respectively, for cell line screening, HS-SEC will be useful in the first step of cell line selection needed for large-scale production. PMID:26467692

  15. Transformation of Hamster Embryo Cells and Tumor Induction in Newborn Hamsters by Simian Adenovirus SV11

    PubMed Central

    Casto, Bruce C.

    1969-01-01

    Simian adenovirus, SV11, readily transformed hamster embryo cell cultures in vitro and produced tumors in vivo when inoculated into newborn hamsters. Foci consisting of small, loosely attached, rounded cells could be seen as early as 7 days postinoculation. Many of these cells contained several nuclei or the nucleus was multilobed. The cells grew without extensive cell to cell contact or formed small chains or clusters when passaged in vitro. This pattern of cell morphology and growth has not been reported with other simian or human adenovirus-transformed cells. Linearity of foci formation with virus dilution was observed when the virus multiplicity was less than 3 plaque-forming units (PFU)/cell. The PFU to focus-forming units ratio for SV11 was found to be 2 × 104 to 4 × 104, which is approximately 5- to 10-fold and 50- to 100-fold lower than those reported for simian adenovirus, SA7, and human adenovirus type 12, respectively. Cells transformed by SV11: (i) produced tumors when inoculated into young hamsters, (ii) contained tumor antigen which reacts with serum obtained from hamsters bearing SV11 passaged tumors, and (iii) could be propagated in vitro through an indefinite number of generations. Images PMID:5786181

  16. Stem Cells, Progenitor Cells, and Lineage Decisions in the Ovary

    PubMed Central

    Hummitzsch, Katja; Anderson, Richard A.; Wilhelm, Dagmar; Wu, Ji; Telfer, Evelyn E.; Russell, Darryl L.; Robertson, Sarah A.

    2015-01-01

    Exploring stem cells in the mammalian ovary has unleashed a Pandora's box of new insights and questions. Recent evidence supports the existence of stem cells of a number of the different cell types within the ovary. The evidence for a stem cell model producing mural granulosa cells and cumulus cells is strong, despite a limited number of reports. The recent identification of a precursor granulosa cell, the gonadal ridge epithelial-like cell, is exciting and novel. The identification of female germline (oogonial) stem cells is still very new and is currently limited to just a few species. Their origins and physiological roles, if any, are unknown, and their potential to produce oocytes and contribute to follicle formation in vivo lacks robust evidence. The precursor of thecal cells remains elusive, and more compelling data are needed. Similarly, claims of very small embryonic-like cells are also preliminary. Surface epithelial cells originating from gonadal ridge epithelial-like cells and from the mesonephric epithelium at the hilum of the ovary have also been proposed. Another important issue is the role of the stroma in guiding the formation of the ovary, ovigerous cords, follicles, and surface epithelium. Immune cells may also play key roles in developmental patterning, given their critical roles in corpora lutea formation and regression. Thus, while the cellular biology of the ovary is extremely important for its major endocrine and fertility roles, there is much still to be discovered. This review draws together the current evidence and perspectives on this topic. PMID:25541635

  17. The insecticide 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT) alters the membrane raft location of the TSH receptor stably expressed in Chinese hamster ovary cells

    SciTech Connect

    De Gregorio, Francesca; Pellegrino, Mario; Picchietti, Simona; Belardinelli, Maria C.; Taddei, Anna Rita; Fausto, Anna Maria; Rossi, Mario; Maggio, Roberto; Giorgi, Franco

    2011-06-01

    DDT is a highly lipophilic molecule known to deplete membrane rafts of their phosphoglycolipid and cholesterol contents. However, we have recently shown that DDT can also alter the thyroid homeostasis by inhibiting TSH receptor (TSHr) internalization. The present study was undertaken to verify whether DDT goitrogenic effects are due to the insecticide acting directly on TSHr or via alteration of the membrane rafts hosting the receptor itself. Our results demonstrate that, in CHO-TSHr transfected cells, TSHr is activated in the presence of TSH, while it is inhibited following DDT exposure. DDT can also reduce the endocytic vesicular traffic, alter the extension of multi-branched microvilli along their plasma membranes and induce TSHr shedding in vesicular forms. To verify whether TSHr displacement might depend on DDT altering the raft constitution of CHO-TSHr cell membranes the extent of TSHr and lipid raft co-localization was examined by confocal microscopy. Evidence shows that receptor/raft co-localization increased significantly upon exposure to TSH, while receptors and lipid rafts become dislodged on opposite cell poles in DDT-exposed CHO-TSHr cells. As a control, under similar culturing conditions, diphenylethylene, which is known to be a lipophilic substance that is structurally related to DDT, did not affect the extent of TSHr and lipid raft co-localization in CHO-TSHr cells treated with TSH. These findings corroborate and extend our view that, in CHO cells, the DDT disrupting action on TSHr is primarily due to the insecticide acting on membranes to deplete their raft cholesterol content, and that the resulting inhibition on TSHr internalization is due to receptor dislodgement from altered raft microdomains of the plasma membrane. - Highlights: >DDT is a pesticide with a severe environmental impact >Epidemiologic correlation exists between exposition to DDT and thyroid dysfunction >DDT is a lipophilic molecule that has been shown to inhibit TSH receptor

  18. Isolation and identification of normal killer cells from Syrian hamsters

    SciTech Connect

    Matveeva, V.A.; Klyuchareva, T.E.

    1986-09-01

    This paper gives data on isolation of normal killer cells from the blood and various tissues of Syrian hamsters in a Percoll density gradient and their identification on the basis of morphologic criteria and cytotoxic activity (CTA). CTA of the isolated cells was studied in the cytotoxic test with target cells of a human MOLT-4 thymoma cell labeled with /sup 51/Cr. Isolation of large granular lymphocytes from blood, spleen, and bone marrow of Syrian hamsters in Percoll density gradient is shown in the results of five experiments used for cells of each type.

  19. Suppression of hamster lymphocyte reactivity to simian virus 40 tumor surface antigens by spleen cells from pregnant hamsters

    SciTech Connect

    Weppner, W.A.; Adkinson, L.R.; Coggin, J.H.Jr

    1980-09-01

    SV40-transformed tumor cells in hamsters have been found to have cell surface antigens cross-reactive with antigens temporally expressed on fetal tissues. Using a lymphocyte transformation assay, spleen cells from pregnant hamsters were found to be incapable of responding to preparations of either hamster fetal tissue or SV40-transformed cells. However, a suppressor component can be demonstrated in spleen cell populations of both primi-and multiparous hamsters during pregnancy that is capable of reducing the response of lymphocytes sensitized against SV40 tumor-associated antigens. The degree of suppression is proportional to the ratio of responder cells to spleen cells from pregnant animals. These results suggest there is a subpopulation of spleen cells involved in immunoregulation during pregnancy that has the ability to suppress the reactivity of lymphocytes sensitized against SV40-associated oncofetal antigens.

  20. Mutagenicity of instant coffee on cultured Chinese hamster lung cells.

    PubMed

    Nakasato, F; Nakayasu, M; Fujita, Y; Nagao, M; Terada, M; Sugimura, T

    1984-10-01

    Coffee showed mutagenic activity in cultured Chinese hamster lung (CHL) cells as assessed by using diphtheria toxin resistance as a selective marker. Most of the mutagenicity was suppressed in the presence of sodium bisulfite. The contribution of methylglyoxal to the total mutagenicity of coffee was less than 3%.

  1. A theoretical estimate for nucleotide sugar demand towards Chinese Hamster Ovary cellular glycosylation

    PubMed Central

    del Val, Ioscani Jimenez; Polizzi, Karen M.; Kontoravdi, Cleo

    2016-01-01

    Glycosylation greatly influences the safety and efficacy of many of the highest-selling recombinant therapeutic proteins (rTPs). In order to define optimal cell culture feeding strategies that control rTP glycosylation, it is necessary to know how nucleotide sugars (NSs) are consumed towards host cell and rTP glycosylation. Here, we present a theoretical framework that integrates the reported glycoproteome of CHO cells, the number of N-linked and O-GalNAc glycosylation sites on individual host cell proteins (HCPs), and the carbohydrate content of CHO glycosphingolipids to estimate the demand of NSs towards CHO cell glycosylation. We have identified the most abundant N-linked and O-GalNAc CHO glycoproteins, obtained the weighted frequency of N-linked and O-GalNAc glycosites across the CHO cell proteome, and have derived stoichiometric coefficients for NS consumption towards CHO cell glycosylation. By combining the obtained stoichiometric coefficients with previously reported data for specific growth and productivity of CHO cells, we observe that the demand of NSs towards glycosylation is significant and, thus, is required to better understand the burden of glycosylation on cellular metabolism. The estimated demand of NSs towards CHO cell glycosylation can be used to rationally design feeding strategies that ensure optimal and consistent rTP glycosylation. PMID:27345611

  2. Molecular characterization of mutation and comparison of mutation profiles in the hprt gene of Chinese hamster ovary cells treated with benzo[a]pyrene trans-7,8-diol-anti-9,10-epoxide, 1-nitrobenzol[a]pyrene trans-7,8-diol-anti-9,10-epoxide, and 3-nitrobenzol[a]pyrene trans-7,8-diol-anti-9,10-epoxide

    SciTech Connect

    Zhan, D.J.; Heflich, R.H.; Fu, P.P.

    1996-12-31

    Both 1- and 3-nitrobenzol[a] pyrene (nitro-BaP) are environmental contaminants, potent mutagens in Salmonella, and moderate mutagens in Chinese hamster ovary (CHO) cells. The mutagenicity of their oxidized metabolites, trans-7,8-dihydroxy-anti-9, 10-epoxy-7,8,9,10-tetrahydro-1-nitrobenzol[a]pyrene (1-nitro-BaP-DE) and trans-7,8-dihydroxy-anti-9, 10-epoxy-7,8,9,10-tetrahydro-3-nitrobenzo[a]pyrene (3-nitro-BaP-DE), together with trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzol[a]pyren (BaP-DE), was determined in CHO-K1 cells, and the resulting mutations at the hprt locus were characterized by polymerase chain reaction (PCR) amplification of reverse-transcribed hprt mRNA, followed by DNA sequence analysis. The mutant frequencies, in mutants/10{sup 6} clonable cells, at 30 and 100 ng/ml, were BaP-DE, 248 and 456; 1-nitro-BaP-DE, 68 and 260; 3-nitro-BaP-DE, 81 and 232, respectively. In general, the three diolepoxides exhibited similar mutational spectra: (1) 64% (23/36 sequenced mutants) of BaP-DE, 53% (19/36) of 1-nitro-BaP-DE, and 64% (23/36) of 3-nitro-BaP-DE mutants resulted from simple base pair substitution, with the predominant mutation being G{r_arrow}T transversion: (2) 90%, 100%, and 100% of mutations at G:C had the mutated dG on the nontranscribed DNA strand; and (3) about one quarter of the mutants produced by each mutagen had one or more PCR products with partial or complete exon deletions. 61 refs., 1 fig., 7 tabs.

  3. Photoperiod-dependent modulation of anti-Müllerian hormone in female Siberian hamsters, Phodopus sungorus.

    PubMed

    Kabithe, Esther W; Place, Ned J

    2008-03-01

    Fertility and fecundity decline with advancing age in female mammals, but reproductive aging was decelerated in Siberian hamsters (Phodopus sungorus) raised in a short-day (SD) photoperiod. Litter success was significantly improved in older hamsters when reared in SD and the number of primordial follicles was twice that of females held in long days (LD). Because anti-Müllerian hormone (AMH) appears to inhibit the recruitment of primordial follicles in mice, we sought to determine whether the expression patterns of AMH differ in the ovaries and serum of hamsters raised in SD versus LD. Ovaries of SD female hamsters are characterized by a paucity of follicular development beyond the secondary stage and are endowed with an abundance of large eosinophilic cells, which may derive from granulosa cells of oocyte-depleted follicles. In ovaries from 10-week-old SD hamsters, we found that the so-called 'hypertrophied granulosa cells' were immunoreactive for AMH, as were granulosa cells within healthy-appearing primary and secondary follicles. Conversely, ovaries from age-matched LD animals lack the highly eosinophilic cells present in SD ovaries. Therefore, AMH staining in LD was limited to primary and secondary follicles that are comparable in number to those found in SD ovaries. The substantially greater AMH expression in SD ovaries probably reflects the abundance of hypertrophied granulosa cells in SD ovaries and their relative absence in LD ovaries. The modulation of ovarian AMH by day length is a strong mechanistic candidate for the preservation of primordial follicles in female hamsters raised in a SD photoperiod.

  4. Neuroendocrine cells are present in the domestic fowl ovary

    PubMed Central

    Hofmann, Pablo G; Báez Saldaña, Armida; Fortoul Van Der Goes, Teresa; González del Pliego, Margarita; Gutiérrez Ospina, Gabriel

    2013-01-01

    Neuroendocrine cells are present in virtually all organs of the vertebrate body; however, it is yet uncertain whether they exist in the ovaries. Previous reports of ovarian neurons and neuron-like cells in mammals and birds might have resulted from misidentification. The aim of the present work was to determine the identity of neuron-like cells in immature ovaries of the domestic fowl. Cells immunoreactive to neurofilaments, synaptophysin, and chromogranin-A, with small, dense-core secretory granules, were consistently observed throughout the sub-cortical ovarian medulla and cortical interfollicular stroma. These cells also displayed immunoreactivity for tyrosine, tryptophan and dopamine β-hydroxylases, as well as to aromatic L-DOPA decarboxylase, implying their ability to synthesize both catecholamines and indolamines. Our results support the argument that the ovarian cells previously reported as neuron-like in birds, are neuroendocrine cells. PMID:23083425

  5. Human umbilical cord mesenchymal stem cell transplantation restores damaged ovaries

    PubMed Central

    Zhu, Shao-Fang; Hu, Hong-Bo; Xu, Hong-Yan; Fu, Xia-Fei; Peng, Dong-Xian; Su, Wei-Yan; He, Yuan-Li

    2015-01-01

    Ovarian injury because of chemotherapy can decrease the levels of sexual hormones and potentia generandi of patients, thereby greatly reducing quality of life. The goal of this study was to investigate which transplantation method for human umbilical cord mesenchymal stem cells (HUMSCs) can recover ovarian function that has been damaged by chemotherapy. A rat model of ovarian injury was established using an intraperitoneal injection of cyclophosphamide. Membrane-labelled HUMSCs were subsequently injected directly into ovary tissue or tail vein. The distribution of fluorescently labelled HUMSCs, estrous cycle, sexual hormone levels, and potentia generandi of treated and control rats were then examined. HUMSCs injected into the ovary only distributed to the ovary and uterus, while HUMSCs injected via tail vein were detected in the ovary, uterus, kidney, liver and lung. The estrous cycle, levels of sex hormones and potentia generandi of the treated rats were also recovered to a certain degree. Moreover, in some transplanted rats, fertility was restored and their offspring developed normally. While ovary injection could recover ovarian function faster, both methods produced similar results in the later stages of observation. Therefore, our results suggest that transplantation of HUMSCs by tail vein injection represents a minimally invasive and effective treatment method for ovarian injury. PMID:25922900

  6. Reversal of colchicine-induced mitotic arrest in Chinese hamster cells with a colchicine-specific monoclonal antibody.

    PubMed

    Rouan, S K; Otterness, I G; Cunningham, A C; Holden, H E; Rhodes, C T

    1990-10-01

    The ability of a high-affinity colchicine-binding monoclonal antibody to reverse the effects of colchicine on Chinese hamster ovary cells was investigated. Using flow cytometry, a complete mitotic blockade was demonstrated after 16 hours with 2.5 x 10(-7) mol/l (molar) colchicine. Colchicine-induced changes were reversible when equimolar antibody was added simultaneously with or up to 6 hours after colchicine. With further delay in addition of antibody, a progressive irreversible increase in mitotic blockade and increase in mean cell size was observed. Prolonged colchicine exposure, without antibody reversal, led to polyploidy and structural chromosome breakage. Early antibody reversal restored cells to the diploid state, whereas delayed reversal resulted in a time-dependent increase in polyploidy. Colchicine-induced polyploidy and chromosomal aberrations may be the basis for both colchicine toxicity and the time-dependent increase in irreversibility of colchicine effects.

  7. Acid-induced secretory cell metaplasia in hamster bronchi

    SciTech Connect

    Christensen, T.G.; Lucey, E.C.; Breuer, R.; Snider, G.L.

    1988-02-01

    Hamsters were exposed to an intratracheal instillation of 0.5 ml of 0.08 N nitric, hydrochloric, or sulfuric acid to determine their airway epithelial response. Three weeks after exposure, the left intrapulmonary bronchi in Alcian blue/PAS-strained paraffin sections were evaluated for the amount of secretory product in the airway epithelium as a measure of secretory cell metaplasia (SCM). Compared to saline-treated control animals, all three acids caused statistically significant SCM. In addition to the bronchial lesion, all three acids caused similar interstitial fibrosis, bronchiolectasis, and bronchiolization of alveoli that varied in individual animals from mild to severe. In a separate experiment to study the persistence of the SCM, hamsters treated with a single instillation of 0.1 N nitric acid showed significant SCM 3, 7, and 17 weeks after exposure. There was a high correlation (r = 0.96) between a subjective assessment of SCM and objective assessment using a digital image-analysis system. We conclude that protons induce SCM independently of the associated anion; the SCM persists at least 17 weeks. Sulfuric acid is an atmospheric pollutant and nitric acid may form locally on the mucosa of lungs exposed to nitrogen dioxide. These acids may contribute to the development of maintenance of the SCM seen in the conducting airways of humans with chronic obstructive pulmonary disease.

  8. Comprehensive analysis of genome-wide DNA methylation across human polycystic ovary syndrome ovary granulosa cell

    PubMed Central

    Peng, Zhaofeng; Wang, Linlin; Du, Linqing; Niu, Wenbin; Sun, Yingpu

    2016-01-01

    Polycystic ovary syndrome (PCOS) affects approximately 7% of the reproductive-age women. A growing body of evidence indicated that epigenetic mechanisms contributed to the development of PCOS. The role of DNA modification in human PCOS ovary granulosa cell is still unknown in PCOS progression. Global DNA methylation and hydroxymethylation were detected between PCOS’ and controls’ granulosa cell. Genome-wide DNA methylation was profiled to investigate the putative function of DNA methylaiton. Selected genes expressions were analyzed between PCOS’ and controls’ granulosa cell. Our results showed that the granulosa cell global DNA methylation of PCOS patients was significant higher than the controls’. The global DNA hydroxymethylation showed low level and no statistical difference between PCOS and control. 6936 differentially methylated CpG sites were identified between control and PCOS-obesity. 12245 differential methylated CpG sites were detected between control and PCOS-nonobesity group. 5202 methylated CpG sites were significantly differential between PCOS-obesity and PCOS-nonobesity group. Our results showed that DNA methylation not hydroxymethylation altered genome-wide in PCOS granulosa cell. The different methylation genes were enriched in development protein, transcription factor activity, alternative splicing, sequence-specific DNA binding and embryonic morphogenesis. YWHAQ, NCF2, DHRS9 and SCNA were up-regulation in PCOS-obesity patients with no significance different between control and PCOS-nonobesity patients, which may be activated by lower DNA methylaiton. Global and genome-wide DNA methylation alteration may contribute to different genes expression and PCOS clinical pathology. PMID:27056885

  9. Evaluation of genotoxicity of N-nitrosodibenzylamine in Chinese hamster V79 cells and in Salmonella.

    PubMed

    Boyes, B G; Rogers, C G; Matula, T I; Stapley, R; Sen, N P

    1990-08-01

    Health concerns have arisen due to the formation of N-nitrosodibenzylamine (NDBzA; CAS No. 5336-53-8) in pork processed in a new type of rubber netting. In view of the potent carcinogenicity of related nitrosamines (e.g. N-nitroso-n-dibutylamine and N-nitrosodiethylamine), NDBzA was evaluated for genotoxicity in vitro in both Chinese hamster V79 cells and in Salmonella. In V79 cells, concentrations up to 25 micrograms/ml were tested with and without activation by rat or hamster hepatocytes. Significant elevation of SCE frequency was seen only at 25 micrograms/ml in the presence of uninduced hamster hepatocytes. Mutation to 6-thioguanine resistance was observed at 25 micrograms/ml, in the absence of hepatocytes and in the presence of induced (Aroclor 1254) or uninduced hamster hepatocytes, but not with rat hepatocytes. With uninduced rat hepatocytes, a small but significant (p less than 0.05) increase in the mutation frequency was seen with 10 micrograms/ml NDBzA. In the Salmonella assay, using a pre-incubation protocol and concentrations up to 1000 micrograms/ml, NDBzA was negative in strain TA98, and in TA100 with rat S9, but was positive at the highest dose in TA100 with hamster S9, and more strongly with Aroclor 1254-induced hamster S9. When activated by uninduced rat or hamster hepatocytes, as opposed to S9, NDBzA was negative with all tester strains. Hamster hepatocytes activated more than rat in the V79 studies, and hamster S9 was more strongly activating in the Salmonella assay. These results indicate that NDBzA is weakly mutagenic to both Salmonella and V79 cells.

  10. Langerhans cell function dictates induction of contact hypersensitivity or unresponsiveness to DNFB in Syrian hamsters

    SciTech Connect

    Streilein, J.W.; Bergstresser, P.R.

    1981-09-01

    The relationship between distribution and function of Langerhans cells within the epidermis and the capacity of cutaneous surfaces to promote the induction of contact hypersensitivity to DNFB have been examined in inbred Syrian hamsters. In a manner very similar to previous findings in mice, the results indicate that hamster cutaneous surfaces deficient in normally functioning Langerhans cells, naturally (cheek pouch epithelium) or artificially (after perturbation with ultraviolet light), are inefficient at promoting DNFB sensitization. Instead, DNFB applied to these regions of skin results in the induction of a state of specific unresponsiveness. Viable lymphoid cells from unresponsive hamsters can transfer the unresponsiveness to naive hamsters suggesting that active suppression is at least partly responsible, probably mediated by T lymphocytes.

  11. Hematologic Assessment in Pet Rats, Mice, Hamsters, and Gerbils: Blood Sample Collection and Blood Cell Identification.

    PubMed

    Lindstrom, Nicole M; Moore, David M; Zimmerman, Kurt; Smith, Stephen A

    2015-09-01

    Hamsters, gerbils, rats, and mice are presented to veterinary clinics and hospitals for prophylactic care and treatment of clinical signs of disease. Physical examination, history, and husbandry practice information can be supplemented greatly by assessment of hematologic parameters. As a resource for veterinarians and their technicians, this article describes the methods for collection of blood, identification of blood cells, and interpretation of the hemogram in mice, rats, gerbils, and hamsters.

  12. [Isolation and characteristics of somatic cell hybrids of the Chinese hamster and American mink].

    PubMed

    Rubtsov, N B; Radzhabli, S I; Gradov, A A; Serov, O L

    1981-01-01

    The paper deals with obtaining somatic cell hybrids of Chinese hamster and mink by means of inactivated Sendy virus. 39 hybrid clones segregating mink chromosomes were formed by fusing Chinese hamster cells deficient in hypoxanthine phosphoribosyliransferase with normal cells of mink. Enzyme analyses of these hybrid clones revealed that in mink genes coding lactate dehydrogenase-A, lactate dehydrogenase-B, malate dehydrogenase-NAD (soluble), 6-phosphogluconate dehydrogenase, glucose-6-phosphate dehydrogenase are not syntenic. A possibility of successful utilization of these somatic cell hybrids for mapping mink genes is shown. PMID:6942558

  13. Germline stem cells and neo-oogenesis in the adult human ovary.

    PubMed

    Liu, Yifei; Wu, Chao; Lyu, Qifeng; Yang, Dongzi; Albertini, David F; Keefe, David L; Liu, Lin

    2007-06-01

    It remains unclear whether neo-oogenesis occurs in postnatal ovaries of mammals, based on studies in mice. We thought to test whether adult human ovaries contain germline stem cells (GSCs) and undergo neo-oogenesis. Rather than using genetic manipulation which is unethical in humans, we took the approach of analyzing the expression of meiotic marker genes and genes for germ cell proliferation, which are required for neo-oogenesis, in adult human ovaries covering an age range from 28 to 53 years old, compared to testis and fetal ovaries served as positive controls. We show that active meiosis, neo-oogenesis and GSCs are unlikely to exist in normal, adult, human ovaries. No early meiotic-specific or oogenesis-associated mRNAs for SPO11, PRDM9, SCP1, TERT and NOBOX were detectable in adult human ovaries using RT-PCR, compared to fetal ovary and adult testis controls. These findings are further corroborated by the absence of early meiocytes and proliferating germ cells in adult human ovarian cortex probed with markers for meiosis (SCP3), oogonium (OCT3/4, c-KIT), and cell cycle progression (Ki-67, PCNA), in contrast to fetal ovary controls. If postnatal oogenesis is confirmed in mice, then this species would represent an exception to the rule that neo-oogenesis does not occur in adults.

  14. A hybrid approach identifies metabolic signatures of high-producers for chinese hamster ovary clone selection and process optimization.

    PubMed

    Popp, Oliver; Müller, Dirk; Didzus, Katharina; Paul, Wolfgang; Lipsmeier, Florian; Kirchner, Florian; Niklas, Jens; Mauch, Klaus; Beaucamp, Nicola

    2016-09-01

    In-depth characterization of high-producer cell lines and bioprocesses is vital to ensure robust and consistent production of recombinant therapeutic proteins in high quantity and quality for clinical applications. This requires applying appropriate methods during bioprocess development to enable meaningful characterization of CHO clones and processes. Here, we present a novel hybrid approach for supporting comprehensive characterization of metabolic clone performance. The approach combines metabolite profiling with multivariate data analysis and fluxomics to enable a data-driven mechanistic analysis of key metabolic traits associated with desired cell phenotypes. We applied the methodology to quantify and compare metabolic performance in a set of 10 recombinant CHO-K1 producer clones and a host cell line. The comprehensive characterization enabled us to derive an extended set of clone performance criteria that not only captured growth and product formation, but also incorporated information on intracellular clone physiology and on metabolic changes during the process. These criteria served to establish a quantitative clone ranking and allowed us to identify metabolic differences between high-producing CHO-K1 clones yielding comparably high product titers. Through multivariate data analysis of the combined metabolite and flux data we uncovered common metabolic traits characteristic of high-producer clones in the screening setup. This included high intracellular rates of glutamine synthesis, low cysteine uptake, reduced excretion of aspartate and glutamate, and low intracellular degradation rates of branched-chain amino acids and of histidine. Finally, the above approach was integrated into a workflow that enables standardized high-content selection of CHO producer clones in a high-throughput fashion. In conclusion, the combination of quantitative metabolite profiling, multivariate data analysis, and mechanistic network model simulations can identify metabolic

  15. A hybrid approach identifies metabolic signatures of high-producers for chinese hamster ovary clone selection and process optimization.

    PubMed

    Popp, Oliver; Müller, Dirk; Didzus, Katharina; Paul, Wolfgang; Lipsmeier, Florian; Kirchner, Florian; Niklas, Jens; Mauch, Klaus; Beaucamp, Nicola

    2016-09-01

    In-depth characterization of high-producer cell lines and bioprocesses is vital to ensure robust and consistent production of recombinant therapeutic proteins in high quantity and quality for clinical applications. This requires applying appropriate methods during bioprocess development to enable meaningful characterization of CHO clones and processes. Here, we present a novel hybrid approach for supporting comprehensive characterization of metabolic clone performance. The approach combines metabolite profiling with multivariate data analysis and fluxomics to enable a data-driven mechanistic analysis of key metabolic traits associated with desired cell phenotypes. We applied the methodology to quantify and compare metabolic performance in a set of 10 recombinant CHO-K1 producer clones and a host cell line. The comprehensive characterization enabled us to derive an extended set of clone performance criteria that not only captured growth and product formation, but also incorporated information on intracellular clone physiology and on metabolic changes during the process. These criteria served to establish a quantitative clone ranking and allowed us to identify metabolic differences between high-producing CHO-K1 clones yielding comparably high product titers. Through multivariate data analysis of the combined metabolite and flux data we uncovered common metabolic traits characteristic of high-producer clones in the screening setup. This included high intracellular rates of glutamine synthesis, low cysteine uptake, reduced excretion of aspartate and glutamate, and low intracellular degradation rates of branched-chain amino acids and of histidine. Finally, the above approach was integrated into a workflow that enables standardized high-content selection of CHO producer clones in a high-throughput fashion. In conclusion, the combination of quantitative metabolite profiling, multivariate data analysis, and mechanistic network model simulations can identify metabolic

  16. Bilateral ovarian squamous cell carcinoma with an antecedent dermoid cyst in the left ovary.

    PubMed

    Prasad, Sruthi; Suguna, B V; Ravindra, Savithri

    2011-09-01

    Ovarian squamous cell carcinoma is a rare malignancy and its occurrence is commonly attributed to malignant transformation of a pre-existing mature cystic teratoma. The de novo occurrence of primary squamous cell carcinoma is extremely rare. Malignant transformation in a mature cystic teratoma is almost always unilateral; however, there have been isolated reports of an uncomplicated mature cystic teratoma in the contralateral ovary. We report here a case of a 40-year-old woman presenting with squamous cell carcinoma of both ovaries with antecedent dermoid cyst in the left ovary, along with involvement of the fallopian tubes, cervix and omentum.

  17. Serotonergic modulation of hippocampal pyramidal cells in euthermic, cold-acclimated, and hibernating hamsters

    NASA Technical Reports Server (NTRS)

    Horrigan, D. J.; Horwitz, B. A.; Horowitz, J. M.

    1997-01-01

    Serotonergic fibers project to the hippocampus, a brain area previously shown to have distinctive changes in electroencephalograph (EEG) activity during entrance into and arousal from hibernation. The EEG activity is generated by pyramidal cells in both hibernating and nonhibernating species. Using the brain slice preparation, we characterized serotonergic responses of these CA1 pyramidal cells in euthermic, cold-acclimated, and hibernating Syrian hamsters. Stimulation of Shaffer-collateral/commissural fibers evoked fast synaptic excitation of CA1 pyramidal cells, a response monitored by recording population spikes (the synchronous generation of action potentials). Neuromodulation by serotonin (5-HT) decreased population spike amplitude by 54% in cold-acclimated animals, 80% in hibernating hamsters, and 63% in euthermic animals. The depression was significantly greater in slices from hibernators than from cold-acclimated animals. In slices from euthermic animals, changes in extracellular K+ concentration between 2.5 and 5.0 mM did not significantly alter serotonergic responses. The 5-HT1A agonist 8-hydroxy-2(di-n-propylamino)tetralin mimicked serotonergic inhibition in euthermic hamsters. Results show that 5-HT is a robust neuromodulator not only in euthermic animals but also in cold-acclimated and hibernating hamsters.

  18. A pure primary transitional cell carcinoma of the ovary: A rare case report with literature review.

    PubMed

    Chandanwale, Shirish S; Kamble, Tushar; Mishra, Neha; Kumar, Harsh; Jadhav, Rahul

    2016-01-01

    Primary transitional cell carcinoma (TCC) of the ovary is a rare and recently recognized subtype of ovarian surface epithelial-stromal cancer. Pure forms of the TCC ovary account for only 1% of surface epithelial carcinomas. The clinical presentation is indistinguishable from other types of ovarian cancers. They have a favorable response to chemotherapy than other surface epithelial cancers. We report a case of 55-year-old woman who presented with a hard mass in the abdomen. Computed tomography-diagnosed it as a carcinoma of the ovary. Tumor was immunoreactive with Wilms' tumor protein-1 and nonreactive with cytokeratin 7 (CK7) and CK20. Histopathology diagnosis of primary TCC of the ovary was made. These tumors are needed to be differentiated from metastatic TCC from other sites and undifferentiated carcinomas of ovaries. Clinical features and immunohistochemistry are helpful. Surgical resection is the primary therapeutic approach followed by standardized chemotherapy. PMID:27127747

  19. ARP2, a novel pro-apoptotic protein expressed in epithelial prostate cancer LNCaP cells and epithelial ovary CHO transformed cells.

    PubMed

    Mas-Oliva, Jaime; Navarro-Vidal, Enrique; Tapia-Vieyra, Juana Virginia

    2014-01-01

    Neoplastic epithelial cells generate the most aggressive types of cancers such as those located in the lung, breast, colon, prostate and ovary. During advanced stages of prostate cancer, epithelial cells are associated to the appearance of androgen-independent tumors, an apoptotic-resistant phenotype that ultimately overgrows and promotes metastatic events. We have previously identified and electrophysiologically characterized a novel Ca(2+)-permeable channel activated during apoptosis in the androgen-independent prostate epithelial cancer cell line, LNCaP. In addition, we reported for the first time the cloning and characterization of this channel-like molecule named apoptosis regulated protein 2 (ARP2) associated to a lethal influx of Ca(2+) in Xenopus oocytes. In the present study, LNCaP cells and Chinese hamster ovary cells (CHO cell line) transfected with arp2-cDNA are induced to undergo apoptosis showing an important impact on cell viability and activation of caspases 3 and 7 when compared to serum deprived grown cells and ionomycin treated cells. The subcellular localization of ARP2 in CHO cells undergoing apoptosis was studied using confocal microscopy. While apoptosis progresses, ARP2 initially localized in the peri-nuclear region of cells migrates with time towards the plasma membrane region. Based on the present results and those of our previous studies, the fact that ARP2 constitutes a novel cation channel is supported. Therefore, ARP2 becomes a valuable target to modulate the influx and concentration of calcium in the cytoplasm of epithelial cancer cells showing an apoptotic-resistant phenotype during the onset of an apoptotic event. PMID:24465888

  20. ARP2, a novel pro-apoptotic protein expressed in epithelial prostate cancer LNCaP cells and epithelial ovary CHO transformed cells.

    PubMed

    Mas-Oliva, Jaime; Navarro-Vidal, Enrique; Tapia-Vieyra, Juana Virginia

    2014-01-01

    Neoplastic epithelial cells generate the most aggressive types of cancers such as those located in the lung, breast, colon, prostate and ovary. During advanced stages of prostate cancer, epithelial cells are associated to the appearance of androgen-independent tumors, an apoptotic-resistant phenotype that ultimately overgrows and promotes metastatic events. We have previously identified and electrophysiologically characterized a novel Ca(2+)-permeable channel activated during apoptosis in the androgen-independent prostate epithelial cancer cell line, LNCaP. In addition, we reported for the first time the cloning and characterization of this channel-like molecule named apoptosis regulated protein 2 (ARP2) associated to a lethal influx of Ca(2+) in Xenopus oocytes. In the present study, LNCaP cells and Chinese hamster ovary cells (CHO cell line) transfected with arp2-cDNA are induced to undergo apoptosis showing an important impact on cell viability and activation of caspases 3 and 7 when compared to serum deprived grown cells and ionomycin treated cells. The subcellular localization of ARP2 in CHO cells undergoing apoptosis was studied using confocal microscopy. While apoptosis progresses, ARP2 initially localized in the peri-nuclear region of cells migrates with time towards the plasma membrane region. Based on the present results and those of our previous studies, the fact that ARP2 constitutes a novel cation channel is supported. Therefore, ARP2 becomes a valuable target to modulate the influx and concentration of calcium in the cytoplasm of epithelial cancer cells showing an apoptotic-resistant phenotype during the onset of an apoptotic event.

  1. Induction of thymidine kinase in enzyme-deficient Chinese hamster cells.

    PubMed

    Harris, M

    1982-06-01

    Previous work with Chinese hamster cells suggests that thymidine kinase deficiency and loss of potential for plating in HAT medium may arise by a process of mutation coupled with site-specific repression by bromodeoxyuridine at the tk locus. In this study, tk- Chinese hamster cells were exposed to a series of inductors to determine whether revertants for the putative second stage originate by genetic or epigenetic change. Brief exposure to 5-azacytidine resulted in massive conversion to the HAT+ state, and revertants showed levels of thymidine kinase activity intermediate between those of tk- and wild-type cells. By contrast, incidence of HAT+ cells rose only slightly in populations mutagenized with ethyl methanesulfonate. Large increases in frequency of HAT+ cells were obtained by treatment with n-butyrate and L-ethionine, which affect gene expression in other cell systems but have no known mutagenic potential. Induction of HAT+ revertants seems to be mediated by a stable epigenetic shift, which reverses the gradual extinction of thymidine kinase activity in the parent cells. The data support the view that induction in Chinese hamster cells results from changes in DNA methylation patterns, and suggests studies to define the process in molecular terms.

  2. Night temperature and source–sink effects on overall growth, cell number and cell size in bell pepper ovaries

    PubMed Central

    Darnell, Rebecca L.; Cruz-Huerta, Nicacio; Williamson, Jeffrey G.

    2012-01-01

    Background and Aims Ovary swelling, and resultant fruit malformation, in bell pepper flowers is favoured by low night temperature or a high source–sink ratio. However, the interaction between night temperature and source–sink ratio on ovary swelling and the contribution of cell size and cell number to ovary swelling are unknown. The present research examined the interactive effects of night temperature and source–sink ratio on ovary size, cell number and cell size at anthesis in bell pepper flowers. Methods Bell pepper plants were grown in growth chambers at night temperatures of either 20 °C (HNT) or 12 °C (LNT). Within each temperature treatment, plants bore either 0 (non-fruiting) or two developing fruits per plant. Ovary fresh weight, cell size and cell number were measured. Key Results Ovary fresh weights in non-fruiting plants grown at LNT were the largest, while fresh weights were smallest in plants grown at HNT with fruits. In general, mesocarp cell size in ovaries was largest in non-fruiting plants grown at either LNT or HNT and smallest in fruiting plants at HNT. Mesocarp cell number was greater in non-fruiting plants under LNT than in the rest of the night temperature/fruiting treatments. These responses were more marked in ovaries sampled after 18 d of treatment compared with those sampled after 40 d of treatment. Conclusions Ovary fresh weight of flowers at anthesis increased 65 % in non-fruiting plants grown under LNT compared with fruiting plants grown under HNT. This increase was due primarily to increases in mesocarp cell number and size. These results indicate that the combined effects of LNT and high source–sink ratio on ovary swelling are additive. Furthermore, the combined effects of LNT and low source–sink ratio or HNT and high source–sink ratio can partially overcome the detrimental effects of LNT and high source–sink ratio. PMID:22933415

  3. Primary cell cultures from sea urchin ovaries: a new experimental tool.

    PubMed

    Mercurio, Silvia; Di Benedetto, Cristiano; Sugni, Michela; Candia Carnevali, M Daniela

    2014-02-01

    In the present work, primary cell cultures from ovaries of the edible sea urchin Paracentrotus lividus were developed in order to provide a simple and versatile experimental tool for researches in echinoderm reproductive biology. Ovary cell phenotypes were identified and characterized by different microscopic techniques. Although cell cultures could be produced from ovaries at all stages of maturation, the cells appeared healthier and viable, displaying a higher survival rate, when ovaries at early stages of gametogenesis were used. In terms of culture medium, ovarian cells were successfully cultured in modified Leibovitz-15 medium, whereas poor results were obtained in minimum essential medium Eagle and medium 199. Different substrates were tested, but ovarian cells completely adhered only on poly-L-lysine. To improve in vitro conditions and stimulate cell proliferation, different serum-supplements were tested. Fetal calf serum and an originally developed pluteus extract were detrimental to cell survival, apparently accelerating processes of cell death. In contrast, cells cultured with sea urchin egg extract appeared larger and healthier, displaying an increased longevity that allowed maintaining them for up to 1 month. Overall, our study provides new experimental bases and procedures for producing successfully long-term primary cell cultures from sea urchin ovaries offering a good potential to study echinoid oogenesis in a controlled system and to investigate different aspects of echinoderm endocrinology and reproductive biology.

  4. Misoprostol-induced radioprotection of Syrian hamster embryo cells in utero from cell death and oncogenic transformation

    SciTech Connect

    Miller, R.C.; LaNasa, P.; Hanson, W.R.

    1994-07-01

    Misoprostol, a PGE analog, is an effective radioprotector of murine intestine and hematopoietic and hair cell renewal systems. The radioprotective nature of misoprostol was extended to examine its ability to influence clonogenic cell survival and induction of oncogenic transformation in Syrian hamster embryo cells exposed to X rays in utero and assayed in vitro. Hamsters in their 12th day of pregnancy were injected subcutaneously with misoprostal, and 2 h later the pregnant hamsters were exposed to graded doses of X rays. Immediately after irradiation, hamsters were euthanized and embryonic tissue was explanted into culture dishes containing complete growth medium. After a 2-week incubation period, clongenic cell survival and morphologically transformed foci were determined. Survival of misoprostol-treated SHE cells was increased and yielded a dose reduction factor of 1.5 compared to SHE cells treated with X rays alone. In contrast, radiation-induced oncogenic transformation of misoprostol-treated cells was reduced by a factor of 20 compared to cells treated with X rays alone. These studies suggest that misoprostol not only protects normal tissues in vivo from acute radiation injury, but also protects cells, to a large extent, from injury leading to transforming events. 26 refs., 6 figs., 2 tabs.

  5. Effects of microwave exposure on the hamster immune system. I. Natural killer cell activity

    SciTech Connect

    Yang, H.K.; Cain, C.A.; Lockwood, J.; Tompkins, W.A.

    1983-01-01

    Hamsters were exposed to repeated or single doses of microwave energy and monitored for changes in core body temperature, circulating leukocyte profiles, serum corticosteroid levels, and natural killer (NK) cell activity in various tissues. NK cytotoxicity was measured in a /sup 51/Cr-release assay employing baby hamster kidney (BHK) targets or BHK infected with herpes simplex virus. Repeated exposure of hamsters at 15 mW/cm2 for 60 min/day had no significant effect on natural levels of spleen-cell NK activity against BHK targets. Similarly, repeated exposure at 15 mW/cm2 over a 5-day period had no demonstrable effect on the induction of spleen NK activity by vaccinia virus immunization, that is, comparable levels of NK were induced in untreated and microwave-treated animals. In contrast, treatment of hamsters with a single 60-min microwave exposure at 25 mW/cm2 caused a significant suppression in induced spleen NK activity. A similar but less marked decrease in spleen NK activity was observed in sham-exposed animals. Moreover, the sham effects on NK activity were not predictable and appeared to represent large individual animal variations in the response to stress factors. Depressed spleen NK activity was evident as early as 4 h postmicrowave treatment and returned to normal levels by 8 h. Hamsters exposed at 25 mW/cm2 showed an elevated temperature of 3.0-3.5 degrees C that returned to normal within 60 min after termination of microwave exposure. These animals also showed a marked lymphopenia and neutrophilia by 1 h posttreatment that returned to normal by 8-10 h. Serum glucocorticosteroids were elevated between 1 aNd 8 h after microwave treatment. Sham-exposed animals did not demonstrate significant changes in core body temperature, peripheral blood leukocyte (PBL) profile, or glucocorticosteroid levels as compared to minimum-handling controls.

  6. Generation of exogenous germ cells in the ovaries of sterile NANOS3-null beef cattle

    PubMed Central

    Ideta, Atsushi; Yamashita, Shiro; Seki-Soma, Marie; Yamaguchi, Ryosaku; Chiba, Shiori; Komaki, Haruna; Ito, Tetsuya; Konishi, Masato; Aoyagi, Yoshito; Sendai, Yutaka

    2016-01-01

    Blastocyst complementation (BC) systems have enabled in vivo generation of organs from allogeneic pluripotent cells, compensating for an empty germ cell niche in gene knockout (KO) animals. Here, we succeeded in producing chimeric beef cattle (Wagyu) by transferring allogenic germ cells into ovaries using somatic cell nuclear transfer and BC technology. The KO of NANOS3 (NANOS3−/−) in Wagyu bovine ovaries produced a complete loss of germ cells. Holstein blastomeres (NANOS3+/+) were injected into NANOS3−/− Wagyu embryos. Subsequently, exogenous germ cells (NANOS3+/+) were identified in the NANOS3−/− ovary. These results clearly indicate that allogeneic germ cells can be generated in recipient germ cell-free gonads using cloning and BC technologies. PMID:27117862

  7. Generation of exogenous germ cells in the ovaries of sterile NANOS3-null beef cattle.

    PubMed

    Ideta, Atsushi; Yamashita, Shiro; Seki-Soma, Marie; Yamaguchi, Ryosaku; Chiba, Shiori; Komaki, Haruna; Ito, Tetsuya; Konishi, Masato; Aoyagi, Yoshito; Sendai, Yutaka

    2016-01-01

    Blastocyst complementation (BC) systems have enabled in vivo generation of organs from allogeneic pluripotent cells, compensating for an empty germ cell niche in gene knockout (KO) animals. Here, we succeeded in producing chimeric beef cattle (Wagyu) by transferring allogenic germ cells into ovaries using somatic cell nuclear transfer and BC technology. The KO of NANOS3 (NANOS3(-/-)) in Wagyu bovine ovaries produced a complete loss of germ cells. Holstein blastomeres (NANOS3(+/+)) were injected into NANOS3(-/-) Wagyu embryos. Subsequently, exogenous germ cells (NANOS3(+/+)) were identified in the NANOS3(-/-) ovary. These results clearly indicate that allogeneic germ cells can be generated in recipient germ cell-free gonads using cloning and BC technologies. PMID:27117862

  8. Regulation of neuroendocrine cells and neuron factors in the ovary by zinc oxide nanoparticles.

    PubMed

    Liu, Xin-Qi; Zhang, Hong-Fu; Zhang, Wei-Dong; Zhang, Peng-Fei; Hao, Ya-Nan; Song, Ran; Li, Lan; Feng, Yan-Ni; Hao, Zhi-Hui; Shen, Wei; Min, Ling-Jiang; Yang, Hong-Di; Zhao, Yong

    2016-08-10

    The pubertal period is an important window during the development of the female reproductive system. Development of the pubertal ovary, which supplies the oocytes intended for fertilization, requires growth factors, hormones, and neuronal factors. It has been reported that zinc oxide nanoparticles (ZnO NPs) cause cytotoxicity of neuron cells. However, there have been no reports of the effects of ZnO NPs on neuronal factors and neuroendocrine cells in the ovary (in vivo). For the first time, this in vivo study investigated the effects of ZnO NPs on gene and protein expression of neuronal factors and the population of neuroendocrine cells in ovaries. Intact NPs were detected in ovarian tissue and although ZnO NPs did not alter body weight, they reduced the ovary organ index. Compared to the control or ZnSO4 treatments, ZnO NPs treatments differentially regulated neuronal factor protein and gene expression, and the population of neuroendocrine cells. ZnO NPs changed the contents of essential elements in the ovary; however, they did not alter levels of the steroid hormones estrogen and progesterone. These data together suggest that intact ZnO NPs might pose a toxic effect on neuron development in the ovary and eventually negatively affect ovarian developmental at puberty. PMID:27215404

  9. Infertility in the hyperplasic ovary of freshwater planarians: the role of programmed cell death.

    PubMed

    Harrath, Abdel Halim; Semlali, Abdelhabib; Mansour, Lamjed; Ahmed, Mukhtar; Sirotkin, Alexander V; Al Omar, Suliman Y; Arfah, Maha; Al Anazi, Mohamed S; Alhazza, Ibrahim M; Nyengaard, Jens R; Alwasel, Saleh

    2014-11-01

    Ex-fissiparous planarians produce infertile cocoons or, in very rare cases, cocoons with very low fertility. Here, we describe the features of programmed cell death (PCD) occurring in the hyperplasic ovary of the ex-fissiparous freshwater planarian Dugesia arabica that may explain this infertility. Based on TEM results, we demonstrate a novel extensive co-clustering of cytoplasmic organelles, such as lysosomes and microtubules, and their fusion with autophagosomes during the early stage of oocyte cell death occurring through an autophagic pattern. During a later stage of cell death, the generation of apoptotic vesicles in the cytoplasm can be observed. The immunohistochemical labeling supports the ultrastructural results because it has been shown that the proapoptotic protein bax was more highly expressed in the hyperplasic ovary than in the normal one, whereas the anti-apoptotic protein bcl2 was slightly more highly expressed in the normal ovary compared to the hyperplasic one. TUNEL analysis of the hyperplasic ovary confirmed that the nuclei of the majority of differentiating oocytes were TUNEL-positive, whereas the nuclei of oogonia and young oocytes were TUNEL-negative; in the normal ovary, oocytes are TUNEL-negative. Considering all of these data, we suggest that the cell death mechanism of differentiating oocytes in the hyperplasic ovary of freshwater planarians is one of the most important factors that cause ex-fissiparous planarian infertility. We propose that autophagy precedes apoptosis during oogenesis, whereas apoptotic features can be observed later.

  10. Ciliated cells in vitamin A-deprived cultured hamster tracheal epithelium do divide

    SciTech Connect

    Rutten, A.A.; Beems, R.B.; Wilmer, J.W.; Feron, V.J.

    1988-09-01

    The pseudostratified tracheal epithelium, composed of a heterogeneous phenotypically varying cell population, was studied with respect to the in vitro cell proliferative activity of differentiated epithelial cells. Ciliated tracheal epithelial cells so far have been considered to be terminally differentiated, nonproliferating cells. Tracheal organ cultures obtained from vitamin A-deprived Syrian Golden hamsters were cultured in a vitamin A-deficient, serum-free, hormone-supplemented medium. In vitamin A-deprived tracheal epithelium treated with physiologically active all-trans retinol and low cigarette-smoke condensate concentrations it is possible to stimulate the cell proliferation of both basal and columnar cells. Therefore, the probability of finding proliferating columnar cells was increased compared with the in vivo and the vitamin A-deprived situation in which cell proliferative activity is relatively low. In the presence of cigarette-smoke condensate in a noncytotoxic concentration, basal, small mucous granule, ciliated, and indifferent tracheal epithelial cells incorporated (methyl-3H)-thymidine into the DNA during the S phase. The finding that ciliated cells were labeled was supported by serial sections showing the same labeled ciliated cell in two section planes separated by 2 to 3 micron, without labeled epithelial cells next to the ciliated cell. Furthermore, a ciliated tracheal epithelial cell incorporating (methyl-/sup 3/H)thymidine into DNA was also seen in tracheal cultures of vitamin A-deprived hamsters treated with all-trans retinol in a physiologic concentration.

  11. Induction of Spermatogenesis by Bone Marrow-derived Mesenchymal Stem Cells in Busulfan-induced Azoospermia in Hamster

    PubMed Central

    Tamadon, Amin; Mehrabani, Davood; Rahmanifar, Farhad; Jahromi, Alireza Raayat; Panahi, Mohadeseh; Zare, Shahrokh; Khodabandeh, Zahra; Jahromi, Iman Razeghian; Tanideh, Nader; Dianatpour, Mehdi; Ramzi, Mani; Koohi-Hoseinabadi, Omid

    2015-01-01

    Background Bone marrow-derived mesenchymal stem cells (BM-MSCs) have potential of differentiation and they secrete anti-inflammatory cytokines and growth factors which make them appropriate for cell therapy. Aim of the Work Were to evaluate the healing effect of BM-MSCs transplantation on germinal cells of busulfan-induced azoospermic hamsters. Material and Methods In the present experimental case control study, BM-MSCs were isolated from bone marrow of donor albino hamsters. Five mature male recipient hamsters received two doses of 10 mg/kg of busulfan with 21 days interval to stop endogenous spermatogenesis. After induction of azoospermia, right testis of hamsters was injected with 106 BM-MSCs via efferent duct and the left one remained as azoospermia control testis. Five normal mature hamsters were selected as normal intact control. After 35 days, testes and epididymis of three groups were removed for histological evaluation. Results Histomorphological analyses of BM-MSCs treated testes and epididymis showed the epithelial tissue of seminiferous tubules had normal morphology and spermatozoa were present in epididymis tubes. Spermatogenesis was observed in most cell-treated seminiferous tubules. The untreated seminiferous tubules were empty. Conclusion Transplanted BM-MSCs could successfully induce spermatogenesis in seminiferous tubules of azoospermic hamster. Therefore, BM-MSCs can be an attractive candidate in cell transplantation of azoospermia. PMID:26634062

  12. Long-Term Oocyte-Like Cell Development in Cultures Derived from Neonatal Marmoset Monkey Ovary

    PubMed Central

    Fereydouni, Bentolhoda; Salinas-Riester, Gabriela; Heistermann, Michael; Dressel, Ralf; Lewerich, Lucia; Drummer, Charis; Behr, Rüdiger

    2016-01-01

    We use the common marmoset monkey (Callithrix jacchus) as a preclinical nonhuman primate model to study reproductive and stem cell biology. The neonatal marmoset monkey ovary contains numerous primitive premeiotic germ cells (oogonia) expressing pluripotent stem cell markers including OCT4A (POU5F1). This is a peculiarity compared to neonatal human and rodent ovaries. Here, we aimed at culturing marmoset oogonia from neonatal ovaries. We established a culture system being stable for more than 20 passages and 5 months. Importantly, comparative transcriptome analysis of the cultured cells with neonatal ovary, embryonic stem cells, and fibroblasts revealed a lack of germ cell and pluripotency genes indicating the complete loss of oogonia upon initiation of the culture. From passage 4 onwards, however, the cultured cells produced large spherical, free-floating cells resembling oocyte-like cells (OLCs). OLCs strongly expressed several germ cell genes and may derive from the ovarian surface epithelium. In summary, our novel primate ovarian cell culture initially lacked detectable germ cells but then produced OLCs over a long period of time. This culture system may allow a deeper analysis of early phases of female primate germ cell development and—after significant refinement—possibly also the production of monkey oocytes. PMID:26664406

  13. The evolution of chromosomal instability in Chinese hamster cells: a changing picture?

    NASA Technical Reports Server (NTRS)

    Ponnaiya, B.; Limoli, C. L.; Corcoran, J.; Kaplan, M. I.; Hartmann, A.; Morgan, W. F.

    1998-01-01

    PURPOSE: To investigate the kinetics of chromosomal instability induced in clones of Chinese hamster cells following X-irradiation. MATERIALS AND METHODS: X-irradiated clones of GM10115, human-hamster hybrid cells containing a single human chromosome 4 (HC4), have been previously established. These clones were defined as unstable if they contained > or = three subpopulations of cells with unique rearrangements of HC4 as detected by FISH. Stable and unstable clones were analysed by FISH and Giemsa staining at various times post-irradiation. RESULTS: While most of the stable clones continued to show chromosomal stability of HC4 over time, one became marginally unstable at approximately 45 population doublings post-irradiation. Clones exhibiting chromosomal instability had one of several fates. Many of the unstable clones were showed similar levels of instability over time. However, one unstable clone became stable with time in culture, while another became even more unstable over time. Cytogenetic analyses of all clones after Giemsa staining indicated that in some clones the hamster chromosomes were rearranged independent of HC4, demonstrating increased frequencies of chromatid breaks and dicentric chromosomes. The majority of the unstable clones also had higher yields of chromatid gaps. CONCLUSIONS: These data demonstrate the dynamic nature of chromosomal instability as measured by two different cytogenetic assays.

  14. Effect of Loss of Thymidine Kinase Activity on the Tumorigenicity of Clones of SV40-Transformed Hamster Cells*

    PubMed Central

    Rothschild, Henry; Black, Paul H.

    1970-01-01

    Cells deficient in the enzyme thymidine kinase were derived from transplantable SV40-transformed hamster cells. The resultant cell lines were less transplantable when inoculated into hamsters. Tumors which did arise from such cells had prolonged latent periods and were found to contain a mixture of enzyme-containing and enzyme-deficient cells. Revertant cell lines obtained either spontaneously or after mutagenesis in vitro contained intermediate levels of thymidine kinase activity and displayed an oncogenic potential which was intermediate between the wild type and enzyme-deficient cells. It is postulated that salvage pathway enzymes may play a rate-limiting role in tumorigenesis. PMID:4331716

  15. Prolactin (PRL) induction of cyclooxygenase 2 (COX2) expression and prostaglandin (PG) production in hamster Leydig cells.

    PubMed

    Matzkin, María Eugenia; Ambao, Verónica; Carino, Mónica Herminia; Rossi, Soledad Paola; González, Lorena; Turyn, Daniel; Campo, Stella; Calandra, Ricardo Saúl; Frungieri, Mónica Beatriz

    2012-01-01

    Serum prolactin (PRL) variations play a crucial role in the photoperiodic-induced testicular regression-recrudescence transition in hamsters. We have previously shown that cyclooxygenase 2 (COX2), a key enzyme in the biosynthesis of prostaglandins (PGs), is expressed mostly in Leydig cells of reproductively active hamsters with considerable circulating and pituitary levels of PRL. In this study, we describe a stimulatory effect of PRL on COX2/PGs in hamster Leydig cells, which is mediated by IL-1β and prevented by P38-MAPK and JAK2 inhibitors. Furthermore, by preparative isoelectric focusing (IEF), we isolated PRL charge analogues from pituitaries of active [isoelectric points (pI): 5.16, 4.61, and 4.34] and regressed (pI: 5.44) hamsters. More acidic PRL charge analogues strongly induced COX2 expression, while less acidic ones had no effect. Our studies suggest that PRL induces COX2/PGs in hamster Leydig cells through IL-1β and activation of P38-MAPK and JAK2. PRL microheterogeneity detected in active/inactive hamsters may be responsible for the photoperiodic variations of COX2 expression in Leydig cells.

  16. Chromosomal mutations and chromosome loss measured in a new human-hamster hybrid cell line, ALC: studies with colcemid, ultraviolet irradiation, and 137Cs gamma-rays

    NASA Technical Reports Server (NTRS)

    Kraemer, S. M.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    Small mutations, megabase deletions, and aneuploidy are involved in carcinogenesis and genetic defects, so it is important to be able to quantify these mutations and understand mechanisms of their creation. We have previously quantified a spectrum of mutations, including megabase deletions, in human chromosome 11, the sole human chromosome in a hamster-human hybrid cell line AL. S1- mutants have lost expression of a human cell surface antigen, S1, which is encoded by the M1C1 gene at 11p13 so that mutants can be detected via a complement-mediated cytotoxicity assay in which S1+ cells are killed and S1- cells survive. But loss of genes located on the tip of the short arm of 11 (11p15.5) is lethal to the AL hybrid, so that mutants that have lost the entire chromosome 11 die and escape detection. To circumvent this, we fused AL with Chinese hamster ovary (CHO) cells to produce a new hybrid, ALC, in which the requirement for maintaining 11p15.5 is relieved, allowing us to detect mutations events involving loss of 11p15.5. We evaluated the usefulness of this hybrid by conducting mutagenesis studies with colcemid, 137Cs gamma-radiation and UV 254 nm light. Colcemid induced 1000 more S1- mutants per unit dose in ALC than in AL; the increase for UV 254 nm light was only two-fold; and the increase for 137Cs gamma-rays was 12-fold. The increase in S1- mutant fraction in ALC cells treated with colcemid and 137Cs gamma-rays were largely due to chromosome loss and 11p deletions often containing a breakpoint within the centromeric region.

  17. Queen pheromone regulates programmed cell death in the honey bee worker ovary.

    PubMed

    Ronai, I; Oldroyd, B P; Vergoz, V

    2016-10-01

    In social insect colonies the presence of a queen, secreting her pheromones, is a key environmental cue for regulating the reproductive state of workers. However, until recently the proximate molecular mechanisms underlying facultative worker sterility were unidentified. Studies into worker oogenesis in the honey bee (Apis mellifera) have indicated that programmed cell death is central to the regulation of oogenesis. Here we investigate how queen pheromone, age of the worker and ovary state affect both programmed cell death and cell number in worker ovaries. We describe a novel method to simultaneously measure programmed cell death (caspase activity) and live cell number (estimated from the amount of adenosine triphosphate) in an insect tissue. Workers exposed to queen pheromone have higher levels of caspase activity in the ovary than those not exposed. Our results suggest that queen pheromone triggers programmed cell death at the mid-oogenesis checkpoint causing the abortion of worker oocytes and reproductive inhibition of the worker caste. Nonetheless, high caspase activity is present in activated ovaries from workers not exposed to queen pheromone. This caspase activity is most likely to be from the nurse cells undergoing programmed cell death, in late oogenesis, for normal oocyte development. Our study shows that the social environment of an organism can influence programmed cell death within a tissue. PMID:27321063

  18. Sequencing, Annotation and Analysis of the Syrian Hamster (Mesocricetus auratus) Transcriptome

    PubMed Central

    Tchitchek, Nicolas; Safronetz, David; Rasmussen, Angela L.; Martens, Craig; Virtaneva, Kimmo; Porcella, Stephen F.; Feldmann, Heinz

    2014-01-01

    Background The Syrian hamster (golden hamster, Mesocricetus auratus) is gaining importance as a new experimental animal model for multiple pathogens, including emerging zoonotic diseases such as Ebola. Nevertheless there are currently no publicly available transcriptome reference sequences or genome for this species. Results A cDNA library derived from mRNA and snRNA isolated and pooled from the brains, lungs, spleens, kidneys, livers, and hearts of three adult female Syrian hamsters was sequenced. Sequence reads were assembled into 62,482 contigs and 111,796 reads remained unassembled (singletons). This combined contig/singleton dataset, designated as the Syrian hamster transcriptome, represents a total of 60,117,204 nucleotides. Our Mesocricetus auratus Syrian hamster transcriptome mapped to 11,648 mouse transcripts representing 9,562 distinct genes, and mapped to a similar number of transcripts and genes in the rat. We identified 214 quasi-complete transcripts based on mouse annotations. Canonical pathways involved in a broad spectrum of fundamental biological processes were significantly represented in the library. The Syrian hamster transcriptome was aligned to the current release of the Chinese hamster ovary (CHO) cell transcriptome and genome to improve the genomic annotation of this species. Finally, our Syrian hamster transcriptome was aligned against 14 other rodents, primate and laurasiatheria species to gain insights about the genetic relatedness and placement of this species. Conclusions This Syrian hamster transcriptome dataset significantly improves our knowledge of the Syrian hamster's transcriptome, especially towards its future use in infectious disease research. Moreover, this library is an important resource for the wider scientific community to help improve genome annotation of the Syrian hamster and other closely related species. Furthermore, these data provide the basis for development of expression microarrays that can be used in functional

  19. Gibberellin reactivates and maintains ovary-wall cell division causing fruit set in parthenocarpic Citrus species.

    PubMed

    Mesejo, Carlos; Yuste, Roberto; Reig, Carmina; Martínez-Fuentes, Amparo; Iglesias, Domingo J; Muñoz-Fambuena, Natalia; Bermejo, Almudena; Germanà, M Antonietta; Primo-Millo, Eduardo; Agustí, Manuel

    2016-06-01

    Citrus is a wide genus in which most of the cultivated species and cultivars are natural parthenocarpic mutants or hybrids (i.e. orange, mandarin, tangerine, grapefruit). The autonomous increase in GA1 ovary concentration during anthesis was suggested as being the stimulus responsible for parthenocarpy in Citrus regardless of the species. To determine the exact GA-role in parthenocarpic fruit set, the following hypothesis was tested: GA triggers and maintains cell division in ovary walls causing fruit set. Obligate and facultative parthenocarpic Citrus species were used as a model system because obligate parthenocarpic Citrus sp (i.e. Citrus unshiu) have higher GA levels and better natural parthenocarpic fruit set compared to other facultative parthenocarpic Citrus (i.e. Citrus clementina). The autonomous activation of GA synthesis in C. unshiu ovary preceded cell division and CYCA1.1 up-regulation (a G2-stage cell cycle regulator) at anthesis setting a high proportion of fruits, whereas C. clementina lacked this GA-biosynthesis and CYCA1.1 up-regulation failing in fruit set. In situ hybridization experiments revealed a tissue-specific expression of GA20ox2 only in the dividing tissues of the pericarp. Furthermore, CYCA1.1 expression correlated endogenous GA1 content with GA3 treatment, which stimulated cell division and ovary growth, mostly in C. clementina. Instead, paclobutrazol (GA biosynthesis inhibitor) negated cell division and reduced fruit set. Results suggest that in parthenocarpic citrus the specific GA synthesis in the ovary walls at anthesis triggers cell division and, thus, the necessary ovary growth rate to set fruit. PMID:27095396

  20. Gibberellin reactivates and maintains ovary-wall cell division causing fruit set in parthenocarpic Citrus species.

    PubMed

    Mesejo, Carlos; Yuste, Roberto; Reig, Carmina; Martínez-Fuentes, Amparo; Iglesias, Domingo J; Muñoz-Fambuena, Natalia; Bermejo, Almudena; Germanà, M Antonietta; Primo-Millo, Eduardo; Agustí, Manuel

    2016-06-01

    Citrus is a wide genus in which most of the cultivated species and cultivars are natural parthenocarpic mutants or hybrids (i.e. orange, mandarin, tangerine, grapefruit). The autonomous increase in GA1 ovary concentration during anthesis was suggested as being the stimulus responsible for parthenocarpy in Citrus regardless of the species. To determine the exact GA-role in parthenocarpic fruit set, the following hypothesis was tested: GA triggers and maintains cell division in ovary walls causing fruit set. Obligate and facultative parthenocarpic Citrus species were used as a model system because obligate parthenocarpic Citrus sp (i.e. Citrus unshiu) have higher GA levels and better natural parthenocarpic fruit set compared to other facultative parthenocarpic Citrus (i.e. Citrus clementina). The autonomous activation of GA synthesis in C. unshiu ovary preceded cell division and CYCA1.1 up-regulation (a G2-stage cell cycle regulator) at anthesis setting a high proportion of fruits, whereas C. clementina lacked this GA-biosynthesis and CYCA1.1 up-regulation failing in fruit set. In situ hybridization experiments revealed a tissue-specific expression of GA20ox2 only in the dividing tissues of the pericarp. Furthermore, CYCA1.1 expression correlated endogenous GA1 content with GA3 treatment, which stimulated cell division and ovary growth, mostly in C. clementina. Instead, paclobutrazol (GA biosynthesis inhibitor) negated cell division and reduced fruit set. Results suggest that in parthenocarpic citrus the specific GA synthesis in the ovary walls at anthesis triggers cell division and, thus, the necessary ovary growth rate to set fruit.

  1. Establishment of a Mammary Carcinoma Cell Line from Syrian Hamsters Treated with N-Methyl-N-Nitrosourea

    PubMed Central

    Coburn, Malari A.; Brueggemann, Sabrina; Bhatia, Shilpa; Cheng, Bing; Li, Benjamin D. L.; Li, Xiao-Lin; Luraguiz, Natalia; Maxuitenko, Yulia Y.; Orchard, Elysse A.; Zhang, Songlin; Stoff-Khalili, Mariam A.; Mathis, J. Michael; Kleiner-Hancock, Heather E.

    2011-01-01

    Clearly new breast cancer models are necessary in developing novel therapies. To address this challenge, we examined mammary tumor formation in the Syrian hamster using the chemical carcinogen N-methyl-N-nitrosourea (MNU). A single 50 mg/kg intraperitoneal dose of MNU resulted in a 60% incidence of premalignant mammary lesions, and a 20% incidence of mammary adenocarcinomas. Two cell lines, HMAM4A and HMAM4B, were derived from one of the primary mammary tumors induced by MNU. The morphology of the primary tumor was similar to a high-grade poorly differentiated adenocarcinoma in human breast cancer. The primary tumor stained positively for both HER-2/neu and pancytokeratin, and negatively for both cytokeratin 5/6 and p63. When the HMAM4B cell line was implanted subcutaneously into syngeneic female hamsters, tumors grew at a take rate of 50%. A tumor derived from HMAM4B cells implanted into a syngeneic hamster was further propagated in vitro as a stable cell line HMAM5. The HMAM5 cells grew in female syngeneic hamsters with a 70% take rate of tumor formation. These cells proliferate in vitro, form colonies in soft agar, and are aneuploid with a modal chromosomal number of 74 (the normal chromosome number for Syrian hamster is 44). To determine responsiveness to the estrogen receptor (ER), a cell proliferation assay was examined using increasing concentrations of tamoxifen. Both HMAM5 and human MCF-7 (ER positive) cells showed a similar decrease at 24 h. However, MDA-MB-231 (ER negative) cells were relatively insensitive to any decrease in proliferation from tamoxifen treatment. These results suggest that the HMAM5 cell line was likely derived from a luminal B subtype of mammary tumor. These results also represent characterization of the first mammary tumor cell line available from the Syrian hamster. The HMAM5 cell line is likely to be useful as an immunocompetent model for human breast cancer in developing novel therapies. PMID:21893382

  2. Inward rectifying potassium channels facilitate cell-to-cell communication in hamster retractor muscle feed arteries.

    PubMed

    Jantzi, Micaela C; Brett, Suzanne E; Jackson, William F; Corteling, Randolph; Vigmond, Edward J; Welsh, Donald G

    2006-09-01

    This study examined whether inward rectifying K+ (KIR) channels facilitate cell-to-cell communication along skeletal muscle resistance arteries. With the use of feed arteries from the hamster retractor muscle, experiments examined whether KIR channels were functionally expressed and whether channel blockade attenuated the conduction of acetylcholine-induced vasodilation, an index of cell-to-cell communication. Consistent with KIR channel expression, this study observed the following: 1) a sustained Ba2+-sensitive, K+-induced dilation in preconstricted arteries; 2) a Ba2+-sensitive inwardly rectifying K+ current in arterial smooth muscle cells; and 3) KIR2.1 and KIR2.2 expression in the smooth muscle layer of these arteries. It was subsequently shown that the discrete application of acetylcholine elicits a vasodilation that conducts with limited decay along the feed artery wall. In the presence of 100 microM Ba2+, the local and conducted response to acetylcholine was attenuated, a finding consistent with a role for KIR in facilitating cell-to-cell communication. A computational model of vascular communication accurately predicted these observations. Control experiments revealed that in contrast to Ba2+, ATP-sensitive- and large-conductance Ca2+ activated-K+ channel inhibitors had no effect on the local or conducted vasodilatory response to acetylcholine. We conclude that smooth muscle KIR channels play a key role in facilitating cell-to-cell communication along skeletal muscle resistance arteries. We attribute this facilitation to the intrinsic property of negative slope conductance, a biophysical feature common to KIR2.1- and 2.2-containing channels, which enables them to increase their activity as a cell hyperpolarizes. PMID:16617135

  3. Correlation between transformation potential and inducible enzyme levels of hamster embryo cells.

    PubMed

    Poiley, J A; Raineri, R; Cavanaugh, D M; Ernst, M K; Pienta, R J

    1980-04-01

    When benzo(a)pyrene was used to evaluate the transformability of 129 hamster embryo cell preparations from pooled or individual embryos, approximately 50% of the cultures were transformable. A transformable and a non-transformable cell culture were further tested with other carcinogens (3-methylcholanthrene [MCA], benzyl chloride, ethyl-p-toluenesulfonate, 2-naphthylamine, and aflatoxin B1). The transformable culture responded to all of the carcinogens while the non-transformable culture always gave negative results. Aryl hydrocarbon hydroxylase (AHH) and epoxide hydrase (EH) levels were compared in the two cell cultures using beta-naphthoflavone (BNF), benz(a)anthracene (BA), sodium phenobarbital (PB) or MCA as microsomal enzyme-inducing agents. It was found that AHH levels and the degree of induction following treatment of the cells with BNF or BA were consistently higher in the transformable than in the non-transformable cells following treatment with either BNF, BA, PB or MCA. Inducible AHH and EH levels might, therefore, be useful as predictors of the transformation potential of hamster embryo cell cultures.

  4. Targeted delivery of antigen to hamster nasal lymphoid tissue with M-cell-directed lectins.

    PubMed Central

    Giannasca, P J; Boden, J A; Monath, T P

    1997-01-01

    The nasal cavity of a rodent is lined by an epithelium organized into distinct regional domains responsible for specific physiological functions. Aggregates of nasal lymphoid tissue (NALT) located at the base of the nasal cavity are believed to be sites of induction of mucosal immune responses to airborne antigens. The epithelium overlying NALT contains M cells which are specialized for the transcytosis of immunogens, as demonstrated in other mucosal tissues. We hypothesized that NALT M cells are characterized by distinct glycoconjugate receptors which influence antigen uptake and immune responses to transcytosed antigens. To identify glycoconjugates that may distinguish NALT M cells from other cells of the respiratory epithelium (RE), we performed lectin histochemistry on sections of the hamster nasal cavity with a panel of lectins. Many classes of glycoconjugates were found on epithelial cells in this region. While most lectins bound to sites on both the RE and M cells, probes capable of recognizing alpha-linked galactose were found to label the follicle-associated epithelium (FAE) almost exclusively. By morphological criteria, the FAE contains >90% M cells. To determine if apical glycoconjugates on M cells were accessible from the nasal cavity, an M-cell-selective lectin and a control lectin in parallel were administered intranasally to hamsters. The M-cell-selective lectin was found to specifically target the FAE, while the control lectin did not. Lectin bound to M cells in vivo was efficiently endocytosed, consistent with the role of M cells in antigen transport. Intranasal immunization with lectin-test antigen conjugates without adjuvant stimulated induction of specific serum immunoglobulin G, whereas antigen alone or admixed with lectin did not. The selective recognition of NALT M cells by a lectin in vivo provides a model for microbial adhesin-host cell receptor interactions on M cells and the targeted delivery of immunogens to NALT following intranasal

  5. The promoter of the Chinese hamster ovary dihydrofolate reductase gene regulates the activity of the local origin and helps define its boundaries.

    PubMed

    Saha, Swati; Shan, Yujie; Mesner, Larry D; Hamlin, Joyce L

    2004-02-15

    The dihydrofolate reductase (DHFR) and 2BE2121 genes in the Chinese hamster are convergently transcribed in late G1 and ea ly S phase, and bracket an early-firing origin of replication that consists of a 55-kb zone of potential initiation sites. To test whether transcription through the DHFR gene is required to activate this origin in early S phase, we examined the two-dimension (2D) gel patterns of replication intermediates from several variants in which parts or all of the DHFR promote had been deleted. In those variants in which transcription was undetectable, initiation in the intergenic space was markedly suppressed (but not eliminated) in early S phase. Further more, replication of the locus required virtually the entire S period, as opposed to the usual 3-4 h. However, restoration of transcription with either the wild-type Chinese hamster promote or a Drosophila-based construct restored origin activity to the wild-type pattern. Surprisingly, 2D gel analysis of promote less variants revealed that initiation occurs at a low level in ea ly S phase not only in the intergenic region, but also in the body of the DHFR gene. The latter phenomenon has never been observed in the wild-type locus. These studies suggest that transcription through the gene normally increases the efficiency of origin firing in early S phase, but also suppresses initiation in the body of the gene, thus helping to define the boundaries of the downstream origin. PMID:14977920

  6. Occurrence, Synthesis and Mammalian Cell Cytotoxicity and Genotoxicity of Haloacetamides: An Emerging Class of Nitrogenous Drinking Water Disinfection By-Products

    EPA Science Inventory

    The haloacetamides, a class of emerging nitrogenous drinking water disinfection by-products (DBPs), were analyzed for their chronic cytotoxicity and for the induction of genomic DNA damage in Chinese hamster ovary cells.

  7. Genotoxicity induced by a shale oil byproduct in Chinese hamster cells following metabolic activation

    SciTech Connect

    Okinaka, R.T.; Nickols, J.W.; Chen, D.J.; Strniste, G.F.

    1982-01-01

    A process water obtained from a holding tank during the surface retorting of oil shale has been shown to induce a linear dose response of 100 histidine revertants/sub ..mu../1 in the Ames/Salmonella test. The complex mixture has also previously been shown to induce genotoxicity in mammalian cells following activation by near ultraviolet light and natural sunlight. This report focuses on the effects of a particular oil shale retort process water on cultured Chinese hamster cells following metabolic activation by either rat liver homogenate or lethally irradiated but metabolically competent Syrian hamster embryonic cells. Cytotoxic and mutagenic responses induced by the process water and a fractionated sample from it containing the majority of the mutagenic activity (as assessed by the Salmonella test) were measured under conditions designed to optimally measure the mutagenic potency of the promutagen, benzo(a)pyrene. These results suggest a possible discrepancy in the genotoxic potential of this complex mixture when various methods are utilized to measure its potential.

  8. The antioxidant effect of the Malaysian Gelam honey on pancreatic hamster cells cultured under hyperglycemic conditions.

    PubMed

    Batumalaie, Kalaivani; Qvist, Rajes; Yusof, Kamaruddin Mohd; Ismail, Ikram Shah; Sekaran, Shamala Devi

    2014-05-01

    Type 2 diabetes consists of progressive hyperglycemia, insulin resistance, and pancreatic β-cell failure which could result from glucose toxicity, inflammatory cytokines, and oxidative stress. In the present study, we investigate the effect of pretreatment with Gelam honey (Melaleuca spp.) and the individual flavonoid components chrysin, luteolin, and quercetin, on the production of reactive oxygen species (ROS), cell viability, lipid peroxidation, and insulin content in hamster pancreatic cells (HIT-T15 cells), cultured under normal and hyperglycemic conditions. Phenolic extracts from a local Malaysian species of Gelam honey (Melaleuca spp.) were prepared using the standard extraction methods. HIT-T15 cells were cultured in 5 % CO2 and then preincubated with Gelam honey extracts (20, 40, 60, and 80 μg/ml) as well as some of its flavonoid components chrysin, luteolin, and quercetin (20, 40, 60, and 80 μM), prior to stimulation by 20 and 50 mM of glucose. The antioxidative effects were measured in these cultured cells at different concentrations and time point by DCFH-DA assay. Pretreatment of cells with Gelam honey extract or the flavonoid components prior to culturing in 20 or 50 mM glucose showed a significant decrease in the production of ROS, glucose-induced lipid peroxidation, and a significant increase in insulin content and the viability of cells cultured under hyperglycemic condition. Our results show the in vitro antioxidative property of the Gelam honey and the flavonoids on the β-cells from hamsters and its cytoprotective effect against hyperglycemia. PMID:23584372

  9. Cells with Stem Cell Characteristics in Somatic Compartments of the Ovary

    PubMed Central

    Kossowska-Tomaszczuk, Katarzyna; De Geyter, Christian

    2013-01-01

    Antral follicular growth in the ovary is characterized by rapid expansion of granulosa cells accompanied by a rising complexity of their functionality. Within two weeks the number of human granulosa cells increases from less than 500,000 to more than 50 millions cells per follicle and differentiates into groups of cells with a variety of specialized functions involved in steroidogenesis, nursing the oocyte, and forming a functional syncitium. Both the rapid proliferation and different specialized functions of the granulosa cells can only be explained through the involvement of stem cells. However, luteinizing granulosa cells were believed to be terminally differentiated cells. Only recently, stem and progenitor cells with FSH-receptor activity were identified in populations of luteinizing granulosa cells obtained during oocyte collected for assisted reproduction. In the presence of the leukaemia-inhibiting factor (LIF), it was possible to culture a subpopulation of the luteinizing granulosa cells over prolonged time periods. Furthermore, when embedded in a matrix consisting of collagen type I, these cells continued to express the FSH receptor over prolonged time periods, developed globular formations that surrogated as follicle-like structures, providing a promising tool for reproductive biology. PMID:23484108

  10. A method for electrophysiological characterization of hamster retinal ganglion cells using a high-density CMOS microelectrode array

    PubMed Central

    Jones, Ian L.; Russell, Thomas L.; Farrow, Karl; Fiscella, Michele; Franke, Felix; Müller, Jan; Jäckel, David; Hierlemann, Andreas

    2015-01-01

    Knowledge of neuronal cell types in the mammalian retina is important for the understanding of human retinal disease and the advancement of sight-restoring technology, such as retinal prosthetic devices. A somewhat less utilized animal model for retinal research is the hamster, which has a visual system that is characterized by an area centralis and a wide visual field with a broad binocular component. The hamster retina is optimally suited for recording on the microelectrode array (MEA), because it intrinsically lies flat on the MEA surface and yields robust, large-amplitude signals. However, information in the literature about hamster retinal ganglion cell functional types is scarce. The goal of our work is to develop a method featuring a high-density (HD) complementary metal-oxide-semiconductor (CMOS) MEA technology along with a sequence of standardized visual stimuli in order to categorize ganglion cells in isolated Syrian Hamster (Mesocricetus auratus) retina. Since the HD-MEA is capable of recording at a higher spatial resolution than most MEA systems (17.5 μm electrode pitch), we were able to record from a large proportion of RGCs within a selected region. Secondly, we chose our stimuli so that they could be run during the experiment without intervention or computation steps. The visual stimulus set was designed to activate the receptive fields of most ganglion cells in parallel and to incorporate various visual features to which different cell types respond uniquely. Based on the ganglion cell responses, basic cell properties were determined: direction selectivity, speed tuning, width tuning, transience, and latency. These properties were clustered to identify ganglion cell types in the hamster retina. Ultimately, we recorded up to a cell density of 2780 cells/mm2 at 2 mm (42°) from the optic nerve head. Using five parameters extracted from the responses to visual stimuli, we obtained seven ganglion cell types. PMID:26528115

  11. Establishment and characterization of a clear cell carcinoma cell line, designated NOCC, derived from human ovary.

    PubMed

    Ohyama, Akihiro; Toyomura, Junko; Tachibana, Toshiaki; Isonishi, Seiji; Takahashi, Haruka; Ishikawa, Hiroshi

    2016-10-01

    A cell line, designated NOCC, was established from the ascites of a patient with clear cell adenocarcinoma of the ovary. The cell line has been grown without interruption and continuously propagated by serial passaging (more than 76 times) over 7 years. The cells are spherical to polygonal-shaped, display neoplastic, and pleomorphic features, and grow in a jigsaw puzzle-like pattern while forming monolayers without contact inhibition. The cells proliferate rapidly, but are easily floated as a cell sheet. The population doubling time is about 29 h. The number of chromosomes ranges from 60 to 83. The modal number of chromosomes is 70-74 at the 30th passage. NOCC cells secreted 750.5 ng/ml of VEGF over 3 days of culture. Hypoxia inducible factor-1α (HIF-1α) is a primary regulator of VEGF under hypoxic conditions. NOCC cells were not sensitive to the anticancer drugs BEV, DOX, GEM, ETP, CDDP, or TXT. The graft of NOCC cells to a scid mouse displayed similar histological aspects to the original tumor. Both the NOCC cells and the graft of the NOCC cells gave a positive PAS reaction. PMID:27541369

  12. Nesprin-2 epsilon: A novel nesprin isoform expressed in human ovary and Ntera-2 cells

    SciTech Connect

    Lam, Le Thanh; Boehm, Sabrina V.; Roberts, Roland G.; Morris, Glenn E.

    2011-08-26

    Highlights: {yields} A novel epsilon isoform of nesprin-2 has been discovered. {yields} This 120 kDa protein was predicted by bioinformatic analysis, but has not previously been observed. {yields} It is the main isoform expressed in a teratocarcinoma cell line and is also found in ovary. {yields} Like other nesprins, it is located at the nuclear envelope. {yields} We suggest it may have a role in very early development or in some ovary-specific function. -- Abstract: The nuclear envelope-associated cytoskeletal protein, nesprin-2, is encoded by a large gene containing several internal promoters that produce shorter isoforms. In a study of Ntera-2 teratocarcinoma cells, a novel isoform, nesprin-2-epsilon, was found to be the major mRNA and protein product of the nesprin-2 gene. Its existence was predicted by bioinformatic analysis, but this is the first direct demonstration of both the mRNA and the 120 kDa protein which is located at the nuclear envelope. In a panel of 21 adult and foetal human tissues, the nesprin-2-epsilon mRNA was strongly expressed in ovary but was a minor isoform elsewhere. The expression pattern suggests a possible link with very early development and a likely physiological role in ovary.

  13. Anti-Müllerian hormone (AMH), inhibin-α, growth differentiation factor 9 (GDF9), and bone morphogenic protein-15 (BMP15) mRNA and protein are influenced by photoperiod-induced ovarian regression and recrudescence in Siberian hamster ovaries.

    PubMed

    Shahed, Asha; Young, Kelly A

    2013-11-01

    Exposure of Siberian hamsters to short photoperiod (SD) inhibits ovarian function, including folliculogenesis, whereas function is restored with their transfer to long photoperiods (LD). To investigate the mechanism of photo-stimulated recrudescence, we assessed key folliculogenic factors-anti-Müllerian hormone (AMH), inhibin-α, growth differentiation factor-9 (GDF9), and bone morphogenic protein-15 (BMP15)-across the estrus cycle and in photo-regressed and recrudescing ovaries. Adult hamsters were exposed to either LD or SD for 14 weeks, which respectively represent functional and regressed ovaries. Select regressed hamsters were transferred back to LD for 2 (post-transfer week 2; PTw2) or 8 weeks (PTw8). Ovaries were collected and fixed in formalin for immunohistochemistry or frozen in liquid nitrogen for real-time PCR. AMH, inhibin-α, GDF9, and BMP15 mRNA and protein were detected in all stages of the estrus cycle. Fourteen weeks of SD exposure increased (P < 0.05) ovarian AMH, GDF9, and BMP15, but not inhibin-α mRNA levels as compared to LD. Transfer of regressed hamsters to stimulatory long photoperiod for 8 weeks returned AMH and GDF9 mRNA levels to LD-treated levels, and further increased mRNA levels for inhibin-α and BMP15. Immunostaining for AMH, inhibin-α, GDF9, and BMP15 proteins was most intense in preantral/antral follicles and oocytes. The overall immunostaining extent for AMH and inhibin-α generally mirrored the mRNA data, though no changes were observed for GDF9 or BMP15 immunostaining. Shifts in mRNA and protein levels across photoperiod conditions suggest possible syncretic roles for these folliculogenic factors in photo-stimulated recrudescence via potential regulation of follicle recruitment, preservation, and development.

  14. Origin of germ cells and formation of new primary follicles in adult human ovaries

    PubMed Central

    Bukovsky, Antonin; Caudle, Michael R; Svetlikova, Marta; Upadhyaya, Nirmala B

    2004-01-01

    Recent reports indicate that functional mouse oocytes and sperm can be derived in vitro from somatic cell lines. We hypothesize that in adult human ovaries, mesenchymal cells in the tunica albuginea (TA) are bipotent progenitors with a commitment for both primitive granulosa and germ cells. We investigated ovaries of twelve adult women (mean age 32.8 ± 4.1 SD, range 27–38 years) by single, double, and triple color immunohistochemistry. We show that cytokeratin (CK)+ mesenchymal cells in ovarian TA differentiate into surface epithelium (SE) cells by a mesenchymal-epithelial transition. Segments of SE directly associated with ovarian cortex are overgrown by TA, forming solid epithelial cords, which fragment into small (20 micron) epithelial nests descending into the lower ovarian cortex, before assembling with zona pellucida (ZP)+ oocytes. Germ cells can originate from SE cells which cover the TA. Small (10 micron) germ-like cells showing PS1 meiotically expressed oocyte carbohydrate protein are derived from SE cells via asymmetric division. They show nuclear MAPK immunoexpression, subsequently divide symmetrically, and enter adjacent cortical vessels. During vascular transport, the putative germ cells increase to oocyte size, and are picked-up by epithelial nests associated with the vessels. During follicle formation, extensions of granulosa cells enter the oocyte cytoplasm, forming a single paranuclear CK+ Balbiani body supplying all the mitochondria of the oocyte. In the ovarian medulla, occasional vessels show an accumulation of ZP+ oocytes (25–30 microns) or their remnants, suggesting that some oocytes degenerate. In contrast to males, adult human female gonads do not preserve germline type stem cells. This study expands our previous observations on the formation of germ cells in adult human ovaries. Differentiation of primitive granulosa and germ cells from the bipotent mesenchymal cell precursors of TA in adult human ovaries represents a most

  15. Phagocytosis and solubilization of fixed cells by metastatic hamster embryo fibroblasts, Nil2C2

    SciTech Connect

    Sakiyama, H.; Nishino, Y.; Nishimura, K.; Noda, Y.; Otsu, H.

    1984-05-01

    When Nil2C2, a metastatic clone derived from hamster embryo fibroblasts (Nil), was inoculated over (/sup 3/H)leucine-labeled fixed cells, Nil2C2 cells solubilized and phagocytosed fixed cells, and the radioactivity was released into the culture medium as trichloroacetic acid-soluble fragments. The solubilization of fixed cells was dependent on both the time of incubation of living cells with fixed cells and the number of living cells inoculated. Nil2C2 cells were shown by autoradiographic and electron microscopic studies to peel off fixed cells and ingest them as large fragments. The solubilization of fixed cells was significantly decreased when plasminogen was depleted from the culture medium. Protease inhibitors such as leupeptin, epsilon-aminocaproic acid, and soybean trypsin inhibitor partially inhibited the proteolysis and phagocytosis of Nil2C2 cells. Mouse peritoneal macrophages activated by Salmonella typhimurium solubilized fixed cells after the addition of 12-O-tetradecanoylphorbol-13-acetate. However, they did not phagocytose fixed cells as large fragments.

  16. Inhibitory effect of vitamin D-binding protein-derived macrophage activating factor on DMBA-induced hamster cheek pouch carcinogenesis and its derived carcinoma cell line.

    PubMed

    Toyohara, Yukiyo; Hashitani, Susumu; Kishimoto, Hiromitsu; Noguchi, Kazuma; Yamamoto, Nobuto; Urade, Masahiro

    2011-07-01

    This study investigated the inhibitory effect of vitamin D-binding protein-derived macrophage-activating factor (GcMAF) on carcinogenesis and tumor growth, using a 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced hamster cheek pouch carcinogenesis model, as well as the cytocidal effect of activated macrophages against HCPC-1, a cell line established from DMBA-induced cheek pouch carcinoma. DMBA application induced squamous cell carcinoma in all 15 hamsters of the control group at approximately 10 weeks, and all 15 hamsters died of tumor burden within 20 weeks. By contrast, 2 out of the 14 hamsters with GcMAF administration did not develop tumors and the remaining 12 hamsters showed a significant delay of tumor development for approximately 3.5 weeks. The growth of tumors formed was significantly suppressed and none of the hamsters died within the 20 weeks during which they were observed. When GcMAF administration was stopped at the 13th week of the experiment in 4 out of the 14 hamsters in the GcMAF-treated group, tumor growth was promoted, but none of the mice died within the 20-week period. On the other hand, when GcMAF administration was commenced after the 13th week in 5 out of the 15 hamsters in the control group, tumor growth was slightly suppressed and all 15 hamsters died of tumor burden. However, the mean survival time was significantly extended. GcMAF treatment activated peritoneal macrophages in vitro and in vivo, and these activated macrophages exhibited a marked cytocidal effect on HCPC-1 cells. Furthermore, the cytocidal effect of activated macrophages was enhanced by the addition of tumor-bearing hamster serum. These findings indicated that GcMAF possesses an inhibitory effect on tumor development and growth in a DMBA-induced hamster cheek pouch carcinogenesis model. PMID:22848250

  17. Inhibitory effect of vitamin D-binding protein-derived macrophage activating factor on DMBA-induced hamster cheek pouch carcinogenesis and its derived carcinoma cell line

    PubMed Central

    TOYOHARA, YUKIYO; HASHITANI, SUSUMU; KISHIMOTO, HIROMITSU; NOGUCHI, KAZUMA; YAMAMOTO, NOBUTO; URADE, MASAHIRO

    2011-01-01

    This study investigated the inhibitory effect of vitamin D-binding protein-derived macrophage-activating factor (GcMAF) on carcinogenesis and tumor growth, using a 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced hamster cheek pouch carcinogenesis model, as well as the cytocidal effect of activated macrophages against HCPC-1, a cell line established from DMBA-induced cheek pouch carcinoma. DMBA application induced squamous cell carcinoma in all 15 hamsters of the control group at approximately 10 weeks, and all 15 hamsters died of tumor burden within 20 weeks. By contrast, 2 out of the 14 hamsters with GcMAF administration did not develop tumors and the remaining 12 hamsters showed a significant delay of tumor development for approximately 3.5 weeks. The growth of tumors formed was significantly suppressed and none of the hamsters died within the 20 weeks during which they were observed. When GcMAF administration was stopped at the 13th week of the experiment in 4 out of the 14 hamsters in the GcMAF-treated group, tumor growth was promoted, but none of the mice died within the 20-week period. On the other hand, when GcMAF administration was commenced after the 13th week in 5 out of the 15 hamsters in the control group, tumor growth was slightly suppressed and all 15 hamsters died of tumor burden. However, the mean survival time was significantly extended. GcMAF treatment activated peritoneal macrophages in vitro and in vivo, and these activated macrophages exhibited a marked cytocidal effect on HCPC-1 cells. Furthermore, the cytocidal effect of activated macrophages was enhanced by the addition of tumor-bearing hamster serum. These findings indicated that GcMAF possesses an inhibitory effect on tumor development and growth in a DMBA-induced hamster cheek pouch carcinogenesis model. PMID:22848250

  18. Morphological transformation of an established Syrian hamster dermal cell with the anti-tussive agent noscapine.

    PubMed

    Porter, R; Parry, E M; Parry, J M

    1992-05-01

    Following exposure to the alkaloid noscapine hydrochloride over a concentration range of 10-120 micrograms/ml immortal cultures of Syrian hamster dermal fibroblasts were shown to undergo morphological transformation. The resultant transformed foci produced cultures which were anchorage independent as confirmed by soft agar tests. Karyotype analysis of a noscapine transformed colony demonstrated an increase in chromosome number compared to the immortal culture and the non-random duplication of a translocated chromosome 9 previously identified in the immortal culture. These data indicate that noscapine, which has previously been shown to be a spindle inhibitor and inducer of polyploidy in cultured cells, is capable of inducing in vitro cell transformation. Such data indicate a carcinogenic potential for this widely used cough suppressant. PMID:1602976

  19. Caffeine-enhanced survival of radiation-sensitive, repair-deficient Chinese hamster cells

    SciTech Connect

    Utsumi, H.; Elkind, M.M.

    1983-11-01

    A clone of V79 Chinese hamster cells (V79-AL162/S-10) with unique properties has been isolated after a challenge of parental cells (V79-AL162) with 1 mM ouabain. Compared with parental cells, or with other clones isolated after the ouabain challenge, these cells form smaller colonies, are more sensitive to both x rays and fission-spectrum neutrons, and respond atypically to a postirradiation treatment with caffeine. Their enhanced response to x rays results mainly from a large reduction in the shoulder of their survival curve, probably because in late S phase, the most resistant phase in the cell cycle, the survival curve of these cells has a reduced shoulder width. Caffeine, and to a lesser extent theophylline, added to the colony-forming medium immediately after exposure appreciably increases the width of the shoulder of these sensitive cells, whereas caffeine has the opposite effect on the response of normal V79 cells. Thus the unique response of the V79-AL162/S-10 cells to a radiation posttreatment with caffeine (increased survival) results from a net increase in their ability to repair damage that is otherwise lethal; caffeine treatment ordinarly prevents normal V79 cells from repairing damage that is only potentially lethal.

  20. Phagocytosis genes nonautonomously promote developmental cell death in the Drosophila ovary

    PubMed Central

    Timmons, Allison K.; Mondragon, Albert A.; Schenkel, Claire E.; Yalonetskaya, Alla; Taylor, Jeffrey D.; Moynihan, Katherine E.; Etchegaray, Jon Iker; Meehan, Tracy L.; McCall, Kimberly

    2016-01-01

    Programmed cell death (PCD) is usually considered a cell-autonomous suicide program, synonymous with apoptosis. Recent research has revealed that PCD is complex, with at least a dozen cell death modalities. Here, we demonstrate that the large-scale nonapoptotic developmental PCD in the Drosophila ovary occurs by an alternative cell death program where the surrounding follicle cells nonautonomously promote death of the germ line. The phagocytic machinery of the follicle cells, including Draper, cell death abnormality (Ced)-12, and c-Jun N-terminal kinase (JNK), is essential for the death and removal of germ-line–derived nurse cells during late oogenesis. Cell death events including acidification, nuclear envelope permeabilization, and DNA fragmentation of the nurse cells are impaired when phagocytosis is inhibited. Moreover, elimination of a small subset of follicle cells prevents nurse cell death and cytoplasmic dumping. Developmental PCD in the Drosophila ovary is an intriguing example of nonapoptotic, nonautonomous PCD, providing insight on the diversity of cell death mechanisms. PMID:26884181

  1. Phagocytosis genes nonautonomously promote developmental cell death in the Drosophila ovary.

    PubMed

    Timmons, Allison K; Mondragon, Albert A; Schenkel, Claire E; Yalonetskaya, Alla; Taylor, Jeffrey D; Moynihan, Katherine E; Etchegaray, Jon Iker; Meehan, Tracy L; McCall, Kimberly

    2016-03-01

    Programmed cell death (PCD) is usually considered a cell-autonomous suicide program, synonymous with apoptosis. Recent research has revealed that PCD is complex, with at least a dozen cell death modalities. Here, we demonstrate that the large-scale nonapoptotic developmental PCD in the Drosophila ovary occurs by an alternative cell death program where the surrounding follicle cells nonautonomously promote death of the germ line. The phagocytic machinery of the follicle cells, including Draper, cell death abnormality (Ced)-12, and c-Jun N-terminal kinase (JNK), is essential for the death and removal of germ-line-derived nurse cells during late oogenesis. Cell death events including acidification, nuclear envelope permeabilization, and DNA fragmentation of the nurse cells are impaired when phagocytosis is inhibited. Moreover, elimination of a small subset of follicle cells prevents nurse cell death and cytoplasmic dumping. Developmental PCD in the Drosophila ovary is an intriguing example of nonapoptotic, nonautonomous PCD, providing insight on the diversity of cell death mechanisms. PMID:26884181

  2. Phagocytosis genes nonautonomously promote developmental cell death in the Drosophila ovary.

    PubMed

    Timmons, Allison K; Mondragon, Albert A; Schenkel, Claire E; Yalonetskaya, Alla; Taylor, Jeffrey D; Moynihan, Katherine E; Etchegaray, Jon Iker; Meehan, Tracy L; McCall, Kimberly

    2016-03-01

    Programmed cell death (PCD) is usually considered a cell-autonomous suicide program, synonymous with apoptosis. Recent research has revealed that PCD is complex, with at least a dozen cell death modalities. Here, we demonstrate that the large-scale nonapoptotic developmental PCD in the Drosophila ovary occurs by an alternative cell death program where the surrounding follicle cells nonautonomously promote death of the germ line. The phagocytic machinery of the follicle cells, including Draper, cell death abnormality (Ced)-12, and c-Jun N-terminal kinase (JNK), is essential for the death and removal of germ-line-derived nurse cells during late oogenesis. Cell death events including acidification, nuclear envelope permeabilization, and DNA fragmentation of the nurse cells are impaired when phagocytosis is inhibited. Moreover, elimination of a small subset of follicle cells prevents nurse cell death and cytoplasmic dumping. Developmental PCD in the Drosophila ovary is an intriguing example of nonapoptotic, nonautonomous PCD, providing insight on the diversity of cell death mechanisms.

  3. Hamster-tropic sarcomagenic and nonsarcomagenic viruses derived from hamster tumors induced by the Gross pseudotype of Moloney sarcoma virus.

    PubMed

    Kelloff, G; Huebner, R J; Lee, Y K; Toni, R; Gilden, R

    1970-02-01

    Hamster sarcomas induced by the Gross pseudotype of Moloney sarcoma virus yielded a virus sarcomagenic for hamsters but not mice. This virus was able to produce foci on hamster embryo cells, but not on mouse embryo cells. A hamster-tropic nonfocus-forming helper virus was also found in the viral stocks. These hamster-tropic viruses are not immunologically related to the murine viruses in the original inoculum but appear to represent indigenous C-type RNA viruses of the hamster.

  4. DNA (deoxyribonucleic acid) synthesis following microinjection of heterologous sperm and somatic cell nuclei into hamster oocytes

    SciTech Connect

    Naish, S.J.; Perreault, S.D.; Zirkin, B.R.

    1987-01-01

    The authors investigated the ability of the hamster oocyte to initiate DNA synthesis in nuclei differing in basic protein content. DNA synthesis was studied by autoradiography in oocytes that had been incubated in /sup 3/H-thymidine after being parthenogenetically activated by sham microinjection, or microinjected with hamster, mouse, rabbit, or fish sperm nuclei, or hamster hepatocyte nuclei. Within 6 hr of sham or nucleus microinjection, nuclei of each type underwent transformation into pronuclei and synthesized DNA. These results demonstrated that the hamster egg can access and utilize its own and each type of template provided, whether homologous or heterologous. However, pronuclei derived from hamster sperm nuclei were more likely to be synthesizing DNA at 6 hr than pronuclei derived from sperm nuclei of other species. The authors conclude that the mechanisms employed by the hamster oocyte to transform hamster sperm nuclei into pronuclei and to effect DNA synthesis in these nuclei are not specific for the hamster sperm nucleus. Nevertheless, these mechanisms apparently operate more efficiently when the hamster sperm nucleus, rather than a heterologous sperm nucleus, is present.

  5. Effect of PGE2 on radiation response of chinese hamster V79 cells in vitro

    SciTech Connect

    Holahan, E.V.; Blakely, W.F.; Walden, T.L.

    1987-01-01

    Several recent investigations have reported that 16,16-dimethyl prostaglandin E2 (DiPGE2) can protect murine intestinal epithelial cells and hematopoietic stem cells (CFU-S) in vivo from ionizing radiation. It has been postulated that PGE2 may also increase radiation resistance in vitro by stimulating free-radical scavenging or repair systems for oxidative damage. This study reports on the effect of PGE2 in modifying radiation sensitivity in an in vitro mammalian cell line. Chinese hamster V79A03 cells were cultured. Exponentially growing cells were incubated before exposure to graded doses of 250-kVp X rays. Cells were assayed for variations in intracellular levels of cyclic 3',5'-adenosine monophosphate (cAMP), total protein, and glutathione (GSH), and radiation sensitivity was measured by cell survival before and after PGE2 treatment. An acute (2-hr) exposure induced a 25% increase in cAMP content with no significant change in intracellular GSH or protein and no effect on cell survival after exposure to radiation. Chronic exposure to PGE2 increased intracellular GSH, protein, and cAMP levels by 82%, 3%, and 74%, respectively. However, no increase in radiation resistance was apparent following chronic exposure to PGE2. The increased radiation resistance observed in vitro may be due to modifications such as localized tissue or organ-system hypoxia.

  6. The degenerative fate of germ cells not conforming to stage in the pubertal golden hamster testis.

    PubMed

    Miething, A

    1998-11-01

    In the golden hamster (Mesocricetus auratus), pubertal establishment of spermatogenesis includes a defined period (d 26-30 of life) during which elongation of spermatids is selectively arrested. The resulting appearance of germ cell associations not conforming to stage and the phenomenon of desynchronisation-related germ cell degeneration are analysed both quantitatively and qualitatively by means of light and 'retrospective' electron microscopy. From d 26 onwards, the portion of tubules containing non-stage conforming germ cell associations gradually increases up to 37.5% of sectioned tubules on d 32. Concomitantly, the degree of desynchronisation rises to a maturational gap between spermatids and associated younger germ cells of 7 stages of the seminiferous epithelium cycle, i.e. of fully half a cycle. Beyond d 32, the frequency of desynchronised tubule segments decreases again. Some of the arrested round spermatids and, eventually, all belatedly elongating spermatids degenerate and are lost from the epithelium. Thus a regular maturation of advanced spermatids does not succeed under non-stage conforming conditions. Possibly it is not the desynchronisation between the associated germ cell generations and the spermatids by itself that impedes normal further development of the latter cells. Instead this may be due to the maturational delay of the stage-aberrant cells by several stages compared to the seminiferous epithelium as a whole and, especially, in relation to the stage-conditioned functional state of the neighbouring Sertoli cells.

  7. Effect of methotrexate on cell proliferation in developing hamster molar tooth germs in vitro.

    PubMed

    Wöltgens, J H; Lyaruu, D M; Bronckers, A L; van Duin, M A; Bervoets, T J

    1998-01-01

    Amongst the most frequently used drugs for the treatment of acute lymphoblastic leukaemia (ALL) belongs methotrexate (MTX), an inhibitor of pyrimidine (thymidine) synthesis. We examined effects of MTX on cell proliferation during tooth morphogenesis in organ culture by exposing hamster molar tooth germs to 10(-7) to 10(-3) M MTX for 24 h. In the presence of serum, only the highest concentration of MTX (10(-3) M) induced a small, nonsignificant decrease in cell mass without histological changes but, unexpectedly, increased uptake of [3H]thymidine. In serumless conditions increase in cell mass (dry weight) and incorporation of [3H]thymidine was lower than in serum-supplemented conditions. Exposure to MTX in serumless conditions reduced the increase in cell mass even further without histological changes and, again, strongly enhanced incorporation of [3H]thymidine to the same proportion as measured in the serum-supplemented cultures exposed to MTX. The data suggest that only exposure to high levels of MTX reduces proliferation activity, shown by reduction in cell mass. The enhanced [3H]thymidine uptake under MTX exposure was explained by blockage of the internal biosynthesis of thymidine, by which action more radiolabel was taken up from the medium. The data also suggest that serum contains (growth) factors that stimulate cell proliferation, thereby increasing cell mass and [3H]thymidine incorporation.

  8. A minute fraction of Syrian golden hamster retinal ganglion cells project bilaterally.

    PubMed

    Hsiao, K; Sachs, G M; Schneider, G E

    1984-02-01

    Bilaterally projecting retinal ganglion cells (BPRGCs) in the adult Syrian golden hamster were identified through the use of two retrogradely transported neuronal labels, horseradish peroxidase and Nuclear Yellow, placed separately in each optic tract. The distribution and size of doubly labeled retinal ganglion cells were characterized and their numbers were determined. Strict criteria were used to exclude artifactual doubly labeled cells. This work revealed that: (a) BPRGCs comprise less than 0.01% of the entire retinal ganglion cell population, averaging 7.4 (SD = 3) cells per retina; (b) BPRGCs are found primarily in the upper, peripheral retina and not along the vertical meridian or in the temporal crescent; and (c) BPRGCs correspond in size to ordinary retinal ganglion cells in their immediate vicinity, thus providing no evidence that they comprise a separate population of cells. Electrophysiological collision experiments were also performed, with stimulating electrodes in the two brachia of the superior colliculi and a recording electrode in one optic nerve. A collision effect was not detected, thus supporting the anatomical findings of rare bilateral branching of optic nerve axons. The occurrence of BPRGCs may reflect occasional ambiguities in the cues that guide axons through the chiasm.

  9. Cytotoxicity and Genotoxicity of Panel of Single- and Multiwalled Carbon Nanotubes: In Vitro Effects on Normal Syrian Hamster Embryo and Immortalized V79 Hamster Lung Cells

    PubMed Central

    Darne, C.; Terzetti, F.; Coulais, C.; Fontana, C.; Binet, S.; Gaté, L.; Guichard, Y.

    2014-01-01

    Carbon nanotubes (CNTs) belong to a specific class of nanomaterials with unique properties. Because of their anticipated use in a wide range of industrial applications, their toxicity is of increasing concern. In order to determine whether specific physicochemical characteristics of CNTs are responsible for their toxicological effects, we investigated the cytotoxic and genotoxic effects of eight CNTs representative of each of the commonly encountered classes: single- SW-, double- DW-, and multiwalled (MW) CNTs, purified and raw. In addition, because most previous studies of CNT toxicity were conducted on immortalized cell lines, we decided to compare results obtained from V79 cells, an established cell line, with results from SHE (Syrian hamster embryo) cells, an easy-to-handle normal cell model. After 24 hours of treatment, MWCNTs were generally found to be more cytotoxic than SW- or DWCNTs. MWCNTs also provoked more genotoxic effects. No correlation could be found between CNT genotoxicity and metal impurities, length, surface area, or induction of cellular oxidative stress, but genotoxicity was seen to increase with CNT width. The toxicity observed for some CNTs leads us to suggest that they might also act by interfering with the cell cycle, but no significant differences were observed between normal and immortalized cells. PMID:25548561

  10. Novel population of small tumour-initiating stem cells in the ovaries of women with borderline ovarian cancer

    PubMed Central

    Virant-Klun, Irma; Stimpfel, Martin

    2016-01-01

    Small stem cells with diameters of up to 5 μm previously isolated from adult human ovaries indicated pluripotency and germinal lineage, especially primordial germ cells, and developed into primitive oocyte-like cells in vitro. Here, we show that a comparable population of small stem cells can be found in the ovarian tissue of women with borderline ovarian cancer, which, in contrast to small stem cells in “healthy” ovaries, formed spontaneous tumour-like structures and expressed some markers related to pluripotency and germinal lineage. The gene expression profile of these small putative cancer stem cells differed from similar cells sorted from “healthy” ovaries by 132 upregulated and 97 downregulated genes, including some important forkhead box and homeobox genes related to transcription regulation, developmental processes, embryogenesis, and ovarian cancer. These putative cancer stem cells are suggested to be a novel population of ovarian tumour-initiating cells in humans. PMID:27703207

  11. Adhesion of phospholipid vesicles to Chinese hamster fibroblasts: Role of cell surface proteins

    PubMed Central

    Pagano, RE; Takeichi, M

    1977-01-01

    The adhesion of artificially generated lipid membrane vesicles to Chinese hamster V79 fibroblasts in suspension was used as a model system for studying membrane interactions. Below their gel-liquid crystalline phase transition temperature, vesicles comprised of dipalmitoyl lecithin (DPL) or dimyristoyl lecithin (DML) absorbed to the surfaces of EDTA- dissociated cells. These adherent vesicles could not be removed by repeated washings of the treated cells but could be released into the medium by treatment with trypsin. EM autoradiographic studies of cells treated with[(3)H]DML or [(3)H]DPL vesicles showed that most of the radioactive lipids were confined to the cell periphery. Scanning electron microscopy and fluorescence microscopy further confirmed the presence of adherent vesicles at the cell surface. Adhesion of DML or DPL vesicles to EDTA-dissociated cells modified the lactoperoxidase-catalyzed iodination pattern of the cell surface proteins; the inhibition of labeling of two proteins with an approximately 60,000- dalton mol wt was particularly evident. Incubation of cells wit h (3)H-lipid vesicles followed by sodium dodecyl sulfate (SDS)- polyacrylamide gel electrophoresis showed that some of the (3)H-lipid migrated preferentially with these approximately 60,000-mol wt proteins. Studies of the temperature dependence of vesicle uptake and subsequent release by trypsin showed that DML or DPL vesicle adhesion to EDTA- dissociated cells increased with decreasing temperatures. In contrast, cells trypsinized before incubation with vesicles showed practically no temperature dependence of vesicle uptake. These results suggest two pathways for adhesion of lipid vesicles to the cell surface-a temperature-sensitive one involving cell surface proteins, and a temperature-independent one. These findings are discussed in terms of current models for cell-cell interactions. PMID:407233

  12. Analysis of cytogenetic effects and DNA adduct formation induced by safrole in Chinese hamster lung cells.

    PubMed

    Daimon, H; Sawada, S; Asakura, S; Sagami, F

    1997-01-01

    Safrole (1-allyl-3,4-methylenedioxybenzene) was tested for its ability to induce sister chromatid exchanges (SCEs) and chromosomal aberrations (CAs) and to form DNA adducts in Chinese hamster lung (CHL) cells, in order to investigate the relationship between cytogenetic effects and DNA adduct formation under the same treatment conditions. The cells were treated with 0.025-0.2 mg/ml safrole in the presence or absence of rat liver postmitochondrial supernatant fraction (S9). Safrole induced significant SCEs and CAs dose-dependently in the presence of S9. SCEs ranged in number from 15.6 to 21.1 SCEs/cell and CAs were observed in 4-37% of cells. Using the 32P-postlabeling assay, two major and two minor safrole-DNA adducts were detected in DNA digests obtained from CHL cells in the presence of S9. The levels of total DNA adducts ranged from 1.3 to 22.8 adducts/10(7) nucleotides. The two major adducts were shown to be guanine derivatives since these adducts comigrated on polyethylenimine plates with the adducts produced by the reaction of safrole with 2'-deoxyguanosine 3'-monophosphate. A correlation was seen between DNA adducts and SCEs or CAs. Neither induction of SCEs and CAs nor formation of DNA adducts was observed in the absence of S9. These findings suggest that SCEs and CAs induced by safrole result from covalent DNA modification metabolically activated by S9 in cultured cells.

  13. Syntheses and modulations in the chromatin contents of histones H1/sup o/ and H1 during G/sub 1/ and S phases in Chinese hamsters cells

    SciTech Connect

    D'Anna, J.A.; Gurley, L.R.; Tobey, R.A.

    1982-08-17

    Flow cytometry, conventional autoradiography, and autoradiography employing high concentrations of high specific activity (/sup 3/H)thymidine indicate that (1) treatment of Chinese hamster ovary (line CHO) cells with butyrate truly blocks cells in G/sub 1/ and (2) cells blocked in G/sub 1/ by isoleucine deprivation remain blocked in G/sub 1/ when they are released into complete medium containing butyrate. Measurements of H1/sup o/ content relative to core histones and H1/sup o/:H1 ratios indicate that H1/sup o/ is enhanced somewhat in G/sub 1/ cells arrested by isoleucine deprivation; however, (1) treatment with butyrate greatly increases the H1/sup o/ content in G/sub 1/-blocked cells, and (2) the enhancement is very sensitive to butyrate concentration. Measurements of relative histone contents in the isolated chromatin of synchronized cultures also suggest that the acid-soluble content of histone H1 (relative to core histones) becomes greatly depleted in the isolated chromatin when synchronized cells are blocked in early S phase by sequential use of isoleucine deprivation and hydroxyurea blockade. We also have measured (/sup 3/H)lysine incorporation, various protein ratios, and relative rates of deposition of newly synthesized H1/sup o/, H1, and H4 onto chromatin during G/sub 1/ and S in the absence of butyrate. The results suggest a dynamic picture of chromatin organization in which (1) newly synthesized histone H1/sup o/ binds to chromatin during traverse of G/sub 1/ and S phases and (2) histone H1 dissociates from (or becomes loosely bound to) chromatin during prolonged early S-phase block with hydroxyurea.

  14. Ultrastructural Aspects of the Prenatal Bovine Ovary Differentiation with a Special Focus on the Interstitial Cells.

    PubMed

    Kenngott, R A-M; Scholz, W; Sinowatz, F

    2016-10-01

    The aim of this investigation was to study the ultrastructural features during the development of fetal bovine ovaries (crown rump length ranging from 11.4 to 94.0 cm). An interesting observation was the occurrence of big elongated cells containing a variety of electron dense granules and light homogenous vacuoles/bodies. They were located between the stroma cells surrounding the germ cell cord ends, adjacent to the first formed primordial follicles, typically situated near blood vessels. ER alpha and ER beta receptor positive cells could be detected in the same regions by means of immunohistochemistry. Intercellular bridges linked the germ cells nests oogonia. Germ cell cords consisted of centrally located, large, pale oogonia, surrounded by elongated somatic cells with very long cytoplasm extensions. Primordial follicles with flat pale follicular cells could be observed on the inner end of the cords. Extrusions of the outer nuclear membrane could often been recognised in voluminous oocytes. PMID:27439665

  15. Most of the G1 period in hamster cells is eliminated by lengthening the S period.

    PubMed Central

    Stancel, G M; Prescott, D M; Liskay, R M

    1981-01-01

    Two Chinese hamster cell lines, G1+-1 and CHO, have been grown in the presence of low concentrations of hydroxyurea to determine how a slowing DNA synthesis (i.e., a lengthening of the S period) affects the length of the G1 period. Hydroxyurea concentrations of approximately 10 microM do not alter the generation times of these cell lines but do cause increases in S with corresponding decreases in G1. In both cell lines, 10 microM hydroxyurea reduces G1 to an absolute value of 1 hr, which represents decreases of 70% (G1+-1) and 60% (CHO) from control values. Higher concentrations of hydroxyurea increase the generation times and lengths of S for both cell lines but do not reduce G1 below the minimum value of 1 hr. These observations indicate that the majority of G1 is expendable and most of G1 therefore cannot contain specific events required for the initiation of DNA synthesis. This result supports the hypothesis that G1 is a portion of the cell growth cycle but not of the chromosome cycle. PMID:6947230

  16. Transcription coupled repair efficiency determines the cell cycle progression and apoptosis after UV exposure in hamster cells.

    PubMed

    Proietti De Santis, Luca; Garcia, Claudia Lorenti; Balajee, Adayabalam S; Latini, Paolo; Pichierri, Pietro; Nikaido, Osamu; Stefanini, Miria; Palitti, Fabrizio

    2002-03-28

    Nucleotide excision repair (NER) is a major pathway for the removal of bulky adducts and helix distorting lesions from the genomic DNA. NER is highly heterogeneous across the genome and operates principally at different levels of hierarchy. Transcription coupled repair (TCR), a special sub-pathway of NER and base excision repair (BER), is critical for cellular resistance after UV irradiation in mammalian cells. In this study, we have investigated the effects of UV-C irradiation on cell cycle progression and apoptosis in G1 synchronised isogenic hamster cell lines that are deficient in TCR and NER pathways. Our results revealed the existence of two apoptotic modes at low UV (2-4J/m2) doses in TCR deficient (UV61) and NER deficient (UV5) cells: one occurring in the first G1 and the other in the second G1-phase following the first division. At high UV doses (8-32J/m2), UV61 and UV5 cells underwent apoptosis without entry into S-phase after a permanent arrest in the initial G1. In contrast to repair deficient cells, parental TCR proficient AA8 cells did not show a significant G1 arrest and apoptosis at doses below 8J/m2. UV61 (proficient in repair of 6-4 photoproducts (PPs)) and UV5 (deficient in 6-4 PP repair) cells showed similar patterns of cell cycle progression and apoptosis. Taken together, these results suggest that the persistence of 6-4 PP and the replication inhibition may not be critical for apoptotic response in hamster cells. Instead, the extent of transcription blockage resulting from the TCR deficiency constitutes the major determining factor for G1 arrest and apoptosis.

  17. Establishment and characterization of hamster cell lines transformed by restriction endonuclease fragments of adenovirus 5.

    PubMed Central

    Rowe, D T; Branton, P E; Yee, S P; Bacchetti, S; Graham, F L

    1984-01-01

    We have established a library of hamster cells transformed by adenovirus 5 DNA fragments comprising all (XhoI-C, 0 to 16 map units) or only a part (HindIII-G, 0 to 7.8 map units) of early region 1 (E1: 0 to 11.2 map units). These lines have been analyzed in terms of content of viral DNA, expression of E1 antigens, and capacity to induce tumors in hamsters. All cells tested were found to express up to eight proteins encoded within E1A (0 to 4.5 map units) with apparent molecular weights between 52,000 (52K) and 25K. Both G and C fragment-transformed lines expressed a 19K antigen encoded within E1B (4.5 to 11.2 map units), whereas an E1B 58K protein was detected in C fragment-transformed, but not G-fragment-transformed, lines. No clear distinction could be drawn between cells transformed by HindIII-G and by XhoI-C in terms of morphology or tumorigenicity, suggesting that the E1B 58K antigen plays no major role in the maintenance of oncogenic transformation, although possible involvement of truncated forms of 58K cannot be ruled out. Sera were collected from tumor-bearing animals and examined for ability to immunoprecipitate proteins from infected cells. The relative avidity of sera for different proteins was characteristic of the cell line used for tumor induction, and the specificity generally reflected the array of viral proteins expressed by the corresponding transformed cells. However, one notable observation was that even though all transformed lines examined expressed antigens encoded by both the 1.1- and 0.9-kilobase mRNAs transcribed from E1A, tumor sera made against these lines only precipitated products of the 1.1-kilobase message. Thus, two families of E1A proteins, highly related in terms of primary amino acid sequence, appear to be immunologically quite distinct. Images PMID:6690708

  18. Chinmo is sufficient to induce male fate in somatic cells of the adult Drosophila ovary.

    PubMed

    Ma, Qing; de Cuevas, Margaret; Matunis, Erika L

    2016-03-01

    Sexual identity is continuously maintained in specific differentiated cell types long after sex determination occurs during development. In the adult Drosophila testis, the putative transcription factor Chronologically inappropriate morphogenesis (Chinmo) acts with the canonical male sex determinant DoublesexM (Dsx(M)) to maintain the male identity of somatic cyst stem cells and their progeny. Here we find that ectopic expression of chinmo is sufficient to induce a male identity in adult ovarian somatic cells, but it acts through a Dsx(M)-independent mechanism. Conversely, the feminization of the testis somatic stem cell lineage caused by loss of chinmo is enhanced by expression of the canonical female sex determinant Dsx(F), indicating that chinmo acts in parallel with the canonical sex determination pathway to maintain the male identity of testis somatic cells. Consistent with this finding, ectopic expression of female sex determinants in the adult testis disrupts tissue morphology. The miRNA let-7 downregulates chinmo in many contexts, and ectopic expression of let-7 in the adult testis is sufficient to recapitulate the chinmo loss-of-function phenotype, but we find no apparent phenotypes upon removal of let-7 in the adult ovary or testis. Our finding that chinmo is necessary and sufficient to promote a male identity in adult gonadal somatic cells suggests that the sexual identity of somatic cells can be reprogrammed in the adult Drosophila ovary as well as in the testis. PMID:26811385

  19. FACS-sorted putative oogonial stem cells from the ovary are neither DDX4-positive nor germ cells.

    PubMed

    Zarate-Garcia, Larissa; Lane, Simon I R; Merriman, Julie A; Jones, Keith T

    2016-01-01

    Whether the adult mammalian ovary contains oogonial stem cells (OSCs) is controversial. They have been isolated by a live-cell sorting method using the germ cell marker DDX4, which has previously been assumed to be cytoplasmic, not surface-bound. Furthermore their stem cell and germ cell characteristics remain disputed. Here we show that although OSC-like cells can be isolated from the ovary using an antibody to DDX4, there is no good in silico modelling to support the existence of a surface-bound DDX4. Furthermore these cells when isolated were not expressing DDX4, and did not initially possess germline identity. Despite these unremarkable beginnings, they acquired some pre-meiotic markers in culture, including DDX4, but critically never expressed oocyte-specific markers, and furthermore were not immortal but died after a few months. Our results suggest that freshly isolated OSCs are not germ stem cells, and are not being isolated by their DDX4 expression. However it may be that culture induces some pre-meiotic markers. In summary the present study offers weight to the dogma that the adult ovary is populated by a fixed number of oocytes and that adult de novo production is a rare or insignificant event. PMID:27301892

  20. Specific estrogen-induced cell proliferation of cultured Syrian hamster renal proximal tubular cells in serum-free chemically defined media

    SciTech Connect

    Oberley, T.D.; Lauchner, L.J.; Pugh, T.D.; Gonzalez, A.; Goldfarb, S. ); Li, S.A.; Li, J.J. )

    1989-03-01

    It has long been recognized that the renal proximal tubular epithelium of the hamster is a bona fide estrogen target tissue. The effect of estrogens on the growth of proximal tubule cell explants and dissociated single cells derived from these explant outgrowths has been studied in culture. Renal tubular cells were grown on a PF-HR-9 basement membrane under serum-free chemically defined culture conditions. At 7-14 days in culture, cell number was enhanced 3-fold in the presence of either 17{beta}-estradiol or diethylstilbestrol. A similar 3-fold increase in cell number was also seen at 1 nM 17{beta}-estradiol in subcultured dissociated single tubular cells derived from hamster renal tubular explant outgrowths at 21 days in culture. Concomitant exposure of tamoxifen at 3-fold molar excess in culture completely abolished the increase in cell number seen with 17{beta}-estradiol. The proliferation effect of estrogens on proximal tubular cell growth appears to be species specific since 17{beta}-estradiol did not alter the growth of either rat or guinea pig proximal tubules in culture. In addition, at 7-10 days in culture in the presence of 17{beta}-estradiol, ({sup 3}H)thymidine labeling of hamster tubular cells was enhanced 3-fold. These results clearly indicate that estrogens can directly induce primary epithelial cell proliferation at physiologic concentrations and provide strong additional evidence for an important hormonal role in the neoplastic transformation of the hamster kidney.

  1. Perfluorooctanoic acid (PFOA) acts as a tumor promoter on Syrian hamster embryo (SHE) cells.

    PubMed

    Jacquet, N; Maire, M A; Rast, C; Bonnard, M; Vasseur, P

    2011-08-01

    Perfluorooctane sulfonate (PFOS) (C(8)F(17)SO(3)) and perfluorooctanoic acid (PFOA) (C(8)HF(15)O(2)) are synthetic chemicals widely used in industrial applications for their hydrophobic and oleophobic properties. They are persistent, bioaccumulative, and toxic to mammalian species. Their widespread distribution on earth and contamination of human serum raised concerns about long-term side effects. They are suspected to be carcinogenic through a nongenotoxic mode of action, a mechanism supported by recent findings that PFOS induced cell transformation but no genotoxicity in Syrian hamster embryo (SHE) cells. In the present study, we evaluated carcinogenic potential of PFOA using the cell transformation assay on SHE cells. The chemical was applied alone or in combination with a nontransformant concentration of benzo[a]pyrene (BaP, 0.4 μM) in order to detect PFOA ability to act as tumor initiator or tumor promoter. The results showed that PFOA tested alone in the range 3.7 × 10(-5) to 300 μM did not induce SHE cell transformation frequency in a 7-day treatment. On the other side, the combination BaP/PFOA induced cell transformation at all PFOA concentrations tested, which revealed synergistic effects. No genotoxicity of PFOA on SHE cells was detected using the comet assay after 5 and 24 h of exposure. No significant increase in DNA breakage was found in BaP-initiated cells exposed to PFOA in a 7-day treatment. The whole results showed that PFOA acts as a tumor promoter and a nongenotoxic carcinogen. Cell transformation in initiated cells was observed at concentrations equivalent to the ones found in human serum of nonoccupationally and occupationally exposed populations. An involvement of PFOA in increased incidence of cancer recorded in occupationally exposed population cannot be ruled out. PMID:22828883

  2. Perfluorooctanoic acid (PFOA) acts as a tumor promoter on Syrian hamster embryo (SHE) cells.

    PubMed

    Jacquet, N; Maire, M A; Rast, C; Bonnard, M; Vasseur, P

    2011-08-01

    Perfluorooctane sulfonate (PFOS) (C(8)F(17)SO(3)) and perfluorooctanoic acid (PFOA) (C(8)HF(15)O(2)) are synthetic chemicals widely used in industrial applications for their hydrophobic and oleophobic properties. They are persistent, bioaccumulative, and toxic to mammalian species. Their widespread distribution on earth and contamination of human serum raised concerns about long-term side effects. They are suspected to be carcinogenic through a nongenotoxic mode of action, a mechanism supported by recent findings that PFOS induced cell transformation but no genotoxicity in Syrian hamster embryo (SHE) cells. In the present study, we evaluated carcinogenic potential of PFOA using the cell transformation assay on SHE cells. The chemical was applied alone or in combination with a nontransformant concentration of benzo[a]pyrene (BaP, 0.4 μM) in order to detect PFOA ability to act as tumor initiator or tumor promoter. The results showed that PFOA tested alone in the range 3.7 × 10(-5) to 300 μM did not induce SHE cell transformation frequency in a 7-day treatment. On the other side, the combination BaP/PFOA induced cell transformation at all PFOA concentrations tested, which revealed synergistic effects. No genotoxicity of PFOA on SHE cells was detected using the comet assay after 5 and 24 h of exposure. No significant increase in DNA breakage was found in BaP-initiated cells exposed to PFOA in a 7-day treatment. The whole results showed that PFOA acts as a tumor promoter and a nongenotoxic carcinogen. Cell transformation in initiated cells was observed at concentrations equivalent to the ones found in human serum of nonoccupationally and occupationally exposed populations. An involvement of PFOA in increased incidence of cancer recorded in occupationally exposed population cannot be ruled out.

  3. Amplification of the IMP dehydrogenase gene in Chinese hamster cells resistant to mycophenolic acid.

    PubMed Central

    Collart, F R; Huberman, E

    1987-01-01

    The regulation of IMP dehydrogenase (IMPDH) was analyzed in Chinese hamster V79 cell variants that exhibit different degrees of resistance to the cytotoxic effect of mycophenolic acid, a specific inhibitor of IMPDH. Western blot (immunoblot) analysis with an IMPDH antiserum revealed a 14- to 27-fold increase in the amount of enzyme in the mycophenolic acid-resistant cells. The antiserum was also used to screen for a phage containing the IMPDH cDNA sequence from a lambda gt11 expression library. Northern blot (RNA blot) analyses of total cellular and poly(A)+ RNA showed that an IMPDH cDNA probe hybridized to a 2.2-kilobase transcript, the amount of which was associated with increased resistance. Southern blotting with the probe indicated an amplification of the IMPDH gene in the mycophenolic acid-resistant cells. Our findings suggest that the acquired mycophenolic acid resistance of the V79 cell variants is associated with increases in the amount and activity of IMPDH and the number of IMPDH gene copies. Images PMID:2890098

  4. Enhanced radiation-induced killing of Chinese hamster cells by dideoxythymidine

    SciTech Connect

    Ben-Hur, E.

    1981-10-01

    Incubation of cultured Chinese hamster cells in the presence of the DNA chain terminator 2',3'-dideoxythymidine (ddThd) following ..gamma.. irradiation enhances cell killing. Maximum enhancement is obtained with 10 )g/ml ddThd and incubation for 90 min. If the addition of ddThd is delayed for 1 hr after irradiation, no enhancement is observed. Although the drug kills S-phase cells which are more radiation resistant, this is not the main reason for the observed enhancement of radiation response. The magnitude of the effect in cells synchronized at the Gr-S interface is similar to that in asynchronous population. When ddThd treatment is combined with other treatments that enhance radiation response, i.e., BUdR substitution and hyperthermia, the effects are less than additive. It is suggested that repair of radiation-induced DNA damage is interfered with by ddThd either by incorporation into gaps formed during excision of damage and/or by inhibition of DNA polymerase ..beta.. which is involved with excision repair.

  5. A flow cytometric study of chromosomes from rat kangaroo and Chinese hamster cells.

    PubMed

    Stöhr, M; Hutter, K J; Frank, M; Futterman, G; Goerttler, K

    1980-01-01

    Chromosomes from rat kangaroo (PTK) and chinese hamster (CHV 79) cells have been prepared for quantitative flow-cytometric analysis. The preparation time was otimized down to 30 (PTK) and 40 min (CHV 79). DAPI was used as a AT-sensitive fluorescent dye to stain for monoparameter DNA measurements. Simultaneous two-parameter DNA-protein analysis was carried out with DAPI and SR 101 (as a general protein fluorochrome) in combination. The karyotype of the PTK cells with 13 (14) chromosomes was separated into 10DNA peaks. The X-chromosome bearing the nucleolus organizer region generates a distinct peak. The karyotype of the CHV 79 cells with 22 chromosomes was separated inot 15 peaks. The DNA profile obtained indicates a geometric grading of the chromosomal amount of AT components in teh karyotype of this particular cell line. The simultaneous DNA-protein analysis performed show enough sensitivity of the instrument utilizing hihg power UV excitation illumination to discriminate the two color emission consisting of blue (DAPI) and red (SR 101) fluorescence. Color overlapping could be completely avoided. Additionally, the quality (number, location, and resolution of peaks) of the DNA distribution was not influences by the simultaneous application of a second fluorescent stain. Fluorescence activated electronic sorting applied on chromosomal fluorescence distributions providing purified fractions of chromosomes for subsequent biochemical and biological determinations is discussed.

  6. VEGF is a Promising Therapeutic Target for the Treatment of Clear Cell Carcinoma of the Ovary

    PubMed Central

    Mabuchi, Seiji; Kawase, Chiaki; Altomare, Deborah A.; Morishige, Kenichirou; Hayashi, Masami; Sawada, Kenjiro; Ito, Kimihiko; Terai, Yoshito; Nishio, Yukihiro; Klein-Szanto, Andres J.; Burger, Robert A.; Ohmichi, Masahide; Testa, Joseph R.; Kimura, Tadashi

    2010-01-01

    This study examined the role of VEGF as a therapeutic target in clear cell carcinoma (CCC) of the ovary, which has been regarded as a chemoresistant histological subtype. Immunohistochemical analysis using tissue microarrays of 98 primary ovarian cancers revealed that VEGF was strongly expressed both in early stage and advanced stage CCC of the ovary. In early stage CCCs, patients who had tumors with high levels of VEGF had significantly shorter survival than those with low levels of VEGF. In vitro experiments revealed that VEGF expression was significantly higher in cisplatin-refractory human clear cell carcinoma cells (RMG1-CR and KOC7C-CR), compared to the respective parental cells (RMG1 and KOC7C) in the presence of cisplatin. In vivo treatment with bevacizumab markedly inhibited the growth of both parental CCC cells-derived (RMG1 and KOC7C) and cisplatin-refractory CCC cells-derived (RMG1-CR and KOC7C-CR) tumors as a result of inhibition of tumor angiogenesis. The results of the current study indicate that VEGF is frequently expressed and can be a promising therapeutic target in the management of CCC. Bevacizumab may be efficacious not only as a first-line treatment but also as a second-line treatment of recurrent disease in patients previously treated with cisplatin. PMID:20663925

  7. Conditionally lethal mutations in chinese hamster cells. Characterization of a cell line with a possible defect in the Krebs cycle.

    PubMed

    DeFrancesco, L; Werntz, D; Scheffler, I E

    1975-04-01

    A variant Chinese hamster cell line has been isolated from a mutagenized population that has a markedly reduced ability to oxidize a variety of substrates via the Krebs cycle. The production of 14CO2 from 14C-labeled compounds was measured using pyruvate, acetate, beta-hydroxybutyrate, palmitate and glutamate, and in all cases it was neglibible in the mutant. In contrast to this, significant amounts of 14CO2 were produced from 14C-aspartate and 14C-succinate which suggest that some reactions of the Krebs cycle can take place and this conclusion is supported by tracer experiments with labeled compounds. The rate of respiration measured with a Clark oxygen electrode in the mutant was compared to several normal Chinese hamster cell lines and was found to be only 8%. Mitochondria appear to be present in normal numbers and with only minor differences in morphology. The measurement of difference spectra between oxidized and reduced states permits us to conclude that the cytochromes are all present and functional. These results lead us to believe that there may be a defect in the Krebs cycle between alpha-ketoglutarate and succinate. Alternatively a defect in a structural component of the mitochondria or in the electron-transport chain itself may be causing pleiotropic effects in the Krebs cycle and respiration.

  8. Scanning electron microscopic changes in granulosa cells during follicular atresia in Caprine ovary.

    PubMed

    Bhardwaj, J K; Sharma, R K

    2011-01-01

    During this study, topographic changes in healthy and atretic granulosa cells have been investigated during follicular atresia in goat ovary. Under scanning electron microscopy atresia was marked by asymmetrical shrinkage and vacuolization of cytoplasm. The specific topographical alterations observed in atretic cells were loss of micro extensions, disruption of cell-cell interaction, and smooth-textured membrane with a number of uneven depressions and ruffles. Some portions of the cell membrane were marked by extensive shrinkage due to condensation of cytosol. Irregular membrane at occasions was studded with blunt microextensions. The findings of present investigation will help in understanding the cellular changes in granulosa cells during follicular atresia and will find applications in screening of follicles for in vitro culture, in vitro fertilization and Embryo transfer technology. PMID:21254113

  9. Effect of photoperiod on the rate of 3H-thymidine incorporation of epididymal principal cells in adult Syrian hamsters

    SciTech Connect

    Johnson, L.; Bartke, A. )

    1991-04-01

    Photoperiod-induced cycles of gonadal regression and recrudescence in the Syrian hamster were used to determine if epididymal growth in adults involves mitotic activity of principal cells. In Experiment 1, the following groups of adult hamsters were examined: induced recrudescing (5L:19D (5 hr light and 19 hr dark) for 13 wk followed by 14L:10D for at least 3 wk), spontaneous recrudescing (5L:19D for 25 wk), and active gonadal state (14:10D). In Experiment 2, adult hamsters were divided into the following groups: induced recrudescing, active, and regressed (5L:19D for 16 wk). Hamsters received subcutaneous injections of 0.5 microCi 3H-thymidine/g body weight three times/wk for 3 wk. The epididymis was fixed in a glutaraldehyde followed by osmium, embedded in Epon 812, and sectioned at 1 micron. Slides were dipped in Kodak NTB-3 emulsion, exposed for 2 or 3 months, developed, and evaluated for isotopic labeling of principal and basal cell nuclei by scoring 500 to 1,000 nuclei. In Experiment 1, the percentages of labeled principal cell nuclei for the induced recrudescing, spontaneous recrudescing, and active groups were 26 {plus minus} 2%, 23 {plus minus} 5%, and 9 {plus minus} 1%, respectively. Considering the intermittent availability of 3H-thymidine during 21 days, this represents daily recruitment of 6.3%, 5.6%, and 2.2%, respectively. In Experiment 2, the percentages of labeled principal cell nuclei for induced recrudescing, active, and regressed groups were 12 {plus minus} 4%, 3 {plus minus} 1%, and 4 {plus minus} 1%, respectively. There was no effect of photoperiod on labeling pattern of basal cells (1.5 {plus minus} 0.6%, 1.2 {plus minus} 0.1%, 0.4 {plus minus} 0.1% for the three photoperiod groups, respectively).

  10. An interlaboratory evaluation of the Syrian hamster embryo cell transformation assay using eighteen coded chemicals.

    PubMed

    Jones, C A; Huberman, E; Callaham, M F; Tu, A; Halloween, W; Pallota, S; Sivak, A; Lubet, R A; Avery, M D; Kouri, R E; Spalding, J; Tennant, R W

    1988-01-01

    Eighteen coded chemicals were evaluated in the Syrian hamster embryo (SHE) cell transformation assay in three different laboratories using the same basic experimental protocol with minor modifications. In addition, individual cell and serum sources were selected. Major factors influencing intra-and interlaboratory reproducibility were the source of cells and serum, the toxicity of the chemicals, and the dose-range selected for transformation evaluation. Two or three assays from each laboratory were required to determine the transformation-inducing potential of a chemical because of the low number of transformants scored in any single assay and the difficulty of interpreting morphological variations. Rodent carcinogenicity data were available for 16 of the 18 chemicals tested and the transformation response of 14 of those chemicals was in agreement with the rodent carcinogenicity data (if the positive results are adopted for the four chemicals that produced contradictory results). Four rodent carcinogens, di-(2-ethylhexyl) phthalate, diphenylhydantoin, methapyrilene hydrochloride and o-toluidine hydrochloride, that were negative in the Salmonella/microsome assay, induced morphological transformation in the SHE assay. Although the labour, cost and lack of reproducibility might preclude application of this transformation assay for routine screening, it might, nevertheless, prove valuable for distinguishing between non-mutagenic carcinogens and non-carcinogens.

  11. Rotational diffusion of TEMPONE in the cytoplasm of Chinese hamster lung cells.

    PubMed Central

    Lepock, J R; Cheng, K H; Campbell, S D; Kruuv, J

    1983-01-01

    The correlation time for rotational diffusion (tau R) of 2,2,6,6-tetramethyl-4-piperidone-N-oxide (TEMPONE) in Chinese hamster lung (V79) cells has been measured. For these cells in an isosmotic solution at 20 degrees C, tau R = 4.18 X 10(-11) s, approximately 3.6 times greater than tau R = 1.17 X 10(-11) s in water. The relationship between tau R and viscosity was investigated in a number of glycerol-water (0-50%) and sucrose-water (20-40%) solutions and a constant Stokes-Einstein volume of 44 A3 was found for TEMPONE in solutions of less than 20% glycerol and sucrose. This gives an average shear viscosity (for rotation of a small molecule) of 0.038 poise for the cytoplasm. When nonsecular terms were used in the calculation of tau R, the activation energies for rotation of TEMPONE in the above solutions correlated well with the activation energies for shear viscosity. The viscosity increases as the cell is shrunk in hypertonic solutions. It also increases with decreasing temperature with an activation energy of 3.7 kcal/mol, about the same as the activation energy for the viscosity of pure water. The rotational correlation times were carefully calculated considering inhomogeneous line broadening, non-Lorentzian line shapes, the need for accurate tensor values and nonsecular terms. PMID:6318842

  12. Deuterium oxide enhancement of Chinese hamster cell response to. gamma. radiation

    SciTech Connect

    Ben-Hur, E.; Riklis, E.

    1980-02-01

    Exposure of Chinese hamster cells to growth medium containing deuterium oxide (D/sub 2/O) following ..gamma.. irradiation has a dramatic effect on the response to radiation. Increasing the D/sub 2/O concentration and the time of exposure enhances the radiation response in a dose-modifying manner. The dose-modifying factor (DMF) is about 4.5 for 3 h at 90% D/sub 2/O. Preirradiation incubation under the same conditions has only a small effect on radiation response. The potentiating effect of D/sub 2/O depends on cellular metabolism. It is smaller when incubation is in buffer instead of growth medium, is reduced at temperatures below 37/sup 0/C, and is virtually absent at 4/sup 0/C. The radiation damage that interacts synergistically with D/sub 2/O is repaired by the cells in about 3 h at 37/sup 0/C in growth medium. The rate of repair is slower at 20/sup 0/C in buffer, and there is no repair at 4/sup 0/C. Split-dose experiments suggest that the cells have a reduced capacity to repair radiation-induced sublethal damage in the presence of 90% D/sub 2/O. Heat sensitivity (42/sup 0/C) is not affected by D/sub 2/O, and enhancement of radiation response by heat is independent of enhancement by D/sub 2/O.

  13. Mutagenic activities of heterocyclic amines in Chinese hamster lung cells in culture

    SciTech Connect

    Terada, M.; Nagao, M.; Nakayasu, M.; Sakamoto, H.; Nakasato, F.; Sugimura, T.

    1986-01-01

    A mutation assay system with Chinese hamster lung cells (CHL) using diphtheria toxin resistance as a selective marker has been established. The mutagenic activities of heterocyclic amines, originally isolated from pyrolyzates of amino acids and proteins, broiled fish and fried beef were assayed in cultured CHL cells in the absence and presence of a metabolic activation system, with diphtheria toxin resistance as a marker. All the heterocyclic amines tested except 3-amino-1,4-dimethyl-5H-pyrido (4,3-b)indole (Trp-P-1) required the presence of a metabolic activation system for mutagenicity on CHL cells. 3-Amino-1-methyl-5H-pyrido(4,3-b)indole (Trp-P-2) was the most mutagenic among the heterocyclic amines tested. Other compounds were also mutagenic in the following order of decreasing potency: Trp-P-1, 2-amino-3,4-dimethylimidazo(4,5-f)quinoline (MeIQ), 2-amino-3-methylimidazo(4,5-f)quinoline (IQ), 2-amino-9H-pyrido(2,3-b)indole (A..cap alpha..C), 2-amino-3,8-dimethylimidazo(4,5-f)quinoxaline (MeIQx), 2-amino-6-methyldipyrido(1,2-a:3',2'-d)imidazole (Glu-P-1) and 2-aminodipyrido(1,2--a:3',2'-d)imidazole (Glu-P-2).

  14. Precocious puberty due to a lipid-cell tumour of the ovary.

    PubMed

    Dengg, K; Fink, F M; Heitger, A; Tabarelli, M; Kreczy, A; Glatzl, J; Berger, H

    1993-01-01

    A 4-year-old girl with a lipid cell tumour of the ovary showed isosexual precocious pseudopuberty. The endocrine activity of the tumour led to elevated plasma levels of dehydroepiandrosterone sulphate, oestradiol, testosterone and androstenedione. After tumour resection the clinical signs of abnormal hormonal stimulation disappeared within 10 months. The girl developed precocious puberty again 2 years later without any sign of relapse. Therapy with luteinizing hormone releasing hormone agonist was effective although premature activation of the hypothalamic-pituitary-gonadal axis could not clearly be demonstrated by hormonal investigations.

  15. Laser microirradiation of Chinese hamster cells at wavelength 365 nm: effects of psoralen and caffeine

    SciTech Connect

    Cremer, T.; Peterson, S.P.; Cremer, C.; Berns, M.W.

    1981-03-01

    Cells of a V79 subline of the Chinese hamster were microirradiated at wavelength 365 nm in the presence of the psoralen derivative, trioxsalen. Microirradiation was accomplished by a pulsed argon laser microbeam either in anaphase or in interphase 3 h after mitosis. Inhibition of clonal growth and formation of micronuclei at the first postirradiation mitosis were observed after microirradiation of anaphase chromosomes and of small parts of the interphase nucleus. Microirradiation of the cytoplasm beside the interphase nucleus or between the sets of chromosomes moving apart from each other in anaphase did not produce these effects. Anaphase experiments showed that only the daughter cell which received microirradiated chromatin exhibited an abnormal growth pattern. Most interestingly, shattering of the whole chromosome complement could be induced by microirradiation of small parts of the interphase nucleus and post-treatment with caffeine. Since microirradiation of chromatin in the absence of psoralen was not effective, we consider formation of psoralen photoadducts to nucleic acids in microirradiated chromatin to be the specific cause of the effects. We suggest that DNA photolesions in chromosome segments present in the microirradiated part of the nucleus can induce shattering of all the chromosomes in the microirradiated nucleus. Several possibilities are discussed to explain this unexpected finding.

  16. Histological study of cell migration in the dermis of hamsters after immunisation with two different vaccines against visceral leishmaniasis.

    PubMed

    Moreira, Nádia das Dores; Giunchetti, Rodolfo Cordeiro; Carneiro, Cláudia Martins; Vitoriano-Souza, Juliana; Roatt, Bruno Mendes; Malaquias, Luiz Cosme Cotta; Corrêa-Oliveira, Rodrigo; Reis, Alexandre Barbosa

    2009-04-15

    Vaccine candidates, including live and/or killed parasites, Leishmania-purified fractions, defined recombinant antigens and antigen-encoding DNA-plasmids have been proposed to use as vaccine anti-Leishmania. More recently, the hamsters have been used to pre-selection of antigens candidate to apply in further experiments using canine model. In this report we evaluated the kinetics of cell migration in dermal inflammatory infiltrate, circulating leukocytes and the presence of nitric oxide (NO)/induced nitric oxide synthase during the early (1-24h) and late (48-168h) periods following inoculation of hamsters with antigenic components of anti-canine visceral leishmaniasis vaccines Leishmune and Leishmania braziliensis antigen (LB) with and without saponin (Sap) adjuvant. Our results show that LB caused an early reduction of lymphocytes in the dermis while Sap and LBSap triggered a late recruitment, suggesting the role of the adjuvant in the traffic of antigen-presenting cells and the induction of lymphocyte migration. In that manner our results suggest that the kinetics of cell migration on hamster model may be of value in the selection of vaccine antigens prior the tests in dogs particularly in respect of the toxicity of the preparations.

  17. A dynamic population of stromal cells contributes to the follicle stem cell niche in the Drosophila ovary

    PubMed Central

    Sahai-Hernandez, Pankaj; Nystul, Todd G.

    2013-01-01

    Epithelial stem cells are maintained within niches that promote self-renewal by providing signals that specify the stem cell fate. In the Drosophila ovary, epithelial follicle stem cells (FSCs) reside in niches at the anterior tip of the tissue and support continuous growth of the ovarian follicle epithelium. Here, we demonstrate that a neighboring dynamic population of stromal cells, called escort cells, are FSC niche cells. We show that escort cells produce both Wingless and Hedgehog ligands for the FSC lineage, and that Wingless signaling is specific for the FSC niche whereas Hedgehog signaling is active in both FSCs and daughter cells. In addition, we show that multiple escort cells simultaneously encapsulate germ cell cysts and contact FSCs. Thus, FSCs are maintained in a dynamic niche by a non-dedicated population of niche cells. PMID:24131631

  18. Immunohistochemical localization of oestrogen receptor alpha in the various cell categories of chick embryo ovary.

    PubMed

    Civinini, A; Chimenti, C; Gallo, V P

    2010-12-01

    The immunohistochemical (IHC) localization of oestrogen receptor alpha (ERα) was studied in the developing left ovary of 14.5-day-old chick embryos. The study was focused in particular on distinguishing in cortex and medulla the different cell categories that proved positive to the reaction, in order to gain further understanding of gonadal cell interactions during ovarian development. Immunostained cells were observed in both the cortex and medulla, but the reactivity for ERα was discontinuous, probably due to variable cell requirements. In the cortex, positivity was observed in cells of the ovarian surface epithelium, in germ cells and in prefollicular cells. In the medulla, positivity was found in the following cell categories: interstitial cells, poorly differentiated somatic cord cells, including those delimiting lacunae, germ cells and their accompanying cells of epithelial origin. Furthermore, the IHC results showed that the intracellular localization of the antigen was cytoplasmic, nuclear, or both. The significance of ERα presence and intracellular localization was discussed in relation and as supplementary to previous research by various Authors. In particular, as regards the unusual cytoplasmic immunoreactivity, a gradual shift of ERα localization from cytoplasmic to nuclear during the embryonic period is suggested.

  19. Developmentally regulated IL6-type cytokines signal to germ cells in the human fetal ovary.

    PubMed

    Eddie, Sharon L; Childs, Andrew J; Jabbour, Henry N; Anderson, Richard A

    2012-02-01

    Fetal ovarian development and primordial follicle formation are imperative for adult fertility in the female. Data suggest the interleukin (IL)6-type cytokines, leukaemia inhibitory factor (LIF), IL6, oncostatin M (OSM) and ciliary neurotrophic factor (CNTF), are able to regulate the survival, proliferation and differentiation of fetal murine germ cells (GCs) in vivo and in vitro. We postulated that these factors may play a similar role during early human GC development and primordial follicle formation. To test this hypothesis, we have investigated the expression and regulation of IL6-type cytokines, using quantitative reverse transcription polymerase chain reaction and immunohistochemistry. Expression of transcripts encoding OSM increased significantly across the gestational range examined (8-20 weeks), while expression of IL6 increased specifically between the first (8-11 weeks) and early second (12-16 weeks) trimesters, co-incident with the initiation of meiosis. LIF and CNTF expression remained unchanged. Expression of the genes encoding the LIF and IL6 receptors, and their common signalling subunit gp130, was also found to be developmentally regulated, with expression increasing significantly with increasing gestation. LIF receptor and gp130 proteins localized exclusively to GCs, including oocytes in primordial follicles, indicating this cell type to be the sole target of IL6-type cytokine signalling in the human fetal ovary. These data establish that IL6-type cytokines and their receptors are expressed in the human fetal ovary and may directly influence GC development at multiple stages of maturation. PMID:21965347

  20. Skin-Derived Mesenchymal Stem Cells Help Restore Function to Ovaries in a Premature Ovarian Failure Mouse Model

    PubMed Central

    Lai, Dongmei; Wang, Fangyuan; Dong, Zhangli; Zhang, Qiuwan

    2014-01-01

    Skin-derived mesenchymal stem cells (SMSCs) can differentiate into the three embryonic germ layers. For this reason, they are considered a powerful tool for therapeutic cloning and offer new possibilities for tissue therapy. Recent studies showed that skin-derived stem cells can differentiate into cells expressing germ-cell specific markers in vitro and form oocytes in vivo. The idea that SMSCs may be suitable for the treatment of intractable diseases or traumatic tissue damage has attracted attention. To determine the ability of SMSCs to reactivate injured ovaries, a mouse model with ovaries damaged by busulfan and cyclophosphamide was developed and is described here. Female skin-derived mesenchymal stem cells (F-SMSCs) and male skin-derived mesenchymal stem cells (M-SMSCs) from red fluorescence protein (RFP) transgenic adult mice were used to investigate the restorative effects of SMSCs on ovarian function. Significant increases in total body weight and the weight of reproductive organs were observed in the treated animals. Both F-SMSCs and M-SMSCs were shown to be capable of partially restoring fertility in chemotherapy-treated females. Immunostaining with RFP and anti-Müllerian hormone (AMH) antibodies demonstrated that the grafted SMSCs survived, migrated to the recipient ovaries. After SMSCs were administered to the treated mice, real-time PCR showed that the expression levels of pro-inflammatory cytokines TNF-α, TGF-β, IL-8, IL-6, IL-1β, and IFNγ were significantly lower in the ovaries than in the untreated controls. Consistent with this observation, expression of oogenesis marker genes Nobox, Nanos3, and Lhx8 increased in ovaries of SMSCs-treated mice. These findings suggest that SMSCs may play a role within the ovarian follicle microenvironment in restoring the function of damaged ovaries and could be useful in reproductive health. PMID:24879098

  1. Skin-derived mesenchymal stem cells help restore function to ovaries in a premature ovarian failure mouse model.

    PubMed

    Lai, Dongmei; Wang, Fangyuan; Dong, Zhangli; Zhang, Qiuwan

    2014-01-01

    Skin-derived mesenchymal stem cells (SMSCs) can differentiate into the three embryonic germ layers. For this reason, they are considered a powerful tool for therapeutic cloning and offer new possibilities for tissue therapy. Recent studies showed that skin-derived stem cells can differentiate into cells expressing germ-cell specific markers in vitro and form oocytes in vivo. The idea that SMSCs may be suitable for the treatment of intractable diseases or traumatic tissue damage has attracted attention. To determine the ability of SMSCs to reactivate injured ovaries, a mouse model with ovaries damaged by busulfan and cyclophosphamide was developed and is described here. Female skin-derived mesenchymal stem cells (F-SMSCs) and male skin-derived mesenchymal stem cells (M-SMSCs) from red fluorescence protein (RFP) transgenic adult mice were used to investigate the restorative effects of SMSCs on ovarian function. Significant increases in total body weight and the weight of reproductive organs were observed in the treated animals. Both F-SMSCs and M-SMSCs were shown to be capable of partially restoring fertility in chemotherapy-treated females. Immunostaining with RFP and anti-Müllerian hormone (AMH) antibodies demonstrated that the grafted SMSCs survived, migrated to the recipient ovaries. After SMSCs were administered to the treated mice, real-time PCR showed that the expression levels of pro-inflammatory cytokines TNF-α, TGF-β, IL-8, IL-6, IL-1β, and IFNγ were significantly lower in the ovaries than in the untreated controls. Consistent with this observation, expression of oogenesis marker genes Nobox, Nanos3, and Lhx8 increased in ovaries of SMSCs-treated mice. These findings suggest that SMSCs may play a role within the ovarian follicle microenvironment in restoring the function of damaged ovaries and could be useful in reproductive health. PMID:24879098

  2. The Mouse Fetal Ovary Has Greater Sensitivity Than the Fetal Testis to Benzo[a]pyrene-Induced Germ Cell Death.

    PubMed

    Lim, Jinhwan; Kong, Weixi; Lu, Muzi; Luderer, Ulrike

    2016-08-01

    The polycyclic aromatic hydrocarbon pollutant benzo[a]pyrene (BaP) is a known developmental gonadotoxicant. However, the mechanism of BaP-induced germ cell death is unclear. We investigated whether exposure to BaP induces apoptotic germ cell death in the mouse fetal ovary or testis. Mouse fetal gonads were dissected at embryonic day 13.5 days postcoitum (dpc) and fixed immediately or cultured for 6, 24, 48, or 72 h with various concentrations of BaP (1-1000 ng/ml). Germ cells numbers, apoptosis, and proliferation were evaluated by immunostaining. Treatment of fetal ovaries with BaP for 72 h concentration-dependently depleted germ cells. Treatment with BaP elevated the expression of BAX protein at 6 h and activated downstream caspases-9 and -3 at 24 h in a concentration-dependent manner in germ cells of fetal ovaries. As a consequence, ovarian germ cell numbers were significantly and concentration-dependently decreased at 48 h. Pretreatment with z-VAD-fmk, a pan-caspase inhibitor, prior to exposure to 1000 ng/ml BaP prevented BaP-mediated ovarian germ cell death; there were no effects of BaP or z-VAD-fmk on germ cell proliferation. No significant effects of BaP exposure on caspase 3 activation or germ cell numbers were observed in fetal testes after 48 h of culture. Our findings show that BaP exposure increases caspase-dependent and BAX-associated germ cell apoptosis in the mouse fetal ovary, leading to germ cell depletion. In contrast, the cultured 13.5 dpc fetal testis is relatively resistant to BaP-induced germ cell death. This study provides a novel insight into molecular mechanisms by which BaP has direct gonadotoxicity in the mouse fetal ovary. PMID:27208085

  3. Augmenting Chinese hamster genome assembly by identifying regions of high confidence.

    PubMed

    Vishwanathan, Nandita; Bandyopadhyay, Arpan A; Fu, Hsu-Yuan; Sharma, Mohit; Johnson, Kathryn C; Mudge, Joann; Ramaraj, Thiruvarangan; Onsongo, Getiria; Silverstein, Kevin A T; Jacob, Nitya M; Le, Huong; Karypis, George; Hu, Wei-Shou

    2016-09-01

    Chinese hamster Ovary (CHO) cell lines are the dominant industrial workhorses for therapeutic recombinant protein production. The availability of genome sequence of Chinese hamster and CHO cells will spur further genome and RNA sequencing of producing cell lines. However, the mammalian genomes assembled using shot-gun sequencing data still contain regions of uncertain quality due to assembly errors. Identifying high confidence regions in the assembled genome will facilitate its use for cell engineering and genome engineering. We assembled two independent drafts of Chinese hamster genome by de novo assembly from shotgun sequencing reads and by re-scaffolding and gap-filling the draft genome from NCBI for improved scaffold lengths and gap fractions. We then used the two independent assemblies to identify high confidence regions using two different approaches. First, the two independent assemblies were compared at the sequence level to identify their consensus regions as "high confidence regions" which accounts for at least 78 % of the assembled genome. Further, a genome wide comparison of the Chinese hamster scaffolds with mouse chromosomes revealed scaffolds with large blocks of collinearity, which were also compiled as high-quality scaffolds. Genome scale collinearity was complemented with EST based synteny which also revealed conserved gene order compared to mouse. As cell line sequencing becomes more commonly practiced, the approaches reported here are useful for assessing the quality of assembly and potentially facilitate the engineering of cell lines. PMID:27374913

  4. Relationship Between Development, Metabolism, and Mitochondrial Organization in 2-Cell Hamster Embryos in the Presence of Low Levels of Phosphate

    PubMed Central

    Ludwig, Tenneille E.; Squirrell, Jayne M.; Palmenberg, Ann C.; Bavister, Barry D.

    2016-01-01

    The effect of low concentrations of inorganic phosphate (Pi) on development, metabolic activity, and mitochondrial organization in the same cohorts of cultured hamster embryos was evaluated. Two-cell embryos were collected from eCG-stimulated golden hamsters and cultured in HECM-10 with 0.0 (control), 1.25, 2.5, or 5.0 µM KH2PO4. Glucose utilization through the Embden-Meyerhof pathway (EMP) and tricarboxylic acid (TCA)-cycle activity were determined following 5 h of culture. Mitochondrial organization in living embryos was evaluated using multiphoton microscopy at 6 h of culture. Development was assessed at 27 h (on-time 8-cell stage) and 51 h (on-time blastocyst stage) of culture. Total cell numbers, as well as cell allocation to the trophectoderm and inner cell mass were determined for morula- and blastocyst-stage embryos. Culture with Pi did not alter TCA-cycle activity. However, culture with ≥2.5 µM Pi significantly increased (P < 0.01) EMP activity compared to control. Mitochondrial organization was significantly (P < 0.01) disrupted by Pi in a dose-dependent manner. Development to the 8-cell, morula/blastocyst, and blastocyst stages was significantly reduced (P < 0.05) in the presence of ≥2.5 µM Pi compared to both control and 1.25 µM Pi. This study clearly demonstrates that, for hamster embryos, inclusion of even exceptionally low concentrations of Pi in culture medium dramatically alters embryo physiology. Additionally, although 2-cell embryos can tolerate some structural disruption without concomitant, detrimental effects on development or metabolic activity, metabolic disturbance is associated with decreased developmental competence. PMID:11717124

  5. [Biological effects of smog. VIII. Impulse cytophotometric cell cycle analysis of synchronized Syrian hamster kidney cell cultures (line 14-b)].

    PubMed

    Giebel, P; Seemayer, N H

    1984-10-01

    Syrian hamster kidney cultures of line 14-1b were synchronized by excess of thymidine. Thereafter in the phase of DNA synthesis cell cultures were exposed to extract and fractions of city smog, derived from a polluted area at the river Rhine and Ruhr. Using impulscytophotometry and estimation of mitotic frequency cell cycle analyses were conducted on synchronized exposed and control cultures. The total extract obtained by methanol treatment of city smog was further fractionated by organic solvents leading to fractions of cyclohexane, polyaromates and propanol. Cell cycle progression of synchronized cultures was inhibited in a dose dependent manner by increasing concentration of city smog extract and its fractions. This inhibition led to a prolongation of DNA synthetic phase and to an accumulation of cells in G2(+ M)-phase. The total cell cycle showed a prolongation of 3-5 h. The strongest effect was induced by the total extract. We have to emphasize that already amounts of city smog which were found in air volumes of 2-5 m3 exerted strong effects. With a declining sequence of toxicity followed the fractions of cyclohexane, propanol and of polyaromates. Our results show, that samples of city smog from polluted areas contain substances which induce heavy alterations in cell cycle progression of mammalian cells in vitro. These highly effective toxic substances are dangerous for human health, especially after a long-time exposition.

  6. Nicotine, acetylcholine and bombesin are trophic growth factors in neuroendocrine cell lines derived from experimental hamster lung tumors

    SciTech Connect

    Schueller, H.M.; Nylen, E.; Park, P.; Becker, K.L. George Washington Univ., Washington, DC )

    1990-01-01

    Neuroendocrine hamster lung tumors, induced by exposure to 60% hyperoxia and subcutaneous administration of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) for 12 weeks, were placed in cell culture. By subsequent selective transfer of epithelial cells and maintenance in an atmosphere of 8% CO{sub 2}, cell lines with characteristics of neuroendocrine cells were established. The neuroendocrine markers expressed by these cell lines included electron dense neuroendocrine secretion granules as well as secretion of calcitonin and mammalian bombesin. In keeping with data previously reported for a human neuroendocrine lung tumor cell line, nicotine, acetylcholien, and mammalian bombesin (MB) acted as strongrowth factors in these neuroendocrine hamster tumor lines. The mitogenic effect of nicotine an acetylcholine was abolished by nicotinic receptor inhibition while the effects of mammalian bombesin were inhibited by an antagonist of MB receptors. Our data suggest that a receptor-mediated mitogenic effect of nicotine on neuroendocrine lung cells may be instrumental in the induction of smoking-associated small cell lung cancer.

  7. Correlation of asbestos-induced cytogenetic effects with cell transformation of Syrian hamster embryo cells in culture.

    PubMed

    Oshimura, M; Hesterberg, T W; Tsutsui, T; Barrett, J C

    1984-11-01

    The cytogenetic effects of chrysotile asbestos on Syrian hamster embryo cells in vitro were investigated at doses which induced morphological and neoplastic transformation but which failed to induce measurable gene mutations in the cells at two genetic loci. Chrysotile asbestos treatment of the cells significantly induced chromosome changes in a dose-dependent manner. Up to 50% of the cells had chromosome abnormalities in number or structure following treatment with asbestos (2.0 micrograms/sq cm) for 48 hr. Numerical chromosome changes were the most pronounced abnormalities although significant increases in metaphases with other chromosome aberrations (breaks, fragments, exchanges, and/or dicentrics) and cells with binuclei or micronuclei were also observed. A linear relationship was observed between the incidences of cells with tetraploid metaphases and binucleated cells, suggesting that binucleation and tetraploidy are related. Cytogenetic effects of other mineral dusts were also tested 48 hr following treatment at a concentration of 2.0 micrograms/sq cm. Crocidolite asbestos was less potent than chrysotile asbestos in its ability to induce cell transformation and cytogenetic damage. Treatment of the cells with thin glass fibers (Code 100) was also able to induce cell transformation and cytogenetic effects, but thick glass fibers (Code 110) were much less potent for both endpoints. Milling of the thin glass fibers decreased the length of the fibers and abolished their ability to induce cell transformation and cytogenetic effects. Nonfibrous alpha-quartz induced neither cell transformation nor cytogenetic effects at the dose of 2.0 micrograms/sq cm. The results indicate that the physical characteristics of the fibers determine their ability to induce cell transformation and their ability to induce chromosome mutations, suggesting a possible mechanistic relationship.

  8. Measurement of DNA damage and cell killing in Chinese hamster V79 cells irradiated with aluminum characteristic ultrasoft X rays

    SciTech Connect

    Prise, K.M.; Folkard, M.; Davies, S.; Michael, B.D.

    1989-03-01

    Chinese hamster V79 cells were irradiated with 1.487 keV aluminum characteristic X rays produced using a cold-cathode discharge tube. Under aerobic conditions a relative biological effectiveness (RBE) of 2.18 for cell killing in comparison to 250-kVp X rays was measured using cells grown in suspension and irradiated on membrane filters. DNA damage in the form of single-strand (ssb) and double-strand breaks (dsb) was measured using the filter elution technique. The aerobic RBEs are 1.64 for dsb induction and 0.49 for ssb induction, consistent with the view that dsb are more closely related to cell kill than ssb. A reduced oxygen enhancement ratio (OER) for cell killing was measured for Al-K X rays, but the OER for dsb induction was similar to that measured for 250-kVp X rays. A curvilinear relationship between dsb induction and dose is observed, similar to that seen for 250-kVp X rays. This agrees with the concept that ultrasoft X rays produce critical lesions similar to hard X rays but with a greater efficiency per unit dose.

  9. Histochemical study of brown-fat cells in the golden hamster (Mesocricetus auratus) in cultures

    SciTech Connect

    Sokolov, V.E.; Boyadzhieva-Mikhailova, A.; Koncheva, L.; Angelova, P.; Evgen'eva, T.P.

    1985-11-01

    The authors undertake the task of studying the synthesis of certain hormones by brown-fat cells. The authors used brown-fat cells from the golden hamster. The metabolism of brown-fat cells was studied on precultured cells, which made it possible to detect the synthesis of the studied substances rather than their accumulation in the organ. The authors conducted three experiments. First, fragments of brown fat were cultivated in diffusion chambers in vivo. Pieces of brown fat were cultivated in parallel in vitro on agar (organotypic cultures) and on plasma (histotypic cultures). During cultivation in diffusion chambers, the chambers were implanted in the abdominal cavity of young white rats. For in vitro cultivation, TCM 199 plus 15-20% calf serum was used. A total of 36 cultures with 12 cultures in each series of experiments were performed. The auto-radiographic studies of brown-fat cells were conducted on 24-hour cultures and on brown-fat fragments taken from the intact animal. The cultures were incubated with isotopes for 1 h. Either (/sup 3/H)lysine (87.3 Ci/mM specific activity), (/sup 3/H)arginine (16.7 Ci/mM), (/sup 3/H)glycerol (43 Ci/mM), or (/sup 3/H)cholesterol (43 Ci/mM) were added to the medium. After incubation, the cultures were washed three times in pure medium, fixed in Sierra fluid, and embedded in paraffin. The paraffin sections were covered with Ilford K/sub 2/ emulsion, and the preparations were exposed for 20 days at 4/sup 0/C temperature. Radio-immunological methods were used to study the accumulation of estradiol-17-beta in the culture medium by the Dobson method and that of testerone. The culture medium was taken on cultivation days 2,4,6,8, and 10. The medium was changed during cultivation every third day, which made it possible to judge the rates of accumulation of material with increase in the cultivation times.

  10. Repeated doses of gamma rays induce resistance to N-methyl-N'-nitro-N-nitrosoguanidine in Chinese hamster cells

    SciTech Connect

    Osmak, M.

    1988-09-01

    Chinese hamster V79 cells were preirradiated repeatedly with gamma rays and then exposed to ultraviolet (uv) light or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). The cell killing and induction of mutation at the hypoxanthine-guanine phosphoribosyltransferase locus were examined following these treatments. Cells preirradiated with multiple fractions of gamma rays exhibit the same sensitivity to uv light as the control cells with respect to cell survival and mutation induction. Following treatment with MNNG, resistance to cell killing was observed along with a decreased frequency of mutations induced. These results indicate that the progeny of cells irradiated with multiple fractions of gamma rays could display subsequent changes in sensitivity to lethal and mutagenic effects of additional treatment with DNA-damaging agents.

  11. Kinematics of hamster sperm during penetration of the cumulus cell matrix.

    PubMed

    Drobnis, E Z; Yudin, A I; Cherr, G N; Katz, D F

    1988-12-01

    During capacitation, mammalian spermatozoa gain the ability to penetrate the cumulus cell matrix (CCM). The role of hyperactivated motility for this capacity is uncertain. In the present study, hamster sperm were observed during penetration and progression through the CCM, and flagellar beat patterns were quantitated by characterization of the underlying flagellar bends. Small numbers of sperm were added to cumulus masses slightly compressed on a slide (150 micron depth), and penetration was videorecorded using interference contrast optics. During penetration of the cumulus surface, sperm did not generate the large flagellar bends and asymmetric beats that are hallmarks of hyperactivation in low viscosity media. Instead, they entered slowly using high-frequency, low-amplitude sinusoidal flagellar motions. Within the CCM, sperm continued to move slowly, and they exhibited three distinct patterns of motility. The first was sinusoidal, produced by alternating, propagated bends: principal bends (PB) moved the head away from the beat midline, with the convex edge of the head leading, and reverse bends (RB) had the opposite curvature. The second pattern was asymmetric and sinusoidal: an extreme RB developed in the distal flagellum, was propagated distally, and was followed by a PB of less curvature. The third motility pattern was a hatchet-like stroke of the sperm head which resulted when an extreme, nonpropagated PB developed slowly in the proximal midpiece, and was released rapidly. In this mode there were no reverse bends, and sperm did not progress. There were subpopulations of capacitating sperm in free-swimming medium which had these same bend types and motility patterns, suggesting that qualitative flagellar movement may not change during CCM penetration. Sperm velocity in the CCM was not strongly correlated with flagellar beat kinematics, suggesting local heterogeneity in cumulus mechanical resistance and/or differences in interaction of the matrix with the

  12. Modulating Effect of Enicostemma littorale on the Expression Pattern of Apoptotic, Cell Proliferative, Inflammatory and Angiogenic Markers During 7, 12-Dimethylbenz (a) Anthracene Induced Hamster Buccal Pouch Carcinogenesis.

    PubMed

    Manoharan, Shanmugam; Rajasekaran, Duraisamy; Prabhakar, Murugaraj Manoj; Karthikeyan, Sekar; Manimaran, Asokan

    2015-01-01

    Enicostemma littorale leaves are traditionally used for the treatment of several diseases, including inflammation and cancer. This study has taken effort to explore the antitumor initiating potential of E. littorale leaves (ElELet) by analyzing the expression pattern of apoptotic (p53, Bcl-2 and Bcl-2 associated X-protein), cell-proliferative (cyclin D1 and proliferating cell nuclear antigen), angiogenic (vascular endothelial growth factor), invasive (matrix metalloproteinase-2 and 9), and inflammatory (NF-κB and cyclooxygenase-2) markers during 7, 12-dimethylbenz (a) anthracene (DMBA) induced hamster buccal pouch carcinogenesis. Oral tumors were induced in the buccal pouches of hamsters using the potent site and organ specific carcinogen, DMBA. DMBA application 3 times a week for 14 weeks resulted in tumor formation in the buccal pouches. Hundred percent tumor formations with dysregulation in the expression pattern of apoptotic, cell proliferative, inflammatory, angiogenic, and invasive markers were observed in the buccal pouches of hamsters treated with DMBA alone. ElELet at a dose of 250 mg/kg body weight orally to DMBA treated hamsters significantly prevented the tumor formation as well as corrected the abnormalities in the expression pattern of above mentioned molecular markers. ElELet thus modulated the expression pattern of all the above mentioned molecular markers in favor of the suppression of cell proliferation occurring in DMBA induced hamster buccal pouch carcinogenesis. PMID:26862274

  13. Modulating Effect of Enicostemma littorale on the Expression Pattern of Apoptotic, Cell Proliferative, Inflammatory and Angiogenic Markers During 7, 12-Dimethylbenz (a) Anthracene Induced Hamster Buccal Pouch Carcinogenesis

    PubMed Central

    Manoharan, Shanmugam; Rajasekaran, Duraisamy; Prabhakar, Murugaraj Manoj; Karthikeyan, Sekar; Manimaran, Asokan

    2015-01-01

    Enicostemma littorale leaves are traditionally used for the treatment of several diseases, including inflammation and cancer. This study has taken effort to explore the antitumor initiating potential of E. littorale leaves (ElELet) by analyzing the expression pattern of apoptotic (p53, Bcl-2 and Bcl-2 associated X-protein), cell-proliferative (cyclin D1 and proliferating cell nuclear antigen), angiogenic (vascular endothelial growth factor), invasive (matrix metalloproteinase-2 and 9), and inflammatory (NF-κB and cyclooxygenase-2) markers during 7, 12-dimethylbenz (a) anthracene (DMBA) induced hamster buccal pouch carcinogenesis. Oral tumors were induced in the buccal pouches of hamsters using the potent site and organ specific carcinogen, DMBA. DMBA application 3 times a week for 14 weeks resulted in tumor formation in the buccal pouches. Hundred percent tumor formations with dysregulation in the expression pattern of apoptotic, cell proliferative, inflammatory, angiogenic, and invasive markers were observed in the buccal pouches of hamsters treated with DMBA alone. ElELet at a dose of 250 mg/kg body weight orally to DMBA treated hamsters significantly prevented the tumor formation as well as corrected the abnormalities in the expression pattern of above mentioned molecular markers. ElELet thus modulated the expression pattern of all the above mentioned molecular markers in favor of the suppression of cell proliferation occurring in DMBA induced hamster buccal pouch carcinogenesis. PMID:26862274

  14. Low doses of alpha particles do not induce sister chromatid exchanges in bystander Chinese hamster cells defective in homologous recombination

    SciTech Connect

    Nagasawa, H; Wilson, P F; Chen, D J; Thompson, L H; Bedford, J S; Little, J B

    2007-10-26

    We reported previously that the homologous recombinational repair (HRR)-deficient Chinese hamster mutant cell line irs3 (deficient in the Rad51 paralog Rad51C) showed only a 50% spontaneous frequency of sister chromatid exchange (SCE) as compared to parental wild-type V79 cells. Furthermore, when irradiated with very low doses of alpha particles, SCEs were not induced in irs3 cells, as compared to a prominent bystander effect observed in V79 cells (Nagasawa et al., Radiat. Res. 164, 141-147, 2005). In the present study, we examined additional Chinese hamster cell lines deficient in the Rad51 paralogs Rad51C, Rad51D, Xrcc2, and Xrcc3 as well as another essential HRR protein, Brca2. Spontaneous SCE frequencies in non-irradiated wild-type cell lines CHO, AA8 and V79 were 0.33 SCE/chromosome, whereas two Rad51C-deficient cell lines showed only 0.16 SCE/chromosome. Spontaneous SCE frequencies in cell lines defective in Rad51D, Xrcc2, Xrcc3, and Brca2 ranged from 0.23-0.33 SCE/chromosome, 0-30% lower than wild-type cells. SCEs were induced significantly 20-50% above spontaneous levels in wild-type cells exposed to a mean dose of 1.3 mGy of alpha particles (<1% of nuclei traversed by an alpha particle). However, induction of SCEs above spontaneous levels was minimal or absent after {alpha}-particle irradiation in all of the HRR-deficient cell lines. These data suggest that Brca2 and the Rad51 paralogs contribute to DNA damage repair processes induced in bystander cells (presumably oxidative damage repair in S-phase cells) following irradiation with very low doses of alpha particles.

  15. Fractalkine restores the decreased expression of StAR and progesterone in granulosa cells from patients with polycystic ovary syndrome

    PubMed Central

    Huang, Shuo; Pang, Yanli; Yan, Jie; Lin, Shengli; Zhao, Yue; Lei, Li; Yan, Liying; Li, Rong; Ma, Caihong; Qiao, Jie

    2016-01-01

    Low progesterone levels are associated with luteal phase deficiency in women with polycystic ovary syndrome (PCOS). The mechanisms regulating progesterone biosynthesis in the granulosa cells from women with PCOS is largely unknown. Fractalkine is expressed in human ovaries, and is reported to regulate progesterone production in granulosa cells of healthy women. In the current study, we aimed to examine the role of fractalkine in women with PCOS. Reduced fractalkine levels were found in follicular fluid and granulosa cells, accompanied by decreased progesterone production and reduced steroidogenic acute regulatory protein (StAR) expression in the granulosa cells of patients with PCOS. Administration of fractalkine reversed the inhibition of progesterone and StAR expression. The mechanism mediating these effects may be associated with the inhibition of ERK activity in the granulosa cells from women with PCOS. Our findings revealed that fractalkine regulated steroidogenesis in follicular granulosa cells of women with PCOS. PMID:27386819

  16. Fractalkine restores the decreased expression of StAR and progesterone in granulosa cells from patients with polycystic ovary syndrome.

    PubMed

    Huang, Shuo; Pang, Yanli; Yan, Jie; Lin, Shengli; Zhao, Yue; Lei, Li; Yan, Liying; Li, Rong; Ma, Caihong; Qiao, Jie

    2016-07-08

    Low progesterone levels are associated with luteal phase deficiency in women with polycystic ovary syndrome (PCOS). The mechanisms regulating progesterone biosynthesis in the granulosa cells from women with PCOS is largely unknown. Fractalkine is expressed in human ovaries, and is reported to regulate progesterone production in granulosa cells of healthy women. In the current study, we aimed to examine the role of fractalkine in women with PCOS. Reduced fractalkine levels were found in follicular fluid and granulosa cells, accompanied by decreased progesterone production and reduced steroidogenic acute regulatory protein (StAR) expression in the granulosa cells of patients with PCOS. Administration of fractalkine reversed the inhibition of progesterone and StAR expression. The mechanism mediating these effects may be associated with the inhibition of ERK activity in the granulosa cells from women with PCOS. Our findings revealed that fractalkine regulated steroidogenesis in follicular granulosa cells of women with PCOS.

  17. Ectopic Paratubal Adrenal Cell Rest Associated with Mucinous Cystadenoma of Ovary

    PubMed Central

    Dey, Soumit; Ray, Prasenjit Sen; Sarkar, Ranu; Bhattacharyya, Palas

    2015-01-01

    Ectopic adrenal cortex is a rare entity. Usually found in male children; commonly located around kidney, retroperitoneum, spermatic cord and para-testicular region. Rarely, adults with heterotopic adrenal glands are described. Incidence in females is very less; though sometimes detected accidentally in hysterectomy specimens. We describe a case of ectopic adrenal cortical cell in paratubal region in a patient with mucinous cyst adenoma of ovary. A 26-year-old female presented with complains of menstrual irregularities and abdominal discomfort for 6 months. Investigations suggested a right ovarian cyst. Right ovarian cystectomy with partial salpingectomy was performed; histopathology revealed mucinous cyst adenoma. Sections from tube showed presence of ectopic adrenal cortical rest in the paratubal region, incidentally discovered on microscopy. We present this case because of its rarity in females, interesting presentation with another unrelated gynaecological pathology, its potentiality for malignant transformation and possible complications. PMID:26557532

  18. Clear cell carcinoma of the ovary: molecular insights and future therapeutic perspectives

    PubMed Central

    2016-01-01

    Clear cell carcinoma (CCC) of the ovary is known to show poorer sensitivity to chemotherapeutic agents and to be associated with a worse prognosis than the more common serous adenocarcinoma or endometrioid adenocarcinoma. To improve the survival of patients with ovarian CCC, the deeper understanding of the mechanism of CCC carcinogenesis as well as the efforts to develop novel treatment strategies in the setting of both front-line treatment and salvage treatment for recurrent disease are needed. In this presentation, we first summarize the mechanism responsible for carcinogenesis. Then, we highlight the promising therapeutic targets in ovarian CCC and provide information on the novel agents which inhibit these molecular targets. Moreover, we discuss on the cytotoxic anti-cancer agents that can be best combined with targeted agents in the treatment of ovarian CCC. PMID:27029752

  19. Germ cell tumours of the ovary. A clinical study of 15 cases.

    PubMed

    Friedman, M; Browde, S; Nissenbaum, M M

    1984-04-14

    Our experience with germ cell tumours of the ovary is reviewed. Over the last 10 years, 15 cases, representing 6,4% of all our referred patients with malignant ovarian tumours, have been analysed. The type of tumour, histological appearances, stage, treatment and results of treatment are presented. The tumour most commonly seen was the dysgerminoma, comprising 60% of all cases (9 patients). Multimodal treatment generally consisted of surgery and radiotherapy for dysgerminoma with the addition of chemotherapy for the non-dysgerminomas. Survival depends on the stage and histological appearances of the tumour. Patients in whom the disease is at advanced stages have a poor prognosis, irrespective of histological features. A general review of this subject is also given.

  20. Morphometry in the differential diagnosis of granulosa-cell tumors of the ovary.

    PubMed

    Sassen, R J; Baak, J P

    1986-09-01

    Although the diagnosis of granulosa-cell tumors of the ovary is usually consistent and reproducible, in some cases the differentiation from poorly differentiated adenocarcinomas can be difficult. To investigate our subjective impression of the similarity of nuclei in both types of tumors, seven granulosa-cell tumors and eight poorly differentiated adenocarcinomas were studied with morphometry, with a variety of nuclear parameters measured in 100 nuclei per case. The findings showed that, in general, granulosa-cell tumors have a slightly higher mean nuclear contour index (NCI), which is a measure of the nuclear indentation or grooving, and a somewhat lower mean nuclear area than do adenocarcinomas. There is considerable overlap, however, with the nuclear patterns of the two types of tumors forming a morphologic continuum. Multivariate analysis gave a better discrimination but did not entirely eliminate the overlap. The maximum NCI was the best single discriminator. While only one of the granulosa-cell tumors had a maximum NCI less than 5.11, none of the adenocarcinomas exceeded this value. The only granulosa-cell tumor with a maximum NCI below the threshold was in a case with a much less favorable clinical course. The results of this study indicate that objective morphometric nuclear criteria are useful in the diagnosis of granulosa-cell tumors and possibly have some prognostic value. PMID:3778617

  1. CHINESE HAMSTER OVARY CELL-DERIVED RECOMBINANT HUMAN ACID α-GLUCOSIDASE IN INFANTILE-ONSET POMPE DISEASE

    PubMed Central

    Kishnani, Priya Sunil; Nicolino, Marc; Voit, Thomas; Rogers, R. Curtis; Tsai, Anne Chun-Hui; Waterson, John; Herman, Gail E.; Amalfitano, Andreas; Thurberg, Beth L.; Richards, Susan; Davison, Mark; Corzo, Deyanira; Chen, YT

    2009-01-01

    Objective To conduct an open-label, multinational, multicenter study examining the safety and efficacy of recombinant human acid α-glucosidase (rhGAA) in treatment of infantile-onset Pompe disease. Study design We enrolled 8 infant patients who had Pompe disease with GAA activity <1% of normal, cardiomyopathy, and hypotonia. In the 52-week initial phase, rhGAA was infused intravenously at 10 mg/kg weekly; an extension phase continued survivors’ treatment with 10 to 20 mg/kg of rhGAA weekly or 20 mg/kg every 2 weeks for as long as 153 weeks. Safety measurements included adverse events, laboratory tests, and anti-rhGAA antibody titers. Efficacy evaluations included survival, ventilator use, echo-cardiograms, growth, and motor and cognitive function. Result After 52 weeks of treatment, 6 of 8 patients were alive, and 5 patients were free of invasive ventilator support. Clinical improvements included ameliorated cardiomyopathy and improved growth and cognition. Five patients acquired new motor milestones; 3 patients walked independently. Four patients died after the initial study phase; the median age at death or treatment withdrawal for all patients was 21.7 months, significantly later than expected for patients who were not treated. Treatment was safe and well tolerated; no death was drug-related. Conclusion rhGAA improved ventilator-free survival, cardiomyopathy, growth, and motor function in patients with infantile-onset Pompe disease compared with outcomes expected for patients without treatment. PMID:16860134

  2. Influence of various parameters on benzo(a)pyrene enhancement of adenovirus SA7 transformation of Syrian hamster embryo cells

    SciTech Connect

    Lubet, R.A.; Nims, R.W.; Kiss, E.; Kouri, R.E.; Putman, D.L.; Schechtman, L.M.

    1986-01-01

    Several of the major variable factors in the Syrian hamster embryo/simian adenovirus SA7 (SHE/SA7) viral enhancement assay were identified and the effects of these parameters on assay sensitivity were assessed. The extent of dose-dependent cytotoxicity and enhancement of SA7 transformation of primary SHE target cells by benzo(a)pyrene was examined through analysis of data obtained from 37 assays performed over a 2-year period. The variables analyzed for contribution to assay sensitivity included (a) the number of SA7-induced transformed SHE cell foci enumerated in ten replicate dishes in the negative control condition (background focus count) (range: 26-139); (b) the age of the SHE cell cultures at the time of exposure to benzo(a)pyrene (range: 72-144 hr postseeding); and (c) the source of the pregnant hamsters used to prepare the primary SHE cells (Wilmington colony vs Lakeview colony, Charles River Laboratories, Inc., Wilmington, MA). The benzo(a)pyrene-induced cytotoxicity and enhancement of SA7 transformation responses were found to be independent of each of these variables, within the range of values tested.

  3. Rapid photoperiod-induced increase in detectable GnRH mRNA-containing cells in Siberian hamster.

    PubMed

    Porkka-Heiskanen, T; Khoshaba, N; Scarbrough, K; Urban, J H; Vitaterna, M H; Levine, J E; Turek, F W; Horton, T H

    1997-12-01

    To determine whether changes in gonadotropin-releasing hormone (GnRH) neurons are early indicators of photostimulation, Siberian hamsters were placed in short days (6:18-h light-dark) at 3 (experiment 1) or 6 (experiment 2) wk of age where they were held for 3 (experiment 1) or 4 (experiment 2) wk. Hamsters were then moved to long photoperiod (16:8-h light-dark). In experiment 1, brains were collected 1-21 days after transfer from short to long days. In experiment 2, brains were collected only on the second morning of long day exposure. Long and short day controls were included in both experiments. Cells containing GnRH mRNA, as visualized by in situ hybridization, were counted. As expected, there were no differences in the number of detectable GnRH mRNA-containing cells among animals chronically exposed to long or short photoperiods. However, on the second morning after transfer from short to long photoperiod, a positive shift in the distribution of GnRH mRNA-containing cells occurred relative to the respective controls in the two experiments. Increases in follicle-stimulating hormone secretion and gonadal growth occurred days later. In conclusion, a rapid but transient increase in the distribution of detectable GnRH mRNA-containing cells is an early step in the photostimulation of the hypothalamic-pituitary-gonadal axis.

  4. Specialized contacts of astrocytes with astrocytes and with other cell types in the hypothalamus of the hamster.

    PubMed Central

    Suarez Najera, I; Fernandez Ruiz, B; Garcia Segura, L M

    1980-01-01

    Adult hamsters were used for this electron microscopic study of the hypothalamic region. Specialized contacts between astrocytes and astrocytes, and between astrocytes and other cellular elements, are described and illustrated. The specialized inter-astrocytic junctions occur primarily in perivascular and subpial regions, but also in areas of high synaptic density. The junctions between astrocytic processes are of hemidesmosomal type. Astrocytes are connected to oligodendroglial cells by means of desmosomes, and to neuronal processes by means of zonulae occludens. The functional significance of these arrangements is discussed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7364663

  5. The Notch pathway regulates both the proliferation and differentiation of follicular cells in the panoistic ovary of Blattella germanica.

    PubMed

    Irles, Paula; Elshaer, Nashwa; Piulachs, Maria-Dolors

    2016-01-01

    The Notch pathway is an essential regulator of cell proliferation and differentiation during development. Its involvement in insect oogenesis has been examined in insect species with meroistic ovaries, and it is known to play a fundamental role in cell fate decisions and the induction of the mitosis-to-endocycle switch in follicular cells (FCs). This work reports the functions of the main components of the Notch pathway (Notch and its ligands Delta and Serrate) during oogenesis in Blattella germanica, a phylogenetically basal species with panoistic ovary. As is revealed by RNAi-based analyses, Notch and Delta were found to contribute towards maintaining the FCs in an immature, non-apoptotic state. This ancestral function of Notch appears in opposition to the induction of transition from mitosis to endocycle that Notch exerts in Drosophila melanogaster, a change in the Notch function that might be in agreement with the evolution of the insect ovary types. Notch was also shown to play an active role in inducing ovarian follicle elongation via the regulation of the cytoskeleton. In addition, Delta and Notch interactions were seen to determine the differentiation of the posterior population of FCs. Serrate levels were found to be Notch-dependent and are involved in the control of the FC programme, although they would appear to play no crucial role in panoistic ovary oogenesis. PMID:26763344

  6. The Notch pathway regulates both the proliferation and differentiation of follicular cells in the panoistic ovary of Blattella germanica

    PubMed Central

    Irles, Paula; Elshaer, Nashwa; Piulachs, Maria-Dolors

    2016-01-01

    The Notch pathway is an essential regulator of cell proliferation and differentiation during development. Its involvement in insect oogenesis has been examined in insect species with meroistic ovaries, and it is known to play a fundamental role in cell fate decisions and the induction of the mitosis-to-endocycle switch in follicular cells (FCs). This work reports the functions of the main components of the Notch pathway (Notch and its ligands Delta and Serrate) during oogenesis in Blattella germanica, a phylogenetically basal species with panoistic ovary. As is revealed by RNAi-based analyses, Notch and Delta were found to contribute towards maintaining the FCs in an immature, non-apoptotic state. This ancestral function of Notch appears in opposition to the induction of transition from mitosis to endocycle that Notch exerts in Drosophila melanogaster, a change in the Notch function that might be in agreement with the evolution of the insect ovary types. Notch was also shown to play an active role in inducing ovarian follicle elongation via the regulation of the cytoskeleton. In addition, Delta and Notch interactions were seen to determine the differentiation of the posterior population of FCs. Serrate levels were found to be Notch-dependent and are involved in the control of the FC programme, although they would appear to play no crucial role in panoistic ovary oogenesis. PMID:26763344

  7. The Notch pathway regulates both the proliferation and differentiation of follicular cells in the panoistic ovary of Blattella germanica.

    PubMed

    Irles, Paula; Elshaer, Nashwa; Piulachs, Maria-Dolors

    2016-01-01

    The Notch pathway is an essential regulator of cell proliferation and differentiation during development. Its involvement in insect oogenesis has been examined in insect species with meroistic ovaries, and it is known to play a fundamental role in cell fate decisions and the induction of the mitosis-to-endocycle switch in follicular cells (FCs). This work reports the functions of the main components of the Notch pathway (Notch and its ligands Delta and Serrate) during oogenesis in Blattella germanica, a phylogenetically basal species with panoistic ovary. As is revealed by RNAi-based analyses, Notch and Delta were found to contribute towards maintaining the FCs in an immature, non-apoptotic state. This ancestral function of Notch appears in opposition to the induction of transition from mitosis to endocycle that Notch exerts in Drosophila melanogaster, a change in the Notch function that might be in agreement with the evolution of the insect ovary types. Notch was also shown to play an active role in inducing ovarian follicle elongation via the regulation of the cytoskeleton. In addition, Delta and Notch interactions were seen to determine the differentiation of the posterior population of FCs. Serrate levels were found to be Notch-dependent and are involved in the control of the FC programme, although they would appear to play no crucial role in panoistic ovary oogenesis.

  8. Androgen and FSH synergistically stimulate lipoprotein degradation and utilization by ovary granulosa cells

    SciTech Connect

    Schreiber, J.R.; Nakamura, K.; Schmit, V.; Weinstein, D.B.

    1984-01-01

    Androgen can directly modulate the induction of steroidogenic enzymes by FSH (follicle stimulating hormone) in ovary granulosa cells. In studies of its mechanism of action, the authors examined the androgen effect on granulosa cell interaction with lipoproteins, the physiologic source of cholesterol. After granulosa cells were cultured for 48 hours with and without androgen and/or FSH, the cells were incubated for 24 hours with /sup 125/I-lipoproteins (human high density lipoprotein (HDL), rat HDL, or human low density lipoprotein (LDL)). The media were then analyzed for lipoprotein protein coat degradation products (mainly /sup 125/I-monoiodotyrosine) and progestin (mainly 20 alpha-dihydroprogesterone (20 alpha-DHP)). In the absence of FSH and androgen, 2 X 10(5) granulosa cells degraded basal levels of all three lipoproteins, but produced no measurable 20 alpha-DHP. The addition of 10(-7) M androstenedione (A), testosterone (T), or 5 alpha-dihydrotestosterone (DHT) had no effect on lipoprotein protein degradation or 20 alpha-DHP production. FSH alone stimulated lipoprotein protein degradation by 50 to 300% while the addition of androgen synergistically augmented the FSH-stimulated 20 alpha-DHP production as well as protein coat degradation of all three lipoproteins. DHT and T were both effective, indicating that androgens themselves, and not estrogen products, were responsible for the effect on lipoprotein protein degradation and 20 alpha-DHP production.

  9. Mononuclear muscle cells in Drosophila ovaries revealed by GFP protein traps

    PubMed Central

    Hudson, Andrew M.; Petrella, Lisa N.; Tanaka, Akemi J.; Cooley, Lynn

    2008-01-01

    Genetic analysis of muscle specification, formation and function in model systems has provided valuable insight into human muscle physiology and disease. Studies in Drosophila have been particularly useful for discovering key genes involved in muscle specification, myoblast fusion, and sarcomere organization. The muscles of the Drosophila female reproductive system have received little attention despite extensive work on oogenesis. We have used newly available GFP protein trap lines to characterize of ovarian muscle morphology and sarcomere organization. The muscle cells surrounding the oviducts are multinuclear with highly organized sarcomeres typical of somatic muscles. In contrast, the two muscle layers of the ovary, which are derived from gonadal mesoderm, have a mesh-like morphology similar to gut visceral muscle. Protein traps in the Fasciclin 3 gene produced Fas3::GFP that localized in dots around the periphery of epithelial sheath cells, the muscle surrounding ovarioles. Surprisingly, the epithelial sheath cells each contain a single nucleus, indicating these cells do not undergo myoblast fusion during development. Consistent with this observation, we were able to use the Flp/FRT system to efficiently generate genetic mosaics in the epithelial sheath, suggesting these cells provide a new opportunity for clonal analysis of adult striated muscle. PMID:18199432

  10. Cholera toxin treatment stimulates tumorigenicity of Rous sarcoma virus-transformed cells.

    PubMed Central

    Gottesman, M M; Roth, C; Vlahakis, G; Pastan, I

    1984-01-01

    Chinese hamster ovary cells transformed by Rous sarcoma virus form tumors poorly in nude mice. Tumorigenicity was markedly stimulated by pretreatment of the cells with cholera toxin, which raises cyclic AMP levels and activates cyclic AMP-dependent protein kinase. Increased tumorigenicity was manifested by a severalfold increase in the rate of tumor formation, as well as earlier appearance and more rapid growth of tumors. In contrast, spontaneously transformed Chinese hamster ovary cells showed decreased tumorigenicity after cholera toxin treatment. The activation of tumorigenic potential in Rous sarcoma virus-transformed Chinese hamster ovary cells by cholera toxin correlated with increased phosphorylation of the viral oncogene product pp60src and stimulation of its tyrosine kinase activity. PMID:6098816

  11. A Collision Tumor Consisting of Granular Cell Tumor and Adenocarcinoma in the Uterus of an Aged Djungarian Hamster

    PubMed Central

    Golbar, Hossain M.; Izawa, Takeshi; Kuwamura, Mitsuru; Okamura, Kensaku; Fujita, Daisuke; Tagami, Yukari; Sasai, Hiroshi; Yamate, Jyoji

    2011-01-01

    A neoplastic nodular lesion consisting of an admixture of granular cell tumor and adenocarcinoma was found in the uterus of a 26-month-old Djungarian hamster. Neoplastic cells of the uterine adenocarcinoma showed an epithelial nature in their growth patterns and by cytokeratin-immunopositive reaction, exhibiting nuclear pleomorphism. The granular cells had an abundant amount of fine granular eosinophilic cytoplasm and eccentric or central nuclei with no nuclear atypia; the granular structures were positive for periodic acid-Schiff with diastase resistance and were confirmed as lysosomes/autophagosomes by electron microscopy; immunohistochemically, the cells reacted to desmin, vimentin and α-smooth muscle actin and negatively for neurogenic, histiocyte/macrophage or epithelial markers, indicating smooth muscle origin. Because these tumors were generated from different cell origins, a diagnosis of collision tumor was made. PMID:22319236

  12. Morphological transformation of Syrian hamster embryo cells by low doses of fission neutrons delivered at different dose rates

    SciTech Connect

    Jones, C.A.; Sedita, B.A. ); Hill, C.K. . Cancer Research Lab.); Elkind, M.M. . Dept. of Radiology and Radiation Biology)

    1991-01-01

    Both induction of cell transformation and killing were examined with Syrian hamster embryo (SHE) fibroblasts exposed to low doses of JANUS fission-spectrum neutrons delivered at high (10.3 cGy/min) and low (0.43 and 0.086 cGy/min) dose rates. Second-passage cells were irradiated in mass cultures, then cloned over feeder cells. Morphologically transformed colonies were identified 8-10 days later. Cell killing was independent of dose rate, but the yield of transformation was greater after low-dose-rate irradiations. Decreasing the neutron dose-rate from 10.3 to 0.086 cGy/min resulted in a two- to threefold increase in the yield of transformation for neutron exposures below 50 cGy, and enhancement which was consistently observed in repetitive experiments in different radiosensitive SHE cell preparations. 43 refs., 5 figs., 1 tab.

  13. Analysis of cytogenetic effects of the secondary radiation resulting from 70 GeV protons of chinese hamster cells

    NASA Astrophysics Data System (ADS)

    Akhmadieva, A. Kh.; Aptikaeva, G. Ph.; Livanova, I. A.; Antipov, A. V.; Akoev, I. G.; Ganassi, E. E.

    The cell culture of a Chinese hamster was irradiated on a Serpuchov proton synchrotron at a dose of 0.5-4 Gy and a dose rate of 1 Gy/min and by gamma-irradiation at dose 1-5 Gy and dose rate 1.2-1.4 Gy/min. The effect of radiation on the cell culture was judged from chromosomal aberrations in G2-stage of cell cycle and micronuclear test. The relative biological efficience of the secondary radiation was approximately 3. Modifying effect of caffeine on the cells irradiated by secondary radiation of synchrotron was not observed. In the presence of caffeine the effect of γ-irradiation practically is increased up to the level observed upon secondary irradiation. This suggests that secondary radiation inhibits the repair of the cytogenetic damage.

  14. Temperature dependence of anisotonic NaC1 effect on radiosensitization and ultrastructure of V79 Chinese hamster cells

    SciTech Connect

    Szekely, J.G.; Raaphorst, G.P.; Lobreau, A.U.; Azzam, E.I.; Copps, T.P.

    1983-01-01

    Isodose radiation survival of V79 Chinese hamster cells, pretreated with strongly hypertonic concentrations of NaC1 at 22 degrees C, or at 37 degrees C, has been determined and correlated with ultrastructural changes within the nucleus. After an exposure of less than 10 min to 1.5 M NaC1, at both temperatures, the cells are radioprotected, but after longer exposures, the cells treated at 37 degrees C are radiosensitive, whereas those treated at 22 degrees C still show protection. The cells are radiosensitized at both temperatures by pretreatment with 0.5 M and 0.05 M NaC1. The ultrastructure of the nucleus observed after the anisotonic treatments suggests that contraction or swelling of chromatin may be associated with the observed variation in radiation sensitivity.

  15. Temperature dependence of anisotonic NaC1 effect on radiosensitization and ultrastructure of V79 Chinese hamster cells.

    PubMed

    Szekely, J G; Raaphorst, G P; Lobreau, A U; Azzam, E I; Copps, T P

    1983-01-01

    Isodose radiation survival of V79 Chinese hamster cells, pretreated with strongly hypertonic concentrations of NaC1 at 22 degrees C, or at 37 degrees C, has been determined and correlated with ultrastructural changes within the nucleus. After an exposure of less than 10 min to 1.5 M NaC1, at both temperatures, the cells are radioprotected, but after longer exposures, the cells treated at 37 degrees C are radiosensitive, whereas those treated at 22 degrees C still show protection. The cells are radiosensitized at both temperatures by pretreatment with 0.5 M and 0.05 M NaC1. The ultrastructure of the nucleus observed after the anisotonic treatments suggests that contraction or swelling of chromatin may be associated with the observed variation in radiation sensitivity.

  16. Immune response to acute virus infection in the Syrian hamster. II. Studies on the identity of virus-induced cytotoxic effector cells

    SciTech Connect

    Nelles, M.J.; Duncan, W.R.; Streilein, J.W.

    1981-01-01

    The identity of the effector cell(s) mediating vaccinia virus-induced cytotoxic activity in Syrian hamsters undergoing acute virus infection has been investigated. Two different approaches have been utilized in this regard. Although T cells do not mediate vaccinia virus-induced cytotoxic activity directly, functional T cells were required for the in vivo development of a significant portion of vaccinia virus-induced cytotoxic activity. In addition, incorporation of aggregated gamma-globulins as well as anti-immunoglobulin reagents into the in vitro 51 Cr release assay inhibited a significant proportion of the cytotoxic activity mediated by spleen cells obtained from acutely infected hamsters possessing an intact thymus. Both approaches have yielded information consistent with the idea that a sizable portion of vaccinia virus-induced cytotoxic activity in the Syrian hamster is effected by K cells mediating antibody-dependent cell-mediated cytotoxicity (ADCC). The significance of this observation is discussed with regard to hamster viral immunity in general.

  17. In vitro comet and micronucleus assays do not predict morphological transforming effects of silica particles in Syrian Hamster Embryo cells.

    PubMed

    Darne, Christian; Coulais, Catherine; Terzetti, Francine; Fontana, Caroline; Binet, Stéphane; Gaté, Laurent; Guichard, Yves

    2016-01-15

    Crystalline silica particles and asbestos have both been classified as carcinogenic by the International Agency for Research on Cancer (IARC). However, because of the limited data available, amorphous silica was not classifiable. In vitro, the carcinogenic potential of natural crystalline and amorphous silica particles has been revealed by the Syrian Hamster Embryo (SHE) cell transformation assay. On the other hand, the genotoxic potential of those substances has not been investigated in SHE cells. And yet, genotoxicity assays are commonly used for hazard evaluation and they are often used as in vitro assays of reference to predict a possible carcinogenic potential. The main objective of this study was to compare the genotoxic potential and the carcinogenic potential of different crystalline and amorphous silica particles in SHE cells. Three silica samples of different crystallinity were used: natural amorphous silica, partially crystallized silica and quartz silica particles. Their genotoxicity were tested through the in vitro micronucleus assay and the comet assay in SHE, and their carcinogenic potential through the SHE transformation assay. In addition, silica samples were also tested with the same genotoxicity assays in V79 hamster-lung cells, a common in vitro model for particle exposure. Results obtained in the micronucleus and the comet assays show that none of the silica was capable of inducing genotoxic effects in SHE cells and only the amorphous silica induced genotoxic effects in V79 cells. However in the SHE cell transformation assays, the partially crystallized and quartz silica were able to induce morphological cell transformation. Together, these data suggest that, in vitro, the short-term genotoxic assays alone are not sufficient to predict the hazard and the carcinogenic potential of this type of particles; SHE transformation assay appears a more reliable tool for this purpose and should be included in the "in vitro battery assays" for hazard

  18. Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity

    NASA Technical Reports Server (NTRS)

    Morin, Lawrence P.; Blanchard, Jane H.; Provencio, Ignacio

    2003-01-01

    The circadian clock in the suprachiasmatic nucleus (SCN) receives direct retinal input via the retinohypothalamic tract (RHT), and the retinal ganglion cells contributing to this projection may be specialized with respect to direct regulation of the circadian clock. However, some ganglion cells forming the RHT bifurcate, sending axon collaterals to the intergeniculate leaflet (IGL) through which light has secondary access to the circadian clock. The present studies provide a more extensive examination of ganglion cell bifurcation and evaluate whether ganglion cells projecting to several subcortical visual nuclei contain melanopsin, a putative ganglion cell photopigment. The results showed that retinal ganglion cells projecting to the SCN send collaterals to the IGL, olivary pretectal nucleus, and superior colliculus, among other places. Melanopsin-immunoreactive (IR) ganglion cells are present in the hamster retina, and some of these cells project to the SCN, IGL, olivary pretectal nucleus, or superior colliculus. Triple-label analysis showed that melanopsin-IR cells bifurcate and project bilaterally to each SCN, but not to the other visual nuclei evaluated. The melanopsin-IR cells have photoreceptive characteristics optimal for circadian rhythm regulation. However, the presence of moderately widespread bifurcation among ganglion cells projecting to the SCN, and projection by melanopsin-IR cells to locations distinct from the SCN and without known rhythm function, suggest that this ganglion cell type is generalized, rather than specialized, with respect to the conveyance of photic information to the brain. Copyright 2003 Wiley-Liss, Inc.

  19. WNT/β-catenin and p27/FOXL2 differentially regulate supporting cell proliferation in the developing ovary.

    PubMed

    Gustin, Sonja E; Hogg, Kirsten; Stringer, Jessica M; Rastetter, Raphael H; Pelosi, Emanuele; Miles, Denise C; Sinclair, Andrew H; Wilhelm, Dagmar; Western, Patrick S

    2016-04-15

    Sexual development is initiated through differentiation of testicular Sertoli cells or ovarian granulosa cells. Although these supporting cells are considered to develop from common bipotential precursors, recent evidence suggests that distinct supporting cell populations are present in the ovary, with one providing granulosa cells of the medullary follicles and the other providing granulosa cells of the cortical follicles, the latter of which support lifelong fertility. Here, we demonstrate that XX fetal gonads contain GATA4 expressing supporting cells that either enter mitotic arrest, or remain proliferative. Blocking WNT signalling reduces XX supporting cell proliferation, while stabilising β-catenin signalling promotes proliferation, indicating that the renewal of pre-granulosa cells is dependent on WNT/β-catenin signalling in the proliferative supporting cell population. In contrast, XX supporting cells express p27 and FOXL2 and are maintained in mitotic arrest. Although FOXL2 is required for maintaining high levels of p27 expression, it is dispensable for entry and maintenance of mitotic arrest in XX supporting cells. Combined our data suggest that both medullary and cortical precursors arise from a common GATA4 expressing cell type. In addition, this work indicates that a balance between supporting cell self-renewal and differentiation is maintained in the developing ovary by relative WNT/β-catenin and p27/FOXL2 activities. This study provides significant new insights into the origin and formation of ovarian follicles and evidence supporting a common fetal origin of medullary and cortical granulosa cells. PMID:26939755

  20. Luteinizing hormone/chorionic gonadotrophin receptor overexpressed in granulosa cells from polycystic ovary syndrome ovaries is functionally active.

    PubMed

    Kanamarlapudi, Venkateswarlu; Gordon, Uma D; López Bernal, Andrés

    2016-06-01

    Polycystic ovarian syndrome (PCOS) is associated with anovulatory infertility. Luteinizing hormone/chorionic gonadotrophin receptor (LHCGR), which is critical for ovulation, has been suggested to be expressed prematurely in the ovarian follicles of women with PCOS. This study aimed to analyse the expression and activity of LHCGR in ovarian granulosa cells from PCOS patients and the involvement of ARF6 small GTPase in LHCGR internalization. Granulosa cells (GC) isolated from follicular fluid collected during oocyte retrieval from normal women (n = 19) and women with PCOS (n = 17) were used to study differences in LHCGR protein expression and activity between normal and PCOS patients. LHCGR expression is up-regulated in GC from PCOS women. LHCGR in PCOS GC is functionally active, as shown by increased cAMP production upon human gonadotrophin (HCG)-stimulation. Moreover, ARF6 is highly expressed in GC from PCOS patients and HCG-stimulation increases the concentrations of active ARF6. The inhibition of ARF6 activation attenuates HCG-induced LHCGR internalization in both normal and PCOS GC, indicating that there are no alterations in LHCGR internalisation in GC from PCOS. In conclusion, the expression and activation of LHCGR and ARF6 are up-regulated in GC from PCOS women but the mechanism of agonist-induced LHCGR internalization is unaltered. PMID:27061682

  1. Generation of juvenile rainbow trout derived from cryopreserved whole ovaries by intraperitoneal transplantation of ovarian germ cells.

    PubMed

    Lee, Seungki; Katayama, Naoto; Yoshizaki, Goro

    2016-09-23

    Cryopreservation of fish sperm offers the practical applications in the selective breeding and biodiversity conservation. However, because of the lack of cryopreservation methods for fish eggs and embryos, maternally inherited cytoplasmic compartments cannot be successfully preserved. We previously developed an alternative method to derive functional eggs and sperm from cryopreserved whole testis by transplanting testicular cells into female and male recipients. However, if target fish had ovaries, the previous method employing male-derived germ cells would be ineffective. Here, we aimed to generate functional gametes from cryopreserved whole ovaries by transplanting ovarian germ cells into peritoneal cavity of sterile hatchlings. Cryopreservation conditions for rainbow trout ovaries (1.0 M DMSO, 0.1 M trehalose, and 10% egg yolk) were optimized by testing several different cryoprotective agents. Ovarian germ cells from thawed ovaries were intraperitoneally transplanted into allogeneic triploid hatchlings. Transplanted germ cells migrated toward and were incorporated into recipient gonads, where they underwent gametogenesis. Transplantation efficiency of ovarian germ cells remained stable after cryopreservation period up to 1185 days. Although all triploid recipients that did not undergo transplantation were functionally sterile, 5 of 25 female recipients and 7 of 25 male recipients reached sexual maturity at 2.5 years post-transplantation. Inseminating the resultant eggs and sperm generated viable offspring displaying the donor characteristics of orange body color, green fluorescence, and chromosome numbers. This method is thus a breakthrough tool for the conservation of endangered fish species that are crucial to cryopreserve the genetic resources of female fish.

  2. Generation of juvenile rainbow trout derived from cryopreserved whole ovaries by intraperitoneal transplantation of ovarian germ cells.

    PubMed

    Lee, Seungki; Katayama, Naoto; Yoshizaki, Goro

    2016-09-23

    Cryopreservation of fish sperm offers the practical applications in the selective breeding and biodiversity conservation. However, because of the lack of cryopreservation methods for fish eggs and embryos, maternally inherited cytoplasmic compartments cannot be successfully preserved. We previously developed an alternative method to derive functional eggs and sperm from cryopreserved whole testis by transplanting testicular cells into female and male recipients. However, if target fish had ovaries, the previous method employing male-derived germ cells would be ineffective. Here, we aimed to generate functional gametes from cryopreserved whole ovaries by transplanting ovarian germ cells into peritoneal cavity of sterile hatchlings. Cryopreservation conditions for rainbow trout ovaries (1.0 M DMSO, 0.1 M trehalose, and 10% egg yolk) were optimized by testing several different cryoprotective agents. Ovarian germ cells from thawed ovaries were intraperitoneally transplanted into allogeneic triploid hatchlings. Transplanted germ cells migrated toward and were incorporated into recipient gonads, where they underwent gametogenesis. Transplantation efficiency of ovarian germ cells remained stable after cryopreservation period up to 1185 days. Although all triploid recipients that did not undergo transplantation were functionally sterile, 5 of 25 female recipients and 7 of 25 male recipients reached sexual maturity at 2.5 years post-transplantation. Inseminating the resultant eggs and sperm generated viable offspring displaying the donor characteristics of orange body color, green fluorescence, and chromosome numbers. This method is thus a breakthrough tool for the conservation of endangered fish species that are crucial to cryopreserve the genetic resources of female fish. PMID:27581197

  3. Expression of Intermediate Filaments and Germ Cell Markers in the Developing Bovine Ovary: An Immunohistochemical and Laser-Assisted Microdissection Study.

    PubMed

    Kenngott, Rebecca Anna-Maria; Sauer, Ulrich; Vermehren, Margarete; Sinowatz, Fred

    2014-01-01

    In the present investigation, bovine ovary prenatal development was studied using immunohistochemistry and laser-assisted microdissection (LAM). A major aim of this study was to evaluate the protein expression pattern of intermediate filaments (IF) and distinguish S100 protein (S100 alpha and S100 beta protein) isoforms during prenatal follicle differentiation, subsequently correlating them with germ cell marker expression. A development-specific expression pattern of different keratins as well as vimentin was detected in the prenatal bovine ovary; K18-specific expression was found during all developmental stages (i.e. in surface epithelium, germ cell cord somatic cells, and follicle cells), and keratins 5, 7, 8, 14, and 19 and vimentin had a stage-specific expression pattern in the different cell populations of the prenatal ovaries. Additionally, our results represent new data on the expression pattern of germ cell markers during bovine ovary prenatal development. S100 alpha and beta protein was localized to oocyte cytoplasm of different follicle stages, and S100 alpha staining could be observed in granulosa cells. Furthermore, through isolation of characteristic ovary cell populations using LAM, specific confirmation of some genes of interest (KRT8, KRT18, S100 alpha, S100 beta, and OCT4, DDX4) could be obtained by RT-PCR in single cell groups of the developing bovine ovary.

  4. Immunological and genetic characterization of 2-deoxygalactose-resistant, galactokinase-deficient mutants of Chinese hamster cells: evidence for structural mutations at the galK locus.

    PubMed Central

    Talbot, B; de Souza, C A; Banville, D; Thirion, J P

    1984-01-01

    Ten independent mutants resistant to 2-deoxygalactose and without any detectable galactokinase activity (null-galactokinase mutations) were isolated from mutagenized Chinese hamster somatic cells. They were analyzed for the presence of serologically cross-reacting material (CRM) with antiserum generated against highly purified Chinese hamster galactokinase. All 10 mutants contain cross-reacting material (i.e., were CRM+), indicating that all the mutations affect the correct expression of a product of the galactokinase structural gene. Complementation analysis among them shows that the 10 mutations fall in one functional genetic unit. PMID:6513922

  5. Sunlight activation of shale-oil byproducts as measured by genotoxic effects in cultured Chinese hamster cells

    SciTech Connect

    Strniste, G.F.; Chen, D.J.; Okinaka, R.T.

    1981-01-01

    Activation of certain classes of promutagens/procarcinogens can be accomplished by exposure to various radiation sources. Retort processes currently in use in the production of shale oil generate significant quantities of process waters which contain a wide spectrum of uv-absorbing, organic material. Photoactivation of these waters with an artificial source of NUV results in genotoxic events in cultured mammalian cells. Since significant amounts (2 to 4%) of solar radiation reaching the earth's surface is NUV, we were concerned about potential biological effects resulting from solar-irradiated waste streams. This paper summarizes new and previously published data concerning the induction of both cytotoxicity and mutagenicity in cultured Chinese hamster cells (line CHO) after their exposure to a particular oil shale retort process water and natural sunlight.

  6. Comparison of benzo(a)pyrene metabolism and mutation induction in CHO cells using rat liver homogenate (S9) or Syrian hamster embryonic cell-mediated activation systems

    SciTech Connect

    Chen, D.J.; Okinaka, R.T.; Strniste, G.F.

    1981-01-01

    Mutagenesis in CHO cells has been studied by the addition of an ezymatically active liver homogenate (S9) fraction. However, the metabolism of procarcinogens, such as benzo(a)pyrene (B(a)P), by rat liver homogenate differs from that in intact cellular activation systems. Consequently, B(a)P-induced mutation frequencies in mammalian cells may vary when different activation systems are used. This study attempts to compare B(a)P metabolism and conjugation in rat liver homogenate (S9 preparation) and in Syrian hamster embryonic (SHE) cells. Furthermore, a CHO mutation assay incorporating either of the activation systems is being used to measure the mutation induction frequency.

  7. A biologically based model of growth and senescence of Syrian hamster embryo (SHE) cells after exposure to arsenic.

    PubMed Central

    Liao, K H; Gustafson, D L; Fox, M H; Chubb, L S; Reardon, K F; Yang, R S

    2001-01-01

    We modified the two-stage Moolgavkar-Venzon-Knudson (MVK) model for use with Syrian hamster embryo (SHE) cell neoplastic progression. Five phenotypic stages are proposed in this model: Normal cells can either become senescent or mutate into immortal cells followed by anchorage-independent growth and tumorigenic stages. The growth of normal SHE cells was controlled by their division, death, and senescence rates, and all senescent cells were converted from normal cells. In this report, we tested the modeling of cell kinetics of the first two phenotypic stages against experimental data evaluating the effects of arsenic on SHE cells. We assessed cell division and death rates using flow cytometry and correlated cell division rates to the degree of confluence of cell cultures. The mean cell death rate was approximately equal to 1% of the average division rate. Arsenic did not induce immortalization or further mutations of SHE cells at concentrations of 2 microM and below, and chromium (3.6 microM) and lead (100 microM) had similar negative results. However, the growth of SHE cells was inhibited by 5.4 microM arsenic after a 2-day exposure, with cells becoming senescent after only 16 population doublings. In contrast, normal cells and cells exposed to lower arsenic concentrations grew normally for at least 30 population doublings. The biologically based model successfully predicted the growth of normal and arsenic-treated cells, as well as the senescence rates. Mechanisms responsible for inducing cellular senescence in SHE cells exposed to arsenic may help explain the apparent inability of arsenic to induce neoplasia in experimental animals. PMID:11748027

  8. Role of Adjuvant Radiotherapy in Granulosa Cell Tumors of the Ovary

    SciTech Connect

    Hauspy, Jan; Beiner, Mario E.; Harley, Ian; Rosen, Barry; Murphy, Joan; Chapman, William; Le, Lisa W.; Fyles, Anthony; Levin, Wilfred

    2011-03-01

    Purpose: To review the role of adjuvant radiotherapy (RT) in the outcome and recurrence patterns of granulosa cell tumors (GCTs) of the ovary. Methods and Materials: The records of all patients with GCTs referred to the Princess Margaret Hospital University Health Network between 1961 and 2006 were retrospectively reviewed. The patient, tumor, and treatment factors were assessed by univariate and multivariate analyses using disease-free survival (DFS) as the endpoint. Results: A total of 103 patients with histologically confirmed GCTs were included in the present study. The mean duration of follow-up was 100 months (range, 1-399). Of the 103 patients, 31 received adjuvant RT. A total of 39 patients developed tumor recurrence. The tumor size, incidence of intraoperative rupture, and presence of concurrent endometrial cancer were not significant risk factors for DFS. The median DFS was 251 months for patients who underwent adjuvant RT compared with 112 months for patients who did not (p = .02). On multivariate analysis, adjuvant RT remained a significant prognostic factor for DFS (p = .004). Of the 103 patients, 12 had died and 44 were lost to follow-up. Conclusion: Ovarian GCTs can be indolent, with patients achieving long-term survival. In our series, adjuvant RT resulted in a significantly longer DFS. Ideally, randomized trials with long-term follow-up are needed to define the role of adjuvant RT for ovarian GCTs.

  9. Inhibitors of poly(ADP-ribose) synthesis enhance X-ray killing of log-phase Chinese hamster cells

    SciTech Connect

    Ben-Hur, E.; Utsumi, H.; Elkind, M.M.

    1984-03-01

    Postirradiation incubation of V79 Chinese hamster cells with inhibitors of poly(ADP-ribose) synthesis was found to potentiate the killing of cells by X rays. Potentiation increased with incubation time and with concentration of the inhibitor. Preirradiation incubation had only a small effect. The enhanced response correlated well with the known extent of the inhibition of poly(ADP-ribose) synthesis. A radiation-sensitive line, V79-AL162/S-10, was affected to a lesser extent than the normal cells. Cells repaired the radiation damage with which the inhibitors interacted within 1 hr, a process that has similar kinetics to what is observed when a postirradiation treatment with hypertonic buffer is used. However, the sectors of damage affected by inhibitors of poly(ADP-ribose) synthesis and hypertonic buffer do not entirely overlap. The inhibitor nicotinamide enhanced the killing mainly of late S-phase cells and did not affect cells at the G/sub 1//S border. It is concluded that the repair process(es) involving poly(ADP-ribose) synthesis is important for cell survival in repair-competent cells and that the radiation-sensitive cells that were examined are partially deficient in a repair pathway in which poly(ADP-ribose) participates.

  10. Xenogenic oogenesis of chicken (Gallus domesticus) female primordial germ cells in germline chimeric quail (Coturnix japonica) ovary.

    PubMed

    Liu, C H; Chang, I K; Sasse, J; Dumatol, C J; Basker, J V; Wernery, U

    2007-10-01

    In present study, chicken primordial germ cells (PGCs) were transferred into quail embryos to investigate the development of these germ cells in quail ovary. Briefly, 2 microl of chicken embryonic blood (stage 14) or about 100 purified circulating PGCs were transferred into quail embryo. Contribution of chicken PGCs were detected in gonads of chimeric quail embryos (stage 28) by immunocytochemical staining of cell surface antigen SSEA-1, and by in situ hybridization (ISH) with female chicken specific DNA probe. As a result, 52.0+/-43.2 (n=18) and 42.7+/-27.3 (n=17) chicken PGCs were found in the gonads of chimeric quail embryo that was injected with chicken embryonic blood (stage 14) and about 100 purified circulating PGCs, respectively. Furthermore, the ovaries of 81.8% (9/11) 12 days post incubation (dpi) chimeric quail embryos were observed with a mean of 457.6+/-237.1 female chicken PGCs-derived oogonia scattered in ovarian cortex area. In 9 out of 12 newly hatched and one week old chimeric quail chicks, on average of 2883.0+/-1924.1 primary oocytes and 3 follicles derived from chicken PGCs were found, respectively. The present results suggest that chicken female PGCs are able to migrate, colonize, proliferate and differentiate into oogonia, primary oocytes in chimeric quail ovary.

  11. Intraovarian Transplantation of Female Germline Stem Cells Rescue Ovarian Function in Chemotherapy-Injured Ovaries

    PubMed Central

    Wu, Meng; Zhang, Jinjin; Cheng, Jing; Luo, Aiyue; Shen, Wei; Fang, Li; Zhou, Su; Wang, Shixuan

    2015-01-01

    Early menopause and infertility often occur in female cancer patients after chemotherapy (CTx). For these patients, oocyte/embryo cryopreservation or ovarian tissue cryopreservation is the current modality for fertility preservation. However, the above methods are limited in the long-term protection of ovarian function, especially for fertility preservation (very few females with cancer have achieved pregnancy with cryopreserved ovarian tissue or eggs until now). In addition, the above methods are subject to their scope (females with no husband or prepubertal females with no mature oocytes). Thus, many females who suffer from cancers would not adopt the above methods pre- and post-CTx due to their uncertainty, safety and cost-effectiveness. Therefore, millions of women have achieved long-term survival after thorough CTx treatment and have desired to rescue their ovarian function and fertility with economic, durable and reliable methods. Recently, some studies showed that mice with infertility caused by CTx can produce normal offspring through intraovarian injection of exogenous female germline stem cells (FGSCs). Though exogenous FGSC can be derived from mice without immune rejection in the same strain, it is difficult to obtain human female germline stem cells (hFGSCs), and immune rejection could occur between different individuals. In this study, infertility in mice was caused by CTx, and the ability of FGSCs to restore ovarian function or even produce offspring was assessed. We had successfully isolated and purified the FGSCs from adult female mice two weeks after CTx. After infection with GFP-carrying virus, the FGSCs were transplanted into ovaries of mice with infertility caused by CTx. Finally, ovarian function was restored and the recipients produced offspring long-term. These findings showed that mice with CTx possessed FGSCs, restoring ovarian function and avoiding immune rejection from exogenous germline stem cells. PMID:26431320

  12. Amino acid sequence and posttranslational modifications of human factor VII sub a from plasma and transfected baby hamster kidney cells

    SciTech Connect

    Thim, L.; Bjoern, S.; Christensen, M.; Nicolaisen, E.M.; Lund-Hansen, T.; Pedersen, A.H.; Hedner, U. )

    1988-10-04

    Blood coagulation factor VII is a vitamin K dependent glycoprotein which in its activated form, factor VII{sub a}, participates in the coagulation process by activating factor X and/or factor IX in the presence of Ca{sup 2+} and tissue factor. Three types of potential posttranslational modifications exist in the human factor VII{sub a} molecule, namely, 10 {gamma}-carboxylated, N-terminally located glutamic acid residues, 1 {beta}-hydroxylated aspartic acid residue, and 2 N-glycosylated asparagine residues. In the present study, the amino acid sequence and posttranslational modifications of recombinant factor VII{sub a} as purified from the culture medium of a transfected baby hamster kidney cell line have been compared to human plasma factor VII{sub a}. By use of HPLC, amino acid analysis, peptide mapping, and automated Edman degradation, the protein backbone of recombinant factor VII{sub a} was found to be identical with human factor VII{sub a}. Asparagine residues 145 and 322 were found to be fully N-glycosylated in human plasma factor VII{sub a}. In the recombinant factor VII{sub a}, asparagine residue 322 was fully glycosylated whereas asparagine residue 145 was only partially (approximately 66%) glycosylated. Besides minor differences in the sialic acid and fucose contents, the overall carbohydrate compositions were nearly identical in recombinant factor VII{sub a} and human plasma factor VII{sub a}. These results show that factor VII{sub a} as produced in the transfected baby hamster kidney cells is very similar to human plasma factor VII{sub a} and that this cell line thus might represent an alternative source for human factor VII{sub a}.

  13. Comparison of the metabolic activation of 7, 12-dimethylbenz(a)anthracene by a human hepatoma cell line (HepG2) and low passage hamster embryo cells

    SciTech Connect

    DiGiovanni, J.; Singer, J.M.; Diamond, L.

    1984-07-01

    Under similar conditions of cell-mediated mutagenesis, secondary hamster embryo (HE) cells were much more effective than were cells of the human hepatoma cell line, HepG2 , in activating 7, 12-dimethylbenz(a)anthracene (DMBA) to metabolites mutagenic for V79 Chinese hamster cells. At the same dose of DMBA (0.1 microgram/ml), mutation induction (6-thioguanine resistance) with HE cells as activators was about ten times greater than with HepG2 cells as activators. Both cell types rapidly metabolized DMBA. HepG2 cells converted DMBA primarily to water-soluble derivatives that were neither sulfates nor glucuronides, whereas HE cells converted DMBA to a variety of organic solvent-soluble and water-soluble metabolites. The major water-soluble metabolites produced by HE cells were phenol-glucuronides. In HepG2 cells, binding of DMBA to DNA reached a maximum value of 12.1 pmol/mg DNA at 12 hr, whereas in HE cells, binding reached a peak value of 180.7 pmol/mg DNA at 24 hr. Despite this difference in total binding between the two cell types, the pattern of DNA adducts formed was nearly identical. The results indicate that the marked difference in the ability of HepG2 and HE cells to activate DMBA in cell-mediated mutation assays is not due to a lower metabolizing capacity of HepG2 cells for DMBA. Rather, significant differences in the metabolic pathways used by the two cell types lead to a marked reduction in DNA-binding metabolites in one cell type (HepG2) compared to the other (HE).

  14. In vitro cytotoxicity and transforming potential of industrial carbon dust (fibers and particles) in syrian hamster embryo (SHE) cells.

    PubMed

    Darne, C; Terzetti, F; Coulais, C; Fournier, J; Guichard, Y; Gaté, L; Binet, S

    2010-07-01

    Carbon fibers have many applications, mainly in high-tech industries such as the aviation industry. Eleven carbon samples (fibers and particles) coming from an aeronautic group were tested for their cytotoxicity and carcinogenic potential using in vitro short-term assays in Syrian hamster embryo cells. These samples were taken during each important step of the process, i.e. from the initial heating of polyacrylonitrile fibers to pure carbon fibers. They were compared to an asbestos fiber, an amorphous silica, and two commercial graphite powders. Their physical-chemical characteristics and their capacity to release reactive oxygen species (ROS) were determined. This study showed that none of the carbon samples was able to generate ROS as measured by Electron Paramagnetic Resonance analysis, and in our biological assays, they demonstrated no morphological transformation potential and low cytotoxicity compared to positive control (chrysotile asbestos).

  15. In vivo programmed cell death of Entamoeba histolytica trophozoites in a hamster model of amoebic liver abscess.

    PubMed

    Villalba-Magdaleno, José D'Artagnan; Pérez-Ishiwara, Guillermo; Serrano-Luna, Jesús; Tsutsumi, Víctor; Shibayama, Mineko

    2011-05-01

    Entamoeba histolytica trophozoites can induce host cell apoptosis, which correlates with the virulence of the parasite. This phenomenon has been seen during the resolution of an inflammatory response and the survival of the parasites. Other studies have shown that E. histolytica trophozoites undergo programmed cell death (PCD) in vitro, but how this process occurs within the mammalian host cell remains unclear. Here, we studied the PCD of E. histolytica trophozoites as part of an in vivo event related to the inflammatory reaction and the host-parasite interaction. Morphological study of amoebic liver abscesses showed only a few E. histolytica trophozoites with peroxidase-positive nuclei identified by terminal deoxynucleotidyltransferase enzyme-mediated dUTP nick end labelling (TUNEL). To better understand PCD following the interaction between amoebae and inflammatory cells, we designed a novel in vivo model using a dialysis bag containing E. histolytica trophozoites, which was surgically placed inside the peritoneal cavity of a hamster and left to interact with the host's exudate components. Amoebae collected from bags were then examined by TUNEL assay, fluorescence-activated cell sorting (FACS) and transmission electron microscopy. Nuclear condensation and DNA fragmentation of E. histolytica trophozoites were observed after exposure to peritoneal exudates, which were mainly composed of neutrophils and macrophages. Our results suggest that production of nitric oxide by inflammatory cells could be involved in PCD of trophozoites. In this modified in vivo system, PCD appears to play a prominent role in the host-parasite interaction and parasite cell death.

  16. Mutant Fusion Proteins with Enhanced Fusion Activity Promote Measles Virus Spread in Human Neuronal Cells and Brains of Suckling Hamsters

    PubMed Central

    Shirogane, Yuta; Suzuki, Satoshi O.; Ikegame, Satoshi; Koga, Ritsuko

    2013-01-01

    Subacute sclerosing panencephalitis (SSPE) is a fatal degenerative disease caused by persistent measles virus (MV) infection in the central nervous system (CNS). From the genetic study of MV isolates obtained from SSPE patients, it is thought that defects of the matrix (M) protein play a crucial role in MV pathogenicity in the CNS. In this study, we report several notable mutations in the extracellular domain of the MV fusion (F) protein, including those found in multiple SSPE strains. The F proteins with these mutations induced syncytium formation in cells lacking SLAM and nectin 4 (receptors used by wild-type MV), including human neuronal cell lines, when expressed together with the attachment protein hemagglutinin. Moreover, recombinant viruses with these mutations exhibited neurovirulence in suckling hamsters, unlike the parental wild-type MV, and the mortality correlated with their fusion activity. In contrast, the recombinant MV lacking the M protein did not induce syncytia in cells lacking SLAM and nectin 4, although it formed larger syncytia in cells with either of the receptors. Since human neuronal cells are mainly SLAM and nectin 4 negative, fusion-enhancing mutations in the extracellular domain of the F protein may greatly contribute to MV spread via cell-to-cell fusion in the CNS, regardless of defects of the M protein. PMID:23255801

  17. Differential Ovarian Expression of KiSS-1 and GPR-54 During the Estrous Cycle and Photoperiod Induced Recrudescence in Siberian Hamsters (Phodopus sungorus)

    PubMed Central

    Shahed, Asha; Young, Kelly A.

    2008-01-01

    Kisspeptins, coded by the KiSS-1 gene, regulate aspects of the reproductive axis by stimulating GnRH release via the G protein coupled receptor, GPR54. Recent reports show that KiSS/GPR54 may be key mediators in photoperiod-controlled reproduction in seasonal breeders, and that KiSS-1/GPR54 are expressed in the hypothalamus, ovaries, placenta, and pancreas. This study examined the expression of KiSS-1/GPR54 mRNA and protein in ovaries of Siberian hamsters (Phodopus sungorus). Ovaries from cycling hamsters were collected during proestrus (P), estrus (E), diestrus I (DI), and diestrus II (DII). To examine KiSS-1/GPR54 during stimulated recrudescence, additional hamsters were maintained either in long day (LD 16L:8D, control) or short day (SD 8L:16D) for 14 weeks and then transferred to LD for 0–8 weeks. Staining of KiSS-1/GPR54 protein was detected by immunohistochemistry in steroidogenic cells of preantral and antral follicles, and corpora lutea. Immunostaining peaked in P and E, but decreased in the diestrus stages (p<0.05). In recrudescing ovaries, KiSS-1/GPR54 immunostaining was low after 14 wks of SD exposure (post transfer [PT] wk0), and increased during the early weeks of recrudescence. Expression of KiSS-1/GPR54 mRNA was low with short day exposure, but increased during recrudescence and was higher at PT wk8 as compared to PTwks 0 and 2 (p<0.05). The elevated KiSS-1/ GPR54 expression during P and E suggests a potential role in ovulation in Siberian hamsters. Transient increases in KiSS-1/GPR54 expression following LD stimulation are also suggestive of possible involvement in ovulation and/or restoration of ovarian function. PMID:18937338

  18. Differential expression of matrix metalloproteinases during stimulated ovarian recrudescence in Siberian hamsters (Phodopus sungorus).

    PubMed

    Salverson, Trevor J; McMichael, Greer E; Sury, Jonathan J; Shahed, Asha; Young, Kelly A

    2008-02-01

    The matrix metalloproteinases (MMPs) are a family of extracellular matrix-cleaving enzymes involved in ovarian remodeling. In many non-tropical species, including Siberian hamsters, ovarian remodeling is necessary for the functional changes associated with seasonal reproduction. We evaluated MMPs and their endogenous inhibitors (TIMPs), during photoperiod-induced ovarian recrudescence in Siberian hamsters. Hamsters were transferred from long day (LD; 16:8) to short day (SD; 8:16) photoperiods for 14weeks, and then returned to LD for 0, 1, 2, 4, or 8weeks for collection of ovaries and plasma. Post-transfer (PT) LD exposure increased body and ovarian mass. Number of corpora lutea and antral, but not preantral follicles increased in PT groups. Plasma estradiol concentrations were lower in PT weeks 0-4, and returned to LD levels at PT week 8. No change was observed in relative MMP/TIMP mRNA levels at PT week 0 (SD week 14) as compared to LD. Photostimulation increased MMP-2 mRNA at PT week 8 as compared to PT weeks 0-1. MMP-14 mRNA expression peaked at PT weeks 1-2 as compared to LD levels, while MMP-13 expression was low during this time. TIMP-1 mRNA peaked at PT week 8 as compared to PT weeks 0-4. No changes were noted in MMP-9 and TIMP-2 mRNA expression. In general, MMP/TIMP protein immunodetection followed the same patterns with most staining occurring in granulosa cells of follicles and corpora lutea. Our data suggest that mRNA and protein for several members of the MMP/TIMP families are expressed in Siberian hamster ovaries during recrudescence. Because of the variation observed in expression patterns, MMPs and TIMPs may be differentially involved with photostimulated return to ovarian function.

  19. Effects of low level laser treatment on the survival of axotomized retinal ganglion cells in adult Hamsters

    PubMed Central

    So, Kwok-Fai; Leung, Mason Chin Pang; Cui, Qi

    2014-01-01

    Injury to axons close to the neuronal bodies in the mammalian central nervous system causes a large proportion of parenting neurons to degenerate. It is known that optic nerve transection close to the eye in rodents leads to a loss of about half of retinal ganglion cells in 1 week and about 90% in 2 weeks. Using low level laser treatment in the present study, we demonstrated that treatment with helium-neon (660 nm) laser with 15 mW power could delay retinal ganglion cell death after optic nerve axotomy in adult hamsters. The effect was most apparent in the first week with a short period of treatment time (5 minutes) in which 65–66% of retinal ganglion cells survived the optic nerve axotomy whereas 45–47% of retinal ganglion cells did so in optic nerve axotomy controls. We also found that single dose and early commencement of laser irradiation were important in protecting retinal ganglion cells following optic nerve axotomy. These findings thus convincingly show that appropriate laser treatment may be neuroprotective to retinal ganglion cells. PMID:25558230

  20. Effects of low level laser treatment on the survival of axotomized retinal ganglion cells in adult Hamsters.

    PubMed

    So, Kwok-Fai; Leung, Mason Chin Pang; Cui, Qi

    2014-11-01

    Injury to axons close to the neuronal bodies in the mammalian central nervous system causes a large proportion of parenting neurons to degenerate. It is known that optic nerve transection close to the eye in rodents leads to a loss of about half of retinal ganglion cells in 1 week and about 90% in 2 weeks. Using low level laser treatment in the present study, we demonstrated that treatment with helium-neon (660 nm) laser with 15 mW power could delay retinal ganglion cell death after optic nerve axotomy in adult hamsters. The effect was most apparent in the first week with a short period of treatment time (5 minutes) in which 65-66% of retinal ganglion cells survived the optic nerve axotomy whereas 45-47% of retinal ganglion cells did so in optic nerve axotomy controls. We also found that single dose and early commencement of laser irradiation were important in protecting retinal ganglion cells following optic nerve axotomy. These findings thus convincingly show that appropriate laser treatment may be neuroprotective to retinal ganglion cells. PMID:25558230

  1. Regional characterization of a hamster-sheep somatic cell hybrid panel.

    PubMed

    Tabet-Aoul, K; Schibler, L; Vaiman, D; Oustry-Vaiman, A; Lantier, I; Saidi-Mehtar, N; Cribiu, E P; Lantier, F

    2000-01-01

    The regional characterization of a previously obtained hamster-sheep hybrid panel is reported. Using data available from ruminant maps (sheep, cattle, and goat), we have selected a set of 300 markers and have analyzed them by PCR in this hybrid panel. Results obtained for 204 markers show the presence of all sheep chromosomes (including gonosomes) in entire or fragmented form. Analysis of syntenies has given 130 types of answer defining segments of variable sizes. This study has led to the regional characterization of this panel and provides comparative data on a set of bovine and caprine markers. With the level of characterization now achieved for this hybrid panel, the regional assignment of new genes or markers to sheep chromosomes can be rapidly obtained. Finally, this panel will help to collect new data for comparative mapping of domestic animals and to highlight the conservation of syntenic groups between closely related species, that is, sheep, cattle, and goat. PMID:10602990

  2. Activity of nitro-polynuclear aromatic hydrocarbons in the sister chromatid exchange assay with and without metabolic activation. [Hamsters

    SciTech Connect

    Nachtman, J.P.; Wolff, S.

    1982-01-01

    Nitro-polynuclear aromatic hydrocarbons are found in diesel particulates.These compounds are potent mutagens in the Ames test. To determine whether nitro-polynuclear aromatic hydrocarbons are active in a mammalian cell assay, 1-nitropyrene, 1,8-dinitropyrene, 2-nitrofluorene, and 4-nitrobiphenyl were incubated with cultures of Chinese hamster ovary cells. The frequency of sister chromatic exchange (SCE) was measured in the presence and absence of rat liver S-9 mix. The addition of S-9 mix resulted in a large increase in the SCEs induced by all four compounds.

  3. [Diagnosis and follow-up observation of granulosa cell tumor of the ovary are becoming more precise].

    PubMed

    Färkkilä, Anniina; Unkila-Kallio, Leila

    2016-01-01

    Granulosa cell tumor of the ovary is a rare, hormonally active ovarian cancer, typical symptoms of which include various gynecological bleeding disorders. Adult granulosa cell tumor is most commonly detected at stage I, whereupon the prognosis is good. The disease, however, recurs in one third of stage I patients and leads to death in half of these. Conventional cytotoxic agents may be ineffective in the treatment of relapsed tumors. Inhibin B and anti-Müllerian hormone have proven to be sensitive and accurate markers. Knowledge about the disease mechanisms has improved the diagnostics and follow-up observation of the patients. PMID:27400589

  4. Production and Purification of Milligram Amounts of Foot-and-Mouth Disease Virus From Baby Hamster Kidney Cell Cultures

    PubMed Central

    Polatnick, Jerome; Bachrach, Howard L.

    1964-01-01

    A stable line of baby hamster kidney cells for use in the production of, and subsequent purification of, foot-and-mouth disease virus (FMDV) was grown in large quantities on the cylindrical surfaces of 2-liter Baxter bottles. The bottles, in round wire cages, were rotated on a three-tiered roller mill. The cells retained their rapid growth characteristics and susceptibility to FMDV in a tris(hydroxymethyl)aminomethane buffer-containing medium which was especially formulated for large-scale work. This medium, without being changed, sustained cell growth for 6 to 7 days to yield confluent layers containing 500 to 750 million cells per bottle. In small-scale virus-growth experiments, harvested fluids contained about 103.8 to 108.8 plaque-forming units (PFU) per ml. This corresponded to a yield of 30 to 50 PFU per cell. In production runs with 190 cultures, the infectious fluids usually contained 107.9 to 109.2 PFU per ml, and the mass of essentially pure virus obtained therefrom ranged from 7 to 17 mg concomitant with cumulative infectivity recoveries of about 20%. Images FIG. 1 FIG. 2 PMID:14201092

  5. Induction of sister chromatid exchanges by tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in human and hamster cells.

    PubMed

    Zimonjic, D; Popescu, N C; DiPaolo, J A

    1989-04-01

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a nicotine derived N-nitrosamine, is a carcinogen that induces tumors in mice, rats and hamsters. To assess the ability of NNK to interact with the cellular DNA as an essential step in carcinogenesis, the induction of sister chromatid exchange (SCE) was examined in cultured normal human lymphocytes (HL) and Chinese hamster V79 cells. SCE formation is a sensitive indicator of carcinogen-DNA interaction that correlates with the induction of mutation and neoplastic cell transformation. HL and V79 cells were treated for 2 h with 20, 50, 100 and 200 micrograms/ml of NNK with and without application of metabolic activation S-9 mixture, and subsequently incubated for two rounds of replication in the presence of 5-bromodeoxyuridine required for SCE visualization. In V79 cells NNK produced a dose-dependent increase in SCE only with metabolic activation. In HL NNK induced a small but statistically significant increase in SCE with or without metabolic activation. These data provide the first evidence that NNK and/or its metabolic derivatives are able to induce DNA damage leading to SCE formation both in hamster and human cells. The differences in response between the two cell types suggests the existence of a difference in susceptibility associated with NNK metabolism and its interaction with cellular DNA. PMID:2649269

  6. Cryopreservation of ovaries from neonatal marmoset monkeys

    PubMed Central

    Motohashi, Hideyuki H.; Ishibashi, Hidetoshi

    2016-01-01

    The ovary of neonatal nonhuman primates contains the highest number of immature oocytes, but its cryopreservation has not yet been sufficiently investigated in all life stages. In the current study, we investigated cryodamage after vitrification/warming of neonatal ovaries from a nonhuman primate, the common marmoset (Callithrix jacchus). A Cryotop was used for cryopreservation of whole ovaries. The morphology of the vitrified/warmed ovaries was found to be equivalent to that of fresh ovaries. No significant difference in the number of oocytes retaining normal morphology per unit area in histological sections was found between the two groups. In an analysis of dispersed cells from the ovaries, however, the cell viability of the vitrified/warmed group tended to be decreased. The results of a comet assay showed no significant differences in DNA damage. These results show that cryopreservation of neonatal marmoset ovaries using vitrification may be useful as a storage system for whole ovaries. PMID:26876597

  7. Melatonin alleviates hyperthyroidism induced oxidative stress and neuronal cell death in hippocampus of aged female golden hamster, Mesocricetus auratus.

    PubMed

    Rao, Geeta; Verma, Rakesh; Mukherjee, Arun; Haldar, Chandana; Agrawal, Neeraj Kumar

    2016-09-01

    Oxidative stress is a well known phenomenon under hyperthyroid condition that induces various physiological and neural problems with a higher prevalence in females. We, therefore investigated the antioxidant potential of melatonin (Mel) on hyperthyroidism-induced oxidative stress and neuronal cell death in the hippocampus region of brain (cognition and memory centre) of aged female golden hamster, Mesocricetus auratus. Aged female hamsters were randomly divided into four experimental groups (n=7); group-I: control, group-II: Melatonin (5mgkg(-1)day(-1), i.p., for one week), group-III: Hyperthyroid (100μg kg(-1)day(-1), i.p., for two weeks) and group-IV- Hyper+Mel. Hormonal profiles (thyroid and melatonin), activity of antioxidant enzymes (SOD, CAT and GPX), lipid peroxidation level (TBARS) and the specific apoptotic markers (Bax/Bcl-2 ratio and Caspase-3) expression were evaluated. A significant increase in the profile of total thyroid hormone (tT3 and tT4) in hyperthyroidic group as compared to control while tT3 significantly decreased in melatonin treated hyperthyroidic group. However, Mel level significantly decreased in hyperthyroidic group but increased in melatonin treated hyperthyroidic group. Further, the number of immune-positive cells for thyroid hormone receptor-alpha (TR-α) decreased in the hippocampus of hyperthyroidic group and increased in melatonin treated hyperthyroidic group. Profiles of antioxidant enzymes showed a significant decrease in hyperthyroidic group with a simultaneous increase in lipid peroxidation (TBARS). Melatonin treatment to hyperthyroidic group lead to decreased TBARS level with a concomitant increase in antioxidant enzyme activity. Moreover, increased expression of Bax/Bcl-2 ratio and Caspase-3, in hyperthyroidic group had elevated neuronal cell death in hippocampal area and melatonin treatment reduced its expression in hyperthyroidic group. Our findings thus indicate that melatonin reduced the hyperthyroidism

  8. Allelic variation in the dihydrofolate reductase gene at amino acid position 95 contributes to antifolate resistance in Chinese hamster cells.

    PubMed

    Yu, M; Melera, P W

    1993-12-15

    The Chinese hamster lung cell line DC-3F contains two polymorphic dihydrofolate reductase (DHFR) alleles that are defined by an Asp-Asn amino acid sequence difference at position 95 in protein. Previously, we reported that the antifolate-resistant subline DC-3F/A3 overexpressed a Leu22-->Phe mutant of the Asp95 (21k) allele and that this was the basis of its resistance to methotrexate (MTX) and methasquin [P. W. Melera, J. P. Davide, C. A. Hession, and K. W. Scotto, Mol. Cell. Biol., 4: 38-48, 1984]. We now show that another independently selected antifolate-resistant subline of DC-3F, DC-3F8/A55, in addition to being severely compromised in its ability to accumulate MTX, overexpresses a Leu22-->Phe mutant form of the Asn95 (20k) allele. Characterization of purified DHFR from these cells showed that the enzyme displayed a 6-fold higher Kd for MTX (3.92 +/- 0.17 pM) than the wild type (0.58 +/- 0.10 pM), thus explaining its lowered sensitivity to drug. Unexpectedly, however, this value was 4-fold lower than that displayed by the DC-3F/A3 enzyme even though both contain the same (Leu22-->Phe) mutation and differ only at position 95. Indeed, we have also shown that the 21k and 20k wild type enzymes, both containing Leu at position 22, in fact differ by 3-fold (1.58 +/- 0.08 and 0.58 +/- 0.10 pM, respectively) in their Kd's for MTX. This demonstrates that the amino acid at position 95 has an effect on the ability of DHFR to bind MTX. On the other hand, these allelic variants are indistinguishable from each other in their catalytic properties and in their respective Kd's for dihydrofolate. Taken together, these characteristics are consistent with the observation that it is the wild type 21k allele which is preferentially overexpressed at a frequency of 3:1 in MTX-resistant Chinese hamster lung sublines derived by long-term selection in MTX. The results of these studies are novel in that they establish a role for allelic variation in the DHFR gene as a contributor to

  9. Mammalian Cells with Altered Forms of RNA Polymerase II

    PubMed Central

    Chan, V. L.; Whitmore, G. F.; Siminovitch, Louis

    1972-01-01

    Mutants of Chinese hamster ovary cells that are resistant to α-amanitin can be isolated. At least some of these mutants contain an altered form of DNA-dependent RNA polymerase II, as indicated by its resistance to α-amanitin. These results indicate that mutation to α-amanitin resistance involves a change of a structural gene. PMID:4508306

  10. Ability of fourteen chemical agents used in dental practice to induce chromosome aberrations in Syrian hamster embryo cells.

    PubMed

    Hikiba, Hirohito; Watanabe, Eiko; Barrett, J Carl; Tsutsui, Takeki

    2005-01-01

    To assess the genotoxicity of 14 chemical agents used in dental practice, the ability of these agents to induce chromosome aberrations was examined using Syrian hamster embryo (SHE) cells. Statistically significant increases in the frequencies of chromosome aberrations were induced in SHE cells treated with 7 of 10 chemical agents used as endodontic medicaments, that is, carbol camphor, m-cresol, eugenol, guaiacol, zinc oxide, hydrogen peroxide, and formaldehyde. The other 3 chemical agents, that is, thymol, glutaraldehyde, and iodoform, did not increase the levels of chromosome aberrations. Of the 4 chemical agents that are used as an antiseptic on the oral mucosa, chromosome aberrations were induced by iodine, but not by the other 3 antiseptics, benzalkonium chloride, benzethonium chloride, and chlorhexidine. Among the 6 chemical agents exhibiting a negative response in the assay, only thymol induced chromosome aberrations in the presence of exogenous metabolic activation. Our results indicate that chemical agents having a positive response in the present study are potentially genotoxic to mammalian cells and need to be studied further in detail. PMID:15665446

  11. Measurement of Bluetongue Virus Binding to a Mammalian Cell Surface Receptor by an In Situ Immune Fluorescent Staining Technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A quantifiable in situ immune fluorescent assay (IFA) was developed to measure bluetongue virus (BTV) binding to mammalian cells. The utility of the assay was demonstrated with both Chinese hamster ovary (CHO) and bovine pulmonary artery endothelial (CPAE) cells. Since heparin sulfate (HS) has been ...

  12. Morphological transformation and effect on gap junction intercellular communication in Syrian hamster embryo cells as screening tests for carcinogens devoid of mutagenic activity.

    PubMed

    Rivedal, E; Mikalsen, S O; Sanner, T

    2000-04-01

    A large fraction of chemicals observed to cause cancer in experimental animals is devoid of mutagenic activity. It is therefore of importance to develop methods that can be used to detect and study environmental carcinogenic agents that do not interact directly with DNA. Previous studies have indicated that induction of in vitro cell transformation and inhibition of gap junction intercellular communication are endpoints that could be useful for the detection of non-genotoxic carcinogens. In the present work, 13 compounds [chlordane, Arochlor 1260, di(2-ethylhexyl)phthalate, 1,1,1-trichloro-2, 2-bis(4-chlorophenyl)ethane, limonene, sodium fluoride, ethionine, o-anisidine, benzoyl peroxide, o-vanadate, phenobarbital, 12-O-tetradecanoylphorbol 13-acetate and clofibrate] have been tested for their ability to induce morphological transformation and affect intercellular communication in Syrian hamster embryo cells. The substances were selected on the basis of being proven or suspected non-genotoxic carcinogens, and thus difficult to detect in short-term tests. The data show that nine of the 13 compounds induced morphological transformation, and seven of the 13 inhibited intercellular communication in hamster embryo cells. Taken together, 12 of the 13 substances either induced transformation or caused inhibition of communication. The data suggest that the combined use of morphological transformation and gap junction intercellular communication in Syrian hamster embryo cells may be beneficial when screening for non-genotoxic carcinogens. PMID:10793297

  13. Complete hamster CAD protein and the carbamylphosphate synthetase domain of CAD complement mammalian cell mutants defective in de novo pyrimidine biosynthesis.

    PubMed

    Musmanno, L A; Jamison, R S; Barnett, R S; Buford, E; Davidson, J N

    1992-07-01

    The mammalian CAD gene codes for a 240-kDa multifunctional protein that catalyzes the first three steps of de novo pyrimidine biosynthesis. Previously, the longest cDNA construct available was missing approximately 500 bp of coding sequence at the 5' end, thereby lacking the sequence to encode the entire carbamylphosphate synthetase (CPSase) domain. Here, a complete CAD hamster cDNA is constructed, placed into a mammalian expression vector, and transfected into hamster cells deficient in CAD. Transfectants show coordinately restored levels of all three enzyme activities and the presence of full-length CAD protein. A derivative construct of the CAD cDNA was generated that should encode only the CPSase domain. When transfected into mammalian cells, a protein was synthesized that had significant CPSase activity both in vivo and in vitro. The two constructs generated in this study will facilitate the study of CAD structure, function, and allosteric regulation. PMID:1359654

  14. Properties of single-step mutants of Syrian hamster cell lines resistant to N-(phosphonacetyl)-L-aspartate.

    PubMed Central

    Zieg, J; Clayton, C E; Ardeshir, F; Giulotto, E; Swyryd, E A; Stark, G R

    1983-01-01

    Eleven independent lines of Syrian hamster cells were selected by using very low levels of N-(phosphonacetyl)-L-aspartate (PALA), an inhibitor of aspartate transcarbamylase. The protocol employed insured that each resistant cell arose during one of the last divisions before selection was applied. Cells of each mutant line contained an amplification of the structural gene for CAD, a trifunctional protein which includes aspartate transcarbamylase and two other enzymes of UMP biosynthesis. Strikingly, despite the minimal selection employed, the degree of amplification of the CAD gene was 6 to 10 times the normal diploid number in all 11 cases. In situ hybridization indicated that the amplified CAD genes were almost always present at a single chromosomal site in each line. Therefore, one of the two alleles was amplified 11- to 19-fold. The rates at which cells became resistant to PALA, determined by fluctuation analysis, were 100 times less dependent on drug concentration than were the frequencies of resistant cells in steady-state populations. The relatively shallow dependence of this rate upon PALA concentration is consistent with our independent observation that most events gave rise to a similar degree of amplification. In six of six cell lines examined, the levels of CAD mRNA and aspartate transcarbamylase activity were elevated two- to fourfold. These lines were resistant to PALA concentrations 20- to 80-fold higher than the ones used for selection. The organization of amplified DNA was examined by hybridizing Southern blots with cloned DNA fragments containing amplified sequences, previously isolated from two cell lines resistant to high levels of PALA. A contiguous region of DNA approximately 44 kilobases long which included the CAD gene was amplified in five of five single-step mutants examined. Outside this region, these mutants shared amplified sequences with only one of the two highly resistant lines. Images PMID:6656764

  15. Polyploidization and localisation of poly(A)+ RNA in the different cell types of the vitellogenic meroistic ovary of the fleshfly, Sarcophaga bullata.

    PubMed

    Cardoen, J; Schoofs, L; Broekaert, D; Van Mellaert, H; Verachtert, B; De Loof, A

    1986-01-01

    The degree of polyploidization, the level of transcriptional activity and the volume of the different cell types present in the meroistic ovary of Sarcophaga bullata were measured during different vitellogenic stages. The nurse cells and the germinal vesicle exhibited very pronounced differences with regard to DNA content and mRNA synthesis, even though they are genetically identical. During the 4C stage (late vitellogenesis), we observed different degrees of polyploidy in follicle cells adjacent to the oocyte and those surrounding the nurse cells. Although the chromatin of the germinal vesicle is condensed into a karyosome, in situ hybridisation revealed the presence of transcriptional activity. The volume of the germinal vesicle, which contains only 4C DNA, is big enough to contain 2048C DNA. The meroistic ovary is a highly polarized differentiating system. Our results are discussed in the light of the fact that the polytrophic ovary is a miniature electrophoresis chamber.

  16. Identification of Novel Regulators of the JAK/STAT Signaling Pathway that Control Border Cell Migration in the Drosophila Ovary.

    PubMed

    Saadin, Afsoon; Starz-Gaiano, Michelle

    2016-01-01

    The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signaling pathway is an essential regulator of cell migration both in mammals and fruit flies. Cell migration is required for normal embryonic development and immune response but can also lead to detrimental outcomes, such as tumor metastasis. A cluster of cells termed "border cells" in the Drosophila ovary provides an excellent example of a collective cell migration, in which two different cell types coordinate their movements. Border cells arise within the follicular epithelium and are required to invade the neighboring cells and migrate to the oocyte to contribute to a fertilizable egg. Multiple components of the STAT signaling pathway are required during border cell specification and migration; however, the functions and identities of other potential regulators of the pathway during these processes are not yet known. To find new components of the pathway that govern cell invasiveness, we knocked down 48 predicted STAT modulators using RNAi expression in follicle cells, and assayed defective cell movement. We have shown that seven of these regulators are involved in either border cell specification or migration. Examination of the epistatic relationship between candidate genes and Stat92E reveals that the products of two genes, Protein tyrosine phosphatase 61F (Ptp61F) and brahma (brm), interact with Stat92E during both border cell specification and migration.

  17. Identification of Novel Regulators of the JAK/STAT Signaling Pathway that Control Border Cell Migration in the Drosophila Ovary.

    PubMed

    Saadin, Afsoon; Starz-Gaiano, Michelle

    2016-01-01

    The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signaling pathway is an essential regulator of cell migration both in mammals and fruit flies. Cell migration is required for normal embryonic development and immune response but can also lead to detrimental outcomes, such as tumor metastasis. A cluster of cells termed "border cells" in the Drosophila ovary provides an excellent example of a collective cell migration, in which two different cell types coordinate their movements. Border cells arise within the follicular epithelium and are required to invade the neighboring cells and migrate to the oocyte to contribute to a fertilizable egg. Multiple components of the STAT signaling pathway are required during border cell specification and migration; however, the functions and identities of other potential regulators of the pathway during these processes are not yet known. To find new components of the pathway that govern cell invasiveness, we knocked down 48 predicted STAT modulators using RNAi expression in follicle cells, and assayed defective cell movement. We have shown that seven of these regulators are involved in either border cell specification or migration. Examination of the epistatic relationship between candidate genes and Stat92E reveals that the products of two genes, Protein tyrosine phosphatase 61F (Ptp61F) and brahma (brm), interact with Stat92E during both border cell specification and migration. PMID:27175018

  18. Indium chloride-induced micronuclei via reactive oxygen species in Chinese hamster lung fibroblast V79 cells.

    PubMed

    Lin, Ruey-Hseng; Yang, Ming-Ling; Li, Yi-Ching; Chang, Hui-Min; Kuan, Yu-Hsiang

    2013-10-01

    We study the cytotoxicity of indium chloride (InCl₃) in Chinese hamster lung fibroblasts, the V79 cells, using MTT assay. The results showed that InCl₃ did not induce significant cytotoxicity at various concentrations tested. In addition, the frequency of micronuclei (MN) was assayed to evaluate the genotoxic effects of InCl₃ in V79 cells. InCl₃ at concentrations ranged 0.1-1 μM significantly increased MN frequency in a concentration-dependent manner. Both catalase and superoxide dismutase at concentrations of 75 and 150 μg/mL significantly inhibited InCl₃-induced MN. Similarly, Germanium oxide (GeO₂) and dimercaprol expressed antigenotoxic effects. From these findings, it is concluded that InCl₃ is a potent genotoxic chemical, which may be mediated partly by inducing oxidative stress. The significance of this study shows that the workers in the semiconductor factories should be cautious in exposing to the hazardous genotoxic InCl₃.

  19. Interlaboratory studies with the Chinese hamster V79 cell metabolic cooperation assay to detect tumor-promoting agents

    SciTech Connect

    Bohrman, J.S.; Burg, J.R.; Elmore, E.; Gulati, D.K.; Barfknecht, T.R.; Niemeier, R.W.; Dames, B.L.; Toraason, M.; Langenbach, R.

    1988-01-01

    Three laboratories participated in an interlaboratory study to evaluate the usefulness of the Chinese hamster V79 cell metabolic cooperation assay to predict the tumor-promoting activity of selected chemical. Twenty-three chemicals of different chemical structures (phorbol esters, barbiturates, phenols, artificial sweeteners, alkanes, and peroxides) were chosen for testing based on in vivo promotion activities, as reported in the literature. Assay protocols and materials were standardized, and the chemicals were coded to facilitate unbiased evaluation. A chemical was tested only once in each laboratory, with one of the three laboratories testing only 15 out of 23 chemicals. Dunnett's test was used for statistical analysis. Chemicals were scored as positive (at least two concentration levels statistically different than control), equivocal (only one concentration statistically different), or negative. For 15 chemicals tested in all three laboratories, there was complete agreement among the laboratories for nine chemicals. For the 23 chemicals tested in only two laboratories, there was agreement on 16 chemicals. With the exception of the peroxides and alkanes, the metabolic cooperation data were in general agreement with in vivo data. However, an overall evaluation of the V79 cell system for predicting in vivo promotion activity was difficult because of the organ specificity of certain chemicals and/or the limited number of adequately tested nonpromoting chemicals.

  20. Interaction function gamma(x) for Chinese hamster cells treated with hypertonic phosphate-buffered saline after irradiation

    SciTech Connect

    Nenoi, M.; Kanai, T.

    1988-12-01

    The repair of potentially lethal damage (PLD) in stationary-phase V79 Chinese hamster cells, which was expressible by a postirradiation treatment with hypertonic (0.5 M NaCl) phosphate-buffered saline (PBS), was analyzed within the framework of the theory of dual radiation action. The interaction function gamma(x) was estimated for cells permitted to repair PLD for various intervals of time. The experimental data indicated that 50-60% of the lethal lesions produced at the time of irradiation were repaired in 120 min. The repair of PLD was implicitly involved in the probability of the interaction of sublesions. That is, g(x,trep) was defined as the probability that two sublesions separated by distance x interact to produce a lethal lesion which will not be repaired until the fixation by treatment with hypertonic PBS at time trep after irradiation. It is concluded that the time dependence of the repair of PLD is not independent of the interaction distance x. Three conclusions are drawn: (1) The repair of a lesion produced by a long distance interaction is not detectable by postirradiation treatment with hypertonic PBS. (2) A lesion produced by a short distance interaction is rapidly repaired in about 20 min. (3) A lesion produced by the interaction of sublesions separated by a distance of about 100 nm is repaired slowly.

  1. Rapid turn-over of plasma membrane sphingomyelin and cholesterol in baby hamster kidney cells after exposure to sphingomyelinase.

    PubMed

    Slotte, J P; Härmälä, A S; Jansson, C; Pörn, M I

    1990-12-14

    Plasma membrane sphingomyelin in baby hamster kidney (BHK-21) cells was hydrolyzed with sphingomyelinase (Staphylococcus aureus) and the effects on membrane cholesterol translocation and the properties of membrane bound adenylate cyclase and Na+/K(+)-ATPase were determined. Exposure of confluent BHK-21 cells to 0.1 U/ml of sphingomyelinase led to the degradation (at 37 degrees C) of about 60% of cell sphingomyelin. No simultaneous hydrolysis of phosphatidylcholine occurred. The hydrolysis of sphingomyelin subsequently led to the translocation (within 40 min) of about 50-60% of cell [3H]cholesterol from a cholesterol oxidase susceptible pool to an oxidase resistant compartment. The translocation of [3H]cholesterol from the cell surface to intracellular membranes was accompanied by a paralleled increase in [3H]cholesterol ester formation. When cells were first exposed to sphingomyelinase (to degrade sphingomyelin) and then incubated without the enzyme in serum-free media, the mass of cell sphingomyelin decreased initially (by 60%), but then began to increase and reached control levels within 3-4 h. The rapid re-synthesis of sphingomyelin was accompanied by an equally rapid normalization of cell [3H]cholesterol distribution. The re-formation of cell sphingomyelin also led to a decreased content of cellular [3H]cholesterol esters, indicating that unesterified [3H]cholesterol was pulled out of the cholesterol ester cycle and transported to the cell surface. Exposure of BHK-21 cells to sphingomyelinase further led to a dramatically decreased activity of ouabain-sensitive Na+/K(+)-ATPase, whereas forskolin-stimulated adenylate cyclase activity was not affected. The activity of Na+/K(+)-ATPase returned to normal in parallel with the normalization of cell sphingomyelin mass and cholesterol distribution. We conclude that sphingomyelin has profound effects on the steady-state distribution of cell cholesterol, and that manipulations of cell sphingomyelin levels directly and

  2. Rapid turn-over of plasma membrane sphingomyelin and cholesterol in baby hamster kidney cells after exposure to sphingomyelinase.

    PubMed

    Slotte, J P; Härmälä, A S; Jansson, C; Pörn, M I

    1990-12-14

    Plasma membrane sphingomyelin in baby hamster kidney (BHK-21) cells was hydrolyzed with sphingomyelinase (Staphylococcus aureus) and the effects on membrane cholesterol translocation and the properties of membrane bound adenylate cyclase and Na+/K(+)-ATPase were determined. Exposure of confluent BHK-21 cells to 0.1 U/ml of sphingomyelinase led to the degradation (at 37 degrees C) of about 60% of cell sphingomyelin. No simultaneous hydrolysis of phosphatidylcholine occurred. The hydrolysis of sphingomyelin subsequently led to the translocation (within 40 min) of about 50-60% of cell [3H]cholesterol from a cholesterol oxidase susceptible pool to an oxidase resistant compartment. The translocation of [3H]cholesterol from the cell surface to intracellular membranes was accompanied by a paralleled increase in [3H]cholesterol ester formation. When cells were first exposed to sphingomyelinase (to degrade sphingomyelin) and then incubated without the enzyme in serum-free media, the mass of cell sphingomyelin decreased initially (by 60%), but then began to increase and reached control levels within 3-4 h. The rapid re-synthesis of sphingomyelin was accompanied by an equally rapid normalization of cell [3H]cholesterol distribution. The re-formation of cell sphingomyelin also led to a decreased content of cellular [3H]cholesterol esters, indicating that unesterified [3H]cholesterol was pulled out of the cholesterol ester cycle and transported to the cell surface. Exposure of BHK-21 cells to sphingomyelinase further led to a dramatically decreased activity of ouabain-sensitive Na+/K(+)-ATPase, whereas forskolin-stimulated adenylate cyclase activity was not affected. The activity of Na+/K(+)-ATPase returned to normal in parallel with the normalization of cell sphingomyelin mass and cholesterol distribution. We conclude that sphingomyelin has profound effects on the steady-state distribution of cell cholesterol, and that manipulations of cell sphingomyelin levels directly and

  3. Identification of Novel Regulators of the JAK/STAT Signaling Pathway that Control Border Cell Migration in the Drosophila Ovary

    PubMed Central

    Saadin, Afsoon; Starz-Gaiano, Michelle

    2016-01-01

    The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signaling pathway is an essential regulator of cell migration both in mammals and fruit flies. Cell migration is required for normal embryonic development and immune response but can also lead to detrimental outcomes, such as tumor metastasis. A cluster of cells termed “border cells” in the Drosophila ovary provides an excellent example of a collective cell migration, in which two different cell types coordinate their movements. Border cells arise within the follicular epithelium and are required to invade the neighboring cells and migrate to the oocyte to contribute to a fertilizable egg. Multiple components of the STAT signaling pathway are required during border cell specification and migration; however, the functions and identities of other potential regulators of the pathway during these processes are not yet known. To find new components of the pathway that govern cell invasiveness, we knocked down 48 predicted STAT modulators using RNAi expression in follicle cells, and assayed defective cell movement. We have shown that seven of these regulators are involved in either border cell specification or migration. Examination of the epistatic relationship between candidate genes and Stat92E reveals that the products of two genes, Protein tyrosine phosphatase 61F (Ptp61F) and brahma (brm), interact with Stat92E during both border cell specification and migration. PMID:27175018

  4. The Hamster Cheek Pouch

    PubMed Central

    Klintworth, Gordon K.

    1973-01-01

    To gain insight into factors that might be responsible for the normal avascularity of the cornea and for its vascularization in certain pathologic states, an experimental model was designed in which corneal vascularization could be studied under controlled conditions in hamster cheek pouch chambers. Normal corneal tissue, as well as corneas that had been altered in a variety of ways (eg, boiled, autoclaved, freeze-thawed) were implanted into hamster cheek pouch chambers. The fate of the transplanted tissue was observed at regular intervals by direct visualization within the hamster cheek pouch at various magnifications and by light and electron microscopy. This report reviews observations on more than 300 such experiments. Normal and injured corneal autografts, allografts and xenografts and nonviable (autoclaved, boiled or freeze-thawed) corneas commonly became vascularized in the cheek pouch. When this occurred, a similar morphologic sequence of events preceded and accompanied the growth of blood vessels into the cornea. Vascular invasion was generally preceded by the formation of granulation tissue around the cornea. This was followed by a leukocytic, and frequently a fibroblastic, infiltration of the cornea. When cells did not invade the transplanted cornea, the cornea invariably remained avascular. In the present model, a swollen cornea was not a sufficient stimulus for corneal vascularization. The data suggest that under certain circumstances leukocytes may produce one or more factors which stimulate directional vascular growth. The findings are viewed in terms of current concepts on corneal vascularization. ImagesFig 5Fig 6Fig 7Fig 8Fig 9Fig 10Fig 11Fig 12Fig 1Fig 2Fig 3Fig 4Fig 13Fig 14 PMID:4271966

  5. Classification of agents using Syrian hamster embryo (SHE) cell transformation assay (CTA) with ATR-FTIR spectroscopy and multivariate analysis.

    PubMed

    Ahmadzai, Abdullah A; Trevisan, Júlio; Pang, Weiyi; Riding, Matthew J; Strong, Rebecca J; Llabjani, Valon; Pant, Kamala; Carmichael, Paul L; Scott, Andrew D; Martin, Francis L

    2015-09-01

    The Syrian hamster embryo (SHE) cell transformation assay (pH 6.7) has a reported sensitivity of 87% and specificity of 83%, and an overall concordance of 85% with in vivo rodent bioassay data. To date, the SHE assay is the only in vitro assay that exhibits multistage carcinogenicity. The assay uses morphological transformation, the first stage towards neoplasm, as an endpoint to predict the carcinogenic potential of a test agent. However, scoring of morphologically transformed SHE cells is subjective. We treated SHE cells grown on low-E reflective slides with 2,6-diaminotoluene, N-nitroso-N-ethylnitroguanidine, N-nitroso-N-methylurea, N-nitroso-N-ethylurea, EDTA, dimethyl sulphoxide (DMSO; vehicle control), methyl methanesulfonate, benzo[e]pyrene, mitomycin C, ethyl methanesulfonate, ampicillin or five different concentrations of benzo[a]pyrene. Macroscopically visible SHE colonies were located on the slides and interrogated using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy acquiring five spectra per colony. The acquired IR data were analysed using Fisher's linear discriminant analysis (LDA) followed by principal component analysis (PCA)-LDA cluster vectors to extract major and minor discriminating wavenumbers for each treatment class. Each test agent vs. DMSO and treatment-induced transformed cells vs. corresponding non-transformed were classified by a unique combination of major and minor discriminating wavenumbers. Alterations associated with Amide I, Amide II, lipids and nucleic acids appear to be important in segregation of classes. Our findings suggest that a biophysical approach of ATR-FTIR spectroscopy with multivariate analysis could facilitate a more objective interrogation of SHE cells towards scoring for transformation and ultimately employing the assay for risk assessment of test agents.

  6. Activation of mitochondrial promoter P{sub H}-binding protein in a radio-resistant Chinese hamster cell strain associated with Bcl-2

    SciTech Connect

    Roychoudhury, Paromita; Ghosh, Utpal . E-mail: keyachaudhuri@yahoo.com

    2006-11-17

    The cellular response to ionizing radiation is mediated by a complex interaction of number of proteins involving different pathways. Previously, we have shown that up regulation of mitochondrial genes ND1, ND4, and COX1 transcribed from the heavy strand promoter (P{sub H}) has been increased in a radio-resistant cell strain designated as M5 in comparison with the parental Chinese hamster V79 cells. These genes are also up regulated in Chinese hamster V79 cells VB13 that express exogenous human Bcl2. In the present study, the expression of the gene ND6 that is expressed from the light strand promoter (P{sub L}) was found to be similar in both the cell lines, as determined by RT-PCR. To test the possibility that this differential expression of mitochondrial genes under these two promoters was mediated by differences in proteins' affinity to interact with these promoters, we have carried out electrophoretic mobility shift assay (EMSA) using mitochondrial cell extracts from these two cell lines. Our result of these experiments revealed that two different proteins formed complex with the synthetic promoters and higher amount of protein from M5 cell extracts interacted with the P{sub H} promoter in comparison to that observed with cell extracts from Chinese hamster V79 cells. The promoter-specific differential binding of proteins was also observed in VB13. These results showed that differential mitochondrial gene expression observed earlier in the radio-resistant M5 cells was due to enhanced interaction proteins with the promoters P{sub H} and mediated by the expression of Bcl2.

  7. [Analysis of the biological effect of city smog extract. V. Comparative investigations on the effect of city smog extracts on DNA synthesis of Syrian hamster kidney and embryonic cells and of African green monkey kidney cells in vitro (author's transl)].

    PubMed

    Krampitz, G; Seemayer, N

    1979-01-01

    We analysed the effect of two samples of city smog extract from Bochum and Duisburg on DNA synthesis of mammalian cells in vitro. As a test system we used tissue cultures of kidney and embryonic cells from the Syrian golden hamster and monkey kidney cells from Cercopithecus aethiops. DNA synthesis of cells was measured by autoradiography using 3H-Thymidine. Both samples of city smog extract exerted a dose-dependent decrease of the rate of DNA synthesis in tissue culture cells. These alterations of nucleic acid metabolism were expressed by a reduction of DNA-synthesizing cells and by a delay of entrance of cells in DNA synthesis. High concentrations of city smog extracts induced a large number of cell necroses. Monkey kidney cells were more sensitive to the toxic action than hamster cells. Furthermore the city smog extract from Duisburg showed a stronger toxic effect than the extract from Bochum.

  8. Conservative surgery plus adjuvant therapy for vulvovaginal rhabdomyosarcoma, diethylstilbestrol clear cell adenocarcinoma of the vagina, and unilateral germ cell tumors of the ovary.

    PubMed

    Hicks, M L; Piver, M S

    1992-03-01

    Significant progress has been made in the 1980s in early-stage vulvovaginal rhabdomyosarcoma, diethylstilbestrol (DES) clear cell adenocarcinoma of the vagina, and unilateral germ cell tumors of the ovary. In an early state of vulvovaginal rhabdomyosarcoma, systemic vincristine, dactinomycin, and cyclophosphamide (VAC) chemotherapy followed by local excision or local radiation results in a high cure rate with retention of future fertility. Similarly, early-stage DES-related adenocarcinoma of the vagina treated by wide local excision and localized vaginal radiation also results in retention of fertility and a high cure rate. Finally, significant progress has been made in unilateral germ cell tumors of the ovary in which surgical treatment by unilateral salpingo-oophorectomy followed by cisplatin, etoposide, and bleomycin results in not only high cure rates and retention of fertility but will probably be standard therapy for all germ cell tumors of the ovary, including dysgerminoma, a disease most frequently treated in the past by radiation therapy with loss of subsequent fertility.

  9. FOXL2 molecular status in adult granulosa cell tumors of the ovary: A study of primary and metastatic cases

    PubMed Central

    Zannoni, Gian Franco; Improta, Giuseppina; Petrillo, Marco; Pettinato, Angela; Scambia, Giovanni; Fraggetta, Filippo

    2016-01-01

    Granulosa cell tumors (GCTs) of the ovary are uncommon neoplasms, accounting for ~5% of all malignant ovarian tumors. GCTs are a relatively homogeneous group of tumors, categorized into two distinct subtypes, juvenile GCT and adult GCT (AGCT), likely arising from a limited set of molecular events usually involving the disruption of pathways that regulate granulosa cell proliferation. In the present study, the presence of forkheadbox L2 (FOXL2) c.402C>G mutation was investigated in a series of 42 samples of primary and metastatic AGCT of the ovary. The samples consisted of 37 primary and 5 metastatic ovarian AGCTs from 37 patients. FOXL2 mutational status was evaluated using a pyrosequencing approach on 2.5-µm sections of formalin-fixed paraffin-embedded tissue. FOXL2 c.402C>G mutation was found in 33/37 (89.2%) primary AGCTs and in 4/5 (80.0%) metastases, with the molecular status of the metastases recapitulating that of the primary tumors (4 mutated cases and 1 wild-type case). Overall, FOXL2 mutation is present in the majority of primary and metastatic AGCTs, and could be used as a valid tool in the diagnosis of the disease and in cases of metastatic lesions from an unknown primary origin. Moreover the concordance of FOXL2 molecular status in primary and associated metastases suggests its early appearance and genomic stability in AGCT tumorigenesis. PMID:27446412

  10. ECM-Regulator timp Is Required for Stem Cell Niche Organization and Cyst Production in the Drosophila Ovary

    PubMed Central

    Pearson, John R.; Zurita, Federico; Tomás-Gallardo, Laura; Díaz-Torres, Alfonsa; Díaz de la Loza, María del Carmen; Franze, Kristian; Martín-Bermudo, María D.; González-Reyes, Acaimo

    2016-01-01

    The extracellular matrix (ECM) is a pivotal component adult tissues and of many tissue-specific stem cell niches. It provides structural support and regulates niche signaling during tissue maintenance and regeneration. In many tissues, ECM remodeling depends on the regulation of MMP (matrix metalloproteinase) activity by inhibitory TIMP (tissue inhibitors of metalloproteinases) proteins. Here, we report that the only Drosophila timp gene is required for maintaining the normal organization and function of the germline stem cell niche in adult females. timp mutant ovaries show reduced levels of both Drosophila Collagen IV α chains. In addition, tissue stiffness and the cellular organization of the ovarian niche are affected in timp mutants. Finally, loss of timp impairs the ability of the germline stem cell niche to generate new cysts. Our results demonstrating a crucial role for timp in tissue organization and gamete production thus provide a link between the regulation of ECM metabolism and tissue homeostasis. PMID:26808525

  11. BMP signalling in human fetal ovary somatic cells is modulated in a gene-specific fashion by GREM1 and GREM2

    PubMed Central

    Bayne, Rosemary A.; Donnachie, Douglas J.; Kinnell, Hazel L.; Childs, Andrew J.; Anderson, Richard A.

    2016-01-01

    STUDY QUESTION Do changes in the expression of bone morphogenetic proteins (BMPs) 2 and 4, and their antagonists Gremlin1 (GREM1) and Gremlin2 (GREM2) during human fetal ovarian development impact on BMP pathway activity and lead to changes in gene expression that may influence the fate and/or function of ovarian somatic cells? STUDY FINDING BMPs 2 and 4 differentially regulate gene expression in cultured human fetal ovarian somatic cells. Expression of some, but not all BMP target genes is antagonised by GREM1 and GREM2, indicating the existence of a mechanism to fine-tune BMP signal intensity in the ovary. Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), a marker of immature ovarian somatic cells, is identified as a novel transcriptional target of BMP4. WHAT IS KNOWN ALREADY Extensive re-organisation of the germ and somatic cell populations in the feto-neonatal ovary culminates in the formation of primordial follicles, which provide the basis for a female's future fertility. BMP growth factors play important roles at many stages of ovarian development and function. GREM1, an extracellular antagonist of BMP signalling, regulates the timing of primordial follicle formation in the mouse ovary, and mRNA levels of BMP4 decrease while those of BMP2 increase prior to follicle formation in the human fetal ovary. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Expression of genes encoding BMP pathway components, BMP antagonists and markers of ovarian somatic cells were determined by quantitative (q)RT-PCR in human fetal ovaries (from 8 to 21 weeks gestation) and fetal ovary-derived somatic cell cultures. Ovarian expression of GREM1 protein was confirmed by immunoblotting. Primary human fetal ovarian somatic cell cultures were derived from disaggregated ovaries by differential adhesion and cultured in the presence of recombinant human BMP2 or BMP4, with or without the addition of GREM1 or GREM2. MAIN RESULTS AND THE ROLE OF CHANCE We demonstrate that the

  12. Use of DEAD-box polypeptide-4 (Ddx4) gene promoter-driven fluorescent reporter mice to identify mitotically active germ cells in post-natal mouse ovaries.

    PubMed

    Park, Eun-Sil; Tilly, Jonathan L

    2015-01-01

    Several laboratories have independently isolated mitotically active germ cells, termed female germline stem cells or oogonial stem cells (OSCs), from adult mouse ovaries. However, a recent study using Ddx4-Cre;Rosa26 reporter mice concluded that such germ cells do not exist. Given the disparity in conclusions drawn in this study compared with others, we felt it was important to re-assess the utility of Ddx4-Cre;Rosa26 reporter mice for identification of OSCs in adult mouse ovaries. Transgenic Ddx4-Cre mice were crossed with Rosa26(tdTm/tdTm) mice to drive restricted tomato red (tdTm) gene expression in cells in which the Ddx4 gene promoter has been activated. Crude dispersion of ovaries from recombined offspring generated cell fractions containing tdTm-positive immature oocytes, which are incapable of proliferation and thus probably represent the uncharacterized reporter-positive ovarian cells identified in the paper Zhang et al. (2012) as being mitotically inactive. Dispersed ovaries further subjected to fluorescence-activated cell sorting yielded a large population of non-germline tdTm-positive cells, indicative of promoter 'leakiness' in the Ddx4-Cre mouse line. Nonetheless, a small percentage of these tdTm-positive cells exhibited externalized (extracellular, ec) expression of Ddx4 protein (ecDdx4-positive), expressed markers of primitive germ cells but not of oocytes, and actively proliferated in culture, all of which are characteristic features of OSCs. Thus, crude dispersion of ovaries collected from Ddx4 gene promoter-driven reporter mice is not, by itself, a reliable approach to identify OSCs, whereas the same ovarian dispersates further subjected to cell sorting strategies yield purified OSCs that can be expanded in culture.

  13. Use of DEAD-box polypeptide-4 (Ddx4) gene promoter-driven fluorescent reporter mice to identify mitotically active germ cells in post-natal mouse ovaries.

    PubMed

    Park, Eun-Sil; Tilly, Jonathan L

    2015-01-01

    Several laboratories have independently isolated mitotically active germ cells, termed female germline stem cells or oogonial stem cells (OSCs), from adult mouse ovaries. However, a recent study using Ddx4-Cre;Rosa26 reporter mice concluded that such germ cells do not exist. Given the disparity in conclusions drawn in this study compared with others, we felt it was important to re-assess the utility of Ddx4-Cre;Rosa26 reporter mice for identification of OSCs in adult mouse ovaries. Transgenic Ddx4-Cre mice were crossed with Rosa26(tdTm/tdTm) mice to drive restricted tomato red (tdTm) gene expression in cells in which the Ddx4 gene promoter has been activated. Crude dispersion of ovaries from recombined offspring generated cell fractions containing tdTm-positive immature oocytes, which are incapable of proliferation and thus probably represent the uncharacterized reporter-positive ovarian cells identified in the paper Zhang et al. (2012) as being mitotically inactive. Dispersed ovaries further subjected to fluorescence-activated cell sorting yielded a large population of non-germline tdTm-positive cells, indicative of promoter 'leakiness' in the Ddx4-Cre mouse line. Nonetheless, a small percentage of these tdTm-positive cells exhibited externalized (extracellular, ec) expression of Ddx4 protein (ecDdx4-positive), expressed markers of primitive germ cells but not of oocytes, and actively proliferated in culture, all of which are characteristic features of OSCs. Thus, crude dispersion of ovaries collected from Ddx4 gene promoter-driven reporter mice is not, by itself, a reliable approach to identify OSCs, whereas the same ovarian dispersates further subjected to cell sorting strategies yield purified OSCs that can be expanded in culture. PMID:25147160

  14. Deletion screening at the hypoxanthine-guanine phosphoribosyltransferase locus in Chinese hamster cells using the polymerase chain reaction

    SciTech Connect

    Xu, Z.D.; Yu, Y.J.; Hsie, A.W.; Caskey, C.T.; Rossiter, B.; Gibbs, R.A. )

    1989-01-01

    We have developed a rapid screening method using the polymerase chain reaction (PCR) for detecting deletion mutations at the hypoxanthine-guanine phosphoribosyltransferase (hprt) locus in Chinese hamster cells. DNA was extracted from spontaneous and ultraviolet (UV) light- and X-ray-induced hprt-deficient mutants. Two primer sets were used to amplify 276 bp and 344 bp fragments containing the entire exon 3 and exon 9 coding sequence, respectively. The PCR was performed using Taq DNA polymerase for 40 cycles, and the PCR product was directly analyzed for the presence of the respective amplified DNA using electrophoresis on agarose gels stained with ethidium bromide. With this assay, we have analyzed 39 independently derived hprt-deficient mutants. Four of ten spontaneous mutants were found to have deletions in exon 9. UV light produced mutants with predominantly wild-type amplification patterns (10/14). X-ray induced mostly deletion patterns (11/15); six of these occurred only in exon 9, and five occurred in both exons 3 and 9. These observations are consistent with the classical notion that UV light induces predominantly missense mutations and X-ray produces a high proportion of deletion mutations. Deletion mutations occurred most frequently at the 3' end of the hprt gene, suggesting the possible existence of hot spots for deletions in this region. The PCR assay for deletion detection has the advantage that it can be completed in less than 4 hr without using radioisotopes. This assay should be useful for routine deletion screening.

  15. Use of the Syrian hamster embryo cell transformation assay for carcinogenicity prediction of chemical currently being tested by the National Toxicology Program in rodent bioassays

    SciTech Connect

    Kerckaert, G.A.; LeBoeuf, R.A.; Isfort, R.J.; Brauninger, R.

    1996-10-01

    The Syrian hamster embryo (SHE) cell transformation assay was used to predict the carcinogenicity of 26 chemicals currently being tested in the rodent bioassay by the National Toxicology Program as part of its program titled {open_quotes}Strategies for Predicting Chemical Carcinogenesis in Rodents.{close_quotes} Of these 26 chemicals, 17 were found to be positive in the SHE cell transformation assay while 9 were negative. Carcinogenicity predictions were made for these chemicals, based upon the SHE cell transformation assay results. Our predictions will be compared with the rodent bioassay results as they become available. 11 refs., 2 tabs.

  16. Choline supplementation inhibits diethanolamine-induced morphological transformation in syrian hamster embryo cells: evidence for a carcinogenic mechanism.

    PubMed

    Lehman-McKeeman, L D; Gamsky, E A

    2000-06-01

    DEA, an amino alcohol, and its fatty acid condensates are widely used in commerce. DEA is hepatocarcinogenic in mice, but shows no evidence of mutagenicity or clastogenicity in a standard testing battery. However, it increased the number of morphologically transformed colonies in the Syrian hamster embryo (SHE) cell morphologic transformation assay. The goal of this work was to test the hypothesis that DEA treatment causes morphologic transformation by a mechanism involving altered cellular choline homeostasis. As a first step, the ability of DEA to disrupt the uptake and intracellular utilization of choline was characterized. SHE cells were cultured in medium containing DEA (500 microg/ml), and (33)P-phosphorus or (14)C-choline was used to label phospholipid pools. After 48 h, SHE cells were harvested, lipids were extracted, and radioactive phospholipids were quantified by autoradiography after thin layer chromatographic separation. In control cells, phosphatidylcholine (PC) was the major phospholipid, accounting for 43 +/- 1% of total phospholipid synthesis. However, with DEA treatment, PC was reduced to 14 +/- 2% of total radioactive phospholipids. DEA inhibited choline uptake into SHE cells at concentrations > or = 50 microg /ml, reaching a maximum 80% inhibition at 250-500 microg/ml. The concentration dependence of the inhibition of PC synthesis by DEA (0, 10, 50, 100, 250, and 500 microg/ml) was determined in SHE cells cultured over a 7-day period under the conditions of the transformation assay and in the presence or absence of excess choline (30 mM). DEA treatment decreased PC synthesis at concentrations > or = 100 microg/ml, reaching a maximum 60% reduction at 500 microg/ml. However, PC synthesis was unaffected when DEA-treated cells were cultured with excess choline. Under 7-day culture conditions, (14)C-DEA was incorporated into SHE lipids, and this perturbation was also inhibited by choline supplementation. Finally, DEA (10-500 microg/ml) transformed

  17. The Hippo pathway controls border cell migration through distinct mechanisms in outer border cells and polar cells of the Drosophila ovary.

    PubMed

    Lin, Tzu-Huai; Yeh, Tsung-Han; Wang, Tsu-Wei; Yu, Jenn-Yah

    2014-11-01

    The Hippo pathway is a key signaling cascade in controlling organ size. The core components of this pathway are two kinases, Hippo (Hpo) and Warts (Wts), and a transcriptional coactivator, Yorkie (Yki). Yes-associated protein (YAP, a Yki homolog in mammals) promotes epithelial-mesenchymal transition and cell migration in vitro. Here, we use border cells in the Drosophila ovary as a model to study Hippo pathway functions in cell migration in vivo. During oogenesis, polar cells secrete Unpaired (Upd), which activates JAK/STAT signaling of neighboring cells and specifies them into outer border cells. The outer border cells form a cluster with polar cells and undergo migration. We find that hpo and wts are required for migration of the border cell cluster. In outer border cells, overexpression of hpo disrupts polarization of the actin cytoskeleton and attenuates migration. In polar cells, knockdown of hpo and wts or overexpression of yki impairs border cell induction and disrupts migration. These manipulations in polar cells reduce JAK/STAT activity in outer border cells. Expression of upd-lacZ is increased and decreased in yki and hpo mutant polar cells, respectively. Furthermore, forced expression of upd in polar cells rescues defects of border cell induction and migration caused by wts knockdown. These results suggest that Yki negatively regulates border cell induction by inhibiting JAK/STAT signaling. Together, our data elucidate two distinct mechanisms of the Hippo pathway in controlling border cell migration: (1) in outer border cells, it regulates polarized distribution of the actin cytoskeleton; (2) in polar cells, it regulates upd expression to control border cell induction and migration.

  18. Temperature-Sensitive Mutants of a Chinese Hamster Cell Line. I. Selection of Clones with Defective Macromolecular Biosynthesis

    PubMed Central

    Roufa, Donald J.; Reed, Susan J.

    1975-01-01

    Temperature-sensitive clones have been selected from a mutagenized culture of Chinese hamster lung cells by a procedure involving bromodeoxy-uridine (BrdU) incorporation and irradiation with black light. The selection procedure used in these studies was adapted from methods developed by others to yield mutants that cease DNA replication within a short time after they are transferred to nonpermissive temperature. After mutagenesis with ethyl methanosulfonate ten clones survived the selection procedure. Three of the clones (mutants) were temperature-sensitive as measured by growth properties. Two mutants ceased DNA synthesis within six hours of being shifted to 39° and the third mutant continued to synthesize DNA at nonpermissive temperature at a reduced rate for at least 24 hours. Thus, all three mutants survived the selection procedure for understandable reasons, since each was unable to incorporate sufficient BrdU at 39° to lethally protosensitize its DNA during the standard exposure period. The two mutants that cease DNA synthesis at high temperature (clones 115–47 and 115–53) also stop incorporating radioactive amino acids and uridine within six hours at 39°. Their complex phenotype, i.e. defective DNA, RNA and protein biosynthesis, is reversible. When these mutants were returned to 33° after 8 hours at 39°, both resumed DNA synthesis immediately (< 1 hour). Reversal of defective DNA synthesis in both mutants was sensitive to drugs that inhibit protein biosynthesis specifically. Those same drugs, as well as toxic amino acids analogs, also effected a striking mutant phenocopy in wild-type cells. The phenocopy produced by amino acid analogs that are incorporated into mammalian proteins suggested that one or more proteins must be synthesized continuously to support mammalian cells engaged in programmed DNA replication. PMID:1232024

  19. Establishment and characterization of a new marine fish cell line from ovary of barfin flounder ( Verasper moseri)

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohui; Fan, Tingjun; Jiang, Guojian; Yang, Xiuxia

    2015-12-01

    A novel continuous ovary cell line from barfin flounder ( Verasper moseri) (BFO cell line) was established with its primitive application in transgenic expression demonstrated in this study. Primarily cultured cells grew well at 22°C in Dulbecco's modified Eagle medium/F12 medium (DMEM/F12, 1:1; pH 7.2) supplemented with 20% fetal bovine serum (FBS), carboxymethyl chitooligosaccharide, basic fibroblast growth factor (bFGF) and insulin-like growth factor-I (IGF-I). The primary BFO cells in fibroblastic morphology proliferated into a confluent monolayer about 2 weeks later, and were able to be subcultured. Impacts of medium and temperature on the growth of the cells were examined. The optimum growth was found in DMEM/F12 with 20% FBS and at 22°C. The BFO cells can be continuously subcultured to Passage 120 steadily with a population doubling time of 32.7 h at Passage 60. Chromosome analysis revealed that 72% of BFO cells at Passage 60 maintained the normal diploid chromosome number (46) with a normal karyotype of 2st+44t. The results of gene transformation indicated that green fluorescence protein (GFP) positively expressed in these cells after being transformed with pcDNA3.1-GFP. Therefore, a continuous and transformable BFO cell line was successfully established, which may serve as a useful tool for cytotechnological manipulation and transgenic modification of this fish.

  20. Lack of Effects of Recombinant Human Bone Morphogenetic Protein2 on Angiogenesis in Oral Squamous Cell Carcinoma Induced in the Syrian hamster Cheek Pouch.

    PubMed

    Zaid, Khaled Waleed; Nhar, Bander Mossa; Ghadeer Alanazi, Salman Mohammed; Murad, Rashad; Domani, Ahmad; Alhafi, Awadh Jamman

    2016-01-01

    Recombinant human bone morphogenetic protein2 (rhBMP2 ), a member of the TGF? family, has been used widely in recent years to regenerate defects of the maxillary and mandible bones. Such defects are sometimes caused by resection of oral squamous cell carcinoma (OSCC) yet the biologic effects of rhBMP2 on these carcinomas are not fully clear. The objective of this study was to determine histologically whether rhBMP2 produces adverse effects on angiogenesis during induction of OSCC, a biologic process critical for tumor formation in an experimental model in the buccal pouch of golden Syrian hamsters. Buccal cavities were exposed to painting with 0.5% DMBA in liquid paraffin three times a week for 14 weeks, then biopsies were taken. Division was into 2 groups: a study group of 10 hamsters receiving 0.25?g/ml of rhBMP2 in the 3rd and 6th weeks; and a control group of 10 hamsters which did not receive any additional treatment. VEGF expression and microvessel density were measured but no differences were noted between the two groups. According to this study, rhBMP2 does not stimulate angiogenesis during induction of OCSSs. PMID:27510004

  1. [Analysis of the biological effect of city smog extract. II. Effect of a city smog extract on cell growth and DNA synthesis of hamster kidney cells in vitro (author's transl)].

    PubMed

    de Ruiter, N; Manojlovic, N; Seemayer, N; Krampitz, G; Weisz, H

    1978-06-01

    A city smog extract from an urban area inhibits the cell growth of hamster kidney cells in vitro. Parallel to an inhibition of cell multiplication a diminished rate of total DNA synthesis appeared. The number of cells in DNA synthesis is depressed in presence of city smog extract. These phenomena revealed a dose-response relationship. The biological effect of city smog extract is discussed.

  2. Syngeneic syrian hamster tumors feature tumor-infiltrating lymphocytes allowing adoptive cell therapy enhanced by oncolytic adenovirus in a replication permissive setting.

    PubMed

    Siurala, Mikko; Vähä-Koskela, Markus; Havunen, Riikka; Tähtinen, Siri; Bramante, Simona; Parviainen, Suvi; Mathis, J Michael; Kanerva, Anna; Hemminki, Akseli

    2016-05-01

    Adoptive transfer of tumor-infiltrating lymphocytes (TIL) has shown promising yet sometimes suboptimal results in clinical trials for advanced cancer, underscoring the need for approaches improving efficacy and safety. Six implantable syngeneic tumor cell lines of the Syrian hamster were used to initiate TIL cultures. TIL generated from tumor fragments cultured in human interleukin-2 (IL-2) for 10 d were adoptively transferred into tumor-bearing hamsters with concomitant intratumoral injections of oncolytic adenovirus (Ad5-D24) for the assessment of antitumor efficacy. Pancreatic cancer (HapT1) and melanoma (RPMI 1846) TIL exhibited potent and tumor-specific cytotoxicity in effector-to-target (E/T) assays. MHC Class I blocking abrogated the cell killing of RPMI 1846 TIL, indicating cytotoxic CD8(+) T-cell activity. When TIL were combined with Ad5-D24 in vitro, HapT1 tumor cell killing was significantly enhanced over single agents. In vivo, the intratumoral administration of HapT1 TIL and Ad5-D24 resulted in improved tumor growth control compared with either treatment alone. Additionally, splenocytes derived from animals treated with the combination of Ad5-D24 and TIL killed autologous tumor cells more efficiently than monotherapy-derived splenocytes, suggesting that systemic antitumor immunity was induced. For the first time, TIL of the Syrian hamster have been cultured, characterized and used therapeutically together with oncolytic adenovirus for enhancing the efficacy of TIL therapy. Our results support human translation of oncolytic adenovirus as an enabling technology for adoptive T-cell therapy of solid tumors.

  3. Syngeneic syrian hamster tumors feature tumor-infiltrating lymphocytes allowing adoptive cell therapy enhanced by oncolytic adenovirus in a replication permissive setting.

    PubMed

    Siurala, Mikko; Vähä-Koskela, Markus; Havunen, Riikka; Tähtinen, Siri; Bramante, Simona; Parviainen, Suvi; Mathis, J Michael; Kanerva, Anna; Hemminki, Akseli

    2016-05-01

    Adoptive transfer of tumor-infiltrating lymphocytes (TIL) has shown promising yet sometimes suboptimal results in clinical trials for advanced cancer, underscoring the need for approaches improving efficacy and safety. Six implantable syngeneic tumor cell lines of the Syrian hamster were used to initiate TIL cultures. TIL generated from tumor fragments cultured in human interleukin-2 (IL-2) for 10 d were adoptively transferred into tumor-bearing hamsters with concomitant intratumoral injections of oncolytic adenovirus (Ad5-D24) for the assessment of antitumor efficacy. Pancreatic cancer (HapT1) and melanoma (RPMI 1846) TIL exhibited potent and tumor-specific cytotoxicity in effector-to-target (E/T) assays. MHC Class I blocking abrogated the cell killing of RPMI 1846 TIL, indicating cytotoxic CD8(+) T-cell activity. When TIL were combined with Ad5-D24 in vitro, HapT1 tumor cell killing was significantly enhanced over single agents. In vivo, the intratumoral administration of HapT1 TIL and Ad5-D24 resulted in improved tumor growth control compared with either treatment alone. Additionally, splenocytes derived from animals treated with the combination of Ad5-D24 and TIL killed autologous tumor cells more efficiently than monotherapy-derived splenocytes, suggesting that systemic antitumor immunity was induced. For the first time, TIL of the Syrian hamster have been cultured, characterized and used therapeutically together with oncolytic adenovirus for enhancing the efficacy of TIL therapy. Our results support human translation of oncolytic adenovirus as an enabling technology for adoptive T-cell therapy of solid tumors. PMID:27467954

  4. Polycystic ovary syndrome

    MedlinePlus

    Polycystic ovaries; Polycystic ovary disease; Stein-Leventhal syndrome; Polyfollicular ovarian disease; PCOS ... RL, Barnes RB, Ehrmann DA. Hyperandrogenism, hirsuitism, and polycystic ovary syndrome. In: Jameson JL, De Groot LJ, de Kretser ...

  5. Non-thermal effects of 2.45 GHz microwaves on spindle assembly, mitotic cells and viability of Chinese hamster V-79 cells.

    PubMed

    Ballardin, Michela; Tusa, Ignazia; Fontana, Nunzia; Monorchio, Agostino; Pelletti, Chiara; Rogovich, Alessandro; Barale, Roberto; Scarpato, Roberto

    2011-11-01

    The production of mitotic spindle disturbances and activation of the apoptosis pathway in V79 Chinese hamster cells by continuous 2.45 GHz microwaves exposure were studied, in order to investigate possible non-thermal cell damage. We demonstrated that microwave (MW) exposure at the water resonance frequency was able to induce alteration of the mitotic apparatus and apoptosis as a function of the applied power densities (5 and 10mW/cm(2)), together with a moderate reduction in the rate of cell division. After an exposure time of 15 min the proportion of aberrant spindles and of apoptotic cells was significantly increased, while the mitotic index decreased as well, as compared to the untreated V79 cells. Additionally, in order to understand if the observed effects were due to RF exposure per se or to a thermal effect, V79 cells were also treated in thermostatic bath mimicking the same temperature increase recorded during microwave emission. The effect of temperature on the correct assembly of mitotic spindles was negligible up to 41°C, while apoptosis was induced only when the medium temperature achieved 40°C, thus exceeding the maximum value registered during MW exposure. We hypothesise that short-time MW exposures at the water resonance frequency cause, in V79 cells, reversible alterations of the mitotic spindle, this representing, in turn, a pro-apoptotic signal for the cell line.

  6. The effects of differential polyadenylation on expression of the dihydrofolate reductase-encoding gene in Chinese hamster lung cells.

    PubMed

    Yang, H; Hussain, A; Melera, P W

    1995-10-01

    Three differently sized mRNAs are expressed from each of two DHFR (encoding dihydrofolate reductase) alleles present in the Chinese hamster lung (CHL) cell line, DC-3F. The relative abundancy of the transcripts produced from each allele differs dramatically as a result of differential utilization of the multiple poly(A) sites present in the DHFR DHFR gene and a genetic polymorphism located within the third poly(A) signal of one allele. We sought to determine whether such differences in polyadenylation affect the steady-state levels of DHFR and mRNAs expressed from either allele and, in a more general sense, to ask whether differences in 3' end RNA processing in a gene containing multiple poly(A) sites affects the final level of gene expression. An SV40 promoter-based transient expression system producing chimeric cat::DHFR transcripts was developed to regenerate the in vivo mRNA polyadenylation patterns associated with each of the two DHFR alleles. The results demonstrate that the total amount of polyadenylated RNA expressed from each of these constructs in vitro is the same regardless of the differential utilization of the poly(A) signals that occurs between them. Moreover, measurement of the individual turnover rates of the DHFR mRNAs expressed in vivo from each allele, as determined by pulse-chase labeling and actinomycin D inhibition studies, revealed no significant allele-specific differences in transcript half-lives. Finally, measuring the steady-state levels of DHFR poly(A)+ mRNA in parental DC-3F cells demonstrated that both alleles are expressed to the same extent during normal growth. Thus, even though dramatic allele-specific differences in 3' end processing of DHFR transcripts occur in vivo, such differences do not appear to influence the steady-state levels of DHFR gene expression. PMID:7590264

  7. Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary.

    PubMed

    Parte, Seema; Bhartiya, Deepa; Telang, Jyoti; Daithankar, Vinita; Salvi, Vinita; Zaveri, Kusum; Hinduja, Indira

    2011-08-01

    The present study was undertaken to detect, characterize, and study differentiation potential of stem cells in adult rabbit, sheep, monkey, and menopausal human ovarian surface epithelium (OSE). Two distinct populations of putative stem cells (PSCs) of variable size were detected in scraped OSE, one being smaller and other similar in size to the surrounding red blood cells in the scraped OSE. The smaller 1-3 μm very small embryonic-like PSCs were pluripotent in nature with nuclear Oct-4 and cell surface SSEA-4, whereas the bigger 4-7 μm cells with cytoplasmic localization of Oct-4 and minimal expression of SSEA-4 were possibly the tissue committed progenitor stem cells. Pluripotent gene transcripts of Oct-4, Oct-4A, Nanog, Sox-2, TERT, and Stat-3 in human and sheep OSE were detected by reverse transcriptase-polymerase chain reaction. The PSCs underwent spontaneous differentiation into oocyte-like structures, parthenote-like structures, embryoid body-like structures, cells with neuronal-like phenotype, and embryonic stem cell-like colonies, whereas the epithelial cells transformed into mesenchymal phenotype by epithelial-mesenchymal transition in 3 weeks of OSE culture. Germ cell markers like c-Kit, DAZL, GDF-9, VASA, and ZP4 were immuno-localized in oocyte-like structures. In conclusion, as opposed to the existing view of OSE being a bipotent source of oocytes and granulosa cells, mammalian ovaries harbor distinct very small embryonic-like PSCs and tissue committed progenitor stem cells population that have the potential to develop into oocyte-like structures in vitro, whereas mesenchymal fibroblasts appear to form supporting granulosa-like somatic cells. Research at the single-cell level, including complete gene expression profiling, is required to further confirm whether postnatal oogenesis is a conserved phenomenon in adult mammals.

  8. Benzo(a)pyrene metabolites: formation in rat liver cell-culture lines, binding to macromolecules, and mutagenesis in V79 hamster cells

    SciTech Connect

    Selkirk, J.K.; MacLeod, M.C.; Kuroki, T.; Drevon, C.; Piccoli, C.; Montesano, R.

    1982-01-01

    Benzo(a)pyrene was metabolized in liver cell lines derived from BD-IV and BD-VI rats which included several chemically-transformed lines (IAR-6-1; IAR-19; IAR-28), one spontaneous transformant (IAR-27) as well as one nonmalignant line (IAR-20). Cultures were treated with tritiated benzo(a)pyrene over a 5-day period. The cells and medium were extracted with ethyl acetate and the distribution between organic-soluble and water-soluble metabolites determined. Organic-soluble metabolites consisting of dihydrodiols, phenols and quinones were determined by high-pressure liquid chromatography, and macromolecular binding of BP to each cell line was measured over a 24-h period. Comparisons between binding and overall metabolism were not directly proportional in these liver cell lines. However, there was a positive correlation for benzo(a)pyrene mutagenesis in the V-79 hamster cell assay with 8-azaguanine as a marker when the cell lines with the highest (IAR-20) and lowest (IAR-27) metabolic competence were used as activating cell layers.

  9. Stable expression of rat cytochrome P-450IIB1 cDNA in Chinese hamster cells (V79) and metabolic activation of aflatoxin B sub 1

    SciTech Connect

    Doehmer, J.; Dogra, S.; Friedberg, T.; Monier, S.; Adesnik, M.; Glatt, H.; Oesch, F. )

    1988-08-01

    V79 Chinese hamster fibroblasts are widely used for mutagenicity testing but have the serious limitation that they do not express cytochromes P-450, which are needed for the activation of many promutagens to mutagenic metabolites. A full-length cDNA clone encoding the monooxygenase cytochrome P-450IIB1 under control of the simian virus 40 early promoter was constructed and cointroduced with the selection marker neomycin phosphotransferase (conferring resistance to G418) into V79 Chinese hamster cells. G418-resistant cells were selected, established as cell lines, and tested for cytochrome P-450IIB1 expression and enzymatic activity. Two cell lines (SD1 and SD3) were found that stably produce cytochrome P-450IIB1. Although purified cytochromes P-450 possess monooxygenase activity only after reconstitution with cytochrome P-450 reductase and phospholipid, the gene product of the construct exhibited this activity. This implies that the gene product is intracellularly localized in a way that allows access to the required components. If compared with V79 cells, the mutation rate for the hypoxanthine phosphoribosyltranferase (HPRT) locus in SD1 cells is markedly increased when exposed to aflatoxin B{sub 1}, which is activated by this enzyme.

  10. Down-regulation of membrana granulosa cell gap junctions is correlated with irreversible commitment to resume meiosis in golden Syrian hamster oocytes.

    PubMed

    Racowsky, C; Baldwin, K V; Larabell, C A; DeMarais, A A; Kazilek, C J

    1989-08-01

    One of the currently popular hypotheses for the regulation of meiotic resumption in mammalian oocytes proposes that the preovulatory surge of luteinizing hormone causes down-regulation of follicular gap junctions, which in turn disrupts transfer of a meiotic arrester from the somatic cells into the oocyte. The present study has investigated this hypothesis by examining the integrity of membrana granulosa cell gap junctions during the period of irreversible commitment to maturation of golden Syrian hamster oocytes in vivo. Our results have revealed a significant progressive decrease in the fractional area of cell surface occupied by gap junction membrane with increasing percentage of oocytes irreversibly committed to mature (1.946% and 0.921% fractional gap junction area at 0% and 100% oocytes irreversibly committed to mature, respectively, P less than 0.05). This net loss of membrana granulosa cell gap junctions from the cell surface was accompanied by a significant decrease in density of gap junction particles, whether they were arranged in rectilinear or non-rectilinear packing patterns. Furthermore, the number of gap junction particles per unit area of surface membrane scanned also underwent a significant progressive decrease with increasing percentage of oocytes irreversibly committed to mature. These data with the hamster are consistent with the hypothesis that down-regulation of membrana granulosa cell gap junctions may be of central importance in the regulation of gonadotropic stimulation of meiotic resumption in mammalian oocytes.

  11. Protective Effect of Boric Acid on Oxidative DNA Damage In Chinese Hamster Lung Fibroblast V79 Cell Lines

    PubMed Central

    Yılmaz, Sezen; Ustundag, Aylin; Cemiloglu Ulker, Ozge; Duydu, Yalcın

    2016-01-01

    Objective Many studies have been published on the antioxidative effects of boric acid (BA) and sodium borates in in vitro studies. However, the boron (B) concentrations tested in these in vitro studies have not been selected by taking into account the realistic blood B concentrations in humans due to the lack of comprehensive epidemiological studies. The recently published epidemiological studies on B exposure conducted in China and Turkey provided blood B concentrations for both humans in daily life and workers under extreme exposure conditions in occupational setting. The results of these studies have made it possible to test antioxidative effects of BA in in vitro studies within the concentra- tion range relevant to humans. The aim of this study was to investigate the protective ef- fects of BA against oxidative DNA damage in V79 (Chinese hamster lung fibroblast) cells. The concentrations of BA tested for its protective effect was selected by taking the blood B concentrations into account reported in previously published epidemiological studies. Therefore, the concentrations of BA tested in this study represent the exposure levels for humans in both daily life and occupational settings. Materials and Methods In this experimental study, comet assay and neutral red uptake (NRU) assay methods were used to determinacy to toxicity and genotoxicity of BA and hydrogen peroxide (H2O2). Results The results of the NRU assay showed that BA was not cytotoxic within the tested concentrations (3, 10, 30, 100 and 200 µM). These non-cytotoxic concentrations were used for comet assay. BA pre-treatment significantly reduced (P<0.05, one-way ANOVA) the DNA damaging capacity of H2O2 at each tested BA concentrations in V79 cells. Conclusion Consequently, pre-incubation of V79 cells with BA has significantly reduced the H2O2-induced oxidative DNA damage in V79 cells. The protective effect of BA against oxidative DNA damage in V79 cells at 5, 10, 50, 100 and 200 μM (54, 108, 540

  12. Bone morphogenetic protein 2 promotes primordial follicle formation in the ovary

    PubMed Central

    Chakraborty, Prabuddha; Roy, Shyamal K.

    2015-01-01

    Primordial follicles (PF) are formed when somatic cells differentiate into flattened pregranulosa cells, invaginate into the oocyte nests and encircle individual oocytes. We hypothesize that BMP2 regulates PF formation by promoting the transition of germ cells into oocytes and somatic cells into pregranulosa cells. E15 hamster ovaries were cultured for 8 days corresponding to postnatal day 8 (P8) in vivo, with or without BMP2, and the formation of PF was examined. BMP2 was expressed in the oocytes as well as ovarian somatic cells during development. BMP2 exposure for the first two days or the last two days or the entire 8 days of culture led to increase in PF formation suggesting that BMP2 affected both germ cell transition and somatic cell differentiation. Whereas an ALK2/3 inhibitor completely blocked BMP2-induced PF formation, an ALK2-specific inhibitor was partially effective, suggesting that BMP2 affected PF formation via both ALK2 and ALK3. BMP2 also reduced apoptosis in vitro. Further, more meiotic oocytes were present in BMP2 exposed ovaries. In summary, the results provide the first evidence that BMP2 regulates primordial follicle formation by promoting germ cell to oocyte transition and somatic cell to pre-granulosa cells formation and it acts via both ALK2 and ALK3. PMID:26219655

  13. Bone morphogenetic protein 2 promotes primordial follicle formation in the ovary.

    PubMed

    Chakraborty, Prabuddha; Roy, Shyamal K

    2015-01-01

    Primordial follicles (PF) are formed when somatic cells differentiate into flattened pregranulosa cells, invaginate into the oocyte nests and encircle individual oocytes. We hypothesize that BMP2 regulates PF formation by promoting the transition of germ cells into oocytes and somatic cells into pregranulosa cells. E15 hamster ovaries were cultured for 8 days corresponding to postnatal day 8 (P8) in vivo, with or without BMP2, and the formation of PF was examined. BMP2 was expressed in the oocytes as well as ovarian somatic cells during development. BMP2 exposure for the first two days or the last two days or the entire 8 days of culture led to increase in PF formation suggesting that BMP2 affected both germ cell transition and somatic cell differentiation. Whereas an ALK2/3 inhibitor completely blocked BMP2-induced PF formation, an ALK2-specific inhibitor was partially effective, suggesting that BMP2 affected PF formation via both ALK2 and ALK3. BMP2 also reduced apoptosis in vitro. Further, more meiotic oocytes were present in BMP2 exposed ovaries. In summary, the results provide the first evidence that BMP2 regulates primordial follicle formation by promoting germ cell to oocyte transition and somatic cell to pre-granulosa cells formation and it acts via both ALK2 and ALK3. PMID:26219655

  14. Genomic instability induced by α-pinene in Chinese hamster cell line.

    PubMed

    Catanzaro, Irene; Caradonna, Fabio; Barbata, Giusi; Saverini, Marghereth; Mauro, Maurizio; Sciandrello, Giulia

    2012-07-01

    Here, we report the effects of exposure of mammalian cells to α-pinene, a bicyclic monoterpene used in insecticides, solvents and perfumes. Morphological analysis, performed in V79-Cl3 cells exposed for 1 h to increasing concentrations (25 up to 50 μM) of α-pinene, indicated a statistically significant increase in micronucleated and multinucleated cell frequencies; apoptotic cells were seen at 40 and 50 μM. This monoterpene caused genomic instability by interfering with mitotic process; in fact, 50% of cells (versus 19% of control cells) showed irregular mitosis with multipolar or incorrectly localised spindles. Cytogenetic analysis demonstrated high-frequency hypodiploid metaphases as well as endoreduplicated cells and chromosome breaks. Clastogenic damage was prevalent over aneuploidogenic damage as demonstrated by the higher proportion of kinetochore-negative micronuclei. Alkaline comet confirmed that monoterpene exposure caused DNA lesions in a concentration-dependent manner. This damage probably arose by increased reactive oxygen species (ROS) production. In order to assess the generation of ROS, the cells were incubated with CM-H(2)DCFDA and then analysed by flow cytometry. Results demonstrated an increase in fluorescence intensity after α-pinene treatment indicating increased oxidative stress. On the whole, these findings strongly suggest that α-pinene is able to compromise genome stability preferentially through mitotic alterations and to damage DNA through ROS production. PMID:22379123

  15. SV40 lymphomagenesis in Syrian golden hamsters

    PubMed Central

    McNees, Adrienne L.; Vilchez, Regis A.; Heard, Tiffany C.; Sroller, Vojtech; Wong, Connie; Herron, Alan J.; Hamilton, Mary J.; Davis, William C.; Butel, Janet S.

    2013-01-01

    Simian virus 40 (SV40) isolates differ in oncogenic potential in Syrian golden hamsters following intraperitoneal inoculation. Here we describe the effect of intravenous exposure on tumor induction by SV40. Strains SVCPC (simple regulatory region) and VA45-54(2E) (complex regulatory region) were highly oncogenic following intravenous inoculation, producing a spectrum of tumor types. Three lymphoma cell lines were established; all expressed SV40 T-antigen, were immortalized for growth in culture, and were tumorigenic following transplantation in vivo. New monoclonal antibodies directed against hamster lymphocyte surface antigens are described. The cell lines expressed MHC class II and macrophage markers and were highly phagocytic, indicating a histiocytic origin. Many hamsters that remained tumor-free developed SV40 T-antigen antibodies, suggesting that viral replication occurred. This study shows that route of exposure influences the pathogenesis of SV40-mediated carcinogenesis, that SV40 strain VA45-54(2E) is lymphomagenic in hamsters, that hamster lymphoid cells of histiocytic origin can be transformed in vivo and established in culture, and that reagents to hamster leukocyte differentiation molecules are now available. PMID:19038412

  16. The role of components of the chromatin modification machinery in carcinogenesis of clear cell carcinoma of the ovary (Review).

    PubMed

    Shigetomi, Hiroshi; Oonogi, Akira; Tsunemi, Taihei; Tanase, Yasuhito; Yamada, Yoshihiko; Kajihara, Hirotaka; Yoshizawa, Yoriko; Furukawa, Naoto; Haruta, Shoji; Yoshida, Shozo; Sado, Toshiyuki; Oi, Hidekazu; Kobayashi, Hiroshi

    2011-07-01

    Recent data have provided information regarding the profiles of clear cell carcinoma of the ovary (CCC) with adenine-thymine rich interactive domain 1A (ARID1A) mutations. The purpose of this review was to summarize current knowledge regarding the molecular mechanisms involved in CCC tumorigenesis and to describe the central role played by the aberrant chromatin remodeling. The present article reviews the English-language literature for biochemical studies on the ARID1A mutation and chromatin remodeling in CCC. ARID1A is responsible for directing the SWI/SNF complex to target promoters and regulates the transcription of certain genes by altering the chromatin structure around those genes. The mutation spectrum of ARID1A was enriched for C to T transitions. CCC and clear cell renal cell carcinoma (ccRCC) resemble each other pathogenetically. Dysfunction of the ARID1A protein, which occurs with VHL mutations in ccRCC, is responsible for loss of the assembly of the ARID1A-mediated histone H2B complex. Therefore, ARID1A acts as a chromatin remodeling modifier, which stimulates cell signaling that can lead to cell cycle arrest and cell death in the event of DNA damage. The dysfunction of ARID1A may result in susceptibility to CCC carcinogenesis through a defect in the repair or replication of damaged DNA. PMID:22848233

  17. Abundant primary piRNAs, endo-siRNAs, and microRNAs in a Drosophila ovary cell line.

    PubMed

    Lau, Nelson C; Robine, Nicolas; Martin, Raquel; Chung, Wei-Jen; Niki, Yuzo; Berezikov, Eugene; Lai, Eric C

    2009-10-01

    Piwi proteins, a subclass of Argonaute-family proteins, carry approximately 24-30-nt Piwi-interacting RNAs (piRNAs) that mediate gonadal defense against transposable elements (TEs). We analyzed the Drosophila ovary somatic sheet (OSS) cell line and found that it expresses miRNAs, endogenous small interfering RNAs (endo-siRNAs), and piRNAs in abundance. In contrast to intact gonads, which contain mixtures of germline and somatic cell types that express different Piwi-class proteins, OSS cells are a homogenous somatic cell population that expresses only PIWI and primary piRNAs. Detailed examination of its TE-derived piRNAs and endo-siRNAs revealed aspects of TE defense that do not rely upon ping-pong amplification. In particular, we provide evidence that a subset of piRNA master clusters, including flamenco, are specifically expressed in OSS and ovarian follicle cells. These data indicate that the restriction of certain TEs in somatic gonadal cells is largely mediated by a primary piRNA pathway. PMID:19541914

  18. FSH-FSHR3-stem cells in ovary surface epithelium: basis for adult ovarian biology, failure, aging, and cancer.

    PubMed

    Bhartiya, Deepa; Singh, Jarnail

    2015-01-01

    Despite extensive research, genetic basis of premature ovarian failure (POF) and ovarian cancer still remains elusive. It is indeed paradoxical that scientists searched for mutations in FSH receptor (FSHR) expressed on granulosa cells, whereas more than 90% of cancers arise in ovary surface epithelium (OSE). Two distinct populations of stem cells including very small embryonic-like stem cells (VSELs) and ovarian stem cells (OSCs) exist in OSE, are responsible for neo-oogenesis and primordial follicle assembly in adult life, and are modulated by FSH via its alternatively spliced receptor variant FSHR3 (growth factor type 1 receptor acting via calcium signaling and the ERK/MAPK pathway). Any defect in FSH-FSHR3-stem cell interaction in OSE may affect folliculogenesis and thus result in POF. Ovarian aging is associated with a compromised microenvironment that does not support stem cell differentiation into oocytes and further folliculogenesis. FSH exerts a mitogenic effect on OSE and elevated FSH levels associated with advanced age may provide a continuous trigger for stem cells to proliferate resulting in cancer, thus supporting gonadotropin theory for ovarian cancer. Present review is an attempt to put adult ovarian biology, POF, aging, and cancer in the perspective of FSH-FSHR3-stem cell network that functions in OSE. This hypothesis is further supported by the recent understanding that: i) cancer is a stem cell disease and OSE is the niche for ovarian cancer stem cells; ii) ovarian OCT4-positive stem cells are regulated by FSH; and iii) OCT4 along with LIN28 and BMP4 are highly expressed in ovarian cancers.

  19. Fixation of potentially lethal radiation damage in Chinese hamster cells by anisotonic solutions, polyamines, and DMSO

    SciTech Connect

    Raaphorst, G.P.; Azzam, E.I.

    1981-04-01

    The effect of anisotonic solutions, dimethyl sulfoxide (DMSO), and polyamines on the fixation of potentially lethal damage (PLD) was examined. Exposure to anisotonic solutions after irradiation resulted in large decreases in cell survival in a radiation dose-dependent manner. Maximum increase in survival due to repair of PLD in V79 cells after a 1000-rad dose was about a factor of 4 while maximum decrease in survival due to fixation of damage was greater than 1000 times for some of the salt treatments tested. Irradiation at 0/sup 0/C resulted in more damage fixation by 0.05 or 1.5 M NaCl than irradiation at 37/sup 0/C. Fixation of PLD was also observed when cells were exposed to 1.0 or 1.0 M DMSO or 0.1 mM spermine or spermidine solutions. Fixation occurred in both exponentially growing cells and plateau-phase cells. The data demonstrate that a large amount of PLD which is normally not expressed can be converted to lethal damage by a variety of postirradiation treatments and that the PLD repair capacity of the cell may be very large.

  20. Transcription coupled repair deficiency results in increased chromosomal aberrations and apoptotic death in the UV61 cell line, the Chinese hamster homologue of Cockayne's syndrome B.

    PubMed

    Proietti De Santis, L; Garcia, C L; Balajee, A S; Brea Calvo, G T; Bassi, L; Palitti, F

    2001-03-01

    Transcription coupled repair (TCR), a special sub-pathway of nucleotide excision repair (NER), removes transcription blocking lesions rapidly from the transcribing strand of active genes. In this study, we have evaluated the importance of the TCR pathway in the induction of chromosomal aberrations and apoptosis in isogenic Chinese hamster cell lines, which differ in TCR efficiency. AA8 is the parental cell line, which is proficient in the genome overall repair of UV-C radiation induced 6-4 photoproducts (6-4 PP) and the repair of cyclobutane pyrimidine dimer (CPD) from the transcribing strand of active genes. UV61 cells (hamster homologue of human Cockayne's syndrome (CS) group B cells) originally isolated from AA8, exhibit proficient repair of 6-4 PP but are deficient in CPD removal by the TCR pathway. Upon UV-C irradiation of cells in G1-phase, UV61 showed a dramatic increase in apoptotic response as compared to AA8 cells. Abolition of TCR by treatment with alpha-amanitin (an inhibitor of RNA polymerase II) in AA8 cells also resulted in an elevated apoptotic response like that observed in UV61 cells treated with UV alone. This suggests that the lack of TCR is largely responsible for increased apoptotic response in UV61 cells. Furthermore, the chromosomal aberrations and sister chromatid exchange (SCE) induced by UV were also found to be higher in UV61 cells than in TCR proficient AA8 cells. This study shows that the increased chromosomal aberrations and apoptotic death in UV61 cells is due to their inability to remove CPD from the transcribing strand of active genes and suggests a protective role for TCR in the prevention of both chromosomal aberrations and apoptosis induced by DNA damage. Furthermore, flow cytometry analysis and time-course appearance of apoptotic cells suggest that the conversion of UV-DNA damage into chromosomal aberrations precedes and determines the apoptotic process. PMID:11182543

  1. Cytotoxic and genotoxic effects of water and sediment samples from gypsum mining area in channel catfish ovary (CCO) cells.

    PubMed

    Ternjej, Ivančica; Gaurina Srček, Višnja; Mihaljević, Zlatko; Kopjar, Nevenka

    2013-12-01

    Man-made activities such as mining generate certain amounts of metal contaminated wastes which can reach aquatic environment and cause the serious effects on different organisms and ecosystem. Chemical analysis of the environmental samples is the most direct approach to reveal their pollution status but it cannot always provide information on biological effects to different organisms, including fish. This study was aimed to investigate the in vitro cytotoxicity and genotoxicity of water and sediment samples from gypsum mining area using the channel catfish ovary (CCO) cell line. Results obtained by the WST-1 assay and alkaline comet assay revealed that exposure of CCO cells to the same concentrations of contaminated water and sediment samples caused significant decrease in cell viability and increased DNA damages. Chemical analysis of water and sediment samples showed that increased concentrations of strontium, aluminum and iron were mainly responsible for the observed cytotoxic and genotoxic effects in CCO cells. The study suggested that fish CCO cells could be useful biological test-system for water and sediment cytotoxicity and genotoxicity assessments.

  2. Effect of Saw Palmetto Supplements on Androgen-Sensitive LNCaP Human Prostate Cancer Cell Number and Syrian Hamster Flank Organ Growth

    PubMed Central

    Opoku-Acheampong, Alexander B.; Penugonda, Kavitha; Lindshield, Brian L.

    2016-01-01

    Saw palmetto supplements (SPS) are commonly consumed by men with prostate cancer. We investigated whether SPS fatty acids and phytosterols concentrations determine their growth-inhibitory action in androgen-sensitive LNCaP cells and hamster flank organs. High long-chain fatty acids-low phytosterols (HLLP) SPS ≥ 750 nM with testosterone significantly increased and ≥500 nM with dihydrotestosterone significantly decreased LNCaP cell number. High long-chain fatty acids-high phytosterols (HLHP) SPS ≥ 500 nM with dihydrotestosterone and high medium-chain fatty acids-low phytosterols (HMLP) SPS ≥ 750 nM or with androgens significantly decreased LNCaP cell number (n = 3; p < 0.05). Five- to six-week-old, castrated male Syrian hamsters were randomized to control (n = 4), HLLP, HLHP, and HMLP SPS (n = 6) groups. Testosterone or dihydrotestosterone was applied topically daily for 21 days to the right flank organ; the left flank organ was treated with ethanol and served as the control. Thirty minutes later, SPS or ethanol was applied to each flank organ in treatment and control groups, respectively. SPS treatments caused a notable but nonsignificant reduction in the difference between left and right flank organ growth in testosterone-treated SPS groups compared to the control. The same level of inhibition was not seen in dihydrotestosterone-treated SPS groups (p < 0.05). Results may suggest that SPS inhibit 5α-reductase thereby preventing hamster flank organ growth. PMID:27272436

  3. Effect of Saw Palmetto Supplements on Androgen-Sensitive LNCaP Human Prostate Cancer Cell Number and Syrian Hamster Flank Organ Growth.

    PubMed

    Opoku-Acheampong, Alexander B; Penugonda, Kavitha; Lindshield, Brian L

    2016-01-01

    Saw palmetto supplements (SPS) are commonly consumed by men with prostate cancer. We investigated whether SPS fatty acids and phytosterols concentrations determine their growth-inhibitory action in androgen-sensitive LNCaP cells and hamster flank organs. High long-chain fatty acids-low phytosterols (HLLP) SPS ≥ 750 nM with testosterone significantly increased and ≥500 nM with dihydrotestosterone significantly decreased LNCaP cell number. High long-chain fatty acids-high phytosterols (HLHP) SPS ≥ 500 nM with dihydrotestosterone and high medium-chain fatty acids-low phytosterols (HMLP) SPS ≥ 750 nM or with androgens significantly decreased LNCaP cell number (n = 3; p < 0.05). Five- to six-week-old, castrated male Syrian hamsters were randomized to control (n = 4), HLLP, HLHP, and HMLP SPS (n = 6) groups. Testosterone or dihydrotestosterone was applied topically daily for 21 days to the right flank organ; the left flank organ was treated with ethanol and served as the control. Thirty minutes later, SPS or ethanol was applied to each flank organ in treatment and control groups, respectively. SPS treatments caused a notable but nonsignificant reduction in the difference between left and right flank organ growth in testosterone-treated SPS groups compared to the control. The same level of inhibition was not seen in dihydrotestosterone-treated SPS groups (p < 0.05). Results may suggest that SPS inhibit 5α-reductase thereby preventing hamster flank organ growth. PMID:27272436

  4. Carbohydrate Structure of Sindbis Virus Glycoprotein E2 from Virus Grown in Hamster and Chicken Cells

    PubMed Central

    Burke, David; Keegstra, Kenneth

    1979-01-01

    Sindbis virus was used as a probe to examine glycosylation processes in two different species of cultured cells. Parallel studies were carried out analyzing the carbohydrate added to Sindbis glycoprotein E2 when the virus was grown in chicken embryo cells and BHK cells. The Pronase glycopeptides of Sindbis glycoprotein E2 were purified by a combination of ion-exchange and gel filtration chromatography. Four glycopeptides were resolved, ranging in molecular weight from 1,800 to 2,700. Structures are proposed for each of the four glycopeptides, based on data obtained by quantitative composition analyses, methylation analyses, and degradation of the glycopeptides using purified exo- and endoglycosidases. The largest three glycopeptides (S1, S2, and S3) have similar structures but differ in the extent of sialylation. All three contain N-acetylglucosamine, mannose, galactose, and fucose, in a structure similar to oligosaccharides found on other glycoproteins. Glycopeptide S1 has two residues of sialic acid, whereas glycopeptides S2 and S3 contain 1 and 0 residues of sialic acid, respectively. The smallest glycopeptide, S4, contains only N-acetyglucosamine and mannose, and is also similar to mannose-rich oligosaccharides found on other glycoproteins. Each of the complex glycopeptides (S1, S2, or S3) from virus grown in BHK cells is indistinguishable from the corresponding glycopeptides derived from virus grown in chicken cells. Glycopeptide S4 is also very similar in size, composition, and sugar linkages from virus derived from the two hosts. These results suggest that chicken cells and BHK cells have similar glycosylation mechanisms and glycosylate Sindbis glycoprotein E2 in nearly identical ways. PMID:430605

  5. Experimental scrapie in golden Syrian hamsters: temporal comparison of in vitro cell-fusing activity with brain infectivity and histopathological changes.

    PubMed Central

    Moreau-Dubois, M C; Brown, P; Rohwer, R G; Masters, C L; Franko, M; Gajdusek, D C

    1982-01-01

    Golden Syrain hamsters were inoculated intracerebrally with the hamster-adapted 263K strain of scrapie virus, and the evolution of in vitro cell fusing activity induced by brain suspensions was compared with brain infectivity titers and histological changes. Cell-fusing activity abruptly appeared 4 weeks after inoculation, 1 week before the earliest detectable histopathological changes, at an infectivity level of 7.6 log 50% lethal doses per g of brain. Cell-fusing activity was sustained throughout the remaining 4 weeks of the incubation period and the subsequent 1- to 3-week stage of clinical illness but did not increase with the logarithmic progression of infectivity, which reached a level of 11 log 50% lethal doses per g in the agonal stage of disease. Gliosis was most sensitively detected by a monoclonal antibody reacting with astrocyte intermediate filaments in an indirect immunofluorescence test, anticipating histological recognition of gliosis and spongiform change by 1 to 2 weeks. In vitro cell-fusing activity is thus one of the earliest known biological markers (apart from infectivity itself) of experimental scrapie infection. PMID:6809626

  6. Restoration of Chinese hamster cell radiation resistance by the human repair gene ERCC-5 and progress in molecular cloning of this gene

    SciTech Connect

    Strniste, G.F.; Chen, D.J.; deBruin, D.; McCoy, L.S.; Luke, J.A.; Mudgett, J.S.; Nickols, J.W.; Okinaka, R.T.; Tesmer, J.G.; MacInnes, M.A.

    1988-01-01

    The uv-sensitive Chinese hamster cell uv-135 is being used to identify and isolate the human gene, ERCC-5, which corrects nucleotide excision repair in this incision-defective mutant. A cosmid library, constructed from a 3/sup 0/ transformant of uv-135, has been screened for transfected gpt and human Alu family sequences. An ordered physical map of overlapping positives cosmids has been determined. Molecular evidence suggests a region of this map of <40 Kbp contains the ERCC-5 gene. 10 refs., 2 figs.

  7. Equine herpesvirus type 1 tegument protein VP22 is not essential for pathogenicity in a hamster model, but is required for efficient viral growth in cultured cells

    PubMed Central

    OKADA, Ayaka; IZUME, Satoko; OHYA, Kenji; FUKUSHI, Hideto

    2015-01-01

    VP22 is a major tegument protein of Equine herpesvirus type 1 (EHV-1) that is a conserved protein among alphaherpesviruses. However, the roles of VP22 differ among each virus, and the roles of EHV-1 VP22 are still unclear. Here, we constructed an EHV-1 VP22 deletion mutant and a revertant virus to clarify the role of VP22. We found that EHV-1 VP22 was required for efficient viral growth in cultured cells, but not for virulence in a hamster model. PMID:25948053

  8. Changes in the reciprocal position of the first polar body and oocyte chromosome set in golden hamsters.

    PubMed

    Wang, Lingyan; Li, Dexue; Li, Ziyi

    2009-10-01

    The golden hamster is an attractive model organism for studying reproductive physiology, oncology, genetics and virology. In an effort to establish experimental protocols necessary for cloning golden hamsters, we examined changes in the reciprocal position of the FPB (first polar body) and chromosome set of MII (the second meiotic metaphase) oocytes of golden hamsters. Oocytes were collected under three different conditions: (i) oocyte direct recovery from the oviduct of hormonally treated donor; (ii) oocyte recovery from the oviduct of hormonally treated donor followed by 5 h/10 h in vitro culture; and (iii) oocyte recovery from ovaries of hormonally treated donors and in vitro maturation. Then oocyte recovery was performed from the oviduct of hormonally treated donors, followed by 5 h in vitro culture with colchicine and/or CB (cytochalasin B). Denuded oocytes were stained with Hoechst 33342 and propidium iodide and evaluated under a microscope. Our results demonstrate that the change in FPB position in relation to the MII oocyte chromosome set increases with age of in vivo-matured oocytes. Cumulus cells can protect the FPB of in vitro-cultured oocytes from degeneration but do not significantly affect its repositioning, and in vitro-matured oocytes age slower. The colchicine has a stronger effect on cytoplasmic protrusions of golden hamster oocytes when compared with CB. These results define conditions for changes in FPB position relative to the MII oocyte chromosome set. Early ovulated oocytes, in vitro-matured oocytes and oocytes treated with colchicine should improve the effectiveness of the cloning procedure in golden hamsters as an animal model for human diseases. PMID:18980577

  9. Tomato ovary-to-fruit transition is characterized by a spatial shift of mRNAs for cell wall invertase and its inhibitor with the encoded proteins localized to sieve elements.

    PubMed

    Palmer, William M; Ru, Lei; Jin, Ye; Patrick, John W; Ruan, Yong-Ling

    2015-02-01

    Central to understanding fruit development is to elucidate the processes mediating a successful transition from pre-pollination ovaries to newly set fruit, a key step in establishing fruit yield potential. In tomato, cell wall invertase (CWIN) LIN5 and its inhibitor INH1 are essential for fruit growth. However, the molecular and cellular basis by which they exert their roles in ovary-to-fruit transition remains unknown. To address this issue, we conducted a study focusing on ovaries and fruitlets at 2 days before and 2 days after anthesis, respectively. In situ hybridization analyses revealed that LIN5 and INH1 exhibited a dispersed expression in ovaries compared with their phloem-specific expression in fruitlets. Remarkably, LIN5 and INH1 proteins were immunologically co-localized to cell walls of sieve elements (SEs) in ovaries immediately prior to anthesis and in young fruitlets, but were undetectable in provascular bundles of younger ovaries. A burst in CWIN activity occurred during ovary-to-fruit transition. Interestingly, the ovaries, but not the fruitlets, exhibited high expression of a defective invertase, SldeCWIN1, an ortholog of which is known to enhance inhibition of INH on CWIN activity in tobacco. Imaging of a fluorescent symplasmic tracer indicated an apoplasmic phloem unloading pathway operated in ovaries, contrary to the previously observed symplasmic unloading pathway in fruit pericarp. These new data indicate that (1) a phloem-specific patterning of the CWIN and INH mRNAs is induced during ovary-to-fruit transition, and (2) LIN5 protein functions specifically in walls of SEs and increases its activity during ovary-to-fruit transition, probably to facilitate phloem unloading and to generate a glucose signal positively regulating cell division, hence fruit set. PMID:25680776

  10. Enhanced UV-induced mutagenesis in the UV61 cell line, the Chinese hamster homologue of Cockayne's syndrome B, is associated with defective transcription coupled repair of cyclobutane pyrimidine dimers.

    PubMed

    Vreeswijk, M P; Overkamp, M W; Westland, B E; van Hees-Stuivenberg, S; Vrieling, H; Zdzienicka, M Z; van Zeeland, A A; Mullenders, L H

    1998-10-21

    Cells from Cockayne's syndrome (CS) patients are hypersensitive to the cytotoxic effects of UV-irradiation and are defective in transcription coupled repair (TCR). We have examined the mutagenic consequences of impaired TCR in the Chinese hamster cell line UV61, the rodent homologue of CS complementation group B. Analysis of the two major UV-induced photolesions, cyclobutane pyrimidine dimers (CPD) and pyrimidine 6-4 pyrimidone photoproducts (6-4 PP), revealed that repair of CPD from the transcribed strand was strongly reduced in UV61 cells, but repair of 6-4 PP was indistinguishable from that in wild-type hamster cells. UV-induced mutation induction was enhanced in UV61 compared to that observed in repair proficient cells. The spectrum of UV-induced base substitutions in UV61 was clearly different from that observed in wild-type hamster cells and resembled the spectrum previously observed in nucleotide excision repair deficient hamster cells. In UV61 cells a strong strand bias for mutation induction was found; assuming that premutagenic lesions occur at dipyrimidine sequences, 76% of the mutations could be attributed to lesions in the transcribed strand. These data strongly favour the hypothesis that defective TCR of CPD is responsible for the enhanced UV-induced mutagenesis in UV61 cells. PMID:9806502

  11. Polypeptide heterogeneity of hamster and calf fibronectins.

    PubMed Central

    Pena, S D; Mills, G; Hughes, R C; Aplin, J D

    1980-01-01

    The adhesive glycoprotein fibronectin has been isolated from fresh hamster plasma by affinity chromatography on gelatin coupled to Sepharose beads by the method of Engvall & Ruoslahti [Int. J. Cancer (1979) 20, 1-5]. Polyacrylamide-gel electrophoresis of material heated in sodium dodecyl sulphate and 2-mercaptoethanol shows two prominent polypeptide subunits of approx. mol.wts. 215 000 and 200 000, with variable amounts of lower-molecular-weight fragments. The unexpected polypeptide heterogeneity of different preparations of hamster fibronectins and bovine serum fibronectin is shown to be partly an artefact and is generated during isolation and storage of purified fibronectin. Treatment of each hamster fibronectin subunit or a smaller fragment of approx. mol.wt. 140 000 with thermolysin or trypsin after radioiodination produces similar patterns of tyrpsine-containing peptides, indicating similar primary amino-acid sequences. Antibodies raised against the major subunits of hamster plasma fibronectin were coupled to Sepharose beads and used in conjunction with gelatin affinity chromatography to isolate fibronectins extracted with urea from baby-hamster kidney (BHK) cells and present in the long-term culture medium of these cells. The cell and medium fibronectins are similar to hamster plasma fibronectin in amino-acid and carbohydrate composition and also produce very similar peptide 'maps'. We conclude that the various forms of hamster fibronectins are structurally analogous in agreement with indistinguishable biological properties in mediating the substance adhesion of BKH cells [Pena & Hughes (1978) Cell Biol. Int. Rep. 3, 339-344]. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 6. Fig. 7. PMID:7458916

  12. Gelam Honey Attenuates the Oxidative Stress-Induced Inflammatory Pathways in Pancreatic Hamster Cells

    PubMed Central

    Qvist, Rajes; Mohd Yusof, Kamaruddin; Ismail, Ikram Shah

    2016-01-01

    Purpose. Type 2 diabetes consists of progressive hyperglycemia and insulin resistance, which could result from glucose toxicity, inflammatory cytokines, and oxidative stress. In the present study we investigated the effect of Gelam honey and quercetin on the oxidative stress-induced inflammatory pathways and the proinflammatory cytokines. Methods. HIT-T15 cells were cultured and preincubated with the extract of Gelam honey (20, 40, 60, and 80 μg/mL), as well as quercetin (20, 40, 60, and 80 μM), prior to stimulation by 20 and 50 mM glucose. Results. HIT-T15 cells cultured under hyperglycemic condition showed a significant increase in the inflammatory pathways by phosphorylating JNK, IKK-β, and IRS-1 at Ser307 (p < 0.05). There was a significant decrease in the phosphorylation of Akt at Ser473 (p < 0.05). Pretreatment with Gelam honey and quercetin reduced the expression of phosphorylated JNK, IKK-β, and IRS-1, thereby significantly reducing the expression of proinflammatory cytokines like TNF-α, IL-6, and IL-1β (p < 0.05). At the same time there was a significant increase in the phosphorylated Akt showing the protective effects against inflammation and insulin resistance (p < 0.05). In conclusion, our data suggest the potential use of the extract from Gelam honey and quercetin in modulating the inflammation induced insulin signaling pathways. PMID:27034691

  13. Mural nodules of clear cell carcinoma in a mucinous borderline tumor of the ovary: a case report.

    PubMed

    Allende, Daniela S; Drake, Richard D; Chen, Longwen

    2010-04-13

    Mural nodules of ovarian mucinous borderline tumors are rare. In this study, we report a case of mural nodules of clear cell carcinoma in an intestinal type mucinous borderline tumor of the ovary. The patient was a 54-years-old woman presented with back and pelvic pain for 3 months. A right-sided multiloculated ovarian mass approximately 20 cm was identified on the CT scan. CA-125 was moderately elevated. She underwent total abdominal hysterectomy with bilateral salpingo-oophorectomy and bilateral pelvic and para-aortic lymphadenectomy. Grossly, the right ovarian mass showed a multiloculated cystic mass with mucinous fluid. There were papillations in the internal surface and two mural nodules were seen. Microscopic examination revealed that the cystic mass was an intestinal type borderline mucinous tumor. The mural nodules showed a classic histology of clear cell carcinoma with tubulocystic and papillary growth patterns. This is an extremely rare case of mural nodules of clear cell carcinoma arising in a mucinous borderline tumor.

  14. Measuring the spectrum of mutation induced by nitrogen ions and protons in the human-hamster hybrid cell line A(L)C

    NASA Technical Reports Server (NTRS)

    Kraemer, S. M.; Kronenberg, A.; Ueno, A.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    2000-01-01

    Astronauts can be exposed to charged particles, including protons, alpha particles and heavier ions, during space flights. Therefore, studying the biological effectiveness of these sparsely and densely ionizing radiations is important to understanding the potential health effects for astronauts. We evaluated the mutagenic effectiveness of sparsely ionizing 55 MeV protons and densely ionizing 32 MeV/nucleon nitrogen ions using cells of two human-hamster cell lines, A(L) and A(L)C. We have previously characterized a spectrum of mutations, including megabase deletions, in human chromosome 11, the sole human chromosome in the human-hamster hybrid cell lines A(L)C and A(L). CD59(-) mutants have lost expression of a human cell surface antigen encoded by the CD59 gene located at 11p13. Deletion of genes located on the tip of the short arm of 11 (11p15.5) is lethal to the A(L) hybrid, so that CD59 mutants that lose the entire chromosome 11 die and escape detection. In contrast, deletion of the 11p15.5 region is not lethal in the hybrid A(L)C, allowing for the detection of chromosome loss or other chromosomal mutations involving 11p15.5. The 55 MeV protons and 32 MeV/nucleon nitrogen ions were each about 10 times more mutagenic per unit dose at the CD59 locus in A(L)C cells than in A(L) cells. In the case of nitrogen ions, the mutations observed in A(L)C cells were predominantly due to chromosome loss events or 11p deletions, often containing a breakpoint in the pericentromeric region. The increase in the CD59(-) mutant fraction for A(L)C cells exposed to protons was associated with either translocation of portions of 11q onto a hamster chromosome, or discontinuous or "skipping" mutations. We demonstrate here that A(L)C cells are a powerful tool that will aid in the understanding of the mutagenic effects of different types of ionizing radiation.

  15. Reevaluating the Role of Acanthamoeba Proteases in Tissue Invasion: Observation of Cytopathogenic Mechanisms on MDCK Cell Monolayers and Hamster Corneal Cells

    PubMed Central

    Omaña-Molina, Maritza; González-Robles, Arturo; Iliana Salazar-Villatoro, Lizbeth; Lorenzo-Morales, Jacob; Cristóbal-Ramos, Ana Ruth; Hernández-Ramírez, Verónica Ivonne; Talamás-Rohana, Patricia; Méndez Cruz, Adolfo René; Martínez-Palomo, Adolfo

    2013-01-01

    The morphological analysis of the cytopathic effect on MDCK cell monolayers and hamster cornea and qualitative and quantitative analyses of conditioned medium and proteases were evaluated and compared between two strains of Acanthamoeba genotype T4. Further than highlighting the biological differences found between both strains, the most important observation in this study was the fact that proteases both in total extracts and in conditioned medium are apparently not determinant in tissue destruction. An interestingly finding was that no lysis of corneal tissue was observed as it was previously suggested. These results, together with previous studies, allow us to conclude that the invasion and disruption of corneal tissue is performed by the penetration of the amoebae through cell junctions, either by the action of proteases promoting cellular separation but not by their destruction and/or a mechanical effect exerted by amoebae. Therefore, contact-dependent mechanisms in Acanthamoeba pathogenesis are more relevant than it has been previously considered. This is supported because the phagocytosis of recently detached cells as well as those attached to the corneal epithelium leads to the modification of the cellular architecture facilitating the migration and destruction of deeper layers of the corneal epithelium. PMID:23484119

  16. Replication of DNA containing 5-bromouracil can be mutagenic in Syrian hamster cells.

    PubMed Central

    Kaufman, E R

    1984-01-01

    A new protocol for inducing mutations in mammalian cells in culture by exposure to the thymidine analog 5-bromodeoxyuridine (BrdUrd) was established. This protocol, called "DNA-dependent" mutagenesis, involved the incorporation of BrdUrd into DNA under nonmutagenic conditions and the subsequent replication of the 5-bromouracil (BrUra)-containing DNA under mutagenic conditions but with no BrdUrd present in the culture medium. The mutagenic conditions were induced by allowing BrUra-containing DNA to replicate in the presence of high concentrations of thymidine. This generated high intracellular levels of dTTP and dGTP, causing nucleotide pool imbalance. The mutagenesis induced by this protocol was found to correlate with the level of BrUra substituted for thymine in DNA. PMID:6513925

  17. Cytotoxicity and genotoxicity of nanosized and microsized titanium dioxide and iron oxide particles in Syrian hamster embryo cells.

    PubMed

    Guichard, Yves; Schmit, Julien; Darne, Christian; Gaté, Laurent; Goutet, Michèle; Rousset, Davy; Rastoix, Olivier; Wrobel, Richard; Witschger, Olivier; Martin, Aurélie; Fierro, Vanessa; Binet, Stéphane

    2012-07-01

    Potential differences in the toxicological properties of nanosized and non-nanosized particles have been notably pointed out for titanium dioxide (TiO(2)) particles, which are currently widely produced and used in many industrial areas. Nanoparticles of the iron oxides magnetite (Fe(3)O(4)) and hematite (Fe(2)O(3)) also have many industrial applications but their toxicological properties are less documented than those of TiO(2). In the present study, the in vitro cytotoxicity and genotoxicity of commercially available nanosized and microsized anatase TiO(2), rutile TiO(2), Fe(3)O(4), and Fe(2)O(3) particles were compared in Syrian hamster embryo (SHE) cells. Samples were characterized for chemical composition, primary particle size, crystal phase, shape, and specific surface area. In acellular assays, TiO(2) and iron oxide particles were able to generate reactive oxygen species (ROS). At the same mass dose, all nanoparticles produced higher levels of ROS than their microsized counterparts. Measurement of particle size in the SHE culture medium showed that primary nanoparticles and microparticles are present in the form of micrometric agglomerates of highly poly-dispersed size. Uptake of primary particles and agglomerates by SHE exposed for 24 h was observed for all samples. TiO(2) samples were found to be more cytotoxic than iron oxide samples. Concerning primary size effects, anatase TiO(2), rutile TiO(2), and Fe(2)O(3) nanoparticles induced higher cytotoxicity than their microsized counterparts after 72 h of exposure. Over this treatment time, anatase TiO(2) and Fe(2)O(3) nanoparticles also produced more intracellular ROS compared to the microsized particles. However, similar levels of DNA damage were observed in the comet assay after 24 h of exposure to anatase nanoparticles and microparticles. Rutile microparticles were found to induce more DNA damage than the nanosized particles. However, no significant increase in DNA damage was detected from nanosized and

  18. Dedifferentiated follicular granulosa cells derived from pig ovary can transdifferentiate into osteoblasts

    PubMed Central

    Oki, Yoshinao; Ono, Hiromasa; Motohashi, Takeharu; Sugiura, Nobuki; Nobusue, Hiroyuki; Kano, Koichiro

    2012-01-01

    Transdifferentiation is the conversion of cells from one differentiated cell type into another. How functionally differentiated cells already committed to a specific cell lineage can transdifferentiate into other cell types is a key question in cell biology and regenerative medicine. In the present study we show that porcine ovarian follicular GCs (granulosa cells) can transdifferentiate into osteoblasts in vitro and in vivo. Pure GCs isolated and cultured in Dulbecco's modified Eagle's medium supplemented with 20% FBS (fetal bovine serum) proliferated and dedifferentiated into fibroblast-like cells. We referred to these cells as DFOG (dedifferentiated follicular granulosa) cells. Microarray analysis showed that DFOG cells lost expression of GC-specific marker genes, but gained the expression of osteogenic marker genes during dedifferentiation. After osteogenic induction, DFOG cells underwent terminal osteoblast differentiation and matrix mineralization in vitro. Furthermore, when DFOG cells were transplanted subcutaneously into SCID mice, these cells formed ectopic osteoid tissue. These results indicate that DFOG cells derived from GCs can differentiate into osteoblasts in vitro and in vivo. We suggest that GCs provide a useful model for studying the mechanisms of transdifferentiation into other cell lineages in functionally differentiated cells. PMID:22839299

  19. Carcinomas of ovary and lung with clear cell features: can immunohistochemistry help in differential diagnosis?

    PubMed

    Howell, Nicole R; Zheng, Wenxin; Cheng, Liang; Tornos, Carmen; Kane, Philip; Pearl, Michael; Chalas, Eva; Liang, Sharon X

    2007-04-01

    Metastatic lung carcinomas with clear cell morphology can be confused with primary ovarian clear cell carcinomas. We performed immunohistochemical stains in 14 cases of non-small cell lung carcinomas with clear cell features and 14 cases of ovarian clear cell carcinomas using a panel of markers, including thyroid transcription factor 1 (TTF-1), carcinoembryonic antigen (CEA), Wilms tumor gene 1, octamer-binding transcription factor 4 (OCT-4), cancer antigen 125 (CA-125), estrogen receptor, and progesterone receptor. Among non-small cell lung carcinomas with clear cell features, 87.5% of adenocarcinomas (or 50% overall frequency in lung carcinomas) were positive for TTF-1, whereas none of the ovarian clear cell carcinomas were positive (P = 0.002). All 14 ovarian clear cell carcinomas stained for CA-125 as compared with 1 non-small cell lung carcinoma (P < 0.001). On the other hand, 85% of non-small cell lung carcinomas stained for CEA, whereas none of the ovarian clear cell carcinomas did (P < 0.001). Interestingly, 4 ovarian clear cell carcinomas (28%) showed positive staining for the germ cell marker OCT-4. Either lung or ovarian carcinomas stained for Wilms tumor gene 1, estrogen receptor, or progesterone receptor very infrequently; and the difference between the 2 groups was not statistically significant. Our results suggest that an immunohistochemical panel consisting of TTF-1, CEA, CA-125, and OCT-4 is helpful in distinguishing most pulmonary and ovarian carcinomas with clear cell features.

  20. Lack of carcinogenicity of cadmium chloride in female Syrian hamsters.

    PubMed

    Waalkes, M P; Rehm, S

    1998-04-01

    Cadmium is very effective at inducing necrosis within the ovaries of rodents, and the Syrian hamster appears particularly sensitive. The extent of cadmium-induced necrosis depends on the stage of the estrous cycle and is most pronounced when injected on the day prior to ovulation (proestrous). In male rodents cadmium induces a similar necrosis within the testes, which given sufficient time can lead to the development of testicular tumors. In this study we tested the hypothesis that cadmium-induced ovarian necrosis could eventually lead to tumor formation. In sexually mature groups of female Syrian hamsters (> 8 weeks old; n = 50-59), the estrous cycle was determined by visual inspection of vaginal discharge for four consecutive cycles. The animals were then given cadmium (0, 30, 40 and 50 micromol/kg) subcutaneously as a single injection in the dorsal thoracic midline on cycle day 4 (proestrous). Based on prior work, these doses are sufficient to induce extensive acute ovarian damage. Animals were then observed over the next 78 weeks. Although survival and body weight were reduced by cadmium, treatment with the metal did not result in an enhanced incidence of tumors at any site including the ovaries. Non-neoplastic lesions such as amyloidosis and pancreatic hepatocytes were linked to cadmium exposure. These results indicate that the association of cadmium-induced testicular necrosis with tumor development seen in males does not occur in the Syrian hamster ovaries. PMID:9674965

  1. [Autoradiographic investigations on the effect of city smog extract on DNA synthesis and cell cycle of mammalian cells in vitro. II. Alterations of the cell cycle of hamsters kidney cells and hamster embryonic cells in presence of city smog extract (author's transl)].

    PubMed

    Seemayer, N; Krampitz, G

    1979-06-01

    We used the autoradiographic method according to Quastler and Sherman to analyse alterations in the cell cycle under the influence of city smog extracts. Investigations were performed on logarithmically growing cultures of kidney and embryonic cells of the Syrian golden hamster. Low concentrations of city smog extracts (0.125 micrograms/ml Benzo(a)pyren-equivalent) induced a remarkable delay of cell entrance into DNA-synthesis. Furthermore a considerable prolongation of generation time and phase of DNA-synthesis was detected. The number of mitosis was strongly reduced. Already a doubling of concentration of city smog extract caused an almost complete breakdown of the cell cycle and a disappearing of mitosis for a time period of 10 hours. Our results strongly indicate that city smog extracts lead to a severe alteration of the molecular biology of the cell. Taking this in consideration, it can be assumed that a long term exposure of human beings to the city smog could induce an injury of health.

  2. Analysis of mutant quantity and quality in human-hamster hybrid AL and AL-179 cells exposed to 137Cs-gamma or HZE-Fe ions

    NASA Technical Reports Server (NTRS)

    Waldren, C.; Vannais, D.; Drabek, R.; Gustafson, D.; Kraemer, S.; Lenarczyk, M.; Kronenberg, A.; Hei, T.; Ueno, A.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    We measured the number of mutants and the kinds of mutations induced by 137Cs-gamma and by HZE-Fe (56Fe [600 MeV/amu, LET = 190 KeV/micrometer) in standard AL human hamster hybrid cells and in a new variant hybrid, AL-179. We found that HZE-Fe was more mutagenic than 137Cs-gamma per unit dose (about 1.6 fold), but was slightly less mutagenic per mean lethal dose, DO, at both the S1 and hprt- loci of AL cells. On the other hand, HZE-Fe induced about nine fold more complex S1- mutants than 137Cs-gamma rays, 28% vs 3%. 137Cs-gamma rays induced about twice as many S1- mutants and hprt-mutants in AL-179 as in AL cells, and about nine times more of the former were complex, and potentially unstable kinds of mutations.

  3. Hormonal Induction of Polo-Like Kinases (Plks) and Impact of Plk2 on Cell Cycle Progression in the Rat Ovary

    PubMed Central

    Li, Feixue; Jo, Misung; Curry, Thomas E.; Liu, Jing

    2012-01-01

    The highly conserved polo-like kinases (Plks) are potent regulators of multiple functions in the cell cycle before and during mitotic cell division. We investigated the expression pattern of Plk genes and their potential role(s) in the rat ovary during the periovulatory period. Plk2 and Plk3 were highly induced both in intact ovaries and granulosa cells in vivo after treatment with the luteinizing hormone (LH) agonist, human chorionic gonadotropin (hCG). In vitro, hCG stimulated the expression of Plk2 in granulosa cells, but not Plk3. This induction of Plk2 expression was mimicked by both forskolin and phorbol 12 myristate 13-acetate (PMA). Moreover, Plk2 expression was reduced by inhibitors of prostaglandin synthesis or the EGF pathway, but not by progesterone receptor antagonist (RU486) treatment. At the promoter level, mutation of the Sp1 binding sequence abolished the transcriptional activity of the Plk2 gene. ChIP assays also revealed the interaction of endogenous Sp1 protein in the Plk2 promoter region. Functionally, the over-expression of Plk2 and Plk3 arrested granulosa cells at the G0/G1 phase of the cell cycle. In contrast, the knockdown of Plk2 expression in granulosa cells decreased the number of cells in the G0/G1 stage of the cell cycle, but increased granulosa cell viability. In summary, hCG induced Plk2 and Plk3 expression in the rat ovary. Prostaglandins and the EGF signaling pathway are involved in regulating Plk2 expression. The transcription factor Sp1 is important for Plk2 transcriptional up-regulation. Our findings suggest that the increase in Plk2 and Plk3 expression contributes to the cell cycle arrest of granulosa cells which is important for the luteinization of granulosa cells during the periovulatory period. PMID:22870256

  4. Germ-cell cluster formation in the telotrophic meroistic ovary of Tribolium castaneum (Coleoptera, Polyphaga, Tenebrionidae) and its implication on insect phylogeny.

    PubMed

    Trauner, Jochen; Büning, Jürgen

    2007-01-01

    Tribolium castaneum has telotrophic meroistic ovarioles of the Polyphaga type. During larval stages, germ cells multiply in a first mitotic cycle forming many small, irregularly branched germ-cell clusters which colonize between the anterior and posterior somatic tissues in each ovariole. Because germ-cell multiplication is accompanied by cluster splitting, we assume a very low number of germ cells per ovariole at the beginning of ovariole development. In the late larval and early pupal stages, we found programmed cell death of germ-cell clusters that are located in anterior and middle regions of the ovarioles. Only those clusters survive that rest on posterior somatic tissue. The germ cells that are in direct contact with posterior somatic cells transform into morphologically distinct pro-oocytes. Intercellular bridges interconnecting pro-oocytes are located posteriorly and are filled with fusomes that regularly fuse to form polyfusomes. Intercellular bridges connecting pro-oocytes to pro-nurse cells are always positioned anteriorly and contain small fusomal plugs. During pupal stages, a second wave of metasynchronous mitoses is initiated by the pro-oocytes, leading to linear subclusters with few bifurcations. We assume that the pro-oocytes together with posterior somatic cells build the center of determination and differentiation of germ cells throughout the larval, pupal, and adult stages. The early developmental pattern of germ-cell multiplication is highly similar to the events known from the telotrophic ovary of the Sialis type. We conclude that among the common ancestors of Neuropterida and Coleoptera, a telotrophic meroistic ovary of the Sialis type evolved, which still exists in Sialidae, Raphidioptera, and a myxophagan Coleoptera family, the Hydroscaphidae. Consequently, the telotrophic ovary of the Polyphaga type evolved from the Sialis type.

  5. Genetic relationships of clinical mastitis, cystic ovaries, and lameness with milk yield and somatic cell score in first-lactation Canadian Holsteins.

    PubMed

    Koeck, A; Loker, S; Miglior, F; Kelton, D F; Jamrozik, J; Schenkel, F S

    2014-09-01

    The objective of this study was to investigate the genetic relationships of the 3 most frequently reported dairy cattle diseases (clinical mastitis, cystic ovaries, and lameness) with test-day milk yield and somatic cell score (SCS) in first-lactation Canadian Holstein cows using random regression models. Health data recorded by producers were available from the National Dairy Cattle Health System in Canada. Disease traits were defined as binary traits (0=healthy, 1=affected) based on whether or not the cow had at least one disease case recorded within 305 d after calving. Mean frequencies of clinical mastitis, cystic ovaries, and lameness were 12.7, 8.2, and 9.1%, respectively. For genetic analyses, a Bayesian approach using Gibbs sampling was applied. Bivariate linear sire random regression model analyses were carried out between each of the 3 disease traits and test-day milk yield or SCS. Random regressions on second-degree Legendre polynomials were used to model the daily sire additive genetic and cow effects on test-day milk yield and SCS, whereas only the intercept term was fitted for disease traits. Estimated heritabilities were 0.03, 0.03, and 0.02 for clinical mastitis, cystic ovaries, and lameness, respectively. Average heritabilities for milk yield were between 0.41 and 0.49. Average heritabilities for SCS ranged from 0.10 to 0.12. The average genetic correlations between daily milk yield and clinical mastitis, cystic ovaries, and lameness were 0.40, 0.26, and 0.23, respectively; however, the last estimate was not statistically different from zero. Cows with a high genetic merit for milk yield during the lactation were more susceptible to clinical mastitis and cystic ovaries. Estimates of genetic correlations between daily milk yield and clinical mastitis were moderate throughout the lactation. The genetic correlations between daily milk yield and cystic ovaries were near zero at the beginning of lactation and were highest at mid and end lactation. The

  6. Thyroid cell lines in research on goitrogenesis.

    PubMed

    Gerber, H; Peter, H J; Asmis, L; Studer, H

    1991-12-01

    Thyroid cell lines have contributed a lot to the understanding of goitrogenesis. The cell lines mostly used in thyroid research are briefly discussed, namely the rat thyroid cell lines FRTL and FRTL-5, the porcine thyroid cell lines PORTHOS and ARTHOS, The sheep thyroid cell lines OVNIS 5H and 6H, the cat thyroid cell lines PETCAT 1 to 4 and ROMCAT, and the human thyroid cell lines FTC-133 and HTh 74. Chinese hamster ovary (CHO) cells and COS-7 cells, stably transfected with TSH receptor cDNA and expressing a functional TSH receptor, are discussed as examples for non-thyroidal cells, transfected with thyroid genes. PMID:1726925

  7. COP9-Hedgehog axis regulates the function of the germline stem cell progeny differentiation niche in the Drosophila ovary.

    PubMed

    Lu, Tinglin; Wang, Su; Gao, Yuan; Mao, Ying; Yang, Zhihao; Liu, Luping; Song, Xiaoqing; Ni, Jianquan; Xie, Ting

    2015-12-15

    Both stem cell self-renewal and lineage differentiation are controlled extrinsically as well as intrinsically. Germline stem cells (GSCs) in the Drosophila ovary provide an attractive model in which to study both stem cell self-renewal and lineage differentiation at the molecular and cellular level. Recently, we have proposed that escort cells (ECs) form a differentiation niche to control GSC lineage specification extrinsically. However, it remains poorly understood how the maintenance and function of the differentiation niche are regulated at the molecular level. Here, this study reveals a new role of COP9 in the differentiation niche to modulate autocrine Hedgehog (Hh) signaling, thereby promoting GSC lineage differentiation. COP9, which is a highly conserved protein complex composed of eight CSN subunits, catalyzes the removal of Nedd8 protein modification from target proteins. Our genetic results have demonstrated that all the COP9 components and the hh pathway components, including hh itself, are required in ECs to promote GSC progeny differentiation. Interestingly, COP9 is required in ECs to maintain Hh signaling activity, and activating Hh signaling in ECs can partially bypass the requirement for COP9 in GSC progeny differentiation. Finally, both COP9 and Hh signaling in ECs promote GSC progeny differentiation partly by preventing BMP signaling and maintaining cellular processes. Therefore, this study has demonstrated that the COP9-Hh signaling axis operates in the differentiation niche to promote GSC progeny differentiation partly by maintaining EC cellular processes and preventing BMP signaling. This provides new insight into how the function of the differentiation niche is regulated at the molecular level. PMID:26672093

  8. Socs36E attenuates STAT signaling to optimize motile cell specification in the Drosophila ovary.

    PubMed

    Monahan, Amanda J; Starz-Gaiano, Michelle

    2013-07-15

    The Janus kinase/Signal transducers and activators of transcription (JAK/STAT) pathway determines cell fates by regulating gene expression. One example is the specification of the motile cells called border cells during Drosophila oogenesis. It has been established that too much or too little STAT activity disrupts follicle cell identity and cell motility, which suggests the signaling must be precisely regulated. Here, we find that Suppressor of cytokine signaling at 36E (Socs36E) is a necessary negative regulator of JAK/STAT signaling during border cell specification. We find when STAT signaling is too low to induce migration in the presumptive border cell population, nearby follicle cells uncharacteristically become invasive to enable efficient migration of the cluster. We generated a genetic null allele that reveals Socs36E is required in the anterior follicle cells to limit invasive behavior to an optimal number of cells. We further show Socs36E genetically interacts with the required STAT feedback inhibitor apontic (apt) and APT's downstream target, mir-279, and provide evidence that suggests APT directly regulates Socs36E transcriptionally. Our work shows Socs36E plays a critical role in a genetic circuit that establishes a boundary between the motile border cell cluster and its non-invasive epithelial neighbors through STAT attenuation. PMID:23583584

  9. Site-specific analysis of UV-induced cyclobutane pyrimidine dimers in nucleotide excision repair-proficient and -deficient hamster cells: Lack of correlation with mutational spectra.

    PubMed

    Vreeswijk, Maaike P G; Meijers, Caro M; Giphart-Gassler, Micheline; Vrieling, Harry; van Zeeland, Albert A; Mullenders, Leon H F; Loenen, Wil A M

    2009-04-26

    Irradiation of cells with UVC light induces two types of mutagenic DNA photoproducts, i.e. cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) pyrimidone photoproducts (6-4 PP). To investigate the relationship between the frequency of UV-induced photolesions at specific sites and their ability to induce mutations, we quantified CPD formation at the nucleotide level along exons 3 and 8 of the hprt gene using ligation-mediated PCR, and determined the mutational spectrum of 132 UV-induced hprt mutants in the AA8 hamster cell line and of 165 mutants in its nucleotide excision repair-defective derivative UV5. In AA8 cells, transversions predominated with a strong strand bias towards thymine-containing photolesions in the non-transcribed strand. As hamster AA8 cells are proficient in global genome repair of 6-4 PP but selectively repair CPD from the transcribed strand of active genes, most mutations probably resulted from erroneous bypass of CPD in the non-transcribed strand. However, the relative incidence of CPD and the positions where mutations most frequently arose do not correlate. In fact some major damage sites hardly gave rise to the formation of mutations. In the repair-defective UV5 cells, mutations were almost exclusively C>T transitions caused by photoproducts at PyC sites in the transcribed strand. Even though CPD were formed at high frequencies at some TT sites in UV5, these photoproducts did not contribute to mutation induction at all. We conclude that, even in the absence of repair, large variations in the level of induction of CPD at different sites throughout the two exons do not correspond to frequencies of mutation induction.

  10. Cell killing, nuclear damage and apoptosis in Chinese hamster V79 cells after irradiation with heavy-ion beams of (16)O, (12)C and (7)Li.

    PubMed

    Pathak, Rupak; Dey, Subrata Kumar; Sarma, Asiti; Khuda-Bukhsh, Anisur Rahman

    2007-08-15

    Chinese hamster V79 cells were exposed to high LET (linear energy transfer) (16)O-beam (625keV/mum) radiation in the dose range of 0-9.83Gy. Cell survival, micronuclei (MN), chromosomal aberrations (CA) and induction of apoptosis were studied as a follow up of our earlier study on high LET radiations ((7)Li-beam of 60keV/mum and (12)C-beam of 295keV/mum) as well as (60)Co gamma-rays. Dose dependent decline in surviving fraction was noticed along with the increase of MN frequency, CA frequency as well as percentage of apoptosis as detected by nuclear fragmentation assay. The relative intensity of DNA ladder, which is a useful marker for the determination of the extent of apoptosis induction, was also increased in a dose dependent manner. Additionally, expression of tyrosine kinase lck-1 gene, which plays an important role in response to ionizing radiation induced apoptosis, was increased with the increase of radiation doses and also with incubation time. The present study showed that all the high LET radiations were generally more effective in cell killing and inflicting other cytogenetic damages than that of low LET gamma-rays. The dose response curves revealed that (7)Li-beam was most effective in cell killing as well as inducing other nuclear damages followed by (12)C, (16)O and (60)Co gamma-rays, in that order. The result of this study may have some application in biological dosimetry for assessment of genotoxicity in heavy ion exposed subjects and in determining suitable doses for radiotherapy in cancer patients where various species of heavy ions are now being generally used.

  11. A mechanistic evaluation of the Syrian hamster embryo cell transformation assay (pH 6.7) and molecular events leading to senescence bypass in SHE cells.

    PubMed

    Pickles, Jessica C; Pant, Kamala; Mcginty, Lisa A; Yasaei, Hemad; Roberts, Terry; Scott, Andrew D; Newbold, Robert F

    2016-05-01

    The implementation of the Syrian hamster embryo cell transformation assay (SHE CTA) into test batteries and its relevance in predicting carcinogenicity has been long debated. Despite prevalidation studies to ensure reproducibility and minimise the subjective nature of the assay's endpoint, an underlying mechanistic and molecular basis supporting morphological transformation (MT) as an indicator of carcinogenesis is still missing. We found that only 20% of benzo(a)pyrene-induced MT clones immortalised suggesting that, alone, the MT phenotype is insufficient for senescence bypass. From a total of 12 B(a)P- immortalised MT lines, inactivating p53 mutations were identified in 30% of clones, and the majority of these were consistent with the potent carcinogen's mode of action. Expression of p16 was commonly silenced or markedly reduced with extensive promoter methylation observed in 45% of MT clones, while Bmi1 was strongly upregulated in 25% of clones. In instances where secondary events to MT appeared necessary for senescence bypass, as evidenced by a transient cellular crisis, clonal growth correlated with monoallelic deletion of the CDKN2A/B locus. The findings further implicate the importance of p16 and p53 pathways in regulating senescence while providing a molecular evaluation of SHE CTA -derived variant MT clones induced by benzo(a)pyrene. PMID:27169376

  12. Abnormal structural luteolysis in ovaries of the senescence accelerated mouse (SAM): expression of Fas ligand/Fas-mediated apoptosis signaling molecules in luteal cells.

    PubMed

    Kiso, Minako; Manabe, Noboru; Komatsu, Kohji; Shimabe, Munetake; Miyamoto, Hajime

    2003-12-01

    Senescence accelerated mouse-prone (SAMP) mice with a shortened life span show accelerated changes in many of the signs of aging and a shorter reproductive life span than SAM-resistant (SAMR) controls. We previously showed that functional regression (progesterone dissimilation) occurs in abnormally accumulated luteal bodies (aaLBs) of SAMP mice, but structural regression of luteal cells in aaLB is inhibited. A deficiency of luteal cell apoptosis causes the abnormal accumulation of LBs in SAMP ovaries. In the present study, to show the abnormality of Fas ligand (FasL)/Fas-mediated apoptosis signal transducing factors in the aaLBs of the SAMP ovaries, we assessed the changes in the expression of FasL, Fas, caspase-8 and caspase-3 mRNAs by reverse transcription-polymerase chain reaction, and in the expression and localization of FasL, Fas and activated caspase-3 proteins by Western blotting and immunohistochemistry, respectively, during the estrus cycle/luteolysis. These mRNAs and proteins were expressed in normal LBs of both SAMP and SAMR ovaries, but not at all or only in trace amounts in aaLBs of SAMP, indicating that structural regression is inhibited by blockage of the expression of these transducing factors in luteal cells of aaLBs in SAMP mice. PMID:14967896

  13. Polycystic Ovary Syndrome FAQ

    MedlinePlus

    f AQ FREQUENTLY ASKED QUESTIONS FAQ121 GYNECOLOGIC PROBLEMS Polycystic Ovary Syndrome (PCOS) • What are common signs and symptoms of polycystic ovary syndrome (PCOS)? • What causes PCOS? • What is insulin resistance? • ...

  14. Effects of L-carnitine against H2O2-induced oxidative stress in grass carp ovary cells (Ctenopharyngodon idellus).

    PubMed

    Wang, Qiuju; Ju, Xue; Chen, Yuke; Dong, Xiaoqing; Luo, Sha; Liu, Hongjian; Zhang, Dongming

    2016-06-01

    This study was designed in vitro to investigate the effects of L-carnitine against H2O2-induced oxidative stress in a grass carp (Ctenopharyngodon idellus) ovary cell line (GCO). GCO cells were pre-treated with different concentrations of L-carnitine, followed by incubation with 2.5 mM H2O2 for 1 h to induce oxidative damage. The results indicated that adding L-carnitine at concentrations of 0.01-1 mM into the medium for 12 h significantly increased cell viability. Pre-treatment with L-carnitine at concentrations of 0.1-5 mM for 12 h significantly inhibited 2.5 mM H2O2-induced cell viability loss. The significant decreases in the level of reactive oxygen species and cell apoptosis were observed in 0.5 mM L-carnitine group compared to the H2O2 group. Malondialdehyde values of all of the L-carnitine groups were significantly lower than those of the H2O2 group, while total glutathione levels of all of the L-carnitine groups were significantly higher than of the H2O2 group. The activity of antioxidant enzymes, such as total superoxide dismutase (0.1 and 0.5 mM L-carnitine), catalase (0.5 mM L-carnitine) and γ-glutamyl cysteine synthetase (0.5 and 1 mM L-carnitine), was significantly increased. In addition, pre-treatment of L-carnitine in GCO cells exposed to 2.5 mM H2O2 significantly increased the mRNA expression of copper, zinc superoxide dismutase, catalase (0.5 mM L-carnitine), glutamate cysteine ligase catalytic subunit (0.1-1 mM) and glutathione peroxidase (0.1 mM L-carnitine). In conclusion, L-carnitine promotes GCO cell growth and improves antioxidant function, it plays a protective role against oxidative stress induced by H2O2 in GCO cells, and the appropriate supplemental amount of L-carnitine is 0.1-1 mM.

  15. Polarization of the epithelial layer and apical localization of integrins are required for engulfment of apoptotic cells in the Drosophila ovary

    PubMed Central

    Meehan, Tracy L.; Kleinsorge, Sarah E.; Timmons, Allison K.; Taylor, Jeffrey D.; McCall, Kimberly

    2015-01-01

    ABSTRACT Inefficient clearance of dead cells or debris by epithelial cells can lead to or exacerbate debilitating conditions such as retinitis pigmentosa, macular degeneration, chronic obstructive pulmonary disease and asthma. Despite the importance of engulfment by epithelial cells, little is known about the molecular changes that are required within these cells. The misregulation of integrins has previously been associated with disease states, suggesting that a better understanding of the regulation of receptor trafficking could be key to treating diseases caused by defects in phagocytosis. Here, we demonstrate that the integrin heterodimer αPS3/βPS becomes apically enriched and is required for engulfment by the epithelial follicle cells of the Drosophila ovary. We found that integrin heterodimer localization and function is largely directed by the α-subunit. Moreover, proper cell polarity promotes asymmetric integrin enrichment, suggesting that αPS3/βPS trafficking occurs in a polarized fashion. We show that several genes previously known for their roles in trafficking and cell migration are also required for engulfment. Moreover, as in mammals, the same α-integrin subunit is required by professional and non-professional phagocytes and migrating cells in Drosophila. Our findings suggest that migrating and engulfing cells use common machinery, and demonstrate a crucial role for integrin function and polarized trafficking of integrin subunits during engulfment. This study also establishes the epithelial follicle cells of the Drosophila ovary as a powerful model for understanding the molecular changes required for engulfment by a polarized epithelium. PMID:26398951

  16. Cell-cycle patterns of mutation induction and their relationship to DNA repair

    SciTech Connect

    Goth-Goldstein, R.

    1980-01-01

    From the finding that mutation induction by ethylnitrosourea is cell-cycle independent in synchronous Chinese hamster ovary cells and from the observation that these cells do not excise /sup 6/O-alkylguanine, it is concluded that enhanced mutagenesis at growing points, as observed in bacteria and yeast, is due to a repair system which removes mutagenic lesions at sites other than the DNA growing point, where immediate mutation fixation occurs.

  17. Fine needle aspiration cytology of Sertoli-Leydig cell tumors of ovary masquerading as dysgerminoma.

    PubMed

    Arora, Sandeep Kumar; Dey, Pranab

    2013-07-01

    Herein, we described a case of a 29-year-old female with a large ovarian mass. Fine needle aspiration cytology (FNAC) of the mass showed discrete round to oval cells in a fatty vacuolated background. FNAC diagnosis of dysgerminoma was suggested. The histology of the tumors showed features of poorly differentiated Sertoli-Leydig cell tumors. We discussed the diagnostic pitfalls of this case on FNAC.

  18. Relationship between inhibition of cyclic AMP production in Chinese hamster ovary cells expressing the rat D2(444) receptor and antagonist/agonist binding ratios.

    PubMed Central

    Harley, E. A.; Middlemiss, D. N.; Ragan, C. I.

    1995-01-01

    1. Radioligand binding assays using [3H]-(-)-sulpiride, in the presence of 1 mM ethylenediaminetetraacetic acid (EDTA) and 100 microM guanylylimidodiphosphate (GppNHp) and [3H]-N0437 were developed to label the low and high agonist affinity states of the rD2(444) receptor (long form of the rat D2 receptor) respectively. The ratios of the affinities of compounds in these two assays (Kapp [3H]-(-)-supiride/Kapp [3H]-N-0437) were then calculated. 2. The prediction that the binding ratio reflected the functional efficacy of a compound was supported by measurement of the ability of a number of compounds acting at dopamine receptors to inhibit rD2(444)-mediated inhibition of cyclic AMP production. When the rank order of the ratios of a number of these compounds was compared to their ability to inhibit the production of cyclic AMP, a significant correlation was seen (Spearman rank correlation coefficient = 0.943, P = 0.01). 3. In conclusion, the sulpiride/N-0437 binding ratio reliably predicted the efficacy of compounds acting at dopamine receptors to inhibit cyclic AMP production mediated by the rD2(444) receptor. PMID:7582561

  19. Biology of cell killing by 1-beta-D-arabinofuranosylcytosine and its relevance to molecular mechanisms of cytotoxicity.

    PubMed

    Crowther, P J; Cooper, I A; Woodcock, D M

    1985-09-01

    Cells of the Chinese hamster ovary cell line were used to study the process of cell death induced by pulse treatment with 1-beta-D-arabinofuranosylcytosine (ara-C). Cells were synchronized by mitotic selection and pulse treated in early S phase with a concentration of ara-C (1 mM) which was sufficient to reduce plating efficiency to a few percentages of the control. The process of when and how the lethally damaged cells die was studied using a series of techniques in parallel. These included time-lapse microcinematography, flow microfluorimetry, and chromosome morphology in both anaphases/telophases and Colcemid-arrested metaphases. Most of the lethally damaged Chinese hamster ovary cells progressed through one, and many through two, cell cycles before death occurred. The cell death and abnormal divisions can be accounted for by the chromosome aberrations observed in Colcemid metaphases and anaphases/telophases. Death without any attempted division occurred between 3 and 9 normal cell cycle times after ara-C treatment. Chinese hamster ovary cells were also treated continuously with 1 mM ara-C. Under these conditions, cell death was still primarily division related. We argue that these data are not consistent with the actual incorporation of ara-C moieties into DNA being the primary cause of cell death. The data are discussed in relation to the postulated molecular mechanisms of toxicity of this drug. PMID:4028015

  20. Circadian clocks in the ovary.

    PubMed

    Sellix, Michael T; Menaker, Michael

    2010-10-01

    Clock gene expression has been observed in tissues of the hypothalamic-pituitary-gonadal (HPG) axis. Whereas the contribution of hypothalamic oscillators to the timing of reproductive biology is well known, the role of peripheral oscillators like those in the ovary is less clear. Circadian clocks in the ovary might play a role in the timing of ovulation. Disruption of the clock in ovarian cells or desynchrony between ovarian clocks and circadian oscillators elsewhere in the body may contribute to the onset and progression of various reproductive pathologies. In this paper, we review evidence for clock function in the ovary across a number of species and offer a novel perspective into the role of this clock in normal ovarian physiology and in diseases that negatively affect fertility.

  1. Redefining gonadotropin-releasing hormone (GnRH) cell groups in the male Syrian hamster: testosterone regulates GnRH mRNA in the tenia tecta.

    PubMed

    Richardson, Heather N; Parfitt, David B; Thompson, Robert C; Sisk, Cheryl L

    2002-05-01

    Gonadotropin-releasing hormone (GnRH) regulates the production of testosterone via the hypothalamic-pituitary-gonadal axis and testosterone, in turn, regulates the GnRH system via negative feedback. We compared testosterone regulation of GnRH mRNA expression in four anatomically defined GnRH cell groups in juvenile and adult male Syrian hamsters, including a rostral population of GnRH cells in the tenia tecta. In situ hybridization histochemistry (ISHH) was used to measure GnRH mRNA in brains from castrated juveniles and adults treated with 0 mg or 2.5 mg testosterone pellets for one week. ISHH was performed on coronal sections using a 35S-cRNA probe generated from Syrian hamster GnRH cDNA. Testosterone treatment resulted in a significant reduction in mean area of GnRH neurones covered by silver grains within the tenia tecta, but only a trend toward decreased GnRH mRNA in the diagonal band of Broca/organum vasculosum of the lamina terminalis (DBB/OVLT), medial septum (MS), and caudal preoptic area (cPOA). The effects of testosterone were independent of age. Frequency distribution analyses unveiled a significant reduction in the number of heavily labelled cells following testosterone treatment within the tenia tecta and MS. Simple regression analyses revealed a significant positive correlation between plasma luteinizing hormone concentrations and GnRH mRNA only in the tenia tecta. These data indicate that, overall, GnRH mRNA is modestly reduced by testosterone, and the most robust attenuation of GnRH mRNA occurs within the tenia tecta. This is the first report to link mechanisms of steroid negative feedback with tenia tecta GnRH neurones, providing a new focus for investigating brain region-specific steroidal regulation of GnRH synthesis.

  2. Chinese hamster V79 cells harbor potentially lethal damage which is neither fixed nor repaired for long times after attaining maximal survival under growth conditions

    SciTech Connect

    Reddy, N.M.S.; Nori, D.; Mayer, P.J.; Lange, C.S.

    1995-03-01

    The kinetics of the repair and fixation of potentially lethal damage (PLD) was studied in log-phase Chinese hamster V79 cells. The postirradiation (10 Gy) survival of cells treated with hypertonic saline increased when these cells were incubated further in conditioned medium but not in growth medium, indicating that damage which is neither fixed by hypertonic saline nor amenable to repair in growth medium is nonetheless repaired in conditioned medium. Recovery of X-irradiated cells incubated in growth medium or in conditioned medium was maximal by about 70 min and was two times higher in conditioned medium than in growth medium. Cells incubated in growth medium for 70-120 min postirradiation continued to repair damage when subsequently shifted to conditioned medium only. Thus PLD is not fixed by the time the recovery plateau has been attained in growth medium, and this unfixed PLD can still be repaired when cells are shifted to conditioned medium. To study the kinetics of fixation of PLD (without hypertonic saline), the survival of cells incubated in growth medium for up to 9 h postirradiation was compared with that for cells incubated in conditioned medium. These results show that the damage was neither fixed nor misrepaired in growth medium but rather remained unrepaired for up to 2 h, and that damage fixation in growth medium does not begin until after 2 h and is completed by 6 h postirradiation. 21 refs., 4 figs., 1 tab.

  3. Small Cell Carcinoma of the Ovary (Hypercalcemic Type): Malignant Rhabdoid Tumor

    PubMed Central

    Kascak, Peter; Zamecnik, Michal; Bystricky, Branislav

    2016-01-01

    We present a rare case of malignant rhabdoid tumor (ovarian small cell carcinoma of hypercalcemic type) in a 24-year-old female with fulminant course. Clinically, hypercalcemia was not found at the time of primary diagnosis. However, it appeared later during the course of tumor progression. Histologically, the tumor showed classical features of small cell carcinoma of hypercalcemic type. Therapy included radical surgery with adjuvant chemotherapy. Despite this intensive therapy, the disease recurred and the patient died 10 months after the diagnosis. We discuss the diagnosis and therapy of this tumor, as well as its recent classification as malignant rhabdoid tumor. PMID:27462229

  4. Radio-modifying potential of Saraca indica against ionizing radiation: an in vitro study using Chinese hamster lung fibroblast (V79) cells.

    PubMed

    Das, Shubhankar; Kumar, Rishikesh; Rao, Bola Sadashiva Satish

    2015-09-01

    This study demonstrated the radioprotective efficacy of extracts prepared from stem bark of Saraca indica (SI) against X-rays induced cellular damage, which was evaluated by a battery of cytotoxicity, genotoxicity, apoptotic, and biochemical assays using Chinese hamster fibroblast (V79) cells. Cell viability and surviving fraction were increased significantly when V79 cells were preconditioned with optimal concentration of hydroalcoholic extract (HE; 50 μg/mL) of SI for 2 h prior exposure to X-rays. Radiation induced cellular damage was correlated with a significant elevation in intracellular ROS and increased mitochondrial depolarization and loss of intracellular antioxidant enzymes. However, cells preconditioned with 50 μg/mL of HE reversed this effect. Pretreatment of HE resulted in inhibition of radiation induced GSH, GST, SOD, catalase levels, and lipid peroxidation to that of radiation-alone treated group. Also, a significant decrease in radiation induced DNA damage, apoptotic and necrotic cell death was observed in case of cells preconditioned with HE. Supporting to this HPLC analysis indicated the presence of ellagic acid as one of the major phytochemical present in HE. Thus, the maintenance of cellular redox status by pretreatment with HE, conferred protection of cellular DNA, oxidative stress by neutralizing free radicals generated by the cellular irradiation and resulted in increased in cell survival may be attributed to the presence of ellagic acid indicating SI's radioprotective potential.

  5. Decreased adult neurogenesis in hibernating Syrian hamster.

    PubMed

    León-Espinosa, Gonzalo; García, Esther; Gómez-Pinedo, Ulises; Hernández, Félix; DeFelipe, Javier; Ávila, Jesús

    2016-10-01

    Generation of new neurons from adult neural stem cells occurs in the dentate gyrus (DG) of the hippocampus and the lateral walls of the lateral ventricles. In this article, we study the neurogenesis that takes place during the hibernation of the Syrian hamster (Mesocricetus auratus). Using a variety of standard neurogenesis markers and 5-bromo-2-deoxyuridine (BrdU) incorporation, we describe a preferential decrease in the proliferation of newborn neurons in the subventricular zone (SVZ) of the hibernating hamsters (torpor) rather than in the hippocampus. Furthermore, we demonstrate that the proliferative capacity is recovered after 3-4days of torpor when arousal is triggered under natural conditions (i.e., not artificially provoked). In addition, we show that tau3R, a tau isoform with three microtubule-binding domains, is a suitable marker to study neurogenesis both in the SVZ and subgranular zone (SGZ) of the Syrian hamster brain. PMID:27436535

  6. Resveratrol promotes expression of SIRT1 and StAR in rat ovarian granulosa cells: an implicative role of SIRT1 in the ovary

    PubMed Central

    2012-01-01

    Background Resveratrol is a natural polyphenolic compound known for its beneficial effects on energy homeostasis, and it also has multiple properties, including anti-oxidant, anti-inflammatory, and anti-tumor activities. Recently, silent information regulator genes (Sirtuins) have been identified as targets of resveratrol. Sirtuin 1 (SIRT1), originally found as an NAD+-dependent histone deacetylase, is a principal modulator of pathways downstream of calorie restriction, and the activation of SIRT1 ameliorates glucose homeostasis and insulin sensitivity. To date, the presence and physiological role of SIRT1 in the ovary are not known. Here we found that SIRT1 was localized in granulosa cells of the human ovary. Methods The physiological roles of resveratrol and SIRT1 in the ovary were analyzed. Immunohistochemistry was performed to localize the SIRT1 expression. SIRT1 protein expression of cultured cells and luteinized human granulosa cells was investigated by Western blot. Rat granulosa cells were obtained from diethylstilbestrol treated rats. The cells were treated with increasing doses of resveratrol, and subsequently harvested to determine mRNA levels and protein levels. Cell viability was tested by MTS assay. Cellular apoptosis was analyzed by caspase 3/7 activity test and Hoechst 33342 staining. Results SIRT1 protein was expressed in the human ovarian tissues and human luteinized granulosa cells. We demonstrated that resveratrol exhibited a potent concentration-dependent inhibition of rat granulosa cells viability. However, resveratrol-induced inhibition of rat granulosa cells viability is independent of apoptosis signal. Resveratrol increased mRNA levels of SIRT1, LH receptor, StAR, and P450 aromatase, while mRNA levels of FSH receptor remained unchanged. Western blot analysis was consistent with the results of quantitative real-time RT-PCR assay. In addition, progesterone secretion was induced by the treatment of resveratrol. Conclusions These results

  7. Disruptions in follicle cell functions in the ovaries of rhesus monkeys during summer.

    PubMed

    VandeVoort, Catherine A; Mtango, Namdori R; Midic, Uros; Latham, Keith E

    2015-04-01

    Oocytes isolated from female rhesus monkeys following standard ovarian stimulation protocols during the summer months displayed a reduced capacity to mature compared with stimulation during the normal breeding season. Because the gene expression profiles of oocyte-associated cumulus cells and mural granulosa cells (CCs and GCs) are indicative of altered oocyte quality and can provide insight into intrafollicular processes that may be disrupted during oogenesis, we performed array-based transcriptome comparisons of CCs and GCs from summer and normal breeding season stimulation cycles. Summer CCs and GCs both display deficiencies in expression of mRNAs related to cell proliferation, angiogenesis, and endocrine signaling, as well as reduced expression of glycogen phosphorylase. Additionally, CCs display deficiencies in expression of mRNAs related to stress response. These results provide the first insight into the specific molecular pathways and processes that are disrupted in the follicles of rhesus macaque females during the summer season. Some of the changes seen in summer GCs and CCs have been reported in humans and in other model mammalian species. This suggests that the seasonal effects seen in the rhesus monkey may help us to understand better the mechanisms that contribute to reduced oocyte quality and fertility in humans.

  8. Disruptions in follicle cell functions in the ovaries of rhesus monkeys during summer

    PubMed Central

    VandeVoort, Catherine A.; Mtango, Namdori R.; Midic, Uros

    2015-01-01

    Oocytes isolated from female rhesus monkeys following standard ovarian stimulation protocols during the summer months displayed a reduced capacity to mature compared with stimulation during the normal breeding season. Because the gene expression profiles of oocyte-associated cumulus cells and mural granulosa cells (CCs and GCs) are indicative of altered oocyte quality and can provide insight into intrafollicular processes that may be disrupted during oogenesis, we performed array-based transcriptome comparisons of CCs and GCs from summer and normal breeding season stimulation cycles. Summer CCs and GCs both display deficiencies in expression of mRNAs related to cell proliferation, angiogenesis, and endocrine signaling, as well as reduced expression of glycogen phosphorylase. Additionally, CCs display deficiencies in expression of mRNAs related to stress response. These results provide the first insight into the specific molecular pathways and processes that are disrupted in the follicles of rhesus macaque females during the summer season. Some of the changes seen in summer GCs and CCs have been reported in humans and in other model mammalian species. This suggests that the seasonal effects seen in the rhesus monkey may help us to understand better the mechanisms that contribute to reduced oocyte quality and fertility in humans. PMID:25586978

  9. Identification of Fas antigen associated with apoptotic cell death in murine ovary.

    PubMed

    Guo, M W; Mori, E; Xu, J P; Mori, T

    1994-09-30

    The majority of ovarian follicles including oocytes undergo atresia through a mechanism involving apoptotic cell death. The mechanisms underlying atresia remain to be clarified. In the present study, we detected the expression of the Fas antigen (Fas), which is a cell-surface protein to modulate apoptosis, in murine ovarian oocytes and hyperovulated eggs as well as in several control tissues. Substantial decline in Fas mRNA was found in atretic follicles which were injected with pregnant mare's serum gonadotropin (PMSG) on day 3. The observed decreases in mRNA of Fas could not be attributed to a generalized degradation of cellular RNA during atresia, as evidenced by the presence of intact 18S and 28S ribosomal RNA as well as constitutive expression of EF-1 alpha mRNA in atretic follicles. The data obtained indicate that apoptotic cell death of oocytes seemed to be associated with internucleosomal DNA fragmentation regulated by Fas molecule expressed in atretic ovarian follicles. PMID:7524484

  10. Woman with virilizing congenital adrenal hyperplasia and Leydig cell tumor of the ovary.

    PubMed

    Fernández-García Salazar, Rosario; Muñoz-Darias, Carmen; Haro-Mora, Juan Jesús; Almaraz, M Cruz; Audí, Laura; Martínez-Tudela, Juana; Yahyaoui, Raquel; Esteva, Isabel

    2014-08-01

    We report the case of a 36-year-old woman with congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency, and corticosteroid replacement therapy since birth. She manifested persistent virilization and high testosterone levels that were attributed to nonadherence to medical treatment. The patient was referred to our gender unit for genitoplastic surgery. We recommended the patient for left oophorectomy after detecting an ovarian mass. Pathologic findings confirmed an ovarian hilus cell tumor. Testosterone levels fell back to normal and masculinization disappeared but ACTH remained elevated. This case represents a very rare type of primary ovarian tumor that must be considered in persistent virilizing symptoms in women with CAH.

  11. Purification of oogonial stem cells from adult mouse and human ovaries: an assessment of the literature and a view toward the future.

    PubMed

    Woods, Dori C; White, Yvonne A R; Tilly, Jonathan L

    2013-01-01

    Contemporary claims that mitotically active female germ line or oogonial stem cells (OSCs) exist and support oogenesis during postnatal life in mammals have been debated in the field of reproductive biology since March 2004, when a mouse study posed the first serious challenge to the dogma of a fixed pool of oocytes being endowed at birth in more than 50 years. Other studies have since been put forth that further question the validity of this dogma, including the isolation of OSCs from neonatal and adult mouse ovaries by 4 independent groups using multiple strategies. Two of these groups also reported that isolated mouse OSCs, once transplanted back into ovaries of adult female mice, differentiate into fully functional eggs that ovulate, fertilize, and produce healthy embryos and offspring. Arguably, one of the most significant advances in this emerging field was provided by a new research study published this year, which reported the successful isolation and functional characterization of OSCs from ovaries of reproductive age women. Two commentaries on this latest work, one cautiously supportive and one highly skeptical, were published soon afterward. This article evaluates the current literature regarding postnatal oogenesis in mammals and discusses important next steps for future work on OSC biology and function.

  12. Toward an understanding of the pathophysiology of clear cell carcinoma of the ovary (Review)

    PubMed Central

    UEKURI, CHIHARU; SHIGETOMI, HIROSHI; ONO, SUMIRE; SASAKI, YOSHIKAZU; MATSUURA, MIYUKI; KOBAYASHI, HIROSHI

    2013-01-01

    Endometriosis-associated ovarian cancers demonstrate substantial morphological and genetic diversity. The transcription factor, hepatocyte nuclear factor (HNF)-1β, may be one of several key genes involved in the identity of ovarian clear cell carcinoma (CCC). The present study reviews a considerably expanded set of HNF-1β-associated genes and proteins that determine the pathophysiology of CCC. The current literature was reviewed by searching MEDLINE/PubMed. Functional interpretations of gene expression profiling in CCC are provided. Several important CCC-related genes overlap with those known to be regulated by the upregulation of HNF-1β expression, along with a lack of estrogen receptor (ER) expression. Furthermore, the genetic expression pattern in CCC resembles that of the Arias-Stella reaction, decidualization and placentation. HNF-1β regulates a subset of progesterone target genes. HNF-1β may also act as a modulator of female reproduction, playing a role in endometrial regeneration, differentiation, decidualization, glycogen synthesis, detoxification, cell cycle regulation, implantation, uterine receptivity and a successful pregnancy. In conclusion, the present study focused on reviewing the aberrant expression of CCC-specific genes and provided an update on the pathological implications and molecular functions of well-characterized CCC-specific genes. PMID:24179489

  13. Direct exposure of mouse ovaries and oocytes to high doses of an adenovirus gene therapy vector fails to lead to germ cell transduction.

    PubMed

    Gordon, J W

    2001-04-01

    The risk of insertion of adenovirus gene therapy DNA into female germ cells during the course of somatic gene therapy was stringently tested in the mouse by injecting up to 10(10) infectious particles directly into the ovary and by incubating naked oocytes in a solution of 2 x 10(8) particles/ml for 1 h prior to in vitro fertilization (IVF). The vector used was a recombinant adenovirus carrying the bacterial lacZ gene driven by the cytomegalovirus promoter (Adbeta-gal). Ovaries were stained for LacZ activity, or immunochemically for LacZ, 5-7 days after injection. Although very large amounts of LacZ activity and protein were detected, all positive staining was in the thecal portion of the ovary, with no staining seen in oocytes. In another series of experiments, mice with injected ovaries were mated, and preimplantation embryos or fetuses were analyzed either for LacZ expression or by PCR for lacZ DNA. None of 202 preimplantation embryos stained positively for LacZ and none of 58 fetuses were positive for DNA by PCR analysis. Finally, more than 1400 eggs were fertilized after exposure to the vector prior to IVF and stained as morulae for LacZ activity. Fewer than 2% of the embryos stained positively for LacZ, and experiments indicated that the staining was due to incomplete washing of the eggs prior to IVF. These data provide strong evidence that adenoviruses cannot infect oocytes and that the risk of female germ-line transduction with such vectors is very low. PMID:11319918

  14. Effect of PD 128763, a new potent inhibitor of poly(ADP-ribose) polymerase, on X-ray-induced cellular recovery processes in Chinese hamster V79 cells

    SciTech Connect

    Arundel-Suto, C.M.; Scavone, S.V.; Turner, W.R.; Suto, M.J.; Sebolt-Leopold, J.S. )

    1991-06-01

    The modifying effects of PD 128763 (3,4-dihydro-5-methyl-1(2H)-isoquinolinone), a potent inhibitor of poly(adenosine-diphosphate (ADP)-ribose) polymerase, on radiation-induced cell killing were examined in Chinese hamster V79 cells. This compound has an IC50 value against the purified enzyme approximately 50X lower than 3-aminobenzamide (3-AB), a widely used specific inhibitor of the enzyme. Exposure of exponentially growing cells to a noncytotoxic concentration (0.5 mM) of PD 128763 for 2 h immediately following X irradiation increased their radiation sensitivity, modifying both the shoulder and the slope of the survival curve. When recovery from sublethal damage and potentially lethal damage was examined in exponential and plateau-phase cells, respectively, postirradiation incubation with 0.5 mM PD 128763 was found not only to inhibit both these processes fully, but also to enhance further the level of radiation-induced cell killing. This is in contrast to the slight effect seen with the less potent inhibitor, 3-AB. The results presented suggest that the mechanism of radiosensitization by PD 128763 is related to the potent inhibition of poly(ADP-ribose) polymerase by this compound.

  15. Accumulation of cells expressing macrophage colony-stimulating factor receptor gene in the ovary of a pregnant viviparous fish, Neoditrema ransonnetii (Perciformes, Embiotocidae).

    PubMed

    Ueda, Kazuki; Saito, Erina; Iwasaki, Kaoru; Tsutsui, Shigeyuki; Nozawa, Aoi; Kikuchi, Kiyoshi; Nakamura, Osamu

    2016-03-01

    Macrophage colony-stimulating factor receptor (M-CSFR), a member of the group of type III protein tyrosine kinase receptors, is expressed primarily by monocyte/macrophage lineage cells. In order to describe the distribution of macrophages at the maternal-fetal interface in Neoditrema ransonnetii, a viviparous fish species, M-CSFR cDNA was sequenced. Two sequences were obtained: NrM-CSFR1 (4381 bp, encoding 980 amino acids), and NrM-CSFR2 (3573 bp, encoding 1016 amino acids). Both the genes were expressed in the ovary of pregnant females. In situ hybridization revealed that a number of cells that were positive for NrM-CSFR1 and/or NrM-CSFR2 populated the ovigerous lamellae of the ovary during pregnancy. Following parturition, M-CSFR-positive cells disappeared from the subepithelial region of ovigerous lamellae, and were localized in perivascular tissues. These results suggest the role of M-CSFR-positive cells, which appear to be macrophages, in N. ransonnetii during pregnancy.

  16. Survival and DNA damage in Chinese hamster V79 cells exposed to alpha particles emitted by DNA-incorporated astatine-211.

    PubMed

    Walicka, M A; Vaidyanathan, G; Zalutsky, M R; Adelstein, S J; Kassis, A I

    1998-09-01

    Asynchronous Chinese hamster V79 lung fibroblasts were incubated at 37 degrees C for 30 min with the thymidine analog 5-[211At]astato-2'-deoxyuridine (211AtdU, exposure from DNA-incorporated activity) or with [211At]astatide (211At-, exposure from extracellular activity), and DNA-incorporated activity was determined. The 211AtdU content in cellular DNA increased as a function of extracellular concentration. Incorporation of 211At- was less than 1% of that of 211AtdU. After exposure, cells were frozen in the presence of 10% DMSO. One month later, survival was determined by the colony-forming assay, and DNA double-strand breaks (DSBs) were measured by the neutral elution method (pH 9.6). The survival curve for 211AtdU was biphasic (D37 = 2.8 decays per cell), reflecting killing of 211At-DNA-labeled cells and of unlabeled cells irradiated by 211At in neighboring labeled cells. The toxicity of 211At- decaying outside the cell (30-min exposure) was negligible. Analysis of the survival curve produced a D0 of 1.3 decays/cell for 211At-labeled cells. The yield of DSBs from the decay of DNA-incorporated 211At was compared with that from DNA-incorporated 125I. Each decay of 211At produced at least 10 times the number of DSBs as that obtained per 125I decay. The extreme radiotoxicity of DNA-incorporated 211AtdU seems to be associated with considerable damage to the mammalian cell genome.

  17. Regulation of hamster splenocyte reactivity to concanavalin A during pregnancy

    SciTech Connect

    Weppner, W.A.; Coggin, J.H. Jr.

    1980-08-15

    The survival to term of mammalian fetuses regardless of their expression of paternal or embryonic developmental antigens suggests that some alteration in the immune capabilities of a female occur during pregnancy. The immunocompetence of female Syrian golden hamsters during pregnancy was investigated with respect to the blastogenic response of spleen cells to the T-cell mitogen concanavalin A (Con A). The blastogenic response of spleen cells from pregnant hamsters during mid- or late gestation is 10% of that observed for spleen cells from age-matched, virgin female animals. The spleen cells from pregnant hamsters are not capable of suppressing the proliferative response of spleen cells from virgin females to Con A. However, the serum from pregnant hamsters, in comparison with serum from virgin female animals, is capable of reducing this mitogenic response. Extensive washing of the splenocytes from pregnant hamsters does reduce the degree of suppression. These results suggest that the hamster is an excellent animal model for the investigation of the mechanism(s) of immune regulation that operate during pregnancy.

  18. Modulation of in vitro transformation and the early and late modes of DNA replication of uv-irradiation Syrian hamster cells by caffeine

    SciTech Connect

    Doniger, J.; DiPaolo, J.A.

    1981-09-01

    The effect of caffeine on post-uv DNA replication was studied to determine its relevance to carcinogenesis. The level of uv-induced transformed colonies of Syrian hamster embryo cells (HEC) was increased up to fivefold when caffeine was added to cells between 0 and 6 h post-uv. The greatest increase was observed when the interval between uv irradiation and caffeine addition was 4 h. Two modes of DNA replication occurred after uv irradiation. During the early mode (0 to 3 h post-uv) the size of nascent strands, as measured by alkaline sucrose sedimentation, was smaller than those in nonirradiated cells, whereas during the late mode they recovered to normal size. Caffeine inhibited the rate of elongation of nascent strands during the early mode. When caffeine was added immediately after uv irradiation, the conversion of the early mode to the late mode was inhibited. Studies on the effects of caffeine have now been extended to the late mode. While caffeine has little effect with the fd elements beginning from the 10th day after irradiation is connected with their proliferation but not with the migration out from lymphoid organs.

  19. Genetic effects of the photochemical reaction products of propylene plus NO/sub 2/ on cultured Chinese hamster cells exposed in vitro

    SciTech Connect

    Shiraishi, F.; Bandow, H.

    1985-01-01

    A study was made on the genetic effects of the photochemical reaction products of propylene plus NO/sub 2/ on cultured Chinese hamster V79 cells with the use of sister chromatid exchanges (SCE). The photochemical reaction products of propylene plus NO/sub 2/ were produced by photochemical reaction of a propylene-NO/sub 2//dry air system in a photochemical smog chamber and then were exposed to cell cultures of 2h. SCEs were induced at all concentrations of the photochemical reaction products employed in the present study, the frequency of SCEs being two or three times higher than that of the controls. The genetic effects of NO/sub 2/ and ozone (O/sub 3/) were also studied and compared with those of the photochemical reaction products of propylene plus NO/sub 2/, NO/sub 2/ and O/sub 3/ both induced SCEs in V79 cells, but their effects were weaker than those induced by the photochemical reaction products of propylene plus NO/sub 2/. It was ascertained that the photochemical reaction of the propylene-NO/sub 2//dry air system produced much stronger genotoxic factors that the reactants.

  20. Astaxanthin Inhibits JAK/STAT-3 Signaling to Abrogate Cell Proliferation, Invasion and Angiogenesis in a Hamster Model of Oral Cancer

    PubMed Central

    Kowshik, J.; Baba, Abdul Basit; Giri, Hemant; Deepak Reddy, G.; Dixit, Madhulika; Nagini, Siddavaram

    2014-01-01

    Identifying agents that inhibit STAT-3, a cytosolic transcription factor involved in the activation of various genes implicated in tumour progression is a promising strategy for cancer chemoprevention. In the present study, we investigated the effect of dietary astaxanthin on JAK-2/STAT-3 signaling in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model by examining the mRNA and protein expression of JAK/STAT-3 and its target genes. Quantitative RT-PCR, immunoblotting and immunohistochemical analyses revealed that astaxanthin supplementation inhibits key events in JAK/STAT signaling especially STAT-3 phosphorylation and subsequent nuclear translocation of STAT-3. Furthermore, astaxanthin downregulated the expression of STAT-3 target genes involved in cell proliferation, invasion and angiogenesis, and reduced microvascular density, thereby preventing tumour progression. Molecular docking analysis confirmed inhibitory effects of astaxanthin on STAT signaling and angiogenesis. Cell culture experiments with the endothelial cell line ECV304 substantiated the role of astaxanthin in suppressing angiogenesis. Taken together, our data provide substantial evidence that dietary astaxanthin prevents the development and progression of HBP carcinomas through the inhibition of JAK-2/STAT-3 signaling and its downstream events. Thus, astaxanthin that functions as a potent inhibitor of tumour development and progression by targeting JAK/STAT signaling may be an ideal candidate for cancer chemoprevention. PMID:25296162

  1. Efficient gene targeting in golden Syrian hamsters by the CRISPR/Cas9 system.

    PubMed

    Fan, Zhiqiang; Li, Wei; Lee, Sang R; Meng, Qinggang; Shi, Bi; Bunch, Thomas D; White, Kenneth L; Kong, Il-Keun; Wang, Zhongde

    2014-01-01

    The golden Syrian hamster is the model of choice or the only rodent model for studying many human diseases. However, the lack of gene targeting tools in hamsters severely limits their use in biomedical research. Here, we report the first successful application of the CRISPR/Cas9 system to efficiently conduct gene targeting in hamsters. We designed five synthetic single-guide RNAs (sgRNAs)--three for targeting the coding sequences for different functional domains of the hamster STAT2 protein, one for KCNQ1, and one for PPP1R12C--and demonstrated that the CRISPR/Cas9 system is highly efficient in introducing site-specific mutations in hamster somatic cells. We then developed unique pronuclear (PN) and cytoplasmic injection protocols in hamsters and produced STAT2 knockout (KO) hamsters by injecting the sgRNA/Cas9, either in the form of plasmid or mRNA, targeting exon 4 of hamster STAT2. Among the produced hamsters, 14.3% and 88.9% harbored germline-transmitted STAT2 mutations from plasmid and mRNA injection, respectively. Notably, 10.4% of the animals produced from mRNA injection were biallelically targeted. This is the first success in conducting site-specific gene targeting in hamsters and can serve as the foundation for developing other genetically engineered hamster models for human disease.

  2. Ultrastructural changes in the ovary cells of engorged Rhipicephalus sanguineus female ticks treated with esters of ricinoleic acid from castor oil (Ricinus communis).

    PubMed

    Sampieri, Bruno Rodrigues; Arnosti, André; Nunes, Pablo Henrique; Furquim, Karim Christina Scopinho; Chierice, Gilberto Orivaldo; Mathias, Maria Izabel Camargo

    2012-05-01

    Rhipicephalus sanguineus is a widely distributed tick species that has adapted to the urban environment, and the dog is its main host. This species is also known as a vector and reservoir of diseases caused by bacteria, protozoa, and viruses. Currently, acaricides of synthetic chemical origin have been widely and indiscriminately used, leading to the development of resistance to these products by ticks and causing damage to the environment. Thus, these issues have made it necessary to seek other forms of controlling these ectoparasites. R. sanguineus was artificially infested in host New Zealand White rabbits, which were divided into four treatment groups: control (CG1 and CG2) and treatment (TG1 and TG2) groups. TG1 and TG2 hosts were provided with feed supplemented with esters of ricinoleic acid from castor oil at a concentration of 5 g/kg of feed for 7 and 15 days. Afterward, the ovaries of the female ticks were removed for analysis by transmission electron microscopy. The results showed ultrastructural changes in the somatic and germ cells of ovaries from TG1 and TG2 females, particularly with respect to chorion deposition, a protective membrane of the oocyte, as well as in the transport process of vitellogenic materials via the hemolymph and pedicel cells. Moreover, the mitochondria were less electron-dense and had cristae that were more disorganized than the mitochondria from CG1 and CG2 individuals. Thus, this study demonstrated the action of esters on the ovaries of R. sanguineus, signaling the prospect of a way to control this ectoparasite without affecting nontarget organisms or the environment.

  3. Steroidogenesis in human polycystic ovary.

    PubMed

    Mahajan, D K

    1988-12-01

    Polycystic ovarian disease (PCOD) is a heterogenous condition with a broad clinical and pathologic spectrum that may reflect the effects of diverse etiologic factors. Depending on the diagnostic data available from patients, various steroidogenic enzyme blocks have been postulated, mostly implicating higher-than-normal production of circulating delta 4-androstenedione, testosterone, and, in some cases, dehydroisoandrosterone. These high levels of androgens, because of their peripheral conversion to estrogens, lead to inappropriate secretion of gonadotropins in PCOD. Whatever may be the etiologic factors, the common entity is a polycystic ovary. Such an ovary contains preantral follicles, few antral follicles, many atretic follicles, and follicular and degenerative cysts. The follicles lack a sufficient number of mature granulosa cells to produce enough estrogens. On the other hand, there is a hypertrophy of stromal and thecal tissue continuously producing androgens. The steroid analysis of the follicular fluid obtained from the cystic follicles of the polycystic ovary revealed high concentration of delta 4-androstenedione and absence of, or only minute amounts of, estrogens. Early studies of biosynthesis of steroids in the polycystic ovary demonstrated conversion of progesterone mainly to androgens. Arising from these observations was the suggestion that an aromatase enzyme block existed. That suggestion was corroborated in the findings of higher-than-normal circulating androgens in PCOD. Later, other partial enzymatic blocks of beta-hydroxydehydrogenase and 17-hydroxylase were also suggested. However, it is known that the therapies such as wedge resection, administration of FSH, or FSH/LH (Pergonal) and LHRH leads to ovulation and, in most cases, normal cyclicity in the polycystic ovary. The knowledge gained from these therapies clearly indicates that the enzymatic blocks or abnormal steroidogenesis in the polycystic ovary may be due to the absence of proper

  4. Isolation of small SSEA-4-positive putative stem cells from the ovarian surface epithelium of adult human ovaries by two different methods.

    PubMed

    Virant-Klun, Irma; Skutella, Thomas; Hren, Matjaz; Gruden, Kristina; Cvjeticanin, Branko; Vogler, Andrej; Sinkovec, Jasna

    2013-01-01

    The adult ovarian surface epithelium has already been proposed as a source of stem cells and germinal cells in the literature, therefore it has been termed the "germinal epithelium". At present more studies have confirmed the presence of stem cells expressing markers of pluripotency in adult mammalian ovaries, including humans. The aim of this study was to isolate a population of stem cells, based on the expression of pluripotency-related stage-specific embryonic antigen-4 (SSEA-4) from adult human ovarian surface epithelium by two different methods: magnetic-activated cell sorting and fluorescence-activated cell sorting. Both methods made it possible to isolate a similar, relatively homogenous population of small, SSEA-4-positive cells with diameters of up to 4  μm from the suspension of cells retrieved by brushing of the ovarian cortex biopsies in reproductive-age and postmenopausal women and in women with premature ovarian failure. The immunocytochemistry and genetic analyses revealed that these small cells--putative stem cells--expressed some primordial germ cell and pluripotency-related markers and might be related to the in vitro development of oocyte-like cells expressing some oocyte-specific transcription factors in the presence of donated follicular fluid with substances important for oocyte growth and development. The stemness of these cells needs to be further researched.

  5. Entrapped ovary syndrome.

    PubMed

    Matthews, J M; Kodner, I J; Fry, R D; Fazio, V W

    1986-05-01

    Formulation of pelvic cysts afer proctectomy is an entity which is described in this paper with the cause supposed to be due to descent of the ovary from an intraperitoneal to an extraperitoneal position at the time of proctectomy. A simple surgical technique for fixing the ovary out of the pelvis to prevent this complication is described.

  6. A low, adaptive dose of gamma-rays reduced the number and altered the spectrum of S1- mutants in human-hamster hybrid AL cells

    NASA Technical Reports Server (NTRS)

    Ueno, A. M.; Vannais, D. B.; Gustafson, D. L.; Wong, J. C.; Waldren, C. A.

    1996-01-01

    We examined the effects of a low, adaptive dose of 137Cs-gamma-irradiation (0.04 Gy) on the number and kinds of mutants induced in AL human-hamster hybrid cells by a later challenge dose of 4 Gy. The yield of S1- mutants was significantly less (by 53%) after exposure to both the adaptive and challenge doses compared to the challenge dose alone. The yield of hprt- mutants was similarly decreased. Incubation with cycloheximide (CX) or 3-aminobenzamide largely negated the decrease in mutant yield. The adaptive dose did not perturb the cell cycle, was not cytotoxic, and did not of itself increase the mutant yield above background. The adaptive dose did, however, alter the spectrum of S1- mutants from populations exposed only to the adaptive dose, as well as affecting the spectrum of S1- mutants generated by the challenge dose. The major change in both cases was a significant increase in the proportion of complex mutations compared to small mutations and simple deletions.

  7. Coordinate regulation of transforming growth factor beta gene expression and cell proliferation in hamster lungs undergoing bleomycin-induced pulmonary fibrosis.

    PubMed Central

    Raghow, B; Irish, P; Kang, A H

    1989-01-01

    The number of mesenchymal cells, as well as their ability to synthesize extracellular matrix (ECM) components, greatly increase in the interstitium of fibrotic lungs. We have previously shown that the transcription of type I procollagen and fibronectin genes in the lungs is preferentially elevated during the early stages of bleomycin-induced pulmonary fibrosis (Raghow, R., S. Lurie, J. M. Seyer, and A. H. Kang. 1985, J. Clin. Invest. 76:1734-1739. Since a cytokine-like transforming growth factor beta (TGF beta) that is capable of enhancing mesenchymal cell proliferation and ECM synthesis could be potentially involved in this process, we investigated the temporal relationship between the regulation of TGF beta gene transcription and cellular proliferation in the bleomycin-treated hamster lungs. We observed a transient 5-7-fold increase in the accumulation of TGF beta transcripts, a concomitant 3-4-fold elevation in the cellular proliferation, and 8-10-fold stimulation of DNA synthesis in these lungs; all three parameters peaked around day 10 after bleomycin administration. Based on these results, we conclude that regulation of TGF beta gene expression may contribute significantly to the early events that lead to bleomycin-induced pulmonary fibrosis. Images PMID:2480367

  8. Either Kras activation or Pten loss similarly enhance the dominant-stable CTNNB1-induced genetic program to promote granulosa cell tumor development in the ovary and testis.

    PubMed

    Richards, J S; Fan, H-Y; Liu, Z; Tsoi, M; Laguë, M-N; Boyer, A; Boerboom, D

    2012-03-22

    WNT, RAS or phosphoinositide 3-kinase signaling pathways control specific stages of ovarian follicular development. To analyze the functional interactions of these pathways in granulosa cells during follicular development in vivo, we generated specific mutant mouse models. Stable activation of the WNT signaling effector β-catenin (CTNNB1) in granulosa cells results in the formation of premalignant lesions that develop into granulosa cell tumors (GCTs) spontaneously later in life or following targeted deletion of the tumor suppressor gene Pten. Conversely, expression of oncogenic KRAS(G12D) dramatically arrests proliferation, differentiation and apoptosis in granulosa cells, and consequently, small abnormal follicle-like structures devoid of oocytes accumulate in the ovary. Because of the potent anti-proliferative effects of KRAS(G12D) in granulosa cells, we sought to determine whether KRAS(G12D) would block precancerous lesion and tumor formation in follicles of the CTNNB1-mutant mice. Unexpectedly, transgenic Ctnnb1;Kras-mutant mice exhibited increased GC proliferation, decreased apoptosis and impaired differentiation and developed early-onset GCTs leading to premature death in a manner similar to the Ctnnb1;Pten-mutant mice. Microarray and reverse transcription-PCR analyses revealed that gene regulatory processes induced by CTNNB1 were mostly enhanced by either KRAS activation or Pten loss in remarkably similar patterns and degree. The concomitant activation of CTNNB1 and KRAS in Sertoli cells also caused testicular granulosa cell tumors that showed gene expression patterns that partially overlapped those observed in GCTs of the ovary. Although the mutations analyzed herein have not yet been linked to adult GCTs in humans, they may be related to juvenile GCTs or to tumors in other tissues where CTNNB1 is mutated. Importantly, the results provide strong evidence that CTNNB1 is the driver in these contexts and that KRAS(G12D) and Pten loss promote the program set

  9. The release of radioactive nucleic acids and mucoproteins by trypsin and ethylenediaminetetra-acetate treatment of baby-hamster cells in tissue culture

    PubMed Central

    Snow, Christine; Allen, A.

    1970-01-01

    Monolayers of baby-hamster kidney cells were grown on glass in tissue culture and harvested with trypsin or EDTA in order to investigate the cell surface macromolec