Sample records for hamster ovary-k1 cells

  1. Survival of Chinese Hamster Ovary Cells Following Ultrahigh Dose Rate Electron and Bremsstrahlung Radiation

    DTIC Science & Technology

    1990-04-01

    and a stepped lead flattening filter. The electron energy used for these studies was 13 MeV. Dosimetry was performed by the Health Physics Division...VolI LJSAFSAPA-TR-90-4 AD-A222 722 SURVIVAL OF CHINESE HAMSTER OVARY CELLS FOLLOWING ULTRAHIGH DOSE RATE ELECTRON AND BREMISSTRAHLUNG RADIATION...Include Security ;a!. iatcn) Survival of Chinese Hamster Ovary Cells Following Ultrahigh Dose Rate Electron and Bremsstrahlung Radiation 12 PERSONAL

  2. Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells.

    PubMed

    Di Virgilio, A L; Reigosa, M; Arnal, P M; Fernández Lorenzo de Mele, M

    2010-05-15

    The aim of this study was to analyze the cytotoxicity and genotoxicity of titanium oxide (TiO(2)) and aluminium oxide (Al(2)O(3)) nanoparticles (NPs) on Chinese hamster ovary (CHO-K1) cells using neutral red (NR), mitochondrial activity (by MTT assay), sister chromatid exchange (SCE), micronucleus (MN) formation, and cell cycle kinetics techniques. Results showed a dose-related cytotoxic effect evidenced after 24h by changes in lysosomal and mitochondrial dehydrogenase activity. Interestingly, transmission electronic microscopy (TEM) showed the formation of perinuclear vesicles in CHO-K1 cells after treatment with both NPs during 24h but no NP was detected in the nuclei. Genotoxic effects were shown by MN frequencies which significantly increased at 0.5 and 1 microg/mL TiO(2) and 0.5-10 microg/mL Al(2)O(3). SCE frequencies were higher for cells treated with 1-5 microg/mL TiO(2). The absence of metaphases evidenced cytotoxicity for higher concentrations of TiO(2). No SCE induction was achieved after treatment with 1-25 microg/mL Al(2)O(3). In conclusion, findings showed cytotoxic and genotoxic effects of TiO(2) and Al(2)O(3) NPs on CHO-K1 cells. Possible causes of controversial reports are discussed further on. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  3. CELLULAR TOXICITY IN CHINESE HAMSTER OVARY CELL CULTURES. 2. A STATISTICAL APPRAISAL OF SENSITIVITY WITH THE RABBIT ALVEOLAR MACROPHAGE, SYRIAN HAMSTER EMBRYO, BALB 3T3 MOUSE, AND HUMAN NEONATAL FIBROBLAST CELL SYSTEMS

    EPA Science Inventory

    Chinese hamster ovary, rabbit alveolar macrophage, Syrian Hamster embryo, mouse, and human neonatal fibroblast cells were employed in a statistical evaluation of the relative sensitivity of the cells to toxic substances. The cells were exposed to 1,2,4-trichlorobenzene, 2,4-dimet...

  4. A novel regulatory element (E77) isolated from CHO-K1 genomic DNA enhances stable gene expression in Chinese hamster ovary cells.

    PubMed

    Kang, Shin-Young; Kim, Yeon-Gu; Kang, Seunghee; Lee, Hong Weon; Lee, Eun Gyo

    2016-05-01

    Vectors flanked by regulatory DNA elements have been used to generate stable cell lines with high productivity and transgene stability; however, regulatory elements in Chinese hamster ovary (CHO) cells, which are the most widely used mammalian cells in biopharmaceutical production, are still poorly understood. We isolated a novel gene regulatory element from CHO-K1 cells, designated E77, which was found to enhance the stable expression of a transgene. A genomic library was constructed by combining CHO-K1 genomic DNA fragments with a CMV promoter-driven GFP expression vector, and the E77 element was isolated by screening. The incorporation of the E77 regulatory element resulted in the generation of an increased number of clones with high expression, thereby enhancing the expression level of the transgene in the stable transfectant cell pool. Interestingly, the E77 element was found to consist of two distinct fragments derived from different locations in the CHO genome shotgun sequence. High and stable transgene expression was obtained in transfected CHO cells by combining these fragments. Additionally, the function of E77 was found to be dependent on its site of insertion and specific orientation in the vector construct. Our findings demonstrate that stable gene expression mediated by the CMV promoter in CHO cells may be improved by the isolated novel gene regulatory element E77 identified in the present study. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Aryl- and alkyl-phosphorus-containing flame retardants induced mitochondrial impairment and cell death in Chinese hamster ovary (CHO-k1) cells.

    PubMed

    Huang, Chao; Li, Na; Yuan, Shengwu; Ji, Xiaoya; Ma, Mei; Rao, Kaifeng; Wang, Zijian

    2017-11-01

    Phosphorus-containing flame retardants (PFRs) are increasingly in demand worldwide as replacements for brominated flame retardants (BFRs), but insufficient available toxicological information on PFRs makes assessing their health risks challenging. Mitochondria are important targets of various environmental pollutants, and mitochondrial dysfunction may lead to many common diseases. In the present study, mitochondria impairment-related endpoints were measured by a high content screening (HCS) assay for 11 selected non-halogen PFRs in Chinese hamster ovary (CHO-k1) cells. A cluster analysis was used to categorize these PFRs into three groups according to their structural characteristics and results from the HCS assay. Two groups, containing long-chain alkyl-PFRs and all aryl-PFRs, were found to cause mitochondrial impairment but showed different mechanisms of toxicity. Due to the high correlation between cell death and mitochondrial impairment, two PFRs with different structures, trihexyl phosphate (THP) and cresyl diphenyl phosphate (CDP), were selected and compared with chlorpyrifos (CPF) to elucidate their mechanism of inducing cell death. THP (an alkyl-PFR) was found to utilize a similar pathway as CPF to induce apoptosis. However, cell death induced by CDP (an aryl-PFR) was different from classical necrosis based on experiments to discriminate among the different modes of cell death. These results confirm that mitochondria might be important targets for some PFRs and that differently structured PFRs could function via distinct mechanisms of toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. CELLULAR TOXICITY IN CHINESE HAMSTER OVARY CELL CULTURES. 1. ANALYSIS OF CYTOTOXICITY ENDPOINTS FOR TWENTY-NINE PRIORITY POLLUTANTS

    EPA Science Inventory

    Chinese hamster ovary cells were exposed to 29 toxic chemical substances which were representative of several classes of compounds listed by the Natural Resources Defense Council Consent Decree as priority toxic pollutants. After cell cultures were exposed to the test substance, ...

  7. Expression of FSH receptor in the hamster ovary during perinatal development

    PubMed Central

    Chakraborty, Prabuddha; Roy, Shyamal K.

    2014-01-01

    FSH plays an important role in ovarian follicular development, and it functions via the G-protein coupled FSH receptor. The objectives of the present study were to determine if full-length FSHR mRNA and corresponding protein were expressed in fetal through postnatal hamster ovaries to explain the FSH-induced primordial follicle formation, and if FSH or estrogen (E) would affect the expression. A full-length and two alternately spliced FSHR transcripts were expressed from E14 through P20. The level of the full-length FSHR mRNA increased markedly through P7 before stabilizing at a lower level with the formation and activation of primordial follicles. A predicted 87kDa FSHR protein band was detected in fetal through P4 ovaries, but additional bands appeared as ovary developed. FSHR immunosignal was present in undifferentiated somatic cells and oocytes in early postnatal ovaries, but was granulosa cells specific after follicles formed. Both eCG and E significantly up-regulated full-length FSHR mRNA levels. Therefore, FSHR is expressed in the hamster ovary from the fetal life to account for FSH-induced primordial follicle formation and cAMP production. Further, FSH or E regulates the receptor expression. PMID:25462586

  8. Large-Scale Transient Transfection of Chinese Hamster Ovary Cells in Suspension.

    PubMed

    Rajendra, Yashas; Balasubramanian, Sowmya; Hacker, David L

    2017-01-01

    We describe a one-liter transfection of suspension-adapted Chinese hamster ovary (CHO-DG44) cells using polyethyleneimine (PEI) for DNA delivery. The method involves transfection at a high cell density (5 × 10 6 cells/mL) by direct addition of plasmid DNA (pDNA) and PEI to the culture and subsequent incubation at 31 °C with agitation by orbital shaking. We also describe an alternative method in which 90% of the pDNA is replaced by nonspecific (filler) DNA, and the production phase is performed at 31 °C in the presence of 0.25% N, N-dimethylacetamide (DMA).

  9. Partial apamin sensitivity of human small conductance Ca2+-activated K+ channels stably expressed in Chinese hamster ovary cells.

    PubMed

    Dale, T J; Cryan, J E; Chen, M X; Trezise, D J

    2002-11-01

    The bee venom toxin apamin is an important drug tool for characterising small conductance Ca(2+)-activated K(+) channels (SK channels). In recombinant expression systems both rSK2 and rSK3 channels are potently blocked by apamin, whilst the sensitivity of SK1 channels is somewhat less clear. In the present study we have conducted a detailed analysis by patch clamp electrophysiology of the effects of apamin on human SK channels (SK1, SK2 and SK3) stably expressed in Chinese hamster ovary (CHO-K1) cells. CHO-K1 cell lines expressing either hSK1, 2 or 3 channels were first validated using specific antibodies and Western blotting. Specific protein bands of a size corresponding to the predicted channel tetramer (approximately 250-290 kDa) were detected. In each cell line, but not wild-type untransfected cells, large, time-independent inwardly rectifying Ca(2+)-dependent K(+) currents were observed under voltage-clamp. In CHO-hSK1, this current was markedly reduced by apamin (IC(50) value 8 nM), however, a significant fraction of the current remained unblocked (39+/-5%), even at saturating concentrations (1 microM apamin). The apamin-sensitive and -insensitive currents possess very similar biophysical and pharmacological properties. Each are Ca(2+)-dependent, inwardly rectify and have relative ionic permeabilities of K(+)>Cs(+)>Li(+)=Na(+). Both components were resistant to block by charybdotoxin and iberiotoxin, known IK and BK channel blockers, but were attenuated by the tricyclic antidepressant cyproheptadine (>95% block at 1 mM). The SK channel opener 1-EBIO could still produce channel activation in the presence of apamin. Importantly, hSK2 and hSK3 channels also exhibit partial apamin sensitivity in our experimental paradigm (IC(50) values of 0.14 nM and 1.1 nM, respectively, and maximal percentage inhibition values of 47+/-7% and 58+/-9%, respectively). Our data indicate that, at least in a recombinant expression system, all three SK channels can be partially

  10. Unusual neutral oligosaccharides in mature Sindbis virus glycoproteins are synthesized from truncated precursor oligosaccharides in Chinese hamster ovary cells.

    PubMed

    Davidson, S K; Hunt, L A

    1983-03-01

    We have previously demonstrated the presence of unusual small asparaginyl-oligosaccharides [(Man)3GlcNAc2-ASN] in the mature glycoproteins of Sindbis virus released from both wild-type and lectin-resistant Chinese hamster ovary cells, but the mechanism of synthesis of these structures was not determined. Gel filtration and endo-beta-N-acetylglucosaminidase analyses of Pronase-digested glycopeptides from [3H]mannose-labelled Sindbis virus released at different times after infection of a phytohaemagglutinin-resistant line of Chinese hamster ovary cells demonstrated that these small asparaginyl-oligosaccharides were present in similar relative amounts in virus released throughout the virus infection, rather than arising primarily at late times when cytopathic effects were maximal. Similar analyses of pulse-labelled, cell-associated viral glycopeptides suggested that these small oligosaccharides on mature virus glycoprotein resulted from the normal alpha 1,2-mannosidase processing of truncated precursor oligosaccharides (containing five rather than nine mannoses), rather than from aberrant processing or degradation of the full-size precursor oligosaccharides or normal intermediates.

  11. Efficient expression of stable recombinant human insulin-like growth factor-1 fusion with human serum albumin in Chinese hamster ovary cells.

    PubMed

    Wan, Aini; Xu, Dongsheng; Liu, Kedong; Peng, Lin; Cai, Yanfei; Chen, Yun; He, Yang; Yang, Jianfeng; Jin, Jian; Li, Huazhong

    2017-08-09

    Insulin-like growth factor-1 (IGF-1) plays a crucial role in cell development, differentiation, and metabolism, and has been a potential therapeutic agent for many diseases. Chinese hamster ovary (CHO) cells are widely used for production of recombinant therapeutic proteins, but the expression level of IGF-1 in CHO cells is very low (1,500 µg/L) and the half-life of IGF-1 in blood circulation is only 4.5 min according to previous studies. Therefore, IGF-1 was fused to long-circulating serum protein human serum albumin (HSA) and expressed in CHO cells. After 8-day fed-batch culture, the expression level of HSA-IGF-1 reached 100 mg/L. The fusion protein HSA-IGF-1 was purified with a recovery of 35% using a two-step chromatographic procedure. According to bioactivity assay, the purified HSA-IGF-1 could stimulate the proliferation of NIH3T3 cells in a dose-dependent fashion and promote the cell-cycle progression. Besides this, HSA-IGF-1 could bind to IGF-1 receptor on cell membrane and activate the intracellular PI3K/AKT signaling pathway. Our study suggested that HSA fusion technology carried out in CHO cells not only provided bioactivity in HSA-IGF-1 for further research but also offered a beneficial strategy to produce other similar cytokines in CHO cells.

  12. Metabolic design of macroscopic bioreaction models: application to Chinese hamster ovary cells.

    PubMed

    Provost, A; Bastin, G; Agathos, S N; Schneider, Y-J

    2006-12-01

    The aim of this paper is to present a systematic methodology to design macroscopic bioreaction models for cell cultures based upon metabolic networks. The cell culture is seen as a succession of phases. During each phase, a metabolic network represents the set of reactions occurring in the cell. Then, through the use of the elementary flux modes, these metabolic networks are used to derive macroscopic bioreactions linking the extracellular substrates and products. On this basis, as many separate models are obtained as there are phases. Then, a complete model is obtained by smoothly switching from model to model. This is illustrated with batch cultures of Chinese hamster ovary cells.

  13. Recombinant MUC1 mucin with a breast cancer-like O-glycosylation produced in large amounts in Chinese-hamster ovary cells.

    PubMed Central

    Bäckström, Malin; Link, Thomas; Olson, Fredrik J; Karlsson, Hasse; Graham, Rosalind; Picco, Gianfranco; Burchell, Joy; Taylor-Papadimitriou, Joyce; Noll, Thomas; Hansson, Gunnar C

    2003-01-01

    We have developed an expression system for the production of large quantities of recombinant MUC1 mucin in CHO-K1 (Chinese-hamster ovary K1) cells. The extracellular part of human MUC1, including 16 MUC1 tandem repeats, was produced as a fusion protein with murine IgG Fc, with an intervening enterokinase cleavage site for the removal of the Fc tail. Stable MUC1-IgG-producing CHO-K1 clones were generated and were found to secrete MUC1-IgG into the culture medium. After adaptation to suspension culture in protein-free medium in a bioreactor, the fusion protein was secreted in large quantities (100 mg/l per day) into the culture supernatant. From there, MUC1 could be purified to homogeneity using a two-step procedure including enterokinase cleavage and ion-exchange chromatography. Capillary liquid chromatography MS of released oligosaccharides from CHO-K1-produced MUC1 identified the main O-glycans as Galbeta1-3GalNAc (core 1) and mono- and di-sialylated core 1. The glycans occupied on average 4.3 of the five potential O-glycosylation sites in the tandem repeats, as determined by nano-liquid chromatography MS of partially deglycosylated Clostripain-digested protein. A very similar O-glycan profile and site occupancy was found in MUC1-IgG produced in the breast carcinoma cell line T47D, which has O-glycosylation typical for breast cancer. In contrast, MUC1-IgG produced in another breast cancer cell line, MCF-7, showed a more complex pattern with both core 1- and core 2-based O-glycans. This is the first reported production of large quantities of recombinant MUC1 with a breast cancer-like O-glycosylation that could be used for the immunotherapy of breast cancer. PMID:12950230

  14. Model-based analysis of N-glycosylation in Chinese hamster ovary cells

    PubMed Central

    Krambeck, Frederick J.; Bennun, Sandra V.; Betenbaugh, Michael J.

    2017-01-01

    The Chinese hamster ovary (CHO) cell is the gold standard for manufacturing of glycosylated recombinant proteins for production of biotherapeutics. The similarity of its glycosylation patterns to the human versions enable the products of this cell line favorable pharmacokinetic properties and lower likelihood of causing immunogenic responses. Because glycan structures are the product of the concerted action of intracellular enzymes, it is difficult to predict a priori how the effects of genetic manipulations alter glycan structures of cells and therapeutic properties. For that reason, quantitative models able to predict glycosylation have emerged as promising tools to deal with the complexity of glycosylation processing. For example, an earlier version of the same model used in this study was used by others to successfully predict changes in enzyme activities that could produce a desired change in glycan structure. In this study we utilize an updated version of this model to provide a comprehensive analysis of N-glycosylation in ten Chinese hamster ovary (CHO) cell lines that include a wild type parent and nine mutants of CHO, through interpretation of previously published mass spectrometry data. The updated N-glycosylation mathematical model contains up to 50,605 glycan structures. Adjusting the enzyme activities in this model to match N-glycan mass spectra produces detailed predictions of the glycosylation process, enzyme activity profiles and complete glycosylation profiles of each of the cell lines. These profiles are consistent with biochemical and genetic data reported previously. The model-based results also predict glycosylation features of the cell lines not previously published, indicating more complex changes in glycosylation enzyme activities than just those resulting directly from gene mutations. The model predicts that the CHO cell lines possess regulatory mechanisms that allow them to adjust glycosylation enzyme activities to mitigate side effects of

  15. Effects of preventing O-glycosylation on the secretion of human chorionic gonadotropin in Chinese hamster ovary cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzuk, M.M.; Krieger, M.; Corless, C.L.

    1987-09-01

    Human chorionic gonadotropin (hCG) is a member of a family of heterodimeric glycoprotein hormones that have a common ..cap alpha.. subunit but differ in their hormone-specific ..beta..-subunits. The ..beta.. subunit of hCG (hCG..beta..) is unique among the ..beta.. subunits in that it contains four mucin-like O-linked oligosaccharides attached to a carboxyl-terminal extension. To study the effects of O-glycosylation on the secretion and assembly of hCG, expression vectors containing either hCG..beta.. gene alone or together with the hCG..cap alpha.. gene were transfected into a mutant Chinese hamster ovary cell line, 1d1D, which exhibits a reversible defect in O-glycosylation. The results revealmore » that hCG..beta.. can be secreted normally in the absence of its O-linked oligosaccharides. hCG..beta.. devoid of O-linked carbohydrate can also combine efficiently with hCG..cap alpha.. and be secreted as an intact dimer. The authors conclude that in Chinese hamster ovary cells, the hCG..beta.. O-linked chains play no role in the assembly and secretion of hCG. The normal and O-linked oligosaccharide-deficient forms of hCG secreted by these cells should prove useful in examining the role of O-linked chains on the biological function of hCG.« less

  16. Mechanisms driving the lactate switch in Chinese hamster ovary cells.

    PubMed

    Hartley, Fiona; Walker, Tracy; Chung, Vicky; Morten, Karl

    2018-03-31

    The metabolism of Chinese Hamster Ovary (CHO) cells in a production environment has been extensively investigated. However, a key metabolic transition, the switch from lactate production to lactate consumption, remains enigmatic. Though commonly observed in CHO cultures, the mechanism(s) by which this metabolic shift is triggered is unknown. Despite this, efforts to control the switch have emerged due to the association of lactate consumption with improved cell growth and productivity. This review aims to consolidate current theories surrounding the lactate switch. The influence of pH, NAD + /NADH, pyruvate availability and mitochondrial function on lactate consumption are explored. A hypothesis based on the cellular redox state is put forward to explain the onset of lactate consumption. Various techniques implemented to control the lactate switch, including manipulation of the culture environment, genetic engineering, and cell line selection are also discussed. © 2018 Wiley Periodicals, Inc.

  17. Isolation and characterization of a Chinese hamster ovary cell mutant with altered regulation of phosphatidylserine biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, K.; Kuge, O.; Nishijima, M.

    1989-11-25

    We have screened approximately 10,000 colonies of Chinese hamster ovary (CHO) cells immobilized on polyester cloth for mutants defective in (14C)ethanolamine incorporation into trichloroacetic acid-precipitable phospholipids. In mutant 29, discovered in this way, the activities of enzymes involved in the CDP-ethanolamine pathway were normal; however, the intracellular pool of phosphorylethanolamine was elevated, being more than 10-fold that in the parental CHO-K1 cells. These results suggested that the reduced incorporation of (14C)ethanolamine into phosphatidylethanolamine in mutant 29 was due to dilution of phosphoryl-(14C)ethanolamine with the increased amount of cellular phosphorylethanolamine. Interestingly, the rate of incorporation of serine into phosphatidylserine and themore » content of phosphatidylserine in mutant 29 cells were increased 3-fold and 1.5-fold, respectively, compared with the parent cells. The overproduction of phosphorylethanolamine in mutant 29 cells was ascribed to the elevated level of phosphatidylserine biosynthesis, because ethanolamine is produced as a reaction product on the conversion of phosphatidylethanolamine to phosphatidylserine, which is catalyzed by phospholipid-serine base-exchange enzymes. Using both intact cells and the particulate fraction of a cell extract, phosphatidylserine biosynthesis in CHO-K1 cells was shown to be inhibited by phosphatidylserine itself, whereas that in mutant 29 cells was greatly resistant to the inhibition, compared with the parental cells. As a conclusion, it may be assumed that mutant 29 cells have a lesion in the regulation of phosphatidylserine biosynthesis by serine-exchange enzyme activity, which results in the overproduction of phosphatidylserine and phosphorylethanolamine as well.« less

  18. Chinese hamster ovary K1 host cell enables stable cell line development for antibody molecules which are difficult to express in DUXB11-derived dihydrofolate reductase deficient host cell.

    PubMed

    Hu, Zhilan; Guo, Donglin; Yip, Shirley S M; Zhan, Dejin; Misaghi, Shahram; Joly, John C; Snedecor, Bradley R; Shen, Amy Y

    2013-01-01

    Therapeutic monoclonal antibodies (mAb) are often produced in Chinese hamster ovary (CHO) cells. Three commonly used CHO host cells for generating stable cell lines to produce therapeutic proteins are dihydrofolate reductase (DHFR) positive CHOK1, DHFR-deficient DG44, and DUXB11-based DHFR deficient CHO. Current Genentech commercial full-length antibody products have all been produced in the DUXB11-derived DHFR-deficient CHO host. However, it has been challenging to develop stable cell lines producing an appreciable amount of antibody proteins in the DUXB11-derived DHFR-deficient CHO host for some antibody molecules and the CHOK1 host has been explored as an alternative approach. In this work, stable cell lines were developed for three antibody molecules in both DUXB11-based and CHOK1 hosts. Results have shown that the best CHOK1 clones produce about 1 g/l for an antibody mAb1 and about 4 g/l for an antibody mAb2 in 14-day fed batch cultures in shake flasks. In contrast, the DUXB11-based host produced ∼0.1 g/l for both antibodies in the same 14-day fed batch shake flask production experiments. For an antibody mAb3, both CHOK1 and DUXB11 host cells can generate stable cell lines with the best clone in each host producing ∼2.5 g/l. Additionally, studies have shown that the CHOK1 host cell has a larger endoplasmic reticulum and higher mitochondrial mass. © 2013 American Institute of Chemical Engineers.

  19. Direct block by bisindolylmaleimide of rat Kv1.5 expressed in Chinese hamster ovary cells.

    PubMed

    Choi, B H; Choi, J S; Jeong, S W; Hahn, S J; Yoon, S H; Jo, Y H; Kim, M S

    2000-05-01

    The interaction of bisindolylmaleimide (BIM), widely used as a specific protein kinase C (PKC) inhibitor, with rat brain Kv1.5 (rKv1.5) channels stably expressed in Chinese hamster ovary cells was investigated using the whole-cell patch-clamp technique. BIM (I) and its inactive analog, BIM (V), inhibited rKv1.5 currents at +50 mV in a reversible concentration-dependent manner with an apparent K(d) value of 0.38 and 1.70 microM, respectively. BIM (I) accelerated the decay rate of inactivation of rKv1.5 currents but did not significantly modify the kinetics of current activation. Other specific PKC inhibitors, chelerythrine and PKC 19-36, had no effect on rKv1.5 and did not prevent the inhibitory effect of BIM (I). The inhibition of rKv1.5 by BIM (I) and BIM (V) was highly voltage-dependent between -30 and 0 mV (voltage range of channel opening), suggesting that both drugs interact preferentially with the open state of the channel. The additional inhibition by BIM (I) displayed a voltage dependence (delta = 0.19) in the full activation voltage range positive to 0 mV, but was not shown in BIM (V) (delta = 0). The rate constants of association and dissociation for BIM (I) were 9.63 microM(-1) s(-1) and 5.82 s(-1), respectively. BIM (I) increased the time constant of deactivation of tail currents from 26. 35 to 45.79 ms, resulting in tail crossover phenomenon. BIM (I) had no effect on the voltage dependence of steady-state inactivation. BIM (I) produced use-dependent inhibition of rKv1.5, which was consistent with the slow recovery from inactivation in the presence of drug. These results suggest that BIM (I) directly inhibits rKv1.5 channels in a phosphorylation-independent, and state-, voltage-, time-, and use-dependent manner.

  20. Stable Expression of the Motor Protein Prestin in Chinese Hamster Ovary Cells

    NASA Astrophysics Data System (ADS)

    Iida, Koji; Konno, Kazuaki; Oshima, Takeshi; Tsumoto, Kouhei; Ikeda, Katsuhisa; Kumagai, Izumi; Kobayashi, Toshimitsu; Wada, Hiroshi

    Mammalian hearing sensitivity relies on a mechanical amplification mechanism involving the outer hair cells (OHCs), which rapidly alter their longitudinal length in response to changes in their membrane potential. The molecular basis of this mechanism is thought to be a motor protein embedded in the lateral membrane of the OHCs. Recently, this motor protein was identified and termed prestin. Since then, prestin has been researched intensively to elucidate the behavior of the OHCs. However, little progress in the study of prestin at the molecular level has been made because no method of obtaining an adequate amount of prestin has been established. In this study, therefore, an attempt was made to construct a stable expression system of prestin using Chinese hamster ovary (CHO) cells. The expression of prestin in the transfected CHO cells and the activity of prestin on CHO cells were confirmed by immunofluorescence and whole-cell patch-clamp measurements, respectively.

  1. Centriole distribution during tripolar mitosis in Chinese hamster ovary cells

    PubMed Central

    1984-01-01

    During bipolar mitosis a pair of centrioles is distributed to each cell but the activities of the two centrioles within the pair are not equivalent. The parent is normally surrounded by a cloud of pericentriolar material that serves as a microtubule-organizing center. The daughter does not become associated with pericentriolar material until it becomes a parent in the next cell cycle (Rieder, C.L., and G. G. Borisy , 1982, Biol. Cell., 44:117-132). We asked whether the microtubule-organizing activity associated with a centriole was dependent on its becoming a parent. We induced multipolar mitosis in Chinese hamster ovary cells by treatment with 0.04 micrograms/ml colcemid for 4 h. After recovery from this colcemid block, the majority of cells divided into two, but 40% divided into three and 2% divided into four. The tripolar mitotic cells were examined by antitubulin immunofluorescence and by high voltage electron microscopy of serial thick (0.25-micron) sections. The electron microscope analysis showed that centriole number was conserved and that the centrioles were distributed among the three spindle poles, generally in a 2:1:1 or 2:2:0 pattern. The first pattern shows that centriole parenting is not prerequisite for association with pole function; the second pattern indicates that centrioles per se are not required at all. However, the frequency of midbody formation and successful division was higher when centrioles were present in the 2:1:1 pattern. We suggest that the centrioles may help the proper distribution and organization of the pericentriolar cloud, which is needed for the formation of a functional spindle pole. PMID:6373793

  2. Expression of vascular endothelial growth factor does not promote transformation but confers a growth advantage in vivo to Chinese hamster ovary cells.

    PubMed Central

    Ferrara, N; Winer, J; Burton, T; Rowland, A; Siegel, M; Phillips, H S; Terrell, T; Keller, G A; Levinson, A D

    1993-01-01

    Vascular endothelial growth factor (VEGF) is a mitogen with a specificity for endothelial cells in vitro and an angiogenic inducer in vivo. We tested the hypothesis that VEGF may confer on expressing cells a growth advantage in vivo. Dihydrofolatereductase--Chinese hamster ovary cells were transfected with expression vectors which direct the constitutive synthesis of VEGF. Neither the expression nor the exogenous administration of VEGF stimulated anchorage-dependent or anchorage-independent growth of Chinese hamster ovary cells in vitro. However, VEGF-expressing clones, unlike control cells, demonstrated an ability to proliferate in nude mice. Histologic examination revealed that the proliferative lesions were compact, well vascularized, and nonedematous. Ultrastructural analysis revealed that capillaries within the lesions were of the continuous type. These findings indicate that the expression of VEGF may confer on cells the ability to grow in vivo in the absence of transformation by purely paracrine mechanisms. Since VEGF is a widely distributed protein, this property may have relevance for a variety of physiological and pathological proliferative processes. Images PMID:8423215

  3. Recessive constitutive mutant Chinese hamster ovary cells (CHO-K1) with an altered A system for amino acid transport and the mechanism of gene regulation of the A system.

    PubMed Central

    Moffett, J; Englesberg, E

    1984-01-01

    Chinese hamster ovary cells (CHO-K1) starved for 24 h for amino acids show a severalfold increase in velocity of proline transport through the A system (Vmax is five times that of unstarved cells). This increase is inhibited by cycloheximide, actinomycin D, N-methyl-alpha-amino isobutyric acid (MeAIB, a non-metabolizable specific A system amino acid analog), and by other amino acids that are generally transported by the A system. However, transport by the A system is not a prerequisite for this repression, and all compounds that have affinity for the A system do not necessarily act as "co-repressors." The addition of proline, MeAIB, or other amino acids, as described above, to derepressed cells results in a rapid decrease in A system activity. As shown with proline and MeAIB, this decrease in activity is in part due to a rapid trans-inhibition and a slow, irreversible inactivation of the A system. Neither process is inhibited by cycloheximide or actinomycin D. Alanine antagonizes the growth of CHO-K1 pro cells by preventing proline transport, and alanine-resistant mutants (alar) have been isolated (Moffett et al., Somatic Cell Genet. 9:189-213, 1983). alar2 and alar4 are partial and full constitutive mutants for the A system and have two and six times the Vmax for proline uptake by the A system, respectively. The A system in alar4 is also immune to the co-repressor-induced inactivation. Both alar2 and alar4 phenotypes are recessive. Alar3 shows an increase in Vmax and Km for proline transport through the A system, and this phenotype is codominant. All three mutants have a pleiotropic effect, producing increases in activity of the ASC and P systems of amino acid transport. This increase is not due to an increase in the Na+ gradient. The ASC and P phenotypes behave similarly to the A system in hybrids. A model has been proposed incorporating these results. PMID:6538929

  4. Inhibition of apoptosis using exosomes in Chinese hamster ovary cell culture.

    PubMed

    Han, Seora; Rhee, Won Jong

    2018-05-01

    Animal cell culture technology for therapeutic protein production has shown significant improvement over the last few decades. Chinese hamster ovary (CHO) cells have been widely adapted for the production of biopharmaceutical drugs. In the biopharmaceutical industry, it is crucial to develop cell culture media and culturing conditions to achieve the highest productivity and quality. However, CHO cells are significantly affected by apoptosis in the bioreactors, resulting in a substantial decrease in product quantity and quality. Thus, to overcome the obstacle of apoptosis in CHO cell culture, it is critical to develop a novel method that does not have minimal concern of safety or cost. Herein, we showed for the first time that exosomes, which are nano-sized extracellular vesicles, derived from CHO cells inhibited apoptosis in CHO cell culture when supplemented to the culture medium. Flow cytometric and microscopic analyses revealed that substantial amounts of exosomes were delivered to CHO cells. Higher cell viability after staurosporine treatment was observed by exosome supplementation (67.3%) as compared to control (41.1%). Furthermore, exosomes prevented the mitochondrial membrane potential loss and caspase-3 activation, meaning that the exosomes enhanced cellular activities under pro-apoptotic condition. As the exosomes supplements are derived from CHO cells themselves, it is not only beneficial for the biopharmaceutical productivity of CHO cell culture to inhibit apoptosis, but also from a regulatory standpoint to diminish any safety concerns. Thus, we conclude that the method developed in this research may contribute to the biopharmaceutical industry where minimizing apoptosis in CHO cell culture is beneficial. © 2018 Wiley Periodicals, Inc.

  5. Metabolic engineering of Chinese hamster ovary cells: Towards a bioengineered heparin

    PubMed Central

    Baik, Jong Youn; Gasimli, Leyla; Yang, Bo; Datta, Payel; Zhang, Fuming; Glass, Charles A.; Esko, Jeffrey D.; Linhardt, Robert J.; Sharfstein, Susan T.

    2012-01-01

    Heparin is the most widely used pharmaceutical to control blood coagulation in modern medicine. A health crisis that took place in 2008 led to a demand for production of heparin from non-animal sources. Chinese hamster ovary (CHO) cells, commonly used mammalian host cells for production of foreign pharmaceutical proteins in the biopharmaceutical industry, are capable of producing heparan sulfate (HS), a related polysaccharide naturally. Since heparin and HS share the same biosynthetic pathway, we hypothesized that heparin could be produced in CHO cells by metabolic engineering. Based on the expression of endogenous enzymes in the HS / heparin pathways of CHO-S cells, human N-deacetylase/N-sulfotransferase (NDST2) and mouse heparan sulfate 3-O-sulfotransferase 1 (Hs3st1) genes were transfected sequentially into CHO host cells growing in suspension culture. Transfectants were screened using quantitative RT-PCR and Western blotting. Out of 120 clones expressing NDST2 and Hs3st1, 2 clones, Dual-3 and Dual-29, were selected for further analysis. An antithrombin III (ATIII) binding assay using flow cytometry, designed to recognize a key sugar structure characteristic of heparin, indicated that Hs3st1 transfection was capable of increasing ATIII binding. An anti-factor Xa assay, which affords a measure of anticoagulant activity, showed a significant increase in activity in the dual-expressing cell lines. Disaccharide analysis of the engineered HS showed a substantial increase in N-sulfo groups, but did not show a pattern consistent with pharmacological heparin, suggesting that further balancing the expression of transgenes with the expression levels of endogenous enzymes involved in HS / heparin biosynthesis might be necessary. PMID:22326251

  6. Metabolic engineering of Chinese hamster ovary cells: towards a bioengineered heparin.

    PubMed

    Baik, Jong Youn; Gasimli, Leyla; Yang, Bo; Datta, Payel; Zhang, Fuming; Glass, Charles A; Esko, Jeffrey D; Linhardt, Robert J; Sharfstein, Susan T

    2012-03-01

    Heparin is the most widely used pharmaceutical to control blood coagulation in modern medicine. A health crisis that took place in 2008 led to a demand for production of heparin from non-animal sources. Chinese hamster ovary (CHO) cells, commonly used mammalian host cells for production of foreign pharmaceutical proteins in the biopharmaceutical industry, are capable of producing heparan sulfate (HS), a related polysaccharide naturally. Since heparin and HS share the same biosynthetic pathway, we hypothesized that heparin could be produced in CHO cells by metabolic engineering. Based on the expression of endogenous enzymes in the HS/heparin pathways of CHO-S cells, human N-deacetylase/N-sulfotransferase (NDST2) and mouse heparan sulfate 3-O-sulfotransferase 1 (Hs3st1) genes were transfected sequentially into CHO host cells growing in suspension culture. Transfectants were screened using quantitative RT-PCR and Western blotting. Out of 120 clones expressing NDST2 and Hs3st1, 2 clones, Dual-3 and Dual-29, were selected for further analysis. An antithrombin III (ATIII) binding assay using flow cytometry, designed to recognize a key sugar structure characteristic of heparin, indicated that Hs3st1 transfection was capable of increasing ATIII binding. An anti-factor Xa assay, which affords a measure of anticoagulant activity, showed a significant increase in activity in the dual-expressing cell lines. Disaccharide analysis of the engineered HS showed a substantial increase in N-sulfo groups, but did not show a pattern consistent with pharmacological heparin, suggesting that further balancing the expression of transgenes with the expression levels of endogenous enzymes involved in HS/heparin biosynthesis might be necessary. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Pancreatic glucagon-like peptide-1 receptor couples to multiple G proteins and activates mitogen-activated protein kinase pathways in Chinese hamster ovary cells.

    PubMed

    Montrose-Rafizadeh, C; Avdonin, P; Garant, M J; Rodgers, B D; Kole, S; Yang, H; Levine, M A; Schwindinger, W; Bernier, M

    1999-03-01

    Chinese hamster ovary (CHO) cells stably expressing the human insulin receptor and the rat glucagon-like peptide-1 (GLP-1) receptor (CHO/GLPR) were used to study the functional coupling of the GLP-1 receptor with G proteins and to examine the regulation of the mitogen-activated protein (MAP) kinase signaling pathway by GLP-1. We showed that ligand activation of GLP-1 receptor led to increased incorporation of GTP-azidoanilide into Gs alpha, Gq/11 alpha, and Gi1,2 alpha, but not Gi3 alpha. GLP-1 increased p38 MAP kinase activity 2.5- and 2.0-fold over the basal level in both CHO/GLPR cells and rat insulinoma cells (RIN 1046-38), respectively. Moreover, GLP-1 induced phosphorylation of the immediate upstream kinases of p38, MKK3/MKK6, in CHO/GLPR and RIN 1046-38 cells. Ligand-stimulated GLP-1 receptor produced 1.45- and 2.7-fold increases in tyrosine phosphorylation of 42-kDa extracellular signal-regulated kinase (ERK) in CHO/GLPR and RIN 1046-38 cells, respectively. In CHO/GLPR cells, these effects of GLP-1 on the ERK and p38 MAP kinase pathways were inhibited by pretreatment with cholera toxin (CTX), but not with pertussis toxin. The combination of insulin and GLP-1 resulted in an additive response (1.6-fold over insulin alone) that was attenuated by CTX. In contrast, the ability of insulin alone to activate these pathways was insensitive to either toxin. Our study indicates a direct coupling between the GLP-1 receptor and several G proteins, and that CTX-sensitive proteins are required for GLP-1-mediated activation of MAP kinases.

  8. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. III. Genetic evidence for utilization of phosphatidylcholine and phosphatidylethanolamine as precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuge, O.; Nishijima, M.; Akamatsu, Y.

    1986-05-05

    We reported that Chinese hamster ovary (CHO) cells contain two different serine-exchange enzymes (I and II) which catalyze the base-exchange reaction of phospholipid(s) with serine and that a phosphatidylserine-requiring mutant (strain PSA-3) of CHO cells is defective in serine-exchange enzyme I and lacks the ability to synthesize phosphatidylserine. In this study, we examined precursor phospholipids for phosphatidylserine biosynthesis in CHO cells. When mutant PSA-3 and parent (CHO-K1) cells were cultured with (/sup 32/P)phosphatidylcholine, phosphatidylserine in the parent accumulated radioactivity while that in the mutant was not labeled significantly. On the contrary, when cultured with (/sup 32/P)phosphatidylethanolamine, the mutant incorporated themore » label into phosphatidylserine more efficiently than the parent. Furthermore, we found that mutant PSA-3 grew normally in growth medium supplemented with 30 microM phosphatidylethanolamine as well as phosphatidylserine and that the biosynthesis of phosphatidylserine in the mutant was normal when cells were cultured in the presence of exogenous phosphatidylethanolamine. The simplest interpretation of these findings is that phosphatidylserine in CHO cells is biosynthesized through the following sequential reactions: phosphatidylcholine----phosphatidylserine----phosphatidylethanolamine--- - phosphatidylserine. The three reactions are catalyzed by serine-exchange enzyme I, phosphatidylserine decarboxylase, and serine-exchange enzyme II, respectively.« less

  9. Heat-resistant variants of the Chinese hamster ovary cell: alteration of cellular structure and expression of vimentin.

    PubMed

    Lee, Y J; Hou, Z Z; Curetty, L; Armour, E P; al-Saadi, A; Bernstein, J; Corry, P M

    1992-04-01

    Three heat-resistant mutant cell lines (78-1, 78-2, 78-3) were previously selected from Chinese hamster ovary cells. In this study, we investigated whether the differences in intrinsic thermal sensitivity result from alteration of stress protein levels or cellular structural changes. Although there was no significant difference in the levels of stress proteins, i.e., constitutive HSP70 in wild type and three heat-resistant mutant strains, there were marked differences in the amounts of vimentin among the cell lines. Two-dimensional gel electrophoresis and Western blot showed a 2.3-2.9-fold increase in the level of vimentin in the mutant cells under normal growth conditions. Northern blot also revealed higher amounts of vimentin mRNA in the mutant cells. Electron microscopy and immunofluorescence suggest that increased amounts of the vimentin-containing intermediate filaments are correlated with the heat-resistant phenotypes.

  10. Microphysiometric analysis of human α1a-adrenoceptor expressed in Chinese hamster ovary cells

    PubMed Central

    Taniguchi, Takanobu; Inagaki, Rika; Murata, Satoshi; Akiba, Isamu; Muramatsu, Ikunobu

    1999-01-01

    The human recombinant α1a-adrenoceptor (AR) has been stably expressed in Chinese hamster ovary cells. Four stable clones, aH4, aH5, aH6 and aH7, expressing 30, 370, 940 and 2900 fmol AR mg−1 protein, respectively, have been employed to characterize this AR subtype using radioligand binding and microphysiometry to measure extracellular acidification rates.Noradrenaline (NA) gave concentration-dependent responses in microphysiometry with increasing extracellular acidification rates. The potency of NA increased as the receptor density increased; pEC50 values of NA for the clones aH4, aH5, aH6 and aH7 were 6.9, 7.5, 7.8 and 8.1, respectively. This increase of potency according to receptor density indicates the presence of spare receptor for NA. Methoxamine, phenylephrine, oxymetazoline and clonidine also gave concentration-dependent responses with various intrinsic activities.Antagonists shifted concentration-response curves for NA rightward in a concentration-dependent manner. Schild analysis revealed that the affinity profile of this AR subtype to antagonists in the clone aH7 had a typical pattern for the α1a-AR; high affinity for prazosin and WB 4101, and low affinity for BMY7378 (pA2=9.5, 9.8 and 7.3, respectively). This profile is similar in the case of the clone aH4. These affinities were in good agreement with those obtained in binding experiments.These results have demonstrated that (1) classical receptor theory can be applied in microphysiometry, and (2) microphysiometry is a useful tool to investigate the pharmacological characterization of α1a-AR. PMID:10433504

  11. The zinc ionophore clioquinol reverses autophagy arrest in chloroquine-treated ARPE-19 cells and in APP/mutant presenilin-1-transfected Chinese hamster ovary cells.

    PubMed

    Seo, Bo-Ra; Lee, Sook-Jeong; Cho, Kyung Sook; Yoon, Young Hee; Koh, Jae-Young

    2015-12-01

    Arrested autophagy may contribute to the pathogenesis of Alzheimer's disease. Because we found that chloroquine (CQ) causes arrested autophagy but clioquinol (ClioQ), a zinc ionophore, activates autophagic flux, in the present study, we examined whether ClioQ can overcome arrested autophagy induced by CQ or mutant presenilin-1 (mPS1). CQ induced vacuole formation and cell death in adult retinal pigment epithelial (ARPE-19) cells, but co-treatment with ClioQ attenuated CQ-associated toxicity in a zinc-dependent manner. Increases in lysosome dilation and blockage of autophagic flux by CQ were also markedly attenuated by ClioQ treatment. Interestingly, CQ increased lysosomal pH in amyloid precursor protein (APP)/mPS1-expressing Chinese hamster ovary 7WΔE9 (CHO-7WΔE9) cell line, and ClioQ partially re-acidified lysosomes. Furthermore, accumulation of amyloid-β (Aβ) oligomers in CHO-7WΔE9 cells was markedly attenuated by ClioQ. Moreover, intracellular accumulation of exogenously applied fluorescein isothiocyanate-conjugated Aβ(1-42) was also increased by CQ but was returned to control levels by ClioQ. These results suggest that modulation of lysosomal functions by manipulating lysosomal zinc levels may be a useful strategy for clearing intracellular Aβ oligomers. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Cultivation of recombinant Chinese hamster ovary cells grown as suspended aggregates in stirred vessels.

    PubMed

    Han, Yi; Liu, Xing-Mao; Liu, Hong; Li, Shi-Chong; Wu, Ben-Chuan; Ye, Ling-Ling; Wang, Qu-Wei; Chen, Zhao-Lie

    2006-11-01

    Recombinant Chinese hamster ovary (rCHO) cells capable of producing a prourokinase mutant (mPro-uk) grown as suspended aggregates in stirred vessels were described and characterized. The addition of chitosan to a mixture of DMEM and Ham's F12 (D-MEM/F-12) medium promoted cell aggregation and spheroid formation efficiently. Multicellular aggregates formed immediately after the rCHO cells were inoculated into the chitosan-added medium, and the mean diameter of the cell aggregates reflecting the aggregate size increased with culture time, shifting from 65 to 163 mum after 2 and 9 d of culture in spinner flasks. No significant difference in the metabolism performance of the rCHO cells was observed between suspended aggregates and anchored monolayers. However, the cells cultured as suspended aggregates showed a marked decrease in growth rate as evaluated from specific growth rate (mu). Replacing D-MEM/F-12 medium with CD 293 medium caused compact spherical cell aggregates to dissociate into small irregular aggregates and single cells without apparent effects on cell performance in subcultures. The perfusion culture of the rCHO cells grown as suspended aggregates in a 2-l stirred tank bioreactor for 15 d resulted in a maximum viable cell density of 5.6 x 10(6) cells ml(-1) and an mPro-uk concentration of about 2.6 x 10(3) IU ml(-1), and cell viability was remained at roughly 90% during the entire run.

  13. The use of primary rat hepatocytes to achieve metabolic activation of promutagens in the Chinese hamster ovary/hypoxanthine-guanine phosphoribosyl transferase mutational assay.

    PubMed

    Bermudez, E; Couch, D B; Tillery, D

    1982-01-01

    A method is described in which primary rat hepatocytes have been cocultured with Chinese hamster ovary (CHO) cells to provide metabolic activation of promutagens in the Chinese hamster ovary/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) mutational assay. Single cell hepatocyte suspensions were prepared from male Fischer-344 rats using the in situ collagenase perfusion technique. Hepatocytes were allowed to attach for 1.5 hours in tissue culture dishes containing an approximately equal number of CHO cells in log growth. The cocultures were exposed to promutagens for up to 20 hours in serum-free medium. The survival and 6-thioguanine-resistant fraction of treated CHO cells were then determined as in the standard CHO/HGPRT assay. Aflatoxin B1 (AFB1) 7,12-dimethylbenz(a)anthracene (DMBA) and benzo(a)pyrene (B(A)P) were found to produce increases in the mutant fractions of treated CHO cells as a function of concentration. The time required for optimum expression of the mutant phenotype following exposure to DMBA and AFB1 was approximately 8 days. Primary cell-mediated mutagenesis may be useful in elucidating metabolic pathways important in the production and detoxification of genotoxic products in vivo.

  14. THE ACTION OF α-AMANITIN ON RNA SYNTHESIS IN CHINESE HAMSTER OVARY CELLS

    PubMed Central

    Kedinger, Claude; Simard, Rene

    1974-01-01

    α-Amanitin acts in vitro as a selective inhibitor of the nucleoplasmic form B RNA polymerases. Treatment of Chinese hamster ovary (CHO) cells with this drug leads principally to a severe fragmentation of the nucleoli. While the ultrastructural lesions induced by α-amanitin in CHO cells and in rat or mouse liver are quite similar, the results diverge concerning the effect on RNA synthesis. It has been shown that in rat or mouse liver α-amanitin blocks both extranucleolar and nucleolar RNA synthesis. Our autoradiographic and biochemical evidence indicates that in CHO cells high molecular weight extranucleolar RNA synthesis (HnRNA) is blocked by the α-amanitin treatment, whereas nucleolar RNA (preribosomal RNA) synthesis remains unaffected even several hours after the inhibition of extranucleolar RNA synthesis. Furthermore, the processing of this RNA as well as its transport to the cytoplasm seem only slightly affected by the treatment. Finally, under these conditions, the synthesis of the low molecular RNA species (4–5S) still occurs, though less actively. The results are interpreted as evidence for a selective impairment of HnRNA synthesis by α-amanitin in CHO cells. PMID:4474178

  15. Cloning and Expression of Major Surface Antigen 1 Gene of Toxoplasma gondii RH Strain Using the Expression Vector pVAX1 in Chinese Hamster Ovary Cells

    PubMed Central

    Abdizadeh, Rahman; Maraghi, Sharif; Ghadiri, Ata A.; Tavalla, Mehdi; Shojaee, Saeedeh

    2015-01-01

    Background: Toxoplasmosis is an opportunistic protozoan infection with a high prevalence in a broad range of hosts infecting up to one-third of the world human population. Toxoplasmosis leads to serious medical problems in immunocompromised individuals and fetuses and also induces abortion and mortality in domestic animals. Therefore, there is a huge demand for the development of an effective vaccine. Surface Antigen 1 (SAG1) is one of the important immunodominant surface antigens of Toxoplasma gondii, which interacts with host cells and primarily involved in adhesion, invasion and stimulation of host immune response. Surface antigen 1 is considered as the leading candidate for development of an effective vaccine against toxoplasmosis. Objectives: The purpose of this study was to clone the major surface antigen1 gene (SAG1) from the genotype 1 of T. gondii, RH strain into the eukaryotic expression vector pVAX1 in order to use for a DNA vaccine. Materials and Methods: Genomic DNA was extracted from tachyzoite of the parasite using the QIAamp DNA mini kit. After designing the specific primers, SAG1 gene was amplified by Polymerase Chain Reaction (PCR). The purified PCR products were then cloned into a pPrime plasmid vector. The aforementioned product was subcloned into the pVAX1 eukaryotic expression vector. The recombinant pVAX1-SAG1 was then transfected into Chinese Hamster Ovary (CHO) cells and expression of SAG1 antigen was evaluated using Reverse Transcriptase Polymerase Chain Reaction (RT-PCR), Immunofluorescence Assay (IFA) and Western Blotting (WB). Results: The cloning and subcloning products (pPrime-SAG1 and pVAX1-SAG1 plasmid vectors) of SAG1 gene were verified and confirmed by enzyme digestion and sequencing. A 30 kDa recombinant protein was expressed in CHO cells as shown by IFA and WB methods. Conclusions: The pVAX1 expression vector and CHO cells are a suitable system for high-level recombinant protein production for SAG1 gene from T. gondii parasites

  16. Photoperiod-dependent modulation of anti-Müllerian hormone in female Siberian hamsters, Phodopus sungorus.

    PubMed

    Kabithe, Esther W; Place, Ned J

    2008-03-01

    Fertility and fecundity decline with advancing age in female mammals, but reproductive aging was decelerated in Siberian hamsters (Phodopus sungorus) raised in a short-day (SD) photoperiod. Litter success was significantly improved in older hamsters when reared in SD and the number of primordial follicles was twice that of females held in long days (LD). Because anti-Müllerian hormone (AMH) appears to inhibit the recruitment of primordial follicles in mice, we sought to determine whether the expression patterns of AMH differ in the ovaries and serum of hamsters raised in SD versus LD. Ovaries of SD female hamsters are characterized by a paucity of follicular development beyond the secondary stage and are endowed with an abundance of large eosinophilic cells, which may derive from granulosa cells of oocyte-depleted follicles. In ovaries from 10-week-old SD hamsters, we found that the so-called 'hypertrophied granulosa cells' were immunoreactive for AMH, as were granulosa cells within healthy-appearing primary and secondary follicles. Conversely, ovaries from age-matched LD animals lack the highly eosinophilic cells present in SD ovaries. Therefore, AMH staining in LD was limited to primary and secondary follicles that are comparable in number to those found in SD ovaries. The substantially greater AMH expression in SD ovaries probably reflects the abundance of hypertrophied granulosa cells in SD ovaries and their relative absence in LD ovaries. The modulation of ovarian AMH by day length is a strong mechanistic candidate for the preservation of primordial follicles in female hamsters raised in a SD photoperiod.

  17. A dual near-infrared and dielectric spectroscopies strategy to monitor populations of Chinese hamster ovary cells in bioreactor.

    PubMed

    Courtès, Franck; Ebel, Bruno; Guédon, Emmanuel; Marc, Annie

    2016-05-01

    to develop a new strategy combining near-infrared (NIR) and dielectric spectroscopies for real-time monitoring and in-depth characterizing populations of Chinese hamster ovary cells throughout cultures performed in bioreactors. Spectral data processing was based on off-line analyses of the cells, including trypan blue exclusion method, and lactate dehydrogenase activity (LDH). Viable cell density showed a linear correlation with permittivity up to 6 × 10(6) cells ml(-1), while a logarithmic correlation was found between non-lysed dead cell density and conductivity up to 10(7) cells ml(-1). Additionally, partial least square technique was used to develop a calibration model of the supernatant LDH activity based on online NIR spectra with a RMSEC of 55 U l(-1). Considering the LDH content of viable cells measured to be 110 U per 10(9) cells, the lysed dead cell density could be then estimated. These calibration models provided real-time prediction accuracy (R(2) ≥ 0.95) for the three types of cell populations. The high potential of a dual spectroscopy strategy to enhance the online bioprocesses characterization is demonstrated since it allows the simultaneous determination of viable, dead and lysed cell populations in real time.

  18. Heterogeneity within populations of recombinant Chinese hamster ovary cells expressing human interferon-gamma.

    PubMed

    Coppen, S R; Newsam, R; Bull, A T; Baines, A J

    1995-04-20

    The Chinese hamster ovary (CHO) cell line has great commercial importance in the production of recombinant human proteins, especially those for therapeutic use. Much attention has been paid to CHO cell population physiology in order to define factors affecting product fidelity and yield. Such studies have revealed that recombinant proteins, including human interferon-gamma (IFN-gamma), can be heterogeneous both in glycosylation and in proteolytic processing. The type of heterogeneity observed depends on the growth physiology of the cell population, although the relationship between them is complex. In this article we report results of a cytological study of the CHO320 line which expresses recombinant human IFN-gamma. When grown in suspension culture, this cell line exhibited three types of heterogeneity: (1) heterogeneity of the production of IFN-gamma within the cell population, (2) heterogeneity of the number of nuclei and mitotic spindles in dividing cells, and (3) heterogeneity of cellular environment. The last of these arises from cell aggregates which form in suspension culture: Some cells are exposed to the culture medium; others are fully enclosed within the mass with little or no direct access to the medium. Thus, live cells producing IFN-gamma are heterogeneous in their environment, with variable access to O(2) and nutrients. Within the aggregates, it appears that live cells proliferate on a dead cell mass. The layer of live cells can be several cells deep. Specific cell-cell attachments are observed between the living cells in these aggregates. Two proteins, known to be required for the formation of certain types of intercellular junctions, spectrin and vinculin, have been localized to the regions of cell-cell contact. The aggregation of the cells appears to be an active process requiring protein synthesis. (c) 1995 John Wiley & Sons, Inc.

  19. Cloning of a Recombinant Plasmid Encoding Thiol-Specific Antioxidant Antigen (TSA) Gene of Leishmania majorand Expression in the Chinese Hamster Ovary Cell Line.

    PubMed

    Fatemeh, Ghaffarifar; Fatemeh, Tabatabaie; Zohreh, Sharifi; Abdolhosein, Dalimiasl; Mohammad Zahir, Hassan; Mehdi, Mahdavi

    2012-01-01

    TSA (thiol-specific antioxidant antigen) is the immune-dominant antigen of Leishmania major and is considered to be the most promising candidate molecule for a recombinant or DNA vaccine against leishmaniasis. The aim of the present work was to express a plasmid containing the TSA gene in eukaryotic cells. Genomic DNA was extracted, and the TSA gene was amplified by polymerase chain reaction (PCR). The PCR product was cloned into the pTZ57R/T vector, followed by subcloning into the eukaryotic expression vector pcDNA3 (EcoRI and HindIII sites). The recombinant plasmid was characterised by restriction digest and PCR. Eukaryotic Chinese hamster ovary cells were transfected with the plasmid containing the TSA gene. Expression of the L. major TSA gene was confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting. The plasmid containing the TSA gene was successfully expressed, as demonstrated by a band of 22.1 kDa on Western blots. The plasmid containing the TSA gene can be expressed in a eukaryotic cell line. Thus, the recombinant plasmid may potentially be used as a DNA vaccine in animal models.

  20. Induction of experimental bone metastasis in mice by transfection of integrin alpha 4 beta 1 into tumor cells.

    PubMed Central

    Matsuura, N.; Puzon-McLaughlin, W.; Irie, A.; Morikawa, Y.; Kakudo, K.; Takada, Y.

    1996-01-01

    Cell adhesion receptors (eg, integrins and CD44) play an important role in invasion and metastasis during tumor progression. The increase in integrin alpha 4 beta 1 expression on primary melanomas has been reported to significantly correlate with the development of metastases. alpha 4 beta 1 is a cell surface heterodimer that mediates cell-cell and cell-extracellular matrix interactions through adhesion to vascular cell adhesion molecule (VCAM)-1 and to the IIICS region of fibronectin. To test the effects of alpha 4 beta 1 expression on tumor cell metastasis, Chinese hamster ovary cells were transfected with human alpha 4 cDNA. Whereas alpha 4-negative Chinese hamster ovary cells developed only pulmonary metastasis, alpha 4-positive Chinese hamster ovary cells developed bone and pulmonary metastasis in 3 to 4 weeks when injected intravenously into nude mice. Bone metastasis was inhibited by antibody against alpha 4 or VCAM-1. Expression of alpha 3 beta 1, alpha 6 beta 1, or alpha V beta 1 did not induce bone metastasis. Expression of alpha 4 beta 1 also induced bone metastasis in K562 human erythroleukemia cells injected into SCID mice. These results demonstrate that alpha 4 beta 1 can induce tumor cell trafficking to bone, probably via interaction with VCAM-1 that is constitutively expressed on bone marrow stromal cells. Images Figure 1 Figure 3 PMID:8546226

  1. The fluidity of Chinese hamster ovary cell and bull sperm membranes after cholesterol addition.

    PubMed

    Purdy, P H; Fox, M H; Graham, J K

    2005-08-01

    Cell plasma membrane fluidity is affected by membrane lipid and protein composition as well as temperature. Altering the cholesterol content of a membrane can change membrane fluidity at different temperatures and this may affect cell survival during cryopreservation. In these experiments, we examined the effect that adding cholesterol to the membranes of Chinese hamster ovary cells (CHO) and bull sperm had on cell plasma membrane fluidity and cell survival when cells were cooled to 5 degrees C or were cryopreserved. Cells were treated with 0, 1.5 or 5.0mg cholesterol-loaded cyclodextrin (CLC), stained with N-((4-(6-phenyl-1,3,5-hexatrienyl)phenyl)propyl)trimethylammonium-p-toluenesulfonate (TMAP-DPH) to evaluate membrane fluidity and with propidium iodide to evaluate cell viability, prior to analysis by flow cytometry at 23, 5 degrees C, and after cryopreservation. CHO cells exhibited a single cell population with all cells having similar membrane fluidity. Membrane fluidity did not change when temperature had been reduced and then returned to 23 degrees C (P<0.05), however, adding cholesterol to the cells induced membranes to become more rigid (P<0.05). Bull sperm samples consisted of two cell subpopulations, one having relatively higher membrane fluidity than the other, regardless of cholesterol treatment or temperature. In addition, cells possessing the highest membrane fluidity did not survive cooling or cryopreservation efficiently. CLC treatment did not significantly alter membrane fluidity after temperature changes, but did maintain higher percentages of spermatozoa surviving cooling to 5 degrees C and cryopreservation (P<0.05). In conclusion, adding cholesterol to cell resulted in detectable membrane fluidity changes in CHO cells and increased survival of bull sperm after cooling to 5 degrees C and after cryopreservation.

  2. Distinct functional characteristics of levocabastine sensitive rat neurotensin NT2 receptor expressed in Chinese hamster ovary cells.

    PubMed

    Yamada, M; Yamada, M; Lombet, A; Forgez, P; Rostène, W

    1998-01-01

    Neurotensin has been shown to produce pharmacological effects both in brain and periphery. Several of these effects are mediated by a high-affinity neurotensin NT1 receptor. On the other hand, a low-affinity levocabastine-sensitive neurotensin NT2 receptor was molecularly cloned from rodent brain recently. In this study, in contrast to NT1 receptor, levocabastine (a histamine H1 receptor antagonist) and SR48692 (an antagonist for NT1 receptor) strongly stimulated intracellular Ca2+ mobilization in transfected Chinese hamster ovary cells expressing rat NT2 receptor, thus acting as potent NT2 receptor. Furthermore, despite of their affinities for NT2 receptor, the Ca2+ responses to potent NT1 agonists, neurotensin or JMV449 ([Lys8-(CH2NH)-Lys9]Pro-Tyr-Ile-Leu, a peptidase resistant analogue of neurotensin) were much smaller than that observed with SR48692. These findings suggest that NT1 and NT2 receptors present distinct functional characteristics and that SR48692 may act as a potent agonist for NT2 receptor.

  3. A mechanistic study on the effect of dexamethasone in moderating cell death in Chinese Hamster Ovary cell cultures.

    PubMed

    Jing, Ying; Qian, Yueming; Ghandi, Mahmoud; He, Aiqing; Borys, Michael C; Pan, Shih-Hsie; Li, Zheng Jian

    2012-01-01

    Dexamethasone (DEX) was previously shown (Jing et al., Biotechnol Bioeng. 2010;107:488-496) to play a dual role in increasing sialylation of recombinant glycoproteins produced by Chinese Hamster Ovary (CHO) cells. DEX addition increased sialic acid levels of a recombinant fusion protein through increased expression of α2,3-sialyltransferase and β1,4-galactosyltransferase, but also decreased the sialidase-mediated, extracellular degradation of sialic acid through slowing cell death at the end of the culture period. This study examines the underlying mechanism for this cytoprotective action by studying the transcriptional response of the CHO cell genome upon DEX treatment using DNA microarrays and gene ontology term analysis. Many of those genes showing a significant transcriptional response were associated with the regulation of programmed cell death. The gene with the highest change in expression level, as validated by Quantitative PCR assays with TaqMan® probes and confirmed by Western Blot analysis, was the antiapoptotic gene Tsc22d3, also referred to as GILZ (glucocorticoid-induced leucine zipper). The pathway by which DEX suppressed cell death towards the end of the culture period was also confirmed by showing involvement of glucocorticoid receptors and GILZ through studies using the glucocorticoid antagonist mifepristone (RU-486). These findings advance the understanding of the mechanism by which DEX suppresses cell death in CHO cells and provide a rationale for the application of glucocorticoids in CHO cell culture processes. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  4. Expression of estrogen receptor α 36 (ESR36) in the hamster ovary throughout the estrous cycle: effects of gonadotropins.

    PubMed

    Chakraborty, Prabuddha; Roy, Shyamal K

    2013-01-01

    Estradiol-17β (E) plays an important role in ovarian follicular development. Evidence indicates that some of the effect of E is mediated by the transmembrane estrogen receptor. In this study, we examined the spatio-temporal expression of recently discovered ERα36 (ESR36), a splice variant of Esr1 and a receptor for non-genomic E signaling, in the hamster ovary during the estrous cycle and the role of gonadotropins and ovarian steroid hormones in ESR36 expression. ESR36 expression was high on estrus (D1:0900 h) and declined precipitously by proestrus (D4:0900 h) and remained low up to D4:1600 h. Immunofluorescence findings corroborated immunoblot findings and revealed that ESR36 was expressed only in the cell membrane of both follicular and non-follicular cells, except the oocytes. Ovarian ESR36 was capable of binding to the E-affinity matrix, and have different molecular weight than that of the ESR1 or GPER. Hypophysectomy (Hx) resulted in a marked decline in ESR36 protein levels. FSH and LH, alone or combined, markedly upregulated ESR36 protein in Hx hamsters to the levels observed in D1 hamsters, but neither E nor P had any effect. Inhibition of the gonadotropin surge by phenobarbital treatment on D4:1100 h attenuated ESR36 expression in D1:0900 h ovaries, but the decline was restored by either FSH or LH replacement on D4 afternoon. This is the first report to show that ESR36, which is distinct from ESR1 or GPER is expressed in the plasma membrane of ovarian follicular and non-follicular cells, binds to E and its expression is regulated directly by the gonadotropins. In light of our previous findings, the results suggest that ovarian cells contain at least two distinct membrane estrogen receptors, such as GPER and ESR36, and strongly suggest for a non-genomic action of E regulating ovarian follicular functions.

  5. Mutation and repair in an ultraviolet-sensitive Chinese hamster ovary cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, R.D.

    1981-11-01

    An ultraviolet (UV) light-sensitive mutant of Chinese hamster ovary cells (CHO) has been isolated and characterized with respect to a number of post-irradiation responses. The UV-sensitive mutant, termed 43-3B, has the same growth rate and chromosome number as the wild-type CHO-9. 43-3B is hypersensitive to the lethal effects of UV light (D/sub 0/ of 0.3 J/m/sup 2/ as compared to 3.2 J/m/sup 2/ for the wild-type). A marked UV-hypermutability is observed in 43-3B as compared to the wild-type, as measured with markers for induced resistance to 6-thioguanine, ouabain, and diphtheria toxin. A factor of 38 to 65 more mutations aremore » induced per unit fluence in 43-3B than in CHO-9. The UV-sensitive mutant is also sensitive to killing by simulated solar light, although the D/sub 0/ ratio is not as great as for germicidal UV. 43-3B exhibits only about 17% of the wild-type level of UV-stimulated DNA repair synthesis, as measured by autoradiography of G/sub 1/ phase cells. A much reduced ability to recover control rates of semiconservative DNA synthesis after UV irradiation was observed in the repair-deficient 43-3B cell line. Recovery of colony-forming ability between fractionated UV exposures was observed in the wild-type CHO-9, but little recovery was seen in 43-3B. The present investigation demonstrates that a sensitive/wild-type pair of CHO cell lines can be used in comparative studies to determine the involvement of repair in a wide range of post-irradiation phenomena.« less

  6. Frequency-Dependent Evaluation of the Role of Definity in Producing Sonoporation of Chinese Hamster Ovary Cells

    PubMed Central

    Forbes, Monica M.; Steinberg, Ryan L.; O'Brien, William D.

    2011-01-01

    Objectives Sonoporation uses ultrasound (US) and ultrasound contrast agents (UCAs) to enhance cell permeabilization, thereby allowing delivery of therapeutic compounds non-invasively into specific target cells. The objective of this study was to elucidate the biophysical mechanism of sonoporation, specifically the role of UCAs as well as exposure frequency. The inertial cavitation (IC) thresholds of the lipid-shelled octafluoropropane UCA were directly compared to the levels of generated sonoporation to determine the involvement of UCAs in producing sonoporation. Methods Chinese hamster ovary cells were exposed as a monolayer in a solution of the UCA, 500,000-Da fluorescein isothiocyanate-dextran, and phosphate-buffered saline to 30 seconds of pulsed US (pulse duration, 5 cycles; pulse repetition frequency, 10 Hz) at 3 frequencies (0.92, 3.2, and 5.6 MHz). The peak rarefactional pressure (Pr) was varied over a range from 4 kPa to 4.1 MPa, and 5 to 7 independent replicates were performed at each pressure. Results The experimental observations demonstrated that IC was likely not the physical mechanism for sonoporation. Sonoporation activity was observed at pressure levels below the threshold for IC of the UCA (1.27 ± 0.32 MPa at 0.92 MHz, 0.84 ± 0.19 MPa at 3.2 MHz, and 2.57 ± 0.26 MPa at 5.6 MHz) for all 3 frequencies examined. The Pr values at which the peak sonoporation activity occurred were 1.4 MPa at 0.92 MHz, 0.25 MPa at 3.2 MHz, and 2.3 MPa at 5.6 MHz. The UCA collapse thresholds followed a similar trend. A 1-way analysis of variance test confirmed that sonoporation activity differed among the 3 frequencies examined (P = 10−8). Conclusions These results thus suggest that sonoporation is related to linear and/or nonlinear oscillation of the UCA occurring at pressure levels below the IC threshold. PMID:21193706

  7. Neurotensin is an antagonist of the human neurotensin NT2 receptor expressed in Chinese hamster ovary cells.

    PubMed

    Vita, N; Oury-Donat, F; Chalon, P; Guillemot, M; Kaghad, M; Bachy, A; Thurneyssen, O; Garcia, S; Poinot-Chazel, C; Casellas, P; Keane, P; Le Fur, G; Maffrand, J P; Soubrie, P; Caput, D; Ferrara, P

    1998-11-06

    The human levocabastine-sensitive neurotensin NT2 receptor was cloned from a cortex cDNA library and stably expressed in Chinese hamster ovary (CHO) cells in order to study its binding and signalling characteristics. The receptor binds neurotensin as well as several other ligands already described for neurotensin NT1 receptor. It also binds levocabastine, a histamine H1 receptor antagonist that is not recognised by neurotensin NT1 receptor. Neurotensin binding to recombinant neurotensin NT2 receptor expressed in CHO cells does not elicit a biological response as determined by second messenger measurements. Levocabastine, and the peptides neuromedin N and xenin were also ineffective on neurotensin NT2 receptor activation. Experiments with the neurotensin NT1 receptor antagonists SR48692 and SR142948A, resulted in the unanticipated discovery that both molecules are potent agonists on neurotensin NT2 receptor. Both compounds, following binding to neurotensin NT2 receptor, enhance inositol phosphates (IP) formation with a subsequent [Ca2+]i mobilisation; induce arachidonic acid release; and stimulate mitogen-activated protein kinase (MAPK) activity. Interestingly, these activities are antagonised by neurotensin and levocabastine in a concentration-dependent manner. These activities suggest that the human neurotensin NT2 receptor may be of physiological importance and that a natural agonist for the receptor may exist.

  8. Stable expression of recombinant human coagulation factor XIII in protein-free suspension culture of Chinese hamster ovary cells.

    PubMed

    Chun, B H; Bang, W G; Park, Y K; Woo, S K

    2001-11-01

    The recombinant a and bsubunits for human coagulation factor XIII were transfected into Chinese hamster ovary (CHO) cells. CHO cells were amplified and selected with methotrexate in adherent cultures containing serum, and CHO 1-62 cells were later selected in protein-free medium. To develop a recombinant factor XIII production process in a suspension culture, we have investigated the growth characteristics of CHO cells and the maintenance of factor XIII expression in the culture medium. Suspension adaptation of CHO cells was performed in protein-free medium, GC-CHO-PI, by two methods, such as serum weaning and direct switching from serum containing media to protein-free media. Although the growth of CHO cells in suspension culture was affected initially by serum depletion, cell specific productivity of factor XIII showed only minor changes by the direct switching to protein-free medium during a suspension culture. As for the long-term stability of factor XIII, CHO 1-62 cells showed a stable expression of factor XIII in protein-free condition for 1000 h. These results indicate that the CHO 1-62cells can be adapted to express recombinant human factor XIII in a stable maimer in suspension culture using a protein-free medium. Our results demonstrate that enhanced cell growth in a continuous manner is achievable for factor XIII production in a protein-free medium when a perfusion bioreactor culture system with a spin filter is employed.

  9. Effects of 13 T Static Magnetic Fields (SMF) in the Cell Cycle Distribution and Cell Viability in Immortalized Hamster Cells and Human Primary Fibroblasts Cells

    NASA Astrophysics Data System (ADS)

    Zhao, Guoping; Chen, Shaopeng; Zhao, Ye; Zhu, Lingyan; Huang, Pei; Bao, Lingzhi; Wang, Jun; Wang, Lei; Wu, Lijun; Wu, Yuejin; Xu, An

    2010-02-01

    Magnetic resonance image (MRI) systems with a much higher magnetic flux density were developed and applied for potential use in medical diagnostic. Recently, much attention has been paid to the biological effects of static, strong magnetic fields (SMF). With the 13 T SMF facility in the Institute of Plasma Physics, Chinese Academy of Sciences, the present study focused on the cellular effects of the SMF with 13 T on the cell viability and the cell cycle distribution in immortalized hamster cells, such as human-hamster hybrid (AL) cells, Chinese hamster ovary (CHO) cells, DNA double-strand break repair deficient mutant (XRS-5) cells, and human primary skin fibroblasts (AG1522) cells. It was found that the exposure of 13 T SMF had less effect on the colony formation in either nonsynchronized or synchronized AL cells. Moreover, as compared to non-exposed groups, there were slight differences in the cell cycle distribution no matter in either synchronized or nonsynchronized immortalized hamster cells after exposure to 13 T SMF. However, it should be noted that the percentage of exposed AG1522 cells at G0/G1 phase was decreased by 10% as compared to the controls. Our data indicated that although 13 T SMF had minimal effects in immortalized hamster cells, the cell cycle distribution was slightly modified by SMF in human primary fibroblasts.

  10. Understanding Transcriptional Enhancement in Monoclonal Antibody-Producing Chinese Hamster Ovary Cells

    NASA Astrophysics Data System (ADS)

    Nicoletti, Sarah E.

    With the demand for monoclonal antibody (mAB) therapeutics continually increasing, the need to better understand what makes a high productivity clone has gained substantial interest. Monoclonal antibody producing Chinese hamster ovary (CHO) cells with different productivities were provided by a biopharmaceutical company for investigation. Gene copy numbers, mRNA levels, and mAb productivities were previously determined for two low producing clones and their amplified progeny. These results showed an increase in mRNA copy number in amplified clones, which correlated to the observed increases in specific productivity of these clones. The presence of multiple copies of mRNA per one copy of DNA in the higher productivity clones has been coined as transcriptional enhancement. The methylation status of the CMV promoter as well as transcription factor/promoter interactions were evaluated to determine the cause of transcriptional enhancement. Methylation analysis via bisulfite sequencing revealed no significant difference in overall methylation status of the CMV promoter. These data did, however, reveal the possibility of differential interactions of transcription factors between the high and low productivity cell clones. This finding was further supported by chromatin immunoprecipitations previously performed in the lab, as well as literature studies. Transcription activator-like effector (TALE) binding proteins were constructed and utilized to selectively immunoprecipitate the CMV promoter along with its associated transcription factors in the different CHO cell clones. Cells were transfected with the TALE proteins, harvested and subjected to a ChIP-like procedure. Results obtained from the TALE ChIP demonstrated the lack of binding of the protein to the promoter and the need to redesign the TALE. Overall, results obtained from this study were unable to give a clear indication as to the causes of transcriptional enhancement in the amplified CHO cell clones. Further

  11. Sindbis virus glycoproteins are abnormally glycosylated in Chinese hamster ovary cells deprived of glucose.

    PubMed

    Davidson, S K; Hunt, L A

    1985-07-01

    We have previously demonstrated that Sindbis virus infection of Chinese hamster ovary (CHO) cells altered the protein glycosylation machinery of the cell, so that both normal, full-size (nine mannose-containing) oligosaccharides and abnormal, "truncated' (five mannose-containing) oligosaccharides are transferred from lipid-linked precursors to newly synthesized viral membrane glycoproteins. In the present studies, we have examined the precursor oligosaccharides on viral glycoproteins that were pulse-labelled with [3H]mannose in the presence or absence of glucose, since glucose starvation of uninfected CHO cells has been reported to induce synthesis of truncated precursor oligosaccharides. Pulse-labelling in the absence of glucose led to a greater than 10-fold increase in the relative amount of the truncated precursor oligosaccharides being transferred to the newly synthesized viral glycoproteins and to an apparent underglycosylation of some precursor viral polypeptides, with some asparaginyl sites not acquiring covalently linked oligosaccharides. The mature virion glycoproteins from CHO cells which were pulse-labelled in the absence of glucose and then 'chased' in the presence of glucose contained proportionately more unusual Man3GlcNAc2-size oligosaccharides. These small neutral-type oligosaccharides were apparently not as good a substrate for further processing into complex acidic-type oligosaccharides as the normal Man5GlcNAc2 intermediate that results from the full-size precursor oligosaccharides.

  12. Phosphorylation of 3-deazaguanosine by nicotinamide riboside kinase in Chinese hamster ovary cells.

    PubMed

    Saunders, P P; Tan, M T; Spindler, C D; Robins, R K

    1989-12-01

    The growth inhibitory activity of 3-deazaguanosine toward a mutant line (TGR-3) of Chinese hamster ovary cells deficient in hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8) was substantially reversed by the simultaneous addition of nicotinamide riboside. The activities of most other ribonucleoside analogues tested were unaffected. The formation of cellular 3-deazaGMP and 3-deazaGTP from the ribonucleoside analogue, as measured by high-pressure liquid chromatography, was inhibited by the presence of nicotinamide riboside. The inhibition was dependent on concentration of 3-deazaguanosine and could also be demonstrated by following the metabolism of 3-deazaguanosine, labeled with 14C in the ribose moiety, to [14C]3-deazaGTP. In the presence of 100 microM nicotinamide riboside formation of the labeled triphosphate derivative of 3-deazaguanosine was undetectable. A 3-deazaguanosine phosphorylating activity was separated from other cellular kinases by DEAE-cellulose chromatography. Contaminating purine nucleoside phosphorylase (EC 2.4.2.1) was subsequently removed by sucrose density gradient centrifugation. The resulting enzyme preparation demonstrated the greatest activities with nicotinamide riboside and 3-deazaguanosine and, in addition, could also phosphorylate tiazofurin and guanosine to lesser, but significant, degrees. These and other observations suggest that 3-deazaguanosine, and perhaps other agents such as tiazofurin, may, at least in part, be phosphorylated by a nicotinamide ribonucleoside kinase in these cells. If so, it is possible that the activity of this agent in other types of cells in vivo could be dependent upon the presence of this enzyme and that it could be influenced by cellular concentrations of the natural pyridine nucleoside.

  13. A Systematic Approach to Time-series Metabolite Profiling and RNA-seq Analysis of Chinese Hamster Ovary Cell Culture.

    PubMed

    Hsu, Han-Hsiu; Araki, Michihiro; Mochizuki, Masao; Hori, Yoshimi; Murata, Masahiro; Kahar, Prihardi; Yoshida, Takanobu; Hasunuma, Tomohisa; Kondo, Akihiko

    2017-03-02

    Chinese hamster ovary (CHO) cells are the primary host used for biopharmaceutical protein production. The engineering of CHO cells to produce higher amounts of biopharmaceuticals has been highly dependent on empirical approaches, but recent high-throughput "omics" methods are changing the situation in a rational manner. Omics data analyses using gene expression or metabolite profiling make it possible to identify key genes and metabolites in antibody production. Systematic omics approaches using different types of time-series data are expected to further enhance understanding of cellular behaviours and molecular networks for rational design of CHO cells. This study developed a systematic method for obtaining and analysing time-dependent intracellular and extracellular metabolite profiles, RNA-seq data (enzymatic mRNA levels) and cell counts from CHO cell cultures to capture an overall view of the CHO central metabolic pathway (CMP). We then calculated correlation coefficients among all the profiles and visualised the whole CMP by heatmap analysis and metabolic pathway mapping, to classify genes and metabolites together. This approach provides an efficient platform to identify key genes and metabolites in CHO cell culture.

  14. The C. elegans VIG-1 and FRM-1 modulate carbachol-stimulated ERK1/2 activation in chinese hamster ovary cells expressing the muscarinic acetylcholine receptor GAR-3.

    PubMed

    Shin, Youngmi; Cho, Nam Jeong

    2014-04-01

    Many neurotransmitter receptors are known to interact with a variety of intracellular proteins that modulate signaling processes. In an effort to understand the molecular mechanism by which acetylcholine (ACh) signaling is modulated, we searched for proteins that interact with GAR-3, the Caenorhabditis elegans homolog of muscarinic ACh receptors. We isolated two proteins, VIG-1 and FRM-1, in a yeast two-hybrid screen of a C. elegans cDNA library using the third intracellular (i3) loop of GAR-3 as bait. To test whether these proteins regulate ACh signaling, we utilized Chinese hamster ovary (CHO) cells stably expressing GAR-3 (GAR-3/CHO cells). Previously we have shown that the cholinergic agonist carbachol stimulates extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation in an atropine-sensitive manner in this cell line. When VIG-1 was transiently expressed in GAR-3/CHO cells, carbachol-stimulated ERK1/2 activation was substantially reduced. In contrast, transient expression of FRM-1 significantly enhanced carbachol-stimulated ERK1/2 activation. Neither VIG-1 nor FRM-1 expression appeared to alter the affinity between GAR-3 and carbachol. In support of this notion, expression of these proteins did not affect GAR-3-mediated phospholipase C activation. To verify the modulation of ERK1/2 activity by VIG-1 and FRM-1, we used an i3 loop deletion mutant of GAR-3 (termed GAR-3Δi3). Carbachol treatment evoked robust ERK1/2 activation in CHO cells stably expressing the deletion mutant (GAR-3Δi3/CHO cells). However, transient expression of either VIG-1 or FRM-1 had little effect on carbachol-stimulated ERK1/2 activation in GAR-3Δi3/CHO cells. Taken together, these results indicate that VIG-1 and FRM-1 regulate GAR-3-mediated ERK1/2 activation by interacting with the i3 loop of GAR-3.

  15. Multi‐omic profiling ­of EPO‐producing Chinese hamster ovary cell panel reveals metabolic adaptation to heterologous protein production

    PubMed Central

    Ley, Daniel; Seresht, Ali Kazemi; Engmark, Mikael; Magdenoska, Olivera; Nielsen, Kristian Fog; Kildegaard, Helene Faustrup

    2015-01-01

    ABSTRACT Chinese hamster ovary (CHO) cells are the preferred production host for many therapeutic proteins. The production of heterologous proteins in CHO cells imposes a burden on the host cell metabolism and impact cellular physiology on a global scale. In this work, a multi‐omics approach was applied to study the production of erythropoietin (EPO) in a panel of CHO‐K1 cells under growth‐limited and unlimited conditions in batch and chemostat cultures. Physiological characterization of the EPO‐producing cells included global transcriptome analysis, targeted metabolome analysis, including intracellular pools of glycolytic intermediates, NAD(P)H/NAD(P)+, adenine nucleotide phosphates (ANP), and extracellular concentrations of sugars, organic acids, and amino acids. Potential impact of EPO expression on the protein secretory pathway was assessed at multiple stages using quantitative PCR (qPCR), reverse transcription PCR (qRT‐PCR), Western blots (WB), and global gene expression analysis to assess EPO gene copy numbers, EPO gene expression, intracellular EPO retention, and differentially expressed genes functionally related to secretory protein processing, respectively. We found no evidence supporting the existence of production bottlenecks in energy metabolism (i.e., glycolytic metabolites, NAD(P)H/NAD(P)+ and ANPs) in batch culture or in the secretory protein production pathway (i.e., gene dosage, transcription and post‐translational processing of EPO) in chemostat culture at specific productivities up to 5 pg/cell/day. Time‐course analysis of high‐ and low‐producing clones in chemostat culture revealed rapid adaptation of transcription levels of amino acid catabolic genes in favor of EPO production within nine generations. Interestingly, the adaptation was followed by an increase in specific EPO productivity. Biotechnol. Bioeng. 2015;112: 2373–2387. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID

  16. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. II. Isolation and characterization of phosphatidylserine auxotrophs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuge, O.; Nishijima, M.; Akamatsu, Y.

    1986-05-05

    Chinese hamster ovary (CHO) cell mutants that required exogenously added phosphatidylserine for cell growth were isolated by using the replica technique with polyester cloth, and three such mutants were characterized. Labeling experiments on intact cells with /sup 32/Pi and L-(U-/sup 14/C)serine revealed that a phosphatidylserine auxotroph, designated as PSA-3, was strikingly defective in phosphatidylserine biosynthesis. When cells were grown for 2 days without phosphatidylserine, the phosphatidylserine content of PSA-3 was about one-third of that of the parent. In extracts of the mutant, the enzymatic activity of the base-exchange reaction of phospholipids with serine producing phosphatidylserine was reduced to 33% ofmore » that in the parent; in addition, the activities of base-exchange reactions of phospholipids with choline and ethanolamine in the mutant were also reduced to 1 and 45% of those in the parent, respectively. Furthermore, it was demonstrated that the serine-exchange activity in the parent was inhibited approximately 60% when choline was added to the reaction mixture whereas that in the mutant was not significantly affected. From the results presented here, we conclude the following. There are at least two kinds of serine-exchange enzymes in CHO cells; one (serine-exchange enzyme I) can catalyze the base-exchange reactions of phospholipids with serine, choline, and ethanolamine while the other (serine-exchange enzyme II) does not use the choline as a substrate. Serine-exchange enzyme I, in which mutant PSA-3 is defective, plays a major role in phosphatidylserine biosynthesis in CHO cells. Serine-exchange enzyme I is essential for the growth of CHO cells.« less

  17. MSH3 deficiency is not sufficient for a mutator phenotype in Chinese hamster ovary cells.

    PubMed

    Hinz, J M; Meuth, M

    1999-02-01

    In the yeast Saccharomyces cerevisiae, the mutS homolog protein products MSH3 and MSH6, each in cooperation with MSH2, play well-defined and specific roles in the repair of DNA mismatches and nucleotide loops. The discrete functions of the human homologs hMSH3 and hMSH6 are less clear and current evidence suggests that the substrate specificity of these proteins may be less strict. To determine the role of MSH3 in mammalian mismatch repair, we employed MSH3-deficient Chinese hamster ovary (CHO) cell lines. No significant changes in mutation rate were detected in the MSH3-deficient strain and there were no differences in sensitivity to DNA-damaging agents. Further analysis of hprt mutants did not show a MSH3-dependent shift in the mutant spectrum. Interestingly, thorough examination of four dinucleotide microsatellite regions revealed instability at only one locus in one of the MSH3-deficient cell lines. These data support the idea of a high degree of redundancy in the function of the MutS homologs MSH3 and MSH6, at least with respect to the control of microsatellite instability.

  18. Effect of diisopropanolamine upon choline uptake and phospholipid synthesis in Chinese hamster ovary cells.

    PubMed

    Stott, W T; Kleinert, K M

    2008-02-01

    Aminoalcohols differ in mammalian toxicity at least in part based upon their ability to alter the metabolism of phospholipids and to cause depletion of the essential nutrient choline in animals. This study examined the incorporation of diisopropanolamine (DIPA) into phospholipids (PLs) and effects of DIPA upon choline uptake and phospholipid synthesis in Chinese hamster ovary (CHO) cells. Results were compared to those of a related secondary alcohol amine, diethanolamine (DEA), whose systemic toxicity is closely associated with its metabolic incorporation into PLs and depletion of choline pools. DIPA caused a dose-related inhibition of (3)H-choline uptake by CHO cells that was approximately 3-4 fold less potent, based upon an IC50, than that reported for DEA. DIPA, in contrast to DEA, did not cause changes in the synthesis rates of (33)P-phosphatidylethanolamine, (33)P-phosphatidylcholine or (33)P-sphingomyelin at either non-toxic or moderately toxic concentrations. Only approximately 0.004%, of administered (14)C-DIPA was metabolically incorporated into PLs, over 30-fold less than the incorporation of (14)C-DEA under similar conditions. Overall, these data and previous pharmacokinetic and toxicity data obtained in vivo suggests that DIPA is distinct from DEA and lacks significant choline and PL metabolism related toxicity in animals.

  19. Production of chimeric recombinant single domain antibody-green fluorescent fusion protein in Chinese hamster ovary cells.

    PubMed

    Bazl, M Rajabi; Rasaee, M J; Foruzandeh, M; Rahimpour, A; Kiani, J; Rahbarizadeh, F; Alirezapour, B; Mohammadi, M

    2007-02-01

    There is an increasing interest in the application of nanobodies such as VHH in the field of therapy and imaging. In the present study a stable genetically engineered cell line of Chinese hamster ovary (CHO) origin transfected using two sets of expression vectors was constructed in order to permit the cytoplasmic and extracellular expression of single domain antibody along with green fluorescent protein (GFP) as reporter gene. The quality of the constructs were examined both by the restriction map as well as sequence analysis. The gene transfection and protein expression was further examined by reverse transcription-polymerase chain reaction (RT-PCR). The transfected cells were grown in 200 microg/mL hygromycin containing media and the stable cell line obtained showed fluorescent activity for more than a period of 180 days. The production of fusion protein was also detected by fluorescent microscopy, fluorescent spectroscopy as well as by enzyme-linked immunosorbent assay (ELISA) analysis. This strategy allows a rapid production of recombinant fluobodies involving VHH, which can be used in various experiments such as imaging and detection in which a primary labeled antibody is required.

  20. Model-directed engineering of "difficult-to-express" monoclonal antibody production by Chinese hamster ovary cells.

    PubMed

    Pybus, Leon P; Dean, Greg; West, Nathan R; Smith, Andrew; Daramola, Olalekan; Field, Ray; Wilkinson, Stephen J; James, David C

    2014-02-01

    Despite improvements in volumetric titer for monoclonal antibody (MAb) production processes using Chinese hamster ovary (CHO) cells, some "difficult-to-express" (DTE) MAbs inexplicably reach much lower process titers. These DTE MAbs require intensive cell line and process development activity, rendering them more costly or even unsuitable to manufacture. To rapidly and rationally identify an optimal strategy to improve production of DTE MAbs, we have developed an engineering design platform combining high-yielding transient production, empirical modeling of MAb synthesis incorporating an unfolded protein response (UPR) regulatory loop with directed expression and cell engineering approaches. Utilizing a panel of eight IgG1 λ MAbs varying >4-fold in volumetric titer, we showed that MAb-specific limitations on folding and assembly rate functioned to induce a proportionate UPR in host CHO cells with a corresponding reduction in cell growth rate. Derived from comparative empirical modeling of cellular constraints on the production of each MAb we employed two strategies to increase production of DTE MAbs designed to avoid UPR induction through an improvement in the rate/cellular capacity for MAb folding and assembly reactions. Firstly, we altered the transfected LC:HC gene ratio and secondly, we co-expressed a variety of molecular chaperones, foldases or UPR transactivators (BiP, CypB, PDI, and active forms of ATF6 and XBP1) with recombinant MAbs. DTE MAb production was significantly improved by both strategies, although the mode of action was dependent upon the approach employed. Increased LC:HC ratio or CypB co-expression improved cell growth with no effect on qP. In contrast, BiP, ATF6c and XBP1s co-expression increased qP and reduced cell growth. This study demonstrates that expression-engineering strategies to improve production of DTE proteins in mammalian cells should be product specific, and based on rapid predictive tools to assess the relative impact of

  1. The Use of Transcription Terminators to Generate Transgenic Lines of Chinese Hamster Ovary Cells (CHO) with Stable and High Level of Reporter Gene Expression.

    PubMed

    Gasanov, N B; Toshchakov, S V; Georgiev, P G; Maksimenko, O G

    2015-01-01

    Mammalian cell lines are widely used to produce recombinant proteins. Stable transgenic cell lines usually contain many insertions of the expression vector in one genomic region. Transcription through transgene can be one of the reasons for target gene repression after prolonged cultivation of cell lines. In the present work, we used the known transcription terminators from the SV40 virus, as well as the human β- and γ-globin genes, to prevent transcription through transgene. The transcription terminators were shown to increase and stabilize the expression of the EGFP reporter gene in transgenic lines of Chinese hamster ovary (CHO) cells. Hence, transcription terminators can be used to create stable mammalian cells with a high and stable level of recombinant protein production.

  2. Expression and fast preparation of biologically active recombinant human coagulation factor VII in CHO-K1 cells.

    PubMed

    Xiao, W; Li, C Q; Xiao, X P; Lin, F Z

    2013-12-16

    Human coagulation factor VII (FVII) plays an important role in the blood coagulation process and exists in micro amounts in human plasma; therefore, any attempt at the large-scale production of FVII in significant quantities is challenging. The purpose of this study was to express and obtain biologically active recombinant FVII (rFVII) from Chinese hamster ovary K1 (CHO-K1) cells. The full-length FVII cDNA was isolated from a HepG2 cell line and then subcloned in pcDNA3.1 to construct an expression vector, pcDNA-FVII. CHO-K1 cells were transfected with 1 µg pcDNA-FVII. The cell line that stably expressed secretory FVII was screened using 900 µg/mL G418. The FVII copy number in CHO-K1 cells was detected by quantitative polymerase chain reaction (qPCR). The rFVII was purified in ligand affinity chromatography medium. The purified protein was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis. The biological activity of the purified FVII protein was determined by a prothrombin time assay. Three cell lines that permanently expressed rFVII were screened. The qPCR results demonstrated that each CHO-K1 cell harbored two FVII DNA copies. The SDS-PAGE and Western blot analysis showed that the purified protein was about 50 kDa. The purity of the target protein was 95%. The prothrombin time assay indicated that the FVII-specific activity of rFVII was 2573 ± 75 IU/mg. This method enabled the fast preparation of high-purity rFVII from CHO-K1 cells, and the purified protein had good biological activity.

  3. Pharmacological characterization of the human histamine H2 receptor stably expressed in Chinese hamster ovary cells.

    PubMed Central

    Leurs, R.; Smit, M. J.; Menge, W. M.; Timmerman, H.

    1994-01-01

    1. The gene for the human histamine H2 receptor was stably expressed in Chinese hamster ovary (CHO) cells and characterized by [125I]-iodoaminopotentidine binding studies. In addition, the coupling of the expressed receptor protein to a variety of signal transduction pathways was investigated. 2. After cotransfection of CHO cells with pCMVhumH2 and pUT626, a phleomycine-resistant clonal cell line (CHOhumH2) was isolated that expressed 565 +/- 35 fmol kg-1 protein binding sites with high affinity (0.21 +/- 0.02 nM) for the H2 antagonist, [125I]-iodoaminopotentidine. 3. Displacement studies with a variety of H2 antagonists indicated that the encoded protein was indistinguishable from the H2 receptor identified in human brain membranes and guinea-pig right atrium. The Ki-values observed in the various preparations correlated very well (r2 = 0.996-0.920). 4. Displacement studies with histamine showed that a limited fraction (32 +/- 6%) of the binding sites showed a high affinity for histamine (2 +/- 1.2 microM); the shallow displacement curves were reflected by a Hill-coefficient significantly different from unity (nH = 0.58 +/- 0.09). The addition of 100 microM Gpp(NH)p resulted in a steepening of the displacement curve (nH = 0.79 +/- 0.02) and a loss of high affinity sites for histamine. 5. Displacement studies with other agonists indicated that the recently developed specific H2 agonists, amthamine and amselamine, showed an approximately 4-5 fold higher affinity for the human H2 receptor than histamine. 6. Stimulation of CHOhumH2 cells with histamine resulted in a rapid rise of the intracellular cyclic AMP levels. After 10 min an approximately 10 fold increase in cyclic AMP could be measured.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 4 PMID:7921611

  4. Characteristics of 263K Scrapie Agent in Multiple Hamster Species

    PubMed Central

    Barbian, Kent D.; Race, Brent; Favara, Cynthia; Gardner, Don; Taubner, Lara; Porcella, Stephen; Race, Richard

    2009-01-01

    Transmissible spongiform encephalopathy (TSE) diseases are known to cross species barriers, but the pathologic and biochemical changes that occur during transmission are not well understood. To better understand these changes, we infected 6 hamster species with 263K hamster scrapie strain and, after each of 3 successive passages in the new species, analyzed abnormal proteinase K (PK)–resistant prion protein (PrPres) glycoform ratios, PrPres PK sensitivity, incubation periods, and lesion profiles. Unique 263K molecular and biochemical profiles evolved in each of the infected hamster species. Characteristics of 263K in the new hamster species seemed to correlate best with host factors rather than agent strain. Furthermore, 2 polymorphic regions of the prion protein amino acid sequence correlated with profile differences in these TSE-infected hamster species. PMID:19193264

  5. Regional assignment of seven genes on chromosome 1 of man by use of man-Chinese hamster somatic cell hybrids. I. Results obtained after hybridization of human cells carrying reciprocal translocations involving chromosome 1.

    PubMed

    Jongsma, A P; Burgerhout, W G

    1977-01-01

    Regional localization studies of genes coding for human PGD, PPH1, PGM1, UGPP, GuK1, Pep-C, and FH, which have been assigned to chromosome 1, were performed with man-Chinese hamster somatic cell hybrids, Informative hybrids that retained fragments of the human chromosome 1 were produced by fusion of hamster cells with human cells carrying reciprocal translocations involving chromosome 1. Analysis of the hybrids that retained one of the translocation chromosomes or de novo rearrangements involving the human 1 revealed the following gene positions: PGD and PPH1 in 1pter leads to 1p32, PGM1 in 1p32 leads to 1p22, UGPP and GuK1 in 1q21 leads to 1q42, FH in 1qter leads to 1q42, and Pep-C probably in 1q42.

  6. Comparative study of cyanotoxins affecting cytoskeletal and chromatin structures in CHO-K1 cells.

    PubMed

    Gácsi, Mariann; Antal, Otilia; Vasas, Gábor; Máthé, Csaba; Borbély, György; Saker, Martin L; Gyori, János; Farkas, Anna; Vehovszky, Agnes; Bánfalvi, Gáspár

    2009-06-01

    In this study we compared the effects of the two frequently occuring and most dangerous cyanobacterial toxins on the cellular organization of microfilaments, microtubules and on the chromatin structure in Chinese hamster ovary (CHO-K1) cells. These compounds are the widely known microcystin-LR (MC-LR) and cylindrospermopsin (CYN) classified as the highest-priority cyanotoxin. Toxic effects were tested in a concentration and time dependent manner. The hepatotoxic MC-LR did not cause significant cytotoxicity on CHO-K1 cells under 20 microM, but caused apoptotic changes at higher concentrations. Apoptotic shrinkage was associated with the shortening and loss of actin filaments and with a concentration dependent depolymerization of microtubules. No necrosis was observed over the concentration range (1-50 microM MC-LR) tested. Cylindrospermopsin did cause apoptosis at low concentrations (1-2 microM) and over short exposure periods (12h). Necrosis was observed at higher concentrations (5-10 microM) and following longer exposure periods (24 or 48h). Cyanotoxins also affected the chromatin structure. The condensation process was inhibited by MC-LR at a later stage and manifested as broken elongated prechromosomes. CYN inhibited chromatin condensation at the early fibrillary stage leading to blurred fluorescent images of apoptotic bodies and preventing the formation of metaphase chromosomes. Cylindrospermopsin exhibited a more pronounced toxic effect causing cytoskeletal and nuclear changes as well as apoptotic and necrotic alterations.

  7. Cytotoxicity Evaluation of Anatase and Rutile TiO₂ Thin Films on CHO-K1 Cells in Vitro.

    PubMed

    Cervantes, Blanca; López-Huerta, Francisco; Vega, Rosario; Hernández-Torres, Julián; García-González, Leandro; Salceda, Emilio; Herrera-May, Agustín L; Soto, Enrique

    2016-07-26

    Cytotoxicity of titanium dioxide (TiO₂) thin films on Chinese hamster ovary (CHO-K1) cells was evaluated after 24, 48 and 72 h of culture. The TiO₂ thin films were deposited using direct current magnetron sputtering. These films were post-deposition annealed at different temperatures (300, 500 and 800 °C) toward the anatase to rutile phase transformation. The root-mean-square (RMS) surface roughness of TiO₂ films went from 2.8 to 8.08 nm when the annealing temperature was increased from 300 to 800 °C. Field emission scanning electron microscopy (FESEM) results showed that the TiO₂ films' thickness values fell within the nanometer range (290-310 nm). Based on the results of the tetrazolium dye and trypan blue assays, we found that TiO₂ thin films showed no cytotoxicity after the aforementioned culture times at which cell viability was greater than 98%. Independently of the annealing temperature of the TiO₂ thin films, the number of CHO-K1 cells on the control substrate and on all TiO₂ thin films was greater after 48 or 72 h than it was after 24 h; the highest cell survival rate was observed in TiO₂ films annealed at 800 °C. These results indicate that TiO₂ thin films do not affect mitochondrial function and proliferation of CHO-K1 cells, and back up the use of TiO₂ thin films in biomedical science.

  8. Increased production of functional recombinant human clotting factor IX by baby hamster kidney cells engineered to overexpress VKORC1, the vitamin K 2,3-epoxide-reducing enzyme of the vitamin K cycle.

    PubMed

    Wajih, Nadeem; Hutson, Susan M; Owen, John; Wallin, Reidar

    2005-09-09

    Some recombinant vitamin K-dependent blood coagulation factors (factors VII, IX, and protein C) have become valuable pharmaceuticals in the treatment of bleeding complications and sepsis. Because of their vitamin K-dependent post-translational modification, their synthesis by eukaryotic cells is essential. The eukaryotic cell harbors a vitamin K-dependent gamma-carboxylation system that converts the proteins to gamma-carboxyglutamic acid-containing proteins. However, the system in eukaryotic cells has limited capacity, and cell lines overexpressing vitamin K-dependent clotting factors produce only a fraction of the recombinant proteins as fully gamma-carboxylated, physiologically competent proteins. In this work we have used recombinant human factor IX (r-hFIX)-producing baby hamster kidney (BHK) cells, engineered to stably overexpress various components of the gamma-carboxylation system of the cell, to determine whether increased production of functional r-hFIX can be accomplished. All BHK cell lines secreted r-hFIX into serum-free medium. Overexpression of gamma-carboxylase is shown to inhibit production of functional r-hFIX. On the other hand, cells overexpressing VKORC1, the reduced vitamin K cofactor-producing enzyme of the vitamin K-dependent gamma-carboxylation system, produced 2.9-fold more functional r-hFIX than control BHK cells. The data are consistent with the notion that VKORC1 is the rate-limiting step in the system and is a key regulatory protein in synthesis of active vitamin K-dependent proteins. The data suggest that overexpression of VKORC1 can be utilized for increased cellular production of recombinant vitamin K-dependent proteins.

  9. Effect of Temperature Downshift on the Transcriptomic Responses of Chinese Hamster Ovary Cells Using Recombinant Human Tissue Plasminogen Activator Production Culture

    PubMed Central

    Bedoya-López, Andrea; Estrada, Karel; Sanchez-Flores, Alejandro; Ramírez, Octavio T.; Altamirano, Claudia; Segovia, Lorenzo; Miranda-Ríos, Juan; Trujillo-Roldán, Mauricio A.; Valdez-Cruz, Norma A.

    2016-01-01

    Recombinant proteins are widely used as biopharmaceuticals, but their production by mammalian cell culture is expensive. Hence, improvement of bioprocess productivity is greatly needed. A temperature downshift (TDS) from 37°C to 28–34°C is an effective strategy to expand the productive life period of cells and increase their productivity (qp). Here, TDS in Chinese hamster ovary (CHO) cell cultures, initially grown at 37°C and switched to 30°C during the exponential growth phase, resulted in a 1.6-fold increase in the qp of recombinant human tissue plasminogen activator (rh-tPA). The transcriptomic response using next-generation sequencing (NGS) was assessed to characterize the cellular behavior associated with TDS. A total of 416 (q > 0.8) and 3,472 (q > 0.9) differentially expressed transcripts, with more than a 1.6-fold change at 24 and 48 h post TDS, respectively, were observed in cultures with TDS compared to those at constant 37°C. In agreement with the extended cell survival resulting from TDS, transcripts related to cell growth arrest that controlled cell proliferation without the activation of the DNA damage response, were differentially expressed. Most upregulated genes were related to energy metabolism in mitochondria, mitochondrial biogenesis, central metabolism, and avoidance of apoptotic cell death. The gene coding for rh-tPA was not differentially expressed, but fluctuations were detected in the transcripts encoding proteins involved in the secretory machinery, particularly in glycosylation. Through NGS the dynamic processes caused by TDS were assessed in this biological system. PMID:26991106

  10. Process development for a recombinant Chinese hamster ovary (CHO) cell line utilizing a metal induced and amplified metallothionein expression system.

    PubMed

    Huang, Edwin P; Marquis, Christopher P; Gray, Peter P

    2004-11-20

    The suspension Chinese Hamster Ovary cell line, 13-10-302, utilizing the metallothionein (MT) expression system producing recombinant human growth hormone (hGH) was studied in a serum-free and cadmium-free medium at different fermentation scales and modes of operation. Initial experiments were carried out to optimize the concentration of metal addition to induce the MT promoter. Subsequently, the cultivation of the 13-10-302 cell line was scaled up from spinner flasks into bioreactors, and the cultivation duration was extended with fed-batch and perfusion strategies utilizing 180 microM zinc to induce the promoter controlling expression of recombinant hGH. It was shown that a fed-batch process could increase the maximum cell numbers twofold, from 3.3 to 6.3 x 10(6) cell/mL, over those obtained in normal batch fermentations, and this coupled with extended fermentation times resulted in a fourfold increase in final hGH titer, from 135 +/- 15 to 670 +/- 70 mg/L at a specific productivity q(hGH) value of 12 pg cell(-1)d(-1). The addition of sodium butyrate increased the specific productivity of hGH in cells to a value of approximately 48 pg cell(-1)d(-1), resulting in a final hGH titer of over a gram per liter during fed-batch runs. A BioSep acoustic cell recycler was used to retain the cells in the bioreactor during perfusion operation. It was necessary to maintain the specific feeding rates (SFR) above a value of 0.2 vvd/(10(6) cell/mL) to maintain the viability and productivity of the 13-10-302 cells; under these conditions the viable cell number increased to over 10(7) cell/mL and resulted in a volumetric productivity of over 120 mg(hGH) L(-1)d(-1). Process development described in this work demonstrates cultivation at various scales and sustained high levels of productivity under cadmium free condition in a CHO cell line utilizing an inducible metallothionein expression system. (c) 2004 Wiley Periodicals, Inc

  11. The impact of homologous recombination repair deficiency on depleted uranium clastogenicity in Chinese hamster ovary cells: XRCC3 protects cells from chromosome aberrations, but increases chromosome fragmentation.

    PubMed

    Holmes, Amie L; Joyce, Kellie; Xie, Hong; Falank, Carolyne; Hinz, John M; Wise, John Pierce

    2014-04-01

    Depleted uranium (DU) is extensively used in both industry and military applications. The potential for civilian and military personnel exposure to DU is rising, but there are limited data on the potential health hazards of DU exposure. Previous laboratory research indicates DU is a potential carcinogen, but epidemiological studies remain inconclusive. DU is genotoxic, inducing DNA double strand breaks, chromosome damage and mutations, but the mechanisms of genotoxicity or repair pathways involved in protecting cells against DU-induced damage remain unknown. The purpose of this study was to investigate the effects of homologous recombination repair deficiency on DU-induced genotoxicity using RAD51D and XRCC3-deficient Chinese hamster ovary (CHO) cell lines. Cells deficient in XRCC3 (irs1SF) exhibited similar cytotoxicity after DU exposure compared to wild-type (AA8) and XRCC3-complemented (1SFwt8) cells, but DU induced more break-type and fusion-type lesions in XRCC3-deficient cells compared to wild-type and XRCC3-complemented cells. Surprisingly, loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. DU induced selective X-chromosome fragmentation irrespective of RAD51D status, but loss of XRCC3 nearly eliminated fragmentation observed after DU exposure in wild-type and XRCC3-complemented cells. Thus, XRCC3, but not RAD51D, protects cells from DU-induced breaks and fusions and also plays a role in DU-induced chromosome fragmentation. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Mutagenicity and antimutagenicity of Baccharis dracunculifolia extract in chromosomal aberration assays in Chinese hamster ovary cells.

    PubMed

    Munari, Carla Carolina; Resende, Flávia Aparecida; Alves, Jacqueline Morais; de Sousa, João Paulo; Bastos, Jairo Kenupp; Tavares, Denise Crispim

    2008-09-01

    Baccharis dracunculifolia De Candole (Asteraceae), a native plant from the Brazilian "cerrado", is widely used in folk medicine as an anti-inflammatory agent and for the treatment of gastrointestinal diseases. B. dracunculifolia has been described as the most important plant source of propolis in southeastern Brazil, which is called green propolis due to its color. The aim of the present study was to evaluate the mutagenic and antimutagenic effects of the ethyl acetate extract of B. dracunculifolia leaves (Bd-EAE) on Chinese hamster ovary cells. On one hand, the results showed a significant increase in the frequencies of chromosome aberrations at the highest Bd-EAE concentration tested (100 microg/mL). On the other hand, the lowest Bd-EAE concentration tested (12.5 micro/mL) significantly reduced the chromosome damage induced by the chemotherapeutic agent doxorubicin. The present results indicate that Bd-EAE has the characteristics of a so-called Janus compound, that is, Bd-EAE is mutagenic at higher concentrations, whereas it displays a chemopreventive effect on doxorubicin-induced mutagenicity at lower concentrations. The constituents of B. dracunculifolia responsible for its mutagenic and antimutagenic effects are probably flavonoids and phenylpropanoids, since these compounds can act either as pro-oxidants or as free radical scavengers depending on their concentration.

  13. Alpha 2-adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.B.; Halenda, S.P.; Bylund, D.B.

    1991-02-01

    The effect of alpha 2-adrenergic receptor activation on adenylate cyclase activity in Chinese hamster ovary cells stably transfected with the alpha 2A-adrenergic receptor gene is biphasic. At lower concentrations of epinephrine forskolin-stimulated cyclic AMP production is inhibited, but at higher concentrations the inhibition is reversed. Both of these effects are blocked by the alpha 2 antagonist yohimbine but not by the alpha 1 antagonist prazosin. Pretreatment with pertussis toxin attenuates inhibition at lower concentrations of epinephrine and greatly potentiates forskolin-stimulated cyclic AMP production at higher concentrations of epinephrine. alpha 2-Adrenergic receptor stimulation also causes arachidonic acid mobilization, presumably via phospholipasemore » A2. This effect is blocked by yohimbine, quinacrine, removal of extracellular Ca2+, and pretreatment with pertussis toxin. Quinacrine and removal of extracellular Ca2+, in contrast, have no effect on the enhanced forskolin-stimulated cyclic AMP production. Thus, it appears that the alpha 2-adrenergic receptor in these cells can simultaneously activate distinct signal transduction systems; inhibition of adenylate cyclase and stimulation of phospholipase A2, both via G1, and potentiation of cyclic AMP production by a different (pertussis toxin-insensitive) mechanism.« less

  14. Serotonergic modulation of hippocampal pyramidal cells in euthermic, cold-acclimated, and hibernating hamsters

    NASA Technical Reports Server (NTRS)

    Horrigan, D. J.; Horwitz, B. A.; Horowitz, J. M.

    1997-01-01

    Serotonergic fibers project to the hippocampus, a brain area previously shown to have distinctive changes in electroencephalograph (EEG) activity during entrance into and arousal from hibernation. The EEG activity is generated by pyramidal cells in both hibernating and nonhibernating species. Using the brain slice preparation, we characterized serotonergic responses of these CA1 pyramidal cells in euthermic, cold-acclimated, and hibernating Syrian hamsters. Stimulation of Shaffer-collateral/commissural fibers evoked fast synaptic excitation of CA1 pyramidal cells, a response monitored by recording population spikes (the synchronous generation of action potentials). Neuromodulation by serotonin (5-HT) decreased population spike amplitude by 54% in cold-acclimated animals, 80% in hibernating hamsters, and 63% in euthermic animals. The depression was significantly greater in slices from hibernators than from cold-acclimated animals. In slices from euthermic animals, changes in extracellular K+ concentration between 2.5 and 5.0 mM did not significantly alter serotonergic responses. The 5-HT1A agonist 8-hydroxy-2(di-n-propylamino)tetralin mimicked serotonergic inhibition in euthermic hamsters. Results show that 5-HT is a robust neuromodulator not only in euthermic animals but also in cold-acclimated and hibernating hamsters.

  15. Cytotoxicity Evaluation of Anatase and Rutile TiO2 Thin Films on CHO-K1 Cells in Vitro

    PubMed Central

    Cervantes, Blanca; López-Huerta, Francisco; Vega, Rosario; Hernández-Torres, Julián; García-González, Leandro; Salceda, Emilio; Herrera-May, Agustín L.; Soto, Enrique

    2016-01-01

    Cytotoxicity of titanium dioxide (TiO2) thin films on Chinese hamster ovary (CHO-K1) cells was evaluated after 24, 48 and 72 h of culture. The TiO2 thin films were deposited using direct current magnetron sputtering. These films were post-deposition annealed at different temperatures (300, 500 and 800 °C) toward the anatase to rutile phase transformation. The root-mean-square (RMS) surface roughness of TiO2 films went from 2.8 to 8.08 nm when the annealing temperature was increased from 300 to 800 °C. Field emission scanning electron microscopy (FESEM) results showed that the TiO2 films’ thickness values fell within the nanometer range (290–310 nm). Based on the results of the tetrazolium dye and trypan blue assays, we found that TiO2 thin films showed no cytotoxicity after the aforementioned culture times at which cell viability was greater than 98%. Independently of the annealing temperature of the TiO2 thin films, the number of CHO-K1 cells on the control substrate and on all TiO2 thin films was greater after 48 or 72 h than it was after 24 h; the highest cell survival rate was observed in TiO2 films annealed at 800 °C. These results indicate that TiO2 thin films do not affect mitochondrial function and proliferation of CHO-K1 cells, and back up the use of TiO2 thin films in biomedical science. PMID:28773740

  16. Regulation of murine cystic fibrosis transmembrane conductance regulator Cl− channels expressed in Chinese hamster ovary cells

    PubMed Central

    Lansdell, K A; Kidd, J F; Delaney, S J; Wainwright, B J; Sheppard, D N

    1998-01-01

    We investigated the effect of protein kinases and phosphatases on murine cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channels, expressed in Chinese hamster ovary (CHO) cells, using iodide efflux and the excised inside-out configuration of the patch-clamp technique.The protein kinase C (PKC) activator, phorbol dibutyrate, enhanced cAMP-stimulated iodide efflux. However, PKC did not augment the single-channel activity of either human or murine CFTR Cl− channels that had previously been activated by protein kinase A.Fluoride, a non-specific inhibitor of protein phosphatases, stimulated both human and murine CFTR Cl− channels. However, calyculin A, a potent inhibitor of protein phosphatases 1 and 2A, did not enhance cAMP-stimulated iodide efflux.The alkaline phosphatase inhibitor, (−)-bromotetramisole augmented cAMP-stimulated iodide efflux and, by itself, stimulated a larger efflux than that evoked by cAMP agonists. However, (+)-bromotetramisole, the inactive enantiomer, had the same effect. For murine CFTR, neither enantiomer enhanced single-channel activity. In contrast, both enantiomers increased the open probability (Po) of human CFTR, suggesting that bromotetramisole may promote the opening of human CFTR.As murine CFTR had a low Po and was refractory to stimulation by activators of human CFTR, we investigated whether murine CFTR may open to a subconductance state. When single-channel records were filtered at 50 Hz, a very small subconductance state of murine CFTR was observed that had a Po greater than that of human CFTR. The occupancy of this subconductance state may explain the differences in channel regulation observed between human and murine CFTR. PMID:9769419

  17. Relationship between sugar chain structure and biological activity of recombinant human erythropoietin produced in Chinese hamster ovary cells.

    PubMed Central

    Takeuchi, M; Inoue, N; Strickland, T W; Kubota, M; Wada, M; Shimizu, R; Hoshi, S; Kozutsumi, H; Takasaki, S; Kobata, A

    1989-01-01

    Two forms of erythropoietin, EPO-bi and EPO-tetra, with different biological activities were isolated from the culture medium of a recombinant Chinese hamster ovary cell line, B8-300, into which the human erythropoietin gene had been introduced. EPO-bi, an unusual form, showed only one-seventh the in vivo activity and 3 times higher in vitro activity of the previously described recombinant human EPO (standard EPO). In contrast, EPO-tetra showed both in vivo and in vitro activities comparable to those of the standard EPO. EPO-bi, EPO-tetra, and the standard EPO had the same amino acid composition and immunoreactivity. However, structural analyses of their N-linked sugar chains revealed that EPO-bi contains the biantennary complex type as the major sugar chain, while EPO-tetra and the standard EPO contain the tetraantennary complex type as the major sugar chain. From examination of various preparations of recombinant human EPO, we found a positive correlation between the in vivo activity of EPO and the ratio of tetraantennary to biantennary oligosaccharides. These results suggest that higher branching of the N-linked sugar chains is essential for effective expression of in vivo biological activity of EPO. PMID:2813359

  18. Mechanism of proteasomal degradation of inositol trisphosphate receptors in CHO-K1 cells.

    PubMed

    Bhanumathy, Cunnigaiper D; Nakao, Steven K; Joseph, Suresh K

    2006-02-10

    myo-Inositol 1,4,5-trisphosphate receptor (IP3R) degradation occurs in response to carbachol (Cch) stimulation of CHO-K1 cells. The response was mediated by endogenous muscarinic receptors and was blocked by atropine or proteasomal inhibitors. We have used these cells to identify the sites of ubiquitination on IP3Rs and study the role of Ca2+ and substrate recognition properties of the degradation system using exogenously expressed IP3R constructs. Employing caspase-3 for IP3R cleavage, we show that Cch promotes polyubiquitination in the N-terminal domain and monoubiquitination in the C-terminal domain. The addition of extracellular Ca2+ to Ca2+-depleted Chinese hamster ovary (CHO) cells initiates IP3R degradation provided Cch is present. This effect is inhibited by thapsigargin. The data suggest that both a sustained elevation of IP3 and a minimal content of Ca2+ in the endoplasmic reticulum lumen is required to initiate IP3R degradation. Transient transfection of IP3R constructs into CHO cells indicated the selective degradation of only the SI+ splice variant of the type I IP3R. This was also the splice form present endogenously in these cells. A pore-defective, nonfunctional SI+ IP3R mutant (D2550A) was also degraded in Cch-stimulated cells. The Cch-mediated response in CHO cells provides a convenient model system to further analyze the Ca2+ dependence and structural requirements of the IP3R proteasomal degradation pathway.

  19. Pichia pastoris secretes recombinant proteins less efficiently than Chinese hamster ovary cells but allows higher space-time yields for less complex proteins

    PubMed Central

    Maccani, Andreas; Landes, Nils; Stadlmayr, Gerhard; Maresch, Daniel; Leitner, Christian; Maurer, Michael; Gasser, Brigitte; Ernst, Wolfgang; Kunert, Renate; Mattanovich, Diethard

    2014-01-01

    Chinese hamster ovary (CHO) cells are currently the workhorse of the biopharmaceutical industry. However, yeasts such as Pichia pastoris are about to enter this field. To compare their capability for recombinant protein secretion, P. pastoris strains and CHO cell lines producing human serum albumin (HSA) and the 3D6 single chain Fv-Fc anti-HIV-1 antibody (3D6scFv-Fc) were cultivated in comparable fed batch processes. In P. pastoris, the mean biomass-specific secretion rate (qp) was 40-fold lower for 3D6scFv-Fc compared to HSA. On the contrary, qp was similar for both proteins in CHO cells. When comparing both organisms, the mean qp of the CHO cell lines was 1011-fold higher for 3D6scFv-Fc and 26-fold higher for HSA. Due to the low qp of the 3D6scFv-Fc producing strain, the space-time yield (STY) was 9.6-fold lower for P. pastoris. In contrast, the STY of the HSA producer was 9.2-fold higher compared to CHO cells because of the shorter process time and higher biomass density. The results indicate that the protein secretion machinery of P. pastoris is much less efficient and the secretion rate strongly depends on the complexity of the recombinant protein. However, process efficiency of the yeast system allows higher STYs for less complex proteins. PMID:24390926

  20. Targeted knock-in of an scFv-Fc antibody gene into the hprt locus of Chinese hamster ovary cells using CRISPR/Cas9 and CRIS-PITCh systems.

    PubMed

    Kawabe, Yoshinori; Komatsu, Shinya; Komatsu, Shodai; Murakami, Mai; Ito, Akira; Sakuma, Tetsushi; Nakamura, Takahiro; Yamamoto, Takashi; Kamihira, Masamichi

    2018-05-01

    Chinese hamster ovary (CHO) cells have been used as host cells for the production of pharmaceutical proteins. For the high and stable production of target proteins, the transgene should be integrated into a suitable genomic locus of host cells. Here, we generated knock-in CHO cells, in which transgene cassettes without a vector backbone sequence were integrated into the hprt locus of the CHO genome using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and CRISPR-mediated precise integration into target chromosome (CRIS-PITCh) systems. We investigated the efficiency of targeted knock-in of transgenes using these systems. As a practical example, we generated knock-in CHO cells producing an scFv-Fc antibody using the CRIS-PITCh system mediated by microhomology sequences for targeting. We found that the CRIS-PITCh system can facilitate targeted knock-in for CHO cell engineering. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Modified multiple drug resistance phenotype of Chinese hamster ovary cells selected with X-rays and vincristine versus X-rays only.

    PubMed Central

    McClean, S.; Hill, B. T.

    1994-01-01

    Exposure of Chinese hamster ovary (CHO) cells to fractionated X-irradiation [ten fractions of 9 Gray (Gy)] resulted in the expression of a multiple drug resistance phenotype which was distinct from that of drug-selected cells in two features: (i) resistance to vinca alkaloids and epipodophyllotoxins but sensitivity to anthracyclines was retained; (ii) overexpression of P-glycoprotein (Pgp) but regulated by post-translational stability rather than by any elevation in Pgp mRNA (Hill et al., 1990). It was also reported that when these cells (designated DXR-10) were subsequently exposed to another ten fractions of 9 Gy (20 x 9 Gy in total), no further increases in drug resistance or in the extent of Pgp expression were observed. To examine this apparent plateauing of the drug resistance phenotype following X-ray pretreatment, DXR-10 cells were instead treated with ten pulsed vincristine exposures. The resultant cell line, designated DXR-10/VCR-10, proved to be more resistant to vincristine, implying that the effect of further drug selection was additive to that of X-ray pretreatment. In addition, these cells showed resistance to doxorubicin and increased Pgp expression which was matched by a concomitant elevation in Pgp mRNA. These findings appear to confirm that Pgp expression is differentially regulated in tumour cells showing drug resistance after drug as opposed to X-ray selection. Images Figure 2 Figure 3 Figure 5 PMID:7908216

  2. Reduced cytotoxicity in PCB-exposed Chinese Hamster Ovary (CHO) cells pretreated with vitamin E.

    PubMed

    Murati, Teuta; Šimić, Branimir; Pleadin, Jelka; Vukmirović, Maja; Miletić, Marina; Durgo, Ksenija; Kniewald, Jasna; Kmetič, Ivana

    2017-01-01

    The aim of this study was to evaluate protective effects of vitamin E (50 -150 μM) in ovary cells upon cytotoxic effects induced by two structurally distinct PCB congeners - planar "dioxin-like" PCB 77 and non-planar di-ortho-substituted PCB 153 with an emphasis on identifying differences in the mechanism of vitamin E action depending on the structure of congeners. Application of three bioassays confirmed that PCBs decrease ovarian cell proliferation with slightly profound effects of PCB 77. PCB - induced ROS production and lipid peroxidation were significant for both congeners with also more noticeable effect for PCB 77. Vitamin E pre-incubation has improved viability of cells, reduced ROS formation and lipid peroxidation induced by PCBs' treatment. Preincubation with vitamin E was more effective when cells where treated with non-planar PCB 153. Altogether, vitamin E action was protective, congener specific and more effective when ovary cells were exposed to ortho-substituted PCB congener. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Properties and function of KCNQ1 K+ channels isolated from the rectal gland of Squalus acanthias.

    PubMed

    Kerst, G; Beschorner, U; Unsöld, B; von Hahn, T; Schreiber, R; Greger, R; Gerlach, U; Lang, H J; Kunzelmann, K; Bleich, M

    2001-10-01

    KCNQ1 (KVLQT1) K+ channels play an important role during electrolyte secretion in airways and colon. KCNQ1 was cloned recently from NaCl-secreting shark rectal glands. Here we study the properties and regulation of the cloned sKVLQT1 expressed in Xenopus oocytes and Chinese hamster ovary (CHO) cells and compare the results with those obtained from in vitro perfused rectal gland tubules (RGT). The expression of sKCNQ1 induced voltage-dependent, delayed activated K+ currents, which were augmented by an increase in intracellular cAMP and Ca2+. The chromanol derivatives 293B and 526B potently inhibited sKCNQ1 expressed in oocytes and CHO cells, but had little effect on RGT electrolyte transport. Short-circuit currents in RGT were activated by alkalinization and were decreased by acidification. In CHO cells an alkaline pH activated and an acidic pH inhibited 293B-sensitive KCNQ1 currents. Noise analysis of the cell-attached basolateral membrane of RGT indicated the presence of low-conductance (<3 pS) K+ channels, in parallel with other K+ channels. sKCNQ1 generated similar small-conductance K+ channels upon expression in CHO cells and Xenopus oocytes. The results suggest the presence of low-conductance KCNQ1 K+ channels in RGT, which are probably regulated by changes in intracellular cAMP, Ca2+ and pH.

  4. Expression and effects of modulation of the K2P potassium channels TREK-1 (KCNK2) and TREK-2 (KCNK10) in the normal human ovary and epithelial ovarian cancer.

    PubMed

    Innamaa, A; Jackson, L; Asher, V; van Schalkwyk, G; Warren, A; Keightley, A; Hay, D; Bali, A; Sowter, H; Khan, R

    2013-11-01

    Aberrant expression of potassium (K(+)) channels contributes to cancer cell proliferation and apoptosis, and K(+) channel blockers can inhibit cell proliferation. TREK-1 and -2 belong to the two-pore domain (K2P) superfamily. We report TREK-1 and -2 expression in ovarian cancer and normal ovaries, and the effects of TREK-1 modulators on cell proliferation and apoptosis. The cellular localisation of TREK-1 and -2 was investigated by immunofluorescence in SKOV-3 and OVCAR-3 cell lines and in cultured ovarian surface epithelium and cancer. Channel expression in normal ovaries and cancer was quantified by western blotting. Immunohistochemical analysis demonstrated the association between channel expression and disease prognosis, stage, and grade. TREK-1 modulation of cell proliferation in the cell lines was investigated with the MTS-assay and the effect on apoptosis determined using flow cytometry. Expression was identified in both cell lines, ovarian cancer (n = 22) and normal ovaries (n = 6). IHC demonstrated positive staining for TREK-1 and -2 in 95.7 % of tumours (n = 69) and 100 % of normal ovaries (n = 9). A reduction in cell proliferation (P < 0.05) was demonstrated at 96 h in SKOV-3 and OVCAR-3 cells incubated TREK-1 modulating agents. Curcumin caused a significant reduction in early apoptosis in SKOV-3 (P < 0.001) and OVCAR-3 (P < 0.0001) cells and a significant increase in late apoptosis in SKOV-3 (P < 0.01) and OVCAR-3 cells (P < 0.0001). TREK-1 and -2 are expressed in normal ovaries and ovarian cancer. TREK-1 modulators have a significant effect on cell proliferation and apoptosis. We propose investigation of the therapeutic potential of TREK-1 blockers is warranted.

  5. Regional assignment of seven genes on chromosome 1 of man by use of man-Chinese hamster somatic cell hybrids. II. Results obtained after induction of breaks in chromosome 1 by X-irradiation.

    PubMed

    Burgerhout, W G; Smit, S L; Jongsma, A P

    1977-01-01

    The position of genes coding for PGD, PPH1, UGPP, GuK1, PGM1, Pep-C, and FH on human chromosome 1 was investigated by analysis of karyotype and enzyme phenotypes in man-Chinese hamster somatic cell hybrids carrying aberrations involving chromosome 1. Suitable hybrid cell lines were obtained by X-irradiation of hybrid cells carrying an intact chromosome 1 and by fusion of human cells from a clonal population carrying a translocation involving chromosome 1 with Chinese hamster cells. The latter human cell population had been isolated following X-irradiation of primary Lesch-Nyhan fibroblasts. In addition, products of de novo chromosome breakage in the investigated hybrid lines were utilized. By integrating the results of these analyses with earlier findings in our laboratory, the following positions of genes are deduced: PGD and PPH1 in 1p36 leads to 1p34; PGM1 in 1p32; UGPP in 1q21 leads to 1q23; GuK1 in 1q31 leads to 1q42; Pep-C in 1q42; and FH in 1qter leads to 1q42.

  6. Selective retension of active cells employing low centrifugal force at the medium change during suspension culture of Chinese hamster ovary cells producing tPA.

    PubMed

    Takagi, M; Ilias, M; Yoshida, T

    2000-01-01

    The effect of centrifugal force applied for cell separation at the medium change on the growth, metabolism and tissue plasminogen activator (tPA) productivity of Chinese hamster ovary (CHO) cells suspension culture was investigated. The viability of the precipitated cells increased exponentially as the centrifugal force decreased. However, the cell recovery was lower than 91% when centrifugal forces applied for 5 min was less than 67 x g. In cultures incubated for 474 h with 7 medium changes employing centrifugal forces ranging from 67 to 364 x g, a centrifugal force lower than 119 x g resulted in higher specific rates of growth, glucose consumption, and lactate and tPA production during the whole culture period. On the other hand, daily centrifugation at 67 to 537 x g without discarding the supernatant had no effect on the specific rates. The cultures inoculated with cells precipitated at a centrifugal force of 67 x g showed apparently higher specific rates of metabolism compared to those inoculated with cells in the supernatant. The cells in the supernatant and the precipitate obtained following centrifugation at 67 x g have average diameters of 15.5 and 17.4 microm, respectively. The intracellular contents of amino acids, especially nonessential amino acids, of the precipitated cells were markedly higher than those of the cells in the supernatant. These results indicate that large cells with high amino acid content and metabolic activity were selectively retained in the culture by means of centrifugation at low forces such as 67 x g. Consequently, application of a low centrifugal force is recommended for medium change in order to maintain higher specific productivity of suspended mammalian cells in perfusion culture.

  7. Blockade by N-3 polyunsaturated fatty acid of the Kv4.3 current stably expressed in Chinese hamster ovary cells

    PubMed Central

    Singleton, C B; Valenzuela, S M; Walker, B D; Tie, H; Wyse, K R; Bursill, J A; Qiu, M R; Breit, S N; Campbell, T J

    1999-01-01

    The Kv4.3 gene is believed to encode a large proportion of the transient outward current (Ito), responsible for the early phase of repolarization of the human cardiac action potential. There is evidence that this current is involved in the dispersion of refractoriness which develops during myocardial ischaemia and which predisposes to the development of potentially fatal ventricular tachyarrhythmias. Epidemiological, clinical, animal, and cellular studies indicate that these arrhythmias may be ameliorated in myocardial ischaemia by n-3 polyunsaturated fatty acids (n-3 PUFA) present in fish oils. We describe stable transfection of the Kv4.3 gene into a mammalian cell line (Chinese hamster ovary cells), and using patch clamp techniques have shown that the resulting current closely resembles human Ito. The current is rapidly activating and inactivating, with both processes being well fit by double exponential functions (time constants of 3.8±0.2 and 5.3±0.4 ms for activation and 20.0±1.2 and 96.6±6.7 ms for inactivation at +45 mV at 23°C). Activation and steady state inactivation both show voltage dependence (V1/2 of activation=−6.7±2.5 mV, V1/2 of steady state inactivation=−51.3±0.2 mV at 23°C). Current inactivation and recovery from inactivation are faster at physiologic temperature (37°C) compared to room temperature (23°C). The n-3 PUFA docosahexaenoic acid blocks the Kv4.3 current with an IC50 of 3.6 μmol L−1. Blockade of the transient outward current may be an important mechanism by which n-3 PUFA provide protection against the development of ventricular fibrillation during myocardial ischaemia. PMID:10433502

  8. Degradation of recombinant proteins by CHO host cell proteases is prevented by Matriptase-1 knock-out.

    PubMed

    Laux, Holger; Romand, Sandrine; Nuciforo, Sandro; Farady, Christopher J; Tapparel, Joel; Buechmann-Moeller, Stine; Sommer, Benjamin; Oakeley, Edward J; Bodendorf, Ursula

    2018-05-19

    An increasing number of non-antibody format proteins are entering the clinical development. However, one of the major hurdles for the production of non-antibody glycoproteins is host cell-related proteolytic degradation, which can drastically impact developability and timelines of pipeline projects. Chinese hamster ovary (CHO) cells are the preferred production host for recombinant therapeutic proteins. Using protease inhibitors, transcriptomics and genetic knockdowns we have identified, out of the more than 700 known proteases in rodents, Matriptase-1 as the major protease involved in degradation of recombinant proteins expressed in CHO-K1 cells. Subsequently Matriptase-1 was deleted in CHO-K1 cells using "Transcription Activator-Like Effector Nucleases" (TALENs) as well as zinc-finger nucleases (ZFNs). This resulted in a superior CHO-K1 matriptase knockout (KO) cell line with strongly reduced or no proteolytic degradation activity towards a panel of recombinantly-expressed proteins. The matriptase KO cell line was evaluated in spike-in experiments, and showed little or no degradation of proteins incubated in culture supernatant derived from the KO cells. This effect was confirmed when the same proteins were recombinantly expressed in the KO cell line. In summary, the combination of novel cell line engineering tools, next generation sequencing screening methods and the recently published Chinese hamster genome has enabled the development of this novel matriptase KO CHO cell line capable of improving expression yields of intact therapeutic proteins. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Attenuation of cadmium-induced necrotic cell death by necrostatin-1: Potential necrostatin-1 acting sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, T.-S.; Yang, P.-M.; Tsai, J.-S.

    2009-03-01

    Cadmium (Cd) induces necrotic death in Chinese hamster ovary (CHO) K1 cells and we have established the responsible signaling pathway. Reportedly, necrostatin-1 (Nec-1) rescues cells from necrotic death by mediating through the death domain receptor (DR) signaling pathway. We show here that Nec-1 also effectively attenuates necrotic death triggered by Cd. Two other treatments that cause necrotic cell death, one can (z-VAD-fmk/TNF-{alpha} on U937 cells) and the other cannot (etherynic acid (EA) on DLD-1 cells) be rescued by Nec-1, were also studied in parallel for comparison. Results show that Nec-1 is ineffectual in modulating intracellular calcium contents, calpain activity (amore » downstream protease), or reactive oxygen species production. It can counteract the reduction in mitochondrial membrane potential (MMP) caused by treating CHO K1 or U937 cells with necrosis-inducing agent. However, this effect was not found in EA-treated DLD-1 cells. Notably, Nec-1 elevates NF-{kappa}B activity in the presence or absence of necrosis-inducing agents. Our study shows that, in addition to DR-mediated necrosis, Nec-1 is effective in attenuating Cd-induced necrosis. It rescues cells with reduced MMP implying that mitochondrion is its major acting site.« less

  10. Effect of pH, temperature, and salt on the stability of Escherichia coli- and Chinese hamster ovary cell-derived IgG1 Fc.

    PubMed

    Li, Cynthia H; Narhi, Linda O; Wen, Jie; Dimitrova, Mariana; Wen, Zai-qing; Li, Jenny; Pollastrini, Joseph; Nguyen, Xichdao; Tsuruda, Trace; Jiang, Yijia

    2012-12-18

    The circulation half-life of a potential therapeutic can be increased by fusing the molecule of interest (an active peptide, the extracellular domain of a receptor, an enzyme, etc.) to the Fc fragment of a monoclonal antibody. For the fusion protein to be a successful therapeutic, it must be stable to process and long-term storage conditions, as well as to physiological conditions. The stability of the Fc used is critical for obtaining a successful therapeutic protein. The effects of pH, temperature, and salt on the stabilities of Escherichia coli- and Chinese hamster ovary cell (CHO)-derived IgG1 Fc high-order structure were probed using a variety of biophysical techniques. Fc molecules derived from both E. coli and CHO were compared. The IgG1 Fc molecules from both sources (glycosylated and aglycosylated) are folded at neutral pH and behave similarly upon heat- and low pH-induced unfolding. The unfolding of both IgG1 Fc molecules occurs via a multistep unfolding process, with the tertiary structure and C(H)2 domain unfolding first, followed by changes in the secondary structure and C(H)3 domain. The acid-induced unfolding of IgG1 Fc molecules is only partially reversible, with the formation of high-molecular weight species. The CHO-derived Fc protein (glycosylated) is more compact (smaller hydrodynamic radius) than the E. coli-derived protein (aglycosylated) at neutral pH. Unfolding is dependent on pH and salt concentration. The glycosylated C(H)2 domain melts at a temperature 4-5 °C higher than that of the aglycosylated domain, and the low-pH-induced unfolding of the glycosylated Fc molecule occurs at a pH ~0.5 pH unit lower than that of the aglycosylated protein. The difference observed between E. coli- and CHO-derived Fc molecules primarily involves the C(H)2 domain, where the glycosylation of the Fc resides.

  11. Naphthol AS-BI (7-bromo-3-hydroxy-2-naphtho-o-anisidine) phosphatase and naphthol AS-BI. beta. -D-glucuronidase in Chinese hamster ovary cells: biochemical and flow cytometric studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolbeare, F.A.; Phares, W.

    1979-01-01

    Conditions for the biochemical and flow cytometric assay of 7-bromo-3-hydroxy-2-naphtho-o-anisidine phosphatase and ..beta..-D-glucuronidase activities in Chinese hamster ovary cells were studied. In the biochemical assays, the pH optimum for the phosphatase activity was pH 4.6 with a Km of 10/sup -5/ M; the pH optimum for ..beta..-D-glucuronidase activity was pH 5.0 with a Km of 2 x 10/sup -5/ M. For intact cells the derived constants were 3 to 10 times higher. The rate of hydrolysis of both substrates was also examined by flow cytometry. Cellular fluorescence increased linearly for only about 15 min. Diffusion of the fluorescent product probablymore » caused nonlinearity of the fluorescence increase and was demonstrated by mixing cells incubated with substrate with those that had not been incubated. After 15 min, cells that had not been exposed previously to product or substrate contained the fluorescent product. Cells fractionated into size classes by centrifugal elutriation also were analyzed by flow cytometry for ..beta..-D-glucuronidase activity. The activity increased linearly with the increase in cell size corresponding to the progression from G/sub 1/ through S and into G/sub 2/-M phases of the cell cycle.« less

  12. Optimization of gene delivery methods in Xenopus laevis kidney (A6) and Chinese hamster ovary (CHO) cell lines for heterologous expression of Xenopus inner ear genes

    PubMed Central

    Ramirez-Gordillo, Daniel; Trujillo-Provencio, Casilda; Knight, V. Bleu; Serrano, Elba E.

    2014-01-01

    The Xenopus inner ear provides a useful model for studies of hearing and balance because it shares features with the mammalian inner ear, and because amphibians are capable of regenerating damaged mechanosensory hair cells. The structure and function of many proteins necessary for inner ear function have yet to be elucidated and require methods for analysis. To this end, we seek to characterize Xenopus inner ear genes outside of the animal model through heterologous expression in cell lines. As part of this effort, we aimed to optimize physical (electroporation), chemical (lipid-mediated; Lipofectamine™ 2000, Metafectene® Pro), and biological (viral-mediated; BacMam virus Cellular Lights™ Tubulin-RFP) gene delivery methods in amphibian (Xenopus; A6) cells and mammalian (Chinese hamster ovary (CHO)) cells. We successfully introduced the commercially available pEGFP-N3, pmCherry-N1, pEYFP-Tubulin, and Cellular Lights™ Tubulin-RFP fluorescent constructs to cells and evaluated their transfection or transduction efficiencies using the three gene delivery methods. In addition, we analyzed the transfection efficiency of a novel construct synthesized in our laboratory by cloning the Xenopus inner ear calcium-activated potassium channel β1 subunit, then subcloning the subunit into the pmCherry-N1 vector. Every gene delivery method was significantly more effective in CHO cells. Although results for the A6 cell line were not statistically significant, both cell lines illustrate a trend towards more efficient gene delivery using viral-mediated methods; however the cost of viral transduction is also much higher. Our findings demonstrate the need to improve gene delivery methods for amphibian cells and underscore the necessity for a greater understanding of amphibian cell biology. PMID:21959846

  13. Characteristics of the uridine uptake system in normal and polyoma transformed hamster embryo cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemkin, J.A.

    1973-01-01

    The lability of the uridine uptake system in the normal and polyoma transformed hamster embryo fibroblast was studied. The major areas investigated were: the kinetic parameters of uridine transport, a comparison of changes in cellular ATP content by factors which modulate uridine uptake, and a comparison of the qualitative and quantitative effects of the same modulating agent on uridine transport, cell growth, and cellular ATP content. Uridine uptake into cells in vitro was examined using tritiated uridine as a tracer to measure the amount of uridine incorporated into the acid soluble and acid-insoluble fractions of the cells studied. The ATPmore » content of the cells was determined by the firefly bioluminescence method. It was found that the K/sub t/ for uridine uptake into the normal hamster embryo cell and two polyoma transformed hamster embryo cell lines was identical. However, the V/sub max/ for uridine transport was higher in both polyoma transformed cell lines. Furthermore, the K/sub t/ in both the normal and transformed cell cultured in serum-less or serum-containing media was identical, although the V/sub max/ was higher in the serum-stimulated cell in both the normal and transformed cell. Stimulation of the normal cell with adenosine produced a different K/sub t/ for uridine transport. Preliminary investigations have demonstrated that treatment of the polyoma transformed with adenosine also induces a different K/sub t/ (not shown). The K/sub i/ for phloretin inhibition in serum-less and serum-stimulated normal and polyoma transformed cells was found to be identical in each case.« less

  14. In vitro uptake of glutamate in GLAST- and GLT-1-transfected mutant CHO-K1 cells is inhibited by the ethylmercury-containing preservative thimerosal.

    PubMed

    Mutkus, Lysette; Aschner, Judy L; Syversen, Tore; Shanker, Gouri; Sonnewald, Ursula; Aschner, Michael

    2005-01-01

    Thimerosal, also known as thimersal, Merthrolate, or sodiumethyl-mercurithiosalicylate, is an organic mercurial compound that is used in a variety of commercial as well as biomedical applications. As a preservative, it is used in a number of vaccines and pharmaceutical products. Its active ingredient is ethylmercury. Both inorganic and organic mercurials are known to interfere with glutamate homeostasis. Brain glutamate is removed mainly by astrocytes from the extracellular fluid via high-affinity astroglial Na+-dependent excitatory amino acid transporters, glutamate/ aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1). The effects of thimerosal on glutamate homeostasis have yet to be determined. As a first step in this process, we examined the effects of thimerosal on the transport of [3H]-d-aspartate, a nonmetabolizable glutamate analog, in Chinese hamster ovary (CHO) cells transfected with two glutamate transporter subtypes, GLAST (EAAT1) and GLT-1 (EAAT2). Additionally, studies were undertaken to determine the effects of thimerosal on mRNA and protein levels of these transporters. The results indicate that thimerosal treatment caused significant but selective changes in both glutamate transporter mRNA and protein expression in CHO cells. Thimerosal-mediated inhibition of glutamate transport in the CHO-K1 cell line DdB7 was more pronounced in the GLT-1-transfected cells compared with the GLAST- transfected cells. These studies suggest that thimerosal accumulation in the central nervous system might contribute to dysregulation of glutamate homeostasis.

  15. Optimization of a pH-shift control strategy for producing monoclonal antibodies in Chinese hamster ovary cell cultures using a pH-dependent dynamic model.

    PubMed

    Hogiri, Tomoharu; Tamashima, Hiroshi; Nishizawa, Akitoshi; Okamoto, Masahiro

    2018-02-01

    To optimize monoclonal antibody (mAb) production in Chinese hamster ovary cell cultures, culture pH should be temporally controlled with high resolution. In this study, we propose a new pH-dependent dynamic model represented by simultaneous differential equations including a minimum of six system component, depending on pH value. All kinetic parameters in the dynamic model were estimated using an evolutionary numerical optimization (real-coded genetic algorithm) method based on experimental time-course data obtained at different pH values ranging from 6.6 to 7.2. We determined an optimal pH-shift schedule theoretically. We validated this optimal pH-shift schedule experimentally and mAb production increased by approximately 40% with this schedule. Throughout this study, it was suggested that the culture pH-shift optimization strategy using a pH-dependent dynamic model is suitable to optimize any pH-shift schedule for CHO cell lines used in mAb production projects. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Monitoring utilizations of amino acids and vitamins in culture media and Chinese hamster ovary cells by liquid chromatography tandem mass spectrometry.

    PubMed

    Qiu, Jinshu; Chan, Pik Kay; Bondarenko, Pavel V

    2016-01-05

    Monitoring amino acids and vitamins is important for understanding human health, food nutrition and the culture of mammalian cells used to produce therapeutic proteins in biotechnology. A method including ion pairing reversed-phase liquid chromatography with tandem mass spectrometry was developed and optimized to quantify 21 amino acids and 9 water-soluble vitamins in Chinese hamster ovary (CHO) cells and culture media. By optimizing the chromatographic separation, scan time, monitoring time window, and sample preparation procedure, and using isotopically labeled (13)C, (15)N and (2)H internal standards, low limits of quantitation (≤0.054 mg/L), good precision (<10%) and good accuracy (100±10%) were achieved for nearly all the 30 compounds. Applying this method to CHO cell extracts, statistically significant differences in the metabolite levels were measured between two cell lines originated from the same host, indicating differences in genetic makeup or metabolic activities and nutrient supply levels in the culture media. In a fed-batch process of manufacturing scale bioreactors, two distinguished trends for changes in amino acid concentrations were identified in response to feeding. Ten essential amino acids showed a zigzag pattern with maxima at the feeding days, and 9 non-essential amino acids displayed a smoothly changing profile as they were mainly products of cellular metabolism. Five of 9 vitamins accumulated continuously during the culture period, suggesting that they were fed in access. The method serves as an effective tool for the development and optimization of mammalian cell cultures. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) follicular signalling is conserved in the mare ovary.

    PubMed

    Hall, Sally E; Upton, Rose M O; McLaughlin, Eileen A; Sutherland, Jessie M

    2017-09-26

    The mare ovary is unique in its anatomical structure; however, the signalling pathways responsible for physiological processes, such as follicular activation, remain uncharacterised. This provided us with the impetus to explore whether signalling molecules from important folliculogenesis pathways, phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and Janus kinase/signal transducer and activator of transcription (JAK/STAT), are conserved in the mare ovary. Messenger RNA expression of six genes important in follicle development was measured using quantitative polymerase chain reaction and protein localisation of key pathway members (PI3K, AKT1, phosphatase and tensin homologue (PTEN), JAK1, STAT3 and suppressor of cytokine signalling 4 (SOCS4)) was compared in tissue from fetal and adult mare ovaries. Tissue from adult ovaries exhibited significantly increased levels of mRNA expression of PI3K, AKT1, PTEN, JAK1, STAT3 and SOCS4 compared with tissue from fetal ovaries. PI3K, AKT1, JAK1 and STAT3 demonstrated redistributed localisation, from pregranulosa cells in fetal development, to both the oocyte and granulosa cells of follicles in the adult ovary, whilst negative feedback molecules PTEN and SOCS4 were only localised to the granulosa cells in the adult ovary. These findings suggest that the PI3K/AKT and JAK/STAT signalling pathways are utilised during folliculogenesis in the mare, similarly to previously studied mammalian species, and may serve as useful biomarkers for assessment of ovary development in the horse.

  18. Notch as a Diagnostic Marker and Therapeutic Target in Human Breast Cancer

    DTIC Science & Technology

    2008-05-01

    JAG1. The soluble JAG1-ECD-FLAG was expressed in Chinese Hamster ovary K1 (CHO-K1) cells and then CHO clones were screened for their ability to... medium was collected from CHO-K1- hJAG1-ECD-Flag (clone14) grown in culture. The purification strategy to obtain hJAG1-ECD-Flag is as follows: 1) pre...expressed in Chinese hampster ovary K1 (CHO-K1) cells and then CHO clones were screened for their ability to express high levels of secreted JAG1-Flag

  19. Sweet taste transduction in hamster: sweeteners and cyclic nucleotides depolarize taste cells by reducing a K+ current.

    PubMed

    Cummings, T A; Daniels, C; Kinnamon, S C

    1996-03-01

    1. The gigaseal voltage-clamp technique was used to record responses of hamster taste receptor cells to synthetic sweeteners and cyclic nucleotides. Voltage-dependent currents and steady-state currents were monitored during bath exchanges of saccharin, two high-potency sweeteners, 8-chlorophenylthio-adenosine 3',5'-cyclic monophosphate (8cpt-cAMP), and dibutyryl-guanosine 3',5'-cyclic monophosphate (db-cGMP). 2. Of the 237 fungiform taste cells studied, only one in eight was sweet responsive. Outward currents, both voltage-dependent and resting, were reduced by all of the sweeteners tested in sweet-responsive taste cells, whereas these currents were unaffected by sweeteners in sweet-unresponsive taste cells. 3. In every sweet-responsive cell tested, 8cpt-cAMP and db-cGMP mimicked the response to the sweeteners, but neither nucleotide elicited responses in sweet-unresponsive cells. Thus there was a one-to-one correlation between sweet responsivity and cyclic nucleotide responsivity. 4. Sweet responses showed cross adaptation with cyclic nucleotide responses. This indicates that the same ion channel is modulated by sweeteners and cyclic nucleotides. 5. The sweetener- and cyclic nucleotide-blocked current had an apparent reversal potential of -50 mV, which was close to the potassium reversal potential in these experiments. In addition, there was no effect of sweeteners and cyclic nucleotides in the presence of the K+ channel blocker tetraethylammonium bromide (TEA). These data suggest that block of a resting, TEA-sensitive K+ current is the final common step leading to taste cell depolarization during sweet transduction. 6. These data, together with data from a previous study (Cummings et al. 1993), suggest that both synthetic sweeteners and sucrose utilize second-messenger pathways that block a resting K+ conductance to depolarize the taste cell membrane.

  20. Molecular identification and functional characterization of rabbit MATE1 and MATE2-K.

    PubMed

    Zhang, Xiaohong; Cherrington, Nathan J; Wright, Stephen H

    2007-07-01

    An electroneutral organic cation (OC)/proton exchanger in the apical membrane of proximal tubules mediates the final step of renal OC excretion. Two members of the multidrug and toxin extrusion family, MATE1 and MATE2-K, were recently identified in human and rodent kidney and proposed to be the molecular basis of renal OC/H(+) exchange. To take advantage of the comparative value of the large database on the kinetic and selectivity characteristics of OC/H(+) exchange that exists for rabbit kidney, we cloned rbMATE1 and rbMATE2-K. The rabbit homologs have 75% (MATE1) and 74% (MATE2-K) amino acid identity to their human counterparts (and 51% identity with each other). rbMATE1 and rbMATE2-K exhibited H(+) gradient-dependent uptake and efflux of tetraethylammonium (TEA) when expressed in Chinese hamster ovary cells. Both transporters displayed similar affinities for selected compounds [IC(50) values within 2-fold for TEA, 1-methyl-4-phenylpyridinium, and quinidine] and very different affinities for others (IC(50) values differing by 8- to 80-fold for choline and cimetidine, respectively). These results indicate that rbMATE1 and rbMATE2-K are multispecific OC/H(+) exchangers with similar, but distinct, functional characteristics. Overall, the selectivity of MATE1 and MATE2-K correlated closely with that observed in rabbit renal brush-border membrane vesicles.

  1. Wilms' Tumor 1 Overexpression in Granulosa Cells Is Associated with Polycystic Ovaries in Polycystic Ovary Syndrome Patients.

    PubMed

    Wang, Qun; Huang, Tao; Shu, Xin; Zhao, Shi-Gang; Liang, Yu; Muhammad, Tahir; Gao, Fei; Zhao, Han; Liu, Hong-Bin

    2018-01-01

    Polycystic ovary syndrome (PCOS) is a heterogeneous disorder characterized by chronic ovulatory dysfunction, hyperandrogenism, and polycystic ovaries. Wilms' tumor 1 (WT1) encoding a transcription factor involved in the differentiation of granulosa cells (GCs) regulates androgen receptor in the development of male genitalia. However, the expression pattern and possible role of WT1 in ovaries of PCOS patients are still unknown. GCs from 95 PCOS patients (PCOS group) and 62 healthy controls (control group) were isolated. The expression of WT1 in GCs was quantified using the reverse transcription-polymerase chain reaction. The correlation between WT1 expression and clinical characteristics was evaluated in PCOS patients. WT1 expression was increased in PCOS patients compared with the normal controls. The expression of WT1 was moderately correlated with testosterone (r = 0.334, p = 0.001) and luteinizing hormone (r = 0.357, p = 0.001) levels and the antral follicle counts (r = 0.337, p = 0.001). Our study provided novel insights into the relationship between hyperandrogenism and polycystic ovaries of PCOS and WT1. © 2018 S. Karger AG, Basel.

  2. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. I. Inhibition of de novo phosphatidylserine biosynthesis by exogenous phosphatidylserine and its efficient incorporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishijima, M.; Kuge, O.; Akamatsu, Y.

    1986-05-05

    The effect of phosphatidylserine exogenously added to the medium on de novo biosynthesis of phosphatidylserine was investigated in cultured Chinese hamster ovary cells. When cells were cultured for several generations in medium supplemented with phosphatidylserine and /sup 32/Pi, the incorporation of /sup 32/Pi into cellular phosphatidylserine was remarkably inhibited, the degree of inhibition being dependent upon the concentration of added phosphatidylserine. /sup 32/Pi uptake into cellular phosphatidylethanolamine was also partly reduced by the addition of exogenous phosphatidylserine, consistent with the idea that phosphatidylethanolamine is biosynthesized via decarboxylation of phosphatidylserine. However, incorporation of /sup 32/Pi into phosphatidylcholine, sphingomyelin, and phosphatidylinositol wasmore » not significantly affected. In contrast, the addition of either phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, or phosphatidylinositol to the medium did not inhibit endogenous biosynthesis of the corresponding phospholipid. Radiochemical and chemical analyses of the cellular phospholipid composition revealed that phosphatidylserine in cells grown with 80 microM phosphatidylserine was almost entirely derived from the added phospholipid. Phosphatidylserine uptake was also directly determined by using (/sup 3/H)serine-labeled phospholipid. Pulse and pulse-chase experiments with L-(U-/sup 14/C) serine showed that when cells were cultured with 80 microM phosphatidylserine, the rate of synthesis of phosphatidylserine was reduced 3-5-fold. Enzyme assaying of extracts prepared from cells grown with and without phosphatidylserine indicated that the inhibition of de novo phosphatidylserine biosynthesis by the added phosphatidylserine appeared not to be caused by a reduction in the level of the enzyme involved in the base-exchange reaction between phospholipids and serine.« less

  3. Short photoperiod-induced ovarian regression is mediated by apoptosis in Siberian hamsters (Phodopus sungorus)

    PubMed Central

    Moffatt-Blue, C S; Sury, J J; Young, Kelly A

    2009-01-01

    Siberian hamster reproduction is mediated by photoperiod-induced changes in gonadal activity. However, little is known about how photoperiod induces cellular changes in ovarian function. We hypothesized that exposing female hamsters to short (inhibitory) as opposed to long (control) photoperiods would induce an apoptosis-mediated disruption of ovarian function. Ovaries and plasma from hamsters exposed to either long (LD, 16 h light:8 h darkness) or short (SD, 8 h light:16 h darkness) days were collected during diestrus II after 3, 6, 9 and 12 weeks and processed for histology or RIA respectively. Apoptosis was assessed by in situ TUNEL and active caspase-3 protein immunolabeling. No significant differences were observed among LD hamsters for any parameter; therefore, these control data were pooled. SD exposure induced a decline in preantral follicles (P < 0.05), early antral/antral follicles (P < 0.01) and corpora lutea (P < 0.01) by week 12 as compared with LD. Terminal atretic follicles appeared by SD week 9; by week 12, these had become the predominant ovarian structures. Estradiol concentrations decreased by weeks 9 and 12 SD when compared with both LD and week-3 SD hamsters (P < 0.05); however, no changes were observed for progesterone. TUNEL-positive follicles in SD ovaries increased at week 3 and subsequently declined by week 12 as compared with LD ovaries (P < 0.01). Active capsase-3 protein immunostaining peaked at SD week 3 as compared with all other groups (P < 0.01). TUNEL and capsase-3 immunolabeling were localized to granulosa cells of late-preantral and early-antral/antral follicles. These data indicate that SD exposure rapidly induces follicular apoptosis in Siberian hamsters, which ultimately disrupts both estradiol secretion and folliculogenesis, resulting in the seasonal loss of ovarian function. PMID:16595728

  4. Cytotoxic and mutagenic properties of shale oil byproducts. II. Comparison of mutagenic effects at five genetic markers induced by retort process water plus near ultraviolet light in Chinese hamster ovary cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, D.J.C.; Strniste, G.F.

    1982-01-01

    A Chinese hamster ovary (CHO) cell line heterozygous at the adenine phosphoribosyl transferase (APRT) locus was used for selection of induced mutants resistant to 8-azaadenine (8AA), 6-thioguanine (6TG), ouabain (OUA), emetine (EMT) and diphtheria toxin (DIP). The expression times necessary for optimizing the number of mutants recovered at the different loci have been determined using the known direct acting mutagen, far ultraviolet light (FUV), and a complex aqueous organic mixture (shale oil process water) activated with near ultraviolet light (NUV). The results indicate that optimal expression times following treatment with either mutagen was between 2 and 8 days. For CHOmore » cells treated with shale oil process water and subsequently exposed to NUV a linear dose response for mutant induction was observed for all five genetic loci. At 10% surviving fraction of cells, between 35- and 130-fold increases above backgound mutation frequencies were observed for the various markers examined.« less

  5. Xenogeneic spermatogenesis following transplantation of hamster germ cells to mouse testes.

    PubMed

    Ogawa, T; Dobrinski, I; Avarbock, M R; Brinster, R L

    1999-02-01

    It was recently demonstrated that rat spermatogenesis can occur in the seminiferous tubules of an immunodeficient recipient mouse after transplantation of testis cells from a donor rat. In the present study, hamster donor testis cells were transplanted to mice to determine whether xenogeneic spermatogenesis would result. The hamster diverged at least 16 million years ago from the mouse and produces spermatozoa that are larger than, and have a shape distinctly different from, those of the mouse. In four separate experiments with a total of 13 recipient mice, hamster spermatogenesis was identified in the testes of each mouse. Approximately 6% of the tubules examined demonstrated xenogeneic spermatogenesis. In addition, cryopreserved hamster testis cells generated spermatogenesis in recipients. However, abnormalities were noted in hamster spermatids and acrosomes in seminiferous tubules of recipient mice. Hamster spermatozoa were also found in the epididymis of recipient animals, but these spermatozoa generally lacked acrosomes, and heads and tails were separated. Thus, defects in spermiogenesis occur in hamster spermatogenesis in the mouse, which may reflect a limited ability of endogenous mouse Sertoli cells to support fully the larger and evolutionarily distant hamster germ cell. The generation of spermatogenesis from frozen hamster cells now adds this species to the mouse and rat, in which spermatogonial stem cells also can be cryopreserved. This finding has immediate application to valuable animals of many species, because the cells could be stored until suitable recipients are identified or culture techniques devised to expand the stem cell population.

  6. Internalization of Rat FSH and LH/CG Receptors by rec-eCG in CHO-K1 Cells.

    PubMed

    Park, Jong-Ju; Seong, Hun-Ki; Kim, Jeong-Soo; Munkhzaya, Byambaragchaa; Kang, Myung-Hwa; Min, Kwan-Sik

    2017-06-01

    Equine chorionic gonadotropin (eCG) is a unique molecule that elicits the response characteristics of both follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in other species. Previous studies from this laboratory had demonstrated that recombinant eCG (rec-eCG) from Chinese hamster ovary (CHO-K1) cells exhibited both FSH- and LH-like activity in rat granulosa and Leydig cells. In this study, we analyzed receptor internalization through rec-eCGs, wild type eCG (eCGβ/α) and mutant eCG (eCGβ/αΔ56) with an N-linked oligosaccharide at Asn 56 of the α-subunit. Both the rec-eCGs were obtained from CHO-K1 cells. The agonist activation of receptors was analyzed by measuring stimulation time and concentrations of rec-eCGs. Internalization values in the stably selected rat follicle-stimulating hormone receptor (rFSHR) and rat luteinizing/chorionic gonadotropin receptor (rLH/CGR) were highest at 50 min after stimulation with 10 ng of rec-eCGβ/α. The dose-dependent response was highest when 10 ng of rec-eCGβ/α was used. The deglycosylated eCGβ/αΔ56 mutant did not enhance the agonist-stimulated internalization. We concluded that the state of activation of rFSHR and rLH/CGR could be modulated through agonist-stimulated internalization. Our results suggested that the eLH/CGRs are mostly internalized within 60 min by agonist-stimulation by rec-eCG. We also suggested that the lack of responsiveness of the deglycosylated eCGβ/ αΔ56 was likely because the site of glycosylation played a pivotal role in agonist-stimulated internalization in cells expressing rFSHR and rLH/CGR.

  7. Comparison of the functional potencies of ropinirole and other dopamine receptor agonists at human D2(long), D3 and D4.4 receptors expressed in Chinese hamster ovary cells

    PubMed Central

    Coldwell, Martyn C; Boyfield, Izzy; Brown, Tony; Hagan, Jim J; Middlemiss, Derek N

    1999-01-01

    The aim of the present study was to characterize functional responses to ropinirole, its major metabolites in man (SKF-104557 (4-[2-(propylamino)ethyl]-2-(3H) indolone), SKF-97930 (4-carboxy-2-(3H) indolone)) and other dopamine receptor agonists at human dopamine D2(long) (hD2), D3 (hD3) and D4.4 (hD4) receptors separately expressed in Chinese hamster ovary cells using microphysiometry.All the receptor agonists tested (ropinirole, SKF-104557, SKF-97930, bromocriptine, lisuride, pergolide, pramipexole, talipexole, dopamine) increased extracellular acidification rate in Chinese hamster ovary clones expressing the human D2, D3 or D4 receptor. The pEC50s of ropinirole at hD2, hD3 and hD4 receptors were 7.4, 8.4 and 6.8, respectively. Ropinirole is therefore at least 10 fold selective for the human dopamine D3 receptor over the other D2 receptor family members.At the hD2 and hD3 dopamine receptors all the compounds tested were full agonists as compared to quinpirole. Talipexole and the ropinirole metabolite, SKF-104557, were partial agonists at the hD4 receptor.Bromocriptine and lisuride had a slow onset of agonist action which precluded determination of EC50s.The rank order of agonist potencies was dissimilar to the rank order of radioligand binding affinities at each of the dopamine receptor subtypes. Functional selectivities of the dopamine receptor agonists, as measured in the microphysiometer, were less than radioligand binding selectivities.The results show that ropinirole is a full agonist at human D2, D3 and D4 dopamine receptors. SKF-104557 the major human metabolite of ropinirole, had similar radioligand binding affinities to, but lower functional potencies than, the parent compound. PMID:10455328

  8. In vivo SPECT imaging with 111In-DOTA-c(RGDfK) to detect early pancreatic cancer in a hamster pancreatic carcinogenesis model.

    PubMed

    Yoshimoto, Mitsuyoshi; Hayakawa, Takuya; Mutoh, Michihiro; Imai, Toshio; Tsuda, Keisuke; Kimura, Sadaaki; Umeda, Izumi O; Fujii, Hirofumi; Wakabayashi, Keiji

    2012-05-01

    Early detection of pancreatic cancer is key to overcoming its poor prognosis. α(v)β(3)-integrin is often overexpressed in pancreatic tumor cells, whereas it is scarcely expressed in normal pancreatic cells. In this study, we investigated the usefulness of SPECT imaging with (111)In-1,4,7,10-tetraazacylododecane-N,N',N″,N'''-tetraacetic acid-cyclo-(Arg-Gly-Asp-d-Phe-Lys) [(111)In-DOTA-c(RGDfK)], an imaging probe of α(v)β(3)-integrin, for the early detection of pancreatic cancer in a hamster pancreatic carcinogenesis model. Hamsters were subcutaneously injected with the pancreatic duct carcinogen N-nitrosobis(2-oxopropyl)amine to induce pancreatic cancer. N-nitrosobis(2-oxopropyl)amine-treated hamsters underwent in vivo SPECT with (111)In-DOTA-c(RGDfK). After imaging, the tumor-to-normal pancreatic tissue radioactivity ratios in excised pancreatic samples were measured with autoradiography (ARG) and compared with the immunopathologic findings for α(v)β(3)-integrin. In a mouse model in which inflammation was induced with turpentine, the uptake of (111)In-DOTA-c(RGDfK) in inflammatory regions was evaluated with ARG and compared with that of (18)F-FDG. (111)In-DOTA-c(RGDfK) was clearly visualized in pancreatic cancer lesions as small as 3 mm in diameter. ARG analysis revealed high tumor-to-normal pancreatic tissue radioactivity ratios (4.6 ± 1.0 [mean ± SD] in adenocarcinoma and 3.3 ± 1.4 in atypical hyperplasia). The uptake of (111)In-DOTA-c(RGDfK) strongly correlated with α(v)β(3)-integrin expression. In the inflammatory model, inflammation-to-muscle ratios for (18)F-FDG and (111)In-DOTA-c(RGDfK) were 8.37 ± 4.37 and 1.98 ± 0.60, respectively. These results imply that (111)In-DOTA-c(RGDfK) has a lower rate of false-positive tumor detection than (18)F-FDG. Our findings suggest that SPECT with (111)In-DOTA-c(RGDfK) has great potential for the early and accurate detection of pancreatic cancer.

  9. Mesothelial cell proliferation induced by intrapleural instillation of man-made fibers in rats and hamsters.

    PubMed

    Rutten, A A; Bermudez, E; Mangum, J B; Wong, B A; Moss, O R; Everitt, J I

    1994-07-01

    Long-term inhalation exposure to a biopersistent man-made ceramic fiber (RCF 1) results in a high incidence of pleural mesotheliomas in Syrian golden hamsters but not in identically exposed rats. To understand better the mechanisms involved in the intraspecies pathobiology of fiber-exposed mesothelium, the ability of the two different man-made fibers to induce cell proliferation in hamster and rat pleural mesothelial cells was investigated. Three dose levels of either glass fibers (MMVF 10) or ceramic fibers (RCF 1) were instilled intrapleurally into male Fischer 344 rats and male Syrian Golden hamsters. Rats and hamsters were exposed to approximately equal numbers of long thin fibers per kilogram of body weight using a single intrapleural instillation. Bromodeoxyuridine (BrdU) was administered via an implanted osmotic pump, and mesothelial cell proliferation was assessed at 7 and 28 days postinstillation (PI) using immunocytochemical visualization of labeled S-phase cells. Both rats and hamsters exhibited dose-dependent increases in proliferation of pleural mesothelial cells following exposure to both fiber types. Interspecies differences in mesothelial cell proliferation were noted for fiber type and pleural site. At 28 days PI, RCF-induced mesothelial cell proliferation was found to be more pronounced in hamsters than in rats in the caudal visceral pleural. Comparing both fibers either by equal mass or by equal fiber numbers, mesothelial cell proliferation in RCF 1-treated animals was higher than in animals exposed to MMVF 10, especially in hamsters, and may be a factor in the difference in mesothelioma induced by the two fibers. The higher sustained (28 day) mesothelial cell proliferation in the visceral pleural of hamsters exposed to RCF may contribute to the species-specific differences in mesothelioma incidence found in long-term rodent inhalation studies.

  10. Bioprocess development for the production of mouse-human chimeric anti-epidermal growth factor receptor vIII antibody C12 by suspension culture of recombinant Chinese hamster ovary cells.

    PubMed

    Hu, Suwen; Deng, Lei; Wang, Huamao; Zhuang, Yingping; Chu, Ju; Zhang, Siliang; Li, Zhonghai; Guo, Meijin

    2011-05-01

    The mouse-human chimeric anti-epidermal growth factor receptor vIII (EGFRvIII) antibody C12 is a promising candidate for the diagnosis of hepatocellular carcinoma (HCC). In this study, 3 processes were successfully developed to produce C12 by cultivation of recombinant Chinese hamster ovary (CHO-DG44) cells in serum-free medium. The effect of inoculum density was evaluated in batch cultures of shaker flasks to obtain the optimal inoculum density of 5 × 10(5) cells/mL. Then, the basic metabolic characteristics of CHO-C12 cells were studied in stirred bioreactor batch cultures. The results showed that the limiting concentrations of glucose and glutamine were 6 and 1 mM, respectively. The culture process consumed significant amounts of aspartate, glutamate, asparagine, serine, isoleucine, leucine, and lysine. Aspartate, glutamate, asparagine, and serine were particularly exhausted in the early growth stage, thus limiting cell growth and antibody synthesis. Based on these findings, fed-batch and perfusion processes in the bioreactor were successfully developed with a balanced amino acid feed strategy. Fed-batch and especially perfusion culture effectively maintained high cell viability to prolong the culture process. Furthermore, perfusion cultures maximized the efficiency of nutrient utilization; the mean yield coefficient of antibody to consumed glucose was 44.72 mg/g and the mean yield coefficient of glutamine to antibody was 721.40 mg/g. Finally, in small-scale bioreactor culture, the highest total amount of C12 antibody (1,854 mg) was realized in perfusion cultures. Therefore, perfusion culture appears to be the optimal process for small-scale production of C12 antibody by rCHO-C12 cells.

  11. Intraovarian expression of GnRH-1 and gonadotropin mRNA and protein levels in Siberian hamsters during the estrus cycle and photoperiod induced regression/recrudescence

    PubMed Central

    Shahed, Asha; Young, Kelly A.

    2010-01-01

    The hypothalamic-pituitary-gonadal (HPG) axis is the key reproductive regulator in vertebrates. While gonadotropin releasing hormone (GnRH), follicle stimulating (FSH), and luteinizing (LH) hormones are primarily produced in the hypothalamus and pituitary, they can be synthesized in the gonads, suggesting an intraovarian GnRH-gonadotropin axis. Because these hormones are critical for follicle maturation and steroidogenesis, we hypothesized that this intraovarian axis may be important in photoperiod-induced ovarian regression/recrudescence in seasonal breeders. Thus, we investigated GnRH-1 and gonadotropin mRNA and protein expression in Siberian hamster ovaries during (1) the estrous cycle; where ovaries from cycling long day hamsters (LD;16L:8D) were collected at proestrus, estrus, diestrus I, and diestrus II and (2) during photoperiod induced regression/ recrudescence; where ovaries were collected from hamsters exposed to 14wks of LD, short days (SD;8L:16D), or 8wks post-transfer to LD after 14wks SD (PT). GnRH-1, LHβ, FSHβ, and common α subunit mRNA expression was observed in cycling ovaries. GnRH-1 expression peaked at diestrus I compared to other stages (p<0.05). FSHβ and LHβ mRNA levels peaked at proestrus and diestrus I (p<0.05), with no change in the α subunit across the cycle (p>0.05). SD exposure decreased ovarian mass and plasma estradiol concentrations (p<0.05) and increased GnRH-1, LHβ, FSHβ, and α subunit mRNA expression as compared to LD and, except for LH, compared to PT (p<0.05). GnRH and gonadotropin protein was also dynamically expressed across the estrous cycle and photoperiod exposure. The presence of cycling intraovarian GnRH-1 and gonadotropin mRNA suggests that these hormones may be locally involved in ovarian maintenance during SD regression and/or could potentially serve to prime ovaries for rapid recrudescence. PMID:20955709

  12. Very High Density of Chinese Hamster Ovary Cells in Perfusion by Alternating Tangential Flow or Tangential Flow Filtration in WAVE Bioreactor™—Part II: Applications for Antibody Production and Cryopreservation

    PubMed Central

    Clincke, Marie-Françoise; Mölleryd, Carin; Samani, Puneeth K; Lindskog, Eva; Fäldt, Eric; Walsh, Kieron; Chotteau, Véronique

    2013-01-01

    A high cell density perfusion process of monoclonal antibody (MAb) producing Chinese hamster ovary (CHO) cells was developed in disposable WAVE Bioreactor™ using external hollow fiber (HF) filter as cell separation device. Tangential flow filtration (TFF) and alternating tangential flow (ATF) systems were compared and process applications of high cell density perfusion were studied here: MAb production and cryopreservation. Operations by perfusion using microfiltration (MF) or ultrafiltration (UF) with ATF or TFF and by fed-batch were compared. Cell densities higher than 108 cells/mL were obtained using UF TFF or UF ATF. The cells produced comparable amounts of MAb in perfusion by ATF or TFF, MF or UF. MAbs were partially retained by the MF using ATF or TFF but more severely using TFF. Consequently, MAbs were lost when cell broth was discarded from the bioreactor in the daily bleeds. The MAb cell-specific productivity was comparable at cell densities up to 1.3 × 108 cells/mL in perfusion and was comparable or lower in fed-batch. After 12 days, six times more MAbs were harvested using perfusion by ATF or TFF with MF or UF, compared to fed-batch and 28× more in a 1-month perfusion at 108 cells/mL density. Pumping at a recirculation rate up to 2.75 L/min did not damage the cells with the present TFF settings with HF short circuited. Cell cryopreservation at 0.5 × 108 and 108 cells/mL was performed using cells from a perfusion run at 108 cells/mL density. Cell resuscitation was very successful, showing that this system was a reliable process for cell bank manufacturing. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:768–777, 2013 PMID:23436783

  13. EMODIN DOWNREGULATES CELL PROLIFERATION MARKERS DURING DMBA INDUCED ORAL CARCINOGENESIS IN GOLDEN SYRIAN HAMSTERS.

    PubMed

    Manimaran, Asokan; Buddhan, Rajamanickam; Manoharan, Shanmugam

    2017-01-01

    Cell-cycle disruption is the major characteristic features of neoplastic transformation and the status of cell-cycle regulators can thus be utilized to assess the prognostic significance in patients with cancer. The PCNA, cyclin D1, CDK4, CDK6 and survivin expression in the buccal mucosa was utilized to evaluate the Emodin efficacy on abnormal cell proliferation during 7,12-dimethylbenz(a)anthracene (DMBA) induced oral carcinogenesis in golden Syrian hamsters. Topical application of DMBA, three times a week for 14 weeks, on the hamsters' buccal pouches developed well differentiated squamous cell carcinoma. Cyclin D1 and PCNA over-expression and up-regulation of CDK4, CDK6 and survivin were noticed in the buccal mucosa of hamsters treated with DMBA alone. Emodin administration (50mg/kg b.w) orally to hamsters treated with DMBA down-regulated the expression of cell proliferation markers in the buccal mucosa. The anti-cell proliferative role of Emodin is owing to its modulating efficacy on cell-cycle markers towards the tumor suppression during DMBA induced oral carcinogenesis.

  14. Augmenting Chinese hamster genome assembly by identifying regions of high confidence.

    PubMed

    Vishwanathan, Nandita; Bandyopadhyay, Arpan A; Fu, Hsu-Yuan; Sharma, Mohit; Johnson, Kathryn C; Mudge, Joann; Ramaraj, Thiruvarangan; Onsongo, Getiria; Silverstein, Kevin A T; Jacob, Nitya M; Le, Huong; Karypis, George; Hu, Wei-Shou

    2016-09-01

    Chinese hamster Ovary (CHO) cell lines are the dominant industrial workhorses for therapeutic recombinant protein production. The availability of genome sequence of Chinese hamster and CHO cells will spur further genome and RNA sequencing of producing cell lines. However, the mammalian genomes assembled using shot-gun sequencing data still contain regions of uncertain quality due to assembly errors. Identifying high confidence regions in the assembled genome will facilitate its use for cell engineering and genome engineering. We assembled two independent drafts of Chinese hamster genome by de novo assembly from shotgun sequencing reads and by re-scaffolding and gap-filling the draft genome from NCBI for improved scaffold lengths and gap fractions. We then used the two independent assemblies to identify high confidence regions using two different approaches. First, the two independent assemblies were compared at the sequence level to identify their consensus regions as "high confidence regions" which accounts for at least 78 % of the assembled genome. Further, a genome wide comparison of the Chinese hamster scaffolds with mouse chromosomes revealed scaffolds with large blocks of collinearity, which were also compiled as high-quality scaffolds. Genome scale collinearity was complemented with EST based synteny which also revealed conserved gene order compared to mouse. As cell line sequencing becomes more commonly practiced, the approaches reported here are useful for assessing the quality of assembly and potentially facilitate the engineering of cell lines. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Southern Analysis of Genomic Alterations in Gamma-Ray-Induced Aprt- Hamster Cell Mutants

    PubMed Central

    Grosovsky, Andrew J.; Drobetsky, Elliot A.; deJong, Pieter J.; Glickman, Barry W.

    1986-01-01

    The role of genomic alterations in mutagenesis induced by ionizing radiation has been the subject of considerable speculation. By Southern blotting analysis we show here that 9 of 55 (approximately 1/6) gamma-ray-induced mutants at the adenine phosphoribosyl transferase (aprt) locus of Chinese hamster ovary (CHO) cells have a detectable genomic rearrangement. These fall into two classes: intragenic deletions and chromosomal rearrangements. In contrast, no major genomic alterations were detected among 67 spontaneous mutants, although two restriction site loss events were observed. Three gamma-ray-induced mutants were found to be intragenic deletions; all may have identical break-points. The remaining six gamma-ray-induced mutants demonstrating a genomic alteration appear to be the result of chromosomal rearrangements, possibly translocation or inversion events. None of the remaining gamma-ray-induced mutants showed any observable alteration in blotting pattern indicating a substantial role for point mutation in gamma-ray-induced mutagenesis at the aprt locus. PMID:3013724

  16. High glucose enhances cAMP level and extracellular signal-regulated kinase phosphorylation in Chinese hamster ovary cell: Usage of Br-cAMP in foreign protein β-galactosidase expression.

    PubMed

    Lin, Hsiao-Hsien; Lee, Tsung-Yih; Liu, Ting-Wei; Tseng, Ching-Ping

    2017-07-01

    Glucose is a carbon source for Chinese hamster ovary (CHO) cell growth, while low growth rate is considered to enhance the production of recombinant proteins. The present study reveals that glucose concentrations higher than 1 g/L reduce the growth rate and substantially increase in cAMP (∼300%) at a high glucose concentration (10 g/L). High glucose also enhances the phosphorylation of extracellular signal-regulated kinase (ERK) and p27 kip by Western blot analysis. To determine whether the phosphorylation of ERK is involved in the mechanism, a cyclic-AMP dependent protein kinase A (PKA) inhibitor (H-8) or MEK (MAPKK) inhibitor (PD98059) was added to block ERK phosphorylation. We show that both the high glucose-induced ERK phosphorylation and growth rate return to baseline levels. These results suggest that the cAMP/PKA and MAP signaling pathways are involved in the abovementioned mechanism. Interestingly, the direct addition of 8-bromo-cAMP (Br-cAMP), a membrane-permeable cAMP analog, can mimic the similar effects produced by high glucose. Subsequently Br-cAMP could induce β-galactosidase (β-Gal) recombinant protein expression by 1.6-fold. Furthermore, Br-cAMP can additionally enhance the β-Gal production (from 2.8- to 4.5-fold) when CHO cells were stimulated with glycerol, thymidine, dimethyl sulfoxide, pentanoic acid, or sodium butyrate. Thus, Br-cAMP may be used as an alternative agent in promoting foreign protein expression for CHO cells. Copyright © 2017. Published by Elsevier B.V.

  17. Etoposide damages female germ cells in the developing ovary.

    PubMed

    Stefansdottir, Agnes; Johnston, Zoe C; Powles-Glover, Nicola; Anderson, Richard A; Adams, Ian R; Spears, Norah

    2016-08-11

    As with many anti-cancer drugs, the topoisomerase II inhibitor etoposide is considered safe for administration to women in the second and third trimesters of pregnancy, but assessment of effects on the developing fetus have been limited. The purpose of this research was to examine the effect of etoposide on germ cells in the developing ovary. Mouse ovary tissue culture was used as the experimental model, thus allowing us to examine effects of etoposide on all stages of germ cell development in the same way, in vitro. Fetal ovaries from embryonic day 13.5 CD1 mice or neonatal ovaries from postnatal day 0 CD1 mice were cultured with 50-150 ng ml(-1) or 50-200 ng ml(-1) etoposide respectively, concentrations that are low relative to that in patient serum. When fetal ovaries were treated prior to follicle formation, etoposide resulted in dose-dependent damage, with 150 ng ml(-1) inducing a near-complete absence of healthy follicles. In contrast, treatment of neonatal ovaries, after follicle formation, had no effect on follicle numbers and only a minor effect on follicle health, even at 200 ng ml(-1). The sensitivity of female germ cells to etoposide coincided with topoisomerase IIα expression: in the developing ovary of both mouse and human, topoisomerase IIα was expressed in germ cells only prior to follicle formation. Exposure of pre-follicular ovaries, in which topoisomerase IIα expression was germ cell-specific, resulted in a near-complete elimination of germ cells prior to follicle formation, with the remaining germ cells going on to form unhealthy follicles by the end of culture. In contrast, exposure to follicle-enclosed oocytes, which no longer expressed topoisomerase IIα in the germ cells, had no effect on total follicle numbers or health, the only effect seen specific to transitional follicles. Results indicate the potential for adverse effects on fetal ovarian development if etoposide is administered to pregnant women when germ cells are not yet

  18. 5-Hydroxytryptamine1A receptor/Gibetagamma stimulates mitogen-activated protein kinase via NAD(P)H oxidase and reactive oxygen species upstream of src in chinese hamster ovary fibroblasts.

    PubMed Central

    Mukhin, Y V; Garnovskaya, M N; Collinsworth, G; Grewal, J S; Pendergrass, D; Nagai, T; Pinckney, S; Greene, E L; Raymond, J R

    2000-01-01

    The hypothesis of this work is that the 'serotonin' or 5-hydroxytryptamine (5-HT)(1A) receptor, which activates the extracellular signal-regulated kinase (ERK) through a G(i)betagamma-mediated pathway, does so through the intermediate actions of reactive oxygen species (ROS). Five criteria were shown to support a key role for ROS in the activation of ERK by the 5-HT(1A) receptor. (1) Antioxidants inhibit activation of ERK by 5-HT. (2) Application of cysteine-reactive oxidant molecules activates ERK. (3) The 5-HT(1A) receptor alters cellular redox properties, and generates both superoxide and hydrogen peroxide. (4) A specific ROS-producing enzyme [NAD(P)H oxidase] is involved in the activation of ERK. (5) There is specificity both in the effects of various chemical oxidizers, and in the putative location of the ROS in the ERK activation pathway. We propose that NAD(P)H oxidase is located in the ERK activation pathway stimulated by the transfected 5-HT(1A) receptor in Chinese hamster ovary (CHO) cells downstream of G(i)betagamma subunits and upstream of or at the level of the non-receptor tyrosine kinase, Src. Moreover, these experiments provide confirmation that the transfected human 5-HT(1A) receptor induces the production of ROS (superoxide and hydrogen peroxide) in CHO cells, and support the possibility that an NAD(P)H oxidase-like enzyme might be involved in the 5-HT-mediated generation of both superoxide and hydrogen peroxide. PMID:10727402

  19. Pharmacological characterization of extracellular acidification rate responses in human D2(long), D3 and D4.4 receptors expressed in Chinese hamster ovary cells

    PubMed Central

    Coldwell, M C; Boyfield, I; Brown, A M; Stemp, G; Middlemiss, D N

    1999-01-01

    This study characterized pharmacologically the functional responses to agonists at human dopamine D2(long) (hD2), D3 (hD3) and D4.4 (hD4) zreceptors separately expressed in cloned cells using the cytosensor microphysiometer. Dopaminergic receptor agonists caused increases in extracellular acidification rate in adherent Chinese hamster ovary (CHO) clones expressing hD2, hD3 or hD4 receptors. Acidification rate responses to agonists in other cell lines expressing these receptors were smaller than those in adherent CHO cells. The time courses and maximum increases in acidification rate of the agonist responses in adherent CHO cells were different between the three dopamine receptor clones. Responses were blocked by pretreatment of cells with pertussis toxin or amiloride analogues. Most agonists had full intrinsic activity at each of the dopamine receptor subtypes, as compared to quinpirole, however both enantiomers of UH-232 and (−)3-PPP were partial agonists in this assay system. The functional potency of full agonists at each of the three receptors expressed in CHO cells was either higher than, or similar to, the apparent inhibition constants (Ki) determined in [125I]-iodosulpride competition binding studies. Functional selectivities of the agonists were less than radioligand binding selectivities. The rank orders of agonist potencies and selectivities were similar, but not identical, to the rank orders of radioligand binding affinities and selectivities. The dopamine receptor antagonists, iodosulpride and clozapine, had no effect on basal acidification rates but inhibited acidification responses in CHO cells to quinpirole in an apparently competitive manner. Antagonist potencies closely matched their radioligand binding affinities in these cells. PMID:10455259

  20. h5-HT(1B) receptor-mediated constitutive Galphai3-protein activation in stably transfected Chinese hamster ovary cells: an antibody capture assay reveals protean efficacy of 5-HT.

    PubMed

    Newman-Tancredi, Adrian; Cussac, Didier; Marini, Laetitia; Touzard, Manuelle; Millan, Mark J

    2003-03-01

    1. Serotonin 5-HT(1B) receptors couple to G-proteins of the Gi/o family. However, their activation of specific G-protein subtypes is poorly characterised. Using an innovative antibody capture/guanosine-5'-0-(3-[(35)S]thio)-triphosphate ([(35)S]GTPgammaS) binding strategy, we characterised Galpha(i3) subunit activation by h5-HT(1B) receptors stably expressed in Chinese hamster ovary (CHO) cells. 2. The agonists, 5-HT, alniditan and BMS181,101, stimulated Galpha(i3), whereas methiothepin and SB224,289 behaved as inverse agonists. The selective 5-HT(1B) receptor ligand, S18127, modestly stimulated Galpha(i3) and reversed the actions of both 5-HT and methiothepin. S18127 (1 micro M) also produced parallel, dextral shifts of the 5-HT and methiothepin isotherms. 3. Isotopic dilution experiments ([(35)S]GTPgammaS versus GTPgammaS) revealed high-affinity [(35)S]GTPgammaS binding to Galpha(i3) subunits in the absence of receptor ligands indicating constitutive activity. High-affinity [(35)S]GTPgammaS binding was increased 2.8-fold by 5-HT with an increase in the affinity of GTPgammaS for Galpha(i3) subunits. In contrast, methiothepin halved the number of high-affinity binding sites and decreased their affinity. 4. h5-HT(1B) receptor-mediated Galpha(i3) subunit activation was dependent on the concentration of NaCl. At 300 mM, 5-HT stimulated [(35)S]GTPgammaS binding, basal Galpha(i3) activation was low and methiothepin was inactive. In contrast, at 10 mM NaCl, basal activity was enhanced and the inverse agonist activity of methiothepin was accentuated. Under these conditions, 5-HT decreased Galpha(i3) activation. 5. In conclusion, at h5-HT(1B) receptors expressed in CHO cells: (i) inverse agonist induced inhibition of Galpha(i3), and its reversal by S18127, reveals constitutive activation of this Galpha subunit; (ii) constitutive Galpha(i3) activation can be quantified by isotopic dilution [(35)S]GTPgammaS binding and (iii) decreasing NaCl concentrations enhances Galpha(i3

  1. A comparative genomic hybridization approach to study gene copy number variations among Chinese hamster cell lines.

    PubMed

    Vishwanathan, Nandita; Bandyopadhyay, Arpan; Fu, Hsu-Yuan; Johnson, Kathryn C; Springer, Nathan M; Hu, Wei-Shou

    2017-08-01

    Chinese Hamster Ovary (CHO) cells are aneuploid in nature. The genome of recombinant protein producing CHO cell lines continuously undergoes changes in its structure and organization. We analyzed nine cell lines, including parental cell lines, using a comparative genomic hybridization (CGH) array focused on gene-containing regions. The comparison of CGH with copy-number estimates from sequencing data showed good correlation. Hierarchical clustering of the gene copy number variation data from CGH data revealed the lineage relationships between the cell lines. On analyzing the clones of a clonal population, some regions with altered genomic copy number status were identified indicating genomic changes during passaging. A CGH array is thus an effective tool in quantifying genomic alterations in industrial cell lines and can provide insights into the changes in the genomic structure during cell line derivation and long term culture. Biotechnol. Bioeng. 2017;114: 1903-1908. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Alpha 1-protease inhibitor moderates human neutrophil elastase-induced emphysema and secretory cell metaplasia in hamsters.

    PubMed

    Stone, P J; Lucey, E C; Virca, G D; Christensen, T G; Breuer, R; Snider, G L

    1990-06-01

    A study was undertaken to determine whether emphysema and airway secretory cell metaplasia, induced in hamsters by intratracheal treatment with human neutrophil elastase (HNE), could be moderated by pretreatment with human alpha 1-protease inhibitor (API). API (4.9 mg) was given intratracheally to hamsters 1 h before 0.3 mg HNE. Eight weeks later, lung volumes and pressure-volume relationships were measured in the anaesthetized animals. Mean linear intercepts and secretory cell indices were measured in lung sections. API given 1 h before HNE moderated the development of bronchial secretory cell metaplasia. The severity of emphysema was reduced by 75%. Clearance studies indicated that 80% of the functional activity of instilled API could be lavaged from the lungs after 1 h, indicating a 4 h half-life in the lavageable compartment of the lungs. We calculate that for 50% protection from emphysema the molar ratio of lavageable API to HNE at the time of HNE instillation was 4.8 as compared with 0.78 for 50% inhibition of elastolytic activity in vitro, indicating that API is only 16% as efficient in vivo as compared with its in vitro HNE inhibitory effectiveness. Nevertheless, we conclude that human API given intratracheally is efficacious against HNE-induced emphysema and secretory cell metaplasia.

  3. h5-HT1B receptor-mediated constitutive Gαi3-protein activation in stably transfected Chinese hamster ovary cells: an antibody capture assay reveals protean efficacy of 5-HT

    PubMed Central

    Newman-Tancredi, Adrian; Cussac, Didier; Marini, Laetitia; Touzard, Manuelle; Millan, Mark J

    2003-01-01

    Serotonin 5-HT1B receptors couple to G-proteins of the Gi/o family. However, their activation of specific G-protein subtypes is poorly characterised. Using an innovative antibody capture/guanosine-5′-0-(3-[35S]thio)-triphosphate ([35S]GTPγS) binding strategy, we characterised Gαi3 subunit activation by h5-HT1B receptors stably expressed in Chinese hamster ovary (CHO) cells. The agonists, 5-HT, alniditan and BMS181,101, stimulated Gαi3, whereas methiothepin and SB224,289 behaved as inverse agonists. The selective 5-HT1B receptor ligand, S18127, modestly stimulated Gαi3 and reversed the actions of both 5-HT and methiothepin. S18127 (1 μM) also produced parallel, dextral shifts of the 5-HT and methiothepin isotherms. Isotopic dilution experiments ([35S]GTPγS versus GTPγS) revealed high-affinity [35S]GTPγS binding to Gαi3 subunits in the absence of receptor ligands indicating constitutive activity. High-affinity [35S]GTPγS binding was increased 2.8-fold by 5-HT with an increase in the affinity of GTPγS for Gαi3 subunits. In contrast, methiothepin halved the number of high-affinity binding sites and decreased their affinity. h5-HT1B receptor-mediated Gαi3 subunit activation was dependent on the concentration of NaCl. At 300 mM, 5-HT stimulated [35S]GTPγS binding, basal Gαi3 activation was low and methiothepin was inactive. In contrast, at 10 mM NaCl, basal activity was enhanced and the inverse agonist activity of methiothepin was accentuated. Under these conditions, 5-HT decreased Gαi3 activation. In conclusion, at h5-HT1B receptors expressed in CHO cells: (i) inverse agonist induced inhibition of Gαi3, and its reversal by S18127, reveals constitutive activation of this Gα subunit; (ii) constitutive Gαi3 activation can be quantified by isotopic dilution [35S]GTPγS binding and (iii) decreasing NaCl concentrations enhances Gαi3 activation and leads to protean agonist properties of 5-HT: that is a switch to inhibition of Gαi3. PMID:12684263

  4. Inhibition of proteinase 3 (PR3) by suramin and fetal calf serum (FCS): effect of PR3 and suramin on Chinese hamster ovary cells (CHO-cells).

    PubMed

    Karam, Gholamreza Asadi; Rasaee, Mohammad Javad; Mahmoodi, Mehdi; Khaksari, Mohammad

    2005-07-01

    Proteinase 3 (PR3) is a lysosomal protease that is stored in azurophilic granules neutrophilic granulocytes and monocytes. A number of inhibitors for this proteinase are reported. Comprehensive studies on the inhibitory effect of suramin and heat treated fetal calf serum (deltaFCS) on PR3 have not been reported. It has been reported that PR3 is able to destroy the cytoskeletal integral proteins, but we have not find any reports which showed the effect of this protease on Chinese hamster ovary cells (CHO-cells) in culture medium. Suramin has proven to be useful as an antitumor drug, but there was not any report on the effect of suramin on CHO-cells. The effects of various concentrations of deltaFCS (from 0.5% up to 10%) and suramin (from 0.8 microM up to 100 microM) on PR3 and different concentrations of suramin (from 0.8 microM up to 1000 microM) on CHO-cells were investigated. Data analysis were performed by, Kolmogorov-Smirnov test, ANOVA test and Tukey HSD post tests. Results showed that deltaFCS and suramin have an inhibitory effect on PR3 and these effects increased with increasing the concentration significantly (p < 0.01). PR3 with the concentration of 2.2 Unit/ml has no effect on CHO-cells. Although suramin with the concentration of less than 125 microM cell growth retarded for only a few hours, but with the concentration of 125 to 250 microM inhibit the cell growth for a week, and after that cells gain normal growth gradually. Suramin with concentration of more than 500 microM inhibited the cell growth completely. Although suramin reversibly inhibit the PR3 activity but in concentration of less than 250 microM it had no long-term effect on CHO-cells. Therefore it can be used in the investigation of proteases. There were unknown components in deltaFCS, which cause the inhibition of PR3 activity. This finding is very important in PR3 production in culture medium. However CHO-cells are resistant to PR3 and suramin in low concentration.

  5. Regulated expression of the rat recombinant P2X(3) receptor in stably transfected CHO-K1 tTA cells.

    PubMed

    Lachnit, W G; Oglesby, I B; Gever, J R; Gever, M; Huang, C; Li, X C; Jin, H; McGivern, J G; Ford, A P

    2000-07-03

    In this report, the regulatable expression by tetracycline of the rat recombinant P2X(3) receptor in stably transfected Chinese hamster ovary (CHO-K1) expressing the tetracycline-controlled transactivator (tTA) is described. cDNA encoding the rat P2X(3)-receptor was subcloned into pTRE (a tetracycline-repressible expression vector) which was used to transfect stably CHO-K1 tTA cells. Using whole cell patch clamp techniques, 100 microM ATP evoked inward currents of 2.9+/-1.6 nA in transfected cells grown in the absence of tetracycline (tet-). The P2X(3) receptor protein was detectable by immunoblot as early as 24 h and protein expression levels continued to increase as much as 192 h following activation of tTA by the removal of the antibiotic. Saturation binding isotherms using [35S]ATP gamma S yielded a pK(d) of 8.2+/-0.1 and a B(max) of 31.9+/-3.5 pmol/mg protein in tet- cell membranes and a pK(d) of 8.1+/-0.1 and a B(max) of 5.8+/-0.8 pmol/mg protein in tet+ cell membranes. The agonist ligands 2MeSATP and alpha beta MeATP displaced the binding of [35S]ATP gamma S in tet- cell membranes with very high affinity, yielding pIC(50) values of 9.4+/-0.2 and 7.5+/-0. 2, respectively. In tet+ cell membrane, displacement of [35S]ATP gamma S by 2MeSATP and alpha beta MeATP was of much lower affinity (pIC(50) values of 7.8 and 6.2, respectively). ATP, ADP and UTP showed similar displacement of [35S]ATP gamma S binding in tet- and tet+ cell membranes. In other experiments, cytosolic Ca(2+) was monitored using the fluorescent indicator, fluo-3. Increases in cytosolic Ca(2+) were elicited by 100 nM alpha beta MeATP in tet- cells while no increases in cytosolic Ca(2+) were detected below 100 microM alpha beta MeATP in either tet+ cells or untransfected cells. These calcium responses to alpha beta MeATP had a pEC(50) of 6.7 and were transient, returning to baseline within 120 s. Suramin produced concentration-dependent, parallel, dextral shifts of E/[A] curves to alpha beta Me

  6. Absence of micronucleus formation in CHO-K1 cells cultivated in platelet lysate enriched medium.

    PubMed

    Bernardi, Martina; Adami, Valentina; Albiero, Elena; Madeo, Domenico; Rodeghiero, Francesco; Astori, Giuseppe

    2014-03-01

    Human platelet lysate (PL) represents an effective substitute of fetal bovine serum (FBS) for mesenchymal stromal cell (MSC) cultivation. Compared to FBS, PL favors MSC proliferation significantly shortening the population doubling time and avoiding the risks related to the use of animal derivatives. Growth factors contained in the platelets are released upon platelet disruption following freezing/thawing cycles or as we have recently described by using ultrasound. We have investigated whether the increased cell proliferation achieved by using PL could induce mitotic stress and whether the potential formation of free radicals during PL production by ultrasound could cause chromosomal instability in mammalian cells. We have applied an image analysis assisted high content screening (HCS) in vitro micronucleus assay in the Chinese Hamster Ovarian K1 (CHO-K1) rodent mammalian cell line. PL was produced by sonication; for the micronucleus assay, CHO-K1 cells were exposed to increasing concentrations of PL. Cytokinesis was blocked by cytochalasin B, nuclei were stained with bisbenzimide and images were acquired and analyzed automatically using an HCS system, both with a 20× and a 10× objective. Our results suggest that growth stimulus induced by the use of PL did not significantly increase micronucleus formation in CHO-K1 cells compared to negative control. Micronucleus testing in conjunction with HCS could represent a valid tool to evaluate the safety of ancillary materials used in the production of cell-based medicinal products. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Recombinant interferon-gamma secreted by Chinese hamster ovary-320 cells cultivated in suspension in protein-free media is protected against extracellular proteolysis by the expression of natural protease inhibitors and by the addition of plant protein hydrolysates to the culture medium.

    PubMed

    Mols, J; Peeters-Joris, C; Wattiez, R; Agathos, S N; Schneider, Y-J

    2005-01-01

    Biosafety requirements increasingly restrict the cultivation of mammalian cells producing therapeutic glycoproteins to conditions that are devoid of any compound of animal origin. On cultivation in serum-free media, the proteases inhibitors, usually found in serum, cannot protect secreted recombinant proteins against unwanted endogenous proteolysis. Chinese hamster ovary (CHO) cells, secreting recombinant human interferon-gamma (CHO-320 cell line) and cultivated in suspension in an original protein-free medium, expressed at least two members of the matrix metalloproteinases (MMP), either at the cell surface (proMMP-14 and MMP-14) or secreted (proMMP-9). In addition, tissue- and urinary-type plasminogen activators were also secreted in such culture conditions. At the cell surface, dipeptidyl peptidase IV and tripeptidyl peptidase II (TPPII) activities were also detected, and their activities decreased during time course of batch cultures. The proteolytic activities of these proteins were counterbalanced by (1) their expression as zymogens (proMMP-9, proMMP-14), (2) the expression of their natural inhibitors, tissue inhibitors of metalloproteinases-1 and -2 and plasminogen activator inhibitor-1 (PAI-1), or (3) the addition of plant protein hydrolysates to the culture medium, acting as a nonspecific source of TPPII inhibitors. This study points out that, even in protein-free media, recombinant proteins secreted by CHO cells are actively protected against physiological and unwanted extracellular proteolysis either by endogenous or by exogenous inhibitors.

  8. Sequencing, Annotation and Analysis of the Syrian Hamster (Mesocricetus auratus) Transcriptome

    PubMed Central

    Tchitchek, Nicolas; Safronetz, David; Rasmussen, Angela L.; Martens, Craig; Virtaneva, Kimmo; Porcella, Stephen F.; Feldmann, Heinz

    2014-01-01

    Background The Syrian hamster (golden hamster, Mesocricetus auratus) is gaining importance as a new experimental animal model for multiple pathogens, including emerging zoonotic diseases such as Ebola. Nevertheless there are currently no publicly available transcriptome reference sequences or genome for this species. Results A cDNA library derived from mRNA and snRNA isolated and pooled from the brains, lungs, spleens, kidneys, livers, and hearts of three adult female Syrian hamsters was sequenced. Sequence reads were assembled into 62,482 contigs and 111,796 reads remained unassembled (singletons). This combined contig/singleton dataset, designated as the Syrian hamster transcriptome, represents a total of 60,117,204 nucleotides. Our Mesocricetus auratus Syrian hamster transcriptome mapped to 11,648 mouse transcripts representing 9,562 distinct genes, and mapped to a similar number of transcripts and genes in the rat. We identified 214 quasi-complete transcripts based on mouse annotations. Canonical pathways involved in a broad spectrum of fundamental biological processes were significantly represented in the library. The Syrian hamster transcriptome was aligned to the current release of the Chinese hamster ovary (CHO) cell transcriptome and genome to improve the genomic annotation of this species. Finally, our Syrian hamster transcriptome was aligned against 14 other rodents, primate and laurasiatheria species to gain insights about the genetic relatedness and placement of this species. Conclusions This Syrian hamster transcriptome dataset significantly improves our knowledge of the Syrian hamster's transcriptome, especially towards its future use in infectious disease research. Moreover, this library is an important resource for the wider scientific community to help improve genome annotation of the Syrian hamster and other closely related species. Furthermore, these data provide the basis for development of expression microarrays that can be used in functional

  9. Nucleoli in human early erythroblasts (K2, K1, K1/2 cells).

    PubMed

    Smetana, K; Jirásková, I; Klamová, H

    2005-01-01

    Human early erythroid precursors classified according to the nuclear size were studied to provide information on nucleoli in these cells using simple cytochemical procedures for demonstration of RNA and proteins of silver-stained nucleolar organizers. K2 cells with nuclear diameter larger than 13 microm and K1 cells with nuclear diameter larger than 9 microm corresponding to proerythroblasts and macroblasts (large basophilic erythroblasts) mostly possessed large irregularly shaped nucleoli with multiple fibrillar centres representing "active nucleoli". K1/2 cells with nuclear diameter smaller than 9 microm corresponding to small basophilic erythroblasts were usually characterized by the presence of micronucleoli representing "inactive nucleolar types". On the other hand, a few K1/2 cells contained large nucleoli with multiple fibrillar centres similar to those present in K2 cells and thus appeared as "microproerythroblasts". The nucleolar asynchrony expressed by the presence of large irregularly shaped nucleoli with multiple nucleoli (active nucleoli) and ring-shaped nucleoli (resting nucleoli) in one and the same nucleus of K2 or K1 cells was not exceptional and might reflect a larger resistance of these cells to negative factors influencing the erythropoiesis. The intranucleolar translocation of silver-stained nucleolus organized regions was noted in K2 cells and might indicate the premature aging of these cells without further differentiation. More studies, however, are required in this direction.

  10. Characterization of an N-Terminal Non-Core Domain of RAG1 Gene Disrupted Syrian Hamster Model Generated by CRISPR Cas9.

    PubMed

    Miao, Jinxin; Ying, Baoling; Li, Rong; Tollefson, Ann E; Spencer, Jacqueline F; Wold, William S M; Song, Seok-Hwan; Kong, Il-Keun; Toth, Karoly; Wang, Yaohe; Wang, Zhongde

    2018-05-06

    The accumulating evidence demonstrates that Syrian hamsters have advantages as models for various diseases. To develop a Syrian hamster ( Mesocricetus auratus ) model of human immunodeficiency caused by RAG1 gene mutations, we employed the CRISPR/Cas9 system and introduced an 86-nucleotide frameshift deletion in the hamster RAG1 gene encoding part of the N-terminal non-core domain of RAG1. Histological and immunohistochemical analyses demonstrated that these hamsters (referred herein as RAG1-86nt hamsters) had atrophic spleen and thymus, and developed significantly less white pulp and were almost completely devoid of splenic lymphoid follicles. The RAG1-nt86 hamsters had barely detectable CD3⁺ and CD4⁺ T cells. The expression of B and T lymphocyte-specific genes (CD3γ and CD4 for T cell-specific) and (CD22 and FCMR for B cell-specific) was dramatically reduced, whereas the expression of macrophage-specific (CD68) and natural killer (NK) cell-specific (CD94 and KLRG1) marker genes was increased in the spleen of RAG1-nt86 hamsters compared to wildtype hamsters. Interestingly, despite the impaired development of B and T lymphocytes, the RAG1-86nt hamsters still developed neutralizing antibodies against human adenovirus type C6 (HAdV-C6) upon intranasal infection and were capable of clearing the infectious viruses, albeit with slower kinetics. Therefore, the RAG1-86nt hamster reported herein (similar to the hypomorphic RAG1 mutations in humans that cause Omenn syndrome), may provide a useful model for studying the pathogenesis of the specific RAG1-mutation-induced human immunodeficiency, the host immune response to adenovirus infection and other pathogens as well as for evaluation of cell and gene therapies for treatment of this subset of RAG1 mutation patients.

  11. Imaging elemental distribution and ion transport in cultured cells with ion microscopy.

    PubMed

    Chandra, S; Morrison, G H

    1985-06-28

    Both elemental distribution and ion transport in cultured cells have been imaged by ion microscopy. Morphological and chemical information was obtained with a spatial resolution of approximately 0.5 micron for sodium, potassium, calcium, and magnesium in freeze-fixed, cryofractured, and freeze-dried normal rat kidney cells and Chinese hamster ovary cells. Ion transport was successfully demonstrated by imaging Na+-K+ fluxes after the inhibition of Na+- and K+ -dependent adenosine triphosphatase with ouabain. This method allows measurements of elemental (isotopic) distribution to be related to cell morphology, thereby providing the means for studying ion distribution and ion transport under different physiological, pathological, and toxicological conditions in cell culture systems.

  12. Ionotropic glutamate receptor GluR2/3-immunoreactive neurons in the cat, rabbit, and hamster superficial superior colliculus.

    PubMed

    Park, Won-Mee; Kim, Min-Jeong; Jeon, Chang-Jin

    2004-06-01

    Ionotropic glutamate receptor (GluR) subtypes occur in various types of cells in the central nervous system. We studied the distribution of AMPA glutamate receptor subtype GluR2/3 in the superficial layers of cat, rabbit, and hamster superior colliculus (SC) with antibody immunocytochemistry and the effect of enucleation on this distribution. Furthermore, we compared this labeling to that of calbindin D28K and parvalbumin. Anti-GluR2/3-immunoreactive (IR) cells formed a dense band of labeled cells within the lower superficial gray layer (SGL) and upper optic layer (OL) in the cat SC. By contrast, GluR2/3-IR cells formed a dense band within the upper OL in the rabbit and within the OL in the hamster SC. Calbindin D28K-IR cells are located in three layers in the SC: one within the zonal layer (ZL) and the upper SGL in all three animals, a second within the lower OL and upper IGL in the cat, within the IGL in the rabbit and within the OL in the hamster, and a third within the deep gray layer (DGL) in all three animals. Many parvalbumin-IR neurons were found within the lower SGL and upper OL. Thus, the GluR2/3-IR band was sandwiched between the first and second layers of calbindin D28K-IR cells in the cat and rabbit SC while the distribution of GluR2/3-IR cells in the hamster matches the second layer of calbindin D28K-IR cells. The patterned distribution of GluR2/3-IR cells overlapped the tier of parvalbumin-IR neurons in cat, but only partially overlapped in hamster and rabbit. Two-color immunofluorescence revealed that more than half (55.1%) of the GluR2/3-IR cells in the hamster SC expressed calbindin D28K. By contrast, only 9.9% of GluR2/3-IR cells expressed calbindin D28K in the cat. Double-labeled cells were not found in the rabbit SC. Some (4.8%) GluR2/3-IR cells in the cat SC also expressed parvalbumin, while no GluR2/3-IR cells in rabbit and hamster SC expressed parvalbumin. In this dense band of GluR2/3, the majority of labeled cells were small to medium

  13. BMP signalling in human fetal ovary somatic cells is modulated in a gene-specific fashion by GREM1 and GREM2

    PubMed Central

    Bayne, Rosemary A.; Donnachie, Douglas J.; Kinnell, Hazel L.; Childs, Andrew J.; Anderson, Richard A.

    2016-01-01

    STUDY QUESTION Do changes in the expression of bone morphogenetic proteins (BMPs) 2 and 4, and their antagonists Gremlin1 (GREM1) and Gremlin2 (GREM2) during human fetal ovarian development impact on BMP pathway activity and lead to changes in gene expression that may influence the fate and/or function of ovarian somatic cells? STUDY FINDING BMPs 2 and 4 differentially regulate gene expression in cultured human fetal ovarian somatic cells. Expression of some, but not all BMP target genes is antagonised by GREM1 and GREM2, indicating the existence of a mechanism to fine-tune BMP signal intensity in the ovary. Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), a marker of immature ovarian somatic cells, is identified as a novel transcriptional target of BMP4. WHAT IS KNOWN ALREADY Extensive re-organisation of the germ and somatic cell populations in the feto-neonatal ovary culminates in the formation of primordial follicles, which provide the basis for a female's future fertility. BMP growth factors play important roles at many stages of ovarian development and function. GREM1, an extracellular antagonist of BMP signalling, regulates the timing of primordial follicle formation in the mouse ovary, and mRNA levels of BMP4 decrease while those of BMP2 increase prior to follicle formation in the human fetal ovary. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Expression of genes encoding BMP pathway components, BMP antagonists and markers of ovarian somatic cells were determined by quantitative (q)RT-PCR in human fetal ovaries (from 8 to 21 weeks gestation) and fetal ovary-derived somatic cell cultures. Ovarian expression of GREM1 protein was confirmed by immunoblotting. Primary human fetal ovarian somatic cell cultures were derived from disaggregated ovaries by differential adhesion and cultured in the presence of recombinant human BMP2 or BMP4, with or without the addition of GREM1 or GREM2. MAIN RESULTS AND THE ROLE OF CHANCE We demonstrate that the

  14. BMP signalling in human fetal ovary somatic cells is modulated in a gene-specific fashion by GREM1 and GREM2.

    PubMed

    Bayne, Rosemary A; Donnachie, Douglas J; Kinnell, Hazel L; Childs, Andrew J; Anderson, Richard A

    2016-09-01

    Do changes in the expression of bone morphogenetic proteins (BMPs) 2 and 4, and their antagonists Gremlin1 (GREM1) and Gremlin2 (GREM2) during human fetal ovarian development impact on BMP pathway activity and lead to changes in gene expression that may influence the fate and/or function of ovarian somatic cells? BMPs 2 and 4 differentially regulate gene expression in cultured human fetal ovarian somatic cells. Expression of some, but not all BMP target genes is antagonised by GREM1 and GREM2, indicating the existence of a mechanism to fine-tune BMP signal intensity in the ovary. Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), a marker of immature ovarian somatic cells, is identified as a novel transcriptional target of BMP4. Extensive re-organisation of the germ and somatic cell populations in the feto-neonatal ovary culminates in the formation of primordial follicles, which provide the basis for a female's future fertility. BMP growth factors play important roles at many stages of ovarian development and function. GREM1, an extracellular antagonist of BMP signalling, regulates the timing of primordial follicle formation in the mouse ovary, and mRNA levels of BMP4 decrease while those of BMP2 increase prior to follicle formation in the human fetal ovary. Expression of genes encoding BMP pathway components, BMP antagonists and markers of ovarian somatic cells were determined by quantitative (q)RT-PCR in human fetal ovaries (from 8 to 21 weeks gestation) and fetal ovary-derived somatic cell cultures. Ovarian expression of GREM1 protein was confirmed by immunoblotting. Primary human fetal ovarian somatic cell cultures were derived from disaggregated ovaries by differential adhesion and cultured in the presence of recombinant human BMP2 or BMP4, with or without the addition of GREM1 or GREM2. We demonstrate that the expression of BMP antagonists GREM1, GREM2 and CHRD  increases in the lead-up to primordial follicle formation in the human fetal

  15. Protein A affinity chromatography of Chinese hamster ovary (CHO) cell culture broths containing biopharmaceutical monoclonal antibody (mAb): Experiments and mechanistic transport, binding and equilibrium modeling.

    PubMed

    Grom, Matic; Kozorog, Mirijam; Caserman, Simon; Pohar, Andrej; Likozar, Blaž

    2018-04-15

    Protein A-based affinity chromatography is a highly-efficient separation method to capture, purify and isolate biosimilar monoclonal antibodies (mAb) - an important medical product of biopharmaceutical industrial manufacturing. It is considered the most expensive step in purification downstream operations; therefore, its performance optimization offers a great cost saving in the overall production expenditure. The biochemical mixture-separating specific interaction experiments with Chinese hamster ovary (CHO) cell culture harvest, containing glycosylated extracellular immunoglobulins (Ig), were made using five different state-of-the-art commercial resins. Packing breakthrough curves were recorded at an array of prolonged residence times. A mathematical simulation model was developed, applied and validated in combination with non-linear regression algorithms on bed effluent concentrations to determine the previously-unknown binding properties of stationary phase materials. Apart from the columns' differential partitioning, the whole external system was also integrated. It was confirmed that internal pore diffusion is the global rate-limiting resistance of the compound retention process. Immobilizing substrate characteristics, obtained in this engineering study, are indispensable for the scale-up of the periodic counter-current control with mechanistic load, elution and wash reduction. Furthermore, unit's volumetric flow screening measurements revealed dynamic effect correlation to eluate quality parameters, like the presence of aggregates, the host cell-related impurities at supernatant's extended feeding, and titre. Numerical sensitivity outputs demonstrated the impacts of fluidics (e.g. axial dispersion coefficient), thermodynamics (Langmuir adsorption) and mass transfer fluxes. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. [Construction and expression of the eukaryotic expression vector carrying HSV-1 gC glycoprotein gene].

    PubMed

    Dang, Yin-li; Yan, Yan; Zhang, Xiao-xiao; Li, Pu-yuan; Yu, Lan; Zhang, Lei; Zhang, Fang-lin; Xu, Zhi-kai; Wu, Xing-an

    2011-05-01

    To stably express herpes simplex virus type 1 (HSV-1) glycoprotein C (gC) in Chinese hamster ovary cells (CHO-K1). The eukaryotic expression vector pCI-mCMV-gC-1-IRES-DHFR-L22R was constructed and transfected into CHO-K1 cells by Lipofectamine 2000. The transfected cells were selected by G418 and methotrexate (MTX). The expression of HSV-1 gC was analyzed by Slot blot. HSV-1 gC proteins were purified with His-Ni Sepharose and then detected by Western blot. The eukaryotic expression vector pCI-mCMV-gC-1-IRES-DHFR-L22R was constructed successfully. CHO-K1 cells stably expressing HSV-1 gC proteins were established and confirmed by Western blot. The HSV-1 gC proteins have been expressed successfully and have good bioactivity. The results make it possible for further study and clinical use of HSV-1 gC.

  17. Stable expression of rat cytochrome P-450IIB1 cDNA in Chinese hamster cells (V79) and metabolic activation of aflatoxin B1.

    PubMed Central

    Doehmer, J; Dogra, S; Friedberg, T; Monier, S; Adesnik, M; Glatt, H; Oesch, F

    1988-01-01

    V79 Chinese hamster fibroblasts are widely used for mutagenicity testing but have the serious limitation that they do not express cytochromes P-450, which are needed for the activation of many promutagens to mutagenic metabolites. A full-length cDNA clone encoding the monooxygenase cytochrome P-450IIB1 under control of the simian virus 40 early promoter was constructed and cointroduced with the selection marker neomycin phosphotransferase (conferring resistance to G418) into V79 Chinese hamster cells. G418-resistant cells were selected, established as cell lines, and tested for cytochrome P-450IIB1 expression and enzymatic activity. Two cell lines (SD1 and SD3) were found that stably produce cytochrome P-450IIB1. Although purified cytochromes P-450 possess monooxygenase activity only after reconstitution with cytochrome P-450 reductase and phospholipid, the gene product of the construct exhibited this activity. This implies that the gene product is intracellularly localized in a way that allows access to the required components. If compared with V79 cells, the mutation rate for the hypoxanthine phosphoribosyltransferase (HPRT) locus in SD1 cells is markedly increased when exposed to aflatoxin B1, which is activated by this enzyme. Images PMID:3137560

  18. ARP2, a novel pro-apoptotic protein expressed in epithelial prostate cancer LNCaP cells and epithelial ovary CHO transformed cells.

    PubMed

    Mas-Oliva, Jaime; Navarro-Vidal, Enrique; Tapia-Vieyra, Juana Virginia

    2014-01-01

    Neoplastic epithelial cells generate the most aggressive types of cancers such as those located in the lung, breast, colon, prostate and ovary. During advanced stages of prostate cancer, epithelial cells are associated to the appearance of androgen-independent tumors, an apoptotic-resistant phenotype that ultimately overgrows and promotes metastatic events. We have previously identified and electrophysiologically characterized a novel Ca(2+)-permeable channel activated during apoptosis in the androgen-independent prostate epithelial cancer cell line, LNCaP. In addition, we reported for the first time the cloning and characterization of this channel-like molecule named apoptosis regulated protein 2 (ARP2) associated to a lethal influx of Ca(2+) in Xenopus oocytes. In the present study, LNCaP cells and Chinese hamster ovary cells (CHO cell line) transfected with arp2-cDNA are induced to undergo apoptosis showing an important impact on cell viability and activation of caspases 3 and 7 when compared to serum deprived grown cells and ionomycin treated cells. The subcellular localization of ARP2 in CHO cells undergoing apoptosis was studied using confocal microscopy. While apoptosis progresses, ARP2 initially localized in the peri-nuclear region of cells migrates with time towards the plasma membrane region. Based on the present results and those of our previous studies, the fact that ARP2 constitutes a novel cation channel is supported. Therefore, ARP2 becomes a valuable target to modulate the influx and concentration of calcium in the cytoplasm of epithelial cancer cells showing an apoptotic-resistant phenotype during the onset of an apoptotic event.

  19. Stem Cells, Progenitor Cells, and Lineage Decisions in the Ovary

    PubMed Central

    Hummitzsch, Katja; Anderson, Richard A.; Wilhelm, Dagmar; Wu, Ji; Telfer, Evelyn E.; Russell, Darryl L.; Robertson, Sarah A.

    2015-01-01

    Exploring stem cells in the mammalian ovary has unleashed a Pandora's box of new insights and questions. Recent evidence supports the existence of stem cells of a number of the different cell types within the ovary. The evidence for a stem cell model producing mural granulosa cells and cumulus cells is strong, despite a limited number of reports. The recent identification of a precursor granulosa cell, the gonadal ridge epithelial-like cell, is exciting and novel. The identification of female germline (oogonial) stem cells is still very new and is currently limited to just a few species. Their origins and physiological roles, if any, are unknown, and their potential to produce oocytes and contribute to follicle formation in vivo lacks robust evidence. The precursor of thecal cells remains elusive, and more compelling data are needed. Similarly, claims of very small embryonic-like cells are also preliminary. Surface epithelial cells originating from gonadal ridge epithelial-like cells and from the mesonephric epithelium at the hilum of the ovary have also been proposed. Another important issue is the role of the stroma in guiding the formation of the ovary, ovigerous cords, follicles, and surface epithelium. Immune cells may also play key roles in developmental patterning, given their critical roles in corpora lutea formation and regression. Thus, while the cellular biology of the ovary is extremely important for its major endocrine and fertility roles, there is much still to be discovered. This review draws together the current evidence and perspectives on this topic. PMID:25541635

  20. Mechanisms underlying radiosensitivity : iIvestigations in xrs-5, an X-ray sensitive hamster cell line

    NASA Astrophysics Data System (ADS)

    Johnston, Peter James

    The damage caused to cells by ionising radiation is believed to center on damage to the DNA. In particular, the induction of DNA double strand breaks (DSB) have been implicated in biological end-points such as cell killing and the formation of chromosomal aberrations. The xrs-5 cell line is a mutant Chinese hamster ovary fibroblast (CHO-K1) mutant which exhibits sensitivity to ionising radiation and a number of other DNA damaging agents. This mutation, postulated to involve the hamster homologue of the human XRCC5 gene, is believed to be involved in the repair of the DSB. In addition, there are constitutive differences between the wild type and xrs cells involving the structure and function of the nucleus and higher order chromatin structures. The aims of this thesis were to study further the xrs-5 cell line and its response to DNA damage and to investigate the possible link between chromatin structure and DSB repair. By the examination of the response of xrs-5 cells to a number of DNA damaging agents and potential modulators of this response using the cytokinesis block micronucleus assay [Fenech and Morley, 1985] a possible cell cycle defect was identified in addition to elevated levels of chromosomal damage. Xrs-5 cells appeared to be partially defective in the cell cycle checkpoints involving the passage from G2 phase to mitosis. By the use of a modified neutral filter elution procedure variations in the repair of DSB were observed between xrs-5 and CHO. Conventional neutral filter elution requires harsh lysis conditions to remove higher order chromatin structures which interfere with the elution of DNA containing DSB. By lysing cells with non-ionic detergent in the presence of 2 M NaC1, histone depleted structures which retain the higher order nuclear matrix organisation, including chromatin loops, can be produced. Elution from these structures will only occur if two or more DSB lie within a single looped domain delineated by points of attachment to the nuclear

  1. Development, qualification, validation and application of the neutral red uptake assay in Chinese Hamster Ovary (CHO) cells using a VITROCELL® VC10® smoke exposure system.

    PubMed

    Fields, Wanda; Fowler, Kathy; Hargreaves, Victoria; Reeve, Lesley; Bombick, Betsy

    2017-04-01

    Cytotoxicity assessment of combustible tobacco products by neutral red uptake (NRU) has historically used total particulate matter (TPM) or solvent captured gas vapor phase (GVP), rather than fresh whole smoke. Here, the development, validation and application of the NRU assay in Chinese Hamster Ovary (CHO) cells, following exposure to fresh whole smoke generated with the VITROCELL® VC10® system is described. Whole smoke exposure is particularly important as both particulate and vapor phases of tobacco smoke show cytotoxicity in vitro. The VITROCELL® VC10® system provides exposure at the air liquid interface (ALI) to mimic in vivo conditions for assessing the toxicological impact of smoke in vitro. Instrument and assay validations are crucial for comparative analyses. 1) demonstrate functionality of the VITROCELL® VC10® system by installation, operational and performance qualification, 2) develop and validate a cellular system for assessing cytotoxicity following whole smoke exposure and 3) assess the whole smoke NRU assay sensitivity for statistical differentiation between a reference combustible cigarette (3R4F) and a primarily "heat-not-burn" cigarette (Eclipse). The VITROCELL® VC10® provided consistent generation and delivery of whole smoke; exposure-related changes in in vitro cytotoxicity were observed with reproducible IC 50 values; comparative analysis showed that the heat-not-burn cigarette was significantly (P<0.001) less cytotoxic than the 3R4F combustible cigarette, consistent with the lower levels of chemical constituents liberated by primarily-heating the cigarette versus burning. Copyright © 2017. Published by Elsevier Ltd.

  2. Chromosomal mutations and chromosome loss measured in a new human-hamster hybrid cell line, ALC: studies with colcemid, ultraviolet irradiation, and 137Cs gamma-rays

    NASA Technical Reports Server (NTRS)

    Kraemer, S. M.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    Small mutations, megabase deletions, and aneuploidy are involved in carcinogenesis and genetic defects, so it is important to be able to quantify these mutations and understand mechanisms of their creation. We have previously quantified a spectrum of mutations, including megabase deletions, in human chromosome 11, the sole human chromosome in a hamster-human hybrid cell line AL. S1- mutants have lost expression of a human cell surface antigen, S1, which is encoded by the M1C1 gene at 11p13 so that mutants can be detected via a complement-mediated cytotoxicity assay in which S1+ cells are killed and S1- cells survive. But loss of genes located on the tip of the short arm of 11 (11p15.5) is lethal to the AL hybrid, so that mutants that have lost the entire chromosome 11 die and escape detection. To circumvent this, we fused AL with Chinese hamster ovary (CHO) cells to produce a new hybrid, ALC, in which the requirement for maintaining 11p15.5 is relieved, allowing us to detect mutations events involving loss of 11p15.5. We evaluated the usefulness of this hybrid by conducting mutagenesis studies with colcemid, 137Cs gamma-radiation and UV 254 nm light. Colcemid induced 1000 more S1- mutants per unit dose in ALC than in AL; the increase for UV 254 nm light was only two-fold; and the increase for 137Cs gamma-rays was 12-fold. The increase in S1- mutant fraction in ALC cells treated with colcemid and 137Cs gamma-rays were largely due to chromosome loss and 11p deletions often containing a breakpoint within the centromeric region.

  3. RHOG-DOCK1-RAC1 Signaling Axis Is Perturbed in DHEA-Induced Polycystic Ovary in Rat Model.

    PubMed

    Ubba, Vaibhave; Soni, Upendra Kumar; Chadchan, Sangappa; Maurya, Vineet Kumar; Kumar, Vijay; Maurya, Ruchika; Chaturvedi, Himanshu; Singh, Rajender; Dwivedi, Anila; Jha, Rajesh Kumar

    2017-05-01

    The function of RHOG, a RAC1 activator, was explored in the ovary during ovarian follicular development and pathological conditions. With the help of immunoblotting and immunolocalization, we determined the expression and localization of RHOG in normal (estrous cycle) and polycystic ovaries using Sprague Dawley (SD) rat model. Employing polymerase chain reaction and flow cytometry, we analyzed the transcript and expression levels of downstream molecules of RHOG, DOCK1, and RAC1 in the polycystic ovarian syndrome (PCOS) ovary along with normal antral follicular theca and granulosa cells after dehydroepiandrosterone (DHEA) supplementation. The effect of RHOG knockdown on DOCK1, VAV, and RAC1 expression was evaluated in the human ovarian cells (SKOV3), theca cells, and granulosa cells from SD rats with the help of flow cytometry. Oocyte at secondary follicles along with stromal cells showed optimal expression of RHOG. Immunoblotting of RHOG revealed its maximum expression at diestrus and proestrus, which was downregulated at estrus stage. Mild immunostaining of RHOG was also present in the theca and granulosa cells of the secondary and antral follicles. Polycystic ovary exhibited weak immunostaining for RHOG and that was corroborated by immunoblotting-based investigations. RHOG effectors DOCK1 and ELMO1 were found reduced in the ovary in PCOS condition/DHEA. RHOG silencing reduced the expression of DOCK1 and RAC1 in the theca and granulosa cells from SD rat antral follicles and that was mirrored in the human ovarian cells. Collectively, RHOG can mediate signaling through downstream effectors DOCK1 and RAC1 during ovarian follicular development (theca and granulosa cells and oocyte), but DHEA downregulated them in the PCOS ovary.

  4. Generation of a Chinese Hamster Ovary Cell Line Producing Recombinant Human Glucocerebrosidase

    PubMed Central

    Novo, Juliana Branco; Morganti, Ligia; Moro, Ana Maria; Paes Leme, Adriana Franco; Serrano, Solange Maria de Toledo; Raw, Isaias; Ho, Paulo Lee

    2012-01-01

    Impaired activity of the lysosomal enzyme glucocerebrosidase (GCR) results in the inherited metabolic disorder known as Gaucher disease. Current treatment consists of enzyme replacement therapy by administration of exogenous GCR. Although effective, it is exceptionally expensive, and patients worldwide have a limited access to this medicine. In Brazil, the public healthcare system provides the drug free of charge for all Gaucher's patients, which reaches the order of $ 84 million per year. However, the production of GCR by public institutions in Brazil would reduce significantly the therapy costs. Here, we describe a robust protocol for the generation of a cell line producing recombinant human GCR. The protein was expressed in CHO-DXB11 (dhfr−) cells after stable transfection and gene amplification with methotrexate. As expected, glycosylated GCR was detected by immunoblotting assay both as cell-associated (~64 and 59 kDa) and secreted (63–69 kDa) form. Analysis of subclones allowed the selection of stable CHO cells producing a secreted functional enzyme, with a calculated productivity of 5.14 pg/cell/day for the highest producer. Although being laborious, traditional methods of screening high-producing recombinant cells may represent a valuable alternative to generate expensive biopharmaceuticals in countries with limited resources. PMID:23091360

  5. Germline stem cells and neo-oogenesis in the adult human ovary.

    PubMed

    Liu, Yifei; Wu, Chao; Lyu, Qifeng; Yang, Dongzi; Albertini, David F; Keefe, David L; Liu, Lin

    2007-06-01

    It remains unclear whether neo-oogenesis occurs in postnatal ovaries of mammals, based on studies in mice. We thought to test whether adult human ovaries contain germline stem cells (GSCs) and undergo neo-oogenesis. Rather than using genetic manipulation which is unethical in humans, we took the approach of analyzing the expression of meiotic marker genes and genes for germ cell proliferation, which are required for neo-oogenesis, in adult human ovaries covering an age range from 28 to 53 years old, compared to testis and fetal ovaries served as positive controls. We show that active meiosis, neo-oogenesis and GSCs are unlikely to exist in normal, adult, human ovaries. No early meiotic-specific or oogenesis-associated mRNAs for SPO11, PRDM9, SCP1, TERT and NOBOX were detectable in adult human ovaries using RT-PCR, compared to fetal ovary and adult testis controls. These findings are further corroborated by the absence of early meiocytes and proliferating germ cells in adult human ovarian cortex probed with markers for meiosis (SCP3), oogonium (OCT3/4, c-KIT), and cell cycle progression (Ki-67, PCNA), in contrast to fetal ovary controls. If postnatal oogenesis is confirmed in mice, then this species would represent an exception to the rule that neo-oogenesis does not occur in adults.

  6. Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells.

    PubMed Central

    Kojima, Hiroyuki; Katsura, Eiji; Takeuchi, Shinji; Niiyama, Kazuhito; Kobayashi, Kunihiko

    2004-01-01

    We tested 200 pesticides, including some of their isomers and metabolites, for agonism and antagonism to two human estrogen receptor (hER) subtypes, hERalpha and hERbeta, and a human androgen receptor (hAR) by highly sensitive transactivation assays using Chinese hamster ovary cells. The test compounds were classified into nine groups: organochlorines, diphenyl ethers, organophosphorus pesticides, pyrethroids, carbamates, acid amides, triazines, ureas, and others. These pesticides were tested at concentrations < 10-5 M. Of the 200 pesticides tested, 47 and 33 showed hER- and hERbeta-mediated estrogenic activities, respectively. Among them, 29 pesticides had both hERalpha and hERbeta agonistic activities, and the effects of the organochlorine insecticides beta-benzene hexachloride (BHC) and delta-BHC and the carbamate insecticide methiocarb were predominantly hERbeta rather than hERalpha agonistic. Weak antagonistic effects toward hERalpha and hERbeta were shown in five and two pesticides, respectively. On the other hand, none of tested pesticides showed hAR-mediated androgenic activity, but 66 of 200 pesticides exhibited inhibitory activity against the transcriptional activity induced by 5alpha-dihydrotestosterone. In particular, the antiandrogenic activities of two diphenyl ether herbicides, chlornitrofen and chlomethoxyfen, were higher than those of vinclozolin and p,p -dichlorodiphenyl dichloroethylene, known AR antagonists. The results of our ER and AR assays show that 34 pesticides possessed both estrogenic and antiandrogenic activities, indicating pleiotropic effects on hER and hAR. We also discussed chemical structures related to these activities. Taken together, our findings suggest that a variety of pesticides have estrogenic and/or antiandrogenic potential via ER and/or AR, and that numerous other manmade chemicals may also possess such estrogenic and antiandrogenic activities. PMID:15064155

  7. Interactions of the plasma needle with cells in culture

    NASA Astrophysics Data System (ADS)

    Stoffels, E.; Broers, J. L. V.; Kunts, S.; Cornelis, R. A. A.; Caubet, V.; Ramaekers, F. C. S.

    2002-10-01

    A non-thermal atmospheric plasma source (plasma needle) has been developed. This plasma operates at room temperature, low voltages and power levels, so it can be applied for fine treatment of organic material. In this work the impact of the plasma needle on living cells is explored. For this purpose CHO-K1 (Chinese hamster ovary) cells in culture have been plasma-treated and their responses have been recorded by means of propidium iodide staining. Plasma treatment at low to intermediate power levels leads to damage of the DNA in the cell nucleus, which causes cell death. Characteristic features are high precision of plasma action (influenced cells are strictly localized) and induction of cell death without destroying the cell integrity. Possibilities of using plasma treatment for removal of unwanted cells (e.g. cancer cells) will be investigated.

  8. Characterization of prmt7alpha and beta isozymes from Chinese hamster cells sensitive and resistant to topoisomerase II inhibitors.

    PubMed

    Gros, Laurent; Renodon-Cornière, Axelle; de Saint Vincent, Bruno Robert; Feder, Marcin; Bujnicki, Janusz M; Jacquemin-Sablon, Alain

    2006-11-01

    By selection of genetic suppressor elements (GSEs) conferring resistance to topoisomerase II inhibitors in Chinese hamster cells (DC-3F), we identified a gene encoding two proteins of 78 and 82 kDa which belong to the protein arginine methyltransferase (PRMT) family. Down-regulation of these enzymes (named PRMT7alpha and beta), either induced by an antisense GSE or as observed in the 9-OH-ellipticine (9-OH-E) resistant mutant DC-3F/9-OH-E, was responsible for cell resistance to various DNA damaging agents. Alternative splicing alterations in the 5'-terminal region and changes of the polyadenylation site of PRMT7 mRNAs were observed in these resistant mutant cells. PRMT7alpha and beta are isoforms of a highly conserved protein containing two copies of a module common to all PRMTs, comprising a Rossmann-fold domain and a beta-barrel domain. The C-terminal repeat appears to be degenerate and catalytically inactive. PRMT7alpha and beta form homo- and hetero-dimers but differ by their sub-cellular localization and in vitro recognize different substrates. PRMT7beta was only observed in Chinese hamster cells while mouse 10T1/2 fibroblasts only contain PRMT7alpha. Surprisingly, in human cells the anti-PRMT7 antibody essentially recognized an approximately 37 kDa peptide, which is not formed during extraction, and a faint band at 78 kDa. Analysis of in vitro and in vivo methylation patterns in cell lines under- or over-expressing PRMT7alpha and beta detected a discrete number of proteins which methylation and/or expression are under the control of these enzymes.

  9. Crocidolite asbestos and SV40 are cocarcinogens in human mesothelial cells and in causing mesothelioma in hamsters

    PubMed Central

    Kroczynska, Barbara; Cutrone, Rochelle; Bocchetta, Maurizio; Yang, Haining; Elmishad, Amira G.; Vacek, Pamela; Ramos-Nino, Maria; Mossman, Brooke T.; Pass, Harvey I.; Carbone, Michele

    2006-01-01

    Only a fraction of subjects exposed to asbestos develop malignant mesothelioma (MM), suggesting that additional factors may render some individuals more susceptible. We tested the hypothesis that asbestos and Simian virus (SV40) are cocarcinogens. Asbestos and SV40 in combination had a costimulatory effect in inducing ERK1/2 phosphorylation and activator protein-1 (AP-1) activity in both primary Syrian hamster mesothelial cells (SHM) and primary human mesothelial cells (HM). Ap-1 activity caused the expression and activation of matrix metalloprotease (MMP)-1 and MMP-9, which in turn led to cell invasion. Experiments using siRNA and chemical inhibitors confirmed the specificity of these results. The same effects were observed in HM and SHM. Experiments in hamsters showed strong cocarcinogenesis between asbestos and SV40: SV40 did not cause MM, asbestos caused MM in 20% of hamsters, and asbestos and SV40 together caused MM in 90% of hamsters. Significantly lower amounts of asbestos were sufficient to cause MM in animals infected with SV40. Our results indicate that mineral fibers and viruses can be cocarcinogens and suggest that lower amounts of asbestos may be sufficient to cause MM in individuals infected with SV40. PMID:16966607

  10. Open channel block of A-type, kv4.3, and delayed rectifier K+ channels, Kv1.3 and Kv3.1, by sibutramine.

    PubMed

    Kim, Sung Eun; Ahn, Hye Sook; Choi, Bok Hee; Jang, Hyun-Jong; Kim, Myung-Jun; Rhie, Duck-Joo; Yoon, Shin-Hee; Jo, Yang-Hyeok; Kim, Myung-Suk; Sung, Ki-Wug; Hahn, Sang June

    2007-05-01

    The effects of sibutramine on voltage-gated K+ channel (Kv)4.3, Kv1.3, and Kv3.1, stably expressed in Chinese hamster ovary cells, were investigated using the whole-cell patch-clamp technique. Sibutramine did not significantly decrease the peak Kv4.3 currents, but it accelerated the rate of decay of current inactivation in a concentration-dependent manner. This phenomenon was effectively characterized by integrating the total current over the duration of a depolarizing pulse to +40 mV. The IC50 value for the sibutramine block of Kv4.3 was 17.3 microM. Under control conditions, the inactivation of Kv4.3 currents could be fit to a biexponential function, and the time constants for the fast and slow components were significantly decreased after the application of sibutramine. The association (k+1) and dissociation (k-1) rate constants for the sibutramine block of Kv 4.3 were 1.51 microM-1s-1 and 27.35 s-1, respectively. The theoretical KD value, derived from k-1/k+1, yielded a value of 18.11 microM. The block of Kv4.3 by sibutramine displayed a weak voltage dependence, increasing at more positive potentials, and it was use-dependent at 2 Hz. Sibutramine did not affect the time course for the deactivating tail currents. Neither steady-state activation and inactivation nor the recovery from inactivation was affected by sibutramine. Sibutramine caused the concentration-dependent block of the Kv1.3 and Kv3.1 currents with an IC50 value of 3.7 and 32.7 microM, respectively. In addition, sibutramine reduced the tail current amplitude and slowed the deactivation of the tail currents of Kv1.3 and Kv3.1, resulting in a crossover phenomenon. These results indicate that sibutramine acts on Kv4.3, Kv1.3, and Kv3.1 as an open channel blocker.

  11. Direct Peptide Interaction with Surface Glycosaminoglycans Contributes to the Cell Penetration of Maurocalcine*

    PubMed Central

    Ram, Narendra; Aroui, Sonia; Jaumain, Emilie; Bichraoui, Hicham; Mabrouk, Kamel; Ronjat, Michel; Lortat-Jacob, Hugues; De Waard, Michel

    2008-01-01

    Maurocalcine (MCa), initially identified from a tunisian scorpion venom, defines a new member of the family of cell penetrating peptides by its ability to efficiently cross the plasma membrane. The initiating mechanistic step required for the cell translocation of a cell penetrating peptide implicates its binding onto cell surface components such as membrane lipids and/or heparan sulfate proteoglycans. Here we characterized the interaction of wild-type MCa and MCa K20A, a mutant analogue with reduced cell-penetration efficiency, with heparin (HP) and heparan sulfates (HS) through surface plasma resonance. HP and HS bind both to MCa, indicating that heparan sulfate proteoglycans may represent an important entry route of the peptide. This is confirmed by the fact that (i) both compounds bind with reduced affinity to MCa K20A and (ii) the cell penetration of wild-type or mutant MCa coupled to fluorescent streptavidin is reduced by about 50% in mutant Chinese hamster ovary cell lines lacking either all glycosaminoglycans (GAGs) or just HS. Incubating MCa with soluble HS, HP, or chondroitin sulfates also inhibits the cell penetration of MCa-streptavidin complexes. Analyses of the cell distributions of MCa/streptavidin in several Chinese hamster ovary cell lines show that the distribution of the complex coincides with the endosomal marker Lyso-Tracker red and is not affected by the absence of GAGs. The distribution of MCa/streptavidin is not coincident with that of transferrin receptors nor affected by a dominant-negative dynamin 2 K44A mutant, an inhibitor of clathrin-mediated endocytosis. However, entry of the complex is greatly diminished by amiloride, indicating the importance of macropinocytosis in MCa/streptavidin entry. It is concluded that (i) interaction of MCa with GAGs quantitatively improves the cell penetration of MCa, and (ii) GAG-dependent and -independent MCa penetration rely similarly on the macropinocytosis pathway. PMID:18603532

  12. Centrosome Amplification: A Potential Marker of Breast Cancer Agressiveness

    DTIC Science & Technology

    2006-07-01

    centrosome amplification. Introduction of DNA damage in the MCF-7 cell line by treatment with hydroxyurea (HU) or daunorubicin (DR) resulted in the...cycles of DNA synthesis and mitotic division in hydroxyurea - arrested Chinese hamster ovary cells. J Cell Biol, 130: 105-115, 1995. 23. D’Assoro, A. B...from cycles of DNA synthesis and mitotic division in hydroxyurea -arrested Chinese hamster ovary cells. J Cell Biol, 1995. 130(1): p. 105-15. 22

  13. Neoplastic transformation of hamster embryo cells by heavy ions

    NASA Astrophysics Data System (ADS)

    Han, Z.; Suzuki, H.; Suzuki, F.; Suzuki, M.; Furusawa, Y.; Kato, T.; Ikenaga, M.

    1998-11-01

    We have studied the induction of morphological transformation of Syrian hamster embryo cells by low doses of heavy ions with different linear energy transfer (LET), ranging from 13 to 400 keV/μm. Exponentially growing cells were irradiated with 12C or 28Si ion beams generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC), inoculated to culture dishes, and transformed colonies were identified when the cells were densely stacked and showed a crisscross pattern. Over the LET range examined, the frequency of transformation induced by the heavy ions increased sharply at very low doses no greater than 5 cGy. The relative biological effectiveness (RBE) of the heavy ions relative to 250 kVp X-rays showed an initial increase with LET, reaching a maximum value of about 7 at 100 keV/μm, and then decreased with the further increase in LET. Thus, we confirmed that high LET heavy ions are significantly more effective than X-rays for the induction of in vitro cell transformation.

  14. Neoplastic transformation of hamster embyro cells by heavy ions.

    PubMed

    Han, Z; Suzuki, H; Suzuki, F; Suzuki, M; Furusawa, Y; Kato, T; Ikenaga, M

    1998-01-01

    We have studied the induction of morphological transformation of Syrian hamster embryo cells by low doses of heavy ions with different linear energy transfer (LET), ranging from 13 to 400 keV/micrometer. Exponentially growing cells were irradiated with 12C or 28Si ion beams generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC), inoculated to culture dishes, and transformed colonies were identified when the cells were densely stacked and showed a crisscross pattern. Over the LET range examined, the frequency of transformation induced by the heavy ions increased sharply at very low doses no greater than 5 cGy. The relative biological effectiveness (RBE) of the heavy ions relative to 250 kVp X-rays showed an initial increase with LET, reaching a maximum value of about 7 at 100 keV/micrometer, and then decreased with the further increase in LET. Thus, we confirmed that high LET heavy ions are significantly more effective than X-rays for the induction of in vitro cell transformation.

  15. The effect of pinealectomy, melatonin and leptin hormones on ovarian follicular development in female Syrian hamsters (Mesocricetus auratus).

    PubMed

    Karakaş, A; Kaya, Aliye; Gündüz, B

    2010-12-01

    We studied the effects of melatonin and leptin hormones on ovarian follicular development in intact and pinealectomized female Syrian hamsters. We first monitored the oestrous cycle of the hamsters by the vaginal smear samples throughout a ten day period to start the injections simultaneously in all groups and performed saline, melatonin and leptin hormone injection groups for both control and pinealectomized hamsters. Then the injections were applied for four days starting the oestrus phase of the cycle and the ovaries were removed for preparation of histological analysis. We measured the diameters and the numbers of the follicles and we classified the follicles according to the number of the granulosa cell layer. Leptin hormone injection increased melatonin hormone injection decreased the number and the diameter of the follicles. The stimulating effect of the leptin hormone was more pronounced in the pinealectomized group. The results of the present study indicate that the removal of the pineal gland and leptin hormone administration are playing a stimulatory while melatonin hormone administration is playing an inhibitory role on the follicular development in female Syrian hamsters.

  16. Lack of effective systemic therapy for recurrent clear cell carcinoma of the ovary.

    PubMed

    Crotzer, David R; Sun, Charlotte C; Coleman, Robert L; Wolf, Judith K; Levenback, Charles F; Gershenson, David M

    2007-05-01

    Clear cell carcinoma of the ovary is an aggressive tumor characterized by relative chemoresistance and a poor prognosis. The purpose of this study was to review our experience with recurrent clear cell carcinoma of the ovary to evaluate its responsiveness to systemic cytotoxic and hormonal agents. All patients diagnosed with clear cell carcinoma of the ovary seen at our institution between 1990 and 2002 were identified and their medical records reviewed. Eligibility criteria were: 1) primary diagnosis of clear cell carcinoma of the ovary, 2) measurable recurrent disease, 3) treatment of recurrent disease with 1 or more systemic regimens, and 4) adequate clinical information. End points were clinical response, progression-free survival, and overall survival. Fifty-one patients treated for recurrent clear cell carcinoma were identified. The patients received a total of 105 regimens (344 cycles of therapy). Among patients with platinum-sensitive disease (n=22 regimens), 2 patients (9%) had partial responses to retreatment with carboplatin plus paclitaxel, and 4 (18%) had stable disease. Among patients with platinum-resistant disease (n=83 regimens), only 1 patient (1%) had a partial response - to gemcitabine - and 1 patient had stable disease in response to 2 different regimens-paclitaxel and gemcitabine. The median progression-free survival was 8 months, and the median overall survival was 18 months. Our findings suggest that recurrent clear cell carcinoma of the ovary is particularly chemoresistant. A continued search for more active, targeted agents is warranted.

  17. Nesprin-2 epsilon: A novel nesprin isoform expressed in human ovary and Ntera-2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Le Thanh; Boehm, Sabrina V.; Roberts, Roland G.

    2011-08-26

    Highlights: {yields} A novel epsilon isoform of nesprin-2 has been discovered. {yields} This 120 kDa protein was predicted by bioinformatic analysis, but has not previously been observed. {yields} It is the main isoform expressed in a teratocarcinoma cell line and is also found in ovary. {yields} Like other nesprins, it is located at the nuclear envelope. {yields} We suggest it may have a role in very early development or in some ovary-specific function. -- Abstract: The nuclear envelope-associated cytoskeletal protein, nesprin-2, is encoded by a large gene containing several internal promoters that produce shorter isoforms. In a study of Ntera-2more » teratocarcinoma cells, a novel isoform, nesprin-2-epsilon, was found to be the major mRNA and protein product of the nesprin-2 gene. Its existence was predicted by bioinformatic analysis, but this is the first direct demonstration of both the mRNA and the 120 kDa protein which is located at the nuclear envelope. In a panel of 21 adult and foetal human tissues, the nesprin-2-epsilon mRNA was strongly expressed in ovary but was a minor isoform elsewhere. The expression pattern suggests a possible link with very early development and a likely physiological role in ovary.« less

  18. High-expression β(1) adrenergic receptor/cell membrane chromatography method based on a target receptor to screen active ingredients from traditional Chinese medicines.

    PubMed

    Yue, Yuan; Xue, Hui; Wang, Xin; Yang, Qian; Song, Yanhong; Li, Xiaoni

    2014-02-01

    β-Adrenergic receptors are important targets for drug discovery. We have developed a new β1 -adrenergic receptor cell membrane chromatography (β1 AR-CMC) with offline ultra-performance LC (UPLC) and MS method for screening active ingredients from traditional Chinese medicines. In this study, Chinese hamster ovary-S cells with high β1 AR expression levels were established and used to prepare a cell membrane stationary phase in a β1 AR-CMC model. The retention fractions were separated and identified by the UPLC-MS system. The screening results found that isoimperatorin from Rhizoma et Radix Notopterygii was the targeted component that could act on β1 AR in similar manner of metoprolol as a control drug. In addition, the biological effects of active component were also investigated in order to search for a new type of β1 AR antagonist. It will be a useful method for drug discovery as a leading compound resource. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Selective toxicity of 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide toward hypoxic mammalian cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauth, A.M.; Mohindra, J.K.

    1981-12-01

    The chemotherapeutic agent 5-(3,3-dimethyl-1-triazeno)-imidazole-4-carboxamide (DTIC) is used in the treatment of malignant melanoma where response rates of 15 to 30% have been reported. Some current interest exists in combining DTIC chemotherapy with localized high-dose (800 rads)-per-fraction radiotherapy in the treatment of unresectable metastatic melanoma. The present work investigates the radiosensitizing and chemotherapeutic properties of DTIC in an in vitro system using Chinese hamster ovary or HeLa cells and in vivo, using the KHT transplantable murine tumor. No evidence of a radiosensitizing effect of DTIC was found towards hypoxic or aerobic cells either in vitro or in vivo. In vitro, highmore » drug concentrations (1 mg/ml) were approximately 5 times more effective in killing hypoxic Chinese hamster ovary or HeLa cells than in killing aerobic cells over exposure times of 0 to 12 hr. The degree of toxicity was drug dose and temperature dependent but was not highly dependent on cell number or cell type. In vivo plasma levels of DTIC were measured with high-pressure liquid chromatography after i.p. injection of drug into C3H mice. At the highest drug doses tested, near the 50% lethal dose in mice for DTIC (0.5 mg/g), the drug was toxic to both aerobic and hypoxic tumor cells with some evidence of increased toxicity towards hypoxic cells. The present work suggests that DTIC may be more efficiently activated under hypoxic conditions as compared to aerobic conditions. The increased toxicity of DTIC under hypoxic versus aerobic conditions may prove to be a feature of this drug that can be exploited in its clinical use and in the design of new analogs of DTIC.« less

  20. Cloning and characterization of the hamster and guinea pig nicotinic acid receptors.

    PubMed

    Torhan, April Smith; Cheewatrakoolpong, Boonlert; Kwee, Lia; Greenfeder, Scott

    2007-09-01

    In this study, we present the identification and characterization of hamster and guinea pig nicotinic acid receptors. The hamster receptor shares approximately 80-90% identity with the nucleotide and amino acid sequences of human, mouse, and rat receptors. The guinea pig receptor shares 76-80% identity with the nucleotide and amino acid sequences of these other species. [(3)H]nicotinic acid binding affinity at guinea pig and hamster receptors is similar to that in human (dissociation constant = 121 nM for guinea pig, 72 nM for hamster, and 74 nM for human), as are potencies of nicotinic acid analogs in competition binding studies. Inhibition of forskolin-stimulated cAMP production by nicotinic acid and related analogs is also similar to the activity in the human receptor. Analysis of mRNA tissue distribution for the hamster and guinea pig nicotinic acid receptors shows expression across a number of tissues, with higher expression in adipose, lung, skeletal muscle, spleen, testis, and ovary.

  1. Manipulation of the sodium-potassium ratio as a lever for controlling cell growth and improving cell specific productivity in perfusion CHO cell cultures.

    PubMed

    Wang, Samantha B; Lee-Goldman, Alexandria; Ravikrishnan, Janani; Zheng, Lili; Lin, Henry

    2018-04-01

    Perfusion processes typically require removal of a continuous or semi-continuous volume of cell culture in order to maintain a desired target cell density. For fast growing cell lines, the product loss from this stream can be upwards of 35%, significantly reducing the overall process yield. As volume removed is directly proportional to cell growth, the ability to modulate growth during perfusion cell culture production thus becomes crucial. Leveraging existing media components to achieve such control without introducing additional supplements is most desirable because it decreases process complexity and eliminates safety and clearance concerns. Here, the impact of extracellular concentrations of sodium (Na) and potassium (K) on cell growth and productivity is explored. High throughput small-scale models of perfusion revealed Na:K ratios below 1 can significantly suppress cell growth by inducing cell cycle arrest in the G0/1 phase. A concomitant increase in cell specific productivity was also observed, reaching as high as 115 pg/cell/day for one cell line studied. Multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrated similar responses to lower Na:K media, indicating the universal applicability of such an approach. Product quality attributes were also assessed and revealed that effects were cell line specific, and can be acceptable or manageable depending on the phase of the drug development. Drastically altering Na and K levels in perfusion media as a lever to impact cell growth and productivity is proposed. © 2017 Wiley Periodicals, Inc.

  2. T cells are not required for pathogenesis in the Syrian hamster model of hantavirus pulmonary syndrome.

    PubMed

    Hammerbeck, Christopher D; Hooper, Jay W

    2011-10-01

    Andes virus (ANDV) is associated with a lethal vascular leak syndrome in humans termed hantavirus pulmonary syndrome (HPS). In hamsters, ANDV causes a respiratory distress syndrome closely resembling human HPS. The mechanism for the massive vascular leakage associated with HPS is poorly understood; however, T cell immunopathology has been implicated on the basis of circumstantial and corollary evidence. Here, we show that following ANDV challenge, hamster T cell activation corresponds with the onset of disease. However, treatment with cyclophosphamide or specific T cell depletion does not impact the course of disease or alter the number of surviving animals, despite significant reductions in T cell number. These data demonstrate, for the first time, that T cells are not required for hantavirus pathogenesis in the hamster model of human HPS. Depletion of T cells from Syrian hamsters did not significantly influence early events in disease progression. Moreover, these data argue for a mechanism of hantavirus-induced vascular permeability that does not involve T cell immunopathology.

  3. Expression pattern of RAGE and IGF-1 in the human fetal ovary and ovarian serous carcinoma.

    PubMed

    Poljicanin, Ana; Filipovic, Natalija; Vukusic Pusic, Tanja; Soljic, Violeta; Caric, Ana; Saraga-Babic, Mirna; Vukojevic, Katarina

    2015-01-01

    The expression pattern of RAGE and IGF-1 proteins in different ovarian cell lineages was histologically analyzed in six fetal, nine adult human ovaries, and nine serous ovarian carcinomas (OSC) using immunohistochemical methods. Mild expression of IGF-1 in ovarian surface epithelium (Ose) and oocytes in the 15-week human ovaries increased to moderate or strong in the stromal cells, oocytes and follicular cells in week 22. Occasional mild RAGE expression was observed in Ose during week 15, while strong expression characterized primordial follicles in week 22. In the reproductive human ovary, IGF-1 was mildly to moderately expressed in all ovarian cell lineages except in theca cells of the tertiary follicle where IGF-1 was negative. RAGE was strongly positive in the granulosa cells and some theca cells of the tertiary follicle, while negative to mildly positive in all cells of the secondary follicle. In the postmenopausal human ovary IGF-1 and RAGE were mildly expressed in Ose and stroma. In OSC, cells were strongly positive to IGF-1 and RAGE, except for some negative stromal cells. Different levels of IGF-1 and RAGE co-expression characterized fetal ovarian cells during development. In reproductive ovaries, IGF-1 and RAGE were co-localized in the granulosa and theca interna cells of tertiary follicles, while in postmenopausal ovaries and OSC, IGF-1 and RAGE were co-localized in Ose and OSC cells respectively. Our results indicate that intracellular levels of IGF-1 and RAGE protein might regulate the final destiny of the ovarian cell populations prior and during folliculogenesis, possibly controlling the metastatic potential of OSC as well. Copyright © 2015. Published by Elsevier GmbH.

  4. Atypical fibrosarcomas derived from cutaneous ganglion cell-like cells in 2 domestic Djungarian hamsters (Phodopus sungorus).

    PubMed

    Kondo, Hirotaka; Onuma, Mamoru; Shibuya, Hisashi; Sato, Tsuneo; Abbott, Jeffrey R

    2011-07-01

    Androgen-dependent atypical fibromas are benign tumors derived from ganglion-cell-like cells that are particular to Djungarian hamsters (Phodopus sungorus). Masses excised from 2 hamsters were composed of pleomorphic ganglion cell-like cells supported by small to moderate amounts of collagenous matrix. Intracytoplasmic fibrils were present in silver-stained sections, and immunohistochemistry showed that the cells expressed vimentin, androgen receptor, and, in one case, estrogen receptor α. In contrast to previously reported atypical fibromas, these tumors had features of anaplasia and were locally invasive. We diagnosed the tumors as atypical fibrosarcomas and consider them an unusual malignant counterpart of atypical fibroma. Copyright 2011 by the American Association for Laboratory Animal Science

  5. Poly(N-isopropylacrylamide)-coated thermo-responsive nanoparticles for controlled delivery of sulfonated Zn-phthalocyanine in Chinese hamster ovary cells in vitro and zebra fish in vivo

    NASA Astrophysics Data System (ADS)

    He, Jia; Chen, Ji-Yao; Wang, Pu; Wang, Pei-Nan; Guo, Jia; Yang, Wu-Li; Wang, Chang-Chun; Peng, Qian

    2007-10-01

    Poly(N-isopropylacrylamide) (PNIPAM)-coated Fe3O4@SiO2@CdTe multifunctional nanoparticles with photoluminescent (PL), thermosensitive and magnetic properties, were investigated as carriers to deliver water-soluble, fluorescent sulfonated Zn-phthalocyanine (ZnPcS), a photosensitizing drug for photodynamic therapy of cancer, in Chinese hamster ovary (CHO) cells in vitro and zebra fish in vivo. PNIPAM is a well-known thermo-responsive polymer with a volume phase transition temperature. This property allows it to be swollen in water at temperatures lower than 32-34 °C to take up ZnPcS and shrunken to expel the drug at higher temperatures. Since the PL band of CdTe quantum dots (QDs) as indicators for the nanoparticles is at 585 nm and the emission band of ZnPcS is at 680 nm, it is possible to study the temperature-dependent release of ZnPcS from the nanoparticles by fluorescence measurements. ZnPcS was embedded in the PNIPAM of the nanoparticles at 25 °C in phosphate buffered saline (PBS) solution and released at 37 °C, measured with a spectrophotometer. When CHO cells had been incubated with the ZnPcS-loaded nanoparticles at 27 °C, a similar intracellular localization pattern of CdTe QDs and ZnPcS was seen by multichannel measurements in confocal laser scanning microscopy (CLSM), but a diffuse pattern of only ZnPcS fluorescence was detected in the cytoplasm of the cells at 37 °C, indicating a release of ZnPcS from the nanoparticles. Similar results were also found in the intestinal tract of zebra fish in vivo after intake of the nanoparticles. Since the nanoparticles contain magnetic (Fe3O4) material, the nanoparticles could also be manipulated to change their location in the intestinal tract of the zebra fish with an external magnetic field gradient of 300 G mm-1. The results presented suggest that such multifunctional nanoparticles may have combined potential for temperature-dependent drug delivery, QD photodetection and magnetic manipulation in diagnosis and

  6. Thermal adaptation of the crucian carp (Carassius carassius) cardiac delayed rectifier current, IKs, by homomeric assembly of Kv7.1 subunits without MinK.

    PubMed

    Hassinen, Minna; Laulaja, Salla; Paajanen, Vesa; Haverinen, Jaakko; Vornanen, Matti

    2011-07-01

    Ectothermic vertebrates experience acute and chronic temperature changes which affect cardiac excitability and may threaten electrical stability of the heart. Nevertheless, ectothermic hearts function over wide range of temperatures without cardiac arrhythmias, probably due to special molecular adaptations. We examine function and molecular basis of the slow delayed rectifier K(+) current (I(Ks)) in cardiac myocytes of a eurythermic fish (Carassius carassius L.). I(Ks) is an important repolarizing current that prevents excessive prolongation of cardiac action potential, but it is extremely slowly activating when expressed in typical molecular composition of the endothermic animals. Comparison of the I(Ks) of the crucian carp atrial myocytes with the currents produced by homomeric K(v)7.1 and heteromeric K(v)7.1/MinK channels in Chinese hamster ovary cells indicates that activation kinetics and pharmacological properties of the I(Ks) are similar to those of the homomeric K(v)7.1 channels. Consistently with electrophysiological properties and homomeric K(v)7.1 channel composition, atrial transcript expression of the MinK subunit is only 1.6-1.9% of the expression level of the K(v)7.1 subunit. Since activation kinetics of the homomeric K(v)7.1 channels is much faster than activation of the heteromeric K(v)7.1/MinK channels, the homomeric K(v)7.1 composition of the crucian carp cardiac I(Ks) is thermally adaptive: the slow delayed rectifier channels can open despite low body temperatures and curtail the duration of cardiac action potential in ectothermic crucian carp. We suggest that the homomeric K(v)7.1 channel assembly is an evolutionary thermal adaptation of ectothermic hearts and the heteromeric K(v)7.1/MinK channels evolved later to adapt I(Ks) to high body temperature of endotherms.

  7. Gibberellin reactivates and maintains ovary-wall cell division causing fruit set in parthenocarpic Citrus species.

    PubMed

    Mesejo, Carlos; Yuste, Roberto; Reig, Carmina; Martínez-Fuentes, Amparo; Iglesias, Domingo J; Muñoz-Fambuena, Natalia; Bermejo, Almudena; Germanà, M Antonietta; Primo-Millo, Eduardo; Agustí, Manuel

    2016-06-01

    Citrus is a wide genus in which most of the cultivated species and cultivars are natural parthenocarpic mutants or hybrids (i.e. orange, mandarin, tangerine, grapefruit). The autonomous increase in GA1 ovary concentration during anthesis was suggested as being the stimulus responsible for parthenocarpy in Citrus regardless of the species. To determine the exact GA-role in parthenocarpic fruit set, the following hypothesis was tested: GA triggers and maintains cell division in ovary walls causing fruit set. Obligate and facultative parthenocarpic Citrus species were used as a model system because obligate parthenocarpic Citrus sp (i.e. Citrus unshiu) have higher GA levels and better natural parthenocarpic fruit set compared to other facultative parthenocarpic Citrus (i.e. Citrus clementina). The autonomous activation of GA synthesis in C. unshiu ovary preceded cell division and CYCA1.1 up-regulation (a G2-stage cell cycle regulator) at anthesis setting a high proportion of fruits, whereas C. clementina lacked this GA-biosynthesis and CYCA1.1 up-regulation failing in fruit set. In situ hybridization experiments revealed a tissue-specific expression of GA20ox2 only in the dividing tissues of the pericarp. Furthermore, CYCA1.1 expression correlated endogenous GA1 content with GA3 treatment, which stimulated cell division and ovary growth, mostly in C. clementina. Instead, paclobutrazol (GA biosynthesis inhibitor) negated cell division and reduced fruit set. Results suggest that in parthenocarpic citrus the specific GA synthesis in the ovary walls at anthesis triggers cell division and, thus, the necessary ovary growth rate to set fruit. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Stimulation of islet cell proliferation enhances pancreatic ductal carcinogenesis in the hamster model.

    PubMed Central

    Pour, P. M.; Kazakoff, K.

    1996-01-01

    Previous studies have shown that some N-nitrosobis (2-oxopropyl)amine (BOP)-induced ductal/ductular pancreatic cancers in the hamster model develop within islets and that streptozotocin (SZ) pretreatment that caused islet degeneration and atrophy inhibits pancreatic cancer induction. Hence, it appears that in this model islets play a significant role in exocrine pancreatic carcinogenesis. To examine whether stimulation of islet cell proliferation (nesidioblastosis) enhances pancreatic exocrine cancer development, we tested the effect of the pancreatic carcinogen BOP in hamsters after induction of nesidioblastosis by cellophane wrapping. Before wrapping, hamsters were treated with SZ to inhibit pancreatic tumor induction in the unwrapped pancreatic tissues. Control groups with a wrapped pancreas did not receive SZ. Six weeks after SZ treatment, all hamsters were treated with BOP (10 mg/kg body weight) weekly for 10 weeks and the experiment was terminated 38 weeks after the last BOP treatment. Many animals recovered from their diabetes at the time when BOP was injected and many more after BOP treatment. Only nine hamsters remained diabetic until the end of the experiment. Both SZ-treated and control groups developed proliferative and malignant pancreatic ductal-type lesions primarily in the wrapped area (47%) but less frequently in the larger segments of the pancreas, including the splenic lobe (34%), gastric lobe (13%), and duodenal lobe (6%). Only a few lesions developed in the unwrapped pancreatic region of nine diabetic hamsters with atrophic islets, whereas seven of these hamsters had tumors in the wrapped area. Histologically, most tumors appeared to originate from islets, many invasive carcinomas had foci of islets, and some tumor cells showed reactivity with anti-insulin. The results show that, in the BOP hamster model, islets are the site of formation of the major fraction of exocrine pancreatic cancer and that induction of nesidioblastosis enhances

  9. Transient transfection of mammalian cells using a violet diode laser

    NASA Astrophysics Data System (ADS)

    Torres-Mapa, Maria Leilani; Angus, Liselotte; Ploschner, Martin; Dholakia, Kishan; Gunn-Moore, Frank J.

    2010-07-01

    We demonstrate the first use of the violet diode laser for transient mammalian cell transfection. In contrast to previous studies, which showed the generation of stable cell lines over a few weeks, we develop a methodology to transiently transfect cells with an efficiency of up to ~40%. Chinese hamster ovary (CHO-K1) and human embryonic kidney (HEK293) cells are exposed to a tightly focused 405-nm laser in the presence of plasmid DNA encoding for a mitochondrial targeted red fluorescent protein. We report transfection efficiencies as a function of laser power and exposure time for our system. We also show, for the first time, that a continuous wave laser source can be successfully applied to selective gene silencing experiments using small interfering RNA. This work is a major step towards an inexpensive and portable phototransfection system.

  10. Transcription of CYP19A1 is directly regulated by SF-1 in the theca cells of ovary follicles in chicken.

    PubMed

    Wang, Jing; Gong, Yanzhang

    2017-06-01

    Many studies have suggested the important role of estrogen in ovarian differentiation and development of vertebrates including chicken. Cytochrome P450 aromatase, encoded by CYP19A1, is a key enzyme in estrogen synthesis, but the mechanism of CYP19A1 regulation in chicken remains unknown. Here, we found that CYP19A1 was only expressed in the theca cell layers of chicken ovary follicles. Steroidogenic factor 1 (SF-1, also named as nuclear receptor subfamily 5 group A member 1, NR5A1), a potential regulators, was expressed in both the theca cell layers and granulosa cell layers. Forkheadbox L2 (FOXL2), another potential regulator, was only expressed in the granulosa cell layers. Using luciferase assays in vitro, we found that SF-1 could activate the promoter of CYP19A1 by binding to the nuclear receptor half-site (5'-TCAAGGTCA-3') from -280 to -271 base pairs. FOXL2 did not activate the promoter of chicken CYP19A1 gene in either 293T or DF-1 cells. Overexpression of SF-1 in DF-1 cells upregulated aromatase expression, but FOXL2 could not. Taken together, our results indicated that SF-1 activates CYP19A1 mRNA expression via a conserved binding site in chicken ovary, but FOXL2 may not affect the expression of CYP19A1. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. T Cells Are Not Required for Pathogenesis in the Syrian Hamster Model of Hantavirus Pulmonary Syndrome ▿

    PubMed Central

    Hammerbeck, Christopher D.; Hooper, Jay W.

    2011-01-01

    Andes virus (ANDV) is associated with a lethal vascular leak syndrome in humans termed hantavirus pulmonary syndrome (HPS). In hamsters, ANDV causes a respiratory distress syndrome closely resembling human HPS. The mechanism for the massive vascular leakage associated with HPS is poorly understood; however, T cell immunopathology has been implicated on the basis of circumstantial and corollary evidence. Here, we show that following ANDV challenge, hamster T cell activation corresponds with the onset of disease. However, treatment with cyclophosphamide or specific T cell depletion does not impact the course of disease or alter the number of surviving animals, despite significant reductions in T cell number. These data demonstrate, for the first time, that T cells are not required for hantavirus pathogenesis in the hamster model of human HPS. Depletion of T cells from Syrian hamsters did not significantly influence early events in disease progression. Moreover, these data argue for a mechanism of hantavirus-induced vascular permeability that does not involve T cell immunopathology. PMID:21775442

  12. The Saccharomyces cerevisiae DPM1 gene encoding dolichol-phosphate-mannose synthase is able to complement a glycosylation-defective mammalian cell line.

    PubMed Central

    Beck, P J; Orlean, P; Albright, C; Robbins, P W; Gething, M J; Sambrook, J F

    1990-01-01

    The Saccharomyces cerevisiae DPM1 gene product, dolichol-phosphate-mannose (Dol-P-Man) synthase, is involved in the coupled processes of synthesis and membrane translocation of Dol-P-Man. Dol-P-Man is the lipid-linked sugar donor of the last four mannose residues that are added to the core oligosaccharide transferred to protein during N-linked glycosylation in the endoplasmic reticulum. We present evidence that the S. cerevisiae gene DPM1, when stably transfected into a mutant Chinese hamster ovary cell line, B4-2-1, is able to correct the glycosylation defect of the cells. Evidence for complementation includes (i) fluorescence-activated cell sorter analysis of differential lectin binding to cell surface glycoproteins, (ii) restoration of Dol-P-Man synthase enzymatic activity in crude cell lysates, (iii) isolation and high-performance liquid chromatography fractionation of the lipid-linked oligosaccharides synthesized in the transfected and control cell lines, and (iv) the restoration of endoglycosidase H sensitivity to the oligosaccharides transferred to a specific glycoprotein synthesized in the DPM1 CHO transfectants. Indirect immunofluorescence with a primary antibody directed against the DPM1 protein shows a reticular staining pattern of protein localization in transfected hamster and monkey cell lines. Images PMID:2201896

  13. Inhibitory effect of vitamin D-binding protein-derived macrophage activating factor on DMBA-induced hamster cheek pouch carcinogenesis and its derived carcinoma cell line.

    PubMed

    Toyohara, Yukiyo; Hashitani, Susumu; Kishimoto, Hiromitsu; Noguchi, Kazuma; Yamamoto, Nobuto; Urade, Masahiro

    2011-07-01

    This study investigated the inhibitory effect of vitamin D-binding protein-derived macrophage-activating factor (GcMAF) on carcinogenesis and tumor growth, using a 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced hamster cheek pouch carcinogenesis model, as well as the cytocidal effect of activated macrophages against HCPC-1, a cell line established from DMBA-induced cheek pouch carcinoma. DMBA application induced squamous cell carcinoma in all 15 hamsters of the control group at approximately 10 weeks, and all 15 hamsters died of tumor burden within 20 weeks. By contrast, 2 out of the 14 hamsters with GcMAF administration did not develop tumors and the remaining 12 hamsters showed a significant delay of tumor development for approximately 3.5 weeks. The growth of tumors formed was significantly suppressed and none of the hamsters died within the 20 weeks during which they were observed. When GcMAF administration was stopped at the 13th week of the experiment in 4 out of the 14 hamsters in the GcMAF-treated group, tumor growth was promoted, but none of the mice died within the 20-week period. On the other hand, when GcMAF administration was commenced after the 13th week in 5 out of the 15 hamsters in the control group, tumor growth was slightly suppressed and all 15 hamsters died of tumor burden. However, the mean survival time was significantly extended. GcMAF treatment activated peritoneal macrophages in vitro and in vivo, and these activated macrophages exhibited a marked cytocidal effect on HCPC-1 cells. Furthermore, the cytocidal effect of activated macrophages was enhanced by the addition of tumor-bearing hamster serum. These findings indicated that GcMAF possesses an inhibitory effect on tumor development and growth in a DMBA-induced hamster cheek pouch carcinogenesis model.

  14. Inhibitory effect of vitamin D-binding protein-derived macrophage activating factor on DMBA-induced hamster cheek pouch carcinogenesis and its derived carcinoma cell line

    PubMed Central

    TOYOHARA, YUKIYO; HASHITANI, SUSUMU; KISHIMOTO, HIROMITSU; NOGUCHI, KAZUMA; YAMAMOTO, NOBUTO; URADE, MASAHIRO

    2011-01-01

    This study investigated the inhibitory effect of vitamin D-binding protein-derived macrophage-activating factor (GcMAF) on carcinogenesis and tumor growth, using a 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced hamster cheek pouch carcinogenesis model, as well as the cytocidal effect of activated macrophages against HCPC-1, a cell line established from DMBA-induced cheek pouch carcinoma. DMBA application induced squamous cell carcinoma in all 15 hamsters of the control group at approximately 10 weeks, and all 15 hamsters died of tumor burden within 20 weeks. By contrast, 2 out of the 14 hamsters with GcMAF administration did not develop tumors and the remaining 12 hamsters showed a significant delay of tumor development for approximately 3.5 weeks. The growth of tumors formed was significantly suppressed and none of the hamsters died within the 20 weeks during which they were observed. When GcMAF administration was stopped at the 13th week of the experiment in 4 out of the 14 hamsters in the GcMAF-treated group, tumor growth was promoted, but none of the mice died within the 20-week period. On the other hand, when GcMAF administration was commenced after the 13th week in 5 out of the 15 hamsters in the control group, tumor growth was slightly suppressed and all 15 hamsters died of tumor burden. However, the mean survival time was significantly extended. GcMAF treatment activated peritoneal macrophages in vitro and in vivo, and these activated macrophages exhibited a marked cytocidal effect on HCPC-1 cells. Furthermore, the cytocidal effect of activated macrophages was enhanced by the addition of tumor-bearing hamster serum. These findings indicated that GcMAF possesses an inhibitory effect on tumor development and growth in a DMBA-induced hamster cheek pouch carcinogenesis model. PMID:22848250

  15. Molecular polygamy: The promiscuity of l-phenylalanyl-tRNA-synthetase triggers misincorporation of meta- and ortho-tyrosine in monoclonal antibodies expressed by Chinese hamster ovary cells.

    PubMed

    Popp, Oliver; Larraillet, Vincent; Kettenberger, Hubert; Gorr, Ingo H; Hilger, Maximiliane; Lipsmeier, Florian; Zeck, Anne; Beaucamp, Nicola

    2015-06-01

    In-depth analytical characterization of biotherapeutics originating from different production batches is mandatory to ensure product safety and consistent molecule efficacy. Previously, we have shown unintended incorporation of tyrosine (Tyr) and leucine/isoleucine (Leu/Ile) at phenylalanine (Phe) positions in a recombinant produced monoclonal antibody (mAb) using an orthogonal MASCOT/SIEVE based approach for mass spectrometry data analysis. The misincorporation could be avoided by sufficient supply of phenylalanine throughout the process. Several non-annotated signals in the primarily chromatographic peptide separation step for apparently single Phe→Tyr sequence variants (SVs) suggest a role for isobar tyrosine isoforms. Meta- and ortho-Tyr are spontaneously generated during aerobic fed-batch production processes using Chinese hamster ovary (CHO) cell lines. Process induced meta- and ortho-Tyr but not proteinogenic para-Tyr are incorporated at Phe locations in Phe-starved CHO cultures expressing a recombinant mAb. Furthermore, meta- and ortho-Tyr are preferably misincorporated over Leu. Structural modeling of the l-phenylalanyl-tRNA-synthetase (PheRS) substrate activation site indicates a possible fit of non-cognate ortho-Tyr and meta-Tyr substrates. Dose-dependent misincorporations of Tyr isoforms support the hypothesis that meta- and ortho-Tyr are competing, alternative substrates for PheRS in CHO processes. Finally, easily accessible at-line surrogate markers for Phe→Tyr SV formation in biotherapeutic production were defined by the calculation of critical ratios for meta-Tyr/Phe and ortho-Tyr/Phe to support early prediction of SV probability, and finally, to allow for immediate process controlled Phe→Tyr SV prevention. © 2014 Wiley Periodicals, Inc.

  16. Identification of oocyte progenitor cells in the zebrafish ovary.

    PubMed

    Draper, Bruce W

    2012-01-01

    Zebrafish breed year round and females are capable of producing thousands of eggs during their lifetime. This amazing fecundity is due to the fact that the adult ovary, contains premeiotic oocyte progenitor cells, called oogonia, which produce a continuous supply of new oocytes throughout adult life. Oocyte progenitor cells can be easily identified based on their expression of Vasa, and their characteristic nuclear morphology. Thus, the zebrafish ovary provides a unique and powerful system to study the genetic regulation of oocyte production in a vertebrate animal. A method is presented here for identifying oocyte progenitor cells in the zebrafish ovary using whole-mount confocal immunofluorescence that is simple and accurate.

  17. Infection of hamsters with historical and epidemic BI types of Clostridium difficile.

    PubMed

    Razaq, Nadia; Sambol, Susan; Nagaro, Kristin; Zukowski, Walter; Cheknis, Adam; Johnson, Stuart; Gerding, Dale N

    2007-12-15

    North American and European hospitals have reported outbreaks of Clostridium difficile-associated disease with unexpectedly high mortality caused by a newly recognized group of C. difficile strains, group BI. Our objective was to compare, in hamsters, the virulence of a historical nonepidemic BI type, BI1, with that of 2 recent epidemic BI types, BI6 and BI17, and with that of 2 standard toxigenic strains, K14 and 630. For each strain, 10 hamsters were given 1 dose of clindamycin, followed 5 days later with 100 C. difficile spores administered by gastric inoculation. Outcomes were recorded. The hamster model demonstrated variations in mean times from inoculation to death (for BI6, 40 h; for BI1, 48 h; for K14, 49 h; for BI17, 69 h; for 630, 102 h; for BI6, BI1, and K14 vs. 630, P< .01; for BI17 vs. 630, P< .05) and from colonization to death (for BI1, 7 h; for BI17, 13 h; for BI6, 16 h; for K14, 17 h; for 630, 52 h; for BI1, BI17, BI6, and K14 vs. 630, P< .01). Group BI strains were not more rapidly fatal than the standard toxinotype 0 strain K14 but were more rapidly fatal than the standard toxinotype 0 strain 630. BI6, the most common BI type in our collection, was particularly virulent in hamsters, consistently causing death within 48 h of inoculation.

  18. A Double Selection Approach to Achieve Specific Expression of Toxin Genes for Ovarian Cancer Gene Therapy

    DTIC Science & Technology

    2006-11-01

    fibers that served as the junction for the replacement of the OAdV7 tail domain, as well as other common sequences, is highlighted. The final Ad5Luc1-OvF...Fold increase in luciferase activity vs. Ad5 b Reference CHO Hamster ovary L/N 22 Soudais et al., 2000 RD Rhabdomyosarcoma L/N 1.5 Dmitriev et al., 1998...of OV-3 cells (human ovarian cancer, 23-fold) and CAR-deficient CHO cells (Chinese hamster ovary, 22-fold), suggesting that RD cells do not express

  19. Synergetic cholesterol-lowering effects of main alkaloids from Rhizoma Coptidis in HepG2 cells and hypercholesterolemia hamsters.

    PubMed

    Kou, Shuming; Han, Bing; Wang, Yue; Huang, Tao; He, Kai; Han, Yulong; Zhou, Xia; Ye, Xiaoli; Li, Xuegang

    2016-04-15

    Hyperlipidemia contributes to the progression of cardiovascular diseases. Main alkaloids from Rhizoma Coptidis including berberine (BBR), coptisine (COP), palmatine (PAL), epiberberine (EPI) and jatrorrhizine (JAT), improved dyslipidemia in hypercholesterolemic hamsters to a different degree. In this study, HepG2 cells and hypercholesterolemic hamsters were used to investigate the synergetic cholesterol-lowering efficacy of these five main alkaloids. The cellular lipid and cholesterol accumulation and in HepG2 cells were evaluated by Oil Red O staining and HPLC analysis. LDL receptor, 3-Hydroxy-3-methylglutaryl CoA reductase (HMGCR) and cholesterol 7-alpha-hydroxylase (CYP7A1) that involving cholesterol metabolism in HepG2 cells were measured by qRT-PCR, western blot and immunofluorescence analysis. The serum profiles including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-c) and high-density lipoprotein cholesterol (HDL-c), as well as TC and total bile acids (TBA) of feces in hypercholesterolemic hamsters were also measured. As compared to single alkaloids, the combination of five main alkaloids (COM) reduced the lipid and cholesterol accumulation in HepG2 cells more effectively and performed an advantageous effect on controlling TC, TG, LDL-c and HDL-c in hypercholesterolemic hamsters. More effective reduction of TBA and TC levels in feces of hamsters were achieved after the administration of COM. These effects were derived from the up-regulation of LDL receptor and CYP7A1, as well as HMGCR downregulation. Our results demonstrated that COM showed a synergetic cholesterol-lowering efficacy, which was better than single alkaloids and it might be considered as a potential therapy for hypercholesterolemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Induction of carcinomas and sarcomas by 9,10-dimethyl-1,2-benzanthracene administration into the hamster maxillary sinus.

    PubMed

    Yura, Y; Tsujimoto, H; Kusaka, J; Harada, K; Yoshida, H; Sato, M

    1995-03-01

    To determine whether the local administration of 9,10-dimethyl-1,2-benzanthracene (DMBA) into the hamster maxillary sinus induced carcinoma at the injected site, hamsters were injected with 30 microliters of 0.5% solution of DMBA in dimethyl sulfoxide (DMSO) through the infraorbital foramen into the maxillary sinus once weekly for 10 weeks (Group 2). Another group of hamsters (Group 1) received similar injections of 30 microliters of DMSO only. In a third group of animals (Group 3), a roll of oxycellulose was inserted into the maxillary sinus and 40 microliters of a 2% solution of DMBA in DMSO was injected once. Sinonasal carcinomas were demonstrated in 73% (8/11) of the hamsters in Group 2 and sarcomas were shown in 73% (8/11) of the hamsters in Group 3, as well as some carcinomas. No tumors were seen in the Group 1 hamsters. Histologic examination revealed squamous cell carcinomas arising from the surface epithelium and submucous glands of the nasal cavity and maxillary sinus. These findings indicate that the intrasinal administration of a 0.5% solution of DMBA in DMSO is a reliable method for inducing maxillary sinus cancer.

  1. CD147 overexpression promotes tumorigenicity in Chinese hamster ovary cells.

    PubMed

    Yong, Yu-Le; Liao, Cheng-Gong; Wei, Ding; Chen, Zhi-Nan; Bian, Huijie

    2016-04-01

    CD147 overexpresses in many epithelium-originated tumors and plays an important role in tumor migration and invasion. Most studies aim at the role of CD147 in tumor progression using tumor cell models. However, the influence of abnormal overexpression of CD147 on neoplastic transformation of normal cells is unknown. Here, the role of CD147 in malignant phenotype transformation in CHO cells was investigated. Three CHO cell lines that stably overexpressed CD147 (CHO-CD147), EGFP-CD147 (CHO-EGFP-CD147), and EGFP (CHO-EGFP) were generated by transfection of plasmids containing human CD147, EGFP-human CD147, and EGFP genes into CHO cells. Cell migration and invasion were detected by wound healing and transwell matrix penetration assay. Trypan blue exclusion, MTT, cell cycle analysis, and BrdU cell proliferation assay were used to detect cell viability and cell proliferation. Annexin V-FITC analysis was performed to detect apoptosis. We found that CD147 overexpression promoted the migration and invasion of CHO cells. CD147 accelerated the G1 to S phase transition and enhanced the CHO cell proliferation. Overexpression of CD147 inhibited both early- and late-stages of apoptosis of CHO-CD147 cells, which is caused by serum deprivation. CHO-EGFP-CD147 cells showed an increased anchorage-independent growth compared with CHO-EGFP cells as detected by soft-agar colony formation assay. The tumors formed by CHO-CD147 cells in nude mice were larger and coupled with higher expression of proliferating cell nuclear antigen and Ki-67 than that of CHO cells. In conclusion, human CD147 overexpression induces malignant phenotype in CHO cells. © 2015 International Federation for Cell Biology.

  2. Ovary and fimbrial stem cells: biology, niche and cancer origins.

    PubMed

    Ng, Annie; Barker, Nick

    2015-10-01

    The mammalian ovary is covered by a single-layered epithelium that undergoes rupture and remodelling following each ovulation. Although resident stem cells are presumed to be crucial for this cyclic regeneration, their identity and mode of action have been elusive. Surrogate stemness assays and in vivo fate-mapping studies using recently discovered stem cell markers have identified stem cell pools in the ovary and fimbria that ensure epithelial homeostasis. Recent findings provide insights into intrinsic mechanisms and local extrinsic cues that govern the function of ovarian and fimbrial stem cells. These discoveries have advanced our understanding of stem cell biology in the ovary and fimbria, and lay the foundations for evaluating the contribution of resident stem cells to the initiation and progression of human epithelial ovarian cancer.

  3. Germ stem cells are active in postnatal mouse ovary under physiological conditions

    PubMed Central

    Guo, Kun; Li, Chao-hui; Wang, Xin-yi; He, Da-jian; Zheng, Ping

    2016-01-01

    STUDY HYPOTHESIS Are active ovarian germ stem cells present in postnatal mouse ovaries under physiological conditions? STUDY FINDING Active ovarian germ stem cells exist and function in adult mouse ovaries under physiological conditions. WHAT IS KNOWN ALREADY In vitro studies suggested the existence of germ stem cells in postnatal ovaries of mouse, pig and human. However, in vivo studies provided evidence against the existence of active germ stem cells in postnatal mouse ovaries. Thus, it remains controversial whether such germ stem cells really exist and function in vivo in postnatal mammalian ovaries. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Octamer-binding transcription factor 4 (Oct4)-MerCreMer transgenic mice were crossed with R26R-enhanced yellow fluorescent protein (EYFP) mice to establish a tamoxifen-inducible tracing system so that Oct4-expressing potential ovarian germ stem cells in young adult mice (5–6 weeks old) can be labeled with EYFP. The germ cell activities of DNA replication, mitotic division, entry into meiosis and progression to primordial follicle stage were investigated by means of immunofluorescent staining of ovarian tissues collected at different time points post-tamoxifen injection (1 day, 3 days, 2 months and 4 months). Meiosis entry and primordial follicle formation were also measured by EYFP-labeled single-cell RT–PCR. Germ cell proliferation and mitotic division were examined through 5-bromodeoxyuridine triphosphate incorporation assay. At each time point, ovaries from two to three animals were used for each set of experiment. MAIN RESULTS AND THE ROLE OF CHANCE By labeling the Oct4-expressing small germ cells and tracing their fates for up to 4 months, we observed persistent meiosis entry and primordial follicle replenishment. Furthermore, we captured the transient processes of mitotic DNA replication as well as mitotic division of the marked germ cells at various time periods after tracing. These lines of evidence unambiguously

  4. Isolation and characterization of string-forming female germline stem cells from ovaries of neonatal mice.

    PubMed

    Liu, Jing; Shang, Dantong; Xiao, Yao; Zhong, Pei; Cheng, Hanhua; Zhou, Rongjia

    2017-09-29

    Germline stem cells are essential in the generation of both male and female gametes. In mammals, the male testis produces sperm throughout the entire lifetime, facilitated by testicular germline stem cells. Oocyte renewal ceases in postnatal or adult life in mammalian females, suggesting that germline stem cells are absent from the mammalian ovary. However, studies in mice, rats, and humans have recently provided evidence for ovarian female germline stem cells (FGSCs). A better understanding of the role of FGSCs in ovaries could help improve fertility treatments. Here, we developed a rapid and efficient method for isolating FGSCs from ovaries of neonatal mice. Notably, our FGSC isolation method could efficiently isolate on average 15 cell "strings" per ovary from mice at 1-3 days postpartum. FGSCs isolated from neonatal mice displayed the string-forming cell configuration at mitosis ( i.e. a "stringing" FGSC (sFGSC) phenotype) and a disperse phenotype in postnatal mice. We also found that sFGSCs undergo vigorous mitosis especially at 1-3 days postpartum. After cell division, the sFGSC membranes tended to be connected to form sFGSCs. Moreover, F-actin filaments exhibited a cell-cortex distribution in sFGSCs, and E-cadherin converged in cell-cell connection regions, resulting in the string-forming morphology. Our new method provides a platform for isolating FGSCs from the neonatal ovary, and our findings indicate that FGCSs exhibit string-forming features in neonatal mice. The sFGSCs represent a valuable resource for analysis of ovary function and an in vitro model for future clinical use to address ovarian dysfunction. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Cell-Matrix Interactions in Breast Carcinoma Invasion.

    DTIC Science & Technology

    1998-01-01

    concentrated in hemidesmosomes, adhesive junctions which connect the basement membrane to the intracellular keratin cytoskeleton. In virtually all...fibronectin receptor contribute to the adhesive abnormalities of transformed fibroblasts by overexpressing this integrin in Chinese hamster ovary (CHO) cells...normal breast epithelium , the integrins expressed in breast carcinoma cells are diffusely distributed over the cell surface (Zutter et al., 1990

  6. 2-Aminoanthracene, 5-fluorouracil, colchicine, benzo[a]pyrene, cadmium chloride and cytosine arabinoside tested in the in vitro mammalian cell micronucleus test (MNvit) in Chinese hamster ovary (CHO) cells at Covance Laboratories, Harrogate UK in support of OECD draft Test Guideline 487.

    PubMed

    Whitwell, James; Fowler, Paul; Allars, Sarah; Jenner, Karen; Lloyd, Melvyn; Wood, Debbie; Smith, Katie; Young, Jamie; Jeffrey, Laura; Kirkland, David

    2010-10-29

    The reference genotoxic agents 2-aminoanthracene (a metabolism dependent weak clastogen), 5-fluorouracil (a nucleoside analogue, characterised by a steep dose response profile), colchicine (an aneugen that inhibits tubulin polymerisation), benzo[a]pyrene (a polycyclic aromatic hydrocarbon requiring metabolic activation), cadmium chloride (an inorganic carcinogen), and cytosine arabinoside (a nucleoside analogue that inhibits the gap-filling step of excision repair) were tested in the in vitro micronucleus assay using the Chinese hamster ovary (CHO) cell line at Covance Laboratories, Harrogate, UK. All chemicals were treated in the absence and presence of cytokinesis block (via addition of cytochalasin B) with this work forming part of a collaborative evaluation of the toxicity measures recommended in the draft OECD Test Guideline 487 on the In vitro Mammalian Cell Micronucleus Test (MNvit). The toxicity measures used, detecting a possible combination of both cytostasis and cell death (though not cell death directly), were relative population doubling, relative increase in cell counts and relative cell counts for treatments in the absence of cytokinesis block, and replication index in the presence of cytokinesis block. All of the chemicals tested either gave marked positive increases in the percentage of micronucleated cells with and without cytokinesis block, or did not induce micronuclei at concentrations giving approximately 50-60% toxicity (cytostasis and cell death) or less by all of the toxicity measures used. The outcome from this series of tests supports the use of relative increase in cell counts and relative population doubling, as well as relative cell counts, as appropriate measures of cytotoxicity for the non-cytokinesis blocked in vitro micronucleus assay. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women.

    PubMed

    White, Yvonne A R; Woods, Dori C; Takai, Yasushi; Ishihara, Osamu; Seki, Hiroyuki; Tilly, Jonathan L

    2012-02-26

    Germline stem cells that produce oocytes in vitro and fertilization-competent eggs in vivo have been identified in and isolated from adult mouse ovaries. Here we describe and validate a fluorescence-activated cell sorting-based protocol that can be used with adult mouse ovaries and human ovarian cortical tissue to purify rare mitotically active cells that have a gene expression profile that is consistent with primitive germ cells. Once established in vitro, these cells can be expanded for months and can spontaneously generate 35- to 50-μm oocytes, as determined by morphology, gene expression and haploid (1n) status. Injection of the human germline cells, engineered to stably express GFP, into human ovarian cortical biopsies leads to formation of follicles containing GFP-positive oocytes 1-2 weeks after xenotransplantation into immunodeficient female mice. Thus, ovaries of reproductive-age women, similar to adult mice, possess rare mitotically active germ cells that can be propagated in vitro as well as generate oocytes in vitro and in vivo.

  8. Oocyte formation by mitotically-active germ cells purified from ovaries of reproductive age women

    PubMed Central

    White, Yvonne A. R.; Woods, Dori C.; Takai, Yasushi; Ishihara, Osamu; Seki, Hiroyuki; Tilly, Jonathan L.

    2012-01-01

    Germline stem cells that produce oocytes in vitro and fertilization-competent eggs in vivo have been identified in and isolated from adult mouse ovaries. Here we describe and validate a FACS-based protocol that can be used with adult mouse ovaries and human ovarian cortical tissue to purify rare mitotically-active cells that exhibit a gene expression profile consistent with primitive germ cells. Once established in vitro, these cells can be expanded for months and spontaneously generate 35–50 µm oocytes, as determined by morphology, gene expression and attainment of haploid (1n) status. Injection of the human germline cells, engineered to stably express GFP, into human ovarian cortical biopsies leads to formation of follicles containing GFP-positive oocytes 1–2 weeks after xenotransplantation into immunodeficient female mice. Thus, ovaries of reproductive-age women, like adult mice, possess rare mitotically-active germ cells that can be propagated in vitro as well as generate oocytes in vitro and in vivo. PMID:22366948

  9. Honeybee product therapeutic as stem cells homing for ovary failure.

    PubMed

    Safitri, Erma; Widiyatno, Thomas V; Prasetyo, R Heru

    2016-11-01

    Complexity of the method of isolation, cultivation in vitro and the expensive cost of transplantation process of stem cells, it would require an innovation to homing and differentiation of stem cells and increase folliculogenesis. The stem cells homing was achieved through the provision of food or beverages derived from natural materials like honeybee product. Through honeybee product, there will be homing of stem cells and accompany with the sources from the body itself will take place in regeneration of the ovary. Female rats model of degenerative ovary was obtained through food fasting but still have drinking water for 5 days. It caused malnutrition and damage of the ovarian tissue. The administration of 50% honeybee product (T1) was performed for 10 consecutive days, while the positive control group (T0+) was fasted and not given honeybee product and the negative control (T0-) not fasted and without honeybee product. Observations were taken for homing of stem cells, raised of folliculogenesis, differentiation of stem cells, and regeneration of the ovarian tissue using routine H&E staining. Homing of stem cells shown the vascular endothelial growth factor and granulocyte colony-stimulating factor expression; enhancement of folliculogenesis was indicated by an increase of follicle dee Graaf count; enhancement of differentiation of stem cells was indicated by growth differentiation factor-9 expression; and regeneration of ovarian tissue indicated by intact ovarian tissue with growing follicles. Honeybee product can be induced endogenous stem cells in regeneration of ovary failure due to malnutrition.

  10. [Dependence of ion transport across the plasma membrane on the density of the cell culture. I. Ion flows and the potassium and sodium content in 3 Chinese hamster cell lines (CHO)].

    PubMed

    Marakhova, I I; Pospelova, T V; Vinogradova, T A; Vereninov, A A; Ignatova, T N

    1985-09-01

    Cation transport has been investigated in three lines of Chinese ovary cells CHO-K1 during the cell culture growth. With the increase in the cell density potassium and sodium contents decreased from 1.2 to 0.8-0.5 and from 0.5 to 0.15-0.1 mmole/g protein, respectively. The time courses of potassium and sodium changes were different, and the increase in intracellular K/Na ratio from 1.5-2.0 to 5-10 with the increase in cell density was revealed. The rubidium influx was found to decrease during the culture growth mainly due to the decrease in ouabain-inhibitable and (ouabain + furosemide)- non-inhibitable influxes. The changes in cation fluxes and cation contents were observed in transformed cells without contact inhibition of division and were considered as a manifestation of density-dependent alterations of plasma membrane.

  11. A role for heparan sulfate 3-O-sulfotransferase isoform 2 in herpes simplex virus type 1 entry and spread

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Donnell, Christopher D.; Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612; Tiwari, Vaibhav

    2006-03-15

    Heparan sulfate (HS) 3-O-sulfotransferase isoform-2 (3-OST-2), which belongs to a family of enzymes capable of generating herpes simplex virus type-1 (HSV-1) entry and spread receptors, is predominantly expressed in human brain. Despite its unique expression pattern, the ability of 3-OST-2 to mediate HSV-1 entry and cell-to-cell fusion is not known. Our results demonstrate that expression of 3-OST-2 can render Chinese hamster ovary K1 (CHO-K1) cells susceptible to entry of wild-type and mutant strains of HSV-1. Evidence for generation of gD receptors by 3-OST-2 were suggested by gD-mediated interference assay and the ability of 3-OST-2-expressing CHO-K1 cells to preferentially bind HSV-1more » gD, which could be reversed by prior treatment of cells with HS lyases (heparinases II/III). In addition, 3-OST-2-expressing CHO-K1 cells acquired the ability to fuse with cells-expressing HSV-1 glycoproteins, a phenomenon that mimics a way of viral spread in vivo. Demonstrating specificity, the cell fusion was inhibited by soluble 3-O-sulfated forms of HS, but not unmodified HS. Taken together, our results raise the possibility of a role of 3-OST-2 in the spread of HSV-1 infection in the brain.« less

  12. The evolution of chromosomal instability in Chinese hamster cells: a changing picture?

    NASA Technical Reports Server (NTRS)

    Ponnaiya, B.; Limoli, C. L.; Corcoran, J.; Kaplan, M. I.; Hartmann, A.; Morgan, W. F.

    1998-01-01

    PURPOSE: To investigate the kinetics of chromosomal instability induced in clones of Chinese hamster cells following X-irradiation. MATERIALS AND METHODS: X-irradiated clones of GM10115, human-hamster hybrid cells containing a single human chromosome 4 (HC4), have been previously established. These clones were defined as unstable if they contained > or = three subpopulations of cells with unique rearrangements of HC4 as detected by FISH. Stable and unstable clones were analysed by FISH and Giemsa staining at various times post-irradiation. RESULTS: While most of the stable clones continued to show chromosomal stability of HC4 over time, one became marginally unstable at approximately 45 population doublings post-irradiation. Clones exhibiting chromosomal instability had one of several fates. Many of the unstable clones were showed similar levels of instability over time. However, one unstable clone became stable with time in culture, while another became even more unstable over time. Cytogenetic analyses of all clones after Giemsa staining indicated that in some clones the hamster chromosomes were rearranged independent of HC4, demonstrating increased frequencies of chromatid breaks and dicentric chromosomes. The majority of the unstable clones also had higher yields of chromatid gaps. CONCLUSIONS: These data demonstrate the dynamic nature of chromosomal instability as measured by two different cytogenetic assays.

  13. Thyroid cell lines in research on goitrogenesis.

    PubMed

    Gerber, H; Peter, H J; Asmis, L; Studer, H

    1991-12-01

    Thyroid cell lines have contributed a lot to the understanding of goitrogenesis. The cell lines mostly used in thyroid research are briefly discussed, namely the rat thyroid cell lines FRTL and FRTL-5, the porcine thyroid cell lines PORTHOS and ARTHOS, The sheep thyroid cell lines OVNIS 5H and 6H, the cat thyroid cell lines PETCAT 1 to 4 and ROMCAT, and the human thyroid cell lines FTC-133 and HTh 74. Chinese hamster ovary (CHO) cells and COS-7 cells, stably transfected with TSH receptor cDNA and expressing a functional TSH receptor, are discussed as examples for non-thyroidal cells, transfected with thyroid genes.

  14. Modulation of translation-initiation in CHO-K1 cells by rapamycin-induced heterodimerization of engineered eIF4G fusion proteins.

    PubMed

    Schlatter, Stefan; Senn, Claudia; Fussenegger, Martin

    2003-07-20

    Translation-initiation is a predominant checkpoint in mammalian cells which controls protein synthesis and fine-tunes the flow of information from gene to protein. In eukaryotes, translation-initiation is typically initiated at a 7-methyl-guanylic acid cap posttranscriptionally linked to the 5' end of mRNAs. Alternative cap-independent translation-initiation involves 5' untranslated regions (UTR) known as internal ribosome entry sites, which adopt a particular secondary structure. Translation-initiating ribosome assembly at cap or IRES elements is mediated by a multiprotein complex of which the initiation factor 4F (eIF4F) consisting of eIF4A (helicase), eIF4E (cap-binding protein), and eIF4G is a major constituent. eIF4G is a key target of picornaviral protease 2A, which cleaves this initiation factor into eIF4G(Delta) and (Delta)eIF4G to redirect the cellular translation machinery exclusively to its own IRES-containing transcripts. We have designed a novel translation control system (TCS) for conditional as well as adjustable translation of cap- and IRES-dependent transgene mRNAs in mammalian cells. eIF4G(Delta) and (Delta)eIF4G were fused C- and N-terminally to the FK506-binding protein (FKBP) and the FKBP-rapamycin-binding domain (FRB) of the human FKBP-rapamycin-associated protein (FRAP), respectively. Rapamycin-induced heterodimerization of eIF4G(Delta)-FKBP and FRB-(Delta)eIF4G fusion proteins reconstituted a functional chimeric elongation factor 4G in a dose-dependent manner. Rigorous quantitative expression analysis of cap- and IRES-dependent SEAP- (human placental secreted alkaline phosphatase) and luc- (Photinus pyralis luciferase) encoding reporter constructs confirmed adjustable translation control and revealed increased production of desired proteins in response to dimerization-induced heterologous eIF4G in Chinese hamster ovary (CHO-K1) cells. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 83: 210-225, 2003.

  15. Induction of morphological transformation in mouse C3H/10T1/2 clone 8 cells and chromosomal damage in hamster A(T1)C1-3 cells by cancer chemotherapeutic agents.

    PubMed

    Benedict, W F; Banerjee, A; Gardner, A; Jones, P A

    1977-07-01

    Various cancer chemotherapeutic agents including alkylating agents, antimetabolites, and antibiotics or natural products were studied for their ability to produce morphological transformation in the C3H/10T1/2 clone 8 mouse cell line and chromosomal damage in the A(T1)C1-3 hamster cell line following a 24-hr exposure of each agent at different concentrations. Those drugs that were known to be carcinogenic in vivo also produced morphological transformation and chromosomal damage, whereas those agents that have not been shown to be carcinogenic in vivo produced neither transformation nor chromosomal lesions. The concentrations used for these studies were in general similar to those actually reached in the plasma of patients treated with these same drugs for malignant, as well as certain nonmalignant, conditions.

  16. The hSK4 (KCNN4) isoform is the Ca2+-activated K+ channel (Gardos channel) in human red blood cells.

    PubMed

    Hoffman, Joseph F; Joiner, William; Nehrke, Keith; Potapova, Olga; Foye, Kristen; Wickrema, Amittha

    2003-06-10

    The question is, does the isoform hSK4, also designated KCNN4, represent the small conductance, Ca2+-activated K+ channel (Gardos channel) in human red blood cells? We have analyzed human reticulocyte RNA by RT-PCR, and, of the four isoforms of SK channels known, only SK4 was found. Northern blot analysis of purified and synchronously growing human erythroid progenitor cells, differentiating from erythroblasts to reticulocytes, again showed only the presence of SK4. Western blot analysis, with an anti-SK4 antibody, showed that human erythroid progenitor cells and, importantly, mature human red blood cell ghost membranes, both expressed the SK4 protein. The Gardos channel is known to turn on, given inside Ca2+, in the presence but not the absence of external Ko+ and remains refractory to Ko+ added after exposure to inside Ca2+. Heterologously expressed SK4, but not SK3, also shows this behavior. In inside-out patches of red cell membranes, the open probability (Po) of the Gardos channel is markedly reduced when the temperature is raised from 27 to 37 degrees C. Net K+ efflux of intact red cells is also reduced by increasing temperature, as are the Po values of inside-out patches of Chinese hamster ovary cells expressing SK4 (but not SK3). Thus the envelope of evidence indicates that SK4 is the gene that codes for the Gardos channel in human red blood cells. This channel is important pathophysiologically, because it represents the major pathway for cell shrinkage via KCl and water loss that occurs in sickle cell disease.

  17. Expression of SIRT1 in the ovaries of rats with polycystic ovary syndrome before and after therapeutic intervention with exenatide.

    PubMed

    Tao, Xin; Zhang, Xiao; Ge, Shu-Qi; Zhang, Er-Hong; Zhang, Bin

    2015-01-01

    To investigate the expression of silent information regulator 1 (SIRT1) in rats with polycystic ovary syndrome (PCOS) and its alteration after exenatide treatment. PCOS rat model was established by dehydroepiandrosterone induction. The animals were randomly divided into exenatide treatment group (EX group, n = 10), metformin treatment group (MF group, n = 10), PCOS group (PCOS group, n = 9) and normal control group (NC group, n = 10). Histological changes of the ovarian tissues were examined by HE staining. SIRT1 expression in the ovarian tissue was detected by RT-PCR and immunohistochemistry. Rats in the PCOS group lost their estrous cycle. Histological observation of the ovary showed saccular dilatation of the follicle, decreased number of corpora lutea, fewer layers of granulosa cells aligned loosely, and thickened layer of theca cells. The changes in reproductive hormones and the development of insulin resistance suggested the successful establishment of the animal models. Immunohistochemistry and Q-PCR detected the mRNA and protein expressions of SIRT1 in the ovary tissues of rats in the normal control group. The SIRT1 expression was significantly lower in PCOS group than in control group (P < 0.05); after drug intervention, the SIRT1 expression significantly increased in EX and MF groups (compared with the PCOS group), whereas no significant difference was noted between the EX group and MF group. The SIRT1 expression in the ovary tissue decreases in PCOS rats (compare with the normal rats) but can be up-regulated after Ex or MF treatment. These drugs may affect the process and development of PCOS by regulating the SIRT1 expression. Exenatide may be therapeutic for PCOS by up-regulating the SITR1 expression.

  18. Immunohistochemical evaluation of proliferation, apoptosis and steroidogenic enzymes in the ovary of rats with polycystic ovary.

    PubMed

    Lombardi, Leonardo Augusto; Simões, Ricardo Santos; Maganhin, Carla Cristina; Baracat, Maria Cândida Pinheiro; Silva-Sasso, Gisela Rodrigues; Florencio-Silva, Rinaldo; Soares, José Maria; Baracat, Edmund Chada

    2014-07-01

    to evaluate the immunohistochemical expression of proliferative, apoptotic and steroidogenic enzyme markers in the ovaries of rats with polycystic ovary syndrome (PCOS). twenty rats were divided into two groups: GCtrl - estrous phase, and PCOS - with polycystic ovaries. The GCtrl animals were subjected to a lighting period from 7 am to 7 pm, while the animals with PCOS group remained with continuous lighting for 60 days. Subsequently, the animals were anesthetized, the ovaries were removed and fixed in 10% formaldehyde, prior to paraffin embedding. Sections were stained using H.E. or subjected to immunohistochemical methods for the detection of Ki-67, cleaved caspase-3, CYP11A1, CYP17A1 and CYP19A1. The results were analyzed using Student's t-test (p < 0,05). morphological results showed evidence of interstitial cells originating from the inner theca cells of degenerating ovarian cysts in PCOS. Immunoexpression of Ki-67 was higher in the granulosa cells in GCtrl, and the theca interna cells in PCOS, while cleaved caspase-3 was higher in granulosa cells of ovarian cysts from PCOS and in the theca interna cells of GCtrl. Immunoreactivity of CYP11A1 in the theca interna, granulosa and interstitial cells was similar between the two groups, while CYP17A1 and CYP19A1 were higher in the granulosa and interstitial cells in the PCOS group. the results indicate that the interstitial cells are derived from the theca interna and that enzymatic changes occur in the theca interna and interstitial cells in ovaries of rats with PCOS, responsible for the high levels of androgens and estradiol.

  19. Occurrence, Synthesis and Mammalian Cell Cytotoxicity and Genotoxicity of Haloacetamides: An Emerging Class of Nitrogenous Drinking Water Disinfection By-Products

    EPA Science Inventory

    The haloacetamides, a class of emerging nitrogenous drinking water disinfection by-products (DBPs), were analyzed for their chronic cytotoxicity and for the induction of genomic DNA damage in Chinese hamster ovary cells.

  20. Identification of shed proteins from Chinese hamster ovary cells: Application of statistical confidence using human and mouse protein databases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahram, Mamoun; Strittmatter, Eric F.; Monroe, Matthew E.

    The shedding process releases ligands, receptors, and other proteins from the surface of the cell and is a mechanism whereby cells communicate. Even though altered regulation of this process has been implicated in several diseases, global approaches to evaluate shed proteins have not been developed. A goal of this study was to identify global changes in shed proteins in media taken from cells exposed to low-doses of radiation in an effort to develop a fundamental understanding of the bystander response. CHO cells were chosen for this study because they have been widely used for radiation studies and since they havemore » been reported to respond to radiation by releasing factors into the media that cause genomic instability and cytotoxicity in unexposed cells, i.e., a bystander effect. Media samples taken for irradiated cells were evaluated using a combination of tandem- and FTICR-mass spectrometry analysis. Since the hamster genome has not been sequenced, mass spectrometry data was searched against the mouse and human proteins databases. Nearly 150 proteins that were identified by tandem mass spectrometry were confirmed by FTICR. When both types of mass spectrometry data were evaluated with a new confidence scoring tool, which is based on discriminant analyses, about 500 protein were identified. Approximately 20% of these identifications were either integral membrane proteins or membrane associated proteins, suggesting that they were derived from the cell surface, hence were likely shed. However, estimates of quantitative changes, based on two independent mass spectrometry approaches, did not identify any protein abundance changes attributable to the bystander effect. Results from this study demonstrate the feasibility of global evaluation of shed proteins using mass spectrometry in conjunction with cross-species protein databases and that significant improvement in peptide/protein identifications is provided by the confidence scoring tool.« less

  1. Monoclonal Antibody L1Mab-13 Detected Human PD-L1 in Lung Cancers.

    PubMed

    Yamada, Shinji; Itai, Shunsuke; Nakamura, Takuro; Yanaka, Miyuki; Chang, Yao-Wen; Suzuki, Hiroyoshi; Kaneko, Mika K; Kato, Yukinari

    2018-04-01

    Programmed cell death ligand-1 (PD-L1) is a type I transmembrane glycoprotein expressed on antigen-presenting cells. It is also expressed in several tumor cells such as melanoma and lung cancer cells. A strong correlation has been reported between human PD-L1 (hPD-L1) expression in tumor cells and negative prognosis in cancer patients. Here, a novel anti-hPD-L1 monoclonal antibody (mAb) L 1 Mab-13 (IgG 1 , kappa) was produced using a cell-based immunization and screening (CBIS) method. We investigated hPD-L1 expression in lung cancer using flow cytometry, Western blot, and immunohistochemical analyses. L 1 Mab-13 specifically reacted hPD-L1 of hPD-L1-overexpressed Chinese hamster ovary (CHO)-K1 cells and endogenous hPD-L1 of KMST-6 (human fibroblast) in flow cytometry and Western blot. Furthermore, L 1 Mab-13 reacted with lung cancer cell lines (EBC-1, Lu65, and Lu99) in flow cytometry and stained lung cancer tissues in a membrane-staining pattern in immunohistochemical analysis. These results indicate that a novel anti-hPD-L1 mAb, L 1 Mab-13, is very useful for detecting hPD-L1 of lung cancers in flow cytometry, Western blot, and immunohistochemical analyses.

  2. Effects of porcine pancreatic enzymes on the pancreas of hamsters. Part 1: basic studies.

    PubMed

    Saruc, Murat; Nozawa, Fumiaki; Yalniz, Mehmet; Itami, Atsushi; Pour, Parviz M

    2012-09-10

    Porcine pancreatic enzymes (PPE) extracted from glandular stomach has been used for the treatment of pancreatic cancer patients. Unfortunately, no information is available on the in vitro and in vivo effect on the pancreas and other tissues. We used Syrian Golden hamsters, a unique pancreatic cancer model, to obtain basic information on PPE for its eventual use for the treatment of pancreatic cancer. PPE was used in different concentrations in vitro and in vivo. The stability of the enzyme in the water solution was investigated. It was given to the hamsters by gavage in concentrations of 1g/kg and 400 mg/kg for short periods and in aqueous solution for 65 days. Plasma enzyme and insulin, the size of islets and the number of the insulin cells per islet were examined. The enzyme activity of PPE was maintained in water solution for at least 24 hours. Due to its content of calcium chloride it showed a high toxicity to normal and malignant hamster pancreatic cancer cells and human pancreatic cancer cell lines in vitro. PPE did not alter the plasma pancreatic enzyme levels regardless of the dose, duration and application route. On the contrary, PPE reduced their levels significantly. Remarkably, it also reduced the level of insulin, the size of the islets and the number of insulin cells in the islets significantly. The results imply that PPE does not enter the blood circulation but it appears to slow down the function of both the exocrine and endocrine pancreas.

  3. Long-QT mutation p.K557E-Kv7.1: dominant-negative suppression of IKs, but preserved cAMP-dependent up-regulation.

    PubMed

    Spätjens, Roel L H M G; Bébarová, Markéta; Seyen, Sandrine R M; Lentink, Viola; Jongbloed, Roselie J; Arens, Yvonne H J M; Heijman, Jordi; Volders, Paul G A

    2014-10-01

    Mutations in KCNQ1, encoding for Kv7.1, the α-subunit of the IKs channel, cause long-QT syndrome type 1, potentially predisposing patients to ventricular tachyarrhythmias and sudden cardiac death, in particular, during elevated sympathetic tone. Here, we aim at characterizing the p.Lys557Glu (K557E) Kv7.1 mutation, identified in a Dutch kindred, at baseline and during (mimicked) increased adrenergic tone. K557E carriers had moderate QTc prolongation that augmented significantly during exercise. IKs characteristics were determined after co-expressing Kv7.1-wild-type (WT) and/or K557E with minK and Yotiao in Chinese hamster ovary cells. K557E caused IKs loss of function with slowing of the activation kinetics, acceleration of deactivation kinetics, and a rightward shift of voltage-dependent activation. Together, these contributed to a dominant-negative reduction in IKs density. Confocal microscopy and western blot indicated that trafficking of K557E channels was not impaired. Stimulation of WT IKs by 3'-5'-cyclic adenosine monophosphate (cAMP) generated strong current up-regulation that was preserved for K557E in both hetero- and homozygosis. Accumulation of IKs at fast rates occurred both in WT and in K557E, but was blunted in the latter. In a computational model, K557E showed a loss of action potential shortening during β-adrenergic stimulation, in accordance with the lack of QT shortening during exercise in patients. K557E causes IKs loss of function with reduced fast rate-dependent current accumulation. cAMP-dependent stimulation of mutant IKs is preserved, but incapable of fully compensating for the baseline current reduction, explaining the long QT intervals at baseline and the abnormal QT accommodation during exercise in affected patients. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  4. Stromal p16 Overexpression in Adult Granulosa Cell Tumors of the Ovary.

    PubMed

    Na, Kiyong; Sung, Ji-Youn; Kim, Hyun-Soo

    2017-05-01

    Adult granulosa cell tumor of the ovary is usually diagnosed at an early stage. However, most patients with advanced or recurrent disease will die of the disease due to limited treatment options. Data on the stromal p16 expression of ovarian adult granulosa cell tumors are limited. The aim of this study was to analyze the immunohistochemical p16 expression in the peritumoral stroma of primary and recurrent adult granulosa cell tumors and investigate whether there were significant differences in stromal p16 expression among nonpathological ovaries, benign sex cord-stromal tumors, and adult granulosa cell tumors. This study included 13 and 11 cases of primary and recurrent adult granulosa cell tumors, respectively. Non-pathological ovaries and benign sex cord-stromal tumors showed negative or weak positive expression, whereas most of the adult granulosa cell tumors showed diffuse and moderate-to-strong immunostaining. Primary adult granulosa cell tumors had significantly higher stromal p16 expression levels than nonpathological ovaries and benign sex cord-stromal tumors (p<0.001). Moreover, recurrent adult granulosa cell tumors showed significantly elevated levels of stromal p16 expression compared to primary adult granulosa cell tumors (p=0.032). In contrast, the difference in stromal p16 expression between non-pathological ovaries and benign sex cord-stromal tumors was not statistically significant (p=0.522). Our observations suggest that stromal p16 expression may be involved in the development and progression of ovarian adult granulosa cell tumors. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. Prevention of Simian Virus 40 Tumors by Hamster Fetal Tissue: Influence of Parity Status of Donor Females on Immunogenicity of Fetal Tissue and on Immune Cell Cytotoxicity

    PubMed Central

    Girardi, Anthony J.; Reppucci, Phyllis; Dierlam, Peggy; Rutala, William; Coggin, Joseph H.

    1973-01-01

    Fetal tissue from primiparous hamsters prevented simian virus 40 (SV40) tumorigenesis in male hamsters, whereas fetal tissue from multiparous hamsters did not. The parity status of normal (uninoculated) hamsters also influenced the cytotoxicity of their lymphoid cells against tumor cells. Lymph node cells from nonpregnant primiparous and multiparous animals were cytotoxic in microcytotoxicity tests against SV40, polyoma, and adenovirus 7 tumor cells, but were not active against control BHK cells. Lymph node cells from virgin female donors were inactive. Peritoneal exudate cells from these donors reacted in similar fashion against SV40 tumor cells in vitro and in adoptive transfer tests in vivo. However, the cytotoxicity of peritoneal exudate cells from multiparous hamsters was greatly reduced during pregnancy, a time when noncytotoxic humoral antibody reactive with surface antigen of SV40 tumor cells is present. This humoral antibody is not detected during first pregnancy, and peritoneal exudate cells obtained from pregnant primiparous hamsters demonstrated a high degree of cytotoxicity. PMID:4346032

  6. Separation of CHO cells using hydrocyclones.

    PubMed

    Pinto, Rodrigo C V; Medronho, Ricardo A; Castilho, Leda R

    2008-01-01

    Hydrocyclones are simple and robust separation devices with no moving parts. In the past few years, their use in animal cell separation has been proposed. In this work, the use of different hydrocyclone configurations for Chinese hamster ovary (CHO) cell separation was investigated following an experimental design. It was shown that cell separation efficiencies for cultures of the wild-type CHO.K1 cell line and of a recombinant CHO cell line producing granulocyte-macrophage colony stimulating factor (GM-CSF) were kept above 97%. Low viability losses were observed, as measured by trypan blue exclusion and by determination of intracellular lactate dehydrogenase (LDH) released to the culture medium. Mathematical models were proposed to predict the flow rate, flow ratio and separation efficiency as a function of hydrocyclone geometry and pressure drop. When cells were monitored for any induction of apoptosis upon passage through the hydrocyclones, no increase in apoptotic cell concentration was observed within 48 h of hydrocycloning. Thus, based on the high separation efficiencies, the robustness of the equipment, and the absence of apoptosis induction, hydrocyclones seem to be specially suited for use as cell retention devices in long-term perfusion runs.

  7. The hSK4 (KCNN4) isoform is the Ca2+-activated K+ channel (Gardos channel) in human red blood cells

    PubMed Central

    Hoffman, Joseph F.; Joiner, William; Nehrke, Keith; Potapova, Olga; Foye, Kristen; Wickrema, Amittha

    2003-01-01

    The question is, does the isoform hSK4, also designated KCNN4, represent the small conductance, Ca2+-activated K+ channel (Gardos channel) in human red blood cells? We have analyzed human reticulocyte RNA by RT-PCR, and, of the four isoforms of SK channels known, only SK4 was found. Northern blot analysis of purified and synchronously growing human erythroid progenitor cells, differentiating from erythroblasts to reticulocytes, again showed only the presence of SK4. Western blot analysis, with an anti-SK4 antibody, showed that human erythroid progenitor cells and, importantly, mature human red blood cell ghost membranes, both expressed the SK4 protein. The Gardos channel is known to turn on, given inside Ca2+, in the presence but not the absence of external \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{K}}_{{\\mathrm{o}}}^{+}\\end{equation*}\\end{document} and remains refractory to \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{K}}_{{\\mathrm{o}}}^{+}\\end{equation*}\\end{document} added after exposure to inside Ca2+. Heterologously expressed SK4, but not SK3, also shows this behavior. In inside–out patches of red cell membranes, the open probability (Po) of the Gardos channel is markedly reduced when the temperature is raised from 27 to 37°C. Net K+ efflux of intact red cells is also reduced by increasing temperature, as are the Po values of inside–out patches of Chinese hamster ovary cells expressing SK4 (but not SK3). Thus the envelope of evidence indicates that SK4 is the gene that codes for the Gardos channel in human red blood cells. This channel is important

  8. Rapid endocytosis of the low density lipoprotein receptor-related protein modulates cell surface distribution and processing of the beta-amyloid precursor protein.

    PubMed

    Cam, Judy A; Zerbinatti, Celina V; Li, Yonghe; Bu, Guojun

    2005-04-15

    The low density lipoprotein receptor-related protein (LRP) is a approximately 600-kDa multifunctional endocytic receptor that is highly expressed in the brain. LRP and its ligands apolipoprotein E, alpha2-macroglobulin, and beta-amyloid precursor protein (APP), are genetically linked to Alzheimer disease and are found in characteristic plaque deposits in brains of patients with Alzheimer disease. To identify which extracellular domains of LRP interact with APP, we used minireceptors of each of the individual LRP ligand binding domains and assessed their ability to bind and degrade a soluble APP fragment. LRP minireceptors containing ligand binding domains II and IV, but not I or III, interacted with APP. To test whether APP trafficking is directly related to the rapid endocytosis of LRP, we generated stable Chinese hamster ovary cell lines expressing either a wild-type LRP minireceptor or its endocytosis mutants. Chinese hamster ovary cells stably expressing wild-type LRP minireceptor had less cell surface APP than pcDNA3 vector-transfected cells, whereas those stably expressing endocytosis-defective LRP minireceptors accumulated APP at the cell surface. We also found that the steady-state levels of the amyloid beta-peptides (Abeta) is dictated by the relative expression levels of APP and LRP, probably reflecting the dual roles of LRP in both Abeta production and clearance. Together, these data establish a relationship between LRP rapid endocytosis and APP trafficking and proteolytic processing to generate Abeta.

  9. Measurement of Bluetongue Virus Binding to a Mammalian Cell Surface Receptor by an In Situ Immune Fluorescent Staining Technique

    USDA-ARS?s Scientific Manuscript database

    A quantifiable in situ immune fluorescent assay (IFA) was developed to measure bluetongue virus (BTV) binding to mammalian cells. The utility of the assay was demonstrated with both Chinese hamster ovary (CHO) and bovine pulmonary artery endothelial (CPAE) cells. Since heparin sulfate (HS) has been ...

  10. Expression of SIRT1 in the ovaries of rats with polycystic ovary syndrome before and after therapeutic intervention with exenatide

    PubMed Central

    Tao, Xin; Zhang, Xiao; Ge, Shu-Qi; Zhang, Er-Hong; Zhang, Bin

    2015-01-01

    Aim: To investigate the expression of silent information regulator 1 (SIRT1) in rats with polycystic ovary syndrome (PCOS) and its alteration after exenatide treatment. Methods: PCOS rat model was established by dehydroepiandrosterone induction. The animals were randomly divided into exenatide treatment group (EX group, n = 10), metformin treatment group (MF group, n = 10), PCOS group (PCOS group, n = 9) and normal control group (NC group, n = 10). Histological changes of the ovarian tissues were examined by HE staining. SIRT1 expression in the ovarian tissue was detected by RT-PCR and immunohistochemistry. Results: Rats in the PCOS group lost their estrous cycle. Histological observation of the ovary showed saccular dilatation of the follicle, decreased number of corpora lutea, fewer layers of granulosa cells aligned loosely, and thickened layer of theca cells. The changes in reproductive hormones and the development of insulin resistance suggested the successful establishment of the animal models. Immunohistochemistry and Q-PCR detected the mRNA and protein expressions of SIRT1 in the ovary tissues of rats in the normal control group. The SIRT1 expression was significantly lower in PCOS group than in control group (P < 0.05); after drug intervention, the SIRT1 expression significantly increased in EX and MF groups (compared with the PCOS group), whereas no significant difference was noted between the EX group and MF group. Conclusions: The SIRT1 expression in the ovary tissue decreases in PCOS rats (compare with the normal rats) but can be up-regulated after Ex or MF treatment. These drugs may affect the process and development of PCOS by regulating the SIRT1 expression. Exenatide may be therapeutic for PCOS by up-regulating the SITR1 expression. PMID:26339397

  11. Cytotoxic activity of vitamins K1, K2 and K3 against human oral tumor cell lines.

    PubMed

    Okayasu, H; Ishihara, M; Satoh, K; Sakagami, H

    2001-01-01

    Vitamin K1, K2 and K3 were compared for their cytotoxic activity, radical generation and O2- scavenging activity. Among these compounds, vitamin K3 showed the highest cytotoxic activity against human oral tumor cell lines (HSC-2, HSG), human promyelocytic leukemic cell line (HL-60) and human gingival fibroblast (HGF). Vitamin K3 induced internucleosomal DNA fragmentation in HL-60 cells, but not in HSC-2 or HSG cells. The cytotoxic activity of vitamins K2 and K1 was one and two orders lower, respectively, than K3. Vitamin K2, but not vitamin K3, showed tumor-specific cytotoxic action. ESR spectroscopy showed that only vitamin K3 produced radical(s) under alkaline condition and most potently enhanced the radical intensity of sodium ascorbate and scavenged O2- (generated by hypoxanthine-xanthine oxidase reaction system); vitamin K2 was much less active whereas vitamin K1 was inactive. These data suggest that the cytotoxic activity of vitamin K3 is generated by radical-mediated oxidation mechanism and that this vitamin has two opposing actions (that is, antioxidant and prooxidant), depending on the experimental conditions.

  12. Effect of ambient temperature on the proliferation of brown adipocyte progenitors and endothelial cells during postnatal BAT development in Syrian hamsters.

    PubMed

    Nagaya, Kazuki; Okamatsu-Ogura, Yuko; Nio-Kobayashi, Junko; Nakagiri, Shohei; Tsubota, Ayumi; Kimura, Kazuhiro

    2018-04-02

    In Syrian hamsters, brown adipose tissue (BAT) develops postnatally through the proliferation and differentiation of brown adipocyte progenitors. In the study reported here, we investigated how ambient temperature influenced BAT formation in neonatal hamsters. In both hamsters raised at 23 or 30 °C, the interscapular fat changed from white to brown coloration in an age-dependent manner and acquired the typical morphological features of BAT by day 16. However, the expression of uncoupling protein 1, a brown adipocyte marker, and of vascular endothelial growth factor α were lower in the group raised at 30 °C than in that raised at 23 °C. Immunofluorescent staining revealed that the proportion of Ki67-expressing progenitors and endothelial cells was lower in the 30 °C group than in the 23 °C group. These results indicate that warm ambient temperature suppresses the proliferation of brown adipocyte progenitors and endothelial cells and negatively affects the postnatal development of BAT in Syrian hamsters.

  13. FLB1, a human protein of epididymal origin that is involved in the sperm-oocyte recognition process.

    PubMed

    Boué, F; Duquenne, C; Lassalle, B; Lefèvre, A; Finaz, C

    1995-02-01

    CA6 antibody was selected out of a monoclonal antibody library raised against human sperm proteins primarily for its ability to recognize an epididymal antigen and to modify sperm adhesion to zona-free hamster oocytes. In the present study, CA6 was shown to decrease sperm binding to zona-free hamster and human oocytes by 40-92% and 38-48%, respectively. The corresponding protein, which was referred to as FLB1, was found to be secreted by the epididymis and to bind specifically to a human, macaque, and rodent subacrosomal sperm region. Western blotting revealed a molecular mass of 94 kDa in human epididymal extracts and of 100 kDa in human, macaque, mouse, rat, and hamster sperm, suggesting further modifications after its binding to sperm. An equivalent protein was not observed in human liver, ovary, testis, plasma, or epidermis. Two-dimensional electrophoresis showed that FLB1 is formed of two subunits with the same 47-kDa molecular mass and slightly different pI (5.8, 5.9). Microsequencing of the protein revealed a partial homology with human cytokeratins 1 and 10. These results suggest that FLB1 is an epididymis-specific cytokeratin-like protein that is involved in the sperm-oocyte recognition process.

  14. Effects of YM471, a nonpeptide AVP V(1A) and V(2) receptor antagonist, on human AVP receptor subtypes expressed in CHO cells and oxytocin receptors in human uterine smooth muscle cells.

    PubMed

    Tsukada, J; Tahara, A; Tomura, Y; Wada Ki; Kusayama, T; Ishii, N; Yatsu, T; Uchida, W; Taniguchi, N; Tanaka, A

    2001-07-01

    YM471, (Z)-4'-[4,4-difluoro-5-[2-(4-dimethylaminopiperidino)-2-oxoethylidene]-2,3,4,5-tetrahydro-1H-1-benzoazepine-1-carbonyl]-2-phenylbenzanilide monohydrochloride, is a newly synthesized potent vasopressin (AVP) receptor antagonist. Its effects on binding to and signal transduction by cloned human AVP receptors (V(1A), V(1B) and V(2)) stably expressed in Chinese hamster ovary (CHO) cells, and oxytocin receptors in human uterine smooth muscle cells (USMC) were studied. YM471 potently inhibited specific [(3)H]-AVP binding to V(1A) and V(2) receptors with K(i) values of 0.62 nM and 1.19 nM, respectively. In contrast, YM471 exhibited much lower affinity for V(1B) and oxytocin receptors with K(i) values of 16.4 microM and 31.6 nM, respectively. In CHO cells expressing V(1A) receptors, YM471 potently inhibited AVP-induced intracellular Ca(2+) concentration ([Ca(2+)](i)) increase, exhibiting an IC(50) value of 0.56 nM. However, in human USMC expressing oxytocin receptors, YM471 exhibited much lower potency in inhibiting oxytocin-induced [Ca(2+)](i) increase (IC(50)=193 nM), and did not affect AVP-induced [Ca(2+)](i) increase in CHO cells expressing V(1B) receptors. Furthermore, in CHO cells expressing V(2) receptors, YM471 potently inhibited the production of cyclic AMP stimulated by AVP with an IC(50) value of 1.88 nM. In all assays, YM471 showed no agonistic activity. These results demonstrate that YM471 is a potent, nonpeptide human V(1A) and V(2) receptor antagonist which will be a valuable tool in defining the physiologic and pharmacologic actions of AVP.

  15. Transformation of Primary Hamster Brain Cells with JC Virus and Its DNA

    PubMed Central

    Frisque, R. J.; Rifkin, D. B.; Walker, D. L.

    1980-01-01

    We transformed primary hamster brain cells with four isolates of JC virus and JC virus DNA. Several properties of these transformants were characterized and compared to those of simian virus 40 transformants isolated under identical conditions. Images PMID:6251275

  16. Equine herpesvirus 1 entry via endocytosis is facilitated by alphaV integrins and an RSD motif in glycoprotein D.

    PubMed

    Van de Walle, Gerlinde R; Peters, Sarah T; VanderVen, Brian C; O'Callaghan, Dennis J; Osterrieder, Nikolaus

    2008-12-01

    Equine herpesvirus 1 (EHV-1) is a member of the Alphaherpesvirinae, and its broad tissue tropism suggests that EHV-1 may use multiple receptors to initiate virus entry. EHV-1 entry was thought to occur exclusively through fusion at the plasma membrane, but recently entry via the endocytic/phagocytic pathway was reported for Chinese hamster ovary cells (CHO-K1 cells). Here we show that cellular integrins, and more specifically those recognizing RGD motifs such as alphaVbeta5, are important during the early steps of EHV-1 entry via endocytosis in CHO-K1 cells. Moreover, mutational analysis revealed that an RSD motif in the EHV-1 envelope glycoprotein D (gD) is critical for entry via endocytosis. In addition, we show that EHV-1 enters peripheral blood mononuclear cells predominantly via the endocytic pathway, whereas in equine endothelial cells entry occurs mainly via fusion at the plasma membrane. Taken together, the data in this study provide evidence that EHV-1 entry via endocytosis is triggered by the interaction between cellular integrins and the RSD motif present in gD and, moreover, that EHV-1 uses different cellular entry pathways to infect important target cell populations of its natural host.

  17. Neurogenesis and ontogeny of specific cell phenotypes within the hamster suprachiasmatic nucleus.

    PubMed

    Antle, Michael C; LeSauter, Joseph; Silver, Rae

    2005-06-09

    The hamster suprachiasmatic nucleus (SCN) is anatomically and functionally heterogeneous. A group of cells in the SCN shell, delineated by vasopressin-ergic neurons, are rhythmic with respect to Period gene expression and electrical activity but do not receive direct retinal input. In contrast, some cells in the SCN core, marked by neurons containing calbindin-D28k, gastrin-releasing peptide (GRP), substance P (SP), and vasoactive intestinal polypeptide (VIP), are not rhythmic with respect to Period gene expression and electrical activity but do receive direct retinal input. Examination of the timing of neurogenesis using bromodeoxyuridine indicates that SCN cells are born between embryonic day 9.5 and 12.5. Calbindin, GRP, substance P, and VIP cells are born only during early SCN neurogenesis, between embryonic days 9.5-11.0. Vasopressin cells are born over the whole period of SCN neurogenesis, appearing as late as embryonic day 12.5. Examination of the ontogeny of peptide expression in these cell types reveals transient expression of calbindin in a cluster of dorsolateral SCN cells on postnatal days 1-2. The adult pattern of calbindin expression is detected in a different ventrolateral cell cluster starting on postnatal day 2. GRP and SP expression appear on postnatal day 8 and 10, respectively, after the retinohypothalamic tract has innervated the SCN. In summary, the present study describes the ontogeny-specific peptidergic phenotypes in the SCN and compares these developmental patterns to previously identified patterns in the appearance of circadian functions. These comparisons suggest the possibility that these coincident appearances may be causally related, with the direction of causation to be determined.

  18. Mutation and repair induced by the carcinogen 2-(hydroxyamino)-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP) in the dihydrofolate reductase gene of Chinese hamster ovary cells and conformational modeling of the dG-C8-PhIP adduct in DNA.

    PubMed

    Carothers, A M; Yuan, W; Hingerty, B E; Broyde, S; Grunberger, D; Snyderwine, E G

    1994-01-01

    Three experiments using 20 microM 2-(hydroxyamino)-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP) were performed to induce mutations in the dihydrofolate reductase (DHFR) gene of a hemizygous Chinese hamster ovary (CHO) cell line (UA21). Metabolized forms of this chemical primarily bind at the C-8 position of guanine in DNA. In total, 21 independent induced mutants were isolated and 20 were characterized. DNA sequencing showed that the preferred mutation type found in 75% of the induced DHFR- clones was G.C-->T.A single and tandem double transversions. In addition to base substitutions, one mutant carried a-1 frameshift and another one had lost the entire locus by deletion. The induced changes affected purine targets on the nontranscribed strand of the gene in nearly all of the mutants sequenced (18/19). At the time that the first two experiments were performed, the initial adduct levels were quantitated in treated cells at the mutagenic dose by 32P-postlabeling. While the induced frequency of mutation was relatively low (approximately 5 x 10(-6), the adduct levels after a 1-h exposure of UA21 cells to 20 microM N-OH-PhIP were relatively high (13 adducts x 10(-6) nucleotides). This latter method was then employed to learn if the induced mutation frequency correlated with rapid overall genome repair of PhIP-DNA adducts. Total adduct levels, determined using DNA samples from treated cells collected after intervals of time, were reduced by about 50% after 6 h, and about 70% after 24 h. Since overall genome repair in CHO cells is relatively slow compared with preferential gene repair, the removal of dG-C8-PhIP adducts was apparently efficient. In order to better understand the mutational and repair results, we performed computational modeling to determine the lowest energy structure for the major dG-C8-PhIP adduct in a repetitively mutated duplex sequence opposite dA. Results of this analysis indicate that the PhIP-modified base resembles previous structural

  19. The protective activity of tea against infection by Vibrio cholerae O1.

    PubMed

    Toda, M; Okubo, S; Ikigai, H; Suzuki, T; Suzuki, Y; Shimamura, T

    1991-02-01

    Extracts of black tea exhibited bactericidal activity against Vibrio cholerae O1. The tea extract inhibited the haemolysin activity of V. cholerae O1, El Tor and the morphological changes of Chinese hamster ovary cells induced by cholera toxin. Tea extract also reduced fluid accumulation induced by cholera toxin in sealed adult mice and by V. cholerae O1 in ligated intestinal loops of rabbits. These findings suggest that tea has protective activity against V. cholerae O1.

  20. Cultured Chinese hamster cells undergo apoptosis after exposure to cold but nonfreezing temperatures.

    PubMed

    Nagle, W A; Soloff, B L; Moss, A J; Henle, K J

    1990-08-01

    Cultured Chinese hamster V79 fibroblast cells at the transition from logarithmic to stationary growth have been shown to undergo apoptosis (programmed cell death) after cold shock [B. L. Soloff, W. A. Nagle, A. J. Moss, Jr., K. J. Henle, and J. T. Crawford, Biochem. Biophys. Res. Commun. 145, 876-883 (1987)]. In this report, we show that about 95% of the cell population was susceptible to cold-induced apoptosis, and the amount of cell killing was dependent on the duration of hypothermia. Cells treated for 0-90 min at 0 degrees C exhibited an exponential survival curve with a D0 of 32 min; thus, even short exposures to the cold (e.g., 5 min) produced measurable cell killing. The cold-induced injury was not produced by freezing, because similar results were observed at 6 degrees C, and cell killing was not influenced by the cryoprotective agent dimethyl sulfoxide. Cold-induced apoptosis was inhibited by rewarming at 23 degrees C, compared to 37 degrees C, by inhibitors of macromolecular synthesis, such as cycloheximide, and by 0.8 mM zinc sulfate. The results suggest that apoptosis represents a new manifestation of cell injury after brief exposure to 0-6 degrees C hypothermia.

  1. Histological study of cell migration in the dermis of hamsters after immunisation with two different vaccines against visceral leishmaniasis.

    PubMed

    Moreira, Nádia das Dores; Giunchetti, Rodolfo Cordeiro; Carneiro, Cláudia Martins; Vitoriano-Souza, Juliana; Roatt, Bruno Mendes; Malaquias, Luiz Cosme Cotta; Corrêa-Oliveira, Rodrigo; Reis, Alexandre Barbosa

    2009-04-15

    Vaccine candidates, including live and/or killed parasites, Leishmania-purified fractions, defined recombinant antigens and antigen-encoding DNA-plasmids have been proposed to use as vaccine anti-Leishmania. More recently, the hamsters have been used to pre-selection of antigens candidate to apply in further experiments using canine model. In this report we evaluated the kinetics of cell migration in dermal inflammatory infiltrate, circulating leukocytes and the presence of nitric oxide (NO)/induced nitric oxide synthase during the early (1-24h) and late (48-168h) periods following inoculation of hamsters with antigenic components of anti-canine visceral leishmaniasis vaccines Leishmune and Leishmania braziliensis antigen (LB) with and without saponin (Sap) adjuvant. Our results show that LB caused an early reduction of lymphocytes in the dermis while Sap and LBSap triggered a late recruitment, suggesting the role of the adjuvant in the traffic of antigen-presenting cells and the induction of lymphocyte migration. In that manner our results suggest that the kinetics of cell migration on hamster model may be of value in the selection of vaccine antigens prior the tests in dogs particularly in respect of the toxicity of the preparations.

  2. Enhanced photo-transfection efficiency of mammalian cells on graphene coated substrates

    NASA Astrophysics Data System (ADS)

    Mthunzi, Patience; He, Kuang; Ngcobo, Sandile; Warner, Jamie W.

    2014-03-01

    Literature reports graphene, an atomic-thick sheet of carbon atoms as one of the promising biocompatible scaffolds that promotes cellular proliferation in human mesenchymal stem cells. On the other hand, different mammalian cell lines including the induced pluripotent stem cells exhibited an accelerated proliferation rate when cultured on graphene or graphene oxide coated substrates. These findings provide strong motivation to explore the full capability of graphene in further pluripotent stem cell research activities as there exists an urgent requirement to preserve their therapeutic potential. This therefore calls for non-invasive procedures for handling stem cells in-vitro. For example, resent literature has shown successful laser light driven transfection in both multipotent and pluripotent stem cells. In order to explore the non-invasive nature of optical transfection alongside biocompatible qualities of graphene, in this work we investigated the impact of optically transfecting mouse embryonic stem (mES) cells plated on graphene coated sample chambers. Using Chinese Hamster Ovary cells (CHO-K1), we further studied the influence of graphene on cell viability as well as cell cytotoxicity through assessing changes in levels of mitochondrial adenosine triphosphate (ATP) activity and the release of cytosolic lactate dehydrogenase (LHD) respectively. Our results showed that compared to those treated on plain glass, CHO-K1 cells optically treated while plated on graphene coated substrates exhibited a higher production of ATP and a milder release of LDH. In addition there was enhanced photo-transfection efficiency in both CHO-K1 and mES cells irradiated on graphene sample chambers.

  3. BMP signaling in the human fetal ovary is developmentally regulated and promotes primordial germ cell apoptosis.

    PubMed

    Childs, Andrew J; Kinnell, Hazel L; Collins, Craig S; Hogg, Kirsten; Bayne, Rosemary A L; Green, Samira J; McNeilly, Alan S; Anderson, Richard A

    2010-08-01

    Primordial germ cells (PGCs) are the embryonic precursors of gametes in the adult organism, and their development, differentiation, and survival are regulated by a combination of growth factors collectively known as the germ cell niche. Although many candidate niche components have been identified through studies on mouse PGCs, the growth factor composition of the human PGC niche has not been studied extensively. Here we report a detailed analysis of the expression of components of the bone morphogenetic protein (BMP) signaling apparatus in the human fetal ovary, from postmigratory PGC proliferation to the onset of primordial follicle formation. We find developmentally regulated and reciprocal patterns of expression of BMP2 and BMP4 and identify germ cells to be the exclusive targets of ovarian BMP signaling. By establishing long-term cultures of human fetal ovaries in which PGCs are retained within their physiological niche, we find that BMP4 negatively regulates postmigratory PGC numbers in the human fetal ovary by promoting PGC apoptosis. Finally, we report expression of both muscle segment homeobox (MSX)1 and MSX2 in the human fetal ovary and reveal a selective upregulation of MSX2 expression in human fetal ovary in response to BMP4, suggesting this gene may act as a downstream effector of BMP-induced apoptosis in the ovary, as in other systems. These data reveal for the first time growth factor regulation of human PGC development in a physiologically relevant context and have significant implications for the development of cultures systems for the in vitro maturation of germ cells, and their derivation from pluripotent stem cells.

  4. Ovarian stem cells are always accompanied by very small embryonic-like stem cells in adult mammalian ovary.

    PubMed

    Bhartiya, Deepa

    2015-11-05

    Existing dogma that a female is born with fixed number of eggs was challenged by the detection of stem cells in adult mammalian ovary. Data has accumulated in support of ovarian stem cells (OSCs) proliferation, maintenance in culture, formation of germ cell nests and differentiation into oocytes and primordial follicle assembly using different strategies. Flow cytometry analysis identified >8 μm OSCs which are DDX1 positive and are considered equivalent to spermatogonial stem cells (SSCs) in testis. Analysis of both ovarian and testicular smears obtained after enzymatic digestion has led to the identification of an additional stem cell population termed very small embryonic-like stem cells (VSELs). VSELs and OSCs/SSCs differ from each other in their size and OCT-4 expression. VSELs express pluripotent markers including nuclear OCT-4 whereas OSCs/SSCs express cytoplasmic OCT-4 suggesting a differentiated state. VSELs can be studied by flow cytometry as small sized cells which are LIN-/CD45-/Sca-1+. We have reported 0.02 ± 0.008, 0.03 ± 0.017 and 0.08 ± 0.03 % of total cells as VSELs in normal, chemoablated and after FSH treatment to chemoablated mouse ovary. VSELs have remained poorly studied till now because of their very small size and rare occurrence. Spinning cells obtained after enzymatic digestion of ovarian tissue at a speed of 1000G (rather than 1200 rpm) throughout processing allows reliable detection of the VSELs by flow cytometry. VSELs exist in aged, chemoablated and non-functional ovary and providing a healthy niche to support their function offers an interesting strategy to manage infertility.

  5. Inhibition of mitogen-activated protein kinase Erk1/2 promotes protein degradation of ATP binding cassette transporters A1 and G1 in CHO and HuH7 cells.

    PubMed

    Mulay, Vishwaroop; Wood, Peta; Manetsch, Melanie; Darabi, Masoud; Cairns, Rose; Hoque, Monira; Chan, Karen Cecilia; Reverter, Meritxell; Alvarez-Guaita, Anna; Rye, Kerry-Anne; Rentero, Carles; Heeren, Joerg; Enrich, Carlos; Grewal, Thomas

    2013-01-01

    Signal transduction modulates expression and activity of cholesterol transporters. We recently demonstrated that the Ras/mitogen-activated protein kinase (MAPK) signaling cascade regulates protein stability of Scavenger Receptor BI (SR-BI) through Proliferator Activator Receptor (PPARα) -dependent degradation pathways. In addition, MAPK (Mek/Erk 1/2) inhibition has been shown to influence liver X receptor (LXR) -inducible ATP Binding Cassette (ABC) transporter ABCA1 expression in macrophages. Here we investigated if Ras/MAPK signaling could alter expression and activity of ABCA1 and ABCG1 in steroidogenic and hepatic cell lines. We demonstrate that in Chinese Hamster Ovary (CHO) cells and human hepatic HuH7 cells, extracellular signal-regulated kinase 1/2 (Erk1/2) inhibition reduces PPARα-inducible ABCA1 protein levels, while ectopic expression of constitutively active H-Ras, K-Ras and MAPK/Erk kinase 1 (Mek1) increases ABCA1 protein expression, respectively. Furthermore, Mek1/2 inhibitors reduce ABCG1 protein levels in ABCG1 overexpressing CHO cells (CHO-ABCG1) and human embryonic kidney 293 (HEK293) cells treated with LXR agonist. This correlates with Mek1/2 inhibition reducing ABCG1 cell surface expression and decreasing cholesterol efflux onto High Density Lipoproteins (HDL). Real Time reverse transcriptase polymerase chain reaction (RT-PCR) and protein turnover studies reveal that Mek1/2 inhibitors do not target transcriptional regulation of ABCA1 and ABCG1, but promote ABCA1 and ABCG1 protein degradation in HuH7 and CHO cells, respectively. In line with published data from mouse macrophages, blocking Mek1/2 activity upregulates ABCA1 and ABCG1 protein levels in human THP1 macrophages, indicating opposite roles for the Ras/MAPK pathway in the regulation of ABC transporter activity in macrophages compared to steroidogenic and hepatic cell types. In summary, this study suggests that Ras/MAPK signaling modulates PPARα- and LXR-dependent protein degradation

  6. Adiponectin and Its Receptors in the Ovary: Further Evidence for a Link between Obesity and Hyperandrogenism in Polycystic Ovary Syndrome

    PubMed Central

    Comim, Fabio V.; Hardy, Kate; Franks, Stephen

    2013-01-01

    Polycystic ovary syndrome (PCOS), characterized by ovarian androgen excess, is the commonest endocrine disorder in women. Obesity increases androgen synthesis, a phenomenon attributed to the accompanying hyperinsulinemia. Our hypothesis was that adipokines, fat cell-derived hormones, play a direct role in modulating ovarian androgen secretion. Therefore, the aims of this study were to explore the effects of adipokines (in particular, adiponectin) on ovarian steroidogenesis and compare the expression of adiponectin receptors in ovaries from women with and without PCO. Sections of archived human ovaries (nine from women with normal ovaries and 16 with PCOS, classified histologically, with reference to menstrual history and ultrasound) were analysed by quantitative morphometry and the proportion of positive-labelling cells compared. In addition, studies of androgen production in relation to adipokine function in primary bovine theca cell culture were also performed. A significantly lower proportion of theca cells expressed adiponectin receptors 1 and 2 (AdipoR1, AdipoR2) in polycystic ovaries than in normal ovaries. In cultured theca cells, adiponectin suppressed androstenedione production and gene expression of LH receptor and key enzymes in the androgen synthesis pathway. Moreover, knockdown of genes for AdipoR1 and AdipoR2 was associated with increased androstenedione secretion by bovine theca cells. These results provide evidence for a direct link between fat cell metabolism and ovarian steroidogenesis, suggesting that disruption of adiponectin and/or its receptors plays a key role in pathogenesis of hyperandrogenism in PCOS. PMID:24260388

  7. Enhanced recombinant factor VII expression in Chinese hamster ovary cells by optimizing signal peptides and fed-batch medium.

    PubMed

    Peng, Lin; Yu, Xiao; Li, Chengyuan; Cai, Yanfei; Chen, Yun; He, Yang; Yang, Jianfeng; Jin, Jian; Li, Huazhong

    2016-04-01

    Signal peptides play an important role in directing and efficiently transporting secretory proteins to their proper locations in the endoplasmic reticulum of mammalian cells. The aim of this study was to enhance the expression of recombinant coagulation factor VII (rFVII) in CHO cells by optimizing the signal peptides and type of fed-batch culture medium used. Five sub-clones (O2, I3, H3, G2 and M3) with different signal peptide were selected by western blot (WB) analysis and used for suspension culture. We compared rFVII expression levels of 5 sub-clones and found that the highest rFVII expression level was obtained with the IgK signal peptide instead of Ori, the native signal peptide of rFVII. The high protein expression of rFVII with signal peptide IgK was mirrored by a high transcription level during suspension culture. After analyzing culture and feed media, the combination of M4 and F4 media yielded the highest rFVII expression of 20 mg/L during a 10-day suspension culture. After analyzing cell density and cell cycle, CHO cells feeding by F4 had a similar percentage of cells in G0/G1 and a higher cell density compared to F2 and F3. This may be the reason for high rFVII expression in M4+F4. In summary, rFVII expression was successfully enhanced by optimizing the signal peptide and fed-batch medium used in CHO suspension culture. Our data may be used to improve the production of other therapeutic proteins in fed-batch culture.

  8. Mutant MiRP1 subunits modulate HERG K+ channel gating: a mechanism for pro-arrhythmia in long QT syndrome type 6

    PubMed Central

    Lu, Yu; Mahaut-Smith, Martyn P; Huang, Christopher L-H; Vandenberg, Jamie I

    2003-01-01

    Mutations in KCNE2, which encodes the minK-related protein 1 (MiRP1), are associated with an increased risk of arrhythmias; however, the underlying mechanisms are unknown. MiRP1 is thought to associate with many K+ channel α-subunits, including HERG K+ channels, which have a major role in suppressing arrhythmias initiated by premature beats. In this study we have investigated in chinese hamster ovary (CHO) cells at 37 °C the effects of co-expressing HERG K+ channels with either wild-type (WT) MiRP1 or one of three mutant MiRP1 subunits, T8A, Q9E and M54T. The most significant effects of MiRP1 subunits on HERG channels were a more negative steady-state activation for HERG + T8A MiRP1 and a more positive steady-state activation for HERG + M54T MiRP1 compared to either HERG + WT MiRP1 or HERG alone. All three mutants caused a significant slowing of deactivation at depolarised potentials. T8A MiRP1 also caused an acceleration of inactivation and recovery from inactivation compared to HERG + WT MiRP1. During ventricular action potential clamp experiments there was a significant decrease in current in the early phases of the action potential for HERG + WT MiRP1 channels compared to HERG alone. This effect was not as prominent for the mutant MiRP1 subunits. During premature action potential clamp protocols, the T8A and Q9E mutants, but not the M54T mutant, resulted in significantly larger current spikes during closely coupled premature beats, compared to HERG + WT MiRP1. At longer coupling intervals, all three mutants resulted in larger current spikes than HERG alone or HERG + WT MiRP1 channels. It is therefore possible that augmentation of HERG currents in the early diastolic period may be pro-arrhythmic. PMID:12923204

  9. Characterization of cell death caused by diplodiatoxin and dipmatol, toxic metabolites of Stenocarpella maydis.

    PubMed

    Masango, Mxolisi G; Ellis, Charlotte E; Botha, Christo J

    2015-08-01

    Diplodiosis, a neuromycotoxicosis of cattle and sheep grazing on mouldy cobs infected by Stenocarpella maydis, is considered the last major veterinary mycotoxicosis for which the causative mycotoxin is still unknown. The current study was aimed at characterizing the cell death observed in mouse neuroblastoma (Neuro-2a), Chinese hamster ovary (CHO-K1) and Madin-Darby bovine kidney (MDBK) cell lines exposed to the S. maydis metabolites (i.e. diplodiatoxin and dipmatol) by investigating the roles of necrosis and apoptosis. Necrosis was investigated using the lactate dehydrogenase (LDH) leakage and propidium iodide (PI) flow cytometry assays and apoptosis was evaluated using the caspase-3/7 and Annexin V flow cytometry assays. In addition, transmission electron microscopy (TEM) was used to correlate the cell death pathways observed in this study with their typical morphologies. Both diplodiatoxin and dipmatol (750 μM) induced necrosis and caspase-dependent apoptosis in Neuro-2a, CHO-K1 and MDBK cells. Ultrastructurally, the two mycotoxins induced mitochondrial damage, cytoplasmic vacuolation and nuclear fragmentation in the three cell lines. These findings have laid a foundation for future studies aimed at elucidating in detail the mechanism of action of the S. maydis metabolites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Comparative Analysis of Cellular Immune Responses in Treated Leishmania Patients and Hamsters against Recombinant Th1 Stimulatory Proteins of Leishmania donovani

    PubMed Central

    Joshi, Sumit; Yadav, Narendra K.; Rawat, Keerti; Tripathi, Chandra Dev P.; Jaiswal, Anil K.; Khare, Prashant; Tandon, Rati; Baharia, Rajendra K.; Das, Sanchita; Gupta, Reema; Kushawaha, Pramod K.; Sundar, Shyam; Sahasrabuddhe, Amogh A.; Dube, Anuradha

    2016-01-01

    Our prior studies demonstrated that cellular response of T helper 1 (Th1) type was generated by a soluble antigenic fraction (ranging from 89.9 to 97.1 kDa) of Leishmania donovani promastigote, in treated Leishmania patients as well as hamsters and showed significant prophylactic potential against experimental visceral leishmaniasis (VL). Eighteen Th1 stimulatory proteins were identified through proteomic analysis of this subfraction, out of which 15 were developed as recombinant proteins. In the present work, we have evaluated these 15 recombinant proteins simultaneously for their comparative cellular responses in treated Leishmania patients and hamsters. Six proteins viz. elongation factor-2, enolase, aldolase, triose phosphate isomerase, protein disulfide isomerase, and p45 emerged as most immunogenic as they produced a significant lymphoproliferative response, nitric oxide generation and Th1 cytokine response in PBMCs and lymphocytes of treated Leishmania patients and hamsters respectively. The results suggested that these proteins may be exploited for developing a successful poly-protein and/or poly-epitope vaccine against VL. PMID:27047452

  11. In Adult Female Hamsters Hypothyroidism Stimulates D1 Receptor-mediated Breathing without altering D1 Receptor Expression

    PubMed Central

    Schlenker, Evelyn H.; Rio, Rodrigo Del; Schultz, Harold D.

    2015-01-01

    Hypothyroidism affects cardiopulmonary regulation and function of dopaminergic receptors. Here we evaluated effects of 5 months of hypothyroidism on dopamine D1 receptor modulation of breathing in female hamsters using a D1 receptor antagonist SCH23390. Euthyroid hamsters (EH) served as controls. Results indicated that hypothyroid female hamsters (HH) exhibited decreased body weights and minute ventilation (VE) following hypoxia due to decreased frequency of breathing (F). Moreover, SCH 23390 administration in HH increased VE by increasing tidal volume during exposure to air, hypoxia and following hypoxia. Relative to vehicle, SCH 23390 treatment decreased body temperature and hypoxic VE responsiveness in both groups. In EH, SCH 23390 decreased F in air, hypoxia and post hypoxia, and VE during hypoxia trended to decrease (P=0.053). Finally, expression of D1 receptor protein was not different between the two groups in any region evaluated. Thus, hypothyroidism in older female hamsters affected D1 receptor modulation of ventilation differently relative to euthyroid animals, but not expression of D1 receptors. PMID:26232642

  12. In adult female hamsters hypothyroidism stimulates D1 receptor-mediated breathing without altering D1 receptor expression.

    PubMed

    Schlenker, Evelyn H; Del Rio, Rodrigo; Schultz, Harold D

    2015-11-01

    Hypothyroidism affects cardiopulmonary regulation and function of dopaminergic receptors. Here we evaluated effects of 5 months of hypothyroidism on dopamine D1 receptor modulation of breathing in female hamsters using a D1 receptor antagonist SCH 23390. Euthyroid hamsters (EH) served as controls. Results indicated that hypothyroid female hamsters (HH) exhibited decreased body weights and minute ventilation (VE) following hypoxia due to decreased frequency of breathing (F). Moreover, SCH 23390 administration in HH increased VE by increasing tidal volume during exposure to air, hypoxia and following hypoxia. Relative to vehicle, SCH 23390 treatment decreased body temperature and hypoxic VE responsiveness in both groups. In EH, SCH 23390 decreased F in air, hypoxia and post hypoxia, and VE during hypoxia trended to decrease (P=0.053). Finally, expression of D1 receptor protein was not different between the two groups in any region evaluated. Thus, hypothyroidism in older female hamsters affected D1 receptor modulation of ventilation differently relative to euthyroid animals, but not expression of D1 receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Linkage of regulators of TGF-β activity in the fetal ovary to polycystic ovary syndrome

    PubMed Central

    Hatzirodos, Nicholas; Bayne, Rosemary A.; Irving-Rodgers, Helen F.; Hummitzsch, Katja; Sabatier, Laetitia; Lee, Sam; Bonner, Wendy; Gibson, Mark A.; Rainey, William E.; Carr, Bruce R.; Mason, Helen D.; Reinhardt, Dieter P.; Anderson, Richard A.; Rodgers, Raymond J.

    2011-01-01

    Although not often discussed, the ovaries of women with polycystic ovary syndrome (PCOS) show all the hallmarks of increased TGF-β activity, with increased amounts of fibrous tissue and collagen in the ovarian capsule or tunica albuginea and ovarian stroma. Recent studies suggest that PCOS could have fetal origins. Genetic studies of PCOS have also found linkage with a microsatellite located in intron 55 of the extracellular matrix protein fibrillin 3. Fibrillins regulate TGF-β bioactivity in tissues by binding latent TGF-β binding proteins. We therefore examined expression of fibrillins 1–3, latent TGF-β binding proteins 1–4, and TGF-β 1–3 in bovine and human fetal ovaries at different stages of gestation and in adult ovaries. We also immunolocalized fibrillins 1 and 3. The results indicate that TGF-β pathways operate during ovarian fetal development, but most important, we show fibrillin 3 is present in the stromal compartments of fetal ovaries and is highly expressed at a critical stage early in developing human and bovine fetal ovaries when stroma is expanding and follicles are forming. These changes in expression of fibrillin 3 in the fetal ovary could lead to a predisposition to develop PCOS in later life.—Hatzirodos, N., Bayne, R. A., Irving-Rodgers, H. F., Hummitzsch, K., Sabatier, L., Lee, S., Bonner, W., Gibson, M. A., Rainey, W. E., Carr, B. R., Mason, H. D., Reinhardt, D. P., Anderson, R. A., Rodgers, R. J. Linkage of regulators of TGF-β activity in the fetal ovary to polycystic ovary syndrome. PMID:21411746

  14. Syngeneic syrian hamster tumors feature tumor-infiltrating lymphocytes allowing adoptive cell therapy enhanced by oncolytic adenovirus in a replication permissive setting.

    PubMed

    Siurala, Mikko; Vähä-Koskela, Markus; Havunen, Riikka; Tähtinen, Siri; Bramante, Simona; Parviainen, Suvi; Mathis, J Michael; Kanerva, Anna; Hemminki, Akseli

    2016-05-01

    Adoptive transfer of tumor-infiltrating lymphocytes (TIL) has shown promising yet sometimes suboptimal results in clinical trials for advanced cancer, underscoring the need for approaches improving efficacy and safety. Six implantable syngeneic tumor cell lines of the Syrian hamster were used to initiate TIL cultures. TIL generated from tumor fragments cultured in human interleukin-2 (IL-2) for 10 d were adoptively transferred into tumor-bearing hamsters with concomitant intratumoral injections of oncolytic adenovirus (Ad5-D24) for the assessment of antitumor efficacy. Pancreatic cancer (HapT1) and melanoma (RPMI 1846) TIL exhibited potent and tumor-specific cytotoxicity in effector-to-target (E/T) assays. MHC Class I blocking abrogated the cell killing of RPMI 1846 TIL, indicating cytotoxic CD8(+) T-cell activity. When TIL were combined with Ad5-D24 in vitro, HapT1 tumor cell killing was significantly enhanced over single agents. In vivo, the intratumoral administration of HapT1 TIL and Ad5-D24 resulted in improved tumor growth control compared with either treatment alone. Additionally, splenocytes derived from animals treated with the combination of Ad5-D24 and TIL killed autologous tumor cells more efficiently than monotherapy-derived splenocytes, suggesting that systemic antitumor immunity was induced. For the first time, TIL of the Syrian hamster have been cultured, characterized and used therapeutically together with oncolytic adenovirus for enhancing the efficacy of TIL therapy. Our results support human translation of oncolytic adenovirus as an enabling technology for adoptive T-cell therapy of solid tumors.

  15. Syngeneic syrian hamster tumors feature tumor-infiltrating lymphocytes allowing adoptive cell therapy enhanced by oncolytic adenovirus in a replication permissive setting

    PubMed Central

    Siurala, Mikko; Vähä-Koskela, Markus; Havunen, Riikka; Tähtinen, Siri; Bramante, Simona; Parviainen, Suvi; Mathis, J. Michael; Kanerva, Anna; Hemminki, Akseli

    2016-01-01

    ABSTRACT Adoptive transfer of tumor-infiltrating lymphocytes (TIL) has shown promising yet sometimes suboptimal results in clinical trials for advanced cancer, underscoring the need for approaches improving efficacy and safety. Six implantable syngeneic tumor cell lines of the Syrian hamster were used to initiate TIL cultures. TIL generated from tumor fragments cultured in human interleukin-2 (IL-2) for 10 d were adoptively transferred into tumor-bearing hamsters with concomitant intratumoral injections of oncolytic adenovirus (Ad5-D24) for the assessment of antitumor efficacy. Pancreatic cancer (HapT1) and melanoma (RPMI 1846) TIL exhibited potent and tumor-specific cytotoxicity in effector-to-target (E/T) assays. MHC Class I blocking abrogated the cell killing of RPMI 1846 TIL, indicating cytotoxic CD8+ T-cell activity. When TIL were combined with Ad5-D24 in vitro, HapT1 tumor cell killing was significantly enhanced over single agents. In vivo, the intratumoral administration of HapT1 TIL and Ad5-D24 resulted in improved tumor growth control compared with either treatment alone. Additionally, splenocytes derived from animals treated with the combination of Ad5-D24 and TIL killed autologous tumor cells more efficiently than monotherapy-derived splenocytes, suggesting that systemic antitumor immunity was induced. For the first time, TIL of the Syrian hamster have been cultured, characterized and used therapeutically together with oncolytic adenovirus for enhancing the efficacy of TIL therapy. Our results support human translation of oncolytic adenovirus as an enabling technology for adoptive T-cell therapy of solid tumors. PMID:27467954

  16. Morphometric and histological analysis of the lungs of Syrian golden hamsters.

    PubMed Central

    Kennedy, A R; Desrosiers, A; Terzaghi, M; Little, J B

    1978-01-01

    Hamster lung morphometry and histology have been studied in an attempt to determine differences between hamster and human lungs which may have relevance for lung carcinogenesis studies. Morphometric measurements were made on fresh lungs, lung casts, and histological sections. Cell type and frequency measurements were determined from frozen, paraffin, 1 micron plastic (glycol methacrylate) and electron microscopic sections. A standard terminology for hamster lung histology is established, and differences between hamster and human lung morphometry and histology are discussed. Images Fig. 2 Fig. 3 Fig. 4 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 Fig. 20 Fig. 21 Fig. 22 PMID:640957

  17. Ovarian mast cells migrate toward ovary-fimbria connection in neonatal MRL/MpJ mice.

    PubMed

    Nakamura, Teppei; Chihara, Masataka; Ichii, Osamu; Otsuka-Kanazawa, Saori; Nagasaki, Ken-Ichi; Elewa, Yaser Hosny Ali; Tatsumi, Osamu; Kon, Yasuhiro

    2018-01-01

    MRL/MpJ mice have abundant ovarian mast cells (MCs) as compared with other strains at postnatal day 0 (P0); however, they sharply decrease after birth. These ovarian MCs, particularly beneath the ovarian surface epithelium (SE), which express mucosal MC (MMC) marker, might participate in early follicular development. This study investigated the changes in spatiotemporal distribution of MCs in the perinatal MRL/MpJ mouse ovaries. At P0 to P7, the MCs were densely localized to the ovary, especially their caudomedial region around the ovary-fimbria connection. The neonatal ovarian MCs showed intermediate characteristics of MMC and connective tissue MC (CTMC), and the latter phenotype became evident with aging. However, the expression ratio of the MMC to CTMC marker increased from P0 to P4 in the MRL/MpJ mouse ovary. Similarly, the ratio of MCs facing SE to total MC number increased with aging, although the number of ovarian MCs decreased, indicating the relative increase in MMC phenotypes in the early neonatal ovary. Neither proliferating nor apoptotic MCs were found in the MRL/MpJ mouse ovaries. The parenchymal cells surrounding MCs at ovary-fimbria connection showed similar molecular expression patterns (E-cadherin+/Foxl2-/Gata4+) as that of the ovarian surface epithelial cells. At P2, around the ovary-fimbria connection, c-kit- immature oocytes formed clusters called nests, and some MCs localized adjacent to c-kit- oocytes within the nests. These results indicated that in postnatal MRL/MpJ mice, ovarian MCs changed their distribution by migrating toward the parenchymal cells composing ovary-fimbria connection, which possessed similar characteristics to the ovarian surface epithelium. Thus, we elucidated the spatiotemporal alterations of the ovarian MCs in MRL/MpJ mice, and suggested their importance during the early follicular development by migrating toward the ovary-fimbria connection. MRL/MpJ mice would be useful to elucidate the relationship between neonatal

  18. Ovarian mast cells migrate toward ovary-fimbria connection in neonatal MRL/MpJ mice

    PubMed Central

    Chihara, Masataka; Ichii, Osamu; Otsuka-Kanazawa, Saori; Nagasaki, Ken-ichi; Elewa, Yaser Hosny Ali; Tatsumi, Osamu; Kon, Yasuhiro

    2018-01-01

    MRL/MpJ mice have abundant ovarian mast cells (MCs) as compared with other strains at postnatal day 0 (P0); however, they sharply decrease after birth. These ovarian MCs, particularly beneath the ovarian surface epithelium (SE), which express mucosal MC (MMC) marker, might participate in early follicular development. This study investigated the changes in spatiotemporal distribution of MCs in the perinatal MRL/MpJ mouse ovaries. At P0 to P7, the MCs were densely localized to the ovary, especially their caudomedial region around the ovary-fimbria connection. The neonatal ovarian MCs showed intermediate characteristics of MMC and connective tissue MC (CTMC), and the latter phenotype became evident with aging. However, the expression ratio of the MMC to CTMC marker increased from P0 to P4 in the MRL/MpJ mouse ovary. Similarly, the ratio of MCs facing SE to total MC number increased with aging, although the number of ovarian MCs decreased, indicating the relative increase in MMC phenotypes in the early neonatal ovary. Neither proliferating nor apoptotic MCs were found in the MRL/MpJ mouse ovaries. The parenchymal cells surrounding MCs at ovary-fimbria connection showed similar molecular expression patterns (E-cadherin+/Foxl2-/Gata4+) as that of the ovarian surface epithelial cells. At P2, around the ovary-fimbria connection, c-kit- immature oocytes formed clusters called nests, and some MCs localized adjacent to c-kit- oocytes within the nests. These results indicated that in postnatal MRL/MpJ mice, ovarian MCs changed their distribution by migrating toward the parenchymal cells composing ovary-fimbria connection, which possessed similar characteristics to the ovarian surface epithelium. Thus, we elucidated the spatiotemporal alterations of the ovarian MCs in MRL/MpJ mice, and suggested their importance during the early follicular development by migrating toward the ovary-fimbria connection. MRL/MpJ mice would be useful to elucidate the relationship between neonatal

  19. In hamsters the D1 receptor antagonist SCH23390 depresses ventilation during hypoxia.

    PubMed

    Schlenker, Evelyn H

    2008-01-02

    During exposure of animals to hypoxia, brain and blood dopamine levels increase stimulating dopaminergic receptors which influence the integrated ventilatory response to low oxygen. The purpose of the present study is to test the hypothesis that in conscious hamsters, systemic antagonism of D(1) receptors would depress their breathing in air and in response to hypoxic and hypercapnic challenges. Nine male hamsters were treated with saline or 0.25 mg/kg SCH-23390 (SCH), a D(1) receptor antagonist that crosses the blood-brain barrier. Ventilation was determined using the barometric method, and oxygen consumption and CO(2) production were evaluated utilizing the flow-through method. During exposure to air, SCH decreased frequency of breathing. During exposure to hypoxia (10% oxygen in nitrogen), relative to saline, SCH-treated hamsters decreased minute ventilation by decreasing tidal volume and oxygen consumption but not CO(2) production. During exposure to hypercapnia (5% CO(2) in 95% O(2)), frequency of breathing was decreased with SCH, but there was no significant effect on minute ventilation. Relative to saline treatment body temperature was lower in SCH-treated hamsters by 0.6 degrees C. These results demonstrate that in hamsters D(1) receptors can modulate control of ventilation in air and during hypoxia and hypercapnic exposures. Whether D(1) receptors located centrally or on carotid bodies modulate these effects is not clear from this study.

  20. The effect of organic anion-transporting polypeptides 1B1, 1B3 and 2B1 on the antitumor activity of flavopiridol in breast cancer cells.

    PubMed

    Brenner, Stefan; Riha, Juliane; Giessrigl, Benedikt; Thalhammer, Theresia; Grusch, Michael; Krupitza, Georg; Stieger, Bruno; Jäger, Walter

    2015-01-01

    The contribution of organic anion transporting polypeptides (OATPs) to the cellular uptake of flavopiridol was investigated in OATP1B1-, OATP1B3- and OATP2B1-expressing Chinese hamster ovary (CHO) cells. Uptake of flavopiridol into these cells showed typical Michaelis-Menten kinetics with much higher transport capacity for OATP1B3 compared to OATP1B1 and OATP2B1 (Vmax/Km, 33.9 vs. 8.84 and 2.41 µl/mg/min, respectively). The predominant role of OATPs was further supported by a dramatic inhibition of flavopiridol uptake in the presence of the OATP substrate rifampicin. Uptake of flavopiridol by OATPs also seems to be an important determinant in breast cancer cells. The much higher mRNA level for OATP1B1 found in wild-type compared to ZR-75-1 OATP1B1 knockdown cells correlated with higher flavopiridol initial uptake leading to 4.6-fold decreased IC50 values in the cytotoxicity assay (IC50, 1.45 vs. 6.64 µM). Cell cycle profile also showed a clear incidence for a stronger cell cycle arrest in the G2/M phase for ZR-75-1 wild-type cells compared to OATP1B1 knockdown cells, further indicating an active uptake via OATP1B1. In conclusion, our results revealed OATP1B1, OATP1B3 and OATP2B1 as uptake transporters for flavopiridol in cancer cells, which may also apply in patients during cancer therapy.

  1. Differential response of two cell lines sequentially irradiated with low X-ray doses.

    PubMed

    Güerci, A M; Dulout, F N; Grillo, C A; Seoane, A I

    2005-05-01

    An experiment was designed to compare the effect of repeated low doses of X-rays in two different cell lines: one transformed, epithelial like and aneuploid Chinese hamster ovary K-1 (CHO-K1); the other originated from a human primary culture, fibroblast, diploid and non-transformed, MRC-5. CHO and MRC-5 cells were cultured for 14 or eight passages, respectively. Irradiation was performed once per passage when cells were in the quiescent state (90 - 95% in G1/G0). Cells were exposed to 10.0 mSv X-ray doses. Ionizing radiation did not induce apoptosis or necrosis in the exposed CHO cell population. Significant increases of low-level damaged cells (degrees 1 and 2) were found for the 14 cycles of radiation when compared with controls, except for the first irradiation cycle. No significant increases in the frequency of cells with severe damage were observed. The frequency of MRC-5 cells with low-level damage increased significantly when compared with controls for radiation cycles seven and eight. Significant increases of apoptosis, necrosis and severe damage were found only for the highest dose. Transformed and non-transformed cell types responded differently to direct and indirect damage using low-dose repeat exposures to ionizing radiation. Though more investigation is needed to understand the mechanisms of radiation effects in chronic low-dose-exposed cell populations, cellular type should be taken into account in the design of in vitro experiments for understanding low-dose-irradiation effects.

  2. Immune cells in the normal ovary and spontaneous ovarian tumors in the laying hen (Gallus domesticus) model of human ovarian cancer.

    PubMed

    Bradaric, Michael J; Penumatsa, Krishna; Barua, Animesh; Edassery, Seby L; Yu, Yi; Abramowicz, Jacques S; Bahr, Janice M; Luborsky, Judith L

    2013-01-01

    Spontaneous ovarian cancer in chickens resembles human tumors both histologically and biochemically. The goal was to determine if there are differences in lymphocyte content between normal ovaries and ovarian tumors in chickens as a basis for further studies to understand the role of immunity in human ovarian cancer progression. Hens were selected using grey scale and color Doppler ultrasound to determine if they had normal or tumor morphology. Cells were isolated from ovaries (n = 6 hens) and lymphocyte numbers were determined by flow cytometry using antibodies to avian CD4 and CD8 T and B (Bu1a) cells. Ovarian sections from another set of hens (n = 26) were assessed to verify tumor type and stage and to count CD4, CD8 and Bu1a immunostained cells by morphometric analysis. T and B cells were more numerous in ovarian tumors than in normal ovaries by flow cytometry and immunohistochemistry. There were less CD4+ cells than CD8+ and Bu1a+ cells in normal ovaries or ovarian tumors. CD8+ cells were the dominant T cell sub-type in both ovarian stroma and in ovarian follicles compared to CD4+ cells. Bu1a+ cells were consistently found in the stroma of normal ovaries and ovarian tumors but were not associated with follicles. The number of immune cells was highest in late stage serous tumors compared to endometrioid and mucinous tumors. The results suggest that similar to human ovarian cancer there are comparatively more immune cells in chicken ovarian tumors than in normal ovaries, and the highest immune cell content occurs in serous tumors. Thus, this study establishes a foundation for further study of tumor immune responses in a spontaneous model of ovarian cancer which will facilitate studies of the role of immunity in early ovarian cancer progression and use of the hen in pre-clinical vaccine trials.

  3. Immune Cells in the Normal Ovary and Spontaneous Ovarian Tumors in the Laying Hen (Gallus domesticus) Model of Human Ovarian Cancer

    PubMed Central

    Bradaric, Michael J.; Penumatsa, Krishna; Barua, Animesh; Edassery, Seby L.; Yu, Yi; Abramowicz, Jacques S.; Bahr, Janice M.; Luborsky, Judith L.

    2013-01-01

    Background Spontaneous ovarian cancer in chickens resembles human tumors both histologically and biochemically. The goal was to determine if there are differences in lymphocyte content between normal ovaries and ovarian tumors in chickens as a basis for further studies to understand the role of immunity in human ovarian cancer progression. Methods Hens were selected using grey scale and color Doppler ultrasound to determine if they had normal or tumor morphology. Cells were isolated from ovaries (n = 6 hens) and lymphocyte numbers were determined by flow cytometry using antibodies to avian CD4 and CD8 T and B (Bu1a) cells. Ovarian sections from another set of hens (n = 26) were assessed to verify tumor type and stage and to count CD4, CD8 and Bu1a immunostained cells by morphometric analysis. Results T and B cells were more numerous in ovarian tumors than in normal ovaries by flow cytometry and immunohistochemistry. There were less CD4+ cells than CD8+ and Bu1a+ cells in normal ovaries or ovarian tumors. CD8+ cells were the dominant T cell sub-type in both ovarian stroma and in ovarian follicles compared to CD4+ cells. Bu1a+ cells were consistently found in the stroma of normal ovaries and ovarian tumors but were not associated with follicles. The number of immune cells was highest in late stage serous tumors compared to endometrioid and mucinous tumors. Conclusions The results suggest that similar to human ovarian cancer there are comparatively more immune cells in chicken ovarian tumors than in normal ovaries, and the highest immune cell content occurs in serous tumors. Thus, this study establishes a foundation for further study of tumor immune responses in a spontaneous model of ovarian cancer which will facilitate studies of the role of immunity in early ovarian cancer progression and use of the hen in pre-clinical vaccine trials. PMID:24040191

  4. Cytotoxicity of extracts of spices to cultured cells.

    PubMed

    Unnikrishnan, M C; Kuttan, R

    1988-01-01

    The cytotoxicity of the extracts from eight different spices used in the Indian diet was determined using Dalton's lymphoma ascites tumor cells and human lymphocytes in vitro and Chinese Hamster Ovary cells and Vero cells in tissue culture. Alcoholic extracts of the spices were found to be more cytotoxic to these cells than their aqueous extracts. Alcoholic extracts of several spices inhibited cell growth at concentrations of 0.2-1 mg/ml in vitro and 0.12-0.3 mg/ml in tissue culture. Ginger, pippali (native to India; also called dried catkins), pepper, and garlic showed the highest activity followed by asafetida, mustard, and horse-gram (native to India). These extracts also inhibited the thymidine uptake into DNA.

  5. Regulation of neuroendocrine cells and neuron factors in the ovary by zinc oxide nanoparticles.

    PubMed

    Liu, Xin-Qi; Zhang, Hong-Fu; Zhang, Wei-Dong; Zhang, Peng-Fei; Hao, Ya-Nan; Song, Ran; Li, Lan; Feng, Yan-Ni; Hao, Zhi-Hui; Shen, Wei; Min, Ling-Jiang; Yang, Hong-Di; Zhao, Yong

    2016-08-10

    The pubertal period is an important window during the development of the female reproductive system. Development of the pubertal ovary, which supplies the oocytes intended for fertilization, requires growth factors, hormones, and neuronal factors. It has been reported that zinc oxide nanoparticles (ZnO NPs) cause cytotoxicity of neuron cells. However, there have been no reports of the effects of ZnO NPs on neuronal factors and neuroendocrine cells in the ovary (in vivo). For the first time, this in vivo study investigated the effects of ZnO NPs on gene and protein expression of neuronal factors and the population of neuroendocrine cells in ovaries. Intact NPs were detected in ovarian tissue and although ZnO NPs did not alter body weight, they reduced the ovary organ index. Compared to the control or ZnSO4 treatments, ZnO NPs treatments differentially regulated neuronal factor protein and gene expression, and the population of neuroendocrine cells. ZnO NPs changed the contents of essential elements in the ovary; however, they did not alter levels of the steroid hormones estrogen and progesterone. These data together suggest that intact ZnO NPs might pose a toxic effect on neuron development in the ovary and eventually negatively affect ovarian developmental at puberty. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Association of TLR2 S450S and ICAM1 K469E polymorphisms with polycystic ovary syndrome (PCOS) and obesity.

    PubMed

    Ojeda-Ojeda, Miriam; Martínez-García, M Ángeles; Alpañés, Macarena; Luque-Ramírez, Manuel; Escobar-Morreale, Héctor F

    2016-02-01

    Toll-like receptors (TLRs) are activated by inflammatory stimuli and influence endothelial functions, contributing to the pathogenesis of atherosclerosis. We investigate the influence of polymorphisms in the genes encoding toll-like receptor 2 (TLR2) and 4 (TLR4) and endothelial adhesion molecules on polycystic ovary syndrome (PCOS) and its interaction with obesity. Ten single nucleotide polymorphisms were genotyped in 305 women with PCOS and 166 non-hyperandrogenic control women. In obese women, TLR2 S450S and ICAM1 K469E polymorphisms differently influenced metabolic variables and PCOS, respectively. Irrespective of PCOS, variant alleles of TLR2 S450S increased triglycerides, fasting insulin levels, and insulin resistance in obese women. TLR2 S450S interacted with obesity and PCOS on androstenedione levels, mutant alleles were associated with increased androstenedione concentrations in all women, with the exception of obese patients with PCOS (P=0.034). Regarding ICAM1 K469E, homozygosis for K469 alleles was more frequent in PCOS, but only in obese women (P=0.014). K469 alleles were also related to increased body mass index (P=0.017) and diastolic blood pressure (P=0.034). Moreover, ICAM1 K469E interacted with obesity and PCOS on serum triglyceride levels (P=0.019) and with PCOS on serum sex hormone-binding globulin concentrations (P=0.006). In conclusion, TLR2 S450S and ICAM1 K469E polymorphisms may be associated with PCOS and metabolic comorbidities in obese women. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Hematologic Assessment in Pet Rats, Mice, Hamsters, and Gerbils: Blood Sample Collection and Blood Cell Identification.

    PubMed

    Lindstrom, Nicole M; Moore, David M; Zimmerman, Kurt; Smith, Stephen A

    2015-09-01

    Hamsters, gerbils, rats, and mice are presented to veterinary clinics and hospitals for prophylactic care and treatment of clinical signs of disease. Physical examination, history, and husbandry practice information can be supplemented greatly by assessment of hematologic parameters. As a resource for veterinarians and their technicians, this article describes the methods for collection of blood, identification of blood cells, and interpretation of the hemogram in mice, rats, gerbils, and hamsters. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Hybrid- and complex-type N-glycans are not essential for Newcastle disease virus infection and fusion of host cells.

    PubMed

    Sun, Qing; Zhao, Lixiang; Song, Qingqing; Wang, Zheng; Qiu, Xusheng; Zhang, Wenjun; Zhao, Mingjun; Zhao, Guo; Liu, Wenbo; Liu, Haiyan; Li, Yunsen; Liu, Xiufan

    2012-03-01

    N-linked glycans are composed of three major types: high-mannose (Man), hybrid or complex. The functional role of hybrid- and complex-type N-glycans in Newcastle disease virus (NDV) infection and fusion was examined in N-acetylglucosaminyltransferase I (GnT I)-deficient Lec1 cells, a mutant Chinese hamster ovary (CHO) cell incapable of synthesizing hybrid- and complex-type N-glycans. We used recombinant NDV expressing green fluorescence protein or red fluorescence protein to monitor NDV infection, syncytium formation and viral yield. Flow cytometry showed that CHO-K1 and Lec1 cells had essentially the same degree of NDV infection. In contrast, Lec2 cells were found to be resistant to NDV infection. Compared with CHO-K1 cells, Lec1 cells were shown to more sensitive to fusion induced by NDV. Viral attachment was found to be comparable in both lines. We found that there were no significant differences in the yield of progeny virus produced by both CHO-K1 and Lec1 cells. Quantitative analysis revealed that NDV infection and fusion in Lec1 cells were also inhibited by treatment with sialidase. Pretreatment of Lec1 cells with Galanthus nivalis agglutinin specific for terminal α1-3-linked Man prior to inoculation with NDV rendered Lec1 cells less sensitive to cell-to-cell fusion compared with mock-treated Lec1 cells. Treatment of CHO-K1 and Lec1 cells with tunicamycin, an inhibitor of N-glycosylation, significantly blocked fusion and infection. In conclusion, our results suggest that hybrid- and complex-type N-glycans are not required for NDV infection and fusion. We propose that high-Man-type N-glycans could play an important role in the cell-to-cell fusion induced by NDV.

  9. Comparative transcriptomic analysis of silkwormBmovo-1 and wild type silkworm ovary

    PubMed Central

    Xue, Renyu; Hu, Xiaolong; Zhu, Liyuan; Cao, Guangli; Huang, Moli; Xue, Gaoxu; Song, Zuowei; Lu, Jiayu; Chen, Xueying; Gong, Chengliang

    2015-01-01

    The detailed molecular mechanism of Bmovo-1 regulation of ovary size is unclear. To uncover the mechanism of Bmovo-1 regulation of ovarian development and oogenesis using RNA-Seq, we compared the transcriptomes of wild type (WT) and Bmovo-1-overexpressing silkworm (silkworm+Bmovo-1) ovaries. Using a pair-end Illumina Solexa sequencing strategy, 5,296,942 total reads were obtained from silkworm+Bmovo-1 ovaries and 6,306,078 from WT ovaries. The average read length was about 100 bp. Clean read ratios were 98.79% for silkworm+Bmovo-1 and 98.87% for WT silkworm ovaries. Comparative transcriptome analysis showed 123 upregulated and 111 downregulated genes in silkworm+Bmovo-1 ovaries. These differentially expressed genes were enriched in the extracellular and extracellular spaces and involved in metabolism, genetic information processing, environmental information processing, cellular processes and organismal systems. Bmovo-1 overexpression in silkworm ovaries might promote anabolism for ovarian development and oogenesis and oocyte proliferation and transport of nutrients to ovaries by altering nutrient partitioning, which would support ovary development. Excessive consumption of nutrients for ovary development alters nutrient partitioning and deters silk protein synthesis. PMID:26643037

  10. Skin-derived mesenchymal stem cells help restore function to ovaries in a premature ovarian failure mouse model.

    PubMed

    Lai, Dongmei; Wang, Fangyuan; Dong, Zhangli; Zhang, Qiuwan

    2014-01-01

    Skin-derived mesenchymal stem cells (SMSCs) can differentiate into the three embryonic germ layers. For this reason, they are considered a powerful tool for therapeutic cloning and offer new possibilities for tissue therapy. Recent studies showed that skin-derived stem cells can differentiate into cells expressing germ-cell specific markers in vitro and form oocytes in vivo. The idea that SMSCs may be suitable for the treatment of intractable diseases or traumatic tissue damage has attracted attention. To determine the ability of SMSCs to reactivate injured ovaries, a mouse model with ovaries damaged by busulfan and cyclophosphamide was developed and is described here. Female skin-derived mesenchymal stem cells (F-SMSCs) and male skin-derived mesenchymal stem cells (M-SMSCs) from red fluorescence protein (RFP) transgenic adult mice were used to investigate the restorative effects of SMSCs on ovarian function. Significant increases in total body weight and the weight of reproductive organs were observed in the treated animals. Both F-SMSCs and M-SMSCs were shown to be capable of partially restoring fertility in chemotherapy-treated females. Immunostaining with RFP and anti-Müllerian hormone (AMH) antibodies demonstrated that the grafted SMSCs survived, migrated to the recipient ovaries. After SMSCs were administered to the treated mice, real-time PCR showed that the expression levels of pro-inflammatory cytokines TNF-α, TGF-β, IL-8, IL-6, IL-1β, and IFNγ were significantly lower in the ovaries than in the untreated controls. Consistent with this observation, expression of oogenesis marker genes Nobox, Nanos3, and Lhx8 increased in ovaries of SMSCs-treated mice. These findings suggest that SMSCs may play a role within the ovarian follicle microenvironment in restoring the function of damaged ovaries and could be useful in reproductive health.

  11. ULTRASTRUCTURE OF THE NUCLEOLUS DURING THE CHINESE HAMSTER CELL CYCLE

    PubMed Central

    Noel, J. S.; Dewey, W. C.; Abel, J. H.; Thompson, R. P.

    1971-01-01

    Changes in the structure of the nucleolus during the cell cycle of the Chinese hamster cell in vitro were studied. Quantitative electron microscopic techniques were used to establish the size and volume changes in nucleolar structures. In mitosis, nucleolar remnants, "persistent nucleoli," consisting predominantly of ribosome-like granular material, and a granular coating on the chromosomes were observed. Persistent nucleoli were also observed in some daughter nuclei as they were leaving telophase and entering G1. During very early G1, a dense, fibrous material characteristic of interphase nucleoli was noted in the nucleoplasm of the cells. As the cells progressed through G1, a granular component appeared which was intimately associated with the fibrous material. By the middle of G1, complete, mature nucleoli were present. The nucleolar volume enlarged by a factor of two from the beginning of G1 to the middle of S primarily due to the accumulation of the granular component. During the G2 period, there was a dissolution or breakdown of the nucleolus prior to the entry of the cells into mitosis. Correlations between the quantitative aspects of this study and biochemical and cytochemical data available in the literature suggest the following: nucleolar reformation following division results from the activation of the nucleolar organizer regions which transcribe for RNA first appearing in association with protein as a fibrous component (45S RNA) and then later as a granular component (28S and 32S RNA). PMID:4933472

  12. Heterogeneity in sexual bipotentiality and plasticity of granulosa cells in developing mouse ovaries.

    PubMed

    Harikae, Kyoko; Miura, Kento; Shinomura, Mai; Matoba, Shogo; Hiramatsu, Ryuji; Tsunekawa, Naoki; Kanai-Azuma, Masami; Kurohmaru, Masamichi; Morohashi, Ken-Ichirou; Kanai, Yoshiakira

    2013-07-01

    In mammalian sex determination, SRY directly upregulates the expression of SOX9, the master regulatory transcription factor in Sertoli cell differentiation, leading to testis formation. Without SRY action, the bipotential gonadal cells become pre-granulosa cells, which results in ovarian follicle development. When, where and how pre-granulosa cells are determined to differentiate into developing ovaries, however, remains unclear. By monitoring SRY-dependent SOX9 inducibility (SDSI) in an Sry-inducible mouse system, we were able to identify spatiotemporal changes in the sexual bipotentiality/plasticity of ovarian somatic cells throughout life. The early pre-granulosa cells maintain the SDSI until 11.5 d.p.c., after which most pre-granulosa cells rapidly lose this ability by 12.0 d.p.c. Unexpectedly, we found a subpopulation of the pre-granulosa cells near the mesonephric tissue that continuously retains SDSI throughout fetal and early postnatal stages. After birth, these SDSI-positive pre-granulosa cells contribute to the initial round of folliculogenesis by the secondary follicle stage. In experimental sex reversal of 13.5-d.p.c. ovaries grafted into adult male nude mice, the differentiated granulosa cells re-acquire the SDSI before other signs of masculinization. Our data provide direct evidence of an unexpectedly high sexual heterogeneity of granulosa cells in developing mouse ovaries in a stage- and region-specific manner. Discovery of such sexually bipotential granulosa cells provides a novel entry point to the understanding of masculinization in various cases of XX disorders of sexual development in mammalian ovaries.

  13. 3D nanometer images of biological fibers by directed motion of gold nanoparticles.

    PubMed

    Estrada, Laura C; Gratton, Enrico

    2011-11-09

    Using near-infrared femtosecond pulses, we move single gold nanoparticles (AuNPs) along biological fibers, such as collagen and actin filaments. While the AuNP is sliding on the fiber, its trajectory is measured in three dimensions (3D) with nanometer resolution providing a high-resolution image of the fiber. Here, we systematically moved a single AuNP along nanometer-size collagen fibers and actin filament inside chinese hamster ovary K1 living cells, mapping their 3D topography with high fidelity.

  14. Reaction of long-lived radicals and vitamin C in γ-irradiated mammalian cells and their model system at 295 K. Tunneling reaction in biological system

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuro; Miyazaki, Tetsuo; Kosugi, Yoshio; Kumada, Takayuki; Koyama, Sinji; Kodama, Seiji; Watanabe, Masami

    1997-05-01

    When golden hamster embryo (GHE) cells or concentrated albumin solution (0.1 kg dm -3) that is a model system of cells is irradiated with γ-rays at 295 K, organic radicals produced can be observed by ESR. The organic radicals survive at both 295 and 310 K for such a long time as 20 h. The long-lived radicals in GHE cells and the albumin solution react with vitamin C by the rate constants of 0.007 dm 3 mol -1 s -1 and 0.014 dm 3 mol -1 s -1, respectively. The long-lived radicals in human cells cause gene mutation, which is suppressed by addition of vitamin C. The isotope effect on the rate constant ( k) for the reaction of the long-lived radicals and vitamin C has been studied in the albumin solution by use of protonated vitamin C and deuterated vitamin C. The isotope effect ( kH/ kD) was more than 20 ≈ 50 and was interpreted in terms of tunneling reaction.

  15. Expression of SET Protein in the Ovaries of Patients with Polycystic Ovary Syndrome

    PubMed Central

    Boqun, Xu; Xiaonan, Dai; YuGui, Cui; Lingling, Gao; Xue, Dai; Gao, Chao; Feiyang, Diao; Jiayin, Liu; Gao, Li; Li, Mei; Zhang, Yuan; Ma, Xiang

    2013-01-01

    Background. We previously found that expression of SET gene was up-regulated in polycystic ovaries by using microarray. It suggested that SET may be an attractive candidate regulator involved in the pathophysiology of polycystic ovary syndrome (PCOS). In this study, expression and cellular localization of SET protein were investigated in human polycystic and normal ovaries. Method. Ovarian tissues, six normal ovaries and six polycystic ovaries, were collected during transsexual operation and surgical treatment with the signed consent form. The cellular localization of SET protein was observed by immunohistochemistry. The expression levels of SET protein were analyzed by Western Blot. Result. SET protein was expressed predominantly in the theca cells and oocytes of human ovarian follicles in both PCOS ovarian tissues and normal ovarian tissues. The level of SET protein expression in polycystic ovaries was triple higher than that in normal ovaries (P < 0.05). Conclusion. SET was overexpressed in polycystic ovaries more than that in normal ovaries. Combined with its localization in theca cells, SET may participate in regulating ovarian androgen biosynthesis and the pathophysiology of hyperandrogenism in PCOS. PMID:23861679

  16. Expression of SET Protein in the Ovaries of Patients with Polycystic Ovary Syndrome.

    PubMed

    Boqun, Xu; Xiaonan, Dai; Yugui, Cui; Lingling, Gao; Xue, Dai; Gao, Chao; Feiyang, Diao; Jiayin, Liu; Gao, Li; Li, Mei; Zhang, Yuan; Ma, Xiang

    2013-01-01

    Background. We previously found that expression of SET gene was up-regulated in polycystic ovaries by using microarray. It suggested that SET may be an attractive candidate regulator involved in the pathophysiology of polycystic ovary syndrome (PCOS). In this study, expression and cellular localization of SET protein were investigated in human polycystic and normal ovaries. Method. Ovarian tissues, six normal ovaries and six polycystic ovaries, were collected during transsexual operation and surgical treatment with the signed consent form. The cellular localization of SET protein was observed by immunohistochemistry. The expression levels of SET protein were analyzed by Western Blot. Result. SET protein was expressed predominantly in the theca cells and oocytes of human ovarian follicles in both PCOS ovarian tissues and normal ovarian tissues. The level of SET protein expression in polycystic ovaries was triple higher than that in normal ovaries (P < 0.05). Conclusion. SET was overexpressed in polycystic ovaries more than that in normal ovaries. Combined with its localization in theca cells, SET may participate in regulating ovarian androgen biosynthesis and the pathophysiology of hyperandrogenism in PCOS.

  17. Epigenetic silencing of Na,K-ATPase β1 subunit gene ATP1B1 by methylation in clear cell renal cell carcinoma

    PubMed Central

    Selvakumar, Ponniah; Owens, Tori A; David, Justin M; Petrelli, Nicholas J; Christensen, Brock C; Lakshmikuttyamma, Ashakumary; Rajasekaran, Ayyappan K

    2014-01-01

    The Na,K-ATPase or sodium pump carries out the coupled extrusion of Na+ and uptake of K+ across the plasma membranes of cells of most higher eukaryotes. We have shown earlier that Na,K-ATPase-β1 (NaK-β) protein levels are highly reduced in poorly differentiated kidney carcinoma cells in culture and in patients' tumor samples. The mechanism(s) regulating the expression of NaK-β in tumor tissues has yet to be explored. We hypothesized that DNA methylation plays a role in silencing the NaK-β gene (ATP1B1) expression in kidney cancers. In this study, to the best of our knowledge we provide the first evidence that ATP1B1 is epigenetically silenced by promoter methylation in both renal cell carcinoma (RCC) patients’ tissues and cell lines. We also show that knockdown of the von Hippel-Lindau (VHL) tumor suppressor gene in RCC cell lines results in enhanced ATP1B1 promoter AT hypermethylation, which is accompanied by reduced expression of NaK-β. Furthermore, treatment with 5-Aza-2′-deoxycytidine rescued the expression of ATP1B1 mRNA as well as NaK-β protein in these cells. These data demonstrate that promoter hypermethylation is associated with reduced NaK-β expression, which might contribute to RCC initiation and/or disease progression. PMID:24452105

  18. Epigenetic silencing of Na,K-ATPase β 1 subunit gene ATP1B1 by methylation in clear cell renal cell carcinoma.

    PubMed

    Selvakumar, Ponniah; Owens, Tori A; David, Justin M; Petrelli, Nicholas J; Christensen, Brock C; Lakshmikuttyamma, Ashakumary; Rajasekaran, Ayyappan K

    2014-04-01

    The Na,K-ATPase or sodium pump carries out the coupled extrusion of Na(+) and uptake of K(+) across the plasma membranes of cells of most higher eukaryotes. We have shown earlier that Na,K-ATPase-β 1 (NaK-β) protein levels are highly reduced in poorly differentiated kidney carcinoma cells in culture and in patients' tumor samples. The mechanism(s) regulating the expression of NaK-β in tumor tissues has yet to be explored. We hypothesized that DNA methylation plays a role in silencing the NaK-β gene (ATP1B1) expression in kidney cancers. In this study, to the best of our knowledge we provide the first evidence that ATP1B1 is epigenetically silenced by promoter methylation in both renal cell carcinoma (RCC) patients' tissues and cell lines. We also show that knockdown of the von Hippel-Lindau (VHL) tumor suppressor gene in RCC cell lines results in enhanced ATP1B1 promoter AT hypermethylation, which is accompanied by reduced expression of NaK-β. Furthermore, treatment with 5-Aza-2'-deoxycytidine rescued the expression of ATP1B1 mRNA as well as NaK-β protein in these cells. These data demonstrate that promoter hypermethylation is associated with reduced NaK-β expression, which might contribute to RCC initiation and/or disease progression.

  19. Altered cytokeratin expression during chemoprevention of experimental hamster buccal pouch carcinogenesis by garlic.

    PubMed

    Balasenthil, S; Rao, K S; Nagini, S

    2002-03-01

    Cytokeratins (also known as keratins (K)) are members of the family of intermediate filaments and form major components of the mammalian epithelial cell cytoskeleton. Cytokeratins have emerged as reliable cellular markers of oral cancer development and chemoprevention because of their abundance, stability and high antigenicity. We investigated the effect of aqueous garlic extract on cytokeratin expression during 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis. Hamsters were divided into four groups of six animals. Animals in group 1 were painted with a 0.5% solution of DMBA in liquid paraffin, on the right buccal pouches, three times a week for 14 weeks. Group 2 animals were painted with DMBA as in group 1 and also received 250 mg/kg body weight aqueous garlic extract orally on alternate days to the DMBA application. Group 3 animals received garlic extract only, as in group 2. Group 4 animals received neither DMBA nor garlic extract and served as the control. The hamsters were killed after an experimental period of 14 weeks. Cytokeratin expression was studied using human monoclonal antibodies AE1 and AE3, which react with type I and II keratins. In DMBA-induced squamous cell carcinomas, decreased expression of high molecular weight keratins was observed. Administration of garlic extract to animals painted with DMBA suppressed HBP carcinomas and restored normal cytokeratin expression. The results of the present study suggest that inhibition of HBP carcinogenesis by garlic may be due to its regulatory effects on differentiation, tumour invasiveness, migratory and metastatic potential. We suggest that one of the mechanisms of tumour inhibition by garlic is an influence on cellular differentiation.

  20. Endogenous ADP-ribosylation of elongation factor 2 in polyoma virus-transformed baby hamster kidney cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fendrick, J.L.; Iglewski, W.J.

    1989-01-01

    Polyoma virus-transformed baby hamster kidney (pyBHK) cells were cultured in medium containing ({sup 32}P)orthophosphate and 105 (vol/vol) fetal bovine serum. A {sup 32}P-labeled protein with an apparent molecular mass of 97 kDa was immunoprecipitated from cell lysates with antiserum to ADP-ribosylated elongation factor 2 (EF-2). The {sup 32}P labeling of the protein was enhanced by culturing cells in medium containing 2% serum instead of 10% serum. The {sup 32}P label was completely removed from the protein by treatment with snake venom phosphodiesterase and the digestion product was identified as ({sup 32}P)AMP, indicating the protein was mono-ADP-ribosylated. HPLC analysis of trypticmore » peptides of the {sup 32}P-labeled 97-kDa protein and purified EF-2, which was ADP-ribosylated in vitro with diphtheria toxin fragment A and ({sup 32}P)NAD, demonstrated an identical labeled peptide in the two proteins. The data strongly suggest that EF-2 was endogenously ADP-ribosylated in pyBHK cells. Maximum incorporation of radioactivity in EF-2 occurred by 12 hr and remained constant over the subsequent 12 hr. It was estimated that 30-35% of the EF-2 was ADP-ribosylated in cells cultured in medium containing 2% serum. When {sup 32}P-labeled cultures were incubated in medium containing unlabeled phosphate, the {sup 32}P label was lost from the EF-2 within 30 min.« less

  1. Removal of transmissible spongiform encephalopathy prion from large volumes of cell culture media supplemented with fetal bovine serum by using hollow fiber anion-exchange membrane chromatography.

    PubMed

    Chou, Ming Li; Bailey, Andy; Avory, Tiffany; Tanimoto, Junji; Burnouf, Thierry

    2015-01-01

    Cases of variant Creutzfeldt-Jakob disease in people who had consumed contaminated meat products from cattle with bovine spongiform encephalopathy emphasize the need for measures aimed at preventing the transmission of the pathogenic prion protein (PrPSc) from materials derived from cattle. Highly stringent scrutiny is required for fetal bovine serum (FBS), a growth-medium supplement used in the production of parenteral vaccines and therapeutic recombinant proteins and in the ex vivo expansion of stem cells for transplantation. One such approach is the implementation of manufacturing steps dedicated to removing PrPSc from materials containing FBS. We evaluated the use of the QyuSpeed D (QSD) adsorbent hollow-fiber anion-exchange chromatographic column (Asahi Kasei Medical, Tokyo, Japan) for the removal of PrPSc from cell culture media supplemented with FBS. We first established that QSD filtration had no adverse effect on the chemical composition of various types of culture media supplemented with 10% FBS or the growth and viability characteristics of human embryonic kidney (HEK293) cells, baby hamster kidney (BHK-21) cells, African green monkey kidney (Vero) cells, and Chinese hamster ovary (CHO-k1) cells propagated in the various culture-medium filtrates. We used a 0.6-mL QSD column for removing PrPSc from up to 1000 mL of Dulbecco's modified Eagle's medium containing 10% FBS previously spiked with the 263K strain of hamster-adapted scrapie. The Western blot analysis, validated alongside an infectivity assay, revealed that the level of PrPSc in the initial 200mL flow-through was reduced by 2.5 to > 3 log10, compared with that of the starting material. These results indicate that QSD filtration removes PrPSc from cell culture media containing 10% FBS, and demonstrate the ease with which QSD filtration can be implemented in at industrial-scale to improve the safety of vaccines, therapeutic recombinant proteins, and ex vivo expanded stem cells produced using growth

  2. Removal of Transmissible Spongiform Encephalopathy Prion from Large Volumes of Cell Culture Media Supplemented with Fetal Bovine Serum by Using Hollow Fiber Anion-Exchange Membrane Chromatography

    PubMed Central

    Chou, Ming Li; Bailey, Andy; Avory, Tiffany; Tanimoto, Junji; Burnouf, Thierry

    2015-01-01

    Cases of variant Creutzfeldt-Jakob disease in people who had consumed contaminated meat products from cattle with bovine spongiform encephalopathy emphasize the need for measures aimed at preventing the transmission of the pathogenic prion protein (PrPSc) from materials derived from cattle. Highly stringent scrutiny is required for fetal bovine serum (FBS), a growth-medium supplement used in the production of parenteral vaccines and therapeutic recombinant proteins and in the ex vivo expansion of stem cells for transplantation. One such approach is the implementation of manufacturing steps dedicated to removing PrPSc from materials containing FBS. We evaluated the use of the QyuSpeed D (QSD) adsorbent hollow-fiber anion-exchange chromatographic column (Asahi Kasei Medical, Tokyo, Japan) for the removal of PrPSc from cell culture media supplemented with FBS. We first established that QSD filtration had no adverse effect on the chemical composition of various types of culture media supplemented with 10% FBS or the growth and viability characteristics of human embryonic kidney (HEK293) cells, baby hamster kidney (BHK-21) cells, African green monkey kidney (Vero) cells, and Chinese hamster ovary (CHO-k1) cells propagated in the various culture-medium filtrates. We used a 0.6-mL QSD column for removing PrPSc from up to 1000 mL of Dulbecco’s modified Eagle’s medium containing 10% FBS previously spiked with the 263K strain of hamster-adapted scrapie. The Western blot analysis, validated alongside an infectivity assay, revealed that the level of PrPSc in the initial 200mL flow-through was reduced by 2.5 to > 3 log10, compared with that of the starting material. These results indicate that QSD filtration removes PrPSc from cell culture media containing 10% FBS, and demonstrate the ease with which QSD filtration can be implemented in at industrial-scale to improve the safety of vaccines, therapeutic recombinant proteins, and ex vivo expanded stem cells produced using

  3. Role of Microvesicles in the Spread of Herpes Simplex Virus 1 in Oligodendrocytic Cells.

    PubMed

    Bello-Morales, Raquel; Praena, Beatriz; de la Nuez, Carmen; Rejas, María Teresa; Guerra, Milagros; Galán-Ganga, Marcos; Izquierdo, Manuel; Calvo, Víctor; Krummenacher, Claude; López-Guerrero, José Antonio

    2018-05-15

    Herpes simplex virus 1 (HSV-1) is a neurotropic pathogen that can infect many types of cells and establishes latent infections in the neurons of sensory ganglia. In some cases, the virus spreads into the central nervous system, causing encephalitis or meningitis. Cells infected with several different types of viruses may secrete microvesicles (MVs) containing viral proteins and RNAs. In some instances, extracellular microvesicles harboring infectious virus have been found. Here we describe the features of shedding microvesicles released by the human oligodendroglial HOG cell line infected with HSV-1 and their participation in the viral cycle. Using transmission electron microscopy, we detected for the first time microvesicles containing HSV-1 virions. Interestingly, the Chinese hamster ovary (CHO) cell line, which is resistant to infection by free HSV-1 virions, was susceptible to HSV-1 infection after being exposed to virus-containing microvesicles. Therefore, our results indicate for the first time that MVs released by infected cells contain virions, are endocytosed by naive cells, and lead to a productive infection. Furthermore, infection of CHO cells was not completely neutralized when virus-containing microvesicles were preincubated with neutralizing anti-HSV-1 antibodies. The lack of complete neutralization and the ability of MVs to infect nectin-1/HVEM-negative CHO-K1 cells suggest a novel way for HSV-1 to spread to and enter target cells. Taken together, our results suggest that HSV-1 could spread through microvesicles to expand its tropism and that microvesicles could shield the virus from neutralizing antibodies as a possible mechanism to escape the host immune response. IMPORTANCE Herpes simplex virus 1 (HSV-1) is a neurotropic pathogen that can infect many types of cells and establishes latent infections in neurons. Extracellular vesicles are a heterogeneous group of membrane vesicles secreted by most cell types. Microvesicles, which are extracellular

  4. Prevention by cromakalim of spontaneously occurring cardiac necroses in polymyopathic hamsters.

    PubMed

    Jasmin, G; Proschek, L

    1996-11-01

    Previous studies on the heart necrotizing process at early stages of the hamster polymyopathy have led us to believe that this hereditary disease derives from a defective transmembrane ion flux resulting in myocardial Ca2+ over-load. On the other hand, certain K+ ATP channel openers were shown to prevent cytosolic Ca2+ accumulation in ischemic hearts. Therefore, we investigated the potential beneficial effect of chronic treatment with cromakalim (CR) on the development of necrotic changes in hamster myopathic hearts. Young cardiomyopathic (CM) hamsters were treated parenterally with CR over 4 consecutive weeks. The K+ ATP opener was dissolved in 5% DMSO and injected twice daily (s.c. and i.p. alternatively) at a dose level of 2.5 mg/kg per injection. Microscopic readings were carried out in staged serial paraffin sections of heart ventricles, the diaphragm, and tongue, will all tissues freshly taken at autopsy. In comparison with control untreated hearts, which exhibit numerous necrotic calcific foci, only minute myolytic lesions were found in 5 of 12 hamsters hearts receiving CR (p < 0.0001). Interestingly, the dystrophic process in the tongue was significantly less severe (p < 0.0004) in CR-treated animals. These observations provide evidence for the first time that in vivo sustained treatment with a K+ ATP opener exerts cardioprotection upon development of the hamster hereditary cardiomyopathy.

  5. Optimization and control of perfusion cultures using a viable cell probe and cell specific perfusion rates.

    PubMed

    Dowd, Jason E; Jubb, Anthea; Kwok, K Ezra; Piret, James M

    2003-05-01

    Consistent perfusion culture production requires reliable cell retention and control of feed rates. An on-line cell probe based on capacitance was used to assay viable biomass concentrations. A constant cell specific perfusion rate controlled medium feed rates with a bioreactor cell concentration of approximately 5 x 10(6) cells mL(-1). Perfusion feeding was automatically adjusted based on the cell concentration signal from the on-line biomass sensor. Cell specific perfusion rates were varied over a range of 0.05 to 0.4 nL cell(-1) day(-1). Pseudo-steady-state bioreactor indices (concentrations, cellular rates and yields) were correlated to cell specific perfusion rates investigated to maximize recombinant protein production from a Chinese hamster ovary cell line. The tissue-type plasminogen activator concentration was maximized ( approximately 40 mg L(-1)) at 0.2 nL cell(-1) day(-1). The volumetric protein productivity ( approximately 60 mg L(-1) day(-1) was maximized above 0.3 nL cell(-1) day(-1). The use of cell specific perfusion rates provided a straightforward basis for controlling, modeling and optimizing perfusion cultures.

  6. Multiple reaction monitoring targeted LC-MS analysis of potential cell death marker proteins for increased bioprocess control.

    PubMed

    Albrecht, Simone; Kaisermayer, Christian; Reinhart, David; Ambrose, Monica; Kunert, Renate; Lindeberg, Anna; Bones, Jonathan

    2018-05-01

    The monitoring of protein biomarkers for the early prediction of cell stress and death is a valuable tool for process characterization and efficient biomanufacturing control. A representative set of six proteins, namely GPDH, PRDX1, LGALS1, CFL1, TAGLN2 and MDH, which were identified in a previous CHO-K1 cell death model using discovery LC-MS E was translated into a targeted liquid chromatography multiple reaction monitoring mass spectrometry (LC-MRM-MS) platform and verified. The universality of the markers was confirmed in a cell growth model for which three Chinese hamster ovary host cell lines (CHO-K1, CHO-S, CHO-DG44) were grown in batch culture in two different types of basal media. LC-MRM-MS was also applied to spent media (n = 39) from four perfusion biomanufacturing series. Stable isotope-labelled peptide analogues and a stable isotope-labelled monoclonal antibody were used for improved protein quantitation and simultaneous monitoring of the workflow reproducibility. Significant increases in protein concentrations were observed for all viability marker proteins upon increased dead cell numbers and allowed for discrimination of spent media with dead cell densities below and above 1 × 10 6  dead cells/mL which highlights the potential of the selected viability marker proteins in bioprocess control. Graphical abstract Overview of the LC-MRM-MS workflow for the determination of proteomic markers in conditioned media from the bioreactor that correlate with CHO cell death.

  7. CHOgenome.org 2.0: Genome resources and website updates.

    PubMed

    Kremkow, Benjamin G; Baik, Jong Youn; MacDonald, Madolyn L; Lee, Kelvin H

    2015-07-01

    Chinese hamster ovary (CHO) cells are a major host cell line for the production of therapeutic proteins, and CHO cell and Chinese hamster (CH) genomes have recently been sequenced using next-generation sequencing methods. CHOgenome.org was launched in 2011 (version 1.0) to serve as a database repository and to provide bioinformatics tools for the CHO community. CHOgenome.org (version 1.0) maintained GenBank CHO-K1 genome data, identified CHO-omics literature, and provided a CHO-specific BLAST service. Recent major updates to CHOgenome.org (version 2.0) include new sequence and annotation databases for both CHO and CH genomes, a more user-friendly website, and new research tools, including a proteome browser and a genome viewer. CHO cell-line specific sequences and annotations facilitate cell line development opportunities, several of which are discussed. Moving forward, CHOgenome.org will host the increasing amount of CHO-omics data and continue to make useful bioinformatics tools available to the CHO community. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Generation of juvenile rainbow trout derived from cryopreserved whole ovaries by intraperitoneal transplantation of ovarian germ cells.

    PubMed

    Lee, Seungki; Katayama, Naoto; Yoshizaki, Goro

    2016-09-23

    Cryopreservation of fish sperm offers the practical applications in the selective breeding and biodiversity conservation. However, because of the lack of cryopreservation methods for fish eggs and embryos, maternally inherited cytoplasmic compartments cannot be successfully preserved. We previously developed an alternative method to derive functional eggs and sperm from cryopreserved whole testis by transplanting testicular cells into female and male recipients. However, if target fish had ovaries, the previous method employing male-derived germ cells would be ineffective. Here, we aimed to generate functional gametes from cryopreserved whole ovaries by transplanting ovarian germ cells into peritoneal cavity of sterile hatchlings. Cryopreservation conditions for rainbow trout ovaries (1.0 M DMSO, 0.1 M trehalose, and 10% egg yolk) were optimized by testing several different cryoprotective agents. Ovarian germ cells from thawed ovaries were intraperitoneally transplanted into allogeneic triploid hatchlings. Transplanted germ cells migrated toward and were incorporated into recipient gonads, where they underwent gametogenesis. Transplantation efficiency of ovarian germ cells remained stable after cryopreservation period up to 1185 days. Although all triploid recipients that did not undergo transplantation were functionally sterile, 5 of 25 female recipients and 7 of 25 male recipients reached sexual maturity at 2.5 years post-transplantation. Inseminating the resultant eggs and sperm generated viable offspring displaying the donor characteristics of orange body color, green fluorescence, and chromosome numbers. This method is thus a breakthrough tool for the conservation of endangered fish species that are crucial to cryopreserve the genetic resources of female fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Piwi Is Required in Multiple Cell Types to Control Germline Stem Cell Lineage Development in the Drosophila Ovary

    PubMed Central

    Ma, Xing; Wang, Su; Do, Trieu; Song, Xiaoqing; Inaba, Mayu; Nishimoto, Yoshiya; Liu, Lu-ping; Gao, Yuan; Mao, Ying; Li, Hui; McDowell, William; Park, Jungeun; Malanowski, Kate; Peak, Allison; Perera, Anoja; Li, Hua; Gaudenz, Karin; Haug, Jeff; Yamashita, Yukiko; Lin, Haifan; Ni, Jian-quan; Xie, Ting

    2014-01-01

    The piRNA pathway plays an important role in maintaining genome stability in the germ line by silencing transposable elements (TEs) from fly to mammals. As a highly conserved piRNA pathway component, Piwi is widely expressed in both germ cells and somatic cells in the Drosophila ovary and is required for piRNA production in both cell types. In addition to its known role in somatic cap cells to maintain germline stem cells (GSCs), this study has demonstrated that Piwi has novel functions in somatic cells and germ cells of the Drosophila ovary to promote germ cell differentiation. Piwi knockdown in escort cells causes a reduction in escort cell (EC) number and accumulation of undifferentiated germ cells, some of which show active BMP signaling, indicating that Piwi is required to maintain ECs and promote germ cell differentiation. Simultaneous knockdown of dpp, encoding a BMP, in ECs can partially rescue the germ cell differentiation defect, indicating that Piwi is required in ECs to repress dpp. Consistent with its key role in piRNA production, TE transcripts increase significantly and DNA damage is also elevated in the piwi knockdown somatic cells. Germ cell-specific knockdown of piwi surprisingly causes depletion of germ cells before adulthood, suggesting that Piwi might control primordial germ cell maintenance or GSC establishment. Finally, Piwi inactivation in the germ line of the adult ovary leads to gradual GSC loss and germ cell differentiation defects, indicating the intrinsic role of Piwi in adult GSC maintenance and differentiation. This study has revealed new germline requirement of Piwi in controlling GSC maintenance and lineage differentiation as well as its new somatic function in promoting germ cell differentiation. Therefore, Piwi is required in multiple cell types to control GSC lineage development in the Drosophila ovary. PMID:24658126

  10. Single-step purification of recombinant Gaussia luciferase from serum-containing culture medium of mammalian cells.

    PubMed

    Inouye, Satoshi

    2018-01-01

    A dihydrofolate reductase-deficient Chinese hamster ovary (CHO-K1/dhfr - ) cell line stably expressing Gaussia luciferase with a histidine-tag sequence at the carboxyl terminus (GLase-His) was established. Recombinant GLase-His was purified from serum-containing culture medium by single-step Ni-chelate column chromatography in the presence of 2 M NaCl and 0.01% Tween 20. The protein yield of GLase-His with over 95% purity was 0.5 mg from 0.9 L of the cultured medium. The enzymatic properties of purified GLase-His were characterized. Interestingly, non-ionic detergent Tween 20 stabilized and stimulated GLase-His activity and its luminescence activity was stimulated 2-fold by the synergistic effect of 0.01% Tween 20 and 150 mM NaCl. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Malignant mixed germ cell tumour of ovary--an unusual combination and review of literature.

    PubMed

    Goyal, Lajya Devi; Kaur, Sharanjit; Kawatra, Kanwardeep

    2014-11-04

    Mixed germ cell tumours of the ovary are malignant neoplasms of the ovary comprising of two or more types of germ cell components. Most of the malignant mixed germ cell tumours consists of dysgerminoma accompanied by endodermal sinus tumours, immature teratoma or choriocarcinoma. There are only few case reports of mixed germ cell tumours with different combinations of malignant components. We report a very rare case of mixed germ cell tumours consisted of malignant components of endodermal sinus tumour, emryonal carcinoma, and benign component of teratomatuos and trophoblastic differentiation. This is the first case report in the literature with both benign and malignant component of type described to best of our knowledge. Patient was an 18 year old girl, who presented with pain abdomen, abdominal mass and irregular bleeding. Ultrasound and CT scan showed a huge mass with solid and cystic component. Tumour markers i.e alpha feto- protein (AFP), human chorionic gonadotropin (hCG), lactate dehydrogenate (LDH) and Ca-125 were raised. We performed fertility sparing surgery by preserving one ovary, tube and uterus. Conclusion: Malingnant mixed germ cell tumours of ovary are highly aggressive neoplasm and early intervention and fertility sparing surgery is required for any adolescent girl presenting with rapidly enlarging pelvic mass.

  12. Identification and characterization of putative stem cells in the adult pig ovary.

    PubMed

    Bui, Hong-Thuy; Van Thuan, Nguyen; Kwon, Deug-Nam; Choi, Yun-Jung; Kang, Min-Hee; Han, Jae-Woong; Kim, Teoan; Kim, Jin-Hoi

    2014-06-01

    Recently, the concept of 'neo-oogenesis' has received increasing attention, since it was shown that adult mammals have a renewable source of eggs. The purpose of this study was to elucidate the origin of these eggs and to confirm whether neo-oogenesis continues throughout life in the ovaries of the adult mammal. Adult female pigs were utilized to isolate, identify and characterize, including their proliferation and differentiation capabilities, putative stem cells (PSCs) from the ovary. PSCs were found to comprise a heterogeneous population based on c-kit expression and cell size, and also express stem and germ cell markers. Analysis of PSC molecular progression during establishment showed that these cells undergo cytoplasmic-to-nuclear translocation of Oct4 in a manner reminiscent of gonadal primordial germ cells (PGCs). Hence, cells with the characteristics of early PGCs are present or are generated in the adult pig ovary. Furthermore, the in vitro establishment of porcine PSCs required the presence of ovarian cell-derived extracellular regulatory factors, which are also likely to direct stem cell niche interactions in vivo. In conclusion, the present work supports a crucial role for c-kit and kit ligand/stem cell factor in stimulating the growth, proliferation and nuclear reprogramming of porcine PSCs, and further suggests that porcine PSCs might be the culture equivalent of early PGCs. © 2014. Published by The Company of Biologists Ltd.

  13. Yolk proteins during ovary and egg development of mature female freshwater crayfish (Cherax quadricarinatus).

    PubMed

    Serrano-Pinto, Vania; Vazquez-Boucard, Celia; Villarreal-Colmenares, Humberto

    2003-01-01

    Vitellins from ovaries and eggs at different stages of development in freshwater crayfish (Cherax quadricarinatus) were examined by chromatography, PAGE and SDS-PAGE. With these methods, two forms of vitellin (Vt1 and Vt2) were observed in ovaries and eggs (stages I and V). In ovaries in secondary vitellogenesis, native molecular mass was 470 (Vt1) and 440 (Vt2) kDa. The electrophoretic pattern of the eggs proved to be more complex. The protein molecular mass depend on the development stage of the egg: stage I, 650 kDa (Vt1) and 440 kDa (Vt2); stage V, 390 kDa (Vt1) and 340 kDa (Vt2). The identified vitellins appear to be lipo-glycocarotenoprotein. A similar vitellin polypeptide composition was observed in the two forms of vitellin from ovaries and eggs in stage V. In ovaries the SDS-PAGE analysis showed four subunits with molecular weights of approximately 180, 120, 95 and 80 kDa (Vt1 and Vt2). The polypeptide composition in the two forms of vitellins in stage I and stage III eggs were different at 195, 190, 130 and 110 kDa (Vt1) and 116 and 107 kDa (Vt2). On the other hand, in stage V eggs, 110, 95, 87 and 75 kDa (Vt1 and Vt2) were identified. Two antibodies (Ab1 and Ab2) were prepared against the purified proteins of stage V eggs and their specificity was demonstrated by radial immunoprecipitation, and Western blotting analysis. Two forms of vitellins were also found in stage V eggs after chromatography on Sepharose CL-2B column and hydroxylapatite and polyacrylamide gel electrophoresis.

  14. Effects of proliferation on the decay of thermotolerance in Chinese hamster cells.

    PubMed

    Armour, E P; Li, G C; Hahn, G M

    1985-09-01

    Development and decay of thermotolerance were observed in Chinese hamster HA-1 cells. The thermotolerance kinetics of exponentially growing and fed plateau-phase cells were compared. Following a 10-min heat exposure at 45 degrees C, cells in both growth states had similar rates of development of tolerance to a subsequent 45-min exposure at 45 degrees C. This thermotolerant state started to decay between 12 and 24 hr after the initial heat exposure. The decay appeared to initiate slightly sooner in the exponentially growing cells when compared to the fed plateau-phase cells. During the decay phase, the rate of thermotolerance decay was similar in the two growth conditions. In other experiments, cells were induced to divide at a slower rate by chronic growth (3 months) in a low concentration of fetal calf serum. Under these low serum conditions cells became more sensitive to heat and the rate of decay of thermotolerance remained the same for exponentially growing cells. Plateau-phase cells were also more sensitive, but thermotolerance decayed more rapidly in these cells. Although dramatic cell cycle perturbations were seen in the exponentially growing cells, these changes appeared not to be related to thermotolerance kinetics.

  15. Radiosensitization of Hypoxic Tumor Cells by Depletion of Intracellular Glutathione

    NASA Astrophysics Data System (ADS)

    Bump, Edward A.; Yu, Ning Y.; Brown, J. Martin

    1982-08-01

    Depletion of glutathione in Chinese hamster ovary cells in vitro by diethyl maleate resulted in enhancement of the effect of x-rays on cell survival under hypoxic conditions but not under oxygenated conditions. Hypoxic EMT6 tumor cells were similarly sensitized in vivo. The action of diethyl maleate is synergistic with the effect of the electron-affinic radiosensitizer misonidazole, suggesting that the effectiveness of misonidazole in cancer radiotherapy may be improved by combining it with drugs that deplete intracellular glutathione.

  16. Radiosensitization of hypoxic tumor cells by depletion of intracellular glutathione

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bump, E.A.; Yu, N.Y.; Brown, J.M.

    1982-08-06

    Depletion of glutathione in Chinese hamster ovary cells in vitro by diethyl maleate resulted in enhancement of the effect of x-rays on cell survival under hypoxic conditions but not under oxygenated conditions. Hypoxic EMT6 tumor cells were similarly sensitized in vivo. The action of diethyl maleate is synergistic with the effect of the electron-affinic radiosensitizer misonidazole, suggesting that the effectiveness of misonidazole in cancer radiotherapy may be improved by combining it with drugs that deplete intracellular glutathione.

  17. Caffeine-enhanced survival of radiation-sensitive, repair-deficient Chinese hamster cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utsumi, H.; Elkind, M.M.

    1983-11-01

    A clone of V79 Chinese hamster cells (V79-AL162/S-10) with unique properties has been isolated after a challenge of parental cells (V79-AL162) with 1 mM ouabain. Compared with parental cells, or with other clones isolated after the ouabain challenge, these cells form smaller colonies, are more sensitive to both x rays and fission-spectrum neutrons, and respond atypically to a postirradiation treatment with caffeine. Their enhanced response to x rays results mainly from a large reduction in the shoulder of their survival curve, probably because in late S phase, the most resistant phase in the cell cycle, the survival curve of thesemore » cells has a reduced shoulder width. Caffeine, and to a lesser extent theophylline, added to the colony-forming medium immediately after exposure appreciably increases the width of the shoulder of these sensitive cells, whereas caffeine has the opposite effect on the response of normal V79 cells. Thus the unique response of the V79-AL162/S-10 cells to a radiation posttreatment with caffeine (increased survival) results from a net increase in their ability to repair damage that is otherwise lethal; caffeine treatment ordinarly prevents normal V79 cells from repairing damage that is only potentially lethal.« less

  18. Metabolic Acidosis Increases Intracellular Calcium in Bone Cells Through Activation of the Proton Receptor OGR1

    PubMed Central

    Frick, Kevin K; Krieger, Nancy S; Nehrke, Keith; Bushinsky, David A

    2009-01-01

    Metabolic acidosis increases urine Ca without increasing intestinal absorption, leading to bone Ca loss. It is unclear how bone cells detect the increase in proton concentration. To determine which G protein-coupled proton sensing receptors are expressed in bone, PCR was performed, and products were detected for OGR1, TDAG8, G2A, and GPR4. We tested the hypothesis that the G protein-coupled proton sensor, OGR1, is an H+-sensing receptor in bone. To determine whether acid-induced bone resorption involves OGR1, we incubated mouse calvariae in neutral pH (NTL) or acidic (MET) medium ± the OGR1 inhibitor CuCl2. CuCl2 decreased MET-induced Ca efflux. We used fluorescent imaging of perfused bone cells to determine whether MET increases Cai. Perfusion with MET induced a rapid, flow-independent, increase in Cai in individual bone cells. To determine whether transfection of OGR1 into a heterologous cell type would increase Cai in response to H+, we perfused Chinese hamster ovary (CHO) cells transfected with mouse OGR1 cDNA. Perfusion with MET induced a rapid increase in Cai in OGR1-transfected CHO cells. These data indicate that OGR1 induces an increase in Cai in response to MET and is a prime candidate for an osteoblast proton sensor. PMID:18847331

  19. Metabolic acidosis increases intracellular calcium in bone cells through activation of the proton receptor OGR1.

    PubMed

    Frick, Kevin K; Krieger, Nancy S; Nehrke, Keith; Bushinsky, David A

    2009-02-01

    Metabolic acidosis increases urine Ca without increasing intestinal absorption, leading to bone Ca loss. It is unclear how bone cells detect the increase in proton concentration. To determine which G protein-coupled proton sensing receptors are expressed in bone, PCR was performed, and products were detected for OGR1, TDAG8, G2A, and GPR4. We tested the hypothesis that the G protein-coupled proton sensor, OGR1, is an H(+)-sensing receptor in bone. To determine whether acid-induced bone resorption involves OGR1, we incubated mouse calvariae in neutral pH (NTL) or acidic (MET) medium +/- the OGR1 inhibitor CuCl(2). CuCl(2) decreased MET-induced Ca efflux. We used fluorescent imaging of perfused bone cells to determine whether MET increases Ca(i). Perfusion with MET induced a rapid, flow-independent, increase in Ca(i) in individual bone cells. To determine whether transfection of OGR1 into a heterologous cell type would increase Ca(i) in response to H(+), we perfused Chinese hamster ovary (CHO) cells transfected with mouse OGR1 cDNA. Perfusion with MET induced a rapid increase in Ca(i) in OGR1-transfected CHO cells. These data indicate that OGR1 induces an increase in Ca(i) in response to MET and is a prime candidate for an osteoblast proton sensor.

  20. Induction of Thioguanine- and Ouabain-Resistant Mutants and Single-Strand Breaks in the DNA of Chinese Hamster Ovary Cells by 3H-Thymidine

    PubMed Central

    Cleaver, James E.

    1977-01-01

    Cultured Chinese hamster cells were labeled with 6-3H-thymidine or 5-methyl-3H-thymidine and allowed to accumulate damage from 3H decays for various periods of time while frozen. The frequencies of cells resistant to 6-thioguanine or ouabain and the amount of DNA damage (i.e., number of single-strand breaks) were determined and compared with the mutation frequencies resulting from X and ultraviolet light irradiation. Whereas 3H decays and X rays made only 6-thioguanine-resistant mutants, ultraviolet light made both 6-thioguanine- and ouabain-resistant mutants. 3H decays originating at the 6 position were two to three times as effective as decays at the 5-methyl position in making drug-resistant mutants, but decays at both sites were equally effective in making single-strand breaks. Mutants and strand breaks produced by beta irradiation of the nucleus probably are the same irrespective of the site of the decay in thymine; these results indicate that the local transmutation effects of 3H decay produce more mutations when they occur at the 6 position than at the 5-methyl position. PMID:914028

  1. Distribution of Rickettsia rickettsii in ovary cells of Rhipicephalus sanguineus (Latreille1806) (Acari: Ixodidae).

    PubMed

    da Silva Costa, Luís Flávio; Nunes, Pablo Henrique; Soares, João Fábio; Labruna, Marcelo Bahia; Camargo-Mathias, Maria Izabel

    2011-11-25

    Considering the fact that the dog tick, Rhipicephalus sanguineus, has a great potential to become the vector of Brazilian Spotted Fever (BSF) for humans, the present study aimed to describe the distribution of the bacterium Rickettsia rickettsii, the etiological agent of BSF, in different regions of the ovaries of R. sanguineus using histological techniques. The ovaries were obtained from positive females confirmed by the hemolymph test and fed in the nymph stage on guinea pigs inoculated with R. rickettsii. The results showed a general distribution of R. rickettsii in the ovary cells, being found in oocytes in all stages of development (I, II, III, IV and V) most commonly in the periphery of the oocyte and also in the cytoplasm of pedicel cells. The histological analysis of the ovaries of R. sanguineus infected females confirmed the presence of the bacterium, indicating that the infection can interfere negatively in the process of reproduction of the ticks, once alterations were detected both in the shape and cell structure of the oocytes which contained bacteria.

  2. A novel thromboxane A2 receptor D304N variant that abrogates ligand binding in a patient with a bleeding diathesis.

    PubMed

    Mumford, Andrew D; Dawood, Ban B; Daly, Martina E; Murden, Sherina L; Williams, Michael D; Protty, Majd B; Spalton, Jennifer C; Wheatley, Mark; Mundell, Stuart J; Watson, Steve P

    2010-01-14

    We investigated the cause of mild mucocutaneous bleeding in a 14-year-old male patient (P1). Platelet aggregation and ATP secretion induced by arachidonic acid and the thromboxane A(2) receptor (TxA(2)R) agonist U46619 were reduced in P1 compared with controls, whereas the responses to other platelet agonists were retained. P1 was heterozygous for a transversion within the TBXA2R gene predictive of a D304N substitution in the TxA(2)R. In Chinese hamster ovary-K1 cells expressing the variant D304N TxA(2)R, U46619 did not increase cytosolic free Ca(2+) concentration, indicating loss of receptor function. The TxA(2)R antagonist [(3)H]-SQ29548 showed an approximate 50% decrease in binding to platelets from P1 but absent binding to Chinese hamster ovary-K1 cells expressing variant D304N TxA(2)R. This is the second naturally occurring TxA(2)R variant to be associated with platelet dysfunction and the first in which loss of receptor function is associated with reduced ligand binding. D304 lies within a conserved NPXXY motif in transmembrane domain 7 of the TxA(2)R that is a key structural element in family A G protein-coupled receptors. Our demonstration that the D304N substitution causes clinically significant platelet dysfunction by reducing ligand binding establishes the importance of the NPXXY motif for TxA(2)R function in vivo.

  3. Etiology of Tetracycline-Associated Pseudomembranous Colitis in Hamsters

    PubMed Central

    Toshniwal, Renu; Fekety, Robert; Silva, Joseph

    1979-01-01

    Tetracyclines were implicated in the 1950s in induction of protracted diarrhea and pseudomembranous colitis. Because the pathogenetic mechanism of these illnesses has been questioned recently, we studied tetracycline in hamster models of antibiotic-associated colitis. Orogastric administration of tetracycline caused diarrhea and death, with evidence of hemorrhagic typhlitis. Filtrates of cecal contents were toxic when inoculated into normal hamsters and cell culture monolayers, and toxicity was neutralized with Clostridium sordellii antitoxin. Tetracycline-resistant C. difficile was cultured from stools of these hamsters, but Staphylococcus aureus was not isolated. The value of tetracycline for treatment or prevention of clindamycin-induced colitis in hamsters was also studied, and it was found that daily orogastric administration of tetracycline was poorly protective against clindamycin-induced colitis. PMID:485127

  4. Comprehensive analysis of genome-wide DNA methylation across human polycystic ovary syndrome ovary granulosa cell.

    PubMed

    Xu, Jiawei; Bao, Xiao; Peng, Zhaofeng; Wang, Linlin; Du, Linqing; Niu, Wenbin; Sun, Yingpu

    2016-05-10

    Polycystic ovary syndrome (PCOS) affects approximately 7% of the reproductive-age women. A growing body of evidence indicated that epigenetic mechanisms contributed to the development of PCOS. The role of DNA modification in human PCOS ovary granulosa cell is still unknown in PCOS progression. Global DNA methylation and hydroxymethylation were detected between PCOS' and controls' granulosa cell. Genome-wide DNA methylation was profiled to investigate the putative function of DNA methylaiton. Selected genes expressions were analyzed between PCOS' and controls' granulosa cell. Our results showed that the granulosa cell global DNA methylation of PCOS patients was significant higher than the controls'. The global DNA hydroxymethylation showed low level and no statistical difference between PCOS and control. 6936 differentially methylated CpG sites were identified between control and PCOS-obesity. 12245 differential methylated CpG sites were detected between control and PCOS-nonobesity group. 5202 methylated CpG sites were significantly differential between PCOS-obesity and PCOS-nonobesity group. Our results showed that DNA methylation not hydroxymethylation altered genome-wide in PCOS granulosa cell. The different methylation genes were enriched in development protein, transcription factor activity, alternative splicing, sequence-specific DNA binding and embryonic morphogenesis. YWHAQ, NCF2, DHRS9 and SCNA were up-regulation in PCOS-obesity patients with no significance different between control and PCOS-nonobesity patients, which may be activated by lower DNA methylaiton. Global and genome-wide DNA methylation alteration may contribute to different genes expression and PCOS clinical pathology.

  5. Molecular Biology: Conference on Genetic Engineering Techniques (2nd) Held in London (United Kingdom) on 20-21 November 1986.

    DTIC Science & Technology

    1987-05-27

    system in Chinese t-PA to be a serine protease of 327 amino ovary hamster cells. Precise yields from acids in length. The protein appears, high-level...ham- ster or mouse cell line, allowing the differentiation of human and hamster or ________ mouse clones by hybridization with total human DNA or...appropriate lo- functional protein when transferred into cation downstream of a strong promoter in baby hamster kidney (BHK) cells or rat place of one or

  6. Early effect of boron neutron capture therapy mediated by boronophenylalanine (BPA-BNCT) on mast cells in premalignant tissue and tumors of the hamster cheek pouch.

    PubMed

    Aromando, Romina F; Trivillin, Verónica A; Heber, Elisa M; Pozzi, Emiliano; Schwint, Amanda E; Itoiz, María E

    2010-05-01

    Mast cell (MC) activation in the hamster cheek pouch cancerization model is associated with the increase in tumor cell proliferation, mediated in turn by tryptase, a protease released from mast cell granules after activation. Tryptase induces tumor cell proliferation through the activation of PAR-2 (protease activated receptor-2) on the plasma membrane of carcinoma cells. The therapeutic success of boron neutron capture therapy mediated by boronophenylalanine (BPA-BNCT) in tumor control in the hamster cheek pouch oral cancer model has been previously reported by our laboratory. Early effects of BPA-BNCT on tumors of the hamster cheek pouch include a reduction in DNA-synthesis with the concomitant decrease in the proliferation of malignant cells. The aim of the present study was to investigate the early histological changes in mast cells after BPA-BNCT in tumors and premalignant tissue of the hamster cheek pouch. Tumor-bearing pouches were treated with BPA-BNCT or beam only (neutron irradiation without prior administration of the boron compound) and sacrificed 1day after treatment. The samples were fixed in Carnoy fixative and stained with alcian blue-safranin to identify all the populations of mast cells. Total, active and inactive mast cells (MC) were counted in the connective tissue and the adventitious tissue underlying the pouch wall and at the base of the tumors in pouches treated with BPA-BNCT, in keeping with a previously described technique. BPA-BNCT induced a marked reduction in the total number of mast cells in the pouch (p<0.05). This reduction in the total number of mast cells was due to a reduction in mast cells at the base of the tumor (p<0.005) and it occurred at the expense of the active mast cells (p<0.05). A slight reduction that did not reach statistical significance also occurred in the amount of mast cells in the pouch wall (that corresponds to the premalignant tissue in tumor-bearing pouches), and in the adventitious tissue. In this case the

  7. [Clear cell carcinoma of the ovary simulating a yolk sac tumor].

    PubMed

    Bahri, Ibticem; Boudawara, Tahya; Khabir, Abdelmajid; Beyrouti, Mohamed Issam; Frikha, Mounir; Jlidi, Rachid

    2003-04-01

    Clear cell carcinoma (CCC) of the ovary is uncommon. In young patients, this tumor may simulate a yolk sac tumor. In this case, the morphologic distinction between these tumors is often difficult but the immunohistochemical staining for CA125 and alpha foeto protein (AFP) and the response to chemotherapy are particularly helpful to resolve this problem of differential diagnosis. We report a case of a 17 year old patient who was operated for a tumor of the right ovary. The diagnosis of a yolk sac tumor was first suggested. However, because of the non response to chemotherapy, a second laparotomy was performed; the definitive pathologic examination concluded to the diagnosis of a CCC of the ovary. The young age and the immunohistochemical staining for AFP are unusual and misleading features for a CCC. Our objective about this particular case is to discuss the anatomoclinical aspects of the CCC of the ovary and to prove the role of immunohistochemistry in the differential diagnosis.

  8. Estimation of the radiation-induced DNA double-strand breaks number by considering cell cycle and absorbed dose per cell nucleus

    PubMed Central

    Mori, Ryosuke; Matsuya, Yusuke; Yoshii, Yuji; Date, Hiroyuki

    2018-01-01

    Abstract DNA double-strand breaks (DSBs) are thought to be the main cause of cell death after irradiation. In this study, we estimated the probability distribution of the number of DSBs per cell nucleus by considering the DNA amount in a cell nucleus (which depends on the cell cycle) and the statistical variation in the energy imparted to the cell nucleus by X-ray irradiation. The probability estimation of DSB induction was made following these procedures: (i) making use of the Chinese Hamster Ovary (CHO)-K1 cell line as the target example, the amounts of DNA per nucleus in the logarithmic and the plateau phases of the growth curve were measured by flow cytometry with propidium iodide (PI) dyeing; (ii) the probability distribution of the DSB number per cell nucleus for each phase after irradiation with 1.0 Gy of 200 kVp X-rays was measured by means of γ-H2AX immunofluorescent staining; (iii) the distribution of the cell-specific energy deposition via secondary electrons produced by the incident X-rays was calculated by WLTrack (in-house Monte Carlo code); (iv) according to a mathematical model for estimating the DSB number per nucleus, we deduced the induction probability density of DSBs based on the measured DNA amount (depending on the cell cycle) and the calculated dose per nucleus. The model exhibited DSB induction probabilities in good agreement with the experimental results for the two phases, suggesting that the DNA amount (depending on the cell cycle) and the statistical variation in the local energy deposition are essential for estimating the DSB induction probability after X-ray exposure. PMID:29800455

  9. Estimation of the radiation-induced DNA double-strand breaks number by considering cell cycle and absorbed dose per cell nucleus.

    PubMed

    Mori, Ryosuke; Matsuya, Yusuke; Yoshii, Yuji; Date, Hiroyuki

    2018-05-01

    DNA double-strand breaks (DSBs) are thought to be the main cause of cell death after irradiation. In this study, we estimated the probability distribution of the number of DSBs per cell nucleus by considering the DNA amount in a cell nucleus (which depends on the cell cycle) and the statistical variation in the energy imparted to the cell nucleus by X-ray irradiation. The probability estimation of DSB induction was made following these procedures: (i) making use of the Chinese Hamster Ovary (CHO)-K1 cell line as the target example, the amounts of DNA per nucleus in the logarithmic and the plateau phases of the growth curve were measured by flow cytometry with propidium iodide (PI) dyeing; (ii) the probability distribution of the DSB number per cell nucleus for each phase after irradiation with 1.0 Gy of 200 kVp X-rays was measured by means of γ-H2AX immunofluorescent staining; (iii) the distribution of the cell-specific energy deposition via secondary electrons produced by the incident X-rays was calculated by WLTrack (in-house Monte Carlo code); (iv) according to a mathematical model for estimating the DSB number per nucleus, we deduced the induction probability density of DSBs based on the measured DNA amount (depending on the cell cycle) and the calculated dose per nucleus. The model exhibited DSB induction probabilities in good agreement with the experimental results for the two phases, suggesting that the DNA amount (depending on the cell cycle) and the statistical variation in the local energy deposition are essential for estimating the DSB induction probability after X-ray exposure.

  10. Effect of different anesthetic agents on left ventricular systolic function assessed by echocardiography in hamsters.

    PubMed

    Tanaka, D M; Romano, M M D; Carvalho, E E V; Oliveira, L F L; Souza, H C D; Maciel, B C; Salgado, H C; Fazan-Júnior, R; Simões, M V

    2016-08-25

    Determination of left ventricular ejection fraction (LVEF) using in vivo imaging is the cardiac functional parameter most frequently employed in preclinical research. However, there is considerable conflict regarding the effects of anesthetic agents on LVEF. This study aimed at assessing the effects of various anesthetic agents on LVEF in hamsters using transthoracic echocardiography. Twelve female hamsters were submitted to echocardiography imaging separated by 1-week intervals under the following conditions: 1) conscious animals, 2) animals anesthetized with isoflurane (inhaled ISO, 3 L/min), 3) animals anesthetized with thiopental (TP, 50 mg/kg, intraperitoneal), and 4) animals anesthetized with 100 mg/kg ketamine plus 10 mg/kg xylazine injected intramuscularly (K/X). LVEF obtained under the effect of anesthetics (ISO=62.2±3.1%, TP=66.2±2.7% and K/X=75.8±1.6%) was significantly lower than that obtained in conscious animals (87.5±1.7%, P<0.0001). The K/X combination elicited significantly higher LVEF values compared to ISO (P<0.001) and TP (P<0.05). K/X was associated with a lower dispersion of individual LVEF values compared to the other anesthetics. Under K/X, the left ventricular end diastolic diameter (LVdD) was increased (0.60±0.01 cm) compared to conscious animals (0.41±0.02 cm), ISO (0.51±0.02 cm), and TP (0.55±0.01 cm), P<0.0001. The heart rate observed with K/X was significantly lower than in the remaining conditions. These results indicate that the K/X combination may be the best anesthetic option for the in vivo assessment of cardiac systolic function in hamsters, being associated with a lower LVEF reduction compared to the other agents and showing values closer to those of conscious animals with a lower dispersion of results.

  11. Effect of different anesthetic agents on left ventricular systolic function assessed by echocardiography in hamsters

    PubMed Central

    Tanaka, D.M.; Romano, M.M.D.; Carvalho, E.E.V.; Oliveira, L.F.L.; Souza, H.C.D.; Maciel, B.C.; Salgado, H.C.; Fazan-Júnior, R.; Simões, M.V.

    2016-01-01

    Determination of left ventricular ejection fraction (LVEF) using in vivo imaging is the cardiac functional parameter most frequently employed in preclinical research. However, there is considerable conflict regarding the effects of anesthetic agents on LVEF. This study aimed at assessing the effects of various anesthetic agents on LVEF in hamsters using transthoracic echocardiography. Twelve female hamsters were submitted to echocardiography imaging separated by 1-week intervals under the following conditions: 1) conscious animals, 2) animals anesthetized with isoflurane (inhaled ISO, 3 L/min), 3) animals anesthetized with thiopental (TP, 50 mg/kg, intraperitoneal), and 4) animals anesthetized with 100 mg/kg ketamine plus 10 mg/kg xylazine injected intramuscularly (K/X). LVEF obtained under the effect of anesthetics (ISO=62.2±3.1%, TP=66.2±2.7% and K/X=75.8±1.6%) was significantly lower than that obtained in conscious animals (87.5±1.7%, P<0.0001). The K/X combination elicited significantly higher LVEF values compared to ISO (P<0.001) and TP (P<0.05). K/X was associated with a lower dispersion of individual LVEF values compared to the other anesthetics. Under K/X, the left ventricular end diastolic diameter (LVdD) was increased (0.60±0.01 cm) compared to conscious animals (0.41±0.02 cm), ISO (0.51±0.02 cm), and TP (0.55±0.01 cm), P<0.0001. The heart rate observed with K/X was significantly lower than in the remaining conditions. These results indicate that the K/X combination may be the best anesthetic option for the in vivo assessment of cardiac systolic function in hamsters, being associated with a lower LVEF reduction compared to the other agents and showing values closer to those of conscious animals with a lower dispersion of results. PMID:27580004

  12. Mutagenic activities of heterocyclic amines in Chinese hamster lung cells in culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terada, M.; Nagao, M.; Nakayasu, M.

    1986-01-01

    A mutation assay system with Chinese hamster lung cells (CHL) using diphtheria toxin resistance as a selective marker has been established. The mutagenic activities of heterocyclic amines, originally isolated from pyrolyzates of amino acids and proteins, broiled fish and fried beef were assayed in cultured CHL cells in the absence and presence of a metabolic activation system, with diphtheria toxin resistance as a marker. All the heterocyclic amines tested except 3-amino-1,4-dimethyl-5H-pyrido (4,3-b)indole (Trp-P-1) required the presence of a metabolic activation system for mutagenicity on CHL cells. 3-Amino-1-methyl-5H-pyrido(4,3-b)indole (Trp-P-2) was the most mutagenic among the heterocyclic amines tested. Other compounds weremore » also mutagenic in the following order of decreasing potency: Trp-P-1, 2-amino-3,4-dimethylimidazo(4,5-f)quinoline (MeIQ), 2-amino-3-methylimidazo(4,5-f)quinoline (IQ), 2-amino-9H-pyrido(2,3-b)indole (A..cap alpha..C), 2-amino-3,8-dimethylimidazo(4,5-f)quinoxaline (MeIQx), 2-amino-6-methyldipyrido(1,2-a:3',2'-d)imidazole (Glu-P-1) and 2-aminodipyrido(1,2--a:3',2'-d)imidazole (Glu-P-2).« less

  13. Concomitant loss of SMARCA2 and SMARCA4 expression in small cell carcinoma of the ovary, hypercalcemic type.

    PubMed

    Jelinic, Petar; Schlappe, Brooke A; Conlon, Niamh; Tseng, Jill; Olvera, Narciso; Dao, Fanny; Mueller, Jennifer J; Hussein, Yaser; Soslow, Robert A; Levine, Douglas A

    2016-01-01

    Small cell carcinoma of the ovary, hypercalcemic type is an aggressive tumor generally affecting young women with limited treatment options. Mutations in SMARCA4, a catalytic subunit of the SWI/SNF chromatin remodeling complex, have recently been identified in nearly all small cell carcinoma of the ovary, hypercalcemic type cases and represent a signature molecular feature for this disease. Additional biological dependencies associated with small cell carcinoma of the ovary, hypercalcemic type have not been identified. SMARCA2, another catalytic subunit of the SWI/SNF complex mutually exclusive with SMARCA4, is thought to be post-translationally silenced in various cancer types. We analyzed 10 archival small cell carcinoma of the ovary, hypercalcemic type cases for SMARCA2 protein expression by immunohistochemistry and found that SMARCA2 expression was lost in all but one case. None of the 50 other tumors that primarily or secondarily involved the ovary demonstrated concomitant loss of SMARCA2 and SMARCA4. Deep sequencing revealed that this loss of SMARCA2 expression is not the result of mutational inactivation. In addition, we established a small cell carcinoma of the ovary, hypercalcemic type patient-derived xenograft and confirmed the loss of SMARCA2 in this in vitro model. This patient-derived xenograft model, established from a recurrent tumor, also had unexpected mutational features for this disease, including functional mutations in TP53 and POLE. Taken together, our data suggest that concomitant loss of SMARCA2 and SMARCA4 is another hallmark of small cell carcinoma of the ovary, hypercalcemic type-a finding that offers new opportunities for therapeutic interventions.

  14. Pressure-assisted dissociation and degradation of "proteinase K-resistant" fibrils prepared by seeding with scrapie-infected hamster prion protein.

    PubMed

    Akasaka, Kazuyuki; Maeno, Akihiro; Murayama, Taichi; Tachibana, Hideki; Fujita, Yuzo; Yamanaka, Hitoki; Nishida, Noriyuki; Atarashi, Ryuichiro

    2014-01-01

    The crucial step for the fatal neurodegenerative prion diseases involves the conversion of a normal cellular protein, PrP(C), into a fibrous pathogenic form, PrP(Sc), which has an unusual stability against heat and resistance against proteinase K digestion. A successful challenge to reverse the reaction from PrP(Sc) into PrP(C) is considered valuable, as it would give a key to dissolving the complex molecular events into thermodynamic and kinetic analyses and may also provide a means to prevent the formation of PrP(Sc) from PrP(C) eventually in vivo. Here we show that, by applying pressures at kbar range, the "proteinase K-resistant" fibrils (rHaPrP(res)) prepared from hamster prion protein (rHaPrP [23-231]) by seeding with brain homogenate of scrapie-infected hamster, becomes easily digestible. The result is consistent with the notion that rHaPrP(res) fibrils are dissociated into rHaPrP monomers under pressure and that the formation of PrP(Sc) from PrP(C) is thermodynamically controlled. Moreover, the efficient degradation of prion fibrils under pressure provides a novel means of eliminating infectious PrP(Sc) from various systems of pathogenic concern.

  15. Changes in the expression of Fox O1 and death ligand genes during follicular atresia in porcine ovary.

    PubMed

    Lin, F; Fu, Y H; Han, J; Shen, M; Du, C W; Li, R; Ma, X S; Liu, H L

    2014-08-28

    Follicular atresia, a key phenomenon in follicle development, eliminates most of the follicles in mammalian ovaries. To investigate the molecular mechanism of follicular atresia in porcine ovaries, we investigated the mRNA expression of three important cell death ligand-receptor systems and Fox O1 in follicles with a diameter of 3-5 mm. The phosphorylation and subcellular localization of Fox O1 during granulosa cell apoptosis was also determined. TRAIL and Fas L played an important role in follicular atresia at this stage. Fox O1 expression was upregulated during atresia, and was confined to the nucleus of granulosa cells; however, phosphorylated Fox O1 was localized to the cytoplasm. These results suggest Fox O1 involvement in the regulation of TRAIL and Fas L expression during follicular atresia in pigs.

  16. Dissection and staining of Drosophila larval ovaries.

    PubMed

    Maimon, Iris; Gilboa, Lilach

    2011-05-13

    Many organs depend on stem cells for their development during embryogenesis and for maintenance or repair during adult life. Understanding how stem cells form, and how they interact with their environment is therefore crucial for understanding development, homeostasis and disease. The ovary of the fruit fly Drosophila melanogaster has served as an influential model for the interaction of germ line stem cells (GSCs) with their somatic support cells (niche) (1, 2). The known location of the niche and the GSCs, coupled to the ability to genetically manipulate them, has allowed researchers to elucidate a variety of interactions between stem cells and their niches (3-12). Despite the wealth of information about mechanisms controlling GSC maintenance and differentiation, relatively little is known about how GSCs and their somatic niches form during development. About 18 somatic niches, whose cellular components include terminal filament and cap cells (Figure 1), form during the third larval instar (13-17). GSCs originate from primordial germ cells (PGCs). PGCs proliferate at early larval stages, but following the formation of the niche a subgroup of PGCs becomes GSCs (7, 16, 18, 19). Together, the somatic niche cells and the GSCs make a functional unit that produces eggs throughout the lifetime of the organism. Many questions regarding the formation of the GSC unit remain unanswered. Processes such as coordination between precursor cells for niches and stem cell precursors, or the generation of asymmetry within PGCs as they become GSCs, can best be studied in the larva. However, a methodical study of larval ovary development is physically challenging. First, larval ovaries are small. Even at late larval stages they are only 100μm across. In addition, the ovaries are transparent and are embedded in a white fat body. Here we describe a step-by-step protocol for isolating ovaries from late third instar (LL3) Drosophila larvae, followed by staining with fluorescent

  17. Pleural lesions in Syrian golden hamsters and Fischer-344 rats following intrapleural instillation of man-made ceramic or glass fibers.

    PubMed

    Everitt, J I; Bermudez, E; Mangum, J B; Wong, B; Moss, O R; Janszen, D; Rutten, A A

    1994-01-01

    The mesothelium is a target of the toxic and carcinogenic effects of certain natural mineral and man-made fibers. Long-term inhalation of a ceramic fiber (RCF-1) results in a high incidence of pleural mesotheliomas in Syrian golden hamsters but not in identically exposed Fischer-344 rats. The present study compared the histopathology of the early pleural response in rats and hamsters instilled with artificial fibers. Groups of Syrian golden hamsters and Fischer-344 rats were instilled with ceramic (RCF-1) or glass (MMVF-10) fibers directly into the pleural space. Each species received approximately equal numbers of long, thin fibers per g body weight. Fiber-induced lesions were compared 7 and 28 days postinstillation. Both hamsters and rats developed qualitatively similar dose-dependent inflammatory lesions that were not fiber-type specific. Both species developed fibrosis in conjunction with inflammation in the visceral pleura, but a striking interspecies difference was noted in the pattern of mesothelial cell response. Hamsters developed greater surface mesothelial cell proliferation and had focal aggregates of mesothelial cells embedded deep within regions of visceral pleural fibrosis. It is hypothesized from the present study that the marked fiber-induced proliferative mesothelial cell response of the hamster visceral pleura may explain the high number of pleural mesotheliomas found in long-term fiber studies in this species.

  18. Intracellular trehalose via transporter TRET1 as a method to cryoprotect CHO-K1 cells.

    PubMed

    Uchida, Tsutomu; Furukawa, Maho; Kikawada, Takahiro; Yamazaki, Kenji; Gohara, Kazutoshi

    2017-08-01

    Trehalose is a promising natural cryoprotectant, but its cryoprotective effect is limited due to difficulties in transmembrane transport. Thus, expressing the trehalose transporter TRET1 on various mammalian cells may yield more trehalose applications. In this study, we ran comparative cryopreservation experiments between the TRET1-expressing CHO-K1 cells (CHO-TRET1) and the CHO-K1 cells transfected with an empty vector (CHO-vector). The experiments involve freezing under various trehalose concentrations in an extracellular medium. The freeze-thawing viabilities of CHO-TRET1 cells are higher than those of CHO-vector cells for most freezing conditions. This result differs from control experiments with a transmembrane type cryoprotectant, dimethyl sulfoxide (Me 2 SO), which had similar viabilities in each condition for both cell types. We conclude that the trehalose loaded into the cells with TRET1 significantly improves the cryoprotective effect. The higher viabilities occurred when the extracellular trehalose concentration exceeded 200 mM, with 250-500 mM being optimal, and a cooling rate below 30 K/min, with 5-20 K/min being optimal. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Inhibition of Vascular Endothelial Growth Factor Receptor Signal Transduction Blocks Follicle Progression but Does Not Necessarily Disrupt Vascular Development in Perinatal Rat Ovaries1

    PubMed Central

    McFee, Renee M.; Artac, Robin A.; McFee, Ryann M.; Clopton, Debra T.; Smith, Robyn A. Longfellow; Rozell, Timothy G.; Cupp, Andrea S.

    2009-01-01

    We hypothesized that vascular endothelial growth factor A (VEGFA) angiogenic isoforms and their receptors, FLT1 and KDR, regulate follicular progression in the perinatal rat ovary. Each VEGFA angiogenic isoform has unique functions (based on its exons) that affect diffusibility, cell migration, branching, and development of large vessels. The Vegfa angiogenic isoforms (Vegfa_120, Vegfa_164, and Vegfa_188) were detected in developing rat ovaries, and quantitative RT-PCR determined that Vegfa_120 and Vegfa_164 mRNA was more abundant after birth, while Vegfa_188 mRNA was highest at Embryonic Day 16. VEGFA and its receptors were localized to pregranulosa and granulosa cells of all follicle stages and to theca cells of advanced-stage follicles. To determine the role of VEGFA in developing ovaries, Postnatal Day 3/4 rat ovaries were cultured with 8 μM VEGFR-TKI, a tyrosine kinase inhibitor that blocks FLT1 and KDR. Ovaries treated with VEGFR-TKI had vascular development reduced by 94% (P < 0.0001), with more primordial follicles (stage 0), fewer early primary, transitional, and secondary follicles (stages 1, 3, and 4, respectively), and greater total follicle numbers compared with control ovaries (P < 0.005). V1, an inhibitor specific for KDR, was utilized to determine the effects of only KDR inhibition. Treatment with 30 μM V1 had no effect on vascular density; however, treated ovaries had fewer early primary, transitional, and secondary follicles and more primary follicles (stage 2) compared with control ovaries (P < 0.05). We conclude that VEGFA may be involved in primordial follicle activation and in follicle maturation and survival, which are regulated through vascular-dependent and vascular-independent mechanisms. PMID:19605787

  20. Cytotoxic, antioxidative, genotoxic and antigenotoxic effects of Horchata, beverage of South Ecuador.

    PubMed

    Bailon-Moscoso, Natalia; Tinitana, Fani; Martínez-Espinosa, Ruth; Jaramillo-Velez, Andrea; Palacio-Arpi, Alejandra; Aguilar-Hernandez, Jessica; Romero-Benavides, Juan Carlos

    2017-12-19

    "Horchata" is an herbal mixture infusion consumed in Southern Ecuador; 66% of its plants are anti-inflammatory medicinal plant, and 51% are analgesics. Anti-inflammatory substances can prevent carcinogenesis mediated by cytotoxic effects and can prevent DNA damage. The aim of this study was to evaluate the cytotoxicity and apoptotic/antigenotoxic effects of horchata as well as its mechanism. Nine different varieties of horchata were prepared in the traditional way and then freeze-dried. Phytochemical screening tested for the presence of secondary metabolites using standard procedures and antioxidant activities. The cytotoxic activity was evaluated on cerebral astrocytoma (D-384), prostate cancer (PC-3), breast cancer (MCF-7), colon cancer (RKO), lung cancer (A-549), immortalized Chinese hamster ovary cells (CHO-K1), and human peripheral blood lymphocytes via a MTS assay. The pro-apoptotic effects were evaluated with Anexin V/Propidium Iodide and western blot of Bax, Bcl-2, TP53, and TP73. Induction and reduction of ROS were assessed by fluorimetry. Genotoxic and antigenotoxic effects were evaluated with a comet assay and micronuclei on binucleated cells. Five of nine horchatas had cytotoxic effects against D-384 while not affecting normal cells. These horchatas induce cell death by apoptosis modulated by p53/p73. In CHO-K1 cells, the horchatas decrease the damage induced by hydrogen peroxide and Mitomycin C measured in the comet and micronucleus assay respectively. The IC 50 range of effective horchatas in D-384 was 41 to 122 μg·mL -1 . This effect may be related to its use in traditional medicine (brain tonic). On the other hand, immortalized Chinese hamster ovary cells (CHO-K1) and lymphocytes did not show a cytotoxic effect. The most potent horchata induced apoptosis via a p53/p73-mediated mechanism. The horchatas present antigenotoxic properties, which may be related to the antioxidant capacity. Future studies on horchata components are necessary to

  1. Development of apoptosis-resistant dihydrofolate reductase-deficient Chinese hamster ovary cell line.

    PubMed

    Lee, Suk Kyoo; Lee, Gyun Min

    2003-06-30

    Apoptosis-resistant dihydrofolate reductase-deficient CHO cell line (dhfr(-) CHO-bcl2) was developed by introduction of the bcl-2 gene into the dhfr(-) CHO cell line (DUKX-B11, ATCC CRL-9096) and subsequent selection of clones stably overexpressing Bcl-2 in the absence of selection pressure. When the dhfr(-) CHO-bcl2 cell line was used as a host cell line for development of a recombinant CHO (rCHO) cell line expressing a humanized antibody, it displayed stable expression of the bcl-2 gene during rCHO cell line development and no detrimental effect of Bcl-2 overexpression on specific antibody productivity. Taken together, the results obtained demonstrate that the use of an apoptosis-resistant dhfr(-) CHO cell line as the host cell line saves the effort of establishing an apoptosis-resistant rCHO cell line and expedites the development process of apoptosis-resistant rCHO cells producing therapeutic proteins. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 82: 872-876, 2003.

  2. Novel inhibitor candidates of TRPV2 prevent damage of dystrophic myocytes and ameliorate against dilated cardiomyopathy in a hamster model.

    PubMed

    Iwata, Yuko; Katayama, Yoshimi; Okuno, Yasushi; Wakabayashi, Shigeo

    2018-03-06

    Transient receptor potential cation channel, subfamily V, member 2 (TRPV2) is a principal candidate for abnormal Ca 2+ -entry pathways, which is a potential target for therapy of muscular dystrophy and cardiomyopathy. Here, an in silico drug screening and the following cell-based screening to measure the TRPV2 activation were carried out in HEK293 cells expressing TRPV2 using lead compounds (tranilast or SKF96365) and off-patent drug stocks. We identified 4 chemical compounds containing amino-benzoyl groups and 1 compound (lumin) containing an ethylquinolinium group as candidate TRPV2 inhibitors. Three of these compounds inhibited Ca 2+ entry through both mouse and human TRPV2, with IC 50 of less than 10 μM, but had no apparent effect on other members of TRP family such as TRPV1 and TRPC1. Particularly, lumin inhibited agonist-induced TRPV2 channel activity at a low dose. These compounds inhibited abnormally increased Ca 2+ influx and prevented stretch-induced skeletal muscle damage in cultured myocytes from dystrophic hamsters (J2N-k). Further, they ameliorated cardiac dysfunction, and prevented disease progression in vivo in the same J2N-k hamsters developing dilated cardiomyopathy as well as muscular dystrophy. The identified compounds described here are available as experimental tools and represent potential treatments for patients with cardiomyopathy and muscular dystrophy.

  3. Novel inhibitor candidates of TRPV2 prevent damage of dystrophic myocytes and ameliorate against dilated cardiomyopathy in a hamster model

    PubMed Central

    Iwata, Yuko; Katayama, Yoshimi; Okuno, Yasushi; Wakabayashi, Shigeo

    2018-01-01

    Transient receptor potential cation channel, subfamily V, member 2 (TRPV2) is a principal candidate for abnormal Ca2+-entry pathways, which is a potential target for therapy of muscular dystrophy and cardiomyopathy. Here, an in silico drug screening and the following cell-based screening to measure the TRPV2 activation were carried out in HEK293 cells expressing TRPV2 using lead compounds (tranilast or SKF96365) and off-patent drug stocks. We identified 4 chemical compounds containing amino-benzoyl groups and 1 compound (lumin) containing an ethylquinolinium group as candidate TRPV2 inhibitors. Three of these compounds inhibited Ca2+ entry through both mouse and human TRPV2, with IC50 of less than 10 μM, but had no apparent effect on other members of TRP family such as TRPV1 and TRPC1. Particularly, lumin inhibited agonist-induced TRPV2 channel activity at a low dose. These compounds inhibited abnormally increased Ca2+ influx and prevented stretch-induced skeletal muscle damage in cultured myocytes from dystrophic hamsters (J2N-k). Further, they ameliorated cardiac dysfunction, and prevented disease progression in vivo in the same J2N-k hamsters developing dilated cardiomyopathy as well as muscular dystrophy. The identified compounds described here are available as experimental tools and represent potential treatments for patients with cardiomyopathy and muscular dystrophy. PMID:29581825

  4. Correlation Between Expression of Recombinant Proteins and Abundance of H3K4Me3 on the Enhancer of Human Cytomegalovirus Major Immediate-Early Promoter.

    PubMed

    Soo, Benjamin P C; Tay, Julian; Ng, Shirelle; Ho, Steven C L; Yang, Yuansheng; Chao, Sheng-Hao

    2017-08-01

    Role of epigenetic regulation in the control of gene expression is well established. The impact of several epigenetic mechanisms, such as DNA methylation and histone acetylation, on recombinant protein production in mammalian cells has been investigated recently. Here we investigate the correlation between the selected epigenetic markers and five trastuzumab biosimilar-producing Chinese hamster ovary (CHO) cell lines in which the expression of trastuzumab is driven by human cytomegalovirus (HCMV) major immediate-early (MIE) promoter. We chose the producing clones in which transcription was the determinative step for the production of recombinant trastuzumab. We found that the abundance of trimethylation of histone 3 at lysine 4 (H3K4Me3) on the enhancer of HCMV MIE promoter correlated well with the relative titers of recombinant trastuzumab among the clones. Such close correlation was not observed between the recombinant protein and other epigenetic markers examined in our study. Our results demonstrate that the HCMV MIE enhancer-bound H3K4Me3 epigenetic marker may be used as the epigenetic indicator to predict the relative production of recombinant proteins between the producing CHO cell lines.

  5. Concomitant loss of SMARCA2 and SMARCA4 expression in small cell carcinoma of the ovary, hypercalcemic type

    PubMed Central

    Jelinic, Petar; Schlappe, Brooke A; Conlon, Niamh; Tseng, Jill; Olvera, Narciso; Dao, Fanny; Mueller, Jennifer J; Hussein, Yaser; Soslow, Robert A; Levine, Douglas A

    2016-01-01

    Small cell carcinoma of the ovary, hypercalcemic type is an aggressive tumor generally affecting young women with limited treatment options. Mutations in SMARCA4, a catalytic subunit of the SWI/SNF chromatin remodeling complex, have recently been identified in nearly all small cell carcinoma of the ovary, hypercalcemic type cases and represent a signature molecular feature for this disease. Additional biological dependencies associated with small cell carcinoma of the ovary, hypercalcemic type have not been identified. SMARCA2, another catalytic subunit of the SWI/SNF complex mutually exclusive with SMARCA4, is thought to be post-translationally silenced in various cancer types. We analyzed 10 archival small cell carcinoma of the ovary, hypercalcemic type cases for SMARCA2 protein expression by immunohistochemistry and found that SMARCA2 expression was lost in all but one case. None of the 50 other tumors that primarily or secondarily involved the ovary demonstrated concomitant loss of SMARCA2 and SMARCA4. Deep sequencing revealed that this loss of SMARCA2 expression is not the result of mutational inactivation. In addition, we established a small cell carcinoma of the ovary, hypercalcemic type patient-derived xenograft and confirmed the loss of SMARCA2 in this in vitro model. This patient-derived xenograft model, established from a recurrent tumor, also had unexpected mutational features for this disease, including functional mutations in TP53 and POLE. Taken together, our data suggest that concomitant loss of SMARCA2 and SMARCA4 is another hallmark of small cell carcinoma of the ovary, hypercalcemic type—a finding that offers new opportunities for therapeutic interventions. PMID:26564006

  6. Inhibition of the K+ channel K(Ca)3.1 reduces TGF-β1-induced premature senescence, myofibroblast phenotype transition and proliferation of mesangial cells.

    PubMed

    Fu, Rong-Guo; Zhang, Tao; Wang, Li; Du, Yan; Jia, Li-Ning; Hou, Jing-Jing; Yao, Gang-Lian; Liu, Xiao-Dan; Zhang, Lei; Chen, Ling; Gui, Bao-Song; Xue, Rong-Liang

    2014-01-01

    K(Ca)3.1 channel participates in many important cellular functions. This study planned to investigate the potential involvement of K(Ca)3.1 channel in premature senescence, myofibroblast phenotype transition and proliferation of mesangial cells. Rat mesangial cells were cultured together with TGF-β1 (2 ng/ml) and TGF-β1 (2 ng/ml) + TRAM-34 (16 nM) separately for specified times from 0 min to 60 min. The cells without treatment served as controls. The location of K(Ca)3.1 channels in mesangial cells was determined with Confocal laser microscope, the cell cycle of mesangial cells was assessed with flow cytometry, the protein and mRNA expression of K(Ca)3.1, α-smooth muscle actin (α-SMA) and fibroblast-specific protein-1 (FSP-1) were detected with Western blot and RT-PCR. One-way analysis of variance (ANOVA) and Student-Newman-Keuls-q test (SNK-q) were used to do statistical analysis. Statistical significance was considered at P<0.05. Kca3.1 channels were located in the cell membranes and/or in the cytoplasm of mesangial cells. The percentage of cells in G0-G1 phase and the expression of K(ca)3.1, α-SMA and FSP-1 were elevated under the induction of TGF-β1 when compared to the control and decreased under the induction of TGF-β1+TRAM-34 when compared to the TGF-β1 induced (P<0.05 or P<0.01). Targeted disruption of K(Ca)3.1 inhibits TGF-β1-induced premature aging, myofibroblast-like phenotype transdifferentiation and proliferation of mesangial cells.

  7. Laser light prevents apoptosis in Cho K-1 cell line.

    PubMed

    Carnevalli, Célia M M; Soares, Cristina Pacheco; Zângaro, Renato Amaro; Pinheiro, Antonio L B; Silva, Newton Soares

    2003-08-01

    The present study investigated the effects of low-level laser therapy (LLLT) on the mitochondria, nucleus, and cytoskeleton of CHO K-1 cells by the use of specific fluorescent probes. The use of LLLT has been recommended by several authors for acceleration of the healing process. The literature on the effects of LLLT in this process is highly contradictory because of difficulties in identifying its effects on cells. CHO K-1 cells were cultivated using MEM containing 5% FBS and were irradiated or not with a semiconductor laser (lambda = 830 nm; phi approximately 0.8 mm; 10 mW; 2 J/cm2). The cells were incubated with specific fluorescent probes--0.1 microM for 30 min with 5,5', 6,6'-tetrachloro-1, 1',3,3'-tetraethyl-benzimidazol-carbocyanine iodide (JC-1) for the mitochondria; 5 mM for 5 min of 4',6'-diamidino, 2'-phenylindole (DAPI)for the nucleus, and 0.1 M of 1:100 PHEM of rhodamine-phalloidin during 1 h for the cytoskeleton--and were analyzed by epifluorescence. Positive biomodulatory effects were observed on irradiated cells compared to their controls as seen on JC-1, DAPI, and rhodamine-phalloidin labeling. Irradiated cells showed an increased level of cellular division, as evidenced by analyzing the intermediary filaments of the cytoskeleton and the chromosomes. Another important observation was that cells maintained under the condition of nutritional deficiency had both membrane and genetic material that was more preserved in comparison to the controls, in which the presence of an apoptotic nucleus could be observed in some cells. The results of the present study demonstrate that LLLT, in addition to providing positive biomodulation, acts in the re-establishment of cellular homeostasis when the cells are maintained under the condition of nutritional stress; it also prevents apoptosis in CHO K-1 cells.

  8. Rapid changes in ovarian mRNA induced by brief photostimulation in Siberian hamsters (Phodopus sungorus)

    PubMed Central

    Shahed, Asha; McMichael, Carling F.; Young, Kelly A.

    2017-01-01

    This study sought to characterize the rapid intraovarian mRNA response of key folliculogenic factors that may contribute to the restoration of folliculogenesis during 2-10 days of photostimulation in Siberian hamsters. Adult hamsters were exposed to short photoperiod (8L:16D) for 14 weeks (SD). A subset were then transferred to long photoperiod (16L:8D) for 2(PT day-2), 4(PT day-4), or 10 days (PT day-10). Quantitative real-time PCR was used to measure intraovarian mRNA expression of: gonadotropin releasing hormone (GnRH), follicle stimulating hormone β-subunit (FSHβ-subunit), luteinizing hormone β-subunit (LHβ-subunit), FSH and LH receptors, estrogen receptorsα and β (Esr1 and Esr2), matrix metalloproteinase (MMP)-2 and -9, anti-Müllerian hormone (AMH), inhibin-α subunit, fibroblast growth factor-2 (FGF-2) and proliferating cell nuclear antigen (PCNA). Compared to SD, plasma FSH concentrations increased on PT day-4 and the number of antral follicles and corpora lutea increased on PT day-10. FSHR and inhibin-α mRNA expression also increased on PT day-4, whereas LHR and proliferation marker PCNA both increased on PT day-10 as compared to SD. Esr1 mRNA increased on PT day-2 and remained significantly increased as compared to SD, whereas Esr1 mRNA increased only on PT day-2, similar to FGF-2 and MMP-2 results. No differences were observed in mRNA expression in ovarian GnRH, FSHβ- and LHβ-subunits, AMH, and MMP-9 mRNA with 2-10 days of photostimulation. Rapid increases in intraovarian FSHR and inhibin-α mRNA and antral follicle/corpora lutea numbers suggest that the ovary is primed to react quickly to the FSH released in response to brief periods of photostimulation. PMID:26174001

  9. Effects of red mold dioscorea on oral carcinogenesis in DMBA-induced hamster animal model.

    PubMed

    Hsu, Wei-Hsuan; Lee, Bao-Hong; Pan, Tzu-Ming

    2011-06-01

    Monascus-fermented products offer valuable therapeutic benefits and have been extensively used for centuries in East Asia. Dioscorea has been proved to have anti-cancer effect. The aim of this study is to investigate the anti-tumor ability of the ethanol extract of red mold dioscorea (RMDE) on 7,12-dimethyl-1,2-benz[a]anthracene (DMBA)-induced hamster buccal pouch carcinogenesis. We induced oral squamous cell carcinoma (OSCC) in the buccal pouch of male Syrian golden hamsters by painting with 0.5% DMBA three times a week for 14 weeks. From 9 to 14 weeks, a dose of 50, 100, and 200 mg RMDE per kg body weight were painting with the hamsters for 6 weeks on days alternate to the DMBA application. The results demonstrated that RMDE decreased nitric oxide (NO), reactive oxygen species (ROS), and prostaglandin E(2) (PGE(2)) overexpression in hamster buccal pouches in the DMBA treatment group and increased p53, serum tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) to significantly stimulate caspase-8 and -3 activities, indicating that RMDE reduced oxidative damage causing by DMBA and induced apoptosis in oral cancer cells. Therefore, RMDE may have therapeutic potentials against OSCC. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Identification of hamster inducible nitric oxide synthase (iNOS) promoter sequences that influence basal and inducible iNOS expression

    PubMed Central

    Saldarriaga, Omar A.; Travi, Bruno L.; Choudhury, Goutam Ghosh; Melby, Peter C.

    2012-01-01

    IFN-γ/LPS-activated hamster (Mesocricetus auratus) macrophages express significantly less iNOS (NOS2) than activated mouse macrophages, which contributes to the hamster's susceptibility to intracellular pathogens. We determined a mechanism responsible for differences in iNOS promoter activity in hamsters and mice. The HtPP (1.2 kb) showed low basal and inducible promoter activity when compared with the mouse, and sequences within a 100-bp region (−233 to −133) of the mouse and hamster promoters influenced this activity. Moreover, within this 100 bp, we identified a smaller region (44 bp) in the mouse promoter, which recovered basal promoter activity when swapped into the hamster promoter. The mouse homolog (100-bp region) contained a cis-element for NF-IL-6 (−153/−142), which was absent in the hamster counterpart. EMSA and supershift assays revealed that the hamster sequence did not support the binding of NF-IL-6. Introduction of a functional NF-IL-6 binding sequence into the hamster promoter or its alteration in the mouse promoter revealed the critical importance of this transcription factor for full iNOS promoter activity. Furthermore, the binding of NF-IL-6 to the iNOS promoter (−153/−142) in vivo was increased in mouse cells but was reduced in hamster cells after IFN-γ/LPS stimulation. Differences in the activity of the iNOS promoters were evident in mouse and hamster cells, so they were not merely a result of species-specific differences in transcription factors. Thus, we have identified unique DNA sequences and a critical transcription factor, NF-IL-6, which contribute to the overall basal and inducible expression of hamster iNOS. PMID:22517919

  11. Comparison of vitamins K1, K2 and K3 effects on growth of rat glioma and human glioblastoma multiforme cells in vitro.

    PubMed

    Oztopçu, Pinar; Kabadere, Selda; Mercangoz, Ayşe; Uyar, Ruhi

    2004-09-01

    Glioblastoma multiforme is characterized as highly invasive and rapidly growing astrocytomas, and scientists have sought for efficient treatment against malignant gliomas for a long time. Therefore, we compared the respond of rat glioma (C6) and glioblastoma multiforme cells derived from two patients to vitamins K1, K2 and K3. The cells were exposed to 100, 250, 500, 750 and 1000 microM of vitamins K1 and K2, and 1, 10, 25, 50, 75 and 100 microM of vitamin K3 for 24 hours in an incubator atmosphere of 5% CO2, 37 degrees C and 100% humidity. Cell viability was estimated by MTT assay. Vitamin K1 showed no growth effect on all the glioma cells examined. Vitamin K2 did not cause any change in number of C6, however induced growth inhibition in a dose-dependent manner on glioblastoma multiforme. The IC50 values of vitamin K2 were 960 microM and 970 microM for glioblastoma multiforme, respectively. Vitamin K3 had also growth inhibitory effect in a dose-dependent manner on both C6 and glioblastoma multiforme. The IC50 values were 41 microM, 24 microM and 23 microM for vitamin K3, respectively. We concluded that vitamin K3 is more effective than vitamin K2 for inhibition of cancer cell growth, and might have an alternative value as an anticancer drug against glioblastoma multiforme.

  12. Targeted delivery of antigen to hamster nasal lymphoid tissue with M-cell-directed lectins.

    PubMed Central

    Giannasca, P J; Boden, J A; Monath, T P

    1997-01-01

    The nasal cavity of a rodent is lined by an epithelium organized into distinct regional domains responsible for specific physiological functions. Aggregates of nasal lymphoid tissue (NALT) located at the base of the nasal cavity are believed to be sites of induction of mucosal immune responses to airborne antigens. The epithelium overlying NALT contains M cells which are specialized for the transcytosis of immunogens, as demonstrated in other mucosal tissues. We hypothesized that NALT M cells are characterized by distinct glycoconjugate receptors which influence antigen uptake and immune responses to transcytosed antigens. To identify glycoconjugates that may distinguish NALT M cells from other cells of the respiratory epithelium (RE), we performed lectin histochemistry on sections of the hamster nasal cavity with a panel of lectins. Many classes of glycoconjugates were found on epithelial cells in this region. While most lectins bound to sites on both the RE and M cells, probes capable of recognizing alpha-linked galactose were found to label the follicle-associated epithelium (FAE) almost exclusively. By morphological criteria, the FAE contains >90% M cells. To determine if apical glycoconjugates on M cells were accessible from the nasal cavity, an M-cell-selective lectin and a control lectin in parallel were administered intranasally to hamsters. The M-cell-selective lectin was found to specifically target the FAE, while the control lectin did not. Lectin bound to M cells in vivo was efficiently endocytosed, consistent with the role of M cells in antigen transport. Intranasal immunization with lectin-test antigen conjugates without adjuvant stimulated induction of specific serum immunoglobulin G, whereas antigen alone or admixed with lectin did not. The selective recognition of NALT M cells by a lectin in vivo provides a model for microbial adhesin-host cell receptor interactions on M cells and the targeted delivery of immunogens to NALT following intranasal

  13. Expression and localization of a novel phosducin-like protein from amphioxus Branchiostoma belcheri

    NASA Astrophysics Data System (ADS)

    Saren, Gaowa; Zhao, Yonggang

    2009-05-01

    A full length amphioxus cDNA, encoding a novel phosducin-like protein ( Amphi-PhLP), was identified for the first time from the gut cDNA library of Branchiostoma belcheri. It is comprised of 1 550 bp and an open reading frame (ORF) of 241 amino acids, with a predicted molecular mass of approximately 28 kDa. In situ hybridization histochemistry revealed a tissue-specific expression pattern of Amphi-PhLP with the high levels in the ovary, and at a lower level in the hind gut and testis, hepatic caecum, gill, endostyle, and epipharyngeal groove, while it was absent in the muscle, neural tube and notochord. In the Chinese Hamster Ovary (CHO) cells transfected with the expression plasmid pEGFP-N1/ Amphi-PhLP, the fusion protein was targeted in the cytoplasm of CHO cells, suggesting that Amphi-PhLP is a cytosolic protein. This work may provide a framework for further understanding of the physiological function of Amphi-PhLP in B. belcheri.

  14. Is Change in Ovary Carbon Status a Cause or a Consequence of Maize Ovary Abortion in Water Deficit during Flowering?1[OPEN

    PubMed Central

    Prodhomme, Duyên; Gibon, Yves; Tardieu, François

    2016-01-01

    Flower or grain abortion causes large yield losses under water deficit. In maize (Zea mays), it is often attributed to a carbon limitation via the disruption of sucrose cleavage by cell wall invertases in developing ovaries. We have tested this hypothesis versus another linked to the expansive growth of ovaries and silks. We have measured, in silks and ovaries of well-watered or moderately droughted plants, the transcript abundances of genes involved in either tissue expansion or sugar metabolism, together with the concentrations and amounts of sugars, and with the activities of major enzymes of carbon metabolism. Photosynthesis and indicators of sugar export, measured during water deprivation, suggested sugar export maintained by the leaf. The first molecular changes occurred in silks rather than in ovaries and involved genes affecting expansive growth rather than sugar metabolism. Changes in the concentrations and amounts of sugars and in the activities of enzymes of sugar metabolism occurred in apical ovaries that eventually aborted, but probably after the switch to abortion of these ovaries. Hence, we propose that, under moderate water deficits corresponding to most European drought scenarios, changes in carbon metabolism during flowering time are a consequence rather than a cause of the beginning of ovary abortion. A carbon-driven ovary abortion may occur later in the cycle in the case of carbon shortage or under very severe water deficits. These findings support the view that, until the end of silking, expansive growth of reproductive organs is the primary event leading to abortion, rather than a disruption of carbon metabolism. PMID:27208256

  15. Evidence for Integrin - Venus Kinase Receptor 1 Alliance in the Ovary of Schistosoma mansoni Females Controlling Cell Survival.

    PubMed

    Gelmedin, Verena; Morel, Marion; Hahnel, Steffen; Cailliau, Katia; Dissous, Colette; Grevelding, Christoph G

    2017-01-01

    In metazoan integrin signaling is an important process of mediating extracellular and intracellular communication processes. This can be achieved by cooperation of integrins with growth factor receptors (GFRs). Schistosoma mansoni is a helminth parasite inducing schistosomiasis, an infectious disease of worldwide significance for humans and animals. First studies on schistosome integrins revealed their role in reproductive processes, being involved in spermatogenesis and oogenesis. With respect to the roles of eggs for maintaining the parasite´s life cycle and for inducing the pathology of schistosomiasis, elucidating reproductive processes is of high importance. Here we studied the interaction of the integrin receptor Smβ-Int1 with the venus kinase receptor SmVKR1 in S. mansoni. To this end we cloned and characterized SmILK, SmPINCH, and SmNck2, three putative bridging molecules for their role in mediating Smβ-Int1/SmVKR1 cooperation. Phylogenetic analyses showed that these molecules form clusters that are specific for parasitic platyhelminths as it was shown for integrins before. Transcripts of all genes colocalized in the ovary. In Xenopus oocytes germinal vesicle breakdown (GVBD) was only induced if all members were simultaneously expressed. Coimmunoprecipitation results suggest that a Smβ-Int1-SmILK-SmPINCH-SmNck2-SmVKR1 complex can be formed leading to the phosphorylation and activation of SmVKR1. These results indicate that SmVKR1 can be activated in a ligand-independent manner by receptor-complex interaction. RNAi and inhibitor studies to knock-down SmILK as a representative complex member concurrently revealed effects on the extracellular matrix surrounding the ovary and oocyte localization within the ovary, oocyte survival, and egg production. By TUNEL assays, confocal laser scanning microscopy (CLSM), Caspase-3 assay, and transcript profiling of the pro-apoptotic BCL-2 family members BAK/BAX we obtained first evidence for roles of this signaling

  16. Secondhand smoke induces hepatic apoptosis and fibrosis in hamster fetus.

    PubMed

    Huang, Chien-Wei; Horng, Chi-Ting; Huang, Chih-Yang; Cho, Ta-Hsiung; Tsai, Yi-Chang; Chen, Li-Jeng; Hsu, Tsai-Ching; Tzang, Bor-Show

    2016-09-01

    Secondhand smoke (SHS) is an important health issue worldwide. Inhaling SHS during pregnancy could cause abnormalities in the internal tissues of newborns, which may then impair fetal development and even cause severe intrauterine damage and perinatal death. However, the understanding of cytopathic mechanisms of SHS by maternal passive smoking on fetus liver during pregnancy is still limited. This study analyzed the effects of high-dose SHS (SHSH) on fetus liver using a maternal passive smoking animal model. Experiments showed that hepatic matrix metalloproteinase-9 activity and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling-positive cells were significantly increased in livers from fetuses of hamsters treated with SHSH. Similarly, expressions of both extrinsic and intrinsic apoptotic molecules were significantly higher in livers from fetuses of hamsters exposed to SHSH. Additionally, significantly increased inflammatory proteins, including transforming growth factor β, inducible nitric oxide synthase, and interleukin 1β, and fibrotic signaling molecules, including phosphorylated Smad2/3, SP1, and α-smooth muscle actin, were observed in the fetus livers from hamsters treated with SHSH. This study revealed that SHSH not only increased apoptosis through intrinsic and extrinsic pathways in the livers of fetuses from hamsters exposed to SHSH but also augmented hepatic fibrosis via Smad2/3 signaling. © The Author(s) 2015.

  17. Novel population of small tumour-initiating stem cells in the ovaries of women with borderline ovarian cancer

    PubMed Central

    Virant-Klun, Irma; Stimpfel, Martin

    2016-01-01

    Small stem cells with diameters of up to 5 μm previously isolated from adult human ovaries indicated pluripotency and germinal lineage, especially primordial germ cells, and developed into primitive oocyte-like cells in vitro. Here, we show that a comparable population of small stem cells can be found in the ovarian tissue of women with borderline ovarian cancer, which, in contrast to small stem cells in “healthy” ovaries, formed spontaneous tumour-like structures and expressed some markers related to pluripotency and germinal lineage. The gene expression profile of these small putative cancer stem cells differed from similar cells sorted from “healthy” ovaries by 132 upregulated and 97 downregulated genes, including some important forkhead box and homeobox genes related to transcription regulation, developmental processes, embryogenesis, and ovarian cancer. These putative cancer stem cells are suggested to be a novel population of ovarian tumour-initiating cells in humans. PMID:27703207

  18. Acute Doxorubicin Insult in the Mouse Ovary Is Cell- and Follicle-Type Dependent

    PubMed Central

    Roti Roti, Elon C.; Leisman, Scott K.; Abbott, David H.; Salih, Sana M.

    2012-01-01

    Primary ovarian insufficiency (POI) is one of the many unintended consequences of chemotherapy faced by the growing number of female cancer survivors. While ovarian repercussions of chemotherapy have long been recognized, the acute insult phase and primary sites of damage are not well-studied, hampering efforts to design effective intervention therapies to protect the ovary. Utilizing doxorubicin (DXR) as a model chemotherapy agent, we defined the acute timeline for drug accumulation, induced DNA damage, and subsequent cellular and follicular demise in the mouse ovary. DXR accumulated first in the core ovarian stroma cells, then redistributed outwards into the cortex and follicles in a time-dependent manner, without further increase in total ovarian drug levels after four hours post-injection. Consistent with early drug accumulation and intimate interactions with the blood supply, stroma cell-enriched populations exhibited an earlier DNA damage response (measurable at 2 hours) than granulosa cells (measurable at 4 hours), as quantified by the comet assay. Granulosa cell-enriched populations were more sensitive however, responding with greater levels of DNA damage. The oocyte DNA damage response was delayed, and not measurable above background until 10–12 hours post-DXR injection. By 8 hours post-DXR injection and prior to the oocyte DNA damage response, the number of primary, secondary, and antral follicles exhibiting TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling)-positive granulosa cells plateaued, indicating late-stage apoptosis and suggesting damage to the oocytes is subsequent to somatic cell failure. Primordial follicles accumulate significant DXR by 4 hours post-injection, but do not exhibit TUNEL-positive granulosa cells until 48 hours post-injection, indicating delayed demise. Taken together, the data suggest effective intervention therapies designed to protect the ovary from chemotherapy accumulation and induced insult in the ovary

  19. Tomato ovary-to-fruit transition is characterized by a spatial shift of mRNAs for cell wall invertase and its inhibitor with the encoded proteins localized to sieve elements.

    PubMed

    Palmer, William M; Ru, Lei; Jin, Ye; Patrick, John W; Ruan, Yong-Ling

    2015-02-01

    Central to understanding fruit development is to elucidate the processes mediating a successful transition from pre-pollination ovaries to newly set fruit, a key step in establishing fruit yield potential. In tomato, cell wall invertase (CWIN) LIN5 and its inhibitor INH1 are essential for fruit growth. However, the molecular and cellular basis by which they exert their roles in ovary-to-fruit transition remains unknown. To address this issue, we conducted a study focusing on ovaries and fruitlets at 2 days before and 2 days after anthesis, respectively. In situ hybridization analyses revealed that LIN5 and INH1 exhibited a dispersed expression in ovaries compared with their phloem-specific expression in fruitlets. Remarkably, LIN5 and INH1 proteins were immunologically co-localized to cell walls of sieve elements (SEs) in ovaries immediately prior to anthesis and in young fruitlets, but were undetectable in provascular bundles of younger ovaries. A burst in CWIN activity occurred during ovary-to-fruit transition. Interestingly, the ovaries, but not the fruitlets, exhibited high expression of a defective invertase, SldeCWIN1, an ortholog of which is known to enhance inhibition of INH on CWIN activity in tobacco. Imaging of a fluorescent symplasmic tracer indicated an apoplasmic phloem unloading pathway operated in ovaries, contrary to the previously observed symplasmic unloading pathway in fruit pericarp. These new data indicate that (1) a phloem-specific patterning of the CWIN and INH mRNAs is induced during ovary-to-fruit transition, and (2) LIN5 protein functions specifically in walls of SEs and increases its activity during ovary-to-fruit transition, probably to facilitate phloem unloading and to generate a glucose signal positively regulating cell division, hence fruit set. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  20. Dose-rate effect was observed in T98G glioma cells following BNCT.

    PubMed

    Kinashi, Yuko; Okumura, Kakuji; Kubota, Yoshihisa; Kitajima, Erika; Okayasu, Ryuichi; Ono, Koji; Takahashi, Sentaro

    2014-06-01

    It is generally said that low LET radiation produce high dose-rate effect, on the other hand, no significant dose rate effect is observed in high LET radiation. Although high LET radiations are produced in BNCT, little is known about dose-rate effect of BNCT. T98G cells, which were tumor cells, were irradiated by neutron mixed beam with BPA. As normal tissue derived cells, Chinese hamster ovary (CHO-K1) cells and DNA double strand breaks (DNA-DSBs) repair deficient cells, xrs5 cells were irradiated by the neutrons (not including BPA). To DNA-DSBs analysis, T98G cells were stained immunochemically with 53BP1 antibody. The number of DNA-DSBs was determined by counting 53BP1 foci. There was no dose-rate effect in xrs5 cells. D0 difference between 4cGy/min and 20cGy/min irradiation were 0.5 and 5.9 at the neutron and gamma-ray irradiation for CHO-K1, and 0.3 at the neutron for T98G cells. D0 difference between 20cGy/min and 80cGy/min irradiation for T98G cells were 1.2 and 0.6 at neutron irradiation plus BPA and gamma-ray. The differences between neutron irradiations at the dose rate in T98G cells were supported by not only the cell viability but also 53BP1 foci assay at 24h following irradiation to monitor DNA-DSBs. Dose-rate effect of BNCT when T98G cells include 20ppm BPA was greater than that of gamma-ray irradiation. Moreover, Dose-rate effect of the neutron beam when CHO-K1 cells did not include BPA was less than that of gamma-ray irradiation These present results may suggest the importance of dose-rate effect for more efficient BNCT and the side effect reduction. © 2013 Published by Elsevier Ltd.

  1. Intestinal transfer of choline in rat and hamster

    PubMed Central

    Sanford, P. A.; Smyth, D. H.

    1971-01-01

    1. The transfer of choline was studied with sacs of everted intestine of rat and hamster. 2. The choline transfer can be divided into two components, a diffusion process and a saturable process. The latter plays a relatively greater part at low concentrations of choline, which include the physiological concentration in the plasma. The saturable process is better seen in the hamster than in the rat. 3. Intestinal transfer of choline is influenced by substances altering the availability of energy in the cell, and by some substances chemically or pharmacologically related to choline. These findings are consistent with some kind of specific mechanism for choline transfer. 4. Part of the choline taken up by the cell appears as a metabolite not yet identified. The formation of the metabolite is a saturable process and is abolished by anaerobic conditions and by homogenization. 5. The results are also discussed in relation to parameters of transfer. PMID:5090994

  2. Changes in gene expression and cellular localization of insulin-like growth factors 1 and 2 in the ovaries during ovary development of the yellowtail, Seriola quinqueradiata.

    PubMed

    Higuchi, Kentaro; Gen, Koichiro; Izumida, Daisuke; Kazeto, Yukinori; Hotta, Takuro; Takashi, Toshinori; Aono, Hideaki; Soyano, Kiyoshi

    2016-06-01

    A method of controlling the somatic growth and reproduction of yellowtail fish (Seriola quinqueradiata) is needed in order to establish methods for the efficient aquaculture production of the species. However, little information about the hormonal interactions between somatic growth and reproduction is available for marine teleosts. There is accumulating evidence that insulin-like growth factor (IGF), a major hormone related somatic growth, plays an important role in fish reproduction. As the first step toward understanding the physiological role of IGF in the development of yellowtail ovaries, we characterized the expression and cellular localization of IGF-1 and IGF-2 in the ovary during development. We histologically classified the maturity of two-year-old females with ovaries at various developmental stages into the perinucleolar (Pn), yolk vesicle (Yv), primary yolk (Py), secondary yolk and tertiary yolk (Ty) stages, according to the most advanced type of oocyte present. The IGF-1 gene expression showed constitutively high levels at the different developmental stages, although IGF-1 mRNA levels tended to increase from the Py to the Ty stage with vitellogenesis, reaching maximum levels during the Ty stage. The IGF-2 mRNA levels increased as ovarian development advanced. Using immunohistochemistry methods, immunoreactive IGF-1 was mainly detected in the theca cells of ovarian follicles during late secondary oocyte growth, and in part of the granulosa cells of Ty stage oocytes. IGF-2 immunoreactivity was observed in all granulosa cells in layer in Ty stage oocytes. These results indicate that follicular IGFs may be involved in yellowtail reproduction via autocrine/paracrine mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Removal process of prion and parvovirus from human platelet lysates used as clinical-grade supplement for ex vivo cell expansion.

    PubMed

    Kao, Yu-Chun; Bailey, Andy; Samminger, Bernhard; Tanimoto, Junji; Burnouf, Thierry

    2016-07-01

    Pooled human platelet lysate (HPL) is becoming the new gold standard as supplement for ex vivo cell culture for clinical protocols. However, the risk of pathogen contamination of HPL increases with the platelet pool size. We hypothesized that hollow fiber anion exchange membrane chromatography using QyuSpeed D (QSD) could remove resistant and untested bloodborne pathogens, such as parvoviruses and prions, from HPL-supplemented growth media without substantially affecting their capacity to support ex vivo cell expansion. Frozen or thawed platelet concentrates were serum-converted and centrifuged for obtaining HPL that was added to various growth media (ca. 100 mL), filtered through a 0.6-mL QSD membrane and characterized for proteins, growth factors and chemical composition. Capacity to expand Chinese hamster ovary, periodontal ligament, gingival fibroblast cells and Wharton's jelly mesenchymal stromal cells was studied. Removal of porcine parvovirus (PPV) and of the 263K prion strain of hamster-adapted scrapie was studied by spiking experiments following international guidelines. QSD had minimal impact on HPL-supplemented medium composition in proteins, growth factors and chemical content, nor capacity to expand and differentiate cells. In addition, QSD could remove ≥5.58 log10 [TCID50/mL] and ≥3.72 log10 of PPV and the 263K prion, respectively. QSD hollow fiber chromatography can be used to improve the virus and prion safety of HPL-supplemented media to safely expand cells for clinical protocols. These data bring new perspectives for increasingly safer use of pooled HPL in cell therapy and regenerative medicine applications. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  4. mTORC1 signalling and eIF4E/4E-BP1 translation initiation factor stoichiometry influence recombinant protein productivity from GS-CHOK1 cells.

    PubMed

    Jossé, Lyne; Xie, Jianling; Proud, Christopher G; Smales, C Mark

    2016-12-15

    Many protein-based biotherapeutics are produced in cultured Chinese hamster ovary (CHO) cell lines. Recent reports have demonstrated that translation of recombinant mRNAs and global control of the translation machinery via mammalian target of rapamycin (mTOR) signalling are important determinants of the amount and quality of recombinant protein such cells can produce. mTOR complex 1 (mTORC1) is a master regulator of cell growth/division, ribosome biogenesis and protein synthesis, but the relationship between mTORC1 signalling, cell growth and proliferation and recombinant protein yields from mammalian cells, and whether this master regulating signalling pathway can be manipulated to enhance cell biomass and recombinant protein production (rPP) are not well explored. We have investigated mTORC1 signalling and activity throughout batch culture of a panel of sister recombinant glutamine synthetase-CHO cell lines expressing different amounts of a model monoclonal IgG4, to evaluate the links between mTORC1 signalling and cell proliferation, autophagy, recombinant protein expression, global protein synthesis and mRNA translation initiation. We find that the expression of the mTORC1 substrate 4E-binding protein 1 (4E-BP1) fluctuates throughout the course of cell culture and, as expected, that the 4E-BP1 phosphorylation profiles change across the culture. Importantly, we find that the eIF4E/4E-BP1 stoichiometry positively correlates with cell productivity. Furthermore, eIF4E amounts appear to be co-regulated with 4E-BP1 amounts. This may reflect a sensing of either change at the mRNA level as opposed to the protein level or the fact that the phosphorylation status, as well as the amount of 4E-BP1 present, is important in the co-regulation of eIF4E and 4E-BP1. © 2016 The Author(s).

  5. Detection of receptor-specific murine leukemia virus binding to cells by immunofluorescence analysis.

    PubMed Central

    Kadan, M J; Sturm, S; Anderson, W F; Eglitis, M A

    1992-01-01

    Four classes of murine leukemia virus (MuLV) which display distinct cellular tropisms and bind to different retrovirus receptors to initiate virus infection have been described. In the present study, we describe a rapid, sensitive immunofluorescence assay useful for characterizing the initial binding of MuLV to cells. By using the rat monoclonal antibody 83A25 (L. H. Evans, R. P. Morrison, F. G. Malik, J. Portis, and W. J. Britt, J. Virol. 64:6176-6183, 1990), which recognizes an epitope of the envelope gp70 molecule common to the different classes of MuLV, it is possible to analyse the binding of ecotropic, amphotropic, or xenotropic MuLV by using only a single combination of primary and secondary antibodies. The MuLV binding detected by this assay is envelope receptor specific and matches the susceptibility to infection determined for cells from a variety of species. The binding of amphotropic MuLV to NIH 3T3 cells was shown to be rapid, saturable, and temperature dependent. Chinese hamster ovary (CHO-K1) cells normally lack the ability to bind ecotropic virus and are not infectible by ecotropic vectors. Expression of the cloned ecotropic retrovirus receptor gene (Rec) in CHO-K1 cells confers high levels of ecotropic virus-specific binding and confers susceptibility to infection. Characterization of MuLV binding to primary cells may provide insight into the infectibility of cells by retroviruses and aid in the selection of appropriate vectors for gene transfer experiments. PMID:1312632

  6. Resveratrol Ameliorates Microcystin-LR-Induced Testis Germ Cell Apoptosis in Rats via SIRT1 Signaling Pathway Activation.

    PubMed

    Liu, Haohao; Zhang, Shenshen; Liu, Chuanrui; Wu, Jinxia; Wang, Yueqin; Yuan, Le; Du, Xingde; Wang, Rui; Marwa, Phelisters Wegesa; Zhuang, Donggang; Cheng, Xuemin; Zhang, Huizhen

    2018-06-09

    Microcystin-leucine arginine (MC-LR), a cyclic heptapeptide produced by cyanobacteria, is a strong reproductive toxin. Studies performed in rat Sertoli cells and Chinese hamster ovary cells have demonstrated typical apoptosis after MC-LR exposure. However, little is known on how to protect against the reproductive toxicity induced by MC-LR. The present study aimed to explore the possible molecular mechanism underlying the anti-apoptosis and protective effects of resveratrol (RES) on the co-culture of Sertoli⁻germ cells and rat testes. The results demonstrated that MC-LR treatment inhibited the proliferation of Sertoli⁻germ cells and induced apoptosis. Furthermore, sirtuin 1 (SIRT1) and Bcl-2 were inhibited, while p53 and Ku70 acetylation, Bax expression, and cleaved caspase-3 were upregulated by MC-LR. However, RES pretreatment ameliorated MC-LR-induced apoptosis and SIRT1 inhibition, and downregulated the MC-LR-induced increase in p53 and Ku70 acetylation, Bax expression, and caspase-3 activation. In addition, RES reversed the MC-LR-mediated reduction in Ku70 binding to Bax. The present study indicated that the administration of RES could ameliorate MC-LR-induced Sertoli⁻germ cell apoptosis and protect against reproductive toxicity in rats by stimulating the SIRT1/p53 pathway, suppressing p53 and Ku70 acetylation and enhancing the binding of Ku70 to Bax.

  7. Overexpression of a DENND1A isoform produces a polycystic ovary syndrome theca phenotype

    PubMed Central

    McAllister, Jan M.; Modi, Bhavi; Miller, Bruce A.; Biegler, Jessica; Bruggeman, Richard; Legro, Richard S.; Strauss, Jerome F.

    2014-01-01

    Polycystic ovary syndrome (PCOS), characterized by increased ovarian androgen biosynthesis, anovulation, and infertility, affects 5–7% of reproductive-age women. Genome-wide association studies identified PCOS candidate loci that were replicated in subsequent reports, including DENND1A, which encodes a protein associated with clathrin-coated pits where cell-surface receptors reside. However, these studies provided no information about functional roles for DENND1A in the pathogenesis of PCOS. DENND1A protein was located in the cytoplasm as well as nuclei of theca cells, suggesting a possible role in gene regulation. DENND1A immunostaining was more intense in the theca of PCOS ovaries. Using theca cells isolated and propagated from normal cycling and PCOS women, we found that DENND1A variant 2 (DENND1A.V2) protein and mRNA levels are increased in PCOS theca cells. Exosomal DENND1A.V2 RNA was significantly elevated in urine from PCOS women compared with normal cycling women. Forced overexpression of DENND1A.V2 in normal theca cells resulted in a PCOS phenotype of augmented CYP17A1 and CYP11A1 gene transcription, mRNA abundance, and androgen biosynthesis. Knock-down of DENND1A.V2 in PCOS theca cells reduced androgen biosynthesis and CYP17A1 and CYP11A1 gene transcription. An IgG specific to DENND1A.V2 also reduced androgen biosynthesis and CYP17 and CYP11A1 mRNA when added to the medium of cultured PCOS theca cells. We conclude that the PCOS candidate gene, DENND1A, plays a key role in the hyperandrogenemia associated with PCOS. These observations have both diagnostic and therapeutic implications for this common disorder. PMID:24706793

  8. Stem cell isolation by a morphology-based selection method in postnatal mouse ovary.

    PubMed

    Parvari, Soraya; Abbasi, Mehdi; Abbasi, Niloufar; Malek, Valliollah Gerayeli; Amidi, Fardin; Aval, Fereydoon Sargolzaei; Roudkenar, Mehryar Habibi; Izadyar, Fariburz

    2015-06-19

    An increasing body of evidence has emerged regarding the existence and function of spermatogonial stem cells (SSCs); however, their female counterparts are the subject of extensive debate. Theoretically, ovarian germ stem cells (GSCs) have to reside in the murine ovary to support and replenish the follicle pool during the reproductive life span. Recently, various methods have been recruited to isolate and describe aspects of ovarian GSCs, but newer and more convenient strategies in isolation are still growing. Herein, a morphology-based method was used to isolate GSCs. A cell suspension of mouse neonatal ovaries was cultured. Colonies of GSCs were harvested mechanically and cultivated on mouse embryonic fibroblasts (MEF). Alkaline phosphatase activity was assessed to verify stemness features of cells in colonies. Expression of germ and stem cell specific genes (Oct-4, Nanog, Fragilis, C-kit, Dazl, and Mvh) was analyzed by reverse transcription-polymerase chain reaction (RT-PCR). Immunofluorescence of Oct4, Dazl, Mvh, and SSEA-1 was also performed. Small colonies without a clear border appeared during the first 4 days of culture, and the size of colonies increased rapidly. Cells in colonies were positive for alkaline phosphatase activity. Reverse transcription-polymerase chain reaction showed that Oct-4, Fragilis, C-kit, Nanog, Mvh, and Dazl were expressed in colony-forming cells. Immunofluorescence revealed a positive signal for Oct4, Dazl, Mvh, and SSEA-1 in colonies as well. The applicability of morphological selection for isolation of GSCs was verified. This method is easier and more economical than other techniques. The availability of ovarian stem cells can motivate further studies in development of oocyte and cell-based therapies.

  9. Stem cell isolation by a morphology-based selection method in postnatal mouse ovary

    PubMed Central

    Parvari, Soraya; Abbasi, Niloufar; Malek, Valliollah Gerayeli; Amidi, Fardin; Aval, Fereydoon Sargolzaei; Roudkenar, Mehryar Habibi; Izadyar, Fariburz

    2015-01-01

    Introduction An increasing body of evidence has emerged regarding the existence and function of spermatogonial stem cells (SSCs); however, their female counterparts are the subject of extensive debate. Theoretically, ovarian germ stem cells (GSCs) have to reside in the murine ovary to support and replenish the follicle pool during the reproductive life span. Recently, various methods have been recruited to isolate and describe aspects of ovarian GSCs, but newer and more convenient strategies in isolation are still growing. Herein, a morphology-based method was used to isolate GSCs. Material and methods A cell suspension of mouse neonatal ovaries was cultured. Colonies of GSCs were harvested mechanically and cultivated on mouse embryonic fibroblasts (MEF). Alkaline phosphatase activity was assessed to verify stemness features of cells in colonies. Expression of germ and stem cell specific genes (Oct-4, Nanog, Fragilis, C-kit, Dazl, and Mvh) was analyzed by reverse transcription-polymerase chain reaction (RT-PCR). Immunofluorescence of Oct4, Dazl, Mvh, and SSEA-1 was also performed. Results Small colonies without a clear border appeared during the first 4 days of culture, and the size of colonies increased rapidly. Cells in colonies were positive for alkaline phosphatase activity. Reverse transcription-polymerase chain reaction showed that Oct-4, Fragilis, C-kit, Nanog, Mvh, and Dazl were expressed in colony-forming cells. Immunofluorescence revealed a positive signal for Oct4, Dazl, Mvh, and SSEA-1 in colonies as well. Conclusions The applicability of morphological selection for isolation of GSCs was verified. This method is easier and more economical than other techniques. The availability of ovarian stem cells can motivate further studies in development of oocyte and cell-based therapies. PMID:26170863

  10. Lymphocyte function in experimental endemic syphilis of Syrian hamsters.

    PubMed Central

    Bagasra, O; Kushner, H; Hashemi, S

    1985-01-01

    splenic B-cell functions remain intact throughout the course of the disease. These findings were further tested by in vitro methods where splenic and lymph node lymphocytes from infected hamsters were examined for their ability to respond to Con A in terms of the induction of antigen non-specific suppressor T cells. The mixing of Con A stimulated splenic or lymph node lymphocytes from infected hamsters was unable to inhibit the primary antibody responses of SRBC as compared to the normal control.(ABSTRACT TRUNCATED AT 400 WORDS) Images Figure 1 PMID:2931353

  11. Characterisation of monoclonal antibodies specific for hamster leukocyte differentiation molecules.

    PubMed

    Rees, Jennifer; Haig, David; Mack, Victoria; Davis, William C

    2017-01-01

    Flow cytometry was used to identify mAbs that recognize conserved epitopes on hamster leukocyte differentiation molecules (hLDM) and also to characterize mAbs developed against hLDM. Initial screening of mAbs developed against LDMs in other species yielded mAbs specific for the major histocompatibility (MHC) II molecule, CD4 and CD18. Screening of sets of mAbs developed against hLDM yielded 22 new mAbs, including additional mAbs to MHC II molecules and mAbs that recognize LDMs expressed on all leukocytes, granulocytes, all lymphocytes, all T cells, a subset of T cells, or on all B cells. Based on comparison of the pattern of expression of LDMs expressed on all hamster leukocytes with the patterns of expression of known LDMs in other species, as detected by flow cytometry (FC), four mAbs are predicted to recognize CD11a, CD44, and CD45. Cross comparison of mAbs specific for a subset of hamster T cells with a cross reactive mAb known to recognize CD4 in mice and one recognising CD8 revealed they recognize CD4. The characterization of these mAbs expands opportunities to use hamsters as an additional model species to investigate the mechanisms of immunopathogenesis of infectious diseases. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Anti-cell death engineering of CHO cells: co-overexpression of Bcl-2 for apoptosis inhibition, Beclin-1 for autophagy induction.

    PubMed

    Lee, Jae Seong; Ha, Tae Kwang; Park, Jin Hyoung; Lee, Gyun Min

    2013-08-01

    Genetic engineering approaches to inhibit cell death in Chinese hamster ovary (CHO) cell cultures have been limited primarily to anti-apoptosis engineering. Recently, autophagy has received attention as a new anti-cell death engineering target in addition to apoptosis. In order to achieve a more efficient protection of cells from the stressful culture conditions, the simultaneous targeting of anti-apoptosis and pro-autophagy in CHO cells (DG44) was attempted by co-overexpressing an anti-apoptotic protein, Bcl-2, and a key regulator of autophagy pathway, Beclin-1, respectively. Co-overexpression of Bcl-2 and Beclin-1 exhibited a longer culture period as well as higher viability during serum-free suspension culture, compared with the control (without co-overexpression of Bcl-2 and Beclin-1) and Bcl-2 overexpression only. In addition to the efficient inhibition of apoptosis by Bcl-2 overexpression, Beclin-1 overexpression successfully induced the increase in the autophagic marker protein, LC3-II, and autophagosome formation with the decrease in mTOR activity. Co-immunoprecipitation and qRT-PCR experiments revealed that the enforced expression of Beclin-1 increased Ulk1 expression and level of free-Beclin-1 that did not bind to the Bcl-2 despite the Bcl-2 overexpression. Under other stressful culture conditions such as treatment with sodium butyrate and hyperosmolality, co-overexpression of Bcl-2 and Beclin-1 also protected the cells from cell death more efficiently than Bcl-2 overexpression only, implying the potential of autophagy induction. Taken together, the data obtained here provide the evidence that pro-autophagy engineering together with anti-apoptosis engineering yields a synergistic effect and successfully enhances the anti-cell death engineering of CHO cells. Copyright © 2013 Wiley Periodicals, Inc.

  13. VEGF is a Promising Therapeutic Target for the Treatment of Clear Cell Carcinoma of the Ovary

    PubMed Central

    Mabuchi, Seiji; Kawase, Chiaki; Altomare, Deborah A.; Morishige, Kenichirou; Hayashi, Masami; Sawada, Kenjiro; Ito, Kimihiko; Terai, Yoshito; Nishio, Yukihiro; Klein-Szanto, Andres J.; Burger, Robert A.; Ohmichi, Masahide; Testa, Joseph R.; Kimura, Tadashi

    2010-01-01

    This study examined the role of VEGF as a therapeutic target in clear cell carcinoma (CCC) of the ovary, which has been regarded as a chemoresistant histological subtype. Immunohistochemical analysis using tissue microarrays of 98 primary ovarian cancers revealed that VEGF was strongly expressed both in early stage and advanced stage CCC of the ovary. In early stage CCCs, patients who had tumors with high levels of VEGF had significantly shorter survival than those with low levels of VEGF. In vitro experiments revealed that VEGF expression was significantly higher in cisplatin-refractory human clear cell carcinoma cells (RMG1-CR and KOC7C-CR), compared to the respective parental cells (RMG1 and KOC7C) in the presence of cisplatin. In vivo treatment with bevacizumab markedly inhibited the growth of both parental CCC cells-derived (RMG1 and KOC7C) and cisplatin-refractory CCC cells-derived (RMG1-CR and KOC7C-CR) tumors as a result of inhibition of tumor angiogenesis. The results of the current study indicate that VEGF is frequently expressed and can be a promising therapeutic target in the management of CCC. Bevacizumab may be efficacious not only as a first-line treatment but also as a second-line treatment of recurrent disease in patients previously treated with cisplatin. PMID:20663925

  14. [Screening of virulence gene in golden hamster cheek pouch mucosa carcinomatous change induced by 9,10-dimethylene-1,2-benzanthracene].

    PubMed

    Zhang, Guo-dong; Yang, Kai; Mei, Jie

    2010-05-01

    To examine and analyze the global gene expression at the different stages of golden hamster cheek pouch mucosa carcinomatous change induced by 9,10-dimethylene-1,2 benzanthracene (DMBA). The model of golden hamster cheek pouch squamous cell carcinoma was induced by DMBA. The RNA of normal mucosa, precancerous lesions and squamous cell carcinoma of fresh tissue of golden hamsters was extracted and purified and the cRNA labeled by fluorescent Cy3 synthesized, which respectively hybridized with the agilent rat cDNA microarray containing 41 000 genes-expressed sequence tags, scanning with Agilent G2565AA fluorescence scanner. The Ratio>or=2 and Ratiocell carcinoma, of which 2896 was up-regulated and 2359 down-regulated. There were 22 genes that showed continues abnormal expression through the three different stages of carcinomatous change, including 3 up-regulated, 19 down-regulated. The RT-PCR results of Eaf-2 and Ecg-2 were consistent with the gene chip. The development of oral mucosal squamous cell carcinoma involved a number of abnormal genes. The genes showing continues abnormal expression at different stages of carcinomatous change may be the important pathogenetic ones.

  15. Follicular localization of growth differentiation factor 8 and its receptors in normal and polycystic ovary syndrome ovaries.

    PubMed

    Lin, Ting-Ting; Chang, Hsun-Ming; Hu, Xiao-Ling; Leung, Peter C K; Zhu, Yi-Min

    2018-05-01

    Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of reproductive age and its etiology has not been characterized. Growth differentiation factor 8 (GDF8) is a member of the transforming growth factor-β superfamily that plays a critical role in the regulation of ovarian functions. However, the expression pattern of GDF8 in the human ovary is not yet clear. This study examined the cellular distribution of GDF8 and its putative cellular receptors (ACVR2A, ACVR2B, and ALK5) in a series of normal (n = 34) and PCOS ovaries (n = 14). The immunostaining of GDF8, ACVR2A, ACVR2B, and ALK5 was detected in the oocytes regardless of the developmental stage. All these proteins were localized in antral follicles in normal and PCOS ovaries, and the expression of these proteins increased with increasing follicle diameter. A significantly higher expression of GDF8 was detected in the granulosa cells than in the matched theca cells (TCs). These proteins were also localized in the luteal cells of the corpus luteum. Granulosa cells and TCs of large antral follicles in PCOS ovaries display a higher expression of these proteins. The higher expression levels of GDF8 and its functional receptors (ACVR2A, ACVR2B, and ALK5) in antral follicles of PCOS ovaries than those in normal ovaries suggest the possible involvement of dysregulated GDF8 in the pathogenesis of PCOS.

  16. Immune response in the hamster: definition of a novel IgG not expressed in all hamster strains.

    PubMed Central

    Coe, J E; Schell, R F; Ross, M J

    1995-01-01

    A new IgG isotype is described in serum from Syrian hamsters. This 7S-IgG is called IgG3 and was isolated from IgG1 and IgG2 because of its great affinity for protein A. The unique antigenic determinants of IgG3 were identified with a specific rabbit antisera. IgG3 is the least expressed IgG subclass in Syrian hamsters, but serum levels increase more than 10-fold after immunization or infection. Although found in all tested outbred strains, IgG3 is expressed in only some of the commercially available inbred strains of Syrian hamsters. Five inbred hamster strains were examined, and in three strains (CB, LHC and MHA) IgG3 was not detected in normal serum or in immune serum, indicating serum levels at least 100-fold less than other normal inbred/outbred hamsters. The results of breeding experiments suggests a single gene defect is responsible for this non-expression of IgG3. Immunodeficiency was not associated with this IgG3 deficiency. Selective deficiencies of immunoglobulin classes/subclasses in experimental animals are rare. The evolution of a similar IgG3 deficiency in these three hamster strains during inbreeding suggests a novel and efficient mechanism for regulation of IgG3 synthesis in the Syrian hamster. Images Figure 2 Figure 3 Figure 5 PMID:7590875

  17. Single Unit Recordings of Cells Responsive to Visual, Somatic, Acoustic, and Noxious Stimuli in the Superior Colliculus of the Golden Hamster.

    DTIC Science & Technology

    1978-08-01

    Acoustic, and Noxious Stimuli Thesis in the Superior Colliculus of the Golden 6. PERFORMING OG. REPORT NUMBER Hamster -. _ // 7. AUTHOR( a ) S. CONTRACT...OR GRANT NUMBER(s) James P. Dixon I - "JV 9. PERF 7 MING ORGANIZATION NAME A D10. PROGRAM ELEMENT, PROJECT, TASK AFIT Student at: Virginia...studied in the superior colliculus of the golden hamster. A laminar organiza- tion was observed with cells in the superficial layers responding exclusively

  18. [(3)H]8-Ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]-purin-5-one ([(3)H]PSB-11), a novel high-affinity antagonist radioligand for human A(3) adenosine receptors.

    PubMed

    Müller, Christa E; Diekmann, Martina; Thorand, Mark; Ozola, Vita

    2002-02-11

    This study describes the preparation and binding properties of [(3)H]PSB-11, a novel, potent, and selective antagonist radioligand for human A(3) adenosine receptors (ARs). [(3)H]PSB-11 binding to membranes of Chinese hamster ovary (CHO) cells expressing the human A(3) AR was saturable and reversible. Saturation experiments showed that [(3)H]PSB-11 labeled a single class of binding sites with high affinity (K(D)=4.9 nM) and limited capacity (B(max)=3500 fmol/mg of protein). PSB-11 is highly selective versus the other adenosine receptor subtypes. The new radioligand shows an extraordinarily low degree of non-specific binding rendering it a very useful tool for studying the (patho)physiological roles of A(3 )ARs.

  19. Live-Cell Imaging of the Adult Drosophila Ovary Using Confocal Microscopy.

    PubMed

    Shalaby, Nevine A; Buszczak, Michael

    2017-01-01

    The Drosophila ovary represents a key in vivo model used to study germline stem cell (GSC) maintenance and stem cell daughter differentiation because these cells and their somatic cell neighbors can be identified at single-cell resolution within their native environment. Here we describe a fluorescent-based technique for the acquisition of 4D datasets of the Drosophila ovariole for periods that can exceed 12 consecutive hours. Live-cell imaging facilitates the investigation of molecular and cellular dynamics that were not previously possible using still images.

  20. Effects of heat and other inducers of the stress response on protein degradation in Chinese hamster and Drosophila cells.

    PubMed

    Westwood, J T; Steinhardt, R A

    1989-04-01

    Many recent studies have suggested that heat and other inducers of the heat shock (stress) response in eukaryotic cells might result in the generation of abnormal proteins which would result in the overloading of protein degradation systems and the stabilization of proteins involved in positively regulating heat shock (hs) gene expression. In this study we have examined the effects different heat treatments and other hs inducers have on protein degradation in Chinese hamster ovary (CHO) and Drosophila Kc and Schneider cells. We have found that intermediate temperatures which induced the hs response (42 degrees C in CHO and 34 degrees C in Kc cells) did increase protein degradation rates whereas, higher temperatures which also induced the hs response (45 degrees C in CHO and 37 degrees C in Kc cells) initially increased but then decreased protein degradation rates. While these results are consistent with a model in which the protein degradation system is being overloaded and/or components of it are being depleted, we have found several conditions which induce hs proteins which rule out this mechanism. Exposure of either cell type to amino acid analogs (5 mM canavanine or 5 mM S-aminoethyl cysteine) resulted in the rapid degradation of those proteins which had incorporated the analogs in both CHO and Drosophila cells. However, the addition of analogs had little or no effect on the degradation of preexisting proteins, indicating that the introduction of abnormal proteins probably didn't overload the protein degradation system(s). The addition of 100 microM cadmium sulfate or 100 microM sodium arsenite had little or no effect on protein degradation rates in CHO cells even though both were good inducers of the hs proteins. Thus, exposure to inducers of the hs response does not universally increase protein degradation rates nor does it stabilize preexisting proteins. Therefore, the degradation of abnormal proteins is probably not involved in inducing the hs genes.

  1. Glucocorticoids Suppress Renal Cell Carcinoma Progression by Enhancing Na,K-ATPase Beta-1 Subunit Expression

    PubMed Central

    Huynh, Thu P.; Barwe, Sonali P.; Lee, Seung J.; McSpadden, Ryan; Franco, Omar E.; Hayward, Simon W.; Damoiseaux, Robert; Grubbs, Stephen S.; Petrelli, Nicholas J.; Rajasekaran, Ayyappan K.

    2015-01-01

    Glucocorticoids are commonly used as palliative or chemotherapeutic clinical agents for treatment of a variety of cancers. Although steroid treatment is beneficial, the mechanisms by which steroids improve outcome in cancer patients are not well understood. Na,K-ATPase beta-subunit isoform 1 (NaK1) is a cell-cell adhesion molecule, and its expression is down-regulated in cancer cells undergoing epithelial-to mesenchymal-transition (EMT), a key event associated with cancer progression to metastatic disease. In this study, we performed high-throughput screening to identify small molecules that could up-regulate NaK1 expression in cancer cells. Compounds related to the glucocorticoids were identified as drug candidates enhancing NaK1 expression. Of these compounds, triamcinolone, dexamethasone, and fluorometholone were validated to increase NaK1 expression at the cell surface, enhance cell-cell adhesion, attenuate motility and invasiveness and induce mesenchymal to epithelial like transition of renal cell carcinoma (RCC) cells in vitro. Treatment of NaK1 knockdown cells with these drug candidates confirmed that these compounds mediate their effects through up-regulating NaK1. Furthermore, we demonstrated that these compounds attenuate tumor growth in subcutaneous RCC xenografts and reduce local invasiveness in orthotopically-implanted tumors. Our results strongly indicate that the addition of glucocorticoids in the treatment of RCC may improve outcome for RCC patients by augmenting NaK1 cell-cell adhesion function. PMID:25836370

  2. Molecular cloning of a murine homologue of membrane cofactor protein (CD46): preferential expression in testicular germ cells.

    PubMed Central

    Tsujimura, A; Shida, K; Kitamura, M; Nomura, M; Takeda, J; Tanaka, H; Matsumoto, M; Matsumiya, K; Okuyama, A; Nishimune, Y; Okabe, M; Seya, T

    1998-01-01

    Human membrane cofactor protein (MCP, CD46) has been suggested, although no convincing evidence has been proposed, to be a fertilization-associated protein, in addition to its primary functions as a complement regulator and a measles virus receptor. We have cloned a cDNA encoding the murine homologue of MCP. This cDNA showed 45% identity in deduced protein sequence and 62% identity in nucleotide sequence with human MCP. Its ectodomains were four short consensus repeats and a serine/threonine-rich domain, and it appeared to be a type 1 membrane protein with a 23-amino acid transmembrane domain and a short cytoplasmic tail. The protein expressed on Chinese hamster ovary cell transfectants was 47 kDa on SDS/PAGE immunoblotting, approximately 6 kDa larger than the murine testis MCP. It served as a cofactor for factor I-mediated inactivation of the complement protein C3b in a homologous system and, to a lesser extent, in a human system. Strikingly, the major message of murine MCP was 1.5 kb and was expressed predominantly in the testis. It was not detected in mice defective in spermatogenesis or with immature germ cells (until 23 days old). Thus, murine MCP may be a sperm-dominant protein the message of which is expressed selectively in spermatids during germ-cell differentiation. PMID:9461505

  3. alpha-Adrenergic-mediated activation of human reconstituted fibrinogen receptor (integrin alphaIIbbeta3) in Chinese hamster ovary cells.

    PubMed

    Butta, Nora; Larrucea, Susana; Gonzalez-Manchon, Consuelo; Alonso, Sonia; Parrilla, Roberto

    2004-12-01

    This work reports the functional studies of CHO cells coexpressing alpha-adrenergic (alphaAR) and human fibrinogen (Fg) receptors (integrin alphaIIbbeta3). Stimulation of these cells with alpha-agonists produced a transient rise in the free cytosolic calcium (Ca(++)) accompanied by enhanced binding to soluble Fg, and these effects were prevented by specific alphaAR antagonists. The alpha-adrenergic-induced activation of alphaIIbbeta3 in CHO-alphaIIbbeta3-alphaAR increased the rate of adhesion and extension of cells onto Fg coated plates, and also induced a soluble Fg- and alphaIIbbeta3-dependent formation of cell aggregates, whereas no effects were observed by the stimulation of CHO-alphaIIbbeta3 cells. alpha-Adrenergic antagonists, the ligand mimetic peptide RGDS, pertussis toxin (PTX), or EDTA, they all prevented the alpha-adrenergic stimulation of adhesion and aggregation. However, inhibition of PKC prevented the alpha-adrenergic stimulation of cell adherence, whereas blocking the intracellular Ca(++) mobilization impeded the stimulation of cell aggregation. The alpha-adrenergic activation was associated with phosphorylation of a protein of approximately 100 kDa and proteins of the MAPK family. The former was selectively phosphorylated by alpha-adrenergic stimulation whereas the latter were phosphorylated by the binding of cells to Fg and markedly intensified by alpha-adrenergic stimulation.

  4. Assessment of prion reduction filters in decreasing infectivity of ultracentrifuged 263K scrapie-infected brain homogenates in "spiked" human blood and red blood cells.

    PubMed

    Cardone, Franco; Sowemimo-Coker, Samuel; Abdel-Haq, Hanin; Sbriccoli, Marco; Graziano, Silvia; Valanzano, Angelina; Berardi, Vito Angelo; Galeno, Roberta; Puopolo, Maria; Pocchiari, Maurizio

    2014-04-01

    The safety of red blood cells (RBCs) is of concern because of the occurrence of four transfusion-transmitted variant Creutzfeldt-Jakob disease (vCJD) cases in the United Kingdom. The absence of validated screening tests requires the use of procedures to remove prions from blood to minimize the risk of transmission. These procedures must be validated using infectious prions in a form that is as close as possible to one in blood. Units of human whole blood (WB) and RBCs were spiked with high-speed supernatants of 263K scrapie-infected hamster brain homogenates. Spiked samples were leukoreduced and then passed through prion-removing filters (Pall Corporation). In another experiment, RBCs from 263K scrapie-infected hamsters were treated as above, and residual infectivity was measured by bioassay. The overall removal of infectivity by the filters from prion-spiked WB and RBCs was approximately two orders of magnitude. No infectivity was detected in filtered hamster RBCs endogenously infected with scrapie. The use of prion-removing filters may help to reduce the risk of transfusion-transmitted vCJD. To avoid overestimation of prion removal efficiency in validation studies, it may be more appropriate to use supernates from ultracentrifugation of scrapie-infected hamster brain homogenate rather than the current standard brain homogenates. © 2013 American Association of Blood Banks.

  5. Involvement of S6K1 in mitochondria function and structure in HeLa cells.

    PubMed

    Park, Jisoo; Tran, Quangdon; Mun, Kisun; Masuda, Kouhei; Kwon, So Hee; Kim, Seon-Hwan; Kim, Dong-Hoon; Thomas, George; Park, Jongsun

    2016-12-01

    The major biological function of mitochondria is to generate cellular energy through oxidative phosphorylation. Apart from cellular respiration, mitochondria also play a key role in signaling processes, including aging and cancer metabolism. It has been shown that S6K1-knockout mice are resistant to obesity due to enhanced beta-oxidation, with an increased number of large mitochondria. Therefore, in this report, the possible involvement of S6K1 in regulating mitochondria dynamics and function has been investigated in stable lenti-shS6K1-HeLa cells. Interestingly, S6K1-stably depleted HeLa cells showed phenotypical changes in mitochondria morphology. This observation was further confirmed by detailed image analysis of mitochondria shape. Corresponding molecular changes were also observed in these cells, such as the induction of mitochondrial fission proteins (Drp1 and Fis1). Oxygen consumption is elevated in S6K1-depeleted HeLa cells and FL5.12 cells. In addition, S6K1 depletion leads to enhancement of ATP production in cytoplasm and mitochondria. However, the relative ratio of mitochondrial ATP to cytoplasmic ATP is actually decreased in lenti-shS6K1-HeLa cells compared to control cells. Lastly, induction of mitophagy was found in lenti-shS6K1-HeLa cells with corresponding changes of mitochondria shape on electron microscope analysis. Taken together, our results indicate that S6K1 is involved in the regulation of mitochondria morphology and function in HeLa cells. This study will provide novel insights into S6K1 function in mitochondria-mediated cellular signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Molecular characterization and expression profile of the melatonin receptor MT1 in the ovary of Tianzhu white yak (Bos grunniens).

    PubMed

    Hu, Jun Jie; Zhang, Xiao Yu; Zhang, Yong; Zhao, Xing Xu; Li, Fa Di; Tao, Jin Zhong

    2017-02-01

    Melatonin plays crucial roles in a wide range of ovarian physiological functions via the melatonin receptors (MRs). Structure and function of MRs have been well studied in sheep, cattle, and humans, but little information exists on the genetic characterization and function of these receptors in the ovary of the white yak. In the present study, the melatonin receptor MT1 was cloned by RT-PCR in the ovary of white yak; the MT1 cDNA fragment obtained (843bp) comprised an open reading frame (827bp) encoding a protein containing 275 residues, characterized by seven transmembrane regions and an NRY motif, two distinct amino acid replacements were found. The white yak MT1 had a 83.9-98.6% protein sequence identity with that of nine other mammals. Using RT-PCR, the expression levels of MT1, MT2, and LHR in the ovary of pregnant and non-pregnant white yaks were compared, revealing higher levels of all genes in pregnant yaks: 3.83-fold increase for MT1 (P<0.05), 1.39-fold increase for MT2, and 15.32-fold increase for LHR (P<0.05). The distribution of MT1 in yak ovaries was observed using immunohistochemistry on paraffin embedded ovarian sections: MT1 was mainly present on primordial follicles (PF), granulosa cells (GCs), oocytes, and corpus luteum (CL) cells; MT1 expression showed an increasing tendency from PF to GCs to oocytes and to large CL cells. It is suggested that melatonin and MT1 are associated with the corpus luteum function of pregnancy maintenance and follicular development during oocyte maturation in the white yak. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Retention of secretory proteins in an intermediate compartment and disappearance of the Golgi complex in an END4 mutant of Chinese hamster ovary cells

    PubMed Central

    1992-01-01

    Mutant V.24.1, a member of the End4 complementation group of temperature-sensitive CHO cells, is defective in secretion at the restrictive temperature (Wang, R.-H., P. A. Colbaugh, C.-Y. Kao, E. A. Rutledge, and R. K. Draper. 1990. J. Biol. Chem. 265:20179-20187; Presley, J. F., R. K. Draper, and D. T. Brown. 1991. J. Virol. 65:1332- 1339). We have further investigated the secretory lesion and report three main findings. First, the block in secretion is not due to aberrant folding or oligomerization of secretory proteins in the endoplasmic reticulum because the hemagglutinin of influenza virus folded and oligomerized at the same rate in mutant and parental cells at the restrictive temperature. Second, secretory proteins accumulated in a compartment intermediate between the ER and the Golgi. Several lines of evidence support this conclusion, the most direct being the colocalization by immunofluorescence microscopy of influenza virus hemagglutinin with a 58-kD protein that is known to reside in an intermediate compartment. Third, at the resolution of fluorescence microscopy, the Golgi complex in the mutant cells vanished at the restrictive temperature. PMID:1577851

  8. Phosphatidylserine translocation to the mitochondrion is an ATP-dependent process in permeabilized animal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voelker, D.R.

    1989-12-01

    Chinese hamster ovary (CHO-K1) cells were pulse labeled with ({sup 3}H)serine, and the synthesis of phosphatidyl({sup 3}H)ethanolamine from phosphatidyl({sup 3}H)serine during the subsequent chase was used as a measure of lipid translocation to the mitochondria. When the CHO-K1 cells were pulse labeled and subsequently permeabilized with 50 {mu}g of saponin per ml, there was no significant turnover of nascent phosphatidyl({sup 3}H)serine to form phosphatidyl({sup 3}H)ethanolamine during an ensuring chase. Supplementation of the permeabilized cells with 2 mM ATP resulted in significant phosphatidyl({sup 3}H)ethanolamine synthesis (83% of that found in intact cells) from phosphatidyl({sup 3}H)serine during a subsequent 2-hr chase. Phosphatidyl({supmore » 3}H)ethanolamine synthesis essentially ceased after 2 hr in the permeabilized cells. The translocation-dependent synthesis of phosphatidyl({sup 3}H)ethanolamine was a saturable process with respect to ATP concentration in permeabilized cells. The conversion of phosphatidyl({sup 3}H)serine to phosphatidyl({sup 3}H)ethanolamine did not occur in saponin-treated cultures supplemented with 2 mM AMP, 2 mM 5{prime}-adenylyl imidodiphosphate, or apyrase plus 2 mM ATP. ATP was the most effective nucleotide, but the addition of GTP, CTP, UTP, and ADP also supported the translocation-dependent synthesis of phosphatidyl({sup 3}H)ethanolamine albeit to a lesser extent. These data provide evidence that the interorganelle translocation of phosphatidylserine requires ATP and is largely independent of soluble cytosolic proteins.« less

  9. Micronuclei versus Chromosomal Aberrations Induced by X-Ray in Radiosensitive Mammalian Cells

    PubMed Central

    PLAMADEALA, Cristina; WOJCIK, Andrzej; CREANGA, Dorina

    2015-01-01

    Background: An experimental study was accomplished to compare estimation methods of ionizing radiations genotoxicity in mammalian cell cultures by means of two cytogenetic parameters with focus on aberrant cells characterized by multiple chromosomal damages. Methods: In vitro study was carried out on the genotoxicity of low-medium doses of 190 kV X-rays absorbed in Chinese hamster ovary cell cultures. Micronuclei and ten types of chromosomal aberrations were identified with Giemsa dying and optical microscope screening. Results: The first parameter consisting in micronuclei relative frequency has led to higher linear correlation coefficient than the second one consistent with chromosomal aberrations relative frequency. However, the latter parameter estimated as the sum of all chromosomal aberrations appeared to be more sensitive to radiation dose increasing in the studied dose range, from 0 to 3 Gy. The number of micronuclei occurring simultaneously in a single cell was not higher than 3, while the number of chromosomal aberrations observed in the same cell reached the value of 5 for doses over 1 Gy. Conclusion: Polynomial dose-response curves were evidenced for cells with Ni micronuclei (i=1,3) while non-monotonic curves were evidenced through detailed analysis of aberrant cells with Ni chromosomal changes (i=(1,5)¯) - in concordance with in vitro studies from literature. The investigation could be important for public health issues where micronucleus screening is routinely applied but also for research purposes where various chromosomal aberrations could be of particular interest. PMID:25905075

  10. Estrogen Responsiveness of the TFIID Subunit TAF4B in the Normal Mouse Ovary and in Ovarian Tumors1

    PubMed Central

    Wardell, Jennifer R.; Hodgkinson, Kendra M.; Binder, April K.; Seymour, Kimberly A.; Korach, Kenneth S.; Vanderhyden, Barbara C.; Freiman, Richard N.

    2013-01-01

    ABSTRACT Estrogen signaling in the ovary is a fundamental component of normal ovarian function, and evidence also indicates that excessive estrogen is a risk factor for ovarian cancer. We have previously demonstrated that the gonadally enriched TFIID subunit TAF4B, a paralog of the general transcription factor TAF4A, is required for fertility in mice and for the proliferation of ovarian granulosa cells following hormonal stimulation. However, the relationship between TAF4B and estrogen signaling in the normal ovary or during ovarian tumor initiation and progression has yet to be defined. Herein, we show that Taf4b mRNA and TAF4B protein, but not Taf4a mRNA or TAF4A protein, are increased in whole ovaries and granulosa cells of the ovary after exposure to 17beta-estradiol or the synthetic estrogen diethylstilbestrol and that this response occurs within hours after stimulation. Furthermore, this increase occurs via nuclear estrogen receptors both in vivo and in a mouse granulosa cancer cell line, NT-1. We observe a significant increase in Taf4b mRNA in estrogen-supplemented mouse ovarian tumors, which correlates with diminished survival of these mice. These data highlight the novel response of the general transcription factor TAF4B to estrogen in the normal ovary and during ovarian tumor progression in the mouse, suggesting its potential role in regulating actions downstream of estrogen stimulation. PMID:24068106

  11. Responses of brain and non-brain endothelial cells to meningitis-causing Escherichia coli K1.

    PubMed

    Paul-Satyaseela, Maneesh; Xie, Yi; Di Cello, Francescopaolo; Kim, Kwang Sik

    2006-03-31

    Bacterial interaction with specific host tissue may contribute to its propensity to cause an infection in a particular site. In this study, we examined whether meningitis-causing Escherichia coli K1 interaction with human brain microvascular endothelial cells, which constitute the blood-brain barrier, differed from its interaction with non-brain endothelial cells derived from skin and umbilical cord. We showed that E. coli K1 association was significantly greater with human brain microvascular endothelial cells than with non-brain endothelial cells. In addition, human brain microvascular endothelial cells maintained their morphology and intercellular junctional resistance in response to E. coli K1. In contrast, non-brain endothelial cells exhibited decreased transendothelial electrical resistance and detachment from the matrix upon exposure to E. coli K1. These different responses of brain and non-brain endothelial cells to E. coli K1 may form the basis of E. coli K1's propensity to cause meningitis.

  12. Expression of GLUT-1 glucose transporter in borderline and malignant epithelial tumors of the ovary.

    PubMed

    Cantuaria, G; Magalhaes, A; Penalver, M; Angioli, R; Braunschweiger, P; Gomez-Marin, O; Kanhoush, R; Gomez-Fernandez, C; Nadji, M

    2000-10-01

    Cancer cells have increased rates of glucose metabolism when compared to normal cells. One of the mechanisms proposed for the accelerated glucose use in malignant cells is the overexpression of glucose transporters. In this study we evaluated the expression of the GLUT-1 glucose transporter in borderline and malignant epithelial neoplasms of the ovary. Histologic sections of tumor tissues from 21 borderline and 82 malignant epithelial neoplasms of the ovary were stained for GLUT-1 using polyclonal GLUT-1 antibody (Dako, Carpinteria, CA) and the labeled streptavidin biotin procedure. DAB was used as chromagen and tissues were counterstained with hematoxylin. Normal ovarian surface epithelial cells were either negative or weakly positive. Of the 82 carcinomas, 81 (98.8%) were positive for GLUT-1. The staining intensity was significantly associated with the grade of tumor (P = 0.001). Of the 21 borderline neoplasms, 20 (95.2%) were positive for GLUT-1. Carcinomas had a significantly stronger stain than borderline tumors (P = 0.0001). The intensity of the stain was also stronger in serous carcinomas compared to other subtypes (P = 0. 0001). Positive cells demonstrated a cytoplasmic membrane staining that was more intense in tumor cells farther away from blood supply. Overexpression of the GLUT-1 transporter is associated with the histology and grade of the tumors. Our findings show a progressive increase in the expression of the GLUT-1 transporter from the borderline tumor to the high-grade carcinomas. These data suggest that the expression of this transporter may be closely related to the malignant transformation of epithelial ovarian tumors. Copyright 2000 Academic Press.

  13. Escherichia coli K1 invasion of human brain microvascular endothelial cells.

    PubMed

    Loh, Lip Nam; Ward, Theresa H

    2012-01-01

    The pathogenic Escherichia coli strain E. coli K1 is a primary causative agent of neonatal meningitis. Understanding how these bacteria cross the blood-brain barrier is vital to develop therapeutics. Here, we describe the use of live-cell imaging techniques to study E. coli K1 interactions with cellular markers following infection of human brain microvascular endothelial cells, a model system of the blood-brain barrier. We also discuss optimization of endothelial cell transfection conditions using nonviral transfection technique, bacterial labeling techniques, and in vitro assays to screen for fluorescent bacteria that retain their ability to invade host cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Mouse Na+/K+-ATPase β1-subunit has a K+-dependent cell adhesion activity for β-GlcNAc-terminating glycans

    PubMed Central

    Kitamura, Noriaki; Ikekita, Masahiko; Sato, Takeshi; Akimoto, Yoshihiro; Hatanaka, Yasumaru; Kawakami, Hayato; Inomata, Mitsushi; Furukawa, Kiyoshi

    2005-01-01

    A 48-kDa β-N-acetylglucosamine (GlcNAc)-binding protein was isolated from mouse brain by GlcNAc-agarose column chromatography. The N-terminal amino acid residues showed the protein to be a mouse Na+/K+-ATPase β1-subunit. When the recombinant FLAG-β1-subunit expressed in Sf-9 cells was applied to a GlcNAc-agarose column, only the glycosylated 38- and 40-kDa proteins bound to the column. In the absence of KCl, little of the proteins bound to a GlcNAc-agarose column, but the 38- and 40-kDa proteins bound in the presence of KCl at concentrations above 1 mM. Immunohistochemical study showed that the β1-subunit and GlcNAc-terminating oligosaccharides are at the cell contact sites. Inclusion of anti-β1-subunit antibody or chitobiose in cell aggregation assays using mouse neural cells resulted in inhibition of cell aggregation. These results indicate that the Na+/K+-ATPase β1-subunit is a potassium-dependent lectin that binds to GlcNAc-terminating oligosaccharides: it may be involved in neural cell interactions. PMID:15705719

  15. Evaluation of differential representative values between Chinese hamster cells and human lymphocytes in mitomycin C-induced cytogenetic assays and caspase-3 activity.

    PubMed

    Liao, Pei-Hu; Lin, Ruey-Hseng; Yang, Ming-Ling; Li, Yi-Ching; Kuan, Yu-Hsiang

    2012-03-01

    Chinese hamster ovary (CHO) cells, its lung fibroblasts (V79), and human lymphocytes are routinely used in in vitro cytogenetic assays, which include micronuclei (MN), sister chromatid exchange (SCE), and chromosome aberration (CA) assays. Mitomycin C (MMC), a DNA cross-link alkylating agent, is both an anticancer medicine and a carcinogen. To study the differential representative values of cell types in MMC-treated cytogenetic assays and its upstream factor, cysteine aspartic acid-specific protease (caspase)-3. Among the chosen cell types, lymphocytes expressed the highest sensitivity in all three MMC-induced assays, whereas CHO and V79 showed varied sensitivity in different assays. In MN assay, the sensitivity of CHO is higher than or equal to V79; in SCE assay, the sensitivity of CHO is the same as V79; and in CA assay, the sensitivity of CHO is higher than V79. In-depth analysis of CA revealed that in chromatid breaks and dicentrics formation, lymphocyte was the most sensitive of all and CHO was more sensitive than V79; and in acentrics and interchanges formation, lymphocyte was much more sensitive than the others. Furthermore, we found caspase-3 activity plays an important role in MMC-induced cytogenetic assays, with MMC-induced caspase-3 activity resulting in more sensitivity in lymphocytes than in CHO and V79. Based on these findings, lymphocyte will make a suitable predictive or representative control reference in cytogenetic assays and caspase-3 activity with its high specificity, positive predictive value, and sensitivity.

  16. H-Ferritin Is Preferentially Incorporated by Human Erythroid Cells through Transferrin Receptor 1 in a Threshold-Dependent Manner

    PubMed Central

    Sakamoto, Soichiro; Kawabata, Hiroshi; Masuda, Taro; Uchiyama, Tatsuki; Mizumoto, Chisaki; Ohmori, Katsuyuki; Koeffler, H. Phillip; Kadowaki, Norimitsu; Takaori-Kondo, Akifumi

    2015-01-01

    Ferritin is an iron-storage protein composed of different ratios of 24 light (L) and heavy (H) subunits. The serum level of ferritin is a clinical marker of the body’s iron level. Transferrin receptor (TFR)1 is the receptor not only for transferrin but also for H-ferritin, but how it binds two different ligands and the blood cell types that preferentially incorporate H-ferritin remain unknown. To address these questions, we investigated hematopoietic cell-specific ferritin uptake by flow cytometry. Alexa Fluor 488-labeled H-ferritin was preferentially incorporated by erythroid cells among various hematopoietic cell lines examined, and was almost exclusively incorporated by bone marrow erythroblasts among human primary hematopoietic cells of various lineages. H-ferritin uptake by erythroid cells was strongly inhibited by unlabeled H-ferritin but was only partially inhibited by a large excess of holo-transferrin. On the other hand, internalization of labeled holo-transferrin by these cells was not inhibited by H-ferritin. Chinese hamster ovary cells lacking functional endogenous TFR1 but expressing human TFR1 with a mutated RGD sequence, which is required for transferrin binding, efficiently incorporated H-ferritin, indicating that TFR1 has distinct binding sites for H-ferritin and holo-transferrin. H-ferritin uptake by these cells required a threshold level of cell surface TFR1 expression, whereas there was no threshold for holo-transferrin uptake. The requirement for a threshold level of TFR1 expression can explain why among primary human hematopoietic cells, only erythroblasts efficiently take up H-ferritin. PMID:26441243

  17. Development and critical evaluation of fluorescent chloride nanosensors.

    PubMed

    Graefe, Anja; Stanca, Sarmiza E; Nietzsche, Sandor; Kubicova, Lenka; Beckert, Rainer; Biskup, Christoph; Mohr, Gerhard J

    2008-09-01

    In this study, we describe the preparation and evaluation of new fluorescent sensor nanoparticles for the ratiometric measurement of chloride concentrations. Both a chloride-sensitive dye (lucigenin) and a reference dye (sulforhodamine derivative) were incorporated into polyacrylamide nanoparticles via inverse microemulsion polymerization and investigated for their response to chloride ions in buffered suspension as well as in living cells. The fluorescence intensity of lucigenin reversibly decreased in the presence of chloride ions due to a collisional quenching process, which can be described with the Stern-Volmer equation. The determined Stern-Volmer constant K SV for the quenching of lucigenin incorporated into particles was found to be 53 M (-1) and is considerably smaller than the Stern-Volmer constant for quenching of free lucigenin ( K SV = 250 M (-1)) under the same conditions. To test the nanosensors in living cells, we incorporated them into Chinese hamster ovary cells and mouse fibroblasts by using the conventional lipofectamin technique and monitored the response to changing chloride concentrations in the cell.

  18. Cloning and differential expression of steroid 5 alpha-reductase type 1 (Srd5a1) and type 2 (Srd5a2) from the Harderian glands of hamsters.

    PubMed

    Ramos, Luis; Chávez, Bertha; Vilchis, Felipe

    2010-04-01

    In hamsters, the Harderian glands (HGs) exhibit a marked sexual dimorphism which is thought to depend on dihydrotestosterone (DHT); however, it is unclear whether hamster HGs contain one or more 5 alpha-reductases and whether these enzymes are differentially expressed in males and females. In this study, we isolated specific cDNAs for 5 alpha-reductase 1 (Srd5a1) and 5 alpha-reductase 2 (Srd5a2), determined their sequences and investigated their expression in the HG of both sexes. Isozyme 1, cloned from liver mRNA, encodes a protein of 255 amino acids (aa); isozyme 2 cDNA, isolated from the epididymis encodes a 254-aa protein. When assayed in transfected HEK-293 cells, the type 1 isozyme displayed activity over a broad pH range (6.5-8), while isozyme 2 had a pH optimum of 5.5. Both isoenzymes efficiently catalyzed the in vitro transformation of T into DHT, with apparent K(m) values of 7.1 and 1.9 micromol/L for Srd5a1 and Srd5a2, respectively. Real-time PCR analysis revealed higher mRNA levels for Srd5a1 than for Srd5a2. Expression of both isoenzymes increased slightly in HGs of castrated males and showed variations during the estrous cycle in females. Hormonal replacement with 17beta-estradiol administered to spayed females induced the up-regulation of Srd5a2 mRNA levels. Altogether, our results demonstrated that both Srd5a1 and Srd5a2 are expressed in HGs without clear differences between males and females. The biochemical characteristics and relative expression of these 5 alpha-reductases support the view that both isozymes may play a relevant role in modulating androgen signaling in HG. (c) 2009 Elsevier Inc. All rights reserved.

  19. Comparative pattern of growth and development of Echinostoma paraensei (Digenea: Echinostomatidae) in hamster and Wistar rat using light and confocal laser scanning microscopy.

    PubMed

    Souza, Joyce G R; Garcia, Juberlan S; Gomes, Ana Paula N; Machado-Silva, José Roberto; Maldonado, Arnaldo

    2017-12-01

    Echinostoma paraensei (Digenea: Echinostomatidae) lives in the duodenum and bile duct of rodents and is reported as a useful model for studies on the biology of flatworms. Here, we compared the growth and development of pre and post ovigerous worms collected 3, 7, 14 and 21 days post infection from experimentally infected hamster (permissive host) and Wistar rat (less permissive hosts). Linear measurements and ratios were examined by light (morphology and morphometry) and confocal laser scanning microscopy. At day 3, either worm from hamsters or rats were small with poorly developed gonads. At seven day, worms increased in size and morphometric differences between hosts are statistically significant after this time. In addition, adult worms (14 and 21 days of age) harvested from hamster showed developed gonads and vitelline glands laterally distributed on the body, whereas worms from rat showed atrophied reproductive system characterized by underdeveloped vitelline glands and stunted ovary. The worm rate recovery in rat decreased from 29.3% (day 7) to 20.6% (day 14) and 8% (day 21), whilst it remained around 37% in hamster. In conclusion, this is the first appointment demonstrating that low permissiveness influences the reproductive system of echinostome since the immature stages of development. The phenotypic analysis evidenced that hamster provides a more favorable microenvironment for gonads development than rat, confirming golden hamster as a permissive host, whereas Wistar rat is less permissive host. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Physalis floridana Cell Number Regulator1 encodes a cell membrane-anchored modulator of cell cycle and negatively controls fruit size

    PubMed Central

    Li, Zhichao; He, Chaoying

    2015-01-01

    Physalis species show a significant variation in berry size; however, the underlying molecular basis is unknown. In this work, we showed that cell division difference in the ovaries might contribute to the ultimate berry size variation within Physalis species, and that mRNA abundance of Physalis floridana Cell Number Regulator1 (PfCNR1), the putative orthologue of the tomato fruit weight 2.2 (FW2.2), was negatively correlated with cell division in the ovaries. Moreover, heterochronic expression variation of the PfCNR1 genes in the ovaries concomitantly correlated with berry weight variation within Physalis species. In transgenic Physalis, multiple organ sizes could be negatively controlled by altering PfCNR1 levels, and cell division instead of cell expansion was primarily affected. PfCNR1 was shown to be anchored in the plasma membrane and to interact with PfAG2 (an AGAMOUS-like protein determining ovary identity). The expression of PfCYCD2;1, a putative orthologue of the mitosis-specific gene CyclinD2;1 in the cell cycle was negatively correlated with the PfCNR1 mRNA levels. PfAG2 was found to selectively bind to the CArG-box in the PfCYCD2;1 promoter and to repress PfCYCD2;1 expression, thus suggesting a PfAG2-mediated pathway for PfCNR1 to regulate cell division. The interaction of PfCNR1 with PfAG2 enhanced the repression of PfCYCD2;1 expression. The nuclear import of PfAG2 was essential in the proposed pathway. Our data provide new insights into the developmental pathways of a cell membrane-anchored protein that modulates cell division and governs organ size determination. This study also sheds light on the link between organ identity and organ growth in plants. PMID:25305759

  1. Spin filter perfusion system for high density cell culture: production of recombinant urinary type plasminogen activator in CHO cells.

    PubMed

    Avgerinos, G C; Drapeau, D; Socolow, J S; Mao, J I; Hsiao, K; Broeze, R J

    1990-01-01

    We have used a 20 liter stirred tank fermentor, equipped with a 127 mesh ethylene-tetrafluoroethylene rotating screen for cell recycle, for the continuous production of recombinant single chain urokinase-type plasminogen activator (rscu-PA) from Chinese hamster ovary (CHO) cells. Viable cell densities between 60 and 74 million per ml were maintained at medium perfusion rates of 3.0 to 4.0 fermentor volumes per day. Cells were retained by the 120 micron nominal opening filter through the formation of "clumped" cell aggregates of 200 to 600 microns in size, which did not foul the filter. In 31 days of culture, a total of 51 grams of rscu-PA were produced in 1,000 liters of medium. The rscu-PA produced over the course of this continuous culture was purified and characterized both in vitro and in vivo and shown to be comparable to natural scu-PA produced from the transformed human kidney cell line, TCL-598.

  2. Genes and proteins of the alternative steroid backdoor pathway for dihydrotestosterone synthesis are expressed in the human ovary and seem enhanced in the polycystic ovary syndrome.

    PubMed

    Marti, Nesa; Galván, José A; Pandey, Amit V; Trippel, Mafalda; Tapia, Coya; Müller, Michel; Perren, Aurel; Flück, Christa E

    2017-02-05

    Recently, dihydrotestosterone biosynthesis through the backdoor pathway has been implicated for the human testis in addition to the classic pathway for testosterone (T) synthesis. In the human ovary, androgen precursors are crucial for estrogen synthesis and hyperandrogenism in pathologies such as the polycystic ovary syndrome is partially due to ovarian overproduction. However, a role for the backdoor pathway is only established for the testis and the adrenal, but not for the human ovary. To investigate whether the backdoor pathway exists in normal and PCOS ovaries, we performed specific gene and protein expression studies on ovarian tissues. We found aldo-keto reductases (AKR1C1-1C4), 5α-reductases (SRD5A1/2) and retinol dehydrogenase (RoDH) expressed in the human ovary, indicating that the ovary might produce dihydrotestosterone via the backdoor pathway. Immunohistochemical studies showed specific localization of these proteins to the theca cells. PCOS ovaries show enhanced expression, what may account for the hyperandrogenism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Dynamic redistribution of calcium sensitive potassium channels (hK(Ca)3.1) in migrating cells.

    PubMed

    Schwab, Albrecht; Nechyporuk-Zloy, Volodymyr; Gassner, Birgit; Schulz, Christoph; Kessler, Wolfram; Mally, Sabine; Römer, Michael; Stock, Christian

    2012-02-01

    Calcium-sensitive potassium channels (K(Ca)3.1) are expressed in virtually all migrating cells. Their activity is required for optimal cell migration so that their blockade leads to slowing down. K(Ca)3.1 channels must be inserted into the plasma membrane in order to elicit their physiological function. However, the plasma membrane of migrating cells is subject to rapid recycling by means of endo- and exocytosis. Here, we focussed on the endocytic internalization and the intracellular transport of the human isoform hK(Ca)3.1. A hK(Ca)3.1 channel construct with an HA-tag in the extracellularly located S3-S4 linker was transfected into migrating transformed renal epithelial MDCK-F cells. Channel internalization was visualized and quantified with immunofluorescence and a cell-based ELISA. Movement of hK(Ca)3.1 channel containing vesicles as well as migration of MDCK-F cells were monitored by means of time lapse video microscopy. hK(Ca)3.1 channels are endocytosed during migration. Most of the hK(Ca)3.1 channel containing vesicles are moving at a speed of up to 2 µm/sec in a microtubule-dependent manner towards the front of MDCK-F cells. Our experiments indicate that endocytosis of hK(Ca)3.1 channels is clathrin-dependent since they colocalize with clathrin adaptor proteins and since it is impaired when a C-terminal dileucine motif is mutated. The C-terminal dileucine motif is also important for the subcellular localization of hK(Ca)3.1 channels in migrating cells. Mutated channels are no longer concentrated at the leading edge. We therefore propose that recycling of hK(Ca)3.1 channels contributes to their characteristic subcellular distribution in migrating cells. Copyright © 2011 Wiley Periodicals, Inc.

  4. The antioxidant effect of the Malaysian Gelam honey on pancreatic hamster cells cultured under hyperglycemic conditions.

    PubMed

    Batumalaie, Kalaivani; Qvist, Rajes; Yusof, Kamaruddin Mohd; Ismail, Ikram Shah; Sekaran, Shamala Devi

    2014-05-01

    Type 2 diabetes consists of progressive hyperglycemia, insulin resistance, and pancreatic β-cell failure which could result from glucose toxicity, inflammatory cytokines, and oxidative stress. In the present study, we investigate the effect of pretreatment with Gelam honey (Melaleuca spp.) and the individual flavonoid components chrysin, luteolin, and quercetin, on the production of reactive oxygen species (ROS), cell viability, lipid peroxidation, and insulin content in hamster pancreatic cells (HIT-T15 cells), cultured under normal and hyperglycemic conditions. Phenolic extracts from a local Malaysian species of Gelam honey (Melaleuca spp.) were prepared using the standard extraction methods. HIT-T15 cells were cultured in 5 % CO2 and then preincubated with Gelam honey extracts (20, 40, 60, and 80 μg/ml) as well as some of its flavonoid components chrysin, luteolin, and quercetin (20, 40, 60, and 80 μM), prior to stimulation by 20 and 50 mM of glucose. The antioxidative effects were measured in these cultured cells at different concentrations and time point by DCFH-DA assay. Pretreatment of cells with Gelam honey extract or the flavonoid components prior to culturing in 20 or 50 mM glucose showed a significant decrease in the production of ROS, glucose-induced lipid peroxidation, and a significant increase in insulin content and the viability of cells cultured under hyperglycemic condition. Our results show the in vitro antioxidative property of the Gelam honey and the flavonoids on the β-cells from hamsters and its cytoprotective effect against hyperglycemia.

  5. Genotoxicity of corrosion eluates obtained from endosseous implants.

    PubMed

    Ribeiro, Daniel Araki; Matsumoto, Mariza Akemi; Padovan, Luís Eduardo Marques; Marques, Mariângela Esther Alencar; Salvadori, Daisy Maria Fávero

    2007-03-01

    Commercially pure titanium alloys are currently used as metallic biomaterials in implantology. Corrosion phenomena appear to play a decisive role in metallic implant long-term behavior. Thus, the goal of this study was to examine the genotoxic potential of corrosion eluates obtained from dental implants using Chinese ovary hamster cells in vitro by the single-cell gel (comet) assay. This technique detects deoxyribonucleic acid strand breaks in individual cells in alkaline conditions. The materials tested included 3 dental implants commercially available. Each of the tested materials was corroded in a solution consisting of equal amounts of acetic acid and sodium chloride (0.1 M) for 1, 3, 7, 14, and 21 days. The Chinese ovary hamster cultures were then exposed to all corrosion eluates obtained from endosseous dental implants for 30 minutes at 37 degrees C. None of the eluates was found to exhibit genotoxicity, regardless of the type of dental implant used. The results suggest that all dental implants tested in this study did not induce deoxyribonucleic acid breakage as depicted by the single-cell gel (comet) assay.

  6. Proliferating Cell Nuclear Antigen (PCNA) Regulates Primordial Follicle Assembly by Promoting Apoptosis of Oocytes in Fetal and Neonatal Mouse Ovaries

    PubMed Central

    Zhang, Yuanwei; Jiang, Xiaohua; Zhang, Huan; Ma, Tieliang; Zheng, Wei; Sun, Rui; Shen, Wei; Sha, Jiahao; Cooke, Howard J.; Shi, Qinghua

    2011-01-01

    Primordial follicles, providing all the oocytes available to a female throughout her reproductive life, assemble in perinatal ovaries with individual oocytes surrounded by granulosa cells. In mammals including the mouse, most oocytes die by apoptosis during primordial follicle assembly, but factors that regulate oocyte death remain largely unknown. Proliferating cell nuclear antigen (PCNA), a key regulator in many essential cellular processes, was shown to be differentially expressed during these processes in mouse ovaries using 2D-PAGE and MALDI-TOF/TOF methodology. A V-shaped expression pattern of PCNA in both oocytes and somatic cells was observed during the development of fetal and neonatal mouse ovaries, decreasing from 13.5 to 18.5 dpc and increasing from 18.5 dpc to 5 dpp. This was closely correlated with the meiotic prophase I progression from pre-leptotene to pachytene and from pachytene to diplotene when primordial follicles started to assemble. Inhibition of the increase of PCNA expression by RNA interference in cultured 18.5 dpc mouse ovaries strikingly reduced the apoptosis of oocytes, accompanied by down-regulation of known pro-apoptotic genes, e.g. Bax, caspase-3, and TNFα and TNFR2, and up-regulation of Bcl-2, a known anti-apoptotic gene. Moreover, reduced expression of PCNA was observed to significantly increase primordial follicle assembly, but these primordial follicles contained fewer guanulosa cells. Similar results were obtained after down-regulation by RNA interference of Ing1b, a PCNA-binding protein in the UV-induced apoptosis regulation. Thus, our results demonstrate that PCNA regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries. PMID:21253613

  7. [Purification of arsenic-binding proteins in hamster plasma after oral administration of arsenite].

    PubMed

    Wang, Wenwen; Zhang, Min; Li, Chunhui; Qin, Yingjie; Hua, Naranmandura

    2013-01-01

    To purify the arsenic-binding proteins (As-BP) in hamster plasma after a single oral administration of arsenite (iAs(III)). Arsenite was given to hamsters in a single dose. Three types of HPLC columns, size exclusion, gel filtration and anion exchange columns, combined with an inductively coupled argon plasma mass spectrometer (ICP MS) were used to purify the As-BP in hamster plasma. SDS-PAGE was used to confirm the arsenic-binding proteins at each purification step. The three-step purification process successfully separated As-BP from other proteins (ie, arsenic unbound proteins) in hamster plasma. The molecular mass of purified As-BP in plasma was approximately 40-50 kD on SDS-PAGE. The three-step purification method is a simple and fast approach to purify the As-BP in plasma samples.

  8. Regulation of Kv2.1 K+ conductance by cell surface channel density

    PubMed Central

    Fox, Philip D.; Loftus, Rob J.; Tamkun, Michael M.

    2013-01-01

    The Kv2.1 voltage-gated K+ channel is found both freely diffusing over the plasma membrane and concentrated in micron-sized clusters localized to the soma, proximal dendrites and axon initial segment of hippocampal neurons. In transfected HEK cells, Kv2.1 channels within cluster microdomains are non-conducting. Using TIRF microscopy the number of GFP-tagged Kv2.1 channels on the HEK cell surface was compared to K+ channel conductance measured by whole-cell voltage-clamp of the same cell. This approach indicated that as channel density increases non-clustered channels cease conducting. At the highest density observed, only 4% of all channels were conducting. Mutant Kv2.1 channels that fail to cluster also possessed the non-conducting state with 17% conducting K+ at higher surface densities. The non-conducting state was specific to Kv2.1 as Kv1.4 was always conducting regardless of the cell-surface expression level. Anti-Kv2.1 immuno-fluorescence intensity, standardized to Kv2.1 surface density in transfected HEK cells, was used to determine the expression levels of endogenous Kv2.1 in cultured rat hippocampal neurons. Endogenous Kv2.1 levels were compared to the number of conducting channels determined by whole-cell voltage clamp. Only 13 and 27% of the endogenous Kv2.1 was conducting in neurons cultured for 14 and 20 days, respectively. Together these data indicate that the non-conducting state depends primarily on surface density as opposed to cluster location and that this non-conducting state also exists for native Kv2.1 found in cultured hippocampal neurons. This excess of Kv2.1 protein relative to K+ conductance further supports a non-conducting role for Kv2.1 in excitable tissues. PMID:23325261

  9. Structured triglycerides containing caprylic (8:0) and oleic (18:1) fatty acids reduce blood cholesterol concentrations and aortic cholesterol accumulation in hamsters.

    PubMed

    Wilson, Thomas A; Kritchevsky, David; Kotyla, Timothy; Nicolosi, Robert J

    2006-03-01

    The effects of structured triglycerides containing one long chain fatty acid (oleic acid, C18:1) and one short chain saturated fatty acid (caprylic acid, 8:0) on lipidemia, liver and aortic cholesterol, and fecal neutral sterol excretion were investigated in male Golden Syrian hamsters fed a hypercholesterolemic regimen consisting of 89.9% commercial ration to which was added 10% coconut oil and 0.1% cholesterol (w/w). After 2 weeks on the HCD diet, the hamsters were bled, following an overnight fast (16 h) and placed into one of three dietary treatments of eight animals each based on similar plasma cholesterol levels. The hamsters either continued on the HCD diet or were placed on diets in which the coconut oil was replaced by one of two structured triglycerides, namely, 1(3),2-dicaproyl-3(1)-oleoylglycerol (OCC) or 1,3-dicaproyl-2-oleoylglycerol (COC) at 10% by weight. Plasma total cholesterol (TC) in hamsters fed the OCC and COC compared to the HCD were reduced 40% and 49%, respectively (P<0.05). Similarly, hamsters fed the OCC and COC diets reduced their plasma nonHDL cholesterol levels by 47% and 57%, respectively (P<0.05), compared to hamsters fed the HCD after 2 weeks of dietary treatment. Although hamsters fed the OCC (-26%) and COC (-32%) had significantly lower plasma HDL levels compared to HCD, (P<0.05), the plasma nonHDL/HDL cholesterol ratio was significantly lower (P<0.05) compared to the HCD for the OCC-fed (-27%) and the COC-fed (-38%) hamsters, respectively. Compared to the HCD group, aortic esterified cholesterol was 20% and 53% lower for the OCC and COC groups, respectively, with the latter reaching statistical significance, P<0.05. In conclusion, the hamsters fed the structured triglyceride oils had lower blood cholesterol levels and lower aortic accumulation of cholesterol compared to the control fed hamsters.

  10. X-linked lymphocyte regulated gene 5c-like (Xlr5c-like) Is a Novel Target of Progesterone Action in Granulosa Cells of Periovulatory Rat Ovaries

    PubMed Central

    Mishra, Birendra; Park, Ji Yeon; Wilson, Kalin; Jo, Misung

    2015-01-01

    Progesterone (P4), acting through its nuclear receptor (PGR), plays an essential role in ovulation by mediating the expression of genes involved in ovulation and/or luteal formation. To identify ovulatory specific PGR-regulated genes, a preliminary microarray analysis was performed using rat granulosa cells treated with hCG ± RU486 (PGR antagonist). The transcript most highly down-regulated by RU486 was an EST (Expressed Sequence Tag) sequence (gb: BI289578.1) that matches with predicted sequence for Xlr5c-like mRNA. Since nothing is known about Xlr5c-like, we first characterized the expression pattern of Xlr5c-like mRNA in the rat ovary. The level of mRNA for Xlr5c-like is transiently up-regulated in granulosa cells of periovulatory follicles after hCG stimulation in PMSG-primed rat ovaries. The transient induction of Xlr5c-like mRNA was mimicked by hCG treatment in cultured granulosa cells from preovulatory ovaries. We further demonstrated that the LH-activated PKA, MEK, PI3K, and p38 signaling is involved in the increase in Xlr5c-like mRNA. The increase in Xlr5c-like mRNA was abolished by RU486. The inhibitory effect of RU486 was reversed by MPA (synthetic progestin), but not by dexamethasone (synthetic glucocorticoid). Furthermore, mutation of SP1/SP3 and PGR response element sites in the promoter region of Xlr5c-like decreased Xlr5c-like reporter activity. RU486 also inhibited Xlr5c-like reporter activity. ChIP assay verified the binding of PGR and SP3 to the Xlr5c-like promoter in periovulatory granulosa cells. Functionally, siRNA-mediated Xlr5c-like knockdown in granulosa cell cultures resulted in reduced levels of mRNA for Snap25, Cxcr4, and Adamts1. Recombinant Xlr5c-like protein expressed using an adenoviral approach was localized predominantly to the nucleus and to a lesser extent to the cytoplasm of rat granulosa cells. In conclusion, this is the first report showing the spatiotemporally regulated expression of Xlr5c-like mRNA by hCG in rat

  11. A possible mechanism for low affinity of silkworm Na+/K+-ATPase for K.

    PubMed

    Homareda, Haruo; Otsu, Masahiro; Yamamoto, Sachiko; Ushimaru, Makoto; Ito, Sayaka; Fukutomi, Toshiyuki; Jo, Taeho; Eishi, Yoshinobu; Hara, Yukichi

    2017-12-01

    The affinity for K + of silkworm nerve Na + /K + -ATPase is markedly lower than that of mammalian Na + /K + -ATPase (Homareda 2010). In order to obtain clues on the molecular basis of the difference in K + affinities, we cloned cDNAs of silkworm (Bombyx mori) nerve Na + /K + -ATPase α and β subunits, and analyzed the deduced amino acid sequences. The molecular masses of the α and β subunits were presumed to be 111.5 kDa with ten transmembrane segments and 37.7 kDa with a single transmembrane segment, respectively. The α subunit showed 75% identity and 93% homology with the pig Na + /K + -ATPase α1 subunit. On the other hand, the amino acid identity of the β subunit with mammalian counterparts was as low as 30%. Cloned α and β cDNAs were co-expressed in cultured silkworm ovary-derived cells, BM-N cells, which lack endogenous Na + /K + -ATPase. Na + /K + -ATPase expressed in the cultured cells showed a low affinity for K + and a high affinity for Na + , characteristic of the silkworm nerve Na + /K + -ATPase. These results suggest that the β subunit is responsible for the affinity for K + of Na + /K + -ATPase.

  12. Bcl-2 proteins and autophagy regulate mitochondrial dynamics during programmed cell death in the Drosophila ovary.

    PubMed

    Tanner, Elizabeth A; Blute, Todd A; Brachmann, Carrie Baker; McCall, Kimberly

    2011-01-01

    The Bcl-2 family has been shown to regulate mitochondrial dynamics during cell death in mammals and C. elegans, but evidence for this in Drosophila has been elusive. Here, we investigate the regulation of mitochondrial dynamics during germline cell death in the Drosophila melanogaster ovary. We find that mitochondria undergo a series of events during the progression of cell death, with remodeling, cluster formation and uptake of clusters by somatic follicle cells. These mitochondrial dynamics are dependent on caspases, the Bcl-2 family, the mitochondrial fission and fusion machinery, and the autophagy machinery. Furthermore, Bcl-2 family mutants show a striking defect in cell death in the ovary. These data indicate that a mitochondrial pathway is a major mechanism for activation of cell death in Drosophila oogenesis.

  13. A statistical approach to determining criticality of residual host cell DNA.

    PubMed

    Yang, Harry; Wei, Ziping; Schenerman, Mark

    2015-01-01

    We propose a method for determining the criticality of residual host cell DNA, which is characterized through two attributes, namely the size and amount of residual DNA in biopharmaceutical product. By applying a mechanistic modeling approach to the problem, we establish the linkage between residual DNA and product safety measured in terms of immunogenicity, oncogenicity, and infectivity. Such a link makes it possible to establish acceptable ranges of residual DNA size and amount. Application of the method is illustrated through two real-life examples related to a vaccine manufactured in Madin Darby Canine Kidney cell line and a monoclonal antibody using Chinese hamster ovary (CHO) cell line as host cells.

  14. The emerging CHO systems biology era: harnessing the 'omics revolution for biotechnology.

    PubMed

    Kildegaard, Helene Faustrup; Baycin-Hizal, Deniz; Lewis, Nathan E; Betenbaugh, Michael J

    2013-12-01

    Chinese hamster ovary (CHO) cells are the primary factories for biopharmaceuticals because of their capacity to correctly fold and post-translationally modify recombinant proteins compatible with humans. New opportunities are arising to enhance these cell factories, especially since the CHO-K1 cell line was recently sequenced. Now, the CHO systems biology era is underway. Critical 'omics data sets, including proteomics, transcriptomics, metabolomics, fluxomics, and glycomics, are emerging, allowing the elucidation of the molecular basis of CHO cell physiology. The incorporation of these data sets into mathematical models that describe CHO phenotypes will provide crucial biotechnology insights. As 'omics technologies and computational systems biology mature, genome-scale approaches will lead to major innovations in cell line development and metabolic engineering, thereby improving protein production and bioprocessing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Histochemical study of brown-fat cells in the golden hamster (Mesocricetus auratus) in cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolov, V.E.; Boyadzhieva-Mikhailova, A.; Koncheva, L.

    1985-11-01

    The authors undertake the task of studying the synthesis of certain hormones by brown-fat cells. The authors used brown-fat cells from the golden hamster. The metabolism of brown-fat cells was studied on precultured cells, which made it possible to detect the synthesis of the studied substances rather than their accumulation in the organ. The authors conducted three experiments. First, fragments of brown fat were cultivated in diffusion chambers in vivo. Pieces of brown fat were cultivated in parallel in vitro on agar (organotypic cultures) and on plasma (histotypic cultures). During cultivation in diffusion chambers, the chambers were implanted in themore » abdominal cavity of young white rats. For in vitro cultivation, TCM 199 plus 15-20% calf serum was used. A total of 36 cultures with 12 cultures in each series of experiments were performed. The auto-radiographic studies of brown-fat cells were conducted on 24-hour cultures and on brown-fat fragments taken from the intact animal. The cultures were incubated with isotopes for 1 h. Either (/sup 3/H)lysine (87.3 Ci/mM specific activity), (/sup 3/H)arginine (16.7 Ci/mM), (/sup 3/H)glycerol (43 Ci/mM), or (/sup 3/H)cholesterol (43 Ci/mM) were added to the medium. After incubation, the cultures were washed three times in pure medium, fixed in Sierra fluid, and embedded in paraffin. The paraffin sections were covered with Ilford K/sub 2/ emulsion, and the preparations were exposed for 20 days at 4/sup 0/C temperature. Radio-immunological methods were used to study the accumulation of estradiol-17-beta in the culture medium by the Dobson method and that of testerone. The culture medium was taken on cultivation days 2,4,6,8, and 10. The medium was changed during cultivation every third day, which made it possible to judge the rates of accumulation of material with increase in the cultivation times.« less

  16. Hypothalamic Ventricular Ependymal Thyroid Hormone Deiodinases Are an Important Element of Circannual Timing in the Siberian Hamster (Phodopus sungorus)

    PubMed Central

    Bolborea, Matei; Wilson, Dana; Mercer, Julian G.; Ebling, Francis J. P.; Morgan, Peter J.; Barrett, Perry

    2013-01-01

    Exposure to short days (SD) induces profound changes in the physiology and behaviour of Siberian hamsters, including gonadal regression and up to 30% loss in body weight. In a continuous SD environment after approximately 20 weeks, Siberian hamsters spontaneously revert to a long day (LD) phenotype, a phenomenon referred to as the photorefractory response. Previously we have identified a number of genes that are regulated by short photoperiod in the neuropil and ventricular ependymal (VE) cells of the hypothalamus, although their importance and contribution to photoperiod induced physiology is unclear. In this refractory model we hypothesised that the return to LD physiology involves reversal of SD expression levels of key hypothalamic genes to their LD values and thereby implicate genes required for LD physiology. Male Siberian hamsters were kept in either LD or SD for up to 39 weeks during which time SD hamster body weight decreased before increasing, after more than 20 weeks, back to LD values. Brain tissue was collected between 14 and 39 weeks for in situ hybridization to determine hypothalamic gene expression. In VE cells lining the third ventricle, expression of nestin, vimentin, Crbp1 and Gpr50 were down-regulated at 18 weeks in SD photoperiod, but expression was not restored to the LD level in photorefractory hamsters. Dio2, Mct8 and Tsh-r expression were altered by SD photoperiod and were fully restored, or even exceeded values found in LD hamsters in the refractory state. In hypothalamic nuclei, expression of Srif and Mc3r mRNAs was altered at 18 weeks in SD, but were similar to LD expression values in photorefractory hamsters. We conclude that in refractory hamsters not all VE cell functions are required to establish LD physiology. However, thyroid hormone signalling from ependymal cells and reversal of neuronal gene expression appear to be essential for the SD refractory response. PMID:23637944

  17. Quantitative analysis of cellular glutathione by flow cytometry utilizing monochlorobimane: some applications to radiation and drug resistance in vitro and in vivo.

    PubMed

    Rice, G C; Bump, E A; Shrieve, D C; Lee, W; Kovacs, M

    1986-12-01

    An assay using a bimane derivative has been developed to detect free glutathione (GSH) in individual viable cells by flow cytometry. Monochlorobimane [syn-(ClCH2CH3)-1,5-diazabicycla[3.30]acta-3,6-diene-2,8-dio ne], itself nonfluorescent, reacts with GSH to form a highly fluorescent derivative. High pressure liquid chromatography analysis showed that, using specific staining conditions, the only low molecular weight fluorescent derivative formed in Chinese hamster ovary cells was that formed with GSH. Very little reaction with protein sulfhydryls was observed. Rates of GSH depletion in Chinese hamster ovary cells exposed to diethylmaleate were essentially the same, whether measured by relative fluorescence intensity, by flow cytometry or by enzymatic assay on cellular extracts. This method was shown to be useful for measurement of GSH resynthesis, uptake, and depletion by prolonged hypoxia and misonidazole treatment. Since measurements are made on individual cells, cell-to-cell variation and populational heterogeneity in GSH content are revealed by flow cytometry. Although under most conditions in vitro GSH content is relatively homogeneous, under certain circumstances, such as release from hypoxia, heterogeneity in populational GSH levels was observed. The significance of this heterogeneity is discussed in regard to the induction of gene amplification and drug resistance by transient hypoxia. Numerous subclones of Chinese hamster ovary cells selected by growth in Adriamycin or methotrexate-containing medium express elevated levels of GSH per cell. The method was extended to quantitate the GSH content of cells excised from EMT-6/SF mouse tumors that had been treated in vivo with L-buthionine-S-R-sulfoximine, an inhibitor of GSH synthesis. The bivariate analysis (forward angle light scatter versus monochlorobimane fluorescence) of cells derived from these tumors gave excellent resolution of normal and tumor cells and demonstrated extensive heterogeneity in the tumor

  18. Micronuclei versus Chromosomal Aberrations Induced by X-Ray in Radiosensitive Mammalian Cells.

    PubMed

    Plamadeala, Cristina; Wojcik, Andrzej; Creanga, Dorina

    2015-03-01

    An experimental study was accomplished to compare estimation methods of ionizing radiations genotoxicity in mammalian cell cultures by means of two cytogenetic parameters with focus on aberrant cells characterized by multiple chromosomal damages. In vitro study was carried out on the genotoxicity of low-medium doses of 190 kV X-rays absorbed in Chinese hamster ovary cell cultures. Micronuclei and ten types of chromosomal aberrations were identified with Giemsa dying and optical microscope screening. The first parameter consisting in micronuclei relative frequency has led to higher linear correlation coefficient than the second one consistent with chromosomal aberrations relative frequency. However, the latter parameter estimated as the sum of all chromosomal aberrations appeared to be more sensitive to radiation dose increasing in the studied dose range, from 0 to 3 Gy. The number of micronuclei occurring simultaneously in a single cell was not higher than 3, while the number of chromosomal aberrations observed in the same cell reached the value of 5 for doses over 1 Gy. Polynomial dose-response curves were evidenced for cells with Ni micronuclei (i=1,3) while non-monotonic curves were evidenced through detailed analysis of aberrant cells with Ni chromosomal changes [Formula: see text] - in concordance with in vitro studies from literature. The investigation could be important for public health issues where micronucleus screening is routinely applied but also for research purposes where various chromosomal aberrations could be of particular interest.

  19. A low, adaptive dose of gamma-rays reduced the number and altered the spectrum of S1- mutants in human-hamster hybrid AL cells

    NASA Technical Reports Server (NTRS)

    Ueno, A. M.; Vannais, D. B.; Gustafson, D. L.; Wong, J. C.; Waldren, C. A.

    1996-01-01

    We examined the effects of a low, adaptive dose of 137Cs-gamma-irradiation (0.04 Gy) on the number and kinds of mutants induced in AL human-hamster hybrid cells by a later challenge dose of 4 Gy. The yield of S1- mutants was significantly less (by 53%) after exposure to both the adaptive and challenge doses compared to the challenge dose alone. The yield of hprt- mutants was similarly decreased. Incubation with cycloheximide (CX) or 3-aminobenzamide largely negated the decrease in mutant yield. The adaptive dose did not perturb the cell cycle, was not cytotoxic, and did not of itself increase the mutant yield above background. The adaptive dose did, however, alter the spectrum of S1- mutants from populations exposed only to the adaptive dose, as well as affecting the spectrum of S1- mutants generated by the challenge dose. The major change in both cases was a significant increase in the proportion of complex mutations compared to small mutations and simple deletions.

  20. A dual reporter cell assay for identifying serotype and drug susceptibility of herpes simplex virus.

    PubMed

    Lu, Wen-Wen; Sun, Jun-Ren; Wu, Szu-Sian; Lin, Wan-Hsuan; Kung, Szu-Hao

    2011-08-15

    A dual reporter cell assay (DRCA) that allows real-time detection of herpes simplex virus (HSV) infection was developed. This was achieved by stable transfection of cells with an expression cassette that contains the dual reporter genes, secreted alkaline phosphatase (SEAP) and enhanced green fluorescent protein (EGFP), under the control of an HSV early gene promoter. Baby hamster kidney (BHK) and Chinese hamster ovary (CHO) cell lines were used as parental cell lines because the former is permissive for both HSV serotypes, HSV-1 and HSV-2, whereas the latter is susceptible to infection only by HSV-2. The DRCA permitted differential detection of HSV-1 and HSV-2 by observation of EGFP-positive cells, as substantiated by screening a total of 35 samples. The BHK-based cell line is sensitive to a viral titer as low as a single plaque-forming unit with a robust assay window as measured by a chemiluminescent assay. Evaluations of the DRCA with representative acyclovir-sensitive and acyclovir-resistant HSV strains demonstrated that their drug susceptibilities were accurately determined by a 48-h format. In summary, this novel DRCA is a useful means for serotyping of HSV in real time as well as a rapid screening method for determining anti-HSV susceptibilities. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Decreased adult neurogenesis in hibernating Syrian hamster.

    PubMed

    León-Espinosa, Gonzalo; García, Esther; Gómez-Pinedo, Ulises; Hernández, Félix; DeFelipe, Javier; Ávila, Jesús

    2016-10-01

    Generation of new neurons from adult neural stem cells occurs in the dentate gyrus (DG) of the hippocampus and the lateral walls of the lateral ventricles. In this article, we study the neurogenesis that takes place during the hibernation of the Syrian hamster (Mesocricetus auratus). Using a variety of standard neurogenesis markers and 5-bromo-2-deoxyuridine (BrdU) incorporation, we describe a preferential decrease in the proliferation of newborn neurons in the subventricular zone (SVZ) of the hibernating hamsters (torpor) rather than in the hippocampus. Furthermore, we demonstrate that the proliferative capacity is recovered after 3-4days of torpor when arousal is triggered under natural conditions (i.e., not artificially provoked). In addition, we show that tau3R, a tau isoform with three microtubule-binding domains, is a suitable marker to study neurogenesis both in the SVZ and subgranular zone (SGZ) of the Syrian hamster brain. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Transcriptome profiling of the Plutella xylostella (Lepidoptera: Plutellidae) ovary reveals genes involved in oogenesis.

    PubMed

    Peng, Lu; Wang, Lei; Yang, Yi-Fan; Zou, Ming-Min; He, Wei-Yi; Wang, Yue; Wang, Qing; Vasseur, Liette; You, Min-Sheng

    2017-12-30

    As a specialized organ, the insect ovary performs valuable functions by ensuring fecundity and population survival. Oogenesis is the complex physiological process resulting in the production of mature eggs, which are involved in epigenetic programming, germ cell behavior, cell cycle regulation, etc. Identification of the genes involved in ovary development and oogenesis is critical to better understand the reproductive biology and screening for the potential molecular targets in Plutella xylostella, a worldwide destructive pest of economically major crops. Based on transcriptome sequencing, a total of 7.88Gb clean nucleotides was obtained, with 19,934 genes and 1861 new transcripts being identified. Expression profiling indicated that 61.7% of the genes were expressed (FPKM≥1) in the P. xylostella ovary. GO annotation showed that the pathways of multicellular organism reproduction and multicellular organism reproduction process, as well as gamete generation and chorion were significantly enriched. Processes that were most likely relevant to reproduction included the spliceosome, ubiquitin mediated proteolysis, endocytosis, PI3K-Akt signaling pathway, insulin signaling pathway, cAMP signaling pathway, and focal adhesion were identified in the top 20 'highly represented' KEGG pathways. Functional genes involved in oogenesis were further analyzed and validated by qRT-PCR to show their potential predominant roles in P. xylostella reproduction. Our newly developed P. xylostella ovary transcriptome provides an overview of the gene expression profiling in this specialized tissue and the functional gene network closely related to the ovary development and oogenesis. This is the first genome-wide transcriptome dataset of P. xylostella ovary that includes a subset of functionally activated genes. This global approach will be the basis for further studies on molecular mechanisms of P. xylostella reproduction aimed at screening potential molecular targets for integrated pest

  3. Multimodal biophotonic workstation for live cell analysis.

    PubMed

    Esseling, Michael; Kemper, Björn; Antkowiak, Maciej; Stevenson, David J; Chaudet, Lionel; Neil, Mark A A; French, Paul W; von Bally, Gert; Dholakia, Kishan; Denz, Cornelia

    2012-01-01

    A reliable description and quantification of the complex physiology and reactions of living cells requires a multimodal analysis with various measurement techniques. We have investigated the integration of different techniques into a biophotonic workstation that can provide biological researchers with these capabilities. The combination of a micromanipulation tool with three different imaging principles is accomplished in a single inverted microscope which makes the results from all the techniques directly comparable. Chinese Hamster Ovary (CHO) cells were manipulated by optical tweezers while the feedback was directly analyzed by fluorescence lifetime imaging, digital holographic microscopy and dynamic phase-contrast microscopy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. ANP promotes proliferation and inhibits apoptosis of ovarian granulosa cells by NPRA/PGRMC1/EGFR complex and improves ovary functions of PCOS rats.

    PubMed

    Zheng, Qin; Li, Yulin; Zhang, Dandan; Cui, Xinyuan; Dai, Kuixing; Yang, Yu; Liu, Shuai; Tan, Jichun; Yan, Qiu

    2017-10-26

    Polycystic ovary syndrome (PCOS) is a complicated reproductive endocrine disease characterized by polycystic ovaries, hyperandrogenism and anovulation. It is one of the main causes of infertility. RU486 is an antagonist of progesterone receptor, and most commonly used as a contraceptive. However, whether RU486 is correlated with PCOS remains unclear. Atrial natriuretic peptide (ANP) is a small peptide with natriuretic and diuretic functions, and its availability to be used in PCOS treatment is unknown. Here, we showed that the serum ANP level was lower in PCOS patients than that in healthy women, and it was also decreased in the serum and ovarian tissues of RU486-induced PCOS rats compared with the control rats. We also found that RU486 inhibited the proliferation and promoted the apoptosis of human KGN ovarian granulosa cells by downregulating progesterone receptor membrane component 1 (PGRMC1). Meantime, ANP promoted the proliferation and inhibited the apoptosis of KGN cells through upregulating ANP receptor A (NPRA). The promotive effects of ANP on ovarian functions were mediated through the formation of an NPRA/PGRMC1/EGFR complex, which further activated MAPK/ERK signaling and transcription factor AP1. Moreover, ANP treatment reversed the PCOS symptoms, and improved the fertility of RU486-induced PCOS rats. Collectively, these findings highlight that RU486 is associated with the pathogenesis of PCOS, and ANP treatment may be a promising therapeutic option for PCOS.

  5. ANP promotes proliferation and inhibits apoptosis of ovarian granulosa cells by NPRA/PGRMC1/EGFR complex and improves ovary functions of PCOS rats

    PubMed Central

    Zheng, Qin; Li, Yulin; Zhang, Dandan; Cui, Xinyuan; Dai, Kuixing; Yang, Yu; Liu, Shuai; Tan, Jichun; Yan, Qiu

    2017-01-01

    Polycystic ovary syndrome (PCOS) is a complicated reproductive endocrine disease characterized by polycystic ovaries, hyperandrogenism and anovulation. It is one of the main causes of infertility. RU486 is an antagonist of progesterone receptor, and most commonly used as a contraceptive. However, whether RU486 is correlated with PCOS remains unclear. Atrial natriuretic peptide (ANP) is a small peptide with natriuretic and diuretic functions, and its availability to be used in PCOS treatment is unknown. Here, we showed that the serum ANP level was lower in PCOS patients than that in healthy women, and it was also decreased in the serum and ovarian tissues of RU486-induced PCOS rats compared with the control rats. We also found that RU486 inhibited the proliferation and promoted the apoptosis of human KGN ovarian granulosa cells by downregulating progesterone receptor membrane component 1 (PGRMC1). Meantime, ANP promoted the proliferation and inhibited the apoptosis of KGN cells through upregulating ANP receptor A (NPRA). The promotive effects of ANP on ovarian functions were mediated through the formation of an NPRA/PGRMC1/EGFR complex, which further activated MAPK/ERK signaling and transcription factor AP1. Moreover, ANP treatment reversed the PCOS symptoms, and improved the fertility of RU486-induced PCOS rats. Collectively, these findings highlight that RU486 is associated with the pathogenesis of PCOS, and ANP treatment may be a promising therapeutic option for PCOS. PMID:29072679

  6. Recombinant human albumin supports single cell cloning of CHO cells in chemically defined media.

    PubMed

    Zhu, Jiang; Wooh, Jong Wei; Hou, Jeff Jia Cheng; Hughes, Benjamin S; Gray, Peter P; Munro, Trent P

    2012-01-01

    Biologic drugs, such as monoclonal antibodies, are commonly made using mammalian cells in culture. The cell lines used for manufacturing should ideally be clonal, meaning derived from a single cell, which represents a technically challenging process. Fetal bovine serum is often used to support low cell density cultures, however, from a regulatory perspective, it is preferable to avoid animal-derived components to increase process consistency and reduce the risk of contamination from adventitious agents. Chinese hamster ovary (CHO) cells are the most widely used cell line in industry and a large number of serum-free, protein-free, and fully chemically defined growth media are commercially available, although these media alone do not readily support efficient single cell cloning. In this work, we have developed a simple, fully defined, single-cell cloning media, specifically for CHO cells, using commercially available reagents. Our results show that a 1:1 mixture of CD-CHO™ and DMEM/F12 supplemented with 1.5 g/L of recombinant albumin (Albucult®) supports single cell cloning. This formulation can support recovery of single cells in 43% of cultures compared to 62% in the presence of serum. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  7. Depletion of Alveolar Macrophages Does Not Prevent Hantavirus Disease Pathogenesis in Golden Syrian Hamsters.

    PubMed

    Hammerbeck, Christopher D; Brocato, Rebecca L; Bell, Todd M; Schellhase, Christopher W; Mraz, Steven R; Queen, Laurie A; Hooper, Jay W

    2016-07-15

    Andes virus (ANDV) is associated with a lethal vascular leak syndrome in humans termed hantavirus pulmonary syndrome (HPS). The mechanism for the massive vascular leakage associated with HPS is poorly understood; however, dysregulation of components of the immune response is often suggested as a possible cause. Alveolar macrophages are found in the alveoli of the lung and represent the first line of defense to many airborne pathogens. To determine whether alveolar macrophages play a role in HPS pathogenesis, alveolar macrophages were depleted in an adult rodent model of HPS that closely resembles human HPS. Syrian hamsters were treated, intratracheally, with clodronate-encapsulated liposomes or control liposomes and were then challenged with ANDV. Treatment with clodronate-encapsulated liposomes resulted in significant reduction in alveolar macrophages, but depletion did not prevent pathogenesis or prolong disease. Depletion also did not significantly reduce the amount of virus in the lung of ANDV-infected hamsters but altered neutrophil recruitment, MIP-1α and MIP-2 chemokine expression, and vascular endothelial growth factor (VEGF) levels in hamster bronchoalveolar lavage (BAL) fluid early after intranasal challenge. These data demonstrate that alveolar macrophages may play a limited protective role early after exposure to aerosolized ANDV but do not directly contribute to hantavirus disease pathogenesis in the hamster model of HPS. Hantaviruses continue to cause disease worldwide for which there are no FDA-licensed vaccines, effective postexposure prophylactics, or therapeutics. Much of this can be attributed to a poor understanding of the mechanism of hantavirus disease pathogenesis. Hantavirus disease has long been considered an immune-mediated disease; however, by directly manipulating the Syrian hamster model, we continue to eliminate individual immune cell types. As the most numerous immune cells present in the respiratory tract, alveolar macrophages are

  8. Depletion of Alveolar Macrophages Does Not Prevent Hantavirus Disease Pathogenesis in Golden Syrian Hamsters

    PubMed Central

    Hammerbeck, Christopher D.; Brocato, Rebecca L.; Bell, Todd M.; Schellhase, Christopher W.; Mraz, Steven R.; Queen, Laurie A.

    2016-01-01

    ABSTRACT Andes virus (ANDV) is associated with a lethal vascular leak syndrome in humans termed hantavirus pulmonary syndrome (HPS). The mechanism for the massive vascular leakage associated with HPS is poorly understood; however, dysregulation of components of the immune response is often suggested as a possible cause. Alveolar macrophages are found in the alveoli of the lung and represent the first line of defense to many airborne pathogens. To determine whether alveolar macrophages play a role in HPS pathogenesis, alveolar macrophages were depleted in an adult rodent model of HPS that closely resembles human HPS. Syrian hamsters were treated, intratracheally, with clodronate-encapsulated liposomes or control liposomes and were then challenged with ANDV. Treatment with clodronate-encapsulated liposomes resulted in significant reduction in alveolar macrophages, but depletion did not prevent pathogenesis or prolong disease. Depletion also did not significantly reduce the amount of virus in the lung of ANDV-infected hamsters but altered neutrophil recruitment, MIP-1α and MIP-2 chemokine expression, and vascular endothelial growth factor (VEGF) levels in hamster bronchoalveolar lavage (BAL) fluid early after intranasal challenge. These data demonstrate that alveolar macrophages may play a limited protective role early after exposure to aerosolized ANDV but do not directly contribute to hantavirus disease pathogenesis in the hamster model of HPS. IMPORTANCE Hantaviruses continue to cause disease worldwide for which there are no FDA-licensed vaccines, effective postexposure prophylactics, or therapeutics. Much of this can be attributed to a poor understanding of the mechanism of hantavirus disease pathogenesis. Hantavirus disease has long been considered an immune-mediated disease; however, by directly manipulating the Syrian hamster model, we continue to eliminate individual immune cell types. As the most numerous immune cells present in the respiratory tract

  9. Homologous Recombination Repair Protects Against Particulate Chromate-induced Chromosome Instability in Chinese Hamster Cells

    PubMed Central

    Stackpole, Megan M.; Wise, Sandra S.; Duzevik, Eliza Grlickova; Munroe, Ray C.; Thompson, W. Douglas; Thacker, John; Thompson, Larry H.; Hinz, John M.; Wise, John Pierce

    2008-01-01

    Particulate hexavalent chromium [Cr(VI)] compounds are well-established human carcinogens. Cr(VI)-induced tumors are characterized by chromosomal instability (CIN); however, the mechanisms of this effect are unknown. We investigated the hypothesis that homologous recombination (HR) repair of DNA double strand breaks protect cells from Cr(VI)-induced CIN by focusing on the XRCC3 and RAD51C genes, which play an important role in cellular resistance to DNA double strand breaks. We used Chinese hamster cells defective in each HR gene (irs3 for RAD51C and irs1SF for XRCC3) and compared with their wildtype parental and cDNA-complemented controls. We found that the intracellular Cr ion levels varied among the cell lines after particulate chromate treatment. Importantly, accounting for differences in Cr ion levels, we discovered that XRCC3 and RAD51C cells treated with lead chromate had increased cytotoxicity and chromosomal aberrations, relative to wild-type and cDNA-complimented cells. We also observed the emergence of high levels of chromatid exchanges in the two mutant cell lines. For example, 1 ug/cm2 lead chromate induced 20 and 32 exchanges in XRCC3- and RAD51C-deficient cells, respectively, whereas no exchanges were detected in the wildtype and cDNA-complemented cells. These observations suggest that HR protects cells from Cr(VI)-induced CIN, consistent with the ability of particulate Cr(VI) to induce double strand breaks. PMID:17662313

  10. The insecticide buprofezin induces morphological transformation and kinetochore-positive micronuclei in cultured Syrian hamster embryo cells in the absence of detectable DNA damage.

    PubMed

    Herrera, L A; Ostrosky-Wegman, P; Schiffmann, D; Chen, Q Y; Ziegler-Skylakakis, K; Andrae, U

    1993-11-01

    The insecticide buprofezin was examined for its genotoxicity in cultured Syrian hamster embryo cells in order to better understand the mechanisms underlying the genotoxicity of the compound in mammalian cells. Exposure to buprofezin concentrations of 12.5-100 microM did not significantly affect the colony-forming ability of the cells, but did result in increased frequencies of morphologically transformed colonies. Treatment with buprofezin did not cause a detectable induction of DNA repair synthesis, an indicator of DNA damage, but significantly increased the frequency of micronuclei. Immunostaining of the cells with antikinetochore antibody (CREST antibody) showed that essentially all of the buprofezin-induced micronuclei were kinetochore-positive. The results suggest that morphological transformation of Syrian hamster embryo cells by buprofezin results from an interaction of the compound or a metabolite of it with the mitotic apparatus rather than from DNA damage.

  11. Reduction of ammonia and lactate through the coupling of glutamine synthetase selection and downregulation of lactate dehydrogenase-A in CHO cells.

    PubMed

    Noh, Soo Min; Park, Jin Hyoung; Lim, Myung Sin; Kim, Jong Won; Lee, Gyun Min

    2017-02-01

    Chinese hamster ovary (CHO) cell cultivation for production of therapeutic proteins is accompanied by production of metabolic wastes, mostly ammonia and lactate. To reduce ammonia production, the glutamine synthetase (GS) system was used to develop therapeutic monoclonal antibody (mAb)-producing CHO cells (SM-0.025). Additionally, the lactate dehydrogenase-A (LDH-A) was downregulated with shRNA to reduce lactate production in SM-0.025. The resulting mAb-producing cell lines (#2, #46, and #52) produced less ammonia than the host cell line during the exponential phase due to GS protein overexpression. LDH-A downregulation in SM-0.025 not only reduced lactate production but also further reduced ammonia production. Among the three LDH-A-downregulated clones, clone #2 had the highest mAb production along with significantly reduced specific lactate and ammonia production rates compared to those in SM-0.025. Waste reduction increased the galactosylation level of N-glycosylation, which improved mAb quality. LDH-A downregulation was also successfully applied to the host cell lines (CHO K1 and GS knockout CHO-K1). However, LDH-A downregulated host cells could not survive the pool-selection process wherein glutamine was excluded and methionine sulfoximine was added to the media. Taken together, LDH-A downregulation in the mAb-producing cell line generated with the GS system successfully reduced both ammonia and lactate levels, improving mAb galactosylation. However, LDH-A downregulation could not be applied to host cell lines because it hampered the selection process of the GS system.

  12. Revealing Early Steps of α2β1 Integrin-mediated Adhesion to Collagen Type I by Using Single-Cell Force Spectroscopy

    PubMed Central

    Taubenberger, Anna; Cisneros, David A.; Friedrichs, Jens; Puech, Pierre-Henri; Muller, Daniel J.

    2007-01-01

    We have characterized early steps of α2β1 integrin-mediated cell adhesion to a collagen type I matrix by using single-cell force spectroscopy. In agreement with the role of α2β1 as a collagen type I receptor, α2β1-expressing Chinese hamster ovary (CHO)-A2 cells spread rapidly on the matrix, whereas α2β1-negative CHO wild-type cells adhered poorly. Probing CHO-A2 cell detachment forces over a contact time range of 600 s revealed a nonlinear adhesion response. During the first 60 s, cell adhesion increased slowly, and forces associated with the smallest rupture events were consistent with the breakage of individual integrin–collagen bonds. Above 60 s, a fraction of cells rapidly switched into an activated adhesion state marked by up to 10-fold increased detachment forces. Elevated overall cell adhesion coincided with a rise of the smallest rupture forces above the value required to break a single-integrin–collagen bond, suggesting a change from single to cooperative receptor binding. Transition into the activated adhesion mode and the increase of the smallest rupture forces were both blocked by inhibitors of actomyosin contractility. We therefore propose a two-step mechanism for the establishment of α2β1-mediated adhesion as weak initial, single-integrin–mediated binding events are superseded by strong adhesive interactions involving receptor cooperativity and actomyosin contractility. PMID:17314408

  13. Electron spin resonance studies of the ovary of the rat

    NASA Astrophysics Data System (ADS)

    Andersen, Roy S.; Curtis, Joseph C.

    1988-11-01

    Electron spin resonance spectra of rat ovaries, isolated ovarian compartments, and ovarian subcellular fractions were compared with spectra of rat adrenals. Rat ovaries were found to exhibit ESR signals similar to those previously described in studies of mammalian adrenal and testis. Observations were made at 113 K in an anaerobic environment. ESR signals of the low-spin ferric cytochrome P-450, the non-heme protein ferredoxin, and the non-heme glycoprotein transferrin were consistently observed in whole ovaries. The first two signals were detected in mitochondrial fractions isolated from ovaries, while only cytochrome P-450 was detected in microsomal fractions. Signals from ferredoxin and cytochrome P-450 were also consistently observed in both whole adrenals and adrenal mitochondrial fractions. However, in the microsomal fraction only cytochrome P-450 was present. The g values for the cytochrome P-450 and ferredoxin signals found in this study of ovaries were identical to those previously reported and also found in this study in spectra of rat adrenals. The concentration of ferredoxin per milligram wet mass in rat ovaries appears to be only one-sixth of that in the rat adrenal. The concentration of cytochrome P-450 appears to be only one-ninth of that in the adrenal. Signals from ferredoxin were detected in all ovarian compartments except granulosa cells isolated from Graafian follicles. The third signal, that of transferrin, while often observed in the spectra of whole ovaries, has been attributed to residual blood in the tissues examined. The effects of oxygen on these spectra has been found to be considerable and is discussed.

  14. TNF-R1 and FADD mediate UVB-Induced activation of K+ channels in corneal epithelial cells

    PubMed Central

    Boersma, Peter M.; Haarsma, Loren D.; Schotanus, Mark P.; Ubels, John L.

    2017-01-01

    The goal of this study was to elucidate the role of Fas, TNF-R1, FADD and cytochrome c in UVB-induced K+ channel activation, an early step in UVB-induced apoptosis, in human corneal limbal epithelial (HCLE) cells. HCLE cells were treated with Fas, TNF-R1 or FADD siRNA and exposed to 80 or 150 mJ/cm2 UVB. K+ channel activation and loss of intracellular K+ were measured using whole-cell patch-clamp recording and ion chromatography, respectively. Cytochrome c was measured with an ELISA kit. Cells in which Fas was knocked down exhibited identical UVB-induced K+ channel activation and loss of intracellular K+ to control cells. Cells in which TNF-R1 or FADD were knocked down demonstrated reduced K+ channel activation and decreased loss of intracellular K+ following UVB, relative to control cells. Application of TNF-α, the natural ligand of TNF-R1, to HCLE cells induced K+ channel activation and loss of intracellular K+. Cytochrome c was translocated to the cytosol by 2 h after exposure to 150 mJ/cm2 UVB. However, there was no release by 10 min post-UVB. The data suggest that UVB activates TNF-R1, which in turn may activate K+ channels via FADD. This conclusion is supported by the observation that TNF-α also causes loss of intracellular K+. This signaling pathway appears to be integral to UVB-induced K+ efflux, since knockdown of TNF-R1 or FADD inhibits the UVB-induced K+ efflux. The lack of rapid cytochrome c translocation indicates cytochrome c does not play a role in UVB-induced K+ channel activation. PMID:27818316

  15. In vivo but not in vitro leptin enhances lymphocyte proliferation in Siberian hamsters (Phodopus sungorus).

    PubMed

    Demas, Gregory E

    2010-04-01

    Mounting an immune response requires a relatively substantial investment of energy and marked reductions in energy availability can suppress immune function and presumably increase disease susceptibility. We have previously demonstrated that a moderate reduction in energy stores by partial surgical lipectomy impairs humoral immunity of Siberian hamsters (Phodopus sungorus) and is mediated, in part, by changes in the adipose tissue hormone leptin. The goals of the present study were to assess the role of leptin in cell-mediated immunity and to determine if the potential effects of leptin on immunity are via the direct actions of this hormone on lymphocytes, or indirect, via the sympathetic nervous system (SNS). In Experiment 1, hamsters received osmotic minipumps containing either murine leptin (0.5 microl/h) or vehicle alone for 10 days and splenocyte proliferation in response to the T-cell mitogen Concanavalin A (Con A) was determined. In Experiment 2, Con A-induced splenocyte proliferation was tested in the presence or absence of leptin in vitro. In Experiment 3, exogenous leptin was administered to intact or sympathetically denervated hamsters. Hamsters treated with in vivo leptin displayed increased splenocyte proliferation compared with control hamsters receiving vehicle. In contrast, in vitro leptin had no effect on splenocyte proliferation. Sympathetic denervation attenuated, but did not block, leptin-induced increases in immunity. Taken together, these results are consistent with the idea that leptin can enhance cell-mediated immunity; the SNS appears to contribute, least in part, to leptin-induced increases in immunity. Importantly, these findings confirm previous studies that leptin serves as an important endocrine link between energy balance and immunity. (c) 2009 Elsevier Inc. All rights reserved.

  16. Expression and activity levels of chymase in mast cells of burn wound tissues increase during the healing process in a hamster model.

    PubMed

    Dong, Xianglin; Xu, Tao; Ma, Shaolin; Wen, Hao

    2015-06-01

    The present study aimed to investigate the changes in the expression levels and activity of mast cell chymase in the process of burn wound healing in a hamster model of deep second-degree burn. The hamster model was established by exposing a ~3 cm diameter area of bare skin to hot water (75°C) for 0, 6, 8, 10 or 12 sec. Tissue specimens were collected 24 h after burning and histological analysis revealed that hot water contact for 12 sec was required to produce a deep second-degree burn. Quantitative polymerase chain reaction and a radioimmunoassay were used to the determine changes in chymase mRNA expression levels and activity. The mRNA expression levels and activity of chymase were increased in the burn wound tissues when compared with the normal skin. However, no statistically significant differences were observed in mast cell chymase activity amongst the various post-burn stages. Chymase mRNA expression levels peaked at day 1 post-burn, subsequently decreasing at days 3 and 7 post-burn and finally increasing again at day 14 post-burn. In summary, a hamster model of deep second-degree burn can be created by bringing the skin into contact with water at 75°C for 12 sec. Furthermore, the mRNA expression levels and activity of chymase in the burn wound tissues increased when compared with those in normal skin tissues.

  17. Expression and activity levels of chymase in mast cells of burn wound tissues increase during the healing process in a hamster model

    PubMed Central

    DONG, XIANGLIN; XU, TAO; MA, SHAOLIN; WEN, HAO

    2015-01-01

    The present study aimed to investigate the changes in the expression levels and activity of mast cell chymase in the process of burn wound healing in a hamster model of deep second-degree burn. The hamster model was established by exposing a ~3 cm diameter area of bare skin to hot water (75°C) for 0, 6, 8, 10 or 12 sec. Tissue specimens were collected 24 h after burning and histological analysis revealed that hot water contact for 12 sec was required to produce a deep second-degree burn. Quantitative polymerase chain reaction and a radioimmunoassay were used to the determine changes in chymase mRNA expression levels and activity. The mRNA expression levels and activity of chymase were increased in the burn wound tissues when compared with the normal skin. However, no statistically significant differences were observed in mast cell chymase activity amongst the various post-burn stages. Chymase mRNA expression levels peaked at day 1 post-burn, subsequently decreasing at days 3 and 7 post-burn and finally increasing again at day 14 post-burn. In summary, a hamster model of deep second-degree burn can be created by bringing the skin into contact with water at 75°C for 12 sec. Furthermore, the mRNA expression levels and activity of chymase in the burn wound tissues increased when compared with those in normal skin tissues. PMID:26136958

  18. Infection of the upper respiratory tract of hamsters by the bovine parainfluenza virus type 3 BN-1 strain expressing enhanced green fluorescent protein.

    PubMed

    Ohkura, Takashi; Minakuchi, Moeko; Sagai, Mami; Kokuho, Takehiro; Konishi, Misako; Kameyama, Ken-Ichiro; Takeuchi, Kaoru

    2015-02-01

    Bovine parainfluenza virus type 3 (BPIV3) is an important pathogen associated with bovine respiratory disease complex (BRDC). We have generated a recombinant BPIV3 expressing enhanced green fluorescent protein (rBPIV3-EGFP) based on the BN-1 strain isolated in Japan. After intranasal infection of hamsters with rBPIV3-EGFP, EGFP fluorescence was detected in the upper respiratory tract including the nasal turbinates, pharynx, larynx, and trachea. In the nasal turbinates, rBPIV3-EGFP attained high titers (>10(6) TCID50/g of tissue) 2-4 days after infection. Ciliated epithelial cells in the nasal turbinates and trachea were infected with rBPIV3-EGFP. Histopathological analysis indicated that mucosal epithelial cells in bronchi were shed by 6 days after infection, leaving non-ciliated cells, which may have increased susceptibility to bacterial infection leading to the development of BRDC. These data indicate that rBPIV3-EGFP infection of hamsters is a useful small animal model for studying the development of BPIV3-associated BRDC. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Retinoic acid signaling is dispensable for somatic development and function in the mammalian ovary.

    PubMed

    Minkina, Anna; Lindeman, Robin E; Gearhart, Micah D; Chassot, Anne-Amandine; Chaboissier, Marie-Christine; Ghyselinck, Norbert B; Bardwell, Vivian J; Zarkower, David

    2017-04-15

    Retinoic acid (RA) is a potent inducer of cell differentiation and plays an essential role in sex-specific germ cell development in the mammalian gonad. RA is essential for male gametogenesis and hence fertility. However, RA can also disrupt sexual cell fate in somatic cells of the testis, promoting transdifferentiation of male Sertoli cells to female granulosa-like cells when the male sexual regulator Dmrt1 is absent. The feminizing ability of RA in the Dmrt1 mutant somatic testis suggests that RA might normally play a role in somatic cell differentiation or cell fate maintenance in the ovary. To test for this possibility we disrupted RA signaling in somatic cells of the early fetal ovary using three genetic strategies and one pharmaceutical approach. We found that deleting all three RA receptors (RARs) in the XX somatic gonad at the time of sex determination did not significantly affect ovarian differentiation, follicle development, or female fertility. Transcriptome analysis of adult triple mutant ovaries revealed remarkably little effect on gene expression in the absence of somatic RAR function. Likewise, deletion of three RA synthesis enzymes (Aldh1a1-3) at the time of sex determination did not masculinize the ovary. A dominant-negative RAR transgene altered granulosa cell proliferation, likely due to interference with a non-RA signaling pathway, but did not prevent granulosa cell specification and oogenesis or abolish fertility. Finally, culture of fetal XX gonads with an RAR antagonist blocked germ cell meiotic initiation but did not disrupt sex-biased gene expression. We conclude that RA signaling, although crucial in the ovary for meiotic initiation, is not required for granulosa cell specification, differentiation, or reproductive function. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. p70S6K1 (S6K1)-mediated Phosphorylation Regulates Phosphatidylinositol 4-Phosphate 5-Kinase Type I γ Degradation and Cell Invasion.

    PubMed

    Jafari, Naser; Zheng, Qiaodan; Li, Liqing; Li, Wei; Qi, Lei; Xiao, Jianyong; Gao, Tianyan; Huang, Cai

    2016-12-02

    Phosphatidylinositol 4-phosphate 5-kinase type I γ (PIPKIγ90) ubiquitination and subsequent degradation regulate focal adhesion assembly, cell migration, and invasion. However, it is unknown how upstream signals control PIPKIγ90 ubiquitination or degradation. Here we show that p70S6K1 (S6K1), a downstream target of mechanistic target of rapamycin (mTOR), phosphorylates PIPKIγ90 at Thr-553 and Ser-555 and that S6K1-mediated PIPKIγ90 phosphorylation is essential for cell migration and invasion. Moreover, PIPKIγ90 phosphorylation is required for the development of focal adhesions and invadopodia, key machineries for cell migration and invasion. Surprisingly, substitution of Thr-553 and Ser-555 with Ala promoted PIPKIγ90 ubiquitination but enhanced the stability of PIPKIγ90, and depletion of S6K1 also enhanced the stability of PIPKIγ90, indicating that PIPKIγ90 ubiquitination alone is insufficient for its degradation. These data suggest that S6K1-mediated PIPKIγ90 phosphorylation regulates cell migration and invasion by controlling PIPKIγ90 degradation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Up-regulation of K{sub ir}2.1 by ER stress facilitates cell death of brain capillary endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kito, Hiroaki; Yamazaki, Daiju; Department of Biological Chemistry, Kyoto University, Graduate School of Pharmaceutical Sciences, Kyoto

    Highlights: {yields} We found that application of endoplasmic reticulum (ER) stress with tunicamycin to brain capillary endothelial cells (BCECs) induced cell death. {yields} The ER stress facilitated the expression of inward rectifier K{sup +} channel (K{sub ir}2.1) and induced sustained membrane hyperpolarization. {yields} The membrane hyperpolarization induced sustained Ca{sup 2+} entry through voltage-independent nonspecific cation channels and consequently facilitated cell death. {yields} The K{sub ir}2.1 up-regulation by ER stress is, at least in part, responsible for cell death of BCECs under pathological conditions. -- Abstract: Brain capillary endothelial cells (BCECs) form blood brain barrier (BBB) to maintain brain homeostasis. Cellmore » turnover of BCECs by the balance of cell proliferation and cell death is critical for maintaining the integrity of BBB. Here we found that stimuli with tunicamycin, endoplasmic reticulum (ER) stress inducer, up-regulated inward rectifier K{sup +} channel (K{sub ir}2.1) and facilitated cell death in t-BBEC117, a cell line derived from bovine BCECs. The activation of K{sub ir} channels contributed to the establishment of deeply negative resting membrane potential in t-BBEC117. The deep resting membrane potential increased the resting intracellular Ca{sup 2+} concentration due to Ca{sup 2+} influx through non-selective cation channels and thereby partly but significantly regulated cell death in t-BBEC117. The present results suggest that the up-regulation of K{sub ir}2.1 is, at least in part, responsible for cell death/cell turnover of BCECs induced by a variety of cellular stresses, particularly ER stress, under pathological conditions.« less

  2. Identifying Early Target Cells of Nipah Virus Infection in Syrian Hamsters

    PubMed Central

    Baseler, Laura; Scott, Dana P.; Saturday, Greg; Horne, Eva; Rosenke, Rebecca; Thomas, Tina; Meade-White, Kimberly; Haddock, Elaine; Feldmann, Heinz

    2016-01-01

    Background Nipah virus causes respiratory and neurologic disease with case fatality rates up to 100% in individual outbreaks. End stage lesions have been described in the respiratory and nervous systems, vasculature and often lymphoid organs in fatal human cases; however, the initial target organs of Nipah virus infection have not been identified. Here, we detected the initial target tissues and cells of Nipah virus and tracked virus dissemination during the early phase of infection in Syrian hamsters inoculated with a Nipah virus isolate from Malaysia (NiV-M) or Bangladesh (NiV-B). Methodology/Principal Findings Syrian hamsters were euthanized between 4 and 48 hours post intranasal inoculation and tissues were collected and analyzed for the presence of viral RNA, viral antigen and infectious virus. Virus replication was first detected at 8 hours post inoculation (hpi). Nipah virus initially targeted type I pneumocytes, bronchiolar respiratory epithelium and alveolar macrophages in the lung and respiratory and olfactory epithelium lining the nasal turbinates. By 16 hpi, virus disseminated to epithelial cells lining the larynx and trachea. Although the pattern of viral dissemination was similar for both virus isolates, the rate of spread was slower for NiV-B. Infectious virus was not detected in the nervous system or blood and widespread vascular infection and lesions within lymphoid organs were not observed, even at 48 hpi. Conclusions/Significance Nipah virus initially targets the respiratory system. Virus replication in the brain and infection of blood vessels in non-respiratory tissues does not occur during the early phase of infection. However, virus replicates early in olfactory epithelium and may serve as the first step towards nervous system dissemination, suggesting that development of vaccines that block virus dissemination or treatments that can access the brain and spinal cord and directly inhibit virus replication may be necessary for preventing central

  3. Identifying Early Target Cells of Nipah Virus Infection in Syrian Hamsters.

    PubMed

    Baseler, Laura; Scott, Dana P; Saturday, Greg; Horne, Eva; Rosenke, Rebecca; Thomas, Tina; Meade-White, Kimberly; Haddock, Elaine; Feldmann, Heinz; de Wit, Emmie

    2016-11-01

    Nipah virus causes respiratory and neurologic disease with case fatality rates up to 100% in individual outbreaks. End stage lesions have been described in the respiratory and nervous systems, vasculature and often lymphoid organs in fatal human cases; however, the initial target organs of Nipah virus infection have not been identified. Here, we detected the initial target tissues and cells of Nipah virus and tracked virus dissemination during the early phase of infection in Syrian hamsters inoculated with a Nipah virus isolate from Malaysia (NiV-M) or Bangladesh (NiV-B). Syrian hamsters were euthanized between 4 and 48 hours post intranasal inoculation and tissues were collected and analyzed for the presence of viral RNA, viral antigen and infectious virus. Virus replication was first detected at 8 hours post inoculation (hpi). Nipah virus initially targeted type I pneumocytes, bronchiolar respiratory epithelium and alveolar macrophages in the lung and respiratory and olfactory epithelium lining the nasal turbinates. By 16 hpi, virus disseminated to epithelial cells lining the larynx and trachea. Although the pattern of viral dissemination was similar for both virus isolates, the rate of spread was slower for NiV-B. Infectious virus was not detected in the nervous system or blood and widespread vascular infection and lesions within lymphoid organs were not observed, even at 48 hpi. Nipah virus initially targets the respiratory system. Virus replication in the brain and infection of blood vessels in non-respiratory tissues does not occur during the early phase of infection. However, virus replicates early in olfactory epithelium and may serve as the first step towards nervous system dissemination, suggesting that development of vaccines that block virus dissemination or treatments that can access the brain and spinal cord and directly inhibit virus replication may be necessary for preventing central nervous system pathology.

  4. Induction of tissue transglutaminase by dexamethasone: its correlation to receptor number and transglutaminase-mediated cell death in a series of malignant hamster fibrosarcomas.

    PubMed Central

    Johnson, T S; Scholfield, C I; Parry, J; Griffin, M

    1998-01-01

    Treatment of the hamster fibrosarcoma cell lines (Met B, D and E) and BHK-21 hamster fibroblast cells with the glucocorticoid dexamethasone led to a powerful dose-dependent mRNA-synthesis-dependent increase in transglutaminase activity, which can be correlated with dexamethasone-responsive receptor numbers in each cell line. Increasing the number of dexamethasone-responsive receptors by transfection of cells with the HG1 glucocorticoid receptor protein caused an increase in transglutaminase activity that was proportional to the level of transfected receptor. In all experiments the levels of the tissue transglutaminase-mediated detergent-insoluble bodies was found to be comparable with increases in transglutaminase activity. Despite an increase in detergent-insoluble body formation, an increase in apoptosis as measured by DNA fragmentation was not found. Incubation of cells with the non-toxic competitive transglutaminase substrate fluorescein cadaverine led to the incorporation of this fluorescent amine into cellular proteins when cells were damaged after exposure to trypsin during cell passage. These cross-linked proteins containing fluorescein cadaverine were shown to be present in the detergent-insoluble bodies, indicating that the origin of these bodies is via activation of tissue transglutaminase after cell damage by trypsinization rather than apoptosis per se, since Met B cells expressing the bcl-2 cDNA were not protected from detergent-insoluble body formation. We describe a novel mechanism of cell death related to tissue transglutaminase expression and cell damage. PMID:9512467

  5. Microfluidic electroporation for delivery of small molecules and genes into cells using a common DC power supply.

    PubMed

    Wang, Hsiang-Yu; Lu, Chang

    2008-06-15

    Electroporation is an efficient method of introducing foreign impermeant molecules such as drugs and genes into cells. Conventional electroporation has been based on the application of short electrical pulses (electropulsation). Electropulsation requires specialized equipment and cannot be integrated easily with techniques such as electrophoresis which is based on constant voltage. Here we demonstrate the delivery of small molecules and genes into cells, using a microfluidic electroporation technique based on constant direct current (DC) voltage that we developed earlier. We demonstrate the delivery of two molecules into Chinese hamster ovary (CHO-K1) cells: a membrane impermeable nucleic acid dye (SYTOX Green) and a plasmid vector carrying the gene for green fluorescent protein (pEGFP-C1). Our devices can exert field variations to flowing cells that are analogous to the application of single or multiple pulses by having different geometries. We investigate the effects of the electrical parameters and different geometries of the device on the transfection efficiency and cell viability. Our technique provides a simple solution to electroporation-based drug and gene delivery by eliminating the need for a pulse generator. We envision that these simple microscale electroporation devices will have the potential to work in parallel on a microchip platform and such technology will allow high-throughput functional screening of drugs and genes. (c) 2008 Wiley Periodicals, Inc.

  6. Th1-stimulatory polyproteins of soluble Leishmania donovani promastigotes ranging from 89.9 to 97.1 kDa offers long-lasting protection against experimental visceral leishmaniasis.

    PubMed

    Kumari, Shraddha; Samant, Mukesh; Misra, Pragya; Khare, Prashant; Sisodia, Brijesh; Shasany, Ajit K; Dube, Anuradha

    2008-10-23

    Our earlier studies identified a fraction (F2) of Leishmania donovani soluble promastigote antigen belonging to 97.4-68 kDa for its ability to stimulate Th1-type cellular responses in cured visceral leishmaniasis (VL) patients as well as in cured hamsters. A further fractionation of F2-fraction into seven subfractions (F2.1-F2.7) and re-assessment for their immunostimulatory responses revealed that out of these, only four (F2.4-F2.7) belonging to 89.9-97.1 kDa, stimulated remarkable Th1-type cellular responses either individually or in a pooled form (P4-7). In this study these potential subfractions were further assessed for their prophylactic potential in combination with BCG against L. donovani challenge in hamsters. Optimum parasite inhibition ( approximately 99%) was obtained in hamsters vaccinated with pooled subfractions and they survived for 1 year. The protection was further supported by remarkable lymphoproliferative, IFN-gamma and IL-12 responses along with profound delayed type hypersensitivity and increased levels of Leishmania-specific IgG2 antibody as observed on days 45, 90 and 120 post-challenge suggesting that a successful subunit vaccine against VL may require multiple Th1-immunostimulatory proteins. MALDI-TOF-MS/MS analysis of these subfractions further revealed that of the 19 identified immunostimulatory proteins, Elongation factor-2, p45, Heat shock protein-70/83, Aldolase, Enolase, Triosephosphate isomerase, Disulfideisomerase and Calreticulin were the major ones in these subfractions.

  7. Vitamins K2, K3 and K5 exert in vivo antitumor effects on hepatocellular carcinoma by regulating the expression of G1 phase-related cell cycle molecules.

    PubMed

    Kuriyama, Shigeki; Hitomi, Misuzu; Yoshiji, Hitoshi; Nonomura, Takako; Tsujimoto, Tatsuhiro; Mitoro, Akira; Akahane, Takami; Ogawa, Mutsumi; Nakai, Seiji; Deguchi, Akihiro; Masaki, Tsutomu; Uchida, Naohito

    2005-08-01

    A number of studies have shown that various vitamins K, specifically vitamin K2, possessed antitumor activity on various types of rodent- and human-derived neoplastic cell lines. However, there are only a small number of reports demonstrating in vivo antitumor effects of vitamins K. Furthermore, the mechanism of antitumor effects of vitamins K still remains to be examined. In the present study, we examined the antitumor effects of vitamins K2, K3 and K5 on PLC/PRF/5 human hepatocellular carcinoma (HCC) cells in vivo. Furthermore, to examine the mechanism of antitumor actions of these vitamins K, mRNA expression levels of various G1 phase-related cell cycle molecules were evaluated by using a real-time reverse transcription-polymerase chain reaction (RT-PCR) method. HCC-bearing animals were produced by implanting PLC/PRF/5 cells subcutaneously into athymic nude mice, and drinking water containing vitamin K2, K3 or K5 was given to the animals. Treatments with vitamins K2, K3 and K5 were shown to markedly inhibit the growth of HCC tumors. To examine the mechanism of in vivo antitumor effects of vitamins K, total RNA was extracted from HCC tumors, and the expression of G1 phase-related cell cycle molecules was quantitatively examined. Real-time RT-PCR demonstrated that the expression of the cell cycle-driving molecule, cyclin-dependent kinase 4 (Cdk4), in HCC was significantly reduced by the treatments with vitamin K2, K3 and K5. Conversely, the expression of the cell cycle-suppressing molecules, Cdk inhibitor p16INK4a and retinoblastoma, in HCC was significantly enhanced by the treatments with vitamins K2, K3 and K5. These results indicate that vitamins K2, K3 and K5 exert antitumor effects on HCC by regulating the expression of G1 phase-related cell cycle molecules. These results also indicate that vitamins K2, K3 and K5 may be useful agents for the treatment of patients with HCC.

  8. Detection of osteoclastic cell-cell fusion through retroviral vector packaging.

    PubMed

    Kondo, Takako; Ikeda, Kyoji; Matsuo, Koichi

    2004-11-01

    Cell-cell fusion generates multinucleated cells such as osteoclasts in bone, myotubes in muscle, and trophoblasts in placenta. Molecular details governing these fusion processes are still largely unknown. As a step toward identification of fusogenic genes, we tested the concept that retroviral vectors can be packaged as a result of cell-cell fusion. First, we introduced replication-deficient retroviral vectors expressing mCAT-1, which mediates fusogenic interaction with the retroviral envelope protein Env, into Chinese hamster ovary (CHO) cells to generate vector cells. Plasmids expressing virion proteins Gag, Pol, and Env were introduced into a separate culture of CHO cells to generate packaging cells. Co-culturing vector and packaging cells resulted in production of infectious retroviruses carrying the mCAT-1 gene as a consequence of cell-cell fusion. Second, we introduced a retroviral vector into primary osteoclast precursors and co-cultured them with established osteoclast precursor RAW264.7 cells, which turned out to harbor packaging activity. Packaged retroviral vector was detected in culture supernatants only where the osteoclast differentiation factor receptor activator for NF-kappaB ligand (RANKL) induced fusion between these two cell types. These data suggest that retrovirus production can occur as a result of cell-cell fusion. This provides a novel approach for isolating and characterizing fusogenic genes using retroviral expression vectors.

  9. Clear cell carcinoma of the ovary mimicking struma ovarii and carcinoid tumor.

    PubMed

    Alduaij, Ahmad; Quddus, M Ruhul

    2011-04-01

    Clear cell carcinomas are considered as high-grade tumor often with poor prognosis. We describe 2 cases of clear cell carcinomas of the ovary mimicking benign or less aggressive tumors encountered in the female genital track. The first case is mimicking a benign monodermal teratoma, the so-called struma ovarii, and the second mimicking a carcinoid tumor. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Germ cell specification and ovary structure in the rotifer Brachionus plicatilis.

    PubMed

    Smith, James M; Cridge, Andrew G; Dearden, Peter K

    2010-08-02

    The segregation of the germline from somatic tissues is an essential process in the development of all animals. Specification of the primordial germ cells (PGCs) takes place via different strategies across animal phyla; either specified early in embryogenesis by the inheritance of maternal determinants in the cytoplasm of the oocyte ('preformation') or selected later in embryonic development from undifferentiated precursors by a localized inductive signal ('epigenesis'). Here we investigate the specification and development of the germ cells in the rotifer Brachionus plicatilis, a member of the poorly-characterized superphyla Lophotrochozoa, by isolating the Brachionus homologues of the conserved germ cell markers vasa and nanos, and examining their expression using in situ hybridization. Bpvasa and Bpnos RNA expression have very similar distributions in the Brachionus ovary, showing ubiquitous expression in the vitellarium, with higher levels in the putative germ cell cluster. Bpvas RNA expression is present in freshly laid eggs, remaining ubiquitous in embryos until at least the 96 cell stage after which expression narrows to a small cluster of cells at the putative posterior of the embryo, consistent with the developing ovary. Bpnos RNA expression is also present in just-laid eggs but expression is much reduced by the four-cell stage and absent by the 16-cell stage. Shortly before hatching of the juvenile rotifer from the egg, Bpnos RNA expression is re-activated, located in a subset of posterior cells similar to those expressing Bpvas at the same stage. The observed expression of vasa and nanos in the developing B. plicatilis embryo implies an epigenetic origin of primordial germ cells in Rotifer.

  11. Germ cell specification and ovary structure in the rotifer Brachionus plicatilis

    PubMed Central

    2010-01-01

    Background The segregation of the germline from somatic tissues is an essential process in the development of all animals. Specification of the primordial germ cells (PGCs) takes place via different strategies across animal phyla; either specified early in embryogenesis by the inheritance of maternal determinants in the cytoplasm of the oocyte ('preformation') or selected later in embryonic development from undifferentiated precursors by a localized inductive signal ('epigenesis'). Here we investigate the specification and development of the germ cells in the rotifer Brachionus plicatilis, a member of the poorly-characterized superphyla Lophotrochozoa, by isolating the Brachionus homologues of the conserved germ cell markers vasa and nanos, and examining their expression using in situ hybridization. Results Bpvasa and Bpnos RNA expression have very similar distributions in the Brachionus ovary, showing ubiquitous expression in the vitellarium, with higher levels in the putative germ cell cluster. Bpvas RNA expression is present in freshly laid eggs, remaining ubiquitous in embryos until at least the 96 cell stage after which expression narrows to a small cluster of cells at the putative posterior of the embryo, consistent with the developing ovary. Bpnos RNA expression is also present in just-laid eggs but expression is much reduced by the four-cell stage and absent by the 16-cell stage. Shortly before hatching of the juvenile rotifer from the egg, Bpnos RNA expression is re-activated, located in a subset of posterior cells similar to those expressing Bpvas at the same stage. Conclusions The observed expression of vasa and nanos in the developing B. plicatilis embryo implies an epigenetic origin of primordial germ cells in Rotifer. PMID:20849649

  12. Caffeine induces metformin anticancer effect on fibrosarcoma in hamsters.

    PubMed

    Popović, D J; Lalošević, D; Miljković, D; Popović, K J; Čapo, I; Popović, J K

    2018-04-01

    We investigated the effect of metformin and caffeine on fibrosarcoma in hamsters. 32 Syrian golden hamsters of both sexes, weighing approximately 100 g, were randomly allocated to 3 experimental and 2 control groups, with a minimum of 6 animals per group. 2 x 106 BHK-21/C13 cells in 1 ml were injected subcutaneously into the animals' back in 4 groups. The first experimental group started peroral treatment with metformin 500 mg/kg daily, the second with caffeine 100 mg/kg daily and the third with a combination of metformin 500 mg/kg and caffeine 100 mg/kg daily, via a gastric probe 3 days before tumor inoculation. After 2 weeks, when the tumors were approximately 2 cm in the control group, all animals were sacrificed. The blood was collected for glucose and other analyses. The tumors were excised and weighed and their diameters were measured. The tumor samples were pathohistologically (HE) and immunohistochemically (Ki-67, CD 31, COX IV, GLUT-1, iNOS) assessed and the main organs toxicologically analyzed, including the control animals that had received metformin and caffeine. Tumor volume was determined using the formula LxS2/2, where L was the longest and S the shortest diameter. Ki-67-positive cells in the tumor samples were quantified. Images were taken and processed by software UTHSCSA Image Tools for Windows Version 3.00. Statistical significances were determined by the Student's t-test. The combination of metformin and caffeine inhibited fibrosarcoma growth in hamsters without toxicity. Administration of metformin with caffeine might be an effective and safe approach in novel nontoxic adjuvant anticancer treatment.

  13. Effect of Antiviral Agents in Equine Abortion Virus-Infected Hamsters1

    PubMed Central

    Lieberman, Melvin; Pascale, Andrea; Schafer, Thomas W.; Came, Paul E.

    1972-01-01

    Equine abortion virus, a member of the herpesvirus group, produces a lethal infection in hamsters. With this system, the protective effect of certain inhibitors of deoxyribonucleic acid viruses, inducers of interferon and exogenous interferon, was evaluated. Of the various agents studied, 9-β-d-arabinofuranosyladenine markedly suppressed mortality, and 5-iodo-2′-deoxyuridine, distamycin A, and N-ethylisatin β-thiosemicarbazone were inactive. Of the inducers tested, statolon, ultraviolet-irradiated Newcastle disease virus, and polyriboinosinic:polyribocytidylic acid (poly I:C) were protective, and endotoxin, polyacrylic acid, and polymethacrylic acid did not protect. Administration of exogenous interferon did not afford protection. Statolon and ultraviolet-irradiated Newcastle disease virus induced circulating interferon in hamsters, whereas poly I:C, endotoxin, and polyacrylic acid did not produce interferon. Because of the severity of the disease produced in hamsters by equine abortion virus, lack of protective activity by an agent in this system should not preclude possible efficacy against other members of the herpesvirus group. PMID:4376907

  14. Letrozole increases ovarian growth and Cyp17a1 gene expression in the rat ovary

    PubMed Central

    Ortega, Israel; Sokalska, Anna; Villanueva, Jesus A.; Cress, Amanda B.; Wong, Donna H.; Stener-Victorin, Elisabet; Stanley, Scott D.; Duleba, Antoni J.

    2012-01-01

    Objective To evaluate the effects of letrozole on ovarian size and steroidogenesis in vivo, as well as on proliferation and steroidogenesis of theca-interstitial cells alone and in coculture with granulosa cells using an in vitro model. Design In vivo and in vitro studies. Setting Research laboratory. Animal(s) Immature Sprague-Dawley female rats. Intervention(s) In vivo effects of letrozole were studied in intact rats receiving either letrozole (90-day continuous-release SC pellets, 400 µg/d) or placebo pellets (control group). In in vitro experiments, theca cells were cultured alone or in coculture with granulosa cells in the absence or presence of letrozole. Main Outcome Measure(s) Deoxyribonucleic acid synthesis was determined by thymidine incorporation assay; steroidogenesis by mass spectrometry; and steroidogenic enzyme messenger RNA (mRNA) expression by polymerase chain reaction. Result(s) In vivo, letrozole induced an increase in ovarian size compared with the control group and also induced a profound increase of androgen, LH levels, and Cyp17a1 mRNA expression. Conversely, a decrease in Star, Cyp11a1, and Hsd3b1 transcripts was observed in letrozole-exposed rats. In vitro, letrozole did not alter either theca cell proliferation or Cyp17a1 mRNA expression. Similarly, letrozole did not affect Cyp17a1 transcripts in granulosa-theca cocultures. Conclusion(s) These findings suggest that letrozole exerts potent, but indirect, effect on growth of rat ovary and dramatically increases androgen levels and Cyp17a1 mRNA expression, the key enzyme regulating the androgen biosynthesis pathway. The present findings reveal novel mechanisms of action of letrozole in the rat ovary. PMID:23200686

  15. Overexpression of Lnk in the Ovaries Is Involved in Insulin Resistance in Women With Polycystic Ovary Syndrome.

    PubMed

    Hao, Meihua; Yuan, Feng; Jin, Chenchen; Zhou, Zehong; Cao, Qi; Xu, Ling; Wang, Guanlei; Huang, Hui; Yang, Dongzi; Xie, Meiqing; Zhao, Xiaomiao

    2016-10-01

    Polycystic ovary syndrome (PCOS) progression involves abnormal insulin signaling. SH2 domain-containing adaptor protein (Lnk) may be an important regulator of the insulin signaling pathway. We investigated whether Lnk was involved in insulin resistance (IR). Thirty-seven women due to receive laparoscopic surgery from June 2011 to February 2012 were included from the gynecologic department of the Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University. Samples of polycystic and normal ovary tissues were examined by immunohistochemistry. Ovarian cell lines underwent insulin stimulation and Lnk overexpression. Expressed Lnk underwent coimmunoprecipitation tests with green fluorescent protein-labeled insulin receptor and His-tagged insulin receptor substrate 1 (IRS1), and their colocalization in HEK293T cells was examined. Ovarian tissues from PCOS patients with IR exhibited higher expression of Lnk than ovaries from normal control subjects and PCOS patients without IR; mainly in follicular granulosa cells, the follicular fluid and plasma of oocytes in secondary follicles, and atretic follicles. Lnk was coimmunoprecipitated with insulin receptor and IRS1. Lnk and insulin receptor/IRS1 locations overlapped around the nucleus. IR, protein kinase B (Akt), and ERK1/2 activities were inhibited by Lnk overexpression and inhibited further after insulin stimulation, whereas IRS1 serine activity was increased. Insulin receptor (Tyr1150/1151), Akt (Thr308), and ERK1/2 (Thr202/Tyr204) phosphorylation was decreased, whereas IRS1 (Ser307) phosphorylation was increased with Lnk overexpression. In conclusion, Lnk inhibits the phosphatidylinositol 3 kinase-AKT and MAPK-ERK signaling response to insulin. Higher expression of Lnk in PCOS suggests that Lnk probably plays a role in the development of IR.

  16. Overexpression of Lnk in the Ovaries Is Involved in Insulin Resistance in Women With Polycystic Ovary Syndrome

    PubMed Central

    Hao, Meihua; Yuan, Feng; Jin, Chenchen; Zhou, Zehong; Cao, Qi; Xu, Ling; Wang, Guanlei; Huang, Hui

    2016-01-01

    Polycystic ovary syndrome (PCOS) progression involves abnormal insulin signaling. SH2 domain-containing adaptor protein (Lnk) may be an important regulator of the insulin signaling pathway. We investigated whether Lnk was involved in insulin resistance (IR). Thirty-seven women due to receive laparoscopic surgery from June 2011 to February 2012 were included from the gynecologic department of the Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University. Samples of polycystic and normal ovary tissues were examined by immunohistochemistry. Ovarian cell lines underwent insulin stimulation and Lnk overexpression. Expressed Lnk underwent coimmunoprecipitation tests with green fluorescent protein-labeled insulin receptor and His-tagged insulin receptor substrate 1 (IRS1), and their colocalization in HEK293T cells was examined. Ovarian tissues from PCOS patients with IR exhibited higher expression of Lnk than ovaries from normal control subjects and PCOS patients without IR; mainly in follicular granulosa cells, the follicular fluid and plasma of oocytes in secondary follicles, and atretic follicles. Lnk was coimmunoprecipitated with insulin receptor and IRS1. Lnk and insulin receptor/IRS1 locations overlapped around the nucleus. IR, protein kinase B (Akt), and ERK1/2 activities were inhibited by Lnk overexpression and inhibited further after insulin stimulation, whereas IRS1 serine activity was increased. Insulin receptor (Tyr1150/1151), Akt (Thr308), and ERK1/2 (Thr202/Tyr204) phosphorylation was decreased, whereas IRS1 (Ser307) phosphorylation was increased with Lnk overexpression. In conclusion, Lnk inhibits the phosphatidylinositol 3 kinase-AKT and MAPK-ERK signaling response to insulin. Higher expression of Lnk in PCOS suggests that Lnk probably plays a role in the development of IR. PMID:27459314

  17. Effects of Synephrine and B-Phenethylamine on Human a-Adrenoceptor Subtypes

    USDA-ARS?s Scientific Manuscript database

    Synephrine and B-phenethylamine are structurally related to ephedrine. In this study, the effects of synephrine and B-phenethylamine are investigated on a-adrenoceptor (a-AR) subtypes expressed in human embroyonic kidney (HEK293) or Chinese hamster ovary (CHO) cells, and compared to that of 1R,2S-no...

  18. A novel tomato mutant, Solanum lycopersicum elongated fruit1 (Slelf1), exhibits an elongated fruit shape caused by increased cell layers in the proximal region of the ovary.

    PubMed

    Chusreeaeom, Katarut; Ariizumi, Tohru; Asamizu, Erika; Okabe, Yoshihiro; Shirasawa, Kenta; Ezura, Hiroshi

    2014-06-01

    Genes controlling fruit morphology offer important insights into patterns and mechanisms determining organ shape and size. In cultivated tomato (Solanum lycopersicum L.), a variety of fruit shapes are displayed, including round-, bell pepper-, pear-, and elongate-shaped forms. In this study, we characterized a tomato mutant possessing elongated fruit morphology by histologically analyzing its fruit structure and genetically analyzing and mapping the genetic locus. The mutant line, Solanum lycopersicum elongated fruit 1 (Slelf1), was selected in a previous study from an ethylmethane sulfonate-mutagenized population generated in the background of Micro-Tom, a dwarf and rapid-growth variety. Histological analysis of the Slelf1 mutant revealed dramatically increased elongation of ovary and fruit. Until 6 days before flowering, ovaries were round and they began to elongate afterward. We also determined pericarp thickness and the number of cell layers in three designated fruit regions. We found that mesocarp thickness, as well as the number of cell layers, was increased in the proximal region of immature green fruits, making this the key sector of fruit elongation. Using 262 F2 individuals derived from a cross between Slelf1 and the cultivar Ailsa Craig, we constructed a genetic map, simple sequence repeat (SSR), cleaved amplified polymorphism sequence (CAPS), and derived CAPS (dCAPS) markers and mapped to the 12 tomato chromosomes. Genetic mapping placed the candidate gene locus within a 0.2 Mbp interval on the long arm of chromosome 8 and was likely different from previously known loci affecting fruit shape.

  19. Hypolipidemic activity and mechanisms of the total phenylpropanoid glycosides from Ligustrum robustum (Roxb.) Blume by AMPK-SREBP-1c pathway in hamsters fed a high-fat diet.

    PubMed

    Yang, Runmei; Chu, Xinxin; Sun, Le; Kang, Zhuoying; Ji, Min; Yu, Ying; Liu, Ying; He, Zhendan; Gao, Nannan

    2018-04-01

    The aim of this study was to evaluate the hypolipidemic effect and mechanisms of total phenylpropanoid glycosides extracted from Ligustrum robustum (Roxb.) Blume (LRTPG) in hamsters fed a high-fat diet and to discover bioactive components in HepG2 cell model induced by oleic acid. LRTPG of high (1.2 g/kg), medium (0.6 g/kg), and low (0.3 g/kg) doses was administrated daily for 21 consecutive days in hamsters. We found that in hamsters fed a high-fat diet, LRTPG effectively reduced the concentrations of plasma triglycerides (TG), free fatty acid, total cholesterol, low-density lipoprotein cholesterol, and hepatic TG and total cholesterol. And the compounds acteoside, ligupurpuroside A, ligupurpuroside C, and ligupurpuroside D significantly inhibited lipid accumulation in HepG2 cell at the concentration of 50 μmol/L. Mechanism research demonstrated that LRTPG increased the levels of phospho-AMP-activated protein kinase and phospho-sterol regulatory element binding protein-1c in liver, further to suppress the downstream lipogenic genes as stearoyl-CoA desaturase 1, glycerol-3-phosphate acyltransferase, 1-acylglycerol-3-phosphate O-acyltransferase 2, and diacylglycerol acyltransferase 2. In addition, LRTPG increased the hydrolysis of circulating TG by up-regulating lipoprotein lipase activities. These results indicate that LRTPG prevents hyperlipidemia via activation of hepatic AMP-activated protein kinase-sterol regulatory element binding protein-1c pathway. Copyright © 2018 John Wiley & Sons, Ltd.

  20. hnRNP K Coordinates Transcriptional Silencing by SETDB1 in Embryonic Stem Cells

    PubMed Central

    Thompson, Peter J.; Dulberg, Vered; Moon, Kyung-Mee; Foster, Leonard J.; Chen, Carol; Karimi, Mohammad M.; Lorincz, Matthew C.

    2015-01-01

    Retrotransposition of endogenous retroviruses (ERVs) poses a substantial threat to genome stability. Transcriptional silencing of a subset of these parasitic elements in early mouse embryonic and germ cell development is dependent upon the lysine methyltransferase SETDB1, which deposits H3K9 trimethylation (H3K9me3) and the co-repressor KAP1, which binds SETDB1 when SUMOylated. Here we identified the transcription co-factor hnRNP K as a novel binding partner of the SETDB1/KAP1 complex in mouse embryonic stem cells (mESCs) and show that hnRNP K is required for ERV silencing. RNAi-mediated knockdown of hnRNP K led to depletion of H3K9me3 at ERVs, concomitant with de-repression of proviral reporter constructs and specific ERV subfamilies, as well as a cohort of germline-specific genes directly targeted by SETDB1. While hnRNP K recruitment to ERVs is dependent upon KAP1, SETDB1 binding at these elements requires hnRNP K. Furthermore, an intact SUMO conjugation pathway is necessary for SETDB1 recruitment to proviral chromatin and depletion of hnRNP K resulted in reduced SUMOylation at ERVs. Taken together, these findings reveal a novel regulatory hierarchy governing SETDB1 recruitment and in turn, transcriptional silencing in mESCs. PMID:25611934

  1. Ontogeny of the ovary in polycystic ovary syndrome

    PubMed Central

    Dumesic, Daniel A.; Richards, JoAnne S.

    2015-01-01

    Activation of primordial follicles into the growing pool, selection of the dominant follicle, and its eventual ovulation require complex endocrine and metabolic interactions as well as intraovarian paracrine signals to coordinate granulosa cell proliferation, theca cell differentiation, and oocyte maturation. Early preantral follicle development relies mostly upon mesenchymal-epithelial cell interactions, intraovarian paracrine signals, and oocyte-secreted factors, whereas development of the antral follicle depends on circulating gonadotropins as well as locally derived regulators. In women with polycystic ovary syndrome (PCOS), ovarian hyperandrogenism, hyperinsulinemia from insulin resistance, and altered intrafollicular paracrine signaling perturb the activation, survival, growth, and selection of follicles, causing accumulation of small antral follicles within the periphery of the ovary, giving it a polycystic morphology. Altered adipocyte-ovarian interactions further compound these adverse events on follicle development and also can harm the oocyte, particularly in the presence of increased adiposity. Finally, endocrine antecedents of PCOS occur in female infants born to mothers with PCOS, which suggests that interactions between genes and the maternal-fetal hormonal environment may program ovarian function after birth. PMID:23472949

  2. Single-cell analyses reveal that KISS1R-expressing cells undergo sustained kisspeptin-induced signaling that is dependent upon an influx of extracellular Ca2+.

    PubMed

    Babwah, Andy V; Pampillo, Macarena; Min, Le; Kaiser, Ursula B; Bhattacharya, Moshmi

    2012-12-01

    The kisspeptin receptor (KISS1R) is a Gα(q/11)-coupled seven-transmembrane receptor activated by a group of peptides referred to as kisspeptins (Kps). The Kp/KISS1R signaling system is a powerful regulator of GnRH secretion, and inactivating mutations in this system are associated with hypogonadotropic hypogonadism. A recent study revealed that Kp triggers prolonged signaling; not from the inability of the receptor to undergo rapid desensitization, but instead from the maintenance of a dynamic and active pool of KISS1R at the cell surface. To investigate this further, we hypothesized that if a dynamic pool of receptor is maintained at the cell surface for a protracted period, chronic Kp-10 treatment would trigger the sustained activation of Gα(q/11) as evidenced through the prolonged activation of phospholipase C, protein kinase C, and prolonged mobilization of intracellular Ca(2+). Through single-cell analyses, we tested our hypothesis in human embryonic kidney (HEK) 293 cells and found that was indeed the case. We subsequently determined that prolonged KISS1R signaling was not a phenomenon specific to HEK 293 cells but is likely a conserved property of KISS1R-expressing cells because evidence of sustained KISS1R signaling was also observed in the GT1-7 GnRH neuronal and Chinese hamster ovary cell lines. While exploring the regulation of prolonged KISS1R signaling, we identified a critical role for extracellular Ca(2+). We found that although free intracellular Ca(2+), primarily derived from intracellular stores, was sufficient to trigger the acute activation of a major KISS1R secondary effector, protein kinase C, it was insufficient to sustain chronic KISS1R signaling; instead extracellular Ca(2+) was absolutely required for this.

  3. Quantitative mammalian cell genetic toxicology: study of the cytotoxicity and mutagenicity of 70 individual environmental agents related to energy technologies and 3 subfractions of a crude synthetic oil in the CHO/HGPRT system. [Hamsters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsie, A W; ,; Neill, J P

    1978-01-01

    Conditions necessary for quantifying mutation-induction to 6-thioguanine resistance, which selects for >98% mutants deficient in the activity of hypoxanthine-guanine phosphoribosyl transferase (HGPRT) in a near-diploid Chinese hamster ovary (CHO) cell line, referred to as CHO/HGPRT system, have been defined. Employing this mutation assay, we have determined the mutagenicity of diversified agents including 11 direct-acting alkylating agents, 16 nitrosamines, 10 heterocyclic nitrogen mustards, 15 metallic compounds, 5 quinolines, 5 aromatic amines, 27 polycyclic hydrocarbons, 13 miscellaneous chemicals, 7 ionizing and non-ionizing physical agents. The direct-acting carcinogen N-methyl-N'-nitro-N-nitrosoguanidine is mutagenic while its noncarcinogenic analogue N-methyl-N'-nitro-N-nitroguanidine is not. Coupled with the rat livermore » S/sub 9/-activation system, procarcinogens such as nitrosopyrrolidine, benzo(a)pyrene, and 2-acetylaminofluorene are mutagenic while their analogues 2,5-dimethylnitrosopyrrolidine, pyrene and fluorene are not. The assay appears to be applicable for monitoring the genetic toxicity of crude organic mixtures in addition to diverse individual chemical and physical agents. The quantitative nature of the assay enables a study of EMS exposure dose: the mutagenic potential of EMS can be described as 310 x 10/sup -6/ mutants (cell mg ml/sup -1/ h)./sup -1/ It is also feasible to expand the CHO/HGPRT system for quantifying cytotoxicity and mutagenicity to determination of chromosomal aberrations and sister chromatid exchanges in cells treated under identical conditions which allows a simultaneous study of these four distinctive biological effects.« less

  4. Application of dielectric spectroscopy for monitoring high cell density in monoclonal antibody producing CHO cell cultivations.

    PubMed

    Párta, László; Zalai, Dénes; Borbély, Sándor; Putics, Akos

    2014-02-01

    The application of dielectric spectroscopy was frequently investigated as an on-line cell culture monitoring tool; however, it still requires supportive data and experience in order to become a robust technique. In this study, dielectric spectroscopy was used to predict viable cell density (VCD) at industrially relevant high levels in concentrated fed-batch culture of Chinese hamster ovary cells producing a monoclonal antibody for pharmaceutical purposes. For on-line dielectric spectroscopy measurements, capacitance was scanned within a wide range of frequency values (100-19,490 kHz) in six parallel cell cultivation batches. Prior to detailed mathematical analysis of the collected data, principal component analysis (PCA) was applied to compare dielectric behavior of the cultivations. PCA analysis resulted in detecting measurement disturbances. By using the measured spectroscopic data, partial least squares regression (PLS), Cole-Cole, and linear modeling were applied and compared in order to predict VCD. The Cole-Cole and the PLS model provided reliable prediction over the entire cultivation including both the early and decline phases of cell growth, while the linear model failed to estimate VCD in the later, declining cultivation phase. In regards to the measurement error sensitivity, remarkable differences were shown among PLS, Cole-Cole, and linear modeling. VCD prediction accuracy could be improved in the runs with measurement disturbances by first derivative pre-treatment in PLS and by parameter optimization of the Cole-Cole modeling.

  5. Structural changes in plasma membranes prepared from irradiated Chinese hamster V79 cells as revealed by Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, S.P.; Sonwalkar, N.

    1991-04-01

    The effect of gamma irradiation on the integrity of plasma membranes isolated from Chinese hamster V79 cells was investigated by Raman spectroscopy. Plasma membranes of control V79 cells show transitions between {minus}10 and 5{degree}C (low-temperature transition), 10 and 22{degree}C (middle-temperature transition), and 32 and 40{degree}C (high-temperature transition). Irradiation (5 Gy) alters these transitions markedly. First, the low-temperature transition shifts to higher temperature (onset and completion temperatures 4 and 14{degree}C). Second, the middle-temperature transition shifts up to the range of about 20-32{degree}C, but the width remains unchanged. Third, the higher temperature transition broadens markedly and shifts to the range of aboutmore » 15-40{degree}C. Protein secondary structure as determined by least-squares analysis of the amide I bands shows 36% total helix, 55% total beta-strand, and 9% turn plus undefined for control plasma membrane proteins. Plasma membrane proteins of irradiated V79 cells show an increase in total helix (40 and 45% at 5 and 10 Gy, respectively) and a decrease in the total beta-strand (48 and 44% at 5 and 10 Gy, respectively) structures. The qualitative analysis of the Raman features of plasma membranes and model compounds in the 1600 cm-1 region, assigned to tyrosine groups, revealed that irradiation alters the microenvironment of these groups. We conclude that the radiation dose used in the survival range of Chinese hamster V79 cells can cause damage to plasma membrane proteins without detectable lipid peroxidation, and that the altered proteins react differently with lipids, yielding a shift in the thermal transition properties.« less

  6. The concentration-dependent effect of progesterone on follicle growth in the mouse ovary.

    PubMed

    Komatsu, Kouji; Masubuchi, Satoru

    2017-06-21

    Follicle growth in the mammalian ovary is coordinately controlled by multiple factors to sustain periodic ovulation. In this study, we investigated the role of progesterone on follicle growth in the mouse ovary. As the concentration of progesterone changes during the estrus cycle, we cultured the sliced mouse ovary in a medium containing 10 ng/ml, 100 ng/ml, and 1 μg/ml progesterone. Progesterone promoted the growth of primordial to primary follicles at 100 ng/ml, while it suppressed the growth of secondary follicles at 1 μg/ml. Follicles at other developmental stages in the cultured ovary were unaffected with different concentrations of progesterone. The number of ovulated oocytes increased in the medium containing 100 ng/ml progesterone but decreased in the presence of 1 μg/ml progesterone. Follicles expressed two types of progesterone receptors, progesterone receptor (PGR) and PGR membrane component 1 (PGRMC1). While PGR shows transient expression on granulosa cells of Graafian follicles, PGRMC1 expresses in granulosa cells of developing follicles. These results suggest that progesterone controls the growth of developing follicles through PGRMC1. Our study shows that the effect of progesterone on ovulation and follicle growth in mouse ovary is dependent on the concentration of progesterone and the follicle stage.

  7. Topical Olive Leaf Extract Improves Healing of Oral Mucositis in Golden Hamsters.

    PubMed

    Showraki, Najmeh; Mardani, Maryam; Emamghoreishi, Masoumeh; Andishe-Tadbir, Azadeh; Aram, Alireza; Mehriar, Peiman; Omidi, Mahmoud; Sepehrimanesh, Masood; Koohi-Hosseinabadi, Omid; Tanideh, Nader

    2016-12-01

    Oral mucositis (OM) is a common side effect of anti-cancer drugs and needs significant attention for its prevention. This study aimed to evaluate the healing effects of olive leaf extract on 5-fluorouracil-induced OM in golden hamster. OM was induced in 63 male golden hamsters by the combination of 5-fluorouracil injections (days 0, 5 and 10) and the abrasion of the cheek pouch (days 3 and 4). On day 12, hamsters were received topical olive leaf extract ointment, base of ointment, or no treatment (control) for 5 days. Histopathology evaluations, blood examinations, and tissue malondialdehyde level measurement were performed 1, 3 and 5 days after treatments. Histopathology score and tissue malondialdehyde level were significantly lower in olive leaf extract treated group in comparison with control and base groups ( p = 0.000). Significant decreases in white blood cell, hemoglobin, hematocrit , and mean corpuscular volume and an increase in mean corpuscular hemoglobin concentration were observed in olive leaf extract treated group in comparison with control and base groups ( p < 0.05). Our findings demonstrated that daily application of olive leaf extract ointment had healing effect on 5-fluorouracil induced OM in hamsters. Moreover, the beneficial effect of olive leaf extract on OM might be due to its antioxidant and anti-inflammatory properties.

  8. Flow-through electroporation based on constant voltage for large-volume transfection of cells.

    PubMed

    Geng, Tao; Zhan, Yihong; Wang, Hsiang-Yu; Witting, Scott R; Cornetta, Kenneth G; Lu, Chang

    2010-05-21

    Genetic modification of cells is a critical step involved in many cell therapy and gene therapy protocols. In these applications, cell samples of large volume (10(8)-10(9)cells) are often processed for transfection. This poses new challenges for current transfection methods and practices. Here we present a novel flow-through electroporation method for delivery of genes into cells at high flow rates (up to approximately 20 mL/min) based on disposable microfluidic chips, a syringe pump, and a low-cost direct current (DC) power supply that provides a constant voltage. By eliminating pulse generators used in conventional electroporation, we dramatically lowered the cost of the apparatus and improved the stability and consistency of the electroporation field for long-time operation. We tested the delivery of pEFGP-C1 plasmids encoding enhanced green fluorescent protein into Chinese hamster ovary (CHO-K1) cells in the devices of various dimensions and geometries. Cells were mixed with plasmids and then flowed through a fluidic channel continuously while a constant voltage was established across the device. Together with the applied voltage, the geometry and dimensions of the fluidic channel determined the electrical parameters of the electroporation. With the optimal design, approximately 75% of the viable CHO cells were transfected after the procedure. We also generalize the guidelines for scaling up these flow-through electroporation devices. We envision that this technique will serve as a generic and low-cost tool for a variety of clinical applications requiring large volume of transfected cells. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Antigenic specificity and morphologic characteristics of Chlamydia trachomatis, strain SFPD, isolated from hamsters with proliferative ileitis.

    PubMed

    Fox, J G; Stills, H F; Paster, B J; Dewhirst, F E; Yan, L; Palley, L; Prostak, K

    1993-10-01

    Profound diarrhea associated with proliferating intestinal cells containing intraepithelial campylobacter-like organisms (ICLO) occurs in a variety of mammalian hosts, particularly swine and hamsters. Recently, intracellular bacteria were isolated from proliferative intestinal tissue of hamsters and propagated in intestine cell line 407. Oral inoculation of hamsters with cell culture lysates containing these organisms reproduced the disease in susceptible hamsters. In the present study, an intracellular bacterium from the INT 407 cell line was shown by a variety of techniques to be a member of the genus Chlamydia and has been designated Chlamydia sp. strain SFPD. McCoy cells infected with Chlamydia sp. strain SFPD demonstrated bright fluorescent-stained intracytoplasmic inclusions when examined with fluorescein-labeled species-specific C. trachomatis monoclonal antibodies. The organism also reacted to fluorescein-labeled polyclonal but not monoclonal ICLO "omega" antisera. Ultrastructural examination of the Chlamydia sp. strain SFPD from McCoy cells revealed electrondense elementary bodies and a less electron-dense reticulate-like body that was circular; both features are consistent in morphology to developmental forms of Chlamydia and do not conform to ICLO morphology. Molecular studies, 16S ribosomal sequence analysis, and sequencing of the outer membrane protein confirmed that the isolate is a C. trachomatis closely related to the mouse pneumonitis strain of C. trachomatis.

  10. Reprogramming of enteroendocrine K cells to pancreatic β-cells through the combined expression of Nkx6.1 and Neurogenin3, and reaggregation in suspension culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Esder; Ryu, Gyeong Ryul; Moon, Sung-Dae

    2014-01-17

    Highlights: •K cells were selected from STC-1 cells, a heterogeneous enteroendocrine cell line. •K cells did not express Nkx6.1 and Neurogenin3. •Combined expression of Nkx6.1 and Neurogenin3 reprogrammed K cells to β-cells. •Reprogramming of K cells to β-cells was not complete. -- Abstract: Recent studies have demonstrated that adult cells such as pancreatic exocrine cells can be converted to pancreatic β-cells in a process called cell reprogramming. Enteroendocrine cells and β-cells share similar pathways of differentiation during embryonic development. Notably, enteroendocrine K cells express many of the key proteins found in β-cells. Thus, K cells could be reprogrammed to β-cellsmore » under certain conditions. However, there is no clear evidence on whether these cells convert to β-cells. K cells were selected from STC-1 cells, an enteroendocrine cell line expressing multiple hormones. K cells were found to express many genes of transcription factors crucial for islet development and differentiation except for Nkx6.1 and Neurogenin3. A K cell clone stably expressing Nkx6.1 (Nkx6.1{sup +}-K cells) was established. Induction of Neurogenin3 expression in Nkx6.1{sup +}-K cells, by either treatment with a γ-secretase inhibitor or infection with a recombinant adenovirus expressing Neurogenin3, led to a significant increase in Insulin1 mRNA expression. After infection with the adenovirus expressing Neurogenin3 and reaggregation in suspension culture, about 50% of Nkx6.1{sup +}-K cells expressed insulin as determined by immunostaining. The intracellular insulin content was increased markedly. Electron microscopy revealed the presence of insulin granules. However, glucose-stimulated insulin secretion was defective, and there was no glucose lowering effect after transplantation of these cells in diabetic mice. In conclusion, we demonstrated that K cells could be reprogrammed partially to β-cells through the combined expression of Nkx6.1 and Neurogenin3

  11. Angiotensin II upregulates K(Ca)3.1 channels and stimulates cell proliferation in rat cardiac fibroblasts.

    PubMed

    Wang, Li-Ping; Wang, Yan; Zhao, Li-Mei; Li, Gui-Rong; Deng, Xiu-Ling

    2013-05-15

    The proliferation of cardiac fibroblasts is implicated in the pathogenesis of myocardial remodeling and fibrosis. Intermediate-conductance calcium-activated K⁺ channels (K(Ca)3.1 channels) have important roles in cell proliferation. However, it is unknown whether angiotensin II (Ang II), a potent profibrotic molecule, would regulate K(Ca)3.1 channels in cardiac fibroblasts and participate in cell proliferation. In the present study, we investigated whether K(Ca)3.1 channels were regulated by Ang II, and how the channel activity mediated cell proliferation in cultured adult rat cardiac fibroblasts using electrophysiology and biochemical approaches. It was found that mRNA, protein, and current density of K(Ca)3.1 channels were greatly enhanced in cultured cardiac fibroblasts treated with 1 μM Ang II, and the effects were countered by the angiotensin type 1 receptor (AT₁R) blocker losartan, the p38-MAPK inhibitor SB203580, the ERK1/2 inhibitor PD98059, and the PI3K/Akt inhibitor LY294002. Ang II stimulated cell proliferation and the effect was antagonized by the K(Ca)3.1 blocker TRAM-34 and siRNA targeting K(Ca)3.1. In addition, Ang II-induced increase of K(Ca)3.1 expression was attenuated by transfection of activator protein-1 (AP-1) decoy oligodeoxynucleotides. These results demonstrate for the first time that Ang II stimulates cell proliferation mediated by upregulating K(Ca)3.1 channels via interacting with the AT₁R and activating AP-1 complex through ERK1/2, p38-MAPK and PI3K/Akt signaling pathways in cultured adult rat cardiac fibroblasts. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  12. Myricetin Protects Cells against Oxidative Stress-Induced Apoptosis via Regulation of PI3K/Akt and MAPK Signaling Pathways

    PubMed Central

    Kang, Kyoung Ah; Wang, Zhi Hong; Zhang, Rui; Piao, Mei Jing; Kim, Ki Cheon; Kang, Sam Sik; Kim, Young Woo; Lee, Jongsung; Park, Deokhoon; Hyun, Jin Won

    2010-01-01

    Recently, we demonstrated that myricetin exhibits cytoprotective effects against H2O2-induced cell damage via its antioxidant properties. In the present study, myricetin was found to inhibit H2O2-induced apoptosis in Chinese hamster lung fibroblast (V79-4) cells, as shown by decreased apoptotic bodies, nuclear fragmentation, sub-G1 cell population, and disruption of mitochondrial membrane potential (Δψm), which are increased in H2O2-treated cells. Western blot data showed that in H2O2-treated cells, myricetin increased the level of Bcl-2, which is an anti-apoptotic factor, and decreased the levels of Bax, active caspase-9 and -3, which are pro-apoptotic factors. And myricetin inhibited release of cytochrome c from mitochondria to cytosol in H2O2-treated cells. Myricetin-induced survival correlated with Akt activity, and the rescue of cells by myricetin treatment against H2O2-induced apoptosis was inhibited by the specific PI3K (phosphoinositol-3-kinase) inhibitor. Myricetin-mediated survival also inhibited the activation of p38 mitogen activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK), which are members of MAPK. Our studies suggest that myricetin prevents oxidative stress-induced apoptosis via regulation of PI3K/Akt and MAPK signaling pathways. PMID:21151442

  13. Computer simulations of the energy dissipation rate in a fluorescence-activated cell sorter: Implications to cells.

    PubMed

    Mollet, Mike; Godoy-Silva, Ruben; Berdugo, Claudia; Chalmers, Jeffrey J

    2008-06-01

    Fluorescence activated cell sorting, FACS, is a widely used method to sort subpopulations of cells to high purities. To achieve relatively high sorting speeds, FACS instruments operate by forcing suspended cells to flow in a single file line through a laser(s) beam(s). Subsequently, this flow stream breaks up into individual drops which can be charged and deflected into multiple collection streams. Previous work by Ma et al. (2002) and Mollet et al. (2007; Biotechnol Bioeng 98:772-788) indicates that subjecting cells to hydrodynamic forces consisting of both high extensional and shear components in micro-channels results in significant cell damage. Using the fluid dynamics software FLUENT, computer simulations of typical fluid flow through the nozzle of a BD FACSVantage indicate that hydrodynamic forces, quantified using the scalar parameter energy dissipation rate, are similar in the FACS nozzle to levels reported to create significant cell damage in micro-channels. Experimental studies in the FACSVantage, operated under the same conditions as the simulations confirmed significant cell damage in two cell lines, Chinese Hamster Ovary cells (CHO) and THP1, a human acute monocytic leukemia cell line.

  14. Xenogeneic Decellularized Scaffold: A Novel Platform for Ovary Regeneration

    PubMed Central

    Liu, Wen-Yue; Lin, Shi-Gang; Zhuo, Ru-Yi; Xie, Yuan-Yuan; Pan, Wei

    2017-01-01

    Women younger than 40 years may face early menopause because of premature ovarian failure (POF). The cause of POF can be idiopathic or iatrogenic, especially the cancer-induced oophorectomy and chemo- or radiation therapy. The current treatments, including hormone replacement therapy (HRT) and cryopreservation techniques, have increased risk of ovarian cancer and may reintroduce malignant cells after autografting. Decellularization technique has been regarded as a novel regenerative medicine strategy for organ replacement, wherein the living cells of an organ are removed, leaving the extracellular matrix (ECM) for cellular seeding. This study aimed to produce a xenogeneic decellularized ovary (D-ovary) scaffold as a platform for ovary regeneration and transplantation. We have developed a novel decellularization protocol for porcine ovary by treatment with physical, chemical, and enzymatic methods. Using hematoxylin and eosin (H&E) staining, DAPI staining, scanning electron microscopy (SEM), and quantitative analysis, this approach proved effective in removing cellular components and preserving ECM. Furthermore, the results of biological safety evaluation demonstrated that the D-ovary tissues were noncytotoxic for rat ovarian cells in vitro and caused only a minimal immunogenic response in vivo. In addition, the D-ovary tissues successfully supported rat granulosa cell penetration ex vivo and showed an improvement in estradiol (E2) hormone secretion. PMID:27981878

  15. Xenogeneic Decellularized Scaffold: A Novel Platform for Ovary Regeneration.

    PubMed

    Liu, Wen-Yue; Lin, Shi-Gang; Zhuo, Ru-Yi; Xie, Yuan-Yuan; Pan, Wei; Lin, Xian-Feng; Shen, Fei-Xia

    2017-02-01

    Women younger than 40 years may face early menopause because of premature ovarian failure (POF). The cause of POF can be idiopathic or iatrogenic, especially the cancer-induced oophorectomy and chemo- or radiation therapy. The current treatments, including hormone replacement therapy (HRT) and cryopreservation techniques, have increased risk of ovarian cancer and may reintroduce malignant cells after autografting. Decellularization technique has been regarded as a novel regenerative medicine strategy for organ replacement, wherein the living cells of an organ are removed, leaving the extracellular matrix (ECM) for cellular seeding. This study aimed to produce a xenogeneic decellularized ovary (D-ovary) scaffold as a platform for ovary regeneration and transplantation. We have developed a novel decellularization protocol for porcine ovary by treatment with physical, chemical, and enzymatic methods. Using hematoxylin and eosin (H&E) staining, DAPI staining, scanning electron microscopy (SEM), and quantitative analysis, this approach proved effective in removing cellular components and preserving ECM. Furthermore, the results of biological safety evaluation demonstrated that the D-ovary tissues were noncytotoxic for rat ovarian cells in vitro and caused only a minimal immunogenic response in vivo. In addition, the D-ovary tissues successfully supported rat granulosa cell penetration ex vivo and showed an improvement in estradiol (E2) hormone secretion.

  16. Isolation, antimicrobial activities, and primary structures of hamster neutrophil defensins.

    PubMed Central

    Mak, P; Wójcik, K; Thogersen, I B; Dubin, A

    1996-01-01

    Hamster (Mesocricetus auratus) neutrophil granules contain at least four microbicidal peptides belonging to the defensin family. These compounds were purified from granule acid extracts by reverse-phase chromatography and termed HaNP-1 to -4 (hamster neutrophil peptide). HaNP-1 and HaNP-3 revealed the most bactericidal activity, with a 50% inhibitory concentration of 0.3 to 0.8 microg/ml for Staphylococcus aureus and Streptococcus pyogenes strains. The HaNP-4 was always isolated in concentrations exceeding about 10 times the concentrations of other hamster peptides, but its antibacterial activity as well as that of HaNP-2 was relatively lower, probably as a result of conserved Arg residue substitutions. Other microorganisms were also tested, and generally, hamster defensins exhibited less potency against gram-negative bacteria. The amino acid sequence of hamster defensins showed a high percentage of identity to the sequence of mouse enteric defensins, reaching about 60% identical residues in the case of HaNP-3 and cryptdin 3. PMID:8890190

  17. Effect of Saw Palmetto Supplements on Androgen-Sensitive LNCaP Human Prostate Cancer Cell Number and Syrian Hamster Flank Organ Growth

    PubMed Central

    Opoku-Acheampong, Alexander B.; Penugonda, Kavitha; Lindshield, Brian L.

    2016-01-01

    Saw palmetto supplements (SPS) are commonly consumed by men with prostate cancer. We investigated whether SPS fatty acids and phytosterols concentrations determine their growth-inhibitory action in androgen-sensitive LNCaP cells and hamster flank organs. High long-chain fatty acids-low phytosterols (HLLP) SPS ≥ 750 nM with testosterone significantly increased and ≥500 nM with dihydrotestosterone significantly decreased LNCaP cell number. High long-chain fatty acids-high phytosterols (HLHP) SPS ≥ 500 nM with dihydrotestosterone and high medium-chain fatty acids-low phytosterols (HMLP) SPS ≥ 750 nM or with androgens significantly decreased LNCaP cell number (n = 3; p < 0.05). Five- to six-week-old, castrated male Syrian hamsters were randomized to control (n = 4), HLLP, HLHP, and HMLP SPS (n = 6) groups. Testosterone or dihydrotestosterone was applied topically daily for 21 days to the right flank organ; the left flank organ was treated with ethanol and served as the control. Thirty minutes later, SPS or ethanol was applied to each flank organ in treatment and control groups, respectively. SPS treatments caused a notable but nonsignificant reduction in the difference between left and right flank organ growth in testosterone-treated SPS groups compared to the control. The same level of inhibition was not seen in dihydrotestosterone-treated SPS groups (p < 0.05). Results may suggest that SPS inhibit 5α-reductase thereby preventing hamster flank organ growth. PMID:27272436

  18. Effect of Saw Palmetto Supplements on Androgen-Sensitive LNCaP Human Prostate Cancer Cell Number and Syrian Hamster Flank Organ Growth.

    PubMed

    Opoku-Acheampong, Alexander B; Penugonda, Kavitha; Lindshield, Brian L

    2016-01-01

    Saw palmetto supplements (SPS) are commonly consumed by men with prostate cancer. We investigated whether SPS fatty acids and phytosterols concentrations determine their growth-inhibitory action in androgen-sensitive LNCaP cells and hamster flank organs. High long-chain fatty acids-low phytosterols (HLLP) SPS ≥ 750 nM with testosterone significantly increased and ≥500 nM with dihydrotestosterone significantly decreased LNCaP cell number. High long-chain fatty acids-high phytosterols (HLHP) SPS ≥ 500 nM with dihydrotestosterone and high medium-chain fatty acids-low phytosterols (HMLP) SPS ≥ 750 nM or with androgens significantly decreased LNCaP cell number (n = 3; p < 0.05). Five- to six-week-old, castrated male Syrian hamsters were randomized to control (n = 4), HLLP, HLHP, and HMLP SPS (n = 6) groups. Testosterone or dihydrotestosterone was applied topically daily for 21 days to the right flank organ; the left flank organ was treated with ethanol and served as the control. Thirty minutes later, SPS or ethanol was applied to each flank organ in treatment and control groups, respectively. SPS treatments caused a notable but nonsignificant reduction in the difference between left and right flank organ growth in testosterone-treated SPS groups compared to the control. The same level of inhibition was not seen in dihydrotestosterone-treated SPS groups (p < 0.05). Results may suggest that SPS inhibit 5α-reductase thereby preventing hamster flank organ growth.

  19. Development of [3H]2-Carboxy-4,6-dichloro-1H-indole-3-propionic Acid ([3H]PSB-12150): A Useful Tool for Studying GPR17

    PubMed Central

    2014-01-01

    The recently described synthetic GPR17 agonist 2-carboxy-4,6-dichloro-1H-indole-3-propionic acid (1) was prepared in tritium-labeled form by catalytic hydrogenation of the corresponding propenoic acid derivative 8 with tritium gas. The radioligand [3H]PSB-12150 (9) was obtained with a specific activity of 17 Ci/mmol (629 GBq/mmol). It showed specific and saturable binding to a single binding site in membrane preparations from Chinese hamster ovary cells recombinantly expressing the human GPR17. A competition assay procedure was established, which allows the determination of ligand binding affinities. PMID:24900835

  20. Development of [(3)H]2-Carboxy-4,6-dichloro-1H-indole-3-propionic Acid ([(3)H]PSB-12150): A Useful Tool for Studying GPR17.

    PubMed

    Köse, Meryem; Ritter, Kirsten; Thiemke, Katharina; Gillard, Michel; Kostenis, Evi; Müller, Christa E

    2014-04-10

    The recently described synthetic GPR17 agonist 2-carboxy-4,6-dichloro-1H-indole-3-propionic acid (1) was prepared in tritium-labeled form by catalytic hydrogenation of the corresponding propenoic acid derivative 8 with tritium gas. The radioligand [(3)H]PSB-12150 (9) was obtained with a specific activity of 17 Ci/mmol (629 GBq/mmol). It showed specific and saturable binding to a single binding site in membrane preparations from Chinese hamster ovary cells recombinantly expressing the human GPR17. A competition assay procedure was established, which allows the determination of ligand binding affinities.

  1. Gravity and the orientation of cell division

    NASA Technical Reports Server (NTRS)

    Helmstetter, C. E.

    1997-01-01

    A novel culture system for mammalian cells was used to investigate division orientations in populations of Chinese hamster ovary cells and the influence of gravity on the positioning of division axes. The cells were tethered to adhesive sites, smaller in diameter than a newborn cell, distributed over a nonadhesive substrate positioned vertically. The cells grew and divided while attached to the sites, and the angles and directions of elongation during anaphase, projected in the vertical plane, were found to be random with respect to gravity. However, consecutive divisions of individual cells were generally along the same axis or at 90 degrees to the previous division, with equal probability. Thus, successive divisions were restricted to orthogonal planes, but the choice of plane appeared to be random, unlike the ordered sequence of cleavage orientations seen during early embryo development.

  2. Melatonin alleviates hyperthyroidism induced oxidative stress and neuronal cell death in hippocampus of aged female golden hamster, Mesocricetus auratus.

    PubMed

    Rao, Geeta; Verma, Rakesh; Mukherjee, Arun; Haldar, Chandana; Agrawal, Neeraj Kumar

    2016-09-01

    Oxidative stress is a well known phenomenon under hyperthyroid condition that induces various physiological and neural problems with a higher prevalence in females. We, therefore investigated the antioxidant potential of melatonin (Mel) on hyperthyroidism-induced oxidative stress and neuronal cell death in the hippocampus region of brain (cognition and memory centre) of aged female golden hamster, Mesocricetus auratus. Aged female hamsters were randomly divided into four experimental groups (n=7); group-I: control, group-II: Melatonin (5mgkg(-1)day(-1), i.p., for one week), group-III: Hyperthyroid (100μg kg(-1)day(-1), i.p., for two weeks) and group-IV- Hyper+Mel. Hormonal profiles (thyroid and melatonin), activity of antioxidant enzymes (SOD, CAT and GPX), lipid peroxidation level (TBARS) and the specific apoptotic markers (Bax/Bcl-2 ratio and Caspase-3) expression were evaluated. A significant increase in the profile of total thyroid hormone (tT3 and tT4) in hyperthyroidic group as compared to control while tT3 significantly decreased in melatonin treated hyperthyroidic group. However, Mel level significantly decreased in hyperthyroidic group but increased in melatonin treated hyperthyroidic group. Further, the number of immune-positive cells for thyroid hormone receptor-alpha (TR-α) decreased in the hippocampus of hyperthyroidic group and increased in melatonin treated hyperthyroidic group. Profiles of antioxidant enzymes showed a significant decrease in hyperthyroidic group with a simultaneous increase in lipid peroxidation (TBARS). Melatonin treatment to hyperthyroidic group lead to decreased TBARS level with a concomitant increase in antioxidant enzyme activity. Moreover, increased expression of Bax/Bcl-2 ratio and Caspase-3, in hyperthyroidic group had elevated neuronal cell death in hippocampal area and melatonin treatment reduced its expression in hyperthyroidic group. Our findings thus indicate that melatonin reduced the hyperthyroidism

  3. Dim light at night provokes depression-like behaviors and reduces CA1 dendritic spine density in female hamsters.

    PubMed

    Bedrosian, Tracy A; Fonken, Laura K; Walton, James C; Haim, Abraham; Nelson, Randy J

    2011-08-01

    The prevalence of major depression has increased in recent decades; however, the underlying causes of this phenomenon remain unspecified. One environmental change that has coincided with elevated rates of depression is increased exposure to artificial light at night. Shift workers and others chronically exposed to light at night are at increased risk of mood disorders, suggesting that nighttime illumination may influence brain mechanisms mediating affect. We tested the hypothesis that exposure to dim light at night may impact affective responses and alter morphology of hippocampal neurons. Ovariectomized adult female Siberian hamsters (Phodopus sungorus) were housed for 8 weeks in either a light/dark cycle (LD) or a light/dim light cycle (DM), and then behavior was assayed. DM-hamsters displayed more depression-like responses in the forced swim and the sucrose anhedonia tests compared with LD-hamsters. Conversely, in the elevated plus maze DM-hamsters reduced anxiety-like behaviors. Brains from the same animals were processed using the Golgi-Cox method and hippocampal neurons within CA1, CA3, and the dentate gyrus were analyzed for morphological characteristics. In CA1, DM-hamsters significantly reduced dendritic spine density on both apical and basilar dendrites, an effect which was not mediated by baseline cortisol, as concentrations were equivalent between groups. These results demonstrate dim light at night is sufficient to reduce synaptic spine connections to CA1. Importantly, the present results suggest that night-time low level illumination, comparable to levels that are pervasive in North America and Europe, may contribute to the increasing prevalence of mood disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Purification of recombinant human secretory phospholipase A2 (group II) produced in long-term immobilized cell culture.

    PubMed

    Levin, W; Daniel, R F; Stoner, C R; Stoller, T J; Wardwell-Swanson, J A; Angelillo, Y M; Familletti, P C; Crowl, R M

    1992-02-01

    Recombinant human secretory phospholipase A2 (Group II) was expressed in long-term culture of immobilized Chinese hamster ovary cells utilizing a continuous-perfusion airlift bioreactor. The bioreactor was continuously perfused with cell-culture medium supplemented with 5% fetal calf serum at an average flow rate of 5 liters/day for 30 days. Recombinant phospholipase A2, at concentrations ranging from 100 to 500 micrograms/liter, was purified to apparent homogeneity by an efficient two-step procedure involving a silica-based cation-exchange resin and hydrophobic interaction chromatography (greater than 65% recovery of phospholipase A2). The purified recombinant protein has an apparent molecular weight of 16 kDa, identical to that of purified human placental or synovial fluid phospholipase A2, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Application of the purified protein onto several different gel filtration columns resulted in elution of the protein at molecular weights corresponding to 3.1-4.7 kDa, suggesting an interaction of the protein with the column resins. However, analytical ultracentrifugation experiments revealed that the protein behaves as a monomer (13.8-14.2 kDa) over a protein concentration range of approximately 10 micrograms/ml to 5 mg/ml. With autoclaved Escherichia coli membranes as substrate, the recombinant protein has catalytic properties (pH optimum, effects of bovine serum albumin, sodium chloride concentration, and requirement for calcium) similar to those of the protein purified from human placenta.

  5. Measuring the spectrum of mutation induced by nitrogen ions and protons in the human-hamster hybrid cell line A(L)C

    NASA Technical Reports Server (NTRS)

    Kraemer, S. M.; Kronenberg, A.; Ueno, A.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    2000-01-01

    Astronauts can be exposed to charged particles, including protons, alpha particles and heavier ions, during space flights. Therefore, studying the biological effectiveness of these sparsely and densely ionizing radiations is important to understanding the potential health effects for astronauts. We evaluated the mutagenic effectiveness of sparsely ionizing 55 MeV protons and densely ionizing 32 MeV/nucleon nitrogen ions using cells of two human-hamster cell lines, A(L) and A(L)C. We have previously characterized a spectrum of mutations, including megabase deletions, in human chromosome 11, the sole human chromosome in the human-hamster hybrid cell lines A(L)C and A(L). CD59(-) mutants have lost expression of a human cell surface antigen encoded by the CD59 gene located at 11p13. Deletion of genes located on the tip of the short arm of 11 (11p15.5) is lethal to the A(L) hybrid, so that CD59 mutants that lose the entire chromosome 11 die and escape detection. In contrast, deletion of the 11p15.5 region is not lethal in the hybrid A(L)C, allowing for the detection of chromosome loss or other chromosomal mutations involving 11p15.5. The 55 MeV protons and 32 MeV/nucleon nitrogen ions were each about 10 times more mutagenic per unit dose at the CD59 locus in A(L)C cells than in A(L) cells. In the case of nitrogen ions, the mutations observed in A(L)C cells were predominantly due to chromosome loss events or 11p deletions, often containing a breakpoint in the pericentromeric region. The increase in the CD59(-) mutant fraction for A(L)C cells exposed to protons was associated with either translocation of portions of 11q onto a hamster chromosome, or discontinuous or "skipping" mutations. We demonstrate here that A(L)C cells are a powerful tool that will aid in the understanding of the mutagenic effects of different types of ionizing radiation.

  6. Seasonal morphological changes in the ovary of the Jungle crow (Corvus macrorhynchos).

    PubMed

    Islam, Muhammad Nazrul; Zhu, Xiao Bo; Aoyama, Masato; Sugita, Shoei

    2010-12-01

    Morphometric and histological studies were conducted to examine the seasonal ovarian changes in the Jungle crow of the Kanto area, Japan, from December to June. The ovary weights, largest diameters and atresias of the ovarian follicles and steroid-producing cells were examined. Hematoxylin and eosin-stained ovary sections and ImageJ software were used. The most developed ovary weight increased 373-fold in April, compared to those in December, followed by a 29-fold decrease in June. The average largest follicle diameter of the December and the January ovaries were 1.03 ± 0.35 and 1.05 ± 0.3 mm, respectively. The average largest follicle diameter increased by 2-fold in February, 4-fold in March and 8-fold in April, compared to those of December and January. Thereafter, the average largest follicle diameter declined by 6-fold in June. The average ovary weight and the largest follicle diameter in April increased significantly (P < 0.05) compared to those of December and January, followed by a significant decrease (P < 0.05) in June. The ovary weight correlated well with the expansion of the largest follicular diameter. Non-bursting and bursting atresias of smaller follicles were more common in the December, January, February and June ovaries, and bursting atresias of larger follicles were more common in the March, April and May ovaries. Ovarian steroidogenic cells became heavily charged with lipids in December, January, February and June, and they depleted their lipids in March and April, which might be due to steroid synthesis. Our results indicate that there are significant seasonal histomorphologic variations in the Jungle crow ovary.

  7. Scrambled Eggs: Apoptotic Cell Clearance by Non-Professional Phagocytes in the Drosophila Ovary

    PubMed Central

    Serizier, Sandy B.; McCall, Kimberly

    2017-01-01

    For half of a century, it has been known that non-professional phagocytes, such as fibroblasts, endothelial, and epithelial cells, are capable of efferocytosis (engulfment of apoptotic cells). Non-professional phagocytes differ from professional phagocytes in the range and efficiency of engulfment. Much of the recognition and underlying signaling machinery between non-professional and professional phagocytes is the same, but it is not known how the engulfment capacity of non-professional phagocytes is controlled. Moreover, the signaling networks involved in cell corpse recognition, engulfment, and phagosome maturation are only partially understood. The Drosophila ovary provides an excellent system to investigate the regulation of phagocytic activity by epithelial cells, a major class of non-professional phagocytes. During Drosophila oogenesis, mid-stage egg chambers undergo apoptosis of the germline in response to nutrient deprivation. Epithelial follicle cells then undergo major cell shape changes and concomitantly engulf the germline material. Our previous work has established that Draper and the integrin α-PS3/β-PS heterodimer are required in follicle cells for germline cell clearance. In addition, we have characterized phagosome maturation pathways, and found that the JNK pathway amplifies the engulfment response. In this review, we discuss recent advances on the interplay between engulfment pathways in the follicular epithelium for cell clearance in the Drosophila ovary. We also provide a comparison to apoptotic cell clearance mechanisms in C. elegans and mammals, illustrating strong conservation of efferocytosis mechanisms by non-professional phagocytes. PMID:29238344

  8. Scrambled Eggs: Apoptotic Cell Clearance by Non-Professional Phagocytes in the Drosophila Ovary.

    PubMed

    Serizier, Sandy B; McCall, Kimberly

    2017-01-01

    For half of a century, it has been known that non-professional phagocytes, such as fibroblasts, endothelial, and epithelial cells, are capable of efferocytosis (engulfment of apoptotic cells). Non-professional phagocytes differ from professional phagocytes in the range and efficiency of engulfment. Much of the recognition and underlying signaling machinery between non-professional and professional phagocytes is the same, but it is not known how the engulfment capacity of non-professional phagocytes is controlled. Moreover, the signaling networks involved in cell corpse recognition, engulfment, and phagosome maturation are only partially understood. The Drosophila ovary provides an excellent system to investigate the regulation of phagocytic activity by epithelial cells, a major class of non-professional phagocytes. During Drosophila oogenesis, mid-stage egg chambers undergo apoptosis of the germline in response to nutrient deprivation. Epithelial follicle cells then undergo major cell shape changes and concomitantly engulf the germline material. Our previous work has established that Draper and the integrin α-PS3/β-PS heterodimer are required in follicle cells for germline cell clearance. In addition, we have characterized phagosome maturation pathways, and found that the JNK pathway amplifies the engulfment response. In this review, we discuss recent advances on the interplay between engulfment pathways in the follicular epithelium for cell clearance in the Drosophila ovary. We also provide a comparison to apoptotic cell clearance mechanisms in C. elegans and mammals, illustrating strong conservation of efferocytosis mechanisms by non-professional phagocytes.

  9. Cytotoxicities and genotoxicities of cements based on calcium silicate and of dental formocresol.

    PubMed

    Ko, Hyunjung; Jeong, Youngdan; Kim, Miri

    2017-03-01

    Increasing interest is being paid to the toxicities of dental materials. The purpose of this study was to determine the cytotoxicities and genotoxicities of endodontic compounds to Chinese hamster ovary (CHO-K1) reproductive cells. Cultured CHO-K1 cells were treated with dental formocresol, two types of calcium hydroxide paste, and two types of mineral trioxide aggregate cement for 24h. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was performed on each culture, and the micronucleus frequency was determined by performing a micronucleus assay. Alkaline comet assay and γ-H2AX immunofluorescence assay were used to detect DNA damage. Out of the five materials tested, only dental formocresol significantly increased DNA damage. The mineral trioxide aggregate cements based on calcium silicate were not found to be potentially genotoxic. The data suggest that dental formocresol should not be recommended for use in vital pulp therapy on young teeth. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. [Application of dhfr gene negative Chinese hamster ovary cell line to express hepatitis B virus surface antigen].

    PubMed

    Yi, Y; Zhang, M; Liu, C

    2001-06-01

    To set up an efficient expressing system for recombinant hepatitis B virus surface antigen (HBsAg) in dhfr gene negative CHO cell line. HBsAg gene expressing plasmid pCI-dhfr-S was constructed by integrating HBsAg gene into plasmid pCI which carries dhfr gene. The HBsAg expressing cell line was set up by transfection of plasmid pCI-dhfr-S into dhfr gene negative CHO cell line in the way of lipofectin. Under the selective pressure of MTX, 18 of 28 clonized cell lines expressed HBsAg, 4 of them reached a high titer of 1:32 and protein content 1-3 micrograms/ml. In this study, the high level expression of HBsAg demonstrated that the dhfr negative mammalian cell line when recombined with plasmid harboring the corresponding deleted gene can efficiently express the foreign gene. The further steps toward building optimum conditions of the expressing system and the increase of expressed product are under study.

  11. Na+/H+ exchange regulatory factor 1 is required for ROMK1 K+ channel expression in the surface membrane of cultured M-1 cortical collecting duct cells.

    PubMed

    Suzuki, Takashi; Nakamura, Kazuyoshi; Mayanagi, Taira; Sobue, Kenji; Kubokawa, Manabu

    2017-07-22

    The ROMK1 K + channel, a member of the ROMK channel family, is the major candidate for the K + secretion pathway in the renal cortical collecting duct (CCD). ROMK1 possesses a PDZ domain-binding motif at its C-terminus that is considered a modulator of ROMK1 expression via interaction with Na + /H + exchange regulatory factor (NHERF) 1 and NHERF2 scaffold protein. Although NHERF1 is a potential binding partner of the ROMK1 K + channel, the interaction between NHERF1 and K + channel activity remains unclear. Therefore, in this study, we knocked down NHERF1 in cultured M-1 cells derived from mouse CCD and investigated the surface expression and K + channel current in these cells after exogenous transfection with EGFP-ROMK1. NHERF1 knockdown resulted in reduced surface expression of ROMK1 as indicated by a cell biotinylation assay. Using the patch-clamp technique, we further found that the number of active channels per patched membrane and the Ba 2+ -sensitive whole-cell K + current were decreased in the knockdown cells, suggesting that reduced K + current was accompanied by decreased surface expression of ROMK1 in the NHERF1 knockdown cells. Our results provide evidence that NHERF1 mediates K + current activity through acceleration of the surface expression of ROMK1 K + channels in M-1 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Response to high LET radiation 12C (LET, 295 keV/microm) in M5 cells, a radio resistant cell strain derived from Chinese hamster V79 cells.

    PubMed

    Pathak, R; Sarma, A; Sengupta, B; Dey, S K; Khuda-Bukhsh, A R

    2007-01-01

    To study the effects of 12C-beam of 295 keV/microm (57.24 MeV) on M5 and Chinese hamster V79 cells by using cytogenetic assays like micronuclei (MN) induction, chromosomal aberrations (CA) and apoptosis. Additionally, the relative survival of these two cell lines was tested by the colony forming ability of the cells, with a view to understanding the mechanism of cellular damages that lead to difference in cell survival. Confluent cells were irradiated with 12C-beam at various doses using 15UD Pelletron accelerator. Cell survival was studied by the colony forming ability of cells. MN assay was done by fluorescent staining. Different types of chromosomal aberrations in metaphase cells were scored at 12 h after irradiation. Apoptosis was measured at different post irradiation times as detected by nuclear fragmentation and DNA ladder was prepared after 48 h of incubation. Dose-dependent decrease in surviving fractions was found in both the cell lines. However, the surviving fractions were higher in M5 cells in comparison to V79 cells when exposed to the same radiation doses. On the other hand, induced MN frequencies, CA frequencies and apoptosis percentages were less in M5 cells than V79 cells. Very good correlations between surviving fractions and induced MN frequencies or induced total CA or induced apoptosis percentages were obtained in this study. The cell strain M5 showed relatively more radio-resistance to 12C-beam compared to Chinese hamster V79 cells in this study. As the MN formation, CA and apoptosis induction were less in M5 cells as compared to parental V79 cells, the higher cell survival in the former could possibly be attributed to their better repairing ability leading to higher cell survival.

  13. Attenuation Measurements of Cell Pellets Using Through Transmission

    NASA Astrophysics Data System (ADS)

    Vadas, Justin; Greene, Claudia; Grygotis, Emma; Kuhn, Stephen; Mahlalela, Sanele; Newland, Tinisha; Ovutmen, Idil; Herd, Maria-Teresa

    2011-10-01

    A better understanding of differences in ultrasound tissue characteristics (such as speed of sound, attenuation, and backscatter coefficients) of benign compared to malignant cells could lead to improved cancer detection and diagnosis. A narrow band technique for measuring ultrasonic speed of sound and attenuation of small biological materials was developed and tested. Several mechanical improvements were made to the system to drastically improve alignment, allowing for accurate measurements of small cell pellets. Narrow band attenuation measurements were made first with tissue-mimicking phantoms and then with three different types of cell pellets: Chinese hamster ovary cells, healthy human prostate cells, and cancerous human prostate cells. Attenuation and speed of sound results for all three cell types, as well as the culture medium and tissue mimicking phantoms, are presented for a frequency range of 5 to 25 MHz.

  14. Immunological recognition of different forms of the neurotensin receptor in transfected cells and rat brain.

    PubMed Central

    Boudin, H; Grauz-Guyon, A; Faure, M P; Forgez, P; Lhiaubet, A M; Dennis, M; Beaudet, A; Rostene, W; Pelaprat, D

    1995-01-01

    In this work, the molecular forms of the rat neurotensin receptor (NTR) expressed in transfected Chinese hamster ovary (CHO) cells, in infected Sf9 insect cells and in rat cerebral cortex were immunologically detected by means of an anti-peptide antibody raised against a fragment of the third intracellular loop of the receptor. Immunoblot experiments against a fusion protein indicated that the anti-peptide antibody recognized, under denaturing conditions, the corresponding amino acid sequence within the NTR. In immunoblot analysis of membranes from NTR-transfected CHO cells, high levels of immunoreactivity were observed between 60 and 72 kDa, while only a faint labelling was observed at 47 kDa, the molecular mass deduced for the rat NTR cDNA. The bands of high molecular mass were no longer observed after deglycosylation of membrane proteins by peptide N-glycosidase F, indicating that they represented glycosylated forms of the receptor. Extracts of membranes derived from baculovirus-infected Sf9 insect-cells expressing the NTR provided a quite different immunoblot pattern, since the major band detected in that case was at 47 kDa, the molecular size of the non-glycosylated receptor. Taken together, these data show that, while most of the NTR protein was glycosylated in CHO cells, it was unglycosylated in Sf9 insect-cells. In addition, molecular sizes of the receptor proteins observed in these two cell lines differed from those obtained for the NTR endogenously expressed in the rat cerebral cortex of 7 day-old rats, where bands at 56 and 54 kDa were detected. Binding experiments carried out on membrane preparations obtained from baculovirus-infected Sf9 cells demonstrated that the immunogenic sequence was still accessible to the antibody when the receptor was embedded in the cell membrane. Immunohistochemical studies carried out on both transfected CHO cells and infected Sf9 cells confirmed this interpretation and further indicated that the antibody could be applied

  15. Sex, stem cells and tumors in the Drosophila ovary.

    PubMed

    Salz, Helen K

    2013-01-01

    The Drosophila Sex-lethal (Sxl) gene encodes a female-specific RNA binding protein that in somatic cells globally regulates all aspects of female-specific development and behavior. Sxl also has a critical, but less well understood, role in female germ cells. Germ cells without Sxl protein can adopt a stem cell fate when housed in a normal ovary, but fail to successfully execute the self-renewal differentiation fate switch. The failure to differentiate is accompanied by the inappropriate expression of a set of male specific markers, continued proliferation, and formation of a tumor. The findings in Chau et al., (2012) identify the germline stem cell maintenance factor nanos as one of its target genes, and suggest that Sxl enables the switch from germline stem cell to committed daughter cell by posttranscriptional downregulation of nanos expression. These studies provide the basis for a new model in which Sxl directly couples sexual identity with the self-renewal differentiation decision and raises several interesting questions about the genesis of the tumor phenotype.

  16. Vitamin D3 regulates steroidogenesis in granulosa cells through AMP-activated protein kinase (AMPK) activation in a mouse model of polycystic ovary syndrome.

    PubMed

    Bakhshalizadeh, Shabnam; Amidi, Fardin; Shirazi, Reza; Shabani Nashtaei, Maryam

    2018-06-01

    Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disorder in reproductive-aged women. Hormonal abnormality caused by steroidogenesis disturbances appears to be the main culprit of the clinical picture in PCOS. Vitamin D3 could regulate steroidogenesis in granulosa cells, but the mechanism of action of vitamin D3 on steroidogenesis remains unknown. AMP-activated protein kinase (AMPK) has a modulating role in steroid hormone production. We investigated the effect of vitamin D3 on steroidogenesis in cultured granulosa cells of dehydroepiandrosterone-induced PCOS mice and studied the involvement of AMPK signalling pathway in the current process. Immunoblotting assay showed that vitamin D3 could increase phosphorylation of AMPK alpha and acetyl-CoA carboxylase, main substrate of AMPK. Vitamin D3 and 5-aminoimidazole-4-carboxamide-1-β-D-riboside or Aicar (AMPK activator) not only reduced gene expression of steroidogenic enzymes (P450scc or Cyp11a1, StAR, Cyp19a1 and 3B-HSD), but also reduced production of progesterone and 17B-estradiol assessed by radioimmunoassay. Pretreatment with compound C (AMPK inhibitor) decreased APMK phosphorylation and eliminated the effects of vitamin D3 and Aicar on steroidogenic enzymes expression and estradiol and progesterone production. This study showed that vitamin D3 has the main role in regulating of steroidogenesis in granulosa cells of mouse polycystic ovary through activation of the AMPK signalling pathway. Polycystic ovarian syndrome (PCOS) is an endocrine disorder of women in reproductive age. This disorder is partly related to disruption in steroidogenesis pathway and dysregulation of estradiol and progesterone production in granulosa cells of polycystic ovaries. Previously, we have shown that vitamin D3 could modulate steroidogenesis pathway in PCOS granulosa cells. In this study, we investigate the molecular mechanism of vitamin D3 in regulation of steroidogenesis pathway. We have shown that vitamin D3 has a

  17. Germ cell tumors: Insights from the Drosophila ovary and the mouse testis

    PubMed Central

    Salz, Helen K.; Dawson, Emily P.; Heaney, Jason D.

    2017-01-01

    SUMMARY Ovarian and testicular germ cell tumors of young adults are thought to arise from defects in germ cell development, but the molecular mechanisms underlying malignant transformation are poorly understood. In this review, we focus on the biology of germ cell tumor formation in the Drosophila ovary and the mouse testis, for which the evidence supports common underlying mechanisms such as blocking initiation into the differentiation pathway, impaired lineage progression, and sexual identity instability. We then discuss how these concepts inform our understanding of the disease in humans. PMID:28079292

  18. Selective deletion of Pten in theca-interstitial cells leads to androgen excess and ovarian dysfunction in mice.

    PubMed

    Lan, Zi-Jian; Krause, M S; Redding, S D; Li, X; Wu, G Z; Zhou, H X; Bohler, H C; Ko, C; Cooney, A J; Zhou, Junmei; Lei, Z M

    2017-03-15

    Theca cell-selective Pten mutation (tPtenMT) in mice resulted in increases in PDK1 and Akt phosphorylation, indicating an over-activation of PI3K signaling in the ovaries. These mice displayed elevated androgen levels, ovary enlargement, antral follicle accumulation, early fertility loss and increased expression of Lhcgr and genes that are crucial to androgenesis. These abnormalities were partially reversed by treatments of PI3K or Akt inhibitor. LH actions in Pten deficient theca cells were potentiated. The phosphorylation of Foxo1 was increased, while the binding of Foxo1 to forkhead response elements in the Lhcgr promoter was reduced in tPtenMT theca cells, implying a mechanism by which PI3K/Akt-induced upregulation of Lhcgr in theca cells might be mediated by reducing the inhibitory effect of Foxo1 on the Lhcgr promoter. The phenotype of tPtenMT females is reminiscent of human PCOS and suggests that dysregulated PI3K cascade in theca cells may be involved in certain types of PCOS pathogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Identification of a novel C1q family member in color crucian carp (Carassius auratus) ovary.

    PubMed

    Chen, Bo; Gui, Jianfang

    2004-07-01

    Potential roles of C1q/tumor necrosis factor (TNF) superfamily proteins have been observed in vertebrate oogenesis and oocyte maturation, but no ovary-specific member has been identified so far. In this study, we have cloned and identified a novel member of C1q family with a C1q domain in the C-terminal from fully grown oocyte cDNA library of color crucian carp and demonstrated that the gene might be specifically expressed in ovary and therefore designated as Carassius auratus ovary-specific C1q-like factor, CaOC1q-like factor. It encodes a 213 amino acid protein with a 17 amino acid signal peptide. There is only one protein band of about 24.5 kDa in the extracts from phase I to phase IV oocytes, but two positive protein bands are detected in the extracts of mature eggs and fertilized eggs. Furthermore, the mobility shift of the smaller target protein band cannot be eliminated by phosphatase treatment, but the larger protein band increases its mobility on the gel after phosphatase treatment, suggesting that the larger protein might be a phosphorylated form. Immunofluorescence localization indicates that the CaOC1q-like proteins localize in cytoplasm, cytoplasm membrane and egg envelope of the oocytes at cortical granule stage and vitellogenesis stage, whereas they were compressed to cytoplasm margin in ovulated mature eggs and discharged into perivitelline space between cytoplasm membrane and egg envelope after egg fertilization. Further studies on distribution and translocation mechanism of the CaOC1q-like factor will be benefit to elucidate the unique function in oogenesis, oocyte maturation and egg fertilization.

  20. Escherichia coli K1-induced cytopathogenicity of human brain microvascular endothelial cells.

    PubMed

    Khan, Naveed Ahmed; Iqbal, Junaid; Siddiqui, Ruqaiyyah

    2012-01-01

    Pathophysiology of Escherichia coli sepsis is complex involving circulating bacterial products, cytokine release, and sustained bacteremia resulting in the damage of vascular endothelium. Here, it is shown that E. coli K1 produced cytopathogenicity of human brain microvascular endothelial cells (HBMEC), that constitute the blood-brain barrier. Whole bacteria or their conditioned medium produced severe HBMEC damage suggesting E. coli K1-cytopathogenicity is a contact-independent process. Using lipopolysaccharide (LPS) inhibitor, polymyxin B, purified LPS extracted from E. coli K1 as well as LPS mutant derived from E. coli K1, we showed that LPS is not the sole determinant of E. coli K1-mediated HBMEC death. Bacterial product(s) for HBMEC cytopathogenicity was heat-labile suggesting LPS-associated proteins. Several isogenic gene-deletion mutants (ΔompA, ΔibeA, ΔibeB, Δcnf1) exhibited HBMEC cytopathogenicity similar to that produced by wild type E. coli K1. E. coli K1-mediated HBMEC death was independent of phosphatidylinositol 3-kinase (PI3K) but dependent partially on focal adhesion kinase (FAK) using HBMEC expressing dominant negative FAK and PI3K. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Zika virus infection of adult and fetal STAT2 knock-out hamsters.

    PubMed

    Siddharthan, Venkatraman; Van Wettere, Arnaud J; Li, Rong; Miao, Jinxin; Wang, Zhongde; Morrey, John D; Julander, Justin G

    2017-07-01

    Zika virus (ZIKV) infection was investigated in adult and fetal STAT2 knock-out (KO) hamsters. Subcutaneous injection of ZIKV of adults resulted in morbidity, mortality, and infection of the uterus, placenta, brain, spinal cord, and testicles, thus providing an opportunity to evaluate congenital ZIKV infection in a second rodent species besides mice. ZIKV-infected cells with morphologies of Sertoli cells and spermatogonia were observed in the testes, which may have implications for sexual transmission and male sterility. Neonates exposed as fetuses to ZIKV at 8 days post-coitus were not smaller than controls. Nevertheless, infectious virus and ZIKV RNA was detected in some, but not all, placentas and fetal brains of KO hamsters. STAT2 KO hamsters may be useful for addressing sexual transmission, pathogenesis, routes of fetal infection, and neurological disease outcomes, and may also be used in antiviral or vaccine studies to identify intervention strategies. Copyright © 2017. Published by Elsevier Inc.

  2. A signature of 12 microRNAs is robustly associated with growth rate in a variety of CHO cell lines.

    PubMed

    Klanert, Gerald; Jadhav, Vaibhav; Shanmukam, Vinoth; Diendorfer, Andreas; Karbiener, Michael; Scheideler, Marcel; Bort, Juan Hernández; Grillari, Johannes; Hackl, Matthias; Borth, Nicole

    2016-10-10

    As Chinese Hamster Ovary (CHO) cells are the cell line of choice for the production of human-like recombinant proteins, there is interest in genetic optimization of host cell lines to overcome certain limitations in their growth rate and protein secretion. At the same time, a detailed understanding of these processes could be used to advantage by identification of marker transcripts that characterize states of performance. In this context, microRNAs (miRNAs) that exhibit a robust correlation to the growth rate of CHO cells were determined by analyzing miRNA expression profiles in a comprehensive collection of 46 samples including CHO-K1, CHO-S and CHO-DUKXB11, which were adapted to various culture conditions, and analyzed in different growth stages using microarrays. By applying Spearman or Pearson correlation coefficient criteria of>|0.6|, miRNAs with high correlation to the overall growth, or growth rates observed in exponential, serum-free, and serum-free exponential phase were identified. An overlap of twelve miRNAs common for all sample sets was revealed, with nine positively and three negatively correlating miRNAs. The here identified panel of miRNAs can help to understand growth regulation in CHO cells and contains putative engineering targets as well as biomarkers for cell lines with advantageous growth characteristics. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Effects of lipopolysaccharide biosynthesis mutations on K1 polysaccharide association with the Escherichia coli cell surface.

    PubMed

    Jiménez, Natalia; Senchenkova, Sofya N; Knirel, Yuriy A; Pieretti, Giuseppina; Corsaro, Maria M; Aquilini, Eleonora; Regué, Miguel; Merino, Susana; Tomás, Juan M

    2012-07-01

    The presence of cell-bound K1 capsule and K1 polysaccharide in culture supernatants was determined in a series of in-frame nonpolar core biosynthetic mutants from Escherichia coli KT1094 (K1, R1 core lipopolysaccharide [LPS] type) for which the major core oligosaccharide structures were determined. Cell-bound K1 capsule was absent from mutants devoid of phosphoryl modifications on L-glycero-D-manno-heptose residues (HepI and HepII) of the inner-core LPS and reduced in mutants devoid of phosphoryl modification on HepII or devoid of HepIII. In contrast, in all of the mutants, K1 polysaccharide was found in culture supernatants. These results were confirmed by using a mutant with a deletion spanning from the hldD to waaQ genes of the waa gene cluster to which individual genes were reintroduced. A nuclear magnetic resonance (NMR) analysis of core LPS from HepIII-deficient mutants showed an alteration in the pattern of phosphoryl modifications. A cell extract containing both K1 capsule polysaccharide and LPS obtained from an O-antigen-deficient mutant could be resolved into K1 polysaccharide and core LPS by column chromatography only when EDTA and deoxycholate (DOC) buffer were used. These results suggest that the K1 polysaccharide remains cell associated by ionically interacting with the phosphate-negative charges of the core LPS.

  4. Effects of Lipopolysaccharide Biosynthesis Mutations on K1 Polysaccharide Association with the Escherichia coli Cell Surface

    PubMed Central

    Jiménez, Natalia; Senchenkova, Sofya N.; Knirel, Yuriy A.; Pieretti, Giuseppina; Corsaro, Maria M.; Aquilini, Eleonora; Regué, Miguel; Merino, Susana

    2012-01-01

    The presence of cell-bound K1 capsule and K1 polysaccharide in culture supernatants was determined in a series of in-frame nonpolar core biosynthetic mutants from Escherichia coli KT1094 (K1, R1 core lipopolysaccharide [LPS] type) for which the major core oligosaccharide structures were determined. Cell-bound K1 capsule was absent from mutants devoid of phosphoryl modifications on l-glycero-d-manno-heptose residues (HepI and HepII) of the inner-core LPS and reduced in mutants devoid of phosphoryl modification on HepII or devoid of HepIII. In contrast, in all of the mutants, K1 polysaccharide was found in culture supernatants. These results were confirmed by using a mutant with a deletion spanning from the hldD to waaQ genes of the waa gene cluster to which individual genes were reintroduced. A nuclear magnetic resonance (NMR) analysis of core LPS from HepIII-deficient mutants showed an alteration in the pattern of phosphoryl modifications. A cell extract containing both K1 capsule polysaccharide and LPS obtained from an O-antigen-deficient mutant could be resolved into K1 polysaccharide and core LPS by column chromatography only when EDTA and deoxycholate (DOC) buffer were used. These results suggest that the K1 polysaccharide remains cell associated by ionically interacting with the phosphate-negative charges of the core LPS. PMID:22522903

  5. Id-1 promotes osteosarcoma cell growth and inhibits cell apoptosis via PI3K/AKT signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Liang; Liao, Qi; Tang, Qiang

    2016-02-12

    Accumulating evidence reveals that Id-1 is upregulated and functions as a potential tumor promoter in several human cancer types. However, the role of Id-1 in osteosarcoma (OS) is unknown. In present study, we found that Id-1 expression was elevated in OS tissues than adjacent normal bone tissues. More importantly, we demonstrated that overexpression of Id-1 is significantly correlated with tumor progression and poor survival in OS patients. Furthermore, increased expression of Id-1 was observed in OS cell lines and ectopic expression of Id-1 significantly enhanced in vitro cell proliferation and promoted in vivo tumor growth, whereas knockdown of Id-1 suppressed OS cellsmore » growth. Moreover, our experimental data revealed that Id-1 promotes cell proliferation by facilitating cell cycle progression and inhibits cell apoptosis. Mechanistically, the effects of Id-1 in OS cells is at least partly through activation of PI3K/Akt signaling pathway. Therefore, we identified a tumorigenic role of Id-1 in OS and suggested a potential therapeutic target for OS patients. - Highlights: • Id-1 expression is positively correlated in OS patients with poor prognosis. • Overexpression of Id-1 promotes OS cell growth in vitro and in vivo. • Id-1induces cell cycle progression and inhibits cell apoptosis. • PI3K/Akt signaling pathway contributed to the oncogenic effects of Id-1 in OS cells.« less

  6. An Online Compendium of CHO RNA-Seq Data Allows Identification of CHO Cell Line-specific Transcriptomic Signatures.

    PubMed

    Singh, Ankita; Kildegaard, Helene F; Andersen, Mikael R

    2018-05-15

    Chinese hamster ovary (CHO) cell lines can fold, assemble and modify proteins post-translationally to produce human-like proteins; as a consequence, it is the single most common expression systems for industrial production of recombinant therapeutic proteins. A thorough knowledge of cultivation conditions of different CHO cell lines has been developed over the last decade, but comprehending gene or pathway-specific distinctions between CHO cell lines at transcriptome level remains a challenge. To address these challenges, we compiled a compendium of 23 RNA-Seq studies from public and in-house data on CHO cell lines, i.e. CHO-S, CHO-K1 and DG44. Significantly differentially expressed (DE) genes particularly related to subcellular structure and macromolecular categories were used to identify differences between the cell lines. A R-based web application was developed specifically for CHO cell lines to further visualize expression values across different cell lines, and make available the normalized full CHO data set graphically as a CHO research community resource. This study quantitatively categorizes CHO cell lines based on patterns at transcriptomic level and detects gene and pathway specific key distinctions among sibling cell lines. Studies such as this can be used to select desired characteristics across various CHO cell lines. Furthermore, the availability of the data as an internet-based application can be applied to broad range of CHO engineering applications. This article is protected by copyright. All rights reserved.

  7. Male hamster preference for odors of female hamster vaginal discharges: studies of experiential and hormonal determinants.

    PubMed

    Gregory, E; Engel, K; Pfaff, D

    1975-07-01

    Male hamsters approach sources of odors from female hamster vaginal discharges and spend significantly more time around these odor sources than around control locations in the test box. This preference for female hamster vaginal odors appears in sexually inexperienced as well as experienced males, even in individuals isolated from females since the time of weaning. Castration significantly reduces the sex odor preference, and treatment with testosterone propionate partially restores it.

  8. Chaetominine reduces MRP1-mediated drug resistance via inhibiting PI3K/Akt/Nrf2 signaling pathway in K562/Adr human leukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Jingyun; Wei, Xing; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai

    Drug resistance limits leukemia treatment and chaetominine, a cytotoxic alkaloid that promotes apoptosis in a K562 human leukemia cell line via the mitochondrial pathway was studied with respect to chemoresistance in a K562/Adr human resistant leukemia cell line. Cytotoxicity assays indicated that K562/Adr resistance to adriamycin (ADR) did not occur in the presence of chaetominine and that chaetominine increased chemosensitivity of K562/Adr to ADR. Data show that chaetominine enhanced ADR-induced apoptosis and intracellular ADR accumulation in K562/Adr cells. Accordingly, chaetominine induced apoptosis by upregulating ROS, pro-apoptotic Bax and downregulating anti-apoptotic Bcl-2. RT-PCR and western-blot confirmed that chaetominine suppressed highly expressedmore » MRP1 at mRNA and protein levels. But little obvious alternation of another drug transporter MDR1 mRNA was observed. Furthermore, inhibition of MRP1 by chaetominine relied on inhibiting Akt phosphorylation and nuclear Nrf2. In summary, chaetominine strongly reverses drug resistance by interfering with the PI3K/Akt/Nrf2 signaling, resulting in reduction of MRP1-mediated drug efflux and induction of Bax/Bcl-2-dependent apoptosis in an ADR-resistant K562/Adr leukemia cell line. - Highlights: • Chaetominine enhanced chemosensitivity of ADR against K562/Adr cells. • Chaetominine increased intracellular ADR levels via inhibiting MRP1. • Chaetominine induced apoptosis of K562/Adr cells through upregulation of ROS and modulation of Bax/Bcl-2. • Inhibition of MRP1 and Nrf2 by chaetominine treatment was correlative with blockade of PI3K/Akt signaling.« less

  9. Microwave frequency sensor for detection of biological cells in microfluidic channels.

    PubMed

    Nikolic-Jaric, M; Romanuik, S F; Ferrier, G A; Bridges, G E; Butler, M; Sunley, K; Thomson, D J; Freeman, M R

    2009-08-12

    We present details of an apparatus for capacitive detection of biomaterials in microfluidic channels operating at microwave frequencies where dielectric effects due to interfacial polarization are minimal. A circuit model is presented, which can be used to adapt this detection system for use in other microfluidic applications and to identify ones where it would not be suitable. The detection system is based on a microwave coupled transmission line resonator integrated into an interferometer. At 1.5 GHz the system is capable of detecting changes in capacitance of 650 zF with a 50 Hz bandwidth. This system is well suited to the detection of biomaterials in a variety of suspending fluids, including phosphate-buffered saline. Applications involving both model particles (polystyrene microspheres) and living cells-baker's yeast (Saccharomyces cerevisiae) and Chinese hamster ovary cells-are presented.

  10. Primary pure spindle cell carcinoma (sarcomatoid carcinoma) of the ovary: A case report with immunohistochemical study.

    PubMed

    Giordano, Giovanna; Berretta, Roberto; Silini, Enrico

    2016-08-05

    In the ovary, sarcomatoid carcinoma has been reported only as mural nodules in epithelial malignant or borderline serous or mucinous cystic neoplasms, and in teratomas. In this paper we report a rare case of a solid sarcomatoid carcinoma of the ovary, without accompanying component of giant cells, pleomorphic cells, or glandular and other epithelial structures. This case report refers to a sarcomatoid carcinoma of the ovary in in a 57 year-old woman with abdominal pain. Macroscopically, the neoplasm was a 15x10x5 cm ovarian mass that featured gray white solid fleshy areas, interspersed with areas of necrosis, hemorrhage and cystic spaces filled with thick fluid. The epithelial differentiation of the tumor was demonstrated by strong and diffuse reactivity to CAM5.2 and focal immunoreactivity to EMA. A diagnosis of malignant mesenchymal tumor was excluded due to negativity for desmin, smooth muscle actin, caldesmon, CD34, CD10, and myoglobin. Neural, neuroendocrine neoplasm, melanoma and Perivascular Epithelioid Cell Tumor (PEComa) were excluded because of negativity for S100, chromogranin, synaptophysin and HMB45. Primary ovarian spindle cell carcinoma is a rare neoplasm, which must be considered in the differential diagnosis of solid ovarian mass with spindle cell appearance. This case adds to our knowledge of the biological behavior of these rare neoplasms. The distinction from true sarcomas and carcinosarcomas is important because of the more favorable prognosis of the spindle cell carcinomas. However their diagnosis necessitates a careful tissue sampling and immunohistochemical staining.

  11. Enrichment of Female Germline Stem Cells from Mouse Ovaries Using the Differential Adhesion Method.

    PubMed

    Wu, Meng; Xiong, Jiaqiang; Ma, Lingwei; Lu, Zhiyong; Qin, Xian; Luo, Aiyue; Zhang, Jinjin; Xie, Huan; Shen, Wei; Wang, Shixuan

    2018-04-28

    The isolation and establishment of female germline stem cells (FGSCs) is controversial because of questions regarding the reliability and stability of the isolation method using antibody targeting mouse vasa homologue (MVH), and the molecular mechanism of FGSCs self-renewal remains unclear. Thus, there needs to be a simple and reliable method for sorting FGSCs to study them. We applied the differential adhesion method to enrich FGSCs (DA-FGSCs) from mouse ovaries. Through four rounds of purification and 7-9 subsequent passages, DA-FGSC lines were established. In addition, we assessed the role of the phosphoinositide-3 kinase (PI3K)-AKT pathway in regulating FGSC self-renewal. The obtained DA-FGSCs spontaneously differentiated into oocyte-like cells in vitro and formed functional eggs in vivo that were fertilized and produced healthy offspring. AKT was rapidly phosphorylated when the proliferation rate of FGSCs increased after 10 passages, and the addition of a chemical PI3K inhibitor prevented FGSCs self-renewal. Furthermore, over-expression of AKT-induced proliferation and differentiation of FGSCs, c-Myc, Oct-4 and Gdf-9 levels were increased. The differential adhesion method provides a more feasible approach and is an easier procedure to establish FGSC lines than traditional methods. The AKT pathway plays an important role in regulation of the proliferation and maintenance of FGSCs. These findings could help promote stem cell studies and provide a better understanding of causes of ovarian infertility, thereby providing potential treatments for infertility. © 2018 The Author(s). Published by S. Karger AG, Basel.

  12. Gene expression profiles of immune mediators and histopathological findings in animal models of leptospirosis: comparison between susceptible hamsters and resistant mice.

    PubMed

    Matsui, Mariko; Rouleau, Vincent; Bruyère-Ostells, Lilian; Goarant, Cyrille

    2011-11-01

    Leptospirosis is a widespread zoonosis characterized by multiple organ failure and variable host susceptibility toward pathogenic Leptospira strains. In this study, we put the role of inflammatory mediators in parallel with bacterial burdens and organ lesions by comparing a susceptible animal model, the hamster, and a resistant one, the Oncins France 1 (OF1) mouse, both infected with virulent Leptospira interrogans serovar Icterohaemorrhagiae strain Verdun. Histological observations evidenced edema, congestion, hemorrhage, and inflammatory infiltration in the organs of hamsters, in contrast to limited changes in mice. Using reverse transcription-quantitative PCR techniques, we showed that the relative Leptospira burden progressively increased in hamster tissues, while a rapid clearance was observed in mouse tissues. The early regulation of the proinflammatory mediators interleukin-1β (IL-1β), IL-6, tumor necrosis factor alpha, and cyclo-oxygenase-2 and the chemokines gamma interferon-inducible protein 10 kDa/CXCL10 and macrophage inflammatory protein-1α/CCL3 in mouse tissues contrasted with their delayed and massive overexpression in hamster tissues. Conversely, the induction of the anti-inflammatory cytokine IL-10 was faster in the resistant than in the susceptible animal model. The role of these cytokines in the pathophysiology of leptospirosis and the implications of their differential regulation in the development of this disease are discussed.

  13. [Transitional cell carcinoma of the ovary. Morphological and clinical features].

    PubMed

    Kommoss, F; Kommoss, S; Eichhorn, J; Schmidt, D

    2007-05-01

    Transitional cell carcinoma of the ovary (TCC-O) is a less common type of malignant surface epithelial-stromal tumor of the ovary, still with uncertain incidence. Histologically, TCC-O resembles urothelial carcinoma of the urinary system, and by definition does not contain a Brenner tumor component. TCC-O may not be a bona fide urothelial neoplasm, however, but rather a lesion of the Müllerian type derived from the ovarian surface epithelium. This notion is supported by the existence of mixed tumors consisting of TCC-O and other histological types of ovarian carcinoma, as well as the observation that TCC-O has a Müllerian type but not a urothelial-like immunohistochemical profile. Besides metastatic urothelial carcinoma of the urinary tract, the other types of ovarian carcinoma, as well as sex cord-stromal tumors such as adult granulosa cell tumors, have to be considered in the differential diagnosis of TCC-O. A recent analysis of a large series of advanced ovarian carcinomas treated by radical surgery and postoperative chemotherapy confirms studies that had suggested that TCC-O has a better prognosis (with current treatment) than that of the other histological types of ovarian carcinoma. Further studies applying standardized histopathological criteria are needed to clarify the true incidence and behavior of TCC-O. In addition, it is important to study the biological and molecular background of this apparently less aggressive phenotype.

  14. Leader cells regulate collective cell migration via Rac activation in the downstream signaling of integrin β1 and PI3K.

    PubMed

    Yamaguchi, Naoya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi

    2015-01-07

    Collective cell migration plays a crucial role in several biological processes, such as embryonic development, wound healing, and cancer metastasis. Here, we focused on collectively migrating Madin-Darby Canine Kidney (MDCK) epithelial cells that follow a leader cell on a collagen gel to clarify the mechanism of collective cell migration. First, we removed a leader cell from the migrating collective with a micromanipulator. This then caused disruption of the cohesive migration of cells that followed in movement, called "follower" cells, which showed the importance of leader cells. Next, we observed localization of active Rac, integrin β1, and PI3K. These molecules were clearly localized in the leading edge of leader cells, but not in follower cells. Live cell imaging using active Rac and active PI3K indicators was performed to elucidate the relationship between Rac, integrin β1, and PI3K. Finally, we demonstrated that the inhibition of these molecules resulted in the disruption of collective migration. Our findings not only demonstrated the significance of a leader cell in collective cell migration, but also showed that Rac, integrin β1, and PI3K are upregulated in leader cells and drive collective cell migration.

  15. New models of hematogenous ovarian cancer metastasis demonstrate preferential spread to the ovary and a requirement for the ovary for abdominal dissemination.

    PubMed

    Coffman, Lan G; Burgos-Ojeda, Daniela; Wu, Rong; Cho, Kathleen; Bai, Shoumei; Buckanovich, Ronald J

    2016-09-01

    Emerging evidence suggest that many high-grade serous "ovarian" cancers (HGSOC) start in the fallopian tube. Cancer cells are then recruited to the ovary and then spread diffusely through the abdomen. The mechanism of ovarian cancer spread was thought to be largely due to direct shedding of tumor cells into the peritoneal cavity with vascular spread being of limited importance. Recent work challenges this dogma, suggesting hematogenous spread of ovarian cancer may play a larger role in ovarian cancer cell metastasis than previously thought. One reason the role of vascular spread of ovarian cancer has not been fully elucidated is the lack of easily accessible models of vascular ovarian cancer metastasis. Here, we present 3 metastatic models of ovarian cancer which confirm the ability of ovarian cancer to hematogenously spread. Strikingly, we observe a high rate of metastasis to the ovary with the development of ascites in these models. Interestingly, oophorectomy resulted in a complete loss of peritoneal metastases and ascites. Taken together, our data indicate that hematogenously disseminated HGSOC cells have a unique tropism for the ovary and that hematogenous spread in ovarian cancer may be more common than appreciated. Furthermore, our studies support a critical role for the ovary in promoting HGSOC cell metastasis to the abdomen. The models developed here represent important new tools to evaluate both the mechanism of cancer cell recruitment to the ovary and understand and target key steps in ovarian cancer metastasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. New models of hematogenous ovarian cancer metastasis demonstrate preferential spread to the ovary and a requirement for the ovary for abdominal dissemination

    PubMed Central

    Coffman, Lan G; Burgos-Ojeda, Daniela; Wu, Rong; Cho, Kathleen; Bai, Shoumei; Buckanovich, Ronald J

    2016-01-01

    Emerging evidence suggest that many high grade serous ‘ovarian’ cancers (HGSOC) start in the fallopian tube. Cancer cells are then recruited to the ovary and then spread diffusely through the abdomen. The mechanism of ovarian cancer spread was thought to be largely due to direct shedding of tumor cells into the peritoneal cavity with vascular spread being of limited importance. Recent work challenges this dogma, suggesting hematogenous spread of ovarian cancer may play a larger role in ovarian cancer cell metastasis than previously thought. One reason the role of vascular spread of ovarian cancer has not been fully elucidated is the lack of easily accessible models of vascular ovarian cancer metastasis. Here we present three metastatic models of ovarian cancer which confirm the ability of ovarian cancer to hematogenously spread. Strikingly, we observe a high rate of metastasis to the ovary with the development of ascites in these models. Interestingly, oophorectomy resulted in a complete loss of peritoneal metastases and ascites. Taken together our data indicates that hematogenously disseminated HGSOC cells have a unique tropism for the ovary and that hematogenous spread in ovarian cancer may be more common than appreciated. Furthermore our studies support a critical role for the ovary in promoting HGSOC cell metastasis to the abdomen. The models developed here represent important new tools to evaluate both the mechanism of cancer cell recruitment to the ovary and to understand and target key steps in ovarian cancer metastasis. PMID:27083386

  17. Arsenite induces cell transformation by reactive oxygen species, AKT, ERK1/2, and p70S6K1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Richard L.; Jiang, Yue; Jing, Yi

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer Chronic exposure to arsenite induces cell proliferation and transformation. Black-Right-Pointing-Pointer Arsenite-induced transformation increases ROS production and downstream signalings. Black-Right-Pointing-Pointer Inhibition of ROS levels via catalase reduces arsenite-induced cell transformation. Black-Right-Pointing-Pointer Interruption of AKT, ERK, or p70S6K1 inhibits arsenite-induced cell transformation. -- Abstract: Arsenic is naturally occurring element that exists in both organic and inorganic formulations. The inorganic form arsenite has a positive association with development of multiple cancer types. There are significant populations throughout the world with high exposure to arsenite via drinking water. Thus, human exposure to arsenic has become a significant public health problem. Recent evidencemore » suggests that reactive oxygen species (ROS) mediate multiple changes to cell behavior after acute arsenic exposure, including activation of proliferative signaling and angiogenesis. However, the role of ROS in mediating cell transformation by chronic arsenic exposure is unknown. We found that cells chronically exposed to sodium arsenite increased proliferation and gained anchorage-independent growth. This cell transformation phenotype required constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. We also observed these cells constitutively produce ROS, which was required for the constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. Suppression of ROS levels by forced expression of catalase also reduced cell proliferation and anchorage-independent growth. These results indicate cell transformation induced by chronic arsenic exposure is mediated by increased cellular levels of ROS, which mediates activation of AKT, ERK1/2, and p70S6K1.« less

  18. Molecular Prerequisites for Diminished Cold Sensitivity in Ground Squirrels and Hamsters.

    PubMed

    Matos-Cruz, Vanessa; Schneider, Eve R; Mastrotto, Marco; Merriman, Dana K; Bagriantsev, Sviatoslav N; Gracheva, Elena O

    2017-12-19

    Thirteen-lined ground squirrels and Syrian hamsters are known for their ability to withstand cold during hibernation. We found that hibernators exhibit cold tolerance even in the active state. Imaging and electrophysiology of squirrel somatosensory neurons reveal a decrease in cold sensitivity of TRPM8-expressing cells. Characterization of squirrel and hamster TRPM8 showed that the channels are chemically activated but exhibit poor activation by cold. Cold sensitivity can be re-introduced into squirrel and hamster TRPM8 by transferring the transmembrane domain from the cold sensitive rat ortholog. The same can be achieved in squirrel TRPM8 by mutating only six amino acids. Reciprocal mutations suppress cold sensitivity of the rat ortholog, supporting functional significance of these residues. Our results suggest that ground squirrels and hamsters exhibit reduced cold sensitivity, partially due to modifications in the transmembrane domain of TRPM8. Our study reveals molecular adaptations that accompany cold tolerance in two species of mammalian hibernators. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Proteomic Analysis of Host Cell Protein Dynamics in the Culture Supernatants of Antibody-Producing CHO Cells

    PubMed Central

    Park, Jin Hyoung; Jin, Jong Hwa; Lim, Myung Sin; An, Hyun Joo; Kim, Jong Won; Lee, Gyun Min

    2017-01-01

    Chinese hamster ovary (CHO) cells are the most common cell line used for the production of therapeutic proteins including monoclonal antibodies (mAbs). Host cell proteins (HCPs), secreted and released from lysed cells, accumulate extracellularly during the cultures of recombinant CHO (rCHO) cells, potentially impairing product quality. In an effort to maintain good mAb quality during the cultures, HCPs accumulated extracellularly in batch and fed-batch cultures of a mAb-producing rCHO cell line were identified and quantified by nanoflow liquid chromatography-tandem mass spectrometry, followed by their gene ontology and functional analysis. Due to higher cell concentration and longer culture duration, more HCPs were identified and quantitated in fed-batch culture (2145 proteins identified and 1673 proteins quantified) than in batch culture (1934 proteins identified and 1486 proteins quantified). Clustering analysis of HCPs showed that the concentration profiles of HCPs affecting mAb quality (Lgmn, Ctsd, Gbl1, and B4galt1) correlated with changes in mAb quality attributes such as aggregation, charge variants, and N-glycosylation during the cultures. Taken together, the dataset of HCPs obtained in this study provides insights into determining the appropriate target proteins to be removed during both the cultures and purification steps for ensuring good mAb quality. PMID:28281648

  20. Primary midgut, salivary gland, and ovary cultures from Boophilus microplus.

    PubMed

    Mosqueda, Juan; Cossío-Bayugar, Raquel; Rodríguez, Elba; Falcón, Alfonso; Ramos, Alberto; Figueroa, Julio V; Alvarez, Antonio

    2008-12-01

    Primary cell cultures from different tick organs are a valuable tool for host parasite research in the study of the protozoan Babesia sp., which infects different organs of the tick. In this work we describe the generation of midgut, salivary gland, and ovary primary cell cultures from dissections of Boophilus microplus. Midguts, salivary glands, and ovaries were dissected from B. microplus ticks on different days after bovine infestation; different enzymatic disaggregating protocols were tested in the presence of proteolytic enzymes, such as trypsin and collagenase type I and II, for tissue disaggregation and primary cell culture generation. The dissected tick organs obtained 18-20 days after bovine infestation showed a major cellular differentiation and were easier to identify by cellular morphology. The enzymatic disaggregation results showed that each tissue required a different proteolytic enzyme for optimal disaggregation; collagenase type I produced the most complete disaggregation for ovaries but not for midgut or salivary glands. Collagenase type II was effective for salivary glands but performed poorly on ovaries and midgets, and typsin was effective for midguts only. The midgut and ovary primary cell cultures were maintained for 4 weeks in optimal conditions after the cells were no longer viable. The salivary gland cell cultures were viable for 8 months.

  1. Antitumor effects of vitamins K1, K2 and K3 on hepatocellular carcinoma in vitro and in vivo.

    PubMed

    Hitomi, Misuzu; Yokoyama, Fumi; Kita, Yuko; Nonomura, Takako; Masaki, Tsutomu; Yoshiji, Hitoshi; Inoue, Hideyuki; Kinekawa, Fumihiko; Kurokohchi, Kazutaka; Uchida, Naohito; Watanabe, Seishiro; Kuriyama, Shigeki

    2005-03-01

    A number of studies have shown that various K vitamins, specifically vitamins K2 and K3, possess antitumor activity on various types of rodent- and human-derived neoplastic cell lines. In the present study, we examined the antitumor effects of vitamins K1, K2 and K3 on PLC/PRF/5 human hepatocellular carcinoma (HCC) cells in vitro and in vivo. Furthermore, we examined the mechanisms of antitumor actions of these vitamins in vitro and in vivo. Although vitamin K1 did not inhibit proliferation of PLC/PRF/5 cells at a 90-microM concentration (the highest tested), vitamins K2 and K3 suppressed proliferation of the cells at concentrations of 90 and 9 microM, respectively. By flow cytometric analysis, it was shown that not only vitamin K1, but also vitamin K2 did not induce apoptosis or cell cycle arrest on PLC/PRF/5 cells. In contrast, vitamin K3 induced G1 arrest, but not apoptosis on PLC/PRF/5 cells. Subsequent in vivo study using subcutaneous HCC-bearing athymic nude mice demonstrated that both vitamins K2 and K3 markedly suppressed the growth of HCC tumors to similar extent. Protein expression of cyclin D1 and cyclin-dependent kinase 4 (Cdk4), but not p16INK4a Cdk inhibitor in the tumor was significantly reduced by vitamin K2 or K3 treatment, indicating that vitamins K2 and K3 may induce G1 arrest of cell cycle on PLC/PRF/5 cells in vivo. Taken collectively, vitamins K2 and K3 were able to induce potent antitumor effects on HCC in vitro and in vivo, at least in part, by inducing G1 arrest of the cell cycle. The results indicate that vitamins K2 and K3 may be useful agents for the treatment of patients with HCC.

  2. Irinotecan metabolite SN38 results in germ cell loss in the testis but not in the ovary of prepubertal mice.

    PubMed

    Lopes, Federica; Smith, Rowena; Nash, Sophie; Mitchell, Rod T; Spears, Norah

    2016-11-01

    Does the Irinotecan metabolite 7-ethyl-10-hydroxycamptothecan (SN38) damage the gonads of male and female prepubertal mice? The Irinotecan metabolite SN38 reduces germ cell numbers within the seminiferous tubules of mouse testes at concentrations that are relevant to cancer patients, while in contrast it has little if any effect on the female germ cell population. Little is known about the role of the chemotherapeutic agent Irinotecan on female fertility, with only one article to date reporting menopausal symptoms in perimenopausal women treated with Irinotecan, while no data are available either on adult male fertility or on the impact of Irinotecan on the subsequent fertility of prepubertal cancer patients, female or male. Male and female gonads were obtained from postnatal day 5 C57BL/6 mice and exposed in vitro to a range of concentrations of the Irinotecan metabolite SN38: 0.002, 0.01, 0.05, 0.1 or 1 µg ml -1 for the testis and 0.1, 1, 2.5 or 5 µg ml -1 for the ovary, with treated gonads compared to control gonads not exposed to SN38. SN38 was dissolved in 0.5% dimethyl sulfoxide, with controls exposed to the same concentration of diluent. The number of testis fragments used for each analysis ranged between 3 and 9 per treatment group, while the number of ovaries used for each analysis ranged between 4 and 12 per treatment group. Neonatal mouse gonads were developed in vitro, with tissue analysed at the end of the 4-6 day culture period, following immunofluorescence or hematoxylin and eosin staining. Statistical analyses were performed using one-way ANOVA followed by Bonferroni post-hoc test for normally distributed data and Kruskal-Wallis test followed by Dunns post-test for non-parametric data. Abnormal testis morphology was observed when tissues were exposed to SN38, with a smaller seminiferous tubule diameter at the highest concentration of SN38 (1 µg ml -1 , p < 0.001 versus control) and increased number of Sertoli cell-only tubules at the two

  3. PMab-52: Specific and Sensitive Monoclonal Antibody Against Cat Podoplanin for Immunohistochemistry.

    PubMed

    Yamada, Shinji; Itai, Shunsuke; Nakamura, Takuro; Yanaka, Miyuki; Saidoh, Noriko; Chang, Yao-Wen; Handa, Saori; Harada, Hiroyuki; Kagawa, Yumiko; Ichii, Osamu; Konnai, Satoru; Kaneko, Mika K; Kato, Yukinari

    2017-10-01

    Podoplanin (PDPN) is expressed in several normal tissues, such as lymphatic endothelial cells, podocytes of renal glomerulus, and type I alveolar cells of lung. PDPN activates platelet aggregation by binding to C-type lectin-like receptor-2 (CLEC-2) on platelet. Although monoclonal antibodies (mAbs) against human PDPN, mouse PDPN, rat PDPN, rabbit PDPN, dog PDPN, and bovine PDPN have been established, anticat PDPN (cPDPN) mAbs have not been developed. In this study, we immunized mice with Chinese hamster ovary (CHO)-K1 cell lines expressing cPDPN, and developed anti-cPDPN mAbs. One of the clones, PMab-52 (IgM, kappa), detected cPDPN specifically in flow cytometry and Western blot analysis. PMab-52 is also useful for detecting feline squamous cell carcinoma cells in immunohistochemical analysis. PMab-52 is expected to be useful for investigating the function of cPDPN in feline carcinomas.

  4. Amine-Rich Organic Thin Films for Cell Culture: Possible Electrostatic Effects in Cell-Surface Interactions

    NASA Astrophysics Data System (ADS)

    Wertheimer, Michael R.; St-Georges-Robillard, Amélie; Lerouge, Sophie; Mwale, Fackson; Elkin, Bentsian; Oehr, Christian; Wirges, Werner; Gerhard, Reimund

    2012-11-01

    In recent communications from these laboratories, we observed that amine-rich thin organic layers are very efficient surfaces for the adhesion of mammalian cells. We prepare such deposits by plasma polymerization at low pressure, atmospheric pressure, or by vacuum-ultraviolet photo-polymerization. More recently, we have also investigated a commercially available material, Parylene diX AM. In this article we first briefly introduce literature relating to electrostatic interactions between cells, proteins, and charged surfaces. We then present certain selected cell-response results that pertain to applications in orthopedic and cardiovascular medicine: we discuss the influence of surface properties on the observed behaviors of two particular cell lines, human U937 monocytes, and Chinese hamster ovary cells. Particular emphasis is placed on possible electrostatic attractive forces due to positively charged R-NH3+ groups and negatively charged proteins and cells, respectively. Experiments carried out with electrets, polymers with high positive or negative surface potentials are added for comparison.

  5. Real‐time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device

    PubMed Central

    Super, Alexandre; Jaccard, Nicolas; Cardoso Marques, Marco Paulo; Macown, Rhys Jarred; Griffin, Lewis Donald; Veraitch, Farlan Singh

    2016-01-01

    Abstract Oxygen plays a key role in stem cell biology as a signaling molecule and as an indicator of cell energy metabolism. Quantification of cellular oxygen kinetics, i.e. the determination of specific oxygen uptake rates (sOURs), is routinely used to understand metabolic shifts. However current methods to determine sOUR in adherent cell cultures rely on cell sampling, which impacts on cellular phenotype. We present real‐time monitoring of cell growth from phase contrast microscopy images, and of respiration using optical sensors for dissolved oxygen. Time‐course data for bulk and peri‐cellular oxygen concentrations obtained for Chinese hamster ovary (CHO) and mouse embryonic stem cell (mESCs) cultures successfully demonstrated this non‐invasive and label‐free approach. Additionally, we confirmed non‐invasive detection of cellular responses to rapidly changing culture conditions by exposing the cells to mitochondrial inhibiting and uncoupling agents. For the CHO and mESCs, sOUR values between 8 and 60 amol cell−1 s−1, and 5 and 35 amol cell−1 s−1 were obtained, respectively. These values compare favorably with literature data. The capability to monitor oxygen tensions, cell growth, and sOUR, of adherent stem cell cultures, non‐invasively and in real time, will be of significant benefit for future studies in stem cell biology and stem cell‐based therapies. PMID:27214658

  6. Clear cell adenocarcinoma of the ovary associated with in utero diethylstilbestrol exposure: case report and clinical overview.

    PubMed

    Dasanu, Constantin A; Herzog, Thomas J

    2009-01-01

    Clear cell adenocarcinoma of the vagina and cervix were previously shown to be tumors occurring in female offspring exposed prenatally to diethylstilbestrol. This report describes the first clinical case of clear cell adenocarcinoma of the ovary linked to early diethylstilbestrol exposure in utero. A 45-year-old woman presented with a self-discovered lump in the lower abdominal quadrant. She underwent surgery and staging that revealed clear cell adenocarcinoma confined to the left ovary. Foci of high-grade squamous neoplastic proliferation, inflammation, and a paratubal cyst were also present on the pathology specimen. Medical records established unequivocally that the patient's mother received diethylstilbestrol therapy throughout the pregnancy. Our case is consistent with clear cell adenocarcinoma, probably related to diethylstilbestrol exposure in utero. It reinforces the need for continued vigilance in individuals prenatally exposed to this drug.

  7. Adaptor protein 1 B mu subunit does not contribute to the recycling of kAE1 protein in polarized renal epithelial cells.

    PubMed

    Almomani, Ensaf Y; Touret, Nicolas; Cordat, Emmanuelle

    2018-04-13

    Mutations in the gene encoding the kidney anion exchanger 1 (kAE1) can lead to distal renal tubular acidosis (dRTA). dRTA mutations reported within the carboxyl (C)-terminal tail of kAE1 result in apical mis-targeting of the exchanger in polarized renal epithelial cells. As kAE1 physically interacts with the μ subunit of epithelial adaptor protein 1 B (AP-1B), we investigated the role of heterologously expressed μ1B subunit of the AP-1B complex for kAE1 retention to the basolateral membrane in polarized porcine LLC-PK1 renal epithelial cells that are devoid of endogenous AP-1B. We confirmed the interaction and close proximity between kAE1 and μ1B using immunoprecipitation and proximity ligation assay, respectively. Expressing the human μ1B subunit in these cells decreased significantly the amount of cell surface kAE1 at the steady state, but had no significant effect on kAE1 recycling and endocytosis. We show that (i) heterologous expression of μ1B displaces the physical interaction of endogenous GAPDH with kAE1 WT supporting that both AP-1B and GAPDH proteins bind to an overlapping site on kAE1 and (ii) phosphorylation of tyrosine 904 within the potential YDEV interaction motif does not alter the kAE1/AP-1B interaction. We conclude that μ1B subunit is not involved in recycling of kAE1.

  8. Germ cell tumors: Insights from the Drosophila ovary and the mouse testis.

    PubMed

    Salz, Helen K; Dawson, Emily P; Heaney, Jason D

    2017-03-01

    Ovarian and testicular germ cell tumors of young adults are thought to arise from defects in germ cell development, but the molecular mechanisms underlying malignant transformation are poorly understood. In this review, we focus on the biology of germ cell tumor formation in the Drosophila ovary and the mouse testis, for which evidence supports common underlying mechanisms, such as blocking initiation into the differentiation pathway, impaired lineage progression, and sexual identity instability. We then discuss how these concepts inform our understanding of the disease in humans. Mol. Reprod. Dev. 84: 200-211, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Investigation of triamterene as an inhibitor of the TGR5 receptor: identification in cells and animals.

    PubMed

    Li, Yingxiao; Cheng, Kai Chun; Niu, Chiang-Shan; Lo, Shih-Hsiang; Cheng, Juei-Tang; Niu, Ho-Shan

    2017-01-01

    G-protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5) has been shown to participate in glucose homeostasis. In animal models, a TGR5 agonist increases incretin secretion to reduce hyperglycemia. Many agonists have been developed for clinical use. However, the effects of TGR5 blockade have not been studied extensively, with the exception of studies using TGR5 knockout mice. Therefore, we investigated the potential effect of triamterene on TGR5. We transfected the TGR5 gene into cultured Chinese hamster ovary cells (CHO-K1 cells) to express TGR5. Then, we applied a fluorescent indicator to examine the glucose uptake of these transfected cells. In addition, NCI-H716 cells that secrete incretin were also evaluated. Fura-2, a fluorescence indicator, was applied to determine the changes in calcium concentrations. The levels of cyclic adenosine monophosphate (cAMP) and glucagon-like peptide (GLP-1) were estimated using enzyme-linked immunosorbent assay kits. Moreover, rats with streptozotocin (STZ)-induced type 1-like diabetes were used to investigate the effects in vivo. Triamterene dose dependently inhibits the increase in glucose uptake induced by TGR5 agonists in CHO-K1 cells expressing the TGR5 gene. In cultured NCI-H716 cells, TGR5 activation also increases GLP-1 secretion by increasing calcium levels. Triamterene inhibits the increased calcium levels by TGR5 activation through competitive antagonism. Moreover, the GLP-1 secretion and increased cAMP levels induced by TGR5 activation are both dose dependently reduced by triamterene. However, treatment with KB-R7943 at a dose sufficient to block the Na + /Ca 2+ exchanger (NCX) failed to modify the responses to TGR5 activation in NCI-H716 cells or CHO-K1 cells expressing TGR5. Therefore, the inhibitory effects of triamterene on TGR5 activation do not appear to be related to NCX inhibition. Blockade of TGR5 activation by triamterene was further characterized in vivo using the STZ-induced diabetic rats

  10. Enhanced susceptibility of ovaries from obese mice to 7,12-dimethylbenz[a]anthracene-induced DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Nteeba, Jackson, E-mail: nteeba@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    7,12-Dimethylbenz[a]anthracene (DMBA) depletes ovarian follicles and induces DNA damage in extra-ovarian tissues, thus, we investigated ovarian DMBA-induced DNA damage. Additionally, since obesity is associated with increased offspring birth defect incidence, we hypothesized that a DMBA-induced DNA damage response (DDR) is compromised in ovaries from obese females. Wild type (lean) non agouti (a/a) and KK.Cg-Ay/J heterozygote (obese) mice were dosed with sesame oil or DMBA (1 mg/kg; intraperitoneal injection) at 18 weeks of age, for 14 days. Total ovarian RNA and protein were isolated and abundance of Ataxia telangiectasia mutated (Atm), X-ray repair complementing defective repair in Chinese hamster cells 6more » (Xrcc6), breast cancer type 1 (Brca1), Rad 51 homolog (Rad51), poly [ADP-ribose] polymerase 1 (Parp1) and protein kinase, DNA-activated, catalytic polypeptide (Prkdc) were quantified by RT-PCR or Western blot. Phosphorylated histone H2AX (γH2AX) level was determined by Western blotting. Obesity decreased (P < 0.05) basal protein abundance of PRKDC and BRCA1 proteins but increased (P < 0.05) γH2AX and PARP1 proteins. Ovarian ATM, XRCC6, PRKDC, RAD51 and PARP1 proteins were increased (P < 0.05) by DMBA exposure in lean mice. A blunted DMBA-induced increase (P < 0.05) in XRCC6, PRKDC, RAD51 and BRCA1 was observed in ovaries from obese mice, relative to lean counterparts. Taken together, DMBA exposure induced γH2AX as well as the ovarian DDR, supporting that DMBA causes ovarian DNA damage. Additionally, ovarian DDR was partially attenuated in obese females raising concern that obesity may be an additive factor during chemical-induced ovotoxicity. - Highlights: • DMBA induces markers of ovarian DNA damage. • Obesity induces low level ovarian DNA damage. • DMBA-induced DNA repair response is altered by obesity.« less

  11. Pattern and density of vascularization in mammalian testes, ovaries, and ovotestes.

    PubMed

    Lupiáñez, Darío G; Real, Francisca M; Dadhich, Rajesh K; Carmona, Francisco D; Burgos, Miguel; Barrionuevo, Francisco J; Jiménez, Rafael

    2012-05-01

    According to the classical paradigm, the vasculature of the embryonic testis is more dense and complex than that of the ovary, but recent studies based on whole-mount detection of Caveolin-1 (CAV1) as an endothelial cell marker, have suggested that the level of ovarian vascularization is higher than previously assumed. However, this new hypothesis has been neither tested using alternative methodology nor investigated in other mammalian species. In this paper, we have studied the vascularization process in the gonads of males and females of two mammalian species, the mouse (Mus musculus) and the Iberian mole (Talpa occidentalis). Our results show that the pattern of testis vascularization is very well conserved among mammals, including both pre- and postnatal stages of development and, at least in the mole, it is conserved irrespectively of whether the testicular tissue is XY or XX. We have shown that CAV1 is present not only in endothelial cells but also in prefollicular oocytes and in an ovarian population of somatic cortical cells. These data clearly establish that: (1) according to the classical hypothesis, the degree of vascularization of the developing ovary is lower than that of the testis, (2) ovarian vascularization is also evolutionarily conserved as it occurs similarly both in moles and in mice, and (3) that the degree of vascular development of the mammalian ovary is age-dependent increasing significatively at puberty. The expression of CAV1 in the ovary of most animal taxa, from nematodes to mammals, strongly suggests a role for this gene in the female meiosis. © 2012 WILEY PERIODICALS, INC.

  12. STMN1 Promotes Progesterone Production Via StAR Up-regulation in Mouse Granulosa Cells.

    PubMed

    Dou, Yun-De; Zhao, Han; Huang, Tao; Zhao, Shi-Gang; Liu, Xiao-Man; Yu, Xiao-Chen; Ma, Zeng-Xiang; Zhang, Yu-Chao; Liu, Tao; Gao, Xuan; Li, Lei; Lu, Gang; Chan, Wai-Yee; Gao, Fei; Liu, Hong-Bin; Chen, Zi-Jiang

    2016-06-08

    Stathmin 1 (STMN1) is a biomarker in several types of neoplasms. It plays an important role in cell cycle progression, mitosis, signal transduction and cell migration. In ovaries, STMN1 is predominantly expressed in granulosa cells (GCs). However, little is known about the role of STMN1 in ovary. In this study, we demonstrated that STMN1 is overexpressed in GCs in patients with polycystic ovary syndrome (PCOS). In mouse primary GCs, the overexpression of STMN1 stimulated progesterone production, whereas knockdown of STMN1 decreased progesterone production. We also found that STMN1 positively regulates the expression of Star (steroidogenic acute regulatory protein) and Cyp11a1 (cytochrome P450 family 11 subfamily A member 1). Promoter and ChIP assays indicated that STMN1 increased the transcriptional activity of Star and Cyp11a1 by binding to their promoter regions. The data suggest that STMN1 mediates the progesterone production by modulating the promoter activity of Star and Cyp11a1. Together, our findings provide novel insights into the molecular mechanisms of STMN1 in ovary GC steroidogenesis. A better understanding of this potential interaction between STMN1 and Star in progesterone biosynthesis in GCs will facilitate the discovery of new therapeutic targets in PCOS.

  13. Insulin-like growth factor-1 (IGF-1) promotes primordial follicle growth and reduces DNA fragmentation through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signalling pathway.

    PubMed

    Bezerra, Maria É S; Barberino, Ricássio S; Menezes, Vanúzia G; Gouveia, Bruna B; Macedo, Taís J S; Santos, Jamile M S; Monte, Alane P O; Barros, Vanessa R P; Matos, Maria H T

    2018-05-30

    We investigated the effects of insulin-like growth factor 1 (IGF-1) on the morphology and follicular activation of ovine preantral follicles cultured in situ and whether the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway is involved in IGF-1 action in the sheep ovary. Ovine ovarian fragments were fixed for histological and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) analyses (fresh control) or cultured in supplemented alpha-minimum essential medium (α-MEM+; control) or α-MEM+ with IGF-1 (1, 10, 50, 100 or 200ngmL-1) for 7 days. Follicles were classified as normal or atretic, primordial or growing and the oocyte and follicle diameters were measured. DNA fragmentation was evaluated by TUNEL assay. Proliferating cell nuclear antigen (PCNA) immunohistochemistry was performed on the fresh control, α-MEM+ and 100ngmL-1 IGF-1 samples. Inhibition of PI3K activity was performed through pretreatment with the PI3K inhibitor LY294002 and phosphorylated AKT (pAKT) expression was analysed after culture in the absence or presence of LY294002. IGF-1 at 100ngmL-1 increased (P<0.05) follicular activation compared with α-MEM+ and decreased TUNEL-positive cells (P<0.05) compared with other treatments. PCNA-positive cells also increased (P<0.05) in 100ngmL-1 IGF-1. LY294002 significantly inhibited follicular activation stimulated by α-MEM+ and 100ngmL-1 IGF-1 and reduced pAKT expression in follicles. Overall, IGF-1 at 100ngmL-1 promoted primordial follicle activation, cell proliferation and reduced DNA fragmentation after in situ culture through the PI3K/AKT pathway.

  14. Effects of nerve growth factor (NGF) on blood vessels area and expression of the angiogenic factors VEGF and TGFbeta1 in the rat ovary

    PubMed Central

    Julio-Pieper, Marcela; Lara, Hernán E; Bravo, Javier A; Romero, Carmen

    2006-01-01

    Background Angiogenesis is a crucial process in follicular development and luteogenesis. The nerve growth factor (NGF) promotes angiogenesis in various tissues. An impaired production of this neurotrophin has been associated with delayed wound healing. A variety of ovarian functions are regulated by NGF, but its effects on ovarian angiogenesis remain unknown. The aim of this study was to elucidate if NGF modulates 1) the amount of follicular blood vessels and 2) ovarian expression of two angiogenic factors: vascular endothelial growth factor (VEGF) and transforming growth factor beta 1 (TGFbeta1), in the rat ovary. Results In cultured neonatal rat ovaries, NGF increased VEGF mRNA and protein levels, whereas TGFbeta1 expression did not change. Sectioning of the superior ovarian nerve, which increases ovarian NGF protein content, augmented VEGF immunoreactivity and the area of capillary vessels in ovaries of prepubertal rats compared to control ovaries. Conclusion Results indicate that NGF may be important in the maintenance of the follicular and luteal vasculature in adult rodents, either indirectly, by increasing the expression of VEGF in the ovary, or directly via promoting the proliferation of vascular cells. This data suggests that a disruption on NGF regulation could be a component in ovarian disorders related with impaired angiogenesis. PMID:17096853

  15. Effects of porcine pancreatic enzymes on the pancreas of hamsters. Part 2: carcinogenesis studies.

    PubMed

    Nozawa, Fumiaki; Yalniz, Mehmet; Saruc, Murat; Standop, Jens; Egami, Hiroshi; Pour, Parviz M

    2012-09-10

    Our previous study suggested that porcine pancreatic extract in hamsters with peripheral insulin resistance, normalizes insulin output, islet size and pancreatic DNA synthetic rate. It also inhibited the growth of human pancreatic cancer cells in nude mice. To examine the potential value of the porcine pancreatic extract in controlling pancreatic carcinogenesis in this model, the present experiment was performed. Hamsters were fed a high fat diet and four weeks later when insulin resistance emerges, they were divided into two groups. One group received 1 g/kg BW of porcine pancreatic extract in drinking water and the other group received tap water. One week later, when insulin output normalizes in porcine pancreatic extract-treated hamsters, a single subcutaneous injection of N-nitrosobis-(2-oxopropyl) amine (BOP) at a dose of 40 mg/kg BW was given to all hamsters. The experiment was terminated at 43 weeks after the porcine pancreatic extract treatment. The number and size of pancreatic tumors, blood glucose, insulin, amylase and lipase levels, the average size of islets and the number of insulin cells/islets were determined. The incidence of pancreatic cancer was significantly lower in the porcine pancreatic extract group (P=0.043), as well as the plasma insulin level and the size of the islets in the porcine pancreatic extract group were significantly lower (P<0.001) than in the control group. No significantly differences were found in the glucose level between the groups. These results show that porcine pancreatic extract has a potential to inhibit pancreatic cancer growth.

  16. Nitric oxide prodrug JS-K inhibits ubiquitin E1 and kills tumor cells retaining wild-type p53.

    PubMed

    Kitagaki, J; Yang, Y; Saavedra, J E; Colburn, N H; Keefer, L K; Perantoni, A O

    2009-01-29

    Nitric oxide (NO) is a major effector molecule in cancer prevention. A number of studies have shown that NO prodrug JS-K (O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate) induces apoptotic cell death in vitro and in vivo, indicating that it is a promising new therapeutic for cancer. However, the mechanism of its tumor-killing activity remains unclear. Ubiquitin plays an important role in the regulation of tumorigenesis and cell apoptosis. Our earlier report has shown that inactivation of the ubiquitin system through blocking E1 (ubiquitin-activating enzyme) activity preferentially induces apoptosis in p53-expressing transformed cells. As E1 has an active cysteine residue that could potentially interact with NO, we hypothesized that JS-K could inactivate E1 activity. E1 activity was evaluated by detecting ubiquitin-E1 conjugates through immunoblotting. JS-K strikingly inhibits the ubiquitin-E1 thioester formation in cells in a dose-dependent manner with an IC(50) of approximately 2 microM, whereas a JS-K analog that cannot release NO did not affect these levels in cells. Moreover, JS-K decreases total ubiquitylated proteins and increases p53 levels, which is mainly regulated by ubiquitin and proteasomal degradation. Furthermore, JS-K preferentially induces cell apoptosis in p53-expressing transformed cells. These findings indicate that JS-K inhibits E1 activity and kills transformed cells harboring wild-type p53.

  17. Down-regulation of PKHD1 induces cell apoptosis through PI3K and NF-{kappa}B pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Liping; Wang, Shixuan; Hu, Chaofeng

    2011-04-15

    Mutations in PKHD1 (polycystic kidney and hepatic disease gene 1) gene cause the autosomal recessive polycystic kidney disease (ARPKD). Fibrocystin/polyductin (FPC), encoded by PKHD1, is a membrane-associated receptor-like protein. Although it is widely accepted that cystogenesis is mostly due to aberrant cell proliferation and apoptosis, it is still unclear how apoptosis is regulated. The aim of this study is to analyze the relationship among apoptosis, phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor {kappa}B (NF-{kappa}B) in FPC knockdown kidney cells. We show that PKHD1-silenced HEK293 cells demonstrate a higher PI3K/Akt activity. Selective inhibition of PI3K/Akt using LY294002 or wortmannin in these cellsmore » increases serum starvation-induced HEK293 cell apoptosis with a concomitant decrease in cell proliferation and higher caspase-3 activity. PI3K/Akt inhibition also leads to increased NF-{kappa}B activity in these cells. We conclude that the PI3K/Akt pathway is involved in apoptotic function in PKHD1-silenced cells, and PI3K/Akt inhibition correlates with upregulation of NF-{kappa}B activity. These observations provide a potential platform for determining FPC function and therapeutic investigation of ARPKD.« less

  18. Relationship between Numerous Mast Cells and Early Follicular Development in Neonatal MRL/MpJ Mouse Ovaries

    PubMed Central

    Nakamura, Teppei; Otsuka, Saori; Ichii, Osamu; Sakata, Yuko; Nagasaki, Ken-Ichi; Hashimoto, Yoshiharu; Kon, Yasuhiro

    2013-01-01

    In the neonatal mouse ovary, clusters of oocytes called nests break into smaller cysts and subsequently form individual follicles. During this period, we found numerous mast cells in the ovary of MRL/MpJ mice and investigated their appearance and morphology with follicular development. The ovarian mast cells, which were already present at postnatal day 0, tended to localize adjacent to the surface epithelium. Among 11 different mouse strains, MRL/MpJ mice possessed the greatest number of ovarian mast cells. Ovarian mast cells were also found in DBA/1, BALB/c, NZW, and DBA/2 mice but rarely in C57BL/6, NZB, AKR, C3H/He, CBA, and ICR mice. The ovarian mast cells expressed connective tissue mast cell markers, although mast cells around the surface epithelium also expressed a mucosal mast cell marker in MRL/MpJ mice. Some ovarian mast cells migrated into the oocyte nests and directly contacted the compressed and degenerated oocytes. In MRL/MpJ mice, the number of oocytes in the nest was significantly lower than in the other strains, and the number of oocytes showed a positive correlation with the number of ovarian mast cells. The gene expression of a mast cell marker also correlated with the expression of an oocyte nest marker, suggesting a link between the appearance of ovarian ? 4mast cells and early follicular development. Furthermore, the expression of follicle developmental markers was significantly higher in MRL/MpJ mice than in C57BL/6 mice. These results indicate that the appearance of ovarian mast cells is a unique phenotype of neonatal MRL/MpJ mice, and that ovarian mast cells participate in early follicular development, especially nest breakdown. PMID:24124609

  19. Postmenopausal palpable ovary and ovarian cancer.

    PubMed

    Gojnić, M; Branković, M; Maksimović, M; Parapid, B; Dugalić, V; Jeremić, K; Gutić, B

    2011-01-01

    Ultrasound (US) examination is a much more reliable method for evaluation of potential ovarian cancer risk than gynecologic palpation. The aim of our study was to analyze the US characteristics of patients with palpable ovaries in light of potential for malignancy. We analyzed 70 women ten years after menopause without increased CA 125 values. They underwent clinical and US exams (abdominal and transvaginal ultrasound), with special emphasis on US Doppler exam. Bimanuel gynecological examination showed palpable ovaries in 14 patients (palpable ovary group), and the remaining 56 patients were defined as the control group. US showed increased dimensions of palpable ovaries. Atypical follicular activity, deviation from verticalization, atypical ovaries and hyperechogenic punctations classified under germ cell cysts occurred statistically significantly more often in the palpable ovary group. Doppler flow showed pathological vascularization in five patients with palpable ovaries and the estrogen level was increased. After four to six months in these five patients we found a mild increase of estrogen levels and higher Doppler abnormality. Six months later, two patients had irregular bleeding and underwent surgical treatment. Every adnexal mass after menopausis demands special attention. Bimanuel gynecological exams should be used liberally. It is necessary to follow the dimensions of the ovary, describe the echostructure, as well as the edges of the ovary and other anatomical structures. Doppler flow measurement and estrogen levels are predictive and give more information. Controls should be in three to six month intervals in order to make a decision for surgical treatment.

  20. mTOR is a Promising Therapeutic Target Both in Cisplatin-Sensitive and Cisplatin-Resistant Clear Cell Carcinoma of the Ovary

    PubMed Central

    Mabuchi, Seiji; Kawase, Chiaki; Altomare, Deborah A.; Morishige, Kenichirou; Sawada, Kenjiro; Hayashi, Masami; Tsujimoto, Masahiko; Yamoto, Mareo; Klein-Szanto, Andres J.; Schilder, Russell J.; Ohmichi, Masahide; Testa, Joseph R.; Kimura, Tadashi

    2009-01-01

    Translational Relevance Clear cell carcinoma (CCC) of the ovary is a distinctive subtype of epithelial ovarian cancer associated with a poorer sensitivity to platinum-based chemotherapy and a worse prognosis than the more common serous adenocarcinoma (SAC). To improve survival, the development of new treatment strategies that target CCC more effectively is necessary. Our results show that mTOR is more frequently activated in CCCs than in SACs. Our data have relevance for the design of future clinical studies of first-line treatment for patients with CCC of the ovary. Moreover, the finding of increased expression of phospho-mTOR and greater sensitivity to RAD001 in cisplatin-resistant CCC cells than in cisplatin-sensitive cells suggests a novel treatment option for patients with recurrent disease after cisplatin-based first-line chemotherapy. Purpose mTOR (mammalian target of rapamycin) plays a central role in cell proliferation and is regarded as a promising target in cancer therapy including for ovarian cancer. This study aims to examine the role of mTOR as a therapeutic target in clear cell carcinoma (CCC) of the ovary which is regarded as aggressive, chemo-resistant histological subtype. Experimental Design Using tissue microarrays of 98 primary ovarian cancers (52 clear cell carcinomas and 46 serous adenocarcinomas), the expression of phospho-mTOR was assessed by immunohistochemistry. Then, the growth-inhibitory effect of mTOR inhibition by RAD001 (everolimus) was examined using 2 pairs of cisplatin-sensitive parental (RMG1 and KOC7C) and cisplatin-resistant human CCC cell lines (RMG1-CR and KOC7C-CR) both in vitro and in vivo. Results Immunohistochemical analysis demonstrated mTOR was more frequently activated in CCCs than in serous adenocarcinomas (86.6% vs 50%). Treatment with RAD001 markedly inhibited the growth of both RMG1 and KOC7C cells both in vitro and in vivo. Increased expression of phospho-mTOR was observed in cisplatin-resistant RMG1-CR and KOC7C