Sample records for hamstring muscle strength

  1. The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength.

    PubMed

    Seymore, Kayla D; Domire, Zachary J; DeVita, Paul; Rider, Patrick M; Kulas, Anthony S

    2017-05-01

    Hamstring strain injury is a frequent and serious injury in competitive and recreational sports. While Nordic hamstring (NH) eccentric strength training is an effective hamstring injury-prevention method, the protective mechanism of this exercise is not understood. Strength training increases muscle strength, but also alters muscle architecture and stiffness; all three factors may be associated with reducing muscle injuries. The purpose of this study was to examine the effects of NH eccentric strength training on hamstring muscle architecture, stiffness, and strength. Twenty healthy participants were randomly assigned to an eccentric training group or control group. Control participants performed static stretching, while experimental participants performed static stretching and NH training for 6 weeks. Pre- and post-intervention measurements included: hamstring muscle architecture and stiffness using ultrasound imaging and elastography, and maximal hamstring strength measured on a dynamometer. The experimental group, but not the control group, increased volume (131.5 vs. 145.2 cm 3 , p < 0.001) and physiological cross-sectional area (16.1 vs. 18.1 cm 2 , p = 0.032). There were no significant changes to muscle fascicle length, stiffness, or eccentric hamstring strength. The NH intervention was an effective training method for muscle hypertrophy, but, contrary to common literature findings for other modes of eccentric training, did not increase fascicle length. The data suggest that the mechanism behind NH eccentric strength training mitigating hamstring injury risk could be increasing volume rather than increasing muscle length. Future research is, therefore, warranted to determine if muscle hypertrophy induced by NH training lowers future hamstring strain injury risk.

  2. Serial Changes of Quadriceps and Hamstring Muscle Strength Following Total Knee Arthroplasty: A Meta-Analysis

    PubMed Central

    Ahn, Hyeong-Sik; Lee, Dae-Hee

    2016-01-01

    This meta-analysis was performed to analyze serial changes in thigh muscles, including quadriceps and hamstring muscles, from before to one year after total knee arthroplasty (TKA). All studies sequentially comparing isokinetic quadriceps and hamstring muscle strengths between the TKA side and the contralateral uninjured limb were included in this meta-analysis. Five studies with 7 cohorts were included in this meta-analysis. The mean differences in the strengths of quadriceps and hamstring muscles between the TKA and uninjured sides were greatest three months after surgery (26.8 N∙m, 12.8 N∙m, P<0.001), but were similar to preoperative level at six months (18.4 N∙m, 7.4 N∙m P<0.001) and were maintained for up to one year (15.9 N∙m, 4.1 N∙m P<0.001). The pooled mean differences in changes in quadriceps and hamstring strengths relative to preoperative levels were 9.2 N∙m and 4.9 N∙m, respectively, three months postoperatively (P = 0.041), but were no longer significant after six months and one year. During the year after TKA, quadriceps and hamstring muscle strengths were lowest after 3 months, recovering to preoperative level after six months, but not reaching the muscle strength on the contralateral side. Relative to preoperative levels, the difference in muscle strength between the TKA and contralateral knees was only significant at three months. Because decrease of strength of the quadriceps was significantly greater than decrease in hamstring muscle strength at postoperative three months, early rehabilitation after TKA should focus on recovery of quadriceps muscle strength. PMID:26849808

  3. The relationship between hamstring length and gluteal muscle strength in individuals with sacroiliac joint dysfunction

    PubMed Central

    Massoud Arab, Amir; Reza Nourbakhsh, Mohammad; Mohammadifar, Ali

    2011-01-01

    It has been suggested that tight hamstring muscle, due to its anatomical connections, could be a compensatory mechanism for providing sacroiliac (SI) joint stability in patients with gluteal muscle weakness and SIJ dysfunction. The purpose of this study was to determine the relationship between hamstring muscle length and gluteal muscle strength in subjects with sacroiliac joint dysfunction. A total of 159 subjects with and without low back pain (LBP) between the ages of 20 and 65 years participate in the study. Subjects were categorized into three groups: LBP without SIJ involvement (n = 53); back pain with SIJ dysfunction (n = 53); and no low back pain (n = 53). Hamstring muscle length and gluteal muscle strength were measured in all subjects. The number of individuals with gluteal weakness was significantly (P = 0.02) higher in subjects with SI joint dysfunction (66%) compared to those with LBP without SI joint dysfunctions (34%). In pooled data, there was no significant difference (P = 0.31) in hamstring muscle length between subjects with SI joint dysfunction and those with back pain without SI involvement. In subjects with SI joint dysfunction, however, those with gluteal muscle weakness had significantly (P = 0.02) shorter hamstring muscle length (mean = 158±11°) compared to individuals without gluteal weakness (mean = 165±10°). There was no statistically significant difference (P>0.05) in hamstring muscle length between individuals with and without gluteal muscle weakness in other groups. In conclusion, hamstring tightness in subjects with SI joint dysfunction could be related to gluteal muscle weakness. The slight difference in hamstring muscle length found in this study, although statistically significant, was not sufficient for making any definite conclusions. Further studies are needed to establish the role of hamstring muscle in SI joint stability. PMID:22294848

  4. The relationship between hamstring length and gluteal muscle strength in individuals with sacroiliac joint dysfunction.

    PubMed

    Massoud Arab, Amir; Reza Nourbakhsh, Mohammad; Mohammadifar, Ali

    2011-02-01

    It has been suggested that tight hamstring muscle, due to its anatomical connections, could be a compensatory mechanism for providing sacroiliac (SI) joint stability in patients with gluteal muscle weakness and SIJ dysfunction. The purpose of this study was to determine the relationship between hamstring muscle length and gluteal muscle strength in subjects with sacroiliac joint dysfunction. A total of 159 subjects with and without low back pain (LBP) between the ages of 20 and 65 years participate in the study. Subjects were categorized into three groups: LBP without SIJ involvement (n = 53); back pain with SIJ dysfunction (n = 53); and no low back pain (n = 53). Hamstring muscle length and gluteal muscle strength were measured in all subjects. The number of individuals with gluteal weakness was significantly (P = 0.02) higher in subjects with SI joint dysfunction (66%) compared to those with LBP without SI joint dysfunctions (34%). In pooled data, there was no significant difference (P = 0.31) in hamstring muscle length between subjects with SI joint dysfunction and those with back pain without SI involvement. In subjects with SI joint dysfunction, however, those with gluteal muscle weakness had significantly (P = 0.02) shorter hamstring muscle length (mean = 158±11°) compared to individuals without gluteal weakness (mean = 165±10°). There was no statistically significant difference (P>0.05) in hamstring muscle length between individuals with and without gluteal muscle weakness in other groups. In conclusion, hamstring tightness in subjects with SI joint dysfunction could be related to gluteal muscle weakness. The slight difference in hamstring muscle length found in this study, although statistically significant, was not sufficient for making any definite conclusions. Further studies are needed to establish the role of hamstring muscle in SI joint stability.

  5. Influence of Anterior Cruciate Ligament Tear on Thigh Muscle Strength and Hamstring-to-Quadriceps Ratio: A Meta-Analysis.

    PubMed

    Kim, Hyun-Jung; Lee, Jin-Hyuck; Ahn, Sung-Eun; Park, Min-Ji; Lee, Dae-Hee

    2016-01-01

    Theoretical compensation after anterior cruciate ligament (ACL) tear could cause quadriceps weakness and hamstring activation, preventing anterior tibial subluxation and affecting the expected hamstring-to-quadriceps ratio. Although quadriceps weakness often occurs after ACL tears, it remains unclear whether hamstring strength and hamstring-to-quadriceps ratio increase in ACL deficient knees. This meta-analysis compared the isokinetic muscle strength of quadriceps and hamstring muscles, and the hamstring-to-quadriceps ratio, of the injured and injured limbs of patients with ACL tears. This meta-analysis included all studies comparing isokinetic thigh muscle strengths and hamstring-to-quadriceps ratio in the injured and uninjured legs of patients with ACL tear, without or before surgery. Thirteen studies were included in the meta-analysis. Quadriceps and hamstring strengths were 22.3 N∙m (95% CI: 15.2 to 29.3 N∙m; P<0.001) and 7.4 N∙m (95% CI: 4.3 to 10.5 N∙m; P<0.001) lower, respectively, on the injured than on the uninjured side. The mean hamstring-to-quadriceps ratio was 4% greater in ACL deficient than in uninjured limbs (95% CI: 1.7% to 6.3%; P<0.001). Conclusively, Decreases were observed in both the quadriceps and hamstring muscles of patients with ACL tear, with the decrease in quadriceps strength being 3-fold greater. These uneven reductions slightly increase the hamstring-to-quadriceps ratio in ACL deficient knees.

  6. Influence of Anterior Cruciate Ligament Tear on Thigh Muscle Strength and Hamstring-to-Quadriceps Ratio: A Meta-Analysis

    PubMed Central

    Ahn, Sung-Eun; Park, Min-Ji; Lee, Dae-Hee

    2016-01-01

    Theoretical compensation after anterior cruciate ligament (ACL) tear could cause quadriceps weakness and hamstring activation, preventing anterior tibial subluxation and affecting the expected hamstring-to-quadriceps ratio. Although quadriceps weakness often occurs after ACL tears, it remains unclear whether hamstring strength and hamstring-to-quadriceps ratio increase in ACL deficient knees. This meta-analysis compared the isokinetic muscle strength of quadriceps and hamstring muscles, and the hamstring-to-quadriceps ratio, of the injured and injured limbs of patients with ACL tears. This meta-analysis included all studies comparing isokinetic thigh muscle strengths and hamstring-to-quadriceps ratio in the injured and uninjured legs of patients with ACL tear, without or before surgery. Thirteen studies were included in the meta-analysis. Quadriceps and hamstring strengths were 22.3 N∙m (95% CI: 15.2 to 29.3 N∙m; P<0.001) and 7.4 N∙m (95% CI: 4.3 to 10.5 N∙m; P<0.001) lower, respectively, on the injured than on the uninjured side. The mean hamstring-to-quadriceps ratio was 4% greater in ACL deficient than in uninjured limbs (95% CI: 1.7% to 6.3%; P<0.001). Conclusively, Decreases were observed in both the quadriceps and hamstring muscles of patients with ACL tear, with the decrease in quadriceps strength being 3-fold greater. These uneven reductions slightly increase the hamstring-to-quadriceps ratio in ACL deficient knees. PMID:26745808

  7. Strength deficits identified with concentric action of the hip extensors and eccentric action of the hamstrings predispose to hamstring injury in elite sprinters.

    PubMed

    Sugiura, Yusaku; Saito, Tomoyuki; Sakuraba, Keishoku; Sakuma, Kazuhiko; Suzuki, Eiichi

    2008-08-01

    Prospective cohort study. In this prospective cohort study of elite sprinters, muscle strength of the hip extensors, as well as of the knee extensors and flexors, was measured to determine a possible relationship between strength deficits and subsequent hamstring injury within 12 months of testing. The method used for testing muscle strength simulated the specific muscle action during late swing and early contact phases when sprinting. There have been no prospective studies in elite sprinters that examine the concentric and eccentric isokinetic strength of the hip extensors and the quadriceps and hamstring muscles in a manner that reflects their actions in late swing or early contact phases of sprinting. Consequently, the causal relationship between hip and thigh muscle strength and hamstring injury in elite sprinters may not be fully understood. Isokinetic testing was performed on 30 male elite sprinters to assess hip extensors, quadriceps, and hamstring muscle strength. The occurrence of hamstring injury among the subjects was determined during the year following the muscle strength measurements. The strength of the hip extensors, quadriceps, and hamstring muscles, as well as the hamstrings-quadriceps and hip extensors- quadriceps ratios were compared. Hamstring injury occurred in 6 subjects during the 1-year period. Isokinetic testing at a speed of 60 degrees /s revealed weakness of the injured limb with eccentric action of the hamstring muscles and during concentric action of the hip extensors. When performing a side-to-side comparison for the injured sprinters, the hamstring injury always occurred on the weaker side. Differences in the hamstrings-quadriceps and hip extensors-quadriceps strength ratios were also evident between uninjured and injured limbs, and this was attributable to deficits in hamstring strength. Hamstring injury in elite sprinters was associated with weakness during eccentric action of the hamstrings and weakness during concentric action of

  8. Normative Quadriceps and Hamstring Muscle Strength Values for Female, Healthy, Elite Handball and Football Players.

    PubMed

    Risberg, May A; Steffen, Kathrin; Nilstad, Agnethe; Myklebust, Grethe; Kristianslund, Eirik; Moltubakk, Marie M; Krosshaug, Tron

    2018-05-23

    Risberg, MA, Steffen, K, Nilstad, A, Myklebust, G, Kristianslund, E, Moltubakk, MM, and Krosshaug, T. Normative quadriceps and hamstring muscle strength values for female, healthy, elite handball and football players. J Strength Cond Res XX(X): 000-000, 2018-This study presents normative values for isokinetic knee extension and flexion muscle strength tests in 350 elite, female, handball (n = 150) and football (n = 200) players. Isokinetic concentric muscle strength tests at 60°·sec were recorded bilaterally using a dynamometer. Peak torque (in Newton meter [N·m]), body mass normalized peak torque (N·m·kg), and hamstring to quadriceps ratio (H:Q ratio) for dominant and nondominant legs were recorded. The female elite players were 20.9 ± 4.0 years, started playing at the elite level at the age of 18.2 ± 2.7 years, with a mean of 9.7 ± 2.2 hours of weekly in-season training. Handball players demonstrated greater quadriceps muscle strength compared with football players (11.0%) (p < 0.001), also when normalized to body mass (4.1%) (p = 0.012), but not for weight-adjusted hamstring muscle strength. The H:Q ratio was higher on the dominant compared with the nondominant leg for handball players only (p = 0.012).The H:Q ratio was significantly lower for handball players (0.58) compared with football players (0.60) (p < 0.02). These normative values for isokinetic knee extension and flexion torques of healthy, elite, female handball and football players can be used to set rehabilitation goals for muscle strength after injury and enable comparison with uninjured legs. Significantly greater quadriceps muscle strength was found for handball players compared with football players, also when normalized to body mass.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be

  9. Interseason variability in isokinetic strength and poor correlation with Nordic hamstring eccentric strength in football players.

    PubMed

    van Dyk, N; Witvrouw, E; Bahr, R

    2018-04-25

    In elite sport, the use of strength testing to establish muscle function and performance is common. Traditionally, isokinetic strength tests have been used, measuring torque during concentric and eccentric muscle action. A device that measures eccentric hamstring muscle strength while performing the Nordic hamstring exercise is now also frequently used. The study aimed to investigate the variability of isokinetic muscle strength over time, for example, between seasons, and the relationship between isokinetic testing and the new Nordic hamstring exercise device. All teams (n = 18) eligible to compete in the premier football league in Qatar underwent a comprehensive strength assessment during their periodic health evaluation at Aspetar Orthopaedic and Sports Medicine Hospital in Qatar. Isokinetic strength was investigated for measurement error, and correlated to Nordic hamstring exercise strength. Of the 529 players included, 288 players had repeated tests with 1/2 seasons between test occasions. Variability (measurement error) between test occasions was substantial, as demonstrated by the measurement error (approximately 25 Nm, 15%), whether separated by 1 or 2 seasons. Considering hamstring injuries, the same pattern was observed among injured (n = 60) and uninjured (n = 228) players. A poor correlation (r = .35) was observed between peak isokinetic hamstring eccentric torque and Nordic hamstring exercise peak force. The strength imbalance between limbs calculated for both test modes was not correlated (r = .037). There is substantial intraindividual variability in all isokinetic test measures, whether separated by 1 or 2 seasons, irrespective of injury. Also, eccentric hamstring strength and limb-to-limb imbalance were poorly correlated between the isokinetic and Nordic hamstring exercise tests. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Morphologic Characteristics and Strength of the Hamstring Muscles Remain Altered at 2 Years After Use of a Hamstring Tendon Graft in Anterior Cruciate Ligament Reconstruction.

    PubMed

    Konrath, Jason M; Vertullo, Christopher J; Kennedy, Ben A; Bush, Hamish S; Barrett, Rod S; Lloyd, David G

    2016-10-01

    The hamstring tendon graft used in anterior cruciate ligament (ACL) reconstruction has been shown to lead to changes to the semitendinosus and gracilis musculature. We hypothesized that (1) loss of donor muscle size would significantly correlate with knee muscle strength deficits, (2) loss of donor muscle size would be greater for muscles that do not experience tendon regeneration, and (3) morphological adaptations would also be evident in nondonor knee muscles. Cross-sectional study; Level of evidence, 3. Twenty participants (14 men and 6 women, mean age 29 ± 7 years, mean body mass 82 ± 15 kg) who had undergone an ACL reconstruction with a hamstring tendon graft at least 2 years previously underwent bilateral magnetic resonance imaging and subsequent strength testing. Muscle and tendon volumes, peak cross-sectional areas (CSAs), and lengths were determined for 12 muscles and 6 functional muscle groups of the surgical and contralateral limbs. Peak isokinetic concentric strength was measured in knee flexion/extension and internal/external tibial rotation. Only 35% of the patients showed regeneration of both the semitendinosus and gracilis tendons. The regenerated tendons were longer with larger volume and CSA compared with the contralateral side. Deficits in semitendinosus and gracilis muscle size were greater for muscles in which tendons did not regenerate. In addition, combined hamstring muscles (semitendinosus, semimembranosus, and biceps femoris) and combined medial knee muscles (semitendinosus, semimembranosus, gracilis, vastus medialis, medial gastrocnemius, and sartorius) on the surgical side were reduced in volume by 12% and 10%, respectively. A 7% larger volume was observed in the surgical limb for the biceps femoris muscle and corresponded with a lower internal/external tibial rotation strength ratio. The difference in volume, peak CSA, and length of the semitendinosus and gracilis correlated significantly with the deficit in knee flexion strength, with

  11. Soccer-Specific Fatigue and Eccentric Hamstrings Muscle Strength

    PubMed Central

    Greig, Matt; Siegler, Jason C

    2009-01-01

    Context: Epidemiologic findings of higher incidences of hamstrings muscle strains during the latter stages of soccer match play have been attributed to fatigue. Objective: To investigate the influence of soccer-specific fatigue on the peak eccentric torque of the knee flexor muscles. Design: Descriptive laboratory study. Setting: Controlled laboratory environment. Patients or Other Participants: Ten male professional soccer players (age  =  24.7 ± 4.4 years, mass  =  77.1 ± 8.3 kg, V̇o2max  =  63.0 ± 4.8 mL·kg−1·min−1). Intervention(s): Participants completed an intermittent treadmill protocol replicating the activity profile of soccer match play, with a passive halftime interval. Before exercise and at 15-minute intervals, each player completed isokinetic dynamometer trials. Main Outcome Measure(s): Peak eccentric knee flexor torque was quantified at isokinetic speeds of 180° · s−1, 300° · s−1, and 60° · s−1, with 5 repetitions at each speed. Results: Peak eccentric knee flexor torque at the end of the game (T300eccH105  =  127 ± 25 Nm) and at the end of the passive halftime interval (T300eccH60  =  133 ± 32 Nm) was reduced relative to T300eccH00 (167 ± 35 Nm, P < .01) and T300eccH15 (161 ± 35 Nm, P  =  .02). Conclusions: Eccentric hamstrings strength decreased as a function of time and after the halftime interval. This finding indicates a greater risk of injuries at these specific times, especially for explosive movements, in accordance with epidemiologic observations. Incorporating eccentric knee flexor exercises into resistance training sessions that follow soccer-specific conditioning is warranted to try to reduce the incidence or recurrence of hamstrings strains. PMID:19295963

  12. Hamstrings strength imbalance in professional football (soccer) players in Australia.

    PubMed

    Ardern, Clare L; Pizzari, Tania; Wollin, Martin R; Webster, Kate E

    2015-04-01

    The aim of this study was to describe the isokinetic thigh muscle strength profile of professional male football players in Australia. Concentric (60° and 240°·s(-1)) and eccentric (30° and 120°·s(-1)) hamstrings and quadriceps isokinetic strength was measured with a HUMAC NORM dynamometer. The primary variables were bilateral concentric and eccentric hamstring and quadriceps peak torque ratios, concentric hamstring-quadriceps peak torque ratios, and mixed ratios (eccentric hamstring 30°·s(-1) ÷ concentric quadriceps 240°·s(-1)). Hamstring strength imbalance was defined as deficits in any 2 of: bilateral concentric hamstring peak torque ratio <0.86, bilateral eccentric hamstring peak torque ratio <0.86, concentric hamstring-quadriceps ratio <0.47, and mixed ratio <0.80. Fifty-five strength tests involving 42 players were conducted. Ten players (24%) were identified as having hamstring strength imbalance. Athletes with strength imbalance had significantly reduced concentric and eccentric bilateral hamstring peak torque ratios at all angular velocities tested; and reduced eccentric quadriceps peak torque (30°·s(-1)) in their stance leg, compared with those without strength imbalance. Approximately, 1 in 4 players had preseason hamstring strength imbalance; and all strength deficits were observed in the stance leg. Concentric and eccentric hamstrings strength imbalance may impact in-season football performance and could have implications for the future risk of injury.

  13. COMPARISON OF HAMSTRING MUSCLE ACTIVATION DURING HIGH-SPEED RUNNING AND VARIOUS HAMSTRING STRENGTHENING EXERCISES

    PubMed Central

    Solheim, Jens Asmund Brevik; Bencke, Jesper

    2017-01-01

    Purpose/Background Several studies have examined the effect of hamstring strength exercises upon hamstring strains in team sports that involve many sprints. However, there has been no cross comparison among muscle activation of these hamstring training exercises with actual sprinting. Therefore, the aim of this study was to examine different hamstring exercises and compare the muscle activity in the hamstring muscle group during various exercises with the muscular activity produced during maximal sprints. Methods Twelve male sports students (age 25 ± 6.2 years, 1.80 ± 7.1 m, body mass 81.1 ± 15.6 kg) participated in this study. Surface EMG electrodes were placed on semimembranosus, semitendinosus and biceps femoris to measure muscle activity during seven hamstrings exercises and sprinting together with 3D motion capture to establish at what hip and knee angles maximal muscle activation (EMG) occurs. Maximal EMG activity during sprints for each muscle was used in order to express each exercise as a percentage of max activation during sprinting. Results The main findings were that maximal EMG activity of the different hamstring exercises were on average between 40-65% (Semitendinosus), 18-40% (biceps femoris) and 40-75% (Semimembranosus) compared with the max EMG activity in sprints, which were considered as 100%. The laying kick together with the Nordic hamstring exercises and its variations had the highest muscle activations, while the cranes showed the lowest muscle activation (in all muscles) together with the standing kick for the semimembranosus. In addition, angles at which the peak EMG activity of the hamstring muscle occurs were similar for the Nordic hamstring exercises and different for the two crane exercises (hip angle), standing kick (hip angle) and the laying kick (knee angle) compared with the sprint. Conclusions Nordic hamstring exercises with its variation together with the laying kick activates the hamstrings at high levels and

  14. Lower eccentric hamstring strength and single leg hop for distance predict hamstring injury in PETE students.

    PubMed

    Goossens, L; Witvrouw, E; Vanden Bossche, L; De Clercq, D

    2015-01-01

    Hamstring injuries have not been under research in physical education teacher education (PETE) students so far. Within the frame of the development of an injury prevention program, for this study we conducted an analysis of modifiable risk factors for hamstring injuries in PETE students. Hamstring injuries of 102 freshmen bachelor PETE students were registered prospectively during one academic year. Eighty-one students completed maximum muscle strength tests of hip extensors, hamstrings, quadriceps (isometric) and hamstrings (eccentric) at the start of the academic year. Sixty-nine of the latter completed a single leg hop for distance (SLHD). Risk factors for hamstring injuries were statistically detected using logistic regression. Sixteen hamstring injuries (0.16 injuries/student/academic year; 0.46 injuries/1000 h) occurred to 10 participants. Eight cases were included in the risk factor analysis. Lower eccentric hamstring strength (odds ratio (ODD) = 0.977; p = 0.043), higher isometric/eccentric hamstring strength ratio (ODD = 970.500; p = 0.019) and lower score on the SLHD (ODD = 0.884; p = 0.005) were significant risk factors for hamstring injury. A combination of eccentric hamstring strength test and SLHD could give a good risk analysis of hamstring injuries in PETE students. This might offer great perspectives for easily applicable screening in a clinical setting.

  15. The functional significance of hamstrings composition: is it really a "fast" muscle group?

    PubMed

    Evangelidis, Pavlos E; Massey, Garry J; Ferguson, Richard A; Wheeler, Patrick C; Pain, Matthew T G; Folland, Jonathan P

    2017-11-01

    Hamstrings muscle fiber composition may be predominantly fast-twitch and could explain the high incidence of hamstrings strain injuries. However, hamstrings muscle composition in vivo, and its influence on knee flexor muscle function, remains unknown. We investigated biceps femoris long head (BFlh) myosin heavy chain (MHC) composition from biopsy samples, and the association of hamstrings composition and hamstrings muscle volume (using MRI) with knee flexor maximal and explosive strength. Thirty-one young men performed maximal (concentric, eccentric, isometric) and explosive (isometric) contractions. BFlh exhibited a balanced MHC distribution [mean ± SD (min-max); 47.1 ± 9.1% (32.6-71.0%) MHC-I, 35.5 ± 8.5% (21.5-60.0%) MHC-IIA, 17.4 ± 9.1% (0.0-30.9%) MHC-IIX]. Muscle volume was correlated with knee flexor maximal strength at all velocities and contraction modes (r = 0.62-0.76, P < 0.01), but only associated with late phase explosive strength (time to 90 Nm; r = -0.53, P < 0.05). In contrast, BFlh muscle composition was not related to any maximal or explosive strength measure. BFlh MHC composition was not found to be "fast", and therefore composition does not appear to explain the high incidence of hamstrings strain injury. Hamstrings muscle volume explained 38-58% of the inter-individual differences in knee flexor maximum strength at a range of velocities and contraction modes, while BFlh muscle composition was not associated with maximal or explosive strength. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Impact of exercise selection on hamstring muscle activation.

    PubMed

    Bourne, Matthew N; Williams, Morgan D; Opar, David A; Al Najjar, Aiman; Kerr, Graham K; Shield, Anthony J

    2017-07-01

    To determine which strength training exercises selectively activate the biceps femoris long head (BF LongHead ) muscle. We recruited 24 recreationally active men for this two-part observational study . Part 1: We explored the amplitudes and the ratios of lateral (BF) to medial hamstring (MH) normalised electromyography (nEMG) during the concentric and eccentric phases of 10 common strength training exercises. Part 2: We used functional MRI (fMRI) to determine the spatial patterns of hamstring activation during two exercises which (1) most selectively and (2) least selectively activated the BF in part 1. Eccentrically, the largest BF/MH nEMG ratio occurred in the 45° hip-extension exercise; the lowest was in the Nordic hamstring (Nordic) and bent-knee bridge exercises. Concentrically, the highest BF/MH nEMG ratio occurred during the lunge and 45° hip extension; the lowest was during the leg curl and bent-knee bridge. fMRI revealed a greater BF (LongHead) to semitendinosus activation ratio in the 45° hip extension than the Nordic (p<0.001). The T2 increase after hip extension for BF LongHead , semitendinosus and semimembranosus muscles was greater than that for BF ShortHead (p<0.001). During the Nordic, the T2 increase was greater for the semitendinosus than for the other hamstring muscles (p≤0.002). We highlight the heterogeneity of hamstring activation patterns in different tasks. Hip-extension exercise selectively activates the long hamstrings, and the Nordic exercise preferentially recruits the semitendinosus. These findings have implications for strategies to prevent hamstring injury as well as potentially for clinicians targeting specific hamstring components for treatment (mechanotherapy). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. The eccentric, concentric strength relationship of the hamstring muscles in chronic low back pain.

    PubMed

    Marshall, Paul W M; Mannion, Jamie; Murphy, Bernadette A

    2010-02-01

    The objective of this study was to measure hamstring muscle eccentric and concentric strength in individuals with and without low back pain (LBP). Two composite scores for the relative balance of eccentric to concentric strength at the different movement velocities were calculated (the DEC and SEC), to determine whether or not self perceived pain, disability, or fear avoidance measures were associated with hamstring strength characteristics. Cross-sectional repeated measures design. University laboratory. Fifteen individuals with chronic LBP and 15 matched controls. Isokinetic eccentric and concentric strength at 30 degrees s(-1) and 120 degrees s(-1)(.) Composite scores (DEC and SEC) based on peak torque were calculated to evaluate the relationship between the different muscle actions across the test velocities. Self report measures included the Oswestry disability index, general health and well being, fear avoidance, and pain. Eccentric/concentric strength ratio at 30 degrees s(-1) was higher for the LBP group (F(1,58)=4.81, p=0.032). The SEC was also higher for the LBP (F(1,58)=5.97, p=0.018). Fear avoidance beliefs and mental well-being were significantly associated with the SEC only in the LBP group (adjusted r(2)=0.26, (F(2,27)=5.8, p=.008). For the control group both the DEC and SEC were associated with self report measures. Matched differences between groups' for the SEC were best explained by fear avoidance beliefs about work (adjusted r(2)=0.12, F(1,28)=5.1, p=0.03). Reduced concentric relative to eccentric strength is best identified by the SEC. The SEC was significantly associated with impaired self report measures of fear avoidance and mental well being in individuals with LBP. Differences between groups for the SEC were best explained by fear avoidance beliefs about work.

  18. Hamstring Strength and Morphology Progression after Return to Sport from Injury

    PubMed Central

    Sanfilippo, Jennifer; Silder, Amy; Sherry, Marc A; Tuite, Michael J; Heiderscheit, Bryan C

    2012-01-01

    Hamstring strain re-injury rates can reach 30% within the initial two weeks following return to sport (RTS). Incomplete recovery of strength may be a contributing factor. However, relative strength of the injured and unaffected limbs at RTS is currently unknown. PURPOSE: Characterize hamstring strength and morphology at the time of RTS and six months later. METHODS: Twenty-five athletes that experienced an acute hamstring strain injury participated, following completion of a controlled rehabilitation program. Bilateral isokinetic strength testing and magnetic resonance imaging (MRI) were performed at RTS and 6-months later. Strength (knee flexion peak torque, work, angle of peak torque) and MRI (muscle and tendon volumes) measures were compared between limbs and over time using repeated measures ANOVA. RESULTS: The injured limb showed a peak torque deficit of 9.6% compared to the uninjured limb at RTS (60°/s, p<0.001), but not 6-months following. The knee flexion angle of peak torque decreased over time for both limbs (60°/s, p<0.001). MRI revealed that 20.4% of the muscle cross-sectional area showed signs of edema at RTS with full resolution by the 6-month follow-up. Tendon volume of the injured limb tended to increase over time (p=0.108), while muscle volume decreased 4–5% in both limbs (p<0.001). CONCLUSION: Residual edema and deficits in isokinetic knee flexion strength were present at RTS, but resolved during the subsequent six months. This occurred despite MRI evidence of scar tissue formation (increased tendon volume) and muscle atrophy, suggesting that neuromuscular factors may contribute to the return of strength. PMID:23059864

  19. Physical principles demonstrate that the biceps femoris muscle relative to the other hamstring muscles exerts the most force: implications for hamstring muscle strain injuries.

    PubMed

    Dolman, Bronwyn; Verrall, Geoffrey; Reid, Iain

    2014-07-01

    Of the hamstring muscle group the biceps femoris muscle is the most commonly injured muscle in sports requiring interval sprinting. The reason for this observation is unknown. The objective of this study was to calculate the forces of all three hamstring muscles, relative to each other, during a lengthening contraction to assess for any differences that may help explain the biceps femoris predilection for injury during interval sprinting. To calculate the displacement of each individual hamstring muscle previously performed studies on cadaveric anatomical data and hamstring kinematics during sprinting were used. From these displacement calculations for each individual hamstring muscle physical principles were then used to deduce the proportion of force exerted by each individual hamstring muscle during a lengthening muscle contraction. These deductions demonstrate that the biceps femoris muscle is required to exert proportionally more force in a lengthening muscle contraction relative to the semimembranosus and semitendinosus muscles primarily as a consequence of having to lengthen over a greater distance within the same time frame. It is hypothesized that this property maybe a factor in the known observation of the increased susceptibility of the biceps femoris muscle to injury during repeated sprints where recurrent higher force is required.

  20. Architectural differences between the hamstring muscles.

    PubMed

    Kellis, Eleftherios; Galanis, Nikiforos; Kapetanos, George; Natsis, Konstantinos

    2012-08-01

    The purpose of this study was to understand the detailed architectural properties of the human hamstring muscles. The long (BFlh) and short (BFsh) head of biceps femoris, semimembranosus (SM) and semitendinosus (ST) muscles were dissected and removed from their origins in eight cadaveric specimens (age 67.8±4.3 years). Mean fiber length, sarcomere length, physiological cross-section area and pennation angle were measured. These data were then used to calculate a similarity index (δ) between pairs of muscles. The results indicated moderate similarity between BFlh and BFsh (δ=0.54) and between BFlh and SM (δ=0.35). In contrast, similarity was low between SM and ST (δ=0.98) and between BFlh and SM (δ=1.17). The fascicle length/muscle length ratio was higher for the ST (0.58) and BFsh (0.50) compared with the BFlh (0.27) and SM (0.22). There were, however, high inter-correlations between individual muscle architecture values, especially for muscle thickness and fascicle length data sets. Prediction of the whole hamstring architecture was achieved by combining data from all four muscles. These data show different designs of the hamstring muscles, especially between the SM and ST (medial) and BFlh and BFsh (lateral) muscles. Modeling the hamstrings as one muscle group by assuming uniform inter-muscular architecture yields less accurate representation of human hamstring muscle function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Physical principles demonstrate that the biceps femoris muscle relative to the other hamstring muscles exerts the most force: implications for hamstring muscle strain injuries

    PubMed Central

    Dolman, Bronwyn; Verrall, Geoffrey; Reid, Iain

    2014-01-01

    Summary Of the hamstring muscle group the biceps femoris muscle is the most commonly injured muscle in sports requiring interval sprinting. The reason for this observation is unknown. The objective of this study was to calculate the forces of all three hamstring muscles, relative to each other, during a lengthening contraction to assess for any differences that may help explain the biceps femoris predilection for injury during interval sprinting. To calculate the displacement of each individual hamstring muscle previously performed studies on cadaveric anatomical data and hamstring kinematics during sprinting were used. From these displacement calculations for each individual hamstring muscle physical principles were then used to deduce the proportion of force exerted by each individual hamstring muscle during a lengthening muscle contraction. These deductions demonstrate that the biceps femoris muscle is required to exert proportionally more force in a lengthening muscle contraction relative to the semimembranosus and semitendinosus muscles primarily as a consequence of having to lengthen over a greater distance within the same time frame. It is hypothesized that this property maybe a factor in the known observation of the increased susceptibility of the biceps femoris muscle to injury during repeated sprints where recurrent higher force is required. PMID:25506583

  2. Ultrasound assessment of hamstring muscle size using posterior thigh muscle thickness.

    PubMed

    Abe, Takashi; Loenneke, Jeremy P; Thiebaud, Robert S

    2016-05-01

    Several studies have investigated the relationship between ultrasound-measured muscle thickness (MT) and individual muscle cross-sectional area (CSA) and muscle volume (MV) in extremity and trunk muscles; however, the hamstring muscle has not been studied. The purpose of this study was to examine the relationship between posterior thigh MT by ultrasound and the muscle CSA and MV of the hamstring obtained by magnetic resonance imaging (MRI). Ten young women aged 20-31 had MT measured by ultrasound at three sites on the medial anterior (50% of thigh length; TL) and posterior (50% and 70% of TL) aspects of the thigh. On the same day, a series of continuous muscle CSA along the thigh was measured by MRI. In each slice, the anatomical CSA of the hamstring (biceps femoris, semitendinosus and semimembranosus) and quadriceps muscle was analysed, and the CSAs at 50% and 70% of TL and maximal CSA of the hamstring (CSAmax ) were determined. MV was calculated by multiplying CSA by slice thickness. A significant correlation was observed between posterior 50% MT and 50% hamstring CSA (r = 0·848, P = 0·002) and between posterior 70% MT and 70% hamstring CSA (r = 0·679, P = 0·031). Posterior 50% MT (r = 0·732, P = 0·016) and 50% MTxTL (r = 0·873, P = 0·001) were also correlated to hamstring MV. Anterior:posterior 50% thigh MT ratio was correlated to MV ratio of quadriceps and hamstring muscles (r = 0·803, P = 0·005). Our results suggest that posterior thigh MT reflects hamstring muscle CSA and MV. The anterior:posterior MT ratio may serve as a surrogate for MV ratio of quadriceps and hamstring. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  3. Four Weeks of Nordic Hamstring Exercise Reduce Muscle Injury Risk Factors in Young Adults.

    PubMed

    Ribeiro-Alvares, João Breno; Marques, Vanessa B; Vaz, Marco A; Baroni, Bruno M

    2018-05-01

    Ribeiro-Alvares, JB, Marques, VB, Vaz, MA, and Baroni, BM. Four weeks of Nordic hamstring exercise reduce muscle injury risk factors in young adults. J Strength Cond Res 32(5): 1254-1262, 2018-The Nordic hamstring exercise (NHE) is a field-based exercise designed for knee-flexor eccentric strengthening, aimed at prevention of muscle strains. However, possible effects of NHE programs on other hamstring injury risk factors remain unclear. The purpose of this study was to investigate the effects of a NHE training program on multiple hamstring injury risk factors. Twenty physically active young adults were allocated into 2 equal-sized groups: control group (CG) and training group (TG). The TG was engaged in a 4-week NHE program, twice a week, 3 sets of 6-10 repetitions; while CG received no exercise intervention. The knee flexor and extensor strength were assessed through isokinetic dynamometry, the biceps femoris long head muscle architecture through ultrasound images, and the hamstring flexibility through sit-and-reach test. The results showed that CG subjects had no significant change in any outcome. TG presented higher percent changes than CG for hamstring isometric peak torque (9%; effect size [ES] = 0.27), eccentric peak torque (13%; ES = 0.60), eccentric work (18%; ES = 0.86), and functional hamstring-to-quadriceps torque ratio (13%; ES = 0.80). The NHE program led also to increased fascicle length (22%; ES = 2.77) and reduced pennation angle (-17%; ES = 1.27) in biceps femoris long head of the TG, without significant changes on muscle thickness. In conclusion, a short-term NHE training program (4 weeks; 8 training sessions) counteracts multiple hamstring injury risk factors in physically active young adults.

  4. Strength Measurements in Acute Hamstring Injuries: Intertester Reliability and Prognostic Value of Handheld Dynamometry.

    PubMed

    Reurink, Gustaaf; Goudswaard, Gert Jan; Moen, Maarten H; Tol, Johannes L; Verhaar, Jan A N; Weir, Adam

    2016-08-01

    Study Design Cohort study, repeated measures. Background Although hamstring strength measurements are used for assessing prognosis and monitoring recovery after hamstring injury, their actual clinical relevance has not been established. Handheld dynamometry (HHD) is a commonly used method of measuring muscle strength. The reliability of HHD has not been determined in athletes with acute hamstring injuries. Objectives To determine the intertester reliability and the prognostic value of hamstring HHD strength measurement in acute hamstring injuries. Methods We measured knee flexion strength with HHD in 75 athletes at 2 visits, at baseline (within 5 days of hamstring injury) and follow-up (5 to 7 days after the baseline measurement). We assessed isometric hamstring strength in 15° and 90° of knee flexion. Reliability analysis testing was performed by 2 testers independently at the follow-up visit. We recorded the time needed to return to play (RTP) up to 6 months following baseline. Results The intraclass correlation coefficients of the strength measurements in injured hamstrings were between 0.75 and 0.83. There was a statistically significant but weak correlation between the time to RTP and the strength deficit at 15° of knee flexion measured at baseline (Spearman r = 0.25, P = .045) and at the follow-up visit (Spearman r = 0.26, P = .034). Up to 7% of the variance in time to RTP is explained by this strength deficit. None of the other strength variables were significantly correlated with time to RTP. Conclusion Hamstring strength can be reliably measured with HHD in athletes with acute hamstring injuries. The prognostic value of strength measurements is limited, as there is only a weak association between the time to RTP and hamstring strength deficit after acute injury. Level of Evidence Prognosis, level 4. J Orthop Sports Phys Ther 2016;46(8):689-696. Epub 12 May 2016. doi:10.2519/jospt.2016.6363.

  5. Hamstring Muscle Use in Females During Hip-Extension and the Nordic Hamstring Exercise: An fMRI Study.

    PubMed

    Messer, Daniel J; Bourne, Matthew N; Williams, Morgan D; Al Najjar, Aiman; Shield, Anthony J

    2018-04-23

    Study Design Cross-sectional study. Background Understanding hamstring muscle activation patterns in resistance training exercises may have implications for the design of strength training and injury prevention programs. Unfortunately, surface electromyography studies have reported conflicting results with regard to hamstring muscle activation patterns in women. Objectives To determine the spatial patterns of hamstring muscle activity during the 45º hip-extension and Nordic hamstring exercises, in females using functional magnetic resonance imaging. Methods Six recreationally active females with no history of lower limb injury underwent functional magnetic resonance imaging (fMRI) on both thighs before and immediately after 5 sets of 6 bilateral eccentric contractions of the 45º hip-extension or Nordic exercises. Using fMRI, the transverse (T2) relaxation times were measured from pre- and post- exercise scans and the percentage increase in T2 was used as an index of muscle activation. Results fMRI revealed a significantly higher biceps femoris long head (BF LongHead ) to semitendinosus ratio during the 45° hip-extension than the Nordic exercise (P = .028). The T2 increase after 45° hip-extension was greater for BF LongHead (P < .001), semitendinosus and semimembranosus (P = .001) than that of biceps femoris short head (BF ShortHead ). During the Nordic exercise, the T2 increase for semitendinosus was greater than that of BF ShortHead (P < .001) and BF LongHead (P = .001). Conclusion While both exercises involve high levels of semitendinosus activation in women, the Nordic exercise preferentially recruits that muscle while the hip extension more evenly activates all of the biarticular hamstrings. J Orthop Sports Phys Ther, Epub 23 Apr 2018. doi:10.2519/jospt.2018.7748.

  6. Extensibility of the hamstrings is best explained by mechanical components of muscle contraction, not behavioral measures in individuals with chronic low back pain.

    PubMed

    Marshall, Paul W M; Mannion, Jamie; Murphy, Bernadette A

    2009-08-01

    To examine the relationship between hamstring extensibility by use of the instrumented straight leg raise; mechanical components of muscle contraction, including muscle recruitment, passive torque measures of tissue stiffness, and eccentric strength; and self-reported measures of pain and disability. Cross-sectional study. University laboratory. Twenty-one individuals with chronic nonspecific axial lower back pain and 15 healthy control subjects. Instrumented straight leg raise, concentric and eccentric hamstring strength, self-reported measures of pain, disability, fear avoidance, general health and well-being Objective measures included hamstring extensibility, hamstring muscle stiffness, absolute and relative concentric/eccentric strength, concentric/eccentric strength ratios. Self-reported measures included Oswestry disability index, visual analog pain scale, fear avoidance beliefs, and general health and well being. Patients with lower back pain had lower range of motion, greater changes in muscle stiffness, and impaired concentric-to-eccentric strength levels. Stepwise regression identified measures of stiffness as significantly predicting hamstring extensibility (adjusted r(2) = 0.58, F = 23.76, P < .001). Self-reported measures were not associated with extensibility. Gender differences were noted for passive stiffness and absolute strength. For women, later onset of the medial hamstrings also was associated with greater hamstring extensibility. Decreased extensibility of the hamstrings was associated with increased passive stiffness during the common range of motion (20 to 50 degrees ). Impaired stretch tolerance is associated with actual mechanical restriction, not behavioral measures indicating increased pain or fear-avoidant behavior. With no relationship to actual disability and contradictory findings in the literature for the relationship of the hamstrings to the mechanics of the low back, it is unclear whether decreased hamstring extensibility should

  7. Hamstring Strength Asymmetry at 3 Years After Anterior Cruciate Ligament Reconstruction Alters Knee Mechanics During Gait and Jogging.

    PubMed

    Abourezk, Matthew N; Ithurburn, Matthew P; McNally, Michael P; Thoma, Louise M; Briggs, Matthew S; Hewett, Timothy E; Spindler, Kurt P; Kaeding, Christopher C; Schmitt, Laura C

    2017-01-01

    Anterior cruciate ligament reconstruction (ACLR) using a hamstring tendon autograft often results in hamstring muscle strength asymmetry. However, the effect of hamstring muscle strength asymmetry on knee mechanics has not been reported. Participants with hamstring strength asymmetry would demonstrate altered involved limb knee mechanics during walking and jogging compared with those with more symmetric hamstring strength at least 2 years after ACLR with a hamstring tendon autograft. Controlled laboratory study. There were a total of 45 participants at least 2 years after ACLR (22 male, 23 female; mean time after ACLR, 34.6 months). A limb symmetry index (LSI) was calculated for isometric hamstring strength to subdivide the sample into symmetric hamstring (SH) (LSI ≥90%; n = 18) and asymmetric hamstring (AH) (LSI <85%; n = 18) groups. Involved knee kinematic and kinetic data were collected using 3-dimensional motion analysis during gait and jogging. Peak sagittal-, frontal-, and transverse-plane knee angles and sagittal-plane knee moments and knee powers were calculated. Independent-samples t tests and analyses of covariance were used to compare involved knee kinematic and kinetic variables between the groups. There were no differences in sagittal- and frontal-plane knee angles between the groups ( P > .05 for all). The AH group demonstrated decreased tibial internal rotation during weight acceptance during gait ( P = .01) and increased tibial external rotation during jogging at initial contact ( P = .03) and during weight acceptance ( P = .02) compared with the SH group. In addition, the AH group demonstrated decreased peak negative knee power during midstance ( P = .01) during gait compared with the SH group, after controlling for gait speed, which differed between groups. Participants with hamstring strength asymmetry showed altered involved knee mechanics in the sagittal plane during gait and in the transverse plane during gait and jogging compared with those

  8. Effects of High Velocity Elastic Band versus Heavy Resistance Training on Hamstring Strength, Activation, and Sprint Running Performance

    PubMed Central

    Janusevicius, Donatas; Snieckus, Audrius; Skurvydas, Albertas; Silinskas, Viktoras; Trinkunas, Eugenijus; Cadefau, Joan Aureli; Kamandulis, Sigitas

    2017-01-01

    Hamstring muscle injuries occur during high-speed activities, which suggests that muscular strength at high velocities may be more important than maximal strength. This study examined hamstring adaptations to training for maximal strength and for strength at high velocities. Physically active men (n = 25; age, 23.0 ± 3.2 years) were randomly divided into: (1) a resistance training (RT, n = 8) group, which performed high-load, low-velocity concentric–eccentric hamstring contractions; (2) a resistance training concentric (RTC; n = 9) group, which performed high-load, low-velocity concentric-only hamstring contractions; and (3) a high-velocity elastic band training (HVT, n = 8) group, which performed low-load, high-velocity concentric–eccentric hamstring contractions. Pre- and posttraining tests included hamstring strength on a hamstring-curl apparatus, concentric knee extension–flexion at 60°/s, 240°/s, and 450°/s, eccentric knee flexion at 60°/s and 240°/s, hamstring and quadriceps coactivation, knee flexion and extension frequency in the prone position, and 30-m sprint running speed from a stationary start and with a running start. Knee flexor torque increased significantly by 21.1% ± 8.1% in the RTC group and 16.2% ± 4.2% in the RT group (p < 0.05 for both groups). Hamstring coactivation decreased significantly in both groups. In the HVT group, knee flexion and extension frequency increased by 17.8% ± 8.2%, concentric peak torque of the knee flexors at 450°/s increased by 31.0% ± 12.0%, hamstring coactivation decreased, and running performance over 30 m improved (p < 0.05 for all parameters). These findings suggest that resistance training at high velocities is superior to traditional heavy resistance training for increasing knee flexor strength at high velocities, movement frequency, and sprint running performance. These findings also indicate that traditional training approaches are effective for increasing knee flexor strength and reducing knee

  9. THE EFFECT OF A PELVIC COMPRESSION BELT ON FUNCTIONAL HAMSTRING MUSCLE ACTIVITY IN SPORTSMEN WITH AND WITHOUT PREVIOUS HAMSTRING INJURY.

    PubMed

    Arumugam, Ashokan; Milosavljevic, Stephan; Woodley, Stephanie; Sole, Gisela

    2015-06-01

    There is evidence that applying a pelvic compression belt (PCB) can decrease hamstring and lumbar muscle electromyographic activity and increase gluteus maximus activity in healthy women during walking. Increased isokinetic eccentric hamstring strength in the terminal range (25 ° - 5 °) of knee extension has been reported with the use of such a belt in sportsmen with and without hamstring injuries. However, it is unknown whether wearing a pelvic belt alters activity of the hamstrings in sportsmen during walking. To examine the effects of wearing a PCB on electromyographic activity of the hamstring and lumbopelvic muscles during walking in sportsmen with and without hamstring injuries. Randomised crossover, cross-sectional study. Thirty uninjured sportsmen (23.53 ± 3.68 years) and 20 sportsmen with hamstring injuries (22.00 ± 1.45 years) sustained within the previous 12 months participated in this study. Electromyographic amplitudes of the hamstrings, gluteus maximus, gluteus medius and lumbar multifidus were monitored during defined phases of walking and normalised to maximum voluntary isometric contraction. Within-group comparisons [PCB vs. no PCB] for the normalised electromyographic amplitudes were performed for each muscle group using paired t tests. Electromyographic change scores [belt - no belt] were calculated and compared between the two groups with independent t tests. No significant change was evident in hamstring activity for either group while walking with the PCB (p > 0.050). However, with the PCB, gluteus medius activity (p ≤ 0.028) increased in both groups, while gluteus maximus activity increased (p = 0.025) and multifidus activity decreased (p < 0.001) in the control group. The magnitude of change induced by the PCB in gluteus medius activity was similar between groups (p = 0.760). No statistically significant baseline differences in no belt scores were evident between groups for the investigated muscles (p ≥ 0

  10. Lean muscle volume of the thigh has a stronger relationship with muscle power than muscle strength in women with knee osteoarthritis.

    PubMed

    Davison, Michael J; Maly, Monica R; Keir, Peter J; Hapuhennedige, Sandani M; Kron, Amie T; Adachi, Jonathan D; Beattie, Karen A

    2017-01-01

    Thigh lean muscle and intramuscular fat have been implicated in the impairment of physical function observed in people with knee osteoarthritis. We investigated the relationships of quadriceps and hamstrings intramuscular fat fraction and lean muscle volume with muscle power and strength, controlling for neuromuscular activation, and physical performance in women with knee OA. Women (n=20) 55years or older with symptomatic, radiographic knee osteoarthritis underwent a 3.0T magnetic resonance imaging scan of the thigh of their most symptomatic knee. Axial fat-separated images were analyzed using software to quantify intramuscular fat and lean muscle volumes of the quadriceps and hamstrings. To quantify strength and power of the knee extensors and flexors, participants performed maximum voluntary isometric contraction and isotonic knee extensions and flexions, respectively. Electromyography of the quadriceps and hamstrings was measured. Participants also completed five physical performance tests. Quadriceps and hamstrings lean muscle volumes were related to isotonic knee extensor (B=0.624; p=0.017) and flexor (B=1.518; p=0.032) power, but not knee extensor (B=0.001; p=0.615) or flexor (B=0.001; p=0.564) isometric strength. Intramuscular fat fractions were not related to isotonic knee extensor or flexor power, nor isometric strength. No relationships were found between intramuscular fat or lean muscle volume and physical performance. Muscle power may be more sensitive than strength to lean muscle mass in women with knee osteoarthritis. Thigh lean muscle mass, but neither intramuscular nor intermuscular fat, is related to knee extensor and flexor power in women with knee osteoarthritis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Hamstring and Quadriceps Isokinetic Strength Deficits Are Weak Risk Factors for Hamstring Strain Injuries: A 4-Year Cohort Study.

    PubMed

    van Dyk, Nicol; Bahr, Roald; Whiteley, Rodney; Tol, Johannes L; Kumar, Bhavesh D; Hamilton, Bruce; Farooq, Abdulaziz; Witvrouw, Erik

    2016-07-01

    A hamstring strain injury (HSI) has become the most common noncontact injury in soccer. Isokinetic muscle strength deficits are considered a risk factor for HSIs. However, underpowered studies with small sample sizes unable to determine small associations have led to inconclusive results regarding the role of isokinetic strength and strength testing in HSIs. To examine whether differences in isokinetic strength measures of knee flexion and extension represent risk factors for hamstring injuries in a large cohort of professional soccer players in an adequately powered study design. Cohort study; Level of evidence, 2. A total of 614 professional soccer players from 14 teams underwent isokinetic strength testing during preseason screening. Testing consisted of concentric knee flexion and extension at 60 deg/s and 300 deg/s and eccentric knee extension at 60 deg/s. A clustered multiple logistic regression analysis was used to identify variables associated with the risk of HSIs. Receiver operating characteristic (ROC) curves were calculated to determine sensitivity and specificity. Of the 614 players, 190 suffered an HSI during the 4 seasons. Quadriceps concentric strength at 60 deg/s (odds ratio [OR], 1.41; 95% CI, 1.03-1.92; P = .03) and hamstring eccentric strength at 60 deg/s (OR, 1.37; 95% CI, 1.01-1.85; P = .04) adjusted for bodyweight were independently associated with the risk of injuries. The absolute differences between the injured and uninjured players were 6.9 N·m and 9.1 N·m, with small effect sizes (d < 0.2). The ROC analyses showed an area under the curve of 0.54 and 0.56 for quadriceps concentric strength and hamstring eccentric strength, respectively, indicating a failed combined sensitivity and specificity of the 2 strength variables identified in the logistic regression models. This study identified small absolute strength differences and a wide overlap of the absolute strength measurements at the group level. The small associations between lower

  12. Effect of an eccentrically biased hamstring strengthening home program on knee flexor strength and the length-tension relationship.

    PubMed

    Orishimo, Karl F; McHugh, Malachy P

    2015-03-01

    The purposes of this study were to document relative activation intensities of the hamstrings and gluteus maximus during 4 eccentric hamstring strengthening exercises and to assess the effects of a short-term strengthening program comprised of these exercises on knee flexor strength and the length-tension relationship. Twelve healthy subjects participated in this study. Electromyographic (EMG) activities from the biceps femoris, semitendinosus, and gluteus maximus were recorded as subjects performed (a) standing hip extension with elastic resistance, (b) trunk flexion in single limb stance (diver), (c) standing split (glider), and (d) supine sliding bridge (slider). Baseline isometric knee flexor strength was measured at 90, 70, 50, and 30° of flexion at the knee with the subject seated and the hip flexed to 50° from horizontal. After completing the 4-week training program, strength tests were repeated. Repeated-measures analysis of variance were used to compare EMG activity between muscles and to assess angle-specific strength improvements. Hamstring activity exceeded gluteus maximus activity for resisted hip extension, glider, and slider exercises (p < 0.001) but not for the diver (p = 0.087). Hamstring activation was greatest during the slider and resisted hip extension and lowest during the glider and the diver. Knee flexor strength improved by 9.0% (p = 0.005) but was not angle specific (training by angle p = 0.874). The short-term home training program effectively targeted the hamstrings and resulted in strength gains that were similar at short and long muscle lengths. These data demonstrate that hamstring strength can be improved using eccentrically biased unilateral exercises without the use of weights or other equipments.

  13. Strength and endurance training reduces the loss of eccentric hamstring torque observed after soccer specific fatigue.

    PubMed

    Matthews, Martyn J; Heron, Kate; Todd, Stefanie; Tomlinson, Andrew; Jones, Paul; Delextrat, Anne; Cohen, Daniel D

    2017-05-01

    To investigate the effect of two hamstring training protocols on eccentric peak torque before and after soccer specific fatigue. Twenty-two university male soccer players. Isokinetic strength tests were performed at 60°/s pre and post fatigue, before and after 2 different training interventions. A 45-min soccer specific fatigue modified BEAST protocol (M-BEAST) was used to induce fatigue. Players were randomly assigned to a 4 week hamstrings conditioning intervention with either a maximum strength (STR) or a muscle endurance (END) emphasis. The following parameters were evaluated: Eccentric peak torque (EccPT), angle of peak torque (APT), and angle specific torques at knee joint angles of 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80° and 90°. There was a significant effect of the M-BEAST on the Eccentric torque angle profile before training as well as significant improvements in post-fatigue torque angle profile following the effects of both strength and muscle endurance interventions. Forty-five minutes of simulated soccer activity leads to reduced eccentric hamstring torque at longer muscle lengths. Short-term conditioning programs (4-weeks) with either a maximum strength or a muscular endurance emphasis can equally reduce fatigue induced loss of strength over this time period. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Flexion relaxation of the hamstring muscles during lumbar-pelvic rhythm.

    PubMed

    Sihvonen, T

    1997-05-01

    This study investigated the simultaneous activity of back muscles and hamstring muscles during sagittal forward body flexion and extension in healthy persons. The study was cross-sectional. A descriptive study of paraspinal and hamstring muscle activity in normal persons during lumbar-pelvic rhythm. A university hospital. Forty healthy volunteers (21 men, 19 women, ages 17 to 48 years), all without back pain or other pain syndromes. Surface electromyography (EMG) was used to follow activities in the back and the hamstring muscles. With movement sensors, real lumbar flexion was separated from simultaneous pelvic motion by monitoring the components of motion with a two-inclinometer method continuously from the initial upright posture into full flexion. All signals were sampled during real-time monitoring for off-line analyses. Back muscle activity ceased (ie, flexion relaxation [FR] occurred) at lumbar flexion with a mean of 79 degrees. Hamstring activity lasted longer and EMG activity ceased in the hamstrings when nearly full lumbar flexion (97%) was reached. After this point total flexion and pelvic flexion continued further, so that the last part of lumbar flexion and the last part of pelvic flexion happened without back muscle activity or hamstring bracing, respectively. FR of the back muscles during body flexion has been well established and its clinical significance in low back pain has been confirmed. In this study, it was shown for the first time that the hip extensors (ie, hamstring muscles) relax during forward flexion but with different timing. FR in hamstrings is not dependent on or coupled firmly with back muscle behavior in spinal disorders and the lumbar pelvic rhythm can be locally and only partially disturbed.

  15. A comprehensive strength testing protocol offers no clinical value in predicting risk of hamstring injury: a prospective cohort study of 413 professional football players.

    PubMed

    van Dyk, Nicol; Bahr, Roald; Burnett, Angus F; Whiteley, Rod; Bakken, Arnhild; Mosler, Andrea; Farooq, Abdulaziz; Witvrouw, Erik

    2017-12-01

    Hamstring injuries remain prevalent across a number of professional sports. In football, the incidence has even increased by 4% per year at the Champions League level over the last decade. The role of muscle strength or strength ratios and their association with risk of hamstring injury remain restricted by small sample sizes and inconclusive results. The purpose of this study is to identify risk factors for hamstring injury in professional football players in an adequately powered, prospective cohort study. Using both established (isokinetic) and novel (eccentric hamstring test device) measures of muscle strength, we aimed to investigate the relationship between these strength characteristics over the entire range of motion with risk of hamstring injury. All teams (n=18) eligible to compete in the premier football league in Qatar underwent a comprehensive strength assessment during their annual periodic health evaluation at Aspetar Orthopaedic and Sports Medicine Hospital in Doha, Qatar. Variables included isokinetic strength, Nordic hamstring exercise strength and dynamic hamstring: quadriceps ratios. Of the 413 players included (68.2% of all league players), 66 suffered a hamstring injury over the two seasons. Only isokinetic quadriceps concentric at 300°/s (adjusted for bodyweight) was associated with risk of hamstring injury when considered categorically. Age, body mass and playing position were also associated with risk of hamstring injury. None of the other 23 strength variables examined were found to be associated with hamstring injury. The clinical value of isolated strength testing is limited, and its use in musculoskeletal screening to predict future hamstring injury is unfounded. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Different Muscle Action Training Protocols on Quadriceps-Hamstrings Neuromuscular Adaptations.

    PubMed

    Ruas, Cassio V; Brown, Lee E; Lima, Camila D; Gregory Haff, G; Pinto, Ronei S

    2018-05-01

    The aim of this study was to compare three specific concentric and eccentric muscle action training protocols on quadriceps-hamstrings neuromuscular adaptations. Forty male volunteers performed 6 weeks of training (two sessions/week) of their dominant and non-dominant legs on an isokinetic dynamometer. They were randomly assigned to one of four groups; concentric quadriceps and concentric hamstrings (CON/CON, n=10), eccentric quadriceps and eccentric hamstrings (ECC/ECC, n=10), concentric quadriceps and eccentric hamstrings (CON/ECC, n=10), or no training (CTRL, n=10). Intensity of training was increased every week by decreasing the angular velocity for concentric and increasing it for eccentric groups in 30°/s increments. Volume of training was increased by adding one set every week. Dominant leg quadriceps and hamstrings muscle thickness, muscle quality, muscle activation, muscle coactivation, and electromechanical delay were tested before and after training. Results revealed that all training groups similarly increased MT of quadriceps and hamstrings compared to control (p<0.05). However, CON/ECC and ECC/ECC training elicited a greater magnitude of change. There were no significant differences between groups for all other neuromuscular variables (p>0.05). These findings suggest that different short-term muscle action isokinetic training protocols elicit similar muscle size increases in hamstrings and quadriceps, but not for other neuromuscular variables. Nevertheless, effect sizes indicate that CON/ECC and ECC/ECC may elicit the greatest magnitude of change in muscle hypertrophy. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Hip and trunk muscles activity during nordic hamstring exercise.

    PubMed

    Narouei, Shideh; Imai, Atsushi; Akuzawa, Hiroshi; Hasebe, Kiyotaka; Kaneoka, Koji

    2018-04-01

    The nordic hamstring exercise (NHE) is a dynamic lengthening hamstring exercise that requires trunk and hip muscles activation. Thigh muscles activation, specifically hamstring/quadriceps contractions has been previously examined during NHE. Trunk and hip muscles activity have not been enough studied. The aim of this study was to analyze of hip and trunk muscles activity during NHE. Surface electromyography (EMG) and kinematic data were collected during NHE. Ten healthy men with the age range of 21-36 years performed two sets of two repetitions with downward and upward motions each of NHE. EMG activity of fifteen trunk and hip muscles and knee kinematic data were collected. Muscle activity levels were calculated through repeated measure analysis of variance in downward and upward motions, through Paired t -test between downward and upward motions and gluteus maximus to erector spine activity ratio (Gmax/ES ratio) using Pearson correlation analyses were evaluated. Semitendinosus and biceps femoris muscles activity levels were the greatest in both motions and back extensors and internal oblique muscles activity were greater than other muscles ( P <0.05). The decreased Gmax/ES ratio was significantly related to peak knee extension angle in downward ( r =0.687) and upward motions ( r =0.753) ( P <0.05). These findings indicate the importance of synergistic muscles and trunk muscles coactivation in eccentric and concentric hamstrings contractions. It could be important for early assessment of subjects with hamstring injury risk.

  18. Hip and trunk muscles activity during nordic hamstring exercise

    PubMed Central

    Narouei, Shideh; Imai, Atsushi; Akuzawa, Hiroshi; Hasebe, Kiyotaka; Kaneoka, Koji

    2018-01-01

    The nordic hamstring exercise (NHE) is a dynamic lengthening hamstring exercise that requires trunk and hip muscles activation. Thigh muscles activation, specifically hamstring/quadriceps contractions has been previously examined during NHE. Trunk and hip muscles activity have not been enough studied. The aim of this study was to analyze of hip and trunk muscles activity during NHE. Surface electromyography (EMG) and kinematic data were collected during NHE. Ten healthy men with the age range of 21–36 years performed two sets of two repetitions with downward and upward motions each of NHE. EMG activity of fifteen trunk and hip muscles and knee kinematic data were collected. Muscle activity levels were calculated through repeated measure analysis of variance in downward and upward motions, through Paired t-test between downward and upward motions and gluteus maximus to erector spine activity ratio (Gmax/ES ratio) using Pearson correlation analyses were evaluated. Semitendinosus and biceps femoris muscles activity levels were the greatest in both motions and back extensors and internal oblique muscles activity were greater than other muscles (P<0.05). The decreased Gmax/ES ratio was significantly related to peak knee extension angle in downward (r=0.687) and upward motions (r=0.753) (P<0.05). These findings indicate the importance of synergistic muscles and trunk muscles coactivation in eccentric and concentric hamstrings contractions. It could be important for early assessment of subjects with hamstring injury risk. PMID:29740557

  19. Hamstring Muscle Injuries, a Rehabilitation Protocol Purpose.

    PubMed

    Valle, Xavier; L Tol, Johannes; Hamilton, Bruce; Rodas, Gil; Malliaras, Peter; Malliaropoulos, Nikos; Rizo, Vicenc; Moreno, Marcel; Jardi, Jaume

    2015-12-01

    Hamstring acute muscle injuries are prevalent in several sports including AFL football (Australian Football League), sprinting and soccer, and are often associated with prolonged time away from sport. In response to this, research into prevention and management of hamstring injury has increased, but epidemiological data shows no decline in injury and re-injury rates, suggesting that rehabilitation programs and return to play (RTP) criteria have to be improved. There continues to be a lack of consensus regarding how to assess performance, recovery and readiness to RTP, following hamstring strain injury. The aim of this paper was to propose rehabilitation protocol for hamstring muscle injuries based on current basic science and research knowledge regarding injury demographics and management options. Criteria-based (subjective and objective) progression through the rehabilitation program will be outlined along with exercises for each phase, from initial injury to RTP.

  20. Duration Dependent Effect of Static Stretching on Quadriceps and Hamstring Muscle Force.

    PubMed

    Alizadeh Ebadi, Leyla; Çetin, Ebru

    2018-03-13

    The aim of this study was to determine the acute effect of static stretching on hamstring and quadriceps muscles' isokinetic strength when applied for various durations to elite athletes, to investigate the effect of different static stretching durations on isokinetic strength, and finally to determine the optimal stretching duration. Fifteen elite male athletes from two different sport branches (10 football and five basketball) participated in this study. Experimental protocol was designed as 17 repetitive static stretching exercises for hamstring and quadriceps muscle groups according to the indicated experimental protocols; ((A) 5 min jogging; (B) 5 min jogging followed by 15 s static stretching; (C) 5 min jogging followed by 30 s static stretching; (D) 5 min jogging, followed by static stretching for 45 s). Immediately after each protocol, an isokinetic strength test consisting of five repetitions at 60°/s speed and 20 repetitions at 180°/s speed was recorded for the right leg by the Isomed 2000 device. Friedman variance analysis test was employed for data analysis. According to the analyzes, it was observed that 5 min jogging and 15 s stretching exercises increased the isokinetic strength, whereas 30 and 45 s stretching exercises caused a decrease.

  1. Hamstring strength and flexibility after hamstring strain injury: a systematic review and meta-analysis.

    PubMed

    Maniar, Nirav; Shield, Anthony J; Williams, Morgan D; Timmins, Ryan G; Opar, David A

    2016-08-01

    To systematically review the evidence base related to hamstring strength and flexibility in previously injured hamstrings. Systematic review and meta-analysis. A systematic literature search was conducted of PubMed, CINAHL, SPORTDiscus, Cochrane Library, Web of Science and EMBASE from inception to August 2015. Full-text English articles which included studies which assessed at least one measure of hamstring strength or flexibility in men and women with prior hamstring strain injury within 24 months of the testing date. Twenty-eight studies were included in the review. Previously injured legs demonstrated deficits across several variables. Lower isometric strength was found <7 days postinjury (d=-1.72), but this did not persist beyond 7 days after injury. The passive straight leg raise was restricted at multiple time points after injury (<10 days, d=-1.12; 10-20 days, d=-0.74; 20-30 days, d=-0.40), but not after 40-50 days postinjury. Deficits remained after return to play in isokinetically measured concentric (60°/s, d=-0.33) and Nordic eccentric knee flexor strength (d=-0.39). The conventional hamstring to quadricep strength ratios were also reduced well after return to play (60:60°/s, d=-0.32; 240:240°/s, d=-0.43) and functional (30:240°/s, d=-0.88), but these effects were inconsistent across measurement methods. After hamstring strain, acute isometric and passive straight leg raise deficits resolve within 20-50 days. Deficits in eccentric and concentric strength and strength ratios persist after return to play, but this effect was inconsistent across measurement methods. Flexibility and isometric strength should be monitored throughout rehabilitation, but dynamic strength should be assessed at and following return to play. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  2. Hamstring Muscle Injuries, a Rehabilitation Protocol Purpose

    PubMed Central

    Valle, Xavier; L.Tol, Johannes; Hamilton, Bruce; Rodas, Gil; Malliaras, Peter; Malliaropoulos, Nikos; Rizo, Vicenc; Moreno, Marcel; Jardi, Jaume

    2015-01-01

    Context: Hamstring acute muscle injuries are prevalent in several sports including AFL football (Australian Football League), sprinting and soccer, and are often associated with prolonged time away from sport. Evidence Acquisition: In response to this, research into prevention and management of hamstring injury has increased, but epidemiological data shows no decline in injury and re-injury rates, suggesting that rehabilitation programs and return to play (RTP) criteria have to be improved. There continues to be a lack of consensus regarding how to assess performance, recovery and readiness to RTP, following hamstring strain injury. Results: The aim of this paper was to propose rehabilitation protocol for hamstring muscle injuries based on current basic science and research knowledge regarding injury demographics and management options. Conclusions: Criteria-based (subjective and objective) progression through the rehabilitation program will be outlined along with exercises for each phase, from initial injury to RTP. PMID:26715969

  3. Biceps femoris and semitendinosus—teammates or competitors? New insights into hamstring injury mechanisms in male football players: a muscle functional MRI study

    PubMed Central

    Schuermans, Joke; Van Tiggelen, Damien; Danneels, Lieven; Witvrouw, Erik

    2014-01-01

    Background The hamstring injury mechanism was assessed by investigating the exercise-related metabolic activity characteristics of the hamstring muscles using a muscle functional MRI (mfMRI) protocol. Methods 27 healthy male football players and 27 football players with a history of hamstring injuries (recovered and playing fully) underwent standardised mfMR Imaging. The mfMRI protocol consisted of a resting scan, a strenuous bilateral eccentric hamstring exercise and a postexercise scan. The exercise-related T2 increase or the signal intensity shift between both scans was used to detect differences in metabolic activation characteristics (1) between the different hamstring muscle bellies and (2) between the injury group and the control group. Results A more symmetrical muscle recruitment pattern corresponding to a less economic hamstring muscle activation was demonstrated in the formerly injured group (p<0.05). The injured group also demonstrated a significantly lower strength endurance capacity during the eccentric hamstring exercise. Conclusions These findings suggest that the vulnerability of the hamstring muscles to football-related injury is related to the complexity and close coherence in the synergistic muscle recruitment of the biceps femoris and the semitendinosus. Discrete differences in neuromuscular coordination and activity distribution, with the biceps femoris partly having to compensate for the lack of endurance capacity of the semitendinosus, probably increase the hamstring injury risk. PMID:25388959

  4. Impact of back squat training intensity on strength and flexibility of hamstring muscle group.

    PubMed

    Shariat, Ardalan; Lam, Eddie T C; Shaw, Brandon S; Shaw, Ina; Kargarfard, Mehdi; Sangelaji, Bahram

    2017-01-01

    True experimental design. The back squat is an integral aspect of any resistance training program to improve athletic performance. It is also used for injury prevention of the lower limbs. The purpose of this study was to examine the effect of back squat training at different intensities on strength and flexibility of the hamstring muscle group (HMG). Twenty-two male recreational bodybuilders with at least two years of experience in resistance training were recruited to participate in a nine-week training program. They were randomly assigned to a heavy back squat group (90-95% of one repetition maximum) or a moderate-intensity back squat group (60-65% of one repetition maximum). The heavy back squat group resulted in a significantly (p < 0.001) increased in one repetition maximum strength but a significant (p < 0.001) reduction in HMG flexibility when compared to their counterparts. The results of the study indicate that while a heavy back squat training program is effective in improving strength, it has an adverse effect on the flexibility of the HMG. The implication of this study is that there is a tradeoff between strength and flexibility and trainers should select the appropriate training protocols for their athletes to maximize athletic performance.

  5. No association between rate of torque development and onset of muscle activity with increased risk of hamstring injury in elite football.

    PubMed

    van Dyk, Nicol; Bahr, Roald; Burnett, Angus F; Verhagen, Evert; von Tiggelen, Damien; Witvrouw, Erik

    2018-05-23

    Hamstring injuries remain a significant burden in sports that involve high speed running. In elite male football, hamstring injury has repeatedly been identified as the most common noncontact injury, representing 12% of all injuries. As the incidence remains high, investigations are aimed at better understanding how to improve prevention efforts. Intrinsic risk factors such as strength have been investigated extensively in a cohort of professional football players; however, other intrinsic measures of neuromuscular function have not been studied in this cohort. This study aims to investigate the association between timing of hamstring muscle activity onset and the rate of torque development during the early phase of isokinetic strength testing with risk of hamstring injury in professional football players in a prospective cohort study. All teams (n=18) eligible to compete in the premier football league in Qatar underwent a comprehensive strength assessment during their annual periodic health evaluation at Aspetar Orthopaedic and Sports Medicine Hospital in Doha, Qatar. Variables included rate of torque development and timing of muscle activity onset. A total of 367 unique players (60.6% of all QSL players) competed for 514 player seasons (103 players competed both seasons) and sustained 65 hamstring injuries. There was no difference in the onset of muscle activity between the biceps femoris and medial hamstrings comparing the injured to uninjured players. For both onset of muscle activity and rate of torque development, there were no significant differences between any of the variables (p>0.05), with small effect sizes detected across all the different variables (d<0.3). Rate of torque development and onset of muscle activity were not associated with a risk of future hamstring injury. The use of these measures as part of a periodic health evaluation to identify risk of hamstring injury is unsupported. This article is protected by copyright. All rights reserved

  6. Comparison of hamstring muscle behavior for anterior cruciate ligament (ACL) patient and normal subject during local marching

    NASA Astrophysics Data System (ADS)

    Amineldin@Aminudin, Nurul Izzaty Bt.; Rambely, A. S.

    2014-09-01

    This study aims to investigate the hamstring muscle activity after the surgery by carrying out an electromyography experiment on the hamstring and to compare the behavior of the ACL muscle activity between ACL patient and control subject. Electromyography (EMG) is used to study the behavior of muscles during walking activity. Two hamstring muscles involved which are semitendinosus and bicep femoris. The EMG data for both muscles were recorded while the subject did maximum voluntary contraction (MVC) and marching. The study concluded that there were similarities between bicep femoris of the ACL and control subjects. The analysis showed that the biceps femoris muscle of the ACL subject had no abnormality and the pattern is as normal as the control subject. However, ACL patient has poor semitendinosus muscle strength compared to that of control subject because the differences of the forces produced. The force of semitendinosus value for control subject was two times greater than that of the ACL subject as the right semitendinosus muscle of ACL subject was used to replace the anterior cruciate ligament (ACL) that was injured.

  7. Muscle and intensity based hamstring exercise classification in elite female track and field athletes: implications for exercise selection during rehabilitation

    PubMed Central

    Tsaklis, Panagiotis; Malliaropoulos, Nikos; Mendiguchia, Jurdan; Korakakis, Vasileios; Tsapralis, Kyriakos; Pyne, Debasish; Malliaras, Peter

    2015-01-01

    Background Hamstring injuries are common in many sports, including track and field. Strains occur in different parts of the hamstring muscle but very little is known about whether common hamstring loading exercises specifically load different hamstring components. The purpose of this study was to investigate muscle activation of different components of the hamstring muscle during common hamstring loading exercises. Methods Twenty elite female track and field athletes were recruited into this study, which had a single-sample, repeated-measures design. Each athlete performed ten hamstring loading exercises, and an electromyogram (EMG) was recorded from the biceps femoris and semitendinosus components of the hamstring. Hamstring EMG during maximal voluntary isometric contraction (MVIC) was used to normalize the mean data across ten repetitions of each exercise. An electrogoniometer synchronized to the EMG was used to determine whether peak EMG activity occurred during muscle-tendon unit lengthening, shortening, or no change in length. Mean EMG values were compared between the two recording sites for each exercise using the Student’s t-test. Results The lunge, dead lift, and kettle swings were low intensity (<50% MVIC) and all showed higher EMG activity for semitendinosus than for biceps femoris. Bridge was low but approaching medium intensity, and the TRX, hamstring bridge, and hamstring curl were all medium intensity exercises (≥50% or <80% MVIC). The Nordic, fitball, and slide leg exercises were all high intensity exercises. Only the fitball exercise showed higher EMG activity in the biceps femoris compared with the semitendinosus. Only lunge and kettle swings showed peak EMG in the muscle-tendon unit lengthening phase and both these exercises involved faster speed. Conclusion Some exercises selectively activated the lateral and medial distal hamstrings. Low, medium, and high intensity exercises were demonstrated. This information enables the clinician, strength

  8. Muscle and intensity based hamstring exercise classification in elite female track and field athletes: implications for exercise selection during rehabilitation.

    PubMed

    Tsaklis, Panagiotis; Malliaropoulos, Nikos; Mendiguchia, Jurdan; Korakakis, Vasileios; Tsapralis, Kyriakos; Pyne, Debasish; Malliaras, Peter

    2015-01-01

    Hamstring injuries are common in many sports, including track and field. Strains occur in different parts of the hamstring muscle but very little is known about whether common hamstring loading exercises specifically load different hamstring components. The purpose of this study was to investigate muscle activation of different components of the hamstring muscle during common hamstring loading exercises. Twenty elite female track and field athletes were recruited into this study, which had a single-sample, repeated-measures design. Each athlete performed ten hamstring loading exercises, and an electromyogram (EMG) was recorded from the biceps femoris and semitendinosus components of the hamstring. Hamstring EMG during maximal voluntary isometric contraction (MVIC) was used to normalize the mean data across ten repetitions of each exercise. An electrogoniometer synchronized to the EMG was used to determine whether peak EMG activity occurred during muscle-tendon unit lengthening, shortening, or no change in length. Mean EMG values were compared between the two recording sites for each exercise using the Student's t-test. The lunge, dead lift, and kettle swings were low intensity (<50% MVIC) and all showed higher EMG activity for semitendinosus than for biceps femoris. Bridge was low but approaching medium intensity, and the TRX, hamstring bridge, and hamstring curl were all medium intensity exercises (≥50% or <80% MVIC). The Nordic, fitball, and slide leg exercises were all high intensity exercises. Only the fitball exercise showed higher EMG activity in the biceps femoris compared with the semitendinosus. Only lunge and kettle swings showed peak EMG in the muscle-tendon unit lengthening phase and both these exercises involved faster speed. Some exercises selectively activated the lateral and medial distal hamstrings. Low, medium, and high intensity exercises were demonstrated. This information enables the clinician, strength and conditioning coach and

  9. Biceps femoris and semitendinosus--teammates or competitors? New insights into hamstring injury mechanisms in male football players: a muscle functional MRI study.

    PubMed

    Schuermans, Joke; Van Tiggelen, Damien; Danneels, Lieven; Witvrouw, Erik

    2014-12-01

    The hamstring injury mechanism was assessed by investigating the exercise-related metabolic activity characteristics of the hamstring muscles using a muscle functional MRI (mfMRI) protocol. 27 healthy male football players and 27 football players with a history of hamstring injuries (recovered and playing fully) underwent standardised mfMR Imaging. The mfMRI protocol consisted of a resting scan, a strenuous bilateral eccentric hamstring exercise and a postexercise scan. The exercise-related T2 increase or the signal intensity shift between both scans was used to detect differences in metabolic activation characteristics (1) between the different hamstring muscle bellies and (2) between the injury group and the control group. A more symmetrical muscle recruitment pattern corresponding to a less economic hamstring muscle activation was demonstrated in the formerly injured group (p<0.05). The injured group also demonstrated a significantly lower strength endurance capacity during the eccentric hamstring exercise. These findings suggest that the vulnerability of the hamstring muscles to football-related injury is related to the complexity and close coherence in the synergistic muscle recruitment of the biceps femoris and the semitendinosus. Discrete differences in neuromuscular coordination and activity distribution, with the biceps femoris partly having to compensate for the lack of endurance capacity of the semitendinosus, probably increase the hamstring injury risk. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. MRI-Based Regional Muscle Use during Hamstring Strengthening Exercises in Elite Soccer Players.

    PubMed

    Mendez-Villanueva, Alberto; Suarez-Arrones, Luis; Rodas, Gil; Fernandez-Gonzalo, Rodrigo; Tesch, Per; Linnehan, Richard; Kreider, Richard; Di Salvo, Valter

    2016-01-01

    The present study examined site-specific hamstring muscles use with functional magnetic resonance imaging (MRI) in elite soccer players during strength training. Thirty-six players were randomized into four groups, each performing either Nordic hamstring, flywheel leg-curl, Russian belt or the hip-extension conic-pulley exercise. The transverse relaxation time (T2) shift from pre- to post-MRI were calculated for the biceps femoris long (BFl) and short (BFs) heads, semitendinosus (ST) and semimembranosus (SM) muscles at proximal, middle and distal areas of the muscle length. T2 values increased substantially after flywheel leg-curl in all regions of the BFl (from 9±8 to 16±8%), BFs (41±6-71±11%), and ST (60±1-69±7%). Nordic hamstring induced a substantial T2 increase in all regions of the BFs (13±8-16±5%) and ST (15±7-17±5%). T2 values after the Russian belt deadlift substantially increased in all regions of the BFl (6±4-7±5%), ST (8±3-11±2%), SM (6±4-10±4%), and proximal and distal regions of BFs (6±6-8±5%). T2 values substantially increased after hip-extension conic-pulley only in proximal and middle regions of BFl (11±5-7±5%) and ST (7±3-12±4%). The relevance of such MRI-based inter- and intra-muscle use in designing more effective resistance training for improving hamstring function and preventing hamstring injuries in elite soccer players should be explored with more mechanistic studies.

  11. Relationship between hamstring length and gluteus maximus strength with and without normalization.

    PubMed

    Lee, Dong-Kyu; Oh, Jae-Seop

    2018-01-01

    [Purpose] This study assessed the relationship between hamstring length and gluteus maximus (GM) strength with and without normalization by body weight and height. [Subjects and Methods] In total, 34 healthy male subjects volunteered for this study. To measure GM strength, subjects performed maximal hip joint extension with the knee joints flexed to 90° in the prone position. GM strength was normalized for body weight and height. [Results] GM strength with normalization was positively correlated with hamstring length, whereas GM strength without normalization was negatively correlated with hamstring length. [Conclusion] The normalization of GM strength by body weight and height has the potential to lead to more appropriate conclusions and interpretations about its correlation with hamstring length. Hamstring length may be related to GM strength.

  12. Mechanics of the human hamstring muscles during sprinting.

    PubMed

    Schache, Anthony G; Dorn, Tim W; Blanch, Peter D; Brown, Nicholas A T; Pandy, Marcus G

    2012-04-01

    An understanding of hamstring mechanics during sprinting is important for elucidating why these muscles are so vulnerable to acute strain-type injury. The purpose of this study was twofold: first, to quantify the biomechanical load (specifically, musculotendon strain, velocity, force, power, and work) experienced by the hamstrings across a full stride cycle; and second, to determine how these parameters differ for each hamstring muscle (i.e., semimembranosus (SM), semitendinosus (ST), biceps femoris long head (BF), biceps femoris short head (BF)). Full-body kinematics and ground reaction force data were recorded simultaneously from seven subjects while sprinting on an indoor running track. Experimental data were integrated with a three-dimensional musculoskeletal computer model comprised of 12 body segments and 92 musculotendon structures. The model was used in conjunction with an optimization algorithm to calculate musculotendon strain, velocity, force, power, and work for the hamstrings. SM, ST, and BF all reached peak strain, produced peak force, and formed much negative work (energy absorption) during terminal swing. The biomechanical load differed for each hamstring muscle: BF exhibited the largest peak strain, ST displayed the greatest lengthening velocity, and SM produced the highest peak force, absorbed and generated the most power, and performed the largest amount of positive and negative work. As peak musculotendon force and strain for BF, ST, and SM occurred around the same time during terminal swing, it is suggested that this period in the stride cycle may be when the biarticular hamstrings are at greatest injury risk. On this basis, hamstring injury prevention or rehabilitation programs should preferentially target strengthening exercises that involve eccentric contractions performed with high loads at longer musculotendon lengths.

  13. Nordic hamstring exercise training alters knee joint kinematics and hamstring activation patterns in young men.

    PubMed

    Delahunt, Eamonn; McGroarty, Mark; De Vito, Giuseppe; Ditroilo, Massimiliano

    2016-04-01

    To investigate the kinematic and muscle activation adaptations during performance of the Nordic hamstring exercise (NHE) to a 6-week eccentric hamstring training programme using the NHE as the sole mode of exercise. Twenty-nine healthy males were randomly allocated to a control (CG) or intervention (IG) group. The IG participated in a 6-week eccentric hamstring exercise programme using the NHE. The findings of the present study were that a 6-week eccentric hamstring training programme improved eccentric hamstring muscle strength (202.4 vs. 177.4 nm, p = 0.0002, Cohen's d = 0.97) and optimized kinematic (longer control of the forward fall component of the NHE, 68.1° vs. 73.7°, p = 0.022, Cohen's d = 0.90) and neuromuscular parameters (increased electromyographic activity of the hamstrings, 83.2 vs. 56.6 % and 92.0 vs. 54.2 %, p < 0.05, Cohen's d > 1.25) associated with NHE performance. This study provides some insight into potential mechanisms by which an eccentric hamstring exercise programme utilizing the NHE as the mode of exercise may result in an improvement in hamstring muscle control during eccentric contractions.

  14. MRI-Based Regional Muscle Use during Hamstring Strengthening Exercises in Elite Soccer Players

    PubMed Central

    Mendez-Villanueva, Alberto; Suarez-Arrones, Luis; Rodas, Gil; Fernandez-Gonzalo, Rodrigo; Tesch, Per; Linnehan, Richard; Kreider, Richard; Di Salvo, Valter

    2016-01-01

    The present study examined site-specific hamstring muscles use with functional magnetic resonance imaging (MRI) in elite soccer players during strength training. Thirty-six players were randomized into four groups, each performing either Nordic hamstring, flywheel leg-curl, Russian belt or the hip-extension conic-pulley exercise. The transverse relaxation time (T2) shift from pre- to post-MRI were calculated for the biceps femoris long (BFl) and short (BFs) heads, semitendinosus (ST) and semimembranosus (SM) muscles at proximal, middle and distal areas of the muscle length. T2 values increased substantially after flywheel leg-curl in all regions of the BFl (from 9±8 to 16±8%), BFs (41±6–71±11%), and ST (60±1–69±7%). Nordic hamstring induced a substantial T2 increase in all regions of the BFs (13±8–16±5%) and ST (15±7–17±5%). T2 values after the Russian belt deadlift substantially increased in all regions of the BFl (6±4–7±5%), ST (8±3–11±2%), SM (6±4–10±4%), and proximal and distal regions of BFs (6±6–8±5%). T2 values substantially increased after hip-extension conic-pulley only in proximal and middle regions of BFl (11±5–7±5%) and ST (7±3–12±4%). The relevance of such MRI-based inter- and intra-muscle use in designing more effective resistance training for improving hamstring function and preventing hamstring injuries in elite soccer players should be explored with more mechanistic studies. PMID:27583444

  15. Muscle activation patterns in the Nordic hamstring exercise: Impact of prior strain injury.

    PubMed

    Bourne, M N; Opar, D A; Williams, M D; Al Najjar, A; Shield, A J

    2016-06-01

    This study aimed to determine: (a) the spatial patterns of hamstring activation during the Nordic hamstring exercise (NHE); (b) whether previously injured hamstrings display activation deficits during the NHE; and (c) whether previously injured hamstrings exhibit altered cross-sectional area (CSA). Ten healthy, recreationally active men with a history of unilateral hamstring strain injury underwent functional magnetic resonance imaging of their thighs before and after six sets of 10 repetitions of the NHE. Transverse (T2) relaxation times of all hamstring muscles [biceps femoris long head (BFlh); biceps femoris short head (BFsh); semitendinosus (ST); semimembranosus (SM)] were measured at rest and immediately after the NHE and CSA was measured at rest. For the uninjured limb, the ST's percentage increase in T2 with exercise was 16.8%, 15.8%, and 20.2% greater than the increases exhibited by the BFlh, BFsh, and SM, respectively (P < 0.002 for all). Previously injured hamstring muscles (n = 10) displayed significantly smaller increases in T2 post-exercise than the homonymous muscles in the uninjured contralateral limb (mean difference -7.2%, P = 0.001). No muscles displayed significant between-limb differences in CSA. During the NHE, the ST is preferentially activated and previously injured hamstring muscles display chronic activation deficits compared with uninjured contralateral muscles. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Susceptibility to Hamstring Injuries in Soccer: A Prospective Study Using Muscle Functional Magnetic Resonance Imaging.

    PubMed

    Schuermans, Joke; Van Tiggelen, Damien; Danneels, Lieven; Witvrouw, Erik

    2016-05-01

    in hamstring strength endurance (P = .031). Soccer players who sustained a reinjury were only able to perform prone leg curls for a mean duration of 146.50 ± 76.16 seconds, whereas those with an injury history but no recurrence during follow-up were able to continue for a mean of 237.45 ± 110.76 seconds (95% CI, 11.9-230.5 seconds; P = .031). This was the first study to assess the causal relation between the intramuscular recruitment pattern and the risk of sustaining an index or secondary hamstring strain. Changes in intermuscular interplay seem to significantly increase the risk of sustaining index hamstring injuries in male amateur soccer players. Inadequate eccentric muscle endurance could be associated with an increased risk of sustaining a recurring hamstring injury. © 2016 The Author(s).

  17. The difference in passive tension applied to the muscles composing the hamstrings - Comparison among muscles using ultrasound shear wave elastography.

    PubMed

    Nakamura, Masatoshi; Hasegawa, Satoshi; Umegaki, Hiroki; Nishishita, Satoru; Kobayashi, Takuya; Fujita, Kosuke; Tanaka, Hiroki; Ibuki, Satoko; Ichihashi, Noriaki

    2016-08-01

    Hamstring muscle strain is one of the most common injuries in sports. Therefore, to investigate the factors influencing hamstring strain, the differences in passive tension applied to the hamstring muscles at the same knee and hip positions as during terminal swing phase would be useful information. In addition, passive tension applied to the hamstrings could change with anterior or posterior tilt of the pelvis. The aims of this study were to investigate the difference in passive tension applied to the individual muscles composing the hamstrings during passive elongation, and to investigate the effect of pelvic position on passive tension. Fifteen healthy men volunteered for this study. The subject lay supine with the angle of the trunk axis to the femur of their dominant leg at 70° and the knee angle of the dominant leg fixed at 30° flexion. In three pelvic positions ("Non-Tilt", "Anterior-Tilt" and "Posterior-Tilt"), the shear elastic modulus of each muscle composing the hamstrings (semitendinosus, semimembranosus, and biceps femoris) was measured using an ultrasound shear wave elastography. The shear elastic modulus of semimembranosus was significantly higher than the others. Shear elastic modulus of the hamstrings in Anterior-Tilt was significantly higher than in Posterior-Tilt. Passive tension applied to semimembranosus is higher than the other muscles when the hamstring muscle is passively elongated, and passive tension applied to the hamstrings increases with anterior tilt of the pelvis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Rehabilitation After Hamstring-Strain Injury Emphasizing Eccentric Strengthening at Long Muscle Lengths: Results of Long-Term Follow-Up.

    PubMed

    Tyler, Timothy F; Schmitt, Brandon M; Nicholas, Stephen J; McHugh, Malachy P

    2017-04-01

    Hamstring-strain injuries have a high recurrence rate. To determine if a protocol emphasizing eccentric strength training with the hamstrings in a lengthened position resulted in a low recurrence rate. Longitudinal cohort study. Sports-medicine physical therapy clinic. Fifty athletes with hamstring-strain injury (age 36 ± 16 y; 30 men, 20 women; 3 G1, 43 G2, 4 G3; 25 recurrent injuries) followed a 3-phase rehabilitation protocol emphasizing eccentric strengthening with the hamstrings in a lengthened position. Injury recurrence; isometric hamstring strength at 80°, 60°, 40°, and 20° knee flexion in sitting with the thigh flexed to 40° above the horizontal and the seat back at 90° to the horizontal (strength tested before return to sport). Four of the 50 athletes sustained reinjuries between 3 and 12 mo after return to sport (8% recurrence rate). The other 42 athletes had not sustained a reinjury at an average of 24 ± 12 mo after return to sport. Eight noncompliant athletes did not complete the rehabilitation and returned to sport before initiating eccentric strengthening in the lengthened state. All 4 reinjuries occurred in these noncompliant athletes. At time of return to sport, compliant athletes had full restoration of strength while noncompliant athletes had significant hamstring weakness, which was progressively worse at longer muscle lengths (compliance × side × angle P = .006; involved vs noninvolved at 20°, compliant 7% stronger, noncompliant 43% weaker). Compliance with rehabilitation emphasizing eccentric strengthening with the hamstrings in a lengthened position resulted in no reinjuries.

  19. The predictive validity of a single leg bridge test for hamstring injuries in Australian Rules Football Players.

    PubMed

    Freckleton, Grant; Cook, Jill; Pizzari, Tania

    2014-04-01

    Hamstring muscle strain injuries (HMSI) are the greatest injury problem in kicking sports such as Australian Rules Football. Reduced hamstring muscle strength is commonly perceived to be a risk factor for hamstring injury; however, evidence is inconclusive. Testing hamstring strength with the hip and knee at functional angles and assessing endurance parameters may be more relevant for examining the risk of hamstring injury. The primary aim of this prospective study was to examine if reduced hamstring muscle strength assessed with the single leg hamstring bridge (SLHB) was a risk factor for hamstring injury. Hamstring muscle strength of 482 amateur and semielite players from 16 football clubs, mean age 20.7 (range 16-34 years), was tested during the 2011 preseason. Players were then monitored throughout the 2011 playing season for HMSI. A total of 28 hamstring injuries, 16 right and 12 left, were recorded. Players who sustained a right HMSI during the season had a significantly lower mean right SLHB score (p=0.029), were older (p=0.002) and were more likely to have sustained a past right hamstring injury (p=0.02) or right knee injury (p=0.035). For left-sided hamstring injury, the injured group was more likely to be left leg dominant (p=0.001), older athletes (p=0.002) and there was a trend towards a history of left hamstring injury (p=0.07). This study demonstrated a significant deficit in preseason SLHB scores on the right leg of players that subsequently sustained a right-sided hamstring injury. Age, previous knee injury and a history of hamstring injury were other risk factors supported in this study. Low hamstring strength appears to be a risk factor for hamstring injury; however, due to the confounding variables and low injury rate in this study, further studies are required.

  20. Central Tendon Injuries of Hamstring Muscles: Case Series of Operative Treatment.

    PubMed

    Lempainen, Lasse; Kosola, Jussi; Pruna, Ricard; Puigdellivol, Jordi; Sarimo, Janne; Niemi, Pekka; Orava, Sakari

    2018-02-01

    As compared with injuries involving muscle only, those involving the central hamstring tendon have a worse prognosis. Limited information is available regarding the surgical treatment of central tendon injuries of the hamstrings. To describe the operative treatment and outcomes of central tendon injuries of the hamstrings among athletes. Case series; Level of evidence, 4. Eight athletes (6 top level, 2 recreational) with central hamstring tendon injuries underwent magnetic resonance imaging and surgical treatment. The indication for surgery was recurrent (n = 6) or acute (n = 2) central hamstring tendon injury. All patients followed the same postoperative rehabilitation protocol, and return to play was monitored. Magnetic resonance imaging found a central tendon injury in all 3 hamstring muscles (long head of the biceps femoris, semimembranosus, and semitendinosus) with disrupted tendon ends. In acute and recurrent central tendon injuries, full return to play was achieved at 2.5 to 4 months. There were no adverse events during follow-up. Central tendon injuries of the hamstrings can be successfully repaired surgically after acute and recurrent ruptures.

  1. Central Tendon Injuries of Hamstring Muscles: Case Series of Operative Treatment

    PubMed Central

    Lempainen, Lasse; Kosola, Jussi; Pruna, Ricard; Puigdellivol, Jordi; Sarimo, Janne; Niemi, Pekka; Orava, Sakari

    2018-01-01

    Background: As compared with injuries involving muscle only, those involving the central hamstring tendon have a worse prognosis. Limited information is available regarding the surgical treatment of central tendon injuries of the hamstrings. Purpose: To describe the operative treatment and outcomes of central tendon injuries of the hamstrings among athletes. Study Design: Case series; Level of evidence, 4. Methods: Eight athletes (6 top level, 2 recreational) with central hamstring tendon injuries underwent magnetic resonance imaging and surgical treatment. The indication for surgery was recurrent (n = 6) or acute (n = 2) central hamstring tendon injury. All patients followed the same postoperative rehabilitation protocol, and return to play was monitored. Results: Magnetic resonance imaging found a central tendon injury in all 3 hamstring muscles (long head of the biceps femoris, semimembranosus, and semitendinosus) with disrupted tendon ends. In acute and recurrent central tendon injuries, full return to play was achieved at 2.5 to 4 months. There were no adverse events during follow-up. Conclusion: Central tendon injuries of the hamstrings can be successfully repaired surgically after acute and recurrent ruptures. PMID:29479545

  2. Hamstring strain - aftercare

    MedlinePlus

    Pulled hamstring muscle; Sprain - hamstring ... There are 3 levels of hamstring strains: Grade 1 -- mild muscle strain or pull Grade 2 -- partial muscle tear Grade 3 -- complete muscle tear Recovery time depends ...

  3. Duration Dependent Effect of Static Stretching on Quadriceps and Hamstring Muscle Force

    PubMed Central

    Çetin, Ebru

    2018-01-01

    The aim of this study was to determine the acute effect of static stretching on hamstring and quadriceps muscles’ isokinetic strength when applied for various durations to elite athletes, to investigate the effect of different static stretching durations on isokinetic strength, and finally to determine the optimal stretching duration. Fifteen elite male athletes from two different sport branches (10 football and five basketball) participated in this study. Experimental protocol was designed as 17 repetitive static stretching exercises for hamstring and quadriceps muscle groups according to the indicated experimental protocols; ((A) 5 min jogging; (B) 5 min jogging followed by 15 s static stretching; (C) 5 min jogging followed by 30 s static stretching; (D) 5 min jogging, followed by static stretching for 45 s). Immediately after each protocol, an isokinetic strength test consisting of five repetitions at 60°/s speed and 20 repetitions at 180°/s speed was recorded for the right leg by the Isomed 2000 device. Friedman variance analysis test was employed for data analysis. According to the analyzes, it was observed that 5 min jogging and 15 s stretching exercises increased the isokinetic strength, whereas 30 and 45 s stretching exercises caused a decrease.

  4. Hamstring Injury

    MedlinePlus

    Hamstring injury Overview A hamstring injury occurs when you strain or pull one of your hamstring muscles — the group of three muscles that run along ... You may be more likely to get a hamstring injury if you play soccer, basketball, football, tennis ...

  5. Selective and graded recruitment of cat hamstring muscles with intrafascicular stimulation.

    PubMed

    Dowden, Brett R; Wilder, Andrew M; Hiatt, Scott D; Normann, Richard A; Brown, Nicholas A T; Clark, Gregory A

    2009-12-01

    The muscles of the hamstring group can produce different combinations of hip and knee torque. Thus, the ability to activate the different hamstring muscles selectively is of particular importance in eliciting functional movements such as stance and gait in a person with spinal cord injury. We investigated the ability of intrafascicular stimulation of the muscular branch of the sciatic nerve to recruit the feline hamstring muscles in a selective and graded fashion. A Utah Slanted Electrode Array, consisting of 100 penetrating microelectrodes, was implanted into the muscular branch of the sciatic nerve in six cats. Muscle twitches were evoked in the three compartments of biceps femoris (anterior, middle, and posterior), as well as semitendinosus and semimembranosus, using pulse-width modulated constant-voltage pulses. The resultant compound muscle action potentials were recorded using intramuscular fine-wire electrodes. 74% of the electrodes per implant were able to evoke a threshold response in these muscles, and these electrodes were evenly distributed among the instrumented muscles. Of the five muscles instrumented, on average 2.5 could be selectively activated to 90% of maximum EMG, and 3.5 could be selectively activated to 50% of maximum EMG. The muscles were recruited selectively with a mean stimulus dynamic range of 4.14 +/- 5.05 dB between threshold and either spillover to another muscle or a plateau in the response. This selective and graded activation afforded by intrafascicular stimulation of the muscular branch of the sciatic nerve suggests that it is a potentially useful stimulation paradigm for eliciting distinct forces in the hamstring muscle group in motor neuroprosthetic applications.

  6. An Evidence-Based Framework for Strengthening Exercises to Prevent Hamstring Injury.

    PubMed

    Bourne, Matthew N; Timmins, Ryan G; Opar, David A; Pizzari, Tania; Ruddy, Joshua D; Sims, Casey; Williams, Morgan D; Shield, Anthony J

    2018-02-01

    Strength training is a valuable component of hamstring strain injury prevention programmes; however, in recent years a significant body of work has emerged to suggest that the acute responses and chronic adaptations to training with different exercises are heterogeneous. Unfortunately, these research findings do not appear to have uniformly influenced clinical guidelines for exercise selection in hamstring injury prevention or rehabilitation programmes. The purpose of this review was to provide the practitioner with an evidence-base from which to prescribe strengthening exercises to mitigate the risk of hamstring injury. Several studies have established that eccentric knee flexor conditioning reduces the risk of hamstring strain injury when compliance is adequate. The benefits of this type of training are likely to be at least partly mediated by increases in biceps femoris long head fascicle length and improvements in eccentric knee flexor strength. Therefore, selecting exercises with a proven benefit on these variables should form the basis of effective injury prevention protocols. In addition, a growing body of work suggests that the patterns of hamstring muscle activation diverge significantly between different exercises. Typically, relatively higher levels of biceps femoris long head and semimembranosus activity have been observed during hip extension-oriented movements, whereas preferential semitendinosus and biceps femoris short head activation have been reported during knee flexion-oriented movements. These findings may have implications for targeting specific muscles in injury prevention programmes. An evidence-based approach to strength training for the prevention of hamstring strain injury should consider the impact of exercise selection on muscle activation, and the effect of training interventions on hamstring muscle architecture, morphology and function. Most importantly, practitioners should consider the effect of a strength training programme on

  7. Muscle strength and knee range of motion after femoral lengthening.

    PubMed

    Bhave, Anil; Shabtai, Lior; Woelber, Erik; Apelyan, Arman; Paley, Dror; Herzenberg, John E

    2017-04-01

    Background and purpose - Femoral lengthening may result in decrease in knee range of motion (ROM) and quadriceps and hamstring muscle weakness. We evaluated preoperative and postoperative knee ROM, hamstring muscle strength, and quadriceps muscle strength in a diverse group of patients undergoing femoral lengthening. We hypothesized that lengthening would not result in a significant change in knee ROM or muscle strength. Patients and methods - This prospective study of 48 patients (mean age 27 (9-60) years) compared ROM and muscle strength before and after femoral lengthening. Patient age, amount of lengthening, percent lengthening, level of osteotomy, fixation time, and method of lengthening were also evaluated regarding knee ROM and strength. The average length of follow-up was 2.9 (2.0-4.7) years. Results - Mean amount of lengthening was 5.2 (2.4-11.0) cm. The difference between preoperative and final knee flexion ROM was 2° for the overall group. Congenital shortening cases lost an average of 5% or 6° of terminal knee flexion, developmental cases lost an average of 3% or 4°, and posttraumatic cases regained all motion. The difference in quadriceps strength at 45° preoperatively and after lengthening was not statistically or clinically significant (2.7 Nm; p = 0.06). Age, amount of lengthening, percent lengthening, osteotomy level, fixation time, and lengthening method had no statistically significant influence on knee ROM or quadriceps strength at final follow-up. Interpretation - Most variables had no effect on ROM or strength, and higher age did not appear to be a limiting factor for femoral lengthening. Patients with congenital causes were most affected in terms of knee flexion.

  8. Effects of an Elastic Hamstring Assistance Device During Downhill Running

    PubMed Central

    Aldret, Randy L; Trahan, Brittany A; Davis, Greggory; Campbell, Brian; Bellar, David M

    2017-01-01

    Abstract The purpose of this study was to determine the appropriateness of using an elastic hamstring assistance device to reduce perceived levels of soreness, increase isometric strength, increase passive range of motion, and decrease biomarkers of muscle damage after eccentric exercise, specifically, downhill running This study was conducted in a university exercise physiology laboratory placing sixteen apparently healthy males (X = 21.6 ± 2.5 years) into two groups using a pre-test/post-test design. Pre-intervention measures taken included participants’ body height, body mass, body fat, capillary blood samples, VO2max, isometric hamstring strength at 45 and 90 degrees of flexion and passive hamstring range of motion. Post-intervention measures included blood biomarkers, passive range of motion, the perceived level of soreness and isometric strength. An analysis of normality of data was initially conducted followed by multivariate analysis of variance (MANOVA) of hamstring strength at 45 and 90 degrees of flexion, blood myoglobin and passive range of motion of the hamstrings. Statistically significant changes were noted in subject-perceived muscle soreness and isometric strength at 90 degrees at the 24-hour post-exercise trial measure between the two groups. Results would suggest the findings could be explained by the decrease in muscle soreness from utilizing the device during the exercise trial. Further research should be conducted to address sample size issues and to determine if the results are comparable on different surfaces. PMID:28713460

  9. Prone Hip Extension Muscle Recruitment is Associated with Hamstring Injury Risk in Amateur Soccer.

    PubMed

    Schuermans, Joke; Van Tiggelen, Damien; Witvrouw, Erik

    2017-09-01

    'Core stability' is considered essential in rehabilitation and prevention. Particularly with respect to hamstring injury prevention, assessment and training of lumbo-pelvic control is thought to be key. However, supporting scientific evidence is lacking. To explore the importance of proximal neuromuscular function with regard to hamstring injury susceptibility, this study investigated the association between the Prone Hip Extension (PHE) muscle activation pattern and hamstring injury incidence in amateur soccer players. 60 healthy male soccer players underwent a comprehensive clinical examination, comprising a range of motion assessments and the investigation of the posterior chain muscle activation pattern during PHE. Subsequently, hamstring injury incidence was recorded prospectively throughout a 1.5-season monitoring period. Players who were injured presented a PHE activation pattern that differed significantly from those who did not. Contrary to the controls, hamstring activity onset was significantly delayed (p=0.018), resulting in a shifted activation sequence. Players were 8 times more likely to get injured if the hamstring muscles were activated after the lumbar erector spinae instead of vice versa (p=0.009). Assessment of muscle recruitment during PHE demonstrated to be useful in injury prediction, suggesting that neuromuscular coordination in the posterior chain influences hamstring injury vulnerability. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Changes in Passive Tension of the Hamstring Muscles During a Simulated Soccer Match.

    PubMed

    Marshall, Paul W; Lovell, Ric; Siegler, Jason C

    2016-07-01

    Passive muscle tension is increased after damaging eccentric exercise. Hamstring-strain injury is associated with damaging eccentric muscle actions, but no research has examined changes in hamstring passive muscle tension throughout a simulated sport activity. The authors measured hamstring passive tension throughout a 90-min simulated soccer match (SAFT90), including the warm-up period and every 15 min throughout the 90-min simulation. Passive hamstring tension of 15 amateur male soccer players was measured using the instrumented straight-leg-raise test. Absolute torque (Nm) and slope (Nm/°) of the recorded torque-angular position curve were used for data analysis, in addition to total leg range of motion (ROM). Players performed a 15-min prematch warm-up, then performed the SAFT90 including a 15-min halftime rest period. Reductions in passive stiffness of 20-50° of passive hip flexion of 22.1-29.2% (P < .05) were observed after the warm-up period. During the SAFT90, passive tension increased in the latter 20% of the range of motion of 10.1-10.9% (P < .05) concomitant to a 4.5% increase in total hamstring ROM (P = .0009). The findings of this study imply that hamstring passive tension is reduced after an active warm-up that includes dynamic stretching but does not increase in a pattern suggestive of eccentric induced muscle damage during soccer-specific intermittent exercise. Hamstring ROM and passive tension increases are best explained by improved stretch tolerance.

  11. Intramuscular nerve distribution of the hamstring muscles: Application to treating spasticity.

    PubMed

    Rha, Dong-Wook; Yi, Kyu-Ho; Park, Eun Sook; Park, Chunung; Kim, Hee-Jin

    2016-09-01

    The aim of this article is to elucidate the ideal sites for botulinum toxin injection by examining the intramuscular nerve distributions in the hamstring muscles. The hamstring muscles, biceps femoris, semitendinosus, and semimembranosus (10 specimens each) were stained by the modified Sihler method. The locations of the muscle origins, nerve entry points, and intramuscular arborized areas were recorded as percentages of the total distance from the line crossing the medial and lateral tibial condyles (0%) to the ischial tuberosity (100%). Intramuscular arborization patterns were observed at 15-30% and 50-60% for the biceps femoris, 25-40% and 60-80% for the semitendinosus, and 20-40% for the semimembranosus. This study suggests that botulinum toxin injection for spasticity of the hamstring muscles should be targeted to specific areas. These areas, where the arborization of intramuscular nerve branches is maximal, are recommended as the most effective and safest points for injection. Clin. Anat. 29:746-751, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Effects on Hamstring Muscle Extensibility, Muscle Activity, and Balance of Different Stretching Techniques

    PubMed Central

    Lim, Kyoung-Il; Nam, Hyung-Chun; Jung, Kyoung-Sim

    2014-01-01

    [Purpose] The purpose of this study was to investigate the effects of two different stretching techniques on range of motion (ROM), muscle activation, and balance. [Subjects] For the present study, 48 adults with hamstring muscle tightness were recruited and randomly divided into three groups: a static stretching group (n=16), a PNF stretching group (n=16), a control group (n=16). [Methods] Both of the stretching techniques were applied to the hamstring once. Active knee extension angle, muscle activation during maximum voluntary isometric contraction (MVC), and static balance were measured before and after the application of each stretching technique. [Results] Both the static stretching and the PNF stretching groups showed significant increases in knee extension angle compared to the control group. However, there were no significant differences in muscle activation or balance between the groups. [Conclusion] Static stretching and PNF stretching techniques improved ROM without decrease in muscle activation, but neither of them exerted statistically significant effects on balance. PMID:24648633

  13. Isokinetic strength assessment offers limited predictive validity for detecting risk of future hamstring strain in sport: a systematic review and meta-analysis.

    PubMed

    Green, Brady; Bourne, Matthew N; Pizzari, Tania

    2018-03-01

    To examine the value of isokinetic strength assessment for predicting risk of hamstring strain injury, and to direct future research into hamstring strain injuries. Systematic review. Database searches for Medline, CINAHL, Embase, AMED, AUSPORT, SPORTDiscus, PEDro and Cochrane Library from inception to April 2017. Manual reference checks, ahead-of-press and citation tracking. Prospective studies evaluating isokinetic hamstrings, quadriceps and hip extensor strength testing as a risk factor for occurrence of hamstring muscle strain. Independent search result screening. Risk of bias assessment by independent reviewers using Quality in Prognosis Studies tool. Best evidence synthesis and meta-analyses of standardised mean difference (SMD). Twelve studies were included, capturing 508 hamstring strain injuries in 2912 athletes. Isokinetic knee flexor, knee extensor and hip extensor outputs were examined at angular velocities ranging 30-300°/s, concentric or eccentric, and relative (Nm/kg) or absolute (Nm) measures. Strength ratios ranged between 30°/s and 300°/s. Meta-analyses revealed a small, significant predictive effect for absolute (SMD=-0.16, P=0.04, 95% CI -0.31 to -0.01) and relative (SMD=-0.17, P=0.03, 95% CI -0.33 to -0.014) eccentric knee flexor strength (60°/s). No other testing speed or strength ratio showed statistical association. Best evidence synthesis found over half of all variables had moderate or strong evidence for no association with future hamstring injury. Despite an isolated finding for eccentric knee flexor strength at slow speeds, the role and application of isokinetic assessment for predicting hamstring strain risk should be reconsidered, particularly given costs and specialised training required. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Estimation of tensile force in the hamstring muscles during overground sprinting.

    PubMed

    Ono, T; Higashihara, A; Shinohara, J; Hirose, N; Fukubayashi, T

    2015-02-01

    The purpose of this study was to identify the period of the gait cycle during which the hamstring muscles were likely injured by estimating the magnitude of tensile force in each muscle during overground sprinting. We conducted three-dimensional motion analysis of 12 male athletes performing overground sprinting at their maximal speed and calculated the hamstring muscle-tendon length and joint angles of the right limb throughout a gait cycle during which the ground reaction force was measured. Electromyographic activity during sprinting was recorded for the biceps femoris long head, semitendinosus, and semimembranosus muscles of ipsilateral limb. We estimated the magnitude of tensile force in each muscle by using the length change occurred in the musculotendon and normalized electromyographic activity value. The study found a quick increase of estimated tensile force in the biceps femoris long head during the early stance phase of the gait cycle during which the increased hip flexion angle and ground reaction force occurred at the same time. This study provides quantitative data of tensile force in the hamstring muscles suggesting that the biceps femoris long head muscle is susceptible to a strain injury during the early stance phase of the sprinting gait cycle. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Do oarsmen have asymmetries in the strength of their back and leg muscles?

    PubMed

    Parkin, S; Nowicky, A V; Rutherford, O M; McGregor, A H

    2001-07-01

    The aim of this study was to establish whether asymmetry of the strength of the leg and trunk musculature is more prominent in rowers than in controls. Nineteen oarsmen and 20 male controls matched for age, height and body mass performed a series of isokinetic and isometric strength tests on an isokinetic dynamometer. These strength tests focused on the trunk and leg muscles. Comparisons of strength were made between and within groups for right and left symmetry patterns, hamstring: quadriceps ratios, and trunk flexor and extensor ratios. The results revealed no left and right asymmetries in either the knee extensor or flexor strength parameters (including both isometric and isokinetic measures). Knee extensor strength was significantly greater in the rowing population, but knee flexor strength was similar between the two groups. No difference was seen between the groups for the hamstring: quadriceps strength ratio. In the rowing population, stroke side had no influence on leg strength. No differences were observed in the isometric strength of the trunk flexors and extensors between groups, although EMG activity was significantly higher in the rowing population. Patterns of asymmetry of muscle activity were observed between the left and right erector spinae muscles during extension, which was significantly related to rowing side (P < 0.01). These observations could be related to the high incidence of low back pain in oarsmen.

  16. BET 2: LASER THERAPY IN THE TREATMENT OF ACUTE HAMSTRING MUSCLE INJURIES.

    PubMed

    Hughes, Tom; Callaghan, Michael

    2017-04-01

    Local laser therapy has been suggested as a promising treatment for acute hamstring muscle tears. We carried out a shortcut systematic review to establish whether therapeutic lasers are beneficial for patients with acute hamstring tears. Despite a comprehensive literature search, no studies that were directly relevant to the question could be identified. The clinical bottom line is therefore that there is currently no evidence for the use of any form of laser therapy in the treatment of acute hamstring muscle tears. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. HAMSTRING INJURY REHABILITATION AND PREVENTION OF REINJURY USING LENGTHENED STATE ECCENTRIC TRAINING: A NEW CONCEPT

    PubMed Central

    Tim, Tyler; McHugh, Malachy

    2012-01-01

    Back ground and Purpose: Hamstring injury is a common occurrence in sport and there has been limited success in reducing this rate of recurrence to date. Description of Topic with Related Evidence: High speed running requires eccentric strength when the hamstring muscles are in a lengthened state. The lengthened state occurs when the hip is in flexion and the lower leg moves into extension, thus lengthening the two joint hamstring muscle over both articulations upon which they act. There is evidence to suggest that athletes who have sustained a hamstring strain lack strength when the muscle is utilized during performance in a lengthened state. Purpose: To examine the risk factors contributing to such a high recurrence rate and propose a unique rehabilitation strategy addressing these factors in order to decrease the rate of reinjury. Discussion/Relation to Clinical Practice: Failing to increase an athlete's eccentric strength in a lengthened position after a hamstring injury may predispose an athlete to subsequent reinjury. Incorporating lengthened state eccentric training may help reduce the rate of reinjury. Level of Evidence: Level 5 PMID:22666648

  18. Effects of external pelvic compression on electromyographic activity of the hamstring muscles during unipedal stance in sportsmen with and without hamstring injuries.

    PubMed

    Arumugam, Ashokan; Milosavljevic, Stephan; Woodley, Stephanie; Sole, Gisela

    2015-06-01

    There is some evidence that hamstring function can be influenced by interventions focusing on the pelvis via an anatomic and neurophysiologic link between these two segments. Previous research demonstrated increased electromyographic activity from injured hamstrings during transition from bipedal to unipedal stance (BUS). The aim of this study was to investigate the effects of a pelvic compression belt (PCB) on electromyographic activity of selected muscles during BUS in sportsmen with and without hamstring injury. Electromyographic amplitudes (normalised to maximum voluntary isometric contraction [MVIC]) of the hamstrings, gluteus maximus, gluteus medius and lumbar multifidus were obtained during BUS from 20 hamstring-injured participants (both sides) and 30 healthy participants (one side, randomly selected). There was an increase in biceps femoris (by 1.23 ± 2.87 %MVIC; p = 0.027) and gluteus maximus (by 0.63 ± 1.13 %MVIC; p = 0.023) electromyographic activity for the hamstring-injured side but no significant differences other than a decrease in multifidus activity (by 1.36 ± 2.92 %MVIC; p = 0.023) were evident for healthy participants while wearing the PCB. However, the effect sizes for these findings were small. Wearing the PCB did not significantly change electromyographic activity of other muscles in either participant group (p > 0.050). Moreover, the magnitude of change induced by the PCB was not significantly different between groups (p > 0.050) for the investigated muscles. Thus, application of a PCB to decrease electromyographic activity of injured hamstrings during BUS is likely to have little effect. Similar research is warranted in participants with acute hamstring injury. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Relationship between the cervical component of the slump test and change in hamstring muscle tension.

    PubMed

    Lew, P. C.; Briggs, C. A.

    1997-05-01

    SUMMARY. The slump test has been used routinely to differentiate low back pain due to involvement of neural structures from low back pain attributable to other factors. It is also said to differentiate between posterior thigh pain due to neural involvement from that due to hamstring injury. If changes in cervical position affect the hamstring muscles, differential diagnosis is confounded. Posterior thigh pain caused by the cervical component of the slump could then be caused either by increased tension on neural structures or increased tension in the hamstrings themselves. The aim of this study was to determine whether changing the cervical position during slump altered posterior thigh pain and/or the tension in the hamstring muscle. Asymptomatic subjects aged between 18 and 30 years were tested. A special fixation device was engineered to fix the trunk, pelvis and lower limb. Pain levels in cervical flexion and extension were assessed by visual analogue scale. Fixation was successful in that there were no significant differences in position of the pelvis or knee during changes in cervical position. Averaged over the group, there was a 40% decrease (P < 0.05) in posterior thigh pain with cervical extension. There were no significant differences in hamstring electromyographic readings during the cervical movements. This indicated that: (1) cervical movement did not change hamstring muscle tension, and (2) the change in experimentally induced pain during cervical flexion was not due to changes in the hamstring muscle. This conclusion supports the view that posterior thigh pain caused by the slump test and relieved by cervical extension arises from neural structures rather than the hamstring muscle. Copyright 1997 Harcourt Publishers Ltd.

  20. Individual Muscle use in Hamstring Exercises by Soccer Players Assessed using Functional MRI.

    PubMed

    Fernandez-Gonzalo, R; Tesch, P A; Linnehan, R M; Kreider, R B; Di Salvo, V; Suarez-Arrones, L; Alomar, X; Mendez-Villanueva, A; Rodas, G

    2016-06-01

    This study used functional magnetic resonance imaging (fMRI) to compare individual muscle use in exercises aimed at preventing hamstring injuries. Thirty-six professional soccer players were randomized into 4 groups, each performing either Nordic hamstring, flywheel leg curl, Russian belt or conic-pulley exercise. MRIs were performed before and immediately after a bout of 4 sets of 8 repetitions. Pre-post exercise differences in contrast shift (T2) were analyzed for the long (BFLh) and short head (BFSh) of biceps femoris, semitendinosus (ST), semimembranosus (SM) and gracilis (GR) muscles. Flywheel leg curl increased (P<0.001) T2 of GR (95%), ST (65%), BFSh (51%) and BFLh (14%). After the Nordic hamstring, GR (39%), ST (16%) and BFSh (14%) showed increased T2 (P<0.001). Russian belt and conic-pulley exercise produced subtle (P<0.02) T2 increases of ST (9 and 6%, respectively) and BFLh (7 and 6%, respectively). Russian belt increased T2 of SM (7%). Among exercises examined, flywheel leg curl showed the most substantial hamstring and GR muscle use. However, no single exercise executed was able to increase T2 of all hamstring and synergist muscles analyzed. It is therefore suggested that multiple exercises must be carried out to bring in, and fully activate all knee flexors and hip extensors. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Muscle Activation Profiles and Co-Activation of Quadriceps and Hamstring Muscles around Knee Joint in Indian Primary Osteoarthritis Knee Patients.

    PubMed

    Sharma, Sanjeev Kumar; Yadav, Shiv Lal; Singh, U; Wadhwa, Sanjay

    2017-05-01

    Osteoarthritis (OA) of knee is a common joint disease. It is associated with reduced knee joint stability due to impaired quadriceps strength, pain, and an altered joint structure. There is altered muscle activation in knee OA patients, which interferes with normal load distribution around the knee and facilitates disease progression. Our primary aim was to determine activation patterns of the muscles i.e., quadriceps and hamstrings in knee OA patients during walking. We also studied co-activation of muscles around knee joint in primary OA knee patients including directed medial and lateral co-contractions. This observational study was done at Department of Physical Medicine and Rehabilitation, All India Institute of Medical Sciences, New Delhi, India. Fourty-four patients with medial compartment primary knee OA were included in study after satisfying inclusion and exclusion criteria. All the patients were assessed for mean, peak and integrated Root Mean Square (RMS), EMG values, muscle activation patterns and co-activation of muscles around knee joint by surface Electromyography (EMG) analysis of Vastus Medialis Obliques (VMO), Vastus Lateralis (VL), Semitendinosus (SMT) and Biceps Femoris (BF) muscles during gait cycle. The EMG waveform for each muscle was amplitude normalized and time normalized to 100% of gait cycle and plotted on graph. Quantitative variables were assessed for normal distribution and accordingly mean±SD or median (range), as appropriate, was computed. For primary OA knee, mean age 61±5 years, mean weight 63.7±10.1 kg, mean height 153.9±7.2 cm, and mean Body Mass Index (BMI) 26.8±3.0 kg/m 2 was found. The muscle activity of hamstrings (SMT muscle and BF) was increased during midstance, late stance and early swing phase of gait cycle as compared to quadriceps (VMO and VL) muscle activity respectively, suggesting co-contraction of opposing muscles around knee joint. Patients with knee OA walk with increased hamstring muscle activity (during

  2. Muscle Activation Profiles and Co-Activation of Quadriceps and Hamstring Muscles around Knee Joint in Indian Primary Osteoarthritis Knee Patients

    PubMed Central

    Yadav, Shiv Lal; Singh, U; Wadhwa, Sanjay

    2017-01-01

    Introduction Osteoarthritis (OA) of knee is a common joint disease. It is associated with reduced knee joint stability due to impaired quadriceps strength, pain, and an altered joint structure. There is altered muscle activation in knee OA patients, which interferes with normal load distribution around the knee and facilitates disease progression. Aim Our primary aim was to determine activation patterns of the muscles i.e., quadriceps and hamstrings in knee OA patients during walking. We also studied co-activation of muscles around knee joint in primary OA knee patients including directed medial and lateral co-contractions. Materials and Methods This observational study was done at Department of Physical Medicine and Rehabilitation, All India Institute of Medical Sciences, New Delhi, India. Fourty-four patients with medial compartment primary knee OA were included in study after satisfying inclusion and exclusion criteria. All the patients were assessed for mean, peak and integrated Root Mean Square (RMS), EMG values, muscle activation patterns and co-activation of muscles around knee joint by surface Electromyography (EMG) analysis of Vastus Medialis Obliques (VMO), Vastus Lateralis (VL), Semitendinosus (SMT) and Biceps Femoris (BF) muscles during gait cycle. The EMG waveform for each muscle was amplitude normalized and time normalized to 100% of gait cycle and plotted on graph. Quantitative variables were assessed for normal distribution and accordingly mean±SD or median (range), as appropriate, was computed. Results For primary OA knee, mean age 61±5 years, mean weight 63.7±10.1 kg, mean height 153.9±7.2 cm, and mean Body Mass Index (BMI) 26.8±3.0 kg/m2 was found. The muscle activity of hamstrings (SMT muscle and BF) was increased during midstance, late stance and early swing phase of gait cycle as compared to quadriceps (VMO and VL) muscle activity respectively, suggesting co-contraction of opposing muscles around knee joint. Conclusion Patients with knee

  3. Immediate Effects of Neurodynamic Sliding versus Muscle Stretching on Hamstring Flexibility in Subjects with Short Hamstring Syndrome

    PubMed Central

    Castellote-Caballero, Yolanda; Valenza, Maríe C.; Puentedura, Emilio J.; Fernández-de-las-Peñas, César; Alburquerque-Sendín, Francisco

    2014-01-01

    Background. Hamstring injuries continue to affect active individuals and although inadequate muscle extensibility remains a commonly accepted factor, little is known about the most effective method to improve flexibility. Purpose. To determine if an isolated neurodynamic sciatic sliding technique would improve hamstring flexibility to a greater degree than stretching or a placebo intervention in asymptomatic subjects with short hamstring syndrome (SHS). Study Design. Randomized double-blinded controlled trial. Methods. One hundred and twenty subjects with SHS were randomized to 1 of 3 groups: neurodynamic sliding, hamstring stretching, and placebo control. Each subject's dominant leg was measured for straight leg raise (SLR) range of motion (ROM) before and after interventions. Data were analyzed with a 3 × 2 mixed model ANOVA followed by simple main effects analyses. Results. At the end of the study, more ROM was observed in the Neurodynamic and Stretching groups compared to the Control group and more ROM in the Neurodynamic group compared to Stretching group. Conclusion. Findings suggest that a neurodynamic sliding technique will increase hamstring flexibility to a greater degree than static hamstring stretching in healthy subjects with SHS. Clinical Relevance. The use of neurodynamic sliding techniques to improve hamstring flexibility in sports may lead to a decreased incidence in injuries; however, this needs to be formally tested. PMID:26464889

  4. Spinal mobility and trunk muscle strength in elite hockey players.

    PubMed

    Lindgren, S; Twomey, L

    1988-01-01

    Elite hockey players of both sexes from the Australian Institute of Sport were assessed for lumbar spine mobility, trunk flexion and back extensor muscle strength, hamstring flexibility and postural characteristics over a two year period. All the athletes were more mobile in rotation than the 'normal' West Australian population, and demonstrated flexible hamstrings and powerful back extensor muscles; trunk flexion was less strong initially, but improved after intervention in the form of a specific exercise programme, over the measurement period. A questionnaire disclosed that low back pain is a common complaint of hockey players, but rarely required intensive physical and medical treatment. The term 'hockey player's back' has been coined in recognition of the long flat thoracolumbar spine frequently noted in these subjects. Copyright © 1988 Australian Physiotherapy Association. Published by . All rights reserved.

  5. [Avulsion of the Proximal Hamstring Insertion. Case Reports].

    PubMed

    Mizera, R; Harcuba, R; Kratochvíl, J

    2016-01-01

    Proximal hamstring avulsion is an uncommon muscle injury with a lack of consensus on indications and the timing and technique of surgery. Poor clinical symptoms and difficulties in the diagnostic process can lead to a false diagnosis. The authors present three cases of proximal hamstring avulsion, two complete and one partial ruptures of the biceps femoris muscle. MRI and ultrasound scans were used for optimal treatment alignment. Acute surgery reconstruction (< 4 weeks) was done in two patients. Re-attachment of the full thickness ruptures was performed to the original place and secured by suture anchors, the partial rupture was fixed by a simple suture. Two patients were free of any symptoms at 6 months after surgery, the last one had pain in the subgluteal area and a mild deficit in hamstring strength. Two interesting systematic reviews published on the treatment of proximal hamstring avulsion are discussed in the final part of the paper. Key words: hamstring, rupture, avulsion.

  6. An anatomical and histological study of the structures surrounding the proximal attachment of the hamstring muscles.

    PubMed

    Pérez-Bellmunt, Albert; Miguel-Pérez, Maribel; Brugué, Marc Blasi; Cabús, Juan Blasi; Casals, Martí; Martinoli, Carlo; Kuisma, Raija

    2015-06-01

    The proximal attachment of hamstring muscles has a very high incidence of injuries due to a wide number of factors and its morphology may be one of the underlying factors as scientific literature points out. The connective tissue component of the attachment of hamstring muscles is not well known. For this reason the aim of this study is to describe the anatomy and histology surrounding the proximal attachment of the hamstring muscles (PAHM) and its direct anatomic relations. Forty-eight cryopreserved lower limbs have sequentially been studied by means of dissection, anatomical sections and histology. All specimens studied presented an annular connective tissue structure that resembles a retinaculum, which covers and adapts to the attachment of hamstring muscles on the ischial tuberosity. The results show how this retinaculum is continuous with the long head of biceps femoris muscle, however there is a layer of loose connective tissue between the retinaculum and the semitendinosus muscle. Furthermore, this structure receives expansions of the anterior epimysium of the gluteus maximus muscle (GIM). Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The effects of surgical lengthening of hamstring muscles in children with cerebral palsy--the consequences of pre-operative muscle length measurement.

    PubMed

    Laracca, Ettore; Stewart, Caroline; Postans, Neil; Roberts, Andrew

    2014-03-01

    Children with cerebral palsy often undergo multiple orthopaedic surgical procedures in a single episode. Evidence of the effectiveness of individual components within the overall package is sparse. The introduction of musculoskeletal modelling in Oswestry has led to a more conservative management approach being taken with hamstring muscles for children walking in a degree of crouch. Muscles which were shown to be of at least normal length at initial contact were not surgically lengthened, as would have been the case previously. A retrospective review of 30 such patients was therefore possible, comparing 15 patients treated before the policy change who had their hamstrings lengthened with 15 treated after who did not. All patients had pre and post operative gait assessments and significant changes were observed for each group separately and for the two groups when compared. The comparison revealed that preserving the hamstrings does tend to reduce, and therefore normalize, the dynamic muscle length. Examination of the two patient groups separately, however, reveals a more complex picture with more global gait improvements seen when the hamstrings were lengthened. No absolute recommendation can be made to inform the clinical management of all children with normal to long hamstring muscles during gait. The final decision of whether to include a hamstring lengthening will need to take into account the characteristics of the individual child. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. [Correlations Between Joint Proprioception, Muscle Strength, and Functional Ability in Patients with Knee Osteoarthritis].

    PubMed

    Chen, Yoa; Yu, Yong; He, Cheng-qi

    2015-11-01

    To establish correlations between joint proprioception, muscle flexion and extension peak torque, and functional ability in patients with knee osteoarthritis (OA). Fifty-six patients with symptomatic knee OA were recruited in this study. Both proprioceptive acuity and muscle strength were measured using the isomed-2000 isokinetic dynamometer. Proprioceptive acuity was evaluated by establishing the joint motion detection threshold (JMDT). Muscle strength was evaluated by Max torque (Nm) and Max torque/weight (Nm/ kg). Functional ability was assessed by the Western Ontario and McMaster Universities Osteoarthritis Index physical function (WOMAC-PF) questionnaire. Correlational analyses were performed between proprioception, muscle strength, and functional ability. A multiple stepwise regression model was established, with WOMAC-PF as dependent variable and patient age, body mass index (BMI), visual analogue scale (VAS)-score, mean grade for Kellgren-Lawrance of both knees, mean strength for quadriceps and hamstring muscles of both knees, and mean JMDT of both knees as independent variables. Poor proprioception (high JMDT) was negatively correlated with muscle strength (P<0.05). There was no significant correlation between knee proprioception (high JMDT) and joint pain (WOMAC pain score), and between knee proprioception (high JMDT) and joint stiffness (WOMAC stiffness score). Poor proprioception (high JMDT) was correlated with limitation in functional ability (WOMAC physical function score r=0.659, P<0.05). WOMAC score was correlated with poor muscle strength (quadriceps muscle strength r = -0.511, P<0.05, hamstring muscle strength r = -0.408, P<0.05). The multiple stepwise regression model showed that high JMDT C standard partial regression coefficient (B) = 0.385, P<0.50 and high VAS-scale score (B=0.347, P<0.05) were significant predictors of WOMAC-PF score. Patients with poor proprioception is associated with poor muscle strength and limitation in functional

  9. Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios.

    PubMed

    Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin

    2015-10-18

    To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). Similarly, static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). On the other hand, when the functional H/Q strength ratios were taken into consideration, the pre-intervention values were not significant different between the groups both during the entire and end range of knee extension (P > 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static

  10. Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios

    PubMed Central

    Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin

    2015-01-01

    AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. RESULTS: The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). Similarly, static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). On the other hand, when the functional H/Q strength ratios were taken into consideration, the pre-intervention values were not significant different between the groups both during the entire and end range of knee extension (P > 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension

  11. ISOKINETIC KNEE MUSCLE STRENGTH PROFILE IN BRAZILIAN MALE SOCCER, FUTSAL, AND BEACH SOCCER PLAYERS: A CROSS-SECTIONAL STUDY

    PubMed Central

    Mascarin, Naryana C.; Vargas, Valentine Z.; Vancini, Rodrigo L.; Andrade, Marília S.

    2017-01-01

    Background Anterior cruciate ligament injury is higher in soccer athletes as compared to athletes of other sports. Risk factors for anterior cruciate ligament injury include low knee hamstring/quadriceps strength ratio and bilateral strength deficits. Purpose To investigate isokinetic thigh muscles strength, hamstring/quadriceps strength ratio, and bilateral strength comparisons in athletes who participate in professional soccer, futsal, and beach soccer. Study Design Cross-sectional study. Methods Brazilian professional soccer (n=70), futsal (n=30), and beach soccer (n=12) players were isokinetically assessed to examine strength of knee extensors and flexors at 60 degrees/second in concentric mode, to measure peak torque of dominant and non-dominant limbs. Results In the dominant limb, for extensors muscles, futsal players presented significantly lower peak torque values (223.9 ± 33.4 Nm) than soccer (250.9 ± 43.0 Nm; p=0.02) and beach soccer players (253.1 ± 32.4 Nm; p=0.03). Peak torque for extensor muscles in the non-dominant limb was significantly lower in futsal (224.0 ± 35.8 Nm) than in beach soccer players (256.8 ± 39.8 Nm; p=0.03). Hamstring/quadriceps strength ratio for dominant limbs for futsal (57.6 ± 10.1%), soccer (53.5 ± 8.8%), and beach soccer (56.3 ± 8.4%) players presented no significant differences between groups; however, the mean values were lower than recommended values found in the literature. There were no strength deficits for any of the evaluated groups when compared bilaterally. Conclusions Futsal athletes presented lower values for quadriceps strength than soccer and beach soccer athletes. Futsal, soccer, and beach soccer players presented no strength asymmetries, but they presented with strength imbalance in hamstring/quadriceps strength ratio. Level of Evidence 3 PMID:29234562

  12. The single-leg Roman chair hold is more effective than the Nordic hamstring curl in improving hamstring strength-endurance in Gaelic footballers with previous hamstring injury.

    PubMed

    Macdonald, Ben; O'Neill, John; Pollock, Noel; Van Hooren, Bas

    2018-03-06

    Poor hamstring strength-endurance is a risk factor for hamstring injuries. This study investigated the effectiveness of the single-leg Roman hold and Nordic hamstring curl in improving hamstring strength-endurance. Twelve Gaelic footballers (mean ± standard deviation age, height and mass were 25.17 ± 3.46 years, 179.25 ± 5.88 cm, 85.75 ± 4.75 kilo) with a history of hamstring injury were randomized into 2 groups that performed 6 weeks of either Nordic hamstring curl, or single-leg Roman chair hold training. The single-leg hamstring bridge (SLHB) was measured pre- and post- intervention. The Roman chair group showed a very likely moderate magnitude improvement on SLHB performance for both legs (23.7% for the previously injured leg [90% confidence interval 9.6% to 39.6%] and 16.9% for the non-injured leg [6.2% to 28.8%]). The Nordic curl group showed a likely trivial change in SLHB performance for the non-injured leg (-2.1% [-6.7% to 2.6%]) and an unclear, but possibly trivial change for the previously injured leg (0.3% [-5.6% to 6.6%]). The Roman chair group improved very likely more with a moderate magnitude in both the non-injured (19.5% [8.0% to 32.2%]) and the previously injured leg (23.3% [8.5% to 40.0%]) compared to the Nordic curl group. This study demonstrated that 6-weeks single-leg Roman chair training substantially improved SLHB performance, suggesting that it may be an efficacious strategy to mitigate hamstring (re-) injury risk. Conversely, 6-weeks Nordic curl training did not substantially improve SLHB performance, suggesting this may not be the intervention of choice for modifying this risk factor.

  13. Exercise capacity, muscle strength and fatigue in sarcoidosis.

    PubMed

    Marcellis, R G J; Lenssen, A F; Elfferich, M D P; De Vries, J; Kassim, S; Foerster, K; Drent, M

    2011-09-01

    The aim of this case-control study was to investigate the prevalence of exercise intolerance, muscle weakness and fatigue in sarcoidosis patients. Additionally, we evaluated whether fatigue can be explained by exercise capacity, muscle strength or other clinical characteristics (lung function tests, radiographic stages, prednisone usage and inflammatory markers). 124 sarcoidosis patients (80 males) referred to the Maastricht University Medical Centre (Maastricht, the Netherlands) were included (mean age 46.6±10.2 yrs). Patients performed a 6-min walk test (6MWT) and handgrip force (HGF), elbow flexor muscle strength (EFMS), quadriceps peak torque (QPT) and hamstring peak torque (HPT) tests. Maximal inspiratory pressure (P(I,max)) was recorded. All patients completed the Fatigue Assessment Scale (FAS) questionnaire. The 6MWT was reduced in 45% of the population, while HGF, EFMS, QPT and HPT muscle strength were reduced in 15, 12, 27 and 18%, respectively. P(I,max) was reduced in 43% of the population. The majority of the patients (81%) reported fatigue (FAS ≥22). Patients with reduced peripheral muscle strength of the upper and/or lower extremities were more fatigued and demonstrated impaired lung functions, fat-free mass, P(I,max), 6MWT and quality of life. Fatigue was neither predicted by exercise capacity, nor by muscle strength. Besides fatigue, exercise intolerance and muscle weakness are frequent problems in sarcoidosis. We therefore recommend physical tests in the multidisciplinary management of sarcoidosis patients, even in nonfatigued patients.

  14. A comparison of hamstring muscle activity during different screening tests for non-contact ACL injury.

    PubMed

    Husted, Rasmus S; Bencke, Jesper; Andersen, Lars L; Myklebust, Grethe; Kallemose, Thomas; Lauridsen, Hanne B; Hölmich, Per; Aagaard, Per; Zebis, Mette K

    2016-06-01

    Reduced ability to activate the medial hamstring muscles during a sports-specific sidecutting movement has been found to be a potential risk factor for non-contact ACL injury. However, whether a reduced ability to activate the medial hamstring muscle is a general neuromuscular phenomenon and thereby observable independently of the type of clinical screening tests used is not known. This cross sectional study investigated the rank correlation of knee joint neuromuscular activity between three different ACL injury risk screening tests. Sixty-two adolescent female elite football and handball players (16.7±1.3years) participated in the study. Using surface electromyography (EMG) assessment, the neuromuscular activity of medial hamstring muscle (semitendinosus, ST), lateral hamstring muscle (biceps femoris, BF) and quadriceps muscle (vastus lateralis, VL) were monitored during three standardized screening tests - i.e. one-legged horizontal hop (OLH), drop vertical jump (DJ) and sidecutting (SC). Neuromuscular pre-activity was measured in the time interval 10ms prior to initial contact on a force plate. For neuromuscular hamstring muscle pre-activity, correlation analysis (Spearman correlation coefficient) showed low-to-moderate correlations between SC and 1) DJ (rs=0.34-0.36, P<0.05) and 2) OLH (rs=0.40-0.41, P<0.05), respectively. In conclusion, the present data suggest that hamstring pre-activity share some common variance during the examined tests. However, a lack of strong correlation suggests that we cannot generalize one risk factor during one test to another test. The present data demonstrate that one-legged horizontal hop and drop vertical jump testing that are commonly used in the clinical setting does not resemble the specific neuromuscular activity patterns known to exist during sidecutting, a well known high risk movement for non-contact ACL injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Hamstring injury prevention in soccer: Before or after training?

    PubMed

    Lovell, R; Knox, M; Weston, M; Siegler, J C; Brennan, S; Marshall, P W M

    2018-02-01

    We examined the effects of a 12-week program of Nordic hamstring exercises (NHE), administered before or after football training, upon eccentric hamstring strength, muscle activity, and architectural adaptations. Amateur soccer players were randomized into three groups. The control group (CON; n=11) undertook core stability exercises, whereas a periodized NHE program was delivered either before (NHE BEF ; n=10) or after (NHE AFT ; n=14) biweekly training sessions. Outcome measures included peak torque and concomitant normalized peak surface electromyography signals (sEMG) of the biceps femoris (BF) and medial hamstring (MH) muscles during knee flexor maximal eccentric contractions, performed at 30°·s -1 . Ultrasonography was used to determine BF muscle thickness, muscle fiber pennation angle, and fascicle length. Performing the NHE derived likely moderate peak torque increases in both NHE BEF (+11.9%; 90% confidence interval: 3.6%-20.9%) and NHE AFT (+11.6%; 2.6%-21.5%) vs CON. Maximum sEMG increases were moderately greater in the BF of both NHE training groups vs CON. There were likely moderate increases in BF muscle thickness (+0.17 cm; 0.05-0.29 cm) and likely small pennation angle increases (+1.03°; -0.08° to 2.14°) in NHE AFT vs CON and NHE BEF . BF fascicle length increases were likely greater in NHE BEF (+1.58 cm; 0.48-2.68 cm; small effect) vs CON and NHE AFT . A 12-week eccentric hamstring strengthening program increased strength and sEMG to a similar magnitude irrespective of its scheduling relative to the football training session. However, architectural adaptations to support the strength gains differed according to the timing of the injury prevention program. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Acute effects of different dynamic exercises on hamstring strain risk factors.

    PubMed

    Chen, Che Hsiu; Xin, Ye; Lee, Kuang Wu; Lin, Ming Ju; Lin, Jiu Jenq

    2018-01-01

    The purpose of the study was to examine the acute effects of different dynamic exercise interventions on hamstring muscle performance. Thirty-six young men with poor hamstring flexibility were randomly assigned to three intervention groups: jogging combined with dynamic open kinetic chain stretching (DS), jogging combined with dynamic closed kinetic chain stretching (lunge with eccentric hamstring windmills, LEC), and jogging only (CON) groups. Hamstring flexibility, muscle stiffness (area under the curve, AUC), joint position sense (JPS), maximal eccentric strength (ECC), and angle of peak torque (APT) were recorded before and immediately after the exercise interventions. The results showed that the hamstring flexibility increased in DS (p < 0.001); muscle stiffness decreased in DS and was lower than jogging (p < 0.001). Moreover, ECC increased in LEC and was higher than jogging and DS (p < 0.001). APT was different among 3 groups (p < 0.001). Decreased accuracy of JPS was found in DS and jogging (p < 0.001). In conclusion, the dynamic closed kinetic chain stretching (LEC) as compared to open kinetic chain stretching (DS) or jogging group, may be an effective technique to enhance muscle performance during the pre-competition warm-up routine.

  17. Acute effects of different dynamic exercises on hamstring strain risk factors

    PubMed Central

    Xin, Ye; Lee, Kuang Wu; Lin, Ming Ju

    2018-01-01

    The purpose of the study was to examine the acute effects of different dynamic exercise interventions on hamstring muscle performance. Thirty-six young men with poor hamstring flexibility were randomly assigned to three intervention groups: jogging combined with dynamic open kinetic chain stretching (DS), jogging combined with dynamic closed kinetic chain stretching (lunge with eccentric hamstring windmills, LEC), and jogging only (CON) groups. Hamstring flexibility, muscle stiffness (area under the curve, AUC), joint position sense (JPS), maximal eccentric strength (ECC), and angle of peak torque (APT) were recorded before and immediately after the exercise interventions. The results showed that the hamstring flexibility increased in DS (p < 0.001); muscle stiffness decreased in DS and was lower than jogging (p < 0.001). Moreover, ECC increased in LEC and was higher than jogging and DS (p < 0.001). APT was different among 3 groups (p < 0.001). Decreased accuracy of JPS was found in DS and jogging (p < 0.001). In conclusion, the dynamic closed kinetic chain stretching (LEC) as compared to open kinetic chain stretching (DS) or jogging group, may be an effective technique to enhance muscle performance during the pre-competition warm-up routine. PMID:29390001

  18. Effect of a pelvic wedge and belt on the medial and lateral hamstring muscles during knee flexion.

    PubMed

    Yoo, Won-Gyu

    2017-01-01

    [Purpose] This study developed a pelvic wedge and belt and investigated their effects on the selective activation of medial and lateral hamstring muscles during knee flexion. [Subjects and Methods] Nine adults were enrolled. The participants performed exercises without and with the pelvic wedge and belt, and the electromyographic activities of the medial and lateral hamstring muscles were recorded. [Results] The activity of the medial hamstring was increased significantly when using the pelvic wedge and belt, while the activity of the lateral hamstring did not differ significantly. [Conclusion] The pelvic wedge and belt provide a self-locked position during knee flexion in the prone position. Prone knee flexion in this position is an effective self-exercise for balanced strengthening of the medial hamstring.

  19. Effect of a pelvic wedge and belt on the medial and lateral hamstring muscles during knee flexion

    PubMed Central

    Yoo, Won-gyu

    2017-01-01

    [Purpose] This study developed a pelvic wedge and belt and investigated their effects on the selective activation of medial and lateral hamstring muscles during knee flexion. [Subjects and Methods] Nine adults were enrolled. The participants performed exercises without and with the pelvic wedge and belt, and the electromyographic activities of the medial and lateral hamstring muscles were recorded. [Results] The activity of the medial hamstring was increased significantly when using the pelvic wedge and belt, while the activity of the lateral hamstring did not differ significantly. [Conclusion] The pelvic wedge and belt provide a self-locked position during knee flexion in the prone position. Prone knee flexion in this position is an effective self-exercise for balanced strengthening of the medial hamstring. PMID:28210048

  20. Reliability, Validity, and Sensitivity of a Novel Smartphone-Based Eccentric Hamstring Strength Test in Professional Football Players.

    PubMed

    Lee, Justin W Y; Cai, Ming-Jing; Yung, Patrick S H; Chan, Kai-Ming

    2018-05-01

    To evaluate the test-retest reliability, sensitivity, and concurrent validity of a smartphone-based method for assessing eccentric hamstring strength among male professional football players. A total of 25 healthy male professional football players performed the Chinese University of Hong Kong (CUHK) Nordic break-point test, hamstring fatigue protocol, and isokinetic hamstring strength test. The CUHK Nordic break-point test is based on a Nordic hamstring exercise. The Nordic break-point angle was defined as the maximum point where the participant could no longer support the weight of his body against gravity. The criterion for the sensitivity test was the presprinting and postsprinting difference of the Nordic break-point angle with a hamstring fatigue protocol. The hamstring fatigue protocol consists of 12 repetitions of the 30-m sprint with 30-s recoveries between sprints. Hamstring peak torque of the isokinetic hamstring strength test was used as the criterion for validity. A high test-retest reliability (intraclass correlation coefficient = .94; 95% confidence interval, .82-.98) was found in the Nordic break-point angle measurements. The Nordic break-point angle significantly correlated with isokinetic hamstring peak torques at eccentric action of 30°/s (r = .88, r 2  = .77, P < .001). The minimal detectable difference was 8.03°. The sensitivity of the measure was good enough that a significance difference (effect size = 0.70, P < .001) was found between presprinting and postsprinting values. The CUHK Nordic break-point test is a simple, portable, quick smartphone-based method to provide reliable and accurate eccentric hamstring strength measures among male professional football players.

  1. Skeletal muscle strength and endurance in recipients of lung transplants.

    PubMed

    Mathur, Sunita; Levy, Robert D; Reid, W Darlene

    2008-09-01

    Exercise limitation in recipients of lung transplant may be a result of abnormalities in the skeletal muscle. However, it is not clear whether these abnormalities are merely a reflection of the changes observed in the pretransplant condition. The purpose of this paper was to compare thigh muscle volume and composition, strength, and endurance in lung transplant recipients to people with chronic obstructive pulmonary disease (COPD). Single lung transplant recipients (n=6) and people with COPD (n=6), matched for age, sex, and BMI participated in the study. Subjects underwent MRI to determine muscle size and composition, lower extremity strength testing and an isometric endurance test of the quadriceps. Lung transplant recipients had similar muscle volumes and intramuscular fat infiltration of their thigh muscles and similar strength of the quadriceps and hamstrings to people with COPD who had not undergone transplant. However, quadriceps endurance tended to be lower in transplant recipients compared to people with COPD (15 +/- 7 seconds in transplant versus 31 +/- 12 seconds in COPD, p = 0.08). Recipients of lung transplant showed similar changes in muscle size and strength as people with COPD, however muscle endurance tended to be lower in people with lung transplants. Impairments in muscle endurance may reflect the effects of immunosuppressant medications on skeletal muscle in people with lung transplant.

  2. Abnormal reflex activation of hamstring muscles in dogs with cranial cruciate ligament rupture.

    PubMed

    Hayes, Graham M; Granger, Nicolas; Langley-Hobbs, Sorrel J; Jeffery, Nick D

    2013-06-01

    The mechanisms underlying cranial cruciate ligament rupture (CCLR) in dogs are poorly understood. In this study hamstring muscle reflexes in response to cranial tibial translation were analysed to determine whether these active stabilisers of the stifle joint are differently activated in dogs with CCLR compared to control dogs. In a prospective clinical study reflex muscle activity from the lateral and medial hamstring muscles (biceps femoris and semimembranosus) was recorded using surface electrodes in control dogs (n=21) and dogs with CCLR (n=22). These electromyographic recordings were analysed using an algorithm previously validated in humans. The hamstring reflex was reliably and reproducibly recorded in normal dogs. Both a short latency response (SLR, 17.6±2.1ms) and a medium latency response (MLR, 37.7±2.7ms) could be identified. In dogs with unilateral CCLR, the SLR and MLR were not significantly different between the affected and the unaffected limbs, but the MLR latency of both affected and unaffected limbs in CCLR dogs were significantly prolonged compared to controls. In conclusion, the hamstring reflex can be recorded in dogs and the MLR is prolonged in dogs with CCLR. Since both affected and unaffected limbs exhibit prolonged MLR, it is possible that abnormal hamstring reflex activation is a mechanism by which progressive CCL damage may occur. The methodology allows for further investigation of the relationship between neuromuscular imbalance and CCLR or limitations in functional recovery following surgical intervention. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Effect of noxious electrical stimulation of the peroneal nerve on stretch reflex activity of the hamstring muscle in rats: possible implications of neuronal mechanisms in the development of tight hamstrings in lumbar disc herniation.

    PubMed

    Hirayama, Jiro; Yamagata, Masatsune; Takahashi, Kazuhisa; Moriya, Hideshige

    2005-05-01

    The effect of noxious electrical stimulation of the peroneal nerve on the stretch reflex electromyogram activity of the hamstring muscle (semitendinous) was studied. To verify the following hypothetical mechanisms underlying tight hamstrings in lumbar disc herniation: stretch reflex muscle activity of hamstrings is increased by painful inputs from an injured spinal nerve root and the increased stretch reflex muscle activity is maintained by central sensitization. It is reported that stretch reflex activity of the trunk muscles is induced by noxious stimulation of the sciatic nerve and maintained by central sensitization. In spinalized rats (transected spinal cord), the peroneal nerve was stimulated electrically as a conditioning stimulus. Stretch reflex electromyogram activity of the semitendinous muscle was recorded before and after the conditioning stimulus. Even after electrical stimulation was terminated, an increased stretch reflex activity of the hamstring muscle was observed. It is likely that a central sensitization mechanism at the spinal cord level was involved in the increased reflex activity. Central sensitization may play a part in the neuronal mechanisms of tight hamstrings in lumbar disc herniation.

  4. The Effects of a 10-Kilometer Run on Muscle Strength and Power.

    ERIC Educational Resources Information Center

    Gomez, Ana L.; Radzwich, Robert J.; Denegar, Craig R.; Volek, Jeff S.; Rubin, Martyn R.; Bush, Jill A.; Doan, Brandon K.; Wickham, Robbin B.; Mazzetti, Scott A.; Newton, Robert U.; French, Duncan N.; Hakkinen, Keijo; Ratamess, Nicholas A.; Kraemer, William J.

    2002-01-01

    Investigated recovery of maximal force and power following a 10-km race. Data collected on 10 healthy male distance runners pre-race, immediately post-race, and 48 hours later indicated that strength and power capabilities of these 10-km runners were for the most part restored 48 hours after the race. Only the hamstring muscle group was not fully…

  5. Analysis of the Hamstring Muscle Activation During two Injury Prevention Exercises

    PubMed Central

    Monajati, Alireza; Larumbe-Zabala, Eneko; Goss-Sampson, Mark

    2017-01-01

    Abstract The aim of this study was to perform an electromyographic and kinetic comparison of two commonly used hamstring eccentric strengthening exercises: Nordic Curl and Ball Leg Curl. After determining the maximum isometric voluntary contraction of the knee flexors, ten female athletes performed 3 repetitions of both the Nordic Curl and Ball Leg Curl, while knee angular displacement and electromyografic activity of the biceps femoris and semitendinosus were monitored. No significant differences were found between biceps femoris and semitendinosus activation in both the Nordic Curl and Ball Leg Curl. However, comparisons between exercises revealed higher activation of both the biceps femoris (74.8 ± 20 vs 50.3 ± 25.7%, p = 0.03 d = 0.53) and semitendinosus (78.3 ± 27.5 vs 44.3 ± 26.6%, p = 0.012, d = 0.63) at the closest knee angles in the Nordic Curl vs Ball Leg Curl, respectively. Hamstring muscles activation during the Nordic Curl increased, remained high (>70%) between 60 to 40° of the knee angle and then decreased to 27% of the maximal isometric voluntary contraction at the end of movement. Overall, the biceps femoris and semitendinosus showed similar patterns of activation. In conclusion, even though the hamstring muscle activation at open knee positions was similar between exercises, the Nordic Curl elicited a higher hamstring activity compared to the Ball Leg Curl. PMID:29339983

  6. Contractile function and motor unit firing rates of the human hamstrings.

    PubMed

    Kirk, Eric A; Rice, Charles L

    2017-01-01

    Neuromuscular properties of the lower limb in health, aging, and disease are well described for major lower limb muscles comprising the quadriceps, triceps surae, and dorsiflexors, with the notable exception of the posterior thigh (hamstrings). The purpose of this study was to further characterize major muscles of the lower limb by comprehensively exploring contractile properties in relation to spinal motor neuron output expressed as motor unit firing rates (MUFRs) in the hamstrings of 11 (26.5 ± 3.8) young men. Maximal isometric voluntary contraction (MVC), voluntary activation, stimulated contractile properties including a force-frequency relationship, and MUFRs from submaximal to maximal voluntary contractile intensities were assessed in the hamstrings. Strength and MUFRs were assessed at two presumably different muscle lengths by varying the knee joint angles (90° and 160°). Knee flexion MVCs were 60-70% greater in the extended position (160°). The frequency required to elicit 50% of maximum tetanic torque was 16-17 Hz. Mean MUFRs at 25-50% MVC were 9-31% less in the biceps femoris compared with the semimembranosus-semitendinosus group. Knee joint angle (muscle length) influenced MUFRs such that mean MUFRs were greater in the shortened (90°) position at 50% and 100% MVC. Compared with previous reports, mean maximal MUFRs in the hamstrings are greater than those in the quadriceps and triceps surae and somewhat less than those in the tibialis anterior. Mean maximal MUFRs in the hamstrings are influenced by changes in knee joint angle, with lower firing rates in the biceps femoris compared with the semimembranosus-semitendinosus muscle group. We studied motor unit firing rates (MUFRs) at various voluntary contraction intensities in the hamstrings, one of the only major lower limb muscles to have MUFRs affected by muscle length changes. Within the hamstrings muscle-specific differences have greater impact on MUFRs than length changes, with the biceps femoris

  7. Muscle injury is the principal injury type and hamstring muscle injury is the first injury diagnosis during top-level international athletics championships between 2007 and 2015.

    PubMed

    Edouard, Pascal; Branco, Pedro; Alonso, Juan-Manuel

    2016-05-01

    During top-level international athletics championships, muscle injuries are frequent. To analyse the incidence and characteristics of muscle injuries and hamstring muscle injuries (hamstring injuries) occurring during top-level international athletics championships. During 16 international championships held between 2007 and 2015, national medical team and local organising committee physicians reported daily all injuries on a standardised injury report form. Only muscle injuries (muscle tears and muscle cramps) and hamstring injuries have been analysed. 40.9% of all recorded injuries (n=720) were muscle injuries, with 57.5% of them resulting in time loss. The overall incidence of muscle injuries was higher in male athletes than female athletes (51.9±6.0 vs 30.3±5.0 injuries per 1000 registered athletes, respectively; RR=1.71; 95% CI 1.45 to 2.01). Muscle injuries mainly affected the thigh (52.9%) and lower leg (20.1%), and were mostly caused by overuse with sudden onset (38.2%) and non-contact trauma (24.6%). Muscle injury risk varied according to the event groups. Hamstring injuries represented 17.1% of all injuries, with a higher risk in male compared to female athletes (22.4±3.4 vs 11.5±2.6 injuries per 1000 registered athletes, respectively; RR=1.94; 95% CI 1.42 to 2.66). During international athletics championships, muscle injury is the principal type of injury, and among those, the hamstring is the most commonly affected, with a two times higher risk in male than female athletes. Athletes in explosive power events, male athletes and older male athletes, in specific were more at risk of muscle injuries and hamstring injuries. Injury prevention strategies should be sex-specific. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. The preventive effect of the Nordic hamstring exercise on hamstring injuries in amateur soccer players: study protocol for a randomised controlled trial.

    PubMed

    van der Horst, Nick; Smits, Dirk Wouter; Petersen, Jesper; Goedhart, Edwin A; Backx, Frank J G

    2014-08-01

    Hamstring injuries are the most common muscle injury in male amateur soccer players and have a high rate of recurrence, often despite extensive treatment and long rehabilitation periods. Eccentric strength and flexibility are recognised as important modifiable risk factors, which have led to the development of eccentric hamstring exercises, such as the Nordic hamstring exercise. As the effectiveness of the Nordic hamstring exercise in reducing hamstring injuries has never been investigated in amateur soccer players, the aim of this study is to investigate the effect of this exercise on the incidence and severity of hamstring injuries in male amateur soccer players. An additional aim is to determine whether flexibility is associated with hamstring injuries. Cluster-randomised controlled trial with soccer teams as the unit of cluster. Dutch male amateur soccer players, aged 18-40 years, were allocated to an intervention or control group. Both study groups continued regular soccer training during 2013, but the intervention group additionally performed the Nordic hamstring exercise (25 sessions over 13 weeks). Primary outcomes are the incidence of initial and recurrent hamstring injury and injury severity. Secondary outcomes are hamstring-and-lower-back flexibility and compliance. Compliance to the intervention protocol was also monitored. Eccentric hamstring strength exercises are hypothesised to reduce the incidence of hamstring injury among male amateur soccer players by 70%. The prevention of such injuries will be beneficial to soccer players, clubs, football associations, health insurance companies and society. NTR3664. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Yacht type and crew-specific differences in anthropometric, aerobic capacity, and muscle strength parameters among international Olympic class sailors.

    PubMed

    Bojsen-Møller, Jens; Larsson, Benny; Magnusson, S Peter; Aagaard, Per

    2007-08-01

    Physical fitness and muscular strength are important performance factors for Olympic class sailors, but the physical demands vary greatly between yacht classes, and limited information is available regarding the physical demands for the different crew positions. In the present paper, strength and aerobic capacity data from elite Olympic sailors are presented and compared with previous findings. Furthermore, a system for classification of Olympic class sailors is suggested. Peak aerobic capacity (peak oxygen uptake, VO(2peak)) and maximal isometric and isokinetic muscle strength of the knee extensors and flexors were assessed, together with the hamstring/quadriceps strength ratio (H/Q ratio). Peak aerobic capacity (ml O(2) . min(-1) . kg(-2/3)) was as follows: males - static hikers (n = 5) 215, s = 7; dynamic hikers (n = 8) 252, s = 17; trapezing helmsmen (n = 6) 234, s = 15; trapezing crew (n = 10) 239, s = 16; females - dynamic hikers (n = 6) 194, s = 16; trapezing crew (n = 2) 200, s = 13. Strength data for hikers, presented as peak moments (normalized to body weight) obtained during eccentric, isometric, and concentric contraction (Nm . kg(-1)) respectively were as follows: males - quadriceps: 3.66 (s = 0.68), 3.97 (s = 0.66), 1.82 (s = 0.34); hamstrings: 1.93 (s = 0.22), 1.38 (s = 0.41), 1.05 (s = 0.21); females - quadriceps: 3.84 (s = 0.71), 3.81 (s = 0.58), 1.60 (s = 0.28); hamstrings: 1.75 (s = 0.23), 1.10 (s = 0.16), 0.84 (s = 0.13). The peak moment based H/Q ratios for slow eccentric and concentric contractions were 0.42 (s = 0.11) and 0.39 (s = 0.04) for males and 0.43 (s = 0.06) and 0.39 (s = 0.04) for females respectively. Elite Olympic class sailors demonstrated high VO(2peak) values comparable to those observed in other non-endurance sports. The strength data revealed very high quadriceps strength for hikers, which is likely a result of the high muscle forces encountered during sailing, and a low H/Q ratio. To ensure optimal knee joint stabilization

  10. Effects of Acute Fatigue of the Hip Flexor Muscles on Hamstring Muscle Extensibility.

    PubMed

    Muyor, José M; Arrabal-Campos, Francisco M

    2016-12-01

    The purpose of the present study was to evaluate the influence of acute fatigue of the hip flexor muscles on scores attained in tests frequently used in literature to measure hamstring muscle extensibility, namely the passive straight leg raise (PSLR), active straight leg raise (ASLR), passive knee extension (PKE), active knee extension (AKE), sit-and-reach (SR) and toe-touch (TT) tests. A total of seventy-five healthy and recreationally active adults voluntarily participated in this study. To reach fatigue, the participants actively lifted their legs alternately as many times as possible. In the passive tests, the results were 7.10 ± 5.21° and 5.68 ± 4.54° higher (p < 0.01) for PSLR and PKE tests, respectively, after acute fatigue. However, in the ASLR test, the results were lower post-fatigue than pre-fatigue (mean difference = -5.30° ± 9.51°; p < 0.01). The AKE, SR and TT tests did not show significant differences between pre- and post-fatigue (p > 0.05). Moderate (r = 0.40) to high (r = 0.97) correlation coefficients were found, which were statistically significant among all the measured flexibility tests both pre- and post-fatigue. In conclusion, the active implication of the hip flexor muscles until reaching fatigue had acute influences on the results of the PSLR, PKE and ASLR tests, but not on the results of the AKE, SR and TT tests. It is recommended to use the AKE test to assess hamstring muscle extensibility in situations where athletes show fatigue in their hip flexor muscles.

  11. The effects of a 4-week static stretching programme on the individual muscles comprising the hamstrings.

    PubMed

    Ichihashi, Noriaki; Umegaki, Hiroki; Ikezoe, Tome; Nakamura, Masatoshi; Nishishita, Satoru; Fujita, Kosuke; Umehara, Jun; Nakao, Sayaka; Ibuki, Satoko

    2016-12-01

    The aims of this study were to investigate the effects of a 4-week intervention of static stretching (SS) on muscle hardness of the semitendinosus (ST), semimembranosus (SM) and biceps femoris (BF) muscles. Shear elastic modulus was measured by using ultrasound shear wave elastography as the index of muscle hardness. Thirty healthy men (age 22.7 ± 2.2 years) volunteered for this study and were randomly assigned to the SS intervention group (n = 15) or the control group (n = 15). Participants in the SS intervention group received a 4-week stretch intervention for the hamstrings of their dominant leg. Shear elastic moduli of the hamstrings were measured at initial evaluation and after 4 weeks in both groups at a determined angle. In all muscles, the shear elastic modulus decreased significantly after SS intervention. The percentage change in the shear elastic modulus from the value at initial evaluation to after 4 weeks intervention was greatest in the SM. These results suggest that SS intervention has chronic effects on reducing hardness of the hamstring muscle components, especially the SM muscle.

  12. Hamstring muscle length and pelvic tilt range among individuals with and without low back pain.

    PubMed

    Fasuyi, Francis Oluwafunsho; Fabunmi, Ayodele A; Adegoke, Babatunde O A

    2017-04-01

    Hamstring tightness has been documented not to be related to the pelvic tilt position during static standing posture, but there is limited data on the relationship between hamstring muscle length (HML) and pelvic tilt range (PTR) during the dynamic movement of forward bending. This ex-post facto study was designed to compare each of HML and PTR in individuals with low back pain (LBP) and counterparts without LBP, and the relationship between HML and PTR in individuals with and without LBP. The study involved 30 purposively recruited individuals with LBP and 30 height and weight-matched individuals without LBP. Participants' PTR and HML were assessed using digital inclinometer and active knee extension test respectively. Data were analyzed using t-test and Pearson Correlation (r) at α = 0.05. Participants without LBP had significantly longer (p = 0.01) HML than those with LBP but the PTR of both groups were not significantly different. HML and PTR had indirect but not significant correlations in participants with and without LBP. Hamstring muscle length is significantly reduced in individuals with LBP but it has no significant correlation with pelvic tilt range. Pelvic tilt range reduces as hamstring muscle length increases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Contractile function and motor unit firing rates of the human hamstrings

    PubMed Central

    Kirk, Eric A.

    2016-01-01

    Neuromuscular properties of the lower limb in health, aging, and disease are well described for major lower limb muscles comprising the quadriceps, triceps surae, and dorsiflexors, with the notable exception of the posterior thigh (hamstrings). The purpose of this study was to further characterize major muscles of the lower limb by comprehensively exploring contractile properties in relation to spinal motor neuron output expressed as motor unit firing rates (MUFRs) in the hamstrings of 11 (26.5 ± 3.8) young men. Maximal isometric voluntary contraction (MVC), voluntary activation, stimulated contractile properties including a force-frequency relationship, and MUFRs from submaximal to maximal voluntary contractile intensities were assessed in the hamstrings. Strength and MUFRs were assessed at two presumably different muscle lengths by varying the knee joint angles (90° and 160°). Knee flexion MVCs were 60–70% greater in the extended position (160°). The frequency required to elicit 50% of maximum tetanic torque was 16–17 Hz. Mean MUFRs at 25–50% MVC were 9–31% less in the biceps femoris compared with the semimembranosus-semitendinosus group. Knee joint angle (muscle length) influenced MUFRs such that mean MUFRs were greater in the shortened (90°) position at 50% and 100% MVC. Compared with previous reports, mean maximal MUFRs in the hamstrings are greater than those in the quadriceps and triceps surae and somewhat less than those in the tibialis anterior. Mean maximal MUFRs in the hamstrings are influenced by changes in knee joint angle, with lower firing rates in the biceps femoris compared with the semimembranosus-semitendinosus muscle group. NEW & NOTEWORTHY We studied motor unit firing rates (MUFRs) at various voluntary contraction intensities in the hamstrings, one of the only major lower limb muscles to have MUFRs affected by muscle length changes. Within the hamstrings muscle-specific differences have greater impact on MUFRs than length changes

  14. Hamstring injuries: prevention and treatment—an update

    PubMed Central

    Brukner, Peter

    2015-01-01

    Despite increased knowledge of hamstring muscle injuries, the incidence has not diminished. We now know that not all hamstring injuries are the same and that certain types of injuries require prolonged rehabilitation and return to play. The slow stretch type of injury and injuries involving the central tendon both require longer times to return to play. A number of factors have been proposed as being indicators of time taken to return to play, but the evidence for these is conflicting. Recurrence rates remain high and it is now thought that strength deficits may be an important factor. Strengthening exercise should be performed with the hamstrings in a lengthened position. There is conflicting evidence regarding the efficacy of platelet-rich plasma injection in the treatment of hamstring injuries so at this stage we cannot advise their use. Various tests have been proposed as predictors of hamstring injury and the use of the Nordboard is an interesting addition to the testing process. Prevention of these injuries is the ultimate aim and there is increasing evidence that Nordic hamstring exercises are effective in reducing the incidence. PMID:26105015

  15. Influence of hamstring muscles extensibility on spinal curvatures and pelvic tilt in highly trained cyclists.

    PubMed

    Muyor, José M; Alacid, Fernando; López-Miñarro, Pedro A

    2011-09-01

    The purpose of this study was to determine the influence of hamstring muscles extensibility in standing, maximal trunk flexion with knees extended and on the bicycle in lower handlebar-hands position of highly trained cyclists. Ninety-six cyclists were recruited for the study (mean ± SD, age: 30.36 ± 5.98 years). Sagittal spinal curvatures and pelvic tilt were measured in the standing position, maximal trunk flexion with knees extended (sit-and-reach test) and while sitting on a bicycle in lower handlebar-hand position using a Spinal Mouse system. Hamstring muscles extensibility was determined in both legs by passive straight leg raise test (PSLR). The sample was divided into three groups according to PSLR angle: (1) reduced extensibility (PSLR < 80º; n = 30), (2) moderate hamstring extensibility group (PSLR = 80º - 90º; n = 35), and (3) high hamstring extensibility (PSLR = > 90º; n = 31). ANOVA analysis showed significant differences among groups for thoracic (p < 0.001) and pelvic tilt (p < 0.001) angles in the sit-and-reach test. No differences were found between groups for standing and on the bicycle position. Post hoc analysis showed significant differences in all pairwise comparisons for thoracic angle (p < 0.01) and pelvic angle (p < 0.001) in the sit-and-reach test. No differences were found in lumbar angle in any posture. In conclusion, the hamstring muscles extensibility influence the thoracic and pelvic postures when maximal trunk flexion with knees extended is performed, but not when cyclists are seated on their bicycles.

  16. Influence of Hamstring Muscles Extensibility on Spinal Curvatures and Pelvic Tilt in Highly Trained Cyclists

    PubMed Central

    Muyor, José M.; Alacid, Fernando; López-Miñarro, Pedro A.

    2011-01-01

    The purpose of this study was to determine the influence of hamstring muscles extensibility in standing, maximal trunk flexion with knees extended and on the bicycle in lower handlebar-hands position of highly trained cyclists. Ninety-six cyclists were recruited for the study (mean ± SD, age: 30.36 ± 5.98 years). Sagittal spinal curvatures and pelvic tilt were measured in the standing position, maximal trunk flexion with knees extended (sit-and-reach test) and while sitting on a bicycle in lower handlebar-hand position using a Spinal Mouse system. Hamstring muscles extensibility was determined in both legs by passive straight leg raise test (PSLR). The sample was divided into three groups according to PSLR angle: (1) reduced extensibility (PSLR < 80º; n = 30), (2) moderate hamstring extensibility group (PSLR = 80º – 90º; n = 35), and (3) high hamstring extensibility (PSLR = > 90º; n = 31). ANOVA analysis showed significant differences among groups for thoracic (p < 0.001) and pelvic tilt (p < 0.001) angles in the sit-and-reach test. No differences were found between groups for standing and on the bicycle position. Post hoc analysis showed significant differences in all pairwise comparisons for thoracic angle (p < 0.01) and pelvic angle (p < 0.001) in the sit-and-reach test. No differences were found in lumbar angle in any posture. In conclusion, the hamstring muscles extensibility influence the thoracic and pelvic postures when maximal trunk flexion with knees extended is performed, but not when cyclists are seated on their bicycles PMID:23486997

  17. Hamstring Stiffness Returns More Rapidly After Static Stretching Than Range of Motion, Stretch Tolerance, and Isometric Peak Torque.

    PubMed

    Hatano, Genki; Suzuki, Shigeyuki; Matsuo, Shingo; Kataura, Satoshi; Yokoi, Kazuaki; Fukaya, Taizan; Fujiwara, Mitsuhiro; Asai, Yuji; Iwata, Masahiro

    2017-12-18

    Hamstring injuries are common, and lack of hamstring flexibility may predispose to injury. Static stretching increases range of motion (ROM) but also results in reduced muscle strength after stretching. The effects of stretching on the hamstring muscles and the duration of these effects remain unclear. To determine the effects of static stretching on the hamstrings and the duration of these effects. Randomized crossover study. University laboratory. Twenty-four healthy volunteers. We measured the torque-angle relationship (ROM, passive torque (PT) at the onset of pain, and passive stiffness) and isometric muscle force using an isokinetic dynamometer. After a 60-minute rest, the ROM of the dynamometer was set at maximum tolerable intensity; this position was maintained for 300 seconds while static passive torque (SPT) was measured continuously. We remeasured the torque-angle relationship and isometric muscle force after rest periods of 10, 20, and 30 minutes. Change in SPT during stretching; changes in ROM, PT at the onset of pain, passive stiffness, and isometric muscle force before stretching compared with 10, 20, and 30 minutes after stretching. SPT decreased significantly during stretching. Passive stiffness decreased significantly 10 and 20 minutes after stretching, but there was no significant pre- vs. post-stretching difference after 30 minutes. PT at the onset of pain and ROM increased significantly after stretching at all rest intervals, while isometric muscle force decreased significantly after all rest intervals. The effect of static stretching on passive stiffness of the hamstrings was not maintained as long as the changes in ROM, stretch tolerance, and isometric muscle force. Therefore, frequent stretching is necessary to improve the viscoelasticity of the muscle-tendon unit. Muscle force was decreased for 30 minutes after stretching; this should be considered prior to activities requiring maximal muscle strength.

  18. Effect of quadriceps and hamstrings muscle cooling on standing balance in healthy young men.

    PubMed

    Alghadir, A H; Anwer, S; Zafar, H; Al-Eisa, E S

    2017-09-01

    The present study compared the effect of quadriceps and hamstring muscle cooling on standing balance in healthy young men. Thirty healthy young men (18-30 years) participated in the study. The participants were randomly assigned to three groups (n=10 each): quadriceps cooling (QC), hamstring cooling (HC), or control group (no cooling). Participants in the QC and HC groups received 20 minutes of cooling using a cold pack (gel pack), placed on the anterior thigh (from the apex of the patella to the mid-thigh) and the posterior thigh (from the base of the popliteal fossa to the mid-thigh), respectively. Balance score including unilateral stance was measured at baseline and immediately after the application of the cold pack. No significant difference in the balance score was noted in any group after the application of the cold pack (p⟩0.05). Similarly, no significant differences in post-test balance score were noted among the three groups (p⟩0.05). Cooling of the quadriceps and hamstring muscles has no immediate effect on standing balance in healthy young men. However, longitudinal studies are warranted to investigate the long-term effects of cooling these muscles on standing balance.

  19. Electromyographic analysis of a modified maneuver for quadriceps femoris muscle setting with co-contraction of the hamstrings.

    PubMed

    Nakajima, Masaaki; Kawamura, Kenji; Takeda, Isao

    2003-05-01

    A "quadriceps femoris muscle setting" is isometric quadriceps femoris exercise which can be widely used in early knee rehabilitation. However this exercise cannot obtain enough co-contraction of the hamstrings. Isolated quadriceps femoris contraction in knee extension imposes severe strain to anterior cruciate ligament. We succeeded in developing a simple training maneuver that is effective in obtaining co-contraction of the hamstrings--a modified maneuver for the quadriceps femoris muscle setting with the contralateral lower limb raised (MQS). In this study, we analyzed the effect of this maneuver by EMG quantification. Twenty-eight healthy young adult men performed sequential trials consisting of normal quadriceps femoris muscle setting (NQS) and MQS. Electromyographic activity was recorded from surface electrodes on the gluteus maximus, vastus medialis, rectus femoris, vastus lateralis, semitendinosus and biceps femoris (long head), and normalized to values derived from maximal isometric trials. The % maximal voluntary isometric contraction (%MVIC) of the vastus medialis, vastus lateralis and rectus femoris did not vary in the each maneuver. However, the %MVIC of the hamstrings varied significantly in the MQS. This study suggests that effective co-contraction of the hamstrings can be obtained in MQS by adjusting the load to the raised lower limb.

  20. Reliability of externally fixed dynamometry hamstring strength testing in elite youth football players.

    PubMed

    Wollin, Martin; Purdam, Craig; Drew, Michael K

    2016-01-01

    To investigate inter and intra-tester reliability of an externally fixed dynamometry unilateral hamstring strength test, in the elite sports setting. Reliability study. Sixteen, injury-free, elite male youth football players (age=16.81±0.54 years, height=180.22±5.29cm, weight 73.88±6.54kg, BMI=22.57±1.42) gave written informed consent. Unilateral maximum isometric peak hamstring force was evaluated by externally fixed dynamometry for inter-tester, intra-day and intra-tester, inter-week reliability. The test position was standardised to correlate with the terminal swing phase of the gait running cycle. Inter and intra-tester values demonstrated good to high levels of reliability. The intra-class coefficient (ICC) for inter-tester, intra-day reliability was 0.87 (95% CI=0.75-0.93) with standard error of measure percentage (SEM%) 4.7 and minimal detectable change percentage (MDC%) 12.9. Intra-tester, inter-week reliability results were ICC 0.86 (95% CI, 0.74-0.93), SEM% 5.0 and MDC% 14.0. This study demonstrates good to high inter and intra-tester reliability of isometric externally fixed dynamometry unilateral hamstring strength testing in the regular elite sport setting involving elite male youth football players. The intra-class coefficient in association with the low standard error of measure and minimal detectable change percentages suggest that this procedure is appropriate for clinical and academic use as well as monitoring hamstring strength in the elite sport setting. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  1. Anatomical study of the proximal origin of hamstring muscles.

    PubMed

    Sato, Kengo; Nimura, Akimoto; Yamaguchi, Kumiko; Akita, Keiichi

    2012-09-01

    It is relatively well accepted that the long head of the biceps femoris and the semitendinosus both originate from the ischial tuberosity as a common tendon. However, it is also widely known that the biceps femoris is consistently injured more than the semitendinosus. The purpose of this study was to examine the origins of the hamstring muscles, to find an anatomic basis for diagnosis and treatment of injuries of the posterior thigh regions. Twenty-eight hips of fourteen adult Japanese cadavers were used in this study. In twenty hips of ten cadavers, the positional relationships among the origins on the ischial tuberosity were examined. In eight hips of four cadavers, histological examination of the origins of the hamstrings was also performed. The origin of the long head of the biceps femoris adjoined that of the semitendinosus. In the proximal regions of these muscles, the long head consisted of the tendinous part; however, the semitendinosus mainly consisted of the muscular part. Some of the fibers of the biceps tendon extended to fuse with the sacrotuberous ligament. The semimembranosus muscle broadly originated from the lateral surface of the ischial tuberosity. The origins of the long head of the biceps femoris and the semitendinosus are found to be almost independent, and the tendon of the long head is partly fused with the sacrotuberous ligament. The high incidence of injuries to the long head of the biceps femoris could be explained by these anatomical configurations.

  2. Validity and Reliability of a New Device (WIMU®) for Measuring Hamstring Muscle Extensibility.

    PubMed

    Muyor, José M

    2017-09-01

    The aims of the current study were 1) to evaluate the validity of the WIMU ® system for measuring hamstring muscle extensibility in the passive straight leg raise (PSLR) test using an inclinometer for the criterion and 2) to determine the test-retest reliability of the WIMU ® system to measure hamstring muscle extensibility during the PSLR test. 55 subjects were evaluated on 2 separate occasions. Data from a Unilever inclinometer and WIMU ® system were collected simultaneously. Intraclass correlation coefficients (ICCs) for the validity were very high (0.983-1); a very low systematic bias (-0.21°--0.42°), random error (0.05°-0.04°) and standard error of the estimate (0.43°-0.34°) were observed (left-right leg, respectively) between the 2 devices (inclinometer and the WIMU ® system). The R 2 between the devices was 0.999 (p<0.001) in both the left and right legs. The test-retest reliability of the WIMU ® system was excellent, with ICCs ranging from 0.972-0.995, low coefficients of variation (0.01%), and a low standard error of the estimate (0.19-0.31°). The WIMU ® system showed strong concurrent validity and excellent test-retest reliability for the evaluation of hamstring muscle extensibility in the PSLR test. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Functional and Neuromuscular Changes in the Hamstrings After Drop Jumps and Leg Curls

    PubMed Central

    Sarabon, Nejc; Panjan, Andrej; Rosker, Jernej; Fonda, Borut

    2013-01-01

    The purpose of this study was to use a holistic approach to investigate changes in jumping performance, kinaesthesia, static balance, isometric strength and fast stepping on spot during a 5-day recovery period, following an acute bout of damaging exercise consisted of drop jumps and leg curls, where specific emphasis was given on the hamstring muscles. Eleven young healthy subjects completed a series of highly intensive damaging exercises for their hamstring muscles. Prior to the exercise, and during the 5-day recovery period, the subjects were tested for biochemical markers (creatine kinase, aspartate aminotransferase, and lactate dehydrogenase), perceived pain sensation, physical performance (squat jump, counter movement jump, maximal frequency leg stamping, maximal isometric torque production and maximally explosive isometric torque production), kinaesthesia (active torque tracking) and static balance. We observed significant decreases in maximal isometric knee flexion torque production, the rate of torque production, and majority of the parameters for vertical jump performance. No alterations were found in kinaesthesia, static balance and fast stepping on spot. The highest drop in performance and increase in perceived pain sensation generally occurred 24 or 48 hours after the exercise. Damaging exercise substantially alters the neuromuscular functions of the hamstring muscles, which is specifically relevant for sports and rehabilitation experts, as the hamstrings are often stretched to significant lengths, in particular when the knee is extended and hip flexed. These findings are practically important for recovery after high-intensity trainings for hamstring muscles. Key Points Hamstring function is significantly reduced following specifically damaging exercise. It fully recovers 120 hours after the exercise. Prevention of exercise-induced muscle damage is cruicial for maintaining normal training regime. PMID:24149148

  4. A novel device using the Nordic hamstring exercise to assess eccentric knee flexor strength: a reliability and retrospective injury study.

    PubMed

    Opar, David A; Piatkowski, Timothy; Williams, Morgan D; Shield, Anthony J

    2013-09-01

    Reliability and case-control injury study. To determine if a novel device designed to measure eccentric knee flexor strength via the Nordic hamstring exercise displays acceptable test-retest reliability; to determine normative values for eccentric knee flexor strength derived from the device in individuals without a history of hamstring strain injury (HSI); and to determine if the device can detect weakness in elite athletes with a previous history of unilateral HSI. HSI and reinjury are the most common cause of lost playing time in a number of sports. Eccentric knee flexor weakness is a major modifiable risk factor for future HSI. However, at present, there is a lack of easily accessible equipment to assess eccentric knee flexor strength. Thirty recreationally active males without a history of HSI completed the Nordic hamstring exercise on the device on 2 separate occasions. Intraclass correlation coefficients, typical error, typical error as a coefficient of variation, and minimal detectable change at a 95% confidence level were calculated. Normative strength data were determined using the most reliable measurement. An additional 20 elite athletes with a unilateral history of HSI within the previous 12 months performed the Nordic hamstring exercise on the device to determine if residual eccentric muscle weakness existed in the previously injured limb. The device displayed high to moderate reliability (intraclass correlation coefficient = 0.83-0.90; typical error, 21.7-27.5 N; typical error as a coefficient of variation, 5.8%-8.5%; minimal detectable change at a 95% confidence level, 60.1-76.2 N). Mean ± SD normative eccentric flexor strength in the uninjured group was 344.7 ± 61.1 N for the left and 361.2 ± 65.1 N for the right side. The previously injured limb was 15% weaker than the contralateral uninjured limb (mean difference, 50.3 N; 95% confidence interval: 25.7, 74.9; P<.01), 15% weaker than the normative left limb (mean difference, 50.0 N; 95

  5. Hamstring Muscle Fatigue and Central Motor Output during a Simulated Soccer Match

    PubMed Central

    Marshall, Paul W. M.; Lovell, Ric; Jeppesen, Gitte K.; Andersen, Kristoffer; Siegler, Jason C.

    2014-01-01

    Purpose To examine changes in hamstring muscle fatigue and central motor output during a 90-minute simulated soccer match, and the concomitant changes in hamstring maximal torque and rate of torque development. Method Eight amateur male soccer players performed a 90-minute simulated soccer match, with measures performed at the start of and every 15-minutes during each half. Maximal torque (Nm) and rate of torque development (RTD; Nm.s–1) were calculated from maximal isometric knee flexor contractions performed at 10° of flexion. Hamstring peripheral fatigue was assessed from changes in the size and shape of the resting twitch (RT). Hamstring central motor output was quantified from voluntary activation (%) and normalized biceps femoris (BF) and medial hamstrings (MH) electromyographic amplitudes (EMG/M). Results Maximal torque was reduced at 45-minutes by 7.6±9.4% (p<0.05). RTD in time intervals of 0–25, 0–50, and 0–75 ms post-contraction onset were reduced after 15-minutes in the first-half between 29.6 to 46.2% (p<0.05), and were further reduced at the end of the second-half (p<0.05). Maximal EMG/M was reduced for biceps femoris only concomitant to the time-course of reductions in maximal torque (p = 0.007). The rate of EMG rise for BF and MH was reduced in early time periods (0–75 ms) post-contraction onset (p<0.05). No changes were observed for the size and shape of the RT, indicating no hamstring peripheral fatigue. Conclusion Centrally mediated reductions in maximal torque and rate of torque development provide insight into factors that may explain hamstring injury risk during soccer. Of particular interest were early reductions during the first-half of hamstring rate of torque development, and the decline in maximal EMG/M of biceps femoris in the latter stages of the half. These are important findings that may help explain why the hamstrings are particularly vulnerable to strain injury during soccer. PMID:25047547

  6. Effects of a Strength Training Session After an Exercise Inducing Muscle Damage on Recovery Kinetics.

    PubMed

    Abaïdia, Abd-Elbasset; Delecroix, Barthélémy; Leduc, Cédric; Lamblin, Julien; McCall, Alan; Baquet, Georges; Dupont, Grégory

    2017-01-01

    Abaïdia, A-E, Delecroix, B, Leduc, C, Lamblin, J, McCall, A, Baquet, G, and Dupont, G. Effects of a strength training session after an exercise inducing muscle damage on recovery kinetics. J Strength Cond Res 31(1): 115-125, 2017-The purpose of this study was to investigate the effects of an upper-limb strength training session the day after an exercise inducing muscle damage on recovery of performance. In a randomized crossover design, subjects performed the day after the exercise, on 2 separate occasions (passive vs. active recovery conditions) a single-leg exercise (dominant in one condition and nondominant in the other condition) consisting of 5 sets of 15 eccentric contractions of the knee flexors. Active recovery consisted of performing an upper-body strength training session the day after the exercise. Creatine kinase, hamstring strength, and muscle soreness were assessed immediately and 20, 24, and 48 hours after exercise-induced muscle damage. The upper-body strength session, after muscle-damaging exercise accelerated the recovery of slow concentric force (effect size = 0.65; 90% confidence interval = -0.06 to 1.32), but did not affect the recovery kinetics for the other outcomes. The addition of an upper-body strength training session the day after muscle-damaging activity does not negatively affect the recovery kinetics. Upper-body strength training may be programmed the day after a competition.

  7. Hamstring muscle length and lumbar lordosis in subjects with different lifestyle and work setting: comparison between individuals with and without chronic low back pain.

    PubMed

    Arab, Amir Massoud; Nourbakhsh, Mohammad Reza

    2014-01-01

    Shortened hamstring muscle length has been noted in persons with low back pain (LBP). Prolonged sitting postures, such as those adopted during different work settings and sedentary lifestyle has been associated with hamstring shortness and LBP. The purpose of this study was to investigate the effect of lifestyle and work setting on hamstring length and lumbar lordosis in subjects with and without LBP and to identify the relationship between hamstring muscles length and lumbar lordosis in individuals with different lifestyle and work setting. A total of 508 subjects between the ages of 20 and 65 were selected. Subjects were categorized into two groups of individuals with and without LBP. A questionnaire was used to obtain information about the subjects' lifestyle and work setting. Hamstring muscle length and lumbar lordosis were measured in all subjects. The results showed no significant difference in the number of subjects with different work setting or lifestyle in individuals with and without LBP. Hamstring muscle length or lumbar lordosis was not affected by type of work setting and lifestyle. Our data showed significant difference in hamstring length and no significant difference in lumbar lordosis between subjects with and without LBP in all categories. Lumbar lordosis was not different between individuals with and without hamstring tightness in normal and LBP subjects with different work setting and lifestyle. The findings of this study did not support the assumption that work setting and sedentary lifestyle would lead to hamstring tightness in subjects with LBP. It seems that work setting and lifestyle was not a contributing factor for hamstring tightness in subjects with LBP.

  8. Genetic variation in the human vitamin D receptor is associated with muscle strength, fat mass and body weight in Swedish women.

    PubMed

    Grundberg, Elin; Brändström, Helena; Ribom, Eva L; Ljunggren, Osten; Mallmin, Hans; Kindmark, Andreas

    2004-03-01

    Bone mineral density (BMD) is under strong genetic control and a number of candidate genes have been associated with BMD. Both muscle strength and body weight are considered to be important predictors of BMD but far less is known about the genes affecting muscle strength and fat mass. The purpose of this study was to investigate the poly adenosine (A) repeat and the BsmI SNP in the vitamin D receptor (VDR) in relation to muscle strength and body composition in healthy women. A population-based study of 175 healthy women aged 20-39 years was used. The polymorphic regions in the VDR gene (the poly A repeat and the BsmI SNP) were amplified by PCR. Body mass measurements (fat mass, lean mass, body weight and body mass index) and muscle strength (quadriceps, hamstring and grip strength) were evaluated. Individuals with shorter poly A repeat, ss and/or absence of the linked BsmI restriction site (BB) have higher hamstring strength (ss vs LL, P=0.02), body weight (ss vs LL, P=0.049) and fat mass (ss vs LL, P=0.04) compared with women with a longer poly A repeat (LL) and/or the presence of the linked BsmI restriction site (bb). Genetic variation in the VDR is correlated with muscle strength, fat mass and body weight in premenopausal women. Further functional studies on the poly A microsatellite are needed to elucidate whether this is the functionally relevant locus or if the polymorphism is in linkage disequilibrium with a functional variant in a closely situated gene further downstream of the VDR 3'UTR.

  9. Quantitative MRI and strength measurements in the assessment of muscle quality in Duchenne muscular dystrophy.

    PubMed

    Wokke, B H; van den Bergen, J C; Versluis, M J; Niks, E H; Milles, J; Webb, A G; van Zwet, E W; Aartsma-Rus, A; Verschuuren, J J; Kan, H E

    2014-05-01

    The purpose of this study was to assess leg muscle quality and give a detailed description of leg muscle involvement in a series of Duchenne muscular dystrophy patients using quantitative MRI and strength measurements. Fatty infiltration, as well as total and contractile (not fatty infiltrated) cross sectional areas of various leg muscles were determined in 16 Duchenne patients and 11 controls (aged 8-15). To determine specific muscle strength, four leg muscle groups (quadriceps femoris, hamstrings, anterior tibialis and triceps surae) were measured and related to the amount of contractile tissue. In patients, the quadriceps femoris showed decreased total and contractile cross sectional area, attributable to muscle atrophy. The total, but not the contractile, cross sectional area of the triceps surae was increased in patients, corresponding to hypertrophy. Specific strength decreased in all four muscle groups of Duchenne patients, indicating reduced muscle quality. This suggests that muscle hypertrophy and fatty infiltration are two distinct pathological processes, differing between muscle groups. Additionally, the quality of remaining muscle fibers is severely reduced in the legs of Duchenne patients. The combination of quantitative MRI and quantitative muscle testing could be a valuable outcome parameter in longitudinal studies and in the follow-up of therapeutic effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Towards evidence based strength training: a comparison of muscle forces during deadlifts, goodmornings and split squats.

    PubMed

    Schellenberg, Florian; Taylor, William R; Lorenzetti, Silvio

    2017-01-01

    To ensure an efficient and targeted adaptation with low injury risk during strength exercises, knowledge of the participant specific internal loading conditions is essential. The goal of this study was to calculate the lower limb muscles forces during the strength exercises deadlifts, goodmornings and splits squats by means of musculoskeletal simulation. 11 participants were assessed performing 10 different variations of split squats by varying the step length as well as the maximal frontal tibia angle, and 13 participants were measured performing deadlift and goodmorning exercises. Using individualised musculoskeletal models, forces of the Quadriceps ( four parts), Hamstrings (four parts) and m. gluteus maximus (three parts) were computed. Deadlifts resulted highest loading for the Quadriceps, especially for the vasti (18-34 N/kg), but not for the rectus femoris (8-10 N/kg), which exhibited its greatest loading during split squats (13-27 N/kg) in the rear limb. Hamstrings were loaded isometrically during goodmornings but dynamically during deadlifts. For the m. gluteus maximus , the highest loading was observed during split squats in the front limb (up to 25 N/kg), while deadlifts produced increasingly, large loading over large ranges of motion in hip and knee. Acting muscle forces vary between exercises, execution form and joint angle. For all examined muscles, deadlifts produced considerable loading over large ranges of motion, while split squats seem to be highly dependent upon exercise variation. This study provides key information to design strength-training programs with respect to loading conditions and ranges of motion of lower extremity muscles.

  11. Effects of Inclined Treadmill Walking on Pelvic Anterior Tilt Angle, Hamstring Muscle Length, and Trunk Muscle Endurance of Seated Workers with Flat-back Syndrome.

    PubMed

    Kim, Min-Hee; Yoo, Won-Gyu

    2014-06-01

    [Purpose] This study investigated the effects of inclined treadmill walking on pelvic anterior tilt angle, hamstring muscle length, and back muscle endurance of seated workers with flat-back syndrome. [Subjects] Eight seated workers with flat-back syndrome who complained of low-back pain in the L3-5 region participated in this study. [Methods] The subjects performed a walking exercise on a 30° inclined treadmill. We measured the pelvic anterior tilt angle, hamstring muscle length, and back muscle endurance before and after inclined treadmill walking. [Results] Anterior pelvic tilt angle and active knee extension angle significantly increased after inclined treadmill walking. Trunk extensor and flexor muscle endurance times were also significantly increased compared to the baseline. [Conclusion] Inclined treadmill walking may be an effective approach for the prevention or treatment of low-back pain in flat-back syndrome.

  12. Positive effects of 1-year football and strength training on mechanical muscle function and functional capacity in elderly men.

    PubMed

    Sundstrup, Emil; Jakobsen, Markus Due; Andersen, Lars Louis; Andersen, Thomas Rostgaard; Randers, Morten Bredsgaard; Helge, Jørn Wulff; Suetta, Charlotte; Schmidt, Jakob Friis; Bangsbo, Jens; Krustrup, Peter; Aagaard, Per

    2016-06-01

    A decline in physical capacity takes place with increasing age that negatively affects overall physical function including work ability and the ability to perform typical activities of daily living (ADL). The overall aim of the present study was to determine the neuromuscular adaptations to long-term (1 year) football and strength training in older untrained adults, and to assess the concurrent effect on functional ADL capacity. Twenty-seven healthy elderly males (68.2 ± 3.2 years) were randomly assigned to 12 months of either recreational football training (FT: n = 10), strength training (ST: n = 9) or served as inactive controls (CON: n = 8). Recreational football training consisted of small-sided training sessions whereas strength training consisted of high intensity exercises targeting the lower extremity and upper body. Maximal thigh muscle strength and rate of force development (RFD) were assessed with isokinetic dynamometry, while postural balance and vertical jumping performance were evaluated using force plate analysis. Furthermore, functional ability was evaluated by stair-ascent and chair-rising testing. A total of nine, nine and seven participants from FT, ST and CON, respectively, were included in the analysis. Both exercise regimens led to substantial gains in functional ability, evidenced by 24 and 18 % reduced stair-ascent time, and 32 and 21 % increased chair-rising performance in FT and ST, respectively (all P < 0.05). Long-term strength training led to increased concentric (14 %; P < 0.01) and isometric (23 %; P < 0.001) quadriceps and isometric hamstring strength (44 %; P < 0.0001), whereas football training mainly resulted in enhanced hamstring strength (18 %, P < 0.05) and RFD (89 %, P < 0.0001). Long-term (1 year) strength training led to increased quadriceps and hamstring strength, whereas the adaptations to football training mainly included enhanced strength and rapid force capacity of the hamstring muscles

  13. Tightness of hamstring- and psoas major muscles. A prospective study of back pain in young men during their military service.

    PubMed

    Hellsing, A L

    1988-01-01

    Muscular tightness and the therapeutic effect of stretching has been widely discussed during the last few years in sports training and physiotherapy. Within a prospective study of back function and pain before and after compulsory military service, tightness of hamstring- and psoas muscles was assessed. Around 600 young men were examined three times over a period of four years. Tight hamstring muscles were found to be very common in this group. Only 43% of the right and 35% of the left legs reached an angle of at least 80 degrees from the couch during the straight-leg-raising test (Lasegue's test). The test of muscular tightness showed a significant test-retest reliability over all examinations. Tight hamstring- or psoas muscles could not be shown to correlate to current back pain or to the incidence of back pain during the follow-up period.

  14. Region-dependent hamstrings activity in Nordic hamstring exercise and stiff-leg deadlift defined with high-density electromyography.

    PubMed

    Hegyi, A; Péter, A; Finni, T; Cronin, N J

    2018-03-01

    Recent studies suggest region-specific metabolic activity in hamstring muscles during injury prevention exercises, but the neural representation of this phenomenon is unknown. The aim of this study was to examine whether regional differences are evident in the activity of biceps femoris long head (BFlh) and semitendinosus (ST) muscles during two common injury prevention exercises. Twelve male participants without a history of hamstring injury performed the Nordic hamstring exercise (NHE) and stiff-leg deadlift (SDL) while BFlh and ST activities were recorded with high-density electromyography (HD-EMG). Normalized activity was calculated from the distal, middle, and proximal regions in the eccentric phase of each exercise. In NHE, ST overall activity was substantially higher than in BFlh (d = 1.06 ± 0.45), compared to trivial differences between muscles in SDL (d = 0.19 ± 0.34). Regional differences were found in NHE for both muscles, with different proximal-distal patterns: The distal region showed the lowest activity level in ST (regional differences, d range = 0.55-1.41) but the highest activity level in BFlh (regional differences, d range = 0.38-1.25). In SDL, regional differences were smaller in both muscles (d range = 0.29-0.67 and 0.16-0.63 in ST and BFlh, respectively) than in NHE. The use of HD-EMG in hamstrings revealed heterogeneous hamstrings activity during typical injury prevention exercises. High-density EMG might be useful in future studies to provide a comprehensive overview of hamstring muscle activity in other exercises and high-injury risk tasks. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Effects of hamstring stretching on passive muscle stiffness vary between hip flexion and knee extension maneuvers.

    PubMed

    Miyamoto, N; Hirata, K; Kanehisa, H

    2017-01-01

    The purpose of this study was to examine whether the effects of hamstring stretching on the passive stiffness of each of the long head of the biceps femoris (BFl), semitendinosus (ST), and semimembranosus (SM) vary between passive knee extension and hip flexion stretching maneuvers. In 12 male subjects, before and after five sets of 90 s static stretching, passive lengthening measurements where knee or hip joint was passively rotated to the maximal range of motion (ROM) were performed. During the passive lengthening, shear modulus of each muscle was measured by ultrasound shear wave elastography. Both stretching maneuvers significantly increased maximal ROM and decreased passive torque at a given joint angle. Passive knee extension stretching maneuver significantly reduced shear modulus at a given knee joint angle in all of BFl, ST, and SM. In contrast, the stretching effect by passive hip flexion maneuver was significant only in ST and SM. The present findings indicate that the effects of hamstring stretching on individual passive muscles' stiffness vary between passive knee extension and hip flexion stretching maneuvers. In terms of reducing the muscle stiffness of BFl, stretching of the hamstring should be performed by passive knee extension rather than hip flexion. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Monitoring the effect of football match congestion on hamstring strength and lower limb flexibility: Potential for secondary injury prevention?

    PubMed

    Wollin, Martin; Thorborg, Kristian; Pizzari, Tania

    2018-01-01

    To investigate the effect of competitive football match congestion on hamstring strength and lower limb flexibility. Repeated measures. Elite male youth football. Fifteen male elite youth football players from the national football association centre of excellence were included (age = 15.81 ±0.65 years, height = 171.95 ±6.89 cm, weight = 65.93 ±7.53 kg). Hamstring strength and pain, ankle dorsiflexion, hip extension, knee extension and flexion range of motion. Hamstring strength was highest at baseline and significantly reduced at 24 (p = 0.001, mean difference -0.19 Nm/Kg, CI 95  -0.28, -0.1) and 48 h post-match 1 (p = 0.002, mean difference -0.16 Nm/Kg, CI 95  -0.25, -0.07). Strength recovered by match day 2 before significantly reducing again 24 h post-match 2 (p = 0.012, mean difference -0.17 Nm/Kg, CI 95  -0.29, -0.04). Pain was lowest at baseline and increased in the post-match periods (p < 0.05) with standardised effect sizes ranging from 0.07 to 0.42. Passive knee flexion range decreased post-match (p < 0.01) with mean differences of 1.5°-2.7°. The other flexibility measures remained unaffected by match play. Isometric hamstring strength and pain can be considered for inclusion in-season to monitor player's post-match hamstring recovery characteristics during congested match fixtures. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  17. A randomized controlled trial for the effect of passive stretching on measures of hamstring extensibility, passive stiffness, strength, and stretch tolerance.

    PubMed

    Marshall, Paul W M; Cashman, Anthony; Cheema, Birinder S

    2011-11-01

    To measure hamstring extensibility, stiffness, stretch tolerance, and strength following a 4-week passive stretching program. Randomized controlled trial. Twenty-two healthy participants were randomly assigned to either a 4-week stretching program consisting of 4 hamstring and hip stretches performed 5 times per week, or a non-stretching control group. Hamstring extensibility and stiffness were measured before and after training using the instrumented straight leg raise test (iSLR). Stretch tolerance was measured as the pain intensity (visual analog scale; VAS) elicited during the maximal stretch. Hamstring strength was measured using isokinetic dynamometry at 30 and 120° s(-1). Hamstring extensibility increased by 20.9% in the intervention group following 4 weeks of training (p<0.001; d=0.86). Passive stiffness was reduced by 31% in the intervention group (p<0.05; d=-0.89). Stretch tolerance VAS scores were not different between groups at either time point, and no changes were observed following training. There were no changes in hamstring concentric strength measured at 30 and 120° s(-1). Passive stretching increases hamstring extensibility and decreases passive stiffness, with no change in stretch tolerance defined by pain intensity during the stretch. Compared to previous research, the volume of stretching was higher in this study. The volume of prescribed stretching is important for eliciting the strong clinical effect observed in this study. Copyright © 2011 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Preventive Effects of Eccentric Training on Acute Hamstring Muscle Injury in Professional Baseball

    PubMed Central

    Seagrave, Richard A.; Perez, Luis; McQueeney, Sean; Toby, E. Bruce; Key, Vincent; Nelson, Joshua D.

    2014-01-01

    Background: Hamstring injuries are the second most common injury causing missed days in professional baseball field players. Recent studies have shown the preventive benefit of eccentric conditioning on the hamstring muscle group in injury prevention. Specifically, Nordic-type exercises have been shown to decrease the incidence of acute hamstring injuries in professional athletes. Purpose: This was a prospective study performed in coordination with a single Major League Baseball (MLB) organization (major and minor league teams) that targeted the effects of Nordic exercises on the incidence of acute hamstring injuries in the professional-level baseball player. Study Design: Prospective cohort study; Level of evidence, 2. Methods: The daily workouts of 283 professional baseball players throughout all levels of a single MLB organization were prospectively recorded. The intervention group participated in the Nordic exercise program and was compared with a randomly selected control group of professional athletes within the organization not participating in the exercise program. The incidence of hamstring injuries in both groups was compared, and the total number of days missed due to injury was compared with the 2 previous seasons. Results: There were 10 hamstring injuries that occurred during the 2012 season among the 283 professional athletes that required removal from play. There were no injuries that occurred in the intervention group (n = 65, 0.00%; P = .0381). The number needed to treat (NNT) to prevent 1 hamstring injury was 11.3. The average repetitions per week of the injured group were assessed at multiple time points (2, 4, 6, and total weeks) prior to injury. There were significantly fewer repetitions per week performed in the injured group at all time points compared with overall average repetitions per week in the noninjured group (P = .0459, .0127, .0164, and .0299, respectively). After beginning the Nordic exercise program, there were 136 total days

  19. Prevention of Hamstring Injuries in Collegiate Sprinters

    PubMed Central

    Sugiura, Yusaku; Sakuma, Kazuhiko; Sakuraba, Keishoku; Sato, Yamato

    2017-01-01

    Background: No studies have been reported on how strength, agility, and flexibility training reduce the occurrence of hamstring injuries in sprinters. Therefore, a program for preventing hamstring injury in these athletes has not been established. Purpose: To document the incidence of hamstring injuries during times when different prevention strategies were employed to see whether a particular prevention program reduced their occurrence. Study Design: Descriptive epidemiology study. Methods: The study subjects were a total of 613 collegiate male sprinters trained by the same coach over 24 seasons. Tow training was used throughout the research period as a normal sprint training method. The hamstring injury prevention program evolved over time. From 1988 to 1991 (period 1), prevention focused on strength training alone; from 1992 to 1999 (period 2), a combination of strength and agility training was used; and from 2000 to 2011 (period 3), the program incorporated strength, agility, and flexibility training. The incidence of hamstring injuries was compared for each of the 3 prevention strategies. Results: The incidence of hamstring injuries per athlete-seasons was 137.9 for period 1, 60.6 for period 2, and 6.7 for period 3. A significant difference was observed in the incidence of hamstring injury according to the different prevention programs (χ2(2) = 31.78, P < .001, effect size: Cramer V = 0.23, 1 − β = 0.999). Residual analysis showed that the number of hamstring injuries for period 1 was significantly greater than the expected value (P < .01), whereas that for period 3 was significantly lower than the expected value (P < .01). Conclusion: The incidence of hamstring injuries in sprinters decreased as agility and flexibility were added to strength training. PMID:28210652

  20. Selective contribution of each hamstring muscle to anterior cruciate ligament protection and tibiofemoral joint stability in leg-extension exercise: a simulation study.

    PubMed

    Biscarini, Andrea; Botti, Fabio Massimo; Pettorossi, Vito Enrico

    2013-09-01

    A biomechanical model was developed to simulate the selective effect of the co-contraction force provided by each hamstring muscle on the shear and compressive tibiofemoral joint reaction forces, during open kinetic-chain knee-extension exercises. This model accounts for instantaneous values of knee flexion angle [Formula: see text], angular velocity and acceleration, and for changes in magnitude, orientation, and application point of external resistance. The tibiofemoral shear force (TFSF) largely determines the tensile force on anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL). Biceps femoris is the most effective hamstring muscle in decreasing the ACL-loading TFSF developed by quadriceps contractions for [Formula: see text]. In this range, the semimembranosus generates the dominant tibiofemoral compressive force, which enhances joint stability, opposes anterior/posterior tibial translations, and protects cruciate ligaments. The semitendinosus force provides the greatest decreasing gradient of ACL-loading TFSF for [Formula: see text], and the greatest increasing gradient of tibiofemoral compressive force for [Formula: see text]. However, semitendinosus efficacy is strongly limited by its small physiological section. Hamstring muscles behave as a unique muscle in enhancing the PCL-loading TFSF produced by quadriceps contractions for [Formula: see text]. The levels of hamstrings co-activation that suppress the ACL-loading TFSF considerably shift when the knee angular acceleration is changed while maintaining the same level of knee extensor torque by a concurrent adjustment in the magnitude of external resistance. The knowledge of the specific role and the optimal activation level of each hamstring muscle in ACL protection and tibiofemoral stability are fundamental for planning safe and effective rehabilitative knee-extension exercises.

  1. Relationships between Isometric Muscle Strength, Gait Parameters, and Gross Motor Function Measure in Patients with Cerebral Palsy.

    PubMed

    Shin, Hyung Ik; Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Lee, In Hyeok; Park, Moon Seok

    2016-01-01

    This study investigated the correlation between isometric muscle strength, gross motor function, and gait parameters in patients with spastic cerebral palsy and to find which muscle groups play an important role for gait pattern in a flexed knee gait. Twenty-four ambulatory patients (mean age, 10.0 years) with spastic cerebral palsy who were scheduled for single event multilevel surgery, including distal hamstring lengthening, were included. Preoperatively, peak isometric muscle strength was measured for the hip flexor, hip extensor, knee flexor, and knee extensor muscle groups using a handheld dynamometer, and three-dimensional (3D) gait analysis and gross motor function measure (GMFM) scoring were also performed. Correlations between peak isometric strength and GMFM, gait kinematics, and gait kinetics were analyzed. Peak isometric muscle strength of all muscle groups was not related to the GMFM score and the gross motor function classification system level. Peak isometric strength of the hip extensor and knee extensor was significantly correlated with the mean pelvic tilt (r=-0.588, p=0.003 and r=-0.436, p=0.033) and maximum pelvic obliquity (r=-0.450, p=0.031 and r=-0.419, p=0.041). There were significant correlations between peak isometric strength of the knee extensor and peak knee extensor moment in early stance (r=0.467, p=0.021) and in terminal stance (r=0.416, p=0.043). There is no correlation between muscle strength and gross motor function. However, this study showed that muscle strength, especially of the extensor muscle group of the hip and knee joints, might play a critical role in gait by stabilizing pelvic motion and decreasing energy consumption in a flexed knee gait.

  2. Associations of maximal voluntary isometric hip extension torque with muscle size of hamstring and gluteus maximus and intra-abdominal pressure.

    PubMed

    Tayashiki, Kota; Hirata, Kosuke; Ishida, Kiraku; Kanehisa, Hiroaki; Miyamoto, Naokazu

    2017-06-01

    Muscle size of the hamstring and gluteus maximus (GM) as well as intra-abdominal pressure (IAP) are considered as factors affecting the torque development during hip extension. This study examined the associations of torque development during maximal voluntary isometric hip extension with IAP and muscle size of the hamstring and GM. Anatomical cross-sectional area (ACSA) of the hamstring and thickness of GM were determined in 20 healthy young males using an ultrasonography apparatus (Experiment 1). Torque and IAP were simultaneously measured while subjects performed maximal voluntary isometric hip extension. The IAP was measured using a pressure transducer placed in the rectum and determined at the time at which the developed torque reached to the maximal. In Experiment 2, torque and IAP were measured during maximal voluntary isometric hip flexion in 18 healthy young males. The maximal hip extension torque was significantly correlated with the IAP (r = 0.504, P = 0.024), not with the ACSA of the hamstring (r = 0.307, P = 0.188) or the thickness of GM (r = 0.405, P = 0.076). The relationship was still significant even when the ACSA of the hamstring and the thickness of GM were adjusted statistically (r = 0.486, P = 0.041). The maximal hip flexion torque was not significantly correlated with the IAP (r = -0.118, P = 0.642). The current results suggest that IAP can contribute independently of the muscle size of the agonists to maximal voluntary hip extension torque.

  3. Patterns of Hamstring Muscle Tears in the General Population: A Systematic Review.

    PubMed

    Kuske, Barbara; Hamilton, David F; Pattle, Sam B; Simpson, A Hamish R W

    2016-01-01

    Hamstring tears are well recognised in the sporting population. Little is known about these injuries in the general population. Evaluating the rates, patterns and risk factors of non-sporting hamstring tears, compared to sporting related hamstring tears. MEDLINE, EMBASE, CINAHL, and the Cochrane Central Register of Controlled Trials (1989-2015). Studies reporting patients with a grade 2 or 3 hamstring muscle tear, identified clinically, confirmed by MRI imaging or direct visualisation during surgical exploration. 144 sets of linked data were extracted for analysis. Most injuries were in males (81.3%), where mean age at injury was lower (30.2, 95% CI 29.1-31.3) than in females (35.4, 95% CI 32.4-38.4) p = 0.06. Key differences were found in the proportion of non-sporting injuries in patients under and over the age 40 (p = 0.001). The proportion of non-sporting injuries was significantly higher in females compared to males (25.9% female non-sporting injuries, versus 8.5% male; p = 0.02). Avulsions were more frequently reported in non-sporting activities (70.5%). The proportion of such injuries was notably higher in females, though this failed to meet significance (p = 0.124). Grouped by age category a bimodal distribution was noted, with the proportion of avulsions greater in younger (age <15) and older patients (age > 40) (p = 0.008). 86.8% of patients returned to pre-injury activity levels with a similar frequency across all study variables; age, activity (sporting vs non-sporting) and injury type (avulsion vs tear). This review highlights a proportion of adults suffering grade 2 or 3 hamstring injuries from activities other than the classic sports trauma. The majority of these non-sporting injuries were avulsion injuries that clustered in older female and skeletally immature patients suggesting a potential link to bone mineral density.

  4. Does eccentric training of hamstring muscles reduce acute injuries in soccer?

    PubMed

    Nichols, Andrew W

    2013-01-01

    To investigate the effectiveness of a 10-week hamstring exercise training program in reducing the incidence and severity of new and recurrent hamstring injuries among male soccer players. Cluster-randomized (by team)controlled trial, stratified by level of play and geographic location. Sample size was calculated with 80% power to show a relative risk reduction for injury of 50% at P ≤ 0.05. Soccer community study in Denmark during the period January to December 2008. Teams in the top 5 soccer divisions (2 professional and 3 amateur)were invited to participate. The exclusion criterion for teams was that they already used eccentric hamstring exercises, and for participants was that they joined the teams after the beginning of the season. Of 116 teams, 54 were eligible and willing to be randomized and 50 were included in the analysis (942 players). Teams in both the intervention and control groups followed their normal training programs. At the beginning of the study period, the intervention teams added 27 sessions of the Nordicham string exercise (after warm-up) during the 10-week period of the mid-season break. The exercise begins with the player kneeling with the torso upright and rigid, and the feet held down to the ground by a partner. The player lowers his torso forwards toward the ground braking with his hamstring muscles until the chest reaches the ground (eccentric phase). He returns to the upright position, pushing with his hands to minimize the concentric phase load. Sessions per week and sets and repetitions per session increased to 3, 3, and 12, respectively. Team coaches supervised the sessions. A hamstring injury was defined as an acute occurrence of a “physical complaint in the region of the posterior thigh sustained during a soccer match or training, irrespective of the need for medical attention or time loss from soccer activities.” Injuries were recorded by the teams’ medical staff on standardized forms. Only first injuries during the season

  5. Comparison of Three Methods of Assessing Muscle Strength and Imbalance Ratios of the Knee

    PubMed Central

    Moss, Crayton L.; Wright, P. Thomas

    1993-01-01

    Three strength measurement methods for determining muscle strength and imbalance ratios of the knee were compared in 41 (23 female, 18 male) NCAA Division I track and field athletes. Peak quadriceps extensions and hamstring flexions were measured isotonically, isometrically, and isokinetically. Isokinetic measurements were performed on a Cybex II at 60°/s. Isometric extension and flexion measurements were performed using the Nicholas Manual Muscle Tester (Lafayette Instruments; Lafayette, Ind). Isotonic measurements were done on both Universal and Nautilus apparatuses. Testing order was randomized to avoid a treatment order effect. A repeated measures ANOVA and a post hoc Tukey test were used to compare the three methods of assessing strength and imbalance ratios of the knee. Absolute strength values were significantly different according to gender and mode of testing. Bilateral strength imbalance ratios for knee flexion were significantly lower for the Nautilus leg curl machine. Ipsilateral strength imbalance ratios were significantly greater for the Cybex II. Our results indicated that absolute strength values cannot be interchanged between testing modes. Except for Cybex II (ipsilateral) and Nautilus (bilateral knee flexion), strength imbalance ratios could be interchanged. ImagesFig 1.Fig 2.Fig 3.Fig 4.Fig 5.Fig 6.Fig 7.INGING PMID:16558207

  6. Effects of warm-up on hamstring muscles stiffness: Cycling vs foam rolling.

    PubMed

    Morales-Artacho, A J; Lacourpaille, L; Guilhem, G

    2017-12-01

    This study investigated the effects of active and/or passive warm-up tasks on the hamstring muscles stiffness through elastography and passive torque measurements. On separate occasions, fourteen males randomly completed four warm-up protocols comprising Control, Cycling, Foam rolling, or Cycling plus Foam rolling (Mixed). The stiffness of the hamstring muscles was assessed through shear wave elastography, along with the passive torque-angle relationship and maximal range of motion (ROM) before, 5, and 30 minutes after each experimental condition. At 5 minutes, Cycling and Mixed decreased shear modulus (-10.3% ± 5.9% and -7.7% ± 8.4%, respectively; P≤.0003, effect size [ES]≥0.24) and passive torque (-7.17% ± 8.6% and -6.2% ± 7.5%, respectively; P≤.051, ES≥0.28), and increased ROM (+2.9% ± 2.9% and +3.2% ± 3.5%, respectively; P≤.001, ES≥0.30); 30 minutes following Mixed, shear modulus (P=.001, ES=0.21) and passive torque (P≤.068, ES≥0.2) were still slightly decreased, while ROM increased (P=.046, ES=0.24). Foam rolling induced "small" immediate short-term decreases in shear modulus (-5.4% ± 5.7% at 5 minutes; P=.05, ES=0.21), without meaningful changes in passive torque or ROM at any time point (P≥.12, ES≤0.23). These results suggest that the combined warm-up elicited no acute superior effects on muscle stiffness compared with cycling, providing evidence for the key role of active warm-up to reduce muscle stiffness. The time between warm-up and competition should be considered when optimizing the effects on muscle stiffness. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Immediate effects of hamstring stretching alone or combined with ischemic compression of the masseter muscle on hamstrings extensibility, active mouth opening and pain in athletes with temporomandibular dysfunction.

    PubMed

    Espejo-Antúnez, Luis; Castro-Valenzuela, Elisa; Ribeiro, Fernando; Albornoz-Cabello, Manuel; Silva, Anabela; Rodríguez-Mansilla, Juan

    2016-07-01

    To assess the immediate effects of hamstrings stretching alone or combined with ischemic compression of the masseter muscle on hamstrings extensibility, active mouth opening and pain in athletes with temporomandibular dysfunction and hamstrings shortening. Forty-two participants were randomized to receive the stretching technique (n = 21) or the stretching plus the ischemic compression (n = 21). Outcome measures were: hamstrings extensibility, active mouth opening, pressure pain thresholds and pain intensity. Both interventions improved significantly active mouth opening (group 1: 35.7 ± 6.7 to 39.1 ± 7.6 mm, p < 0.001; group 2: 34.0 ± 6.2 to 37.6 ± 5.6 mm, p < 0.001), active knee extension (group 1: 33.1 ± 8.5 to 40.8 ± 8.2°, p < 0.001; group 2: 28.9 ± 6.5 to 35.5 ± 6.4°, p < 0.001) and pain. No significant differences were found between interventions. Hamstrings stretching induced an acute improvement in hamstrings extensibility, active mouth opening and pain. Moreover, the addition of ischemic compression did not induce further improvements on the assessed parameters. Copyright © 2016. Published by Elsevier Ltd.

  8. Relationships between Isometric Muscle Strength, Gait Parameters, and Gross Motor Function Measure in Patients with Cerebral Palsy

    PubMed Central

    Shin, Hyung-Ik; Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Lee, In Hyeok

    2016-01-01

    Purpose This study investigated the correlation between isometric muscle strength, gross motor function, and gait parameters in patients with spastic cerebral palsy and to find which muscle groups play an important role for gait pattern in a flexed knee gait. Materials and Methods Twenty-four ambulatory patients (mean age, 10.0 years) with spastic cerebral palsy who were scheduled for single event multilevel surgery, including distal hamstring lengthening, were included. Preoperatively, peak isometric muscle strength was measured for the hip flexor, hip extensor, knee flexor, and knee extensor muscle groups using a handheld dynamometer, and three-dimensional (3D) gait analysis and gross motor function measure (GMFM) scoring were also performed. Correlations between peak isometric strength and GMFM, gait kinematics, and gait kinetics were analyzed. Results Peak isometric muscle strength of all muscle groups was not related to the GMFM score and the gross motor function classification system level. Peak isometric strength of the hip extensor and knee extensor was significantly correlated with the mean pelvic tilt (r=-0.588, p=0.003 and r=-0.436, p=0.033) and maximum pelvic obliquity (r=-0.450, p=0.031 and r=-0.419, p=0.041). There were significant correlations between peak isometric strength of the knee extensor and peak knee extensor moment in early stance (r=0.467, p=0.021) and in terminal stance (r=0.416, p=0.043). Conclusion There is no correlation between muscle strength and gross motor function. However, this study showed that muscle strength, especially of the extensor muscle group of the hip and knee joints, might play a critical role in gait by stabilizing pelvic motion and decreasing energy consumption in a flexed knee gait. PMID:26632404

  9. Reliability of panoramic ultrasound imaging in simultaneously examining muscle size and quality of the hamstring muscles in young, healthy males and females.

    PubMed

    Palmer, Ty B; Akehi, Kazuma; Thiele, Ryan M; Smith, Doug B; Thompson, Brennan J

    2015-03-01

    The purpose of this study was to examine the reliability of ultrasound (US) measures of cross-sectional area (CSA), muscle thickness (MT) and echo intensity (EI) of the hamstrings, with comparisons between males and females. In 20 healthy participants (10 males, 10 females), CSA, MT and EI were measured from panoramic US scans of the hamstrings on 2 separate days. The intra-class correlation coefficients and standard errors of measurement as a percentage of the mean for CSA, MT and EI ranged from 0.715 to 0.984 and from 3.145 to 12.541% in the males and from 0.724 to 0.977 and from 4.571 to 17.890% in the females, respectively. The males had greater CSAs and MTs and lower EIs than the females (p = 0.002-0.049), and significant relationships were observed between CSA and MT (r = 0.714-0.938, p ≤ 0.001-0.023). From an overall reliability standpoint, these findings suggest that panoramic US may be a reliable technique for examining muscle size and quality of the hamstrings in both males and females. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Hamstring Injuries--An Examination of Possible Causes.

    ERIC Educational Resources Information Center

    Liemohn, Wendell

    On the basis of research, the following characteristics appear to be important factors relative to precluding hamstring strains in sprinters: bilaterality relative to hamstring and quadricep strength development, optimum strength ratios between ipsilateral antagonists throughout the range of movement, and above-normal hip-joint flexibility. (JD)

  11. The preventive effect of the nordic hamstring exercise on hamstring injuries in amateur soccer players: a randomized controlled trial.

    PubMed

    van der Horst, Nick; Smits, Dirk-Wouter; Petersen, Jesper; Goedhart, Edwin A; Backx, Frank J G

    2015-06-01

    Hamstring injuries are the most common muscle injuries in soccer, and they have a high rate of recurrence. Eccentric hamstrings strength is recognized as an important modifiable risk factor. This led to the development of prevention exercises such as the nordic hamstring exercise (NHE). The effectiveness of the NHE on hamstring injury prevention has never been investigated in amateur soccer. To investigate the preventive effect of the NHE on the incidence and severity of hamstring injuries in male amateur soccer players. Randomized controlled trial; Level of evidence, 1. Male amateur soccer players (age, mean ± SD, 24.5 ± 3.8 years) from 40 teams were randomly allocated to an intervention (n = 20 teams, 292 players) or control group (n = 20 teams, 287 players). The intervention group was instructed to perform 25 sessions of NHE in a 13-week period. Both the intervention and control groups performed regular soccer training and were followed for hamstring injury incidence and severity during the 2013 calendar year. At baseline, personal characteristics (eg, age, injury history, field position) were gathered from all participants via a questionnaire. Primary outcome was injury incidence. Secondary outcomes were injury severity and compliance with the intervention protocol. A total of 38 hamstring injuries were recorded, affecting 36 of 579 players (6.2%). The overall injury incidence rate was 0.7 (95% CI, 0.6-0.8) per 1000 player hours, 0.33 (95% CI, 0.25-0.46) in training, and 1.2 (95% CI, 0.82-1.94) in matches. Injury incidence rates were significantly different between the intervention (0.25; 95% CI, 0.19-0.35) and control groups (0.8; 95% CI, 0.61-1.15), χ(2)(1, n = 579) = 7.865; P = .005. The risk for hamstring injuries was reduced in the intervention group compared with the control group (odds ratio, 0.282; 95% CI, 0.110-0.721) and was statistically significant (P = .005). No statistically significant differences were identified between the intervention and

  12. The epidemiology and clinical manifestations of hamstring muscle and plantar foot flexor shortening.

    PubMed

    Joźwiak, M; Pietrzak, S; Tobjasz, F

    1997-07-01

    A population of 920 healthy children was studied with the aim of assessing the incidence of hamstring muscle and plantar foot flexor tightness, and to correlate such symptoms with gait, posture, and low back discomfort or pain. Special attention was paid to the popliteal angle and dorsal foot flexion. The borderline values for the popliteal angle in the following age groups were, boys: 3 to 5 years, 40 degrees; 6 to 15 years, 50 degrees; and 16 to 19 years, 40 degrees; girls: 3 to 5 years, 30 degrees; 6 to 14 years, 45 degrees; 15 to 19 years, 30 degrees. The borderline values for dorsal foot flexion in the following age groups were 3 to 4 years, 7 degrees; 5 to 13 years, 10 degrees; and 14 to 19 years, 5 degrees. The results obtained indicate a natural increase in hamstring tightness, particularly shortly before the pubertal growth spurt. This seems to be linked with the natural evolution of lumbar lordosis and pelvic tilt. When hamstring tightness surpassed borderline values, dorsiflexion and lumbar lordosis decreased leading to postural deformities, bending-forward deficit, discomfort when sitting, and a shambling gait.

  13. Effects of Static and Dynamic Stretching on the Isokinetic Peak Torques and Electromyographic Activities of the Antagonist Muscles

    PubMed Central

    Serefoglu, Abdullah; Sekir, Ufuk; Gür, Hakan; Akova, Bedrettin

    2017-01-01

    of the non-stretched agonist quadriceps or hamstring muscles. Key points The effects of dynamic stretching of the antagonist muscles on strength performance are unknown. We showed that both static and dynamic stretching of the antagonist muscle does not influence strength and EMG activities in the agonist muscles. Further research should focus on the effects of antagonist stretching using other techniques like PNF or ballistic stretching and/or different volumes of stretching. PMID:28344445

  14. Comparison of lower body specific resistance training on the hamstring to quadriceps strength ratios in men and women.

    PubMed

    Dorgo, Sandor; Edupuganti, Pradeep; Smith, Darla R; Ortiz, Melchor

    2012-06-01

    In this study, we compared hamstring (H) and quadriceps (Q) strength changes in men and women, as well as changes in conventional and functional H:Q ratios following an identical 12-week resistance training program. An isokinetic dynamometer was used to assess 14 male and 14 female participants before and after the intervention, and conventional and functional H:Q ratios were calculated. Hamstring strength improved similarly in men and women, but improvement in quadriceps strength was significantly greater in men, while women showed only modest improvements. For the conventional and functional H:Q ratios, women showed significantly greater improvements than men. Both men and women were able to exceed the commonly recommended 0.6 conventional and 1.0 functional H:Q ratios after the 12-week lower-body resistance training program.

  15. Knee Moment-Angle Characteristics and Semitendinosus Muscle Morphology in Children with Spastic Paresis Selected for Medial Hamstring Lengthening

    PubMed Central

    Haberfehlner, Helga; Jaspers, Richard T.; Rutz, Erich; Becher, Jules G.; Harlaar, Jaap; van der Sluijs, Johannes A.; Witbreuk, Melinda M.; Romkes, Jacqueline; Freslier, Marie; Brunner, Reinald

    2016-01-01

    To increase knee range of motion and improve gait in children with spastic paresis (SP), the semitendinosus muscle (ST) amongst other hamstring muscles is frequently lengthened by surgery, but with variable success. Little is known about how the pre-surgical mechanical and morphological characteristics of ST muscle differ between children with SP and typically developing children (TD). The aims of this study were to assess (1) how knee moment-angle characteristics and ST morphology in children with SP selected for medial hamstring lengthening differ from TD children, as well as (2) how knee moment-angle characteristics and ST morphology are related. In nine SP and nine TD children, passive knee moment-angle characteristics and morphology of ST (i.e. fascicle length, muscle belly length, tendon length, physiological cross-sectional area, and volume) were assessed by hand-held dynamometry and freehand 3D ultrasound, respectively. At net knee flexion moments above 0.5 Nm, more flexed knee angles were found for SP compared to TD children. The measured knee angle range between 0 and 4 Nm was 30% smaller in children with SP. Muscle volume, physiological cross-sectional area, and fascicle length normalized to femur length were smaller in SP compared to TD children (62%, 48%, and 18%, respectively). Sixty percent of the variation in knee angles at 4 Nm net knee moment was explained by ST fascicle length. Altered knee moment-angle characteristics indicate an increased ST stiffness in SP children. Morphological observations indicate that in SP children planned for medial hamstring lengthening, the longitudinal and cross-sectional growth of ST muscle fibers is reduced. The reduced fascicle length can partly explain the increased ST stiffness and, hence, a more flexed knee joint in these SP children. PMID:27861523

  16. Knee Moment-Angle Characteristics and Semitendinosus Muscle Morphology in Children with Spastic Paresis Selected for Medial Hamstring Lengthening.

    PubMed

    Haberfehlner, Helga; Jaspers, Richard T; Rutz, Erich; Becher, Jules G; Harlaar, Jaap; van der Sluijs, Johannes A; Witbreuk, Melinda M; Romkes, Jacqueline; Freslier, Marie; Brunner, Reinald; Maas, Huub; Buizer, Annemieke I

    2016-01-01

    To increase knee range of motion and improve gait in children with spastic paresis (SP), the semitendinosus muscle (ST) amongst other hamstring muscles is frequently lengthened by surgery, but with variable success. Little is known about how the pre-surgical mechanical and morphological characteristics of ST muscle differ between children with SP and typically developing children (TD). The aims of this study were to assess (1) how knee moment-angle characteristics and ST morphology in children with SP selected for medial hamstring lengthening differ from TD children, as well as (2) how knee moment-angle characteristics and ST morphology are related. In nine SP and nine TD children, passive knee moment-angle characteristics and morphology of ST (i.e. fascicle length, muscle belly length, tendon length, physiological cross-sectional area, and volume) were assessed by hand-held dynamometry and freehand 3D ultrasound, respectively. At net knee flexion moments above 0.5 Nm, more flexed knee angles were found for SP compared to TD children. The measured knee angle range between 0 and 4 Nm was 30% smaller in children with SP. Muscle volume, physiological cross-sectional area, and fascicle length normalized to femur length were smaller in SP compared to TD children (62%, 48%, and 18%, respectively). Sixty percent of the variation in knee angles at 4 Nm net knee moment was explained by ST fascicle length. Altered knee moment-angle characteristics indicate an increased ST stiffness in SP children. Morphological observations indicate that in SP children planned for medial hamstring lengthening, the longitudinal and cross-sectional growth of ST muscle fibers is reduced. The reduced fascicle length can partly explain the increased ST stiffness and, hence, a more flexed knee joint in these SP children.

  17. A Randomised, Placebo-Controlled Trial of Neurodynamic Sliders on Hamstring Responses in Footballers with Hamstring Tightness

    PubMed Central

    Areeudomwong, Pattanasin; Oatyimprai, Ketsarakon; Pathumb, Saranchana

    2016-01-01

    Background Neurodynamics intervention is known to increase apparent muscle extensibility, but information regarding hamstring responses after a neurodynamic sliders (NS) technique is scarce. The aim of this study was to evaluate the effects of NS on apparent hamstring extensibility and activity in footballers with hamstring tightness. Methods Forty eligible healthy male footballers with hamstring tightness were each randomly allocated to either a 4-week NS technique or a control group (CG) receiving placebo shortwave intervention. Knee extension angles were measured with the passive knee extension test, and maximal voluntary isometric contraction (MVIC) of hamstrings was measured by a surface electromyography at baseline and after intervention sessions. Results The results showed that NS produced a statistically and clinically significant increase in knee extension angle compared to CG (P < 0.001); however, there was no difference between the groups receiving MVIC of hamstrings. Within group comparison, NS also provided a significant increase in knee extension angle (P < 0.001), whereas the control group did not. There was no change in hamstring MVIC in either group after intervention. Conclusions The findings of this study reveal that four weeks of NS technique improved apparent hamstring extensibility but did not change the hamstring activity in footballers with hamstring tightness. PMID:28090180

  18. Patterns of Hamstring Muscle Tears in the General Population: A Systematic Review

    PubMed Central

    Kuske, Barbara; Hamilton, David F.; Pattle, Sam B.; Simpson, A. Hamish R. W.

    2016-01-01

    Background Hamstring tears are well recognised in the sporting population. Little is known about these injuries in the general population. Purpose Evaluating the rates, patterns and risk factors of non-sporting hamstring tears, compared to sporting related hamstring tears. Data Sources MEDLINE, EMBASE, CINAHL, and the Cochrane Central Register of Controlled Trials (1989–2015). Study Selection Studies reporting patients with a grade 2 or 3 hamstring muscle tear, identified clinically, confirmed by MRI imaging or direct visualisation during surgical exploration. Data Synthesis 144 sets of linked data were extracted for analysis. Most injuries were in males (81.3%), where mean age at injury was lower (30.2, 95% CI 29.1–31.3) than in females (35.4, 95% CI 32.4–38.4) p = 0.06. Key differences were found in the proportion of non-sporting injuries in patients under and over the age 40 (p = 0.001). The proportion of non-sporting injuries was significantly higher in females compared to males (25.9% female non-sporting injuries, versus 8.5% male; p = 0.02). Avulsions were more frequently reported in non-sporting activities (70.5%). The proportion of such injuries was notably higher in females, though this failed to meet significance (p = 0.124). Grouped by age category a bimodal distribution was noted, with the proportion of avulsions greater in younger (age <15) and older patients (age > 40) (p = 0.008). 86.8% of patients returned to pre-injury activity levels with a similar frequency across all study variables; age, activity (sporting vs non-sporting) and injury type (avulsion vs tear). Conclusion This review highlights a proportion of adults suffering grade 2 or 3 hamstring injuries from activities other than the classic sports trauma. The majority of these non-sporting injuries were avulsion injuries that clustered in older female and skeletally immature patients suggesting a potential link to bone mineral density. PMID:27144648

  19. Extensibility and stiffness of the hamstrings in patients with nonspecific low back pain.

    PubMed

    Halbertsma, J P; Göeken, L N; Hof, A L; Groothoff, J W; Eisma, W H

    2001-02-01

    To investigate the extensibility and stiffness of the hamstrings in patients with nonspecific low back pain (LBP). An experimental design. A university laboratory for human movement analysis in a department of rehabilitation medicine. Forty subjects, a patient group (20) and a healthy control group (20). Subjects laid supine on an examination table with a lift frame, with left leg placed in a sling at the ankle. Straight leg raising, pulling force, and activity of hamstring and back muscles were recorded with electrodes. Patients indicated when they experienced tension or pain. The lift force, leg excursion, pelvic-femoral angle, first sensation of pain, and the electromyogram of the hamstrings and back muscles measured in an experimental straight-leg raising set-up. The patient group showed a significant restriction in range of motion (ROM) and extensibility of the hamstrings compared with the control group. No significant difference in hamstring muscle stiffness can be assessed between both groups. The restricted ROM and the decreased extensibility of the hamstrings in patients with nonspecific LBP is not caused by increased muscle stiffness of the hamstrings, but determined by the stretch tolerance of the patients.

  20. Gluteus medius activation during running is a risk factor for season hamstring injuries in elite footballers.

    PubMed

    Franettovich Smith, Melinda M; Bonacci, Jason; Mendis, M Dilani; Christie, Craig; Rotstein, Andrew; Hides, Julie A

    2017-02-01

    To investigate if size and activation of the gluteal muscles is a risk factor for hamstring injuries in elite AFL players. Prospective cohort study. Twenty-six elite male footballers from a professional Australian Football League (AFL) club participated in the study. At the beginning of the season bilateral gluteus medius (GMED) and gluteus maximus (GMAX) muscle volume was measured from magnetic resonance images and electromyographic recordings of the same muscles were obtained during running. History of hamstring injury in the pre-season and incidence of hamstring injury during the season were determined from club medical data. Nine players (35%) incurred a hamstring injury during the season. History of hamstring injury was comparable between those players who incurred a season hamstring injury (2/9 players; 22%) and those who did not (3/17 players; 18%). Higher GMED muscle activity during running was a risk factor for hamstring injury (p=0.03, effect sizes 1.1-1.5). There were no statistically significant differences observed for GMED volume, GMAX volume and GMAX activation (P>0.05). This study identified higher activation of the GMED muscle during running in players who sustained a season hamstring injury. Whilst further research is required to understand the mechanism of altered muscle control, the results of this study contribute to the developing body of evidence that the lumbo-pelvic muscles may be important to consider in hamstring injury prevention and management. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. Immediate effects of Graston Technique on hamstring muscle extensibility and pain intensity in patients with nonspecific low back pain

    PubMed Central

    Moon, Jong Hoon; Jung, Jin-Hwa; Won, Young Sik; Cho, Hwi-Young

    2017-01-01

    [Purpose] The purpose of this study was to analyze the effect of Graston Technique on hamstring extensibility and pain intensity in patients with nonspecific low back pain. [Subjects and Methods] Twenty-four patients with nonspecific low back pain (27–46 years of age) enrolled in the study. All participants were randomly assigned to one of two groups: Graston technique group (n=12) and a static stretching group (n=12). The Graston Technique was used on the hamstring muscles of the experimental group, while the static stretching group performed static stretching. Hamstring extensibility was recorded using the sit and reach test, and a visual analog scale was used to measure pain intensity. [Results] Both groups showed a significant improvement after intervention. In comparison to the static stretching group, the Graston technique group had significantly more improvement in hamstring extensibility. [Conclusion] The Graston Technique is a simple and effective intervention in nonspecific low back pain patients to improve hamstring extensibility and lower pain intensity, and it would be beneficial in clinical practice. PMID:28265144

  2. Immediate effects of Graston Technique on hamstring muscle extensibility and pain intensity in patients with nonspecific low back pain.

    PubMed

    Moon, Jong Hoon; Jung, Jin-Hwa; Won, Young Sik; Cho, Hwi-Young

    2017-02-01

    [Purpose] The purpose of this study was to analyze the effect of Graston Technique on hamstring extensibility and pain intensity in patients with nonspecific low back pain. [Subjects and Methods] Twenty-four patients with nonspecific low back pain (27-46 years of age) enrolled in the study. All participants were randomly assigned to one of two groups: Graston technique group (n=12) and a static stretching group (n=12). The Graston Technique was used on the hamstring muscles of the experimental group, while the static stretching group performed static stretching. Hamstring extensibility was recorded using the sit and reach test, and a visual analog scale was used to measure pain intensity. [Results] Both groups showed a significant improvement after intervention. In comparison to the static stretching group, the Graston technique group had significantly more improvement in hamstring extensibility. [Conclusion] The Graston Technique is a simple and effective intervention in nonspecific low back pain patients to improve hamstring extensibility and lower pain intensity, and it would be beneficial in clinical practice.

  3. Do peak torque angles of muscles change following anterior cruciate ligament reconstruction using hamstring or patellar tendon graft?

    PubMed

    Yosmaoğlu, Hayri Baran; Baltacı, Gül; Sönmezer, Emel; Özer, Hamza; Doğan, Deha

    2017-12-01

    This study aims to compare the effects of anterior cruciate ligament (ACL) reconstruction using autogenous hamstring or patellar tendon graft on the peak torque angle. The study included 132 patients (103 males, 29 females; mean age 29±9 year) who were performed ACL reconstruction with autogenous hamstring or patellar tendon graft. The peak torque angles in the quadriceps and hamstring muscles were recorded using an isokinetic dynamometer. Angle of peak knee flexion torque occurred significantly earlier within the range of motion on the operated side than nonoperated side at 180°/second in the hamstring tendon group. Angle of peak knee extension torque occurred significantly earlier within the range of motion on the operated side than nonoperated side at 180°/second in the patellar tendon group. There were no statistically significant differences in the flexion and extension peak torque angles between the operated and nonoperated knees at 60°/second in both groups. The angle of peak torque at relatively high angular velocities is affected after ACL reconstruction in patients with hamstring or patellar tendon grafts. The graft donor site directly influences this parameter. This finding may be important for clinicians in terms of preventing re-injury.

  4. Quantifying the magnitude of torque physiotherapists apply when stretching the hamstring muscles of people with spinal cord injury.

    PubMed

    Harvey, Lisa A; McQuade, Lea; Hawthorne, Scott; Byak, Adrian

    2003-07-01

    To quantify the magnitude of stretch that physiotherapists apply to the hamstring muscles of people with spinal cord injury (SCI). Repeated-measures design. SCI unit in Australia. Fifteen individuals with motor complete paraplegia or tetraplegia. Twelve physiotherapists manually administered a stretch to the hamstring muscles of each subject. The stretch was applied by flexing the hip with the knee extended. Applied hip flexor torque. Therapists applied median hip flexor torques of between 30 and 68Nm, although some torques were as large as 121Nm. The stretch applied by different therapists to any 1 subject varied as much as 40-fold. There is a large range of stretch torques provided by physiotherapists to patients with SCI. Some therapists provide stretch torques well in excess of those tolerated by individuals with intact sensation.

  5. Eccentric Knee Flexor Strength and Risk of Hamstring Injuries in Rugby Union: A Prospective Study.

    PubMed

    Bourne, Matthew N; Opar, David A; Williams, Morgan D; Shield, Anthony J

    2015-11-01

    Hamstring strain injuries (HSIs) represent the most common cause of lost playing time in rugby union. Eccentric knee flexor weakness and between-limb imbalance in eccentric knee flexor strength are associated with a heightened risk of HSIs in other sports; however, these variables have not been explored in rugby union. To determine if lower levels of eccentric knee flexor strength or greater between-limb imbalance in this parameter during the Nordic hamstring exercise are risk factors for HSIs in rugby union. Cohort study; Level of evidence, 2. This prospective study was conducted over the 2014 Super Rugby and Queensland Rugby Union seasons. In total, 178 rugby union players (mean age, 22.6 ± 3.8 years; mean height, 185.0 ± 6.8 cm; mean weight, 96.5 ± 13.1 kg) had their eccentric knee flexor strength assessed using a custom-made device during the preseason. Reports of previous hamstring, quadriceps, groin, calf, and anterior cruciate ligament injuries were also obtained. The main outcome measure was the prospective occurrence of HSIs. Twenty players suffered at least 1 HSI during the study period. Players with a history of HSIs had a 4.1-fold (95% CI, 1.9-8.9; P = .001) greater risk of subsequent HSIs than players without such a history. Between-limb imbalance in eccentric knee flexor strength of ≥15% and ≥20% increased the risk of HSIs by 2.4-fold (95% CI, 1.1-5.5; P = .033) and 3.4-fold (95% CI, 1.5-7.6; P = .003), respectively. Lower eccentric knee flexor strength and other prior injuries were not associated with an increased risk of future HSIs. Multivariate logistic regression revealed that the risk of reinjuries was augmented in players with strength imbalances. Previous HSIs and between-limb imbalance in eccentric knee flexor strength were associated with an increased risk of future HSIs in rugby union. These results support the rationale for reducing imbalance, particularly in players who have suffered a prior HSI, to mitigate the risk of future

  6. Elastography Study of Hamstring Behaviors during Passive Stretching

    PubMed Central

    Le Sant, Guillaume; Ates, Filiz; Brasseur, Jean-Louis; Nordez, Antoine

    2015-01-01

    Introduction The mechanical properties of hamstring muscles are usually inferred from global passive torque/angle relationships, in combination with adjoining tissues crossing the joint investigated. Shear modulus measurement provides an estimate of changes in muscle-tendon stiffness and passive tension. This study aimed to assess the passive individual behavior of each hamstring muscle in different stretching positions using shear wave elastography. Methods/Results The muscle shear modulus of each hamstring muscle was measured during a standardized slow passive knee extension (PKE, 80% of maximal range of motion) on eighteen healthy male volunteers. Firstly, we assessed the reliability of the measurements. Results were good for semitendinosus (ST, CV: 8.9%-13.4%), semimembranosus (SM, CV: 10.3%-11.2%) and biceps femoris long-head (BF-lh, CV: 8.6%-13.3%), but not for biceps femoris short-head (BF-sh, CV: 20.3%-44.9%). Secondly, we investigated each reliable muscle in three stretch positions: 70°, 90° and 110° of hip flexion. The results showed different values of shear modulus for the same amount of perceived stretch, with the highest measurements in the high-flexed hip situation. Moreover, individual muscles displayed different values, with values increasing or BF-lh, SM and ST, respectively. The inter-subject variability was 35.3% for ST, 27.4% for SM and 30.2% for BF-lh. Conclusion This study showed that the hip needs to be high-flexed to efficiently tension the hamstrings, and reports a higher muscle-tendon stress tolerance at 110° of hip angle. In addition muscles have different passive behaviors, and future works will clarify if it can be linked with rate of injury. PMID:26418862

  7. Is muscular strength balance influenced by menstrual cycle in female soccer players?

    PubMed

    Dos Santos Andrade, Marília; Mascarin, Naryana C; Foster, Roberta; de Jármy di Bella, Zsuzsanna I; Vancini, Rodrigo L; Barbosa de Lira, Claudio A

    2017-06-01

    Muscular strength imbalance is an important risk factor for ACL injury, but it is not clear the impact of menstrual cycle on muscular strength balance. Our aims were to compare muscular balance (hamstring-to-quadriceps peak torque strength balance ratio) between luteal and follicular phases and compare gender differences relative to strength balance to observe possible fluctuations in strength balance ratio. Thirty-eight soccer athletes (26 women and 12 men) took part in this study. Athletes participated in two identical isokinetic strength evaluations for both knee (non-dominant [ND] and dominant [D]). Peak torque for quadriceps and hamstring muscles were measured in concentric mode and hamstring-to-quadriceps peak torque strength balance ratio calculated. Women had significantly lower hamstring-to-quadriceps peak torque strength balance ratio during the follicular compared to luteal phase, for the ND limb (P=0.011). However, no differences, between luteal and follicular phases, were observed in the D limb. In men, no difference in strength balance ratios was found between the ND and D limbs. These data may be useful in prevention programs for knee (ACL) injuries among soccer female athletes.

  8. Voluntary enhanced cocontraction of hamstring muscles during open kinetic chain leg extension exercise: its potential unloading effect on the anterior cruciate ligament.

    PubMed

    Biscarini, Andrea; Benvenuti, Paolo; Botti, Fabio M; Brunetti, Antonella; Brunetti, Orazio; Pettorossi, Vito E

    2014-09-01

    A number of research studies provide evidence that hamstring cocontraction during open kinetic chain knee extension exercises enhances tibiofemoral (TF) stability and reduces the strain on the anterior cruciate ligament. To determine the possible increase in hamstring muscle coactivation caused by a voluntary cocontraction effort during open kinetic chain leg-extension exercises, and to assess whether an intentional hamstring cocontraction can completely suppress the anterior TF shear force during these exercises. Descriptive laboratory study. Knee kinematics as well as electromyographic activity in the semitendinosus (ST), semimembranosus (SM), biceps femoris (BF), and quadriceps femoris muscles were measured in 20 healthy men during isotonic leg extension exercises with resistance (R) ranging from 10% to 80% of the 1-repetition maximum (1RM). The same exercises were also performed while the participants attempted to enhance hamstring coactivation through a voluntary cocontraction effort. The data served as input parameters for a model to calculate the shear and compressive TF forces in leg extension exercises for any set of coactivation patterns of the different hamstring muscles. For R≤ 40% 1RM, the peak coactivation levels obtained with intentional cocontraction (l) were significantly higher (P < 10(-3)) than those obtained without intentional cocontraction (l 0). For each hamstring muscle, maximum level l was reached at R = 30% 1RM, corresponding to 9.2%, 10.5%, and 24.5% maximum voluntary isometric contraction (MVIC) for the BF, ST, and SM, respectively, whereas the ratio l/l 0 reached its maximum at R = 20% 1RM and was approximately 2, 3, and 4 for the BF, SM, and ST, respectively. The voluntary enhanced coactivation level l obtained for R≤ 30% 1RM completely suppressed the anterior TF shear force developed by the quadriceps during the exercise. In leg extension exercises with resistance R≤ 40% 1RM, coactivation of the BF, SM, and ST can be

  9. Effects of William training on lumbosacral muscles function, lumbar curve and pain.

    PubMed

    Fatemi, Rouholah; Javid, Marziyeh; Najafabadi, Ebrahim Moslehi

    2015-01-01

    There are many types of treatments and recommendations for restoring back deformities depending on doctors' knowledge and opinions. The purpose of the exercises is to reduce pain and to ensure stability of the lower trunk by toning the abdominal muscles, buttocks and hamstrings. Given the duration of flares and relapses rate, it is important to apply an efficient and lasting treatment. To evaluate the effects of 8 weeks of William's training on flexibility of lumbosacral muscles and lumbar angle in females with Hyperlordosis. Forty female students with lumbar lordosis more than normal degrees (Hyperlordotic) that were randomly divided into exercise and control groups were selected as the study sample. The lumbar lordosis was measured using a flexible ruler, flexibility of hamstring muscles was measured with the active knee extension test, the hip flexor muscles strength was measured using Thomas test, the lumbar muscles flexibility measures by Schober test, abdominal muscles strength measured by Sit-Up test and back pain was measured using McGill's Visual Analogue Scales (VAS) questionnaire. Data were compared before and post-test using independent and paired t-testes. Results showed that 8 weeks of William's exercise led to significant decreases in lumbar angle and back pain, increases in flexibility of hamstring muscles, hip flexor muscles flexibility, lumbar extensor muscles flexibility and abdominal muscles strength. The findings show that William's corrective training can be considered as a useful and valid method for restoring and refining back deformities like as accentuated back-arc and became wreaked muscles' performance in lumbar areas.

  10. How joint torques affect hamstring injury risk in sprinting swing-stance transition.

    PubMed

    Sun, Yuliang; Wei, Shutao; Zhong, Yunjian; Fu, Weijie; Li, Li; Liu, Yu

    2015-02-01

    The potential mechanisms of hamstring strain injuries in athletes are not well understood. The study, therefore, was aimed at understanding hamstring mechanics by studying loading conditions during maximum-effort overground sprinting. Three-dimensional kinematics and ground reaction force data were collected from eight elite male sprinters sprinting at their maximum effort. Maximal isometric torques of the hip and knee were also collected. Data from the sprinting gait cycle were analyzed via an intersegmental dynamics approach, and the different joint torque components were calculated. During the initial stance phase, the ground reaction force passed anteriorly to the knee and hip, producing an extension torque at the knee and a flexion torque at the hip joint. Thus, the active muscle torque functioned to produce flexion torque at the knee and extension torque at the hip. The maximal muscle torque at the knee joint was 1.4 times the maximal isometric knee flexion torque. During the late swing phase, the muscle torque counterbalanced the motion-dependent torque and acted to flex the knee joint and extend the hip joint. The loading conditions on the hamstring muscles were similar to those of the initial stance phase. During both the initial stance and late swing phases, the large passive torques at both the knee and hip joints acted to lengthen the hamstring muscles. The active muscle torques generated mainly by the hamstrings functioned to counteract those passive effects. As a result, during sprinting or high-speed locomotion, the hamstring muscles may be more susceptible to high risk of strain injury during these two phases.

  11. The effects of therapeutic exercises on pain, muscle strength, functional capacity, balance and hemodynamic parameters in knee osteoarthritis patients: a randomized controlled study of supervised versus home exercises.

    PubMed

    Kuru Çolak, Tuğba; Kavlak, Bahar; Aydoğdu, Onur; Şahin, Emir; Acar, Gönül; Demirbüken, İlkşan; Sarı, Zübeyir; Çolak, İlker; Bulut, Güven; Polat, M Gülden

    2017-03-01

    The aim of the study was to compare the effects of low-intensity exercise programs for lower extremities, either supervised or at home, on pain, muscle strength, balance and the hemodynamic parameters of knee osteoarthritis (OA) patients. This randomized study included 78 patients with knee OA in 2 groups of supervised and home-based exercise program. Exercises were applied to the first group in the clinic as a group exercise program and were demonstrated to the second group to be performed at home. Before and after the 6-week exercise program, assessment was made of pain, quadriceps and hamstring muscle strengths, 6-min walk test (6MWT), and non-invasive hemodynamic parameters. Results of the 78 patients, 56 completed the study. Pain, muscle strength, and 6MWT scores showed significant improvements in both groups. There were also significant differences in the amount of change in pain and muscle strength (pain: p = 0.041, Rqdc: 0.009, Lqdc: 0.013, Rhms: 0.04) which indicated greater improvements in the supervised group. The balance scores of supervised group showed a significant improvement (p = 0.009). No significant change was determined in hemodynamic parameters of either group. Conclusion according to the results of this study showed that low-intensity lower extremity exercises conducted in a clinic under the supervision of a physiotherapist were more effective than home-based exercises in reducing post-activity pain levels and improving quadriceps and right hamstring muscle strength. Both the supervised and home exercise programs were seen to be effective in reducing rest pain and increasing 6 MW distance in knee osteoarthritis patients.

  12. Operative management of partial-thickness tears of the proximal hamstring muscles in athletes.

    PubMed

    Bowman, Karl F; Cohen, Steven B; Bradley, James P

    2013-06-01

    Partial tears of the hamstring muscle origin represent a challenging clinical problem to the patient and orthopaedic surgeon. Although nonoperative treatment is frequently met with limited success, there is a paucity of data on the efficacy of surgical management for partial proximal hamstring tears in the active and athletic population. To evaluate the results of an anatomic repair for partial tears of the hamstring muscle origin in athletes. Case series; Level of evidence, 4. The records of 17 patients with partial tears of the proximal hamstring origin were reviewed after institutional review board approval was obtained. All patients were treated with open debridement and primary tendon repair after failure of at least 6 months of nonoperative therapy. Clinical and operative records, radiographs, and magnetic resonance images were reviewed for all patients. A patient-reported outcomes survey was completed by 14 patients that included the Lower Extremity Functional Score (LEFS), Marx activity rating scale, custom LEFS and Marx scales, and subjective patient satisfaction scores. Early and late postoperative complications were recorded. There were 3 male and 14 female patients; their average age was 43 years (range, 19-64 years) and average follow-up was 32 months (range, 12-51 months). There were 2 collegiate athletes (field hockey, track), 14 amateur athletes (distance running, waterskiing, tennis), and a professional bodybuilder. Postoperative LEFS was 73.3 ± 9.9 (range, 50-80) and custom LEFS was 66.7 ± 17.0 (range, 37-80) of a maximum 80 points. The most commonly reported difficulty was with prolonged sitting and explosive direction change while running. The average Marx score was 6.5 ± 5.3 (range, 0-16) of a maximum 16, correlating with a greater return to recreational running activities in this patient cohort than regular participation in pivoting or cutting sports. Marx custom scores were 20 of a maximum 20 in all patients, demonstrating no disability in

  13. Contribution of hamstring fatigue to quadriceps inhibition following lumbar extension exercise.

    PubMed

    Hart, Joseph M; Kerrigan, D Casey; Fritz, Julie M; Saliba, Ethan N; Gansneder, Bruce; Ingersoll, Christopher D

    2006-01-01

    The purpose of this study was to determine the contribution of hamstrings and quadriceps fatigue to quadriceps inhibition following lumbar extension exercise. Regression models were calculated consisting of the outcome variable: quadriceps inhibition and predictor variables: change in EMG median frequency in the quadriceps and hamstrings during lumbar fatiguing exercise. Twenty-five subjects with a history of low back pain were matched by gender, height and mass to 25 healthy controls. Subjects performed two sets of fatiguing isometric lumbar extension exercise until mild (set 1) and moderate (set 2) fatigue of the lumbar paraspinals. Quadriceps and hamstring EMG median frequency were measured while subjects performed fatiguing exercise. A burst of electrical stimuli was superimposed while subjects performed an isometric maximal quadriceps contraction to estimate quadriceps inhibition after each exercise set. Results indicate the change in hamstring median frequency explained variance in quadriceps inhibition following the exercise sets in the history of low back pain group only. Change in quadriceps median frequency explained variance in quadriceps inhibition following the first exercise set in the control group only. In conclusion, persons with a history of low back pain whose quadriceps become inhibited following lumbar paraspinal exercise may be adapting to the fatigue by using their hamstring muscles more than controls. Key PointsA neuromuscular relationship between the lumbar paraspinals and quadriceps while performing lumbar extension exercise may be influenced by hamstring muscle fatigue.QI following lumbar extension exercise in persons with a history of LBP group may involve significant contribution from the hamstring muscle group.More hamstring muscle contribution may be a necessary adaptation in the history of LBP group due to weaker and more fatigable lumbar extensors.

  14. How Joint Torques Affect Hamstring Injury Risk in Sprinting Swing–Stance Transition

    PubMed Central

    SUN, YULIANG; WEI, SHUTAO; ZHONG, YUNJIAN; FU, WEIJIE; LI, LI; LIU, YU

    2015-01-01

    ABSTRACT Purpose The potential mechanisms of hamstring strain injuries in athletes are not well understood. The study, therefore, was aimed at understanding hamstring mechanics by studying loading conditions during maximum-effort overground sprinting. Methods Three-dimensional kinematics and ground reaction force data were collected from eight elite male sprinters sprinting at their maximum effort. Maximal isometric torques of the hip and knee were also collected. Data from the sprinting gait cycle were analyzed via an intersegmental dynamics approach, and the different joint torque components were calculated. Results During the initial stance phase, the ground reaction force passed anteriorly to the knee and hip, producing an extension torque at the knee and a flexion torque at the hip joint. Thus, the active muscle torque functioned to produce flexion torque at the knee and extension torque at the hip. The maximal muscle torque at the knee joint was 1.4 times the maximal isometric knee flexion torque. During the late swing phase, the muscle torque counterbalanced the motion-dependent torque and acted to flex the knee joint and extend the hip joint. The loading conditions on the hamstring muscles were similar to those of the initial stance phase. Conclusions During both the initial stance and late swing phases, the large passive torques at both the knee and hip joints acted to lengthen the hamstring muscles. The active muscle torques generated mainly by the hamstrings functioned to counteract those passive effects. As a result, during sprinting or high-speed locomotion, the hamstring muscles may be more susceptible to high risk of strain injury during these two phases. PMID:24911288

  15. Comparison of erector spinae and hamstring muscle activities and lumbar motion during standing knee flexion in subjects with and without lumbar extension rotation syndrome.

    PubMed

    Kim, Si-hyun; Kwon, Oh-yun; Park, Kyue-nam; Kim, Moon-Hwan

    2013-12-01

    The aim of this study was to compare the activity of the erector spinae (ES) and hamstring muscles and the amount and onset of lumbar motion during standing knee flexion between individuals with and without lumbar extension rotation syndrome. Sixteen subjects with lumbar extension rotation syndrome (10 males, 6 females) and 14 healthy subjects (8 males, 6 females) participated in this study. During the standing knee flexion, surface electromyography (EMG) was used to measure muscle activity, and surface EMG electrodes were attached to both the ES and hamstring (medial and lateral) muscles. A three-dimensional motion analysis system was used to measure kinematic data of the lumbar spine. An independent-t test was conducted for the statistical analysis. The group suffering from lumbar extension rotation syndrome exhibited asymmetric muscle activation of the ES and decreased hamstring activity. Additionally, the group with lumbar extension rotation syndrome showed greater and earlier lumbar extension and rotation during standing knee flexion compared to the control group. These data suggest that asymmetric ES muscle activation and a greater amount of and earlier lumbar motion in the sagittal and transverse plane during standing knee flexion may be an important factor contributing to low back pain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Evaluating injury risk in first and second league professional Portuguese soccer: muscular strength and asymmetry.

    PubMed

    Carvalho, Alberto; Brown, Scott; Abade, Eduardo

    2016-06-01

    Strength imbalances between the hamstrings and quadriceps are an essential predictor for hamstring strain in soccer. The study aimed to investigate and compare the muscle strength imbalances of professional soccer players of different performance levels. One hundred and fifty nine senior male professional soccer players from first (n = 75) and second league (n = 84) Portuguese clubs participated in this study. Muscle strength was evaluated with a REV9000 isokinetic dynamometer. Maximal peak torque data were used to calculate quadriceps and hamstrings strength during concentric and eccentric actions, bilateral asymmetry, conventional strength ratios and dynamic control ratios. Second league athletes produced slightly lower conventional strength ratios in the right and left legs (ES = 0.22, p = 0.17 and ES = 0.36, p = 0.023, respectively) compared to the first league athletes. No significant differences were found in dynamic control ratios or in bilateral asymmetry among first and second league athletes. These findings do not show a clear link between the competitive level and injury risk in soccer players. However, some of the differences found, particularly in conventional strength ratios, highlight the importance of performing off-season and pre-season strength assessments to prescribe and adjust individual strength training programs among professional soccer players.

  17. Evaluating injury risk in first and second league professional Portuguese soccer: muscular strength and asymmetry

    PubMed Central

    Carvalho, Alberto; Brown, Scott

    2016-01-01

    Abstract Strength imbalances between the hamstrings and quadriceps are an essential predictor for hamstring strain in soccer. The study aimed to investigate and compare the muscle strength imbalances of professional soccer players of different performance levels. One hundred and fifty nine senior male professional soccer players from first (n = 75) and second league (n = 84) Portuguese clubs participated in this study. Muscle strength was evaluated with a REV9000 isokinetic dynamometer. Maximal peak torque data were used to calculate quadriceps and hamstrings strength during concentric and eccentric actions, bilateral asymmetry, conventional strength ratios and dynamic control ratios. Second league athletes produced slightly lower conventional strength ratios in the right and left legs (ES = 0.22, p = 0.17 and ES = 0.36, p = 0.023, respectively) compared to the first league athletes. No significant differences were found in dynamic control ratios or in bilateral asymmetry among first and second league athletes. These findings do not show a clear link between the competitive level and injury risk in soccer players. However, some of the differences found, particularly in conventional strength ratios, highlight the importance of performing off-season and pre-season strength assessments to prescribe and adjust individual strength training programs among professional soccer players. PMID:28149364

  18. Intrarater Reliability of Muscle Strength and Hamstring to Quadriceps Strength Imbalance Ratios During Concentric, Isometric, and Eccentric Maximal Voluntary Contractions Using the Isoforce Dynamometer.

    PubMed

    Mau-Moeller, Anett; Gube, Martin; Felser, Sabine; Feldhege, Frank; Weippert, Matthias; Husmann, Florian; Tischer, Thomas; Bader, Rainer; Bruhn, Sven; Behrens, Martin

    2017-08-17

    To determine intrasession and intersession reliability of strength measurements and hamstrings to quadriceps strength imbalance ratios (H/Q ratios) using the new isoforce dynamometer. Repeated measures. Exercise science laboratory. Thirty healthy subjects (15 females, 15 males, 27.8 years). Coefficient of variation (CV) and intraclass correlation coefficients (ICC) were calculated for (1) strength parameters, that is peak torque, mean work, and mean power for concentric and eccentric maximal voluntary contractions; isometric maximal voluntary torque (IMVT); rate of torque development (RTD), and (2) H/Q ratios, that is conventional concentric, eccentric, and isometric H/Q ratios (Hcon/Qcon at 60 deg/s, 120 deg/s, and 180 deg/s, Hecc/Qecc at -60 deg/s and Hiso/Qiso) and functional eccentric antagonist to concentric agonist H/Q ratios (Hecc/Qcon and Hcon/Qecc). High reliability: CV <10%, ICC >0.90; moderate reliability: CV between 10% and 20%, ICC between 0.80 and 0.90; low reliability: CV >20%, ICC <0.80. (1) Strength parameters: (a) high intrasession reliability for concentric, eccentric, and isometric measurements, (b) moderate-to-high intersession reliability for concentric and eccentric measurements and IMVT, and (c) moderate-to-high intrasession reliability but low intersession reliability for RTD. (2) H/Q ratios: (a) moderate-to-high intrasession reliability for conventional ratios, (b) high intrasession reliability for functional ratios, (c) higher intersession reliability for Hcon/Qcon and Hiso/Qiso (moderate to high) than Hecc/Qecc (low to moderate), and (d) higher intersession reliability for conventional H/Q ratios (low to high) than functional H/Q ratios (low to moderate). The results have confirmed the reliability of strength parameters and the most frequently used H/Q ratios.

  19. Acute neuromuscular and performance responses to Nordic hamstring exercises completed before or after football training.

    PubMed

    Lovell, Ric; Siegler, Jason C; Knox, Michael; Brennan, Scott; Marshall, Paul W M

    2016-12-01

    The optimal scheduling of Nordic Hamstring exercises (NHEs) relative to football training sessions is unknown. We examined the acute neuromuscular and performance responses to NHE undertaken either before (BT) or after (AT) simulated football training. Twelve amateur players performed six sets of five repetitions of the NHE either before or after 60 min of standardised football-specific exercise (SAFT 60 ). Surface electromyography signals (EMG) of the hamstring muscles were recorded during both the NHE, and maximum eccentric actions of the knee flexors (0.52 rad · s -1 ) performed before and after the NHE programme, and at 15 min intervals during SAFT 60 . Ten-metre sprint times were recorded on three occasions during each 15 min SAFT 60 segment. Greater eccentric hamstring fatigue following the NHE programme was observed in BT versus AT (19.8 %; very likely small effect), which was particularly apparent in the latter range of knee flexion (0-15°; 39.6%; likely moderate effect), and synonymous with hamstring EMG declines (likely small-likely moderate effects). Performing NHE BT attenuated sprint performance declines (2.0-3.2%; likely small effects), but decreased eccentric hamstring peak torque (-14.1 to -18.9%; likely small effects) during football-specific exercise. Performing NHE prior to football training reduces eccentric hamstring strength and may exacerbate hamstring injury risk.

  20. Eccentric knee flexor strength profiles of 341 elite male academy and senior Gaelic football players: Do body mass and previous hamstring injury impact performance?

    PubMed

    Roe, Mark; Malone, Shane; Delahunt, Eamonn; Collins, Kieran; Gissane, Conor; Persson, Ulrik McCarthy; Murphy, John C; Blake, Catherine

    2018-05-01

    Report eccentric knee flexor strength values of elite Gaelic football players from underage to adult level whilst examining the influence of body mass and previous hamstring injury. Cross-sectional study. Team's training facility. Elite Gaelic football players (n = 341) from under 14 years to senior age-grades were recruited from twelve teams. Absolute (N) and relative (N·kg -1 ) eccentric hamstring strength as well as corresponding between-limb imbalances (%) were calculated for all players. Mean maximum force was 329.4N (95% CI 319.5-340.2) per limb. No statistically significant differences were observed in relative force values (4.4 N ·kg -1 , 95% CI 4.2-4.5) between age-groups. Body mass had moderate-to-large and weak associations with maximum force in youth (r = 0.597) and adult (r =0 .159) players, respectively. Overall 40% (95 CI 31.4-48.7) presented with a maximum strength between-limb imbalance >10%. Players with a hamstring injury had greater relative maximum force (9.3%, 95% CI 7.0-11.8; p > 0.05) and a 28% (95% CI 10.0-38.0) higher prevalence of between-limb imbalances ≥15% compared to their uninjured counterparts. Overlapping strength profiles across age-groups, combined with greater strength in previously injured players, suggests difficulties for establishing cut-off thresholds associated with hamstring injury risk. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Dynamic restraint capacity of the hamstring muscles has important functional implications after anterior cruciate ligament injury and anterior cruciate ligament reconstruction.

    PubMed

    Bryant, Adam L; Creaby, Mark W; Newton, Robert U; Steele, Julie R

    2008-12-01

    The purpose of this study was to investigate the relation between knee functionality of anterior cruciate ligament deficient (ACLD) and anterior cruciate ligament reconstruction (ACLR) patients and hamstring antagonist torque generated during resisted knee extension. Cross-sectional. Laboratory based. Male ACLD subjects (n=10) (18-35 y) and 27 matched males who had undergone ACLR (14 patella tendon [PT] grafts and 13 combined semitendinosus/gracilis tendon grafts). Not applicable. Knee functionality was rated (0- to 100-point scale) by using the Cincinnati Knee Rating System. Using electromyography data from the semitendinosus (ST) and biceps femoris muscles, we created a mathematical model to estimate the opposing torque generated by the hamstrings during isokinetic knee extension in 10 degrees intervals from 80 degrees to 10 degrees knee flexion. Pearson product-moment correlations revealed that more functional ACLD subjects generated significantly (P<.05) higher hamstring antagonist torque throughout knee extension. In contrast, more functional PT subjects produced significantly lower hamstring antagonist torque at 80 degrees to 70 degrees knee flexion, whereas no significant associations were found between hamstring antagonist torque and knee functionality for the ST/gracilis tendon subjects. An increased hamstring antagonist torque generated by the more functional ACLD subjects, reflective of increased hamstring contractile force, is thought to represent a protective mechanism to compensate for mechanical instability. The restoration of anterior knee stability through ACLR negates the need for augmented hamstring antagonist torque.

  2. ASSOCIATION BETWEEN LONG-TERM QUADRICEPS WEAKNESS AND EARLY WALKING MUSCLE CO-CONTRACTION AFTER TOTAL KNEE ARTHROPLASTY

    PubMed Central

    Yoshida, Yuri; Mizner, Ryan L.; Snyder-Mackler, Lynn

    2013-01-01

    INTRODUCTION Quadriceps weakness is one of the primary post-operative impairments that persist long term for patients after total knee arthroplasty (TKA). We hypothesized that early gait muscle recruitment patterns of the quadriceps and hamstrings with diminished knee performance at 3 months after surgery would be related to long-term quadriceps strength at one year after TKA. METHODS Twenty-one subjects who underwent primary unilateral TKA and 14 age-matched healthy controls were analyzed. At three months after TKA, the maximum voluntary isometric contraction of quadriceps and a comprehensive gait analysis were performed. Quadriceps strength was assessed again at one year after surgery. RESULTS Quadriceps muscle recruitment of the operated limb was greater than the non-operated limb during the loading response of gait (p=0.03), but there were no significant differences in hamstring recruitment or co-contraction between limbs (p>0.05). There were significant differences in quadriceps muscle recruitment during gait between the non-operated limb of TKA group and healthy control group (p<0.05). The TKA group showed a significant inverse relationship between one year quadriceps strength and co-contraction (r = −0.543) and hamstring muscle recruitment (r = −0.480) during loading response at 3 months after TKA. CONCLUSIONS The results revealed a reverse relationship where stronger patients tended to demonstrate lower quadriceps recruitment at 3 months post-surgery that was not observed in the healthy peer group. The altered neuromuscular patterns of quadriceps and hamstrings during gait may influence chronic quadriceps strength in individuals after TKA. PMID:23352711

  3. Comparison of gluteal and hamstring activation during five commonly used plyometric exercises.

    PubMed

    Struminger, Aaron H; Lewek, Michael D; Goto, Shiho; Hibberd, Elizabeth; Blackburn, J Troy

    2013-08-01

    Anterior cruciate ligament injuries occur frequently in athletics, and anterior cruciate ligament injury prevention programs may decrease injury risk. However, previous prevention programs that include plyometrics use a variety of exercises with little justification of exercise inclusion. Because gluteal and hamstring activation is thought to be important for preventing knee injuries, the purpose of this study was to determine which commonly used plyometric exercises produce the greatest activation of the gluteals and hamstrings. EMG (Electromyography) amplitudes of the hamstring and gluteal muscles during preparatory and loading phases of landing were recorded in 41 subjects during 5 commonly used plyometric exercises. Repeated measures ANOVAs (Analysis of Variance) were used on 36 subjects to examine differences in muscle activation. Differences in hamstring (P<.01) and gluteal (P<.01) activities were identified across exercises during the preparatory and landing phases. The single-leg sagittal plane hurdle hops produced the greatest gluteal and hamstring activity in both phases. The 180° jumps did not produce significantly greater gluteal or hamstring activity than any other exercise. Single-leg sagittal plane hurdle hops may be the most effective exercise to activate the gluteals and hamstrings and may be important to include in anterior cruciate ligament injury prevention programs, given the importance of these muscles for limiting valgus loading of the knee. Because 180° jumps do not produce greater gluteal and hamstring activation than other plyometric exercises, their removal from injury prevention programs may be warranted without affecting program efficacy. © 2013.

  4. Isokinetic evaluation of internal/external tibial rotation strength after the use of hamstring tendons for anterior cruciate ligament reconstruction.

    PubMed

    Armour, Tanya; Forwell, Lorie; Litchfield, Robert; Kirkley, Alexandra; Amendola, Ned; Fowler, Peter J

    2004-01-01

    Evaluation of the knee after an anterior cruciate ligament reconstruction with the use of the semitendinosus and gracilis (hamstring) autografts has primarily focused on flexion and extension strength. The semitendinosus and gracilis muscles contribute to internal tibial rotation, and it has been suggested that harvest of these tendons for the purpose of an anterior cruciate ligament reconstruction contributes to internal tibial rotation weakness. Internal tibial rotation strength may be affected by the semitendinosus and gracilis harvest after anterior cruciate ligament reconstruction. Prospective evaluation of internal and external tibial rotation strength. Inclusion criteria for subjects (N = 30): unilateral anterior cruciate ligament reconstruction at least 2 years previously, a stable anterior cruciate ligament (<5-mm side-to-side difference) at time of testing confirmed by surgeon and KT-1000 arthrometer, no history of knee problems after initial knee reconstruction, a normal contralateral knee, and the ability to comply with the testing protocol. In an attempt to minimize unwanted subtalar joint motion, subjects were immobilized using an ankle brace and tested at angular velocities of 60 degrees /s, 120 degrees /s, and 180 degrees /s at a knee flexion angle of 90 degrees . The mean peak torque measurements for internal rotation strength of the operative limb (60 degrees /s, 17.4 +/- 4.5 ft-lb; 120 degrees /s, 13.9 +/- 3.3 ft-lb; 180 degrees /s, 11.6 +/- 3.0 ft-lb) were statistically different compared to the nonoperated limb (60 degrees /s, 20.5 +/- 4.7 ft-lb; 120 degrees /s, 15.9 +/- 3.8 ft-lb; 180 degrees /s, 13.4 +/- 3.8 ft-lb) at 60 degrees /s (P = .012), 120 degrees /s (P = .036), and 180 degrees /s (P = .045). The nonoperative limb demonstrated greater strength at all speeds. The mean torque measurements for external rotation were statistically similar when compared to the nonoperated limb at all angular velocities. We have shown through our study that

  5. Muscle recovery after ACL reconstruction with 4-strand semitendinosus graft harvested through either a posterior or anterior incision: a preliminary study.

    PubMed

    Dujardin, D; Fontanin, N; Geffrier, A; Morel, N; Mensa, C; Ohl, X

    2015-09-01

    Harvesting of a 4-strand semitendinosis (ST4) graft during anterior cruciate ligament (ACL) reconstruction can be performed through either a posterior or anterior approach. The objective of this study was to evaluate the recovery of the quadriceps and hamstring muscles as a function of the graft harvesting method. We hypothesized that posterior harvesting (PH) would lead to better recovery in hamstring strength than anterior harvesting (AH). In this prospective study, the semitendinosus was harvested through an anterior incision in the first group of patients and through a posterior one in the second group of patients. The patients were enrolled consecutively, without randomization. Isokinetic muscle testing was performed three and six months postoperative to determine the strength deficit in the quadriceps and hamstring muscles of the operated leg relative to the uninjured contralateral leg. Thirty-nine patients were included: 20 in the AH group and 19 in the PH group. The mean quadriceps strength deficit after three and six months was 42% and 26% for AH and 29% and 19% for the PH, respectively (P=0.01 after three months and P=0.16 after six months). The mean hamstring strength deficit after three and six months was 31% and 17% for AH and 23% and 15% for the PH, respectively (P=0.09 after three months and P=0.45 after six months). After three months, the PH group had recovered 12% more quadriceps muscle strength than the AH group (P=0.03). Our hypothesis was not confirmed. Harvesting of a ST4 graft for ACL reconstruction using a posterior approach led to better muscle strength recovery in the quadriceps only after three months. Level 3. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Discussion about different cut-off values of conventional hamstring-to-quadriceps ratio used in hamstring injury prediction among professional male football players.

    PubMed

    Grygorowicz, Monika; Michałowska, Martyna; Walczak, Tomasz; Owen, Adam; Grabski, Jakub Krzysztof; Pyda, Andrzej; Piontek, Tomasz; Kotwicki, Tomasz

    2017-01-01

    To measure the sensitivity and specificity of differences cut-off values for isokinetic Hcon/Qcon ratio in order to improve the capacity to evaluate (retrospectively) the injury of hamstring muscles in professional soccer screened with knee isokinetic tests. Retrospective study. Medical and biomechanical data of professional football players playing for the same team for at least one season between 2010 and 2016 were analysed. Hamstring strain injury cases and the reports generated via isokinetic testing were investigated. Isokinetic concentric(con) hamstring(H) and quadriceps(Q) absolute strength in addition with Hcon/Qcon ratio were examined for the injured versus uninjured limbs among injured players, and for the injured and non-injured players. 2 x 2 contingency table was used for comparing variables: predicted injured or predicted uninjured with actual injured or actual uninjured. Sensitivity, specificity, accuracy, positive and negative predictive values, and positive and negative likelihood ratio were calculated for three different cut-off values (0.47 vs. 0.6 vs. 0.658) to compare the discriminative power of an isokinetic test, whilst examining the key value of Hcon/Qcon ratio which may indicate the highest level of ability to predispose a player to injury. McNemar's chi2 test with Yates's correction was used to determine agreement between the tests. PQStat software was used for all statistical analysis, and an alpha level of p <0.05 was used for all statistical comparisons. 340 isokinetic test reports on both limbs of 66 professional soccer players were analysed. Eleven players suffered hamstring injuries during the analysed period. None of these players sustained recurrence of hamstring injury. One player sustained hamstring strain injury on both legs, thus the total number of injuries was 12. Application of different cut-off values for Hcon/Qcon significantly affected the sensitivity and specificity of isokinetic test used as a tool for muscle injury

  7. Differences between two subgroups of low back pain patients in lumbopelvic rotation and symmetry in the erector spinae and hamstring muscles during trunk flexion when standing.

    PubMed

    Kim, Min-hee; Yoo, Won-gyu; Choi, Bo-ram

    2013-04-01

    The present study was performed to examine lumbopelvic rotation and to identify asymmetry of the erector spinae and hamstring muscles in people with and without low back pain (LBP). The control group included 16 healthy subjects, the lumbar-flexion-rotation syndrome LBP group included 17 subjects, and the lumbar-extension-rotation syndrome LBP group included 14 subjects. Kinematic parameters were recorded using a 3D motion-capture system, and electromyography parameters were measured using a Noraxon TeleMyo 2400T. The two LBP subgroups showed significantly more lumbopelvic rotation during trunk flexion in standing than did the control group. The muscle activity and flexion-relaxation ratio asymmetries of the erector spinae muscles in the lumbar-flexion-rotation syndrome LBP group were significantly greater than those in the control group, and the muscle activity and flexion-relaxation ratio asymmetry of the hamstring muscles in the lumbar-extension-rotation syndrome LBP group were significantly greater than those in the control group. Imbalance or asymmetry of passive tissue could lead to asymmetry of muscular activation. Muscle imbalance can cause asymmetrical alignment or movements such as unexpected rotation. The results showed a greater increase in lumbopelvic rotation during trunk flexion in standing among the lumbar-flexion-rotation syndrome and lumbar-extension-rotation syndrome LBP groups compared with the control group. The differences between the two LBP subgroups may be a result of imbalance and asymmetry in erector spinae and hamstring muscle properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. H:q ratios and bilateral leg strength in college field and court sports players.

    PubMed

    Cheung, Roy T H; Smith, Andrew W; Wong, Del P

    2012-06-01

    One of the key components in sports injury prevention is the identification of imbalances in leg muscle strength. However, different leg muscle characteristics may occur in large playing area (field) sports and small playing area (court) sports, which should be considered in regular injury prevention assessment. This study examined the isokinetic hamstrings-to-quadriceps (H:Q) ratio and bilateral leg strength balance in 40 male college (age: 23.4 ± 2.5 yrs) team sport players (field sport = 23, soccer players; court sport = 17, volleyball and basketball players). Five repetitions of maximal knee concentric flexion and concentric extension were performed on an isokinetic dynamometer at two speeds (slow: 60°·s(-1) and fast: 300°·s(-1)) with 3 minutes rest between tests. Both legs were measured in counterbalanced order with the dominant leg being determined as the leg used to kick a ball. The highest concentric peak torque values (Nm) of the hamstrings and quadriceps of each leg were analyzed after body mass normalization (Nm·kg(-1)). Court sport players showed significantly weaker dominant leg hamstrings muscles at both contraction speeds (P < 0.05). The H:Q ratio was significantly larger in field players in their dominant leg at 60°·s(-1) (P < 0.001), and their non-dominant leg at 300°·s(-1) (P < 0.001) respectively. Sport-specific leg muscle strength was evident in college players from field and court sports. These results suggest the need for different muscle strength training and rehabilitation protocols for college players according to the musculature requirements in their respective sports.

  9. Self-Mobilization Using a Foam Roller Versus a Roller Massager: Which Is More Effective for Increasing Hamstrings Flexibility?

    PubMed

    DeBruyne, Danielle M; Dewhurst, Marina M; Fischer, Katelyn M; Wojtanowski, Michael S; Durall, Chris

    2017-01-01

    Clinical Scenario: Increasing the length of the muscle-tendon unit may prevent musculotendinous injury. Various methods have been proposed to increase muscle-tendon flexibility, including self-mobilization using foam rollers or roller massagers, although the effectiveness of these devices is uncertain. This review was conducted to determine if the use of foam rollers or roller massagers to improve hamstrings flexibility is supported by moderate- to high-quality evidence. Are foam rollers or roller massagers effective for increasing hamstrings flexibility in asymptomatic physically active adults? Summary of Key Findings: The literature was searched for studies on the effects of using foam rollers or roller massagers to increase hamstrings flexibility in asymptomatic physically active adults. Four randomized controlled trials were included; 2 studies provided level 2 or 3 evidence regarding foam rollers and 2 studies provided level 2 or 3 evidence regarding roller massagers. Both roller-massager studies reported increases in hamstrings flexibility after treatment. Data from the foam-roller studies did not demonstrate a statistically significant increase in hamstrings flexibility, but 1 study did demonstrate a strong effect size. Clinical Bottom Line: The reviewed moderate-quality studies support the use of roller massagers but provide limited evidence on the effectiveness of foam rolling to increase hamstrings flexibility in asymptomatic physically active adults. Flexibility gains may be improved by a longer duration of treatment and administration by a trained therapist. Gains appear to decline rapidly postrolling. Neither device has been shown to confer a therapeutic benefit superior to static stretching, and the effectiveness of these devices for preventing injury is unknown. Strength of Recommendation: Grade B evidence supports the use of roller massagers to increase hamstrings flexibility in asymptomatic physically active adults.

  10. Fatigue affects peak joint torque angle in hamstrings but not in quadriceps.

    PubMed

    Coratella, Giuseppe; Bellin, Giuseppe; Beato, Marco; Schena, Federico

    2015-01-01

    Primary aim of this study was to investigate peak joint torque angle (i.e. the angle of peak torque) changes recorded during an isokinetic test before and after a fatiguing soccer match simulation. Secondarily we want to investigate functional Hecc:Qconc and conventional Hconc:Qconc ratio changes due to fatigue. Before and after a standardised soccer match simulation, twenty-two healthy male amateur soccer players performed maximal isokinetic strength tests both for hamstrings and for quadriceps muscles at 1.05 rad · s(‒1), 3.14 rad · s(‒1) and 5.24 rad · s(‒1). Peak joint torque angle, peak torque and both functional Hecc:Qconc and conventional Hconc:Qconc ratios were examined. Both dominant and non-dominant limbs were tested. Peak joint torque angle significantly increased only in knee flexors. Both eccentric and concentric contractions resulted in such increment, which occurred in both limbs. No changes were found in quadriceps peak joint torque angle. Participants experienced a significant decrease in torque both in hamstrings and in quadriceps. Functional Hecc:Qconc ratio was lower only in dominant limb at higher velocities, while Hconc:Qconc did not change. This study showed after specific fatiguing task changes in hamstrings only torque/angle relationship. Hamstrings injury risk could depend on altered torque when knee is close to extension, coupled with a greater peak torque decrement compared to quadriceps. These results suggest the use eccentric based training to prevent hamstrings shift towards shorter length.

  11. The effect of kinesio taping versus stretching techniques on muscle soreness, and flexibility during recovery from nordic hamstring exercise.

    PubMed

    Ozmen, Tarik; Yagmur Gunes, Gokce; Dogan, Hanife; Ucar, Ilyas; Willems, Mark

    2017-01-01

    The purpose of this study was to examine the effects of static stretching, proprioceptive neuromuscular facilitation (PNF) stretching, or kinesio taping (KT) on muscle soreness and flexibility during recovery from exercise. Sixty-five females were randomly assigned to four groups: PNF stretching (n = 15), static stretching (n = 16), KT (n = 17), and control (n = 17). All participants performed nordic hamstring exercise (5 sets of 8 repetitions). In all groups, hamstring flexibility at 24 h and 48 h was not changed from baseline (p > .05). The muscle soreness was measured higher at 48 h post-exercise compared with baseline in the control group (p = .04) and at 24 h post-exercise compared with baseline in the PNF group (p < .01). No significant differences were found for intervention groups compared with control group in all measurements (p > .05). The KT application and pre-exercise stretching have no contribute to flexibility at 24 h and 48 h after exercise, but may attenuate muscle soreness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Motor imagery during action observation increases eccentric hamstring force: an acute non-physical intervention.

    PubMed

    Scott, Matthew; Taylor, Stephen; Chesterton, Paul; Vogt, Stefan; Eaves, Daniel Lloyd

    2018-06-01

    Rehabilitation professionals typically use motor imagery (MI) or action observation (AO) to increase physical strength for injury prevention and recovery. Here we compared hamstring force gains for MI during AO (AO + MI) against two pure MI training groups. Over a 3-week intervention physically fit adults imagined Nordic hamstring exercises in both legs and synchronized this with a demonstration of the same action (AO + MI), or they purely imagined this action (pure MI), or imagined upper-limb actions (pure MI-control). Eccentric hamstring strength gains were assessed using ANOVAs, and magnitude-based inference (MBI) analyses determined the likelihood of clinical/practical benefits for the interventions. Hamstring strength only increased significantly following AO + MI training. This effect was lateralized to the right leg, potentially reflecting a left-hemispheric dominance in motor simulation. MBIs: The right leg within-group treatment effect size for AO + MI was moderate and likely beneficial (d = 0.36), and only small and possibly beneficial for pure MI (0.23). Relative to pure MI-control, effects were possibly beneficial and moderate for AO + MI (0.72), although small for pure MI (0.39). Since hamstring strength predicts injury prevalence, our findings point to the advantage of combined AO + MI interventions, over and above pure MI, for injury prevention and rehabilitation. Implications for rehabilitation While hamstring strains are the most common injury across the many sports involving sprinting and jumping, Nordic hamstring exercises are among the most effective methods for building eccentric hamstring strength, for injury prevention and rehabilitation. In the acute injury phase it is crucial not to overload damaged soft tissues, and so non-physical rehabilitation techniques are well suited to this phase. Rehabilitation professionals typically use either motor imagery or action observation techniques to safely improve physical

  13. Sex-Related and Age-Related Differences in Knee Strength of Basketball Players Ages 11–17 Years

    PubMed Central

    Vardaxis, Vassilios G.

    2003-01-01

    Objective: To assess hamstrings and quadriceps strength of basketball players ages 11–13 and 15–17 years. Design and Setting: This cross-sectional study occurred during the 2000 American Youth Basketball Tour National Tournament. We investigated whether sex- or age-related strength differences existed among study participants. Subjects: Forty-one tournament participants (22 girls, 19 boys; 11–13 or 15–17 years old) who reported no history of knee sprain or surgery were recruited. Measurements: We used a Cybex II dynamometer to obtain isokinetic concentric peak torques relative to body mass (Nm/kg) at 60°/s for hamstrings and quadriceps bilaterally. From average peak torques, we determined ipsilateral hamstrings:quadriceps and homologous muscle-group ratios. Results: Correlations between hamstrings and quadriceps strength measures ranged from 0.78 to 0.97. Players 15–17 years old had greater relative hamstrings and quadriceps strength than 11- to 13-year-old athletes. Age and sex interacted significantly for quadriceps strength. The quadriceps strength of 15- to 17-year-old girls did not differ from that of 11- to 13-year-old girls, whereas 15- to 17-year-old boys had stronger quadriceps than 11- to 13-year-old boys. Boys 15–17 years old had greater quadriceps strength than girls 15–17 years old. Conclusions: This study is unique in providing normative data for the hamstrings and quadriceps strength of basketball players 11–13 and 15–17 years old. Age-related strength differences did not occur consistently between the sexes, as girls 11–13 and 15–17 years old had similar relative quadriceps strength. PMID:14608433

  14. Should the Ipsilateral Hamstrings Be Used for Anterior Cruciate Ligament Reconstruction in the Case of Medial Collateral Ligament Insufficiency? Biomechanical Investigation Regarding Dynamic Stabilization of the Medial Compartment by the Hamstring Muscles.

    PubMed

    Herbort, Mirco; Michel, Philipp; Raschke, Michael J; Vogel, Nils; Schulze, Martin; Zoll, Alexander; Fink, Christian; Petersen, Wolf; Domnick, Christoph

    2017-03-01

    Semitendinosus and gracilis muscles are frequently harvested for autologous tendon grafts for cruciate ligament reconstruction. This study investigated the joint-stabilizing effects of these hamstring muscles in cases of insufficiency of the medial collateral ligament (MCL). First, both the semitendinosus and gracilis muscles can actively stabilize the joint against valgus moments in the MCL-deficient knee. Second, the stabilizing influence of these muscles decreases with an increasing knee flexion angle. Controlled laboratory study. The kinematics was examined in 10 fresh-frozen human cadaveric knees using a robotic/universal force moment sensor system and an optical tracking system. The knee kinematics under 5- and 10-N·m valgus moments were determined in the different flexion angles of the (1) MCL-intact and (2) MCL-deficient knee using the following simulated muscle loads: (1) 0-N (idle) load, (2) 200-N semitendinosus (ST) load, and (3) 280-N (200/80-N) combined semitendinosus/gracilis (STGT) load. Cutting the MCL increased the valgus angle under all tested conditions and angles compared with the MCL-intact knee by 4.3° to 8.1° for the 5-N·m valgus moment and 6.5° to 11.9° for the 10-N·m valgus moment ( P < .01). The applied 200-N simulated ST load reduced the valgus angle significantly at 0°, 10°, 20°, and 30° of flexion under 5- and 10-N·m valgus moments ( P < .05). At 0°, 10°, and 20° of flexion, these values were close to those for the MCL-intact joint under the respective moments (both P > .05). The combined 280-N simulated STGT load significantly reduced the valgus angle in 0°, 10°, and 20° of flexion under 5- and 10-N·m valgus moments ( P < .05) to values near those for the intact joint (5 N·m: 0°, 10°; 10 N·m: 0°, 10°, 20°; P > .05). In 60° and 90° of flexion, ST and STGT loads did not decrease the resulting valgus angle of the MCL-deficient knee without hamstring loads ( P > .05 vs deficient; P = .0001 vs intact). In this

  15. The biomechanics of running in athletes with previous hamstring injury: A case-control study.

    PubMed

    Daly, C; Persson, U McCarthy; Twycross-Lewis, R; Woledge, R C; Morrissey, D

    2016-04-01

    Hamstring injury is prevalent with persistently high reinjury rates. We aim to inform hamstring rehabilitation by exploring the electromyographic and kinematic characteristics of running in athletes with previous hamstring injury. Nine elite male Gaelic games athletes who had returned to sport after hamstring injury and eight closely matched controls sprinted while lower limb kinematics and muscle activity of the previously injured biceps femoris, bilateral gluteus maximus, lumbar erector spinae, rectus femoris, and external oblique were recorded. Intergroup comparisons of muscle activation ratios and kinematics were performed. Previously injured athletes demonstrated significantly reduced biceps femoris muscle activation ratios with respect to ipsilateral gluteus maximus (maximum difference -12.5%, P = 0.03), ipsilateral erector spinae (maximum difference -12.5%, P = 0.01), ipsilateral external oblique (maximum difference -23%, P = 0.01), and contralateral rectus femoris (maximum difference -22%, P = 0.02) in the late swing phase. We also detected sagittal asymmetry in hip flexion (maximum 8°, P = 0.01), pelvic tilt (maximum 4°, P = 0.02), and medial rotation of the knee (maximum 6°, P = 0.03) effectively putting the hamstrings in a lengthened position just before heel strike. Previous hamstring injury is associated with altered biceps femoris associated muscle activity and potentially injurious kinematics. These deficits should be considered and addressed during rehabilitation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Discussion about different cut-off values of conventional hamstring-to-quadriceps ratio used in hamstring injury prediction among professional male football players

    PubMed Central

    Michałowska, Martyna; Walczak, Tomasz; Owen, Adam; Grabski, Jakub Krzysztof; Pyda, Andrzej; Piontek, Tomasz; Kotwicki, Tomasz

    2017-01-01

    Objective To measure the sensitivity and specificity of differences cut-off values for isokinetic Hcon/Qcon ratio in order to improve the capacity to evaluate (retrospectively) the injury of hamstring muscles in professional soccer screened with knee isokinetic tests. Design Retrospective study. Methods Medical and biomechanical data of professional football players playing for the same team for at least one season between 2010 and 2016 were analysed. Hamstring strain injury cases and the reports generated via isokinetic testing were investigated. Isokinetic concentric(con) hamstring(H) and quadriceps(Q) absolute strength in addition with Hcon/Qcon ratio were examined for the injured versus uninjured limbs among injured players, and for the injured and non-injured players. 2 x 2 contingency table was used for comparing variables: predicted injured or predicted uninjured with actual injured or actual uninjured. Sensitivity, specificity, accuracy, positive and negative predictive values, and positive and negative likelihood ratio were calculated for three different cut-off values (0.47 vs. 0.6 vs. 0.658) to compare the discriminative power of an isokinetic test, whilst examining the key value of Hcon/Qcon ratio which may indicate the highest level of ability to predispose a player to injury. McNemar’s chi2 test with Yates’s correction was used to determine agreement between the tests. PQStat software was used for all statistical analysis, and an alpha level of p <0.05 was used for all statistical comparisons. Results 340 isokinetic test reports on both limbs of 66 professional soccer players were analysed. Eleven players suffered hamstring injuries during the analysed period. None of these players sustained recurrence of hamstring injury. One player sustained hamstring strain injury on both legs, thus the total number of injuries was 12. Application of different cut-off values for Hcon/Qcon significantly affected the sensitivity and specificity of isokinetic test

  17. A longitudinal study of muscle strength and function in patients with cancer cachexia.

    PubMed

    Gale, Nichola; Wasley, David; Roberts, Sioned; Backx, Karianne; Nelson, Annemarie; van Deursen, Robert; Byrne, Anthony

    2018-06-02

    Patients with cancer frequently experience an involuntary loss of weight (in particular loss of muscle mass), defined as cachexia, with profound implications for independence and quality of life. The rate at which such patients' physical performance declines has not been well established. The aim of this study was to determine the change in muscle strength and function over 8 weeks in patients with already established cancer cachexia, to help inform the design and duration of physical activity interventions applicable to this patient group. Patients with thoracic and gastrointestinal cancer and with unintentional weight loss of > 5% in 6 months or BMI < 20 plus 2% weight loss were included. Physical and functional assessments (baseline, 4 weeks, 8 weeks) included isometric quadriceps and hamstring strength, handgrip, standing balance, 10-m walk time and timed up and go. Fifty patients (32 male), mean ± SD age 65 ± 10 years and BMI 24.9 ± 4.3 kg/m 2 , were recruited. Thoracic cancer patients had lower muscle strength and function (p < 0.05). Despite notable attrition, in patients who completed all assessments (8 thoracic and 12 gastrointestinal), there was little change in performance over 8 weeks (p > 0.05). Baseline variables did not differentiate between completers and non-completers (p > 0.05). More than a third of patients with established cancer cachexia in our study were stable over 8 weeks, suggesting a subgroup who may benefit from targeted interventions of reasonable duration. Better understanding the physical performance parameters which characterise and differentiate these patients has important clinical implications for cancer multidisciplinary team practice.

  18. Relationship between quadriceps strength and rate of loading during gait in women.

    PubMed

    Mikesky, A E; Meyer, A; Thompson, K L

    2000-03-01

    One function of skeletal muscle is to serve as the body's shock absorbers and thus dampen rates of loading during activity. The aim of this cross-sectional study was to determine the significance of muscle strength on rates of loading during gait. Thirty-seven women (mean age: 34.5 +/- 8.2 years) were solicited by advertisement and placed into one of two groups-strength-trained or sedentary-on the basis of training history. They walked (10 trials) over a 10-m walkway at a controlled speed of 1.22-1.35 m/s while the rate of loading was sampled with a 1,000-Hz force platform. Quadriceps and hamstring strength was measured at 90 degrees/s with an isokinetic dynamometer. Statistical analyses (p < 0.05) included descriptive statistics and unpaired t tests for comparison between groups. The women in the sedentary group weighed more and had significantly less concentric and eccentric strength of the quadriceps and hamstrings relative to body weight than did those in the strength-trained group. In addition, they demonstrated significantly higher rates of loading (2.21 +/- 0.15 compared with 1.75 +/- 0.08%wt/ms) than those in the strength-trained group.

  19. Clinical and Morphological Changes Following 2 Rehabilitation Programs for Acute Hamstring Strain Injuries: A Randomized Clinical Trial

    PubMed Central

    SILDER, AMY; SHERRY, MARC A.; SANFILIPPO, JENNIFER; TUITE, MICHAEL J.; HETZEL, SCOTT J.; HEIDERSCHEIT, BRYAN C.

    2013-01-01

    STUDY DESIGN Randomized, double-blind, parallel-group clinical trial. OBJECTIVES To assess differences between a progressive agility and trunk stabilization rehabilitation program and a progressive running and eccentric strengthening rehabilitation program in recovery characteristics following an acute hamstring injury, as measured via physical examination and magnetic resonance imaging (MRI). BACKGROUND Determining the type of rehabilitation program that most effectively promotes muscle and functional recovery is essential to minimize reinjury risk and to optimize athlete performance. METHODS Individuals who sustained a recent hamstring strain injury were randomly assigned to 1 of 2 rehabilitation programs: (1) progressive agility and trunk stabilization or (2) progressive running and eccentric strengthening. MRI and physical examinations were conducted before and after completion of rehabilitation. RESULTS Thirty-one subjects were enrolled, 29 began rehabilitation, and 25 completed rehabilitation. There were few differences in clinical or morphological outcome measures between rehabilitation groups across time, and reinjury rates were low for both rehabilitation groups after return to sport (4 of 29 subjects had reinjuries). Greater craniocaudal length of injury, as measured on MRI before the start of rehabilitation, was positively correlated with longer return-to-sport time. At the time of return to sport, although all subjects showed a near-complete resolution of pain and return of muscle strength, no subject showed complete resolution of injury as assessed on MRI. CONCLUSION The 2 rehabilitation programs employed in this study yielded similar results with respect to hamstring muscle recovery and function at the time of return to sport. Evidence of continuing muscular healing is present after completion of rehabilitation, despite the appearance of normal physical strength and function on clinical examination. LEVEL OF EVIDENCE Therapy, level 1b–. J Orthop

  20. Regional muscle loss after short duration spaceflight.

    PubMed

    LeBlanc, A; Rowe, R; Schneider, V; Evans, H; Hedrick, T

    1995-12-01

    Muscle strength and limb girth measurements during Skylab and Apollo missions suggested that loss of muscle mass may occur as a result of spaceflight. Extended duration spaceflight is important for the economical and practical use of space. The loss of muscle mass during spaceflight is a medical concern for long duration flights to the planets or extended stays aboard space stations. Understanding the extent and temporal relationships of muscle loss is important for the development of effective spaceflight countermeasures. We hypothesized that significant and measurable changes in muscle volume would occur in Shuttle crewmembers following 8 d of weightlessness. MRI was used to obtain the muscle volumes of the calf, thigh and lower back before and after the STS-47 Shuttle mission. Statistical analyses demonstrated that the soleus-gastrocnemius (-6.3%), anterior calf (-3.9%), hamstrings (-8.3%), quadriceps (-6.0%) and intrinsic back (-10.3%) muscles were decreased, p < 0.05, compared to baseline, 24 h after landing. At 2 weeks post recovery, the hamstrings and intrinsic lower back muscles were still below baseline, p < 0.05. These results demonstrate that even short duration spaceflight can result in significant muscle atrophy.

  1. A new approach to assess the spasticity in hamstrings muscles using mechanomyography antagonist muscular group.

    PubMed

    Krueger, Eddy; Scheeren, Eduardo M; Nogueira-Neto, Guilherme N; Button, Vera Lúcia da S N; Nohama, Percy

    2012-01-01

    Several pathologies can cause muscle spasticity. Modified Ashworth scale (MAS) can rank spasticity, however its results depend on the physician subjective evaluation. This study aims to show a new approach to spasticity assessment by means of MMG analysis of hamstrings antagonist muscle group (quadriceps muscle). Four subjects participated in the study, divided into two groups regarding MAS (MAS0 and MAS1). MMG sensors were positioned over the muscle belly of rectus femoris (RF), vastus lateralis (VL) and vastus medialis (VM) muscles. The range of movement was acquired with an electrogoniometer placed laterally to the knee. The system was based on a LabVIEW acquisition program and the MMG sensors were built with triaxial accelerometers. The subjects were submitted to stretching reflexes and the integral of the MMG (MMG(INT)) signal was calculated to analysis. The results showed that the MMG(INT) was greater to MAS1 than to MAS0 [muscle RF (p = 0.004), VL (p = 0.001) and VM (p = 0.007)]. The results showed that MMG was viable to detect a muscular tonus increase in antagonist muscular group (quadriceps femoris) of spinal cord injured volunteers.

  2. Comparison of Lower Body Specific Resistance Training on the Hamstring to Quadriceps Strength Ratios in Men and Women

    ERIC Educational Resources Information Center

    Dorgo, Sandor; Edupuganti, Pradeep; Smith, Darla R.; Ortiz, Melchor

    2012-01-01

    In this study, we compared hamstring (H) and quadriceps (Q) strength changes in men and women, as well as changes in conventional and functional H:Q ratios following an identical 12-week resistance training program. An isokinetic dynamometer was used to assess 14 male and 14 female participants before and after the intervention, and conventional…

  3. Different roles of the medial and lateral hamstrings in unloading the anterior cruciate ligament.

    PubMed

    Guelich, David R; Xu, Dali; Koh, Jason L; Nuber, Gordon W; Zhang, Li-Qun

    2016-01-01

    Anterior cruciate ligament injuries are closely associated with excessive loading and motion about the off axes of the knee, i.e. tibial rotation and knee varus/valgus. However, it is not clear about the 3-D mechanical actions of the lateral and medial hamstring muscles and their differences in loading the ACL. The purpose of this study was to investigate the change in anterior cruciate ligament strain induced by loading the lateral and medial hamstrings individually. Seven cadaveric knees were investigated using a custom testing apparatus allowing for six degree-of-freedom tibiofemoral motion induced by individual muscle loading. With major muscles crossing the knee loaded moderately, the medial and lateral hamstrings were loaded independently to 200N along their lines of actions at 0°, 30°, 60° and 90° of knee flexion. The induced strain of the anterior cruciate ligament was measured using a differential variable reluctance transducer. Tibiofemoral kinematics was monitored using a six degrees-of-freedom knee goniometer. Loading the lateral hamstrings induced significantly more anterior cruciate ligament strain reduction (mean 0.764 [SD 0.63] %) than loading the medial hamstrings (mean 0.007 [0.2] %), (P=0.001 and effect size=0.837) across the knee flexion angles. The lateral and medial hamstrings have significantly different effects on anterior cruciate ligament loadings. More effective rehabilitation and training strategies may be developed to strengthen the lateral and medial hamstrings selectively and differentially to reduce anterior cruciate ligament injury and improve post-injury rehabilitation. The lateral and medial hamstrings can potentially be strengthened selectively and differentially as a more focused rehabilitation approach to reduce ACL injury and improve post-injury rehabilitation. Different ACL reconstruction procedures with some of them involving the medial hamstrings can be compared to each other for their effect on ACL loading. Copyright

  4. Hamstring tightness and Scheuermann's disease a pilot study.

    PubMed

    Fisk, J W; Baigent, M L

    1981-06-01

    The lateral radiographs of the dorsal spines of 20 patients presenting with mainly low back pain are studied. These patients had clinically evident loss of flexion in the low dorsal spine and very tight hamstring muscles. 85% of them showed definite evidence of previous Scheuermann's Disease. The possibility that tight hamstrings may be an important factor in the aetiology of this disease is discussed, and a further large scale study is proposed.

  5. Objective evaluation of muscle strength in infants with hypotonia and muscle weakness.

    PubMed

    Reus, Linda; van Vlimmeren, Leo A; Staal, J Bart; Janssen, Anjo J W M; Otten, Barto J; Pelzer, Ben J; Nijhuis-van der Sanden, Maria W G

    2013-04-01

    The clinical evaluation of an infant with motor delay, muscle weakness, and/or hypotonia would improve considerably if muscle strength could be measured objectively and normal reference values were available. The authors developed a method to measure muscle strength in infants and tested 81 typically developing infants, 6-36 months of age, and 17 infants with Prader-Willi Syndrome (PWS) aged 24 months. The inter-rater reliability of the measurement method was good (ICC=.84) and the convergent validity was confirmed by high Pearson's correlations between muscle strength, age, height, and weight (r=.79-.85). A multiple linear regression model was developed to predict muscle strength based on age, height, and weight, explaining 73% of the variance in muscle strength. In infants with PWS, muscle strength was significantly decreased. Pearson's correlations showed that infants with PWS in which muscle strength was more severely affected also had a larger motor developmental delay (r=.75). Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Isokinetic and isometric strength in osteoarthrosis of the knee. A comparative study with healthy women.

    PubMed

    Tan, J; Balci, N; Sepici, V; Gener, F A

    1995-01-01

    Dynamic stability of the knee joint depends on the appropriate strength ratio of quadriceps and hamstring muscles. The purpose of this investigation was to determine the maximum peak torque (MPT) and MPT ratios of hamstrings to quadriceps (H/Q) muscles in patients with knee osteoarthritis (OA). Two groups of patients were included in the study. The first group consisted of 30 patients (Group A) with the clinical and radiologic findings of knee OA. The second group consisted of 30 patients (Group B) exhibiting knee joint pain without roentgenologic findings of knee OA. The findings of two patient groups were compared with each other and also with 30 healthy subjects (Group C). Isokinetic (at 60 degrees/s and at 180 degrees/s) and isometric (at 30 degrees and at 60 degrees of knee flexion) tests were performed by the rate-limiting isokinetic dynamometer system. Isokinetic and isometric MPT loss of knee flexors and extensors was found in both patient groups with respect to controls, but MPT ratios of H/Q muscles did not show a statistically significant difference compared with the control group. This may be related to the equal strength loss of knee flexors and knee extensors in patients with knee OA. It is concluded that strengthening exercises of hamstring muscles is as important as quadriceps strengthening in rehabilitation of knee OA.

  7. Proximal Neuromuscular Control Protects Against Hamstring Injuries in Male Soccer Players: A Prospective Study With Electromyography Time-Series Analysis During Maximal Sprinting.

    PubMed

    Schuermans, Joke; Danneels, Lieven; Van Tiggelen, Damien; Palmans, Tanneke; Witvrouw, Erik

    2017-05-01

    With their unremittingly high incidence rate and detrimental functional repercussions, hamstring injuries remain a substantial problem in male soccer. Proximal neuromuscular control ("core stability") is considered to be of key importance in primary and secondary hamstring injury prevention, although scientific evidence and insights on the exact nature of the core-hamstring association are nonexistent at present. The muscle activation pattern throughout the running cycle would not differ between participants based on injury occurrence during follow-up. Case-control study; Level of evidence, 3. Sixty amateur soccer players participated in a multimuscle surface electromyography (sEMG) assessment during maximal acceleration to full-speed sprinting. Subsequently, hamstring injury occurrence was registered during a 1.5-season follow-up period. Hamstring, gluteal, and trunk muscle activity time series during the airborne and stance phases of acceleration were evaluated and statistically explored for a possible causal association with injury occurrence and absence from sport during follow-up. Players who did not experience a hamstring injury during follow-up had significantly higher amounts of gluteal muscle activity during the front swing phase ( P = .027) and higher amounts of trunk muscle activity during the backswing phase of sprinting ( P = .042). In particular, the risk of sustaining a hamstring injury during follow-up lowered by 20% and 6%, with a 10% increment in normalized muscle activity of the gluteus maximus during the front swing and the trunk muscles during the backswing, respectively ( P < .024). Muscle activity of the core unit during explosive running appeared to be associated with hamstring injury occurrence in male soccer players. Higher amounts of gluteal and trunk muscle activity during the airborne phases of sprinting were associated with a lower risk of hamstring injuries during follow-up. Hence, the present results provide a basis for improved

  8. Drop punt kicking induces eccentric knee flexor weakness associated with reductions in hamstring electromyographic activity.

    PubMed

    Duhig, Steven J; Williams, Morgan D; Minett, Geoffrey M; Opar, David; Shield, Anthony J

    2017-06-01

    To examine the effect of 100 drop punt kicks on isokinetic knee flexor strength and surface electromyographic activity of bicep femoris and medial hamstrings. Randomized control study. Thirty-six recreational footballers were randomly assigned to kicking or control groups. Dynamometry was conducted immediately before and after the kicking or 10min of sitting (control). Eccentric strength declined more in the kicking than the control group (p<0.001; d=1.60), with greater reductions in eccentric than concentric strength after kicking (p=0.001; d=0.92). No significant between group differences in concentric strength change were observed (p=0.089; d=0.60). The decline in normalized eccentric hamstring surface electromyographic activity (bicep femoris and medial hamstrings combined) was greater in the kicking than the control group (p<0.001; d=1.78), while changes in concentric hamstring surface electromyographic activity did not differ between groups (p=0.863; d=0.04). Post-kicking reductions in surface electromyographic activity were greater in eccentric than concentric actions for both bicep femoris (p=0.008; d=0.77) and medial hamstrings (p<0.001; d=1.11). In contrast, the control group exhibited smaller reductions in eccentric than concentric hamstring surface electromyographic activity for bicep femoris (p=0.026; d=0.64) and medial hamstrings (p=0.032; d=0.53). Reductions in bicep femoris surface electromyographic activity were correlated with eccentric strength decline (R=0.645; p=0.007). Reductions in knee flexor strength and hamstring surface electromyographic activity are largely limited to eccentric contractions and this should be considered when planning training loads in Australian Football. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. The diagnostic and prognostic value of ultrasonography in soccer players with acute hamstring injuries.

    PubMed

    Petersen, Jesper; Thorborg, Kristian; Nielsen, Michael Bachmann; Skjødt, Thomas; Bolvig, Lars; Bang, Niels; Hölmich, Per

    2014-02-01

    An injury to the hamstring muscle complex is the most common injury in soccer. Ultrasound of acute hamstring injuries is often used as a clinical tool for diagnosing hamstring injuries and guiding players in when they can return to play. To (1) investigate the characteristic sonographic findings of acute hamstring injuries in soccer players, (2) compare the mean injury severity (time to return to play) in injured players with and without sonographically verified abnormalities, and (3) correlate the length of the injured area and absence from soccer play (time to return to play) to investigate if ultrasonography can be used as a prognostic indicator of time to return to play. Case series; Level of evidence, 4. Players from 50 teams participating in 1 of the top 5 Danish soccer divisions were followed in the period from January to December 2008. Of 67 players with acute hamstring injuries, 51 underwent ultrasonographic examination of the injured thigh and were included in this study. Ultrasonographic examinations were performed 1 to 10 days after injury (mean, 5.2 ± 3.0 days), and sonographic findings were present in 31 of 51 cases (61%). Two thirds of the injuries were to the biceps femoris muscle and one third to the semitendinosus muscle. No total ruptures were documented. The 51 acute hamstring injuries resulted in absence from soccer of a mean 25.4 ± 15.7 days per injury, with no significant difference between players with and without sonographically verified abnormalities (P = .41). No correlation existed between the length of the injured area and injury severity (r = 0.19, P = .29). The biceps femoris is the most commonly injured hamstring muscle detected by ultrasound, and more than half of the injuries are intramuscular. Because neither the presence of sonographic findings nor the size of the findings was correlated with time to return to play in injured soccer players, the prognosis of hamstring injuries should not be guided by these findings alone.

  10. Acute effects of static and dynamic stretching on leg flexor and extensor isokinetic strength in elite women athletes.

    PubMed

    Sekir, U; Arabaci, R; Akova, B; Kadagan, S M

    2010-04-01

    The aim of this study was to explore the effects of static and dynamic stretching of the leg flexors and extensors on concentric and eccentric peak torque (PT) and electromyography (EMG) amplitude of the leg extensors and flexors in women athletes. Ten elite women athletes completed the following intervention protocol in a randomized order on separate days: (a) non-stretching (control), (b) static stretching, and (c) dynamic stretching. Stretched muscles were the quadriceps and hamstring muscles. Before and after the stretching or control intervention, concentric and eccentric isokinetic PT and EMG activity of the leg extensors and flexors were measured at 60 and 180 degrees/s. Concentric and eccentric quadriceps and hamstring muscle strength at both test speeds displayed a significant decrease following static stretching (P<0.01-0.001). In contrast, a significant increase was observed after dynamic stretching for these strength parameters (P<0.05-0.001). Parallel to this, normalized EMG amplitude parameters exhibited significant decreases following static (P<0.05-0.001) and significant increases following dynamic stretching (P<0.05-0.001) during quadriceps and hamstring muscle actions at both concentric and eccentric testing modes. Our findings suggest that dynamic stretching, as opposed to static or no stretching, may be an effective technique for enhancing muscle performance during the pre-competition warm-up routine in elite women athletes.

  11. Differences in activation properties of the hamstring muscles during overground sprinting.

    PubMed

    Higashihara, Ayako; Nagano, Yasuharu; Ono, Takashi; Fukubayashi, Toru

    2015-09-01

    The purpose of this study was to quantify activation of the biceps femoris (BF) and medial hamstring (MH) during overground sprinting. Lower-extremity kinematics and electromyography (EMG) of the BF and MH were recorded in 13 male sprinters performing overground sprinting at maximum effort. Mean EMG activity was calculated in the early stance, late stance, mid-swing, and late-swing phases. Activation of the BF was significantly greater during the early stance phase than the late stance phase (p<0.01). Activation of the BF muscle was significantly lower during the first half of the mid-swing phase than the other phases (p<0.05). The MH had significantly greater EMG activation relative to its recorded maximum values compared to that for the BF during the late stance (p<0.05) and mid-swing (p<0.01) phases. These results indicate that the BF shows high activation before and after foot contact, while the MH shows high activation during the late stance and mid-swing phases. We concluded that the activation properties of the BF and MH muscles differ within the sprinting gait cycle. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Contributions of Hamstring Stiffness to Straight-Leg-Raise and Sit-and-Reach Test Scores.

    PubMed

    Miyamoto, Naokazu; Hirata, Kosuke; Kimura, Noriko; Miyamoto-Mikami, Eri

    2018-02-01

    The passive straight-leg-raise (PSLR) and the sit-and-reach (SR) tests have been widely used to assess hamstring extensibility. However, it remains unclear to what extent hamstring stiffness (a measure of material properties) contributes to PSLR and SR test scores. Therefore, we aimed to clarify the relationship between hamstring stiffness and PSLR and SR scores using ultrasound shear wave elastography. Ninety-eight healthy subjects completed the study. Each subject completed PSLR testing, and classic and modified SR testing of the right leg. Muscle shear modulus of the biceps femoris, semitendinosus, and semimembranosus was quantified as an index of muscle stiffness. The relationships between shear modulus of each muscle and PSLR or SR scores were calculated using Pearson's product-moment correlation coefficients. Shear modulus of the semitendinosus and semimembranosus showed negative correlations with the two PSLR and two SR scores (absolute r value≤0.484). Shear modulus of the biceps femoris was significantly correlated with the PSLR score determined by the examiner and the modified SR score (absolute r value≤0.308). The present findings suggest that PSLR and SR test scores are strongly influenced by factors other than hamstring stiffness and therefore might not accurately evaluate hamstring stiffness. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Electromechanical delay of the knee flexor muscles is impaired after harvesting hamstring tendons for anterior cruciate ligament reconstruction.

    PubMed

    Ristanis, Stavros; Tsepis, Elias; Giotis, Dimitrios; Stergiou, Nicholas; Cerulli, Guiliano; Georgoulis, Anastasios D

    2009-11-01

    Changes in electromechanical delay during muscle activation are expected when there are substantial alterations in the structural properties of the musculotendinous tissue. In anterior cruciate ligament reconstruction, specific tendons are being harvested for grafts. Thus, there is an associated scar tissue development at the tendon that may affect the corresponding electromechanical delay. This study was conducted to investigate whether harvesting of semitendinosus and gracilis tendons for anterior cruciate ligament reconstruction will affect the electromechanical delay of the knee flexors. Case-control study; Level of evidence, 3. The authors evaluated 12 patients with anterior cruciate ligament reconstruction with a semitendinosus and gracilis autograft, 2 years after the reconstruction, and 12 healthy controls. Each participant performed 4 maximally explosive isometric contractions with a 1-minute break between contractions. The surface electromyographic activity of the biceps femoris and the semitendinosus was recorded from both legs during the contractions. The statistical comparisons revealed significant increases of the electromechanical delay of the anterior cruciate ligament-reconstructed knee for both investigated muscles. Specifically, the electromechanical delay values were increased for both the biceps femoris (P = .029) and the semitendinosus (P = .005) of the reconstructed knee when compared with the intact knee. Comparing the anterior cruciate ligament-reconstructed knee against healthy controls revealed similar significant differences for both muscles (semitendinosus, P = .011; biceps femoris, P = .024). The results showed that harvesting the semitendinosus and gracilis tendons for anterior cruciate ligament reconstruction significantly increased the electromechanical delay of the knee flexors. Increased hamstring electromechanical delay might impair knee safety and performance by modifying the transfer time of muscle tension to the tibia and

  14. Acute fatigue impairs neuromuscular activity of anterior cruciate ligament-agonist muscles in female team handball players.

    PubMed

    Zebis, M K; Bencke, J; Andersen, L L; Alkjaer, T; Suetta, C; Mortensen, P; Kjaer, M; Aagaard, P

    2011-12-01

    In sports, like team handball, fatigue has been associated with an increased risk of anterior cruciate ligament (ACL) injury. While effects of fatigue on muscle function are commonly assessed during maximal isometric voluntary contraction (MVC), such measurements may not relate to the muscle function during match play. The purpose of this study was to investigate the effect of muscle fatigue induced by a simulated handball match on neuromuscular strategy during a functional sidecutting movement, associated with the incidence of ACL injury. Fourteen female team handball players were tested for neuromuscular activity [electromyography (EMG)] during a sidecutting maneuver on a force plate, pre and post a simulated handball match. MVC was obtained during maximal isometric quadriceps and hamstring contraction. The simulated handball match consisted of exercises mimicking handball match activity. Whereas the simulated handball match induced a decrease in MVC strength for both the quadriceps and hamstring muscles (P<0.05), a selective decrease in hamstring neuromuscular activity was seen during sidecutting (P<0.05). This study shows impaired ACL-agonist muscle (i.e. hamstring) activity during sidecutting in response to acute fatigue induced by handball match play. Thus, screening procedures should involve functional movements to reveal specific fatigue-induced deficits in ACL-agonist muscle activation during high-risk phases of match play. © 2010 John Wiley & Sons A/S.

  15. Muscle Strength and Muscle Mass in Older Patients during Hospitalization: The EMPOWER Study

    PubMed Central

    Van Ancum, Jeanine M.; Scheerman, Kira; Pierik, Vincent D.; Numans, Siger T.; Verlaan, Sjors; Smeenk, Hanne E.; Slee-Valentijn, Monique; Kruizinga, Roeliene C.; Meskers, Carel G.M.; Maier, Andrea B.

    2017-01-01

    Background Low muscle strength and muscle mass are associated with an increased length of hospital stay and higher mortality rate in inpatients. To what extent hospitalization affects muscle strength and muscle mass is unclear. Objective We aimed to assess muscle strength and muscle mass at admission and during hospitalization in older patients and its relation with being at risk of geriatric conditions. Methods The EMPOWER study included patients aged 70 years and older, admitted to 4 wards of the VU University Medical Center in the Netherlands between April and December 2015. At admission, patients were screened for being at risk of 4 geriatric conditions: delirium, falls, malnutrition, and functional disability. At admission and at discharge, muscle strength and muscle mass were assessed. Results A total of 373 patients (mean age, standard deviation [SD]: 79.6, 6.38 years) were included at admission, and 224 patients (mean age, SD: 80.1, 6.32 years) at discharge. At admission, lower muscle strength in both female and male patients and low muscle mass in male patients were associated with being at risk of a higher cumulative number of geriatric conditions. Muscle strength increased during hospitalization, but no change in muscle mass was observed. Changes in muscle measures were not associated with being at risk of geriatric conditions. Discussion Older patients with lower muscle strength and muscle mass at admission were at risk of a higher cumulative number of geriatric conditions. However, being at risk of geriatric conditions did not forecast further decrease in muscle strength and muscle mass during hospitalization PMID:28817825

  16. Muscle Strength and Muscle Mass in Older Patients during Hospitalization: The EMPOWER Study.

    PubMed

    Van Ancum, Jeanine M; Scheerman, Kira; Pierik, Vincent D; Numans, Siger T; Verlaan, Sjors; Smeenk, Hanne E; Slee-Valentijn, Monique; Kruizinga, Roeliene C; Meskers, Carel G M; Maier, Andrea B

    2017-01-01

    Low muscle strength and muscle mass are associated with an increased length of hospital stay and higher mortality rate in inpatients. To what extent hospitalization affects muscle strength and muscle mass is unclear. We aimed to assess muscle strength and muscle mass at admission and during hospitalization in older patients and its relation with being at risk of geriatric conditions. The EMPOWER study included patients aged 70 years and older, admitted to 4 wards of the VU University Medical Center in the Netherlands between April and December 2015. At admission, patients were screened for being at risk of 4 geriatric conditions: delirium, falls, malnutrition, and functional disability. At admission and at discharge, muscle strength and muscle mass were assessed. A total of 373 patients (mean age, standard deviation [SD]: 79.6, 6.38 years) were included at admission, and 224 patients (mean age, SD: 80.1, 6.32 years) at discharge. At admission, lower muscle strength in both female and male patients and low muscle mass in male patients were associated with being at risk of a higher cumulative number of geriatric conditions. Muscle strength increased during hospitalization, but no change in muscle mass was observed. Changes in muscle measures were not associated with being at risk of geriatric conditions. Older patients with lower muscle strength and muscle mass at admission were at risk of a higher cumulative number of geriatric conditions. However, being at risk of geriatric conditions did not forecast further decrease in muscle strength and muscle mass during hospitalization. © 2017 The Author(s) Published by S. Karger AG, Basel.

  17. Proximal hamstring reconstruction using semitendinosus and gracilis autograft: a novel technique.

    PubMed

    Muellner, Thomas; Kumar, Sandeep; Singla, Amit

    2017-01-01

    The complete proximal hamstring avulsion is relatively uncommon injury and predominantly occurs in young athletes but causes significant functional impairment. In chronic cases, the muscle mass is so much retracted that primary repair is not possible. A surgical technique for reconstruction of chronic proximal hamstring avulsion using contralateral semitendinosus and gracilis autograft is described in this case report. V.

  18. A comparison of two stretching programs for hamstring muscles: A randomized controlled assessor-blinded study.

    PubMed

    Demoulin, Christophe; Wolfs, Sébastien; Chevalier, Madeline; Granado, Caroline; Grosdent, Stéphanie; Depas, Yannick; Roussel, Nathalie; Hage, Renaud; Vanderthommen, Marc

    2016-01-01

    Most parameters regarding hamstring flexibility training programs have been investigated; however, the joint (i.e. hip or knee) on which the stretching should preferentially be focused needs to be further explored. This randomized controlled assessor-blinded study aimed to investigate the influence of this parameter. We randomly assigned 111 asymptomatic participants with tight hamstring muscles in three groups: a control group and two groups following a different home-based 8-week (five 10-minute sessions per week) hamstring stretching program (i.e. stretching performed by flexing the hip while keeping the knee extended [SH] or by first flexing the hip with a flexed knee and then extending the knee [SK]). Range of motion (ROM) of hip flexion and knee extension were measured before and after the stretching program by means of the straight leg raising test and the passive knee extension angle test, respectively. Eighty-nine participants completed the study. A significant increase in ROM was observed at post-test. Analyses showed significant group-by-time interactions for changes regarding all outcomes. Whereas the increase in hip flexion and knee extension ROM was higher in the stretching groups than in the CG (especially for the SH group p < 0.05), no differences between the two stretching groups were observed (p > 0.05). In conclusion, the fact that both stretching programs resulted in similar results suggests no influence of the joint at which the stretching is focused upon, as assessed by the straight leg raising and knee extension angle tests.

  19. Treadmill Training with Virtual Reality Improves Gait, Balance, and Muscle Strength in Children with Cerebral Palsy.

    PubMed

    Cho, Chunhee; Hwang, Wonjeong; Hwang, Sujin; Chung, Yijung

    2016-03-01

    Independent walking is an important goal of clinical and community-based rehabilitation for children with cerebral palsy (CP). Virtual reality-based rehabilitation therapy is effective in motivating children with CP. This study investigated the effects of treadmill training with virtual reality on gait, balance, muscular strength, and gross motor function in children with CP. Eighteen children with spastic CP were randomly divided into the virtual reality treadmill training (VRTT) group (9 subjects, mean age, 10.2 years) and treadmill training (TT) group (9 subjects, mean age, 9.4 years). The groups performed their respective programs as well as conventional physical therapy 3 times/week for 8 weeks. Muscle strength was assessed using a digitalized manual muscle tester. Gross motor function was assessed using the Gross Motor Functional Measure (GMFM). Balance was assessed using the Pediatric Balance Scale (PBS). Gait speed was assessed using the 10-meter walk test (10MWT), and gait endurance was assessed using the 2-minute walk test (2MWT). After training, gait and balance was improved in the VRTT compared to the TT group (P < 0.05). Muscular strength was significantly greater in the VRTT group than the TT group, except for right hamstring strength. The improvements in GMFM (standing) and PBS scores were greater in the VRTT group than the TT group (P < 0.05). Furthermore, the VRTT group showed the higher values of 10MWT and 2MWT compared to the TT group (P < 0.05). In conclusion, VRTT programs are effective for improving gait, balance, muscular strength, and gross motor function in children with CP.

  20. A Multifactorial, Criteria-based Progressive Algorithm for Hamstring Injury Treatment.

    PubMed

    Mendiguchia, Jurdan; Martinez-Ruiz, Enrique; Edouard, Pascal; Morin, Jean-Benoît; Martinez-Martinez, Francisco; Idoate, Fernando; Mendez-Villanueva, Alberto

    2017-07-01

    Given the prevalence of hamstring injuries in football, a rehabilitation program that effectively promotes muscle tissue repair and functional recovery is paramount to minimize reinjury risk and optimize player performance and availability. This study aimed to assess the concurrent effectiveness of administering an individualized and multifactorial criteria-based algorithm (rehabilitation algorithm [RA]) on hamstring injury rehabilitation in comparison with using a general rehabilitation protocol (RP). Implementing a double-blind randomized controlled trial approach, two equal groups of 24 football players (48 total) completed either an RA group or a validated RP group 5 d after an acute hamstring injury. Within 6 months after return to sport, six hamstring reinjuries occurred in RP versus one injury in RA (relative risk = 6, 90% confidence interval = 1-35; clinical inference: very likely beneficial effect). The average duration of return to sport was possibly quicker (effect size = 0.34 ± 0.42) in RP (23.2 ± 11.7 d) compared with RA (25.5 ± 7.8 d) (-13.8%, 90% confidence interval = -34.0% to 3.4%; clinical inference: possibly small effect). At the time to return to sport, RA players showed substantially better 10-m time, maximal sprinting speed, and greater mechanical variables related to speed (i.e., maximum theoretical speed and maximal horizontal power) than the RP. Although return to sport was slower, male football players who underwent an individualized, multifactorial, criteria-based algorithm with a performance- and primary risk factor-oriented training program from the early stages of the process markedly decreased the risk of reinjury compared with a general protocol where long-length strength training exercises were prioritized.

  1. The preventive effect of the bounding exercise programme on hamstring injuries in amateur soccer players: the design of a randomized controlled trial.

    PubMed

    Van de Hoef, S; Huisstede, B M A; Brink, M S; de Vries, N; Goedhart, E A; Backx, F J G

    2017-08-22

    Hamstring injuries are the most common muscle injury in amateur and professional soccer. Most hamstring injuries occur in the late swing phase, when the hamstring undergoes a stretch-shortening cycle and the hamstring does a significant amount of eccentric work. The incidence of these injuries has not decreased despite there being effective injury prevention programmes focusing on improving eccentric hamstring strength. As this might be because of poor compliance, a more functional injury prevention exercise programme that focuses on the stretch-shortening cycle might facilitate compliance. In this study, a bounding exercise programme consisting of functional plyometric exercises is being evaluated. A cluster-randomized controlled trial (RCT). Male amateur soccer teams (players aged 18-45 years) have been randomly allocated to intervention and control groups. Both groups are continuing regular soccer training and the intervention group is additionally performing a 12-week bounding exercise programme (BEP), consisting of a gradual build up and maintenance programme for the entire soccer season. The primary outcome is hamstring injury incidence. Secondary outcome is compliance with the BEP during the soccer season and 3 months thereafter. Despite effective hamstring injury prevention programmes, the incidence of these injuries remains high in soccer. As poor compliance with these programmes may be an issue, a new plyometric exercise programme may encourage long-term compliance and is expected to enhance sprinting and jumping performance besides preventing hamstring injuries. NTR6129 . Retrospectively registered on 1 November 2016.

  2. Hamstring Injuries in Professional Football Players

    PubMed Central

    Cohen, Steven B.; Towers, Jeffrey D.; Zoga, Adam; Irrgang, Jay J.; Makda, Junaid; Deluca, Peter F.; Bradley, James P.

    2011-01-01

    Background: Magnetic resonance imaging (MRI) allows for detailed evaluation of hamstring injuries; however, there is no classification that allows prediction of return to play. Purpose: To correlate time for return to play in professional football players with MRI findings after acute hamstring strains and to create an MRI scoring scale predictive of return to sports. Study Design: Descriptive epidemiologic study. Methods: Thirty-eight professional football players (43 cases) sustained acute hamstring strains with MRI evaluation. Records were retrospectively reviewed, and MRIs were evaluated by 2 musculoskeletal radiologists, graded with a traditional radiologic grade, and scored with a new MRI score. Results were correlated with games missed. Results: Players missed 2.6 ± 3.1 games. Based on MRI, the hamstring injury involved the biceps femoris long head in 34 cases and the proximal and distal hamstrings in 25 and 22 cases, respectively. When < 50% of the muscle was involved, the average number of games missed was 1.8; if > 75%, then 3.2. Ten players had retraction, missing 5.5 games. By MRI, grade I injuries yielded an average of 1.1 missed games; grade II, 1.7; and grade III, 6.4. Players who missed 0 or 1 game had an MRI score of 8.2; 2 or 3 games, 11.1; and 4 or more games, 13.9. Conclusions: Rapid return to play (< 1 week) occurred with isolated long head of biceps femoris injures with < 50% of involvement and minimal perimuscular edema, correlating to grade I radiologic strain (MRI score < 10). Prolonged recovery (missing > 2 or 3 games) occurs with multiple muscle injury, injuries distal to musculotendinous junction, short head of biceps injury, > 75% involvement, retraction, circumferential edema, and grade III radiologic strain (MRI score > 15). Clinical Relevance: MRI grade and this new MRI score are useful in determining severity of injury and games missed—and, ideally, predicting time missed from sports. PMID:23016038

  3. The Effectiveness of Injury Prevention Programs to Modify Risk Factors for Non-Contact Anterior Cruciate Ligament and Hamstring Injuries in Uninjured Team Sports Athletes: A Systematic Review

    PubMed Central

    Monajati, Alireza; Larumbe-Zabala, Eneko; Goss-Sampson, Mark; Naclerio, Fernando

    2016-01-01

    Background Hamstring strain and anterior cruciate ligament injuries are, respectively, the most prevalent and serious non-contact occurring injuries in team sports. Specific biomechanical and neuromuscular variables have been used to estimate the risk of incurring a non-contact injury in athletes. Objective The aim of this study was to systematically review the evidences for the effectiveness of injury prevention protocols to modify biomechanical and neuromuscular anterior cruciate and/or hamstring injuries associated risk factors in uninjured team sport athletes. Data Sources PubMed, Science Direct, Web of Science, Cochrane Libraries, U.S. National Institutes of Health clinicaltrials.gov, Sport Discuss and Google Scholar databases were searched for relevant journal articles published until March 2015. A manual review of relevant articles, authors, and journals, including bibliographies was performed from identified articles. Main Results Nineteen studies were included in this review. Four assessment categories: i) landing, ii) side cutting, iii) stop-jump, and iv) muscle strength outcomes, were used to analyze the effectiveness of the preventive protocols. Eight studies using multifaceted interventions supported by video and/or technical feedback showed improvement in landing and/or stop-jump biomechanics, while no effects were observed on side-cutting maneuver. Additionally, multifaceted programs including hamstring eccentric exercises increased hamstring strength, hamstring to quadriceps functional ratio and/or promoted a shift of optimal knee flexion peak torque toward a more open angle position. Conclusions Multifaceted programs, supported by proper video and/or technical feedback, including eccentric hamstring exercises would positively modify the biomechanical and or neuromuscular anterior cruciate and/or hamstring injury risk factors. PMID:27171282

  4. The Effectiveness of Injury Prevention Programs to Modify Risk Factors for Non-Contact Anterior Cruciate Ligament and Hamstring Injuries in Uninjured Team Sports Athletes: A Systematic Review.

    PubMed

    Monajati, Alireza; Larumbe-Zabala, Eneko; Goss-Sampson, Mark; Naclerio, Fernando

    2016-01-01

    Hamstring strain and anterior cruciate ligament injuries are, respectively, the most prevalent and serious non-contact occurring injuries in team sports. Specific biomechanical and neuromuscular variables have been used to estimate the risk of incurring a non-contact injury in athletes. The aim of this study was to systematically review the evidences for the effectiveness of injury prevention protocols to modify biomechanical and neuromuscular anterior cruciate and/or hamstring injuries associated risk factors in uninjured team sport athletes. PubMed, Science Direct, Web of Science, Cochrane Libraries, U.S. National Institutes of Health clinicaltrials.gov, Sport Discuss and Google Scholar databases were searched for relevant journal articles published until March 2015. A manual review of relevant articles, authors, and journals, including bibliographies was performed from identified articles. Nineteen studies were included in this review. Four assessment categories: i) landing, ii) side cutting, iii) stop-jump, and iv) muscle strength outcomes, were used to analyze the effectiveness of the preventive protocols. Eight studies using multifaceted interventions supported by video and/or technical feedback showed improvement in landing and/or stop-jump biomechanics, while no effects were observed on side-cutting maneuver. Additionally, multifaceted programs including hamstring eccentric exercises increased hamstring strength, hamstring to quadriceps functional ratio and/or promoted a shift of optimal knee flexion peak torque toward a more open angle position. Multifaceted programs, supported by proper video and/or technical feedback, including eccentric hamstring exercises would positively modify the biomechanical and or neuromuscular anterior cruciate and/or hamstring injury risk factors.

  5. Prediction of hamstring injury in professional soccer players by isokinetic measurements

    PubMed Central

    Dauty, Marc; Menu, Pierre; Fouasson-Chailloux, Alban; Ferréol, Sophie; Dubois, Charles

    2016-01-01

    Summary Objectives previous studies investigating the ability of isokinetic strength ratios to predict hamstring injuries in soccer players have reported conflicting results. Hypothesis to determine if isokinetic ratios are able to predict hamstring injury occurring during the season in professional soccer players. Study Design case-control study; Level of evidence: 3. Methods from 2001 to 2011, 350 isokinetic tests were performed in 136 professional soccer players at the beginning of the soccer season. Fifty-seven players suffered hamstring injury during the season that followed the isokinetic tests. These players were compared with the 79 uninjured players. The bilateral concentric ratio (hamstring-to-hamstring), ipsilateral concentric ratio (hamstring-to-quadriceps), and mixed ratio (eccentric/concentric hamstring-to-quadriceps) were studied. The predictive ability of each ratio was established based on the likelihood ratio and post-test probability. Results the mixed ratio (30 eccentric/240 concentric hamstring-to-quadriceps) <0.8, ipsilateral ratio (180 concentric hamstring-to-quadriceps) <0.47, and bilateral ratio (60 concentric hamstring-to-hamstring) <0.85 were the most predictive of hamstring injury. The ipsilateral ratio <0.47 allowed prediction of the severity of the hamstring injury, and was also influenced by the length of time since administration of the isokinetic tests. Conclusion isokinetic ratios are useful for predicting the likelihood of hamstring injury in professional soccer players during the competitive season. PMID:27331039

  6. An investigation into the immediate effects of pelvic taping on hamstring eccentric force in an elite male sprinter - A case report.

    PubMed

    Macdonald, Ben

    2017-11-01

    Hamstring Injuries commonly cause missed training and competition time in elite sports. Injury surveillance studies have demonstrated high injury and re-injury rates, which have not improved across sports despite screening and prevention programmes being commonplace. The most commonly suggested intervention for hamstring prevention and rehabilitation is eccentric strength assessment and training. This case study describes the management of an elite sprinter with a history of hamstring injury. A multi-variate screening process based around lumbar-pelvic dysfunction and hamstring strength assessment using the Nordbord is employed. The effect of external pelvic compression using a taping technique, on eccentric hamstring strength is evaluated. A persistent eccentric strength asymmetry of 17% was recorded as well as lumbar-pelvic control deficits. Pelvic taping appears to improve load transfer capability across the pelvis, resulting in correction of eccentric strength asymmetry. Screening strategies and interventions to prevent hamstring injury have failed to consistently improve injury rates across various sports. In this case study external pelvic compression resulted in normalising eccentric strength deficits assessed using the Nordbord. The inclusion of lumbar-pelvic motor control assessment, in relation to hamstring strength and function, as part of a multi-variate screening strategy requires further research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Importance and challenges of measuring intrinsic foot muscle strength

    PubMed Central

    2012-01-01

    Background Intrinsic foot muscle weakness has been implicated in a range of foot deformities and disorders. However, to establish a relationship between intrinsic muscle weakness and foot pathology, an objective measure of intrinsic muscle strength is needed. The aim of this review was to provide an overview of the anatomy and role of intrinsic foot muscles, implications of intrinsic weakness and evaluate the different methods used to measure intrinsic foot muscle strength. Method Literature was sourced from database searches of MEDLINE, PubMed, SCOPUS, Cochrane Library, PEDro and CINAHL up to June 2012. Results There is no widely accepted method of measuring intrinsic foot muscle strength. Methods to estimate toe flexor muscle strength include the paper grip test, plantar pressure, toe dynamometry, and the intrinsic positive test. Hand-held dynamometry has excellent interrater and intrarater reliability and limits toe curling, which is an action hypothesised to activate extrinsic toe flexor muscles. However, it is unclear whether any method can actually isolate intrinsic muscle strength. Also most methods measure only toe flexor strength and other actions such as toe extension and abduction have not been adequately assessed. Indirect methods to investigate intrinsic muscle structure and performance include CT, ultrasonography, MRI, EMG, and muscle biopsy. Indirect methods often discriminate between intrinsic and extrinsic muscles, but lack the ability to measure muscle force. Conclusions There are many challenges to accurately measure intrinsic muscle strength in isolation. Most studies have measured toe flexor strength as a surrogate measure of intrinsic muscle strength. Hand-held dynamometry appears to be a promising method of estimating intrinsic muscle strength. However, the contribution of extrinsic muscles cannot be excluded from toe flexor strength measurement. Future research should clarify the relative contribution of intrinsic and extrinsic muscles

  8. [Isokinetic assessment with two years follow-up of anterior cruciate ligament reconstruction with patellar tendon or hamstring tendons].

    PubMed

    Condouret, J; Cohn, J; Ferret, J-M; Lemonsu, A; Vasconcelos, W; Dejour, D; Potel, J-F

    2008-12-01

    This retrospective multicentric study was designed to assess the outcome of quadriceps and hamstrings muscles two years after Anterior Cruciate Ligament (ACL) reconstruction and compare muscles recovery depending on the type of graft and individual variables like age, gender, level of sport, but also in terms of discomfort, pain and functional score. The results focused on the subjective and objective IKDC scores, SF36, the existence or not of subjective disorders and their location. The review included isokinetic muscle tests concentric and eccentric extensors/flexors but also internal rotators/external rotators with analysis of mean work and mean power. One hundred and twenty-seven patients were included with an average age 29 years (+/-10). They all had an ACL reconstruction with patellar tendon or hamstring tendon with single or double bundles. In the serie, the average muscles deficit at two years was 10% for the flexors and extensors but with a significant dispersion. Significant differences were not noted in the mean values of all parameters in term of sex or age (over 30 years or not), neither the type of sport, nor of clinical assessment (Class A and B of objective IKDC score), nor the existence of anterior knee pain. There was a relationship between the level of extensor or flexor recovery and the quality of functional results with minimal muscle deficits close to 5% if the IKDC score was over 90 and deficits falling to 15% in the group with IKDC score less than 90. The type of reconstruction (patellar tendon versus hamstrings) had an influence on the muscle deficit. For extensors, the recovery was the same in the two groups, more than 90% at two years and the distribution of these two populations by level of deficit was quite the same. For flexors, residual deficits were significantly higher in the hamstrings group on the three studied parameters whatever the speed and the type of contraction (concentric or eccentric) with an average deficit of 14 to 18

  9. Proximal hamstring morphology and morphometry in men: an anatomic and MRI investigation.

    PubMed

    Storey, R N; Meikle, G R; Stringer, M D; Woodley, S J

    2016-12-01

    The proximal musculo-tendinous junction (MTJ) is a common site of hamstring strain injury but the anatomy of this region is not well defined. A morphometric analysis of the proximal MTJs of biceps femoris long head (BFlh), semitendinosus (ST), and semimembranosus (SM) was undertaken from dissection of 10 thighs from five male cadavers and magnetic resonance imaging of 20 thighs of 10 active young men. The length, volume, and cross-sectional area of the proximal tendon, MTJ and muscle belly, and muscle-tendon interface area were calculated. In both groups, MTJs were reconstructed three-dimensionally. The proximal tendons and MTJs were expansive, particularly within SM and BFlh. Morphology varied between muscles although length measurements within individual muscles were similar in cadavers and young men. Semimembranosus had the longest proximal tendon (cadavers: mean 33.6 ± 2.0 cm; young men: mean 31.7 ± 1.6 cm) and MTJ (>20 cm in both groups) and the greatest muscle-tendon interface area, followed by BFlh and ST. Mean muscle belly volumes were more than three times greater in young men than elderly male cadavers (P < 0.001). These unique morphometric data contribute to a better understanding of hamstring anatomy, an important factor in the pathogenesis of hamstring strain injury. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Lower Cognitive Function in Older Patients with Lower Muscle Strength and Muscle Mass.

    PubMed

    van Dam, Romee; Van Ancum, Jeanine M; Verlaan, Sjors; Scheerman, Kira; Meskers, Carel G M; Maier, Andrea B

    2018-06-18

    Low muscle strength and muscle mass are associated with adverse outcomes in older hospitalized patients. The aim of this study was to assess the association between cognitive functioning and muscle strength and muscle mass in hospitalized older patients. This prospective inception cohort included 378 patients aged 70 years or older. At admission patients were assessed for cognitive functioning by use of the Six-Item Cognitive Impairment Test (6-CIT). Muscle strength and muscle mass were assessed using handheld dynamometry and segmental multifrequency bioelectrical impedance analysis, within 48 h after admission and on day 7, or earlier on the day of discharge. The data of 371 patients (mean age ± standard deviation 80.1 ± 6.4 years, 49.3% female) were available for analyses. The median (interquartile range) 6-CIT score was 4 (0-8) points. At admission, lower cognitive functioning was associated with lower muscle strength, lower skeletal muscle mass (SMM), lower appendicular lean mass, and lower SMM index. Cognitive functioning was not associated with change in muscle strength and muscle mass during hospitalization. This study further strengthens evidence for an association between lower cognitive functioning and lower muscle strength and muscle mass, but without a further decline during hospitalization. © 2018 The Author(s) Published by S. Karger AG, Basel.

  11. Effect of Knee Orthoses on Hamstring Contracture in Children With Cerebral Palsy: Multiple Single-Subject Study.

    PubMed

    Laessker-Alkema, Kristina; Eek, Meta Nyström

    2016-01-01

    To examine the effect of knee orthoses on extensibility of the hamstrings in children with spastic cerebral palsy (CP). The short-term effects of knee orthoses on passive range of motion (ROM), spasticity, and gross motor function of the hamstrings. Ten children with spastic CP, aged 5 to 14 years, at Gross Motor Function Classification System levels I to V, were followed. The orthoses were worn for a minimum of 30 minutes day, 5 days per week, during the intervention period of 8 weeks. Visual analysis using the Two Standard Deviation Band Method supported improvements in passive ROM for all 20 hamstring muscles and in 12 of 14 knee extension measurements. Analyses with the Wilcoxon signed rank test confirm the individual results and support a significant increase in hamstring muscles (P = .005) and knee extension (right: P =.028; left: P =.018) compared with baseline. In children with spastic CP, 8 weeks of treatment with knee orthoses can improve extensibility of the hamstrings.

  12. Evaluating the influence of massage on leg strength, swelling, and pain following a half-marathon.

    PubMed

    Dawson, Lance G; Dawson, Kimberley A; Tiidus, Peter M

    2004-11-01

    Massage therapy is commonly used following endurance running races with the expectation that it will enhance post-run recovery of muscle function and reduce soreness. A limited number of studies have reported little or no influence of massage therapy on post-exercise muscle recovery. However, no studies have been conducted in a field setting to assess the potential for massage to influence muscle recovery following an actual endurance running race. To evaluate the potential for repeated massage therapy interventions to influence recovery of quadriceps and hamstring muscle soreness, recovery of quadriceps and hamstring muscle strength and reduction of upper leg muscle swelling over a two week recovery period following an actual road running race. Twelve adult recreational runners (8 male, 4 female) completed a half marathon (21.1 km) road race. On days 1,4, 8, and 11 post-race, subjects received 30 minutes of standardized massage therapy performed by a registered massage therapist on a randomly assigned massage treatment leg, while the other (control) leg received no massage treatment. Two days prior to the race (baseline) and preceding the treatments on post-race days 1, 4, 8, and 11 the following measures were conducted on each of the massage and control legs: strength of quadriceps and hamstring muscles, leg swelling, and soreness perception. At day 1, post-race quadriceps peak torque was significantly reduced (p < 0.05), and soreness and leg circumference significantly elevated (p < 0.05) relative to pre-race values with no difference between legs. This suggested that exercise-induced muscle disruption did occur. Comparing the rate of return to baseline measures between the massaged and control legs, revealed no significant differences (p > 0.05). All measures had returned to baseline at day 11. Massage did not affect the recovery of muscles in terms of physiological measures of strength, swelling, or soreness. However, questionnaires revealed that 7 of the 12

  13. Outcome of medial hamstring lengthening in children with spastic paresis: A biomechanical and morphological observational study

    PubMed Central

    Jaspers, Richard T.; Rutz, Erich; Harlaar, Jaap; van der Sluijs, Johannes A.; Witbreuk, Melinda M.; van Hutten, Kim; Romkes, Jacqueline; Freslier, Marie; Brunner, Reinald; Becher, Jules G.

    2018-01-01

    To improve gait in children with spastic paresis due to cerebral palsy or hereditary spastic paresis, the semitendinosus muscle is frequently lengthened amongst other medial hamstring muscles by orthopaedic surgery. Side effects on gait due to weakening of the hamstring muscles and overcorrections have been reported. How these side effects relate to semitendinosus morphology is unknown. This study assessed the effects of bilateral medial hamstring lengthening as part of single-event multilevel surgery (SEMLS) on (1) knee joint mechanics (2) semitendinosus muscle morphology and (3) gait kinematics. All variables were assessed for the right side only. Six children with spastic paresis selected for surgery to counteract limited knee range of motion were measured before and about a year after surgery. After surgery, in most subjects popliteal angle decreased and knee moment-angle curves were shifted towards a more extended knee joint, semitendinosus muscle belly length was approximately 30% decreased, while at all assessed knee angles tendon length was increased by about 80%. In the majority of children muscle volume of the semitendinosus muscle decreased substantially suggesting a reduction of physiological cross-sectional area. Gait kinematics showed more knee extension during stance (mean change ± standard deviation: 34±13°), but also increased pelvic anterior tilt (mean change ± standard deviation: 23±5°). In most subjects, surgical lengthening of semitendinosus tendon contributed to more extended knee joint angle during static measurements as well as during gait, whereas extensibility of semitendinosus muscle belly was decreased. Post-surgical treatment to maintain muscle belly length and physiological cross-sectional area may improve treatment outcome of medial hamstring lengthening. PMID:29408925

  14. Outcome of medial hamstring lengthening in children with spastic paresis: A biomechanical and morphological observational study.

    PubMed

    Haberfehlner, Helga; Jaspers, Richard T; Rutz, Erich; Harlaar, Jaap; van der Sluijs, Johannes A; Witbreuk, Melinda M; van Hutten, Kim; Romkes, Jacqueline; Freslier, Marie; Brunner, Reinald; Becher, Jules G; Maas, Huub; Buizer, Annemieke I

    2018-01-01

    To improve gait in children with spastic paresis due to cerebral palsy or hereditary spastic paresis, the semitendinosus muscle is frequently lengthened amongst other medial hamstring muscles by orthopaedic surgery. Side effects on gait due to weakening of the hamstring muscles and overcorrections have been reported. How these side effects relate to semitendinosus morphology is unknown. This study assessed the effects of bilateral medial hamstring lengthening as part of single-event multilevel surgery (SEMLS) on (1) knee joint mechanics (2) semitendinosus muscle morphology and (3) gait kinematics. All variables were assessed for the right side only. Six children with spastic paresis selected for surgery to counteract limited knee range of motion were measured before and about a year after surgery. After surgery, in most subjects popliteal angle decreased and knee moment-angle curves were shifted towards a more extended knee joint, semitendinosus muscle belly length was approximately 30% decreased, while at all assessed knee angles tendon length was increased by about 80%. In the majority of children muscle volume of the semitendinosus muscle decreased substantially suggesting a reduction of physiological cross-sectional area. Gait kinematics showed more knee extension during stance (mean change ± standard deviation: 34±13°), but also increased pelvic anterior tilt (mean change ± standard deviation: 23±5°). In most subjects, surgical lengthening of semitendinosus tendon contributed to more extended knee joint angle during static measurements as well as during gait, whereas extensibility of semitendinosus muscle belly was decreased. Post-surgical treatment to maintain muscle belly length and physiological cross-sectional area may improve treatment outcome of medial hamstring lengthening.

  15. The correlation between the imaging characteristics of hamstring injury and time required before returning to sports: a literature review.

    PubMed

    Svensson, Kjell; Alricsson, Marie; Eckerman, Mattias; Magounakis, Theofilos; Werner, Suzanne

    2016-06-01

    Injuries to the hamstring muscles are common in athletes. Track and field, Australian football, American football and soccer are examples of sports where hamstring injuries are the most common. The purpose of this study was to investigate whether there is a correlation between a hamstring injury prognosis and its characteristics of imaging parameters. The literature search was performed in the databases PubMed and CINAHL, and eleven articles were included. Seven out of the 11 articles showed a correlation between the size of the hamstring injury and length of time required before returning to sports. Different authors have reported contrasting results about length of time required before returning to sports due to location of injury within specific muscle. Majority of the articles found hamstring strain correlated to an extended amount of time required before returning to sports.

  16. The correlation between the imaging characteristics of hamstring injury and time required before returning to sports: a literature review

    PubMed Central

    Svensson, Kjell; Alricsson, Marie; Eckerman, Mattias; Magounakis, Theofilos; Werner, Suzanne

    2016-01-01

    Injuries to the hamstring muscles are common in athletes. Track and field, Australian football, American football and soccer are examples of sports where hamstring injuries are the most common. The purpose of this study was to investigate whether there is a correlation between a hamstring injury prognosis and its characteristics of imaging parameters. The literature search was performed in the databases PubMed and CINAHL, and eleven articles were included. Seven out of the 11 articles showed a correlation between the size of the hamstring injury and length of time required before returning to sports. Different authors have reported contrasting results about length of time required before returning to sports due to location of injury within specific muscle. Majority of the articles found hamstring strain correlated to an extended amount of time required before returning to sports. PMID:27419106

  17. Personality Typology in Relation to Muscle Strength

    PubMed Central

    Terracciano, Antonio; Milaneschi, Yuri; Metter, E. Jeffrey; Ferrucci, Luigi

    2011-01-01

    Background Physical inactivity plays a central role in the age-related decline in muscle strength, an important component in the process leading to disability. Personality, a significant determinant of health behaviors including physical activity, could therefore impact muscle strength throughout adulthood and affect the rate of muscle strength decline with aging. Personality typologies combining “high neuroticism” (N≥55), “low extraversion” (E<45), and “low conscientiousness” (C<45) have been associated with multiple risky health behaviors but have not been investigated with regards to muscle strength. Purpose The purpose of this study is to investigate associations between individual and combined typologies consisting of high N, low E, and low C and muscle strength, and whether physical activity and body mass index act as mediators. Method This cross-sectional study includes 1,220 participants from the Baltimore Longitudinal Study of Aging. Results High N was found among 18%, low E among 31%, and low C among 26% of the sample. High levels of N, particularly when combined with either low E or low C, were associated with lower muscle strength compared with having only one or none of these personality types. Facet analyses suggest an important role for the N components of depression and hostility. Physical activity level appears to partly explain some of these associations. Conclusion Findings provide support for the notion that the typological approach to personality may be useful in identifying specific personality types at risk of low muscle strength and offer the possibility for more targeted prevention and intervention programs. PMID:21614452

  18. Impact of the Nordic hamstring and hip extension exercises on hamstring architecture and morphology: implications for injury prevention.

    PubMed

    Bourne, Matthew N; Duhig, Steven J; Timmins, Ryan G; Williams, Morgan D; Opar, David A; Al Najjar, Aiman; Kerr, Graham K; Shield, Anthony J

    2017-03-01

    The architectural and morphological adaptations of the hamstrings in response to training with different exercises have not been explored. To evaluate changes in biceps femoris long head (BF LH ) fascicle length and hamstring muscle size following 10-weeks of Nordic hamstring exercise (NHE) or hip extension (HE) training. 30 recreationally active male athletes (age, 22.0±3.6 years; height, 180.4±7 cm; weight, 80.8±11.1 kg) were allocated to 1 of 3 groups: (1) HE training (n=10), NHE training (n=10), or no training (control, CON) (n=10). BF LH fascicle length was assessed before, during (Week 5) and after the intervention with a two-dimensional ultrasound. Hamstring muscle size was determined before and after training via MRI. Compared with baseline , BF LH fascicles were lengthened in the NHE and HE groups at mid-training (d=1.12-1.39, p<0.001) and post-training (d=1.77-2.17, p<0.001) and these changes did not differ significantly between exercises (d=0.49-0.80, p=0.279-0.976). BF LH volume increased more for the HE than the NHE (d=1.03, p=0.037) and CON (d=2.24, p<0.001) groups. Compared with the CON group, both exercises induced significant increases in semitendinosus volume (d=2.16-2.50, ≤0.002) and these increases were not significantly different (d=0.69, p=0.239). NHE and HE training both stimulate significant increases in BF LH fascicle length; however, HE training may be more effective for promoting hypertrophy in the BF LH . Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. The Effects of Cupping on Hamstring Flexibility in Collegiate Soccer Players.

    PubMed

    Williams, Jeffrey G; Gard, Hannah I; Gregory, Jeana M; Gibson, Amy; Austin, Jennifer

    2018-01-24

    Collegiate soccer players suffer hamstring injuries due to inflexibility and repetitive motions involving intense hamstring lengthening and contraction during sport. Although a popular intervention for muscular injury, there exists limited evidence of the effects of therapeutic cupping on hamstring flexibility. To determine the effect of cupping therapy on hamstring flexibility in collegiate soccer players. Cohort design. Athletic training clinic. Twenty-five, asymptomatic, NCAA Division III soccer players (10 males, 15 females) (age = 19.4 ± 1.30 years, height = 175.1 ± 8.2 cm, mass = 69.5 ± 6.6 kg). A 7-minute therapeutic cupping treatment was delivered to the treatment group. Four 2-inch cups were fixed atop trigger point locations within the hamstring muscle bellies of participants' dominant legs. Control group participants received no intervention between pre- and post-test measurements. Pretest and posttest measurements of hamstring flexibility, using a Passive Straight Leg Raise (PSLR), were performed on both groups. PSLR measurements were conducted by blinded examiners using a digital inclinometer. An independent samples t-test was used to analyze changes in hamstring flexibility from pre- to post-treatment with p-values set a priori at 0.05. An independent samples t-test demonstrated no significant difference in change in hamstring flexibility between participants in the treatment group and those in the control group (t 23 = -.961, p = .35). The findings of this study demonstrated no statistically significant changes in hamstring flexibility following a cupping treatment.

  20. Pulmonary Function, Muscle Strength and Mortality in Old Age

    PubMed Central

    Buchman, A. S.; Boyle, P. A.; Wilson, R.S.; Gu, Liping; Bienias, Julia L.; Bennett, D. A.

    2009-01-01

    Numerous reports have linked extremity muscle strength with mortality but the mechanism underlying this association is not known. We used data from 960 older persons without dementia participating in the Rush Memory and Aging Project to test two sequential hypotheses: first, that extremity muscle strength is a surrogate for respiratory muscle strength, and second, that the association of respiratory muscle strength with mortality is mediated by pulmonary function. In a series of proportional hazards models, we first demonstrated that the association of extremity muscle strength with mortality was no longer significant after including a term for respiratory muscle strength, controlling for age, sex, education, and body mass index. Next, the association of respiratory muscle strength with mortality was attenuated by more than 50% and no longer significant after including a term for pulmonary function. The findings were unchanged after controlling for cognitive function, parkinsonian signs, physical frailty, balance, physical activity, possible COPD, use of pulmonary medications, vascular risk factors including smoking, chronic vascular diseases, musculoskeletal joint pain, and history of falls. Overall, these findings suggest that pulmonary function may partially account for the association of muscle strength and mortality. PMID:18755207

  1. Quadriceps muscle strength and voluntary activation after polio.

    PubMed

    Beelen, Anita; Nollet, Frans; de Visser, Marianne; de Jong, Bareld A; Lankhorst, Gustaaf J; Sargeant, Anthony J

    2003-08-01

    Quadriceps strength, maximal anatomical cross-sectional area (CSA), maximal voluntary activation (MVA), and maximal relaxation rate (MRR) were studied in 48 subjects with a past history of polio, 26 with and 22 without postpoliomyelitis syndrome (PPS), and in 13 control subjects. It was also investigated whether, apart from CSA, MVA and MRR were determinants of muscle strength. Polio subjects had significantly less strength, CSA, and MRR in the more-affected quadriceps than control subjects. MVA was reduced in 18 polio subjects and normal in all controls. PPS subjects differed from non-PPS subjects only in that the MVA of the more-affected quadriceps was significantly lower. Both CSA and MVA were found to be associated with muscle strength. Quadriceps strength in polio subjects was dependent not only on muscle mass, but also on the ability to activate the muscles. Since impaired activation was more pronounced in PPS subjects, the new muscle weakness and functional decline in PPS may be due not only to a gradual loss of muscle fibers, but also to an increasing inability to activate the muscles.

  2. Pilates: Build Strength in Your Core Muscles

    MedlinePlus

    ... an accessible way to build strength in your core muscles for better posture, balance and flexibility. By ... an accessible way to build strength in your core muscles for better posture, balance and flexibility. If ...

  3. Muscular strength profile in Tunisian male national judo team.

    PubMed

    Ghrairi, Mourad; Hammouda, Omar; Malliaropoulos, Nikos

    2014-04-01

    it is well established that muscle strength is a determinant factor in judo. However, little data are available for African athletes. Therefore, the aim of this study was to provide reference data of the muscular strength profile (MSP) for an African team, Tunisian judo team. the study was conducted among ten international judo athletes from Tunisia. To determine their MSP, we used an isokinetic dynamometer to assess Hamstrings, Quadriceps of both knees and external, internal rotators of both shoulders. The angular velocities of the assessments were; 90, 180, 240°/s for the knees and 60, 120°/s for the shoulders. MSP was determined based on two parameters; the maximum peak torque (PT) of each muscle and the ratio agonistic/antagonistic muscles (R). The knee extensors and flexors in the "supporting leg" had higher PT than in the "attacking leg"; respectively, 245N.m versus 237 (p<0.05) and 147 N.m versus 145 (p>0.05). R was normal for both legs. Furthermore, both rotators of the dominant shoulder had higher PT; 84 N.m versus 71 for the internal rotators (p<0.05) and 34,7 N.m versus 29,0 for the lateral rotators (p<0.05). Inversely, R was higher in the non-dominant side; 45% versus 35, p<0.05). the MSP of the selected elites Tunisian judo athletes was characterized by 3 major features; a strength of the quadriceps in the standing leg significantly higher than in the attacking leg, a normal muscular balance Hamstrings/quadriceps in both legs and a strength of the shoulder' rotators higher in the dominant side.

  4. Muscular strength profile in Tunisian male national judo team

    PubMed Central

    Ghrairi, Mourad; Hammouda, Omar; Malliaropoulos, Nikos

    2014-01-01

    Summary Background: it is well established that muscle strength is a determinant factor in judo. However, little data are available for African athletes. Therefore, the aim of this study was to provide reference data of the muscular strength profile (MSP) for an African team, Tunisian judo team. Methods: the study was conducted among ten international judo athletes from Tunisia. To determine their MSP, we used an isokinetic dynamometer to assess Hamstrings, Quadriceps of both knees and external, internal rotators of both shoulders. The angular velocities of the assessments were; 90, 180, 240°/s for the knees and 60, 120°/s for the shoulders. Results: MSP was determined based on two parameters; the maximum peak torque (PT) of each muscle and the ratio agonistic/antagonistic muscles (R). The knee extensors and flexors in the “supporting leg” had higher PT than in the “attacking leg”; respectively, 245N.m versus 237 (p<0.05) and 147 N.m versus 145 (p>0.05). R was normal for both legs. Furthermore, both rotators of the dominant shoulder had higher PT; 84 N.m versus 71 for the internal rotators (p<0.05) and 34,7 N.m versus 29,0 for the lateral rotators (p<0.05). Inversely, R was higher in the non-dominant side; 45% versus 35, p<0.05). Conclusion: the MSP of the selected elites Tunisian judo athletes was characterized by 3 major features; a strength of the quadriceps in the standing leg significantly higher than in the attacking leg, a normal muscular balance Hamstrings/quadriceps in both legs and a strength of the shoulder’ rotators higher in the dominant side. PMID:25332926

  5. Eccentric Exercises Reduce Hamstring Strains in Elite Adult Male Soccer Players: A Critically Appraised Topic.

    PubMed

    Shadle, Ian B; Cacolice, Paul A

    2017-11-01

    Clinical Scenario: Hamstring strains are a common sport-related injury, which may limit athletic performance for an extended period of time. These injuries are common in the soccer setting. As such, it is important to determine an appropriate prevention program to minimize the risk of such an injury for these athletes. Eccentric hamstring training may be an effective and practical hamstring strain prevention strategy. What is the effect of eccentric exercises on hamstring strain prevention in adult male soccer players? Summary of Key Findings: Current literature was searched for studies of level 2 evidence or higher that investigated the effect of eccentric exercises in preventing hamstring strains in adult male soccer players. Three articles returned from the literature search met the inclusion criteria. A fourth article looked at differences in strength gains between eccentric and concentric hamstring strengthening exercises, but did not record hamstring strain incidence. A fifth article, a systematic review, met all the criteria except for the correct population. Of the 3 studies, 2 were randomized control trails and 1 was a cohort study. Clinical Bottom Line: There is robust supportive evidence that eccentric hamstring exercises can prevent a hamstring injury to an elite adult male soccer player. Therefore, it is recommended that athletic trainers and other sports medicine providers evaluate current practices relating to reducing hamstring strains and consider implementing eccentric exercise based prevention programs. Strength of Recommendation: All evidence was attained from articles with a level of evidence 2b or higher, based on the Center for Evidence-Based Medicine (CEBM) criteria, stating that eccentric exercises can decrease hamstring strains.

  6. Diagnosis and expedited surgical intervention of a complete hamstring avulsion in a military combatives athlete: a case report.

    PubMed

    O'Laughlin, Shaun J; Flynn, Timothy W; Westrick, Richard B; Ross, Michael D

    2014-05-01

    Hamstring injuries are frequent injuries in athletes, with the most common being strains at the musculotendinous junction or within the muscle belly. Conversely, hamstring avulsions are rare and often misdiagnosed leading to delay in appropriate surgical interventions. The purpose of this case report is to describe the history and physical examination findings that led to appropriate diagnostic imaging and the subsequent diagnosis and expedited surgical intervention of a complete avulsion of the hamstring muscle group from the ischium in a military combatives athlete. The patient was a 25 year-old male who sustained a hyperflexion injury to his right hip with knee extension while participating in military combatives, presenting with acute posterior thigh and buttock pain. History and physical examination findings from a physical therapy evaluation prompted an urgent magnetic resonance imaging (MRI) study, which led to the diagnosis of a complete avulsion of the hamstring muscle group off the ischium. Expedited surgical intervention occurred within 13 days of the injury potentially limiting comorbidities associated with delayed diagnosis. Recognition of the avulsion led to prompt surgical evaluation and intervention. Literature has shown that diagnosis of hamstring avulsions are frequently missed or delayed, which results in a myriad of complications. Level 4.

  7. Objective Evaluation of Muscle Strength in Infants with Hypotonia and Muscle Weakness

    ERIC Educational Resources Information Center

    Reus, Linda; van Vlimmeren, Leo A.; Staal, J. Bart; Janssen, Anjo J. W. M.; Otten, Barto J.; Pelzer, Ben J.; Nijhuis-van der Sanden, Maria W. G.

    2013-01-01

    The clinical evaluation of an infant with motor delay, muscle weakness, and/or hypotonia would improve considerably if muscle strength could be measured objectively and normal reference values were available. The authors developed a method to measure muscle strength in infants and tested 81 typically developing infants, 6-36 months of age, and 17…

  8. Effects of age and muscle action type on acute strength and power recovery following fatigue of the leg flexors.

    PubMed

    Thompson, Brennan J; Conchola, Eric C; Stock, Matt S

    2015-12-01

    Short-term strength and power recovery patterns following fatigue have received little research attention, particularly as they pertain to age-specific responses, and the leg flexors (i.e., hamstrings) muscle group. Thus, research is warranted addressing these issues because both age-related alterations in the neuromuscular system and mode of muscle action (e.g., eccentric, concentric, isometric) may differentially influence recovery responses from fatigue. The aim of this study was to investigate the strength and power recovery responses for eccentric, concentric, and isometric muscle actions of the leg flexors in young and older men following an isometric, intermittent fatigue-inducing protocol. Nineteen young (age = 25 ± 3 years) and nineteen older (71 ± 4) men performed maximal voluntary contractions (MVCs) for eccentric, concentric, and isometric muscle actions followed by a fatigue protocol of intermittent (0.6 duty cycle) isometric contractions of the leg flexors at 60% of isometric MVC. MVCs of each muscle action were performed at 0, 7, 15, and 30 min following fatigue. Peak torque (PT) and mean power values were calculated from the MVCs and the eccentric/concentric ratio (ECR) was derived. For PT and mean power, young men showed incomplete recovery at all time phases, whereas the older men had recovered by 7 min. Eccentric and isometric muscle actions showed incomplete recovery at all time phases, but concentric recovered by 7 min, independent of age. The ECR was depressed for up to 30 min following fatigue. More rapid and pronounced recovery in older men and concentric contractions may be related to physiological differences specific to aging and muscle action motor unit patterns. Individuals and clinicians may use these time course responses as a guide for recovery following activity-induced fatigue.

  9. Comparison of the Hamstring Muscle Activity and Flexion-Relaxation Ratio between Asymptomatic Persons and Computer Work-related Low Back Pain Sufferers.

    PubMed

    Kim, Min-Hee; Yoo, Won-Gyu

    2013-05-01

    [Purpose] The purpose of this study was to compare the hamstring muscle (HAM) activities and flexion-relaxation ratios of an asymptomatic group and a computer work-related low back pain (LBP) group. [Subjects] For this study, we recruited 10 asymptomatic computer workers and 10 computer workers with work-related LBP. [Methods] We measured the RMS activity of each phase (flexion, full-flexion, and re-extension phase) of trunk flexion and calculated the flexion-relaxation (FR) ratio of the muscle activities of the flexion and full-flexion phases. [Results] In the computer work-related LBP group, the HAM muscle activity increased during the full-flexion phase compared to the asymptomatic group, and the FR ration was also significantly higher. [Conclusion] We thought that prolonged sitting of computer workers might cause the change in their HAM muscle activity pattern.

  10. Strength and muscle mass loss with aging process. Age and strength loss.

    PubMed

    Keller, Karsten; Engelhardt, Martin

    2013-10-01

    aging process is associated with changes in muscle mass and strength with decline of muscle strength after the 30(th) life year. The aim of this study was to investigate these changes in muscle mass and strength. for this analysis 26 participants were subdivided in two groups. Group 1 comprises participants aged <40 years (n=14), group 2 those >40 years (n=12). We assessed anthropometrics, range of motions, leg circumferences and isometric strength values of the knee joints. besides comparable anthropometrics, circumferences and strength were higher in group 1 than in group 2. Circumference of upper leg (20 cm above knee articular space) showed for right leg a trend to a significant (median: 54.45 cm (1(st) quartile: 49.35/3(rd) quartile: 57.78) vs 49.80 cm (49.50/50.75), p=0.0526) and for left leg a significant 54.30 cm (49.28/58.13) vs 49.50 cm (48.00/52.53), p=0.0356) larger circumference in group 1. Isometric strength was in 60° knee flexion significantly higher in group 1 than in group 2 for right (729.88N (561.47/862.13) vs 456.92N (304.67/560.12), p=0.00448) and left leg (702.49N (581.36/983.87) vs 528.49N (332.95/648.58), p=0.0234). aging process leads to distinct muscle mass and strength loss. Muscle strength declines from people aged <40 years to those >40 years between 16.6% and 40.9%.

  11. Muscle strength at the trunk*.

    PubMed

    Smidt, G L; Amundsen, L R; Dostal, W F

    1980-01-01

    The purpose of this study was to determine the strength of trunk flexors and extensors in normal male subjects during isometric, concentric, and eccentric contractions. Subjects were tested in the sidelying position to minimize the effects of gravity. The pelvis and lower extremities were measured on a custom built force table (lowa Force Table). Muscle strength was expressed as a moment of force (external force times the moment arm) in Newton-meter (Nm) units. Greater Nm were registered in the muscle-lengthened position than in the muscle-shortened position for all isometric contractions. The Nm registered for eccentric contractions always exceeded the Nm registered for concentric contractions of the same muscle group. The Nm registered during contractions of trunk extensors always exceeded the values obtained during corresponding modes of contractions (isometric, eccentric, and concentric) of trunk flexors.J Orthop Sports Phys Ther 1980;1(3):165-170.

  12. Self-Myofascial Release: No Improvement of Functional Outcomes in 'Tight' Hamstrings.

    PubMed

    Morton, Robert W; Oikawa, Sara Y; Phillips, Stuart M; Devries, Michaela C; Mitchell, Cameron J

    2016-07-01

    Self-myofascial release (SMR) is a common exercise and therapeutic modality shown to induce acute improvements in joint range of motion (ROM) and recovery; however, no long-term studies have been conducted. Static stretching (SS) is the most common method used to increase joint ROM and decrease muscle stiffness. It was hypothesized that SMR paired with SS (SMR+SS) compared with SS alone over a 4-wk intervention would yield greater improvement in knee-extension ROM and hamstring stiffness. 19 men (22 ± 3 y) with bilateral reduced hamstring ROM had each of their legs randomly assigned to either an SMR+SS or an SS-only group. The intervention consisted of 4 repetitions of SS each for 45 s or the identical amount of SS preceded by 4 repetitions of SMR each for 60 s and was performed on the respective leg twice daily for 4 wk. Passive ROM, hamstring stiffness, rate of torque development (RTD), and maximum voluntary contraction (MVC) were assessed pre- and postintervention. Passive ROM (P < .001), RTD, and MVC (P < .05) all increased after the intervention. Hamstring stiffness toward end-ROM was reduced postintervention (P = .02). There were no differences between the intervention groups for any variable. The addition of SMR to SS did not enhance the efficacy of SS alone. SS increases joint ROM through a combination of decreased muscle stiffness and increased stretch tolerance.

  13. Increasing Lean Mass and Strength: A Comparison of High Frequency Strength Training to Lower Frequency Strength Training.

    PubMed

    Thomas, Michael H; Burns, Steve P

    The purpose of this study was to determine the effect strength training frequency has on improvements in lean mass and strength. Participants were 7 women and 12 men, age ( χ̄ = 34.64 years ± 6.91 years), with strength training experience, training age ( χ̄ = 51.16 months ± 39.02 months). Participants were assigned to one of two groups to equal baseline group demographics. High frequency training group (HFT) trained each muscle group as the agonist, 3 times per week, exercising with 3 sets per muscle group per session (3 total body workouts). Low frequency training group (LFT) trained each muscle group as the agonist one time per week, completing all 9 sets during that one workout. LFT consisted of a routine split over three days: 1) pectoralis, deltoids, and triceps; 2) upper back and biceps; 3) quadriceps, hamstrings, calves, and abdominals. Following eight weeks of training, HFT increased lean mass by 1.06 kg ± 1.78 kg, (1.9%), and LFT increased lean mass by .99 kg ± 1.31 kg, (2.0%). HFT strength improvements on the chest press was 9.07 kg ± 6.33 kg, (11%), and hack squat 20.16 kg ± 11.59 kg, (21%). LFT strength improvements on chest press was 5.80kg ± 4.26 kg, (7.0%), and hack squat 21.83 kg ± 11.17 kg, (24 %). No mean differences between groups were significant. These results suggest that HFT and LFT of equal set totals result in similar improvements in lean mass and strength, following 8 weeks of strength training.

  14. Effects of rest interval on isokinetic strength and functional performance after short-term high intensity training.

    PubMed

    Pincivero, D M; Lephart, S M; Karunakara, R G

    1997-09-01

    The ability to maximally generate active muscle tension during resistance training has been established to be a primary determinant for strength development. The influence of intrasession rest intervals may have a profound effect on strength gains subsequent to short-term high intensity training. The purpose of this study was to examine the effects of rest interval on strength and functional performance after four weeks of isokinetic training. Fifteen healthy college aged individuals were randomly assigned to either a short rest interval group (group 1, n = 8) or a long rest interval group (group 2, n = 7). Subjects were evaluated for quadriceps and hamstring isokinetic strength at 60 (five repetitions) and 180 (30 repetitions) degrees/second and functional performance with the single leg hop for distance test. One leg of each subject was randomly assigned to a four week, three days/week isokinetic strength training programme for concentric knee extension and flexion performed at 90 degrees/second. Subjects in group 1 received a 40 second rest interval in between exercise sets, whereas subjects in group 2 received a 160 second rest period. A two factor analysis of variance for the pre-test--post-test gain scores (%) showed significantly greater improvements for isokinetic hamstring total work and average power at 180 degrees/second for the trained limb of subjects in group 2 than their contralateral non-trained limb and the subjects in group 1. Significantly greater improvements for the single leg hop for distance were also found for the trained limbs of subjects in both groups as compared with the non-trained limbs. The findings indicate that a relatively longer intrasession rest period resulted in a greater improvement in hamstring muscle strength during short term high intensity training.

  15. Effect of acute augmented feedback on between limb asymmetries and eccentric knee flexor strength during the Nordic hamstring exercise.

    PubMed

    Chalker, Wade J; Shield, Anthony J; Opar, David A; Rathbone, Evelyne N; Keogh, Justin W L

    2018-01-01

    Hamstring strain injuries (HSI) are one of the most prevalent and serious injuries affecting athletes, particularly those in team ball sports or track and field. Recent evidence demonstrates that eccentric knee flexor weakness and between limb asymmetries are possible risk factors for HSIs. While eccentric hamstring resistance training, e.g. the Nordic hamstring exercise (NHE) significantly increases eccentric hamstring strength and reduces HSI risk, little research has examined whether between limb asymmetries can be reduced with training. As augmented feedback (AF) can produce significant acute and chronic increases in muscular strength and reduce injury risk, one way to address the limitation in the eccentric hamstring training literature may be to provide athletes real-time visual AF of their NHE force outputs with the goal to minimise the between limb asymmetry. Using a cross over study design, 44 injury free, male cricket players from two skill levels performed two NHE sessions on a testing device. The two NHE sessions were identical with the exception of AF, with the two groups randomised to perform the sessions with and without visual feedback of each limb's force production in real-time. When performing the NHE with visual AF, the participants were provided with the following instructions to 'reduce limb asymmetries as much as possible using the real-time visual force outputs displayed in front them'. Between limb asymmetries and mean peak force outputs were compared between the two feedback conditions (FB1 and FB2) using independent t -tests to ensure there was no carryover effect, and to determine any period and treatment effects. The magnitude of the differences in the force outputs were also examined using Cohen d effect size. There was a significant increase in mean peak force production when feedback was provided (mean difference, 21.7 N; 95% CI [0.2-42.3 N]; P = 0.048; d = 0.61) and no significant difference in between limb asymmetry for feedback or

  16. A previous hamstring injury affects kicking mechanics in soccer players.

    PubMed

    Navandar, Archit; Veiga, Santiago; Torres, Gonzalo; Chorro, David; Navarro, Enrique

    2018-01-10

    Although the kicking skill is influenced by limb dominance and sex, how a previous hamstring injury affects kicking has not been studied in detail. Thus, the objective of this study was to evaluate the effect of sex and limb dominance on kicking in limbs with and without a previous hamstring injury. 45 professional players (males: n=19, previously injured players=4, age=21.16 ± 2.00 years; females: n=19, previously injured players=10, age=22.15 ± 4.50 years) performed 5 kicks each with their preferred and non-preferred limb at a target 7m away, which were recorded with a three-dimensional motion capture system. Kinematic and kinetic variables were extracted for the backswing, leg cocking, leg acceleration and follow through phases. A shorter backswing (20.20 ± 3.49% vs 25.64 ± 4.57%), and differences in knee flexion angle (58 ± 10o vs 72 ± 14o) and hip flexion velocity (8 ± 0rad/s vs 10 ± 2rad/s) were observed in previously injured, non-preferred limb kicks for females. A lower peak hip linear velocity (3.50 ± 0.84m/s vs 4.10 ± 0.45m/s) was observed in previously injured, preferred limb kicks of females. These differences occurred in the backswing and leg-cocking phases where the hamstring muscles were the most active. A variation in the functioning of the hamstring muscles and that of the gluteus maximus and iliopsoas in the case of a previous injury could account for the differences observed in the kicking pattern. Therefore, the effects of a previous hamstring injury must be considered while designing rehabilitation programs to re-educate kicking movement.

  17. Asymmetry of Muscle Strength in Elite Athletes

    ERIC Educational Resources Information Center

    Drid, Patrik; Drapsin, Miodrag; Trivic, Tatjana; Lukac, Damir; Obadov, Slavko; Milosevic, Zoran

    2009-01-01

    "Study aim": To determine muscle strength variables in elite judoists and wrestlers since thigh muscle strength and bilaterally balanced flexor-to-extensor ratio minimise injury risk and are desirable for achieving sport successes. "Material and methods": Judoists, wrestlers and untrained subjects, 10 each, were subjected to isokinetic strength…

  18. The isokinetic strength profile of elite soccer players according to playing position

    PubMed Central

    Grygorowicz, Monika; Hojszyk, Radosław; Jadczak, Łukasz

    2017-01-01

    The aim of this study was to compare isokinetic strength performance profiles in elite soccer players across different field positions. A total of 111 elite international players of Polish Ekstraklasa (the top division in Poland) were examined during the 2010–2015 seasons. The players were classified into six positional roles: central defenders (CD), external defenders (ED), central midfielders (CM), external midfielders (EM), forwards (F), and goalkeepers (G). The concentric isokinetic strength (peak torque [PT] of quadriceps and hamstrings, H/Q ratios) was calculated for the dominant leg and the non-dominant leg at angular velocity of 1.05 rad ·s–1, whereas to assess isokinetic muscle endurance, the total work [TW] at angular velocity of 4.19 rad ·s–1, was taken into consideration. The results showed that isokinetic strength performance varies significantly among players in different playing positions. The analysis of PT for quadriceps (PT-Q) and hamstrings (PT-H) generally showed that the goalkeepers and central midfielders had lower strength levels compared to other playing positions. In the case of PT-H and hamstring/quadricep (H/Q) peak torque ratios, statistically significant differences were also noted for the legs, where mean values noted for the dominant leg were higher than for the non-dominant leg. For TW for quadriceps (TW-Q) and hamstrings (TW-H), statistically significant differences were noted only between playing positions. TW-Q values for goalkeepers were lower than for central defenders and external midfielders. TW-H values for goalkeepers were lower than for central midfielders, central defenders and external midfielders. This study showed that specific functional activity of players in individual positions on the field influences the varied profile of isokinetic strength performance. PMID:28759603

  19. The isokinetic strength profile of elite soccer players according to playing position.

    PubMed

    Śliwowski, Robert; Grygorowicz, Monika; Hojszyk, Radosław; Jadczak, Łukasz

    2017-01-01

    The aim of this study was to compare isokinetic strength performance profiles in elite soccer players across different field positions. A total of 111 elite international players of Polish Ekstraklasa (the top division in Poland) were examined during the 2010-2015 seasons. The players were classified into six positional roles: central defenders (CD), external defenders (ED), central midfielders (CM), external midfielders (EM), forwards (F), and goalkeepers (G). The concentric isokinetic strength (peak torque [PT] of quadriceps and hamstrings, H/Q ratios) was calculated for the dominant leg and the non-dominant leg at angular velocity of 1.05 rad ·s-1, whereas to assess isokinetic muscle endurance, the total work [TW] at angular velocity of 4.19 rad ·s-1, was taken into consideration. The results showed that isokinetic strength performance varies significantly among players in different playing positions. The analysis of PT for quadriceps (PT-Q) and hamstrings (PT-H) generally showed that the goalkeepers and central midfielders had lower strength levels compared to other playing positions. In the case of PT-H and hamstring/quadricep (H/Q) peak torque ratios, statistically significant differences were also noted for the legs, where mean values noted for the dominant leg were higher than for the non-dominant leg. For TW for quadriceps (TW-Q) and hamstrings (TW-H), statistically significant differences were noted only between playing positions. TW-Q values for goalkeepers were lower than for central defenders and external midfielders. TW-H values for goalkeepers were lower than for central midfielders, central defenders and external midfielders. This study showed that specific functional activity of players in individual positions on the field influences the varied profile of isokinetic strength performance.

  20. The effectiveness of whole-body-vibration training in improving hamstring flexibility in physically active adults.

    PubMed

    Houston, Megan N; Hodson, Victoria E; Adams, Kelda K E; Hoch, Johanna M

    2015-02-01

    Hamstring tightness is common among physically active individuals. In addition to limiting range of motion and increasing the risk of muscle strain, hamstring tightness contributes to a variety of orthopedic conditions. Therefore, clinicians continue to identify effective methods to increase flexibility. Although hamstring tightness is typically treated with common stretching techniques such as static stretching and proprioceptive neuromuscular facilitation, it has been suggested that whole-body-vibration (WBV) training may improve hamstring flexibility. Can WBV training, used in isolation or in combination with common stretching protocols or exercise, improve hamstring flexibility in physically active young adults? Summary of Key Findings: Of the included studies, 4 demonstrated statistically significant improvements in hamstring flexibility in the intervention group, and 1 study found minor improvements over time in the intervention group after treatment. Clinical Bottom Line: There is moderate evidence to support the use of WBV training to improve hamstring flexibility in physically active young adults. There is grade B evidence that WBV training improves hamstring flexibility in physically active adults. The Centre of Evidence Based Medicine recommends a grade of B for level 2 evidence with consistent findings.

  1. Back muscle strength, lifting, and stooped working postures.

    PubMed

    Poulsen, E; Jørgensen, K

    1971-09-01

    When lifting loads and working in a forward stooped position, the muscles of the back rather than the ligaments and bony structures of the spine should overcome the gravitational forces. Formulae, based on measurements of back muscle strength, for prediction of maximal loads to be lifted, and for the ability to sustain work in a stooped position, have been worked out and tested in practical situations. From tests with 50 male and female subjects the simplest prediction formulae for maximum loads were: max. load = 1.10 x isometric back muscle strength for men; and max. load = 0.95 x isometric back muscle strength - 8 kg for women. Some standard values for maximum lifts and permissible single and repeated lifts have been calculated for men and women separately and are given in Table 1. From tests with 65 rehabilitees it was found that the maximum isometric strength of the back muscles measured at shoulder height should exceed 2/3 of the body weight, if fatigue and/or pain in the back muscles is to be avoided during work in a standing stooped position.

  2. Bilateral and Unilateral Asymmetries of Isokinetic Strength and Flexibility in Male Young Professional Soccer Players

    PubMed Central

    Daneshjoo, Abdolhamid; Rahnama, Nader; Mokhtar, Abdul Halim; Yusof, Ashril

    2013-01-01

    This study investigated bilateral and unilateral asymmetries of strength and flexibility in male young professional soccer players. Thirty-six soccer players (age: 18.9 ± 1.4 years) participated in this study. A Biodex Isokinetic Dynamometer was used to assess the hamstring and quadriceps strength at selected speeds of 60°/s, 180°/s and 300°/s. Hip joint flexibility was measured using a goniometer. No difference was observed in conventional strength ratio, dynamic control ratio and fast/slow speed ratio between the dominant and non-dominant legs (p>0.05). All but one of the players (97.2%) had musculoskeletal abnormality (bilateral imbalance > 10%) in one or more specific muscle groups. The dominant leg had greater hip joint flexibility compared with the non-dominant leg (108.8 ± 10.7° versus 104.6 ± 9.8°, respectively). The findings support the hypothesis that physical performance and movement pattern experienced during soccer playing may negatively change the balance of strength in both legs (bilateral strength balance), but not on the same leg of the young male professional soccer players. The results can be helpful for trainers and coaches to decide whether the players need to improve their balance and strength which in turn may prevent injury. It is suggested that in professional soccer training, quadriceps and hamstrings muscle strength, as well as hip joint flexibility should not be overlooked. PMID:23717354

  3. Muscle strength and golf performance: a critical review.

    PubMed

    Torres-Ronda, Lorena; Sánchez-Medina, Luis; González-Badillo, Juan J

    2011-01-01

    Golf has become an increasingly popular sport and a growing body of research trying to identify its main physical requirements is being published. The aim of this review was twofold: first, to examine the existing scientific literature regarding strength training and golf in healthy, non-injured, subjects; and second, to reach conclusions that could provide information on how to design more effective strength training programs to improve golf performance as well as directions for future research. Studies which analyzed the relationship between muscle strength, swing performance variables (club head speed, driving distance, ball speed) and skill (handicap, score) were reviewed. Changes in swing performance following different strength training programs were also investigated. Finally, a critical analysis about the methodologies used was carried out. The results of the reviewed studies seem to indicate that: 1) a positive relationship exists between handicap and swing performance (even though few studies have investigated this issue); 2) there is a positive correlation between skill (handicap and/or score) and muscle strength; and 3) there is a relationship between driving distance, swing speed, ball speed and muscle strength. Results suggest that training leg-hip and trunk power as well as grip strength is especially relevant for golf performance improvement. Studies that analyzed variations in swing performance following resistance-only training programs are scarce, thus it is difficult to prove whether the observed improvements are attributable to changes in strength levels. Many of the studies reviewed presented some methodological errors in their design and not all strength assessment protocols seemed appropriate. Further studies should determine muscle strength needs in relation to final swing performance, using well designed experiments and strict isoinertial assessment protocols which adequately relate to specific golf motion, age and skill level. More

  4. Muscle Strength And Golf Performance: A Critical Review

    PubMed Central

    Torres-Ronda, Lorena; Sánchez-Medina, Luis; González-Badillo, Juan J.

    2011-01-01

    Golf has become an increasingly popular sport and a growing body of research trying to identify its main physical requirements is being published. The aim of this review was twofold: first, to examine the existing scientific literature regarding strength training and golf in healthy, non-injured, subjects; and second, to reach conclusions that could provide information on how to design more effective strength training programs to improve golf performance as well as directions for future research. Studies which analyzed the relationship between muscle strength, swing performance variables (club head speed, driving distance, ball speed) and skill (handicap, score) were reviewed. Changes in swing performance following different strength training programs were also investigated. Finally, a critical analysis about the methodologies used was carried out. The results of the reviewed studies seem to indicate that: 1) a positive relationship exists between handicap and swing performance (even though few studies have investigated this issue); 2) there is a positive correlation between skill (handicap and/or score) and muscle strength; and 3) there is a relationship between driving distance, swing speed, ball speed and muscle strength. Results suggest that training leg-hip and trunk power as well as grip strength is especially relevant for golf performance improvement. Studies that analyzed variations in swing performance following resistance-only training programs are scarce, thus it is difficult to prove whether the observed improvements are attributable to changes in strength levels. Many of the studies reviewed presented some methodological errors in their design and not all strength assessment protocols seemed appropriate. Further studies should determine muscle strength needs in relation to final swing performance, using well designed experiments and strict isoinertial assessment protocols which adequately relate to specific golf motion, age and skill level. More

  5. Hamstring muscle strains in professional football players: a 10-year review.

    PubMed

    Elliott, Marcus C C W; Zarins, Bertram; Powell, John W; Kenyon, Charles D

    2011-04-01

    Investigations into hamstring strain injuries at the elite level exist in sports such as Australian Rules football, rugby, and soccer, but no large-scale study exists on the incidence and circumstances surrounding these injuries in the National Football League (NFL). Injury rates will vary between different player positions, times in the season, and across different playing situations. Descriptive epidemiology study. Between 1989 and 1998, injury data were prospectively collected by athletic trainers for every NFL team and recorded in the NFL's Injury Surveillance System. Data collected included team, date of injury, activity the player was engaged in at the time of injury, injury severity, position played, mechanism of injury, and history of previous injury. Injury rates were reported in injuries per athlete-exposure (A-E). An athlete-exposure was defined as 1 athlete participating in either 1 practice or 1 game. Over the 10-year study period 1716 hamstring strains were reported for an injury rate (IR) of 0.77 per 1000 A-E. More than half (51.3%) of hamstring strains occurred during the 7-week preseason. The preseason practice IR was significantly elevated compared with the regular-season practice IR (0.82/1000 A-E and 0.18/1000 A-E, respectively). The most commonly injured positions were the defensive secondary, accounting for 23.1% of the injuries; the wide receivers, accounting for 20.8%; and special teams, constituting 13.0% of the injuries in the study. Hamstring strains are a considerable cause of disability in football, with the majority of injuries occurring during the short preseason. In particular, the speed position players, such as the wide receivers and defensive secondary, as well as players on the special teams units, are at elevated risk for injury. These positions and situations with a higher risk of injury provide foci for preventative interventions.

  6. No Relationship Between Hamstring Flexibility and Hamstring Injuries in Male Amateur Soccer Players: A Prospective Study.

    PubMed

    van Doormaal, Mitchell C M; van der Horst, Nick; Backx, Frank J G; Smits, Dirk-Wouter; Huisstede, Bionka M A

    2017-01-01

    In soccer, although hamstring flexibility is thought to play a major role in preventing hamstring injuries, the relationship between hamstring flexibility and hamstring injuries remains unclear. To investigate the relationship between hamstring flexibility and hamstring injuries in male amateur soccer players. Case-control study; Level of evidence, 3. This study included 450 male first-class amateur soccer players (mean age, 24.5 years). Hamstring flexibility was measured by performing the sit-and-reach test (SRT). The relationship between hamstring flexibility and the occurrence of hamstring injuries in the following year, while adjusting for the possible confounding effects of age and previous hamstring injuries, was determined with a multivariate logistic regression analysis. Of the 450 soccer players, 21.8% reported a hamstring injury in the previous year. The mean (±SD) baseline score for the SRT was 21.2 ± 9.2 cm. During the 1-year follow-up period, 23 participants (5.1%) suffered a hamstring injury. In the multivariate analysis, while adjusting for age and previous injuries, no significant relationship was found between hamstring flexibility and hamstring injuries ( P = .493). In this group of soccer players, hamstring flexibility (measured with the SRT) was not related to hamstring injuries. Age and previous hamstring injuries as possible confounders did not appear to influence this relationship. Other etiological factors need to be examined to further elucidate the mechanism of hamstring injuries.

  7. Autism Severity and Muscle Strength: A Correlation Analysis

    ERIC Educational Resources Information Center

    Kern, Janet K.; Geier, David A.; Adams, James B.; Troutman, Melissa R.; Davis, Georgia; King, Paul G.; Young, John L.; Geier, Mark R.

    2011-01-01

    The current study examined the relationship between muscle strength, as measured by hand grip strength, and autism severity, as measured by the Childhood Autism Rating Scale (CARS). Thirty-seven (37) children with a diagnosis of autism spectrum disorder (ASD) were evaluated using the CARS and then tested for hand muscle strength using a hand grip…

  8. Sciatic Nerve Injury After Proximal Hamstring Avulsion and Repair

    PubMed Central

    Wilson, Thomas J.; Spinner, Robert J.; Mohan, Rohith; Gibbs, Christopher M.; Krych, Aaron J.

    2017-01-01

    Background: Muscle bellies of the hamstring muscles are intimately associated with the sciatic nerve, putting the sciatic nerve at risk of injury associated with proximal hamstring avulsion. There are few data informing the magnitude of this risk, identifying risk factors for neurologic injury, or determining neurologic outcomes in patients with distal sciatic symptoms after surgery. Purpose: To characterize the frequency and nature of sciatic nerve injury and distal sciatic nerve–related symptoms after proximal hamstring avulsion and to characterize the influence of surgery on these symptoms. Study Design: Cohort study; Level of evidence, 3. Methods: This was a retrospective review of patients with proximal partial or complete hamstring avulsion. The outcome of interest was neurologic symptoms referable to the sciatic nerve distribution below the knee. Neurologic symptoms in operative patients were compared pre- and postoperatively. Results: The cohort consisted of 162 patients: 67 (41.4%) operative and 95 (58.6%) nonoperative. Sciatic nerve–related symptoms were present in 22 operative and 23 nonoperative patients, for a total of 45 (27.8%) patients (8 [4.9%] motor deficits, 11 [6.8%] sensory deficits, and 36 [22.2%] with neuropathic pain). Among the operative cohort, 3 of 3 (100.0%) patients showed improvement in their motor deficit postoperatively, 3 of 4 (75.0%) patients’ sensory symptoms improved, and 17 of 19 (89.5%) patients had improvement in pain. A new or worsening deficit occurred in 5 (7.5%) patients postoperatively (2 [3.1%] motor deficits, 1 [1.5%] sensory deficit, and 3 [4.5%] with new pain). Predictors of operative intervention included lower age (odds ratio [OR], 0.952; 95% CI, 0.921-0.982; P = .001) and complete avulsion (OR, 10.292; 95% CI, 2.526-72.232; P < .001). Presence of neurologic deficit was not predictive. Conclusion: Sciatic nerve–related symptoms after proximal hamstring avulsion are underrecognized. Currently, neurologic

  9. Sciatic Nerve Injury After Proximal Hamstring Avulsion and Repair.

    PubMed

    Wilson, Thomas J; Spinner, Robert J; Mohan, Rohith; Gibbs, Christopher M; Krych, Aaron J

    2017-07-01

    Muscle bellies of the hamstring muscles are intimately associated with the sciatic nerve, putting the sciatic nerve at risk of injury associated with proximal hamstring avulsion. There are few data informing the magnitude of this risk, identifying risk factors for neurologic injury, or determining neurologic outcomes in patients with distal sciatic symptoms after surgery. To characterize the frequency and nature of sciatic nerve injury and distal sciatic nerve-related symptoms after proximal hamstring avulsion and to characterize the influence of surgery on these symptoms. Cohort study; Level of evidence, 3. This was a retrospective review of patients with proximal partial or complete hamstring avulsion. The outcome of interest was neurologic symptoms referable to the sciatic nerve distribution below the knee. Neurologic symptoms in operative patients were compared pre- and postoperatively. The cohort consisted of 162 patients: 67 (41.4%) operative and 95 (58.6%) nonoperative. Sciatic nerve-related symptoms were present in 22 operative and 23 nonoperative patients, for a total of 45 (27.8%) patients (8 [4.9%] motor deficits, 11 [6.8%] sensory deficits, and 36 [22.2%] with neuropathic pain). Among the operative cohort, 3 of 3 (100.0%) patients showed improvement in their motor deficit postoperatively, 3 of 4 (75.0%) patients' sensory symptoms improved, and 17 of 19 (89.5%) patients had improvement in pain. A new or worsening deficit occurred in 5 (7.5%) patients postoperatively (2 [3.1%] motor deficits, 1 [1.5%] sensory deficit, and 3 [4.5%] with new pain). Predictors of operative intervention included lower age (odds ratio [OR], 0.952; 95% CI, 0.921-0.982; P = .001) and complete avulsion (OR, 10.292; 95% CI, 2.526-72.232; P < .001). Presence of neurologic deficit was not predictive. Sciatic nerve-related symptoms after proximal hamstring avulsion are underrecognized. Currently, neurologic symptoms are not considered when determining whether to pursue operative

  10. Normal isometric strength of rotatorcuff muscles in adults.

    PubMed

    Chezar, A; Berkovitch, Y; Haddad, M; Keren, Y; Soudry, M; Rosenberg, N

    2013-01-01

    The most prevalent disorders of the shoulder are related to the muscles of rotator cuff. In order to develop a mechanical method for the evaluation of the rotator cuff muscles, we created a database of isometric force generation by the rotator cuff muscles in normal adult population. We hypothesised the existence of variations according to age, gender and dominancy of limb. A total of 400 healthy adult volunteers were tested, classified into groups of 50 men and women for each decade of life. Maximal isometric force was measured at standardised positions for supraspinatus, infraspinatus and subscapularis muscles in both shoulders in every person. Torque of the force was calculated and normalised to lean body mass. The profiles of mean torque-time curves for each age and gender group were compared. Our data showed that men gradually gained maximal strength in the fifth decade, and showed decreased strength in the sixth. In women the maximal strength was gained in the fourth decade with gradual decline to the sixth decade of life. The dominant arm was stronger in most of the tested groups. The torque profiles of the rotator cuff muscles in men at all ages were significantly higher than that in women. We found previously unrecognised variations of rotator cuff muscles' isometric strength according to age, gender and dominancy in a normal population. The presented data may serve as a basis for the future studies for identification of the abnormal patterns of muscle isometric strength in patients with pathology of the rotator cuff muscles. Cite this article: Bone Joint Res 2013;2:214-19.

  11. Acute Effects of Foam Rolling, Static Stretching, and Dynamic Stretching During Warm-ups on Muscular Flexibility and Strength in Young Adults.

    PubMed

    Su, Hsuan; Chang, Nai-Jen; Wu, Wen-Lan; Guo, Lan-Yuen; Chu, I-Hua

    2017-11-01

    Foam rolling has been proposed to improve muscle function, performance, and joint range of motion (ROM). However, whether a foam rolling protocol can be adopted as a warm-up to improve flexibility and muscle strength is unclear. To examine and compare the acute effects of foam rolling, static stretching, and dynamic stretching used as part of a warm-up on flexibility and muscle strength of knee flexion and extension. Crossover study. University research laboratory. 15 male and 15 female college students (age 21.43 ± 1.48 y, weight 65.13 ± 12.29 kg, height 166.90 ± 6.99 cm). Isokinetic peak torque was measured during knee extension and flexion at an angular velocity of 60°/second. Flexibility of the quadriceps was assessed by the modified Thomas test, while flexibility of the hamstrings was assessed using the sit-and-reach test. The 3 interventions were performed by all participants in random order on 3 days separated by 48-72 hours. The flexibility test scores improved significantly more after foam rolling as compared with static and dynamic stretching. With regard to muscle strength, only knee extension peak torque (pre vs. postintervention) improved significantly after the dynamic stretching and foam rolling, but not after static stretching. Knee flexion peak torque remained unchanged. Foam rolling is more effective than static and dynamic stretching in acutely increasing flexibility of the quadriceps and hamstrings without hampering muscle strength, and may be recommended as part of a warm-up in healthy young adults.

  12. Cut points of muscle strength associated with metabolic syndrome in men.

    PubMed

    Sénéchal, Martin; McGavock, Jonathan M; Church, Timothy S; Lee, Duck-Chul; Earnest, Conrad P; Sui, Xuemei; Blair, Steven N

    2014-08-01

    The loss of muscle strength with age increases the likelihood of chronic conditions, including metabolic syndrome (MetS). However, the minimal threshold of muscle strength at which the risk for MetS increases has never been established. This study aimed to identify a threshold of muscle strength associated with MetS in men. We created receiver operating curves for muscle strength and the risk of MetS from a cross-sectional sample of 5685 men age <50 yr and 1541 men age ≥50 yr enrolled in the Aerobics Center Longitudinal Study. The primary outcome measure, the MetS, was defined according to the National Cholesterol Education Program Adult Treatment Panel III criteria. Upper and lower body muscle strength was treated as a composite measure of one-repetition maximum tests on bench and leg press and scaled to body weight. Low muscle strength was defined as the lowest age-specific 20th percentile, whereas high muscle strength was defined as composite muscle strength above the 20th percentile. In men aged <50 yr, the odds of MetS were 2.20-fold (95% confidence interval = 1.89-2.54) higher in those with low muscle strength, independent of age, smoking, and alcohol intake. The strength of this association was similar for men age ≥50 yr (odds ratio = 2.11, 95% confidence interval = 1.62-2.74). In men age < 50 yr, the composite strength threshold associated with MetS was 2.57 kg·kg body weight, whereas in men age ≥ 50 yr the threshold was 2.35 kg·kg body weight. This study is the first to identify a threshold of muscle strength associated with an increased likelihood of MetS in men. Measures of muscle strength may help identify men at risk of chronic disease.

  13. Acute hamstring injury in football players: Association between anatomical location and extent of injury-A large single-center MRI report.

    PubMed

    Crema, Michel D; Guermazi, Ali; Tol, Johannes L; Niu, Jingbo; Hamilton, Bruce; Roemer, Frank W

    2016-04-01

    To describe in detail the anatomic distribution of acute hamstring injuries in football players, and to assess the relationship between location and extent of edema and tears, all based on findings from MRI. Retrospective observational study. We included 275 consecutive male football players who had sustained acute hamstring injuries and had positive findings on MRI. For each subject, lesions were recorded at specific locations of the hamstring muscles, which were divided into proximal or distal: free tendon, myotendinous junction, muscle belly, and myofascial junction locations. For each lesion, we assessed the largest cross-sectional area of edema and/or tears. We calculated the prevalence of injuries by location. The relationships between locations and extent of edema and tears were assessed using a one-sample t-test, with significance set at p<0.05. The long head of biceps femoris (LHBF) was most commonly affected (56.5%). Overall, injuries were most common in the myotendinous junction and in proximal locations. The proximal myotendinous junction was associated with a greater extent of edema in the LHBF and semitendinosus (ST) muscles (p<0.05). Proximal locations in the LHBF had larger edema than distal locations (p<0.05). Distal locations in the ST muscle had larger tears than proximal locations (p<0.05). The proximal myotendinous junction (LHBF and ST muscles) and proximal locations (LHBF muscle) are more commonly affected and are associated with a greater extent of edema in acute hamstring muscle injury. Distal locations (ST muscle), however, seem to be more commonly associated with larger tears. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. Pulmonary Function, Muscle Strength, and Incident Mobility Disability in Elders

    PubMed Central

    Buchman, Aron S.; Boyle, Patricia A.; Leurgans, Sue E.; Evans, Denis A.; Bennett, David A.

    2009-01-01

    Muscle strength, including leg strength and respiratory muscle strength, are relatively independently associated with mobility disability in elders. However, the factors linking muscle strength with mobility disability are unknown. To test the hypothesis that pulmonary function mediates the association of muscle strength with the development of mobility disability in elders, we used data from a longitudinal cohort study of 844 ambulatory elders without dementia participating in the Rush Memory and Aging Project with a mean follow-up of 4.0 years (SD = 1.39). A composite measure of pulmonary function was based on spirometric measures of forced vital capacity, forced expiratory volume, and peak expiratory flow. Respiratory muscle strength was based on maximal inspiratory pressure and expiratory pressure and leg strength based on hand-held dynamometry. Mobility disability was defined as a gait speed less than or equal to 0.55 m/s based on annual assessment of timed walk. Secondary analyses considered time to loss of the ability to ambulate. In separate proportional hazards models which controlled for age, sex, and education, composite measures of pulmonary function, respiratory muscle strength, and leg strength were each associated with incident mobility disability (all P values < 0.001). Further, all three were related to the development of incident mobility disability when considered together in a single model (pulmonary function: hazard ratio [HR], 0.721; 95% confidence interval [CI], 0.577, 0.902; respiratory muscle strength: HR, 0.732; 95% CI, 0.593, 0.905; leg strength: HR, 0.791; 95% CI, 0.640, 0.976). Secondary analyses examining incident loss of the ability to ambulate revealed similar findings. Overall, these findings suggest that lower levels of pulmonary function and muscle strength are relatively independently associated with the development of mobility disability in the elderly. PMID:19934353

  15. Evaluation of rotator cuff muscle strength in healthy individuals

    PubMed Central

    Cortez, Paulo José Oliveira; Tomazini, José Elias

    2015-01-01

    OBJECTIVE: To compare the strength generated by the rotator muscles of the shoulder joint between the right upper limb and left upper limb among healthy individuals. METHODS: To evaluate the muscle strength of upper limbs from isometric contractions in the horizontal direction (rotation) an isometric dynamometer was used, equipped with transducers, signal conditioning, a data acquisition board, and finally, a computer. Study participants were 22 male military subjects, aged between 18 and 19 years old, body mass between 57.7 and 93.0 kg (71.8 ± 9.45 kg) and height between 1.67 and 1.90 m (1.75 ± 0.06 m), healthy and without clinical diseases or any type of orthopedic injury in the muscle skeletal system. RESULTS: The internal rotation in the right upper limb (RUL) was higher than the average strength of internal rotation in the left upper limb (LUL) (p = 0.723). The external rotation strength in RUL was lower than the average strength of external rotation in the LUL (p=0.788). No statistical difference was observed by comparing the strength values of all isometric strength tests. CONCLUSION: For the sample and methodology used to assess muscle strength, there was no statistical difference between the strength generated by the muscles of the rotator cuff of the right and left upper limbs. Experimental Study. PMID:26207091

  16. Effects of Static and Dynamic Stretching on the Isokinetic Peak Torques and Electromyographic Activities of the Antagonist Muscles.

    PubMed

    Serefoglu, Abdullah; Sekir, Ufuk; Gür, Hakan; Akova, Bedrettin

    2017-03-01

    The aim of this study was to investigate if static and dynamic stretching exercises of the knee muscles (quadriceps and hamstring muscles) have any effects on concentric and eccentric isokinetic peak torques and electromyographic amplitudes (EMG) of the antagonist muscles. Twenty healthy male athletes (age between 18-30 years) voluntarily participated in this study. All of the subjects visited the laboratory to complete the following intervention in a randomized order on 5 separate days; (a) non-stretching (control), (b) static stretching of the quadriceps muscles, (c) static stretching of the hamstring muscles, (d) dynamic stretching of the quadriceps muscles, and (e) dynamic stretching of the hamstring muscles. Static stretching exercises either for the quadriceps or the hamstring muscles were carried out at the standing and sitting positions. Subjects performed four successive repetitions of each stretching exercises for 30 seconds in both stretching positions. Similar to static stretching exercises two different stretching modes were designed for dynamic stretching exercises. Concentric and eccentric isokinetic peak torque for the non-stretched antagonist quadriceps or hamstring muscles at angular velocities of 60°/sec and 240°/sec and their concurrent electromyographic (EMG) activities were measured before and immediately after the intervention. Isokinetic peak torques of the non-stretched agonist hamstring and quadriceps muscles did not represent any significant (p > 0.05) differences following static and dynamic stretching of the antagonist quadriceps and hamstring muscles, respectively. Similarly, the EMG activities of the agonist muscles exhibited no significant alterations (p > 0.05) following both stretching exercises of the antagonist muscles. According to the results of the present study it is possible to state that antagonist stretching exercises either in the static or dynamic modes do not affect the isokinetic peak torques and the EMG activities

  17. Insulin resistance and muscle strength in older persons.

    PubMed

    Abbatecola, Angela M; Ferrucci, Luigi; Ceda, Gianpaolo; Russo, Cosimo R; Lauretani, Fulvio; Bandinelli, Stefania; Barbieri, Michelangela; Valenti, Giorgio; Paolisso, Giuseppe

    2005-10-01

    The functional consequences of an age-related insulin resistance (IR) state on muscle functioning are unknown. Because insulin is needed for adequate muscle function, an age-related insulin-resistant state may also be a determining factor. We evaluated the relationship between IR and handgrip muscle strength in men and women from a large population-based study (n = 968). The degree of IR was evaluated by the homeostasis model assessment (HOMA) and muscle strength was assessed using handgrip. Simple sex-stratified correlations demonstrated that, in men, body mass index-adjusted handgrip strength correlated positively with physical activity (r = 0.321; p < .001), muscle area (r = 0.420; p < .001), muscle density (r = 0.263; p = .001), plasma albumin (r = 0.156; p = .001), insulin-like growth factor-1 (r = 0.258; p < .001), calcium (r = 0.140; p = .006), and testosterone (r = 0.325; p < .001) concentrations, whereas a negative association was found for age (r = -0.659; p < .001) and myoglobin plasma levels (r = -0.164; p =.001). In women, body mass index-adjusted handgrip strength correlated positively with physical activity (r = 0.280; p < .001), muscle area (r = 0.306; p < .001), muscle density (r = 0.341; p = .001), plasma albumin (r = 0.140; p =.001), and insulin-like growth factor-1 (r = 0.300; p < .001), whereas a negative association was found for age (r = -0.563; p < .001), myoglobin levels (r = -0.164; p = .001), and IR (r = -0.130; p = .04). Sex-stratified analyses adjusted for multiple confounders showed that the relationship between IR and handgrip strength was found significant in women, whereas it was negligible and not significant in men.

  18. The effect of age on hamstring passive properties after a 10-week stretch training

    PubMed Central

    Haab, Thomas; Wydra, Georg

    2017-01-01

    [Purpose] Degenerative changes take place in the musculoskeletal system of elderly people, resulting in a reduced range of motion. For this reason, stretch training is recommended for elderly individuals. To date, there have been no studies of the adaptations of the passive properties of muscles following long-term stretch training. The aim of this study is to investigate the hamstring elasticity of elderly people following a 10-week stretch training and compare the results to a younger cohort. [Subjects and Methods] The experimental groups consisted of 15 younger (24.0 ± 4.0 years) and 14 older (65.1 ± 7.9 years) individuals. Both experimental groups undertook a standardised 10-week static passive hamstring stretch training. Passive properties of the hamstring were measured with an instrumented Straight Leg Raise Test. [Results] After a 10-week stretch training, there were increases in range of motion, passive resistive force and passive elastic energy in both age groups. Passive elastic stiffness decreased. Changes of hamstring passive properties did not differ significantly between age groups after a 10-week stretch training. [Conclusion] Increasing age has a negative effect on muscle passive properties, but older individuals benefit from regular stretch training, just as younger individuals do. PMID:28626322

  19. Muscle strength and fatigue in newly diagnosed patients with myasthenia gravis.

    PubMed

    Vinge, Lotte; Andersen, Henning

    2016-10-01

    Dynamometry is increasingly used as an objective measurement of muscle strength in neurological diseases. No study has applied dynamometry in untreated newly diagnosed patients with myasthenia gravis (MG). Isometric muscle strength at the shoulder, knee, and ankle was determined in 21 MG patients before and after initial anti-myasthenic treatment. Isometric strength was compared with MG evaluation scales. Muscle strength was reduced for knee extensors and shoulder abductors but normal for ankle extensors. Isometric muscle strength did not correlate significantly with manual muscle testing (MG Composite). Dynamometry revealed improved muscle strength of up to 50% (median 17%; range -1.8-49.8) despite no change in the MG Composite score. Dynamometry appears to be a more sensitive method of identifying changes in limb strength than MG evaluation scales. This supports the use of dynamometry in MG patients, especially for evaluation of the effect of anti-myasthenic treatment. Muscle Nerve 54: 709-714, 2016. © 2016 Wiley Periodicals, Inc.

  20. Functional polymorphisms associated with human muscle size and strength.

    PubMed

    Thompson, Paul D; Moyna, Niall; Seip, Richard; Price, Thomas; Clarkson, Priscilla; Angelopoulos, Theodore; Gordon, Paul; Pescatello, Linda; Visich, Paul; Zoeller, Robert; Devaney, Joseph M; Gordish, Heather; Bilbie, Stephen; Hoffman, Eric P

    2004-07-01

    Skeletal muscle is critically important to human performance and health, but little is known of the genetic factors influencing muscle size, strength, and its response to exercise training. The Functional single nucleotide polymorphisms (SNP) Associated with Muscle Size and Strength, or FAMuSS, Study is a multicenter, NIH-funded program to examine the influence of gene polymorphisms on skeletal muscle size and strength before and after resistance exercise training. One thousand men and women, age 18 - 40 yr, will train their nondominant arm for 12 wk. Skeletal muscle size (magnetic resonance imaging) and isometric and dynamic strength will be measured before and after training. Individuals whose baseline values or response to training deviate > or = 1.5 SD will be defined as outliers and examined for genetic variants. Initially candidate genes previously associated with muscle performance will be examined, but the study will ultimately attempt to identify genes associated with muscle performance. FAMuSS should help identify genetic factors associated with muscle performance and the response to exercise training. Such insight should contribute to our ability to predict the individual response to exercise training but may also contribute to understanding better muscle physiology, to identifying individuals who are susceptible to muscle loss with environmental challenge, and to developing pharmacologic agents capable of preserving muscle size and function.

  1. The need for lumbar-pelvic assessment in the resolution of chronic hamstring strain.

    PubMed

    Panayi, Stephanie

    2010-07-01

    A lumbar-pelvic assessment and treatment model based on a review of clinical and anatomical research is presented for consideration in the treatment of chronic hamstring strain. The origin of the biceps femoris muscle attaches to the pelvis at the ischial tuberosity and to the sacrum via the sacrotuberous ligament. The biomechanics of the sacroiliac joint and hip, along with lumbar-pelvic stability, therefore play a significant role in hamstring function. Pelvic asymmetry and/or excessive anterior tilt can lead to increased tension at the biceps origin and increase functional demands on the hamstring group by inhibiting its synergists. Joint proprioceptive mechanisms may play a significant role in re-establishing balance between agonists and antagonists. An appreciation of neuromuscular connections as well as overall lumbar-pelvic structural assessment is recommended in conjunction with lumbar-pelvic strengthening exercises to help resolve chronic hamstring strain. (c) 2009 Elsevier Ltd. All rights reserved.

  2. A return-to-sport algorithm for acute hamstring injuries.

    PubMed

    Mendiguchia, Jurdan; Brughelli, Matt

    2011-02-01

    Acute hamstring injuries are the most prevalent muscle injuries reported in sport. Despite a thorough and concentrated effort to prevent and rehabilitate hamstring injuries, injury occurrence and re-injury rates have not improved over the past 28 years. This failure is most likely due to the following: 1) an over-reliance on treating the symptoms of injury, such as subjective measures of "pain", with drugs and interventions; 2) the risk factors investigated for hamstring injuries have not been related to the actual movements that cause hamstring injuries i.e. not functional; and, 3) a multi-factorial approach to assessment and treatment has not been utilized. The purpose of this clinical commentary is to introduce a model for progression through a return-to-sport rehabilitation following an acute hamstring injury. This model is developed from objective and quantifiable tests (i.e. clinical and functional tests) that are structured into a step-by-step algorithm. In addition, each step in the algorithm includes a treatment protocol. These protocols are meant to help the athlete to improve through each phase safely so that they can achieve the desired goals and progress through the algorithm and back to their chosen sport. We hope that this algorithm can serve as a foundation for future evidence based research and aid in the development of new objective and quantifiable testing methods. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Respiratory Muscle Strength Predicts Decline in Mobility in Older Persons

    PubMed Central

    Buchman, A.S.; Boyle, P.A.; Wilson, R.S.; Leurgans, S.; Shah, R.C.; Bennett, D.A.

    2008-01-01

    Objectives To test the hypothesis that respiratory muscle strength is associated with the rate of change in mobility even after controlling for leg strength and physical activity. Methods Prospective study of 890 ambulatory older persons without dementia who underwent annual clinical evaluations to examine change in the rate of mobility over time. Results In a linear mixed-effect model adjusted for age, sex, and education, mobility declined about 0.12 unit/year, and higher levels of respiratory muscle strength were associated with a slower rate of mobility decline (estimate 0.043, SE 0.012, p < 0.001). Respiratory muscle strength remained associated with the rate of change in mobility even after controlling for lower extremity strength (estimate 0.036, SE 0.012, p = 0.004). In a model that included terms for respiratory muscle strength, lower extremity strength and physical activity together, all three were independent predictors of mobility decline in older persons. These associations remained significant even after controlling for body composition, global cognition, the development of dementia, parkinsonian signs, possible pulmonary disease, smoking, joint pain and chronic diseases. Conclusion Respiratory muscle strength is associated with mobility decline in older persons independent of lower extremity strength and physical activity. Clinical interventions to improve respiratory muscle strength may decrease the burden of mobility impairment in the elderly. PMID:18784416

  4. Effects of braiding on tensile properties of four-strand human hamstring tendon grafts.

    PubMed

    Millett, Peter J; Miller, Bruce S; Close, Matthew; Sterett, William I; Walsh, William; Hawkins, Richard J

    2003-01-01

    Anterior cruciate ligament reconstruction is commonly performed with autogenous hamstring tendon grafts. To ascertain the effects of braiding on ultimate tensile strength and stiffness of hamstring tendon graft. Controlled laboratory study. Sixteen fresh-frozen semitendinosus and gracilis tendons were harvested from eight matched (right and left) human cadaveric specimens. Both sets of hamstring tendons from each matched pair were doubled, creating a four-strand graft. Grafts were then randomized so that one graft from each matched pair was braided and the other remained unbraided. The diameter of each graft construct was recorded. Grafts were tested to failure on a materials testing machine. There were no significant differences in cross-sectional area before or after braiding. Fifteen of 16 tendons failed midsubstance; 1 failed at the lower clamp. Braiding reduced the initial tensile strength and stiffness of human hamstring tendon grafts in this study by 35.0% and 45.8%, respectively. Braiding may place the collagen fibers in a suboptimal orientation for loading that results in a weaker graft. We do not recommend the use of braiding if the strongest, stiffest initial graft is desired.

  5. Eccentric and concentric muscle performance following 7 days of simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Hayes, Judith C.; Roper, Mary L.; Mazzocca, Augustus D.; Mcbrine, John J.; Barrows, Linda H.; Harris, Bernard A.; Siconolfi, Steven F.

    1992-01-01

    Changes in skeletal muscle strength occur in response to chronic disuse or insufficient functional loading. The purpose of this study was to examine changes in muscle performance of the lower extremity and torso prior to and immediately after 7 days of simulated weightlessness (horizontal bed rest). A Biodex was used to determine concentric and eccentric peak torque and angle at peak torque for the back, abdomen, quadriceps, hamstring, soleus, and tibialis anterior. A reference angle of 0 degrees was set at full extension. Data were analyzed by ANOVA.

  6. Is there really an eccentric action of the hamstrings during the swing phase of high-speed running? Part II: Implications for exercise.

    PubMed

    Van Hooren, Bas; Bosch, Frans

    2017-12-01

    We have previously argued that there may actually be no significant eccentric, but rather predominantly an isometric action of the hamstring muscle fibres during the swing phase of high-speed running when the attachment points of the hamstrings are moving apart. Based on this we suggested that isometric rather than eccentric exercises are a more specific way of conditioning the hamstrings for high-speed running. In this review we argue that some of the presumed beneficial adaptations following eccentric training may actually not be related to the eccentric muscle fibre action, but to other factors such as exercise intensity. Furthermore, we discuss several disadvantages associated with commonly used eccentric hamstring exercises. Subsequently, we argue that high-intensity isometric exercises in which the series elastic element stretches and recoils may be equally or even more effective at conditioning the hamstrings for high-speed running, since they also avoid some of the negative side effects associated with eccentric training. We provide several criteria that exercises should fulfil to effectively condition the hamstrings for high-speed running. Adherence to these criteria will guarantee specificity with regards to hamstrings functioning during running. Practical examples of isometric exercises that likely meet several criteria are provided.

  7. Higher Drop in Speed during a Repeated Sprint Test in Soccer Players Reporting Former Hamstring Strain Injury

    PubMed Central

    Røksund, Ola D.; Kristoffersen, Morten; Bogen, Bård E.; Wisnes, Alexander; Engeseth, Merete S.; Nilsen, Ann-Kristin; Iversen, Vegard V.; Mæland, Silje; Gundersen, Hilde

    2017-01-01

    Aim: Hamstring strain injury is common in soccer. The aim of this study was to evaluate the physical capacity of players who have and have not suffered from hamstring strain injury in a sample of semi-professional and professional Norwegian soccer players in order to evaluate characteristics and to identify possible indications of insufficient rehabilitation. Method: Seventy-five semi-professional and professional soccer players (19 ± 3 years) playing at the second and third level in the Norwegian league participated in the study. All players answered a questionnaire, including one question about hamstring strain injury (yes/no) during the previous 2 years. They also performed a 40 m maximal sprint test, a repeated sprint test (8 × 20 m), a countermovement jump, a maximal oxygen consumption (VO2max) test, strength tests and flexibility tests. Independent sample t-tests were used to evaluate differences in the physical capacity of the players who had suffered from hamstring strain injury and those who had not. Mixed between-within subject's analyses of variance was used to compare changes in speed during the repeated sprint test between groups. Results: Players who reported hamstring strain injury during the previous two years (16%) had a significantly higher drop in speed (0.07 vs. 0.02 s, p = 0.007) during the repeated sprint test, compared to players reporting no previous hamstring strain injury. In addition, there was a significant interaction (groups × time) (F = 3.22, p = 0.002), showing that speed in the two groups changed differently during the repeated sprint test. There were no significant differences in relations to age, weight, height, body fat, linear speed, countermovement jump height, leg strength, VO2max, or hamstring flexibility between the groups. Conclusion: Soccer players who reported hamstring strain injury during the previous 2 years showed significant higher drop in speed during the repeated sprint test compared to players with no hamstring

  8. Quantitative muscle ultrasound and quadriceps strength in patients with post-polio syndrome.

    PubMed

    Bickerstaffe, Alice; Beelen, Anita; Zwarts, Machiel J; Nollet, Frans; van Dijk, Johannes P

    2015-01-01

    We investigated whether muscle ultrasound can distinguish muscles affected by post-polio syndrome (PPS) from healthy muscles and whether severity of ultrasound abnormalities is associated with muscle strength. Echo intensity, muscle thickness, and isometric strength of the quadriceps muscles were measured in 48 patients with PPS and 12 healthy controls. Patients with PPS had significantly higher echo intensity and lower muscle thickness than healthy controls. In patients, both echo intensity and muscle thickness were associated independently with muscle strength. A combined measure of echo intensity and muscle thickness was more strongly related to muscle strength than either parameter alone. Quantitative ultrasound distinguishes healthy muscles from those affected by PPS, and measures of muscle quality and quantity are associated with muscle strength. Hence, ultrasound could be a useful tool for assessing disease severity and monitoring changes resulting from disease progression or clinical intervention in patients with PPS. © 2014 Wiley Periodicals, Inc.

  9. Comparison of the large muscle group widths of the pelvic limb in seven breeds of dogs.

    PubMed

    Sabanci, Seyyid Said; Ocal, Mehmet Kamil

    2018-05-14

    Orthopaedic diseases are common in the pelvic limbs of dogs, and reference values for large muscle groups of the pelvic limb may aid in diagnosis such diseases. As such, the objective of this study was to compare the large muscle groups of the pelvic limb in seven breeds of dogs. A total of 126 dogs from different breeds were included, and the widths of the quadriceps, hamstring and gastrocnemius muscles were measured from images of the lateral radiographies. The width of the quadriceps was not different between the breeds, but the widths of the hamstring and gastrocnemius muscles were significantly different between the breeds. The widest hamstring and gastrocnemius muscles were seen in the Rottweilers and the Boxers, respectively. The narrowest hamstring and gastrocnemius muscles were seen in the Belgian Malinois and the Golden retrievers, respectively. All ratios between the measured muscles differed significantly between the breeds. Doberman pinschers and Belgian Malinois had the highest ratio of gastrocnemius width:hamstring width. Doberman pinschers had also the highest ratio of quadriceps width:hamstring width. German shepherds had the highest ratio of gastrocnemius width:quadriceps width. The lowest ratios of quadriceps width:hamstring width were determined in the German shepherds. The ratios of the muscle widths may be used as reference values to assess muscular atrophy or hypertrophy in cases of bilateral or unilateral orthopaedic diseases of the pelvic limbs. Further studies are required to determine the widths and ratios of the large muscle groups of the pelvic limbs in other dog breeds. © 2018 Blackwell Verlag GmbH.

  10. Changes in muscle strength in patients with statin myalgia.

    PubMed

    Panza, Gregory A; Taylor, Beth A; Roman, William; Thompson, Paul D

    2014-10-15

    Statins can produce myalgia or muscle pain, which may affect medication adherence. We measured the effects of statins on muscle strength in patients with previous statin myalgia. Leg isokinetic extension average power at 60° per second (-8.8 ± 10.5N-M, p = 0.02) and average peak torque at 60° per second (-14.0 ± 19.7N-M, p = 0.04) decreased slightly with statin use, but 8 of 10 other variables for leg strength did not change (all p >0.13). Handgrip, muscle pain, respiratory exchange ratio, and daily activity also did not change (all p >0.09). In conclusion, statin myalgia is not associated with reduced muscle strength or muscle performance. Published by Elsevier Inc.

  11. Electromyographic analysis of gluteus maximus and hamstring activity during the supine resisted hip extension exercise versus supine unilateral bridge to neutral.

    PubMed

    Youdas, James W; Hartman, James P; Murphy, Brooke A; Rundle, Ashley M; Ugorowski, Jenna M; Hollman, John H

    2017-02-01

    Hip extension strengthening exercises which maximize gluteus maximus contributions and minimize hamstring influences may be beneficial for persons with hip pain. This study's aim was to compare muscle activation of the gluteus maximus and hamstrings from healthy subjects during a supine resisted hip extension exercise versus supine unilateral bridge to neutral. Surface electromyographic (EMG) signals were obtained from the right gluteus maximus and hamstrings in 13 healthy male and 13 healthy female subjects. Maximum voluntary isometric contractions (MVICs) were collected to normalize data and permit meaningful comparisons across muscles. Peak median activation of the gluteus maximus was 33.8% MVIC for the bridge and 34.7% MVIC for the hip extension exercise, whereas peak median recruitment for hamstrings was 28.4% MVIC for the bridge and 51% MVIC for the hip extension exercise. The gluteus maximus to hamstrings ratio was compared between the two exercises using the Wilcoxon signed-ranks test (α = 0.05). The ratio (p = 0.014) was greater in the supine unilateral bridge (median = 111.3%) than supine hip extension exercise (median = 59.2%), suggesting a reduction of hamstring recruitment in the unilateral bridge to neutral compared to the supine resisted hip extension exercise. The supine hip extension exercise demonstrated higher EMG activity of hamstrings in comparison with supine unilateral bridge and, therefore, may be less appropriate in subjects who need to increase gluteus maximus activation.

  12. Differences in hamstring activation characteristics between the acceleration and maximum-speed phases of sprinting.

    PubMed

    Higashihara, Ayako; Nagano, Yasuharu; Ono, Takashi; Fukubayashi, Toru

    2018-06-01

    This study aimed to investigate activation characteristics of the biceps femoris long head (BFlh) and semitendinosus (ST) muscles during the acceleration and maximum-speed phases of sprinting. Lower-extremity kinematics and electromyographic (EMG) activities of the BFlh and ST muscles were examined during the acceleration sprint and maximum-speed sprint in 13 male sprinters during an overground sprinting. Differences in hamstring activation during each divided phases and in the hip and knee joint angles and torques at each time point of the sprinting gait cycle were determined between two sprints. During the early stance of the acceleration sprint, the hip extension torque was significantly greater than during the maximum-speed sprint, and the relative EMG activation of the BFlh muscle was significantly higher than that of the ST muscle. During the late stance and terminal mid-swing of maximum-speed sprint, the knee was more extended and a higher knee flexion moment was observed compared to the acceleration sprint, and the ST muscle showed higher activation than that of the BFlh. These results indicate that the functional demands of the medial and lateral hamstring muscles differ between two different sprint performances.

  13. Effects of intensive whole-body vibration training on muscle strength and balance in adults with chronic stroke: a randomized controlled pilot study.

    PubMed

    Tankisheva, Ekaterina; Bogaerts, An; Boonen, Steven; Feys, Hilde; Verschueren, Sabine

    2014-03-01

    To investigate the effects of a 6-week whole body vibration (WBV) training program in patients with chronic stroke. Randomized controlled pilot trial with 6 weeks' follow-up. University hospital. Adults with chronic stroke (N=15) were randomly assigned to an intervention (n=7) or a control group (n=8). Supervised, intensive WBV training. The vibration group performed a variety of static and dynamic squat exercises on a vibration platform with vibration amplitudes of 1.7 and 2.5mm and frequencies of 35 and 40Hz. The vibration lasted 30 to 60 seconds, with 5 to 17 repetitions per exercise 3 times weekly for 6 weeks. Participants in the control group continued their usual activities and were not involved in any additional training program. The primary outcome variable was the isometric and isokinetic muscle strength of the quadriceps (isokinetic dynamometer). Additionally, hamstrings muscle strength, static and dynamic postural control (dynamic posturography), and muscle spasticity (Ashworth Scale) were assessed. Compliance with the vibration intervention was excellent, and the participants completed all 18 training sessions. Vibration frequencies of both 35 and 40Hz were well tolerated by the patients, and no adverse effects resulting from the vibration were noted. Overall, the effect of intensive WBV intervention resulted in significant between-group differences in favor of the vibration group only in isometric knee extension strength (knee angle, 60°) (P=.022) after 6 weeks of intervention and in isokinetic knee extension strength (velocity, 240°/s) after a 6-week follow-up period (P=.005), both for the paretic leg. Postural control improved after 6 weeks of vibration in the intervention group when the patients had normal vision and a sway-referenced support surface (P<.05). Muscle spasticity was not affected by vibration (P>.05). These preliminary results suggest that intensive WBV might potentially be a safe and feasible way to increase some aspect of lower

  14. Peak medial (but not lateral) hamstring activity is significantly lower during stance phase of running. An EMG investigation using a reduced gravity treadmill.

    PubMed

    Hansen, Clint; Einarson, Einar; Thomson, Athol; Whiteley, Rodney

    2017-09-01

    The hamstrings are seen to work during late swing phase (presumably to decelerate the extending shank) then during stance phase (presumably stabilizing the knee and contributing to horizontal force production during propulsion) of running. A better understanding of this hamstring activation during running may contribute to injury prevention and performance enhancement (targeting the specific role via specific contraction mode). Twenty active adult males underwent surface EMG recordings of their medial and lateral hamstrings while running on a reduced gravity treadmill. Participants underwent 36 different conditions for combinations of 50%-100% altering bodyweight (10% increments) & 6-16km/h (2km/h increments, i.e.: 36 conditions) for a minimum of 6 strides of each leg (maximum 32). EMG was normalized to the peak value seen for each individual during any stride in any trial to describe relative activation levels during gait. Increasing running speed effected greater increases in EMG for all muscles than did altering bodyweight. Peak EMG for the lateral hamstrings during running trials was similar for both swing and stance phase whereas the medial hamstrings showed an approximate 20% reduction during stance compared to swing phase. It is suggested that the lateral hamstrings work equally hard during swing and stance phase however the medial hamstrings are loaded slightly less every stance phase. Likely this helps explain the higher incidence of lateral hamstring injury. Hamstring injury prevention and rehabilitation programs incorporating running should consider running speed as more potent stimulus for increasing hamstring muscle activation than impact loading. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Inspiratory muscle training increases inspiratory muscle strength in patients weaning from mechanical ventilation: a systematic review.

    PubMed

    Moodie, Lisa; Reeve, Julie; Elkins, Mark

    2011-01-01

    Does inspiratory muscle training improve inspiratory muscle strength and endurance, facilitate weaning, improve survival, and reduce the rate of reintubation and tracheostomy in adults receiving mechanical ventilation? Systematic review of randomised or quasi-randomised controlled trials. Adults over 16 years of age receiving mechanical ventilation. Inspiratory muscle training versus sham or no inspiratory muscle training. Data were extracted regarding inspiratory muscle strength and endurance, the duration of unassisted breathing periods, weaning success and duration, reintubation and tracheostomy, survival, adverse effects, and length of stay. Three studies involving 150 participants were included in the review. The studies varied in time to commencement of the training, the device used, the training protocol, and the outcomes measured. Inspiratory muscle training significantly increased inspiratory muscle strength over sham or no training (weighted mean difference 8 cmH(2)O, 95% CI 6 to 9). There were no statistically significant differences between the groups in weaning success or duration, survival, reintubation, or tracheostomy. Inspiratory muscle training was found to significantly increase inspiratory muscle strength in adults undergoing mechanical ventilation. Despite data from a substantial pooled cohort, it is not yet clear whether the increase in inspiratory muscle strength leads to a shorter duration of mechanical ventilation, improved weaning success, or improved survival. Further large randomised studies are required to clarify the impact of inspiratory muscle training on patients receiving mechanical ventilation. PROSPERO CRD42011001132. Copyright © 2011 Australian Physiotherapy Association. Published by .. All rights reserved.

  16. Deviating running kinematics and hamstring injury susceptibility in male soccer players: Cause or consequence?

    PubMed

    Schuermans, Joke; Van Tiggelen, Damien; Palmans, Tanneke; Danneels, Lieven; Witvrouw, Erik

    2017-09-01

    Although the vast majority of hamstring injuries in male soccer are sustained during high speed running, the association between sprinting kinematics and hamstring injury vulnerability has never been investigated prospectively in a cohort at risk. This study aimed to objectify the importance of lower limb and trunk kinematics during full sprint in hamstring injury susceptibility. Cohort study; level of evidence, 2. At the end of the 2013 soccer season, three-dimensional kinematic data of the lower limb and trunk were collected during sprinting in a cohort consisting of 30 soccer players with a recent history of hamstring injury and 30 matched controls. Subsequently, a 1.5 season follow up was conducted for (re)injury registry. Ultimately, joint and segment motion patterns were submitted to retro- and prospective statistical curve analyses for injury risk prediction. Statistical analysis revealed that index injury occurrence was associated with higher levels of anterior pelvic tilting and thoracic side bending throughout the airborne (swing) phases of sprinting, whereas no kinematic differences during running were found when comparing players with a recent hamstring injury history with their matched controls. Deficient core stability, enabling excessive pelvis and trunk motion during swing, probably increases the primary injury risk. Although sprinting encompasses a relative risk of hamstring muscle failure in every athlete, running coordination demonstrated to be essential in hamstring injury prevention. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Variations in medial-lateral hamstring force and force ratio influence tibiofemoral kinematics.

    PubMed

    Shalhoub, Sami; Fitzwater, Fallon G; Cyr, Adam J; Maletsky, Lorin P

    2016-10-01

    A change in hamstring strength and activation is typically seen after injuries or invasive surgeries such as anterior cruciate reconstruction or total knee replacement. While many studies have investigated the influence of isometric increases in hamstring load on knee joint kinematics, few have quantified the change in kinematics due to a variation in medial to lateral hamstring force ratio. This study examined the changes in knee joint kinematics on eight cadaveric knees during an open-chain deep knee bend for six different loading configurations: five loaded hamstring configurations that varied the ratio of a total load of 175 N between the semimembranosus and biceps femoris and one with no loads on the hamstring. The anterior-posterior translation of the medial and lateral femoral condyles' lowest points along proximal-distal axis of the tibia, the axial rotation of the tibia, and the quadriceps load were measured at each flexion angle. Unloading the hamstring shifted the medial and lateral lowest points posteriorly and increased tibial internal rotation. The influence of unloading hamstrings on quadriceps load was small in early flexion and increased with knee flexion. The loading configuration with the highest lateral hamstrings force resulted in the most posterior translation of the medial lowest point, most anterior translation of the lateral lowest point, and the highest tibial external rotation of the five loading configurations. As the medial hamstring force ratio increased, the medial lowest point shifted anteriorly, the lateral lowest point shifted posteriorly, and the tibia rotated more internally. The results of this study, demonstrate that variation in medial-lateral hamstrings force and force ratio influence tibiofemoral transverse kinematics and quadriceps loads required to extend the knee. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1707-1715, 2016. © 2016 Orthopaedic Research Society. Published by

  18. MRI appearance of the proximal hamstring tendons in patients with and without symptomatic proximal hamstring tendinopathy.

    PubMed

    De Smet, Arthur A; Blankenbaker, Donna G; Alsheik, Nila H; Lindstrom, Mary J

    2012-02-01

    The purpose of our study was to determine if six MRI findings of the proximal hamstrings differ in frequency in hamstrings with and without symptoms of tendinopathy. We reviewed the MRI examinations of 118 consecutive patients who had undergone pelvis MRI and evaluation by a musculoskeletal clinical specialist. The proximal hamstrings were evaluated at four consecutive axial locations for tendon size, internal T1 and T2 signal, peritendinous T2 signal, and ischial tuberosity edema. Statistical analysis was performed to determine the association of the MRI findings with symptomatic hamstring tendinopathy. Twenty-one patients had a clinical diagnosis of unilateral proximal hamstring tendinopathy. The mean width or anteroposterior size was significantly larger in symptomatic hamstrings at all three proximal levels (p = 0.002-0.040). More than 90% of hamstring tendons had increased internal T1 or T2 signal that was not associated with hamstring symptoms. Both hamstrings with and without symptoms of tendinopathy had peritendinous T2 signal, but this was significantly more common in hamstrings with tendinopathy symptoms at the three most distal levels (p = 0.001-0.041). Ischial tuberosity edema and a feathery appearance of the peritendinous T2 signal distally were significantly more common in symptomatic hamstrings (p = 0.004 and 0.001, respectively). Increased T1 and T2 signal is commonly seen within the proximal hamstrings but is not associated with symptoms of hamstring tendinopathy. Increased tendon size, peritendinous T2 signal with a distal feathery appearance, and ischial tuberosity edema are significantly associated with symptomatic hamstring tendinopathy but can be seen in asymptomatic individuals.

  19. Relationship Between Muscle Strength Asymmetry and Body Sway in Older Adults.

    PubMed

    Koda, Hitoshi; Kai, Yoshihiro; Murata, Shin; Osugi, Hironori; Anami, Kunihiko; Fukumoto, Takahiko; Imagita, Hidetaka

    2018-05-31

    The purpose of this study was to investigate the relationship between muscle strength asymmetry and body sway while walking. We studied 63 older adult women. Strong side and weak side of knee extension strength, toe grip strength, hand grip strength, and body sway while walking were measured. The relationship between muscle strength asymmetry for each muscle and body sway while walking was evaluated using Pearson's correlation coefficient. Regarding the muscles recognized to have significant correlation with body sway, the asymmetry cutoff value causing an increased sway was calculated. Toe grip strength asymmetry was significantly correlated with body sway. Toe grip strength asymmetry causing an increased body sway had a cutoff value of 23.5%. Our findings suggest toe grip strength asymmetry may be a target for improving gait stability.

  20. Effects of hamstring stretch with pelvic control on pain and work ability in standing workers.

    PubMed

    Han, Hyun-Il; Choi, Ho-Suk; Shin, Won-Seob

    2016-11-21

    Hamstring tightness induces posterior pelvic tilt and decreased lumbar lordosis, which can result in low back painOBJECTIVE: We investigated effects of hamstring stretch with pelvic control on pain and work ability in standing workers. One hundred adult volunteers from a standing workers were randomly assigned to pelvic control hamstring stretching (PCHS) (n = 34), general hamstring stretching (GHS) (n = 34), control (n = 32) groups. The control group was performed self-home exercise. All interventions were conducted 3 days per week for 6 weeks, and included in the hamstring stretching and lumbopelvic muscle strengthening. Outcomes were evaluated through the visual analog scale (VAS), straight leg raise test (SLR), sit and reach test (SRT), Oswestry disability index (ODI), and work ability index (WAI). Significant difference in VAS, SLR, SRT, ODI, and WAI were found in the PCHS and GHS groups. The control group was a significant difference only in ODI. The PCHS group showed a greater difference than the GHS group and control group in VAS, SLR, SRT, and ODI. The pelvic control hamstring stretch exercise would be more helpful in back pain reduction and improvement of work ability in an industrial setting.

  1. Improving the Q:H strength ratio in women using plyometric exercises.

    PubMed

    Tsang, Kavin K W; DiPasquale, Angela A

    2011-10-01

    Plyometric training programs have been implemented in anterior cruciate ligament injury prevention programs. Plyometric exercises are designed to aid in the improvement of muscle strength and neuromuscular control. Our purpose was to examine the effects of plyometric training on lower leg strength in women. Thirty (age = 20.3 ± 1.9 years) recreationally active women were divided into control and experimental groups. The experimental group performed a plyometric training program for 6 weeks, 3 d·wk(-1). All subjects attended 4 testing sessions: before the start of the training program and after weeks 2, 4, and 6. Concentric quadriceps and hamstring strength (dominant leg) was assessed using an isokinetic dynamometer at speeds of 60 and 120°·s(-1). Peak torque, average peak torque, and average power (AvgPower) were measured. The results revealed a significant (p < 0.05) interaction between time and group for flexion PkTq and AvgPower at 120°·s(-1). Post hoc analysis further revealed that PkTq at 120°·s(-1) was greater in the plyometric group than in the control group at testing session 4 and that AvgPower was greater in the plyometric group than in the control group in testing sessions 2-4. Our results indicate that the plyometric training program increased hamstring strength while maintaining quadriceps strength, thereby improving the Q:H strength ratio.

  2. The effect of long-term confinement and the efficacy of exercise countermeasures on muscle strength during a simulated mission to Mars: data from the Mars500 study.

    PubMed

    Gaffney, Christopher J; Fomina, Elena; Babich, Dennis; Kitov, Vladimir; Uskov, Konstantin; Green, David A

    2017-11-13

    Isolation and long duration spaceflight are associated with musculoskeletal deconditioning. Mars500 was a unique, high-fidelity analogue of the psychological challenges of a 520-day manned mission to Mars. We aimed to explore the effect of musculoskeletal deconditioning on three outcome measures: (1) if lower limb muscle strength was reduced during the 520-day isolation; (2) if type I or II muscle fibres were differentially affected; and (3) whether any 70-day exercise interventions prevented any isolation-induced loss of strength. Six healthy male subjects (mean ± SEM) (34 ± 3 years; 1.76 ± 0.02 metres; 83.7 ± 4.8 kg) provided written, informed consent to participate. The subjects' maximal voluntary contraction (MVC) was assessed isometrically in the calf (predominantly type I fibres), and maximal voluntary isokinetic force (MVIF) was assessed in the quadriceps/hamstrings (predominantly type II fibres) at 0.2 and 0.4 ms -1 using the Multifunctional Dynamometer for Space (MDS) at 35-day intervals throughout Mars500. Exercise interventions were completed 3-7 days/week throughout the 520-day isolation in a counterbalanced design excluding 142-177 days (rest period) and 251-284 days (simulated Mars landing). Exercise interventions included motorized treadmill running, non-motorized treadmill running, cycle ergometry, elastomer-based resistance exercise, whole-body vibration (WBV), and resistance exercise using MDS. Calf MVC did not reduce across the 520-day isolation and MDS increased strength by 18% compared to before that of 70-day exercise intervention. In contrast, there was a significant bilateral loss of MVIF across the 520 days at both 0.2 ms -1 (R 2  = 0.53; P = 0.001) and 0.4 ms -1 (0.4 ms -1 ; R 2  = 0.42; P = 0.007). WBV (+ 3.7 and 8.8%) and MDS (+ 4.9 and 5.2%) afforded the best protection against isolation-induced loss of MVIF, although MDS was the only intervention to prevent bilateral loss of calf MVC and leg MVIF at 0

  3. Respiratory muscle training increases respiratory muscle strength and reduces respiratory complications after stroke: a systematic review.

    PubMed

    Menezes, Kênia Kp; Nascimento, Lucas R; Ada, Louise; Polese, Janaine C; Avelino, Patrick R; Teixeira-Salmela, Luci F

    2016-07-01

    After stroke, does respiratory muscle training increase respiratory muscle strength and/or endurance? Are any benefits carried over to activity and/or participation? Does it reduce respiratory complications? Systematic review of randomised or quasi-randomised trials. Adults with respiratory muscle weakness following stroke. Respiratory muscle training aimed at increasing inspiratory and/or expiratory muscle strength. Five outcomes were of interest: respiratory muscle strength, respiratory muscle endurance, activity, participation and respiratory complications. Five trials involving 263 participants were included. The mean PEDro score was 6.4 (range 3 to 8), showing moderate methodological quality. Random-effects meta-analyses showed that respiratory muscle training increased maximal inspiratory pressure by 7 cmH2O (95% CI 1 to 14) and maximal expiratory pressure by 13 cmH2O (95% CI 1 to 25); it also decreased the risk of respiratory complications (RR 0.38, 95% CI 0.15 to 0.96) compared with no/sham respiratory intervention. Whether these effects carry over to activity and participation remains uncertain. This systematic review provided evidence that respiratory muscle training is effective after stroke. Meta-analyses based on five trials indicated that 30minutes of respiratory muscle training, five times per week, for 5 weeks can be expected to increase respiratory muscle strength in very weak individuals after stroke. In addition, respiratory muscle training is expected to reduce the risk of respiratory complications after stroke. Further studies are warranted to investigate whether the benefits are carried over to activity and participation. PROSPERO (CRD42015020683). [Menezes KKP, Nascimento LR, Ada L, Polese JC, Avelino PR, Teixeira-Salmela LF (2016) Respiratory muscle training increases respiratory muscle strength and reduces respiratory complications after stroke: a systematic review.Journal of Physiotherapy62: 138-144]. Copyright © 2016 Australian

  4. Immediate effect of passive and active stretching on hamstrings flexibility: a single-blinded randomized control trial.

    PubMed

    Nishikawa, Yuichi; Aizawa, Junya; Kanemura, Naohiko; Takahashi, Tetsuya; Hosomi, Naohisa; Maruyama, Hirofumi; Kimura, Hiroaki; Matsumoto, Masayasu; Takayanagi, Kiyomi

    2015-10-01

    [Purpose] This study compared the efficacy of passive and active stretching techniques on hamstring flexibility. [Subjects] Fifty-four healthy young subjects were randomly assigned to one of three groups (2 treatment groups and 1 control group). [Methods] Subjects in the passive stretching group had their knees extended by an examiner while lying supine 90° of hip flexion. In the same position, subjects in the active stretching group extended their knees. The groups performed 3 sets of the assigned stretch, with each stretch held for 10 seconds at the point where tightness in the hamstring muscles was felt. Subjects in the control group did not perform stretching. Before and immediately after stretching, hamstring flexibility was assessed by a blinded assessor, using the active knee-extension test. [Results] After stretching, there was a significant improvement in the hamstring flexibilities of the active and passive stretching groups compared with the control group. Furthermore, the passive stretching group showed significantly greater improvement in hamstring flexibility than the active stretching group. [Conclusion] Improvement in hamstring flexibility measured by the active knee-extension test was achieved by both stretching techniques; however, passive stretching was more effective than active stretching at achieving an immediate increase in hamstring flexibility.

  5. Experimental knee joint pain during strength training and muscle strength gain in healthy subjects: a randomized controlled trial.

    PubMed

    Sørensen, T J; Langberg, H; Hodges, P W; Bliddal, H; Henriksen, M

    2012-01-01

    Knee joint pain and reduced quadriceps strength are cardinal symptoms in many knee pathologies. In people with painful knee pathologies, quadriceps exercise reduces pain, improves physical function, and increases muscle strength. A general assumption is that pain compromises muscle function and thus may prevent effective rehabilitation. This study evaluated the effects of experimental knee joint pain during quadriceps strength training on muscle strength gain in healthy individuals. Twenty-seven healthy untrained volunteers participated in a randomized controlled trial of quadriceps strengthening (3 times per week for 8 weeks). Participants were randomized to perform resistance training either during pain induced by injections of painful hypertonic saline (pain group, n = 13) or during a nonpainful control condition with injection of isotonic saline (control group, n = 14) into the infrapatellar fat pad. The primary outcome measure was change in maximal isokinetic muscle strength in knee extension/flexion (60, 120, and 180 degrees/second). The group who exercised with pain had a significantly larger improvement in isokinetic muscle strength at all angular velocities of knee extension compared to the control group. In knee flexion there were improvements in isokinetic muscle strength in both groups with no between-group differences. Experimental knee joint pain improved the training-induced gain in muscle strength following 8 weeks of quadriceps training. It remains to be studied whether knee joint pain has a positive effect on strength gain in patients with knee pathology. Copyright © 2012 by the American College of Rheumatology.

  6. Evaluation of the Combined Application of Neuromuscular Electrical Stimulation and Volitional Contractions on Thigh Muscle Strength, Knee Pain and Physical Performance in Women at Risk for Knee Osteoarthritis: A Randomized Controlled Trial.

    PubMed

    Rabe, Kaitlin G; Matsuse, Hiroo; Jackson, Anthony; Segal, Neil A

    2018-05-28

    Knee osteoarthritis (OA) is a leading cause of disability that is associated with quadriceps weakness. However, strengthening in people with or with risk factors for knee OA can be poorly tolerated. To assess the efficacy of a twelve-week low-load exercise program, using a hybrid training system (HTS) that utilizes the combination of neuromuscular electrical stimulation and volitional contractions, for improving thigh muscle strength, knee pain and physical performance in women with or with risk factors for knee OA. Randomized, single-blind, controlled trial SETTING: Exercise training laboratory PARTICIPANTS: Forty-two women, age 44-85 years, with risk factors for knee OA INTERVENTIONS: Participants randomized to 12 weeks of biweekly low-load resistance training either with HTS or on an isokinetic dynamometer (control). Maximum isokinetic knee extensor torque. Secondary measures included: maximum isokinetic knee flexor torque, knee pain (KOOS), and timed 20-meter walk and chair-stand tests. HTS and control both resulted in muscle strengthening, reduced knee pain and improved physical performance. HTS group quadriceps and hamstring strength increased by 0.06±0.04 Nm/kg (p>.05) and 0.05±0.02 Nm/kg (p=.02), respectively. Control group quadriceps and hamstring strength increased by 0.03±0.04 Nm/kg (p>.05) and 0.06±0.02 Nm/kg (p=.009), respectively. Knee pain improved by 11.9±11.5 points (p<.001) for the HTS group and 14.1±15.4 points (p=.001) for the control group. 20-meter walk time decreased by 1.60±2.04 seconds (p=.005) and 0.95±1.2 seconds (p=.004), and chair stand time decreased by 4.8±10.0 seconds (p>.05) and 1.9±4.7 seconds (p>.05) in the HTS and control groups, respectively. These results did not differ statistically between HTS and control groups. These results suggest HTS is effective for improving pain and physical performance in women with risk factors for knee OA. However, HTS does not appear to be superior to low-load resistance training for

  7. Relative strengths of the calf muscles based on MRI volume measurements.

    PubMed

    Jeng, Clifford L; Thawait, Gaurav K; Kwon, John Y; Machado, Antonio; Boyle, James W; Campbell, John; Carrino, John A

    2012-05-01

    In 1985, Silver et al. published a cadaver study which determined the relative order of strength of the muscles in the calf. Muscle strength, which is proportional to volume, was obtained by dissecting out the individual muscles, weighing them, and then multiplying by the specific gravity. No similar studies have been performed using {\\it in vivo} measurements of muscle volume. Ten normal subjects underwent 3-Tesla MRI's of both lower extremities using non-fat-saturated T2 SPACE sequences. The volume for each muscle was determined by tracing the muscle contour on sequential axial images and then interpolating the volume using imaging software. The results from this study differ from Silver's original article. The lateral head of the gastrocnemius was found to be stronger than the tibialis anterior muscle. The FHL and EDL muscles were both stronger than the peroneus longus. There was no significant difference in strength between the peroneus longus and brevis muscles. This revised order of muscle strengths in the calf based on in vivo MRI findings may assist surgeons in determining the optimal tendons to transfer in order to address muscle weakness and deformity.

  8. Muscle Strength and Changes in Physical Function in Women With Systemic Lupus Erythematosus.

    PubMed

    Andrews, James S; Trupin, Laura; Schmajuk, Gabriela; Barton, Jennifer; Margaretten, Mary; Yazdany, Jinoos; Yelin, Edward H; Katz, Patricia P

    2015-08-01

    Cross-sectional studies have observed that muscle weakness is associated with worse physical function among women with systemic lupus erythematosus (SLE). The present study examines whether reduced upper and lower extremity muscle strength predict declines in function over time among adult women with SLE. One hundred forty-six women from a longitudinal SLE cohort participated in the study. All measures were collected during in-person research visits approximately 2 years apart. Upper extremity muscle strength was assessed by grip strength. Lower extremity muscle strength was assessed by peak knee torque of extension and flexion. Physical function was assessed using the Short Physical Performance Battery (SPPB). Regression analyses modeled associations of baseline upper and lower extremity muscle strength with followup SPPB scores controlling for baseline SPPB, age, SLE duration, SLE disease activity (Systemic Lupus Activity Questionnaire), physical activity level, prednisone use, body composition, and depression. Secondary analyses tested whether associations of baseline muscle strength with followup in SPPB scores differed between intervals of varying baseline muscle strength. Lower extremity muscle strength strongly predicted changes over 2 years in physical function even when controlling for covariates. The association of reduced lower extremity muscle strength with reduced physical function in the future was greatest among the weakest women. Reduced lower extremity muscle strength predicted clinically significant declines in physical function, especially among the weakest women. Future studies should test whether therapies that promote preservation of lower extremity muscle strength may prevent declines in function among women with SLE. © 2015, American College of Rheumatology.

  9. Do muscle mass, muscle density, strength, and physical function similarly influence risk of hospitalization in older adults?

    PubMed

    Cawthon, Peggy Mannen; Fox, Kathleen M; Gandra, Shravanthi R; Delmonico, Matthew J; Chiou, Chiun-Fang; Anthony, Mary S; Sewall, Ase; Goodpaster, Bret; Satterfield, Suzanne; Cummings, Steven R; Harris, Tamara B

    2009-08-01

    To examine the association between strength, function, lean mass, muscle density, and risk of hospitalization. Prospective cohort study. Two U.S. clinical centers. Adults aged 70 to 80 (N=3,011) from the Health, Aging and Body Composition Study. Measurements were of grip strength, knee extension strength, lean mass, walking speed, and chair stand pace. Thigh computed tomography scans assessed muscle area and density (a proxy for muscle fat infiltration). Hospitalizations were confirmed by local review of medical records. Negative binomial regression models estimated incident rate ratios (IRRs) of hospitalization for race- and sex-specific quartiles of each muscle and function parameter separately. Multivariate models adjusted for age, body mass index, health status, and coexisting medical conditions. During an average 4.7 years of follow-up, 1,678 (55.7%) participants experienced one or more hospitalizations. Participants in the lowest quartile of muscle density were more likely to be subsequently hospitalized (multivariate IRR=1.47, 95% confidence interval (CI)=1.24-1.73) than those in the highest quartile. Similarly, participants with the weakest grip strength were at greater risk of hospitalization (multivariate IRR=1.52, 95% CI=1.30-1.78, Q1 vs. Q4). Comparable results were seen for knee strength, walking pace, and chair stands pace. Lean mass and muscle area were not associated with risk of hospitalization. Weak strength, poor function, and low muscle density, but not muscle size or lean mass, were associated with greater risk of hospitalization. Interventions to reduce the disease burden associated with sarcopenia should focus on increasing muscle strength and improving physical function rather than simply increasing lean mass.

  10. Relation between isokinetic muscle strength and functional capacity in recreational athletes with chondromalacia patellae.

    PubMed

    Yildiz, Y; Aydin, T; Sekir, U; Cetin, C; Ors, F; Alp Kalyon, T

    2003-12-01

    To investigate the effects of isokinetic exercise on pain and functional test scores of recreational athletes with chondromalacia patellae (CMP) and to examine the correlation between isokinetic parameters and functional tests or pain score. The functional ability of 30 recreational athletes with unilateral CMP was evaluated using six different tests. Pain scores were assessed during daily activities before and after the treatment protocol. Isokinetic exercise sessions were carried out at angular velocities of 60 degrees /s (25-90 degrees range of flexion) and 180 degrees /s (full range). These sessions were repeated three times a week for six weeks. Quadriceps and hamstring peak torque, total work, and endurance ratios had improved significantly after the treatment, as did the functional parameters and pain scores. There was a poor correlation between the extensor endurance ratio and one leg standing test. A moderate correlation between the visual analogue scale and the extensor endurance ratio or flexion endurance ratio was also found. The isokinetic exercise programme used in this study had a positive effect on muscle strength, pain score, and functional ability of knees with CMP. The improvement in the functional capacity did not correlate with the isokinetic parameters.

  11. Acceleration effects on neck muscle strength: pilots vs. non-pilots.

    PubMed

    Seng, Kok-Yong; Lam, Pin-Min; Lee, Vee-Sin

    2003-02-01

    Conditioning of neck muscles, if any, due to repeated exposures to +Gz forces has received little research attention. This study was conducted to evaluate and compare the neck muscle strength of test volunteers representative of the general populations of fighter aircraft pilots and non-pilots. The tests were performed using a special attachment device on a computerized dynamometer. Ten pilots and ten non-pilots volunteered as test subjects. Each individual's maximal isometric neck muscle strength was evaluated in the extension, flexion, and left and right lateral bending directions in a single day. Peak values from the measurements were used for data analysis. Overall neck strength was calculated as the mean values for the four directions in each group. The overall muscular strength of the necks of pilots did not differ significantly from that of non-pilots, nor did exposure to +Gz forces lead to specific changes in isometric muscle strength across any of the four principal directions. Neck muscle strength in the four measured directions pooled across the two subgroups were statistically significant. The widespread practice of adopting protective head-positioning strategies to minimize neck strains, coupled with results from this research study, suggest that the neck muscles are subjected to reduced in-flight strengthening workouts during exposures to +Gz forces. To maximize in-flight performance and minimize +Gz-induced neck injuries, fighter pilots should be encouraged to perform on-land neck muscle strengthening exercise and in-flight head-positioning techniques. More research is needed to fine-tune this countermeasure strategy against cervical spine injury.

  12. Eccentric Training and Static Stretching Improve Hamstring Flexibility of High School Males

    PubMed Central

    Bandy, William D.

    2004-01-01

    Objective: To determine if the flexibility of high-school-aged males would improve after a 6-week eccentric exercise program. In addition, the changes in hamstring flexibility that occurred after the eccentric program were compared with a 6-week program of static stretching and with a control group (no stretching). Design and Setting: We used a test-retest control group design in a laboratory setting. Subjects were assigned randomly to 1 of 3 groups: eccentric training, static stretching, or control. Subjects: A total of 69 subjects, with a mean age of 16.45 ± 0.96 years and with limited hamstring flexibility (defined as 20° loss of knee extension measured with the thigh held at 90° of hip flexion) were recruited for this study. Measurements: Hamstring flexibility was measured using the passive 90/90 test before and after the 6-week program. Results: Differences were significant for test and for the test-by-group interaction. Follow-up analysis indicated significant differences between the control group (gain = 1.67°) and both the eccentric-training (gain = 12.79°) and static-stretching (gain = 12.05°) groups. No difference was found between the eccentric and static-stretching groups. Conclusions: The gains achieved in range of motion of knee extension (indicating improvement in hamstring flexibility) with eccentric training were equal to those made by statically stretching the hamstring muscles. PMID:15496995

  13. Eccentric Training and Static Stretching Improve Hamstring Flexibility of High School Males.

    PubMed

    Nelson, Russell T; Bandy, William D

    2004-09-01

    OBJECTIVE: To determine if the flexibility of high-school-aged males would improve after a 6-week eccentric exercise program. In addition, the changes in hamstring flexibility that occurred after the eccentric program were compared with a 6-week program of static stretching and with a control group (no stretching). DESIGN AND SETTING: We used a test-retest control group design in a laboratory setting. Subjects were assigned randomly to 1 of 3 groups: eccentric training, static stretching, or control. SUBJECTS: A total of 69 subjects, with a mean age of 16.45 +/- 0.96 years and with limited hamstring flexibility (defined as 20 degrees loss of knee extension measured with the thigh held at 90 degrees of hip flexion) were recruited for this study. MEASUREMENTS: Hamstring flexibility was measured using the passive 90/90 test before and after the 6-week program. RESULTS: Differences were significant for test and for the test-by-group interaction. Follow-up analysis indicated significant differences between the control group (gain = 1.67 degrees ) and both the eccentric-training (gain = 12.79 degrees ) and static-stretching (gain = 12.05 degrees ) groups. No difference was found between the eccentric and static-stretching groups. CONCLUSIONS: The gains achieved in range of motion of knee extension (indicating improvement in hamstring flexibility) with eccentric training were equal to those made by statically stretching the hamstring muscles.

  14. Immediate Effects of Proprioceptive Neuromuscular Facilitation Stretching Programs Compared With Passive Stretching Programs for Hamstring Flexibility: A Critically Appraised Topic.

    PubMed

    Hill, Kristian J; Robinson, Kendall P; Cuchna, Jennifer W; Hoch, Matthew C

    2017-11-01

    Clinical Scenario: Increasing hamstring flexibility through clinical stretching interventions may be an effective means to prevent hamstring injuries. However the most effective method to increase hamstring flexibility has yet to be determined. For a healthy individual, are proprioceptive neuromuscular facilitation (PNF) stretching programs more effective in immediately improving hamstring flexibility when compared with static stretching programs? Summary of Key Findings: A thorough literature search returned 195 possible studies; 5 studies met the inclusion criteria and were included. Current evidence supports the use of PNF stretching or static stretching programs for increasing hamstring flexibility. However, neither program demonstrated superior effectiveness when examining immediate increases in hamstring flexibility. Clinical Bottom Line: There were consistent findings from multiple low-quality studies that indicate there is no difference in the immediate improvements in hamstring flexibility when comparing PNF stretching programs to static stretching programs in physically active adults. Strength of Recommendation: Grade B evidence exists that PNF and static stretching programs equally increase hamstring flexibility immediately following the stretching program.

  15. Effects of strength training, detraining and retraining in muscle strength, hypertrophy and functional tasks in older female adults.

    PubMed

    Correa, Cleiton S; Cunha, Giovani; Marques, Nise; Oliveira-Reischak, Ãlvaro; Pinto, Ronei

    2016-07-01

    Previous studies presented different results regarding the maintenance time of muscular adaptations after strength training and the ability to resume the gains on muscular performance after resumption of the training programme. This study aimed to verify the effect of strength training on knee extensors and elbow flexor muscle strength, rectus femoris muscle volume and functional performance in older female adults after 12 weeks of strength training, 1 year of detraining and followed by 12 weeks of retraining. Twelve sedentary older women performed 12 weeks of strength training, 1 year of detraining and 12 weeks of retraining. The strength training was performed twice a week, and the assessment was made four times: at the baseline, after the strength training, after the detraining and after the retraining. The knee extensor and elbow flexor strength, rectus femoris muscle volume and functional task were assessed. Strength of knee extensor and elbow flexor muscles, rectus femoris muscle volume and 30-s sit-to-stand increased from baseline to post-training (respectively, 40%, 70%, 38% and 46%), decreased after detraining (respectively, -36%, -64%, -35% and -43%) and increased again these parameters after retraining (35%, 68%, 36% and 42%). Strength training induces gains on strength and hypertrophy, also increased the performance on functional tasks after the strength training. The stoppage of the strength caused strength loss and reduction of functional performance. The resumption of the strength training promoted the same gains of muscular performance in older female adults. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  16. Respiratory muscle strength is not decreased in patients undergoing cardiac surgery.

    PubMed

    Urell, Charlotte; Emtner, Margareta; Hedenstrom, Hans; Westerdahl, Elisabeth

    2016-03-31

    Postoperative pulmonary impairments are significant complications after cardiac surgery. Decreased respiratory muscle strength could be one reason for impaired lung function in the postoperative period. The primary aim of this study was to describe respiratory muscle strength before and two months after cardiac surgery. A secondary aim was to describe possible associations between respiratory muscle strength and lung function. In this prospective observational study 36 adult cardiac surgery patients (67 ± 10 years) were studied. Respiratory muscle strength and lung function were measured before and two months after surgery. Pre- and postoperative respiratory muscle strength was in accordance with predicted values; MIP was 78 ± 24 cmH2O preoperatively and 73 ± 22 cmH2O at two months follow-up (p = 0.19). MEP was 122 ± 33 cmH2O preoperatively and 115 ± 38 cmH2O at two months follow-up (p = 0.18). Preoperative lung function was in accordance with predicted values, but was significantly decreased postoperatively. At two-months follow-up there was a moderate correlation between MIP and FEV1 (r = 0.43, p = 0.009). Respiratory muscle strength was not impaired, either before or two months after cardiac surgery. The reason for postoperative lung function alteration is not yet known. Interventions aimed at restore an optimal postoperative lung function should focus on other interventions then respiratory muscle strength training.

  17. Cycle training induces muscle hypertrophy and strength gain: strategies and mechanisms.

    PubMed

    Ozaki, Hayao; Loenneke, J P; Thiebaud, R S; Abe, T

    2015-03-01

    Cycle training is widely performed as a major part of any exercise program seeking to improve aerobic capacity and cardiovascular health. However, the effect of cycle training on muscle size and strength gain still requires further insight, even though it is known that professional cyclists display larger muscle size compared to controls. Therefore, the purpose of this review is to discuss the effects of cycle training on muscle size and strength of the lower extremity and the possible mechanisms for increasing muscle size with cycle training. It is plausible that cycle training requires a longer period to significantly increase muscle size compared to typical resistance training due to a much slower hypertrophy rate. Cycle training induces muscle hypertrophy similarly between young and older age groups, while strength gain seems to favor older adults, which suggests that the probability for improving in muscle quality appears to be higher in older adults compared to young adults. For young adults, higher-intensity intermittent cycling may be required to achieve strength gains. It also appears that muscle hypertrophy induced by cycle training results from the positive changes in muscle protein net balance.

  18. Agreement Between Face-to-Face and Free Software Video Analysis for Assessing Hamstring Flexibility in Adolescents.

    PubMed

    Moral-Muñoz, José A; Esteban-Moreno, Bernabé; Arroyo-Morales, Manuel; Cobo, Manuel J; Herrera-Viedma, Enrique

    2015-09-01

    The objective of this study was to determine the level of agreement between face-to-face hamstring flexibility measurements and free software video analysis in adolescents. Reduced hamstring flexibility is common in adolescents (75% of boys and 35% of girls aged 10). The length of the hamstring muscle has an important role in both the effectiveness and the efficiency of basic human movements, and reduced hamstring flexibility is related to various musculoskeletal conditions. There are various approaches to measuring hamstring flexibility with high reliability; the most commonly used approaches in the scientific literature are the sit-and-reach test, hip joint angle (HJA), and active knee extension. The assessment of hamstring flexibility using video analysis could help with adolescent flexibility follow-up. Fifty-four adolescents from a local school participated in a descriptive study of repeated measures using a crossover design. Active knee extension and HJA were measured with an inclinometer and were simultaneously recorded with a video camera. Each video was downloaded to a computer and subsequently analyzed using Kinovea 0.8.15, a free software application for movement analysis. All outcome measures showed reliability estimates with α > 0.90. The lowest reliability was obtained for HJA (α = 0.91). The preliminary findings support the use of a free software tool for assessing hamstring flexibility, offering health professionals a useful tool for adolescent flexibility follow-up.

  19. The value of multiple tests of respiratory muscle strength

    PubMed Central

    Steier, Joerg; Kaul, Sunny; Seymour, John; Jolley, Caroline; Rafferty, Gerrard; Man, William; Luo, Yuan M; Roughton, Michael; Polkey, Michael I; Moxham, John

    2007-01-01

    Background Respiratory muscle weakness is an important clinical problem. Tests of varying complexity and invasiveness are available to assess respiratory muscle strength. The relative precision of different tests in the detection of weakness is less clear, as is the value of multiple tests. Methods The respiratory muscle function tests of clinical referrals who had multiple tests assessed in our laboratories over a 6‐year period were analysed. Thresholds for weakness for each test were determined from published and in‐house laboratory data. The patients were divided into three groups: those who had all relevant measurements of global inspiratory muscle strength (group A, n = 182), those with full assessment of diaphragm strength (group B, n = 264) and those for whom expiratory muscle strength was fully evaluated (group C, n = 60). The diagnostic outcome of each inspiratory, diaphragm and expiratory muscle test, both singly and in combination, was studied and the impact of using more than one test to detect weakness was calculated. Results The clinical referrals were primarily for the evaluation of neuromuscular diseases and dyspnoea of unknown cause. A low maximal inspiratory mouth pressure (Pimax) was recorded in 40.1% of referrals in group A, while a low sniff nasal pressure (Sniff Pnasal) was recorded in 41.8% and a low sniff oesophageal pressure (Sniff Poes) in 37.9%. When assessing inspiratory strength with the combination of all three tests, 29.6% of patients had weakness. Using the two non‐invasive tests (Pimax and Sniff Pnasal) in combination, a similar result was obtained (low in 32.4%). Combining Sniff Pdi (low in 68.2%) and Twitch Pdi (low in 67.4%) reduced the diagnoses of patients with diaphragm weakness to 55.3% in group B. 38.3% of the patients in group C had expiratory muscle weakness as measured by maximum expiratory pressure (Pemax) compared with 36.7% when weakness was diagnosed by cough gastric pressure (Pgas), and 28.3% when

  20. Screen time viewing behaviors and isometric trunk muscle strength in youth.

    PubMed

    Grøntved, Anders; Ried-Larsen, Mathias; Froberg, Karsten; Wedderkopp, Niels; Brage, Søren; Kristensen, Peter Lund; Andersen, Lars Bo; Møller, Niels Christian

    2013-10-01

    The objective of this study was to examine the association of screen time viewing behavior with isometric trunk muscle strength in youth. A cross-sectional study was carried out including 606 adolescents (14-16 yr old) participating in the Danish European Youth Heart Study, a population-based study with assessments conducted in either 1997/1998 or 2003/2004. Maximal voluntary contractions during isometric back extension and abdominal flexion were determined using a strain gauge dynamometer, and cardiorespiratory fitness (CRF) was obtained using a maximal cycle ergometer test. TV viewing time, computer use, and other lifestyle behaviors were obtained by self-report. Analyses of association of screen use behaviors with isometric trunk muscle strength were carried out using multivariable adjusted linear regression. The mean (SD) isometric strength was 0.87 (0.16) N·kg-1. TV viewing, computer use, and total screen time use were inversely associated with isometric trunk muscle strength in analyses adjusted for lifestyle and sociodemographic factors. After further adjustment for CRF and waist circumference, associations remained significant for computer use and total screen time, but TV viewing was only marginally associated with muscle strength after these additional adjustments (-0.05 SD (95% confidence interval, -0.11 to 0.005) difference in strength per 1 h·d-1 difference in TV viewing time, P = 0.08). Each 1 h·d-1 difference in total screen time use was associated with -0.09 SD (95% confidence interval, -0.14 to -0.04) lower isometric trunk muscle strength in the fully adjusted model (P = 0.001). There were no indications that the association of screen time use with isometric trunk muscle strength was attenuated among highly fit individuals (P = 0.91 for CRF by screen time interaction). Screen time use was inversely associated with isometric trunk muscle strength independent of CRF and other confounding factors.

  1. Return to play criteria after hamstring muscle injury in professional football: a Delphi consensus study.

    PubMed

    Zambaldi, Mattia; Beasley, Ian; Rushton, Alison

    2017-08-01

    Hamstring muscle injury (HMI) is the most common injury in professional football and has a high re-injury rate. Despite this, there are no validated criteria to support return to play (RTP) decisions. To use the Delphi method to reach expert consensus on RTP criteria after HMI in professional football. All professional football clubs in England (n=92) were invited to participate in a 3-round Delphi study. Round 1 requested a list of criteria used for RTP decisions after HMI. Responses were independently collated by 2 researchers under univocal definitions of RTP criteria. In round 2 participants rated their agreement for each RTP criterion on a 1-5 Likert Scale. In round 3 participants re-rated the criteria that had reached consensus in round 2. Descriptive statistics and Kendall's coefficient of concordance enabled interpretation of consensus. Participation rate was limited at 21.7% (n=20), while retention rate was high throughout the 3 rounds (90.0%, 85.0%, 90.0%). Round 1 identified 108 entries with varying definitions that were collated into a list of 14 RTP criteria. Rounds 2 and 3 identified 13 and 12 criteria reaching consensus, respectively. Five domains of RTP assessment were identified: functional performance, strength, flexibility, pain and player's confidence. The highest-rated criteria were in the functional performance domain, with particular importance given to sprint ability. This study defined a list of consensually agreed RTP criteria for HMI in professional football. Further work is now required to determine the validity of the identified criteria. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Muscle strength and kinetic gait pattern in children with bilateral spastic CP.

    PubMed

    Eek, Meta Nyström; Tranberg, Roy; Beckung, Eva

    2011-03-01

    Cerebral palsy is often associated with an abnormal gait pattern. This study put focus on relation between muscle strength and kinetic gait pattern in children with bilateral spastic cerebral palsy and compares them with a reference group. In total 20 children with CP and 20 typically developing children participated. They were all assessed with measurement of muscle strength in eight muscle groups in the legs and a 3-dimensional gait analysis including force data. It was found that children with CP were not only significantly weaker in all muscle groups but also walked with slower velocity and shorter stride length when compared with the reference group. Gait moments differed at the ankle level with significantly lower moments in children with CP. Gait moments were closer to the maximal muscle strength in the group of children with CP. Furthermore a correlation between plantarflexing gait moment and muscle strength was observed in six of the eight muscle groups in children with CP, a relation not found in the reference group. A similar pattern was seen between muscle strength and generating ankle power with a rho=0.582-0.766. The results of this study state the importance of the relationship of the overall muscle strength pattern in the lower extremity, not only the plantarflexors. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. [Evolution in muscle strength in critical patients with invasive mechanical ventilation].

    PubMed

    Via Clavero, G; Sanjuán Naváis, M; Menéndez Albuixech, M; Corral Ansa, L; Martínez Estalella, G; Díaz-Prieto-Huidobro, A

    2013-01-01

    To assess the evolution of muscle strength in critically ill patients with mechanical ventilation (MV) from withdrawal of sedatives to hospital discharge. A cohort study was conducted in two intensive care units in the Hospital Universitari de Bellvitge from November 2011 to March 2012. Consecutive patients with MV > 72h. Dependent outcome: Muscle strength measured with the Medical Research Council (MRC) scale beginning on the first day the patient was able to answer 3 out of 5 simple orders (day 1), every week, at ICU discharge and at hospital discharge or at day 60 Independent outcomes: factors associated with muscle strength loss, ventilator-free days, ICU length of stay and hospital length of stay. The patients were distributed into two groups (MRC< 48, MRC ≥ 48) after the first measurement. Thirty-four patients were assessed. Independent outcomes associated with muscle strength weakness were: days with cardiovascular SOFA >2 (P<.001) and days with costicosteroids (P<.001). Initial MRC in MRC<48 group was 38 (27-43), and 52 (50-54) in MRC ≥ 48. The largest muscle strength gain was obtained the first week (31% versus 52%). A MRC < 48 value was associated with more MV days (P<.007) and a longer ICU stay. (P<.003). The greatest muscle strength gain after withdrawing of the sedatives was achieved in the first week. Muscle strength loss was associated with a cardiovascular SOFA > 2 and costicosteroids. Patients with a MRC < 48 required more days with MV and a longer ICU stay. Copyright © 2013 Elsevier España, S.L. y SEEIUC. All rights reserved.

  4. Mid-term development of hamstring tendon length and velocity after distal femoral extension osteotomy in children with bilateral cerebral palsy: a retrospective cohort study.

    PubMed

    Salami, Firooz; Wagner, Julia; van Drongelen, Stefan; Klotz, Matthias C M; Dreher, Thomas; Wolf, Sebastian I; Niklasch, Mirjam

    2018-03-14

    Flexed knee gait can be treated with distal femoral extension osteotomy (DFEO) and additional patellar tendon advancement (PTA) in children with cerebral palsy (CP). This study assesses changes in hamstring muscle tendon length (MTL) and velocity after DFEO (+PTA). Nineteen children (mean age 13y [standard deviation 3y] at surgery) with CP and flexed knee gait who were treated with DFEO (15 limbs) or DFEO+PTA (10 limbs) were retrospectively included in this study. Gait analyses were performed preoperatively (E0), 1 year postoperatively (E1), and for 10 limbs additionally 2 to 5 years postoperatively (E2). Hamstring MTL and velocities were assessed at all examination dates using OpenSim. Hamstring MTL and velocity did not change significantly over time. From E0 to E1, knee flexion in stance improved for both DFEO and DFEO+PTA (p<0.05), knee flexion in swing only improved after DFEO+PTA (p<0.05). The improved knee flexion in stance and swing was maintained at E2. DFEO led to a significant improvement in knee kinematics at E1 which was maintained at E2. DFEO seems to prevent recurrent hamstring tightness but does not lead to lengthened or fastened hamstrings. Distal femoral extension osteotomy (DFEO) does not change hamstring muscle tendon length. DFEO does not change hamstring lengthening velocity. DFEO leads to a significant improvement in knee kinematics. Changes in knee kinematics after DFEO can be maintained at mid-term. DFEO seems to prevent recurrent hamstring tightness. © 2018 Mac Keith Press.

  5. Antagonist muscle co-contraction during a double-leg landing maneuver at two heights.

    PubMed

    Mokhtarzadeh, Hossein; Yeow, Chen Hua; Goh, James Cho Hong; Oetomo, Denny; Ewing, Katie; Lee, Peter Vee Sin

    2017-10-01

    Knee injuries are common during landing activities. Greater landing height increases peak ground reaction forces (GRFs) and loading at the knee joint. As major muscles to stabilize the knee joint, Quadriceps and Hamstring muscles provide internal forces to attenuate the excessive GRF. Despite the number of investigations on the importance of muscle function during landing, the role of landing height on these muscles forces using modeling during landing is not fully investigated. Participant-specific musculoskeletal models were developed using experimental motion analysis data consisting of anatomic joint motions and GRF from eight male participants performing double-leg drop landing from 30 and 60 cm. Muscle forces were calculated in OpenSim and their differences were analyzed at the instances of high risk during landing i.e. peak GRF for both heights. The maximum knee flexion angle and moments were found significantly higher from a double-leg landing at 60 cm compared to 30 cm. The results showed elevated GRF, and mean muscle forces during landing. At peak GRF, only quadriceps showed significantly greater forces at 60 cm. Hamstring muscle forces did not significantly change at 60 cm compared to 30 cm. Quadriceps and hamstring muscle forces changed at different heights. Since hamstring forces were similar in both landing heights, this could lead to an imbalance between the antagonist muscles, potentially placing the knee at risk of injury if combined with small flexion angles that was not observed at peak GRF in our study. Thus, enhanced neuromuscular training programs strengthening the hamstrings may be required to address this imbalance. These findings may contribute to enhance neuromuscular training programs to prevent knee injuries during landing.

  6. Effects of combined endurance and strength training on muscle strength, power and hypertrophy in 40-67-year-old men.

    PubMed

    Karavirta, L; Häkkinen, A; Sillanpää, E; García-López, D; Kauhanen, A; Haapasaari, A; Alen, M; Pakarinen, A; Kraemer, W J; Izquierdo, M; Gorostiaga, E; Häkkinen, K

    2011-06-01

    Both strength and endurance training have several positive effects on aging muscle and physical performance of middle-aged and older adults, but their combination may compromise optimal adaptation. This study examined the possible interference of combined strength and endurance training on neuromuscular performance and skeletal muscle hypertrophy in previously untrained 40-67-year-old men. Maximal strength and muscle activation in the upper and lower extremities, maximal concentric power, aerobic capacity and muscle fiber size and distribution in the vastus lateralis muscle were measured before and after a 21-week training period. Ninety-six men [mean age 56 (SD 7) years] completed high-intensity strength training (S) twice a week, endurance training (E) twice a week, combined training (SE) four times per week or served as controls (C). SE and S led to similar gains in one repetition maximum strength of the lower extremities [22 (9)% and 21 (8)%, P<0.001], whereas E and C showed minor changes. Cross-sectional area of type II muscle fibers only increased in S [26 (22)%, P=0.002], while SE showed an inconsistent, non-significant change [8 (35)%, P=0.73]. Combined training may interfere with muscle hypertrophy in aging men, despite similar gains in maximal strength between the strength and the combined training groups. © 2009 John Wiley & Sons A/S.

  7. A New Option for the Reconstruction of Primary or Recurrent Ischial Pressure Sores: Hamstring-Adductor Magnus Muscle Advancement Flap and Direct Closure.

    PubMed

    Burm, Jin Sik; Hwang, Jungil; Lee, Yung Ki

    2018-04-01

    Owing to the high recurrence rates of ischial pressure sores, surgeons should consider the possibility of future secondary flap surgery during flap selection. The purpose of this article is to present a new surgical option for the reconstruction of primary or recurrent ischial pressure sores using a simple hamstring-adductor magnus advancement flap and direct closure. After horizontal fusiform skin excision, complete bursa excision and ischiectomy were performed. The tenomuscular origin of the adductor magnus and the conjoined tenomuscular origin of the biceps femoris long head and semitendinosus were isolated and completely detached from the inferior border of the ischial tuberosity. They were then advanced in a cephalad direction without detachment of the distal tendon or muscle and securely affixed to the sacrotuberous ligament. The wound was directly closed without further incision or dissection. Twelve ischial pressure sores (6 primary and 6 recurrent; 12 patients) were surgically corrected. The follow-up period was 12 to 65 months. All patients healed successfully without early postoperative complications, such as hematoma, seroma, infection, wound dehiscence, or partial necrosis. Late complications included wound disruption 5 weeks after surgery that spontaneously healed in 1 case and recurrence 3 years later in another case. The new surgical option presented herein, which involves hamstring-adductor magnus advancement flap and direct closure, is a simple and reliable method for providing sufficient muscle bulk to fill the dead space and proper padding to the bone stump while preserving the main vascular perforators and pedicles as well as future surgical options.

  8. Anatomy of the Pudendal Nerve and Other Neural Structures Around the Proximal Hamstring Origin in Males.

    PubMed

    Cvetanovich, Gregory L; Saltzman, Bryan M; Ukwuani, Gift; Frank, Rachel M; Verma, Nikhil N; Bush-Joseph, Charles A; Nho, Shane J

    2018-03-29

    To define the anatomy of the pudendal nerve in relationship to the proximal hamstring and other nearby neurological structures during proximal hamstring repair. Six fresh-frozen human cadaveric hemi-pelvises from male patients ages 64.0 ± 4.1 years were dissected in prone position with hips in 10° flexion to identify the relationship of proximal hamstring origin to surrounding neurologic structures including the pudendal nerve, sciatic nerve, and posterior femoral cutaneous nerve. Two independent observers used digital calipers to measure distances. The pudendal nerve emerged at the inferior border of the piriformis muscle 6.3 ± 1.4 cm from the superior aspect of the proximal hamstring origin. It passed the superior border of the sacrotuberous ligament 3.0 ± 0.6 cm from the superior aspect and 3.9 ± 0.7 cm from the medial aspect of the hamstring origin. It crossed the inferior border of the sacrotuberous ligament 3.0 ± 0.4 cm from the superior aspect and 2.7 ± 0.7 cm from the medial aspect of the proximal hamstring origin. The shortest distance from the hamstring origin to the pudendal nerve was 2.6 ± 0.5 cm from the superior aspect and 2.3 ± 0.8 cm from the medial aspect. The shortest distance from the hamstring origin to the pudendal nerve was located deep to the sacrotuberous ligament in all cadavers. The sciatic nerve was an average of 1.1 ± 0.1 cm lateral to the lateral aspect of the proximal hamstring origin. The posterior femoral cutaneous nerve was located between the hamstring origin and the sciatic nerve, 0.7 ± 0.2 cm lateral to the lateral aspect of the proximal hamstring origin. The proximal hamstring origin lies in close proximity to surrounding nerves, including the pudendal, sciatic, and posterior femoral cutaneous nerves. Knowledge that the pudendal nerve lies 2 to 3 cm superior and medial to the proximal hamstring origin may help to prevent iatrogenic damage during surgical dissection and retraction when performing proximal

  9. Effects of electrical stimulation-induced gluteal versus gluteal and hamstring muscles activation on sitting pressure distribution in persons with a spinal cord injury.

    PubMed

    Smit, C A J; Haverkamp, G L G; de Groot, S; Stolwijk-Swuste, J M; Janssen, T W J

    2012-08-01

    Ten participants underwent two electrical stimulation (ES) protocols applied using a custom-made electrode garment with built-in electrodes. Interface pressure was measured using a force-sensitive area. In one protocol, both the gluteal and hamstring (g+h) muscles were activated, in the other gluteal (g) muscles only. To study and compare the effects of electrically induced activation of g+h muscles versus g muscles only on sitting pressure distribution in individuals with a spinal cord injury (SCI). Ischial tuberosities interface pressure (ITs pressure) and pressure gradient. In all participants, both protocols of g and g+h ES-induced activation caused a significant decrease in IT pressure. IT pressure after g+h muscles activation was reduced significantly by 34.5% compared with rest pressure, whereas a significant reduction of 10.2% after activation of g muscles only was found. Pressure gradient reduced significantly only after stimulation of g+h muscles (49.3%). g+h muscles activation showed a decrease in pressure relief (Δ IT) over time compared with g muscles only. Both protocols of surface ES-induced of g and g+h activation gave pressure relief from the ITs. Activation of both g+h muscles in SCI resulted in better IT pressure reduction in sitting individuals with a SCI than activation of g muscles only. ES might be a promising method in preventing pressure ulcers (PUs) on the ITs in people with SCI. Further research needs to show which pressure reduction is sufficient in preventing PUs.

  10. The Myotonometer: Not a Valid Measurement Tool for Active Hamstring Musculotendinous Stiffness.

    PubMed

    Pamukoff, Derek N; Bell, Sarah E; Ryan, Eric D; Blackburn, J Troy

    2016-05-01

    Hamstring musculotendinous stiffness (MTS) is associated with lower-extremity injury risk (ie, hamstring strain, anterior cruciate ligament injury) and is commonly assessed using the damped oscillatory technique. However, despite a preponderance of studies that measure MTS reliably in laboratory settings, there are no valid clinical measurement tools. A valid clinical measurement technique is needed to assess MTS and permit identification of individuals at heightened risk of injury and track rehabilitation progress. To determine the validity and reliability of the Myotonometer for measuring active hamstring MTS. Descriptive laboratory study. Laboratory. 33 healthy participants (15 men, age 21.33 ± 2.94 y, height 172.03 ± 16.36 cm, mass 74.21 ± 16.36 kg). Hamstring MTS was assessed using the damped oscillatory technique and the Myotonometer. Intraclass correlations were used to determine the intrasession, intersession, and interrater reliability of the Myotonometer. Criterion validity was assessed via Pearson product-moment correlation between MTS measures obtained from the Myotonometer and from the damped oscillatory technique. The Myotonometer demonstrated good intrasession (ICC3,1 = .807) and interrater reliability (ICC2,k = .830) and moderate intersession reliability (ICC2,k = .693). However, it did not provide a valid measurement of MTS compared with the damped oscillatory technique (r = .346, P = .061). The Myotonometer does not provide a valid measure of active hamstring MTS. Although the Myotonometer does not measure active MTS, it possesses good reliability and portability and could be used clinically to measure tissue compliance, muscle tone, or spasticity associated with multiple musculoskeletal disorders. Future research should focus on portable and clinically applicable tools to measure active hamstring MTS in efforts to prevent and monitor injuries.

  11. Myotonometry as a Surrogate Measure of Muscle Strength

    NASA Technical Reports Server (NTRS)

    Ang, B. S.; Feeback, D. L.; Leonard, C. T.; Sykes, J.; Kruger, E.; Clarke, M. S. F.

    2007-01-01

    Space flight-induced muscle atrophy/neuromuscular degradation and the consequent decrements in crew-member performance are of increasing concern as mission duration lengthens, and planetary exploration after extended space flight is planned. Pre- to post-flight strength measures have demonstrated that specific countermeasures, such as resistive exercise, are effective at countering microgravity-induced muscle atrophy and preventing decrements in muscle strength. However, in-flight assessment/monitoring of exercise countermeasure effectiveness will be essential during exploration class missions due to their duration. The ability to modify an exercise countermeasure prescription based on such real-time information will allow each individual crew member to perform the optimal amount and type of exercise countermeasure to maintain performance. In addition, such measures can be used to determine if a crew member is physically capable of performing a particular mission-related task during exploration class missions. The challenges faced in acquiring such data are those common to all space operations, namely the requirement for light-weight, low power, mechanically reliable technologies that make valid measurements in microgravity, in this case of muscle strength/neuromuscular function. Here we describe a simple, light-weight, low power, non-invasive device, known as the Myotonometer, that measures tissue stiffness as an indirect measure of muscle contractile state and muscle force production. Repeat myotonometer measurements made at the same location on the surface of the rectis femoris muscle (as determined using a 3D locator device, SEM plus or minus 0.34 mm) were shown to be reproducible over time at both maximal voluntary contraction (MVC) and at rest in a total of 17 sedentary subjects assessed three times over a period of seven days. In addition, graded voluntary isometric force production (i.e. 20%, 40%, 60%, 80% & 100% of MVC) during knee extension was shown to

  12. The Interaction of Trunk-Load and Trunk-Position Adaptations on Knee Anterior Shear and Hamstrings Muscle Forces During Landing

    PubMed Central

    Kulas, Anthony S.; Hortobágyi, Tibor; DeVita, Paul

    2010-01-01

    Abstract Context: Because anterior cruciate ligament (ACL) injuries can occur during deceleration maneuvers, biomechanics research has been focused on the lower extremity kinetic chain. Trunk mass and changes in trunk position affect lower extremity joint torques and work during gait and landing, but how the trunk affects knee joint and muscle forces is not well understood. Objective: To evaluate the effects of added trunk load and adaptations to trunk position on knee anterior shear and knee muscle forces in landing. Design: Crossover study. Setting: Controlled laboratory environment. Patients or Other Participants: Twenty-one participants (10 men: age  =  20.3 ± 1.15 years, height  =  1.82 ± 0.04 m, mass  =  78.2 ± 7.3 kg; 11 women: age  =  20.0 ± 1.10 years, height  =  1.72 ± 0.06 m, mass  =  62.3 ± 6.4 kg). Intervention(s): Participants performed 2 sets of 8 double-leg landings under 2 conditions: no load and trunk load (10% body mass). Participants were categorized into one of 2 groups based on the kinematic trunk adaptation to the load: trunk flexor or trunk extensor. Main Outcome Measure(s): We estimated peak and average knee anterior shear, quadriceps, hamstrings, and gastrocnemius forces with a biomechanical model. Results: We found condition-by-group interactions showing that adding a trunk load increased peak (17%) and average (35%) knee anterior shear forces in the trunk-extensor group but did not increase them in the trunk-flexor group (peak: F1,19  =  10.56, P  =  .004; average: F1,19  =  9.56, P  =  .006). We also found a main effect for condition for quadriceps and gastrocnemius forces. When trunk load was added, peak (6%; F1,19  =  5.52, P  =  .030) and average (8%; F1,19  =  8.83, P  =  .008) quadriceps forces increased and average (4%; F1,19  =  4.94, P  =  .039) gastrocnemius forces increased, regardless of group. We found a condition-by-group interaction for peak (F1,19

  13. The evaluation of muscle recovery after anatomical single-bundle ACL reconstruction using a quadriceps autograft.

    PubMed

    Iriuchishima, Takanori; Ryu, Keinosuke; Okano, Tatsumasa; Suruga, Makoto; Aizawa, Shin; Fu, Freddie H

    2017-05-01

    The purpose of this study was to reveal the degree of muscle recovery and report the clinical results of anatomical single-bundle ACL reconstruction using a quadriceps autograft. Twenty subjects undergoing anatomical single-bundle ACL reconstruction using a quadriceps autograft were included in this study. A 5-mm-wide, 8-cm-long graft, involving the entire layer of the quadriceps tendon, was harvested without bone block. The average graft diameter was 8.1 ± 1.4 mm. An initial tension of 30 N was applied. The femoral tunnel was created from the far-medial portal. Each femoral and tibial tunnel was created close to the antero-medial bundle insertion site. For the evaluation of muscle recovery (quadriceps and hamstring), a handheld dynamometer was used. The evaluation of muscle recovery was performed pre-operatively, and at 3, 6, 9, and 12 months after surgery. Muscle recovery data were calculated as a percentage of leg strength in the non-operated leg. Anterior tibial translation (ATT), pivot shift test, and IKDC score were evaluated. The average quadriceps strength pre-operatively, and at 3, 6, 9, and 12 months after ACL reconstruction was 90.5 ± 19, 67.8 ± 21.4, 84 ± 17.5, and 85.1 ± 12.6 %, respectively. The average hamstring strength pre-operatively, and at 3, 6, 9, and 12 months after ACL reconstruction was 99.5 ± 13.7, 78.7 ± 11.4, 90.5 ± 19, and 96.7 ± 13.8 %, respectively. ATT pre-operatively and at 12 months after surgery was 5.4 ± 1.3 and 1.0 ± 0.8 mm, respectively. No subjects exhibited positive pivot shift after surgery. Within 6 months following surgery, quadriceps hypotrophy was observed in all subjects. However, the hypotrophy had recovered at 12 months following surgery. No subjects complained of donor site pain after surgery. Anatomical single-bundle ACL reconstruction using a quadriceps autograft resulted in equivalent level of muscle recovery and knee stability when compared with previously reported ACL

  14. The effect of thigh muscle activity on anterior knee laxity in the uninjured and anterior cruciate ligament-injured knee.

    PubMed

    Barcellona, Massimo G; Morrissey, Matthew C; Milligan, Peter; Amis, Andrew A

    2014-11-01

    The main purpose of this study was to describe the nature of the relationship between hamstring muscle activity and anterior knee laxity. This was a cross-sectional study. Anterior knee laxity was measured at 133N and manual maximal forces using the KT2000 knee arthrometer, in 8 ACL-injured and 13 uninjured individuals. Electromyographic activity of the lateral hamstrings was measured during laxity testing. Subjects contracted the hamstrings during anterior knee laxity testing at eight predetermined levels of maximal voluntary isometric contraction. Volitional contraction of the lateral hamstrings reduced anterior knee laxity logarithmically for both the 133N and manual maximal tests in both the ACL-injured and uninjured knees. A simple linear regression model, with the log of percentage of maximum lateral hamstrings activity as the sole predictor, explained approximately 70-80% of the variation in anterior knee laxity. Both ACL-injured and uninjured subjects reduced anterior knee laxity at the same rate with increases in muscle activity. However, initial lateral hamstrings muscle activity had a greater effect on percentage anterior knee laxity scores in the ACL-injured as compared to the uninjured knee. Lateral hamstrings activity reduces anterior knee laxity in a nonlinear manner, whereby the initial lower level of activation produces the greatest change in anterior knee laxity. Therefore, hamstrings muscle activity must be monitored during anterior knee laxity testing.

  15. CCL2 and CCR2 variants are associated with skeletal muscle strength and change in strength with resistance training.

    PubMed

    Harmon, Brennan T; Orkunoglu-Suer, E Funda; Adham, Kasra; Larkin, Justin S; Gordish-Dressman, Heather; Clarkson, Priscilla M; Thompson, Paul D; Angelopoulos, Theodore J; Gordon, Paul M; Moyna, Niall M; Pescatello, Linda S; Visich, Paul S; Zoeller, Robert F; Hubal, Monica J; Tosi, Laura L; Hoffman, Eric P; Devaney, Joseph M

    2010-12-01

    Baseline muscle size and muscle adaptation to exercise are traits with high variability across individuals. Recent research has implicated several chemokines and their receptors in the pathogenesis of many conditions that are influenced by inflammatory processes, including muscle damage and repair. One specific chemokine, chemokine (C-C motif) ligand 2 (CCL2), is expressed by macrophages and muscle satellite cells, increases expression dramatically following muscle damage, and increases expression further with repeated bouts of exercise, suggesting that CCL2 plays a key role in muscle adaptation. The present study hypothesizes that genetic variations in CCL2 and its receptor (CCR2) may help explain muscle trait variability. College-aged subjects [n = 874, Functional Single-Nucleotide Polymorphisms Associated With Muscle Size and Strength (FAMUSS) cohort] underwent a 12-wk supervised strength-training program for the upper arm muscles. Muscle size (via MR imaging) and elbow flexion strength (1 repetition maximum and isometric) measurements were taken before and after training. The study participants were then genotyped for 11 genetic variants in CCL2 and five variants in CCR2. Variants in the CCL2 and CCR2 genes show strong associations with several pretraining muscle strength traits, indicating that inflammatory genes in skeletal muscle contribute to the polygenic system that determines muscle phenotypes. These associations extend across both sexes, and several of these genetic variants have been shown to influence gene regulation.

  16. Knee strength ratios in competitive female athletes

    PubMed Central

    Murawa, Michal; Mackala, Krzysztof; Dworak, Lechoslaw Bogdan

    2018-01-01

    Knee strength ratios are related to the movement patterns, sport-specific training and knee injuries in athletes. The purpose of this study was to determine the ratios in the concentric isokinetic strength of the hamstrings and quadriceps and the isometric strength of the knee extensors. In female basketball players (n = 14) and female volleyball players (n = 12) were evaluated: the hamstrings to quadriceps peak torque ratio (H/Q) and side-to-side peak torque ratio (TR) for hamstrings and quadriceps; the ratio of the maximal bilateral strength to the summed maximal unilateral strength (B/U) and side-to-side maximal strength ratio (SR) for knee extensors. For the H/Q values, a 2 × 2 × 3 mixed-factorial analysis of variance and Bonferroni post hoc test were computed. The H/Q values increased from 48.0 (3.9)% at 60°/s to 70.4 (7.9)% at 300°/s. Furthermore, there were significant differences in the H/Q values between 300°/s and 180°/s, 300°/s and 60°/s in basketball and volleyball athletes, and between 180°/s and 60°/s only in basketball athletes (p < .05). Significantly higher H/Q results at 60°/s demonstrated basketball players than volleyball players (p < .05). Differences in the TR and SR mean values ranged from 4.4% to 8.6% and indicated no significant side-to-side strength deficits (p > .05). In both groups, greater isometric strength developed bilaterally was found (B/U > 100%). The findings revealed the magnitude of knee strength ratios in female athletes determined by sport-specific movements in basketball and volleyball. This study highlighted the importance of the bilateral strength deficit and muscular balance between the hamstrings and quadriceps in basketball and volleyball athletes in activities related to their movement patterns and specific training. PMID:29315348

  17. Strength Training for Skeletal Muscle Endurance after Stroke

    PubMed Central

    Ivey, Frederick M.; Prior, Steven J.; Hafer-Macko, Charlene E.; Katzel, Leslie I.; Macko, Richard F.; Ryan, Alice S.

    2018-01-01

    Background and Purpose Initial studies support the use of strength training (ST) as a safe and effective intervention after stroke. Our previous work shows that relatively aggressive, higher intensity ST translates into large effect sizes for paretic and non-paretic leg muscle volume, myostatin expression, and maximum strength post-stroke. An unanswered question pertains to how our unique ST model for stroke impacts skeletal muscle endurance (SME). Thus, we now report on ST-induced adaptation in the ability to sustain isotonic muscle contraction. Methods Following screening and baseline testing, hemiparetic stroke participants were randomized to either ST or an attention-matched stretch control group (SC). Those in the ST group trained each leg individually to muscle failure (20 repetition sets, 3× per week for 3 months) on each of three pneumatic resistance machines (leg press, leg extension, and leg curl). Our primary outcome measure was SME, quantified as the number of submaximal weight leg press repetitions possible at a specified cadence. The secondary measures included one-repetition maximum strength, 6-minute walk distance (6MWD), 10-meter walk speeds, and peak aerobic capacity (VO2 peak). Results ST participants (N = 14) had significantly greater SME gains compared with SC participants (N = 16) in both the paretic (178% versus 12%, P < .01) and non-paretic legs (161% versus 12%, P < .01). These gains were accompanied by group differences for 6MWD (P < .05) and VO2 peak (P < .05). Conclusion Our ST regimen had a large impact on the capacity to sustain submaximal muscle contraction, a metric that may carry more practical significance for stroke than the often reported measures of maximum strength. PMID:27865696

  18. Diurnal and day-to-day variation of isometric muscle strength in myasthenia gravis.

    PubMed

    Vinge, Lotte; Jakobsen, Johannes; Pedersen, Asger Roer; Andersen, Henning

    2016-01-01

    In patients with myasthenia gravis (MG), muscle strength is expected to decrease gradually during the day due to physical activities. Isometric muscle strength at the shoulder, knee, and ankle was determined in 10 MG patients (MGFA class II-IV) who were receiving usual medical treatment and in 10 control subjects. To determine diurnal and day-to-day variation, muscle strength was measured 4 times during day 1 and once at day 2. Knee extension strength decreased during the day in both patients and controls. Neither diurnal nor day-to-day variation of muscle strength was higher in patients compared with controls. Patients with mild to moderate MG did not have increased variation of isometric muscle strength during the day or from day-to-day compared with controls. This suggests that isometric muscle performance can be determined with high reproducibility in similar groups of MG patients without regard to time of day. © 2015 Wiley Periodicals, Inc.

  19. Relation between systemic inflammatory markers, peripheral muscle mass, and strength in limb muscles in stable COPD patients.

    PubMed

    Ferrari, Renata; Caram, Laura M O; Faganello, Marcia M; Sanchez, Fernanda F; Tanni, Suzana E; Godoy, Irma

    2015-01-01

    The aim of this study was to investigate the association between systemic inflammatory mediators and peripheral muscle mass and strength in COPD patients. Fifty-five patients (69% male; age: 64±9 years) with mild/very severe COPD (defined as forced expiratory volume in the first second [FEV1] =54%±23%) were evaluated. We evaluated serum concentrations of IL-8, CRP, and TNF-α. Peripheral muscle mass was evaluated by computerized tomography (CT); midthigh cross-sectional muscle area (MTCSA) and midarm cross-sectional muscle area (MACSA) were obtained. Quadriceps, triceps, and biceps strength were assessed through the determination of the one-repetition maximum. The multiple regression results, adjusted for age, sex, and FEV1%, showed positive significant association between MTCSA and leg extension (0.35 [0.16, 0.55]; P=0.001), between MACSA and triceps pulley (0.45 [0.31, 0.58]; P=0.001), and between MACSA and biceps curl (0.34 [0.22, 0.47]; P=0.001). Plasma TNF-α was negatively associated with leg extension (-3.09 [-5.99, -0.18]; P=0.04) and triceps pulley (-1.31 [-2.35, -0.28]; P=0.01), while plasma CRP presented negative association with biceps curl (-0.06 [-0.11, -0.01]; P=0.02). Our results showed negative association between peripheral muscle mass (evaluated by CT) and muscle strength and that systemic inflammation has a negative influence in the strength of specific groups of muscles in individuals with stable COPD. This is the first study showing association between systemic inflammatory markers and strength in upper limb muscles.

  20. Effect of mirror use on lower extremity muscle strength of patients with chronic stroke.

    PubMed

    Kim, Myoung-Kwon; Choe, Yu-Won; Shin, Young-Jun; Peng, Cheng; Choi, Eun-Hong

    2018-02-01

    [Purpose] This study examines the effect on muscle strength of lower extremity muscle strength exercise while using a mirror on the non-paretic side in patients with chronic stroke. [Subjects and Methods] Subjects were randomly assigned to a non-mirror lower extremity exercise group (n=10), a mirror lower extremity exercise group (n=10), or a mirror lower extremity muscle strength exercise group (n=10). Subjects were asked to do the exercise assigned to their group (5 sets 30 times a day, 5 times weekly for 4 weeks) with general physical therapy in the hospital. Muscle strength in the knee extensor and flexor of paretic and non-paretic side were measured using electrical muscle testing device before and after the intervention. [Results] Muscle strength significantly increased within each group after intervention. No significant differences were found among the three groups. [Conclusion] This study showed that the lower extremity muscle strength exercise of the non-paretic side using a mirror has a positive effect on muscle strength in patient with chronic stroke.

  1. Clinical Effects of Dry Needling Among Asymptomatic Individuals With Hamstring Tightness: A Randomized Controlled Trial.

    PubMed

    Geist, Kathleen; Bradley, Claire; Hofman, Alan; Koester, Rob; Roche, Fenella; Shields, Annalise; Frierson, Elizabeth; Rossi, Ainsley; Johanson, Marie

    2017-11-01

    Randomized controlled trial. The aim of this study was to determine the effects of dry needling on hamstring extensibility and functional performance tests among asymptomatic individuals with hamstring muscle tightness. Dry needling has been shown to increase range of motion in the upper quarter and may have similar effects in the lower quarter. 27 subjects with hamstring extensibility deficits were randomly assigned to side of treatment (dominant or nondominant) and group (blunt needling or dry needling). The first session included measurement of hamstring extensibility and performance on 4 unilateral hop tests, instruction in home hamstring stretching exercises and needling distal to the ischial tuberosity and midbellies of the medial and lateral hamstrings. A second session, 3-5 days following the first session, included outcome measures and a second needling intervention, and a third session, 4-6 weeks following the first session, included outcome measures only. A 2 × 3 × 2 ANOVA was used to statistically analyze the data. Hamstring extensibility showed a significant side × time interaction (P < .05). The single hop for distance, timed 6-meter hop, and the crossover hop test had a significant main effect of time (P < .05). The triple hop for distance showed a significant side × time × group interaction (P < .05). It does not appear dry needling results in increased extensibility beyond that of stretching alone in asymptomatic individuals. Our study findings suggest that dry needling may improve certain dimensions of functional performance, although no clear conclusion can be made. Intervention, level 2b.

  2. Clinical predictors of time to return to competition following hamstring injuries.

    PubMed

    Guillodo, Yannick; Here-Dorignac, Caroline; Thoribé, Bertrand; Madouas, Gwénaelle; Dauty, Marc; Tassery, Francois; Saraux, Alain

    2014-07-01

    hamstring strain injuries are the most common sports-related muscle injuries and one of the main causes of missed sporting events. clinical findings reflecting hamstring injury severity at presentation predict time to sports resumption. cohort study (prognosis); Level of evidence, 2. five sports medicine specialists at four sports medicine centers prospectively evaluated 120 athletes within 5 days of acute hamstring injury. Patients were interviewed and asked to evaluate their worst pain on a visual analog scale (VAS). Four physical criteria were assessed at baseline: bruising, tenderness to palpation, pain upon isometric contraction, and pain upon passive straightening. The same standardized rehabilitation protocol was used in all patients. A standardized telephone interview was conducted 45 days after the injury to determine the time to-full recovery (≤40 days or >40 days). by univariate analysis, clinical criteria associated with a full recovery time >40 days were VAS pain score greater than 6, popping sound injury, pain during everyday activities for more than 3 days, bruising, and greater than 15° motion-range limitation. By multivariate analysis, only VAS pain score and pain during everyday activities were significantly associated with time to recovery >40 days (53% sensitivity, 95% specificity). the initial examination provides valuable information that can be used to predict the time to full recovery after acute hamstring injuries in athletes.

  3. Lack of Effect of Ankle Position During the Nordic Curl on Muscle Activity of the Biceps Femoris and Medial Gastrocnemius.

    PubMed

    Comfort, Paul; Regan, Amy; Herrington, Lee; Thomas, Chris; McMahon, John; Jones, Paul

    2017-05-01

    Regular performance (~2×/wk) of Nordic curls has been shown to increase hamstring strength and reduce the risk of hamstring strain injury, although no consensus on ankle position has been provided. To compare the effects of performing Nordic curls, with the ankle in a dorsiflexed (DF) or plantar-flexed (PF) position, on muscle activity of the biceps femoris (BF) and medial gastrocnemius (MG). 15 male college athletes (age 22.6 ± 2.1 y, height 1.78 ± 0.06 m, body mass 88.75 ± 8.95 kg). A repeated-measures design was used, with participants performing 2 sets of 3 repetitions of both variations of Nordic curls, while muscle activity was assessed via surface electromyography (EMG) of the BF and MG. Comparisons of muscle activity were made by examining the normalized EMG data as the percentage of their maximum voluntary isometric contraction. Paired-samples t test revealed no significant difference in normalized muscle activity of the BF (124.5% ± 6.2% vs 128.1 ± 5.0%, P > .05, Cohen d = 0.64, power = .996) or MG (82.1% ± 3.9% vs 83.5 ± 4.8%, P > .05, Cohen d = 0.32, power = .947) during the Nordic curls in a PF or DF position, respectively. Ankle position does not influence muscle activity during the Nordic curl; however, performance of Nordic curls with the ankle in a DF position may be preferential, as this replicates the ankle position during terminal leg swing during running, which tends to be the point at which hamstring strains have been reported.

  4. Isometric muscle strength and mobility capacity in children with cerebral palsy.

    PubMed

    Dallmeijer, Annet J; Rameckers, Eugene A; Houdijk, Han; de Groot, Sonja; Scholtes, Vanessa A; Becher, Jules G

    2017-01-01

    To determine the relationship between isometric leg muscle strength and mobility capacity in children with cerebral palsy (CP) compared to typically developing (TD) peers. Participants were 62 children with CP (6-13 years), able to walk with (n = 10) or without (n = 52) walking aids, and 47 TD children. Isometric muscle strength of five muscle groups of the leg was measured using hand-held dynamometry. Mobility capacity was assessed with the 1-min walk, the 10-m walk, sit-to-stand, lateral-step-up and timed-stair tests. Isometric strength of children with CP was reduced to 36-82% of TD. When adjusted for age and height, the percentage of variance in mobility capacity that was explained by isometric strength of the leg muscles was 21-24% (walking speed), 25% (sit-to-stand), 28% (lateral-step-up) and 35% (timed-stair) in children with CP. Hip abductors and knee flexors had the largest contribution to the explained variance, while knee extensors showed the weakest correlation. Weak or no associations were found between strength and mobility capacity in TD children. Isometric strength, especially hip abductor and knee flexor strength, is moderately related to mobility capacity in children with CP, but not in TD children. To what extent training of these muscle groups will lead to better mobility capacity needs further study. Implications for Rehabilitation Strength training in children with cerebral palsy (CP) may be targeted more specifically at hip abductors and knee flexors. The moderate associations imply that large improvements in mobility capacity may not be expected when strength increases.

  5. Muscle Strength Is Protective Against Osteoporosis in an Ethnically Diverse Sample of Adults.

    PubMed

    McGrath, Ryan P; Kraemer, William J; Vincent, Brenda M; Hall, Orman T; Peterson, Mark D

    2017-09-01

    McGrath, RP, Kraemer, WJ, Vincent, BM, Hall, OT, and Peterson, MD. Muscle strength is protective against osteoporosis in an ethnically diverse sample of adults. J Strength Cond Res 31(9): 2586-2589, 2017-The odds of developing osteoporosis may be affected by modifiable and nonmodifiable factors such as muscle strength and ethnicity. This study sought to (a) determine whether increased muscle strength was associated with decreased odds of osteoporosis and (b) identify whether the odds of osteoporosis differed by ethnicity. Data from the 2013 to 2014 National Health and Nutrition Examination Survey were analyzed. Muscle strength was measured with a hand-held dynamometer, and dual-energy x-ray absorptiometry was used to assess femoral neck bone mineral density. A T-score of ≤2.5 was used to define osteoporosis. Separate covariate-adjusted logistic regression models were performed on each sex to determine the association between muscle strength and osteoporosis. Odds ratios (ORs) were also generated to identify if the association between muscle strength and osteoporosis differed by ethnicity using non-Hispanic blacks as the reference group. There were 2,861 participants included. Muscle strength was shown to be protective against osteoporosis for men (OR: 0.94; 95% confidence interval [CI]: 0.94-0.94) and women (OR: 0.90; CI: 0.90-0.90). Although ORs varied across ethnicities, non-Hispanic Asian men (OR: 6.62; CI: 6.51-6.72) and women (OR: 6.42; CI: 6.37-6.48) were at highest odds of osteoporosis. Increased muscle strength reduced the odds of osteoporosis among both men and women in a nationally representative, ethnically diverse sample of adults. Non-Hispanic Asians had the highest odds of developing osteoporosis. Irrespective of sex or ethnicity, increased muscle strength may help protect against the odds of developing osteoporosis.

  6. Impaired hip muscle strength in patients with femoroacetabular impingement syndrome.

    PubMed

    Kierkegaard, Signe; Mechlenburg, Inger; Lund, Bent; Søballe, Kjeld; Dalgas, Ulrik

    2017-12-01

    Patients with femoroacetabular impingement (FAI) experience hip pain as well as decreased function and lowered quality of life. The aim was to compare maximal isometric and isokinetic muscle strength (MVC) during hip flexion and extension and rate of force development (RFD) during extension between patients with FAI and a matched reference group. Secondary, the aim was to compare patient hips and subgroups defined by gender and age as well as to investigate associations between hip muscle strength and self-reported outcomes. Design Cross-sectional, comparative study Methods Sixty patients (36±9 years, 63% females) and 30 age and gender matched reference persons underwent MVC tests in an isokinetic dynamometer. During hip flexion and extension, patients' affected hip showed a strength deficit of 15-21% (p<0.001) and 10-25% (p<0.03) compared with reference MVC, respectively. The affected hip of the patients was significantly weaker than their contralateral hip. RFD was significantly decreased for both patient hips compared to the reference group (p<0.05). While age had less effect on MVC, female patients were more affected than male patients. Self-reported measures were associated with isometric hip muscle strength. Patients with FAI demonstrate decreased hip flexion and extension strength when compared to (1) reference persons and (2) their contralateral hip. There seems to be a gender specific affection which should be investigated further and addressed when planning training protocols. Furthermore, self-reported measures were associated with isometric muscle strength, which underlines the clinical importance of the reduced muscle strength. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  7. Proximal Hamstring Tendinosis and Partial Ruptures.

    PubMed

    Startzman, Ashley N; Fowler, Oliver; Carreira, Dominic

    2017-07-01

    Proximal hamstring tendinosis and partial hamstring origin ruptures are painful conditions of the proximal thigh and hip that may occur in the acute, chronic, or acute on chronic setting. Few publications exist related to their diagnosis and management. This systematic review discusses the incidence, treatment, and prognosis of proximal hamstring tendinosis and partial hamstring ruptures. Conservative treatment measures include nonsteroidal anti-inflammatory drugs, physical therapy, rest, and ice. If these measures fail, platelet-rich plasma or shockwave therapy may be considered. When refractory to conservative management, these injuries may be treated with surgical debridement and hamstring reattachment. [Orthopedics. 2017; 40(4):e574-e582.]. Copyright 2017, SLACK Incorporated.

  8. Knee and Hip Joint Kinematics Predict Quadriceps and Hamstrings Neuromuscular Activation Patterns in Drop Jump Landings

    PubMed Central

    Malfait, Bart; Dingenen, Bart; Smeets, Annemie; Staes, Filip; Pataky, Todd; Robinson, Mark A.; Vanrenterghem, Jos; Verschueren, Sabine

    2016-01-01

    Purpose The purpose was to assess if variation in sagittal plane landing kinematics is associated with variation in neuromuscular activation patterns of the quadriceps-hamstrings muscle groups during drop vertical jumps (DVJ). Methods Fifty female athletes performed three DVJ. The relationship between peak knee and hip flexion angles and the amplitude of four EMG vectors was investigated with trajectory-level canonical correlation analyses over the entire time period of the landing phase. EMG vectors consisted of the {vastus medialis(VM),vastus lateralis(VL)}, {vastus medialis(VM),hamstring medialis(HM)}, {hamstring medialis(HM),hamstring lateralis(HL)} and the {vastus lateralis(VL),hamstring lateralis(HL)}. To estimate the contribution of each individual muscle, linear regressions were also conducted using one-dimensional statistical parametric mapping. Results The peak knee flexion angle was significantly positively associated with the amplitudes of the {VM,HM} and {HM,HL} during the preparatory and initial contact phase and with the {VL,HL} vector during the peak loading phase (p<0.05). Small peak knee flexion angles were significantly associated with higher HM amplitudes during the preparatory and initial contact phase (p<0.001). The amplitudes of the {VM,VL} and {VL,HL} were significantly positively associated with the peak hip flexion angle during the peak loading phase (p<0.05). Small peak hip flexion angles were significantly associated with higher VL amplitudes during the peak loading phase (p = 0.001). Higher external knee abduction and flexion moments were found in participants landing with less flexed knee and hip joints (p<0.001). Conclusion This study demonstrated clear associations between neuromuscular activation patterns and landing kinematics in the sagittal plane during specific parts of the landing. These findings have indicated that an erect landing pattern, characterized by less hip and knee flexion, was significantly associated with an

  9. Knee and Hip Joint Kinematics Predict Quadriceps and Hamstrings Neuromuscular Activation Patterns in Drop Jump Landings.

    PubMed

    Malfait, Bart; Dingenen, Bart; Smeets, Annemie; Staes, Filip; Pataky, Todd; Robinson, Mark A; Vanrenterghem, Jos; Verschueren, Sabine

    2016-01-01

    The purpose was to assess if variation in sagittal plane landing kinematics is associated with variation in neuromuscular activation patterns of the quadriceps-hamstrings muscle groups during drop vertical jumps (DVJ). Fifty female athletes performed three DVJ. The relationship between peak knee and hip flexion angles and the amplitude of four EMG vectors was investigated with trajectory-level canonical correlation analyses over the entire time period of the landing phase. EMG vectors consisted of the {vastus medialis(VM),vastus lateralis(VL)}, {vastus medialis(VM),hamstring medialis(HM)}, {hamstring medialis(HM),hamstring lateralis(HL)} and the {vastus lateralis(VL),hamstring lateralis(HL)}. To estimate the contribution of each individual muscle, linear regressions were also conducted using one-dimensional statistical parametric mapping. The peak knee flexion angle was significantly positively associated with the amplitudes of the {VM,HM} and {HM,HL} during the preparatory and initial contact phase and with the {VL,HL} vector during the peak loading phase (p<0.05). Small peak knee flexion angles were significantly associated with higher HM amplitudes during the preparatory and initial contact phase (p<0.001). The amplitudes of the {VM,VL} and {VL,HL} were significantly positively associated with the peak hip flexion angle during the peak loading phase (p<0.05). Small peak hip flexion angles were significantly associated with higher VL amplitudes during the peak loading phase (p = 0.001). Higher external knee abduction and flexion moments were found in participants landing with less flexed knee and hip joints (p<0.001). This study demonstrated clear associations between neuromuscular activation patterns and landing kinematics in the sagittal plane during specific parts of the landing. These findings have indicated that an erect landing pattern, characterized by less hip and knee flexion, was significantly associated with an increased medial and posterior

  10. Effects of the Nordic Hamstring exercise on sprint capacity in male football players: a randomized controlled trial.

    PubMed

    Ishøi, Lasse; Hölmich, Per; Aagaard, Per; Thorborg, Kristian; Bandholm, Thomas; Serner, Andreas

    2018-07-01

    This assessor-blinded, randomized controlled superiority trial investigated the efficacy of the 10-week Nordic Hamstring exercise (NHE) protocol on sprint performance in football players. Thirty-five amateur male players (age: 17-26 years) were randomized to a do-as-usual control group (CG; n = 17) or to 10-weeks of supervised strength training using the NHE in-season (IG; n = 18). A repeated-sprint test, consisting of 4 × 6 10 m sprints, with 15 s recovery period between sprints and 180 s between sets, was conducted to evaluate total sprint time as the primary outcome. Secondary outcomes were best 10 m sprint time (10mST) and sprint time during the last sprint (L10mST). Additionally, peak eccentric hamstring strength (ECC-P HS ) and eccentric hamstring strength capacity (ECC-CAP HS ) were measured during the NHE. Ten players were lost to follow-up, thus 25 players were analyzed (CG n = 14; IG n = 11). Between-group differences in mean changes were observed in favor of the IG for sprint performance outcomes; TST (-0.649 s, p = 0.056, d = 0.38), 10mST (-0.047 s, p = 0.005, d = 0.64) and L10mST (-0.052 s, p = 0.094, d = 0.59), and for strength outcomes; ECC-P HS (62.3 N, p = 0.006, d = 0.92), and ECC-CAP HS (951 N, p = 0.005, d = 0.95). In conclusion, the NHE showed small-to-medium improvements in sprint performance and large increases in peak eccentric hamstring strength and capacity. NCT02674919.

  11. Relation between isokinetic muscle strength and functional capacity in recreational athletes with chondromalacia patellae

    PubMed Central

    Yildiz, Y; Aydin, T; Sekir, U; Cetin, C; Ors, F; Alp, K

    2003-01-01

    Objectives: To investigate the effects of isokinetic exercise on pain and functional test scores of recreational athletes with chondromalacia patellae (CMP) and to examine the correlation between isokinetic parameters and functional tests or pain score. Methods: The functional ability of 30 recreational athletes with unilateral CMP was evaluated using six different tests. Pain scores were assessed during daily activities before and after the treatment protocol. Isokinetic exercise sessions were carried out at angular velocities of 60°/s (25–90° range of flexion) and 180°/s (full range). These sessions were repeated three times a week for six weeks. Results: Quadriceps and hamstring peak torque, total work, and endurance ratios had improved significantly after the treatment, as did the functional parameters and pain scores. There was a poor correlation between the extensor endurance ratio and one leg standing test. A moderate correlation between the visual analogue scale and the extensor endurance ratio or flexion endurance ratio was also found. Conclusions: The isokinetic exercise programme used in this study had a positive effect on muscle strength, pain score, and functional ability of knees with CMP. The improvement in the functional capacity did not correlate with the isokinetic parameters. PMID:14665581

  12. Strength and fatigability of selected muscles in upper limb: assessing muscle imbalance relevant to tennis elbow.

    PubMed

    Alizadehkhaiyat, O; Fisher, A C; Kemp, G J; Frostick, S P

    2007-08-01

    The aetiology of tennis elbow has remained uncertain for more than a century. To examine muscle imbalance as a possible pathophysiological factor requires a reliable method of assessment. This paper describes the development of such a method and its performance in healthy subjects. We propose a combination of surface and fine-wire EMG of shoulder and forearm muscles and wrist strength measurements as a reliable tool for assessing muscle imbalance relevant to the pathophysiology of tennis elbow. Six healthy volunteers participated. EMG data were acquired at 50% maximal voluntary isometric contraction from five forearm muscles during grip and three shoulder muscles during external rotation and abduction, and analysed using normalized median frequency slope as a fatigue index. Wrist extension/flexion strength was measured using a purpose-built dynamometer. Significant negative slope of median frequency was found for all muscles, with good reproducibility, and no significant difference in slope between the different muscles of the shoulder and the wrist. (Amplitude slope showed high variability and was therefore unsuitable for this purpose.) Wrist flexion was 27+/-8% stronger than extension (mean+/-SEM, p=0.006). This is a reliable method for measuring muscle fatigue in forearm and shoulder. EMG and wrist strength studies together can be used for assessing and identifying the muscle balance in the wrist-forearm-shoulder chain.

  13. Subcutaneous immunoglobulin preserves muscle strength in chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Markvardsen, L H; Harbo, T; Sindrup, S H; Christiansen, I; Andersen, H; Jakobsen, J

    2014-12-01

    Subcutaneous immunoglobulin (SCIG) is superior to placebo treatment for maintenance of muscle strength during 12 weeks in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). The present study evaluated whether SCIG preserves muscle strength for 1 year in an open-label follow-up study. Seventeen responders to intravenous immunoglobulin (IVIG) who had participated in the previous study of SCIG versus placebo in CIDP were included. After one IVIG infusion 2 weeks prior to baseline, all continued on SCIG treatment at weekly equal dosage and were evaluated after 3, 6 and 12 months. Primary end-points were changes in muscle strength evaluated by isokinetic dynamometry in four affected muscle groups and a composite score of muscle performance and function tests, including Medical Research Council (MRC) score, grip strength, 40-m walking test (40-MWT) and nine-hole peg test (9-HPT). Secondary end-points were changes of each of the listed parameters at each time point as well as an overall disability sum score (ODSS). The dose of SCIG was significantly unaltered during the follow-up period. Overall the isokinetic dynamometry value increased by 7.2% (P = 0.033) and after 3, 6 and 12 months by 5.7%, 8.2% and 6.8% (ns). The overall composite score at all time intervals and for each interval remained unchanged. Amongst the secondary parameters the MRC score increased significantly by 1.7% (P = 0.007), whereas grip strength, 40-MWT, 9-HPT and ODSS remained unchanged. SCIG preserves muscle strength and functional ability in patients with CIDP who previously responded to IVIG. SCIG should be considered as an alternative in long-term treatment of CIDP patients. © 2014 The Author(s) European Journal of Neurology © 2014 EAN.

  14. Hamstring Elongation Quantified Using Ultrasonography During the Straight Leg Raise Test in Individuals With Low Back Pain.

    PubMed

    Kellis, Eleftherios; Ellinoudis, Athanasios; Kofotolis, Nikolaos

    2015-06-01

    Although the straight leg raise (SLR) test frequently is used to assess hamstring extensibility in individuals with low back pain (LBP), evidence relating LBP, SLR, and hamstring extensibility remains unclear. The SLR measures the angle between the lifted leg and the horizontal, however, and, as such, it is not a direct measure of the elongation capacity of the hamstrings. To examine the differences in hamstring elongation (quantified via ultrasonography) and SLR score between individuals with LBP and asymptomatic controls and to determine the relationship between hamstring elongation, SLR, and functional disability scores. Cross-sectional study. University laboratory. Forty men and women with chronic LBP (mean ± SD, age 43.51 ± 3.71 years and 40 control subjects (age 45.11 ± 4.01 years) participated in this study. Passive SLR, elongation assessed via ultrasonography, and functional disability. SLR score, elongation of tendinous tissue within the semitendinosus muscle, and Oswestry Disability Index. Two-way analysis of variance tests indicated a significantly lower SLR score and a greater Oswestry score in LBP group compared with control subjects (P < .05). In contrast, there were no significant group differences in hamstring elongation (P > .05). Gender did not have an effect on all dependent measures (P > .05). Hamstring elongation showed a low correlation with SLR score and a minimal correlation with Oswestry score. These results indicate that the SLR score is not determined by hamstring elongation (quantified via ultrasonography). Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  15. Muscle strength in breast cancer patients receiving different treatment regimes

    PubMed Central

    Klassen, Oliver; Schmidt, Martina E.; Ulrich, Cornelia M.; Schneeweiss, Andreas; Potthoff, Karin; Steindorf, Karen

    2016-01-01

    Abstract Background Muscle dysfunction and sarcopenia have been associated with poor performance status, an increased mortality risk, and greater side effects in oncologic patients. However, little is known about how performance is affected by cancer therapy. We investigated muscle strength in breast cancer patients in different adjuvant treatment settings and also compared it with data from healthy individuals. Methods Breast cancer patients (N = 255) from two randomized controlled exercise trials, staged 0–III and aged 54.4 ± 9.4 years, were categorized into four groups according to their treatment status. In a cross‐sectional design, muscle function was assessed bilaterally by isokinetic dynamometry (0°, 60°, 180°/s) as maximal voluntary isometric contraction (MVIC) and maximal isokinetic peak torque (MIPT) in shoulder rotators and knee flexors and extensors. Additionally, muscular fatigue index (FI%) and shoulder flexibility were evaluated. Healthy women (N = 26), aged 53.3 ± 9.8 years, were tested using the same method. Analysis of covariance was used to estimate the impact of different cancer treatments on skeletal muscle function with adjustment for various clinical and socio‐demographic factors. Results Consistently, lower muscle strength was measured in shoulder and knee strength in patients after chemotherapy. On average, patients had up to 25% lower strength in lower extremities and 12–16% in upper extremities in MVIC and MIPT during cancer treatment compared with healthy women. No substantial difference between patient groups in shoulder strength, but significantly lower shoulder flexibility in patients with radical mastectomy was measured. Chemotherapy‐treated patients had consistently higher FI%. No serious adverse events were reported. Conclusions Breast cancer patients showed markedly impaired muscle strength and joint dysfunctions before and after anticancer treatment. The significant differences between patients

  16. Perturbation-enhanced neuromuscular training alters muscle activity in female athletes.

    PubMed

    Hurd, Wendy J; Chmielewski, Terese L; Snyder-Mackler, Lynn

    2006-01-01

    Female athletes involved in jumping and cutting sports injure their anterior cruciate ligaments (ACL) 4-6 times more frequently than their male counterparts in comparable sports. Neuromuscular factors, including quadriceps dominance, has been incriminated as contributing to the higher rates of injury in women. Currently, the most effective form of intervention developed to reduce female ACL injury rates has been neuromuscular training. The purpose of this study was to (1) identify gender based muscle activity patterns during disturbed walking that may contribute to ACL injury, and (2) determine if a novel training program could positively influence patterns among healthy female athletes utilizing a disturbed gait paradigm. Twenty healthy athletes (female=10, male=10) were tested. All subjects participated in five trials during which a platform translated horizontally in a lateral direction at heel contact before and after completing ten sessions of a perturbation training program. Electromyographic (EMG) data from the vastus lateralis, medial and lateral hamstrings, and medial gastrocnemius were collected. Trials were analyzed for the muscle onset, termination of activity, peak amplitude, time to peak amplitude, and integrated EMG activity. Muscle cocontraction, the simultaneous activation of antagonistic muscles (lateral hamstrings-vastus lateralis, and medial gastrocnemius-vastus lateralis), was calculated as indicators of active knee stiffness in preparation for heel strike, during weight acceptance and midstance. Prior to training, women had significantly higher peak quadriceps activity and higher integrated quadriceps activity during midstance than men. Both medial and lateral hamstring integrals during midstance increased from pre to posttraining. Onset times to peak activities for hamstrings and quadriceps were similar before training except for medial hamstring time to peak which occurred after heel strike in most women. Time to peak medial hamstring

  17. A Maximum Muscle Strength Prediction Formula Using Theoretical Grade 3 Muscle Strength Value in Daniels et al.'s Manual Muscle Test, in Consideration of Age: An Investigation of Hip and Knee Joint Flexion and Extension

    PubMed Central

    Matsumura, Masashi; Ichikawa, Kazuna; Takei, Hitoshi

    2017-01-01

    This study attempted to develop a formula for predicting maximum muscle strength value for young, middle-aged, and elderly adults using theoretical Grade 3 muscle strength value (moment fair: Mf)—the static muscular moment to support a limb segment against gravity—from the manual muscle test by Daniels et al. A total of 130 healthy Japanese individuals divided by age group performed isometric muscle contractions at maximum effort for various movements of hip joint flexion and extension and knee joint flexion and extension, and the accompanying resisting force was measured and maximum muscle strength value (moment max, Mm) was calculated. Body weight and limb segment length (thigh and lower leg length) were measured, and Mf was calculated using anthropometric measures and theoretical calculation. There was a linear correlation between Mf and Mm in each of the four movement types in all groups, excepting knee flexion in elderly. However, the formula for predicting maximum muscle strength was not sufficiently compatible in middle-aged and elderly adults, suggesting that the formula obtained in this study is applicable in young adults only. PMID:28133549

  18. Relationships between muscular strength and the level of energy sources in the muscle.

    PubMed

    Wit, A; Juskiak, R; Wit, B; Zieliński, J R

    1978-01-01

    Relationships between muscular strength and the level of energy sources in the muscle. Acta Physiol. Pol., 1978, 29 (2): 139--151. An attempt was made to establish a relationship between the post-excercise changes in the level of anaerobic energy sources and changes in the muscular strength. The gastrocnemius muscle of Wistar rats was examined. The muscle strength was measured by the resistance tensometry. In muscle specimens ATP, CP and glycogen contents were determined. It was demonstrated that changes in the post-excersise muscle response to electric stimulus have a phasic character resembling the overcompensation curve. The percent changes in the content of anaerobic energy sources in the muscle after contractions varying in duration suggests also overcompensation the muscle content of these substances. The parallelity between the time of appearance of peak overcompensation phase in the muscle strength and in the post-exercise level of musclar ATP, CP and glycogen contents suggest a casual relationship between these changes.

  19. Is there really an eccentric action of the hamstrings during the swing phase of high-speed running? part I: A critical review of the literature.

    PubMed

    Van Hooren, Bas; Bosch, Frans

    2017-12-01

    It is widely assumed that there is an eccentric hamstring muscle fibre action during the swing phase of high-speed running. However, animal and modelling studies in humans show that the increasing distance between musculotendinous attachment points during forward swing is primarily due to passive lengthening associated with the take-up of muscle slack. Later in the swing phase, the contractile element (CE) maintains a near isometric action while the series elastic (tendinous) element first stretches as the knee extends, and then recoils causing the swing leg to forcefully retract prior to ground contact. Although modelling studies showed some active lengthening of the contractile (muscular) element during the mid-swing phase of high-speed running, we argue that the increasing distance between the attachment points should not be interpreted as an eccentric action of the CE due to the effects of muscle slack. Therefore, there may actually be no significant eccentric, but rather predominantly an isometric action of the hamstrings CE during the swing phase of high-speed running when the attachment points of the hamstrings are moving apart. Based on this, we propose that isometric rather than eccentric exercises are a more specific way of conditioning the hamstrings for high-speed running.

  20. Muscle strength response to strength training is influenced by insulin-like growth factor 1 genotype in older adults.

    PubMed

    Kostek, Matthew C; Delmonico, Matthew J; Reichel, Jonathan B; Roth, Stephen M; Douglass, Larry; Ferrell, Robert E; Hurley, Ben F

    2005-06-01

    Strength training (ST) is considered an intervention of choice for the prevention and treatment of sarcopenia. Reports in the literature have suggested that the insulin-like growth factor I protein (IGF-I) plays a major role in ST-induced skeletal muscle hypertrophy and strength improvements. A microsatellite repeat in the promoter region of the IGF1 gene has been associated with IGF-I blood levels and phenotypes related to IGF-I in adult men and women. To examine the influence of this polymorphism on muscle hypertrophic and strength responses to ST, we studied 67 Caucasian men and women before and after a 10-wk single-leg knee-extension ST program. One repetition maximum strength, muscle volume via computed tomography, and muscle quality were assessed at baseline and after 10 wk of training. The IGF1 repeat promoter polymorphism and three single-nucleotide polymorphisms were genotyped. For the promoter polymorphism, subjects were grouped as homozygous for the 192 allele, heterozygous, or noncarriers of the 192 allele. After 10 wk of training, 1-repetition maximum, muscle volume, and muscle quality increased significantly for all groups combined (P < 0.001). However, carriers of the 192 allele gained significantly more strength with ST than noncarriers of the 192 allele (P = 0.02). There was also a nonsignificant trend for a greater increase in muscle volume in 192 carriers than noncarriers (P = 0.08). No significant associations were observed for the other polymorphisms studied. Thus these data suggest that the IGF1 promoter polymorphism may influence the strength response to ST. Larger sample sizes should be used in future studies to verify these results.

  1. Subclinical hypothyroidism has little influences on muscle mass or strength in elderly people.

    PubMed

    Moon, Min Kyong; Lee, You Jin; Choi, Sung Hee; Lim, Soo; Yang, Eun Joo; Lim, Jae-Young; Paik, Nam-Jong; Kim, Ki Woong; Park, Kyong Soo; Jang, Hak C; Cho, Bo Youn; Park, Young Joo

    2010-08-01

    Sarcopenia, the age-related decline in muscle mass, affects the muscle strength and muscle quality, and these changes decrease functional capacity. The prevalence of thyroid dysfunction increases with age, and changes in thyroid hormone level lead to neuromuscular deficits. We investigated the effects of subclinical hypothyroidism on the muscle mass, strength or quality in elderly people. One thousand one hundred eighteen subjects aged > or = 65 yr were randomly selected from a local population and classified into a euthyroid (280 men and 358 women), subclinically hypothyroid (61 men and 75 women), or overtly hypothyroid (7 men and 16 women) group. Although women with subclinical hypothyroidism had a higher prevalence of sarcopenia, defined according to the ratio of appendicular skeletal muscle mass to the square of height, muscle mass, strength or quality did not differ in relation to thyroid status in men or in women. Multivariate analysis including age, diabetes, hypertension, acute coronary event, alcohol, smoking, presence of pain, physical activity score, and lipid profile, showed that thyroid-stimulating hormone level was not associated with muscle mass, strength or quality. In conclusion, subclinical hypothyroidism has little influences on muscle mass, strength or quality, and may not be associated with sarcopenia.

  2. Anterior knee pain and thigh muscle strength after intramedullary nailing of a tibial shaft fracture: an 8-year follow-up of 28 consecutive cases.

    PubMed

    Väistö, Olli; Toivanen, Jarmo; Kannus, Pekka; Järvinen, Markku

    2007-03-01

    Chronic anterior knee pain is a common complication after intramedullary nailing of a tibial shaft fracture. The source of pain is often not known, although it correlates with a simultaneous decrease in thigh muscle strength. No long-term follow-up study has assessed whether weakness of the thigh muscles is associated with anterior knee pain after the procedure in question. Prospective study. University Hospital of Tampere, University of Tampere. The muscular performance of 40 consecutive patients with a nailed tibial shaft fracture was tested isokinetically in a follow-up examination an average of 3.2 +/- 0.4 (SD) years after the initial surgery. An 8-year follow-up was possible in 28 of these cases. Isokinetic muscle strength measurements were made in 28 patients at an average 8.1 +/- 0.3 (SD) years after nail insertion and an average 6.6 +/- 0.3 (SD) years after nail extraction. All nails were extracted at an average 1.6 +/- 0.2 years after the nailing. : Seven patients were painless initially and still were at final follow-up (never pain, or NP). In 13 patients, the previous symptom of anterior knee pain was no longer present at final follow-up [pain, no pain (PNP)], and the remaining 8 had anterior knee pain initially and at final follow-up [always pain group (AP)]. With reference to the hamstring muscles, the mean peak torque difference between the injured and uninjured limb was -2.2% +/- 12% in the NP group, 1.6% +/- 15% in the PNP group, and 10.3% +/- 30% in the AP group at a speed of 60 degrees/second (Kruskal-Wallis test; chi(2) = 1.0; P = 0.593). At a speed of 180 degrees/second, the corresponding differences were -2.9% +/- 23% and 7.0% +/- 19% and 4.4% +/- 16% (Kruskal-Wallis test; chi = 1.7; P = 0.429). With reference to the quadriceps muscles, the mean peak torque difference was -2.8% +/- 9% in the NP group, 5.9% +/- 15% in the PNP group, and -13.0% +/- 16% in the AP group at a speed of 60 degrees/second (Kruskal-Wallis test; chi(2) = 7.9; P = 0

  3. Effect of muscle length on strength and dexterity after stroke.

    PubMed

    Ada, L; Canning, C; Dwyer, T

    2000-02-01

    The effect of muscle length on strength and dexterity after stroke was investigated. The aim was to determine if poor function at a particular muscle length could be attributed solely to differential weakness at this joint angle or whether an additional problem of differential dexterity exists. This descriptive research study measured elbow flexor and extensor strength as well as dexterity at three elbow joint angles: 30 degrees , 60 degrees and 90 degrees flexion. Dexterity was measured independently of strength. Fifteen (seven female, eight male) chronic stroke patients (mean age 67 years) who could actively flex and extend their affected elbow participated. Ten neurologically normal control subjects (mean age 67 years) acted as controls. Strength was measured as peak elbow flexor and extensor torque at three angles; and dexterity was measured as coherence for slow and fast tracking also at three angles. Dexterity was not affected by muscle length but strength was and this finding was the same for both stroke and controls. While the magnitude of the torque-angle curves was not significantly different between stroke and controls, the shape of torque-angle curves was altered after stroke so that both the elbow flexors (p < 0.05) and extensors (p < 0.05) tested weaker in the testing position where they were shortest. Since there was no differential loss of dexterity, it appears that differential loss of strength, especially in the shortened range, may explain the clinical observation of poorer function at one muscle length than another after stroke. Specific training to strengthen the muscles in these ranges is therefore of clinical importance for rehabilitation.

  4. Shoulder muscle strength in paraplegics before and after kayak ergometer training.

    PubMed

    Bjerkefors, Anna; Jansson, Anna; Thorstensson, Alf

    2006-07-01

    The purpose was to investigate if shoulder muscle strength in post-rehabilitated persons with spinal cord injury (SCI) was affected by kayak ergometer training and to compare shoulder strength in persons with SCI and able-bodied persons. Ten persons with SCI (7 males and 3 females, injury levels T3-T12) performed 60 min kayak ergometer training three times a week for 10 weeks with progressively increased intensity. Maximal voluntary concentric contractions were performed during six shoulder movements: flexion and extension (range of motion 65 degrees ), abduction and adduction (65 degrees ), and external and internal rotation (60 degrees ), with an angular velocity of 30 degrees s(-1). Position specific strength was assessed at three shoulder angles (at the beginning, middle and end of the range of motion) in the respective movements. Test-retests were performed for all measurements before the training and the mean intraclass correlation coefficient was 0.941 (95% CI 0.928-0.954). There was a main effect of kayak ergometer training with increased shoulder muscle strength after training in persons with SCI. The improvements were independent of shoulder movement, and occurred in the beginning and middle positions. A tendency towards lower shoulder muscle strength was observed in the SCI group compared to a matched reference group of able-bodied persons. Thus, it appears that post-rehabilitated persons with SCI have not managed to fully regain/maintain their shoulder muscle strength on a similar level as that of able-bodied persons, and are able to improve their shoulder muscle strength after a period of kayak ergometer training.

  5. Comparative study of hamstring and quadriceps strengthening treatments in the management of knee osteoarthritis.

    PubMed

    Al-Johani, Ahmed H; Kachanathu, Shaji John; Ramadan Hafez, Ashraf; Al-Ahaideb, Abdulaziz; Algarni, Abdulrahman D; Meshari Alroumi, Abdulmohesn; Alanezi, Aqeel M

    2014-06-01

    [Purpose] Osteoarthritis (OA) of the knee is the most common form of joint disease. It is one of the major causes of impaired function that reduces quality of life (QOL) worldwide. The purpose of this study was to compare exercise treatments for hamstring and quadriceps strength in the management of knee osteoarthritis. [Subjects and Methods] Forty patients with OA knee, aged 50-65 years were divided into 2 groups. The first group (57.65±4.78 years) received hot packs and performed strengthening exercises for the quadriceps and hamstring, and stretching exercises for the hamstring. The second group (58.15±5.11 years) received hot packs and performed strengthening exercises for only the quadriceps, and stretching exercise for the hamstring. Outcome measures were the WOMAC (Western Ontario and McMaster Universities OA index questionnaire), Visual Analogue Scale (VAS) assessment of pain, the Fifty-Foot Walk Test (FWS), and Handheld dynamometry. [Results] There was a significant difference between the groups. The first group showed a more significant result than the second group. [Conclusion] Strengthening of the hamstrings in addition to strengthening of the quadriceps was shown to be beneficial for improving subjective knee pain, range of motion and decreasing the limitation of functional performance of patients with knee osteoarthritis.

  6. The Effect of Body Mass on Eccentric Knee-Flexor Strength Assessed With an Instrumented Nordic Hamstring Device (Nordbord) in Football Players.

    PubMed

    Buchheit, Martin; Cholley, Yannick; Nagel, Mark; Poulos, Nicholas

    2016-09-01

    To examine the effect of body mass (BM) on eccentric knee-flexor strength using the Nordbord and offer simple guidelines to control for the effect of BM on knee-flexor strength. Data from 81 soccer players (U17, U19, U21, senior 4th French division, and professionals) and 41 Australian Football League (AFL) players were used for analysis. They all performed 1 set of 3 maximal repetitions of the bilateral Nordic hamstring exercise, with the greatest strength measure used for analysis. The main regression equation obtained from the overall sample was used to predict eccentric knee-flexor strength from a given BM (moderate TEE, 22%). Individual deviations from the BM-predicted score were used as a BM-free index of eccentric knee- flexor strength. There was a large (r = .55, 90% confidence limits .42;.64) correlation between eccentric knee-flexor strength and BM. Heavier and older players (professionals, 4th French division, and AFL) outperformed their lighter and younger (U17-U21) counterparts, with the soccer professionals presenting the highest absolute strength. Professional soccer players were the only ones to show strength values likely slightly greater than those expected for their BM. Eccentric knee-flexor strength, as assessed with the Nordbord, is largely BM-dependent. To control for this effect, practitioners may compare actual test performances with the expected strength for a given BM, using the following predictive equation: Eccentric strength (N) = 4 × BM (kg) + 26.1. Professional soccer players with specific knee-flexor-training history and enhanced neuromuscular performance may show higher than expected values.

  7. The impact of obesity on skeletal muscle strength and structure through adolescence to old age.

    PubMed

    Tomlinson, D J; Erskine, R M; Morse, C I; Winwood, K; Onambélé-Pearson, Gladys

    2016-06-01

    Obesity is associated with functional limitations in muscle performance and increased likelihood of developing a functional disability such as mobility, strength, postural and dynamic balance limitations. The consensus is that obese individuals, regardless of age, have a greater absolute maximum muscle strength compared to non-obese persons, suggesting that increased adiposity acts as a chronic overload stimulus on the antigravity muscles (e.g., quadriceps and calf), thus increasing muscle size and strength. However, when maximum muscular strength is normalised to body mass, obese individuals appear weaker. This relative weakness may be caused by reduced mobility, neural adaptations and changes in muscle morphology. Discrepancies in the literature remain for maximal strength normalised to muscle mass (muscle quality) and can potentially be explained through accounting for the measurement protocol contributing to muscle strength capacity that need to be explored in more depth such as antagonist muscle co-activation, muscle architecture, a criterion valid measurement of muscle size and an accurate measurement of physical activity levels. Current evidence demonstrating the effect of obesity on muscle quality is limited. These factors not being recorded in some of the existing literature suggest a potential underestimation of muscle force either in terms of absolute force production or relative to muscle mass; thus the true effect of obesity upon skeletal muscle size, structure and function, including any interactions with ageing effects, remains to be elucidated.

  8. Comparison of clinical outcomes and second-look arthroscopic findings after ACL reconstruction using a hamstring autograft or a tibialis allograft.

    PubMed

    Yoo, Seung-Hyun; Song, Eun-Kyoo; Shin, Young-Rok; Kim, Sung-Kyu; Seon, Jong-Keun

    2017-04-01

    The purpose of this prospective randomized clinical study was to compare the clinical and radiological outcomes, including tibial tunnel widening and the progression of osteoarthritis after ACL reconstruction using a hamstring autograft or a tibialis allograft. In addition, we compared the graft tear and synovial coverage of grafts in patients that underwent the second-look arthroscopy. Among 184 patients with an ACL injury who underwent ACL reconstruction, 68 patients of autograft group and 64 patients of tibialis allograft group were included for this study after minimum of 2-year follow-up. The Lachman and pivot-shift tests, Tegner activity score, Lysholm knee score, and IKDC score were compared between the two groups. The quadriceps and hamstring isokinetic strengths using dynamometer were also compared. Degree of OA was determined using the Kellgren-Lawrence grading system on the weight-bearing radiographs. In total, 51 patients (26 patients in autograft group and 25 in the tibialis allograft group) underwent the second-look arthroscopy, in which we compared the apparent tear of graft and synovial coverage of grafts. At the final follow-up, there were no statistical significances in the two groups in Lachman and pivot-shift tests (n.s.). The Tegner activity, Lysholm knee score, and IKDC scores were similar in the two groups. Moreover, no significant differences were observed in the muscle power (n.s.). Some patients showed the progression of OA (five in autograft and four in allograft groups) without intergroup difference (n.s.). Regarding the findings of second-look arthroscopy, although there was no significant difference in graft tear, synovial coverage was better in autograft group than in allograft group. Even though hamstring autografts and tibialis allografts provided good functional outcomes without significant differences, the second-look arthroscopy revealed that hamstring autografts produced better synovial coverage than tibialis allograft. I.

  9. Impact on nutrition on muscle strength and performance in older adults

    USDA-ARS?s Scientific Manuscript database

    Muscle strength plays an important role in determining risk for falls, which result in fractures and other injuries. While bone loss has long been recognized as an inevitable consequence of aging, sarcopenia-the gradual loss of skeletal muscle mass and strength that occurs with advancing age-has rec...

  10. A Maximum Muscle Strength Prediction Formula Using Theoretical Grade 3 Muscle Strength Value in Daniels et al.'s Manual Muscle Test, in Consideration of Age: An Investigation of Hip and Knee Joint Flexion and Extension.

    PubMed

    Usa, Hideyuki; Matsumura, Masashi; Ichikawa, Kazuna; Takei, Hitoshi

    2017-01-01

    This study attempted to develop a formula for predicting maximum muscle strength value for young, middle-aged, and elderly adults using theoretical Grade 3 muscle strength value (moment fair: M f )-the static muscular moment to support a limb segment against gravity-from the manual muscle test by Daniels et al. A total of 130 healthy Japanese individuals divided by age group performed isometric muscle contractions at maximum effort for various movements of hip joint flexion and extension and knee joint flexion and extension, and the accompanying resisting force was measured and maximum muscle strength value (moment max, M m ) was calculated. Body weight and limb segment length (thigh and lower leg length) were measured, and M f was calculated using anthropometric measures and theoretical calculation. There was a linear correlation between M f and M m in each of the four movement types in all groups, excepting knee flexion in elderly. However, the formula for predicting maximum muscle strength was not sufficiently compatible in middle-aged and elderly adults, suggesting that the formula obtained in this study is applicable in young adults only.

  11. Rehabilitation of proximal hamstring tendinopathy utilizing eccentric training, lumbopelvic stabilization, and trigger point dry needling: 2 case reports.

    PubMed

    Jayaseelan, Dhinu J; Moats, Nick; Ricardo, Christopher R

    2014-03-01

    Case report. Proximal hamstring tendinopathy is a relatively uncommon overuse injury seen in runners. In contrast to the significant amount of literature guiding the evaluation and treatment of hamstring strains, there is little literature about the physical therapy management of proximal hamstring tendinopathy, other than the general recommendations to increase strength and flexibility. Two runners were treated in physical therapy for proximal hamstring tendinopathy. Each presented with buttock pain with running and sitting, as well as tenderness to palpation at the ischial tuberosity. Each patient was prescribed a specific exercise program focusing on eccentric loading of the hamstrings and lumbopelvic stabilization exercises. Trigger point dry needling was also used with both runners to facilitate improved joint motion and to decrease pain. Both patients were treated in 8 to 9 visits over 8 to 10 weeks. Clinically significant improvements were seen in pain, tenderness, and function in each case. Each patient returned to running and sitting without symptoms. Proximal hamstring tendinopathy can be difficult to treat. In these 2 runners, eccentric loading of the hamstrings, lumbopelvic stabilization exercises, and trigger point dry needling provided short- and long-term pain reduction and functional benefits. Further research is needed to determine the effectiveness of this cluster of interventions for this condition. Therapy, level 4.

  12. Subclinical Hypothyroidism has Little Influences on Muscle Mass or Strength in Elderly People

    PubMed Central

    Moon, Min Kyong; Lee, You Jin; Choi, Sung Hee; Lim, Soo; Yang, Eun Joo; Lim, Jae-Young; Paik, Nam-Jong; Kim, Ki Woong; Park, Kyong Soo; Jang, Hak C.

    2010-01-01

    Sarcopenia, the age-related decline in muscle mass, affects the muscle strength and muscle quality, and these changes decrease functional capacity. The prevalence of thyroid dysfunction increases with age, and changes in thyroid hormone level lead to neuromuscular deficits. We investigated the effects of subclinical hypothyroidism on the muscle mass, strength or quality in elderly people. One thousand one hundred eighteen subjects aged ≥65 yr were randomly selected from a local population and classified into a euthyroid (280 men and 358 women), subclinically hypothyroid (61 men and 75 women), or overtly hypothyroid (7 men and 16 women) group. Although women with subclinical hypothyroidism had a higher prevalence of sarcopenia, defined according to the ratio of appendicular skeletal muscle mass to the square of height, muscle mass, strength or quality did not differ in relation to thyroid status in men or in women. Multivariate analysis including age, diabetes, hypertension, acute coronary event, alcohol, smoking, presence of pain, physical activity score, and lipid profile, showed that thyroid-stimulating hormone level was not associated with muscle mass, strength or quality. In conclusion, subclinical hypothyroidism has little influences on muscle mass, strength or quality, and may not be associated with sarcopenia. PMID:20676329

  13. Effect of strength training on regional hypertrophy of the elbow flexor muscles.

    PubMed

    Drummond, Marcos D M; Szmuchrowski, Leszek A; Goulart, Karine N O; Couto, Bruno P

    2016-10-01

    Muscle hypertrophy is the main structural adaptation to strength training. We investigated the chronic effects of strength training on muscle hypertrophy in different regions of the elbow flexor muscles. Eleven untrained men (21.8 ± 1.62 years) underwent magnetic resonance imaging to determine the proximal, medial, distal, and mean cross-sectional areas (CSA) of the elbow flexors. The volunteers completed 12 weeks of strength training. The training protocol consisted of 4 sets of 8-10 maximum repetitions of unilateral elbow flexion. The interval between sets was 120 s. The training frequency was 3 sessions per week. The magnetic resonance images verified the presence of significant and similar hypertrophy in the distal, medial, and proximal portions of the elbow flexor muscles. Muscle hypertrophy may be assessed using only the medial CSA. We should not expect different degrees of hypertrophy among the regions of the elbow flexor muscles. Muscle Nerve 54: 750-755, 2016. © 2016 Wiley Periodicals, Inc.

  14. Association with isokinetic ankle strength measurements and normal clinical muscle testing in sciatica patients.

    PubMed

    Ustun, N; Erol, O; Ozcakar, L; Ceceli, E; Ciner, O Akar; Yorgancioglu, Z R

    2013-01-01

    Sensitive muscle strength tests are needed to measure muscle strength in the diagnosis and management of sciatica patients. The aim of this study was to assess the isokinetic muscle strength in sciatica patients' and control subjects' ankles that exhibited normal ankle muscle strength when measured clinically. Forty-six patients with L5 and/or S1 nerve compression, and whose age, sex, weight, and height matched 36 healthy volunteers, were recruited to the study. Heel-walking, toe-walking, and manual muscle testing were used to perform ankle dorsiflexion and plantar flexion strengths in clinical examination. Patients with normal ankle dorsiflexion and plantar flexion strengths assessed by manual muscle testing and heel-and toe-walking tests were included in the study. Bilateral isokinetic (concentric/concentric) ankle plantar-flexion-dorsiflexion measurements of the patients and controls were performed within the protocol of 30°/sec (5 repetitions). Peak torque and peak torque/body weight were obtained for each ankle motion of the involved limb at 30°/s speed. L5 and/or S1 nerve compression was evident in 46 patients (76 injured limbs). Mean disease duration was two years. The plantar flexion muscle strength of the patients was found to be lower than that of the controls (p=0.036). The dorsiflexion muscle strength of the patients was found to be the same as that of the controls (p=0.211). Isokinetic testing is superior to clinical muscle testing when evaluating ankle plantar flexion torque in sciatica patients. Therefore, isokinetic muscle testing may be helpful when deciding whether to place a patient into a focused rehabilitation program.

  15. Muscle strength in patients with acromegaly at diagnosis and during long-term follow-up.

    PubMed

    Füchtbauer, Laila; Olsson, Daniel S; Bengtsson, Bengt-Åke; Norrman, Lise-Lott; Sunnerhagen, Katharina S; Johannsson, Gudmundur

    2017-08-01

    Patients with acromegaly have decreased body fat (BF) and increased extracellular water (ECW) and muscle mass. Although there is a lack of systematic studies on muscle function, it is believed that patients with acromegaly may suffer from proximal muscle weakness despite their increased muscle mass. We studied body composition and muscle function in untreated acromegaly and after biochemical remission. Prospective observational study. Patients with acromegaly underwent measurements of muscle strength (dynamometers) and body composition (four-compartment model) at diagnosis ( n  = 48), 1 year after surgery ( n  = 29) and after long-term follow-up (median 11 years) ( n  = 24). Results were compared to healthy subjects. Untreated patients had increased body cell mass (113 ± 9% of predicted) and ECW (110 ± 20%) and decreased BF (67 ± 7.6%). At one-year follow-up, serum concentration of IGF-I was reduced and body composition had normalized. At baseline, isometric muscle strength in knee flexors and extensors was normal and concentric strength was modestly increased whereas grip strength and endurance was reduced. After one year, muscle strength was normal in both patients with still active disease and patients in remission. At long-term follow-up, all patients were in remission. Most muscle function tests remained normal, but isometric flexion and the fatigue index were increased to 153 ± 42% and 139 ± 28% of predicted values, respectively. Patients with untreated acromegaly had increased body cell mass and normal or modestly increased proximal muscle strength, whereas their grip strength was reduced. After biochemical improvement and remission, body composition was normalized, hand grip strength was increased, whereas proximal muscle fatigue increased. © 2017 European Society of Endocrinology.

  16. Comparison of hamstring and quadriceps femoris electromyographic activity between men and women during a single-limb squat on both a stable and labile surface.

    PubMed

    Youdas, James W; Hollman, John H; Hitchcock, James R; Hoyme, Gregory J; Johnsen, Jeremiah J

    2007-02-01

    The purpose of this study was to determine if women are quadriceps dominant and men are hamstring dominant during the performance of a partial single-leg squat (SLS) on both a stable and labile ground surface against body weight resistance. Thirty healthy participants (15 men and 15 women) performed an SLS on both a stable surface and a 6.4-cm-thick vinyl pad. Surface electromyographic (EMG) recordings were obtained from the quadriceps femoris and hamstring muscles during the extension phase of the SLS. Statistical analysis revealed that women produced 14% more EMG activity (p = 0.04) in their quadriceps than the men during the SLS on a stable surface, whereas the men generated 18% more EMG activity (p = 0.04) in their hamstrings than the women during the SLS on a labile surface. Additionally, we found a statistically significant sex effect (p = 0.048) for the hamstring/quadriceps (H/Q) EMG ratio, which was 2.25 and 0.62, respectively, for men and women on the stable surface and 2.52 and 0.71, respectively, on the labile surface. We concluded that women are quadriceps dominant and men are hamstring dominant during the performance of SLS against body weight resistance on either a stable or labile surface condition. During an SLS, men showed an H/Q ratio approximately 3.5 times larger than their female counterparts, suggesting that men activate their hamstrings more effectively than women during an SLS. According to our data, the SLS may not be an ideal exercise for activating the hamstring muscles in women without additional neuromuscular training techniques, because women are quadriceps dominant during the SLS.

  17. Effect of stretching program in an industrial workplace on hamstring flexibility and sagittal spinal posture of adult women workers: a randomized controlled trial.

    PubMed

    Muyor, José M; López-Miñarro, Pedro A; Casimiro, Antonio J

    2012-01-01

    To determine the effect of a stretching program performed in the workplace on the hamstring muscle extensibility and sagittal spinal posture of adult women. Fifty-eight adult women volunteers (mean age of 44.23 ± 8.87 years) from a private fruit and vegetable company were randomly assigned to experimental (n=27) or control (n=31) groups. The experimental group performed three exercises of hamstrings stretching of 20 seconds per exercise, three sessions a week for a period of 12 weeks. The control group did not participate in any hamstring stretching program. Hamstring flexibility was evaluated through the passive straight leg raise test and toe-touch test, performed both before and after the stretching program. Thoracic and lumbar curvatures and pelvic inclination were measured in relaxed standing and toe-touch test with a Spinal Mouse. Significant increases (p < 0.01) in toe-touch score and straight leg raise angle (in both legs) were found in the experimental group during post-test, while the control group showed a non-significant decrease for both toe-touch score and straight leg raise test. A significant decrease in thoracic curve and significant increase in pelvic inclination were found in the toe-touch test for the experimental group (p <0.05). However, no significant changes were found in standing posture for any group. Hamstring stretching exercises performed in the working place are effective for increasing hamstring muscle extensibility. This increase generates a more aligned thoracic curve and more anterior pelvic inclination when maximal trunk flexion is performed.

  18. Return to Play After Hamstring Injuries: A Qualitative Systematic Review of Definitions and Criteria.

    PubMed

    van der Horst, Nick; van de Hoef, Sander; Reurink, Gustaaf; Huisstede, Bionka; Backx, Frank

    2016-06-01

    More than half of the recurrent hamstring injuries occur within the first month after return-to-play (RTP). Although there are numerous studies on RTP, comparisons are hampered by the numerous definitions of RTP used. Moreover, there is no consensus on the criteria used to determine when a person can start playing again. These criteria need to be critically evaluated, in an attempt to reduce recurrence rates and optimize RTP. To carry out a systematic review of the literature on (1) definitions of RTP used in hamstring research and (2) criteria for RTP after hamstring injuries. Systematic review. Seven databases (PubMed, EMBASE/MEDLINE, CINAHL, PEDro, Cochrane, SPORTDiscus, Scopus) were searched for articles that provided a definition of, or criteria for, RTP after hamstring injury. There were no limitations on the methodological design or quality of articles. Content analysis was used to record and analyze definitions and criteria for RTP after hamstring injury. Twenty-five papers fulfilled inclusion criteria, of which 13 provided a definition of RTP and 23 described criteria to support the RTP decision. "Reaching the athlete's pre-injury level" and "being able to perform full sport activities" were the primary content categories used to define RTP. "Absence of pain", "similar strength", "similar flexibility", "medical staff clearance", and "functional performance" were core themes to describe criteria to support the RTP decision after hamstring injury. Only half of the included studies provided some definition of RTP after hamstring injury, of which reaching the athlete's pre-injury level and being able to perform full sport activities were the most important. A wide variety of criteria are used to support the RTP decision, none of which have been validated. More research is needed to reach a consensus on the definition of RTP and to provide validated RTP criteria to facilitate hamstring injury management and reduce hamstring injury recurrence. PROSPERO

  19. Anabolic and catabolic biomarkers as predictors of muscle strength decline: the InCHIANTI study.

    PubMed

    Stenholm, Sari; Maggio, Marcello; Lauretani, Fulvio; Bandinelli, Stefania; Ceda, Gian Paolo; Di Iorio, Angelo; Giallauria, Francesco; Guralnik, Jack M; Ferrucci, Luigi

    2010-02-01

    Poor muscle strength is a major public health concern in older persons, predisposing to functional limitations, increased fall risk, and higher mortality. Understanding risk factors for muscle strength decline may offer opportunities for prevention and treatment. One of the possible causes of muscle strength decline is imbalance between catabolic and anabolic signaling. This study aims to examine whether high levels of multiple catabolic and low levels of multiple anabolic biomarkers predict accelerated decline of muscle strength. In a representative sample of 716 men and women aged >or=65 years in the InCHIANTI study we measured C-reactive protein, interleukin-6 (IL-6), IL-1 receptor antagonist (IL-1RA), tumor necrosis factor-alpha receptor 1 as well as dehydroepiandrosterone sulfate (DHEA-S), insulin-like growth factor-1, and bioavailable testosterone. Biomarker values were divided into tertiles and the numbers of catabolic/anabolic biomarkers in the highest/lowest tertile were calculated. Hand-grip strength was measured at baseline and 3- and 6-year follow up. In adjusted linear mixed models, higher concentration of IL-6 (p = 0.02) and IL-1RA (p = 0.04) as well as lower levels of DHEA-S (p = 0.01) predicted muscle strength decline. After combining all inflammatory markers, the rate of decline in grip strength was progressively greater with the increasing number of dysregulated catabolic biomarkers (p = 0.01). No effect on accelerated muscle strength decline was seen according to number of dysregulated anabolic hormones. Having multiple elevated catabolic biomarkers is a better predictor of muscle strength decline than a single biomarker alone, suggesting that a catabolic dysregulation is at the core of the mechanism leading to muscle strength decline with aging.

  20. The association between antagonist hamstring coactivation and episodes of knee joint shifting and buckling

    PubMed Central

    Segal, N.A.; Nevitt, M.C.; Welborn, R.D.; Nguyen, U.-S.D.T.; Niu, J.; Lewis, C.E.; Felson, D.T.; Frey-Law, L.

    2016-01-01

    SUMMARY Objective Hamstring coactivation during quadriceps activation is necessary to counteract the quadriceps pull on the tibia, but coactivation can be elevated with symptomatic knee osteoarthritis (OA). To guide rehabilitation to attenuate risk for mobility limitations and falls, this study evaluated whether higher antagonistic open kinetic chain hamstring coactivation is associated with knee joint buckling (sudden loss of support) and shifting (a sensation that the knee might give way). Design At baseline, median hamstring coactivation was assessed during maximal isokinetic knee extensor strength testing and at baseline and 24-month follow-up, knee buckling and shifting was self-reported. Associations between tertiles of co-activation and knee (1) buckling, (2) shifting and (3) either buckling or shifting were assessed using logistic regression, adjusted for age, sex, knee OA and pain. Results 1826 participants (1089 women) were included. Mean ± SD age was 61.7 ± 7.7 years, BMI was 30.3 ± 5.5 kg/m2 and 38.2% of knees had OA. There were no consistent statistically significant associations between hamstring coactivation and ipsilateral prevalent or incident buckling or the combination of buckling and shifting. The odds ratios for incident shifting in the highest in comparison with the lowest tertile of coactivation had similar magnitudes in the combined and medial hamstrings, but only reached statistical significance for lateral hamstring coactivation, OR(95%CI) 1.53 (0.99, 2.36). Conclusions Hamstring coactivation during an open kinetic chain quadriceps exercise was not consistently associated with prevalent or incident self-reported knee buckling or shifting in older adults with or at risk for knee OA. PMID:25765501

  1. FKBP12 deficiency reduces strength deficits after eccentric contraction-induced muscle injury

    PubMed Central

    Corona, Benjamin T.; Rouviere, Clement; Hamilton, Susan L.; Ingalls, Christopher P.

    2008-01-01

    Strength deficits associated with eccentric contraction-induced muscle injury stem, in part, from excitation-contraction uncoupling. FKBP12 is a 12-kDa binding protein known to bind to the skeletal muscle sarcoplasmic reticulum Ca2+ release channel [ryanodine receptor (RyR1)] and plays an important role in excitation-contraction coupling. To assess the effects of FKBP12 deficiency on muscle injury and recovery, we measured anterior crural muscle (tibialis anterior and extensor digitorum longus muscles) strength in skeletal muscle-specific FKBP12-deficient and wild-type (WT) mice before and after a single bout of 150 eccentric contractions, as well as before and after the performance of six injury bouts. Histological damage of the tibialis anterior muscle was assessed after injury. Body weight and peak isometric and eccentric torques were lower in FKBP12-deficient mice compared with WT mice. There were no differences between FKBP12-deficient and WT mice in preinjury peak isometric and eccentric torques when normalized to body weight, and no differences in the relative decreases in eccentric torque with a single or multiple injury bouts. After a single injury bout, FKBP12-deficient mice had less initial strength deficits and recovered faster (especially females) than WT mice, despite no differences in the degree of histological damage. After multiple injury bouts, FKBP12-deficient mice recovered muscle strength faster than WT mice and exhibited significantly less histological muscle damage than WT mice. In summary, FKBP12 deficiency results in less initial strength deficits and enhanced recovery from single (especially females) and repeated bouts of injury than WT mice. PMID:18511525

  2. Increased active hamstring stiffness after exercise in women with a history of low back pain.

    PubMed

    Bedard, Rebecca J; Kim, Kyung-Min; Grindstaff, Terry L; Hart, Joseph M

    2013-02-01

    To compare active hamstring stiffness in female subjects with and without a history of low back pain (LBP) after a standardized 20-min aerobic-exercise session. Case control. Laboratory. 12 women with a history of recurrent episodes of LBP (age = 22.4 ± 2.1 y, mass = 67.1 ± 11.8 kg, height = 167.9 ± 8 cm) and 12 matched healthy women (age = 21.7 ± 1.7 y, mass = 61.4 ± 8.8 kg, height = 165.6 ± 7.3 cm). LBP subjects reported an average 6.5 ± 4.7 on the Oswestry Disability Index. Participants walked at a self-selected speed (minimum 3.0 miles/h) for 20 min. The treadmill incline was raised 1% grade per minute for the first 15 min. During the last 5 min, participants adjusted the incline of the treadmill so they would maintain a moderate level of perceived exertion through the end of the exercise protocol. During session 1, active hamstring stiffness, hamstring and quadriceps isometric strength, and concurrently collected electromyographic activity were recorded before and immediately after the exercise protocol. For session 2, subjects returned 48-72 h after exercise for repeat measure of active hamstring stiffness. Hamstring active stiffness (Nm/rad) taken immediately postexercise was not significantly different between groups. However, individuals with a history of recurrent LBP episodes presented significantly increased hamstring stiffness 48-72 h postexercise compared with controls. For other outcomes, there was no group difference. Women with a history of recurrent LBP episodes presented greater active hamstring stiffness 48-72 h after aerobic exercise.

  3. [Association of muscle strength with early markers of cardiovascular risk in sedentary adults].

    PubMed

    Triana-Reina, Héctor Reynaldo; Ramírez-Vélez, Robinson

    2013-10-01

    To assess the association between muscle strength and early cardiovascular risk (CVR) markers in sedentary adults. A total of 176 sedentary subjects aged 18-30 years were enrolled. Body mass index and fat percentage were calculated, and waist circumference, grip strength by dynamometry, systolic blood pressure, diastolic blood pressure, mean arterial pressure, and maximal oxygen uptake by VO2max were measured as CVR markers. A multivariate logistic regression analysis was used to assess associations between muscle strength and CVR markers. Inverse correlations were found between muscle strength and adiposity (r=-.317; P=.001), waist circumference (r=-.309; P=.001), systolic blood pressure (r=-.401; P=.001), and mean arterial pressure (r=-.256; P=.001). Subjects with lower levels of muscle strength had a 5.79-fold (95% CI 1.57 to 9.34; P=.008) risk of having higher adiposity levels (≥25%) and a 9.67-fold (95% CI=3.86 to 19.22; P<.001) risk of having lower physical capacity values for VO2max (≤31.5mL/kg/min(-1)). In sedentary adults, muscle strength is associated to early manifestations of CVR. It is suggested that muscle strength testing is added to routine measurement of VO2max and traditional risk factors for prevention and treatment of cardiovascular risk. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  4. Age at spinal cord injury determines muscle strength

    PubMed Central

    Thomas, Christine K.; Grumbles, Robert M.

    2014-01-01

    As individuals with spinal cord injury (SCI) age they report noticeable deficits in muscle strength, endurance and functional capacity when performing everyday tasks. These changes begin at ~45 years. Here we present a cross-sectional analysis of paralyzed thenar muscle and motor unit contractile properties in two datasets obtained from different subjects who sustained a cervical SCI at different ages (≤46 years) in relation to data from uninjured age-matched individuals. First, completely paralyzed thenar muscles were weaker when C6 SCI occurred at an older age. Muscles were also significantly weaker if the injury was closer to the thenar motor pools (C6 vs. C4). More muscles were strong (>50% uninjured) in those injured at a younger (≤25 years) vs. young age (>25 years), irrespective of SCI level. There was a reduction in motor unit numbers in all muscles tested. In each C6 SCI, only ~30 units survived vs. 144 units in uninjured subjects. Since intact axons only sprout 4–6 fold, the limits for muscle reinnervation have largely been met in these young individuals. Thus, any further reduction in motor unit numbers with time after these injuries will likely result in chronic denervation, and may explain the late-onset muscle weakness routinely described by people with SCI. In a second dataset, paralyzed thenar motor units were more fatigable than uninjured units. This gap widened with age and will reduce functional reserve. Force declines were not due to electromyographic decrements in either group so the site of failure was beyond excitation of the muscle membrane. Together, these results suggest that age at SCI is an important determinant of long-term muscle strength, and fatigability, both of which influence functional capacity. PMID:24478643

  5. Muscle strength and body composition are clinical indicators of osteoporosis.

    PubMed

    Rikkonen, Toni; Sirola, Joonas; Salovaara, Kari; Tuppurainen, Marjo; Jurvelin, Jukka S; Honkanen, Risto; Kröger, Heikki

    2012-08-01

    We examined the role of muscle strength, lean tissue distribution, and overall body composition as indicators of osteoporosis (OP) in a pooled sample of 979 Finnish postmenopausal women (mean age 68.1 years) from the Kuopio Osteoporosis Risk Factor and Prevention study. Bone mineral density (BMD) at the femoral neck (FN) and total body composition were assessed by dual-energy X-ray absorptiometry scans. The women (n = 979) were divided into three groups according to WHO criteria, based on FN BMD T score: normal (n = 474), osteopenia (n = 468), and OP (n = 37). Soft tissue proportions, fat mass index (FMI, fat/height²), lean mass index (LMI, lean/height²), and appendicular skeletal muscle mass (ASM, (arms + legs)/height²) were calculated. Handgrip and knee extension strength measurements were made. OP subjects had significantly smaller LMI (p = 0.001), ASM (p = 0.001), grip strength (p < 0.0001), and knee extension strength (p < 0.05) but not FMI (p > 0.05) compared to other subjects. Grip and knee extension strength were 19 and 16 % weaker in OP women compared to others, respectively. The area under the receiver operating characteristic curve was 69 % for grip and 71 % for knee extension strength. In tissue proportions only LMI showed predictive power (63 %, p = 0.016). An overall linear association of LMI (R² = 0.007, p = 0.01) and FMI (R² = 0.028, p < 0.001) with FN BMD remained significant. In the multivariate model, after adjusting for age, grip strength, leg extension strength, FMI, LMI, number of medications, alcohol consumption, current smoking, dietary calcium intake, and hormone therapy, grip strength (adjusted OR = 0.899, 95 % CI 0.84-0.97, p < 0.01), leg extension strength (OR = 0.998, 95 % CI 0.99-1, p < 0.05), and years of hormone therapy (OR = 0.905, 95 % CI 0.82-1, p < 0.05) remained as significant determinants of OP. Muscle strength tests, especially grip strength, serve as an independent and useful tool for postmenopausal OP risk assessment

  6. Muscle preservation in long duration space missions: The eccentric factor

    NASA Technical Reports Server (NTRS)

    Buchanan, Paul; Dudley, Gary A.; Tesch, Per A.; Hather, Bruce M.

    1990-01-01

    In our quest to understand, and eventually prevent, the loss of muscle strength and mass that occurs during prolonged periods in microgravity, we have organized our research approach by systems and useful terrestrial analogs. Our hypothesis was that: The eccentric movement, or lengthening component, of dynamic, resistive exercise, is required for the production of the greatest gains in strength and muscle hypertrophy in the most metabolically efficient, and time effective manner. The exercises selected were leg presses, leg (knee) extensions, and hamstring curls. In this 30 week study, 38 male subjects, between the ages of 25 and 50, were divided into four groups. One group performed 5 sets of 8-12 repetitions per set of conventional concentric/eccentric (CON/ECC) exercises. Another group performed only the concentric (CON) movement on the same schedule. The third group performed twice the number of sets in the concentric only mode (CON/CON), and the last group served as controls. We interpret these data as convincing evidence that the eccentric component of heavy resistance training is required along with the concentric for the most effective increase in strength and muscle fiber size in the least time. We also conclude that such heavy exercise of any such muscle group need not consume inordinately long periods of time, and is quite satisfactorily effective when performed on 72 hour centers.

  7. EXERCISES THAT FACILITATE OPTIMAL HAMSTRING AND QUADRICEPS CO-ACTIVATION TO HELP DECREASE ACL INJURY RISK IN HEALTHY FEMALES: A SYSTEMATIC REVIEW OF THE LITERATURE.

    PubMed Central

    Dedinsky, Rachel; Baker, Lindsey; Imbus, Samuel; Bowman, Melissa

    2017-01-01

    Background Anterior cruciate ligament (ACL) injury is common among females due to many anatomic, hormonal, and neuromuscular risk factors. One modifiable risk factor that places females at increased risk of ACL injury is a poor hamstrings: quadriceps (H:Q) co-activation ratio, which should be 0.6 or greater in order to decrease the stress placed on the ACL. Exercises that produce more quadriceps dominant muscle activation can add to the tension placed upon the ACL, potentially increasing the risk of ACL injury. Hypothesis/Purpose The purpose of this systematic review was to compare quadriceps and hamstring muscle activation during common closed kinetic chain therapeutic exercises in healthy female knees to determine what exercises are able to produce adequate H:Q co-activation ratios. Study Design Systematic Review Methods Multiple online databases were systematically searched and screened for inclusion. Eight articles were identified for inclusion. Data on mean electromyography (EMG) activation of both quadriceps and hamstring muscles, % maximal voluntary isometric contraction (MVIC), and H:Q co-activation ratios were extracted from the studies. Quality assessment was performed on all included studies. Results Exercises analyzed in the studies included variations of the double leg squat, variations of the single leg squat, lateral step-up, Fitter, Stairmaster® (Core Health and Fitness, Vancouver, WA), and slide board. All exercises, except the squat machine with posterior support at the level of the scapula and feet placed 50 cm in front of the hips, produced higher quadriceps muscle activation compared to hamstring muscle activation. Conclusion Overall, two leg squats demonstrate poor H:Q co-activation ratios. Single leg exercises, when performed between 30 and 90 degrees of knee flexion, produce adequate H:Q ratios, thereby potentially reducing the risk of tensile stress on the ACL and ACL injury. Level of Evidence 2a- Systematic Review of Cohort Studies PMID

  8. Analysis of Muscle Contraction on Pottery Manufacturing Process Using Electromyography (EMG)

    NASA Astrophysics Data System (ADS)

    Soewardi, Hartomo; Azka Rahmayani, Amalia

    2016-01-01

    One of the most common problems in pottery manufacturing process is musculoskeletal disorders on workers. This disorder was caused by uncomfortable posture where the workers sit on the floor with one leg was folded and another was twisted for long duration. Back, waist, buttock, and right knee frequently experience the disorders. The objective of this research is to investigate the muscle contraction at such body part of workers in manufacturing process of pottery. Electromyography is used to investigate the muscle contraction based on the median frequency signal. Focus measurements is conducted on four muscles types. They are lower interscapular muscle on the right and left side, dorsal lumbar muscle, and lateral hamstring muscle. Statistical analysis is conducted to test differences of muscle contraction between female and male. The result of this research showed that the muscle which reached the highest contraction is dorsal lumbar muscle with the average of median frequency is 51,84 Hz. Then followed by lower interscapular muscle on the left side with the average of median frequency is 31,30 hz, lower interscapular muscle on the right side average of median frequency is 31,24 Hz, and lateral hamstring muscle average of median frequency is 21,77 Hz. Based on the statistic analysis result, there were no differences between male and female on left and right lower interscapular muscle and dorsal lumbar muscle but there were differences on lateral hamstring muscle with the significance level is 5%. Besides that, there were differences for all combination muscle types with the level of significance is 5%.

  9. Cancer-Specific Mortality Relative to Engagement in Muscle-Strengthening Activities and Lower Extremity Strength.

    PubMed

    Dankel, Scott J; Loenneke, Jeremy P; Loprinzi, Paul D

    2018-02-01

    Skeletal muscle strength and engagement in muscle-strengthening activities are each inversely associated with all-cause mortality; however, less is known on their relationship with cancer-specific mortality. Data from the 1999-2002 National Health and Nutrition Examination Survey were used assessing 2773 individuals aged 50 years or older. Individuals being dichotomized at the 75th percentile for knee extensor strength, and engagement in muscle-strengthening activities was acquired through self-report with ≥2 sessions per week were classified as meeting guidelines. With respect to cancer-specific mortality, individuals in the upper quartile for muscle strength were at a 50% reduced risk (hazard ratio = 0.50; 95% confidence interval, 0.29-0.85; P = .01) and those meeting muscle-strengthening activities were at a nonsignificant 8% reduced risk (hazard ratio = 0.92; 95% confidence interval, 0.45-1.86, P = .81) of cancer-specific mortality after adjusting for covariates. Clinicians should routinely assess lower extremity strength and promote engagement in muscle-strengthening activities aimed at increasing muscle strength.

  10. Anabolic and Catabolic Biomarkers As Predictors of Muscle Strength Decline: The InCHIANTI Study

    PubMed Central

    Maggio, Marcello; Lauretani, Fulvio; Bandinelli, Stefania; Ceda, Gian Paolo; Di Iorio, Angelo; Giallauria, Francesco; Guralnik, Jack M.; Ferrucci, Luigi

    2010-01-01

    Abstract Background Poor muscle strength is a major public health concern in older persons, predisposing to functional limitations, increased fall risk, and higher mortality. Understanding risk factors for muscle strength decline may offer opportunities for prevention and treatment. One of the possible causes of muscle strength decline is imbalance between catabolic and anabolic signaling. This study aims to examine whether high levels of multiple catabolic and low levels of multiple anabolic biomarkers predict accelerated decline of muscle strength. Methods In a representative sample of 716 men and women aged ≥65 years in the InCHIANTI study we measured C-reactive protein, interleukin-6 (IL-6), IL-1 receptor antagonist (IL-1RA), tumor necrosis factor-α receptor 1 as well as dehydroepiandrosterone sulfate (DHEA-S), insulin-like growth factor-1, and bioavailable testosterone. Biomarker values were divided into tertiles and the numbers of catabolic/anabolic biomarkers in the highest/lowest tertile were calculated. Hand-grip strength was measured at baseline and 3- and 6-year follow up. Results In adjusted linear mixed models, higher concentration of IL-6 (p = 0.02) and IL-1RA (p = 0.04) as well as lower levels of DHEA-S (p = 0.01) predicted muscle strength decline. After combining all inflammatory markers, the rate of decline in grip strength was progressively greater with the increasing number of dysregulated catabolic biomarkers (p = 0.01). No effect on accelerated muscle strength decline was seen according to number of dysregulated anabolic hormones. Conclusions Having multiple elevated catabolic biomarkers is a better predictor of muscle strength decline than a single biomarker alone, suggesting that a catabolic dysregulation is at the core of the mechanism leading to muscle strength decline with aging. PMID:20230273

  11. Relationships of muscle strength and bone mineral density in ambulatory children with cerebral palsy.

    PubMed

    Chen, C-L; Lin, K-C; Wu, C-Y; Ke, J-Y; Wang, C-J; Chen, C-Y

    2012-02-01

    This work explores the relationships of muscle strength and areal bone mineral density (aBMD) in ambulatory children with cerebral palsy (CP). The knee extensor strength, but not motor function, was related to aBMD. Thus, muscle strength, especially antigravity muscle strength, was more associated with aBMD in these children than motor function. Muscle strength is related to bone density in normal children. However, no studies have examined these relationships in ambulatory children with CP. This work explores the relationships of muscle strength and aBMD in ambulatory children with CP. Forty-eight ambulatory children with spastic CP, aged 5-15 years, were classified into two groups based on Gross Motor Function Classification System levels: I (n = 28) and II (n = 20). Another 31 normal development (ND) children were recruited as the comparison group for the aBMD. Children with CP underwent assessments of growth, lumbar and distal femur aBMD, Gross Motor Function Measure-66 (GMFM-66), and muscle strength of knee extensor and flexor by isokinetic dynamometer. The distal femur aBMD, but not lumbar aBMD, was lower in children with CP than in ND children (p < 0.05). Children with level I had greater knee flexor strength and GMFM-66 scores than those with level II (p < 0.001). However, the knee extensor strength and distal femur and lumbar aBMD did not differ between two groups. Regression analysis revealed the weight and knee extensor strength, but not GMFM-66 scores, were related positively to the distal femur and lumbar aBMD (adjusted r (2) = 0.56-0.65, p < 0.001). These results suggest the muscle strength, especially antigravity muscle strength, were more associated with the bone density of ambulatory children with CP than motor function. The data may allow clinicians for early identifying the ambulatory CP children of potential low bone density.

  12. Effect of neck muscle strength and anticipatory cervical muscle activation on the kinematic response of the head to impulsive loads.

    PubMed

    Eckner, James T; Oh, Youkeun K; Joshi, Monica S; Richardson, James K; Ashton-Miller, James A

    2014-03-01

    Greater neck strength and activating the neck muscles to brace for impact are both thought to reduce an athlete's risk of concussion during a collision by attenuating the head's kinematic response after impact. However, the literature reporting the neck's role in controlling postimpact head kinematics is mixed. Furthermore, these relationships have not been examined in the coronal or transverse planes or in pediatric athletes. In each anatomic plane, peak linear velocity (ΔV) and peak angular velocity (Δω) of the head are inversely related to maximal isometric cervical muscle strength in the opposing direction (H1). Under impulsive loading, ΔV and Δω will be decreased during anticipatory cervical muscle activation compared with the baseline state (H2). Descriptive laboratory study. Maximum isometric neck strength was measured in each anatomic plane in 46 male and female contact sport athletes aged 8 to 30 years. A loading apparatus applied impulsive test forces to athletes' heads in flexion, extension, lateral flexion, and axial rotation during baseline and anticipatory cervical muscle activation conditions. Multivariate linear mixed models were used to determine the effects of neck strength and cervical muscle activation on head ΔV and Δω. Greater isometric neck strength and anticipatory activation were independently associated with decreased head ΔV and Δω after impulsive loading across all planes of motion (all P < .001). Inverse relationships between neck strength and head ΔV and Δω presented moderately strong effect sizes (r = 0.417 to r = 0.657), varying by direction of motion and cervical muscle activation. In male and female athletes across the age spectrum, greater neck strength and anticipatory cervical muscle activation ("bracing for impact") can reduce the magnitude of the head's kinematic response. Future studies should determine whether neck strength contributes to the observed sex and age group differences in concussion incidence. Neck

  13. A Randomized Trial on the Effect of Bone Tissue on Vibration-induced Muscle Strength Gain and Vibration-induced Reflex Muscle Activity

    PubMed Central

    Cidem, Muharrem; Karacan, İlhan; Diraçoğlu, Demirhan; Yıldız, Aysel; Küçük, Suat Hayri; Uludağ, Murat; Gün, Kerem; Özkaya, Murat; Karamehmetoğlu, Şafak Sahir

    2014-01-01

    Background: Whole-body vibration (WBV) induces reflex muscle activity and leads to increased muscle strength. However, little is known about the physiological mechanisms underlying the effects of whole-body vibration on muscular performance. Tonic vibration reflex is the most commonly cited mechanism to explain the effects of whole-body vibration on muscular performance, although there is no conclusive evidence that tonic vibration reflex occurs. The bone myoregulation reflex is another neurological mechanism used to explain the effects of vibration on muscular performance. Bone myoregulation reflex is defined as a reflex mechanism in which osteocytes exposed to cyclic mechanical loading induce muscle activity. Aims: The aim of this study was to assess whether bone tissue affected vibration-induced reflex muscle activity and vibration-induced muscle strength gain. Study Design: A prospective, randomised, controlled, double-blind, parallel-group clinical trial. Methods: Thirty-four participants were randomised into two groups. High-magnitude whole-body vibration was applied in the exercise group, whereas low-magnitude whole-body vibration exercises were applied in the control group throughout 20 sessions. Hip bone mineral density, isokinetic muscle strength, and plasma sclerostin levels were measured. The surface electromyography data were processed to obtain the Root Mean Squares, which were normalised by maximal voluntarily contraction. Results: In the exercise group, muscle strength increased in the right and left knee flexors (23.9%, p=0.004 and 27.5%, p<0.0001, respectively). However, no significant change was observed in the knee extensor muscle strength. There was no significant change in the knee muscle strength in the control group. The vibration-induced corrected Root Mean Squares of the semitendinosus muscle was decreased by 2.8 times (p=0.005) in the exercise group, whereas there was no change in the control group. Sclerostin index was decreased by 15

  14. A Randomized Trial on the Effect of Bone Tissue on Vibration-induced Muscle Strength Gain and Vibration-induced Reflex Muscle Activity.

    PubMed

    Cidem, Muharrem; Karacan, Ilhan; Diraçoğlu, Demirhan; Yıldız, Aysel; Küçük, Suat Hayri; Uludağ, Murat; Gün, Kerem; Ozkaya, Murat; Karamehmetoğlu, Safak Sahir

    2014-03-01

    Whole-body vibration (WBV) induces reflex muscle activity and leads to increased muscle strength. However, little is known about the physiological mechanisms underlying the effects of whole-body vibration on muscular performance. Tonic vibration reflex is the most commonly cited mechanism to explain the effects of whole-body vibration on muscular performance, although there is no conclusive evidence that tonic vibration reflex occurs. The bone myoregulation reflex is another neurological mechanism used to explain the effects of vibration on muscular performance. Bone myoregulation reflex is defined as a reflex mechanism in which osteocytes exposed to cyclic mechanical loading induce muscle activity. The aim of this study was to assess whether bone tissue affected vibration-induced reflex muscle activity and vibration-induced muscle strength gain. A prospective, randomised, controlled, double-blind, parallel-group clinical trial. Thirty-four participants were randomised into two groups. High-magnitude whole-body vibration was applied in the exercise group, whereas low-magnitude whole-body vibration exercises were applied in the control group throughout 20 sessions. Hip bone mineral density, isokinetic muscle strength, and plasma sclerostin levels were measured. The surface electromyography data were processed to obtain the Root Mean Squares, which were normalised by maximal voluntarily contraction. In the exercise group, muscle strength increased in the right and left knee flexors (23.9%, p=0.004 and 27.5%, p<0.0001, respectively). However, no significant change was observed in the knee extensor muscle strength. There was no significant change in the knee muscle strength in the control group. The vibration-induced corrected Root Mean Squares of the semitendinosus muscle was decreased by 2.8 times (p=0.005) in the exercise group, whereas there was no change in the control group. Sclerostin index was decreased by 15.2% (p=0.031) in the exercise group and increased by

  15. Recurrent hamstring muscle injury: applying the limited evidence in the professional football setting with a seven-point programme

    PubMed Central

    Brukner, Peter; Nealon, Andrew; Morgan, Christopher; Burgess, Darren; Dunn, Andrew

    2014-01-01

    Recurrent hamstring injuries are a major problem in sports such as football. The aim of this paper was to use a clinical example to describe a treatment strategy for the management of recurrent hamstring injuries and examine the evidence for each intervention. A professional footballer sustained five hamstring injuries in a relatively short period of time. The injury was managed successfully with a seven-point programme—biomechanical assessment and correction, neurodynamics, core stability, eccentric strengthening, an overload running programme, injection therapies and stretching/relaxation. The evidence for each of these treatment options is reviewed. It is impossible to be definite about which aspects of the programme contributed to a successful outcome. Only limited evidence is available in most cases; therefore, decisions regarding the use of different treatment modalities must be made by using a combination of clinical experience and research evidence. PMID:23322894

  16. Lower-extremity strength ratios of professional soccer players according to field position.

    PubMed

    Ruas, Cassio V; Minozzo, Felipe; Pinto, Matheus D; Brown, Lee E; Pinto, Ronei S

    2015-05-01

    Previous investigators have proposed that knee strength, hamstrings to quadriceps, and side-to-side asymmetries may vary according to soccer field positions. However, different results have been found in these variables, and a generalization of this topic could lead to data misinterpretation by coaches and soccer clubs. Thus, the aim of this study was to measure knee strength and asymmetry in soccer players across different field positions. One hundred and two male professional soccer players performed maximal concentric and eccentric isokinetic knee actions on the preferred and nonpreferred legs at a velocity of 60° · s. Players were divided into their field positions for analysis: goalkeepers, side backs, central backs, central defender midfielders, central attacking midfielders, and forwards. Results demonstrated that only goalkeepers (GK) differed from most other field positions on players' characteristics, and concentric peak torque across muscles. Although all players presented functional ratios of the preferred (0.79 ± 0.14) and nonpreferred (0.75 ± 0.13) legs below accepted normative values, there were no differences between positions for conventional or functional strength ratios or side-to-side asymmetry. The same comparisons were made only between field players, without inclusion of the GK, and no differences were found between positions. Therefore, the hamstrings to quadriceps and side-to-side asymmetries found here may reflect knee strength functional balance required for soccer skills performance and game demands across field positions. These results also suggest that isokinetic strength profiles should be considered differently in GK compared with other field positions due to their specific physiological and training characteristics.

  17. Are the hamstrings from the drive leg or landing leg more active in baseball pitchers? An electromyographic study.

    PubMed

    Erickson, Brandon J; Zaferiou, Antonia; Chalmers, Peter N; Ruby, Deana; Malloy, Phillip; Luchetti, Timothy J; Verma, Nikhil N; Romeo, Anthony A

    2017-11-01

    Ulnar collateral ligament reconstruction (UCLR) has become a common procedure among baseball players of all levels. There are several graft choices in performing UCLR, one of which is a hamstring (gracilis or semitendinosus) autograft. It is unclear whether the hamstring muscle from a pitcher's drive leg (ipsilateral side of the UCLR) or landing leg (contralateral side of the UCLR) is more active during the pitching motion. We hypothesized that the landing leg semitendinosus will be more electromyographically active than the drive leg. Healthy, elite male pitchers aged 16-21 years were recruited. Sixteen pitchers (average age, 17.6 ± 1.6 years; 67% threw right handed) underwent electromyographic analysis. Pitchers threw 5 fastballs at 100% effort from the wind-up with electromyographic analysis of every pitch. Activation of the semitendinosus and biceps femoris in both legs was compared within pitchers and between pitchers. Hamstring activity was higher in the drive leg than in the landing leg during each phase and in sum, although the difference was significant only during the double support phase (P = .021). On within-pitcher analysis, 10 of 16 pitchers had significantly more sum hamstring activity in the drive leg than in the landing leg, while only 4 of 16 had more activity in the landing leg (P = .043). During the baseball pitch, muscle activity of the semitendinosus was higher in the drive leg than in the landing leg in most pitchers. Surgeons performing UCLR using hamstring autograft should consider harvesting the graft from the pitcher's landing leg to minimize disruption to the athlete's pitching motion. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  18. Diagnostic methods to assess inspiratory and expiratory muscle strength*

    PubMed Central

    Caruso, Pedro; de Albuquerque, André Luis Pereira; Santana, Pauliane Vieira; Cardenas, Leticia Zumpano; Ferreira, Jeferson George; Prina, Elena; Trevizan, Patrícia Fernandes; Pereira, Mayra Caleffi; Iamonti, Vinicius; Pletsch, Renata; Macchione, Marcelo Ceneviva; Carvalho, Carlos Roberto Ribeiro

    2015-01-01

    Impairment of (inspiratory and expiratory) respiratory muscles is a common clinical finding, not only in patients with neuromuscular disease but also in patients with primary disease of the lung parenchyma or airways. Although such impairment is common, its recognition is usually delayed because its signs and symptoms are nonspecific and late. This delayed recognition, or even the lack thereof, occurs because the diagnostic tests used in the assessment of respiratory muscle strength are not widely known and available. There are various methods of assessing respiratory muscle strength during the inspiratory and expiratory phases. These methods are divided into two categories: volitional tests (which require patient understanding and cooperation); and non-volitional tests. Volitional tests, such as those that measure maximal inspiratory and expiratory pressures, are the most commonly used because they are readily available. Non-volitional tests depend on magnetic stimulation of the phrenic nerve accompanied by the measurement of inspiratory mouth pressure, inspiratory esophageal pressure, or inspiratory transdiaphragmatic pressure. Another method that has come to be widely used is ultrasound imaging of the diaphragm. We believe that pulmonologists involved in the care of patients with respiratory diseases should be familiar with the tests used in order to assess respiratory muscle function.Therefore, the aim of the present article is to describe the advantages, disadvantages, procedures, and clinical applicability of the main tests used in the assessment of respiratory muscle strength. PMID:25972965

  19. Relationship between lower extremity isometric muscle strength and standing balance in patients with multiple sclerosis.

    PubMed

    Citaker, Seyit; Guclu-Gunduz, Arzu; Yazici, Gokhan; Bayraktar, Deniz; Nazliel, Bijen; Irkec, Ceyla

    2013-01-01

    Muscle strength and standing balance decrease in patients with Multiple Sclerosis (MS). The aim of the present study was to investigate the relationship between the lower extremity isometric muscle strength and standing balance in patients with MS. Forty-seven patients with MS and 10 healthy volunteers were included. Neurological disability level was assessed using Expanded Disability Status Scale (EDSS). Isometric strength of seven lower extremity muscles (hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor) was assessed using hand-held dynamometer. Duration of static one-leg standing balance was measured using digital chronometer. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength, and duration of one-leg standing balance were decreased in patients with MS when compared with controls (p < 0.05). All assessed lower extremity isometric muscle strength and EDSS level was related duration of one-leg standing balance in patients with MS. All assessed lower extremity isometric muscle strength (except ankle dorsal flexor) was related with EDSS. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength decreases in ambulatory MS patients. Lower extremity muscle weakness and neurological disability level are related with imbalance in MS population. Hip and knee region muscles weakness increases the neurological disability level. For the better balance and decrease neurological disability level whole lower extremity muscle strengthening should be included in rehabilitation programs.

  20. Examination and Treatment of Hamstring Related Injuries

    PubMed Central

    2012-01-01

    Context: There is a wide spectrum of hamstring-related injuries that can occur in the athlete. Accurate diagnosis is imperative to prevent delayed return to sport, injury recurrence, and accurate clinical decision making regarding the most efficacious treatment. Evidence Acquisition: This review highlights current evidence related to the diagnosis and treatment of hamstring-related injuries in athletes. Data sources were limited to peer-reviewed publications indexed in MEDLINE from 1988 through May 2011. Results: An accurate diagnostic process for athletes with posterior thigh–related complaints should include a detailed and discriminative history, followed by a thorough clinical examination. Diagnostic imaging should be utilized when considering hamstring avulsion or ischial apophyseal avulsion. Diagnostic imaging may also be needed to further define the cause of referred posterior thigh pain. Conclusions: Differentiating acute hamstring strains, hamstring tendon avulsions, ischial apophyseal avulsions, proximal hamstring tendinopathies, and referred posterior thigh pain is critical in determining the most appropriate treatment and expediting safe return to play. PMID:23016076

  1. Circuit strength training improves muscle strength, functional performance and anthropometric indicators in sedentary elderly women.

    PubMed

    Mazini Filho, Mauro L; Aidar, Felipe J; Gama de Matos, Dihogo; Costa Moreira, Osvaldo; Patrocínio de Oliveira, Cláudia E; de Oliveira Venturini, Gabriela R; Magalhães Curty, Victor; Menezes Touguinha, Henrique; Caputo Ferreira, Maria E

    2017-04-26

    This study aimed to investigate the effects of circuit strength training on the muscle strength, functional autonomy and anthropometric indicators of the elderly. Were included 65 women divided in two groups: strength training (TG, n= 34) and control group (CG, n = 31). The strength-training group was subjected to a circuit shaped training program, three days per week, for a period of 12 weeks. In each training session, the circuit was repeated three times. In each circuit, all exercises wereperformed once, with 8 to 12 repetitions per exercise, with 30-seconds intervals between each exercise. TG showed significantly changes in body composition post 12 weeks, as decreases in body weight (Δ -1.5±1.8 kg) and BMI (Δ-0.57 ±0.74 kg/m²), and decreases in abdominal (Δ -3±1.61 cm), waist (Δ -1 ± 1.61 cm), hip (Δ -2.75±1.44 cm) and waist hip ratio circumference (Δ -0.02 ± 0.15 cm). For functional autonomy, TG showed increases post 12 weeks by 30-second chair stand (Δ 3.5±0.4 reps), six minute walk (Δ60.95±7.91 m), back scratch (Δ 3.2 ± 1.36 cm), and time up and go tests (Δ -1,62 ±0,15s). TG also showed increases in muscle strength post 12 weeks in both leg press (Δ 11±1,29 kg) and lat pulldown (Δ11 ±0,75 Kg). For CG, Body composition, functional autonomy and muscle strength did not improved in any moment. Hence, circuit strength training provides significant improvements inmuscle strength, functional performance and anthropometric indicators in sedentary elderly women.

  2. Influence of muscle strength on early mobility in critically ill adult patients: Systematic literature review.

    PubMed

    Roberson, Audrey R; Starkweather, Angela; Grossman, Catherine; Acevedo, Edmund; Salyer, Jeanne

    Muscle strength may be one indicator of readiness to mobilize that can be used to guide decisions regarding early mobility efforts and to progressively advance mobilization. To provide a synthesis of current measures of muscle strength in the assessment of early mobilization in critically ill adult patients who are receiving MV therapy. Research studies conducted between 2000-2015 were identified using PubMed, CINHAL, MEDLINE, and the Cochrane Database of Systematic Reviews databases using the search terms "muscle strength", "intensive care", "mechanical ventilation" and "muscle weakness". Nine articles used manual muscle testing, the Medical Research Council scale and/or hand-held dynamometer to provide objective measures for assessing muscle strength in the critically ill adult patient population. Further research is needed to examine the application of standardized measures of muscle strength for guiding decisions regarding early and progressive advancement of mobility goals in adult ICU patients on MV. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Impaired muscle strength may contribute to fatigue in patients with aneurysmal subarachnoid hemorrhage.

    PubMed

    Harmsen, Wouter J; Ribbers, Gerard M; Zegers, Bart; Sneekes, Emiel M; Praet, Stephan F E; Heijenbrok-Kal, Majanka H; Khajeh, Ladbon; van Kooten, Fop; Neggers, Sebastiaan J C M M; van den Berg-Emons, Rita J

    2017-03-01

    Patients with aneurysmal subarachnoid hemorrhage (a-SAH) show long-term fatigue and face difficulties in resuming daily physical activities. Impaired muscle strength, especially of the lower extremity, impacts the performance of daily activities and may trigger the onset of fatigue complaints. The present study evaluated knee muscle strength and fatigue in patients with a-SAH. This study included 33 patients, 6 months after a-SAH, and 33 sex-matched and age-matched healthy controls. Isokinetic muscle strength of the knee extensors and flexors was measured at 60 and 180°/s. Maximal voluntary muscle strength was defined as peak torque and measured in Newton-meter. Fatigue was examined using the Fatigue Severity Scale. In patients with a-SAH, the maximal knee extension was 22% (60°/s) and 25% (180°/s) lower and maximal knee flexion was 33% (60°/s) and 36% (180°/s) lower compared with that of matched controls (P≤0.001). The Fatigue Severity Scale score was related to maximal knee extension (60°/s: r=-0.426, P=0.015; 180°/s: r=-0.376, P=0.034) and flexion (60°/s: r=-0.482, P=0.005; 180°/s: r=-0.344, P=0.083). The knee muscle strength was 28-47% lower in fatigued (n=13) and 11-32% lower in nonfatigued (n=20) patients; deficits were larger in fatigued patients (P<0.05), particularly when the muscle strength (peak torque) was measured at 60°/s. The present results indicate that patients with a-SAH have considerably impaired knee muscle strength, which is related to more severe fatigue. The present findings are exploratory, but showed that knee muscle strength may play a role in the severity of fatigue complaints, or vice versa. Interventions targeting fatigue after a-SAH seem necessary and may consider strengthening exercise training in order to treat a debilitating condition.

  4. Shank Muscle Strength Training Changes Foot Behaviour during a Sudden Ankle Supination

    PubMed Central

    Hagen, Marco; Lescher, Stephanie; Gerhardt, Andreas; Lahner, Matthias; Felber, Stephan; Hennig, Ewald M.

    2015-01-01

    Background The peroneal muscles are the most effective lateral stabilisers whose tension braces the ankle joint complex against excessive supination. The purpose of this study was to identify the morphological and biomechanical effects of two machine-based shank muscle training methods. Methods Twenty-two healthy male recreationally active sports students performed ten weeks of single-set high resistance strength training with 3 training sessions per week. The subjects conducted subtalar pronator/supinator muscle training (ST) with the right leg by using a custom-made apparatus; the left foot muscles were exercised with machine-based talocrural plantar and dorsiflexor training (TT). Muscle strength (MVIC), muscle volume and foot biomechanics (rearfoot motion, ground reaction forces, muscle reaction times) during a sudden ankle supination were recorded before and after the intervention. Results Compared to TT, ST resulted in significantly higher pronator (14% vs. 8%, P<0.01) and supinator MVIC (25% vs. 12%, P<0.01). During sudden foot inversions, both ST and TT resulted in reduced supination velocity (-12%; P<0.01). The muscle reaction onset time was faster after the training in peroneus longus (PL) (P<0.01). Muscle volume of PL (P<0.01) and TA (P<0.01) increased significantly after both ST and TT. Conclusion After both ST and TT, the ankle joint complex is mechanically more stabilised against sudden supinations due to the muscle volume increase of PL and TA. As the reduced supination velocities indicate, the strength training effects are already present during free-fall. According to a sudden ankle supination in standing position, both machine-based dorsiflexor and pronator strength training is recommended for enhancing the mechanical stability of the ankle. PMID:26110847

  5. Activation of the gluteus maximus and hamstring muscles during prone hip extension with knee flexion in three hip abduction positions.

    PubMed

    Kang, Sun-Young; Jeon, Hye-Seon; Kwon, Ohyun; Cynn, Heon-Seock; Choi, Boram

    2013-08-01

    The direction of fiber alignment within a muscle is known to influence the effectiveness of muscle contraction. However, most of the commonly used clinical gluteus maximus (GM) exercises do not consider the direction of fiber alignment within the muscle. Therefore, the purpose of this study was to investigate the influence of hip abduction position on the EMG (electromyography) amplitude and onset time of the GM and hamstrings (HAM) during prone hip extension with knee flexion (PHEKF) exercise. Surface EMG signals were recorded from the GM and HAM during PHEKF exercise in three hip abduction positions: 0°, 15°, and 30°. Thirty healthy subjects voluntarily participated in this study. The results show that GM EMG amplitude was greatest in the 30° hip abduction position, followed by 15° and then 0° hip abduction during PHEKF exercise. On the other hand, the HAM EMG amplitude at 0° hip abduction was significantly greater than at 15° and 30° hip abduction. Additionally, GM EMG onset firing was delayed relative to that of the HAM at 0° hip abduction. On the contrary, the GM EMG onset occurred earlier than the HAM in the 15° and 30° hip abduction positions. These findings indicate that performing PHEKF exercise in the 30° hip abduction position may be recommended as an effective way to facilitate the GM muscle activity and advance the firing time of the GM muscle in asymptomatic individuals. This finding provides preliminary evidence that GM EMG amplitude and onset time can be modified by the degree of hip abduction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Recovery of strength is dependent on mTORC1 signaling after eccentric muscle injury.

    PubMed

    Baumann, Cory Walter; Rogers, Russell George; Otis, Jeffrey Scott; Ingalls, Christopher Paul

    2016-11-01

    Eccentric contractions may cause immediate and long-term reductions in muscle strength that can be recovered through increased protein synthesis rates. The purpose of this study was to determine whether the mechanistic target-of-rapamycin complex 1 (mTORC1), a vital controller of protein synthesis rates, is required for return of muscle strength after injury. Isometric muscle strength was assessed before, immediately after, and then 3, 7, and 14 days after a single bout of 150 eccentric contractions in mice that received daily injections of saline or rapamycin. The bout of eccentric contractions increased the phosphorylation of mTORC1 (1.8-fold) and p70s6k1 (13.8-fold), mTORC1's downstream effector, 3 days post-injury. Rapamycin blocked mTORC1 and p70s6k1 phosphorylation and attenuated recovery of muscle strength (∼20%) at 7 and 14 days. mTORC1 signaling is instrumental in the return of muscle strength after a single bout of eccentric contractions in mice. Muscle Nerve 54: 914-924, 2016. © 2016 Wiley Periodicals, Inc.

  7. Three-layered architecture of the popliteal fascia that acts as a kinetic retinaculum for the hamstring muscles.

    PubMed

    Satoh, Masahiro; Yoshino, Hiroyuki; Fujimura, Akira; Hitomi, Jiro; Isogai, Sumio

    2016-09-01

    When patients report pain in the popliteal fossa upon knee extension, the pain is usually localized in the lower region of the popliteal fossa. However, some patients complain of pain in the upper region of the popliteal fossa as the knee is flexed, which motivated us to examine the role of the popliteal fascia as the retinaculum of the hamstring muscles. Thirty-four thighs from 19 Japanese cadavers were dissected. The popliteal fascia was defined as the single aponeurotic sheet covering the popliteal fossa. We found that the fascia acted as a three-layered retinaculum for the flexor muscles of the thigh and provided a secure route for neurovascular structures to the lower leg in any kinetic position of the knee joint. The superficial layer of the popliteal fascia covering the thigh was strongly interwoven with the epimysium of biceps femoris along its lateral aspect and with that of the semimembranosus along its medial aspect, ensuring that the flexor muscles remained in their correct positions. The intermediate layer arose from the medial side of biceps femoris and merged medially with the superficial layer. The profound layer stretched transversely between the biceps femoris and the semimembranosus. Moreover, we investigated the nerve distribution in the popliteal fascia using Sihler's staining and whole-mount immunostaining for neurofilaments. The three-layered fascia was constantly innervated by branches from the posterior femoral cutaneous or saphenous nerve. The nerves were closely related and distributed to densely packed collagen fibers in the superficial layer as free or encapsulated nerve endings, suggesting that the fascia is involved in pain in the upper region of the popliteal fossa.

  8. Muscle Activation During ACL Injury Risk Movements in Young Female Athletes: A Narrative Review.

    PubMed

    Bencke, Jesper; Aagaard, Per; Zebis, Mette K

    2018-01-01

    Young, adolescent female athletes are at particular high risk of sustaining a non-contact anterior cruciate ligament (ACL) injury during sport. Through the last decades much attention has been directed toward various anatomical and biomechanical risk factors for non-contact ACL injury, and important information have been retrieved about the influence of external loading factors on ACL injury risk during given sports-specific movements. However, much less attention has been given to the aspect of neuromuscular control during such movements and only sparse knowledge exists on the specific muscle activation patterns involved during specific risk conditions. Therefore, the aim of this narrative review was (1) to describe anatomical aspects, strength aspects and biomechanical aspects relevant for the understanding of ACL non-contact injury mechanisms in young female athletes, and (2) to review the existing literature on lower limb muscle activation in relation to risk of non-contact ACL-injury and prevention of ACL injury in young female athletes. Studies investigating muscle activity patterns associated with sports-specific risk situations were identified, comprising cohort studies, intervention studies and prospective studies. Based on the retrieved studies, clear gender-specific differences in muscle activation and coordination were identified demonstrating elevated quadriceps activity and reduced hamstring activity in young female athletes compared to their male counterparts, and suggesting young female athletes to be at elevated risk of non-contact ACL injury. Only few studies ( n = 6) examined the effect of preventive exercise-based intervention protocols on lower limb muscle activation during sports-specific movements. A general trend toward enhanced hamstring activation was observed during selected injury risk situations (e.g., sidecutting and drop landings). Only a single study examined the association between muscle activation deficits and ACL injury risk

  9. Quadriceps intramuscular fat fraction rather than muscle size is associated with knee osteoarthritis

    PubMed Central

    Kumar, Deepak; Karampinos, Dimitrios C.; MacLeod, Toran D.; Lin, Wilson; Nardo, Lorenzo; Li, Xiaojuan; Link, Thomas M; Majumdar, Sharmila; Souza, Richard B

    2014-01-01

    Objectives To compare thigh muscle intramuscular fat (intraMF) fractions and area between people with and without knee radiographic osteoarthritis (ROA); and to evaluate the relationships of quadriceps adiposity and area with strength, function and knee MRI lesions. Methods Ninety six subjects (ROA: KL >1; n = 30, control: KL = 0,1; n = 66) underwent 3-Tesla MRI of the thigh muscles using chemical shift-based water/fat MR imaging (fat fractions) and the knee (clinical grading). Subjects were assessed for isometric/isokinetic quadriceps/hamstrings strength, function (KOOS, stair climbing test [SCT], and 6-minute walk test [(6MWT]. Thigh muscle intraMF fractions, muscle area and strength, and function were compared between controls and ROA subjects, adjusting for age. Relationships between measures of muscle fat/area with strength, function, KL and lesion scores were assessed using regression and correlational analyses. Results The ROA group had worse KOOS scores but SCT and 6MWT were not different. The ROA group had greater quadriceps intraMF fraction but not for other muscles. Quadriceps strength was lower in ROA group but the area was not different. Quadriceps intraMF fraction but not area predicted self-reported disability. Aging, worse KL, and cartilage and meniscus lesions were associated with higher quadriceps intraMF fraction. Conclusion Quadriceps intraMF is higher in people with knee OA and is related to symptomatic and structural severity of knee OA, where as the quadriceps area is not. Quadriceps fat fraction from chemical shift-based water/fat MR imaging may have utility as a marker of structural and symptomatic severity of knee OA disease process. PMID:24361743

  10. The Relationship between Walk Distance and Muscle Strength, Muscle Pain in Visually Disabled People

    ERIC Educational Resources Information Center

    Akyol, Betül

    2018-01-01

    The purpose of this study is to examine the relationship between six-minute walk test and muscle pain, muscle strength in visually disabled people. The study includes 50 visually disabled people, aged between 17, 21 ± 5,3. Participants were classified into three categories according to their degree of vision (B1, B2, B3). All participants were…

  11. Muscle activity response to external moment during single-leg drop landing in young basketball players: the importance of biceps femoris in reducing internal rotation of knee during landing.

    PubMed

    Fujii, Meguru; Sato, Haruhiko; Takahira, Naonobu

    2012-01-01

    Internal tibial rotation with the knee close to full extension combined with valgus collapse during drop landing generally results in non-contact anterior cruciate ligament (ACL) injury. The purpose of this study was to investigate the relationship between internal rotation of the knee and muscle activity from internal and external rotator muscles, and between the internal rotation of knee and externally applied loads on the knee during landing in collegiate basketball players. Our hypothesis was that the activity of biceps femoris muscle would be an important factor reducing internal knee rotation during landing. The subjects were 10 collegiate basketball students: 5 females and 5 males. The subjects performed a single-leg drop landing from a 25-cm height. Femoral and tibial kinematics were measured using a 3D optoelectronic tracking system during the drop landings, and then the knee angular motions were determined. Ground reaction forces and muscle activation patterns (lateral hamstring and medial hamstring) were simultaneously measured and computed. Results indicated that lower peak internal tibial rotation angle at the time of landing was associated with greater lateral hamstring activity (r = -0.623, p < 0.001). When gender was considered, the statistically significant correlation remained only in females. There was no association between the peak internal tibial rotation angle and the knee internal rotation moment. Control of muscle activity in the lateral to medial hamstring would be an important factor in generating sufficient force to inhibit excessive internal rotation during landing. Strengthening the biceps femoris might mitigate the higher incidence of non-contact ACL injury in female athletes. Key pointsLower activity of the external rotator muscle of the knee, which inhibits internal rotation of the knee, may be the reason why females tend to show a large internal rotation of the knee during drop landing.Externally applied internal rotation moment of

  12. Hamstrings to quadriceps peak torque ratios diverge between sexes with increasing isokinetic angular velocity.

    PubMed

    Hewett, Timothy E; Myer, Gregory D; Zazulak, Bohdanna T

    2008-09-01

    Our purpose was to determine if females demonstrate decreased hamstrings to quadriceps peak torque (H/Q) ratios compared to males and if H/Q ratios increase with increased isokinetic velocity in both sexes. Maturation disproportionately increases hamstrings peak torque at high velocity in males, but not females. Therefore, we hypothesised that mature females would demonstrate decreased H/Q ratios compared to males and the difference in H/Q ratio between sexes would increase as isokinetic velocity increased. Studies that analysed the H/Q ratio with gravity corrected isokinetic strength testing reported between 1967 and 2004 were included in our review and analysis. Keywords were hamstrings/quadriceps, isokinetics, peak torque and gravity corrected. Medline and Smart databases were searched combined with cross-checked bibliographic reference lists of the publications to determine studies to be included. Twenty-two studies were included with a total of 1568 subjects (1145 male, 423 female). Males demonstrated a significant correlation between H/Q ratio and isokinetic velocity (R=0.634, p<0.0001), and a significant difference in the isokinetic H/Q ratio at the lowest angular velocity (47.8+/-2.2% at 30 degrees /s) compared to the highest velocity (81.4+/-1.1% at 360 degrees /s, p<0.001). In contrast, females did not demonstrate a significant relationship between H/Q ratio and isokinetic velocity (R=0.065, p=0.77) or a change in relative hamstrings strength as the speed increased (49.5+/-8.8% at 30 degrees /s; 51.0+/-5.7% at 360 degrees /s, p=0.84). Gender differences in isokinetic H/Q ratios were not observed at slower angular velocities. However, at high knee flexion/extension angular velocities, approaching those that occur during sports activities, significant gender differences were observed in the H/Q ratio. Females, unlike males, do not increase hamstrings to quadriceps torque ratios at velocities that approach those of functional activities.

  13. Static Stretching of the Hamstring Muscle for Injury Prevention in Football Codes: a Systematic Review

    PubMed Central

    Rogan, Slavko; Wüst, Dirk; Schwitter, Thomas; Schmidtbleicher, Dietmar

    2012-01-01

    Purpose Hamstring injuries are common among football players. There is still disagreement regarding prevention. The aim of this review is to determine whether static stretching reduces hamstring injuries in football codes. Methods A systematic literature search was conducted on the online databases PubMed, PEDro, Cochrane, Web of Science, Bisp and Clinical Trial register. Study results were presented descriptively and the quality of the studies assessed were based on Cochrane's ‘risk of bias’ tool. Results The review identified 35 studies, including four analysis studies. These studies show deficiencies in the quality of study designs. Conclusion The study protocols are varied in terms of the length of intervention and follow-up. No RCT studies are available, however, RCT studies should be conducted in the near future. PMID:23785569

  14. Endogenous hormones, muscle strength, and risk of fall-related fractures in older women.

    PubMed

    Sipilä, Sarianna; Heikkinen, Eino; Cheng, Sulin; Suominen, Harri; Saari, Päivi; Kovanen, Vuokko; Alén, Markku; Rantanen, Taina

    2006-01-01

    Among older people, fracture-causing fall often leads to health deterioration. The role of endogenous hormone status and muscle strength on fall-related fracture risk is unclear. This study investigates if, after adjustment for bone density, endogenous hormones and muscle strength would predict fall-related limb fracture incidence in older community-dwelling women followed-up over 10 years. As a part of a prospective population-based study, 187 75-year-old women were investigated. Serum estradiol, testosterone, sex hormone binding globulin, and dehydroepiandrosterone sulfate concentrations were analyzed, and isometric muscle strength and bone mineral density were assessed. Fall-related limb fractures were gathered from patient records. Serum estradiol concentration was a significant predictor of fall-related limb fractures. Women with serum estradiol concentrations less than 0.022 nmol/L had a 3-fold risk (relative risk 3.05; 95% confidence interval, 1.26-7.36), and women with estradiol concentrations between 0.022 and 0.066 nmol/L doubled the risk (relative risk 2.24; 95% confidence interval, 0.97-5.19) of fall-related limb fracture compared to the women with estradiol concentrations ()above 0.066 nmol/L. Adjustment for muscle strength and bone mineral density did not materially change the risk estimates. High muscle strength was associated with a low incidence of fall-related limb fractures. This study showed that in 75-year-old women higher serum estradiol concentration and greater muscle strength were independently associated with a low incidence of fall-related limb fractures even after adjustment for bone density. Our results suggest that hormonal status and muscle strength have their own separate mechanisms protecting from fall-related fractures. This finding is of importance in developing preventive strategies, but calls for further study.

  15. Reference values for muscle strength: a systematic review with a descriptive meta-analysis.

    PubMed

    Benfica, Poliana do Amaral; Aguiar, Larissa Tavares; Brito, Sherindan Ayessa Ferreira de; Bernardino, Luane Helena Nunes; Teixeira-Salmela, Luci Fuscaldi; Faria, Christina Danielli Coelho de Morais

    2018-05-03

    Muscle strength is an important component of health. To describe and evaluate the studies which have established the reference values for muscle strength on healthy individuals and to synthesize these values with a descriptive meta-analysis approach. A systematic review was performed in MEDLINE, LILACS, and SciELO databases. Studies that investigated the reference values for muscle strength of two or more appendicular/axial muscle groups of health individuals were included. Methodological quality, including risk of bias was assessed by the QUADAS-2. Data extracted included: country of the study, sample size, population characteristics, equipment/method used, and muscle groups evaluated. Of the 414 studies identified, 46 were included. Most of the studies had adequate methodological quality. Included studies evaluated: appendicular (80.4%) and axial (36.9%) muscles; adults (78.3%), elderly (58.7%), adolescents (43.5%), children (23.9%); isometric (91.3%) and isokinetic (17.4%) strength. Six studies (13%) with similar procedures were synthesized with meta-analysis. Generally, the coefficient of variation values that resulted from the meta-analysis ranged from 20.1% to 30% and were similar to those reported by the original studies. The meta-analysis synthesized the reference values of isometric strength of 14 muscle groups of the dominant/non-dominant sides of the upper/lower limbs of adults/elderly from developed countries, using dynamometers/myometer. Most of the included studies had adequate methodological quality. The meta-analysis provided reference values for the isometric strength of 14 appendicular muscle groups of the dominant/non-dominant sides, measured with dynamometers/myometers, of men/women, of adults/elderly. These data may be used to interpret the results of the evaluations and establish appropriate treatment goals. Copyright © 2018 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights

  16. Evaluation of peripheral muscle strength of patients undergoing elective cardiac surgery: a longitudinal study.

    PubMed

    Santos, Kelli Maria Souza; Cerqueira Neto, Manoel Luiz de; Carvalho, Vitor Oliveira; Santana Filho, Valter Joviniano de; Silva Junior, Walderi Monteiro da; Araújo Filho, Amaro Afrânio; Cerqueira, Telma Cristina Fontes; Cacau, Lucas de Assis Pereira

    2014-01-01

    Peripheral muscle strength has been little explored in the literature in the context of cardiac rehabilitation. To evaluate the peripheral muscle strength of patients undergoing elective cardiac surgery. This was a longitudinal observational study. The peripheral muscle strength was measured using isometric dynamometry lower limb (knee extensors and flexors) at three different times: preoperatively (M1), the day of discharge (M2) and hospital discharge (M3). Participants received physiotherapy pre and postoperatively during the days of hospitalization during the morning and afternoon. Twenty-two patients were evaluated. The values of peripheral muscle strength of knee extensors preoperative found were about 50% lower than those predicted for the healthy population. When comparing muscle strength prior (M1), with the remaining evaluation, found himself in a fall of 29% for the movement of knee extension and 25% for knee flexion in M2 and a decrease of 10% movement for knee extension and 13% for knee flexion in M3 when comparing with M1. The values of peripheral muscle strength prior of the study patients were lower than predicted for the healthy population of the same age. After the surgical event this reduction is even more remarkable, being reestablished until the time of discharge, to values close to baseline.

  17. The Effects of Individualized Resistance Strength Programs on Knee Muscular Imbalances in Junior Elite Soccer Players

    PubMed Central

    Śliwowski, Robert; Jadczak, Łukasz; Hejna, Rafał; Wieczorek, Andrzej

    2015-01-01

    The purpose of this study was to investigate the effects of a resistance training program on the muscular strength of soccer players’ knees that initially presented unilateral and bilateral differences. For this study, a team of 24 male well-trained junior soccer players was divided into two strength program training groups: a Resistance Training Control Group (RTCG) composed of 10 players that did not have muscular imbalances and a Resistance Training Experimental Group (RTEG) composed of 14 players that had muscular imbalances. All players followed a resistance training program for six weeks, two times per week, during the transition period. The program of individualized strength training consisted of two parts. The first part, which was identical in terms of the choice of training loads, was intended for both training groups and contained two series of exercises including upper and lower body exercises. The second part of the program was intended only for RTEG and consisted of two additional series for the groups of muscles that had identified unilateral and bilateral differences. The applied program showed various directions in the isokinetic profile of changes. In the case of RTCG, the adaptations related mainly to the quadriceps muscle (the peak torque (PT) change for the dominant leg was statistically significant (p < 0.05)). There were statistically significant changes in RTEG (p < 0.05) related to PT for the hamstrings in both legs, which in turn resulted in an increase in the conventional hamstring/quadriceps ratio (H/Q). It is interesting that the statistically significant (p < 0.05) changes were noted only for the dominant leg. No statistically significant changes in bilateral differences (BD) were noted in either group. These results indicate that individualized resistance training programs could provide additional benefits to traditional strength training protocols to improve muscular imbalances in post-adolescent soccer players. PMID:26630271

  18. Exploring the Link between Serum Phosphate Levels and Low Muscle Strength, Dynapenia, and Sarcopenia.

    PubMed

    Chen, Yuan-Yuei; Kao, Tung-Wei; Chou, Cheng-Wai; Wu, Chen-Jung; Yang, Hui-Fang; Lai, Ching-Huang; Wu, Li-Wei; Chen, Wei-Liang

    2018-02-23

    Emerging evidences addressed an association between phosphate and muscle function. Because little attention was focused on this issue, the objective of our study was to explore the relationship of phosphate with muscle strength, dynapenia, and sarcopenia. From the National Health and Nutrition Examination Survey, a total of 7421 participants aged 20 years or older were included in our study with comprehensive examinations included anthropometric parameters, strength of the quadriceps muscle, and appendicular lean masses. Within the normal range of serum phosphate, we used quartile-based analyses to determine the potential relationships of serum phosphate with dynapenia, and sarcopenia through multivariate regression models. After adjusting for the pertinent variables, an inverse association between the serum phosphate quartiles and muscle strength was observed and the linear association was stronger than other anthropometric parameters. Notably, the significant association between phosphate and muscle strength was existed in >65 years old age group, not in 20-65 years old. The higher quartiles of phosphate had higher likelihood for predicting the presence of dynapenia rather than sarcopenia in entire population. Our study highlighted that higher quartiles of phosphate had significant association with lower muscle strength and higher risks for predicting the presence of dynapenia.

  19. Identification of human skeletal muscle miRNA related to strength by high-throughput sequencing.

    PubMed

    Mitchell, Cameron J; D'Souza, Randall F; Schierding, William; Zeng, Nina; Ramzan, Farha; O'Sullivan, Justin M; Poppitt, Sally D; Cameron-Smith, David

    2018-06-01

    The loss of muscle size, strength, and quality with aging is a major determinant of morbidity and mortality in the elderly. The regulatory pathways that impact the muscle phenotype include the translational regulation maintained by microRNAs (miRNA). Yet the miRNAs that are expressed in human skeletal muscle and relationship to muscle size, strength, and quality are unknown. Using next-generation sequencing, we selected the 50 most abundantly expressed miRNAs and then analyzed them in vastus lateralis muscle, obtained by biopsy from middle-aged males ( n = 48; 50.0 ± 4.3 yr). Isokinetic strength testing and midthigh computed tomography was undertaken for muscle phenotype analysis. Muscle attenuation was measured by computerized tomography and is inversely proportional to myofiber lipid content. miR-486-5p accounted for 21% of total miR sequence reads, with miR-10b-5p, miR-133a-3p, and miR-22-3p accounting for a further 15, 12, and 10%, respectively. Isokinetic knee extension strength and muscle cross-sectional area were positively correlated with miR-100-5p, miR-99b-5p, and miR-191-5p expression. Muscle attenuation was negatively correlated to let-7f-5p, miR-30d-5p, and miR-125b-5p expression. In silico analysis implicates miRNAs related to strength and muscle size in the regulation of mammalian target of rapamycin, while miRNAs related to muscle attenuation may have potential roles regulating the transforming growth factor-β/SMAD3 pathway.

  20. Effects of isokinetic calf muscle exercise program on muscle strength and venous function in patients with chronic venous insufficiency.

    PubMed

    Ercan, Sabriye; Çetin, Cem; Yavuz, Turhan; Demir, Hilmi M; Atalay, Yurdagül B

    2018-05-01

    Objective The aim of this study was to observe the change of the ankle joint range of motion, the muscle strength values measured with an isokinetic dynamometer, pain scores, quality of life scale, and venous return time in chronic venous insufficiency diagnosed patients by prospective follow-up after 12-week exercise program including isokinetic exercises. Methods The patient group of this study comprised 27 patients (23 female, 4 male) who were diagnosed with chronic venous insufficiency. An exercise program including isokinetic exercise for the calf muscle was given to patients three days per week for 12 weeks. At the end of 12 weeks, five of the patients left the study due to inadequate compliance with the exercise program. As a result, control data of 22 patients were included. Ankle joint range of active motion, isokinetic muscle strength, pain, quality of life, and photoplethysmography measurements were assessed before starting and after the exercise program. Results Evaluating changes of the starting and control data depending on time showed that all isokinetic muscle strength measurement parameters, range of motion, and overall quality of life values of patients improved. Venous return time values have also increased significantly ( p < 0.05). Conclusion In conclusion, increase in muscle strength has been provided with exercise therapy in patients with chronic venous insufficiency. It has been determined that the increase in muscle strength affected the venous pump and this ensured improvement in venous function and range of motion of the ankle. In addition, it has been detected that pain reduced and quality of life improved after the exercise program.

  1. Changes in muscle strength in individuals with statin-induced myopathy: A summary of 3 investigations.

    PubMed

    Panza, Gregory A; Taylor, Beth A; Dada, Marcin R; Thompson, Paul D

    2015-01-01

    There are inconsistent findings regarding muscular weakness in individuals with statin-induced myalgia. We used rigorous muscle testing to compare findings from 3 investigations in 3 different study populations to determine if statin myalgia is associated with measurable weakness. In all 3 studies, we measured maximal isometric handgrip strength, resting respiratory exchange ratio (RER), and knee extensor isometric and isokinetic force. In 2 of the 3 studies, elbow flexor isometric and isokinetic force and knee endurance fatigue index were also assessed. Knee extensor and elbow flexor measurements were obtained using an isokinetic dynamometer. Resting RER was measured using a metabolic breath-by-breath collection method. Measurement outcomes were compared on vs off drug. In study 1, 18 participants fit the criteria for statin myalgia. Participants taking atorvastatin 80 mg daily had significantly lower muscle strength in 5 (P < .05) of 14 measured variables. Participants on placebo (N = 10) with myalgia had significantly lower muscle strength in 4 (P < .05) of 14 measured variables. In study 2, 18 participants tested positive for statin-induced myalgia when receiving simvastatin 20 mg daily and displayed no significant muscle strength changes (all P > .05). In study 3, 11 patients with statin-induced myalgia completed the study and had a significant decrease in 2 (P < .05) of 10 leg muscle strength variables. In all 3 studies, no significant changes were shown for handgrip strength or RER (all P > .05). Our results indicate that after a short-term treatment with statin therapy, a rigorous muscle strength protocol does not show decrements of muscle strength in subjects with statin myalgia. Short-term treatment with statin therapy is not common in clinical practice. Thus, future studies should examine the effects of prolonged statin therapy on muscle strength. Published by Elsevier Inc.

  2. Foot and ankle muscle strength in people with gout: A two-arm cross-sectional study.

    PubMed

    Stewart, Sarah; Mawston, Grant; Davidtz, Lisa; Dalbeth, Nicola; Vandal, Alain C; Carroll, Matthew; Morpeth, Trish; Otter, Simon; Rome, Keith

    2016-02-01

    Foot and ankle structures are the most commonly affected in people with gout. However, the effect of gout on foot and ankle muscle strength is not well understood. The primary aim of this study was to determine whether differences exist in foot and ankle muscle strength for plantarflexion, dorsiflexion, inversion and eversion between people with gout and age- and sex-matched controls. The secondary aim was to determine whether foot and ankle muscle strength was correlated with foot pain and disability. Peak isokinetic concentric muscle torque was measured for ankle plantarflexion, dorsiflexion, eversion and inversion in 20 participants with gout and 20 matched controls at two testing velocities (30°/s and 120°/s) using a Biodex dynamometer. Foot pain and disability was measured using the Manchester Foot Pain and Disability Index (MFPDI). Participants with gout demonstrated reduced muscle strength at both the 30°/s and 120°/s testing velocities for plantarflexion, inversion and eversion (P<0.05). People with gout also displayed a reduced plantarflexion-to-dorsiflexion strength ratio at both 30°/s and 120°/s (P<0.05). Foot pain and disability was higher in people with gout (P<0.0001) and MFPDI scores were inversely correlated with plantarflexion and inversion muscle strength at the 30°/s testing velocity, and plantarflexion, inversion and eversion muscle strength at the 120°/s testing velocity (all P<0.05). People with gout have reduced foot and ankle muscle strength and experience greater foot pain and disability compared to controls. Foot and ankle strength reductions are strongly associated with increased foot pain and disability in people with gout. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Muscle strength and endurance following lowerlimb suspension in man

    NASA Technical Reports Server (NTRS)

    Tesch, Per A.; Berg, Hans E.; Haggmark, Tom; Ohlsen, Hans; Dudley, Gary A.

    1991-01-01

    The effect of lower-limb suspension on the muscle strength and muscle endurance was investigated in six men subjected to four weeks of unilateral unloading of a lower limb (using of a harness attached to a modified shoe), followed by seven weeks of weight-bearing recovery. Results showed a decrease in the cross-sectional area (CSA) of the thigh muscle and in the average peak torque (APT) during three bouts of 30 concentric knee extensions. While the the thigh muscle CSA returned to normal after seven weeks of recovery, the APT recovery was still reduced by 11 percent, suggesting that muscle metabolic function was severely affected by unloading and was not restored by ambulation.

  4. Intra- and interrater reliability of three different MRI grading and classification systems after acute hamstring injuries.

    PubMed

    Wangensteen, Arnlaug; Tol, Johannes L; Roemer, Frank W; Bahr, Roald; Dijkstra, H Paul; Crema, Michel D; Farooq, Abdulaziz; Guermazi, Ali

    2017-04-01

    To assess and compare the intra- and interrater reliability of three different MRI grading and classification systems after acute hamstring injury. Male athletes (n=40) with clinical diagnosis of acute hamstring injury and MRI ≤5days were selected from a prospective cohort. Two radiologists independently evaluated the MRIs using standardised scoring form including the modified Peetrons grading system, the Chan acute muscle strain injury classification and the British Athletics Muscle Injury Classification. Intra-and interrater reliability was assessed with linear weighted kappa (κ) or unweighted Cohen's κ and percentage agreement was calculated. We observed 'substantial' to 'almost perfect' intra- (κ range 0.65-1.00) and interrater reliability (κ range 0.77-1.00) with percentage agreement 83-100% and 88-100%, respectively, for severity gradings, overall anatomical sites and overall classifications for the three MRI systems. We observed substantial variability (κ range -0.05 to 1.00) for subcategories within the Chan classification and the British Athletics Muscle Injury Classification, however, the prevalence of positive scorings was low for some subcategories. The modified Peetrons grading system, overall Chan classification and overall British Athletics Muscle Injury Classification demonstrated 'substantial' to 'almost perfect' intra- and interrater reliability when scored by experienced radiologists. The intra- and interrater reliability for the anatomical subcategories within the classifications remains unclear. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Evaluation of peripheral muscle strength of patients undergoing elective cardiac surgery: a longitudinal study

    PubMed Central

    Santos, Kelli Maria Souza; de Cerqueira Neto, Manoel Luiz; Carvalho, Vitor Oliveira; de Santana Filho, Valter Joviniano; da Silva Junior, Walderi Monteiro; Araújo Filho, Amaro Afrânio; Cerqueira, Telma Cristina Fontes; Cacau, Lucas de Assis Pereira

    2014-01-01

    Introduction Peripheral muscle strength has been little explored in the literature in the context of cardiac rehabilitation. Objective To evaluate the peripheral muscle strength of patients undergoing elective cardiac surgery. Methods This was a longitudinal observational study. The peripheral muscle strength was measured using isometric dynamometry lower limb (knee extensors and flexors) at three different times: preoperatively (M1), the day of discharge (M2) and hospital discharge (M3). Participants received physiotherapy pre and postoperatively during the days of hospitalization during the morning and afternoon. Results Twenty-two patients were evaluated. The values of peripheral muscle strength of knee extensors preoperative found were about 50% lower than those predicted for the healthy population. When comparing muscle strength prior (M1), with the remaining evaluation, found himself in a fall of 29% for the movement of knee extension and 25% for knee flexion in M2 and a decrease of 10% movement for knee extension and 13% for knee flexion in M3 when comparing with M1. Conclusion The values of peripheral muscle strength prior of the study patients were lower than predicted for the healthy population of the same age. After the surgical event this reduction is even more remarkable, being reestablished until the time of discharge, to values close to baseline. PMID:25372909

  6. Cardiopulmonary fitness and muscle strength in patients with osteogenesis imperfecta type I.

    PubMed

    Takken, Tim; Terlingen, Heike C; Helders, Paul J M; Pruijs, Hans; Van der Ent, Cornelis K; Engelbert, Raoul H H

    2004-12-01

    To evaluate cardiopulmonary function, muscle strength, and cardiopulmonary fitness (VO 2 peak) in patients with osteogenesis imperfecta (OI). In 17 patients with OI type I (mean age 13.3 +/- 3.9 years) cardiopulmonary function was assessed at rest using spirometry, plethysmography, electrocardiography, and echocardiography. Exercise capacity was measured using a maximal exercise test on a bicycle ergometer and an expired gas analysis system. Muscle strength in shoulder abductors, hip flexors, ankle dorsal flexor, and grip strength were measured. All results were compared with reference values. Cardiopulmonary function at rest was within normal ranges, but when it was compared with normal height for age and sex, vital capacities were reduced. Mean absolute and relative VO 2 peak were respectively -1.17 (+/- 0.67) and -1.41 (+/- 1.52) standard deviations lower compared with reference values ( P < .01). Muscle strength also was significantly reduced in patients with OI, ranging from -1.24 +/- 1.40 to -2.88 +/- 2.67 standard deviations lower compared with reference values. In patients with OI type I, no pulmonary or cardiac abnormalities at rest were found. The exercise tolerance and muscle strength were significantly reduced in patients with OI, which might account for their increased levels of fatigue during activities of daily living.

  7. Longer Interset Rest Periods Enhance Muscle Strength and Hypertrophy in Resistance-Trained Men.

    PubMed

    Schoenfeld, Brad J; Pope, Zachary K; Benik, Franklin M; Hester, Garrett M; Sellers, John; Nooner, Josh L; Schnaiter, Jessica A; Bond-Williams, Katherine E; Carter, Adrian S; Ross, Corbin L; Just, Brandon L; Henselmans, Menno; Krieger, James W

    2016-07-01

    Schoenfeld, BJ, Pope, ZK, Benik, FM, Hester, GM, Sellers, J, Nooner, JL, Schnaiter, JA, Bond-Williams, KE, Carter, AS, Ross, CL, Just, BL, Henselmans, M, and Krieger, JW. Longer interset rest periods enhance muscle strength and hypertrophy in resistance-trained men. J Strength Cond Res 30(7): 1805-1812, 2016-The purpose of this study was to investigate the effects of short rest intervals normally associated with hypertrophy-type training versus long rest intervals traditionally used in strength-type training on muscular adaptations in a cohort of young, experienced lifters. Twenty-one young resistance-trained men were randomly assigned to either a group that performed a resistance training (RT) program with 1-minute rest intervals (SHORT) or a group that employed 3-minute rest intervals (LONG). All other RT variables were held constant. The study period lasted 8 weeks with subjects performing 3 total body workouts a week comprised 3 sets of 8-12 repetition maximum (RM) of 7 different exercises per session. Testing was performed prestudy and poststudy for muscle strength (1RM bench press and back squat), muscle endurance (50% 1RM bench press to failure), and muscle thickness of the elbow flexors, triceps brachii, and quadriceps femoris by ultrasound imaging. Maximal strength was significantly greater for both 1RM squat and bench press for LONG compared to SHORT. Muscle thickness was significantly greater for LONG compared to SHORT in the anterior thigh, and a trend for greater increases was noted in the triceps brachii (p = 0.06) as well. Both groups saw significant increases in local upper body muscle endurance with no significant differences noted between groups. This study provides evidence that longer rest periods promote greater increases in muscle strength and hypertrophy in young resistance-trained men.

  8. Does grip strength reflect isokinetic muscle strength in lower limbs in patients with chronic inflammatory demyelinating polyneuropathy?

    PubMed

    Knak, Kirsten L; Andersen, Linda K; Christiansen, Ingelise; Markvardsen, Lars K

    2018-03-30

    Grip strength (GS) is a common measure of general muscle strength in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). However, it is important to investigate the correlation and responsiveness of GS compared with isokinetic muscle strength (IKS) and function of the lower limbs. Seventy patients with CIDP were evaluated with GS, IKS, and functional measures of the lower limbs. Reevaluation was performed after 2 and 10/12 weeks. Correlation and response analyses were performed. GS correlated with IKS at the ankle (IKS ankle ; maximum Spearman's rank-order correlation [R S ] = 0.58) and with walking performance (maximum R S  = -0.38). IKS ankle was more responsive to detect change (standardized response mean [SRM] = 0.57) than GS (SRM = 0.27). GS does not seem to be an appropriate surrogate measure of IKS and function of the lower limbs in patients with CIDP. Muscle Nerve, 2018. © 2018 Wiley Periodicals, Inc.

  9. Co-activation: its association with weakness and specific neurological pathology

    PubMed Central

    Busse, Monica E; Wiles, Charles M; van Deursen, Robert WM

    2006-01-01

    Background Net agonist muscle strength is in part determined by the degree of antagonist co-activation. The level of co-activation might vary in different neurological disorders causing weakness or might vary with agonist strength. Aim This study investigated whether antagonist co-activation changed a) with the degree of muscle weakness and b) with the nature of the neurological lesion causing weakness. Methods Measures of isometric quadriceps and hamstrings strength were obtained. Antagonist (hamstring) co-activation during knee extension was calculated as a ratio of hamstrings over quadriceps activity both during an isometric and during a functional sit to stand (STS) task (using kinematics) in groups of patients with extrapyramidal (n = 15), upper motor neuron (UMN) (n = 12), lower motor neuron (LMN) with (n = 18) or without (n = 12) sensory loss, primary muscle or neuromuscular junction disorder (n = 17) and in healthy matched controls (n = 32). Independent t-tests or Mann Witney U tests were used to compare between the groups. Correlations between variables were also investigated. Results In healthy subjects mean (SD) co-activation of hamstrings during isometric knee extension was 11.8 (6.2)% and during STS was 20.5 (12.9)%. In patients, co-activation ranged from 7 to 17% during isometric knee extension and 15 to 25% during STS. Only the extrapyramidal group had lower co-activation levels than healthy matched controls (p < 0.05). Agonist isometric muscle strength and co-activation correlated only in muscle disease (r = -0.6, p < 0.05) and during STS in UMN disorders (r = -0.7, p < 0.5). Conclusion It is concluded that antagonist co-activation does not systematically vary with the site of neurological pathology when compared to healthy matched controls or, in most patient groups, with strength. The lower co-activation levels found in the extrapyramidal group require confirmation and further investigation. Co-activation may be relevant to individuals with muscle

  10. Upper Extremity Muscle Volumes and Functional Strength After Resistance Training in Older Adults

    PubMed Central

    Daly, Melissa; Vidt, Meghan E.; Eggebeen, Joel D.; Simpson, W. Greg; Miller, Michael E.; Marsh, Anthony P.; Saul, Katherine R.

    2014-01-01

    Aging leads to a decline in strength and an associated loss of independence. The authors examined changes in muscle volume, maximum isometric joint moment, functional strength, and 1-repetition maximum (1RM) after resistance training (RT) in the upper extremity of older adults. They evaluated isometric joint moment and muscle volume as predictors of functional strength. Sixteen healthy older adults (average age 75 ± 4.3 yr) were randomized to a 6-wk upper extremity RT program or control group. The RT group increased 1RM significantly (p < .01 for all exercises). Compared with controls, randomization to RT led to greater functional pulling strength (p = .003), isometric shoulder-adduction moment (p = .041), elbow-flexor volume (p = .017), and shoulder-adductor volume (p = .009). Shoulder-muscle volumes and isometric moments were good predictors of functional strength. The authors conclude that shoulder strength is an important factor for performing functional reaching and pulling tasks and a key target for upper extremity RT interventions. PMID:22952203

  11. Proximal hamstring strains of stretching type in different sports: injury situations, clinical and magnetic resonance imaging characteristics, and return to sport.

    PubMed

    Askling, Carl M; Tengvar, Magnus; Saartok, Tönu; Thorstensson, Alf

    2008-09-01

    Hamstring strains can be of at least 2 types, 1 occurring during high-speed running and the other during motions in which the hamstring muscles reach extreme lengths, as documented for sprinters and dancers. Hamstring strains in different sports, with similar injury situations to dancers, also show similarities in symptoms, injury location, and recovery time. Case series (prognosis); Level of evidence, 4. Thirty subjects from 21 different sports were prospectively included. All subjects were examined clinically and with magnetic resonance imaging (MRI). The follow-up period lasted until the subjects returned to or finished their sport activity. All injuries occurred during movements reaching a position with combined extensive hip flexion and knee extension. They were located proximally in the posterior thigh, close to the ischial tuberosity. The injuries were often complex, but 83% involved the semimembranosus and its proximal free tendon. Fourteen subjects (47%) decided to end their sports activity. For the remaining 16 subjects, the median time for return to sport was 31 weeks (range, 9-104). There were no significant correlations between specific clinical or MRI parameters and time to return to sport. In different sports, an injury situation in which the hamstring muscles reach extensive length causes a specific injury to the proximal posterior thigh, earlier described in dancers. Because of the prolonged recovery time associated with this type of injury, correct diagnosis, based on history and palpation, and adequate information to the subject are essential.

  12. Muscle strength is associated with vitamin D receptor gene variants.

    PubMed

    Bozsodi, Arpad; Boja, Sara; Szilagyi, Agnes; Somhegyi, Annamaria; Varga, Peter Pal; Lazary, Aron

    2016-11-01

    Vitamin D receptor (VDR) is an important candidate gene in muscle function. Scientific reports on the effect of its genetic variants on muscle strength are contradictory likely due to the inconsistent study designs. Hand grip strength (HGS) is a highly heritable phenotype of muscle strength but only limited studies are available on its genetic background. Association between VDR polymorphisms and HGS has been poorly investigated and previous reports are conflicting. We studied the effect of VDR gene variants on HGS in a sample of 706 schoolchildren. Genomic DNA was extracted from saliva samples and six candidate single nucleotide polymorphisms (SNPs) across the VDR gene were genotyped with Sequenom MassARRAY technique. HGS was measured with a digital dynamometer in both hands. Single marker and haplotype associations were adjusted for demographic parameters. Three SNPs, rs4516035 (A1012G; p = 0.009), rs1544410 (BsmI; p = 0.010), and rs731236 (TaqI; p = 0.038) and a 3' UTR haploblock constructed by three SNPs (Bsml-Taq1-rs10783215; p < 0.005) showed significantly associations with HGS of the dominant hand. In the non-dominant hand, the effects of the A1012G (p = 0.034) and the 3' UTR haploblock (p < 0.01) on HGS were also significant. Since the promoter SNP (A10112G) and the 3' UTR haplotype were proved to be associated with the expression and the stability of the VDR mRNA in earlier studies, VDR variants can be supposed to have a direct effect on muscle strength. The individual genetic patterns can also explain the inconsistency of the previously published clinical results on the association between vitamin D and muscle function. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2031-2037, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Thigh Muscle Activity, Knee Motion, and Impact Force During Side-Step Pivoting in Agility-Trained Female Basketball Players

    PubMed Central

    Wilderman, Danielle R; Ross, Scott E; Padua, Darin A

    2009-01-01

    Context: Improving neuromuscular control of hamstrings muscles might have implications for decreasing anterior cruciate ligament injuries in females. Objective: To examine the effects of a 6-week agility training program on quadriceps and hamstrings muscle activation, knee flexion angles, and peak vertical ground reaction force. Design: Prospective, randomized clinical research trial. Setting: Sports medicine research laboratory. Patients or Other Participants: Thirty female intramural basketball players with no history of knee injury (age  =  21.07 ± 2.82 years, height  =  171.27 ± 4.66 cm, mass  =  66.36 ± 7.41 kg). Intervention(s): Participants were assigned to an agility training group or a control group that did not participate in agility training. Participants in the agility training group trained 4 times per week for 6 weeks. Main Outcome Measure(s): We used surface electromyography to assess muscle activation for the rectus femoris, vastus medialis oblique, medial hamstrings, and lateral hamstrings for 50 milliseconds before initial ground contact and while the foot was in contact with the ground during a side-step pivot maneuver. Knee flexion angles (at initial ground contact, maximum knee flexion, knee flexion displacement) and peak vertical ground reaction force also were assessed during this maneuver. Results: Participants in the training group increased medial hamstrings activation during ground contact after the 6-week agility training program. Both groups decreased their vastus medialis oblique muscle activation during ground contact. Knee flexion angles and peak vertical ground reaction force did not change for either group. Conclusions: Agility training improved medial hamstrings activity in female intramural basketball players during a side-step pivot maneuver. Agility training that improves hamstrings activity might have implications for reducing anterior cruciate ligament sprain injury associated with side-step pivots. PMID

  14. Relationship between agility and lower limb muscle strength, targeting university badminton players.

    PubMed

    Sonoda, Takuya; Tashiro, Yuto; Suzuki, Yusuke; Kajiwara, Yu; Zeidan, Hala; Yokota, Yuki; Kawagoe, Mirei; Nakayama, Yasuaki; Bito, Tsubasa; Shimoura, Kanako; Tatsumi, Masataka; Nakai, Kengo; Nishida, Yuichi; Yoshimi, Soyoka; Aoyama, Tomoki

    2018-02-01

    [Purpose] Targeting university badminton players, this study investigated the relationship between agility, which is associated with performance in badminton, and lower limb muscle strength, and examined which muscles influence agility. [Subjects and Methods] A total of 23 male university badminton players were evaluated for side-shuffle test scores and lower limb strength. The relationships between agility, lower limb strength, and duration of experience playing badminton were evaluated using a correlation analysis. Moreover, the relationship between agility and lower limb strength was evaluated by partial correlation analysis, adjusting for the effects of experience of each badminton player. [Results] The agility score correlated with hip extension and ankle plantar flexion strength, with adjustment for badminton experience. [Conclusion] This study suggests that hip extension training and improvement in ankle plantar flexion strength may improve agility.

  15. Decreased neck muscle strength in patients with the loss of cervical lordosis.

    PubMed

    Alpayci, Mahmut; Şenköy, Emre; Delen, Veysel; Şah, Volkan; Yazmalar, Levent; Erden, Metin; Toprak, Murat; Kaplan, Şeyhmus

    2016-03-01

    The loss of cervical lordosis is associated with some negative clinical outcomes. No previous study has examined cervical muscle strength, specifically in patients with the loss of cervical lordosis. This study aims to investigate whether there is weakness of the cervical muscles or an imbalance between cervical flexor and extensor muscle strength in patients with the loss of cervical lordosis compared with healthy controls matched by age, gender, body mass index (BMI), and employment status. Thirty-two patients with the loss of cervical lordosis (23 F, 9 M) and 31 healthy volunteers (23 F, 8 M) were included in the study. Maximal isometric neck extension and flexion strength, and the strength ratio between extension and flexion were used as evaluation parameters. All measurements were conducted by a blinded assessor using a digital force gauge. The participants were positioned on a chair in a neutral cervical position and without the trunk inclined during measurements. Maximal isometric neck extension and flexion strength values were significantly lower in the patients versus healthy controls (P<0.001 and P=0.040, respectively). The mean (SD) values of the extension/flexion ratio were 1.21 (0.34) in the patients and 1.46 ± 0.33 in the controls (P=0.004). According to our results, patients with the loss of cervical lordosis have reduced neck muscle strength, especially in the extensors. These findings may be beneficial for optimizing cervical exercise prescriptions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Balance and ankle muscle strength predict spatiotemporal gait parameters in individuals with diabetic peripheral neuropathy.

    PubMed

    Camargo, Marcela R; Barela, José A; Nozabieli, Andréa J L; Mantovani, Alessandra M; Martinelli, Alessandra R; Fregonesi, Cristina E P T

    2015-01-01

    The aims of this study were to evaluate aspects of balance, ankle muscle strength and spatiotemporal gait parameters in individuals with diabetic peripheral neuropathy (DPN) and verify whether deficits in spatiotemporal gait parameters were associated with ankle muscle strength and balance performance. Thirty individuals with DPN and 30 control individuals have participated. Spatiotemporal gait parameters were evaluated by measuring the time to walk a set distance during self-selected and maximal walking speeds. Functional mobility and balance performance were assessed using the Functional Reach and the Time Up and Go tests. Ankle isometric muscle strength was assessed with a handheld digital dynamometer. Analyses of variance were employed to verify possible differences between groups and conditions. Multiple linear regression analysis was employed to uncover possible predictors of gait deficits. Gait spatiotemporal, functional mobility, balance performance and ankle muscle strength were affected in individuals with DPN. The Time Up and Go test performance and ankle muscle isometric strength were associated to spatiotemporal gait changes, especially during maximal walking speed condition. Functional mobility and balance performance are damaged in DPN and balance performance and ankle muscle strength can be used to predict spatiotemporal gait parameters in individuals with DPN. Copyright © 2015 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  17. Functional Capacity in Adults With Cerebral Palsy: Lower Limb Muscle Strength Matters.

    PubMed

    Gillett, Jarred G; Lichtwark, Glen A; Boyd, Roslyn N; Barber, Lee A

    2018-05-01

    To investigate the relation between lower limb muscle strength, passive muscle properties, and functional capacity outcomes in adults with cerebral palsy (CP). Cross-sectional study. Tertiary institution biomechanics laboratory. Adults with spastic-type CP (N=33; mean age, 25y; range, 15-51y; mean body mass, 70.15±21.35kg) who were either Gross Motor Function Classification System (GMFCS) level I (n=20) or level II (n=13). Not applicable. Six-minute walk test (6MWT) distance (m), lateral step-up (LSU) test performance (total repetitions), timed up-stairs (TUS) performance (s), maximum voluntary isometric strength of plantar flexors (PF) and dorsiflexors (DF) (Nm.kg -1 ), and passive ankle joint and muscle stiffness. Maximum isometric PF strength independently explained 61% of variance in 6MWT performance, 57% of variance in LSU test performance, and 50% of variance in TUS test performance. GMFCS level was significantly and independently related to all 3 functional capacity outcomes, and age was retained as a significant independent predictor of LSU and TUS test performance. Passive medial gastrocnemius muscle fascicle stiffness and ankle joint stiffness were not significantly related to functional capacity measures in any of the multiple regression models. Low isometric PF strength was the most important independent variable related to distance walked on the 6MWT, fewer repetitions on the LSU test, and slower TUS test performance. These findings suggest lower isometric muscle strength contributes to the decline in functional capacity in adults with CP. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. The variation of the strength of neck extensor muscles and semispinalis capitis muscle size with head and neck position.

    PubMed

    Rezasoltani, A; Nasiri, R; Faizei, A M; Zaafari, G; Mirshahvelayati, A S; Bakhshidarabad, L

    2013-04-01

    Semispinalis capitis muscle (SECM) is a massive and long cervico-thoracic muscle which functions as a main head and neck extensor muscle. The aim of this study was to detect the effect of head and neck positions on the strength of neck extensor muscles and size of SECM in healthy subjects. Thirty healthy women students voluntarily participated in this study. An ultrasonography apparatus (Hitachi EUB 525) and a system of tension-meter were used to scan the right SECM at the level of third cervical spine and to measure the strength of neck extensor muscles at three head and neck positions. Neck extensor muscles were stronger in neutral than flexion or than extension positions while the size of SECM was larger in extension than neutral or than flexion position. The force generation capacity of the main neck extensor muscle was lower at two head and neck flexion and extension positions than neutral position. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Long-Term Outcomes of Anterior Cruciate Ligament Reconstruction Using Either Synthetics With Remnant Preservation or Hamstring Autografts: A 10-Year Longitudinal Study.

    PubMed

    Chen, Tianwu; Zhang, Peng; Chen, Jiwu; Hua, Yinghui; Chen, Shiyi

    2017-10-01

    The optimal graft choice of anterior cruciate ligament (ACL) reconstruction remains controversial. To compare the outcomes, especially the long-term cumulative failure rate, of ACL reconstruction using either synthetics with remnant preservation or hamstring autografts (4-strand semitendinosus and gracilis tendons). Cohort study; Level of evidence, 2. A total of 133 patients who underwent ACL reconstruction (synthetics: n = 43; hamstring autografts: n = 90) between July 2004 and December 2007 were included. Questionnaires (Tegner activity scale, Lysholm knee scale, and International Knee Documentation Committee [IKDC] subjective form) were completed preoperatively and at 6 months, 1 year, 5 years, and 10 years postoperatively. The Knee injury and Osteoarthritis Outcome Score (KOOS) was additionally applied at 10 years' follow-up. The physical examination was based on the 2000 IKDC form. The manual maximum side-to-side difference (KT-1000 arthrometer), single-hop test, thigh muscle atrophy, and joint degeneration (Kellgren and Lawrence classification) were evaluated. The Kaplan-Meier curve and log-rank test (Mantel-Cox, 95% CI) were used to compare graft survivorship. Ten years postoperatively, 111 patients were available, with 38 (88.4%) patients (mean age, 27.6 ± 9.3 years; 28 men) with synthetics and 73 (81.1%) patients (mean age, 28.6 ± 8.8 years; 64 men) with hamstring autografts. Among them, 104 patients (synthetics: n = 35 [81.4%]; hamstring autografts: n = 69 [76.7%]) completed subjective evaluations, and 89 patients (synthetics: n = 30 [69.8%]; hamstring autografts: n = 59 [65.6%]) completed objective evaluations. For hamstring autografts and synthetics, the cumulative failure rates were 8.2% and 7.9%, respectively, and the log-rank test demonstrated no significant difference between the 2 Kaplan-Meier survival curves ( P = .910). At 6 months postoperatively, for hamstring autografts and synthetics, the mean Lysholm score was 83.0 ± 7.8 and 88.1 ± 7

  20. Strength characterization of knee flexor and extensor muscles in Prader-Willi and obese patients.

    PubMed

    Capodaglio, Paolo; Vismara, Luca; Menegoni, Francesco; Baccalaro, Gabriele; Galli, Manuela; Grugni, Graziano

    2009-05-06

    despite evidence of an obesity-related disability, there is a lack of objective muscle functional data in overweight subjects. Only few studies provide instrumental strength measurements in non-syndromal obesity, whereas no data about Prader-Willi syndrome (PWS) are reported. The aim of our study was to characterize the lower limb muscle function of patients affected by PWS as compared to non-syndromal obesity and normal-weight subjects. We enrolled 20 obese (O) females (age: 29.1 +/- 6.5 years; BMI: 38.1 +/- 3.1), 6 PWS females (age: 27.2 +/- 4.9 years; BMI: 45.8 +/- 4.4) and 14 healthy normal-weight (H) females (age: 30.1 +/- 4.7 years; BMI: 21 +/- 1.6). Isokinetic strength during knee flexion and extension in both lower limbs at the fixed angular velocities of 60 degrees /s, 180 degrees /s, 240 degrees /s was measured with a Cybex Norm dynamometer. the H, O and PWS populations appear to be clearly stratified with regard to muscle strength.: PWS showed the lowest absolute peak torque (PT) for knee flexor and extensor muscles as compared to O (-55%) and H (-47%) (P = 0.00001). O showed significantly higher strength values than H as regard to knee extension only (P = 0.0014). When strength data were normalised by body weight, PWS showed a 50% and a 70% reduction in PT as compared to O and H, respectively. Knee flexors strength values were on average half of those reported for extension in all of the three populations. the novel aspect of our study is the determination of objective measures of muscle strength in PWS and the comparison with O and H patients. The objective characterization of muscle function performed in this study provides baseline and outcome measures that may quantify specific strength deficits amendable with tailored rehabilitation programs and monitor effectiveness of treatments.

  1. National Football League athletes' return to play after surgical reattachment of complete proximal hamstring ruptures.

    PubMed

    Mansour, Alfred A; Genuario, James W; Young, Jason P; Murphy, Todd P; Boublik, Martin; Schlegel, Theodore F

    2013-06-01

    Although hamstring strains are common among professional football players, proximal tendon avulsions are relatively rare. Surgical repair is recommended, but there is no evidence on professional football players return to play (RTP). We hypothesized that surgical reattachment of complete proximal hamstring ruptures in these athletes would enable successful RTP. Ten proximal hamstring avulsions were identified in 10 National Football League (NFL) players between 1990 and 2008. Participating team physicians retrospectively reviewed each player's training room and clinical records, operative notes, and imaging studies. The ruptures were identified and confirmed with magnetic resonance imaging. Of the 10 injuries, 9 had palpable defects. Each of the ruptures was managed with surgical fixation within 10 days of injury. All of the players reported full return of strength and attempted to resume play at the beginning of the following season, with 9 of the 10 actually returning to play. However, despite having no limitations related to the surgical repair, only 5 of the 10 athletes played in more than 1 game. Most NFL players who undergo acute surgical repair of complete proximal hamstring ruptures are able to RTP, but results are mixed regarding long-term participation. This finding may indicate that this injury is a marker for elite-level physical deterioration.

  2. Hamstring Injuries in the Athlete: Diagnosis, Treatment, and Return to Play.

    PubMed

    Chu, Samuel K; Rho, Monica E

    2016-01-01

    Hamstring injuries are very common in athletes. Acute hamstring strains can occur with high-speed running or with excessive hamstring lengthening. Athletes with proximal hamstring tendinopathy often do not report a specific inciting event; instead, they develop the pathology from chronic overuse. A thorough history and physical examination is important to determine the appropriate diagnosis and rule out other causes of posterior thigh pain. Conservative management of hamstring strains involves a rehabilitation protocol that gradually increases intensity and range of motion, and progresses to sport-specific and neuromuscular control exercises. Eccentric strengthening exercises are used for management of proximal hamstring tendinopathy. Studies investigating corticosteroid and platelet-rich plasma injections have mixed results. Magnetic resonance imaging and ultrasound are effective for identification of hamstring strains and tendinopathy but have not demonstrated correlation with return to play. The article focuses on diagnosis, treatment, and return-to-play considerations for acute hamstring strains and proximal hamstring tendinopathy in the athlete.

  3. Hamstring Injuries in the Athlete: Diagnosis, Treatment, and Return to Play

    PubMed Central

    Chu, Samuel K.; Rho, Monica E.

    2016-01-01

    Hamstring injuries are very common in athletes. Acute hamstring strains can occur with high-speed running or with excessive hamstring lengthening. Athletes with proximal hamstring tendinopathy often do not report a specific inciting event; instead they develop the pathology from chronic overuse. A thorough history and examination is important to determine the appropriate diagnosis and rule out other causes of posterior thigh pain. Conservative management of hamstring strains involves a rehabilitation protocol that gradually increases intensity, range of motion and progresses to sport-specific and neuromuscular control exercises. Eccentric strengthening exercises are used for management of proximal hamstring tendinopathy. Studies investigating corticosteroid and platelet-rich plasma injections have mixed results. MRI and ultrasound are effective for identification of hamstring strains and tendinopathy, but have not demonstrated correlation with return to play. The article focuses on diagnosis, treatment and return to play considerations for acute hamstring strains and proximal hamstring tendinopathy in the athlete. PMID:27172083

  4. Road Cycling and Mountain Biking Produces Adaptations on the Spine and Hamstring Extensibility.

    PubMed

    Muyor, J M; Zabala, M

    2016-01-01

    The purposes of this study were as follows: 1) to analyse the influence of training in road cycling or cross-country mountain biking on sagittal spinal curvatures, pelvic tilt and trunk inclination in cyclists of both cycling modalities; 2) to evaluate the specific spinal posture and pelvic tilt adopted on the road bicycle and cross-country mountain bike; and 3) to compare the spinal sagittal capacity of flexion and pelvic tilt mobility as well as hamstring muscle extensibility among road cyclists, cross-country mountain bikers and non-cyclists. Thirty matched road cyclists, 30 mountain bikers and 30 non-cyclists participated in this study. The road cyclists showed significantly greater thoracic kyphosis and trunk inclination than did the mountain bikers and non-cyclists in a standing posture. On the bicycle, the road bicycling posture was characterised by greater lumbar flexion and more significant anterior pelvic tilt and trunk inclination compared with the mountain biking posture. The thoracic spine was more flexed in mountain biking than in road cycling. Road cyclists had significantly greater hamstring muscle extensibility in the active knee extension test, and showed greater anterior pelvic tilt and trunk inclination capacity in the sit-and-reach test, compared with mountain bikers and non-cyclists. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Pelvic floor muscle strength and body self-perception among Brazilian pregnant women.

    PubMed

    Sacomori, Cinara; Cardoso, Fernando Luiz; Vanderlinde, Cristiane

    2010-12-01

    To examine the relationship between pelvic floor muscle strength and body self-perception variables in pregnant women; and, more specifically, to determine the influence of the number of pregnancies (primigravidas vs multigravidas) on the strength of contraction of the pelvic floor muscles and on the body self-perception of pregnant women. Comparative cross-sectional research. Public health centres from Florianópolis, Brazil. Thirty-five pregnant women (18 primigravidas, 17 multigravidas) with a mean age of 25.5 (standard deviation 5.7) years. Pelvic floor strength measured through manual palpation, and body self-perception using the Questionnaire of Corporeality and Human Sexuality. Pelvic floor muscle strength was positively correlated with schooling [rho (ρ)=0.496] and body self-perception variables: finding the body beautiful (ρ=0.476), finding the body sexy (ρ=0.520), feeling that others find them sexy (ρ=0.364), finding the body proportional (ρ=0.412), touching the body generally (ρ=0.554) and recognising the smell of the body (ρ=0.454). Primigravidas found their bodies more beautiful and were more satisfied with their bodies. On a scale of 0 to 6, multigravid participants expressed a greater wish than primigravid participants to be thinner (median difference 2, 95% confidence interval 0-3, P=0.03). Pelvic floor strength did not differ between groups. The results suggest a relationship between pelvic floor muscle strength and body self-perception. Professionals involved in women's health may have a role in helping their patients to understand their bodies. Copyright © 2010 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  6. The impact of type 1 diabetes and diabetic polyneuropathy on muscle strength and fatigability.

    PubMed

    Orlando, Giorgio; Balducci, Stefano; Bazzucchi, Ilenia; Pugliese, Giuseppe; Sacchetti, Massimo

    2017-06-01

    Although it is widely accepted that diabetic polyneuropathy (DPN) is linked to a marked decline in neuromuscular performance, information on the possible impact of type 1 diabetes (T1D) on muscle strength and fatigue remains unclear. The purpose of this study was to investigate the effects of T1D and DPN on strength and fatigability in knee extensor muscles. Thirty-one T1D patients (T1D), 22 T1D patients with DPN (DPN) and 23 matched healthy control participants (C) were enrolled. Maximal voluntary contraction (MVC) and endurance time at an intensity level of 50% of the MVC were assessed at the knee extensor muscles with an isometric dynamometer. Clinical characteristics of diabetic patients were assessed by considering a wide range of vascular and neurological parameters. DPN group had lower knee extensor muscles strength than T1D (-19%) and the C group (-37.5%). T1D group was 22% weaker when compared to the C group. Lower body muscle fatigability of DPN group was 22 and 45.5% higher than T1D and C group, respectively. T1D group possessed a higher fatigability (29.4%) compared to C group. A correlation was found between motor and sensory nerve conduction velocity and muscle strength and fatigability. Patients with T1D are characterised by both a higher fatigability and a lower muscle strength, which are aggravated by DPN. Our data suggest that factors other than nervous damage play a role in the pathogenesis of such defect.

  7. Pelvic floor muscle strength in primiparous women according to the delivery type: cross-sectional study 1

    PubMed Central

    Mendes, Edilaine de Paula Batista; de Oliveira, Sonia Maria Junqueira Vasconcellos; Caroci, Adriana de Souza; Francisco, Adriana Amorim; Oliveira, Sheyla Guimaraes; da Silva, Renata Luana

    2016-01-01

    ABSTRACT Objectives: to compare the pelvic floor muscle strength in primiparous women after normal birth and cesarean section, related to the socio-demographic characteristics, nutritional status, dyspareunia, urinary incontinence, perineal exercise in pregnancy, perineal condition and weight of the newborn. Methods: this was a cross-sectional study conducted after 50 - 70 postpartum days, with 24 primiparous women who underwent cesarean delivery and 72 who had a normal birth. The 9301 PeritronTM was used for analysis of muscle strength. The mean muscle strength was compared between the groups by two-way analysis of variance. Results: the pelvic floor muscle strength was 24.0 cmH2O (±16.2) and 25.4 cmH2O (±14.7) in postpartum primiparous women after normal birth and cesarean section, respectively, with no significant difference. The muscular strength was greater in postpartum women with ≥ 12 years of study (42.0 ±26.3 versus 14.6 ±7.7 cmH2O; p= 0.036) and in those who performed perineal exercises (42.6±25.4 11.8±4.9 vs. cmH2O; p = 0.010), compared to caesarean. There was no difference in muscle strength according to delivery type regarding nutritional status, dyspareunia, urinary incontinence, perineal condition or newborn weight. Conclusion: pelvic floor muscle strength does not differ between primiparous women based on the type of delivery. Postpartum women with normal births, with higher education who performed perineal exercise during pregnancy showed greater muscle strength. PMID:27533267

  8. Minimally Invasive Posterior Hamstring Harvest

    PubMed Central

    Wilson, Trent J.; Lubowitz, James H.

    2013-01-01

    Autogenous hamstring harvesting for knee ligament reconstruction is a well-established standard. Minimally invasive posterior hamstring harvest is a simple, efficient, reproducible technique for harvest of the semitendinosus or gracilis tendon or both medial hamstring tendons. A 2- to 3-cm longitudinal incision from the popliteal crease proximally, in line with the semitendinosus tendon, is sufficient. The deep fascia is bluntly penetrated, and the tendon or tendons are identified. Adhesions are dissected. Then, an open tendon stripper is used to release the tendon or tendons proximally; a closed, sharp tendon stripper is used to release the tendon or tendons from the pes. Layered, absorbable skin closure is performed, and the skin is covered with a skin sealant, bolster dressing, and plastic adhesive bandage for 2 weeks. PMID:24266003

  9. Weight reduction does not induce an undesirable decrease in muscle mass, muscle strength, or physical performance in men with obesity: a pilot study.

    PubMed

    Kim, Bokun; Tsujimoto, Takehiko; So, Rina; Zhao, Xiaoguang; Oh, Sechang; Tanaka, Kiyoji

    2017-12-31

    To date, there have been no reports on whether weight reduction causes decreases in muscle mass, muscle strength, or physical performance that could lead to health problems. Thus, in this pilot study, we investigated the appropriateness of the changes in muscle mass, muscle strength and physical performance after weight reduction. Obese men who completed a weight reduction program to decrease and maintain a body mass index (BMI) of less than 25 kg/m2 for one year were recruited for the study. One year after the completion of a weight reduction program, the participants' muscle mass, muscle strength, and physical performance were compared with those in a reference group composed of individuals whose BMI was less than 25 kg/m2. Whole-body scanning was performed using dual-energy X-ray absorptiometry to analyze muscle mass. Handgrip strength and knee extensor strength were measured to evaluate arm and leg muscle strength, respectively. For physical performance, a jump test was employed. The results showed that the biceps, triceps, subscapular, and suprailiac areas of professional fashion models were significantly thinner than those of women in general (p<.001), and that their waist size was also significantly smaller (p<.001). However, hip circumference showed no significant difference. Body mass index, waist-to-hip ratio, and body fat (%) in professional fashion models were significantly lower than those in women in general (p<.001), while the body density in professional fashion models was significantly greater (p<0.001). Weight reduction participants showed an average reduction in body weight of -16.47%. Normalized arm muscle mass and handgrip strength were significantly greater in the weight reduction group than in the reference group; however, no significant differences were detected between the two groups with respect to the other variables. After one year, there were no significant differences between the two groups. ©2017 The Korean Society for Exercise

  10. Effects of 5 weeks of lower limb suspension on muscle size and strength

    NASA Technical Reports Server (NTRS)

    Tesch, P. A.; Ploutz, L. L.; Dudley, G. A.

    1994-01-01

    Lack of weight-bearing, as occurs in space, appears to be associated with reductions in strength and mass of skeletal muscle. Very limited data, however, is at hand describing changes in skeletal muscle size and function following manned space missions. Our current knowledge therefore is mainly based on studies of space flown rats. It is obvious though that this information, only in part can be extrapolated to humans. A few bed rest studies have demonstrated that decreases in strength and muscle size are substantial. At this time, however, the magnitude or time course of such changes either in response to space flight or simulations of microgravity have not been defined. In the last few years we have employed a human model to simulate unloading of lower limb skeletal muscles that occurs in microgravity. This model was essentially adopted from the rat hindlimb suspension technique. The purpose of this study was to assess the magnitude of decreases in muscle strength and size as a result of five weeks of unilateral lower limb suspension.

  11. Blockade of Metallothioneins 1 and 2 Increases Skeletal Muscle Mass and Strength

    PubMed Central

    Summermatter, Serge; Bouzan, Anais; Pierrel, Eliane; Melly, Stefan; Stauffer, Daniela; Gutzwiller, Sabine; Nolin, Erin; Dornelas, Christina; Fryer, Christy; Leighton-Davies, Juliet; Glass, David J.

    2016-01-01

    ABSTRACT Metallothioneins are proteins that are involved in intracellular zinc storage and transport. Their expression levels have been reported to be elevated in several settings of skeletal muscle atrophy. We therefore investigated the effect of metallothionein blockade on skeletal muscle anabolism in vitro and in vivo. We found that concomitant abrogation of metallothioneins 1 and 2 results in activation of the Akt pathway and increases in myotube size, in type IIb fiber hypertrophy, and ultimately in muscle strength. Importantly, the beneficial effects of metallothionein blockade on muscle mass and function was also observed in the setting of glucocorticoid addition, which is a strong atrophy-inducing stimulus. Given the blockade of atrophy and the preservation of strength in atrophy-inducing settings, these results suggest that blockade of metallothioneins 1 and 2 constitutes a promising approach for the treatment of conditions which result in muscle atrophy. PMID:27956698

  12. Estimation of 1RM for knee extension based on the maximal isometric muscle strength and body composition.

    PubMed

    Kanada, Yoshikiyo; Sakurai, Hiroaki; Sugiura, Yoshito; Arai, Tomoaki; Koyama, Soichiro; Tanabe, Shigeo

    2017-11-01

    [Purpose] To create a regression formula in order to estimate 1RM for knee extensors, based on the maximal isometric muscle strength measured using a hand-held dynamometer and data regarding the body composition. [Subjects and Methods] Measurement was performed in 21 healthy males in their twenties to thirties. Single regression analysis was performed, with measurement values representing 1RM and the maximal isometric muscle strength as dependent and independent variables, respectively. Furthermore, multiple regression analysis was performed, with data regarding the body composition incorporated as another independent variable, in addition to the maximal isometric muscle strength. [Results] Through single regression analysis with the maximal isometric muscle strength as an independent variable, the following regression formula was created: 1RM (kg)=0.714 + 0.783 × maximal isometric muscle strength (kgf). On multiple regression analysis, only the total muscle mass was extracted. [Conclusion] A highly accurate regression formula to estimate 1RM was created based on both the maximal isometric muscle strength and body composition. Using a hand-held dynamometer and body composition analyzer, it was possible to measure these items in a short time, and obtain clinically useful results.

  13. Mind-muscle connection training principle: influence of muscle strength and training experience during a pushing movement.

    PubMed

    Calatayud, Joaquin; Vinstrup, Jonas; Jakobsen, Markus D; Sundstrup, Emil; Colado, Juan Carlos; Andersen, Lars L

    2017-07-01

    To investigate the effect of different attentional focus conditions on muscle activity during the push-up exercise and to assess the possible influence of muscle strength and training experience. Eighteen resistance-trained men performed 1RM bench press testing and were familiarized with the procedure during the first session. In the second session, three different conditions were randomly performed: regular push-up and push-up focusing on using the pectoralis major and triceps brachii muscles, respectively. Surface electromyography (EMG) was recorded and analyzed (EMG normalized to max; nEMG) for the triceps brachii and pectoralis major muscles. Participants had on average 8 (SD 6) years of training experience and 1RM of 1.25 (SD 0.28) kg per kg bodyweight. Focusing on using pectoralis major increased activity in this muscle by 9% nEMG (95% CI 5-13; Cohen's d 0.60) compared with the regular condition. Triceps activity was not significantly influenced by triceps focus although borderline significant, with a mean difference of 5% nEMG (95% CI 0-10; Cohen's d 0.30). However, years of training experience was positively associated with the ability to selectively activate the triceps (β = 0.41, P = 0.04), but not the pectoralis. Bench press 1RM was not significantly associated with the ability to selectively activate the muscles. Pectoralis activity can be increased when focusing on using this muscle during push-ups, whereas the ability to do this for the triceps is dependent on years of training experience. Maximal muscle strength does not appear to be a decisive factor for the ability to selectively activate these muscles.

  14. Sarcopenia during neoadjuvant therapy for oesophageal cancer: characterising the impact on muscle strength and physical performance.

    PubMed

    Guinan, Emer M; Doyle, S L; Bennett, A E; O'Neill, L; Gannon, J; Elliott, J A; O'Sullivan, J; Reynolds, J V; Hussey, J

    2018-05-01

    Preoperative chemo(radio)therapy for oesophageal cancer (OC) may have an attritional impact on body composition and functional status, impacting postoperative outcome. Physical decline with skeletal muscle loss has not been previously characterised in OC and may be amenable to physical rehabilitation. This study characterises skeletal muscle mass and physical performance from diagnosis to post-neoadjuvant therapy in patients undergoing preoperative chemo(radio)therapy for OC. Measures of body composition (axial computerised tomography), muscle strength (handgrip), functional capacity (walking distance), anthropometry (weight, height and waist circumference), physical activity, quality-of-life and nutritional status were captured prospectively. Sarcopenia status was defined as pre-sarcopenic (low muscle mass only), sarcopenic (low muscle mass and low muscle strength or function) or severely sarcopenic (low muscle mass and low muscle strength and low muscle function). Twenty-eight participants were studied at both time points (mean age 62.86 ± 8.18 years, n = 23 male). Lean body mass reduced by 4.9 (95% confidence interval 3.2 to 6.7) kg and mean grip strength reduced by 4.3 (2.5 to 6.1) kg from pre- to post-neoadjuvant therapy. Quality-of-life scores capturing gastrointestinal symptoms improved. Measures of anthropometry, walking distance, physical activity and nutritional status did not change. There was an increase in sarcopenic status from diagnosis (pre-sarcopenic n = 2) to post-treatment (pre-sarcopenic n = 5, severely sarcopenic n = 1). Despite maintenance of body weight, functional capacity and activity habits, participants experience declines in muscle mass and strength. Interventions involving exercise and/or nutritional support to build muscle mass and strength during preoperative therapy, even in patients who are functioning normally, are warranted.

  15. Association Between Muscle Wasting and Muscle Strength in Patients WHO Developed Severe Sepsis and Septic Shock.

    PubMed

    Borges, Rodrigo Cerqueira; Soriano, Francisco Garcia

    2018-05-11

    To evaluate the association between the rectus femoris cross-sectional area (RFCSA) and the muscular strength obtained at the bedside in patients forwarded to the intensive care unit (ICU) for severe sepsis and septic shock. A prospective cohort study. RFCSA was assessed by ultrasound on the following day of the ICU admission and monitored during hospitalization. The patients performed clinical tests of muscle strength (Medical Research Council (MRC) scale and handgrip dynamometry), when they could understand the verbal commands of the examiners. In 37 patients hospitalized for sepsis there was a significant decline in RFCSA of 5.18 (4.49-5.96)cm on the 2nd day of ICU for 4.37 (3.71-5.02)cm at hospital discharge. Differently, the handgrip strength showed an increase from the awakening of 12.00 (7.00-20.00)Kgf to 19.00 (14.00-26.00)Kgf until hospital discharge. Patients in mechanical ventilation had a greater tendency to decline in the RFCSA compared to patients who did not receive mechanical ventilation, however without being significant (p = 0.08). There was a negative association between RFCSA delta (2nd day of ICU - ICU discharge) and handgrip strength (r = 0.51, p < 0.05), and a male and SOFA score positive association with the RFCSA delta. There was an association of RFCSA with clinical muscle strength tests. In addition, it has been shown that sepsis can lead to short-term muscle degradation, regardless of whether they are submitted to mechanical ventilation or not.

  16. Relationship between the skeletal maturation of the distal attachment of the patellar tendon and physical features in preadolescent male football players.

    PubMed

    Nakase, Junsuke; Aiba, Tomohiro; Goshima, Kenichi; Takahashi, Ryohei; Toratani, Tatsuhiro; Kosaka, Masahiro; Ohashi, Yoshinori; Tsuchiya, Hiroyuki

    2014-01-01

    The aim of this study was to compare ultrasonography stages of the tibial tuberosity development and physical features. This study examined 200 knees in 100 male football players aged 10-15 years. Tibial tuberosity development on ultrasonography was divided into 3 stages: Sonolucent stage (stage S), Individual stage (stage I), and Connective stage (stage C). Age, height, quadriceps and hamstring muscle tightness, and muscle strength in knee extension and flexion were determined. These findings were compared with the respective stages of development. The tibial tuberosity was stage S in 27 knees, stage I in 69 knees, and stage C in 104 knees, with right and left sides at the same stage in 95 %. Average age and height significantly increased with advancing tibial tuberosity development. Quadriceps tightness increased with tibial tuberosity development. Hamstring tightness decreased with development. The strength of both knee extension and flexion increased with advancing development, with a greater change seen in knee extension, hamstring/quadriceps ratio: stage C, 0.74; stage A, 0.64; stage E, 0.53. Osgood-Schlatter pathogenesis reportedly involves increased quadriceps tightness with rapidly increasing femoral length during tibial tuberosity development. In this study, it was confirmed that quadriceps tightness increased, yet hamstring tightness decreased, suggesting that quadriceps tightness is not due to femoral length alone. Other factors, including muscle strength, may be involved. The study shows that thigh muscle tightness and thigh muscle performance change with the skeletal maturation of the distal attachment of the patellar tendon. These results add new information to the pathogenesis of Osgood-Schlatter disease.

  17. BUILDING A BETTER GLUTEAL BRIDGE: ELECTROMYOGRAPHIC ANALYSIS OF HIP MUSCLE ACTIVITY DURING MODIFIED SINGLE-LEG BRIDGES.

    PubMed

    Lehecka, B J; Edwards, Michael; Haverkamp, Ryan; Martin, Lani; Porter, Kambry; Thach, Kailey; Sack, Richard J; Hakansson, Nils A

    2017-08-01

    Gluteal strength plays a role in injury prevention, normal gait patterns, eliminating pain, and enhancing athletic performance. Research shows high gluteal muscle activity during a single-leg bridge compared to other gluteal strengthening exercises; however, prior studies have primarily measured muscle activity with the active lower extremity starting in 90 ° of knee flexion with an extended contralateral knee. This standard position has caused reports of hamstring cramping, which may impede optimal gluteal strengthening. The purpose of this study was to determine which modified position for the single-leg bridge is best for preferentially activating the gluteus maximus and medius. Cross-Sectional. Twenty-eight healthy males and females aged 18-30 years were tested in five different, randomized single-leg bridge positions. Electromyography (EMG) electrodes were placed on subjects' gluteus maximus, gluteus medius, rectus femoris, and biceps femoris of their bridge leg (i.e., dominant or kicking leg), as well as the rectus femoris of their contralateral leg. Subjects performed a maximal voluntary isometric contraction (MVIC) for each tested muscle prior to performing five different bridge positions in randomized order. All bridge EMG data were normalized to the corresponding muscle MVIC data. A modified bridge position with the knee of the bridge leg flexed to 135 ° versus the traditional 90 ° of knee flexion demonstrated preferential activation of the gluteus maximus and gluteus medius compared to the traditional single-leg bridge. Hamstring activation significantly decreased (p < 0.05) when the dominant knee was flexed to 135 ° (23.49% MVIC) versus the traditional 90 ° (75.34% MVIC), while gluteal activation remained similarly high (51.01% and 57.81% MVIC in the traditional position, versus 47.35% and 57.23% MVIC in the modified position for the gluteus maximus and medius, respectively). Modifying the traditional single-leg bridge by flexing the

  18. Assessing the accuracy of subject-specific, muscle-model parameters determined by optimizing to match isometric strength.

    PubMed

    DeSmitt, Holly J; Domire, Zachary J

    2016-12-01

    Biomechanical models are sensitive to the choice of model parameters. Therefore, determination of accurate subject specific model parameters is important. One approach to generate these parameters is to optimize the values such that the model output will match experimentally measured strength curves. This approach is attractive as it is inexpensive and should provide an excellent match to experimentally measured strength. However, given the problem of muscle redundancy, it is not clear that this approach generates accurate individual muscle forces. The purpose of this investigation is to evaluate this approach using simulated data to enable a direct comparison. It is hypothesized that the optimization approach will be able to recreate accurate muscle model parameters when information from measurable parameters is given. A model of isometric knee extension was developed to simulate a strength curve across a range of knee angles. In order to realistically recreate experimentally measured strength, random noise was added to the modeled strength. Parameters were solved for using a genetic search algorithm. When noise was added to the measurements the strength curve was reasonably recreated. However, the individual muscle model parameters and force curves were far less accurate. Based upon this examination, it is clear that very different sets of model parameters can recreate similar strength curves. Therefore, experimental variation in strength measurements has a significant influence on the results. Given the difficulty in accurately recreating individual muscle parameters, it may be more appropriate to perform simulations with lumped actuators representing similar muscles.

  19. Determinants of Return to Play After the Nonoperative Management of Hamstring Injuries in Athletes: A Systematic Review.

    PubMed

    Fournier-Farley, Camille; Lamontagne, Martin; Gendron, Patrick; Gagnon, Dany H

    2016-08-01

    It is important for clinicians to rely on suitable prognosis factors after hamstring injuries because of the high incidence of these injuries and time away from athletic activities. To summarize the current literature on factors that influence return to play after a hamstring injury in athletes. Systematic review. A computer-assisted literature search of CINAHL, MEDLINE, Embase, and EBM Reviews databases (and a manual search of the reference lists of all selected articles) was conducted using keywords related to hamstring injuries and return to play. The literature review criteria included (1) patients with an acute hamstring or posterior thigh injury; (2) a randomized controlled trial, cohort study, case-control study, case series, or prospective or retrospective design; (3) information on rehabilitation, physical therapy, clinical assessment, imaging techniques, and return to play; and (4) studies written in English or French. The search strategy identified 914 potential articles, of which 24 met the inclusion criteria. In terms of the clinical assessment, the following factors were associated with a longer recovery time: stretching-type injuries, recreational-level sports, structural versus functional injuries, greater range of motion deficit with the hip flexed at 90°, time to first consultation >1 week, increased pain on the visual analog scale, and >1 day to be able to walk pain free after the injury. As for magnetic resonance imaging studies, the following factors correlated with a longer recovery time: positive findings; higher grade of injury; muscle involvement >75%; complete transection; retraction; central tendon disruption of the biceps femoris; proximal tendon involvement; shorter distance to the ischial tuberosity; length of the hamstring injury; and depth, volume, and large cross-sectional area. With respect to ultrasound studies, the following factors were associated with a poor prognosis: large cross-sectional area, injury outside the

  20. Muscle strength and areal bone mineral density at the hip in women: a cross-sectional study.

    PubMed

    Pasco, Julie A; Holloway, Kara L; Brennan-Olsen, Sharon L; Moloney, David J; Kotowicz, Mark A

    2015-05-24

    Muscle strengthening exercises are promoted for building and maintaining a healthy skeleton. We aimed to investigate the relationship between muscle strength and areal bone mineral density (BMD) at the hip in women aged 26-97 years. This cross-sectional study utilises data from 863 women assessed for the Geelong Osteoporosis Study. Measures of hip flexor and abductor strength were made using a hand-held dynamometer (Nicholas Manual Muscle Tester). The maximal measure from three trials on each leg was used for analyses. BMD was measured at the hip using dual energy x-ray absorptiometry (DXA; Lunar DPX-L). Total lean mass, body fat mass and appendicular lean mass were determined from whole body DXA scans. Linear regression techniques were used with muscle strength as the independent variable and BMD as the dependent variable. Models were adjusted for age and indices of body composition. Measures of age-adjusted hip flexor strength and hip abductor strength were positively associated with total hip BMD. For each standard deviation (SD) increase in hip flexor strength, the increase in mean total hip BMD (SD) was 10.4 % (p = 0.009). A similar pattern was observed for hip abductor strength, with an increase in mean total hip BMD of 22.8 % (p = 0.025). All associations between hip muscle strength and total hip BMD were independent of height, but were nullified after adjusting for appendicular lean mass or total lean mass. There was a positive association observed between muscle strength and BMD at the hip. However, this association was explained by measures of lean mass.

  1. Analysis of elbow muscle strength parameters in Brazilian jiu-jitsu practitioners.

    PubMed

    Follmer, Bruno; Dellagrana, Rodolfo André; de Lima, Luis Antonio Pereira; Herzog, Walter; Diefenthaeler, Fernando

    2017-12-01

    Upper-body dynamic and isometric maximum strength are essential components for success in Brazilian jiu-jitsu (BJJ). This study was aimed at analysing strength parameters in the elbow flexor and extensor muscles of BJJ practitioners. Participants (n = 28) performed maximum isometric contractions of elbow flexors and extensors to determine peak torque (PT), rate of force development (RFD), and the torque-angle (T-A) relationship at elbow angles of 45°, 60°, 75°, 90°, 105°, and 120°. Additionally, concentric and eccentric PTs were measured at 1.04 rad·s -1 . Student t-test and ANOVA were performed using α = 0.05. Elbow flexors were stronger isometrically (P < 0.001, ES = 1.23) but weaker concentrically (P < 0.05, ES = 0.54) than extensor muscles, possibly because of the extensive grip disputes and pushing of opponents in BJJ. The T-A relationship had an inverted "U"-shape. Torque differences across elbow angles were moderate (ES = 0.62) for the extensor and large (ES = 0.92) for the flexor muscles. Isometric torque was greatest for elbow angles of 105° and 75° and smallest for 45° and 120° for extensor and flexor muscles, respectively. Elbow flexors had a greater RFD than extensors, regardless of elbow angle. The present study provides comprehensive results for elbow muscle strength in BJJ practitioners.

  2. Acute effects of The Stick on strength, power, and flexibility.

    PubMed

    Mikesky, Alan E; Bahamonde, Rafael E; Stanton, Katie; Alvey, Thurman; Fitton, Tom

    2002-08-01

    The Stick is a muscle massage device used by athletes, particularly track athletes, to improve performance. The purpose of this project was to assess the acute effects of The Stick on muscle strength, power, and flexibility. Thirty collegiate athletes consented to participate in a 4-week, double-blind study, which consisted of 4 testing sessions (1 familiarization and 3 data collection) scheduled 1 week apart. During each testing session subjects performed 4 measures in the following sequence: hamstring flexibility, vertical jump, flying-start 20-yard dash, and isokinetic knee extension at 90 degrees x s(-1). Two minutes of randomly assigned intervention treatment (visualization [control], mock insensible electrical stimulation [placebo], or massage using The Stick [experimental]) was performed immediately prior to each performance measure. Statistical analyses involved single-factor repeated measures analysis of variance (ANOVA) with Fisher's Least Significant Difference post-hoc test. None of the variables measured showed an acute improvement (p < or = 0.05) immediately following treatment with The Stick.

  3. Joint laxity and the relationship between muscle strength and functional ability in patients with osteoarthritis of the knee.

    PubMed

    van der Esch, M; Steultjens, M; Knol, D L; Dinant, H; Dekker, J

    2006-12-15

    To establish the impact of knee joint laxity on the relationship between muscle strength and functional ability in osteoarthritis (OA) of the knee. A cross-sectional study of 86 patients with OA of the knee was conducted. Tests were performed to determine varus-valgus laxity, muscle strength, and functional ability. Laxity was assessed using a device that measures the angular deviation of the knee in the frontal plane. Muscle strength was measured using a computer-driven isokinetic dynamometer. Functional ability was assessed by observation (100-meter walking test) and self report (Western Ontario and McMaster Universities Osteoarthritis Index [WOMAC]). Regression analyses were performed to assess the impact of joint laxity on the relationship between muscle strength and functional ability. In regression analyses, the interaction between muscle strength and joint laxity contributed to the variance in both walking time (P = 0.002) and WOMAC score (P = 0.080). The slope of the regression lines indicated that the relationship between muscle strength and functional ability (walking time, WOMAC) was stronger in patients with high knee joint laxity. Patients with knee OA and high knee joint laxity show a stronger relationship between muscle strength and functional ability than patients with OA and low knee joint laxity. Patients with OA, high knee joint laxity, and low muscle strength are most at risk of being disabled.

  4. Strength characterization of knee flexor and extensor muscles in Prader-Willi and obese patients

    PubMed Central

    Capodaglio, Paolo; Vismara, Luca; Menegoni, Francesco; Baccalaro, Gabriele; Galli, Manuela; Grugni, Graziano

    2009-01-01

    Background despite evidence of an obesity-related disability, there is a lack of objective muscle functional data in overweight subjects. Only few studies provide instrumental strength measurements in non-syndromal obesity, whereas no data about Prader-Willi syndrome (PWS) are reported. The aim of our study was to characterize the lower limb muscle function of patients affected by PWS as compared to non-syndromal obesity and normal-weight subjects. Methods We enrolled 20 obese (O) females (age: 29.1 ± 6.5 years; BMI: 38.1 ± 3.1), 6 PWS females (age: 27.2 ± 4.9 years; BMI: 45.8 ± 4.4) and 14 healthy normal-weight (H) females (age: 30.1 ± 4.7 years; BMI: 21 ± 1.6). Isokinetic strength during knee flexion and extension in both lower limbs at the fixed angular velocities of 60°/s, 180°/s, 240°/s was measured with a Cybex Norm dynamometer. Results the H, O and PWS populations appear to be clearly stratified with regard to muscle strength.: PWS showed the lowest absolute peak torque (PT) for knee flexor and extensor muscles as compared to O (-55%) and H (-47%) (P = 0.00001). O showed significantly higher strength values than H as regard to knee extension only (P = 0.0014). When strength data were normalised by body weight, PWS showed a 50% and a 70% reduction in PT as compared to O and H, respectively. Knee flexors strength values were on average half of those reported for extension in all of the three populations. Conclusion the novel aspect of our study is the determination of objective measures of muscle strength in PWS and the comparison with O and H patients. The objective characterization of muscle function performed in this study provides baseline and outcome measures that may quantify specific strength deficits amendable with tailored rehabilitation programs and monitor effectiveness of treatments. PMID:19419559

  5. Joint proprioception, muscle strength, and functional ability in patients with osteoarthritis of the knee.

    PubMed

    van der Esch, M; Steultjens, M; Harlaar, J; Knol, D; Lems, W; Dekker, J

    2007-06-15

    To test the hypotheses that poor knee joint proprioception is related to limitations in functional ability, and poor proprioception aggravates the impact of muscle weakness on limitations in functional ability in osteoarthritis (OA) of the knee. Sixty-three patients with symptomatic OA of the knee were tested. Proprioceptive acuity was assessed by establishing the joint motion detection threshold (JMDT) in the anteroposterior direction. Muscle strength was measured using a computer-driven isokinetic dynamometer. Functional ability was assessed by the 100-meter walking test, the Get Up and Go (GUG) test, and the Western Ontario and McMaster Universities Osteoarthritis Index physical function (WOMAC-PF) questionnaire. Correlation analyses were performed to assess the relationship between proprioception, muscle strength, and functional ability. Regression analyses were performed to assess the impact of proprioception on the relationship between muscle strength and functional ability. Poor proprioception (high JMDT) was related to more limitation in functional ability (walking time r = 0.30, P < 0.05; GUG time r = 0.30, P < 0.05; WOMAC-PF r = 0.26, P <0.05). In regression analyses, the interaction between proprioception and muscle strength was significantly related to functional ability (walking time, P < 0.001 and GUG time, P < 0.001) but not to WOMAC-PF score (P = 0.625). In patients with poor proprioception, reduction of muscle strength was associated with more severe deterioration of functional ability than in patients with accurate proprioception. Patients with poor proprioception show more limitation in functional ability, but this relationship is rather weak. In patients with poor proprioception, muscle weakness has a stronger impact on limitations in functional ability than in patients with accurate proprioception.

  6. Effects of trunk stability on isometric knee extension muscle strength measurement while sitting.

    PubMed

    Hirano, Masahiro; Gomi, Masahiro; Katoh, Munenori

    2016-09-01

    [Purpose] This study aimed to investigate the effect of trunk stability on isometric knee extension muscle strength measurement while sitting by performing simultaneous measurements with a handheld dynamometer (HHD) and an isokinetic dynamometer (IKD) in the same seated condition. [Subjects and Methods] The subjects were 30 healthy volunteers. Isometric knee extension muscle strength was simultaneously measured with a HHD and an IKD by using an IKD-specific chair. The measurement was performed twice. Measurement instrument variables and the number of measurements were examined by using the analysis of variance and correlation tests. [Results] The measurement instrument variables and the number of measurements were not significantly different. The correlation coefficients between the HHD and IKD measurements were ≥0.96. [Conclusion] Isometric knee extension muscle strength measurement using the HHD in the sitting position resulted in a lower value than that using the IKD, presumably because of the effect of trunk stability on the measurement. In the same seated posture with trunk stability, no significant difference in measurement values was observed between the HHD and IKD. The present findings suggest that trunk stability while seated during isometric knee extension muscle strength measurement influenced the HHD measurement.

  7. Relationship between muscle mass and physical performance: is it the same in older adults with weak muscle strength?

    PubMed

    Kim, Kyoung-Eun; Jang, Soong-Nang; Lim, Soo; Park, Young Joo; Paik, Nam-Jong; Kim, Ki Woong; Jang, Hak Chul; Lim, Jae-Young

    2012-11-01

    the relationship between muscle mass and physical performance has not been consistent among studies. to clarify the relationship between muscle mass and physical performance in older adults with weak muscle strength. cross-sectional analysis using the baseline data of 542 older men and women from the Korean Longitudinal Study on Health and Aging. dual X-ray absorptiometry, isokinetic dynamometer and the Short Physical Performance Battery (SPPB) were performed. Two muscle mass parameters, appendicular skeletal mass divided by weight (ASM/Wt) and by height squared (ASM/Ht(2)), were measured. We divided the participants into a lower-quartile (L25) group and an upper-three-quartiles (H75) group based on the knee-extensor peak torque. Correlation analysis and logistic regression models were used to assess the association between muscle mass and low physical performance, defined as SPPB scores <9, after controlling for confounders. in the L25 group, no correlation between mass and SPPB was detected, whereas the correlation between peak torque and SPPB was significant and higher than that in the H75 group. Results from the logistic models also showed no association between muscle mass and SPPB in the L25 group, whereas muscle mass was associated with SPPB in the H75 group. muscle mass was not associated with physical performance in weak older adults. Measures of muscle strength may be of greater clinical importance in weak older adults than is muscle mass per se.

  8. Comparison of isokinetic muscle strength and muscle power by types of warm-up.

    PubMed

    Sim, Young-Je; Byun, Yong-Hyun; Yoo, Jaehyun

    2015-05-01

    [Purpose] The purpose of this study was to clarify the influence of static stretching at warm-up on the isokinetic muscle torque (at 60°/sec) and muscle power (at 180°/sec) of the flexor muscle and extensor muscle of the knee joint. [Subjects and Methods] The subjects of this study were 10 healthy students with no medically specific findings. The warm-up group and warm-up with stretching group performed their respective warm-up prior to the isokinetic muscle torque evaluation of the knee joint. One-way ANOVA was performed by randomized block design for each variable. [Results] The results were as follows: First, the flexor peak torque and extensor peak torque of the knee joint tended to decrease at 60°/sec in the warm-up with stretching group compared with the control group and warm-up group, but without statistical significance. Second, extensor power at 180°/sec was also not statistically significant. However, it was found that flexor power increased significantly in the warm-up with stretching group at 180°/sec compared with the control group and warm-up group in which stretching was not performed. [Conclusion] Therefore, it is considered that in healthy adults, warm-up including two sets of stretching for 20 seconds per muscle group does not decrease muscle strength and muscle power.

  9. Bone strength and muscle properties in postmenopausal women with and without a recent distal radius fracture.

    PubMed

    Crockett, K; Arnold, C M; Farthing, J P; Chilibeck, P D; Johnston, J D; Bath, B; Baxter-Jones, A D G; Kontulainen, S A

    2015-10-01

    Distal radius (wrist) fracture (DRF) in women over age 50 years is an early sign of bone fragility. Women with a recent DRF compared to women without DRF demonstrated lower bone strength, muscle density, and strength, but no difference in dual-energy x-ray absorptiometry (DXA) measures, suggesting DXA alone may not be a sufficient predictor for DRF risk. The objective of this study was to investigate differences in bone and muscle properties between women with and without a recent DRF. One hundred sixty-six postmenopausal women (50-78 years) were recruited. Participants were excluded if they had taken bone-altering medications in the past 6 months or had medical conditions that severely affected daily living or the upper extremity. Seventy-seven age-matched women with a fracture in the past 6-24 months (Fx, n = 32) and without fracture (NFx, n = 45) were measured for bone and muscle properties using the nondominant (NFx) or non-fractured limb (Fx). Peripheral quantitative computed tomography (pQCT) was used to estimate bone strength in compression (BSIc) at the distal radius and tibia, bone strength in torsion (SSIp) at the shaft sites, muscle density, and area at the forearm and lower leg. Areal bone mineral density at the ultradistal forearm, spine, and femoral neck was measured by DXA. Grip strength and the 30-s chair stand test were used as estimates of upper and lower extremity muscle strength. Limb-specific between-group differences were compared using multivariate analysis of variance (MANOVA). There was a significant group difference (p < 0.05) for the forearm and lower leg, with the Fx group demonstrating 16 and 19% lower BSIc, 3 and 6% lower muscle density, and 20 and 21% lower muscle strength at the upper and lower extremities, respectively. There were no differences between groups for DXA measures. Women with recent DRF had lower pQCT-derived estimated bone strength at the distal radius and tibia and lower muscle density and strength at both extremities.

  10. Clinical Implications for Muscle Strength Differences in Women of Different Age and Racial Groups: The WIN Study.

    PubMed

    Trudelle-Jackson, Elaine; Ferro, Emerenciana; Morrow, James R

    2011-01-01

    BACKGROUND: Reduction in muscle strength is strongly associated with functional decline in women, and women with lower quadriceps strength adjusted for body weight are more likely to develop knee osteoarthritis. OBJECTIVE: To compare body weight--adjusted strength among women of different age/racial groups. STUDY DESIGN: Cross-sectional study of muscle strength in 918 women aged 20--83 (M ± SD = 52 ± 13). METHODS: An orthopedic examination was conducted including measurement of handgrip and lower extremity strength (hip abductors/external rotators, knee flexors/extensors). Data were grouped into young (20--39 years, n = 139), middle (40--54 years, n = 300), and older (55+ years, n = 424) ages for white (n = 699) and African American (AA) (n = 164) women. Means and standard deviations for strength adjusted for body weight were calculated for each age and racial group and compared using 2-way multivariate analysis of variance and post hoc tests. RESULTS: No significant age-by-race interaction (P = .092) but significant main effects for age and race (P < .001). Pairwise comparisons revealed significant differences in knee extensor and flexor strength between all age groups. For grip and hip external rotator strength, significant differences were found between the middle and older groups. Differences in hip abductor strength were found between the young and middle-aged groups. AA women had lower strength than white women in all muscle groups (P < .05) except hip external rotators. CONCLUSIONS: Strength decreased with age in all muscle groups but magnitude of decrease varied by muscle. Strengthening programs should target different muscles, depending on a woman's age and race.

  11. Strength, power output and symmetry of leg muscles: effect of age and history of falling.

    PubMed

    Perry, Mark C; Carville, Serena F; Smith, I Christopher H; Rutherford, Olga M; Newham, Di J

    2007-07-01

    Risk factors for medically unexplained falls may include reduced muscle power, strength and asymmetry in the lower limbs. Conflicting reports exist about strength and there is little information about power and symmetry. Forty-four healthy young people (29.3 +/- 0.6 years), 44 older non-fallers (75.9 +/- 0.6 years), and 34 older fallers (76.4 +/- 0.8 years) were studied. Isometric, concentric and eccentric strength of the knee and ankle muscles and leg extension power were measured bilaterally. The younger group was stronger in all muscles and types of contraction than both older groups (P < 0.02-0.0001). Strength differences between the older groups occasionally reached significance in individual muscles and types of contraction but overall the fallers had 85% of the strength and 79% of the power of the non-fallers (P < 0.001). Young subjects generated more power than both older groups (P < 0.0001) and the fallers generated less than the non-fallers (P = 0.03). Strength symmetry showed an inconsistent age effect in some muscles and some contraction types. This was similar overall in the two older groups. Both older groups had greater asymmetry in power than the young (P < 0.02-0.004). Power asymmetry tended to be greater in the fallers than the non-fallers but this did not reach significance. These data do not support the suggestion that asymmetry of strength and power are associated with either increasing age or fall history. Power output showed clear differences between age groups and fall status and appears to be the most relevant measurement of fall risk and highlights the cumulative effects on function of small changes in strength in individual muscle groups.

  12. Hamstring Strain Injuries: Recommendations for Diagnosis, Rehabilitation and Injury Prevention

    PubMed Central

    Heiderscheit, Bryan C.; Sherry, Marc A.; Silder, Amy; Chumanov, Elizabeth S.; Thelen, Darryl G.

    2010-01-01

    Synopsis Hamstring strain injuries remain a challenge for both athletes and clinicians given the high incidence rate, slow healing, and persistent symptoms. Moreover, nearly one-third of these injuries recur within the first year following a return to sport, with subsequent injuries often being more severe than the original. This high reinjury rate suggests that commonly utilized rehabilitation programs may be inadequate at resolving possible muscular weakness, reduced tissue extensibility, and/or altered movement patterns associated with the injury. Further, the traditional criteria used to determine the readiness of the athlete to return to sport may be insensitive to these persistent deficits, resulting in a premature return. There is mounting evidence that the risk of reinjury can be minimized by utilizing rehabilitation strategies that incorporate neuromuscular control exercises and eccentric strength training, combined with objective measures to assess musculotendon recovery and readiness to return to sport. In this paper, we first describe the diagnostic examination of an acute hamstring strain injury, including discussion of the value of determining injury location in estimating the duration of the convalescent period. Based on the current available evidence, we then propose a clinical guide for the rehabilitation of acute hamstring injuries including specific criteria for treatment progression and return to sport. Finally, we describe directions for future research including injury-specific rehabilitation programs, objective measures to assess reinjury risk, and strategies to prevent injury occurrence. Level of evidence: Diagnosis/therapy, level 5. PMID:20118524

  13. The Relationship between Vitamin D and Muscle Size and Strength in Patients on Hemodialysis

    PubMed Central

    Gordon, Patricia L.; Sakkas, Giorgos K.; Doyle, Julie W.; Shubert, Tiffany; Johansen, Kirsten L.

    2007-01-01

    OBJECTIVE Vitamin D has various actions in skeletal muscle. The purpose of this study was to compare lower limb muscle size and strength in hemodialysis (HD) patients being treated with 1,25-dihydroxyvitamin D (calcitriol) or a 1,25-dihydroxyvitamin D analog (paricalcitol) to HD patients who were receiving none. DESIGN This was a retrospective cross-sectional study. SETTING Outpatient hemodialysis centers. PATIENTS HD patients receiving calcitriol or paricalcitol (active vitamin D) for control of secondary hyperparathyroidism (VitD, n = 49) were compared to HD patients who were not (n = 30). MAIN OUTCOME MEASURES Cross-sectional areas (CSA) of thigh and tibialis anterior muscles by magnetic resonance imaging (MRI), and three measures of strength; three-repetition maximum (3RM) for knee extension (isotonic), peak torque of knee extensors (isokinetic), and maximal voluntary contraction (MVC) of the ankle dorsiflexor muscles (isometric). RESULTS There were no differences in age, weight, dialysis vintage, or intact parathyroid hormone levels between the groups, although serum albumin was higher in the VitD group (p <0.05). Patients in the VitD group had larger thigh muscle CSA (p < 0.05) and were stronger across all strength measures (p< 0.05) after controlling for age and gender (ANCOVA). When all analyses were subsequently adjusted for serum albumin concentration, only the difference in 3RM knee extension strength lost significance. There were no significant differences in any measurements between patients who received calcitriol or paricalcitol. CONCLUSION Treatment with active vitamin D was associated with greater muscle size and strength in this cohort of HD patients. PMID:17971312

  14. Effects of caffeine intake on muscle strength and power: a systematic review and meta-analysis.

    PubMed

    Grgic, Jozo; Trexler, Eric T; Lazinica, Bruno; Pedisic, Zeljko

    2018-01-01

    Caffeine is commonly used as an ergogenic aid. Literature about the effects of caffeine ingestion on muscle strength and power is equivocal. The aim of this systematic review and meta-analysis was to summarize results from individual studies on the effects of caffeine intake on muscle strength and power. A search through eight databases was performed to find studies on the effects of caffeine on: (i) maximal muscle strength measured using 1 repetition maximum tests; and (ii) muscle power assessed by tests of vertical jump. Meta-analyses of standardized mean differences (SMD) between placebo and caffeine trials from individual studies were conducted using the random effects model. Ten studies on the strength outcome and ten studies on the power outcome met the inclusion criteria for the meta-analyses. Caffeine ingestion improved both strength (SMD = 0.20; 95% confidence interval [CI]: 0.03, 0.36; p  = 0.023) and power (SMD = 0.17; 95% CI: 0.00, 0.34; p  = 0.047). A subgroup analysis indicated that caffeine significantly improves upper (SMD = 0.21; 95% CI: 0.02, 0.39; p  = 0.026) but not lower body strength (SMD = 0.15; 95% CI: -0.05, 0.34; p  = 0.147). The meta-analyses showed significant ergogenic effects of caffeine ingestion on maximal muscle strength of upper body and muscle power. Future studies should more rigorously control the effectiveness of blinding. Due to the paucity of evidence, additional findings are needed in the female population and using different forms of caffeine, such as gum and gel.

  15. Effect of high-intensity home-based respiratory muscle training on strength of respiratory muscles following a stroke: a protocol for a randomized controlled trial.

    PubMed

    Menezes, Kênia Kiefer Parreiras De; Nascimento, Lucas Rodrigues; Polese, Janaine Cunha; Ada, Louise; Teixeira-Salmela, Luci Fuscaldi

    Respiratory muscle training has shown to increase strength of the respiratory muscles following a stroke. However, low duration and/or intensity of training may be responsible for the small effect size seen and/or absence of carry-over effects to an activity, e.g., walking. Therefore, an investigation of the effects of long-duration, high-intensity respiratory muscle training is warranted. This proposed protocol for a randomized clinical trial will examine the efficacy of high-intensity respiratory muscle training to increase strength and improve activity following a stroke. This study will be a two-arm, prospectively registered, randomized controlled trial, with blinded assessors. Thirty-eight individuals who have suffered a stroke will participate. The experimental group will undertake a 40-min of respiratory muscle training program, seven days/week, for eight weeks in their homes. Training loads will be increased weekly. The control group will undertake a sham respiratory muscle training program with equivalent duration and scheduling of training. The primary outcome will be the strength of the inspiratory muscles, measured as maximal inspiratory pressure. Secondary outcomes will include expiratory muscle strength, inspiratory muscle endurance, dyspnea, respiratory complications, and walking capacity. Outcomes will be collected by a researcher blinded to group allocation at baseline (Week 0), after intervention (Week 8), and one month beyond intervention (Week 12). High-intensity respiratory muscle training may have the potential to optimize the strength of the respiratory muscles following a stroke. If benefits are carried over to activity, the findings may have broader implications, since walking capacity has been shown to predict physical activity and community participation on this population. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  16. Isokinetic peak torque and flexibility changes of the hamstring muscles after eccentric training: Trained versus untrained subjects.

    PubMed

    Abdel-Aziem, Amr Almaz; Soliman, Elsadat Saad; Abdelraouf, Osama Ragaa

    2018-05-23

    The aim of this study was to examine the effect of eccentric isotonic training on hamstring flexibility and eccentric and concentric isokinetic peak torque in trained and untrained subjects. Sixty healthy subjects (mean age: 21.66 ± 2.64) were divided into three equal groups, each with 20 voluntary participants. Two experimental groups (untrained and trained groups) participated in a hamstring eccentric isotonic strengthening program (five days/week) for a six-week period and one control group that was not involved in the training program. The passive knee extension range of motion and hamstring eccentric and concentric isokinetic peak torque were measured at angular velocities 60° and 120°/s for all groups before and after the training period. Two-way analysis of variance showed that there was a significant increase in the hamstring flexibility of the untrained and trained groups (25.65 ± 6.32°, 26.55 ± 5.99°, respectively), (p < 0.05) without a significant increase in the control group (31.55 ± 5.84°), (p > 0.05). Moreover, there was a significant increase in eccentric isokinetic peak torque of both the untrained and trained groups (127.25 ± 22.60Nm, 139.65 ± 19.15Nm, 125.40 ± 21.61Nm, 130.90 ± 18.71Nm, respectively), (p < 0.05) without a significant increase in the control group (109.15 ± 20.89Nm, 105.70 ± 21.31Nm, respectively), (p > 0.05) at both angular velocities. On the other hand, there was no significant increase in the concentric isokinetic peak torque of the three groups (92.50 ± 20.50Nm, 79.05 ± 18.95Nm, 92.20 ± 21.96Nm, 79.85 ± 18.97Nm, 100.45 ± 25.78Nm, 83.40 ± 23.73Nm, respectively), (p > 0.05) at both angular velocities. The change scores in the hamstring flexibility (06.25 ± 1.86°) and eccentric peak torque of the untrained group (16.60 ± 4.81Nm, 17.45 ± 5.40Nm, respectively) were significantly higher (p < 0.05) than those of the trained group (03.40 ± 1.14°, 9.90

  17. [Comparison of pelvic floor muscle strength in competition-level athletes and untrained women].

    PubMed

    Ludviksdottir, Ingunn; Hardardottir, Hildur; Sigurdardottir, Thorgerdur; Ulfarsson, Gudmundur F

    2018-01-01

    Exercise can stress the pelvic floor muscles. Numerous women experience urinary incontinence while exercising or competing in sports. This study investigated pelvic floor muscle strength, urinary incontinence, and knowledge in contracting pelvic floor muscles among female athletes and untrained women. This was a prospective case-control study measuring pelvic floor muscle strength using vaginal pressure meas-urement. Participants answered questions regarding general health, urinary incontinence, and knowledge on pelvic floor muscles. Partici-pants were healthy nulliparous women aged 18-30 years, athletes and untrained women. The athletes had competed in their sport for at least three years; including handball, soccer, gymnastics, badminton, BootCamp and CrossFit. The women were comparable in age and height. The athletes (n=18) had a body mass index (BMI) of 22.8 kg/m² vs. 25 kg/m² for the untrained (n=16); p<0.05. The athletes trained on average 11.4 hours/week while the untrained women participated in some activity on average for 1.3 hours/week; p< 0.05. Mean pelvic floor strength was 45±2 hPa in the athletes vs. 43±4 hPa in the untrained; p=0.36 for whether the athletes were stronger. Of the athletes, 61.1% experienced urinary incontinence (n=11) compared with 12.5% of the untrained women (n=2); p<0.05. Incontinence usually occurred during high intensity exercise. The athletes were more knowledgeable about the pelvic floor muscles; p<0.05. There was not a significant difference in the strength of pelvic floor muscles of athletes and untrained women. This suggests that pelvic floor muscles are not strengthened during general training but require specific exercises. This holds especially for football, handball and sports with high physical intensity. Coaches need to pay special attention to training and strengthening women's pelvic floor muscles to reduce the occurrence of urinary incontinence.

  18. Muscle hypertrophy, strength development, and serum hormones during strength training in elderly women with fibromyalgia.

    PubMed

    Valkeinen, H; Häkkinen, K; Pakarinen, A; Hannonen, P; Häkkinen, A; Airaksinen, O; Niemitukia, L; Kraemer, W J; Alén, M

    2005-01-01

    To examine the effects of strength training on maximal force, cross-sectional area (CSA), and electromyographic (EMG) activity of muscles and serum hormone concentrations in elderly females with fibromyalgia (FM). Twenty-six patients with FM were randomly assigned to a training (FMT; n = 13; mean age 60 years) or a control (FMC; n = 13; 59 years) group. FMT performed progressive strength training twice a week for 21 weeks. The measurements included maximal isometric and concentric leg extension forces, EMG activity of the vastus lateralis and medialis, CSA of the quadriceps femoris, and serum concentrations of testosterone (T), free testosterone (FT), growth hormone (GH), insulin-like growth factor-1 (IGF-1), dehydroepiandrosterone sulfate (DHEAS), and cortisol. Subjectively perceived symptoms of FM were also assessed. All patients were able to complete the training. In FMT strength training led to increases of 36% (p<0.001) and 33% (p<0.001) in maximal isometric and concentric forces, respectively. The CSA increased by 5% (p<0.001) and the EMG activity in isometric action by 47% (p<0.001) and in concentric action by 57% (p<0.001). Basal serum hormone concentrations remained unaltered during strength training. The subjective perceived symptoms showed a minor decreasing tendency (ns). No statistically significant changes occurred in any of these parameters in FMC. Progressive strength training increases strength, CSA, and voluntary activation of the trained muscles in elderly women with FM, while the measured basal serum hormone concentrations remain unaltered. Strength training benefits the overall physical fitness of the patients without adverse effects or any exacerbation of symptoms and should be included in the rehabilitation programmes of elderly patients with FM.

  19. Decreased Muscle Strength Relates to Self-Reported Stooping, Crouching, or Kneeling Difficulty in Older Adults

    PubMed Central

    Goldberg, Allon; Alexander, Neil B.

    2010-01-01

    Background Bending down and kneeling are fundamental tasks of daily living, yet nearly a quarter of older adults report having difficulty performing or being unable to perform these movements. Older adults with stooping, crouching, or kneeling (SCK) difficulty have demonstrated an increased fall risk. Strength (force-generating capacity) measures may be useful for determining both SCK difficulty and fall risk. Objective The purposes of this study were: (1) to examine muscle strength differences in older adults with and without SCK difficulty and (2) to examine the relative contributions of trunk and leg muscle strength to SCK difficulty. Design This was a cross-sectional observational study. Methods Community-dwelling older adults (age [X̅±SD]=75.5±6.0 years) with SCK difficulty (n=27) or without SCK difficulty (n=21) were tested for leg and trunk strength and functional mobility. Isometric strength at the trunk, hip, knee, and ankle also was normalized by body weight and height. Results Compared with older adults with no SCK difficulty, those with SCK difficulty had significant decreases in normalized trunk extensor, knee extensor, and ankle dorsiflexor and plantar-flexor strength. In 2 separate multivariate analyses, raw ankle plantar-flexor strength (odds ratio [OR]=0.97, 95% confidence interval [CI]=0.95–0.99) and normalized knee extensor strength (OR=0.61, 95% CI=0.44–0.82) were significantly associated with SCK difficulty. Stooping, crouching, and kneeling difficulty also correlated with measures of functional balance and falls. Limitations Although muscle groups that were key to rising from SCK were examined, there are other muscle groups that may contribute to safe SCK performance. Conclusions Decreased muscle strength, particularly when normalized for body size, predicts SCK difficulty. These data emphasize the importance of strength measurement at multiple levels in predicting self-reported functional impairment. PMID:19942678

  20. Recovery of Muscle Strength After Intact Arthroscopic Rotator Cuff Repair According to Preoperative Rotator Cuff Tear Size.

    PubMed

    Shin, Sang-Jin; Chung, Jaeyoon; Lee, Juyeob; Ko, Young-Won

    2016-04-01

    The recovery of muscle strength after arthroscopic rotator cuff repair based on the preoperative tear size has not yet been well described. The purpose of this study was to evaluate the recovery period of muscle strength by a serial assessment of isometric strength after arthroscopic rotator cuff repair based on the preoperative tear size. The hypothesis was that muscle strength in patients with small and medium tears would recover faster than that in those with large-to-massive tears. Cohort study; Level of evidence, 3. A total of 164 patients who underwent arthroscopic rotator cuff repair were included. Isometric strength in forward flexion (FF), internal rotation (IR), and external rotation (ER) was evaluated preoperatively and at 6, 12, 18, and 24 months after surgery. Preoperative magnetic resonance imaging scans were assessed to evaluate the quality of the rotator cuff muscle, including fatty infiltration, occupation ratio, and tangent sign. Patient satisfaction as well as visual analog scale (VAS) for pain, American Shoulder and Elbow Surgeons (ASES), and Constant scores were assessed at every follow-up. Muscle strength demonstrated the slowest recovery in pain relief and the restoration of shoulder function. To reach the strength of the uninjured contralateral shoulder in all 3 planes of motion, recovery took 6 months in patients with small tears and 18 months in patients with medium tears. Patients with large-to-massive tears showed continuous improvement in strength up to 18 months; however, they did not reach the strength of the contralateral shoulder at final follow-up. At final follow-up, mean strength in FF, IR, and ER was 113.0%, 118.0%, and 112.6% of the contralateral shoulder in patients with small tears, respectively; 105.0%, 112.1%, and 102.6% in patients with medium tears, respectively; and 87.6%, 89.5%, and 85.2% in patients with large-to-massive tears, respectively. Muscle strength in any direction did not significantly correlate with

  1. Avulsion of the common hamstring tendon origin in an active duty airman.

    PubMed

    Johnson, Anthony E; Granville, Robert R; DeBerardino, Thomas M

    2003-01-01

    Hamstring injuries are common in active athletic populations, such as military service members. Ruptures of the hamstring origin from the ischial tuberosity are rare injuries and missed if not considered in the differential diagnosis of ischial pain. Unlike other hamstring injuries, complete hamstring avulsions must be treated surgically. Results of untreated hamstring avulsions are poor. The purpose of this article is to describe the case of an active duty airman who presented for an unrelated complaint and was discovered to have a 5-week-old hamstring avulsion. Surgical repair of the hamstring avulsion 6 weeks after injury yielded an excellent result and return to full duty. Hamstring avulsions recognized early by history and physical examination and diagnostic imaging permits early and effective treatment. Early surgical repair of the tendon to bone can result in return to full duty.

  2. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength.

    PubMed

    Douma, K W; Regterschot, G R H; Krijnen, W P; Slager, G E C; van der Schans, C P; Zijlstra, W

    2016-01-01

    The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to monitor changes over time, instruments and procedures with a sufficient reliability are needed. The Q Force is an innovative mobile muscle strength measurement instrument suitable to measure in various degrees of extension. Measurements between 110 and 130° extension present the highest values and the most significant increase after training. The objective of this study is to determine the test-retest reliability of muscle strength measurements by the Q Force in older adults in 110° extension. Forty-one healthy older adults, 13 males and 28 females were included in the study. Mean (SD) age was 81.9 (4.89) years. Isometric muscle strength of the Quadriceps muscle was assessed with the Q Force at 110° of knee extension. Participants were measured at two sessions with a three to eight day interval between sessions. To determine relative reliability, the intraclass correlation coefficient (ICC) was calculated. To determine absolute reliability, Bland and Altman Limits of Agreement (LOA) were calculated and t-tests were performed. Relative reliability of the Q Force is good to excellent as all ICC coefficients are higher than 0.75. Generally a large 95 % LOA, reflecting only moderate absolute reliability, is found as exemplified for the peak torque left leg of -18.6 N to 33.8 N and the right leg of -9.2 N to 26.4 N was between 15.7 and 23.6 Newton representing 25.2 % to 39.9 % of the size of the mean. Small systematic differences in mean were found between measurement session 1 and 2. The present study shows that the Q Force has excellent relative test-retest reliability, but limited absolute test-retest reliability. Since the Q Force is relatively cheap and mobile it is suitable for

  3. Bone mineral density, muscle strength, and recreational exercise in men

    NASA Technical Reports Server (NTRS)

    Snow-Harter, C.; Whalen, R.; Myburgh, K.; Arnaud, S.; Marcus, R.

    1992-01-01

    Muscle strength has been shown to predict bone mineral density (BMD) in women. We examined this relationship in 50 healthy men who ranged in age from 28 to 51 years (average 38.3 years). BMD of the lumbar spine, proximal femur, whole body, and tibia were measured by dual-energy x-ray absorptiometry (Hologic QDR 1000W). Dynamic strength using one repetition maximum was assessed for the biceps, quadriceps, and back extensors and for the hip abductors, adductors, and flexors. Isometric grip strength was measured by dynamometry. Daily walking mileage was assessed by 9 week stepmeter records and kinematic analysis of video filming. Subjects were designated as exercisers and nonexercisers. Exercisers participated in recreational exercise at least two times each week. The results demonstrated that BMD at all sites correlated with back and biceps strength (p < 0.01 to p = 0.0001). Body weight correlated with tibia and whole-body BMD (p < 0.001); age negatively correlated with Ward's triangle BMD (p < 0.01). In stepwise multiple regressions, back strength was the only independent predictor of spine and femoral neck density (R2 = 0.27). Further, back strength was the most robust predictor of BMD at the trochanter, Ward's triangle, whole body, and tibia, although biceps strength, age, body weight, and leg strength contributed significantly to BMD at these skeletal sites, accounting for 35-52% of the variance in BMD. Exercisers and nonexercisers were similar for walking (3.97 versus 3.94 miles/day), age (37.8 versus 38.5) years, and weight (80.0 versus 77.7 kg). However, BMD and muscle strength were significantly greater in exercises than in nonexercisers.(ABSTRACT TRUNCATED AT 250 WORDS).

  4. Association between isometric muscle strength and gait joint kinetics in adolescents and young adults with cerebral palsy.

    PubMed

    Dallmeijer, A J; Baker, R; Dodd, K J; Taylor, N F

    2011-03-01

    The purpose of this study was to determine the association between isometric muscle strength of the lower limbs and gait joint kinetics in adolescents and young adults with cerebral palsy (CP). Twenty-five participants (11 males) with bilateral spastic CP, aged 14-22 years (mean: 18.9, sd: 2.0 yr) and Gross Motor Function Classification System (GMFCS) level II (n=19) and III (n=6) were tested. Hand held dynamometry was used to measure isometric strength (expressed in Nm/kg) of the hip, knee, and ankle muscles using standardized testing positions and procedures. 3D gait analysis was performed with a VICON system to calculate joint kinetics in the hip, knee and ankle during gait. Ankle peak moments exceeded by far the levels of isometric strength of the plantar flexors, while the knee and hip peak moments were just at or below maximal isometric strength of knee and hip muscles. Isometric muscle strength showed weak to moderate correlations with peak ankle and hip extension moment and power during walking. Despite considerable muscle weakness, joint moment curves were similar to norm values. Results suggest that passive stretch of the muscle-tendon complex of the triceps surae contributes to the ankle moment during walking and that muscle strength assessment may provide additional information to gait kinetics. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Immediate effects of kinesiotaping on quadriceps muscle strength: a single-blind, placebo-controlled crossover trial.

    PubMed

    Vercelli, Stefano; Sartorio, Francesco; Foti, Calogero; Colletto, Lorenzo; Virton, Domenico; Ronconi, Gianpaolo; Ferriero, Giorgio

    2012-07-01

    To investigate the immediate effects on maximal muscle strength of kinesiotaping (KT) applied to the dominant quadriceps of healthy subjects. Single-blind, placebo-controlled crossover trial. "Salvatore Maugeri" Foundation. With ethical approval and informed consent, a convenience sample of 36 healthy volunteers were recruited. Two subjects did not complete the sessions and were excluded from the analysis. Subjects were tested across 3 different sessions, randomly receiving 2 experimental KT conditions applied with the aim of enhancing and inhibiting muscle strength and a sham KT application. Quadriceps muscle strength was measured by means of an isokinetic maximal test performed at 60 and 180 degrees per second. Two secondary outcome measures were performed: the single-leg triple hop for distance to measure limb performance and the Global Rating of Change Scale (GRCS) to calculate agreement between KT application and subjective perception of strength. Compared with baseline, none of the 3 taping conditions showed a significant change in muscle strength and performance (all P > 0.05). Effect size was very low under all conditions (≤0.08). Very few subjects showed an individual change greater than the minimal detectable change. Global Rating of Change Scale scores demonstrated low to moderate agreement with the type of KT applied, but some placebo effects were reported independently of condition. Our findings indicated no significant effect in the maximal quadriceps strength immediately after the application of inhibition, facilitation, or sham KT. These results do not support the use of KT applied in this way to change maximal muscle strength in healthy people.

  6. Side-alternating vibration training for balance and ankle muscle strength in untrained women.

    PubMed

    Spiliopoulou, Styliani I; Amiridis, Ioannis G; Tsigganos, Georgios; Hatzitaki, Vassilia

    2013-01-01

    Side-alternating vibration (SAV) may help reduce the risk of falling by improving body balance control. Such training has been promoted as a strength-training intervention because it can increase muscle activation through an augmented excitatory input from the muscle spindles. To determine the effect of SAV training on static balance during 3 postural tasks of increasing difficulty and lower limb strength. Randomized controlled clinical trial. Laboratory. A total of 21 healthy women were divided into training (n = 11; age = 43.35 ± 4.12 years, height = 169 ± 6.60 cm, mass = 68.33 ± 11.90 kg) and control (n = 10; age = 42.31 ± 3.73 years, height = 167 ± 4.32 cm, mass = 66.29 ± 10.74 kg) groups. The training group completed a 9-week program during which participants performed 3 sessions per week of ten 15-second isometric contractions with a 30-second active rest of 3 exercises (half-squat, wide-stance squat, 1-legged half-squat) on an SAV plate (acceleration = 0.91-16.3g). The control group did not participate in any form of exercise over the 9-week period. We evaluated isokinetic and isometric strength of the knee extensors and flexors and ankle plantar flexors, dorsiflexors, and evertors. Static balance was assessed using 3 tasks of increasing difficulty (quiet bipedal stance, tandem stance, 1-legged stance). The electromyographic activity of the vastus lateralis, semitendinosus, medial gastrocnemius, tibialis anterior, and peroneus longus was recorded during postural task performance, baseline and pretraining, immediately posttraining, and 15 days posttraining. After training in the training group, ankle muscle strength improved (P = .03), whereas knee muscle strength remained unaltered (P = .13). Improved ankle-evertor strength was observed at all angular velocities (P = .001). Postural sway decreased in both directions but was greater in the mediolateral (P < .001) than anteroposterior (P = .02) direction. The electromyographic activity of the peroneus

  7. Fluoroscopically Guided Peritendinous Corticosteroid Injection for Proximal Hamstring Tendinopathy

    PubMed Central

    Nicholson, Luke T.; DiSegna, Steven; Newman, Joel S.; Miller, Suzanne L.

    2014-01-01

    Background: Proximal hamstring tendinopathy is an uncommon but debilitating cause of posterior thigh pain in athletes subjected to repetitive eccentric hamstring contraction, such as runners. Minimal data exist evaluating treatment options for proximal hamstring tendinopathy. Purpose: This retrospective study evaluates the effectiveness of fluoroscopically guided corticosteroid injections in treating proximal hamstring tendinopathy. Study Design: Case series; Level of evidence, 4. Methods: Eighteen athletes with 22 cases of magnetic resonance imaging–confirmed proximal hamstring tendinopathy were treated with corticosteroid injection and later contacted to evaluate the efficacy of the injection with the use of a questionnaire. Results: The visual analog score decreased from 7.22 preinjection to 3.94 postinjection (P < .001), level of athletic participation increased from 28.76% to 68.82% (P < .001) at a mean follow-up of 21 months, and 38.8% of patients experienced complete resolution at a mean follow-up of 24.8 months. The mean lower extremity function score at the time of follow-up was 60. Conclusion: A trial of fluoroscopically guided corticosteroid injection is warranted in patients presenting with symptoms of proximal hamstring tendinopathy refractory to conservative therapy. PMID:26535310

  8. Androgen signaling in myocytes contributes to the maintenance of muscle mass and fiber type regulation but not to muscle strength or fatigue.

    PubMed

    Ophoff, Jill; Van Proeyen, Karen; Callewaert, Filip; De Gendt, Karel; De Bock, Katrien; Vanden Bosch, An; Verhoeven, Guido; Hespel, Peter; Vanderschueren, Dirk

    2009-08-01

    Muscle frailty is considered a major cause of disability in the elderly and chronically ill. However, the exact role of androgen receptor (AR) signaling in muscle remains unclear. Therefore, a postmitotic myocyte-specific AR knockout (mARKO) mouse model was created and investigated together with a mouse model with ubiquitous AR deletion. Muscles from mARKO mice displayed a marked reduction in AR protein (60-88%). Interestingly, body weights and lean body mass were lower in mARKO vs. control mice (-8%). The weight of the highly androgen-sensitive musculus levator ani was significantly reduced (-46%), whereas the weights of other peripheral skeletal muscles were not or only slightly reduced. mARKO mice had lower intra-abdominal fat but did not demonstrate a cortical or trabecular bone phenotype, indicating that selective ablation of the AR in myocytes affected male body composition but not skeletal homeostasis. Furthermore, muscle contractile performance in mARKO mice did not differ from their controls. Myocyte-specific AR ablation resulted in a conversion of fast toward slow fibers, without affecting muscle strength or fatigue. Similar results were obtained in ubiquitous AR deletion, showing lower body weight, whereas some but not all muscle weights were reduced. The percent slow fibers was increased, but no changes in muscle strength or fatigue could be detected. Together, our findings show that myocyte AR signaling contributes to the maintenance of muscle mass and fiber type regulation but not to muscle strength or fatigue. The levator ani weight remains the most sensitive and specific marker of AR-mediated anabolic action on muscle.

  9. Maturity- and sex-related changes in tibial bone geometry, strength and bone-muscle strength indices during growth: a 20-month pQCT study.

    PubMed

    Macdonald, Heather M; Kontulainen, Saija A; Mackelvie-O'Brien, Kerry J; Petit, Moira A; Janssen, Patricia; Khan, Karim M; McKay, Heather A

    2005-06-01

    During growth, bone strength is conferred through subtle adaptations in bone mass and geometry in response to muscle forces. Few studies have examined the changes in bone geometry, strength and the bone-muscle strength relationship across maturity in boys and girls. Our aims were to describe (i) 20-month changes in bone geometry and strength at the tibial midshaft across three maturity groups of boys and girls, (ii) differences in these adaptations between sexes at the same approximate level of maturity and (iii) the bone-muscle strength relationship across maturity groups of boys and girls and between sexes. We used peripheral quantitative computed tomography (pQCT, Stratec XCT-2000) to measure change in total bone cross-sectional area (ToA, mm(2)), cortical area (CoA, mm(2)), average cortical thickness (C.Th., mm), section modulus (mm(3)) and muscle cross-sectional area (mm(2)) at the tibial midshaft (50% site) in 128 EARLY-, PERI- and POST-pubertal girls (n = 69, 11.9 +/- 0.6 years) and boys (n = 59, 12.0 +/- 0.6 years) across 20 months. We also calculated two bone-muscle strength indices (BMSI) for compression (CoA/MCSA) and bending [strength index/MCSA; where strength index = Z / (tibial length / 2)]. EARLY boys and girls had smaller ToA at baseline than same sex PERI or POST participants. There were no sex differences in ToA or CoA at baseline; however, boys increased both parameters significantly more than girls in every maturity group (8.5-11.1%, P < 0.01). These changes in bone geometry conferred greater gains in bone strength for boys compared with girls in each maturity group (13.8-15.6%, P < 0.01). Baseline BMSIs did not differ between sexes for EARLY and PERI groups, whereas BMSIs were significantly higher for POST boys compared with POST girls (P < 0.05). BMSIs decreased for EARLY and PERI girls (-7.4-(-1.1%)) whereas the ratios remained stable for EARLY and PERI boys (-0.6-2.5%). This sex difference in BMSI change was due to a relatively greater

  10. Low back pain, radiculopathy, and bilateral proximal hamstring ruptures: a case report.

    PubMed

    Deren, Matthew E; DeFroda, Steven F; Mukand, Nita H; Mukand, Jon A

    2015-12-01

    Low back pain (LBP) is a common complaint in the United States, with an incidence of 6.3%-15.4% and yearly recurrence in 54%-90% of patients.1 Trends show more frequent diagnostic testing, opioid use, and surgical intervention as the incidence of LBP increases.2 LBP is defined as pain at and near the lumbosacral region that can vary with physical activity and time. LBP is usually related to pathology of muscles, ligaments, spinal column joints, nerve roots, and the spinal cord. During the assessment of LBP, practitioners must also consider less common causes of pain in that region. For instance, patients with indolent or nighttime pain may have infectious or malignant processes. Referred pain from injuries to pelvic musculature or abdominal contents should be considered, especially following a traumatic event. One of these injuries, which can present as acute low back pain, is rupture of the proximal hamstring tendon. On rare occasion, concomitant LBP, radiculopathy, and hamstring injuries can occur;. This diagnostic challenge is described in the following case.

  11. A functional MRI Exploration of Hamstring Activation During the Supine Bridge Exercise.

    PubMed

    Bourne, Matthew; Williams, Morgan; Pizzari, Tania; Shield, Anthony

    2018-02-01

    The single leg supine bridge (SLB) is a commonly employed strengthening exercise and is used as a clinical test for hamstring function in sports, however, little is known about the patterns of muscle activation in this task. To explore these activation patterns, nine healthy, recreationally active males underwent functional magnetic resonance imaging (fMRI) of their thighs at rest and immediately after 5 sets of 10 repetitions of the SLB exercise. Exercise-induced increases in the transverse (T2) relaxation time of the biceps femoris long and short heads, semitendinosus and semimembranosus, were determined via signal intensity changes in pre- and post-exercise images and used as an index of muscle activation. The Bonferroni adjusted alpha was set at p<0.008. The semitendinosus exhibited a greater T2 increase than the biceps femoris short head (p<0.001, d=2.0) and semimembranosus (p=0.001, d=1.2), but not biceps femoris long head (p=0.029, d=0.9). Furthermore, the percentage change in T2 for biceps femoris long head was greater than its short head (p=0.003, d=1.4). During the SLB exercise, the semitendinosus is most selectively targeted and the biceps femoris long head is preferentially activated over its short head. These findings may have implications for the use of the SLB in hamstring injury prevention and rehabilitation programs. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Mouse Plantar Flexor Muscle Size and Strength After Inactivity and Training

    DTIC Science & Technology

    2010-07-01

    suspension. Keywords: eccentric contraction , microgravity , exercise . SPACEFLIGHT CAUSES atrophy and strength loss in antigravity skeletal muscles...isometric, concentric, and eccentric contractions pre- served muscle mass in the rat medial gastrocnemius ( 2 ), the use of isometric resistance exercise ...Adams GR , Haddad F , Bodell PW , Tran PD , Baldwin KM . Com- bined isometric, concentric, and eccentric resistance exercise prevents

  13. Normal reference values of strength in pelvic floor muscle of women: a descriptive and inferential study.

    PubMed

    Chevalier, Francine; Fernandez-Lao, Carolina; Cuesta-Vargas, Antonio Ignacio

    2014-11-25

    To describe the clinical, functional and quality of life characteristics in women with Stress Urinary Incontinence (SUI). In addition, to analyse the relationship between the variables reported by the patients and those informed by the clinicians, and the relationship between instrumented variables and the manual pelvic floor strength assessment. Two hundred and eighteen women participated in this observational, analytical study. An interview about Urinary Incontinence and the quality of life questionnaires (EuroQoL-5D and SF-12) were developed as outcomes reported by the patients. Manual muscle testing and perineometry as outcomes informed by the clinician were assessed. Descriptive and correlation analysis were carried out. The average age of the subjects was (39.93 ± 12.27 years), (24.49 ± 3.54 BMI). The strength evaluated by manual testing of the right levator ani muscles was 7.79 ± 2.88, the strength of left levator ani muscles was 7.51 ± 2.91 and the strength assessed with the perineometer was 7.64 ± 2.55. A positive correlation was found between manual muscle testing and perineometry of the pelvic floor muscles (p < .001). No correlation was found between outcomes of quality of life reported by the patients and outcomes of functional capacity informed by the physiotherapist. A stratification of the strength of pelvic floor muscles in a normal distribution of a large sample of women with SUI was done, which provided the clinic with a baseline. There is a relationship between the strength of the pelvic muscles assessed manually and that obtained by a perineometer in women with SUI. There was no relationship between these values of strength and quality of life perceived.

  14. Resistance training inhibits the elevation of skeletal muscle derived-BDNF level concomitant with improvement of muscle strength in zucker diabetic rat

    PubMed Central

    Kim, Hee-Jae; So, Byunghun; Son, Jun Seok; Song, Han Sol; Oh, Seung Lyul; Seong, Je Kyung; Lee, Hoyoung; Song, Wook

    2015-01-01

    [Purpose] In the present study, we investigated the effects of 8 weeks of progressive resistance training on the level of skeletal muscle derived BDNF as well as glucose intolerance in Zucker diabetic rats. [Methods] Six week-old male Zucker diabetic fatty (ZDF) and Zucker lean control (ZLC) rats were randomly divided into 3 groups: sedentary ZLC (ZLC-Con), sedentary ZDF (ZDF-Con), and exercised ZDF (ZDF-Ex). Progressive resistance training using a ladder and tail weights was performed for 8 weeks (3 days/week). [Results] After 8 weeks of resistance training, substantial reduction in body weight was observed in ZDF-Ex compared to ZDF-Con. Though the skeletal muscle volume did not change, grip strength grip strength was significantly higher in ZDF-Ex compared to ZDF-Con. In the soleus, the level of BDNF was increased in ZDF-Con, but was significantly decreased (p<0.05) in ZDF-Ex, showing a training effect. Moreover, we found that there was a negative correlation (r=-0.657; p=0.004) between grip strength and BDNF level whereas there was a positive correlation (r=0.612; p=0.008) between plasma glucose level and BDNF level in skeletal muscle. [Conclusion] Based upon our results, we demonstrated that resistance training inhibited the elevation of skeletal muscle derived-BDNF expression concomitant with the improvement of muscle strength in zucker diabetic rats. In addition, muscle-derived BDNF might be a potential mediator for the preventive effect of resistance training on the progress of type 2 diabetes. PMID:27274460

  15. Cardiorespiratory fitness and muscle strength in pancreatic cancer patients.

    PubMed

    Clauss, Dorothea; Tjaden, Christine; Hackert, Thilo; Schneider, Lutz; Ulrich, Cornelia M; Wiskemann, Joachim; Steindorf, Karen

    2017-09-01

    Cancer patients frequently experience reduced physical fitness due to the disease itself as well as treatment-related side effects. However, studies on physical fitness in pancreatic cancer patients are missing. Therefore, we assessed cardiorespiratory fitness and muscle strength of pancreatic cancer patients. We included 65 pancreatic cancer patients, mostly after surgical resection. Cardiorespiratory fitness was assessed using cardiopulmonary exercise testing (CPET) and 6-min walk test (6MWT). Hand-held dynamometry was used to evaluate isometric muscle strength. Physical fitness values were compared to reference values of a healthy population. Associations between sociodemographic and clinical variables with patients' physical fitness were analyzed using multiple regression models. Cardiorespiratory fitness (VO 2 peak, 20.5 ± 6.9 ml/min/kg) was significantly lower (-24%) compared to healthy reference values. In the 6MWT pancreatic cancer patients nearly reached predicted values (555 vs. 562 m). Maximal voluntary isometric contraction (MVIC) of the upper (-4.3%) and lower extremities (-13.8%) were significantly lower compared to reference values. Overall differences were larger in men than those in women. Participating in regular exercise in the year before diagnosis was associated with greater VO 2 peak (p < .05) and MVIC of the knee extensors (p < .05). Pancreatic cancer patients had significantly impaired physical fitness with regard to both cardiorespiratory function and isometric muscle strength, already in the early treatment phase (median 95 days after surgical resection). Our findings underline the need to investigate exercise training in pancreatic cancer patients to counteract the loss of physical fitness.

  16. Walking performance and muscle strength in the later stage poststroke: a nonlinear relationship.

    PubMed

    Carvalho, Cristiane; Sunnerhagen, Katharina S; Willén, Carin

    2013-05-01

    To evaluate the relation between muscle strength in the lower extremities and walking performance (speed and distance) in subjects in the later stage poststroke and to compare this with normative data. A cross-sectional observational study. University hospital department. Subjects poststroke (n=41; 31 men, 10 women) with a mean age of 59±5.8 years and a time from stroke onset of 52±36 months were evaluated. An urban sample (n=144) of 40- to 79-year-olds (69 men, 75 women) formed the healthy reference group. Not applicable. Muscle strength in the lower extremities was measured with an isokinetic dynamometer and combined into a strength index. Values for the 30-meter walk test for self-selected and maximum speed and the 6-minute walk test were measured. A nonlinear regression model was used. The average strength index was 730±309 in the subjects after stroke compared with 1112±362 in the healthy group. A nonlinear relation between walking performance and muscle strength was evident. The model explained 37% of the variance in self-selected speed in the stroke group and 20% in the healthy group, and 63% and 38%, respectively, in the maximum walking speed. For the 6-minute walk test, the model explained 44% of the variance in the stroke group. Subjects in the later stage poststroke were weaker than the healthy reference group, and their weakness was associated with walking performance. At the same strength index, subjects walked at lower speeds and shorter distances after stroke, indicating that there are multiple impairments that affect walking ability. Treatments focused on increasing muscle strength thus continue to hold promise. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Effect of strength training with blood flow restriction on muscle power and submaximal strength in eumenorrheic women.

    PubMed

    Gil, Ana L S; Neto, Gabriel R; Sousa, Maria S C; Dias, Ingrid; Vianna, Jeferson; Nunes, Rodolfo A M; Novaes, Jefferson S

    2017-03-01

    Blood flow restriction (BFR) training stimulates muscle size and strength by increasing muscle activation, accumulation of metabolites and muscle swelling. This method has been used in different populations, but no studies have evaluated the effects of training on muscle power and submaximal strength (SS) in accounted for the menstrual cycle. The aim of this study was to analyse the effect of strength training (ST) with BFR on the muscle power and SS of upper and lower limbs in eumenorrheic women. Forty untrained women (18-40 years) were divided randomly and proportionally into four groups: (i) high-intensity ST at 80% of 1RM (HI), (ii) low-intensity ST at 20% of 1RM combined with partial blood flow restriction (LI + BFR), (iii) low-intensity ST at 20% of 1RM (LI) and d) control group (CG). Each training group performed eight training sessions. Tests with a medicine ball (MB), horizontal jump (HJ), vertical jump (VJ), biceps curls (BC) and knee extension (KE) were performed during the 1st day follicular phase (FP), 14th day (ovulatory phase) and 26-28th days (luteal phase) of the menstrual cycle. There was no significant difference among groups in terms of the MB, HJ, VJ or BC results at any time point (P>0·05). SS in the KE exercise was significantly greater in the LI + BFR group compared to the CG group (P = 0·014) during the LP. Therefore, ST with BFR does not appear to improve the power of upper and lower limbs and may be an alternative to improve the SS of lower limbs of eumenorrheic women. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  18. The Immediate Effect of Neuromuscular Joint Facilitation (NJF) Treatment on Hip Muscle Strength.

    PubMed

    Wang, Hongdan; Huo, Ming; Huang, Qiuchen; Li, Desheng; Maruyama, Hitoshi

    2013-11-01

    [Purpose] This study investigated the change in hip muscle strength of younger persons after neuromuscular joint facilitation (NJF) treatment. [Subjects] The subjects were 45 healthy young people, who were divided into two groups: a NJF group and a proprioceptive neuromuscular facilitation (PNF) group. The NJF group consisted of 21 subjects (11 males, 10 females), and the PNF group consisted of 24 subjects (11 males, 13 females). [Methods] Participants in the NJF group received NJF treatment. We measured the maximal flexor strength and the maximal extensor strength during isokinetic movement of the hip joint before and after intervention in both groups. The angular velocities used were 60°/sec and 180°/sec. [Results] The NJF group showed significant increases in the maximal flexor strength and the maximal extensor strength after the intervention at each angular velocity. In the PNF group, the maximal flexor strength of 60°/sec and the maximal extensor strength of 180°/sec were significant increases. [Conclusion] These results suggest that there is an immediate effect of NJF intervention on hip muscle strength.

  19. Self-Managed Exercises, Fitness and Strength Training, and Multifidus Muscle Size in Elite Footballers.

    PubMed

    Hides, Julie A; Walsh, Jazmin C; Smith, Melinda M Franettovich; Mendis, M Dilani

    2017-07-01

      Low back pain (LBP) and lower limb injuries are common among Australian Football League (AFL) players. Smaller size of 1 key trunk muscle, the lumbar multifidus (MF), has been associated with LBP and injuries in footballers. The size of the MF muscle has been shown to be modifiable with supervised motor-control training programs. Among AFL players, supervised motor-control training has also been shown to reduce the incidence of lower limb injuries and was associated with increased player availability for games. However, the effectiveness of a self-managed MF exercise program is unknown.   To investigate the effect of self-managed exercises and fitness and strength training on MF muscle size in AFL players with or without current LBP.   Cross-sectional study.   Professional AFL context.   Complete data were available for 242 players from 6 elite AFL clubs.   Information related to the presence of LBP and history of injury was collected at the start of the preseason. At the end of the preseason, data were collected regarding performance of MF exercises as well as fitness and strength training. Ultrasound imaging of the MF muscle was conducted at the start and end of the preseason.   Size of the MF muscles.   An interaction effect was found between performance of MF exercises and time (F = 13.89, P ≤ .001). Retention of MF muscle size was greatest in players who practiced the MF exercises during the preseason (F = 4.77, P = .03). Increased adherence to fitness and strength training was associated with retained MF muscle size over the preseason (F = 5.35, P = .02).   Increased adherence to a self-administered MF exercise program and to fitness and strength training was effective in maintaining the size of the MF muscle in the preseason.

  20. Bone geometry, strength, and muscle size in runners with a history of stress fracture.

    PubMed

    Popp, Kristin L; Hughes, Julie M; Smock, Amanda J; Novotny, Susan A; Stovitz, Steven D; Koehler, Scott M; Petit, Moira A

    2009-12-01

    Our primary aim was to explore differences in estimates of tibial bone strength, in female runners with and without a history of stress fractures. Our secondary aim was to explore differences in bone geometry, volumetric density, and muscle size that may explain bone strength outcomes. A total of 39 competitive distance runners aged 18-35 yr, with (SFX, n = 19) or without (NSFX, n = 20) a history of stress fracture were recruited for this cross-sectional study. Peripheral quantitative computed tomography (XCT 3000; Orthometrix, White Plains, NY) was used to assess volumetric bone mineral density (vBMD, mg x mm(-3)), bone area (ToA, mm(2)), and estimated compressive bone strength (bone strength index (BSI) = ToA x total volumetric density (ToD(2))) at the distal tibia (4%). Total (ToA, mm(2)) and cortical (CoA, mm(2)) bone area, cortical vBMD, and estimated bending strength (strength-strain index (SSIp), mm(3)) were measured at the 15%, 25%, 33%, 45%, 50%, and 66% sites. Muscle cross-sectional area (MCSA) was measured at the 50% and 66% sites. Participants in the SFX group had significantly smaller (7%-8%) CoA at the 45%, 50%, and 66% sites (P strength, cortical area, and MCSA are all lower in runners with a history of stress fracture. However, the lower strength was appropriate for the smaller muscle size, suggesting that interventions to reduce stress fracture risk might be aimed at improving muscle size and strength.