Sample records for hanaro ex-core neutron

  1. Nodal weighting factor method for ex-core fast neutron fluence evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, R. T.

    The nodal weighting factor method is developed for evaluating ex-core fast neutron flux in a nuclear reactor by utilizing adjoint neutron flux, a fictitious unit detector cross section for neutron energy above 1 or 0.1 MeV, the unit fission source, and relative assembly nodal powers. The method determines each nodal weighting factor for ex-core neutron fast flux evaluation by solving the steady-state adjoint neutron transport equation with a fictitious unit detector cross section for neutron energy above 1 or 0.1 MeV as the adjoint source, by integrating the unit fission source with a typical fission spectrum to the solved adjointmore » flux over all energies, all angles and given nodal volume, and by dividing it with the sum of all nodal weighting factors, which is a normalization factor. Then, the fast neutron flux can be obtained by summing the various relative nodal powers times the corresponding nodal weighting factors of the adjacent significantly contributed peripheral assembly nodes and times a proper fast neutron attenuation coefficient over an operating period. A generic set of nodal weighting factors can be used to evaluate neutron fluence at the same location for similar core design and fuel cycles, but the set of nodal weighting factors needs to be re-calibrated for a transition-fuel-cycle. This newly developed nodal weighting factor method should be a useful and simplified tool for evaluating fast neutron fluence at selected locations of interest in ex-core components of contemporary nuclear power reactors. (authors)« less

  2. Monitoring of the Irradiated Neutron Fluence in the Neutron Transmutation Doping Process of Hanaro

    NASA Astrophysics Data System (ADS)

    Kim, Myong-Seop; Park, Sang-Jun

    2009-08-01

    Neutron transmutation doping (NTD) for silicon is a process of the creation of phosphorus impurities in intrinsic or extrinsic silicon by neutron irradiation to obtain silicon semiconductors with extremely uniform dopant distribution. HANARO has two vertical holes for the NTD, and the irradiation for 5 and 6 inch silicon ingots has been going on at one hole. In order to achieve the accurate neutron fluence corresponding to the target resistivity, the real time neutron flux is monitored by self-powered neutron detectors. After irradiation, the total irradiation fluence is confirmed by measuring the absolute activity of activation detectors. In this work, a neutron fluence monitoring method using zirconium foils with the mass of 10 ~ 50 mg was applied to the NTD process of HANARO. We determined the proportional constant of the relationship between the resistivity of the irradiated silicon and the neutron fluence determined by using zirconium foils. The determined constant for the initially n-type silicon was 3.126 × 1019 n·Ω/cm. It was confirmed that the difference between this empirical value and the theoretical one was only 0.5%. Conclusively, the practical methodology to perform the neutron transmutation doping of silicon was established.

  3. Self-Powered Neutron Detector Calibration Using a Large Vertical Irradiation Hole of HANARO

    NASA Astrophysics Data System (ADS)

    Kim, Myong-Seop; Park, Byung-Gun; Kang, Gi-Doo

    2018-01-01

    A calibration technology of the self-powered neutron detectors (SPNDs) using a large vertical irradiation hole of HANARO is developed. The 40 Rh-SPNDs are installed on the polycarbonate plastic support, and the gold wires with the same length as the effective length of the rhodium emitter of the SPND are also installed to measure the neutron flux on the SPND. They are irradiated at a low reactor power, and the SPND current is measured using the pico-ammeter. The external gamma-rays which affect the SPND current response are analyzed using the Monte Carlo simulation for various irradiation conditions in HANARO. It is confirmed that the effect of the external gamma-rays to the SPND current is dependent on the reactor characteristics, and that it is affected by materials around the detector. The current signals due to the external gamma-rays can be either positive or negative, in that the net flow of the current may be either in the same or the opposite direction as the neutron-induced current by the rhodium emitter. From the above procedure, the effective calibration methodology of multiple SPNDs using the large hole of HANARO is developed. It could be useful for the calibration experiment of the neutron detectors in the research reactors.

  4. Characterization of HANARO neutron radiography facility in accordance with ASTM standard E545-91/E803-91 for KOLAS/ISO17025.

    PubMed

    Cheul-Muu, Sim; Ki-Yong, Nam; In-Cheol, Lim; Chang-Hee, Lee; Ha-Lim, Choi

    2004-10-01

    As neutron radiography is even more in demand for industrial applications of aircraft, turbine blade, automobile, explosive igniters, etc, it is necessary to review the standards which are the most appropriate for preparing the procedures for setting up the QA system. Recently, Korea Of Lab Accreditation Scheme (KOLAS) was originated from ISO 17025. It is widely recognized by research peer groups for conducting valid tests. The neutron radiography facility (NRF) of High Flux Advanced Neutron Application Reactor (HANARO), which started ion 1996, is the preliminary stages of KOLAS. The HANARO NRF is not only characterized using ASTM standards E545-91/E803-91 to satisfy the requirements of KOLAS, but in the design phase of the tomography system.

  5. Small angle neutron scattering study of nano sized microstructure in Fe-Cr ODS steels for gen IV in-core applications.

    PubMed

    Han, Young-Soo; Mao, Xiadong; Jang, Jinsung

    2013-11-01

    The nano-sized microstructures in Fe-Cr oxide dispersion strengthened steel for Gen IV in-core applications were studied using small angle neutron scattering. The oxide dispersion strengthened steel was manufactured through hot isostatic pressing with various chemical compositions and fabrication conditions. Small angle neutron scattering experiments were performed using a 40 m small angle neutron scattering instrument at HANARO. Nano sized microstructures, namely, yttrium oxides and Cr-oxides were quantitatively analyzed by small angle neutron scattering. The yttrium oxides and Cr-oxides were also observed by transmission electron microscopy. The microstructural analysis results from small angle neutron scattering were compared with those obtained by transmission electron microscopy. The effects of the chemical compositions and fabrication conditions on the microstructure were investigated in relation to the quantitative microstructural analysis results obtained by small angle neutron scattering. The volume fraction of Y-oxide increases after fabrication, and this result is considered to be due to the formation of non-stochiometric Y-Ti-oxides.

  6. Neutronics calculation of RTP core

    NASA Astrophysics Data System (ADS)

    Rabir, Mohamad Hairie B.; Zin, Muhammad Rawi B. Mohamed; Karim, Julia Bt. Abdul; Bayar, Abi Muttaqin B. Jalal; Usang, Mark Dennis Anak; Mustafa, Muhammad Khairul Ariff B.; Hamzah, Na'im Syauqi B.; Said, Norfarizan Bt. Mohd; Jalil, Muhammad Husamuddin B.

    2017-01-01

    Reactor calculation and simulation are significantly important to ensure safety and better utilization of a research reactor. The Malaysian's PUSPATI TRIGA Reactor (RTP) achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. Since early 90s, neutronics modelling were used as part of its routine in-core fuel management activities. The are several computer codes have been used in RTP since then, based on 1D neutron diffusion, 2D neutron diffusion and 3D Monte Carlo neutron transport method. This paper describes current progress and overview on neutronics modelling development in RTP. Several important parameters were analysed such as keff, reactivity, neutron flux, power distribution and fission product build-up for the latest core configuration. The developed core neutronics model was validated by means of comparison with experimental and measurement data. Along with the RTP core model, the calculation procedure also developed to establish better prediction capability of RTP's behaviour.

  7. NEUTRONIC REACTOR CORE

    DOEpatents

    Thomson, W.B.; Corbin, A. Jr.

    1961-07-18

    An improved core for a gas-cooled power reactor which admits gas coolant at high temperatures while affording strong integral supporting structure and efficient moderation of neutrons is described. The multiplicities of fuel elements constituting the critical amassment of fissionable material are supported and confined by a matrix of metallic structure which is interspersed therebetween. Thermal insulation is interposed between substantially all of the metallic matrix and the fuel elements; the insulation then defines the principal conduit system for conducting the coolant gas in heat-transfer relationship with the fuel elements. The metallic matrix itseif comprises a system of ducts through which an externally-cooled hydrogeneous liquid, such as water, is circulated to serve as the principal neutron moderant for the core and conjointly as the principal coolant for the insulated metallic structure. In this way, use of substantially neutron transparent metals, such as aluminum, becomes possible for the supporting structure, despite the high temperatures of the proximate gas. The Aircraft Nuclear Propulsion program's "R-1" reactor design is a preferred embodiment.

  8. The process of desistance among core ex-gang members.

    PubMed

    Berger, Rony; Abu-Raiya, Hisham; Heineberg, Yotam; Zimbardo, Philip

    2017-01-01

    Research has established robust links between gang membership, delinquency, violence and victimization. Yet studies examining the process of gang desistance in general and that of core gang members in particular, are quite rare. The current study aims to identify factors associated with desistance of core gang members as well as describe the nature of the process that these "formers" have undergone. Thirty-nine core ex-gang members (80% males and 20% females) from the San Francisco Bay area and Los Angeles, with an average length of 11.6-years gang membership, were interviewed regarding their involvement in the gang and the desistance process. A systematic qualitative analysis based on grounded theory methodology was mainly utilized. We found that the decision to leave the gang is a result of a combination of push (e.g., personal and vicarious victimization, burnout of gang lifestyle, disillusionment by the gang) and pull (e.g., parenthood, family responsibilities, religious and cultural awakening) factors that evolved over time. Push factors were more dominant in this domain. We also found that while male core ex-gang members tended to leave the gang more frequently because of push factors, female ex-gang members were more inclined to desist due to pull factors. Our analysis also showed that core gang members shared a general pattern of the desistance process comprising of the following 5 stages: triggering, contemplation, exploration, exiting and maintenance. Based on these results, we outlined stage-specific recommendations for agents of societal change to help in facilitating the desistance of core gang members. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Research on water discharge characteristics of PEM fuel cells by using neutron imaging technology at the NRF, HANARO.

    PubMed

    Kim, TaeJoo; Sim, CheulMuu; Kim, MooHwan

    2008-05-01

    An investigation into the water discharge characteristics of proton exchange membrane (PEM) fuel cells is carried out by using a feasibility test apparatus and the Neutron Radiography Facility (NRF) at HANARO. The feasibility test apparatus was composed of a distilled water supply line, a compressed air supply line, heating systems, and single PEM fuel cells, which were a 1-parallel serpentine type with a 100 cm(2) active area. Three kinds of methods were used: compressed air supply-only; heating-only; and a combination of the methods of a compressed air supply and heating, respectively. The resultant water discharge characteristics are different according to the applied methods. The compressed air supply only is suitable for removing the water at a flow field and a heating only is suitable for water at the MEA. Therefore, in order to remove all the water at PEM fuel cells, the combination method is needed at the moment.

  10. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core.

    PubMed

    Lashkari, A; Khalafi, H; Kazeminejad, H

    2013-05-01

    In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change.

  11. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core

    PubMed Central

    Lashkari, A.; Khalafi, H.; Kazeminejad, H.

    2013-01-01

    In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change. PMID:24976672

  12. Ex-Vessel Core Melt Modeling Comparison between MELTSPREAD-CORQUENCH and MELCOR 2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb, Kevin R.; Farmer, Mitchell; Francis, Matthew W.

    System-level code analyses by both United States and international researchers predict major core melting, bottom head failure, and corium-concrete interaction for Fukushima Daiichi Unit 1 (1F1). Although system codes such as MELCOR and MAAP are capable of capturing a wide range of accident phenomena, they currently do not contain detailed models for evaluating some ex-vessel core melt behavior. However, specialized codes containing more detailed modeling are available for melt spreading such as MELTSPREAD as well as long-term molten corium-concrete interaction (MCCI) and debris coolability such as CORQUENCH. In a preceding study, Enhanced Ex-Vessel Analysis for Fukushima Daiichi Unit 1: Meltmore » Spreading and Core-Concrete Interaction Analyses with MELTSPREAD and CORQUENCH, the MELTSPREAD-CORQUENCH codes predicted the 1F1 core melt readily cooled in contrast to predictions by MELCOR. The user community has taken notice and is in the process of updating their systems codes; specifically MAAP and MELCOR, to improve and reduce conservatism in their ex-vessel core melt models. This report investigates why the MELCOR v2.1 code, compared to the MELTSPREAD and CORQUENCH 3.03 codes, yield differing predictions of ex-vessel melt progression. To accomplish this, the differences in the treatment of the ex-vessel melt with respect to melt spreading and long-term coolability are examined. The differences in modeling approaches are summarized, and a comparison of example code predictions is provided.« less

  13. Measurement and simulation of thermal neutron flux distribution in the RTP core

    NASA Astrophysics Data System (ADS)

    Rabir, Mohamad Hairie B.; Jalal Bayar, Abi Muttaqin B.; Hamzah, Na'im Syauqi B.; Mustafa, Muhammad Khairul Ariff B.; Karim, Julia Bt. Abdul; Zin, Muhammad Rawi B. Mohamed; Ismail, Yahya B.; Hussain, Mohd Huzair B.; Mat Husin, Mat Zin B.; Dan, Roslan B. Md; Ismail, Ahmad Razali B.; Husain, Nurfazila Bt.; Jalil Khan, Zareen Khan B. Abdul; Yakin, Shaiful Rizaide B. Mohd; Saad, Mohamad Fauzi B.; Masood, Zarina Bt.

    2018-01-01

    The in-core thermal neutron flux distribution was determined using measurement and simulation methods for the Malaysian’s PUSPATI TRIGA Reactor (RTP). In this work, online thermal neutron flux measurement using Self Powered Neutron Detector (SPND) has been performed to verify and validate the computational methods for neutron flux calculation in RTP calculations. The experimental results were used as a validation to the calculations performed with Monte Carlo code MCNP. The detail in-core neutron flux distributions were estimated using MCNP mesh tally method. The neutron flux mapping obtained revealed the heterogeneous configuration of the core. Based on the measurement and simulation, the thermal flux profile peaked at the centre of the core and gradually decreased towards the outer side of the core. The results show a good agreement (relatively) between calculation and measurement where both show the same radial thermal flux profile inside the core: MCNP model over estimation with maximum discrepancy around 20% higher compared to SPND measurement. As our model also predicts well the neutron flux distribution in the core it can be used for the characterization of the full core, that is neutron flux and spectra calculation, dose rate calculations, reaction rate calculations, etc.

  14. Core Vessel Insert Handling Robot for the Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graves, Van B; Dayton, Michael J

    2011-01-01

    The Spallation Neutron Source provides the world's most intense pulsed neutron beams for scientific research and industrial development. Its eighteen neutron beam lines will eventually support up to twenty-four simultaneous experiments. Each beam line consists of various optical components which guide the neutrons to a particular instrument. The optical components nearest the neutron moderators are the core vessel inserts. Located approximately 9 m below the high bay floor, these inserts are bolted to the core vessel chamber and are part of the vacuum boundary. They are in a highly radioactive environment and must periodically be replaced. During initial SNS construction,more » four of the beam lines received Core Vessel Insert plugs rather than functional inserts. Remote replacement of the first Core Vessel Insert plug was recently completed using several pieces of custom-designed tooling, including a highly complicated Core Vessel Insert Robot. The design of this tool are discussed.« less

  15. NEUTRONIC REACTOR CORE INSTRUMENT

    DOEpatents

    Mims, L.S.

    1961-08-22

    A multi-purpose instrument for measuring neutron flux, coolant flow rate, and coolant temperature in a nuclear reactor is described. The device consists essentially of a hollow thimble containing a heat conducting element protruding from the inner wall, the element containing on its innermost end an amount of fissionsble materinl to function as a heat source when subjected to neutron flux irradiation. Thermocouple type temperature sensing means are placed on the heat conducting element adjacent the fissionable material and at a point spaced therefrom, and at a point on the thimble which is in contact with the coolant fluid. The temperature differentials measured between the thermocouples are determinative of the neutron flux, coolant flow, and temperature being measured. The device may be utilized as a probe or may be incorporated in a reactor core. (AE C)

  16. Strong Neutron Pairing in core+4n Nuclei.

    PubMed

    Revel, A; Marqués, F M; Sorlin, O; Aumann, T; Caesar, C; Holl, M; Panin, V; Vandebrouck, M; Wamers, F; Alvarez-Pol, H; Atar, L; Avdeichikov, V; Beceiro-Novo, S; Bemmerer, D; Benlliure, J; Bertulani, C A; Boillos, J M; Boretzky, K; Borge, M J G; Caamaño, M; Casarejos, E; Catford, W N; Cederkäll, J; Chartier, M; Chulkov, L; Cortina-Gil, D; Cravo, E; Crespo, R; Datta Pramanik, U; Díaz Fernández, P; Dillmann, I; Elekes, Z; Enders, J; Ershova, O; Estradé, A; Farinon, F; Fraile, L M; Freer, M; Galaviz, D; Geissel, H; Gernhäuser, R; Golubev, P; Göbel, K; Hagdahl, J; Heftrich, T; Heil, M; Heine, M; Heinz, A; Henriques, A; Ignatov, A; Johansson, H T; Jonson, B; Kahlbow, J; Kalantar-Nayestanaki, N; Kanungo, R; Kelic-Heil, A; Knyazev, A; Kröll, T; Kurz, N; Labiche, M; Langer, C; Le Bleis, T; Lemmon, R; Lindberg, S; Machado, J; Marganiec, J; Movsesyan, A; Nacher, E; Najafi, M; Nilsson, T; Nociforo, C; Paschalis, S; Perea, A; Petri, M; Pietri, S; Plag, R; Reifarth, R; Ribeiro, G; Rigollet, C; Röder, M; Rossi, D; Savran, D; Scheit, H; Simon, H; Syndikus, I; Taylor, J T; Tengblad, O; Thies, R; Togano, Y; Velho, P; Volkov, V; Wagner, A; Weick, H; Wheldon, C; Wilson, G; Winfield, J S; Woods, P; Yakorev, D; Zhukov, M; Zilges, A; Zuber, K

    2018-04-13

    The emission of neutron pairs from the neutron-rich N=12 isotones ^{18}C and ^{20}O has been studied by high-energy nucleon knockout from ^{19}N and ^{21}O secondary beams, populating unbound states of the two isotones up to 15 MeV above their two-neutron emission thresholds. The analysis of triple fragment-n-n correlations shows that the decay ^{19}N(-1p)^{18}C^{*}→^{16}C+n+n is clearly dominated by direct pair emission. The two-neutron correlation strength, the largest ever observed, suggests the predominance of a ^{14}C core surrounded by four valence neutrons arranged in strongly correlated pairs. On the other hand, a significant competition of a sequential branch is found in the decay ^{21}O(-1n)^{20}O^{*}→^{18}O+n+n, attributed to its formation through the knockout of a deeply bound neutron that breaks the ^{16}O core and reduces the number of pairs.

  17. Strong Neutron Pairing in core+4 n Nuclei

    NASA Astrophysics Data System (ADS)

    Revel, A.; Marqués, F. M.; Sorlin, O.; Aumann, T.; Caesar, C.; Holl, M.; Panin, V.; Vandebrouck, M.; Wamers, F.; Alvarez-Pol, H.; Atar, L.; Avdeichikov, V.; Beceiro-Novo, S.; Bemmerer, D.; Benlliure, J.; Bertulani, C. A.; Boillos, J. M.; Boretzky, K.; Borge, M. J. G.; Caamaño, M.; Casarejos, E.; Catford, W. N.; Cederkäll, J.; Chartier, M.; Chulkov, L.; Cortina-Gil, D.; Cravo, E.; Crespo, R.; Datta Pramanik, U.; Díaz Fernández, P.; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estradé, A.; Farinon, F.; Fraile, L. M.; Freer, M.; Galaviz, D.; Geissel, H.; Gernhäuser, R.; Golubev, P.; Göbel, K.; Hagdahl, J.; Heftrich, T.; Heil, M.; Heine, M.; Heinz, A.; Henriques, A.; Ignatov, A.; Johansson, H. T.; Jonson, B.; Kahlbow, J.; Kalantar-Nayestanaki, N.; Kanungo, R.; Kelic-Heil, A.; Knyazev, A.; Kröll, T.; Kurz, N.; Labiche, M.; Langer, C.; Le Bleis, T.; Lemmon, R.; Lindberg, S.; Machado, J.; Marganiec, J.; Movsesyan, A.; Nacher, E.; Najafi, M.; Nilsson, T.; Nociforo, C.; Paschalis, S.; Perea, A.; Petri, M.; Pietri, S.; Plag, R.; Reifarth, R.; Ribeiro, G.; Rigollet, C.; Röder, M.; Rossi, D.; Savran, D.; Scheit, H.; Simon, H.; Syndikus, I.; Taylor, J. T.; Tengblad, O.; Thies, R.; Togano, Y.; Velho, P.; Volkov, V.; Wagner, A.; Weick, H.; Wheldon, C.; Wilson, G.; Winfield, J. S.; Woods, P.; Yakorev, D.; Zhukov, M.; Zilges, A.; Zuber, K.; R3B Collaboration

    2018-04-01

    The emission of neutron pairs from the neutron-rich N =12 isotones 18C and 20O has been studied by high-energy nucleon knockout from 19N and 21O secondary beams, populating unbound states of the two isotones up to 15 MeV above their two-neutron emission thresholds. The analysis of triple fragment-n -n correlations shows that the decay 19N (-1 p ) 18C* → 16C +n +n is clearly dominated by direct pair emission. The two-neutron correlation strength, the largest ever observed, suggests the predominance of a 14C core surrounded by four valence neutrons arranged in strongly correlated pairs. On the other hand, a significant competition of a sequential branch is found in the decay 21O (-1 n )20O*→18O +n +n , attributed to its formation through the knockout of a deeply bound neutron that breaks the 16O core and reduces the number of pairs.

  18. NASA'S Chandra Finds Superfluid in Neutron Star's Core

    NASA Astrophysics Data System (ADS)

    2011-02-01

    NASA's Chandra X-ray Observatory has discovered the first direct evidence for a superfluid, a bizarre, friction-free state of matter, at the core of a neutron star. Superfluids created in laboratories on Earth exhibit remarkable properties, such as the ability to climb upward and escape airtight containers. The finding has important implications for understanding nuclear interactions in matter at the highest known densities. Neutron stars contain the densest known matter that is directly observable. One teaspoon of neutron star material weighs six billion tons. The pressure in the star's core is so high that most of the charged particles, electrons and protons, merge resulting in a star composed mostly of uncharged particles called neutrons. Two independent research teams studied the supernova remnant Cassiopeia A, or Cas A for short, the remains of a massive star 11,000 light years away that would have appeared to explode about 330 years ago as observed from Earth. Chandra data found a rapid decline in the temperature of the ultra-dense neutron star that remained after the supernova, showing that it had cooled by about four percent over a 10-year period. "This drop in temperature, although it sounds small, was really dramatic and surprising to see," said Dany Page of the National Autonomous University in Mexico, leader of a team with a paper published in the February 25, 2011 issue of the journal Physical Review Letters. "This means that something unusual is happening within this neutron star." Superfluids containing charged particles are also superconductors, meaning they act as perfect electrical conductors and never lose energy. The new results strongly suggest that the remaining protons in the star's core are in a superfluid state and, because they carry a charge, also form a superconductor. "The rapid cooling in Cas A's neutron star, seen with Chandra, is the first direct evidence that the cores of these neutron stars are, in fact, made of superfluid and

  19. Ex-vessel neutron dosimetry analysis for westinghouse 4-loop XL pressurized water reactor plant using the RadTrack{sup TM} Code System with the 3D parallel discrete ordinates code RAPTOR-M3G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, J.; Alpan, F. A.; Fischer, G.A.

    2011-07-01

    Traditional two-dimensional (2D)/one-dimensional (1D) SYNTHESIS methodology has been widely used to calculate fast neutron (>1.0 MeV) fluence exposure to reactor pressure vessel in the belt-line region. However, it is expected that this methodology cannot provide accurate fast neutron fluence calculation at elevations far above or below the active core region. A three-dimensional (3D) parallel discrete ordinates calculation for ex-vessel neutron dosimetry on a Westinghouse 4-Loop XL Pressurized Water Reactor has been done. It shows good agreement between the calculated results and measured results. Furthermore, the results show very different fast neutron flux values at some of the former plate locationsmore » and elevations above and below an active core than those calculated by a 2D/1D SYNTHESIS method. This indicates that for certain irregular reactor internal structures, where the fast neutron flux has a very strong local effect, it is required to use a 3D transport method to calculate accurate fast neutron exposure. (authors)« less

  20. Observational constraints on neutron star crust-core coupling during glitches

    NASA Astrophysics Data System (ADS)

    Newton, W. G.; Berger, S.; Haskell, B.

    2015-12-01

    We demonstrate that observations of glitches in the Vela pulsar can be used to investigate the strength of the crust-core coupling in a neutron star and provide a powerful probe of the internal structure of neutron stars. We assume that glitch recovery is dominated by the torque exerted by the mutual friction-mediated recoupling of superfluid components of the core that were decoupled from the crust during the glitch. Then we use the observations of the recoveries from two recent glitches in the Vela pulsar to infer the fraction of the core that is coupled to the crust during the glitch. We then analyse whether crustal neutrons alone are sufficient to drive glitches in the Vela pulsar, taking into account crustal entrainment. We use two sets of neutron star equations of state (EOSs) which span crust and core consistently and cover a conservative range of the slope of the symmetry energy at saturation density 30 < L < 120 MeV. The two sets differ in the stiffness of the high density EOS. We find that for medium to stiff EOSs, observations imply >70 per cent of the moment of inertia of the core is coupled to the crust during the glitch, though for softer EOSs L ≈ 30 MeV as little as 5 per cent could be coupled. We find that only by extending the region where superfluid vortices are strongly pinned into the core by densities at least 0.016 fm-3 above the crust-core transition density does any EOS reproduce the observed glitch activity.

  1. Fukushima Daiichi Unit 1 Ex-Vessel Prediction: Core Concrete Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb, Kevin R; Farmer, Mitchell; Francis, Matthew W

    Lower head failure and corium concrete interaction were predicted to occur at Fukushima Daiichi Unit 1 (1F1) by several different system-level code analyses, including MELCOR v2.1 and MAAP5. Although these codes capture a wide range of accident phenomena, they do not contain detailed models for ex-vessel core melt behavior. However, specialized codes exist for analysis of ex-vessel melt spreading (e.g., MELTSPREAD) and long-term debris coolability (e.g., CORQUENCH). On this basis, an analysis was carried out to further evaluate ex-vessel behavior for 1F1 using MELTSPREAD and CORQUENCH. Best-estimate melt pour conditions predicted by MELCOR v2.1 and MAAP5 were used as input.more » MELTSPREAD was then used to predict the spatially dependent melt conditions and extent of spreading during relocation from the vessel. The results of the MELTSPREAD analysis are reported in a companion paper. This information was used as input for the long-term debris coolability analysis with CORQUENCH.« less

  2. Fukushima Daiichi Unit 1 ex-vessel prediction: Core melt spreading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, M. T.; Robb, K. R.; Francis, M. W.

    Lower head failure and corium-concrete interaction were predicted to occur at Fukushima Daiichi Unit 1 (1F1) by several different system-level code analyses, including MELCOR v2.1 and MAAP5. Although these codes capture a wide range of accident phenomena, they do not contain detailed models for ex-vessel core melt behavior. However, specialized codes exist for analysis of ex-vessel melt spreading (e.g., MELTSPREAD) and long-term debris coolability (e.g., CORQUENCH). On this basis, an analysis has been carried out to further evaluate ex-vessel behavior for 1F1 using MELTSPREAD and CORQUENCH. Best-estimate melt pour conditions predicted by MELCOR v2.1 and MAAP5 were used as input.more » MELTSPREAD was then used to predict the spatially-dependent melt conditions and extent of spreading during relocation from the vessel. Lastly, this information was then used as input for the long-term debris coolability analysis with CORQUENCH that is reported in a companion paper.« less

  3. Fukushima Daiichi Unit 1 ex-vessel prediction: Core melt spreading

    DOE PAGES

    Farmer, M. T.; Robb, K. R.; Francis, M. W.

    2016-10-31

    Lower head failure and corium-concrete interaction were predicted to occur at Fukushima Daiichi Unit 1 (1F1) by several different system-level code analyses, including MELCOR v2.1 and MAAP5. Although these codes capture a wide range of accident phenomena, they do not contain detailed models for ex-vessel core melt behavior. However, specialized codes exist for analysis of ex-vessel melt spreading (e.g., MELTSPREAD) and long-term debris coolability (e.g., CORQUENCH). On this basis, an analysis has been carried out to further evaluate ex-vessel behavior for 1F1 using MELTSPREAD and CORQUENCH. Best-estimate melt pour conditions predicted by MELCOR v2.1 and MAAP5 were used as input.more » MELTSPREAD was then used to predict the spatially-dependent melt conditions and extent of spreading during relocation from the vessel. Lastly, this information was then used as input for the long-term debris coolability analysis with CORQUENCH that is reported in a companion paper.« less

  4. Gfr Core Neutronics Studies at CEA

    NASA Astrophysics Data System (ADS)

    Bosq, J. C.; Brun-Magaud, V.; Rimpault, G.; Tommasi, J.; Conti, A.; Garnier, J. C.

    2006-04-01

    The Gas cooled Fast Reactor (GFR) is a high priority in the CEA R&D program on Future Nuclear Energy Systems. After preliminary neutronics and thermo-aerolic studies, a first He-cooled 2400MWth core design based on a series of carbide CERCER plates arranged in an hexagonal wrapper were selected. Although GFR subassembly and core design studies are still at an early stage of development, it is nonetheless possible to identify a number of nuclear data needs that could have some impact on the actual design: new materials, decay heat contributors….

  5. Neutron Radiation Damage Estimation in the Core Structure Base Metal of RSG GAS

    NASA Astrophysics Data System (ADS)

    Santa, S. A.; Suwoto

    2018-02-01

    Radiation damage in core structure of the Indonesian RGS GAS multi purpose reactor resulting from the reaction of fast and thermal neutrons with core material structure was investigated for the first time after almost 30 years in operation. The aim is to analyze the degradation level of the critical components of the RSG GAS reactor so that the remaining life of its component can be estimated. Evaluation results of critical components remaining life will be used as data ccompleteness for submission of reactor operating permit extension. Material damage analysis due to neutron radiation is performed for the core structure components made of AlMg3 material and bolts reinforcement of core structure made of SUS304. Material damage evaluation was done on Al and Fe as base metal of AlMg3 and SUS304, respectively. Neutron fluences are evaluated based on the assumption that neutron flux calculations of U3Si8-Al equilibrium core which is operated on power rated of 15 MW. Calculation result using SRAC2006 code of CITATION module shows the maximum total neutron flux and flux >0.1 MeV are 2.537E+14 n/cm2/s and 3.376E+13 n/cm2/s, respectively. It was located at CIP core center close to the fuel element. After operating up to the end of #89 core formation, the total neutron fluence and fluence >0.1 MeV were achieved 9.063E+22 and 1.269E+22 n/cm2, respectively. Those are related to material damage of Al and Fe as much as 17.91 and 10.06 dpa, respectively. Referring to the life time of Al-1100 material irradiated in the neutron field with thermal flux/total flux=1.7 which capable of accepting material damage up to 250 dpa, it was concluded that RSG GAS reactor core structure underwent 7.16% of its operating life span. It means that core structure of RSG GAS reactor is still capable to receive the total neutron fluence of 9.637E+22 n/cm2 or fluence >0.1 MeV of 5.672E+22 n/cm2.

  6. Korean standard nuclear plant ex-vessel neutron dosimetry program Ulchin 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duo, J.I.; Chen, J.; Kulesza, J.A.

    2011-07-01

    A comprehensive ex-vessel neutron dosimetry (EVND) surveillance program has been deployed in 16 pressurized water reactors (PWR) in South Korea and EVND dosimetry sets have already been installed and analyzed in Westinghouse reactor designs. In this paper, the unique features of the design, training, and installation in the Korean standard nuclear plant (KSNP) Ulchin Unit 4 are presented. Ulchin Unit 4 Cycle 9 represents the first dosimetry analyzed from the EVND design deployed in KSNP plants: Yonggwang Units 3 through 6 and Ulchin Units 3 through 6. KSNP's cavity configuration precludes a conventional installation from the cavity floor. The solution,more » requiring the installation crew to access the cavity at an elevation of the active core, places a premium on rapid installation due to high area dose rates. Numerous geometrical features warranted the use of a detailed design in true 3D mechanical design software to control interferences. A full-size training mockup maximized the crew ability to correctly install the instrument in minimum time. The analysis of the first dosimetry set shows good agreements between measurement and calculation within the associated uncertainties. A complete EVND system has been successfully designed, installed, and analyzed for a KNSP plant. Current and future EVND analyses will continue supporting the successful operation of PWR units in South Korea. (authors)« less

  7. Fluorophore-labeling of core-crosslinked polymeric micelles for multimodal in vivo and ex vivo optical imaging

    PubMed Central

    Shi, Yang; Kunjachan, Sijumon; Wu, Zhuojun; Gremse, Felix; Moeckel, Diana; van Zandvoort, Marc; Kiessling, Fabian; Storm, Gert; van Nostrum, Cornelus F.; Hennink, Wim E.; Lammers, Twan

    2015-01-01

    Aim To enable multimodal in vivo and ex vivo optical imaging of the biodistribution and tumor accumulation of core-crosslinked polymeric micelles (CCPM). Materials & Methods mPEG-b-p(HPMAm-Lac)-based polymeric micelles, core-crosslinked via cystamine and covalently labeled with two fluorophores (Dy-676/488) were synthesized. The CCPM were intravenously injected in CT26 tumor-bearing mice. Results Upon intravenous injection, the CCPM accumulated in CT26 tumors reasonably efficiently, with values reaching ~4 %ID at 24 hours. Ex vivo TPLSM confirmed efficient extravasation of the iCCPM out of tumor blood vessels and deep penetration into the tumor interstitium. Conclusions CCPM were labeled with multiple fluorophores, and they exemplify that combining different in vivo and ex vivo optical imaging techniques is highly useful for analyzing the biodistribution and tumor accumulation of nanomedicines. PMID:25929568

  8. Self powered neutron detectors as in-core detectors for Sodium-cooled Fast Reactors

    NASA Astrophysics Data System (ADS)

    Verma, V.; Barbot, L.; Filliatre, P.; Hellesen, C.; Jammes, C.; Svärd, S. Jacobsson

    2017-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction. In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment.

  9. REVIEWS OF TOPICAL PROBLEMS: Cooling of neutron stars and superfluidity in their cores

    NASA Astrophysics Data System (ADS)

    Yakovlev, Dmitrii G.; Levenfish, Kseniya P.; Shibanov, Yurii A.

    1999-08-01

    We study the heat capacity and neutrino emission reactions (direct and modified Urca processes, nucleon-nucleon bremsstrahlung, Cooper pairing of nucleons) in the supranuclear density matter of neutron star cores with superfluid neutrons and protons. Various superfluidity types are analysed (singlet-state pairing and two types of triplet-state pairing, without and with gap nodes at the nucleon Fermi surface). The results are used for cooling simulations of isolated neutron stars. Both the standard cooling and the cooling enhanced by the direct Urca process are strongly affected by nucleon superfluidity. Comparison of the cooling theory of isolated neutron stars with observations of their thermal radiation may give stringent constraints on the critical temperatures of the neutron and proton superfluidities in the neutron star cores.

  10. Two-component Superfluid Hydrodynamics of Neutron Star Cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobyakov, D. N.; Pethick, C. J., E-mail: dmitry.kobyakov@appl.sci-nnov.ru, E-mail: pethick@nbi.dk

    2017-02-20

    We consider the hydrodynamics of the outer core of a neutron star under conditions when both neutrons and protons are superfluid. Starting from the equation of motion for the phases of the wave functions of the condensates of neutron pairs and proton pairs, we derive the generalization of the Euler equation for a one-component fluid. These equations are supplemented by the conditions for conservation of neutron number and proton number. Of particular interest is the effect of entrainment, the fact that the current of one nucleon species depends on the momenta per nucleon of both condensates. We find that themore » nonlinear terms in the Euler-like equation contain contributions that have not always been taken into account in previous applications of superfluid hydrodynamics. We apply the formalism to determine the frequency of oscillations about a state with stationary condensates and states with a spatially uniform counterflow of neutrons and protons. The velocities of the coupled sound-like modes of neutrons and protons are calculated from properties of uniform neutron star matter evaluated on the basis of chiral effective field theory. We also derive the condition for the two-stream instability to occur.« less

  11. Core excitations across the neutron shell gap in 207Tl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, E.; Podolyák, Zs.; Grawe, H.

    2015-05-05

    The single closed-neutron-shell, one proton–hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupole phonon state and a large number of core excited states. Based on shell-model calculations, all observed single core excitations were established to arise from the breaking of the N=126 neutron core. While the shell-model calculations correctly predict the ordering of these states, their energies are compressed at high spins. It is concluded that this compression is an intrinsic feature of shell-model calculations usingmore » two-body matrix elements developed for the description of two-body states, and that multiple core excitations need to be considered in order to accurately calculate the energy spacings of the predominantly three-quasiparticle states.« less

  12. Simulation of Fast Neutronics in an Accelerator-Driven Sub-Critical Core

    NASA Astrophysics Data System (ADS)

    Gwyn Rosaire, C.; Sattarov, Akhdiyor; McIntyre, Peter; Tsvetkov, Pavel

    2011-10-01

    Accelerator-driven subcritical fission in a molten salt core (ADSMS) is being developed as a technology for green nuclear power. ADSMS burns its fertile fuel to completion, it cannot melt down, and it destroys long-lived minor actinides. The ADSMS core consists of a vessel filled with a molten salt eutectic of UCl3 and NaCl. The fast neutronics of ADSMS makes possible two unique benefits: isobreeding, a steady-state equilibrium in which ^238U is bred to ^239Pu and the ^239Pu fissions, and destruction of minor actinides, in which fission of the intermediary nuclides dominates of breeding. Results of simulations of the fast neutronics in the ADSMS core will be presented.

  13. Neutronic safety parameters and transient analyses for Poland's MARIA research reactor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bretscher, M. M.; Hanan, N. A.; Matos, J. E.

    1999-09-27

    Reactor kinetic parameters, reactivity feedback coefficients, and control rod reactivity worths have been calculated for the MARIA Research Reactor (Swierk, Poland) for M6-type fuel assemblies with {sup 235}U enrichments of 80% and 19.7%. Kinetic parameters were evaluated for family-dependent effective delayed neutron fractions, decay constants, and prompt neutron lifetimes and neutron generation times. Reactivity feedback coefficients were determined for fuel Doppler coefficients, coolant (H{sub 2}O) void and temperature coefficients, and for in-core and ex-core beryllium temperature coefficients. Total and differential control rod worths and safety rod worths were calculated for each fuel type. These parameters were used to calculate genericmore » transients for fast and slow reactivity insertions with both HEU and LEU fuels. The analyses show that the HEU and LEU cores have very similar responses to these transients.« less

  14. Thermal neutron flux measurement using self-powered neutron detector (SPND) at out-core locations of TRIGA PUSPATI Reactor (RTP)

    NASA Astrophysics Data System (ADS)

    Ali, Nur Syazwani Mohd; Hamzah, Khaidzir; Mohamad Idris, Faridah; Hairie Rabir, Mohamad

    2018-01-01

    The thermal neutron flux measurement has been conducted at the out-core location using self-powered neutron detectors (SPNDs). This work represents the first attempt to study SPNDs as neutron flux sensor for developing the fault detection system (FDS) focusing on neutron flux parameters. The study was conducted to test the reliability of the SPND’s signal by measuring the neutron flux through the interaction between neutrons and emitter materials of the SPNDs. Three SPNDs were used to measure the flux at four different radial locations which located at the fission chamber cylinder, 10cm above graphite reflector, between graphite reflector and tank liner and fuel rack. The measurements were conducted at 750 kW reactor power. The outputs from SPNDs were collected through data acquisition system and were corrected to obtain the actual neutron flux due to delayed responses from SPNDs. The measurements showed that thermal neutron flux between fission chamber location near to the tank liner and fuel rack were between 5.18 × 1011 nv to 8.45 × 109 nv. The average thermal neutron flux showed a good agreement with those from previous studies that has been made using simulation at the same core configuration at the nearest irradiation facilities with detector locations.

  15. Sensitive and transportable gadolinium-core plastic scintillator sphere for neutron detection and counting

    NASA Astrophysics Data System (ADS)

    Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane; Méchin, Laurence; Hamel, Matthieu

    2016-08-01

    Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.

  16. Fukushima Daiichi Unit 1 Ex-Vessel Prediction: Core-Concrete Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb, Kevin R.; Farmer, Mitchell T.; Francis, Matthew W.

    Lower head failure and corium-concrete interaction were predicted to occur at Fukushima Daiichi Unit 1 (1F1) by several different system-level code analyses, including MELCOR v2.1 and MAAP5. Although these codes capture a wide range of accident phenomena, they do not contain detailed models for ex-vessel core melt behavior. However, specialized codes exist for the analysis of ex-vessel melt spreading (e.g., MELTSPREAD) and long-term debris coolability (e.g., CORQUENCH). On this basis, in this paper an analysis was carried out to further evaluate ex-vessel behavior for 1F1 using MELTSPREAD and CORQUENCH. Best-estimate melt pour conditions predicted by MELCOR v2.1 and MAAP5 weremore » used as input. MELTSPREAD was then used to predict the spatially dependent melt conditions and extent of spreading during relocation from the vessel. The results of the MELTSPREAD analysis are reported in a companion paper. This information was used as input for the long-term debris coolability analysis with CORQUENCH. For the MELCOR-based melt pour scenario, CORQUENCH predicted the melt would readily cool within 2.5 h after the pour, and the sumps would experience limited ablation (approximately 18 cm) under water-flooded conditions. Finally, for the MAAP-based melt pour scenarios, CORQUENCH predicted that the melt would cool in approximately 22.5 h, and the sumps would experience approximately 65 cm of concrete ablation under water-flooded conditions.« less

  17. Fukushima Daiichi Unit 1 Ex-Vessel Prediction: Core-Concrete Interaction

    DOE PAGES

    Robb, Kevin R.; Farmer, Mitchell T.; Francis, Matthew W.

    2016-10-31

    Lower head failure and corium-concrete interaction were predicted to occur at Fukushima Daiichi Unit 1 (1F1) by several different system-level code analyses, including MELCOR v2.1 and MAAP5. Although these codes capture a wide range of accident phenomena, they do not contain detailed models for ex-vessel core melt behavior. However, specialized codes exist for the analysis of ex-vessel melt spreading (e.g., MELTSPREAD) and long-term debris coolability (e.g., CORQUENCH). On this basis, in this paper an analysis was carried out to further evaluate ex-vessel behavior for 1F1 using MELTSPREAD and CORQUENCH. Best-estimate melt pour conditions predicted by MELCOR v2.1 and MAAP5 weremore » used as input. MELTSPREAD was then used to predict the spatially dependent melt conditions and extent of spreading during relocation from the vessel. The results of the MELTSPREAD analysis are reported in a companion paper. This information was used as input for the long-term debris coolability analysis with CORQUENCH. For the MELCOR-based melt pour scenario, CORQUENCH predicted the melt would readily cool within 2.5 h after the pour, and the sumps would experience limited ablation (approximately 18 cm) under water-flooded conditions. Finally, for the MAAP-based melt pour scenarios, CORQUENCH predicted that the melt would cool in approximately 22.5 h, and the sumps would experience approximately 65 cm of concrete ablation under water-flooded conditions.« less

  18. Particle Filter-Based Recursive Data Fusion With Sensor Indexing for Large Core Neutron Flux Estimation

    NASA Astrophysics Data System (ADS)

    Tamboli, Prakash Kumar; Duttagupta, Siddhartha P.; Roy, Kallol

    2017-06-01

    We introduce a sequential importance sampling particle filter (PF)-based multisensor multivariate nonlinear estimator for estimating the in-core neutron flux distribution for pressurized heavy water reactor core. Many critical applications such as reactor protection and control rely upon neutron flux information, and thus their reliability is of utmost importance. The point kinetic model based on neutron transport conveniently explains the dynamics of nuclear reactor. The neutron flux in the large core loosely coupled reactor is sensed by multiple sensors measuring point fluxes located at various locations inside the reactor core. The flux values are coupled to each other through diffusion equation. The coupling facilitates redundancy in the information. It is shown that multiple independent data about the localized flux can be fused together to enhance the estimation accuracy to a great extent. We also propose the sensor anomaly handling feature in multisensor PF to maintain the estimation process even when the sensor is faulty or generates data anomaly.

  19. NEUTRONIC REACTOR FUEL ELEMENT AND CORE SYSTEM

    DOEpatents

    Moore, W.T.

    1958-09-01

    This patent relates to neutronic reactors and in particular to an improved fuel element and a novel reactor core system for facilitating removal of contaminating fission products, as they are fermed, from association with the flssionable fuel, so as to mitigate the interferent effects of such fission products during reactor operation. The fuel elements are comprised of tubular members impervious to fluid and contatning on their interior surfaces a thin layer of fissionable material providing a central void. The core structure is comprised of a plurality of the tubular fuel elements arranged in parallel and a closed manifold connected to their ends. In the reactor the core structure is dispersed in a water moderator and coolant within a pressure vessel, and a means connected to said manifuld is provided for withdrawing and disposing of mobile fission product contamination from the interior of the feel tubes and manifold.

  20. Higher-order symmetry energy and neutron star core-crust transition with Gogny forces

    NASA Astrophysics Data System (ADS)

    Gonzalez-Boquera, C.; Centelles, M.; Viñas, X.; Rios, A.

    2017-12-01

    Background: An accurate determination of the core-crust transition is necessary in the modeling of neutron stars for astrophysical purposes. The transition is intimately related to the isospin dependence of the nuclear force at low baryon densities. Purpose: To study the symmetry energy and the core-crust transition in neutron stars using the finite-range Gogny nuclear interaction and to examine the deduced crustal thickness and crustal moment of inertia. Methods: The second-, fourth-, and sixth-order coefficients of the Taylor expansion of the energy per particle in powers of the isospin asymmetry are analyzed for Gogny forces. These coefficients provide information about the departure of the symmetry energy from the widely used parabolic law. The neutron star core-crust transition is evaluated by looking at the onset of thermodynamical instability of the liquid core. The calculation is performed with the exact Gogny equation of state (EoS) (i.e., the Gogny EoS with the full isospin dependence) for the β -equilibrated matter of the core, and also with the Taylor expansion of the Gogny EoS in order to assess the influence of isospin expansions on locating the inner edge of neutron star crusts. Results: The properties of the core-crust transition derived from the exact EoS differ from the predictions of the Taylor expansion even when the expansion is carried through sixth order in the isospin asymmetry. Gogny forces, using the exact EoS, predict the ranges 0.094 fm-3≲ρt≲0.118 fm-3 for the transition density and 0.339 MeVfm-3≲Pt≲0.665 MeVfm-3 for the transition pressure. The transition densities show an anticorrelation with the slope parameter L of the symmetry energy. The transition pressures are not found to correlate with L . Neutron stars obtained with Gogny forces have maximum masses below 1.74 M⊙ and relatively small moments of inertia. The crustal mass and moment of inertia are evaluated and comparisons are made with the constraints from observed

  1. NEUTRONIC REACTOR OPERATIONAL METHOD AND CORE SYSTEM

    DOEpatents

    Winters, C.E.; Graham, C.B.; Culver, J.S.; Wilson, R.H.

    1960-07-19

    Homogeneous neutronic reactor systems are described wherein an aqueous fuel solution is continuously circulated through a spherical core tank. The pumped fuel solution-is injected tangentially into the hollow spherical interior, thereby maintaining vigorous rotation of the solution within the tank in the form of a vortex; gaseous radiolytic decomposition products concentrate within the axial vortex cavity. The evolved gas is continuously discharged through a gas- outlet port registering with an extremity of the vortex cavity. and the solution stream is discharged through an annular liquid outlet port concentrically encircling the gas outlet by virtue of which the vortex and its cavity are maintained precisely axially aligned with the gas outlet. A primary heat exchanger extracts useful heat from the hot effluent fuel solution before its recirculation into the core tank. Hollow cylinders and other alternative core- tank configurations defining geometric volumes of revolution about a principal axis are also covered. AEC's Homogeneous Reactor Experiment No. 1 is a preferred embodiment.

  2. CORE-COLLAPSE SUPERNOVA EQUATIONS OF STATE BASED ON NEUTRON STAR OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, A. W.; Hempel, M.; Fischer, T.

    2013-09-01

    Many of the currently available equations of state for core-collapse supernova simulations give large neutron star radii and do not provide large enough neutron star masses, both of which are inconsistent with some recent neutron star observations. In addition, one of the critical uncertainties in the nucleon-nucleon interaction, the nuclear symmetry energy, is not fully explored by the currently available equations of state. In this article, we construct two new equations of state which match recent neutron star observations and provide more flexibility in studying the dependence on nuclear matter properties. The equations of state are also provided in tabularmore » form, covering a wide range in density, temperature, and asymmetry, suitable for astrophysical simulations. These new equations of state are implemented into our spherically symmetric core-collapse supernova model, which is based on general relativistic radiation hydrodynamics with three-flavor Boltzmann neutrino transport. The results are compared with commonly used equations of state in supernova simulations of 11.2 and 40 M{sub Sun} progenitors. We consider only equations of state which are fitted to nuclear binding energies and other experimental and observational constraints. We find that central densities at bounce are weakly correlated with L and that there is a moderate influence of the symmetry energy on the evolution of the electron fraction. The new models also obey the previously observed correlation between the time to black hole formation and the maximum mass of an s = 4 neutron star.« less

  3. From the crust to the core of neutron stars on a microscopic basis

    NASA Astrophysics Data System (ADS)

    Baldo, M.; Burgio, G. F.; Centelles, M.; Sharma, B. K.; Viñas, X.

    2014-09-01

    Within a microscopic approach the structure of Neutron Stars is usually studied by modelling the homogeneous nuclear matter of the core by a suitable Equation of State, based on a many-body theory, and the crust by a functional based on a more phenomenological approach. We present the first calculation of Neutron Star overall structure by adopting for the core an Equation of State derived from the Brueckner-Hartree-Fock theory and for the crust, including the pasta phase, an Energy Density Functional based on the same Equation of State, and which is able to describe accurately the binding energy of nuclei throughout the mass table. Comparison with other approaches is discussed. The relevance of the crust Equation of State for the Neutron Star radius is particularly emphasised.

  4. Wireless, in-vessel neutron monitor for initial core-loading of advanced breeder reactors

    NASA Technical Reports Server (NTRS)

    Delorenzo, J. T.; Kennedy, E. J.; Blalock, T. V.; Rochelle, J. M.; Chiles, M. M.; Valentine, K. H.

    1981-01-01

    An experimental wireless, in-vessel neutron monitor was developed to measure the reactivity of an advanced breeder reactor as the core is loaded for the first time to preclude an accidental critically incident. The environment is liquid sodium at a temperature of approx. 220 C, with negligible gamma or neutron radiation. With ultrasonic transmission of neutron data, no fundamental limitation was observed after tests at 230 C for 2000 h. The neutron sensitivity was approx. 1 count/s-nv, and the potential data transmission rate was approx. 10,000 counts/s.

  5. TORT/MCNP coupling method for the calculation of neutron flux around a core of BWR.

    PubMed

    Kurosawa, Masahiko

    2005-01-01

    For the analysis of BWR neutronics performance, accurate data are required for neutron flux distribution over the In-Reactor Pressure Vessel equipments taking into account the detailed geometrical arrangement. The TORT code can calculate neutron flux around a core of BWR in a three-dimensional geometry model, but has difficulties in fine geometrical modelling and lacks huge computer resource. On the other hand, the MCNP code enables the calculation of the neutron flux with a detailed geometry model, but requires very long sampling time to give enough number of particles. Therefore, a TORT/MCNP coupling method has been developed to eliminate the two problems mentioned above in each code. In this method, the TORT code calculates angular flux distribution on the core surface and the MCNP code calculates neutron spectrum at the points of interest using the flux distribution. The coupling method will be used as the DOT-DOMINO-MORSE code system. This TORT/MCNP coupling method was applied to calculate the neutron flux at points where induced radioactivity data were measured for 54Mn and 60Co and the radioactivity calculations based on the neutron flux obtained from the above method were compared with the measured data.

  6. Fast neutron detection at near-core location of a research reactor with a SiC detector

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Jarrell, Josh; Xue, Sha; Tan, Chuting; Blue, Thomas; Cao, Lei R.

    2018-04-01

    The measurable charged-particle produced from the fast neutron interactions with the Si and C nucleuses can make a wide bandgap silicon carbide (SiC) sensor intrinsically sensitive to neutrons. The 4H-SiC Schottky detectors have been fabricated and tested at up to 500 °C, presenting only a slightly degraded energy resolution. The response spectrum of the SiC detectors were also obtained by exposing the detectors to external neutron beam irradiation and at a near-core location where gamma-ray field is intense. The fast neutron flux of these two locations are ∼ 4 . 8 × 104cm-2 ṡs-1 and ∼ 2 . 2 × 107cm-2 ṡs-1, respectively. At the external beam location, a Si detector was irradiated side-by-side with SiC detector to disjoin the neutron response from Si atoms. The contribution of gamma ray, neutron scattering, and charged-particles producing reactions in the SiC was discussed. The fast neutron detection efficiencies were determined to be 6 . 43 × 10-4 for the external fast neutron beam irradiation and 6 . 13 × 10-6 for the near-core fast neutron irradiation.

  7. Visualization of cavitation phenomena in a Diesel engine fuel injection nozzle by neutron radiography

    NASA Astrophysics Data System (ADS)

    Takenaka, N.; Kadowaki, T.; Kawabata, Y.; Lim, I. C.; Sim, C. M.

    2005-04-01

    Visualization of cavitation phenomena in a Diesel engine fuel injection nozzle was carried out by using neutron radiography system at KUR in Research Reactor Institute in Kyoto University and at HANARO in Korea Atomic Energy Research Institute. A neutron chopper was synchronized to the engine rotation for high shutter speed exposures. A multi-exposure method was applied to obtain a clear image as an ensemble average of the synchronized images. Some images were successfully obtained and suggested new understanding of the cavitation phenomena in a Diesel engine fuel injection nozzle.

  8. Evaluation of Neutron Radiography Reactor LEU-Core Start-Up Measurements

    DOE PAGES

    Bess, John D.; Maddock, Thomas L.; Smolinski, Andrew T.; ...

    2014-11-04

    Benchmark models were developed to evaluate the cold-critical start-up measurements performed during the fresh core reload of the Neutron Radiography (NRAD) reactor with Low Enriched Uranium (LEU) fuel. Experiments include criticality, control-rod worth measurements, shutdown margin, and excess reactivity for four core loadings with 56, 60, 62, and 64 fuel elements. The worth of four graphite reflector block assemblies and an empty dry tube used for experiment irradiations were also measured and evaluated for the 60-fuel-element core configuration. Dominant uncertainties in the experimental k eff come from uncertainties in the manganese content and impurities in the stainless steel fuel claddingmore » as well as the 236U and erbium poison content in the fuel matrix. Calculations with MCNP5 and ENDF/B-VII.0 neutron nuclear data are approximately 1.4% (9σ) greater than the benchmark model eigenvalues, which is commonly seen in Monte Carlo simulations of other TRIGA reactors. Simulations of the worth measurements are within the 2σ uncertainty for most of the benchmark experiment worth values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.« less

  9. Evaluation of Neutron Radiography Reactor LEU-Core Start-Up Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bess, John D.; Maddock, Thomas L.; Smolinski, Andrew T.

    Benchmark models were developed to evaluate the cold-critical start-up measurements performed during the fresh core reload of the Neutron Radiography (NRAD) reactor with Low Enriched Uranium (LEU) fuel. Experiments include criticality, control-rod worth measurements, shutdown margin, and excess reactivity for four core loadings with 56, 60, 62, and 64 fuel elements. The worth of four graphite reflector block assemblies and an empty dry tube used for experiment irradiations were also measured and evaluated for the 60-fuel-element core configuration. Dominant uncertainties in the experimental k eff come from uncertainties in the manganese content and impurities in the stainless steel fuel claddingmore » as well as the 236U and erbium poison content in the fuel matrix. Calculations with MCNP5 and ENDF/B-VII.0 neutron nuclear data are approximately 1.4% (9σ) greater than the benchmark model eigenvalues, which is commonly seen in Monte Carlo simulations of other TRIGA reactors. Simulations of the worth measurements are within the 2σ uncertainty for most of the benchmark experiment worth values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.« less

  10. Neutron flux and power in RTP core-15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabir, Mohamad Hairie, E-mail: m-hairie@nuclearmalaysia.gov.my; Zin, Muhammad Rawi Md; Usang, Mark Dennis

    PUSPATI TRIGA Reactor achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution of TRIGA core. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core withmore » literally no physical approximation. The consistency and accuracy of the developed RTP MCNP model was established by comparing calculations to the available experimental results and TRIGLAV code calculation.« less

  11. Application of neutron transmutation doping method to initially p-type silicon material.

    PubMed

    Kim, Myong-Seop; Kang, Ki-Doo; Park, Sang-Jun

    2009-01-01

    The neutron transmutation doping (NTD) method was applied to the initially p-type silicon in order to extend the NTD applications at HANARO. The relationship between the irradiation neutron fluence and the final resistivity of the initially p-type silicon material was investigated. The proportional constant between the neutron fluence and the resistivity was determined to be 2.3473x10(19)nOmegacm(-1). The deviation of the final resistivity from the target for almost all the irradiation results of the initially p-type silicon ingots was at a range from -5% to 2%. In addition, the burn-up effect of the boron impurities, the residual (32)P activity and the effect of the compensation characteristics for the initially p-type silicon were studied. Conclusively, the practical methodology to perform the neutron transmutation doping of the initially p-type silicon ingot was established.

  12. Measurement and calculation of fast neutron and gamma spectra in well defined cores in LR-0 reactor.

    PubMed

    Košťál, Michal; Matěj, Zdeněk; Cvachovec, František; Rypar, Vojtěch; Losa, Evžen; Rejchrt, Jiří; Mravec, Filip; Veškrna, Martin

    2017-02-01

    A well-defined neutron spectrum is essential for many types of experimental topics and is also important for both calibration and testing of spectrometric and dosimetric detectors. Provided it is well described, such a spectrum can also be employed as a reference neutron field that is suitable for validating selected cross sections. The present paper aims to compare calculations and measurements of such a well-defined spectra in geometrically similar cores of the LR-0 reactor with fuel containing slightly different enrichments (2%, 3.3% and 3.6%). The common feature to all cores is a centrally located dry channel which can be used for the insertion of studied materials. The calculation of neutron and gamma spectra was realized with the MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JENDL-3.3, ROSFOND-2010 and CENDL-3.1 nuclear data libraries. Only minor differences in neutron and gamma spectra were found in the comparison of the presented reactor cores with different fuel enrichments. One exception is the gamma spectrum in the higher energy region (above 8MeV), where more pronounced variations could be observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The Interplay between Proto--Neutron Star Convection and Neutrino Transport in Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Mezzacappa, A.; Calder, A. C.; Bruenn, S. W.; Blondin, J. M.; Guidry, M. W.; Strayer, M. R.; Umar, A. S.

    1998-01-01

    We couple two-dimensional hydrodynamics to realistic one-dimensional multigroup flux-limited diffusion neutrino transport to investigate proto-neutron star convection in core-collapse supernovae, and more specifically, the interplay between its development and neutrino transport. Our initial conditions, time-dependent boundary conditions, and neutrino distributions for computing neutrino heating, cooling, and deleptonization rates are obtained from one-dimensional simulations that implement multigroup flux-limited diffusion and one-dimensional hydrodynamics. The development and evolution of proto-neutron star convection are investigated for both 15 and 25 M⊙ models, representative of the two classes of stars with compact and extended iron cores, respectively. For both models, in the absence of neutrino transport, the angle-averaged radial and angular convection velocities in the initial Ledoux unstable region below the shock after bounce achieve their peak values in ~20 ms, after which they decrease as the convection in this region dissipates. The dissipation occurs as the gradients are smoothed out by convection. This initial proto-neutron star convection episode seeds additional convectively unstable regions farther out beneath the shock. The additional proto-neutron star convection is driven by successive negative entropy gradients that develop as the shock, in propagating out after core bounce, is successively strengthened and weakened by the oscillating inner core. The convection beneath the shock distorts its sphericity, but on the average the shock radius is not boosted significantly relative to its radius in our corresponding one-dimensional models. In the presence of neutrino transport, proto-neutron star convection velocities are too small relative to bulk inflow velocities to result in any significant convective transport of entropy and leptons. This is evident in our two-dimensional entropy snapshots, which in this case appear spherically symmetric

  14. Light neutron-rich hypernuclei from the importance-truncated no-core shell model

    NASA Astrophysics Data System (ADS)

    Wirth, Roland; Roth, Robert

    2018-04-01

    We explore the systematics of ground-state and excitation energies in singly-strange hypernuclei throughout the helium and lithium isotopic chains - from He5Λ to He11Λ and from Li7Λ to Li12Λ - in the ab initio no-core shell model with importance truncation. All calculations are based on two- and three-baryon interaction from chiral effective field theory and we employ a similarity renormalization group transformation consistently up to the three-baryon level to improve the model-space convergence. While the absolute energies of hypernuclear states show a systematic variation with the regulator cutoff of the hyperon-nucleon interaction, the resulting neutron separation energies are very stable and in good agreement with available data for both nucleonic parents and their daughter hypernuclei. We provide predictions for the neutron separation energies and the spectra of neutron-rich hypernuclei that have not yet been observed experimentally. Furthermore, we find that the neutron drip lines in the helium and lithium isotopic chains are not changed by the addition of a hyperon.

  15. Large-scale shell-model calculation with core excitations for neutron-rich nuclei beyond 132Sn

    NASA Astrophysics Data System (ADS)

    Jin, Hua; Hasegawa, Munetake; Tazaki, Shigeru; Kaneko, Kazunari; Sun, Yang

    2011-10-01

    The structure of neutron-rich nuclei with a few nucleons beyond 132Sn is investigated by means of large-scale shell-model calculations. For a considerably large model space, including neutron core excitations, a new effective interaction is determined by employing the extended pairing-plus-quadrupole model with monopole corrections. The model provides a systematical description for energy levels of A=133-135 nuclei up to high spins and reproduces available data of electromagnetic transitions. The structure of these nuclei is analyzed in detail, with emphasis of effects associated with core excitations. The results show evidence of hexadecupole correlation in addition to octupole correlation in this mass region. The suggested feature of magnetic rotation in 135Te occurs in the present shell-model calculation.

  16. Development of a pMOSFET sensor with a Gd converter for low energy neutron dosimetry.

    PubMed

    Lee, N H; Kim, S H; Youk, G U; Park, I J; Kim, Y M

    2004-01-01

    A pMOSFET having a 10 microm thick Gadolinium (Gd) layer has been invented as a slow neutron sensor. When slow neutrons are incident to the Gd layer, conversion electrons, which generate electron-hole pairs in the SiO2 layer of the pMOSFET, are generated by a neutron capture process. The holes are easily trapped in the oxide and act as positive-charge centres in the oxide. Due to the induced charges, the threshold turn-on voltage of the pMOSFET is changed. The developed sensors were tested at a neutron beam port of the HANARO research reactor and a 60Co irradiation facility to investigate slow neutron response and gamma ray contamination, respectively. The resultant voltage change was proportional to the accumulated neutron dose and it was very sensitive to slow neutrons. Moreover, ionising radiation contamination was negligible. It can also be used in a mixed radiation field by subtracting the voltage change of a pMOSFET without Gd from that of the Gd-pMOSFET.

  17. First in-core simultaneous measurements of nuclear heating and thermal neutron flux obtained with the innovative mobile calorimeter CALMOS inside the OSIRIS reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepeltier, Valerie; Bubendorff, Jacques; Carcreff, Hubert

    2015-07-01

    Nuclear heating inside a MTR reactor has to be known in order to design and to run irradiation experiments which have to fulfill target temperature constraints. This measurement is usually carried out by calorimetry. The innovative calorimetric system, CALMOS, has been studied and built in 2011 for the 70 MWth OSIRIS reactor operated by CEA. Thanks to a new type of calorimetric probe, associated to a specific displacement system, it provides measurements along the fissile height and above the core. This development required preliminary modelling and irradiation of mock-ups of the calorimetric probe in the ex-core area, where nuclear heatingmore » rate does not exceed 2 W.g{sup -1}. The calorimeter working modes, the different measurement procedures allowed with such a new probe, the main modeling and experimental results and expected advantages of this new technique have been already presented. However, these first in-core measurements were not performed beyond 6 W.g{sup -1}, due to an inside temperature limitation imposed by a safety authority requirement. In this paper, we present the first in-core simultaneous measurements of nuclear heating and conventional thermal neutron flux obtained by the CALMOS device at the 70 MW nominal reactor power. For the first time, this experimental system was operated in nominal in-core conditions, with nominal neutron flux up to 2.7 10{sup 14} n.cm{sup -2}.s{sup -1} and nuclear heating up to 12 W.g{sup -1}. A comprehensive measurement campaign carried out from 2013 to 2015 inside all accessible irradiation locations of the core, allowed to qualify definitively this new device, not only in terms of measurement ability but also in terms of reliability. After a brief reminder of the calorimetric cell configuration and displacement system specificities, first nuclear heating distributions at nominal power are presented and discussed. In order to reinforce the heating evaluation, a systematic comparison is made between results

  18. A Monte Carlo model system for core analysis and epithermal neutron beam design at the Washington State University Radiation Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, T.D. Jr.

    1996-05-01

    The Monte Carlo Model System (MCMS) for the Washington State University (WSU) Radiation Center provides a means through which core criticality and power distributions can be calculated, as well as providing a method for neutron and photon transport necessary for BNCT epithermal neutron beam design. The computational code used in this Model System is MCNP4A. The geometric capability of this Monte Carlo code allows the WSU system to be modeled very accurately. A working knowledge of the MCNP4A neutron transport code increases the flexibility of the Model System and is recommended, however, the eigenvalue/power density problems can be run withmore » little direct knowledge of MCNP4A. Neutron and photon particle transport require more experience with the MCNP4A code. The Model System consists of two coupled subsystems; the Core Analysis and Source Plane Generator Model (CASP), and the BeamPort Shell Particle Transport Model (BSPT). The CASP Model incorporates the S({alpha}, {beta}) thermal treatment, and is run as a criticality problem yielding, the system eigenvalue (k{sub eff}), the core power distribution, and an implicit surface source for subsequent particle transport in the BSPT Model. The BSPT Model uses the source plane generated by a CASP run to transport particles through the thermal column beamport. The user can create filter arrangements in the beamport and then calculate characteristics necessary for assessing the BNCT potential of the given filter want. Examples of the characteristics to be calculated are: neutron fluxes, neutron currents, fast neutron KERMAs and gamma KERMAs. The MCMS is a useful tool for the WSU system. Those unfamiliar with the MCNP4A code can use the MCMS transparently for core analysis, while more experienced users will find the particle transport capabilities very powerful for BNCT filter design.« less

  19. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  20. Determination of the neutron activation profile of core drill samples by gamma-ray spectrometry.

    PubMed

    Gurau, D; Boden, S; Sima, O; Stanga, D

    2018-04-01

    This paper provides guidance for determining the neutron activation profile of core drill samples taken from the biological shield of nuclear reactors using gamma spectrometry measurements. Thus, it provides guidance for selecting a model of the right form to fit data and using least squares methods for model fitting. The activity profiles of two core samples taken from the biological shield of a nuclear reactor were determined. The effective activation depth and the total activity of core samples along with their uncertainties were computed by Monte Carlo simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Evaluating the solid electrolyte interphase formed on silicon electrodes: A comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doucet, Mathieu; Browning, Jim; Baldwin, J. K.

    This work details the in situ characterization of the interface between a silicon electrode and an electrolyte using a linear fluorinated solvent molecule, 0.1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in deuterated dimethyl perfluoroglutarate (d6-PF5M 2) (1.87 x 10 -2 mS/cm -1). The solid electrolyte interphase (SEI) composition and thickness determined via in situ neutron reflectometry (NR) and ex situ X-ray photoelectron spectroscopy (XPS) were compared. The data show that SEI expansion and contraction (breathing) during electrochemical cycling was observed via both techniques; however, ex situ XPS suggests that the SEI thickness increases during Si lithiation and decreases during delithiation, while inmore » situ NR suggests the opposite. The most likely cause of this discrepancy is the selective removal of SEI components (top 20 nm of the SEI) during the electrode rinse process, required to remove electrolyte residue prior to ex situ analysis, demonstrating the necessity of performing SEI characterizations in situ.« less

  2. Evaluating the solid electrolyte interphase formed on silicon electrodes: A comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry

    DOE PAGES

    Doucet, Mathieu; Browning, Jim; Baldwin, J. K.; ...

    2016-04-15

    This work details the in situ characterization of the interface between a silicon electrode and an electrolyte using a linear fluorinated solvent molecule, 0.1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in deuterated dimethyl perfluoroglutarate (d6-PF5M 2) (1.87 x 10 -2 mS/cm -1). The solid electrolyte interphase (SEI) composition and thickness determined via in situ neutron reflectometry (NR) and ex situ X-ray photoelectron spectroscopy (XPS) were compared. The data show that SEI expansion and contraction (breathing) during electrochemical cycling was observed via both techniques; however, ex situ XPS suggests that the SEI thickness increases during Si lithiation and decreases during delithiation, while inmore » situ NR suggests the opposite. The most likely cause of this discrepancy is the selective removal of SEI components (top 20 nm of the SEI) during the electrode rinse process, required to remove electrolyte residue prior to ex situ analysis, demonstrating the necessity of performing SEI characterizations in situ.« less

  3. Stellar encounters involving neutron stars in globular cluster cores

    NASA Technical Reports Server (NTRS)

    Davies, M. B.; Benz, W.; Hills, J. G.

    1992-01-01

    Encounters between a 1.4 solar mass neutron star and a 0.8 solar mass red giant (RG) and between a 1.4 solar mass neutron star (NS) and an 0.8 solar mass main-sequence (MS) star have been successfully simulated. In the case of encounters involving an RG, bound systems are produced when the separation at periastron passage R(MIN) is less than about 2.5 R(RG). At least 70 percent of these bound systems are composed of the RG core and NS forming a binary engulfed in a common envelope of what remains of the former RG envelope. Once the envelope is ejected, a tight white dwarf-NS binary remains. For MS stars, encounters with NSs will produce bound systems when R(MIN) is less than about 3.5 R(MS). Some 50 percent of these systems will be single objects with the NS engulfed in a thick disk of gas almost as massive as the original MS star. The ultimate fate of such systems is unclear.

  4. A computationally simple model for determining the time dependent spectral neutron flux in a nuclear reactor core

    NASA Astrophysics Data System (ADS)

    Schneider, E. A.; Deinert, M. R.; Cady, K. B.

    2006-10-01

    The balance of isotopes in a nuclear reactor core is key to understanding the overall performance of a given fuel cycle. This balance is in turn most strongly affected by the time and energy-dependent neutron flux. While many large and involved computer packages exist for determining this spectrum, a simplified approach amenable to rapid computation is missing from the literature. We present such a model, which accepts as inputs the fuel element/moderator geometry and composition, reactor geometry, fuel residence time and target burnup and we compare it to OECD/NEA benchmarks for homogeneous MOX and UOX LWR cores. Collision probability approximations to the neutron transport equation are used to decouple the spatial and energy variables. The lethargy dependent neutron flux, governed by coupled integral equations for the fuel and moderator/coolant regions is treated by multigroup thermalization methods, and the transport of neutrons through space is modeled by fuel to moderator transport and escape probabilities. Reactivity control is achieved through use of a burnable poison or adjustable control medium. The model calculates the buildup of 24 actinides, as well as fission products, along with the lethargy dependent neutron flux and the results of several simulations are compared with benchmarked standards.

  5. Development and preliminary verification of the 3D core neutronic code: COCO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, H.; Mo, K.; Li, W.

    As the recent blooming economic growth and following environmental concerns (China)) is proactively pushing forward nuclear power development and encouraging the tapping of clean energy. Under this situation, CGNPC, as one of the largest energy enterprises in China, is planning to develop its own nuclear related technology in order to support more and more nuclear plants either under construction or being operation. This paper introduces the recent progress in software development for CGNPC. The focus is placed on the physical models and preliminary verification results during the recent development of the 3D Core Neutronic Code: COCO. In the COCO code,more » the non-linear Green's function method is employed to calculate the neutron flux. In order to use the discontinuity factor, the Neumann (second kind) boundary condition is utilized in the Green's function nodal method. Additionally, the COCO code also includes the necessary physical models, e.g. single-channel thermal-hydraulic module, burnup module, pin power reconstruction module and cross-section interpolation module. The preliminary verification result shows that the COCO code is sufficient for reactor core design and analysis for pressurized water reactor (PWR). (authors)« less

  6. Light-curve and spectral properties of ultrastripped core-collapse supernovae leading to binary neutron stars

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Mazzali, Paolo A.; Tominaga, Nozomu; Hachinger, Stephan; Blinnikov, Sergei I.; Tauris, Thomas M.; Takahashi, Koh; Tanaka, Masaomi; Langer, Norbert; Podsiadlowski, Philipp

    2017-04-01

    We investigate light-curve and spectral properties of ultrastripped core-collapse supernovae. Ultrastripped supernovae are the explosions of heavily stripped massive stars that lost their envelopes via binary interactions with a compact companion star. They eject only ˜0.1 M⊙ and may be the main way to form double neutron-star systems that eventually merge emitting strong gravitational waves. We follow the evolution of an ultrastripped supernova progenitor until iron core collapse and perform explosive nucleosynthesis calculations. We then synthesize light curves and spectra of ultrastripped supernovae using the nucleosynthesis results and present their expected properties. Ultrastripped supernovae synthesize ˜0.01 M⊙ of radioactive 56Ni, and their typical peak luminosity is around 1042 erg s-1 or -16 mag. Their typical rise time is 5-10 d. Comparing synthesized and observed spectra, we find that SN 2005ek, some of the so-called calcium-rich gap transients, and SN 2010X may be related to ultrastripped supernovae. If these supernovae are actually ultrastripped supernovae, their event rate is expected to be about 1 per cent of core-collapse supernovae. Comparing the double neutron-star merger rate obtained by future gravitational-wave observations and the ultrastripped supernova rate obtained by optical transient surveys identified with our synthesized light-curve and spectral models, we will be able to judge whether ultrastripped supernovae are actually a major contributor to the binary neutron-star population and provide constraints on binary stellar evolution.

  7. Isoscalar-vector interaction and hybrid quark core in massive neutron stars

    NASA Astrophysics Data System (ADS)

    Shao, G. Y.; Colonna, M.; Di Toro, M.; Liu, Y. X.; Liu, B.

    2013-05-01

    The hadron-quark phase transition in the core of massive neutron stars is studied with a newly constructed two-phase model. For nuclear matter, a nonlinear Walecka type model with general nucleon-meson and meson-meson couplings, recently calibrated by Steiner, Hemper and Fischer, is taken. For quark matter, a modified Polyakov-Nambu—Jona-Lasinio model, which gives consistent results with lattice QCD data, is used. Most importantly, we introduce an isoscalar-vector interaction in the description of quark matter, and we study its influence on the hadron-quark phase transition in the interior of massive neutron stars. With the constraints of neutron star observations, our calculation shows that the isoscalar-vector interaction between quarks is indispensable if massive hybrids star exist in the universe, and its strength determines the onset density of quark matter, as well as the mass-radius relations of hybrid stars. Furthermore, as a connection with heavy-ion-collision experiments we give some discussions about the strength of isoscalar-vector interaction and its effect on the signals of hadron-quark phase transition in heavy-ion collisions, in the energy range of the NICA at JINR-Dubna and FAIR at GSI-Darmstadt facilities.

  8. NEUTRONIC REACTOR DESIGN TO REDUCE NEUTRON LOSS

    DOEpatents

    Mills, F.T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall which is surrounded by successive layers of pure fertile material and fertile material having moderator. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. As the steel has a smaller capture cross-section for the fast neutrons, then greater numbers of the neutrons will pass into the blanket thereby increasing the over-all efficiency of the reactor.

  9. Neutronic Reactor Design to Reduce Neutron Loss

    DOEpatents

    Miles, F. T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall. The wall is surrounded by successive layers of pure fertile material and moderator containing fertile material. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. Since the steel has a smaller capture cross section for the fast neutrons, greater nunnbers of neutrons will pass into the blanket, thereby increasing the over-all efficiency of the reactor. (AEC)

  10. Neutron and gamma flux distributions and their implications for radiation damage in the shielded superconducting core of a fusion power plant

    NASA Astrophysics Data System (ADS)

    Windsor, Colin G.; Morgan, J. Guy

    2017-11-01

    The neutron and gamma ray fluxes within the shielded high-temperature superconducting central columns of proposed spherical tokamak power plants have been studied using the MCNP Monte-Carlo code. The spatial, energy and angular variations of the fluxes over the shield and superconducting core are computed and used to specify experimental studies relevant to radiation damage and activation. The mean neutron and gamma fluxes, averaged over energy and angle, are shown to decay exponentially through the shield and then to remain roughly constant in the core region. The mean energy of neutrons is shown to decay more slowly than the neutron flux through the shield while the gamma energy is almost constant around 2 MeV. The differential neutron and gamma fluxes as a function of energy are examined. The neutron spectrum shows a fusion peak around 1 MeV changing at lower energies into an epithermal E -0.85 variation and at thermal energies to a Maxwellian distribution. The neutron and gamma energy spectra are defined for the outer surface of the superconducting core, relevant to damage studies. The inclusion of tungsten boride in the shield is shown to reduce energy deposition. A series of plasma scenarios with varying plasma major radii between 0.6 and 2.5 m was considered. Neutron and gamma fluxes are shown to decay exponentially with plasma radius, except at low shield thickness. Using the currently known experimental fluence limitations for high temperature superconductors, the continuous running time before the fluence limit is reached has been calculated to be days at 1.4 m major radius increasing to years at 2.2 m. This work helps validate the concept of the spherical tokamak route to fusion power by demonstrating that the neutron shielding required for long lifetime fusion power generation can be accommodated in a compact device.

  11. Superfluidity in the Core of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Page, Dany

    2013-04-01

    The year (1958) after the publication of the BCS theory, Bohr, Mottelson & Pines showed that nuclei should also contain superfluid neutrons and superconducting protons. In 1959, A. Migdal proposed that neutron superfluidity should also occur in the interior of neutron stars. Pairing in nuclei forms Cooper pairs with zero spin, but the relevant component of the nuclear interaction becomes repulsive at densities larger than the nuclear matter density. It has been proposed that neutron-neutron interaction in the spin-triplet state, and L=1 orbital angular momentum, that is known to be attractive from laboratory experiments, may result in a new form of neutron superfluidity in the neutron star interior. I will review our present understanding of the structure of neutron stars and describe how superfluidity strongly affects their thermal evolution. I will show how a ``Minimal Model'' that excludes the presence of ``exotic'' matter (Bose condensates, quarks, etc.) is compatible with most observations of the surface temperatures of young isolated neutron stars in the case this neutron superfluid exists. Compared to the case of isotropic spin-zero Cooper pairs, the formation of anisotropic spin-one Cooper pairs results in a strong neutrino emission that leads to an enhanced cooling of neutron stars after the onset of the pairing phase transition and allows the Minimal Cooling scenario to be compatible with most observations. In the case the pairing critical temperature Tc is less than about 6 x10^8 K, the resulting rapid cooling of the neutron star may be observable. It was recently reported that 10 years of Chandra observations of the 333 year young neutron star in the Cassiopeia A supernova remnant revealed that its temperature has dropped by about 5%. This result indicates that neutrons in this star are presently becoming superfluid and, if confirmed, provides us with the first direct observational evidence for neutron superfluidity at supra-nuclear densities.

  12. On Use of Multi-Chambered Fission Detectors for In-Core, Neutron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Roberts, Jeremy A.

    2018-01-01

    Presented is a short, computational study on the potential use of multichambered fission detectors for in-core, neutron spectroscopy. Motivated by the development of very small fission chambers at CEA in France and at Kansas State University in the U.S., it was assumed in this preliminary analysis that devices can be made small enough to avoid flux perturbations and that uncertainties related to measurements can be ignored. It was hypothesized that a sufficient number of chambers with unique reactants can act as a real-time, foilactivation experiment. An unfolding scheme based on maximizing (Shannon) entropy was used to produce a flux spectrum from detector signals that requires no prior information. To test the method, integral, detector responses were generated for singleisotope detectors of various Th, U, Np, Pu, Am, and Cs isotopes using a simplified, pressurized-water reactor spectrum and fluxweighted, microscopic, fission cross sections, in the WIMS-69 multigroup format. An unfolded spectrum was found from subsets of these responses that had a maximum entropy while reproducing the responses considered and summing to one (that is, they were normalized). Several nuclide subsets were studied, and, as expected, the results indicate inclusion of more nuclides leads to better spectra but with diminishing improvements, with the best-case spectrum having an average, relative, group-wise error of approximately 51%. Furthermore, spectra found from minimum-norm and Tihkonov-regularization inversion were of lower quality than the maximum entropy solutions. Finally, the addition of thermal-neutron filters (here, Cd and Gd) provided substantial improvement over unshielded responses alone. The results, as a whole, suggest that in-core, neutron spectroscopy is at least marginally feasible.

  13. Correlation of the neutron star crust-core properties with the slope of the symmetry energy and the lead skin thickness

    NASA Astrophysics Data System (ADS)

    Pais, H.; Sulaksono, A.; Agrawal, B. K.; Providência, C.

    2016-04-01

    The correlations of the crust-core transition density and pressure in neutron stars with the slope of the symmetry energy and the neutron skin thickness are investigated, using different families of relativistic mean-field parametrizations with constant couplings and nonlinear terms mixing the σ - , ω - , and ρ -meson fields. It is shown that the modification of the density dependence of the symmetry energy, involving the σ or the ω meson, gives rise to different behaviors: the effect of the ω meson may also be reproduced within nonrelativistic phenomenological models, while the effect of the σ meson is essentially relativistic. Depending on the parametrization with σ -ρ or ω -ρ mixing terms, different values of the slope of the symmetry energy at saturation must be considered in order to obtain a neutron matter equation of state compatible with results from chiral effective field theory. This difference leads to different pressures at the crust-core transition density. A linear correlation between the transition density and the symmetry energy slope or the neutron skin thickness of the 208Pb nucleus is obtained, only when the ω meson is used to describe the density dependence of the symmetry energy. A comparison is made between the crust-core transition properties of neutron stars obtained by three different methods, the relativistic random phase approximation (RRPA), the Vlasov equation, and thermodynamical method. It is shown that the RRPA and the Vlasov methods predict similar transition densities for p n e β -equilibrium stellar matter.

  14. Measurement and Analysis of Structural Integrity of Reactor Core Support Structure in Pressurized Water Reactor (PWR) Plant

    NASA Astrophysics Data System (ADS)

    Ansari, Saleem A.; Haroon, Muhammad; Rashid, Atif; Kazmi, Zafar

    2017-02-01

    Extensive calculation and measurements of flow-induced vibrations (FIV) of reactor internals were made in a PWR plant to assess the structural integrity of reactor core support structure against coolant flow. The work was done to meet the requirements of the Fukushima Response Action Plan (FRAP) for enhancement of reactor safety, and the regulatory guide RG-1.20. For the core surveillance measurements the Reactor Internals Vibration Monitoring System (IVMS) has been developed based on detailed neutron noise analysis of the flux signals from the four ex-core neutron detectors. The natural frequencies, displacement and mode shapes of the reactor core barrel (CB) motion were determined with the help of IVMS. The random pressure fluctuations in reactor coolant flow due to turbulence force have been identified as the predominant cause of beam-mode deflection of CB. The dynamic FIV calculations were also made to supplement the core surveillance measurements. The calculational package employed the computational fluid dynamics, mode shape analysis, calculation of power spectral densities of flow & pressure fields and the structural response to random flow excitation forces. The dynamic loads and stiffness of the Hold-Down Spring that keeps the core structure in position against upward coolant thrust were also determined by noise measurements. Also, the boron concentration in primary coolant at any time of the core cycle has been determined with the IVMS.

  15. Development of an inconel self powered neutron detector for in-core reactor monitoring

    NASA Astrophysics Data System (ADS)

    Alex, M.; Ghodgaonkar, M. D.

    2007-04-01

    The paper describes the development and testing of an Inconel600 (2 mm diameter×21 cm long) self-powered neutron detector for in-core neutron monitoring. The detector has 3.5 mm overall diameter and 22 cm length and is integrally coupled to a 12 m long mineral insulated cable. The performance of the detector was compared with cobalt and platinum detectors of similar dimensions. Gamma sensitivity measurements performed at the 60Co irradiation facility in 14 MR/h gamma field showed values of -4.4×10 -18 A/R/h/cm (-9.3×10 -24 A/ γ/cm 2-s/cm), -5.2×10 -18 A/R/h/cm (-1.133×10 -23 A/ γ/cm 2-s/cm) and 34×10 -18 A/R/h/cm (7.14×10 -23 A/ γ/cm 2-s/cm) for the Inconel, Co and Pt detectors, respectively. The detectors together with a miniature gamma ion chamber and fission chamber were tested in the in-core Apsara Swimming Pool type reactor. The ion chambers were used to estimate the neutron and gamma fields. With an effective neutron cross-section of 4b, the Inconel detector has a total sensitivity of 6×10 -23 A/nv/cm while the corresponding sensitivities for the platinum and cobalt detectors were 1.69×10 -22 and 2.64×10 -22 A/nv/cm. The linearity of the detector responses at power levels ranging from 100 to 200 kW was within ±5%. The response of the detectors to reactor scram showed that the prompt response of the Inconel detector was 0.95 while it was 0.7 and 0.95 for the platinum and cobalt self-powered detectors, respectively. The detector was also installed in the horizontal flux unit of 540 MW Pressurised Heavy Water Reactor (PHWR). The neutron flux at the detector location was calculated by Triveni code. The detector response was measured from 0.02% to 0.07% of full power and showed good correlation between power level and detector signals. Long-term tests and the dynamic response of the detector to shut down in PHWR are in progress.

  16. Supramolecular Ex plorations: Ex hibiting the Ex tent of Ex tended Cationic Cyclophanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Edward J.; Vermeulen, Nicolaas A.; Juricek, Michal

    -poor aromatic guests in different binding sites located within the same cavity. ExBox24+ forms complexes with C60 in which discrete arrays of aligned fullerenes result in single cocrystals, leading to improved material conductivities. When the substitution pattern of the ExnBox4+ series is changed to 1,3,5-trisubstituted benzenoid cores, the hexacationic cagelike compound, termed ExCage6+, exhibits different kinetics of complexation with guests of varying sizes—a veritable playground for physical organic chemists. The organization of functionality with respect to structure becomes valuable as the number of analogues continues to grow. With each of these minor structural modifications, a wealth of properties emerge, begging the question as to what discoveries await and what properties will be realized with the continued exploration of this area of supramolecular chemistry based on a unique class of receptor molecules.« less

  17. Supramolecular Ex plorations: Ex hibiting the Ex tent of Ex tended Cationic Cyclophanes

    DOE PAGES

    Dale, Edward J.; Vermeulen, Nicolaas A.; Juricek, Michal; ...

    2016-01-19

    -poor aromatic guests in different binding sites located within the same cavity. ExBox24+ forms complexes with C60 in which discrete arrays of aligned fullerenes result in single cocrystals, leading to improved material conductivities. When the substitution pattern of the ExnBox4+ series is changed to 1,3,5-trisubstituted benzenoid cores, the hexacationic cagelike compound, termed ExCage6+, exhibits different kinetics of complexation with guests of varying sizes—a veritable playground for physical organic chemists. The organization of functionality with respect to structure becomes valuable as the number of analogues continues to grow. With each of these minor structural modifications, a wealth of properties emerge, begging the question as to what discoveries await and what properties will be realized with the continued exploration of this area of supramolecular chemistry based on a unique class of receptor molecules.« less

  18. Neutronics Analyses of the Minimum Original HEU TREAT Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontogeorgakos, D.; Connaway, H.; Yesilyurt, G.

    2014-04-01

    This work was performed to support the feasibility study on the potential conversion of the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory from the use of high-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by the GTRI Reactor Conversion staff at the Argonne National Laboratory (ANL). The objective of this study was to validate the MCNP model of the TREAT reactor with the well-documented measurements which were taken during the start-up and early operation of TREAT. Furthermore, the effect of carbon graphitization was also addressed. The graphitization level was assumedmore » to be 100% (ANL/GTRI/TM-13/4). For this purpose, a set of experiments was chosen to validate the TREAT MCNP model, involving the approach to criticality procedure, in-core neutron flux measurements with foils, and isothermal temperature coefficient and temperature distribution measurements. The results of this study extended the knowledge base for the TREAT MCNP calculations and established the credibility of the MCNP model to be used in the core conversion feasibility analysis.« less

  19. Core Flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514.

    PubMed

    Varjani, Sunita J; Upasani, Vivek N

    2016-11-01

    The aim of this work was to study the Microbial Enhanced Oil Recovery (MEOR) employing core field model ex-situ bioaugmenting a thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa. Thin Layer Chromatography (TLC) revealed that the biosurfactant produced was rhamnolipid type. Nuclear Magnetic Resonance analysis showed that the purified rhamnolipids comprised two principal rhamnolipid homologues, i.e., Rha-Rha-C10-C14:1 and Rha-C8-C10. The rhamnolipid was stable under wide range of temperature (4°C, 30-100°C), pH (2.0-10.0) and NaCl concentration (0-18%, w/v). Core Flood model was designed for oil recovery operations using rhamnolipid. The oil recovery enhancement over Residual Oil Saturation was 8.82% through ex-situ bioaugmentation with rhamnolipid. The thermal stability of rhamnolipid shows promising scope for its application at conditions where high temperatures prevail in oil recovery processes, whereas its halo-tolerant nature increases its application in marine environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Pygmy dipole mode in deformed neutron-rich Mg isotopes close to the drip line

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenichi

    2009-10-01

    We investigate the microscopic structure of the low-lying isovector-dipole excitation mode in neutron-rich Mg36,38,40 close to the drip line by means of the deformed quasiparticle random-phase approximation employing the Skyrme and the local pairing energy-density functionals. It is found that the low-lying bump structure above the neutron emission-threshold energy develops when the drip line is approached, and that the isovector dipole strength at Ex<10 MeV exhausts about 6.0% of the classical Thomas-Reiche-Kuhn dipole sum rule in Mg40. We obtained the collective dipole modes at around 8-10 MeV in Mg isotopes, that consist of many two-quasiparticle excitations of the neutron. The transition density clearly shows an oscillation of the neutron skin against the isoscalar core. We found significant coupling effects between the dipole and octupole excitation modes due to the nuclear deformation. It is also found that the responses for the compressional dipole and isoscalar octupole excitations are much enhanced in the lower energy region.

  1. ARCADIA{sup R} - A New Generation of Coupled Neutronics / Core Thermal- Hydraulics Code System at AREVA NP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curca-Tivig, Florin; Merk, Stephan; Pautz, Andreas

    2007-07-01

    Anticipating future needs of our customers and willing to concentrate synergies and competences existing in the company for the benefit of our customers, AREVA NP decided in 2002 to develop the next generation of coupled neutronics/ core thermal-hydraulic (TH) code systems for fuel assembly and core design calculations for both, PWR and BWR applications. The global CONVERGENCE project was born: after a feasibility study of one year (2002) and a conceptual phase of another year (2003), development was started at the beginning of 2004. The present paper introduces the CONVERGENCE project, presents the main feature of the new code systemmore » ARCADIA{sup R} and concludes on customer benefits. ARCADIA{sup R} is designed to meet AREVA NP market and customers' requirements worldwide. Besides state-of-the-art physical modeling, numerical performance and industrial functionality, the ARCADIA{sup R} system is featuring state-of-the-art software engineering. The new code system will bring a series of benefits for our customers: e.g. improved accuracy for heterogeneous cores (MOX/ UOX, Gd...), better description of nuclide chains, and access to local neutronics/ thermal-hydraulics and possibly thermal-mechanical information (3D pin by pin full core modeling). ARCADIA is a registered trademark of AREVA NP. (authors)« less

  2. NEUTRONIC REACTOR

    DOEpatents

    Wade, E.J.

    1958-09-16

    This patent relates to a reflector means for a neutronic reactor. A reflector comprised of a plurality of vertically movable beryllium control members is provided surrounding the sides of the reactor core. An absorber of fast neutrons comprised of natural uramum surrounds the reflector. An absorber of slow neutrons surrounds the absorber of fast neutrons and is formed of a plurality of beryllium blocks having natural uranium members distributcd therethrough. in addition, a movable body is positioned directly below the core and is comprised of a beryllium reflector and an absorbing member attached to the botiom thereof, the absorbing member containing a substance selected from the goup consisting of natural urantum and Th/sup 232/.

  3. Stellar neutron sources and s-process in massive stars

    NASA Astrophysics Data System (ADS)

    Talwar, Rashi

    The s-process or the slow neutron capture process is a nucleosynthesis process taking place at relatively low neutron densities in stars. It runs along the valley of beta stability since the neutron capture rate is much slower compared to the beta decay rate. The s-process occurs mainly during core helium burning and shell carbon burning phase in massive stars and during thermally pulsing helium burning phase in asymptotic giant-branch stars. The potential stellar neutron source for the s-process is associated with alpha-capture reactions on light nuclei. The capture-reaction rates provide the reaction flow for the build-up of22Ne neutron source during the heliumburning phase in these stars. The low energy 26Mg resonances at stellar energies below 800 keV are predicted to have a critical influence on the alpha-capture rates on 22Ne. Some of these resonances may also correspond to pronounced alpha cluster structure near the alpha-threshold. However, these resonances have remained elusive during direct alpha capture measurements owing to the high Coulomb barrier and background from cosmic rays and beam induced reactions. Hence, in the present work, alpha-inelastic scattering and alpha- transfer measurements have been performed to probe the level structure of 26Mg nucleus in order to determine the 22Ne+alpha-capture rates. Both experiments have been performed using the high-resolution Grand Raiden Spectrometer at the Research Center for Nuclear Physics (RCNP), Osaka, Japan. For the alpha-inelastic scattering measurement, a self-supporting solid 26Mg target was used and for the alpha-transfer study via the (6Li,d) reaction, 22Ne gas enclosed in a gas cell with Aramid windows was used. The reaction products were momentum analysed by the spectrometer and detected at the focal plane equipped with two multi-wire drift chambers and two plastic-scintillation detectors. The focal plane detection system provided information on the position, the angle, the time of flight and

  4. Cooling of Accretion-Heated Neutron Stars

    NASA Astrophysics Data System (ADS)

    Wijnands, Rudy; Degenaar, Nathalie; Page, Dany

    2017-09-01

    We present a brief, observational review about the study of the cooling behaviour of accretion-heated neutron stars and the inferences about the neutron-star crust and core that have been obtained from these studies. Accretion of matter during outbursts can heat the crust out of thermal equilibrium with the core and after the accretion episodes are over, the crust will cool down until crust-core equilibrium is restored. We discuss the observed properties of the crust cooling sources and what has been learned about the physics of neutron-star crusts. We also briefly discuss those systems that have been observed long after their outbursts were over, i.e, during times when the crust and core are expected to be in thermal equilibrium. The surface temperature is then a direct probe for the core temperature. By comparing the expected temperatures based on estimates of the accretion history of the targets with the observed ones, the physics of neutron-star cores can be investigated. Finally, we discuss similar studies performed for strongly magnetized neutron stars in which the magnetic field might play an important role in the heating and cooling of the neutron stars.

  5. Calculations to support JET neutron yield calibration: Modelling of neutron emission from a compact DT neutron generator

    NASA Astrophysics Data System (ADS)

    Čufar, Aljaž; Batistoni, Paola; Conroy, Sean; Ghani, Zamir; Lengar, Igor; Milocco, Alberto; Packer, Lee; Pillon, Mario; Popovichev, Sergey; Snoj, Luka; JET Contributors

    2017-03-01

    At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium-tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle-energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.

  6. Nuclear reactor neutron shielding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactormore » cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.« less

  7. Double core evolution. 7: The infall of a neutron star through the envelope of its massive star companion

    NASA Technical Reports Server (NTRS)

    Terman, James L.; Taam, Ronald E.; Hernquist, Lars

    1995-01-01

    Binary systems with properties similar to those of high-mass X-ray binaries are evolved through the common envelope phase. Three-dimensional simulations show that the timescale of the infall phase of the neutron star depends upon the evolutionary state of its massive companion. We find that tidal torques more effectively accelerate common envelope evolution for companions in their late core helium-burning stage and that the infall phase is rapid (approximately several initial orbital periods). For less evolved companions the decay of the orbit is longer; however, once the neutron star is deeply embedded within the companion's envelope the timescale for orbital decay decreases rapidly. As the neutron star encounters the high-density region surrounding the helium core of its massive companion, the rate of energy loss from the orbit increases dramatically leading to either partial or nearly total envelope ejection. The outcome of the common envelope phase depends upon the structure of the evolved companion. In particular, it is found that the entire common envelope can be ejected by the interaction of the neutron star with a red supergiant companion in binaries with orbital periods similar to those of long-period Be X-ray binaries. For orbital periods greater than or approximately equal to 0.8-2 yr (for companions of mass 12-24 solar mass) it is likely that a binary will survive the common envelope phase. For these systems, the structure of the progenitor star is characterized by a steep density gradient above the helium core, and the common envelope phase ends with a spin up of the envelope to within 50%-60% of corotation and with a slow mass outflow. The efficiency of mass ejection is found to be approximately 30%-40%. For less evolved companions, there is insufficient energy in the orbit to unbind the common envelope and only a fraction of it is ejected. Since the timescale for orbital decay is always shorter than the mass-loss timescale from the common envelope

  8. Simulating an Exploding Fission-Bomb Core

    NASA Astrophysics Data System (ADS)

    Reed, Cameron

    2016-03-01

    A time-dependent desktop-computer simulation of the core of an exploding fission bomb (nuclear weapon) has been developed. The simulation models a core comprising a mixture of two isotopes: a fissile one (such as U-235) and an inert one (such as U-238) that captures neutrons and removes them from circulation. The user sets the enrichment percentage and scattering and fission cross-sections of the fissile isotope, the capture cross-section of the inert isotope, the number of neutrons liberated per fission, the number of ``initiator'' neutrons, the radius of the core, and the neutron-reflection efficiency of a surrounding tamper. The simulation, which is predicated on ordinary kinematics, follows the three-dimensional motions and fates of neutrons as they travel through the core. Limitations of time and computer memory render it impossible to model a real-life core, but results of numerous runs clearly demonstrate the existence of a critical mass for a given set of parameters and the dramatic effects of enrichment and tamper efficiency on the growth (or decay) of the neutron population. The logic of the simulation will be described and results of typical runs will be presented and discussed.

  9. Accelerator driven sub-critical core

    DOEpatents

    McIntyre, Peter M; Sattarov, Akhdiyor

    2015-03-17

    Systems and methods for operating an accelerator driven sub-critical core. In one embodiment, a fission power generator includes a sub-critical core and a plurality of proton beam generators. Each of the proton beam generators is configured to concurrently provide a proton beam into a different area of the sub-critical core. Each proton beam scatters neutrons within the sub-critical core. The plurality of proton beam generators provides aggregate power to the sub-critical core, via the proton beams, to scatter neutrons sufficient to initiate fission in the sub-critical core.

  10. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions.

    PubMed

    Geslot, B; Vermeeren, L; Filliatre, P; Lopez, A Legrand; Barbot, L; Jammes, C; Bréaud, S; Oriol, L; Villard, J-F

    2011-03-01

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 × 10(20) n∕cm(2). A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  11. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    NASA Astrophysics Data System (ADS)

    Geslot, B.; Vermeeren, L.; Filliatre, P.; Lopez, A. Legrand; Barbot, L.; Jammes, C.; Bréaud, S.; Oriol, L.; Villard, J.-F.

    2011-03-01

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 × 1020 n/cm2. A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  12. NEUTRONIC REACTOR

    DOEpatents

    Hurwitz, H. Jr.; Brooks, H.; Mannal, C.; Payne, J.H.; Luebke, E.A.

    1959-03-24

    A reactor of the heterogeneous, liquid cooled type is described. This reactor is comprised of a central region of a plurality of vertically disposed elongated tubes surrounded by a region of moderator material. The central region is comprised of a central core surrounded by a reflector region which is surrounded by a fast neutron absorber region, which in turn is surrounded by a slow neutron absorber region. Liquid sodium is used as the primary coolant and circulates through the core which contains the fuel elements. Control of the reactor is accomplished by varying the ability of the reflector region to reflect neutrons back into the core of the reactor. For this purpose the reflector is comprised of moderator and control elements having varying effects on reactivity, the control elements being arranged and actuated by groups to give regulation, shim, and safety control.

  13. Power monitoring in space nuclear reactors using silicon carbide radiation detectors

    NASA Technical Reports Server (NTRS)

    Ruddy, Frank H.; Patel, Jagdish U.; Williams, John G.

    2005-01-01

    Space reactor power monitors based on silicon carbide (SiC) semiconductor neutron detectors are proposed. Detection of fast leakage neutrons using SiC detectors in ex-core locations could be used to determine reactor power: Neutron fluxes, gamma-ray dose rates and ambient temperatures have been calculated as a function of distance from the reactor core, and the feasibility of power monitoring with SiC detectors has been evaluated at several ex-core locations. Arrays of SiC diodes can be configured to provide the required count rates to monitor reactor power from startup to full power Due to their resistance to temperature and the effects of neutron and gamma-ray exposure, SiC detectors can be expected to provide power monitoring information for the fill mission of a space reactor.

  14. NEUTRONIC REACTOR CONTROL

    DOEpatents

    Metcalf, H.E.

    1958-10-14

    Methods of controlling reactors are presented. Specifically, a plurality of neutron absorber members are adjustably disposed in the reactor core at different distances from the center thereof. The absorber members extend into the core from opposite faces thereof and are operated by motive means coupled in a manner to simultaneously withdraw at least one of the absorber members while inserting one of the other absorber members. This feature effects fine control of the neutron reproduction ratio by varying the total volume of the reactor effective in developing the neutronic reaction.

  15. Strangeness driven phase transitions in compressed baryonic matter and their relevance for neutron stars and core collapsing supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raduta, Ad. R.; Gulminelli, F.; Oertel, M.

    2015-02-24

    We discuss the thermodynamics of compressed baryonic matter with strangeness within non-relativistic mean-field models with effective interactions. The phase diagram of the full baryonic octet under strangeness equilibrium is built and discussed in connection with its relevance for core-collapse supernovae and neutron stars. A simplified framework corresponding to (n, p, Λ)(+e)-mixtures is employed in order to test the sensitivity of the existence of a phase transition on the (poorely constrained) interaction coupling constants and the compatibility between important hyperonic abundances and 2M{sub ⊙} neutron stars.

  16. NEUTRON SHIELDING STRUCTURE

    DOEpatents

    Mattingly, J.T.

    1962-09-25

    A lightweight neutron shielding structure comprises a honeycomb core which is filled with a neutron absorbing powder. The honeycomb core is faced with parallel planar facing sheets to form a lightweight rigid unit. Suitable absorber powders are selected from among the following: B, B/sub 4/C, B/sub 2/O/ sub 3/, CaB/sub 6/, Li/sub 2/CO3, LiOH, LiBO/sub 2/, Li/s ub 2/O. The facing sheets are constructed of a neutron moderating material, so that fast neutrons will be moderated while traversing the facing sheets, and ultimately be absorbed by the absorber powder in the honeycomb. Beryllium is a preferred moderator material for use in the facing sheets. The advantage of the structure is that it combines the rigidity and light weight of a honeycomb construction with the neutron absorption properties of boron and lithium. (AEC)

  17. Capturing haplotypes in germplasm core collections

    USDA-ARS?s Scientific Manuscript database

    Genomewide data sets of single nucleotide polymorphisms (SNPs) offer great potential to improve ex situ conservation. Two factors impede their use for producing core collections. First, due to the large number of SNPs, the assembly of collections that maximize diversity may be intractable using ex...

  18. Neutron Star Natal Kick and Jets in Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Bear, Ealeal; Soker, Noam

    2018-03-01

    We measure the angle between the neutron star (NS) natal kick direction and the inferred direction of jets according to the morphology of 12 core collapse supernova remnants (SNR), and find that the distribution is almost random, but missing small angles. The 12 SNRs are those for which we could both identify morphological features that we can attribute to jets and for which the direction of the NS natal kick is given in the literature. Unlike some claims for spin-kick alignment, here we rule out jet-kick alignment. We discuss the cumulative distribution function of the jet-kick angles under the assumption that dense clumps that are ejected by the explosion accelerate the NS by the gravitational attraction, and suggest that the jet feedback explosion mechanism might in principle account for the distribution of jet-kick angles.

  19. Small Angle Neutron-Scattering Studies of the Core Structure of Intact Neurosecretory Vesicles.

    NASA Astrophysics Data System (ADS)

    Krueger, Susan Takacs

    Small angle neutron scattering (SANS) was used to study the state of the dense cores within intact neurosecretory vesicles. These vesicles transport the neurophysin proteins, along with their associated hormones, oxytocin or vasopressin, from the posterior pituitary gland to the bloodstream, where the entire vesicle contents are released. Knowledge of the vesicle core structure is important in developing an understanding of this release mechanism. Since the core constituents exist in a dense state at concentrations which cannot be reproduced (in solution) in the laboratory, a new method was developed to determine the core structure from SANS experiments performed on intact neurosecretory vesicles. These studies were complemented by biochemical assays performed to determine the role, if any, played by phospholipids in the interactions between the core constituents. H_2O/D_2 O ratio in the solvent can be adjusted, using the method of contrast variation, such that the scattering due to the vesicle membranes is minimized, thus emphasizing the scattering originating from the cores. The applicability of this method for examining the interior of biological vesicles was tested by performing an initial study on human red blood cells, which are similar in structure to other biological vesicles. Changes in intermolecular hemoglobin interactions, occurring when the ionic strength of the solvent was varied or when the cells were deoxygenated, were examined. The results agreed with those expected for dense protein solutions, indicating that the method developed was suitable for the study of hemoglobin within the cells. Similar SANS studies were then performed on intact neurosecretory vesicles. The experimental results were inconsistent with model calculations which assumed that the cores consisted of small, densely-packed particles or large, globular aggregates. Although a unique model could not be determined, the data suggest that the core constituents form long aggregates of

  20. Introduction to neutron stars

    NASA Astrophysics Data System (ADS)

    Lattimer, James M.

    2015-02-01

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.

  1. Introduction to neutron stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lattimer, James M.

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts canmore » set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.« less

  2. Rare earth elements in core marine sediments of coastal East Malaysia by instrumental neutron activation analysis.

    PubMed

    Ashraf, Ahmadreza; Saion, Elias; Gharibshahi, Elham; Mohamed Kamari, Halimah; Chee Kong, Yap; Suhaimi Hamzah, Mohd; Suhaimi Elias, Md

    2016-01-01

    A study was carried out on the concentration of REEs (Dy, Sm, Eu,Yb, Lu, La and Ce) that are present in the core marine sediments of East Malaysia from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea. The sediment samples were collected at a depth of between 49 and 109 m, dried, and crushed to powdery form. The entire core sediments prepared for Instrumental Neutron Activation Analysis (INAA) were weighted approximately 0.0500 g to 0.1000 g for short irradiation and 0.1500 g to 0.2000 g for long irradiation. The samples were irradiated with a thermal neutron flux of 4.0×10(12) cm(-2) s(-1) in a TRIGA Mark II research reactor operated at 750 kW. Blank samples and standard reference materials SL-1 were also irradiated for calibration and quality control purposes. It was found that the concentration of REEs varies in the range from 0.11 to 36.84 mg/kg. The chondrite-normalized REEs for different stations suggest that all the REEs are from similar origins. There was no significant REEs contamination as the enrichment factors normalized for Fe fall in the range of 0.42-2.82. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. NEUTRON FLUX INTENSITY DETECTION

    DOEpatents

    Russell, J.T.

    1964-04-21

    A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)

  4. Neutronic Reactor Structure

    DOEpatents

    Vernon, H. C.; Weinberg, A. M.

    1961-05-30

    The neutronic reactor is comprised of a core consisting of natural uranium and heavy water with a K-factor greater than unity. The core is surrounded by a reflector consisting of natural uranium and ordinary water with a Kfactor less than unity. (AEC)

  5. Determinants of Employment Success Among Ex-Offenders

    ERIC Educational Resources Information Center

    Knox, George W.; Stacey, William A.

    1978-01-01

    Use of cost-benefit analysis in evaluation of seven manpower service programs for ex-offenders in Illinois shows these programs have benefit-cost ratios ranging from 4.24 to 16.88. Demographic profiles for the client flows differ somewhat, with Operation DARE's population being somewhat of a more "hard-core" group based on previous law…

  6. Rapid Neutrino Cooling in the Neutron Star MXB 1659-29.

    PubMed

    Brown, Edward F; Cumming, Andrew; Fattoyev, Farrukh J; Horowitz, C J; Page, Dany; Reddy, Sanjay

    2018-05-04

    We show that the neutron star in the transient system MXB 1659-29 has a core neutrino luminosity that substantially exceeds that of the modified Urca reactions (i.e., n+n→n+p+e^{-}+ν[over ¯]_{e} and inverse) and is consistent with the direct Urca (n→p+e^{-}+ν[over ¯]_{e} and inverse) reaction occurring in a small fraction of the core. Observations of the thermal relaxation of the neutron star crust following 2.5 yr of accretion allow us to measure the energy deposited into the core during accretion, which is then reradiated as neutrinos, and infer the core temperature. For a nucleonic core, this requires that the nucleons are unpaired and that the proton fraction exceeds a critical value to allow the direct Urca reaction to proceed. The neutron star in MXB 1659-29 is the first with a firmly detected thermal component in its x-ray spectrum that needs a fast neutrino-cooling process. Measurements of the temperature variation of the neutron star core during quiescence would place an upper limit on the core specific heat and serve as a check on the fraction of the neutron star core in which nucleons are unpaired.

  7. Rapid Neutrino Cooling in the Neutron Star MXB 1659-29

    NASA Astrophysics Data System (ADS)

    Brown, Edward F.; Cumming, Andrew; Fattoyev, Farrukh J.; Horowitz, C. J.; Page, Dany; Reddy, Sanjay

    2018-05-01

    We show that the neutron star in the transient system MXB 1659-29 has a core neutrino luminosity that substantially exceeds that of the modified Urca reactions (i.e., n +n →n +p +e-+ν¯ e and inverse) and is consistent with the direct Urca (n →p +e-+ν¯e and inverse) reaction occurring in a small fraction of the core. Observations of the thermal relaxation of the neutron star crust following 2.5 yr of accretion allow us to measure the energy deposited into the core during accretion, which is then reradiated as neutrinos, and infer the core temperature. For a nucleonic core, this requires that the nucleons are unpaired and that the proton fraction exceeds a critical value to allow the direct Urca reaction to proceed. The neutron star in MXB 1659-29 is the first with a firmly detected thermal component in its x-ray spectrum that needs a fast neutrino-cooling process. Measurements of the temperature variation of the neutron star core during quiescence would place an upper limit on the core specific heat and serve as a check on the fraction of the neutron star core in which nucleons are unpaired.

  8. Neutron spectrum determination in a sub-critical assembly using the multi-disc neutron activation technique

    NASA Astrophysics Data System (ADS)

    Koseoglou, P.; Vagena, E.; Stoulos, S.; Manolopoulou, M.

    2016-09-01

    Neutron spectrum of the sub-critical nuclear assembly-reactor of Aristotle University of Thessaloniki was measured at three radial distances from the reactor core. The neutron activation technique was applied irradiating 15 thick foils - disc of various elements at each position. The data of 38 (n, γ), (n, p) and (n, α) reactions were analyzed for specific activity determination. Discs instead of foils were used due to the relevant low neutron flux, so the gamma self-absorption as well as the neutron self-shielding factors has been calculated using GEANT simulations in order to determine the activity induced. The specific activities calculated for all isotopes studied were the input to the SANDII code, which was built specifically for the neutron spectrum de-convolution when the neutron activation technique is used. For the optimization of the results a technique was applied in order to minimize the influence of the initial-"guessed" spectrum shape SANDII uses. The neutron spectrum estimated presents a peak in the regions of (i) thermal neutrons ranged between 0.001 and 1 eV peaking at neutron energy ∼0.1 eV and (ii) fast neutrons ranged between 0.1 and 20 MeV peaking at neutron energy ∼1.2 MeV. The reduction of thermal neutrons is higher than the fast one as the distance from the reactor core increases since thermal neutrons capture by natural U-fuel has higher cross section than the fast neutrons.

  9. Toward a clinical application of ex situ boron neutron capture therapy for lung tumors at the RA-3 reactor in Argentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farías, R. O.; Trivillin, V. A.; Portu, A. M.

    Purpose: Many types of lung tumors have a very poor prognosis due to their spread in the whole organ volume. The fact that boron neutron capture therapy (BNCT) would allow for selective targeting of all the nodules regardless of their position, prompted a preclinical feasibility study of ex situ BNCT at the thermal neutron facility of RA-3 reactor in the province of Buenos Aires, Argentina. (L)-4p-dihydroxy-borylphenylalanine fructose complex (BPA-F) biodistribution studies in an adult sheep model and computational dosimetry for a human explanted lung were performed to evaluate the feasibility and the therapeutic potential of ex situ BNCT. Methods: Twomore » kinds of boron biodistribution studies were carried out in the healthy sheep: a set of pharmacokinetic studies without lung excision, and a set that consisted of evaluation of boron concentration in the explanted and perfused lung. In order to assess the feasibility of the clinical application of ex situ BNCT at RA-3, a case of multiple lung metastases was analyzed. A detailed computational representation of the geometry of the lung was built based on a real collapsed human lung. Dosimetric calculations and dose limiting considerations were based on the experimental results from the adult sheep, and on the most suitable information published in the literature. In addition, a workable treatment plan was considered to assess the clinical application in a realistic scenario. Results: Concentration-time profiles for the normal sheep showed that the boron kinetics in blood, lung, and skin would adequately represent the boron behavior and absolute uptake expected in human tissues. Results strongly suggest that the distribution of the boron compound is spatially homogeneous in the lung. A constant lung-to-blood ratio of 1.3 ± 0.1 was observed from 80 min after the end of BPA-F infusion. The fact that this ratio remains constant during time would allow the blood boron concentration to be used as a surrogate and

  10. Toward a clinical application of ex situ boron neutron capture therapy for lung tumors at the RA-3 reactor in Argentina.

    PubMed

    Farías, R O; Garabalino, M A; Ferraris, S; Santa María, J; Rovati, O; Lange, F; Trivillin, V A; Monti Hughes, A; Pozzi, E C C; Thorp, S I; Curotto, P; Miller, M E; Santa Cruz, G A; Bortolussi, S; Altieri, S; Portu, A M; Saint Martin, G; Schwint, A E; González, S J

    2015-07-01

    Many types of lung tumors have a very poor prognosis due to their spread in the whole organ volume. The fact that boron neutron capture therapy (BNCT) would allow for selective targeting of all the nodules regardless of their position, prompted a preclinical feasibility study of ex situ BNCT at the thermal neutron facility of RA-3 reactor in the province of Buenos Aires, Argentina. (l)-4p-dihydroxy-borylphenylalanine fructose complex (BPA-F) biodistribution studies in an adult sheep model and computational dosimetry for a human explanted lung were performed to evaluate the feasibility and the therapeutic potential of ex situ BNCT. Two kinds of boron biodistribution studies were carried out in the healthy sheep: a set of pharmacokinetic studies without lung excision, and a set that consisted of evaluation of boron concentration in the explanted and perfused lung. In order to assess the feasibility of the clinical application of ex situ BNCT at RA-3, a case of multiple lung metastases was analyzed. A detailed computational representation of the geometry of the lung was built based on a real collapsed human lung. Dosimetric calculations and dose limiting considerations were based on the experimental results from the adult sheep, and on the most suitable information published in the literature. In addition, a workable treatment plan was considered to assess the clinical application in a realistic scenario. Concentration-time profiles for the normal sheep showed that the boron kinetics in blood, lung, and skin would adequately represent the boron behavior and absolute uptake expected in human tissues. Results strongly suggest that the distribution of the boron compound is spatially homogeneous in the lung. A constant lung-to-blood ratio of 1.3 ± 0.1 was observed from 80 min after the end of BPA-F infusion. The fact that this ratio remains constant during time would allow the blood boron concentration to be used as a surrogate and indirect quantification of the

  11. Neutron capture on Pt isotopes in iron meteorites and the Hf-W chronology of core formation in planetesimals

    NASA Astrophysics Data System (ADS)

    Kruijer, Thomas S.; Fischer-Gödde, Mario; Kleine, Thorsten; Sprung, Peter; Leya, Ingo; Wieler, Rainer

    2013-01-01

    The short-lived 182Hf-182W isotope system can provide powerful constraints on the timescales of planetary core formation, but its application to iron meteorites is hampered by neutron capture reactions on W isotopes resulting from exposure to galactic cosmic rays. Here we show that Pt isotopes in magmatic iron meteorites are also affected by capture of (epi)thermal neutrons and that the Pt isotope variations are correlated with variations in 182W/184W. This makes Pt isotopes a sensitive neutron dosimeter for correcting cosmic ray-induced W isotope shifts. The pre-exposure 182W/184W derived from the Pt-W isotope correlations of the IID, IVA and IVB iron meteorites are higher than most previous estimates and are more radiogenic than the initial 182W/184W of Ca-Al-rich inclusions (CAI). The Hf-W model ages for core formation range from +1.6±1.0 million years (Ma; for the IVA irons) to +2.7±1.3 Ma after CAI formation (for the IID irons), indicating that there was a time gap of at least ˜1 Ma between CAI formation and metal segregation in the parent bodies of some iron meteorites. From the Hf-W ages a time limit of <1.5-2 Ma after CAI formation can be inferred for the accretion of the IID, IVA and IVB iron meteorite parent bodies, consistent with earlier conclusions that the accretion of differentiated planetesimals predated that of most chondrite parent bodies.

  12. Crust-core properties of neutron stars in the Nambu–Jona-Lasinio model

    NASA Astrophysics Data System (ADS)

    Wei, Si-Na; Yang, Rong-Yao; Jiang, Wei-Zhou

    2018-05-01

    We adopt the Nambu–Jona-Lasinio (NJL) model to study the crust-core transition properties in neutron stars (NSs). For a given momentum cutoff and symmetry energy of saturation density in the NJL model, decreasing the slope of the symmetry energy gives rise to an increase in the crust-core transition density and transition pressure. Given the slope of the symmetry energy at saturation density, the transition density and corresponding transition pressure increase with increasing symmetry energy. The increasing trend between the fraction of the crustal moment of inertia and the slope of symmetry energy at saturation density indicates that a relatively large momentum cutoff of the NJL model is preferred. For a momentum cutoff of 500 MeV, the fraction of the crustal moment of inertia clearly increases with the slope of symmetry energy at saturation density. Thus, at the required fraction (7%) of the crustal moment of inertia, the NJL model with momentum cutoff of 500 MeV and a large slope of the symmetry energy of saturation density can give the upper limit of the mass of the Vela pulsar to be above 1.40 {M}ȯ . Supported by National Natural Science Foundation of China (11775049, 11275048) and the China Jiangsu Provincial Natural Science Foundation (BK20131286)

  13. Use and imaging performance of CMOS flat panel imager with LiF/ZnS(Ag) and Gadox scintillation screens for neutron radiography

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; kim, J. Y.; Kim, T. J.; Sim, C.; Cho, G.; Lee, D. H.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2011-01-01

    In digital neutron radiography system, a thermal neutron imaging detector based on neutron-sensitive scintillating screens with CMOS(complementary metal oxide semiconductor) flat panel imager is introduced for non-destructive testing (NDT) application. Recently, large area CMOS APS (active-pixel sensor) in conjunction with scintillation films has been widely used in many digital X-ray imaging applications. Instead of typical imaging detectors such as image plates, cooled-CCD cameras and amorphous silicon flat panel detectors in combination with scintillation screens, we tried to apply a scintillator-based CMOS APS to neutron imaging detection systems for high resolution neutron radiography. In this work, two major Gd2O2S:Tb and 6LiF/ZnS:Ag scintillation screens with various thickness were fabricated by a screen printing method. These neutron converter screens consist of a dispersion of Gd2O2S:Tb and 6LiF/ZnS:Ag scintillating particles in acrylic binder. These scintillating screens coupled-CMOS flat panel imager with 25x50mm2 active area and 48μm pixel pitch was used for neutron radiography. Thermal neutron flux with 6x106n/cm2/s was utilized at the NRF facility of HANARO in KAERI. The neutron imaging characterization of the used detector was investigated in terms of relative light output, linearity and spatial resolution in detail. The experimental results of scintillating screen-based CMOS flat panel detectors demonstrate possibility of high sensitive and high spatial resolution imaging in neutron radiography system.

  14. Experimental determination of neutron lifetimes through macroscopic neutron noise in the IPEN/MB-01 reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonnelli, Eduardo; Diniz, Ricardo

    2013-05-06

    The neutron lifetimes of the core, reflector, and global were experimentally obtained through macroscopic neutron noise in the IPEN/MB-01 reactor for five levels of subcriticality. The theoretical Auto Power Spectral Densities were derived by point kinetic equations taking the reflector effect into account, and one of the approaches consider an additional group of delayed neutrons.

  15. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer.

    PubMed

    Maglieri, Robert; Licea, Angel; Evans, Michael; Seuntjens, Jan; Kildea, John

    2015-11-01

    Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation-maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors' measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. The NNS may be used to reliably measure the neutron

  16. Calculation of the neutron diffusion equation by using Homotopy Perturbation Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koklu, H., E-mail: koklu@gantep.edu.tr; Ozer, O.; Ersoy, A.

    The distribution of the neutrons in a nuclear fuel element in the nuclear reactor core can be calculated by the neutron diffusion theory. It is the basic and the simplest approximation for the neutron flux function in the reactor core. In this study, the neutron flux function is obtained by the Homotopy Perturbation Method (HPM) that is a new and convenient method in recent years. One-group time-independent neutron diffusion equation is examined for the most solved geometrical reactor core of spherical, cubic and cylindrical shapes, in the frame of the HPM. It is observed that the HPM produces excellent resultsmore » consistent with the existing literature.« less

  17. Kinetics of methane-ethane gas replacement in clathrate-hydrates studied by time-resolved neutron diffraction and Raman spectroscopy.

    PubMed

    Murshed, M Mangir; Schmidt, Burkhard C; Kuhs, Werner F

    2010-01-14

    The kinetics of CH(4)-C(2)H(6) replacement in gas hydrates has been studied by in situ neutron diffraction and Raman spectroscopy. Deuterated ethane structure type I (C(2)H(6) sI) hydrates were transformed in a closed volume into methane-ethane mixed structure type II (CH(4)-C(2)H(6) sII) hydrates at 5 MPa and various temperatures in the vicinity of 0 degrees C while followed by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. The role of available surface area of the sI starting material on the formation kinetics of sII hydrates was studied. Ex situ Raman spectroscopic investigations were carried out to crosscheck the gas composition and the distribution of the gas species over the cages as a function of structure type and compared to the in situ neutron results. Raman micromapping on single hydrate grains showed compositional and structural gradients between the surface and core of the transformed hydrates. Moreover, the observed methane-ethane ratio is very far from the one expected for a formation from a constantly equilibrated gas phase. The results also prove that gas replacement in CH(4)-C(2)H(6) hydrates is a regrowth process involving the nucleation of new crystallites commencing at the surface of the parent C(2)H(6) sI hydrate with a progressively shrinking core of unreacted material. The time-resolved neutron diffraction results clearly indicate an increasing diffusion limitation of the exchange process. This diffusion limitation leads to a progressive slowing down of the exchange reaction and is likely to be responsible for the incomplete exchange of the gases.

  18. Glitches as probes of neutron star internal structure and dynamics: Effects of the superfluid-superconducting core

    NASA Astrophysics Data System (ADS)

    Gügercinoğlu, Erbil

    2017-12-01

    Glitches, sudden spin-up of pulsars with subsequent recovery, provide us with a unique opportunity to investigate various physical processes, including the crust-core coupling, distribution of reservoir angular momentum within different internal layers, spin-up in neutral and charged superfluids and constraining the equation of state of the neutron star (NS) matter. In this work, depending on the dynamic interaction between the vortex lines and the nuclei in the inner crust, and between the vortex lines and the magnetic flux tubes in the outer core, various types of relaxation behavior are obtained and confronted with the observations. It is shown that the glitches have strong potential to deduce information about the cooling behavior and interior magnetic field configuration of NSs. Some implications of the relative importance of the external spin-down torques and the superfluid internal torques for recently observed unusual glitches are also discussed.

  19. Validation of the BUGJEFF311.BOLIB, BUGENDF70.BOLIB and BUGLE-B7 broad-group libraries on the PCA-Replica (H2O/Fe) neutron shielding benchmark experiment

    NASA Astrophysics Data System (ADS)

    Pescarini, Massimo; Orsi, Roberto; Frisoni, Manuela

    2016-03-01

    The PCA-Replica 12/13 (H2O/Fe) neutron shielding benchmark experiment was analysed using the TORT-3.2 3D SN code. PCA-Replica reproduces a PWR ex-core radial geometry with alternate layers of water and steel including a pressure vessel simulator. Three broad-group coupled neutron/photon working cross section libraries in FIDO-ANISN format with the same energy group structure (47 n + 20 γ) and based on different nuclear data were alternatively used: the ENEA BUGJEFF311.BOLIB (JEFF-3.1.1) and UGENDF70.BOLIB (ENDF/B-VII.0) libraries and the ORNL BUGLE-B7 (ENDF/B-VII.0) library. Dosimeter cross sections derived from the IAEA IRDF-2002 dosimetry file were employed. The calculated reaction rates for the Rh-103(n,n')Rh-103m, In-115(n,n')In-115m and S-32(n,p)P-32 threshold activation dosimeters and the calculated neutron spectra are compared with the corresponding experimental results.

  20. Constraints on the symmetry energy from neutron star observations

    NASA Astrophysics Data System (ADS)

    Newton, W. G.; Gearheart, M.; Wen, De-Hua; Li, Bao-An

    2013-03-01

    The modeling of many neutron star observables incorporates the microphysics of both the stellar crust and core, which is tied intimately to the properties of the nuclear matter equation of state (EoS). We explore the predictions of such models over the range of experimentally constrained nuclear matter parameters, focusing on the slope of the symmetry energy at nuclear saturation density L. We use a consistent model of the composition and EoS of neutron star crust and core matter to model the binding energy of pulsar B of the double pulsar system J0737-3039, the frequencies of torsional oscillations of the neutron star crust and the instability region for r-modes in the neutron star core damped by electron-electron viscosity at the crust-core interface. By confronting these models with observations, we illustrate the potential of astrophysical observables to offer constraints on poorly known nuclear matter parameters complementary to terrestrial experiments, and demonstrate that our models consistently predict L < 70 MeV.

  1. A new class of g-modes in neutron stars

    NASA Technical Reports Server (NTRS)

    Reisenegger, Andreas; Goldreich, Peter

    1992-01-01

    Because a neutron star is born hot, its internal composition is close to chemical equilibrium. In the fluid core, this implies that the ratio of the number densities of charged particles (protons and electrons) to neutrons is an increasing function of the mass density. This composition gradient stably stratifies the matter giving rise to a Brunt-Vaisala frequency N of about 500/s. Consequently, a neutron star core provides a cavity that supports gravity modes (g-modes). These g-modes are distinct from those previously identified with the thermal stratification of the surface layers and the chemical stratification of the crust. We compute the lowest-order, quadrupolar, g-modes for cold, Newtonian, neutron star models with M/solar M = 0.581 and M/solar M = 1.405, and show that the crustal and core g-modes have similar periods. We also discuss damping mechanisms and estimate damping rates for the core g-modes. Particular attention is paid to damping due to the emission of gravitational radiation.

  2. COMPOSITE NEUTRONIC REACTOR

    DOEpatents

    Menke, J.R.

    1963-06-11

    This patent relates to a reactor having a core which comprises an inner active region and an outer active region, each region separately having a k effective less than one and a k infinity greater than one. The inner and outer regions in combination have a k effective at least equal to one and each region contributes substantially to the k effective of the reactor core. The inner region has a low moderator to fuel ratio such that the majority of fissions occurring therein are induced by neutrons having energies greater than thermal. The outer region has a high moderator to fuel ratio such that the majority of fissions occurring therein are induced by thermal neutrons. (AEC)

  3. Cracking on anisotropic neutron stars

    NASA Astrophysics Data System (ADS)

    Setiawan, A. M.; Sulaksono, A.

    2017-07-01

    We study the effect of cracking of a local anisotropic neutron star (NS) due to small density fluctuations. It is assumed that the neutron star core consists of leptons, nucleons and hyperons. The relativistic mean field model is used to describe the core of equation of state (EOS). For the crust, we use the EOS introduced by Miyatsu et al. [1]. Furthermore, two models are used to describe pressure anisotropic in neutron star matter. One is proposed by Doneva-Yazadjiev (DY) [2] and the other is proposed by Herrera-Barreto (HB) [3]. The anisotropic parameter of DY and HB models are adjusted in order the predicted maximum mass compatible to the mass of PSR J1614-2230 [4] and PSR J0348+0432 [5]. We have found that cracking can potentially present in the region close to the neutron star surface. The instability due cracking is quite sensitive to the NS mass and anisotropic parameter used.

  4. Packed rod neutron shield for fast nuclear reactors

    DOEpatents

    Eck, John E.; Kasberg, Alvin H.

    1978-01-01

    A fast neutron nuclear reactor including a core and a plurality of vertically oriented neutron shield assemblies surrounding the core. Each assembly includes closely packed cylindrical rods within a polygonal metallic duct. The shield assemblies are less susceptible to thermal stresses and are less massive than solid shield assemblies, and are cooled by liquid coolant flow through interstices among the rods and duct.

  5. MODULAR CORE UNITS FOR A NEUTRONIC REACTOR

    DOEpatents

    Gage, J.F. Jr.; Sherer, D.B.

    1964-04-01

    A modular core unit for use in a nuclear reactor is described. Many identical core modules can be placed next to each other to make up a complete core. Such a module includes a cylinder of moderator material surrounding a fuel- containing re-entrant coolant channel. The re-entrant channel provides for the circulation of coolant such as liquid sodium from one end of the core unit, through the fuel region, and back out through the same end as it entered. Thermal insulation surrounds the moderator exterior wall inducing heat to travel inwardly to the coolant channel. Spaces between units may be used to accommodate control rods and support structure, which may be cooled by a secondary gas coolant, independently of the main coolant. (AEC)

  6. Status Report on Ex-Vessel Coolability and Water Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, M. T.; Robb, K. R.

    Specific to BWR plants, current accident management guidance calls for flooding the drywell to a level of approximately 1.2 m (4 feet) above the drywell floor once vessel breach has been determined. While this action can help to submerge ex-vessel core debris, it can also result in flooding the wetwell and thereby rendering the wetwell vent path unavailable. An alternate strategy is being developed in the industry guidance for responding to the severe accident capable vent Order, EA-13-109. The alternate strategy being proposed would throttle the flooding rate to achieve a stable wetwell water level while preserving the wetwell ventmore » path. The overall objective of this work is to upgrade existing analytical tools (i.e. MELTSPREAD and CORQUENCH - which have been used as part of the DOE-sponsored Fukushima accident analyses) in order to provide flexible, analytically capable, and validated models to support the development of water throttling strategies for BWRs that are aimed at keeping ex-vessel core debris covered with water while preserving the wetwell vent path.« less

  7. Neutron shielding panels for reactor pressure vessels

    DOEpatents

    Singleton, Norman R [Murrysville, PA

    2011-11-22

    In a nuclear reactor neutron panels varying in thickness in the circumferential direction are disposed at spaced circumferential locations around the reactor core so that the greatest radial thickness is at the point of highest fluence with lesser thicknesses at adjacent locations where the fluence level is lower. The neutron panels are disposed between the core barrel and the interior of the reactor vessel to maintain radiation exposure to the vessel within acceptable limits.

  8. Validation of the MCNP computational model for neutron flux distribution with the neutron activation analysis measurement

    NASA Astrophysics Data System (ADS)

    Tiyapun, K.; Chimtin, M.; Munsorn, S.; Somchit, S.

    2015-05-01

    The objective of this work is to demonstrate the method for validating the predication of the calculation methods for neutron flux distribution in the irradiation tubes of TRIGA research reactor (TRR-1/M1) using the MCNP computer code model. The reaction rate using in the experiment includes 27Al(n, α)24Na and 197Au(n, γ)198Au reactions. Aluminium (99.9 wt%) and gold (0.1 wt%) foils and the gold foils covered with cadmium were irradiated in 9 locations in the core referred to as CT, C8, C12, F3, F12, F22, F29, G5, and G33. The experimental results were compared to the calculations performed using MCNP which consisted of the detailed geometrical model of the reactor core. The results from the experimental and calculated normalized reaction rates in the reactor core are in good agreement for both reactions showing that the material and geometrical properties of the reactor core are modelled very well. The results indicated that the difference between the experimental measurements and the calculation of the reactor core using the MCNP geometrical model was below 10%. In conclusion the MCNP computational model which was used to calculate the neutron flux and reaction rate distribution in the reactor core can be used for others reactor core parameters including neutron spectra calculation, dose rate calculation, power peaking factors calculation and optimization of research reactor utilization in the future with the confidence in the accuracy and reliability of the calculation.

  9. Direct Heating of a Laser-Imploded Core by Ultraintense Laser-Driven Ions

    NASA Astrophysics Data System (ADS)

    Kitagawa, Y.; Mori, Y.; Komeda, O.; Ishii, K.; Hanayama, R.; Fujita, K.; Okihara, S.; Sekine, T.; Satoh, N.; Kurita, T.; Takagi, M.; Watari, T.; Kawashima, T.; Kan, H.; Nishimura, Y.; Sunahara, A.; Sentoku, Y.; Nakamura, N.; Kondo, T.; Fujine, M.; Azuma, H.; Motohiro, T.; Hioki, T.; Kakeno, M.; Miura, E.; Arikawa, Y.; Nagai, T.; Abe, Y.; Ozaki, S.; Noda, A.

    2015-05-01

    A novel direct core heating fusion process is introduced, in which a preimploded core is predominantly heated by energetic ions driven by LFEX, an extremely energetic ultrashort pulse laser. Consequently, we have observed the D (d ,n )He 3 -reacted neutrons (DD beam-fusion neutrons) with the yield of 5 ×108 n /4 π sr . Examination of the beam-fusion neutrons verified that the ions directly collide with the core plasma. While the hot electrons heat the whole core volume, the energetic ions deposit their energies locally in the core, forming hot spots for fuel ignition. As evidenced in the spectrum, the process simultaneously excited thermal neutrons with the yield of 6 ×107 n /4 π sr , raising the local core temperature from 0.8 to 1.8 keV. A one-dimensional hydrocode STAR 1D explains the shell implosion dynamics including the beam fusion and thermal fusion initiated by fast deuterons and carbon ions. A two-dimensional collisional particle-in-cell code predicts the core heating due to resistive processes driven by hot electrons, and also the generation of fast ions, which could be an additional heating source when they reach the core. Since the core density is limited to 2 g /cm3 in the current experiment, neither hot electrons nor fast ions can efficiently deposit their energy and the neutron yield remains low. In future work, we will achieve the higher core density (>10 g /cm3 ); then hot electrons could contribute more to the core heating via drag heating. Together with hot electrons, the ion contribution to fast ignition is indispensable for realizing high-gain fusion. By virtue of its core heating and ignition, the proposed scheme can potentially achieve high gain fusion.

  10. Direct heating of a laser-imploded core by ultraintense laser-driven ions.

    PubMed

    Kitagawa, Y; Mori, Y; Komeda, O; Ishii, K; Hanayama, R; Fujita, K; Okihara, S; Sekine, T; Satoh, N; Kurita, T; Takagi, M; Watari, T; Kawashima, T; Kan, H; Nishimura, Y; Sunahara, A; Sentoku, Y; Nakamura, N; Kondo, T; Fujine, M; Azuma, H; Motohiro, T; Hioki, T; Kakeno, M; Miura, E; Arikawa, Y; Nagai, T; Abe, Y; Ozaki, S; Noda, A

    2015-05-15

    A novel direct core heating fusion process is introduced, in which a preimploded core is predominantly heated by energetic ions driven by LFEX, an extremely energetic ultrashort pulse laser. Consequently, we have observed the D(d,n)^{3}He-reacted neutrons (DD beam-fusion neutrons) with the yield of 5×10^{8} n/4π sr. Examination of the beam-fusion neutrons verified that the ions directly collide with the core plasma. While the hot electrons heat the whole core volume, the energetic ions deposit their energies locally in the core, forming hot spots for fuel ignition. As evidenced in the spectrum, the process simultaneously excited thermal neutrons with the yield of 6×10^{7} n/4π sr, raising the local core temperature from 0.8 to 1.8 keV. A one-dimensional hydrocode STAR 1D explains the shell implosion dynamics including the beam fusion and thermal fusion initiated by fast deuterons and carbon ions. A two-dimensional collisional particle-in-cell code predicts the core heating due to resistive processes driven by hot electrons, and also the generation of fast ions, which could be an additional heating source when they reach the core. Since the core density is limited to 2 g/cm^{3} in the current experiment, neither hot electrons nor fast ions can efficiently deposit their energy and the neutron yield remains low. In future work, we will achieve the higher core density (>10 g/cm^{3}); then hot electrons could contribute more to the core heating via drag heating. Together with hot electrons, the ion contribution to fast ignition is indispensable for realizing high-gain fusion. By virtue of its core heating and ignition, the proposed scheme can potentially achieve high gain fusion.

  11. First In-Core Simultaneous Measurements of Nuclear Heating and Thermal Neutron Flux Obtained With the Innovative Mobile Calorimeter CALMOS Inside the OSIRIS Reactor

    NASA Astrophysics Data System (ADS)

    Carcreff, Hubert; Salmon, Laurent; Bubendorff, Jacques; Lepeltier, Valérie

    2016-10-01

    Nuclear heating inside a MTR reactor has to be known in order to design and run irradiation experiments which have to fulfill target temperature constraints. This measurement is usually carried out by calorimetry. The innovative calorimetric system, CALMOS, has been studied and built in 2011 for the 70MWth OSIRIS reactor operated by CEA. Thanks to a new type of calorimetric probe, associated to a specific displacement system, it provides measurements along the fissile height and above the core. Calorimeter working modes, measurement procedures, main modeling and experimental results and expected advantages of this new technique have been already presented in previous papers. However, these first in-core measurements were not performed beyond 6 W · g-1, due to an inside temperature limitation imposed by a safety authority requirement. In this paper, we present the first in-core simultaneous measurements of nuclear heating and conventional thermal neutron flux obtained by the CALMOS device at 70 MW nominal reactor power. For the first time, this experimental system was operated in nominal in-core conditions, with nominal neutron flux up to 2.7 1014 n · cm-2 · s-1 and nuclear heating up to 12 W · g-1. After a brief reminder of the calorimetric cell configuration and displacement system specificities, first nuclear heating distributions at nominal power are presented and discussed. In order to reinforce the heating evaluation, a comparison is made between results obtained by the probe calibration coefficient and the zero methods. Thermal neutron flux evaluation from SPND signal processing required a specific TRIPOLI-4 Monte Carlo calculation which has been performed with the precise CALMOS cell geometry. In addition, the Finite Element model for temperatures map prediction inside the calorimetric cell has been upgraded with recent experimental data obtained up to 12 W · g-1. Finally, the experience feedback led us to improvement perspectives. A second device is

  12. NEUTRONIC REACTOR

    DOEpatents

    Stewart, H.B.

    1958-12-23

    A nuclear reactor of the type speclfically designed for the irradiation of materials is discussed. In this design a central cyllndrical core of moderating material ls surrounded by an active portlon comprlsed of an annular tank contalning fissionable material immersed ln a liquid moderator. The active portion ls ln turn surrounded by a reflector, and a well ls provided in the center of the core to accommodate the materlals to be irradiated. The over-all dimensions of the core ln at least one plane are equal to or greater than twice the effective slowing down length and equal to or less than twlce the effective diffuslon length for neutrons in the core materials.

  13. SUPERNOVAE, NEUTRON STARS, AND TWO KINDS OF NEUTRINO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, H.Y.

    1962-08-15

    The role of neutrinos in the core of a star that has undergone a supernova explosion is discussed. The existence of neutron stars, the Schwarzchild singularity in general relativity, and the meaning of conservation of baryons in the neighborhood of a Schwarzchild singularity are also considered. The problem of detection of neutron stars is discussed. It is concluded that neutron stars are the most plausible alternative for the remnant of the core of a supernova. The neutrino emission processes are divided into two groups: the neutrino associated with the meson (mu) and the production of electron neutrinos. (C.E.S.)

  14. Quasi solution of radiation transport equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogosbekyan, L.R.; Lysov, D.A.

    There is uncertainty with experimental data as well as with input data of theoretical calculations. The neutron distribution from the variational principle, which takes into account both theoretical and experimental data, is obtained to increase the accuracy and speed of neutronic calculations. The neutron imbalance in mesh cells and the discrepancy between experimentally measured and calculated functional of the neutron distribution are simultaneously minimized. A fast-working and simple-programming iteration method is developed to minimize the objective functional. The method can be used in the core monitoring and control system for (a) power distribution calculations, (b) in- and ex-core detector calibration,more » (c) macro-cross sections or isotope distribution correction by experimental data, and (d) core and detector diagnostics.« less

  15. Thermal neutron filter design for the neutron radiography facility at the LVR-15 reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltes, Jaroslav; Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague,; Viererbl, Ladislav

    2015-07-01

    In 2011 a decision was made to build a neutron radiography facility at one of the unused horizontal channels of the LVR-15 research reactor in Rez, Czech Republic. One of the key conditions for operating an effective radiography facility is the delivery of a high intensity, homogeneous and collimated thermal neutron beam at the sample location. Additionally the intensity of fast neutrons has to be kept as low as possible as the fast neutrons may damage the detectors used for neutron imaging. As the spectrum in the empty horizontal channel roughly copies the spectrum in the reactor core, which hasmore » a high ratio of fast neutrons, neutron filter components have to be installed inside the channel in order to achieve desired beam parameters. As the channel design does not allow the instalment of complex filters and collimators, an optimal solution represent neutron filters made of large single-crystal ingots of proper material composition. Single-crystal silicon was chosen as a favorable filter material for its wide availability in sufficient dimensions. Besides its ability to reasonably lower the ratio of fast neutrons while still keeping high intensities of thermal neutrons, due to its large dimensions, it suits as a shielding against gamma radiation from the reactor core. For designing the necessary filter dimensions the Monte-Carlo MCNP transport code was used. As the code does not provide neutron cross-section libraries for thermal neutron transport through single-crystalline silicon, these had to be created by approximating the theory of thermal neutron scattering and modifying the original cross-section data which are provided with the code. Carrying out a series of calculations the filter thickness of 1 m proved good for gaining a beam with desired parameters and a low gamma background. After mounting the filter inside the channel several measurements of the neutron field were realized at the beam exit. The results have justified the expected calculated

  16. Late-time Cooling of Neutron Star Transients and the Physics of the Inner Crust

    NASA Astrophysics Data System (ADS)

    Deibel, Alex; Cumming, Andrew; Brown, Edward F.; Reddy, Sanjay

    2017-04-01

    An accretion outburst onto a neutron star transient heats the neutron star’s crust out of thermal equilibrium with the core. After the outburst, the crust thermally relaxes toward equilibrium with the neutron star core, and the surface thermal emission powers the quiescent X-ray light curve. Crust cooling models predict that thermal equilibrium of the crust will be established ≈ 1000 {days} into quiescence. Recent observations of the cooling neutron star transient MXB 1659-29, however, suggest that the crust did not reach thermal equilibrium with the core on the predicted timescale and continued to cool after ≈ 2500 {days} into quiescence. Because the quiescent light curve reveals successively deeper layers of the crust, the observed late-time cooling of MXB 1659-29 depends on the thermal transport in the inner crust. In particular, the observed late-time cooling is consistent with a low thermal conductivity layer near the depth predicted for nuclear pasta that maintains a temperature gradient between the neutron star’s inner crust and core for thousands of days into quiescence. As a result, the temperature near the crust-core boundary remains above the critical temperature for neutron superfluidity, and a layer of normal neutrons forms in the inner crust. We find that the late-time cooling of MXB 1659-29 is consistent with heat release from a normal neutron layer near the crust-core boundary with a long thermal time. We also investigate the effect of inner crust physics on the predicted cooling curves of the accreting transient KS 1731-260 and the magnetar SGR 1627-41.

  17. Testing the Formation Scenarios of Binary Neutron Star Systems with Measurements of the Neutron Star Moment of Inertia

    NASA Astrophysics Data System (ADS)

    Newton, William G.; Steiner, Andrew W.; Yagi, Kent

    2018-03-01

    Two low-mass (M < 1.4 M ⊙) neutron stars, J0737-3039B and the companion to J1756-2251, show strong evidence of being formed in an ultra-stripped supernova explosion (US-SN) with a ONeMg or Fe progenitor. Using systematically generated sets of equations of state we map out the relationship between the moment of inertia of J0737-3039A, a candidate for a moment of inertia measurement within a decade, and the binding energy of the two low-mass neutron stars. This relationship, similar to the I-Love-Q relations, is more robust than a previously explored correlation between the binding energy and the slope of the nuclear symmetry energy L. We find that, if either J0737-3039B or the J1756-2251 companion were formed in a US-SN, no more than 0.06 M ⊙ could have been lost from the progenitor core. Furthermore, a measurement of the moment of inertia of J0737-3039A to within 10% accuracy can discriminate between formation scenarios and, given current constraints on the predicted core mass loss, potentially rule them out. Advanced LIGO can potentially measure the neutron star tidal polarizability to equivalent accuracy which, using the I-Love-Q relations, would obtain similar constraints on the formation scenarios. Such information would help constrain important aspects of binary evolution used for population synthesis predictions of the rate of binary neutron star mergers and resulting electromagnetic and gravitational wave signals. Further progress needs to be made in modeling the core-collapse process that leads to low-mass neutron stars, particularly in making robust predictions for the mass loss from the progenitor core.

  18. DESIGN CHARACTERISTICS OF THE IDAHO NATIONAL LABORATORY HIGH-TEMPERATURE GAS-COOLED TEST REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterbentz, James; Bayless, Paul; Strydom, Gerhard

    2016-11-01

    Uncertainty and sensitivity analysis is an indispensable element of any substantial attempt in reactor simulation validation. The quantification of uncertainties in nuclear engineering has grown more important and the IAEA Coordinated Research Program (CRP) on High-Temperature Gas Cooled Reactor (HTGR) initiated in 2012 aims to investigate the various uncertainty quantification methodologies for this type of reactors. The first phase of the CRP is dedicated to the estimation of cell and lattice model uncertainties due to the neutron cross sections co-variances. Phase II is oriented towards the investigation of propagated uncertainties from the lattice to the coupled neutronics/thermal hydraulics core calculations.more » Nominal results for the prismatic single block (Ex.I-2a) and super cell models (Ex.I-2c) have been obtained using the SCALE 6.1.3 two-dimensional lattice code NEWT coupled to the TRITON sequence for cross section generation. In this work, the TRITON/NEWT-flux-weighted cross sections obtained for Ex.I-2a and various models of Ex.I-2c is utilized to perform a sensitivity analysis of the MHTGR-350 core power densities and eigenvalues. The core solutions are obtained with the INL coupled code PHISICS/RELAP5-3D, utilizing a fixed-temperature feedback for Ex. II-1a.. It is observed that the core power density does not vary significantly in shape, but the magnitude of these variations increases as the moderator-to-fuel ratio increases in the super cell lattice models.« less

  19. Neutron star matter equation of state: current status and challenges

    NASA Astrophysics Data System (ADS)

    Ohnishi, Akira

    2014-09-01

    Neutron star matter has a variety of constituents and structures depending on the density; neutron-rich nuclei surounded by electrons and drip neutrons in the crust, pasta nuclei at the bottom of inner crust, and uniform isospin-asymmetric nuclear matter in a superfluid state in the outer core. In the inner core, the neutron Fermi energy becomes so large that exotic constituents such as hyperons, mesons and quarks may emerge. Radioactive beam and hypernuclear experiments provide information on the symmetry energy and superfluidity in the crust and outer core and on the hyperon potentials in the inner core, respectively. Cold atom experiments are also helpful to understand pure neutron matter, which may be simulated by the unitary gas. An equation of state (EOS) constructed based on these laboratory experiments has to be verified by the astronomical observations such as the mass, radius, and oscillations of neutron stars. One of the key but missing ingredients is the three-baryon interactions such as the hyperon-hyperon-nucleon (YYN) interaction. YYN interaction is important in order to explain the recently discovered massive neutron stars consistently with laboratory experiments. We have recently found that the ΛΛ interaction extracted from the ΛΛ correlation at RHIC is somewhat stronger than that from double Λ hypernuclei. Since these two interactions corresponds to the vacuum and in-medium ΛΛ interactions, respectively, the difference may tell us a possible way to access the YYN interaction based on experimental data. In the presentation, after a review on the current status of neutron star matter EOS studies, we discuss the necessary tasks to pin down the EOS. We also present our recent study of ΛΛ interaction from correlation data at RHIC.

  20. Direct heating of a laser-imploded core using ultraintense laser LFEX

    NASA Astrophysics Data System (ADS)

    Kitagawa, Y.; Mori, Y.; Ishii, K.; Hanayama, R.; Nishimura, Y.; Okihara, S.; Nakayama, S.; Sekine, T.; Takagi, M.; Watari, T.; Satoh, N.; Kawashima, T.; Komeda, O.; Hioki, T.; Motohiro, T.; Azuma, H.; Sunahara, A.; Sentoku, Y.; Arikawa, Y.; Abe, Y.; Miura, E.; Ozaki, T.

    2017-07-01

    A CD shell was preimploded by two counter-propagating green beams from the GEKKO laser system GXII (based at the Institute of Laser Engineering, Osaka University), forming a dense core. The core was predominantly heated by energetic ions driven by the laser for fast-ignition-fusion experiment, an extremely energetic ultrashort pulse laser, that is illuminated perpendicularly to the GXII axis. Consequently, we observed the D(d, n)3 He-reacted neutrons (DD beam-fusion neutrons) at a yield of 5× {{10}8} n/4π sr. The beam-fusion neutrons verified that the ions directly collided with the core plasma. Whereas the hot electrons heated the whole core volume, the energetic ions deposited their energies locally in the core. As evidenced in the spectrum, the process simultaneously excited thermal neutrons with a yield of 6× {{10}7} n/4π sr, raising the local core temperature from 0.8 to 1.8 keV. The shell-implosion dynamics (including the beam fusion and thermal fusion initiated by fast deuterons and carbon ions) can be explained by the one-dimensional hydrocode STAR 1D. Meanwhile, the core heating due to resistive processes driven by hot electrons, and also the generation of fast ions were well-predicted by the two-dimensional collisional particle-in-cell code. Together with hot electrons, the ion contribution to fast ignition is indispensable for realizing high-gain fusion. By virtue of its core heating and ignition, the proposed scheme can potentially achieve high-gain fusion.

  1. Qualification and characterization of electronics of the fast neutron Hodoscope detectors using neutrons from CABRI core

    NASA Astrophysics Data System (ADS)

    Mirotta, S.; Guillot, J.; Chevalier, V.; Biard, B.

    2018-01-01

    The study of Reactivity Initiated Accidents (RIA) is important to determine up to which limits nuclear fuels can withstand such accidents without clad failure. The CABRI International Program (CIP), conducted by IRSN under an OECD/NEA agreement, has been launched to perform representative RIA Integral Effect Tests (IET) on real irradiated fuel rods in prototypical Pressurized Water Reactors (PWR) conditions. For this purpose, the CABRI experimental pulse reactor, operated by CEA in Cadarache, France, has been strongly renovated, and equipped with a pressurized water loop. The behavior of the test rod, located in that loop in the center of the driver core, is followed in real time during the power transients thanks to the hodoscope, a unique online fuel motion monitoring system, and one of the major distinctive features of CABRI. The hodoscope measures the fast neutrons emitted by the tested rod during the power pulse with a complete set of 153 Fission Chambers and 153 Proton Recoil Counters. During the CABRI facility renovation, the electronic chain of these detectors has been upgraded. In this paper, the performance of the new system is presented describing gain calibration methodology in order to get maximal Signal/Noise ratio for amplification modules, threshold tuning methodology for the discrimination modules (old and new ones), and linear detectors response limit versus different reactor powers for the whole electronic chain.

  2. Crystallization of dense neutron matter

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Chitre, S. M.

    1974-01-01

    The equation of state for cold neutron matter at high density is studied in the t-matrix formulation, and it is shown that energetically it is convenient to have neutrons in a crystalline configuration rather than in a liquid state for values of the density exceeding 1600 Tg/cu cm. The study of the mechanical properties indicates that the system is stable against shearing stresses. A solid core in the deep interior of heavy neutron stars appears to offer the most plausible explanation of speed-ups observed in the Vela pulsar.

  3. NEUTRONIC REACTOR STRUCTURE

    DOEpatents

    Weinberg, A.M.; Vernon, H.C.

    1961-05-30

    A neutronic reactor is described. It has a core consisting of natural uranium and heavy water and having a K-factor greater than unity which is surrounded by a reflector consisting of natural uranium and ordinary water having a Kfactor less than unity.

  4. a Dosimetry Assessment for the Core Restraint of AN Advanced Gas Cooled Reactor

    NASA Astrophysics Data System (ADS)

    Thornton, D. A.; Allen, D. A.; Tyrrell, R. J.; Meese, T. C.; Huggon, A. P.; Whiley, G. S.; Mossop, J. R.

    2009-08-01

    This paper describes calculations of neutron damage rates within the core restraint structures of Advanced Gas Cooled Reactors (AGRs). Using advanced features of the Monte Carlo radiation transport code MCBEND, and neutron source data from core follow calculations performed with the reactor physics code PANTHER, a detailed model of the reactor cores of two of British Energy's AGR power plants has been developed for this purpose. Because there are no relevant neutron fluence measurements directly supporting this assessment, results of benchmark comparisons and successful validation of MCBEND for Magnox reactors have been used to estimate systematic and random uncertainties on the predictions. In particular, it has been necessary to address the known under-prediction of lower energy fast neutron responses associated with the penetration of large thicknesses of graphite.

  5. On the Origin of Hyperfast Neutron Stars

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Gualandris, A.; Portegies Zwart, S.

    2008-05-01

    We propose an explanation for the origin of hyperfast neutron stars (e.g. PSR B1508+55, PSR B2224+65, RX J0822 4300) based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star (or its helium core) which attained its peculiar velocity (similar to that of the neutron star) in the course of a strong three- or four-body dynamical encounter in the core of a young massive star cluster. This hypothesis implies that the dense cores of star clusters (located either in the Galactic disk or near the Galactic centre) could also produce the so-called hypervelocity stars ordinary stars moving with a speed of ~ 1 000 km s-1.

  6. Cooling of neutron stars

    NASA Technical Reports Server (NTRS)

    Pethick, C. J.

    1992-01-01

    It is at present impossible to predict the interior constitution of neutron stars based on theory and results from laboratory studies. It has been proposed that it is possible to obtain information on neutron star interiors by studying thermal radiation from their surfaces, because neutrino emission rates, and hence the temperature of the central part of a neutron star, depend on the properties of dense matter. The theory predicts that neutron stars cool relatively slowly if their cores are made up of nucleons, and cool faster if the matter is in an exotic state, such as a pion condensate, a kaon condensate, or quark matter. This view has recently been questioned by the discovery of a number of other processes that could lead to copious neutrino emission and rapid cooling.

  7. fissioncore: A desktop-computer simulation of a fission-bomb core

    NASA Astrophysics Data System (ADS)

    Cameron Reed, B.; Rohe, Klaus

    2014-10-01

    A computer program, fissioncore, has been developed to deterministically simulate the growth of the number of neutrons within an exploding fission-bomb core. The program allows users to explore the dependence of criticality conditions on parameters such as nuclear cross-sections, core radius, number of secondary neutrons liberated per fission, and the distance between nuclei. Simulations clearly illustrate the existence of a critical radius given a particular set of parameter values, as well as how the exponential growth of the neutron population (the condition that characterizes criticality) depends on these parameters. No understanding of neutron diffusion theory is necessary to appreciate the logic of the program or the results. The code is freely available in FORTRAN, C, and Java and is configured so that modifications to accommodate more refined physical conditions are possible.

  8. Technology Maturity for the Habitable-zone Exoplanet Imaging Mission (HabEx) Concept

    NASA Astrophysics Data System (ADS)

    Morgan, Rhonda; Warfield, Keith R.; Stahl, H. Philip; Mennesson, Bertrand; Nikzad, Shouleh; nissen, joel; Balasubramanian, Kunjithapatham; Krist, John; Mawet, Dimitri; Stapelfeldt, Karl; warwick, Steve

    2018-01-01

    HabEx Architecture A is a 4m unobscured telescope optimized for direct imaging and spectroscopy of potentially habitable exoplanets, and also enables a wide range of general astrophysics science. The exoplanet detection and characterization drives the enabling core technologies. A hybrid starlight suppression approach of a starshade and coronagraph diversifies technology maturation risk. In this poster we assess these exoplanet-driven technologies, including elements of coronagraphs, starshades, mirrors, jitter mitigation, wavefront control, and detectors. By utilizing high technology readiness solutions where feasible, and identifying required technology development that can begin early, HabEx will be well positioned for assessment by the community in 2020 Astrophysics Decadal Survey.

  9. Financing long-term care: ex ante, ex post or both?

    PubMed

    Costa-Font, Joan; Courbage, Christophe; Swartz, Katherine

    2015-03-01

    This paper attempts to examine the heterogeneity in the public financing of long-term care (LTC) and the wide-ranging instruments in place to finance LTC services. We distinguish and classify the institutional responses to the need for LTC financing as ex ante (occurring prior to when the need arises, such as insurance) and ex post (occurring after the need arises, such as public sector and family financing). Then, we examine country-specific data to ascertain whether the two types of financing are complements or substitutes. Finally, we examine exploratory cross-national data on public expenditure determinants, specifically economic, demographic and social determinants. We show that although both ex ante and ex post mechanisms exist in all countries with advanced industrial economies and despite the fact that instruments are different across countries, ex ante and ex post instruments are largely substitutes for each other. Expenditure estimates to date indicate that the public financing of LTC is highly sensitive to a country's income, ageing of the population and the availability of informal caregiving. Copyright © 2015 John Wiley & Sons, Ltd.

  10. NEUTRONIC REACTOR CONTROL ELEMENT

    DOEpatents

    Newson, H.W.

    1960-09-13

    A novel composite neutronic reactor control element is offered. The element comprises a multiplicity of sections arranged in end-to-end relationship, each of the sections having a markedly different neutron-reactive characteristic. For example, a three-section control element could contain absorber, moderator, and fuel sections. By moving such an element longitudinally through a reactor core, reactivity is decreased by the absorber, increased slightly by the moderator, or increased substantially by the fuel. Thus, control over a wide reactivity range is provided.

  11. Neutron stars velocities and magnetic fields

    NASA Astrophysics Data System (ADS)

    Paret, Daryel Manreza; Martinez, A. Perez; Ayala, Alejandro.; Piccinelli, G.; Sanchez, A.

    2018-01-01

    We study a model that explain neutron stars velocities due to the anisotropic emission of neutrinos. Strong magnetic fields present in neutron stars are the source of the anisotropy in the system. To compute the velocity of the neutron star we model its core as composed by strange quark matter and analice the properties of a magnetized quark gas at finite temperature and density. Specifically we have obtained the electron polarization and the specific heat of magnetized fermions as a functions of the temperature, chemical potential and magnetic field which allow us to study the velocity of the neutron star as a function of these parameters.

  12. The neutrino opacity of neutron rich matter

    NASA Astrophysics Data System (ADS)

    Alcain, P. N.; Dorso, C. O.

    2017-05-01

    The study of neutron rich matter, present in neutron star, proto-neutron stars and core-collapse supernovae, can lead to further understanding of the behavior of nuclear matter in highly asymmetric nuclei. Heterogeneous structures are expected to exist in these systems, often referred to as nuclear pasta. We have carried out a systematic study of neutrino opacity for different thermodynamic conditions in order to assess the impact that the structure has on it. We studied the dynamics of the neutrino opacity of the heterogeneous matter at different thermodynamic conditions with semiclassical molecular dynamics model already used to study nuclear multifragmentation. For different densities, proton fractions and temperature, we calculate the very long range opacity and the cluster distribution. The neutrino opacity is of crucial importance for the evolution of the core-collapse supernovae and the neutrino scattering.

  13. Probing astrophysically important states in the 26Mg nucleus to study neutron sources for the s process

    NASA Astrophysics Data System (ADS)

    Talwar, R.; Adachi, T.; Berg, G. P. A.; Bin, L.; Bisterzo, S.; Couder, M.; deBoer, R. J.; Fang, X.; Fujita, H.; Fujita, Y.; Görres, J.; Hatanaka, K.; Itoh, T.; Kadoya, T.; Long, A.; Miki, K.; Patel, D.; Pignatari, M.; Shimbara, Y.; Tamii, A.; Wiescher, M.; Yamamoto, T.; Yosoi, M.

    2016-05-01

    Background: The 22Ne(α ,n )25Mg reaction is the dominant neutron source for the slow neutron capture process (s process) in massive stars, and contributes, together with 13C (α ,n )16O, to the production of neutrons for the s process in asymptotic giant branch (AGB) stars. However, the reaction is endothermic and competes directly with 22Ne(α ,γ )26Mg radiative capture. The uncertainties for both reactions are large owing to the uncertainty in the level structure of 26Mg near the α and neutron separation energies. These uncertainties affect the s -process nucleosynthesis calculations in theoretical stellar models. Purpose: Indirect studies in the past have been successful in determining the energies and the γ -ray and neutron widths of the 26Mg states in the energy region of interest. But, the high Coulomb barrier hinders a direct measurement of the resonance strengths, which are determined by the α widths for these states. The goal of the present experiments is to identify the critical resonance states and to precisely measure the α widths by α -transfer techniques. Methods: The α -inelastic scattering and α -transfer measurements were performed on a solid 26Mg target and a 22Ne gas target, respectively, using the Grand Raiden Spectrometer at the Research Center for Nuclear Physics in Osaka, Japan. The (α ,α') measurements were performed at 0 .45∘ , 4 .1∘ , 8 .6∘ , and 11 .1∘ and the (6Li,d ) measurements at 0∘ and 10∘. The scattered α particles and deuterons were detected by the focal plane detection system consisting of multiwire drift chambers and plastic scintillators. The focal plane energy calibration allowed the study of 26Mg levels from Ex = 7.69-12.06 MeV in the (α ,α') measurement and Ex = 7.36-11.32 MeV in the (6Li,d ) measurement. Results: Six levels (Ex = 10717, 10822, 10951, 11085, 11167, and 11317 keV) were observed above the α threshold in the region of interest (10.61-11.32 MeV). The α widths were calculated for these

  14. Crustal Cooling in the Neutron Star Low-Mass X-Ray Binary KS 1731-260

    NASA Astrophysics Data System (ADS)

    Merritt, Rachael L.

    Neutron stars in binary systems can undergo periods of accretion (outburst), where in- falling material heats the crust of the star out of thermal equilibrium with the core. When accretion stops (quiescence), we can directly observe the thermal relaxation of the crust. Crustal cooling of accretion-heated neutron stars provides insight into the stellar interior of neutron stars. The neutron star X-ray transient, KS 1731-260, was in outburst for 12.5 years before returning to quiescence in 2001. Here, we present a 150 ks Chandra observation of KS 1731-260 taken in August 2015, about 14.5 years into quiescence. We find that the neutron star surface temperature is consistent with the previous observation, suggesting the crust has reached thermal equilibrium with the core. Using a theoretical thermal evolution code, we fit the observed cooling curves and constrain the core temperature, composition, and the required level of extra shallow heating.

  15. From Supernovae to Neutron Stars

    NASA Astrophysics Data System (ADS)

    Suwa, Yudai

    A core-collapse supernova is a generation site of a neutron star as well as one of the largest explosions in the universe. This article gives a brief overview of the studies on supernova explosion mechanism. Basic picture of the explosion mechanism, the method to solve neutrino transfer equation, the impact of the nuclear equation of state on the explosion, and long-term simulation of neutron star evolution from the onset of the explosion are presented.

  16. Many-particle theory of nuclear systems with application to neutron star matter

    NASA Technical Reports Server (NTRS)

    Chakkalakal, D. A.; Yang, C. H.

    1974-01-01

    The energy-density relation was calculated for pure neutron matter in the density range relevant for neutron stars, using four different hard-core potentials. Calculations are also presented of the properties of the superfluid state of the neutron component, along with the superconducting state of the proton component and the effects of polarization in neutron star matter.

  17. METHOD AND APPARATUS FOR CONTROLLING NEUTRON DENSITY

    DOEpatents

    Wigner, E.P.; Young, G.J.; Weinberg, A.M.

    1961-06-27

    A neutronic reactor comprising a moderator containing uniformly sized and spaced channels and uniformly dimensioned fuel elements is patented. The fuel elements have a fissionable core and an aluminum jacket. The cores and the jackets of the fuel elements in the central channels of the reactor are respectively thinner and thicker than the cores and jackets of the fuel elements in the remainder of the reactor, producing a flattened flux.

  18. Excitations of one-valence-proton, one-valence-neutron nucleus {sup 210}Bi from cold-neutron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieplicka-Oryńczak, N.; Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków; Fornal, B.

    2015-10-15

    The low-spin structure of one-proton, one-neutron {sup 210}Bi nucleus was investigated in cold-neutron capture reaction on {sup 209}Bi. The γ-coincidence measurements were performed with use of EXILL array consisted of 16 HPGe detectors. The experimental results were compared to shell-model calculations involving valence particles excitations. The {sup 210}Bi nucleus offers the potential to test the effective proton-neutron interactions because most of the states should arise from the proton-neutron excitations. Additionally, it was discovered that a few states should come from the couplings of valence particles to the 3{sup −} octupole vibration in {sup 208}Pb which provides also the possibility ofmore » testing the calculations involving the core excitations.« less

  19. TREAT Transient Analysis Benchmarking for the HEU Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontogeorgakos, D. C.; Connaway, H. M.; Wright, A. E.

    2014-05-01

    This work was performed to support the feasibility study on the potential conversion of the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory from the use of high enriched uranium (HEU) fuel to the use of low enriched uranium (LEU) fuel. The analyses were performed by the GTRI Reactor Conversion staff at the Argonne National Laboratory (ANL). The objective of this study was to benchmark the transient calculations against temperature-limited transients performed in the final operating HEU TREAT core configuration. The MCNP code was used to evaluate steady-state neutronics behavior, and the point kinetics code TREKIN was used tomore » determine core power and energy during transients. The first part of the benchmarking process was to calculate with MCNP all the neutronic parameters required by TREKIN to simulate the transients: the transient rod-bank worth, the prompt neutron generation lifetime, the temperature reactivity feedback as a function of total core energy, and the core-average temperature and peak temperature as a functions of total core energy. The results of these calculations were compared against measurements or against reported values as documented in the available TREAT reports. The heating of the fuel was simulated as an adiabatic process. The reported values were extracted from ANL reports, intra-laboratory memos and experiment logsheets and in some cases it was not clear if the values were based on measurements, on calculations or a combination of both. Therefore, it was decided to use the term “reported” values when referring to such data. The methods and results from the HEU core transient analyses will be used for the potential LEU core configurations to predict the converted (LEU) core’s performance.« less

  20. Peeling Off Neutron Skins from Neutron-Rich Nuclei: Constraints on the Symmetry Energy from Neutron-Removal Cross Sections

    NASA Astrophysics Data System (ADS)

    Aumann, T.; Bertulani, C. A.; Schindler, F.; Typel, S.

    2017-12-01

    An experimentally constrained equation of state of neutron-rich matter is fundamental for the physics of nuclei and the astrophysics of neutron stars, mergers, core-collapse supernova explosions, and the synthesis of heavy elements. To this end, we investigate the potential of constraining the density dependence of the symmetry energy close to saturation density through measurements of neutron-removal cross sections in high-energy nuclear collisions of 0.4 to 1 GeV /nucleon . We show that the sensitivity of the total neutron-removal cross section is high enough so that the required accuracy can be reached experimentally with the recent developments of new detection techniques. We quantify two crucial points to minimize the model dependence of the approach and to reach the required accuracy: the contribution to the cross section from inelastic scattering has to be measured separately in order to allow a direct comparison of experimental cross sections to theoretical cross sections based on density functional theory and eikonal theory. The accuracy of the reaction model should be investigated and quantified by the energy and target dependence of various nucleon-removal cross sections. Our calculations explore the dependence of neutron-removal cross sections on the neutron skin of medium-heavy neutron-rich nuclei, and we demonstrate that the slope parameter L of the symmetry energy could be constrained down to ±10 MeV by such a measurement, with a 2% accuracy of the measured and calculated cross sections.

  1. Development of a three-dimensional core dynamics analysis program for commercial boiling water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bessho, Yasunori; Yokomizo, Osamu; Yoshimoto, Yuichiro

    1997-03-01

    Development and qualification results are described for a three-dimensional, time-domain core dynamics analysis program for commercial boiling water reactors (BWRs). The program allows analysis of the reactor core with a detailed mesh division, which eliminates calculational ambiguity in the nuclear-thermal-hydraulic stability analysis caused by reactor core regional division. During development, emphasis was placed on high calculational speed and large memory size as attained by the latest supercomputer technology. The program consists of six major modules, namely a core neutronics module, a fuel heat conduction/transfer module, a fuel channel thermal-hydraulic module, an upper plenum/separator module, a feedwater/recirculation flow module, and amore » control system module. Its core neutronics module is based on the modified one-group neutron kinetics equation with the prompt jump approximation and with six delayed neutron precursor groups. The module is used to analyze one fuel bundle of the reactor core with one mesh (region). The fuel heat conduction/transfer module solves the one-dimensional heat conduction equation in the radial direction with ten nodes in the fuel pin. The fuel channel thermal-hydraulic module is based on separated three-equation, two-phase flow equations with the drift flux correlation, and it analyzes one fuel bundle of the reactor core with one channel to evaluate flow redistribution between channels precisely. Thermal margin is evaluated by using the GEXL correlation, for example, in the module.« less

  2. On the possible use of the MASURCA reactor as a flexible, high-intensity, fast neutron beam facility

    NASA Astrophysics Data System (ADS)

    Dioni, Luca; Jacqmin, Robert; Sumini, Marco; Stout, Brian

    2017-09-01

    In recent work [1, 2], we have shown that the MASURCA research reactor could be used to deliver a fairly-intense continuous fast neutron beam to an experimental room located next to the reactor core. As a consequence of the MASURCA favorable characteristics and diverse material inventories, the neutron beam intensity and spectrum can be further tailored to meet the users' needs, which could be of interest for several applications. Monte Carlo simulations have been performed to characterize in detail the extracted neutron (and photon) beam entering the experimental room. These numerical simulations were done for two different bare cores: A uranium metallic core (˜30% 235U enriched) and a plutonium oxide core (˜25% Pu fraction, ˜78% 239Pu). The results show that the distinctive resonance energy structures of the two core leakage spectra are preserved at the channel exit. As the experimental room is large enough to house a dedicated set of neutron spectrometry instruments, we have investigated several candidate neutron spectrum measurement techniques, which could be implemented to guarantee well-defined, repeatable beam conditions to users. Our investigation also includes considerations regarding the gamma rays in the beams.

  3. Scientific Design of the New Neutron Radiography Facility (SANRAD) at SAFARI-1 for South Africa

    NASA Astrophysics Data System (ADS)

    de Beer, F. C.; Gruenauer, F.; Radebe, J. M.; Modise, T.; Schillinger, B.

    The final scientific design for an upgraded neutron radiography/tomography facility at beam port no.2 of the SAFARI-1 nuclear research reactor has been performed through expert advice from Physics Consulting, FRMII in Germany and IPEN, Brazil. A need to upgrade the facility became apparent due to the identification of various deficiencies of the current SANRAD facility during an IAEA-sponsored expert mission of international scientists to Necsa, South Africa. A lack of adequate shielding that results in high neutron background on the beam port floor, a mismatch in the collimator aperture to the core that results in a high gradient in neutron flux on the imaging plane and due to a relative low L/D the quality of the radiographs are poor, are a number of deficiencies to name a few.The new design, based on results of Monte Carlo (MCNP-X) simulations of neutron- and gamma transport from the reactor core and through the new facility, is being outlined. The scientific design philosophy, neutron optics and imaging capabilities that include the utilization of fission neutrons, thermal neutrons, and gamma-rays emerging from the core of SAFARI-1 are discussed.

  4. The AVRDC - The World Vegetable Center mungbean (Vigna radiata) core and mini core collections.

    PubMed

    Schafleitner, Roland; Nair, Ramakrishnan Madhavan; Rathore, Abhishek; Wang, Yen-wei; Lin, Chen-yu; Chu, Shu-hui; Lin, Pin-yun; Chang, Jian-Cheng; Ebert, Andreas W

    2015-04-29

    Large ex situ germplasm collections generally harbor a wide range of crop diversity. AVRDC--The World Vegetable Center is holding in trust the world's second largest mungbean (Vigna radiata) germplasm collection with more than 6,700 accessions. Screening large collections for traits of interest is laborious and expensive. To enhance the access of breeders to the diversity of the crop, mungbean core and mini core collections have been established. The core collection of 1,481 entries has been built by random selection of 20% of the accessions after geographical stratification and subsequent cluster analysis of eight phenotypic descriptors in the whole collection. Summary statistics, especially the low differences of means, equal variance of the traits in both the whole and core collection and the visual inspection of quantile-quantile plots comparing the variation of phenotypic traits present in both collections indicated that the core collection well represented the pattern of diversity of the whole collection. The core collection was genotyped with 20 simple sequence repeat markers and a mini core set of 289 accessions was selected, which depicted the allele and genotype diversity of the core collection. The mungbean core and mini core collections plus their phenotypic and genotypic data are available for distribution to breeders. It is expected that these collections will enhance the access to biodiverse mungbean germplasm for breeding.

  5. Gravitational Redshift of Deformed Neutron Stars

    NASA Astrophysics Data System (ADS)

    Romero, Alexis; Zubairi, Omair; Weber, Fridolin

    2015-04-01

    Non-rotating neutron stars are generally treated in theoretical studies as perfect spheres. Such a treatment, however, may not be correct if strong magnetic fields are present and/or the pressure of the matter in the cores of neutron stars is non-isotropic, leading to neutron stars which are deformed. In this work, we investigate the impact of deformation on the gravitational redshift of neutron stars in the framework of general relativity. Using a parameterized metric to model non-spherical mass distributions, we derive an expression for the gravitational redshift in terms of the mass, radius, and deformity of a neutron star. Numerical solutions for the redshifts of sequences of deformed neutron stars are presented and observational implications are pointed out. This research is funded by the NIH through the Maximizing Access to Research Careers (MARC), under Grant Number: 5T34GM008303-25 and through the National Science Foundation under grant PHY-1411708.

  6. Neutron stars: A cosmic hadron physics laboratory

    NASA Technical Reports Server (NTRS)

    Pines, David

    1989-01-01

    A progress report is given on neutron stars as a cosmic hadron physics laboratory. Particular attention is paid to the crustal neutron superfluid, and to the information concerning its properties which may be deduced from observations of pulsar glitches and postglitch behavior. Current observational evidence concerning the softness or stiffness of the high density neutron matter equation of state is reviewed briefly, and the (revolutionary) implications of a confirmation of the existence of a 0.5 ms pulsar at the core of (Supernova) SN1987A are discussed.

  7. Dynamical onset of superconductivity and retention of magnetic fields in cooling neutron stars

    NASA Astrophysics Data System (ADS)

    Ho, Wynn C. G.; Andersson, Nils; Graber, Vanessa

    2017-12-01

    A superconductor of paired protons is thought to form in the core of neutron stars soon after their birth. Minimum energy conditions suggest magnetic flux is expelled from the superconducting region due to the Meissner effect, such that the neutron star core is largely devoid of magnetic fields for some nuclear equation of state and proton pairing models. We show via neutron star cooling simulations that the superconducting region expands faster than flux is expected to be expelled because cooling timescales are much shorter than timescales of magnetic field diffusion. Thus magnetic fields remain in the bulk of the neutron star core for at least 106-107yr . We estimate the size of flux free regions at 107yr to be ≲100 m for a magnetic field of 1011G and possibly smaller for stronger field strengths. For proton pairing models that are narrow, magnetic flux may be completely expelled from a thin shell of approximately the above size after 105yr . This shell may insulate lower conductivity outer layers, where magnetic fields can diffuse and decay faster, from fields maintained in the highly conducting deep core.

  8. Common Pitfalls in Exposure and Response Prevention (EX/RP) for OCD

    PubMed Central

    Gillihan, Seth J.; Williams, Monnica T.; Malcoun, Emily; Yadin, Elna; Foa, Edna B.

    2012-01-01

    Obsessive-compulsive disorder (OCD) is a highly debilitating disorder. Fortunately there are treatments that help the majority of OCD sufferers. The behavioral treatment with the most empirical support for its efficacy is exposure and response prevention (EX/RP). Over the years in our supervision meetings and in our clinical practice we have noted a number of relatively common therapist pitfalls that decrease the effectiveness of EX/RP. These pitfalls include not encouraging patients to approach the most distressing situations, doing imaginal exposure when in vivo is called for (and vice versa), encouraging distraction during exposure, providing reassurance, failing to address the core fear, ineffective handling of mental compulsions, and difficulty working with close others in the patient’s life. In the current article we describe these common pitfalls and how to avoid them. PMID:22924159

  9. In-situ soil carbon analysis using inelastic neutron scattering

    USDA-ARS?s Scientific Manuscript database

    In situ soil carbon analysis using inelastic neutron scattering (INS) is based on the emission of 4.43 MeV gamma rays from carbon nuclei excited by fast neutrons. This in-situ method has excellent potential for easily measuring soil carbon since it does not require soil core sampling and processing ...

  10. Stellar Structure Models of Deformed Neutron Stars

    NASA Astrophysics Data System (ADS)

    Zubairi, Omair; Wigley, David; Weber, Fridolin

    Traditional stellar structure models of non-rotating neutron stars work under the assumption that these stars are perfect spheres. This assumption of perfect spherical symmetry is not correct if the matter inside neutron stars is described by an anisotropic model for the equation of state. Certain classes of neutron stars such as Magnetars and neutron stars which contain color-superconducting quark matter cores are expected to be deformed making them oblong spheroids. In this work, we investigate the stellar structure of these deformed neutron stars by deriving stellar structure equations in the framework of general relativity. Using a non-isotropic equation of state model, we solve these structure equations numerically in two dimensions. We calculate stellar properties such as masses and radii along with pressure profiles and investigate changes from standard spherical models.

  11. Results of a Neutronic Simulation of HTR-Proteus Core 4.2 using PEBBED and other INL Reactor Physics Tools: FY-09 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hans D. Gougar

    The Idaho National Laboratory’s deterministic neutronics analysis codes and methods were applied to the computation of the core multiplication factor of the HTR-Proteus pebble bed reactor critical facility. A combination of unit cell calculations (COMBINE-PEBDAN), 1-D discrete ordinates transport (SCAMP), and nodal diffusion calculations (PEBBED) were employed to yield keff and flux profiles. Preliminary results indicate that these tools, as currently configured and used, do not yield satisfactory estimates of keff. If control rods are not modeled, these methods can deliver much better agreement with experimental core eigenvalues which suggests that development efforts should focus on modeling control rod andmore » other absorber regions. Under some assumptions and in 1D subcore analyses, diffusion theory agrees well with transport. This suggests that developments in specific areas can produce a viable core simulation approach. Some corrections have been identified and can be further developed, specifically: treatment of the upper void region, treatment of inter-pebble streaming, and explicit (multiscale) transport modeling of TRISO fuel particles as a first step in cross section generation. Until corrections are made that yield better agreement with experiment, conclusions from core design and burnup analyses should be regarded as qualitative and not benchmark quality.« less

  12. Preliminary engineering design of sodium-cooled CANDLE core

    NASA Astrophysics Data System (ADS)

    Takaki, Naoyuki; Namekawa, Azuma; Yoda, Tomoyuki; Mizutani, Akihiko; Sekimoto, Hiroshi

    2012-06-01

    The CANDLE burning process is characterized by the autonomous shifting of burning region with constant reactivity and constant spacial power distribution. Evaluations of such critical burning process by using widely used neutron diffusion and burning codes under some realistic engineering constraints are valuable to confirm the technical feasibility of the CANDLE concept and to put the idea into concrete core design. In the first part of this paper, it is discussed that whether the sustainable and stable CANDLE burning process can be reproduced even by using conventional core analysis tools such as SLAROM and CITATION-FBR. As a result, it is certainly possible to demonstrate it if the proper core configuration and initial fuel composition required as CANDLE core are applied to the analysis. In the latter part, an example of a concrete image of sodium cooled, metal fuel, 2000MWt rating CANDLE core has been presented by assuming an emerging inevitable technology of recladding. The core satisfies engineering design criteria including cladding temperature, pressure drop, linear heat rate, and cumulative damage fraction (CDF) of cladding, fast neutron fluence and sodium void reactivity which are defined in the Japanese FBR design project. It can be concluded that it is feasible to design CADLE core by using conventional codes while satisfying some realistic engineering design constraints assuming that recladding at certain time interval is technically feasible.

  13. Long-term calorie restriction, but not endurance exercise, lowers core body temperature in humans

    PubMed Central

    Soare, Andreea; Cangemi, Roberto; Omodei, Daniela; Holloszy, John O.; Fontana, Luigi

    2011-01-01

    Reduction of body temperature has been proposed to contribute to the increased lifespan in calorie restricted animals and mice overexpressing the uncoupling protein-2 in hypocretin neurons. However, nothing is known regarding the long-term effects of calorie restriction (CR) with adequate nutrition on body temperature in humans. In this study, 24-hour core body temperature was measured every minute by using ingested telemetric capsules in 24 men and women (mean age 53.7±9.4 yrs) consuming a CR diet for an average of 6 years, 24 age- and sex-matched sedentary (WD) and 24 body fat-matched exercise-trained (EX) volunteers, who were eating Western diets. The CR and EX groups were significantly leaner than the WD group. Energy intake was lower in the CR group (1769±348 kcal/d) than in the WD (2302±668 kcal/d) and EX (2798±760 kcal/d) groups (P<0.0001). Mean 24-hour, day-time and night-time core body temperatures were all significantly lower in the CR group than in the WD and EX groups (P≤0.01). Long-term CR with adequate nutrition in lean and weight-stable healthy humans is associated with a sustained reduction in core body temperature, similar to that found in CR rodents and monkeys. This adaptation is likely due to CR itself, rather than to leanness, and may be involved in slowing the rate of aging. PMID:21483032

  14. A Burst Mode, Ultrahigh Temperature UF4 Vapor Core Reactor Rankine Cycle Space Power System Concept

    NASA Technical Reports Server (NTRS)

    Dugan, E. T.; Kahook, S. D.; Diaz, N. J.

    1996-01-01

    Static and dynamic neutronic analyses have been performed on an innovative burst mode (100's of MW output for a few thousand seconds) Ulvahigh Temperature Vapor Core Reactor (UTVR) space nuclear power system. The NVTR employs multiple, neutronically-coupled fissioning cores and operates on a direct, closed Rankine cycle using a disk Magnetohydrodynamic (MHD) generater for energy conversion. The UTVR includes two types of fissioning core regions: (1) the central Ultrahigh Temperature Vapor Core (UTVC) which contains a vapor mixture of highly enriched UF4 fuel and a metal fluoride working fluid and (2) the UF4 boiler column cores located in the BeO moderator/reflector region. The gaseous nature of the fuel the fact that the fuel is circulating, the multiple coupled fissioning cores, and the use of a two phase fissioning fuel lead to unique static and dynamic neutronic characteristics. Static neutronic analysis was conducted using two-dimensional S sub n, transport theory calculations and three-dimensional Monte Carlo transport theory calculations. Circulating-fuel, coupled-core point reactor kinetics equations were used for analyzing the dynamic behavior of the UTVR. In addition to including reactivity feedback phenomena associated with the individual fissioning cores, the effects of core-to-core neutronic and mass flow coupling between the UTVC and the surrounding boiler cores were also included in the dynamic model The dynamic analysis of the UTVR reveals the existence of some very effectlve inherent reactivity feedback effects that are capable of quickly stabilizing this system, within a few seconds, even when large positive reactivity insertions are imposed. If the UTVC vapor fuel density feedback is suppressed, the UTVR is still inherently stable because of the boiler core liquid-fuel volume feedback; in contrast, suppression of the vapor fuel density feedback in 'conventional" gas core cavity reactors causes them to become inherently unstable. Due to the

  15. Benchmarking of Neutron Flux Parameters at the USGS TRIGA Reactor in Lakewood, Colorado

    NASA Astrophysics Data System (ADS)

    Alzaabi, Osama E.

    The USGS TRIGA Reactor (GSTR) located at the Denver Federal Center in Lakewood Colorado provides opportunities to Colorado School of Mines students to do experimental research in the field of neutron activation analysis. The scope of this thesis is to obtain precise knowledge of neutron flux parameters at the GSTR. The Colorado School of Mines Nuclear Physics group intends to develop several research projects at the GSTR, which requires the precise knowledge of neutron fluxes and energy distributions in several irradiation locations. The fuel burn-up of the new GSTR fuel configuration and the thermal neutron flux of the core were recalculated since the GSTR core configuration had been changed with the addition of two new fuel elements. Therefore, a MCNP software package was used to incorporate the burn up of reactor fuel and to determine the neutron flux at different irradiation locations and at flux monitoring bores. These simulation results were compared with neutron activation analysis results using activated diluted gold wires. A well calibrated and stable germanium detector setup as well as fourteen samplers were designed and built to achieve accuracy in the measurement of the neutron flux. Furthermore, the flux monitoring bores of the GSTR core were used for the first time to measure neutron flux experimentally and to compare to MCNP simulation. In addition, International Atomic Energy Agency (IAEA) standard materials were used along with USGS national standard materials in a previously well calibrated irradiation location to benchmark simulation, germanium detector calibration and sample measurements to international standards.

  16. On similarity of various reactor spectra and 235U prompt fission neutron spectrum.

    PubMed

    Košťál, Michal; Matěj, Zdeněk; Losa, Evžen; Huml, Ondřej; Štefánik, Milan; Cvachovec, František; Schulc, Martin; Jánský, Bohumil; Novák, Evžen; Harutyunyan, Davit; Rypar, Vojtěch

    2018-05-01

    A well-defined neutron spectrum is an essential tool not only for calibration and testing of neutron detectors used in dosimetry and spectroscopy but also for validation and verification of evaluated cross sections. A new evaluation of thermal-neutron induced 235 U PFNS was performed by the International Atomic Energy Agency (IAEA) in the CIELO (Collaborative International Evaluated Library Organisation Project) project; new measurements of Spectral Averaged Cross sections averaged in the evaluated spectrum are to be obtained. In general, a neutron spectrum in the core is not identical to the pure fission one because fission neutrons undergo many scattering reactions, but it can be shown that PFNS and reactor spectra become undistinguishable from a certain energy boundary. This limit is important for experiments, because when the studied reaction threshold is over this limit, the spectral averaged cross sections in PFNS can be derived from the measured reactions in the reactor core. The evaluation of the neutron spectrum measurements in three different thermal-reactor cores shows that this lower limit is around the energy of 5.5 - 6 MeV. Above this energy the reactor spectra becomes identical with the 235 U PFNS. IAEA CIELO PFNS is within 5% of the measured PFNS from 10 to 14 MeV in a LR-0 reactor, while ENDF/B-VII evaluated PFNS underestimated measured neutron spectra. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Intelligent uranium fission converter for neutron production on the periphery of the nuclear reactor core (MARIA reactor in Swierk - Poland)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gryzinski, M.A.; Wielgosz, M.

    The multipurpose, high flux research reactor MARIA in Otwock - Swierk is an open-pool type, water and beryllium moderated and graphite reflected. There are two not occupied experimental H1 and H2 horizontal channels with complex of empty rooms beside them. Making use of these two channels is not in conflict with other research or commercial employing channels. They can work simultaneously, moreover commercial channels covers the cost of reactor working. Such conditions give beneficial possibility of creating epithermal neutron stand for researches in various field at the horizontal channel H2 of MARIA reactor (co-organization of research at H1 channel ismore » additionally planned). At the front of experimental channels the neutron flux is strongly thermalized - neutrons with energies above 0.625 eV constitute only ∼2% of the total flux. This thermalized neutron flux will be used to achieve high flux of epithermal neutrons at the level of 2x10{sup 9} n cm{sup -2}s{sup -1} by uranium neutron converter (fast neutron production - conversion of reactor core thermal neutrons to fast neutrons - and then filtering, moderating and finally cutting of unwanted gamma radiation). The intelligent converter will be placed in the reactor pool, near the front of the H2 channel. It will replace one graphite block at the periphery of MARIA graphite reflector. The converter will consist of 20 fuel elements - low enriched uranium plates. A fuel plate will be a part which will measure 110 mm wide by 380 mm long and will consist of a thin layer of uranium sealed between two aluminium plates. These plates, once assembled, form the fuel element used in converter. The plates will be positioned vertically. There are several important requirements which should be taken into account at the converter design stage: -maximum efficiency of the converter for neutrons conversion, -cooling of the converter need to be integrated with the cooling circuit of the reactor pool and if needed equipped

  18. Enhanced NIF neutron activation diagnostics.

    PubMed

    Yeamans, C B; Bleuel, D L; Bernstein, L A

    2012-10-01

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the (89)Zr/(89 m)Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  19. Neutron dose rate analysis on HTGR-10 reactor using Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Suwoto; Adrial, H.; Hamzah, A.; Zuhair; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The HTGR-10 reactor is cylinder-shaped core fuelled with kernel TRISO coated fuel particles in the spherical pebble with helium cooling system. The outlet helium gas coolant temperature outputted from the reactor core is designed to 700 °C. One advantage HTGR type reactor is capable of co-generation, as an addition to generating electricity, the reactor was designed to produce heat at high temperature can be used for other processes. The spherical fuel pebble contains 8335 TRISO UO2 kernel coated particles with enrichment of 10% and 17% are dispersed in a graphite matrix. The main purpose of this study was to analysis the distribution of neutron dose rates generated from HTGR-10 reactors. The calculation and analysis result of neutron dose rate in the HTGR-10 reactor core was performed using Monte Carlo MCNP5v1.6 code. The problems of double heterogeneity in kernel fuel coated particles TRISO and spherical fuel pebble in the HTGR-10 core are modelled well with MCNP5v1.6 code. The neutron flux to dose conversion factors taken from the International Commission on Radiological Protection (ICRP-74) was used to determine the dose rate that passes through the active core, reflectors, core barrel, reactor pressure vessel (RPV) and a biological shield. The calculated results of neutron dose rate with MCNP5v1.6 code using a conversion factor of ICRP-74 (2009) for radiation workers in the radial direction on the outside of the RPV (radial position = 220 cm from the center of the patio HTGR-10) provides the respective value of 9.22E-4 μSv/h and 9.58E-4 μSv/h for enrichment 10% and 17%, respectively. The calculated values of neutron dose rates are compliant with BAPETEN Chairman’s Regulation Number 4 Year 2013 on Radiation Protection and Safety in Nuclear Energy Utilization which sets the limit value for the average effective dose for radiation workers 20 mSv/year or 10μSv/h. Thus the protection and safety for radiation workers to be safe from the radiation source has

  20. Implementing the European Neutron Monitor Service for the ESA SSA Program

    NASA Astrophysics Data System (ADS)

    Mavromichalaki, H.; Papaioannou, A.; Souvatzoglou, G.; Dimitroulakos, J.; Paschalis, P.; Gerontidou, M.; Sarlanis, Ch.

    2013-09-01

    Ground level enhancements (GLEs) are observed as significant intensity increases at neutron monitor measurements, followed by an intense solar flare and/or a very energetic coronal mass ejection. Due to their space weather impact it is crucial to establish a real-time operational system that would be in place to issue reliable and timely GLE Alerts. Such a Neutron Monitor Service that will be made available via the Space Weather Portal operated by the European Space Agency (ESA), under the Space Situational Awareness (SSA) Program, is currently under development. The ESA Neutron Monitor Service will provide two products: a web interface providing data from multiple Neutron Monitor stations as well as an upgraded GLE Alert. Both services are now under testing and validation and will probably enter to an operational phase next year. The core of this Neutron Monitor Service is the GLE Alert software, and therefore, the main goal of this research effort is to upgrade the existing GLE Alert software and to minimize the probability of false alarms. The ESA Neutron Monitor Service is building upon the infrastructure made available with the implementation of the High-Resolution Neutron Monitor Database (NMDB). In this work the structure of the ESA Neutron Monitor Service, the core of the novel GLE Alert Service and its validation results will be presented and further discussed.

  1. The neutron imaging diagnostic at NIF (invited).

    PubMed

    Merrill, F E; Bower, D; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H; Wilson, D C

    2012-10-01

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  2. Simultaneous Neutron and X-ray Tomography for Quantitative analysis of Geological Samples

    NASA Astrophysics Data System (ADS)

    LaManna, J.; Hussey, D. S.; Baltic, E.; Jacobson, D. L.

    2016-12-01

    Multiphase flow is a critical area of research for shale gas, oil recovery, underground CO2 sequestration, geothermal power, and aquifer management. It is critical to understand the porous structure of the geological formations in addition to the fluid/pore and fluid/fluid interactions. Difficulties for analyzing flow characteristics of rock cores are in obtaining 3D distribution information on the fluid flow and maintaining the cores in a state for other analysis methods. Two powerful non-destructive methods for obtaining 3D structural and compositional information are X-ray and neutron tomography. X-ray tomography produces information on density and structure while neutrons excel at acquiring the liquid phase and produces compositional information. These two methods can offer strong complementary information but are typically conducted at separate times and often at different facilities. This poses issues for obtaining dynamic and stochastic information as the sample will change between analysis modes. To address this, NIST has developed a system that allows for multimodal, simultaneous tomography using thermal neutrons and X-rays by placing a 90 keVp micro-focus X-ray tube 90° to the neutron beam. High pressure core holders that simulate underground conditions have been developed to facilitate simultaneous tomography. These cells allow for the control of confining pressure, axial load, temperature, and fluid flow through the core. This talk will give an overview the simultaneous neutron and x-ray tomography capabilities at NIST, the benefits of multimodal imaging, environmental equipment for geology studies, and several case studies that have been conducted at NIST.

  3. Supporting Snow Research: SnowEx Data and Services at the NASA National Snow and Ice Data Center DAAC

    NASA Astrophysics Data System (ADS)

    Leon, A.; Tanner, S.; Deems, J. S.

    2017-12-01

    The National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC), part of the Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado Boulder, will archive and distribute all primary data sets collected during the NASA SnowEx campaigns. NSIDC DAAC's overarching goal for SnowEx data management is to steward the diverse SnowEx data sets to provide a reliable long-term archive, to enable effective data discovery, retrieval, and usage, and to support end user engagement. This goal will be achieved though coordination and collaboration with SnowEx project management and investigators. NSIDC DAAC's core functions for SnowEx data management include: Data Creation: Advise investigators on data formats and structure as well as metadata creation and content to enable preservation, usability, and discoverability. Data Documentation: Develop comprehensive data set documentation describing the instruments, data collection and derivation methods, and data file contents. Data Distribution: Provide discovery and access through NSIDC and NASA data portals to make SnowEx data available to a broad user community Data & User Support: Assist user communities with the selection and usage of SnowEx data products. In an effort to educate and broaden the SnowEx user community, we will present an overview of the SnowEx data products, tools, and services which will be available at the NSIDC DAAC. We hope to gain further insight into how the DAAC can enable the user community to seamlessly and effectively utilize SnowEx data in their research and applications.

  4. Physical particularities of nuclear reactors using heavy moderators of neutrons

    NASA Astrophysics Data System (ADS)

    Kulikov, G. G.; Shmelev, A. N.

    2016-12-01

    In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using 233U as a fissile nuclide and 232Th and 231Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program package for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.

  5. Physical particularities of nuclear reactors using heavy moderators of neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Shmelev, A. N.

    2016-12-15

    In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using {sup 233}U as a fissile nuclide and {sup 232}Th and {sup 231}Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program packagemore » for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.« less

  6. The Fate of the Compact Remnant in Neutron Star Mergers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fryer, Chris L.; Belczynski, Krzysztoff; Ramirez-Ruiz, Enrico

    Neutron star (binary neutron star and neutron star - black hole) mergers are believed to produce short-duration gamma-ray bursts. They are also believed to be the dominant source of gravitational waves to be detected by the advanced LIGO and the dominant source of the heavy r-process elements in the universe. Whether or not these mergers produce short-duration GRBs depends sensitively on the fate of the core of the remnant (whether, and how quickly, it forms a black hole). In this paper, we combine the results of merger calculations and equation of state studies to determine the fate of the coresmore » of neutron star mergers. Using population studies, we can determine the distribution of these fates to compare to observations. We find that black hole cores form quickly only for equations of state that predict maximum non-rotating neutron star masses below 2.3-2.4 solar masses. If quick black hole formation is essential in producing gamma-ray bursts, LIGO observed rates compared to GRB rates could be used to constrain the equation of state for dense nuclear matter.« less

  7. The Fate of the Compact Remnant in Neutron Star Mergers

    DOE PAGES

    Fryer, Chris L.; Belczynski, Krzysztoff; Ramirez-Ruiz, Enrico; ...

    2015-10-06

    Neutron star (binary neutron star and neutron star - black hole) mergers are believed to produce short-duration gamma-ray bursts. They are also believed to be the dominant source of gravitational waves to be detected by the advanced LIGO and the dominant source of the heavy r-process elements in the universe. Whether or not these mergers produce short-duration GRBs depends sensitively on the fate of the core of the remnant (whether, and how quickly, it forms a black hole). In this paper, we combine the results of merger calculations and equation of state studies to determine the fate of the coresmore » of neutron star mergers. Using population studies, we can determine the distribution of these fates to compare to observations. We find that black hole cores form quickly only for equations of state that predict maximum non-rotating neutron star masses below 2.3-2.4 solar masses. If quick black hole formation is essential in producing gamma-ray bursts, LIGO observed rates compared to GRB rates could be used to constrain the equation of state for dense nuclear matter.« less

  8. SU-E-T-90: Accuracy of Calibration of Lithium-6 and -7 Enriched LiF TLDs for Neutron Measurements in High Energy Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keehan, S; Franich, R; Taylor, M

    Purpose: To determine the potential error involved in the interpretation of neutron measurements from medical linear accelerators (linacs) using TLD-600H and TLD-700H if standard AmBe and {sup 252}Cf neutron sources are used for calibration without proper inclusion of neutron energy spectrum information. Methods: The Kerma due to neutrons can be calculated from the energy released by various nuclear interactions (elastic and inelastic scatter, (n,α), (n,p), (n,d), (n,t), (n,2n), etc.). The response of each TLD can be considered the sum of the neutron and gamma components; each proportional to the Kerma. Using the difference between the measured TLD responses and themore » ratio of the calculated Kerma for each material, the neutron component of the response can be calculated. The Monte Carlo code MCNP6 has been used to calculate the neutron energy spectra resulting from photonuclear interactions in a Varian 21EX linac. TLDs have been exposed to the mixed (γ-n) field produced by a linac and AmBe and {sup 252}Cf standard neutron sources. Results: For dosimetry of neutrons from AmBe or {sup 252}Cf sources, assuming TLD-700H insensitivity to neutrons will Result in 10% or 20% overestimation of neutron doses respectively.For dosimetry of neutrons produced in a Varian 21EX, applying a calibration factor derived from a standard AmBe or {sup 252}Cf source will Result in an overestimation of neutron fluence, by as much as a factor of 47.The assumption of TLD-700H insensitivity to neutrons produced by linacs leads to a negligible error due to the extremely high Kerma ratio (600H/700H) of 3000 for the assumed neutron spectrum. Conclusion: Lithium-enriched TLDs calibrated with AmBe and/or {sup 252}Cf neutron sources are not accurate for use under the neutron energy spectrum produced by a medical linear accelerator.« less

  9. A compact spin-exchange optical pumping system for 3He polarization based on a solenoid coil, a VBG laser diode, and a cosine theta RF coil

    NASA Astrophysics Data System (ADS)

    Lee, Sungman; Kim, Jongyul; Moon, Myung Kook; Lee, Kye Hong; Lee, Seung Wook; Ino, Takashi; Skoy, Vadim R.; Lee, Manwoo; Kim, Guinyun

    2013-02-01

    For use as a neutron spin polarizer or analyzer in the neutron beam lines of the HANARO (High-flux Advanced Neutron Application ReactOr) nuclear research reactor, a 3He polarizer was designed based on both a compact solenoid coil and a VBG (volume Bragg grating) diode laser with a narrow spectral linewidth of 25 GHz. The nuclear magnetic resonance (NMR) signal was measured and analyzed using both a built-in cosine radio-frequency (RF) coil and a pick-up coil. Using a neutron transmission measurement, we estimated the polarization ratio of the 3He cell as 18% for an optical pumping time of 8 hours.

  10. Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei

    NASA Astrophysics Data System (ADS)

    Leoni, S.

    2016-05-01

    The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets), with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic "hybrid" model is introduced: it is based on the coupling between core excitations (both collective and non-collective) of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.

  11. Correlative Microscopy of Neutron-Irradiated Materials

    DOE PAGES

    Briggs, Samuel A.; Sridharan, Kumar; Field, Kevin G.

    2016-12-31

    A nuclear reactor core is a highly demanding environment that presents several unique challenges for materials performance. Materials in modern light water reactor (LWR) cores must survive several decades in high-temperature (300-350°C) aqueous corrosion conditions while being subject to large amounts of high-energy neutron irradiation. Next-generation reactor designs seek to use more corrosive coolants (e.g., molten salts) and even greater temperatures and neutron doses. The high amounts of disorder and unique crystallographic defects and microchemical segregation effects induced by radiation inevitably lead to property degradation of materials. Thus, maintaining structural integrity and safety margins over the course of the reactor'smore » service life thus necessitates the ability to understand and predict these degradation phenomena in order to develop new, radiation-tolerant materials that can maintain the required performance in these extreme conditions.« less

  12. NUCLEAR REACTOR CORE DESIGN

    DOEpatents

    Mahlmeister, J.E.; Peck, W.S.; Haberer, W.V.; Williams, A.C.

    1960-03-22

    An improved core design for a sodium-cooled, graphitemoderated nuclear reactor is described. The improved reactor core comprises a number of blocks of moderator material, each block being in the shape of a regular prism. A number of channels, extending the length of each block, are disposed around the periphery. When several blocks are placed in contact to form the reactor core, the channels in adjacent blocks correspond with each other to form closed conduits extending the length of the core. Fuel element clusters are disposed in these closed conduits, and liquid coolant is forced through the annulus between the fuel cluster and the inner surface of the conduit. In a preferred embodiment of the invention, the moderator blocks are in the form of hexagonal prisms with longitudinal channels cut into the corners of the hexagon. The main advantage of an "edge-loaded" moderator block is that fewer thermal neutrons are absorbed by the moderator cladding, as compared with a conventional centrally loaded moderator block.

  13. Search for dark matter effects on gravitational signals from neutron star mergers

    NASA Astrophysics Data System (ADS)

    Ellis, John; Hektor, Andi; Hütsi, Gert; Kannike, Kristjan; Marzola, Luca; Raidal, Martti; Vaskonen, Ville

    2018-06-01

    Motivated by the recent detection of the gravitational wave signal emitted by a binary neutron star merger, we analyse the possible impact of dark matter on such signals. We show that dark matter cores in merging neutron stars may yield an observable supplementary peak in the gravitational wave power spectral density following the merger, which could be distinguished from the features produced by the neutron components.

  14. Neutron dose estimation in a zero power nuclear reactor

    NASA Astrophysics Data System (ADS)

    Triviño, S.; Vedelago, J.; Cantargi, F.; Keil, W.; Figueroa, R.; Mattea, F.; Chautemps, A.; Santibañez, M.; Valente, M.

    2016-10-01

    This work presents the characterization and contribution of neutron and gamma components to the absorbed dose in a zero power nuclear reactor. A dosimetric method based on Fricke gel was implemented to evaluate the separation between dose components in the mixed field. The validation of this proposed method was performed by means of direct measurements of neutron flux in different positions using Au and Mg-Ni activation foils. Monte Carlo simulations were conversely performed using the MCNP main code with a dedicated subroutine to incorporate the exact complete geometry of the nuclear reactor facility. Once nuclear fuel elements were defined, the simulations computed the different contributions to the absorbed dose in specific positions inside the core. Thermal/epithermal contributions of absorbed dose were assessed by means of Fricke gel dosimetry using different isotopic compositions aimed at modifying the sensitivity of the dosimeter for specific dose components. Clear distinctions between gamma and neutron capture dose were obtained. Both Monte Carlo simulations and experimental results provided reliable estimations about neutron flux rate as well as dose rate during the reactor operation. Simulations and experimental results are in good agreement in every positions measured and simulated in the core.

  15. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, J. P.; Holden, N. E.; Reciniello, R. N.

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; includingmore » (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D 2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7

  16. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    NASA Astrophysics Data System (ADS)

    Hu, J.-P.; Holden, N. E.; Reciniello, R. N.

    2016-02-01

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4-7% lower than

  17. Investigation of the MTC noise estimation with a coupled neutronic/thermal-hydraulic dedicated model - 'Closing the loop'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demaziere, C.; Larsson, V.

    2012-07-01

    This paper investigates the reliability of different noise estimators aimed at determining the Moderator Temperature Coefficient (MTC) of reactivity in Pressurized Water Reactors. By monitoring the inherent fluctuations in the neutron flux and moderator temperature, an on-line monitoring of the MTC without perturbing reactor operation is possible. In order to get an accurate estimation of the MTC by noise analysis, the point-kinetic component of the neutron noise and the core-averaged moderator temperature noise have to be used. Because of the scarcity of the in-core instrumentation, the determination of these quantities is difficult, and several possibilities thus exist for estimating themore » MTC by noise analysis. Furthermore, the effect of feedback has to be negligible at the frequency chosen for estimating the MTC in order to get a proper determination of the MTC. By using an integrated neutronic/thermal- hydraulic model specifically developed for estimating the three-dimensional distributions of the fluctuations in neutron flux, moderator properties, and fuel temperature, different approaches for estimating the MTC by noise analysis can be tested individually. It is demonstrated that a reliable MTC estimation can only be provided if the core is equipped with a sufficient number of both neutron detectors and temperature sensors, i.e. if the core contain in-core detectors monitoring both the axial and radial distributions of the fluctuations in neutron flux and moderator temperature. It is further proven that the effect of feedback is negligible for frequencies higher than 0.1 Hz, and thus the MTC noise estimations have to be performed at higher frequencies. (authors)« less

  18. Designing Mixed Detergent Micelles for Uniform Neutron Contrast

    DOE PAGES

    Oliver, Ryan C.; Pingali, Sai Venkatesh; Urban, Volker S.

    2017-09-29

    Micelle-forming detergents provide an amphipathic environment that mimics lipid bilayers and are important tools used to solubilize and stabilize membrane proteins in solution for in vitro structural investigations. Small-angle neutron scattering (SANS) performed at the neutron contrast match point of detergent molecules allows observing the scattering signal from membrane proteins unobstructed by contributions from the detergent. However, we show here that even for a perfectly average-contrast matched detergent there arises significant core-shell scattering from the contrast difference between aliphatic detergent tails and hydrophilic head groups. This residual signal at the average detergent contrast match point interferes with interpreting structural datamore » of membrane proteins. This complication is often made worse by the presence of excess empty (protein-free) micelles. Here, we present an approach for the rational design of mixed micelles containing a deuterated detergent analog, which eliminates neutron contrast between core and shell, and allows the micelle scattering to be fully contrast matched to unambiguously resolve membrane protein structure using solution SANS.« less

  19. Designing Mixed Detergent Micelles for Uniform Neutron Contrast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, Ryan C.; Pingali, Sai Venkatesh; Urban, Volker S.

    Micelle-forming detergents provide an amphipathic environment that mimics lipid bilayers and are important tools used to solubilize and stabilize membrane proteins in solution for in vitro structural investigations. Small-angle neutron scattering (SANS) performed at the neutron contrast match point of detergent molecules allows observing the scattering signal from membrane proteins unobstructed by contributions from the detergent. However, we show here that even for a perfectly average-contrast matched detergent there arises significant core-shell scattering from the contrast difference between aliphatic detergent tails and hydrophilic head groups. This residual signal at the average detergent contrast match point interferes with interpreting structural datamore » of membrane proteins. This complication is often made worse by the presence of excess empty (protein-free) micelles. Here, we present an approach for the rational design of mixed micelles containing a deuterated detergent analog, which eliminates neutron contrast between core and shell, and allows the micelle scattering to be fully contrast matched to unambiguously resolve membrane protein structure using solution SANS.« less

  20. Calculations of the thermal and fast neutron fluxes in the Syrian miniature neutron source reactor using the MCNP-4C code.

    PubMed

    Khattab, K; Sulieman, I

    2009-04-01

    The MCNP-4C code, based on the probabilistic approach, was used to model the 3D configuration of the core of the Syrian miniature neutron source reactor (MNSR). The continuous energy neutron cross sections from the ENDF/B-VI library were used to calculate the thermal and fast neutron fluxes in the inner and outer irradiation sites of MNSR. The thermal fluxes in the MNSR inner irradiation sites were also measured experimentally by the multiple foil activation method ((197)Au (n, gamma) (198)Au and (59)Co (n, gamma) (60)Co). The foils were irradiated simultaneously in each of the five MNSR inner irradiation sites to measure the thermal neutron flux and the epithermal index in each site. The calculated and measured results agree well.

  1. The value of forceps biopsy and core needle biopsy in prediction of pathologic complete remission in locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy.

    PubMed

    Tang, Jing-Hua; An, Xin; Lin, Xi; Gao, Yuan-Hong; Liu, Guo-Chen; Kong, Ling-Heng; Pan, Zhi-Zhong; Ding, Pei-Rong

    2015-10-20

    Patients with pathological complete remission (pCR) after treated with neoadjuvant chemoradiotherapy (nCRT) have better long-term outcome and may receive conservative treatments in locally advanced rectal cancer (LARC). The study aimed to evaluate the value of forceps biopsy and core needle biopsy in prediction of pCR in LARC treated with nCRT. In total, 120 patients entered this study. Sixty-one consecutive patients received preoperative forceps biopsy during endoscopic examination. Ex vivo core needle biopsy was performed in resected specimens of another 43 consecutive patients. The accuracy for ex vivo core needle biopsy was significantly higher than forceps biopsy (76.7% vs. 36.1%; p < 0.001). The sensitivity for ex vivo core needle biopsy was significantly lower in good responder (TRG 3) than poor responder (TRG ≤ 2) (52.9% vs. 94.1%; p = 0.017). In vivo core needle biopsy was further performed in 16 patients with good response. Eleven patients had residual cancer cells in final resected specimens, among whom 4 (36.4%) patients were biopsy positive. In conclusion, routine forceps biopsy was of limited value in identifying pCR after nCRT. Although core needle biopsy might further identify a subset of patients with residual cancer cells, the accuracy was not substantially increased in good responders.

  2. The value of forceps biopsy and core needle biopsy in prediction of pathologic complete remission in locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy

    PubMed Central

    Gao, Yuan-Hong; Liu, Guo-Chen; Kong, Ling-Heng; Pan, Zhi-Zhong; Ding, Pei-Rong

    2015-01-01

    Patients with pathological complete remission (pCR) after treated with neoadjuvant chemoradiotherapy (nCRT) have better long-term outcome and may receive conservative treatments in locally advanced rectal cancer (LARC). The study aimed to evaluate the value of forceps biopsy and core needle biopsy in prediction of pCR in LARC treated with nCRT. In total, 120patients entered this study. Sixty-one consecutive patients received preoperative forceps biopsy during endoscopic examination. Ex vivo core needle biopsy was performed in resected specimens of another 43 consecutive patients. The accuracy for ex vivo core needle biopsy was significantly higher than forceps biopsy (76.7% vs. 36.1%; p < 0.001). The sensitivity for ex vivo core needle biopsy was significantly lower in good responder (TRG 3) than poor responder (TRG ≤ 2) (52.9% vs. 94.1%; p = 0.017). In vivo core needle biopsy was further performed in 16 patients with good response. Eleven patients had residual cancer cells in final resected specimens, among whom 4 (36.4%) patients were biopsy positive. In conclusion, routine forceps biopsy was of limited value in identifying pCR after nCRT. Although core needle biopsy might further identify a subset of patients with residual cancer cells, the accuracy was not substantially increased in good responders. PMID:26416245

  3. Candidate molten salt investigation for an accelerator driven subcritical core

    NASA Astrophysics Data System (ADS)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-09-01

    We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated. A special thanks is due to Prof. Paul Madden for introducing the ADSMS group to the concept of using the molten salt as the spallation target, rather than a conventional heavy metal spallation target. This feature helps to optimize this core as a Pu/TRU burner.

  4. Multipurpose epithermal neutron beam on new research station at MARIA research reactor in Swierk-Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gryzinski, M.A.; Maciak, M.

    MARIA reactor is an open-pool research reactor what gives the chance to install uranium fission converter on the periphery of the core. It could be installed far enough not to induce reactivity of the core but close enough to produce high flux of fast neutrons. Special design of the converter is now under construction. It is planned to set the research stand based on such uranium converter in the near future: in 2015 MARIA reactor infrastructure should be ready (preparation started in 2013), in 2016 the neutron beam starts and in 2017 opening the stand for material and biological researchmore » or for medical training concerning BNCT. Unused for many years, horizontal channel number H2 at MARIA research rector in Poland, is going to be prepared as a part of unique stand. The characteristics of the neutron beam will be significant advantage of the facility. High flux of neutrons at the level of 2x10{sup 9} cm{sup -2}s{sup -1} will be obtainable by uranium neutron converter located 90 cm far from the reactor core fuel elements (still inside reactor core basket between so called core reflectors). Due to reaction of core neutrons with converter U{sub 3}Si{sub 2} material it will produce high flux of fast neutrons. After conversion neutrons will be collimated and moderated in the channel by special set of filters and moderators. At the end of H2 channel i.e. at the entrance to the research room neutron energy will be in the epithermal energy range with neutron intensity at least at the level required for BNCT (2x10{sup 9} cm{sup -2}s{sup -1}). For other purposes density of the neutron flux could be smaller. The possibility to change type and amount of installed filters/moderators which enables getting different properties of the beam (neutron energy spectrum, neutron-gamma ratio and beam profile and shape) is taken into account. H2 channel is located in separate room which is adjacent to two other empty rooms under the preparation for research laboratories (200 m2

  5. The neutron capture process in the He shell in core-collapse supernovae: Presolar silicon carbide grains as a diagnostic tool for nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Pignatari, Marco; Hoppe, Peter; Trappitsch, Reto; Fryer, Chris; Timmes, F. X.; Herwig, Falk; Hirschi, Raphael

    2018-01-01

    Carbon-rich presolar grains are found in primitive meteorites, with isotopic measurements to date suggesting a core-collapse supernovae origin site for some of them. This holds for about 1-2% of presolar silicon carbide (SiC) grains, so-called Type X and C grains, and about 30% of presolar graphite grains. Presolar SiC grains of Type X show anomalous isotopic signatures for several elements heavier than iron compared to the solar abundances: most notably for strontium, zirconium, molybdenum, ruthenium and barium. We study the nucleosynthesis of zirconium and molybdenum isotopes in the He-shell of three core-collapse supernovae models of 15, 20 and 25 M⊙ with solar metallicity, and compare the results to measurements of presolar grains. We find the stellar models show a large scatter of isotopic abundances for zirconium and molybdenum, but the mass averaged abundances are qualitatively similar to the measurements. We find all models show an excess of 96Zr relative to the measurements, but the model abundances are affected by the fractionation between Sr and Zr since a large contribution to 90Zr is due to the radiogenic decay of 90Sr. Some supernova models show excesses of 95,97Mo and depletion of 96Mo relative to solar. The mass averaged distribution from these models shows an excess of 100Mo, but this may be alleviated by very recent neutron-capture cross section measurements. We encourage future explorations to assess the impact of the uncertainties in key neutron-capture reaction rates that lie along the n-process path.

  6. ExMC Technology Watch

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Watkins, S.; Fung, Paul P.

    2013-01-01

    The Technology Watch (Tech Watch) project is a NASA project that is operated under the Human Research Programs (HRP) Exploration Medical Capability (ExMC) element, and focuses on ExMC technology gaps. The project coordinates the efforts of several NASA centers, including the Johnson Space Center (JSC), Glenn Research Center (GRC), Ames Research Center (ARC), and the Langley Research Center (LaRC). The objective of Tech Watch is to identify emerging, high-impact technologies that augment current NASA HRP technology development efforts. Identifying such technologies accelerates the development of medical care and research capabilities for the mitigation of potential health issues encountered during human space exploration missions. The aim of this process is to leverage technologies developed by academia, industry and other government agencies and to identify the effective utilization of NASA resources to maximize the HRP return on investment. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion and further NASAs goal to provide a safe and healthy environment for human exploration. In 2012, the Tech Watch project expanded the scope of activities to cultivate student projects targeted at specific ExMC gaps, generate gap reports for a majority of the ExMC gaps and maturate a gap report review process to optimize the technical and managerial aspects of ExMC gap status. Through numerous site visits and discussions with academia faculty, several student projects were initiated and/or completed this past year. A key element to these student projects was the ability of the project to align with a specific ExMC technology or knowledge gap. These projects were mentored and reviewed by Tech Watch leads at the various NASA centers. Another result of the past years efforts was the population of the ExMC wiki website that now contains more the three quarters of the ExMC gap reports. The remaining gap reports

  7. Neutron economic reactivity control system for light water reactors

    DOEpatents

    Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.; Gregurech, Steve

    1989-01-01

    A neutron reactivity control system for a LWBR incorporating a stationary seed-blanket core arrangement. The core arrangement includes a plurality of contiguous hexagonal shaped regions. Each region has a central and a peripheral blanket area juxapositioned an annular seed area. The blanket areas contain thoria fuel rods while the annular seed area includes seed fuel rods and movable thoria shim control rods.

  8. Use of higher order signal moments and high speed digital sampling technique for neutron flux measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baers, L.B.; Gutierrez, T.R.; Mendoza, R.A.

    1993-08-01

    The second (conventional variance or Campbell signal) , , , the third , and the modified fourth order [minus] 3*[sup 2] etc. central signal moments associated with the amplified (K) and filtered currents [i[sub 1], i[sub 2], x = K * (i[sub 2]-),] from two electrodes of an ex-core neutron sensitive fission detector have been measured versus the reactor power of the 1 MW TRIGA reactor in Mexico City. Two channels of a high speed (400 kHz) multiplexing data sampler and A/D converter with 12 bit resolution and one megawords buffer memory were used. The data were further retrieved intomore » a PC and estimates for auto- and cross-correlation moments up to the fifth order, coherence (/[radical]), skewness (/([radical]/)[sup 3]), excess (/[sup 2] - 3) etc. quantities were calculated off-line. A five mode operation of the detector was achieved including the conventional counting rates and currents in agreement with the theory and the authors previous results with analogue techniques. The signals were proportional to the neutron flux and reactor power in some flux ranges. The suppression of background noise is improved and the lower limit of the measurement range is extended as the order of moment is increased, in agreement with the theory. On the other hand the statistical uncertainty is increased. At increasing flux levels it was statistically more difficult to obtain flux estimates based on the higher order ([>=]3) moments.« less

  9. Anisotropic pressure and hyperons in neutron stars

    NASA Astrophysics Data System (ADS)

    Sulaksono, A.

    2015-01-01

    We study the effects of anisotropic pressure (AI-P) on properties of the neutron stars (NSs) with hyperons inside its core within the framework of extended relativistic mean field. It is found that the main effects of AI-P on NS matter is to increase the stiffness of the equation of state EOS, which compensates for the softening of the EOS due to the hyperons. The maximum mass and redshift predictions of anisotropic neutron star with hyperonic core are quite compatible with the result of recent observational constraints if we use the parameter of AI-P model h ≤ 0.8 [L. Herrera and W. Barreto, Phys. Rev. D 88 (2013) 084022.] and Λ ≤ -1.15 [D. D. Doneva and S. S. Yazadjiev, Phys. Rev. D 85 (2012) 124023.]. The radius of the corresponding NS at M = 1.4 M⊙ is more than 13 km, while the effect of AI-P on the minimum mass of NS is insignificant. Furthermore, due to the AI-P in the NS, the maximum mass limit of higher than 2.1 M⊙ cannot rule out the presence of hyperons in the NS core.

  10. Performance of the MTR core with MOX fuel using the MCNP4C2 code.

    PubMed

    Shaaban, Ismail; Albarhoum, Mohamad

    2016-08-01

    The MCNP4C2 code was used to simulate the MTR-22 MW research reactor and perform the neutronic analysis for a new fuel namely: a MOX (U3O8&PuO2) fuel dispersed in an Al matrix for One Neutronic Trap (ONT) and Three Neutronic Traps (TNTs) in its core. Its new characteristics were compared to its original characteristics based on the U3O8-Al fuel. Experimental data for the neutronic parameters including criticality relative to the MTR-22 MW reactor for the original U3O8-Al fuel at nominal power were used to validate the calculated values and were found acceptable. The achieved results seem to confirm that the use of MOX fuel in the MTR-22 MW will not degrade the safe operational conditions of the reactor. In addition, the use of MOX fuel in the MTR-22 MW core leads to reduce the uranium fuel enrichment with (235)U and the amount of loaded (235)U in the core by about 34.84% and 15.21% for the ONT and TNTs cases, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Geminga: A cooling superfluid neutron star

    NASA Technical Reports Server (NTRS)

    Page, Dany

    1994-01-01

    We compare the recent temperature estimate for Geminga with neutron star cooling models. Because of its age (approximately 3.4 x 10(exp 5) yr), Geminga is in the photon cooling era. We show that its surface temperature (approximately 5.2 x 10(exp 5) K) can be understood by both types of neutrino cooling scenarios, i.e., slow neutrino cooling by the modified Urca process or fast neutrino cooling by the direct Urca process or by some exotic matter, and thus does not allow us to discriminate between these two competing schemes. However, for both types of scenarios, agreement with the observed temperature can only be obtained if baryon pairing is present in most, if not all, of the core of the star. Within the slow neutrino cooling scenario, early neutrino cooling is not sufficient to explain the observed low temperature, and extensive pairing in the core is necessary to reduce the specific heat and increase the cooling rate in the present photon cooling era. Within all the fast neutrino cooling scenarios, pairing is necessary throughout the whole core to control the enormous early neutrino emission which, without pairing suppression, would result in a surface temperature at the present time much lower than observed. We also comment on the recent temperature estimates for PSR 0656+14 and PSR 1055-52, which pertain to the same photon cooling era. If one assumes that all neutron stars undergo fast neutrino cooling, then these two objects also provide evidence for extensive baryon pairing in their core; but observational uncertainties also permit a more conservative interpretation, with slow neutrino emission and no pairing at all. We argue though that observational evidence for the slow neutrino cooling model (the 'standard' model) is in fact very dim and that the interpretation of the surface temperature of all neutron stars could be done with a reasonable theoretical a priori within the fast neutrino cooling scenarios only. In this case, Geminga, PSR 0656+14, and PSR

  12. A feasibility study of the Tehran research reactor as a neutron source for BNCT.

    PubMed

    Kasesaz, Yaser; Khalafi, Hossein; Rahmani, Faezeh; Ezati, Arsalan; Keyvani, Mehdi; Hossnirokh, Ashkan; Shamami, Mehrdad Azizi; Monshizadeh, Mahdi

    2014-08-01

    Investigation on the use of the Tehran Research Reactor (TRR) as a neutron source for Boron Neutron Capture Therapy (BNCT) has been performed by calculating and measuring energy spectrum and the spatial distribution of neutrons in all external irradiation facilities, including six beam tubes, thermal column, and the medical room. Activation methods with multiple foils and a copper wire have been used for the mentioned measurements. The results show that (1) the small diameter and long length beam tubes cannot provide sufficient neutron flux for BNCT; (2) in order to use the medical room, the TRR core should be placed in the open pool position, in this situation the distance between the core and patient position is about 400 cm, so neutron flux cannot be sufficient for BNCT; and (3) the best facility which can be adapted for BNCT application is the thermal column, if all graphite blocks can be removed. The epithermal and fast neutron flux at the beginning of this empty column are 4.12×10(9) and 1.21×10(9) n/cm(2)/s, respectively, which can provide an appropriate neutron beam for BNCT by designing and constructing a proper Beam Shaping Assembly (BSA) structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. THERMAL NEUTRONIC REACTOR

    DOEpatents

    Spinrad, B.I.

    1960-01-12

    A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.

  14. Hardware accelerated high performance neutron transport computation based on AGENT methodology

    NASA Astrophysics Data System (ADS)

    Xiao, Shanjie

    The spatial heterogeneity of the next generation Gen-IV nuclear reactor core designs brings challenges to the neutron transport analysis. The Arbitrary Geometry Neutron Transport (AGENT) AGENT code is a three-dimensional neutron transport analysis code being developed at the Laboratory for Neutronics and Geometry Computation (NEGE) at Purdue University. It can accurately describe the spatial heterogeneity in a hierarchical structure through the R-function solid modeler. The previous version of AGENT coupled the 2D transport MOC solver and the 1D diffusion NEM solver to solve the three dimensional Boltzmann transport equation. In this research, the 2D/1D coupling methodology was expanded to couple two transport solvers, the radial 2D MOC solver and the axial 1D MOC solver, for better accuracy. The expansion was benchmarked with the widely applied C5G7 benchmark models and two fast breeder reactor models, and showed good agreement with the reference Monte Carlo results. In practice, the accurate neutron transport analysis for a full reactor core is still time-consuming and thus limits its application. Therefore, another content of my research is focused on designing a specific hardware based on the reconfigurable computing technique in order to accelerate AGENT computations. It is the first time that the application of this type is used to the reactor physics and neutron transport for reactor design. The most time consuming part of the AGENT algorithm was identified. Moreover, the architecture of the AGENT acceleration system was designed based on the analysis. Through the parallel computation on the specially designed, highly efficient architecture, the acceleration design on FPGA acquires high performance at the much lower working frequency than CPUs. The whole design simulations show that the acceleration design would be able to speedup large scale AGENT computations about 20 times. The high performance AGENT acceleration system will drastically shortening the

  15. STEAM FORMING NEUTRONIC REACTOR AND METHOD OF OPERATING IT

    DOEpatents

    Untermyer, S.

    1960-05-10

    The heterogeneous reactor is liquid moderated and cooled by a steam forming coolant and is designed to produce steam from the coolant directly within the active portion of the reactor while avoiding the formation of bubbles in the liquid moderator. This reactor achieves inherent stability as a result of increased neutron leakage and increased neutron resonance absorption in the U/sup 238/ fuel with the formation of bubbles. The invention produces certain conditions under which the formation of vapor bubbles as a result of a neutron flux excursion from the injection of a reactivity increment into the reactor will operate to nullify the reactivity increment within a sufficiently short period of time to prevent unsafe reactor operating conditions from developing. This is obtained by disposing a plurality of fuel elements within a mass of steam forming coolant in the core with the ratio of the volume of steam forming coolant to the volume of fissionable isotopes being within the range yielding a multiplication factor greater than unity and a negative reactivity to core void coefficient at the boiling temperature of the coolant.

  16. Optical Sensors for Monitoring Gamma and Neutron Radiation

    NASA Technical Reports Server (NTRS)

    Boyd, Clark D.

    2011-01-01

    For safety and efficiency, nuclear reactors must be carefully monitored to provide feedback that enables the fission rate to be held at a constant target level via adjustments in the position of neutron-absorbing rods and moderating coolant flow rates. For automated reactor control, the monitoring system should provide calibrated analog or digital output. The sensors must survive and produce reliable output with minimal drift for at least one to two years, for replacement only during refueling. Small sensor size is preferred to enable more sensors to be placed in the core for more detailed characterization of the local fission rate and fuel consumption, since local deviations from the norm tend to amplify themselves. Currently, reactors are monitored by local power range meters (LPRMs) based on the neutron flux or gamma thermometers based on the gamma flux. LPRMs tend to be bulky, while gamma thermometers are subject to unwanted drift. Both electronic reactor sensors are plagued by electrical noise induced by ionizing radiation near the reactor core. A fiber optic sensor system was developed that is capable of tracking thermal neutron fluence and gamma flux in order to monitor nuclear reactor fission rates. The system provides near-real-time feedback from small- profile probes that are not sensitive to electromagnetic noise. The key novel feature is the practical design of fiber optic radiation sensors. The use of an actinoid element to monitor neutron flux in fiber optic EFPI (extrinsic Fabry-Perot interferometric) sensors is a new use of material. The materials and structure used in the sensor construction can be adjusted to result in a sensor that is sensitive to just thermal, gamma, or neutron stimulus, or any combination of the three. The tested design showed low sensitivity to thermal and gamma stimuli and high sensitivity to neutrons, with a fast response time.

  17. Field-induced self-assembly of iron oxide nanoparticles investigated using small-angle neutron scattering.

    PubMed

    Fu, Zhendong; Xiao, Yinguo; Feoktystov, Artem; Pipich, Vitaliy; Appavou, Marie-Sousai; Su, Yixi; Feng, Erxi; Jin, Wentao; Brückel, Thomas

    2016-11-03

    The magnetic-field-induced assembly of magnetic nanoparticles (NPs) provides a unique and flexible strategy in the design and fabrication of functional nanostructures and devices. We have investigated the field-induced self-assembly of core-shell iron oxide NPs dispersed in toluene by means of small-angle neutron scattering (SANS). The form factor of the core-shell NPs was characterized and analyzed using SANS with polarized neutrons. Large-scale aggregates of iron oxide NPs formed above 0.02 T as indicated by very-small-angle neutron scattering measurements. A three-dimensional long-range ordered superlattice of iron oxide NPs was revealed under the application of a moderate magnetic field. The crystal structure of the superlattice has been identified to be face-centred cubic.

  18. Determination of power distribution in the VVER-440 core on the basis of data from in-core monitors by means of a metric analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryanev, A. V.; Udumyan, D. K.; Kurchenkov, A. Yu., E-mail: s327@vver.kiae.ru

    2014-12-15

    Problems associated with determining the power distribution in the VVER-440 core on the basis of a neutron-physics calculation and data from in-core monitors are considered. A new mathematical scheme is proposed for this on the basis of a metric analysis. In relation to the existing mathematical schemes, the scheme in question improves the accuracy and reliability of the resulting power distribution.

  19. WWER-1000 core and reflector parameters investigation in the LR-0 reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaritsky, S. M.; Alekseev, N. I.; Bolshagin, S. N.

    2006-07-01

    Measurements and calculations carried out in the core and reflector of WWER-1000 mock-up are discussed: - the determination of the pin-to-pin power distribution in the core by means of gamma-scanning of fuel pins and pin-to-pin calculations with Monte Carlo code MCU-REA and diffusion codes MOBY-DICK (with WIMS-D4 cell constants preparation) and RADAR - the fast neutron spectra measurements by proton recoil method inside the experimental channel in the core and inside the channel in the baffle, and corresponding calculations in P{sub 3}S{sub 8} approximation of discrete ordinates method with code DORT and BUGLE-96 library - the neutron spectra evaluations (adjustment)more » in the same channels in energy region 0.5 eV-18 MeV based on the activation and solid state track detectors measurements. (authors)« less

  20. Experimental investigation of neutronic characteristics of the IR-8 reactor to confirm the results of calculations by MCU-PTR code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surkov, A. V., E-mail: surkov.andrew@gmail.com; Kochkin, V. N.; Pesnya, Yu. E.

    2015-12-15

    A comparison of measured and calculated neutronic characteristics (fast neutron flux and fission rate of {sup 235}U) in the core and reflector of the IR-8 reactor is presented. The irradiation devices equipped with neutron activation detectors were prepared. The determination of fast neutron flux was performed using the {sup 54}Fe (n, p) and {sup 58}Ni (n, p) reactions. The {sup 235}U fission rate was measured using uranium dioxide with 10% enrichment in {sup 235}U. The determination of specific activities of detectors was carried out by measuring the intensity of characteristic gamma peaks using the ORTEC gamma spectrometer. Neutron fields inmore » the core and reflector of the IR-8 reactor were calculated using the MCU-PTR code.« less

  1. Early results from NASA's SnowEx campaign

    NASA Astrophysics Data System (ADS)

    Kim, Edward; Gatebe, Charles; Hall, Dorothy; Misakonis, Amy; Elder, Kelly; Marshall, Hans Peter; Hiemstra, Chris; Brucker, Ludovic; Crawford, Chris; Kang, Do Hyuk; De Marco, Eugenia; Beckley, Matt; Entin, Jared

    2017-04-01

    SnowEx is a multi-year airborne snow campaign with the primary goal of addressing the question: How much water is stored in Earth's terrestrial snow-covered regions? Year 1 (2016-17) focuses on the distribution of snow-water equivalent (SWE) and the snow energy balance in a forested environment. The year 1 primary site is Grand Mesa and the secondary site is the Senator Beck Basin, both in western, Colorado, USA. Ten core sensors on four core aircraft will make observations using a broad suite of airborne sensors including active and passive microwave, and active and passive optical/infrared sensing techniques to determine the sensitivity and accuracy of these potential satellite remote sensing techniques, along with models, to measure snow under a range of forest conditions. SnowEx also includes an extensive range of ground truth measurements—in-situ samples, snow pits, ground based remote sensing measurements, and sophisticated new techniques. A detailed description of the data collected will be given and some early results will be presented. Seasonal snow cover is the largest single component of the cryosphere in areal extent (covering an average of 46M km2 of Earth's surface (31 % of land areas) each year). This seasonal snow has major societal impacts in the areas of water resources, natural hazards (floods and droughts), water security, and weather and climate. The only practical way to estimate the quantity of snow on a consistent global basis is through satellites. Yet, current space-based techniques underestimate storage of snow water equivalent (SWE) by as much as 50%, and model-based estimates can differ greatly vs. estimates based on remotely-sensed observations. At peak coverage, as much as half of snow-covered terrestrial areas involve forested areas, so quantifying the challenge represented by forests is important to plan any future snow mission. Single-sensor approaches may work for certain snow types and certain conditions, but not for others

  2. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Benjamin, E-mail: collinsbs@ornl.gov; Stimpson, Shane, E-mail: stimpsonsg@ornl.gov; Kelley, Blake W., E-mail: kelleybl@umich.edu

    2016-12-01

    A consistent “2D/1D” neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-classmore » computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.« less

  3. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    DOE PAGES

    Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; ...

    2016-08-25

    We derived a consistent “2D/1D” neutron transport method from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. Our paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. We also performed several applications on both leadership-class and industry-classmore » computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.« less

  4. Reasons for not using ecstasy: a qualitative study of non-users, ex-light users and ex-moderate users

    PubMed Central

    2012-01-01

    Background Although ecstasy is often consumed in the electronic music scene, not everyone with the opportunity to use it chooses to do so. The objective of this study was to understand the reasons for non-use or the cessation of use, which could provide information for public health interventions. Methods A qualitative reference method was used. Our “snowball” sample group consisted of 53 people who were split into three subgroups: non-users (NU, n = 23), ex-light users (EX-L, n = 12) and ex-moderate users (EX-M, n = 18). Individual, semi-structured interviews were conducted, transcribed and subjected to content analysis with the aid of NVivo8. Results Adverse health effects and personal values were given as reasons for non-use in the three groups. Non-users (NU) and ex-light users (EX-L) provided reasons that included fear of possible effects as well as moral, family and religious objections. Ex-moderate users (EX-M) cited reasons related to health complications and concomitant withdrawal from the electronic music scene. However, most of the ex-moderate users did not rule out the possibility of future use. Conclusions Potential effects and undesirable consequences appear to guide the decisions within the different groups. Prevention might target these motivations. Individuals who have used ecstasy indicate that social and environmental factors are the most important factors. PMID:22583984

  5. Cosmological constraints on the neutron lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvati, L.; Pagano, L.; Melchiorri, A.

    2016-03-01

    We derive new constraints on the neutron lifetime based on the recent Planck 2015 observations of temperature and polarization anisotropies of the CMB. Under the assumption of standard Big Bang Nucleosynthesis, we show that Planck data constrains the neutron lifetime to τ{sub n} = (907±69) [s] at 68% c.l.. Moreover, by including the direct measurements of primordial Helium abundance of Aver et al. (2015) and Izotov et al. (2014), we show that cosmological data provide the stringent constraints τ{sub n} = (875±19) [s] and τ{sub n} = (921±11) [s] respectively. The latter appears to be in tension with neutron lifetime value quoted by the Particle Data Group (τ{sub n} = (880.3±1.1) [s]).more » Future CMB surveys as COrE+, in combination with a weak lensing survey as EUCLID, could constrain the neutron lifetime up to a ∼ 6 [s] precision.« less

  6. Experience in estimating neutron poison worths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, R.T.; Congdon, S.P.

    1989-01-01

    Gadolinia, {sup 135}Xe, {sup 149}Sm, control rod, and soluble boron are five neutron poisons that may appear in light water reactor assemblies. Reliable neutron poison worth estimation is useful for evaluating core operating strategies, fuel cycle economics, and reactor safety design. Based on physical presence, neutron poisons can be divided into two categories: local poisons and global poisons. Gadolinia and control rod are local poisons, and {sup 135}Xe, {sup 149}Sm, and soluble boron are global poisons. The first-order perturbation method is commonly used to estimate nuclide worths in fuel assemblies. It is well known, however, that the first-order perturbation methodmore » was developed for small perturbations, such as the perturbation due to weak absorbers, and that neutron poisons are not weak absorbers. The authors have developed an improved method to replace the first-order perturbation method, which yields very poor results, for estimating local poison worths. It has also been shown that the first-order perturbation method seems adequate to estimate worths for global poisons caused by flux compensation.« less

  7. Many-particle theory of nuclear system with application to neutron-star matter and other systems

    NASA Technical Reports Server (NTRS)

    Yang, C. H.

    1978-01-01

    General problems in nuclear-many-body theory were considered. Superfluid states of neutron star matter and other strongly interacting many-fermion systems were analyzed by using the soft-core potential of Reid. The pion condensation in neutron star matter was also treated.

  8. The effects of stainless steel radial reflector on core reactivity for small modular reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Jung Kil, E-mail: jkkang@email.kings.ac.kr; Hah, Chang Joo, E-mail: changhah@kings.ac.kr; Cho, Sung Ju, E-mail: sungju@knfc.co.kr

    Commercial PWR core is surrounded by a radial reflector, which consists of a baffle and water. Radial reflector is designed to reflect neutron back into the core region to improve the neutron efficiency of the reactor and to protect the reactor vessels from the embrittling effects caused by irradiation during power operation. Reflector also helps to flatten the neutron flux and power distributions in the reactor core. The conceptual nuclear design for boron-free small modular reactor (SMR) under development in Korea requires to have the cycle length of 4∼5 years, rated power of 180 MWth and enrichment less than 5more » w/o. The aim of this paper is to analyze the effects of stainless steel radial reflector on the performance of the SMR using UO{sub 2} fuels. Three types of reflectors such as water, water/stainless steel 304 mixture and stainless steel 304 are selected to investigate the effect on core reactivity. Additionally, the thickness of stainless steel and double layer reflector type are also investigated. CASMO-4/SIMULATE-3 code system is used for this analysis. The results of analysis show that single layer stainless steel reflector is the most efficient reflector.« less

  9. Reactor Neutronics: Impact of Fissile Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidet, F.; Hill, R. N.

    Here, given a wide variety of reactor designs and fuel types, it can be difficult to identify the underlying cause of basic performance differences such as flux level and enrichment requirement. In this paper, using solely the definitions of the core multiplication factor and core power, simple relations have been derived allowing estimates of the flux ratio and fissile material concentration ratio for any reactor concept when 235U is replaced with 239Pu or vice-versa. These relations are functions of the neutron non-leakage probability, and one only needs to know number of neutrons emitted per fission, and the fission cross-section ratiomore » between the 235U system and the 239Pu system. It is found that for a reactor concept having significant leakage, the achievable flux level when using 239Pu as fissile material can be up to 45% larger than when using 235U as fissile material, and the required fissile concentration of 239Pu is up to 48% lower than that of 235U to achieve criticality.« less

  10. Reactor Neutronics: Impact of Fissile Material

    DOE PAGES

    Heidet, F.; Hill, R. N.

    2017-06-09

    Here, given a wide variety of reactor designs and fuel types, it can be difficult to identify the underlying cause of basic performance differences such as flux level and enrichment requirement. In this paper, using solely the definitions of the core multiplication factor and core power, simple relations have been derived allowing estimates of the flux ratio and fissile material concentration ratio for any reactor concept when 235U is replaced with 239Pu or vice-versa. These relations are functions of the neutron non-leakage probability, and one only needs to know number of neutrons emitted per fission, and the fission cross-section ratiomore » between the 235U system and the 239Pu system. It is found that for a reactor concept having significant leakage, the achievable flux level when using 239Pu as fissile material can be up to 45% larger than when using 235U as fissile material, and the required fissile concentration of 239Pu is up to 48% lower than that of 235U to achieve criticality.« less

  11. Assessment of the Neutronic and Fuel Cycle Performance of the Transatomic Power Molten Salt Reactor Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Sean; Dewan, Leslie; Massie, Mark

    This report presents results from a collaboration between Transatomic Power Corporation (TAP) and Oak Ridge National Laboratory (ORNL) to provide neutronic and fuel cycle analysis of the TAP core design through the Department of Energy Gateway for Accelerated Innovation in Nuclear (GAIN) Nuclear Energy Voucher program. The TAP concept is a molten salt reactor using configurable zirconium hydride moderator rod assemblies to shift the neutron spectrum in the core from mostly epithermal at beginning of life to thermal at end of life. Additional developments in the ChemTriton modeling and simulation tool provide the critical moderator-to-fuel ratio searches and time-dependent parametersmore » necessary to simulate the continuously changing physics in this complex system. The implementation of continuous-energy Monte Carlo transport and depletion tools in ChemTriton provide for full-core three-dimensional modeling and simulation. Results from simulations with these tools show agreement with TAP-calculated performance metrics for core lifetime, discharge burnup, and salt volume fraction, verifying the viability of reducing actinide waste production with this concept. Additional analyses of mass feed rates and enrichments, isotopic removals, tritium generation, core power distribution, core vessel helium generation, moderator rod heat deposition, and reactivity coeffcients provide additional information to make informed design decisions. This work demonstrates capabilities of ORNL modeling and simulation tools for neutronic and fuel cycle analysis of molten salt reactor concepts.« less

  12. Thermal structure and cooling of neutron stars with magnetized envelopes

    NASA Astrophysics Data System (ADS)

    Potekhin, A. Y.; Yakovlev, D. G.

    2001-07-01

    The thermal structure of neutron stars with magnetized envelopes is studied using modern physics input. The relation between the internal (Tint) and local surface temperatures is calculated and fitted by analytic expressions for magnetic field strengths B from 0 to 1016 G and arbitrary inclination of the field lines to the surface. The luminosity of a neutron star with dipole magnetic field is calculated and fitted as a function of B, Tint, stellar mass and radius. In addition, we simulate cooling of neutron stars with magnetized envelopes. In particular, we analyse ultramagnetized envelopes of magnetars and also the effects of the magnetic field of the Vela pulsar on the determination of critical temperatures of neutron and proton superfluids in its core.

  13. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures inmore » the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.« less

  14. Entrainment Coefficient and Effective Mass for Conduction Neutrons in Neutron Star Crust:. Macroscopic Treatment

    NASA Astrophysics Data System (ADS)

    Carter, Brandon; Chamel, Nicolas; Haensel, Pawel

    Phenomena such as pulsar frequency glitches are believed to be attributable to differential rotation of a current of "free" superfluid neutrons at densities above the "drip" threshold in the ionic crust of a neutron star. Such relative flow is shown to be locally describable by adaption of a canonical two-fluid treatment that emphasizes the role of the momentum covectors constructed by differentiation of action with respect to the currents, with allowance for stratification whereby the ionic number current may be conserved even when the ionic charge number Z is altered by beta processes. It is demonstrated that the gauge freedom to make different choices of the chemical basis determining which neutrons are counted as "free" does not affect their "superfluid" momentum covector, which must locally have the form of a gradient (though it does affect the "normal" momentum covector characterizing the protons and those neutrons that are considered to be "confined" in the nuclei). It is shown how the effect of "entrainment" (whereby the momentum directions deviate from those of the currents) is controlled by the (gauge-independent) mobility coefficient {K}, estimated in recent microscopical quantum mechanical investigations, which suggest that the corresponding (gauge-dependent) "effective mass" m⋆ of the free neutrons can become very large in some layers. The relation between this treatment of the crust layers and related work (using different definitions of "effective mass") intended for the deeper core layers is discussed.

  15. Ex Ante Research Explored: Numbers, Types and Use of Ex Ante Policy Studies by the Dutch Government

    ERIC Educational Resources Information Center

    Haarhuis, Carolien Maria Klein; Smit, Monika

    2017-01-01

    Ex ante research can contribute to evidence-informed policies. In this article, we explore numbers and types of ex ante studies as well as their use. First, we took stock of a potentially wide range of ex ante studies published by the Dutch government between 2005 and 2011, applying a systematic approach. Though unevenly distributed across…

  16. Ex post and ex ante willingness to pay (WTP) for the ICT Malaria Pf/Pv test kit in Myanmar.

    PubMed

    Cho-Min-Naing; Lertmaharit, S; Kamol-Ratanakul, P; Saul, A J

    2000-03-01

    Willingness to pay (WTP) for the ICT Malaria Pf/Pv test kit was assessed by the contingent valuation method using a bidding game approach in two villages in Myanmar. Kankone (KK) village has a rural health center (RHC) and Yae-Aye-Sann (YAS) is serviced by community health worker (CHW). The objectives were to assess WTP for the ICT Malaria Pf/Pv test kit and to determine factors affecting the WTP. In both villages WTP was assessed in two different conditions, ex post and ex ante. The ex post WTP was assessed at an RHC in the KK village and at the residence of a CHW in the YAS village on patients immediately following diagnosis of malaria. The ex ante WTP was assessed by household interviews in both villages on people with a prior history of malaria. Ordinary least squares (OLS) multiple regression analysis was used to analyze factors affecting WTP. The WTP was higher in ex post conditions than ex ante in both villages. WTP was significantly positively associated with the average monthly income of the respondents and severity of illness in both ex post and ex ante conditions (p < 0.001). Distance between the residence of the respondents and the health center was significantly positively associated (p < 0.05) in the ex ante condition in a household survey of YAS village. Traveling time to RHC had a negative relationship with WTP (p < 0.05) in the ex post condition in the RHC survey in KK village.

  17. Nuclear waste disposal utilizing a gaseous core reactor

    NASA Technical Reports Server (NTRS)

    Paternoster, R. R.

    1975-01-01

    The feasibility of a gaseous core nuclear reactor designed to produce power to also reduce the national inventories of long-lived reactor waste products through nuclear transmutation was examined. Neutron-induced transmutation of radioactive wastes is shown to be an effective means of shortening the apparent half life.

  18. Fabrication and Testing of a Modular Micro-Pocket Fission Detector Instrumentation System for Test Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Roberts, Jeremy A.; Unruh, Troy C.; McGregor, Douglas S.

    2018-01-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Measurement of the neutron-flux distribution within the reactor core provides a more complete understanding of the operating conditions in the reactor than typical ex-core sensors. Micro-Pocket Fission Detectors have been developed and tested previously but have been limited to single-node operation and have utilized highly specialized designs. The development of a widely deployable, multi-node Micro-Pocket Fission Detector assembly will enhance nuclear research capabilities. A modular, four-node Micro-Pocket Fission Detector array was designed, fabricated, and tested at Kansas State University. The array was constructed from materials that do not significantly perturb the neutron flux in the reactor core. All four sensor nodes were equally spaced axially in the array to span the fuel-region of the reactor core. The array was filled with neon gas, serving as an ionization medium in the small cavities of the Micro-Pocket Fission Detectors. The modular design of the instrument facilitates the testing and deployment of numerous sensor arrays. The unified design drastically improved device ruggedness and simplified construction from previous designs. Five 8-mm penetrations in the upper grid plate of the Kansas State University TRIGA Mk. II research nuclear reactor were utilized to deploy the array between fuel elements in the core. The Micro-Pocket Fission Detector array was coupled to an electronic support system which has been specially developed to support pulse-mode operation. The Micro-Pocket Fission Detector array composed of four sensors was used to monitor local neutron flux at a constant reactor power of 100 kWth at different axial locations simultaneously. The array was positioned at five different radial locations within the core to emulate the deployment of multiple arrays and develop a 2-dimensional measurement of

  19. Neutron-flux profile monitor for use in a fission reactor

    DOEpatents

    Kopp, M.K.; Valentine, K.H.

    1981-09-15

    A neutron flux monitor is provided which consists of a plurality of fission counters arranged as spaced-apart point detectors along a delay line. As a fission event occurs in any one of the counters, two delayed current pulses are generated at the output of the delay line. The time separation of the pulses identifies the counter in which the particular fission event occurred. Neutron flux profiles of reactor cores can be more accurately measured as a result.

  20. Neutron flux profile monitor for use in a fission reactor

    DOEpatents

    Kopp, Manfred K.; Valentine, Kenneth H.

    1983-01-01

    A neutron flux monitor is provided which consists of a plurality of fission counters arranged as spaced-apart point detectors along a delay line. As a fission event occurs in any one of the counters, two delayed current pulses are generated at the output of the delay line. The time separation of the pulses identifies the counter in which the particular fission event occured. Neutron flux profiles of reactor cores can be more accurately measured as a result.

  1. Ex vivo MR volumetry of human brain hemispheres.

    PubMed

    Kotrotsou, Aikaterini; Bennett, David A; Schneider, Julie A; Dawe, Robert J; Golak, Tom; Leurgans, Sue E; Yu, Lei; Arfanakis, Konstantinos

    2014-01-01

    The aims of this work were to (a) develop an approach for ex vivo MR volumetry of human brain hemispheres that does not contaminate the results of histopathological examination, (b) longitudinally assess regional brain volumes postmortem, and (c) investigate the relationship between MR volumetric measurements performed in vivo and ex vivo. An approach for ex vivo MR volumetry of human brain hemispheres was developed. Five hemispheres from elderly subjects were imaged ex vivo longitudinally. All datasets were segmented. The longitudinal behavior of volumes measured ex vivo was assessed. The relationship between in vivo and ex vivo volumetric measurements was investigated in seven elderly subjects imaged both antemortem and postmortem. This approach for ex vivo MR volumetry did not contaminate the results of histopathological examination. For a period of 6 months postmortem, within-subject volume variation across time points was substantially smaller than intersubject volume variation. A close linear correspondence was detected between in vivo and ex vivo volumetric measurements. Regional brain volumes measured with this approach for ex vivo MR volumetry remain relatively unchanged for a period of 6 months postmortem. Furthermore, the linear relationship between in vivo and ex vivo MR volumetric measurements suggests that this approach captures information linked to antemortem macrostructural brain characteristics. Copyright © 2013 Wiley Periodicals, Inc.

  2. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, P., E-mail: peter.andersson@physics.uu.se; Andersson-Sunden, E.; Sjöstrand, H.

    2014-08-01

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantagemore » of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm{sup −1}, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a

  3. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator.

    PubMed

    Andersson, P; Andersson-Sunden, E; Sjöstrand, H; Jacobsson-Svärd, S

    2014-08-01

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm(-1), solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful

  4. Ex Ante or Ex Post? Risk, Hedging and Prudence in the Restructured Power Business

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makholm, Jeff D.; Meehan, Eugene T.; Sullivan, Julia E.

    Inconsistent regulatory decisions continue to frustrate the establishment of a new ex ante regulatory equilibrium that will serve to prevent unfair and inefficient ex post prudence disallowances. Extreme volatility in gas and power markets will continue to tax the uneasy regulatory status quo until a new equilibrium can be established. (author)

  5. SMA texture and reorientation: simulations and neutron diffraction studies

    NASA Astrophysics Data System (ADS)

    Gao, Xiujie; Brown, Donald W.; Brinson, L. Catherine

    2005-05-01

    With increased usage of shape memory alloys (SMA) for applications in various fields, it is important to understand how the material behavior is affected by factors such as texture, stress state and loading history, especially for complex multiaxial loading states. Using the in-situ neutron diffraction loading facility (SMARTS diffractometer) and ex situ inverse pole figure measurement facility (HIPPO diffractometer) at the Los Alamos Neutron Science Center (LANCE), the macroscopic mechanical behavior and texture evolution of Nickel-Titanium (Nitinol) SMAs under sequential compression in alternating directions were studied. The simplified multivariant model developed at Northwestern University was then used to simulate the macroscopic behavior and the microstructural change of Nitinol under this sequential loading. Pole figures were obtained via post-processing of the multivariant results for volume fraction evolution and compared quantitatively well to the experimental results. The experimental results can also be used to test or verify other SMA constitutive models.

  6. Reactor Dosimetry State of the Art 2008

    NASA Astrophysics Data System (ADS)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    . Williams, A. P. Ribaric and T. Schnauber. Agile high-fidelity MCNP model development techniques for rapid mechanical design iteration / J. A. Kulesza.Extension of Raptor-M3G to r-8-z geometry for use in reactor dosimetry applications / M. A. Hunter, G. Longoni and S. L. Anderson. In vessel exposure distributions evaluated with MCNP5 for Atucha II / J. M. Longhino, H. Blaumann and G. Zamonsky. Atucha I nuclear power plant azimutal ex-vessel flux profile evaluation / J. M. Longhino ... [et al.]. UFTR thermal column characterization and redesign for maximized thermal flux / C. Polit and A. Haghighat. Activation counter using liquid light-guide for dosimetry of neutron burst / M. Hayashi ... [et al.]. Control rod reactivity curves for the annular core research reactor / K. R. DePriest ... [et al.]. Specification of irradiation conditions in VVER-440 surveillance positions / V. Kochkin ... [et al.]. Simulations of Mg-Ar ionisation and TE-TE ionisation chambers with MCNPX in a straightforward gamma and beta irradiation field / S. Nievaart ... [et al.]. The change of austenitic stainless steel elements content in the inner parts of VVER-440 reactor during operation / V. Smutný, J. Hep and P. Novosad. Fast neutron environmental spectrometry using disk activation / G. Lövestam ... [et al.]. Optimization of the neutron activation detector location scheme for VVER-lOOO ex-vessel dosimetry / V. N. Bukanov ... [et al.]. Irradiation conditions for surveillance specimens located into plane containers installed in the WWER-lOOO reactor of unit 2 of the South-Ukrainian NPP / O. V. Grytsenko. V. N. Bukanov and S. M. Pugach. Conformity between LRO mock-ups and VVERS NPP RPV neutron flux attenuation / S. Belousov. Kr. Ilieva and D. Kirilova. FLUOLE: a new relevant experiment for PWR pressure vessel surveillance / D. Beretz ... [et al.]. Transport of neutrons and photons through the iron and water layers / M. J. Kost'ál ... [et al.]. Condition evaluation of spent nuclear fuel assemblies

  7. Ex vivo lung perfusion.

    PubMed

    Reeb, Jeremie; Cypel, Marcelo

    2016-03-01

    Lung transplantation is an established life-saving therapy for patients with end-stage lung disease. Unfortunately, greater success in lung transplantation is hindered by a shortage of lung donors and the relatively poor early-, mid-, and long-term outcomes associated with severe primary graft dysfunction. Ex vivo lung perfusion has emerged as a modern preservation technique that allows for a more accurate lung assessment and improvement in lung quality. This review outlines the: (i) rationale behind the method; (ii) techniques and protocols; (iii) Toronto ex vivo lung perfusion method; (iv) devices available; and (v) clinical experience worldwide. We also highlight the potential of ex vivo lung perfusion in leading a new era of lung preservation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Ex-vivo MR Volumetry of Human Brain Hemispheres

    PubMed Central

    Kotrotsou, Aikaterini; Bennett, David A.; Schneider, Julie A.; Dawe, Robert J.; Golak, Tom; Leurgans, Sue E.; Yu, Lei; Arfanakis, Konstantinos

    2013-01-01

    Purpose The aims of this work were to: a) develop an approach for ex-vivo MR volumetry of human brain hemispheres that does not contaminate the results of histopathological examination, b) longitudinally assess regional brain volumes postmortem, and c) investigate the relationship between MR volumetric measurements performed in-vivo and ex-vivo. Methods An approach for ex-vivo MR volumetry of human brain hemispheres was developed. Five hemispheres from elderly subjects were imaged ex-vivo longitudinally. All datasets were segmented. The longitudinal behavior of volumes measured ex-vivo was assessed. The relationship between in-vivo and ex-vivo volumetric measurements was investigated in seven elderly subjects imaged both ante-mortem and postmortem. Results The presented approach for ex-vivo MR volumetry did not contaminate the results of histopathological examination. For a period of 6 months postmortem, within-subject volume variation across time points was substantially smaller than inter-subject volume variation. A close linear correspondence was detected between in-vivo and ex-vivo volumetric measurements. Conclusion Regional brain volumes measured with the presented approach for ex-vivo MR volumetry remain relatively unchanged for a period of 6 months postmortem. Furthermore, the linear relationship between in-vivo and ex-vivo MR volumetric measurements suggests that the presented approach captures information linked to ante-mortem macrostructural brain characteristics. PMID:23440751

  9. Fast Heating of Imploded Core with Counterbeam Configuration.

    PubMed

    Mori, Y; Nishimura, Y; Hanayama, R; Nakayama, S; Ishii, K; Kitagawa, Y; Sekine, T; Sato, N; Kurita, T; Kawashima, T; Kan, H; Komeda, O; Nishi, T; Azuma, H; Hioki, T; Motohiro, T; Sunahara, A; Sentoku, Y; Miura, E

    2016-07-29

    A tailored-pulse-imploded core with a diameter of 70  μm is flashed by counterirradiating 110 fs, 7 TW laser pulses. Photon emission (>40  eV) from the core exceeds the emission from the imploded core by 6 times, even though the heating pulse energies are only one seventh of the implosion energy. The coupling efficiency from the heating laser to the core using counterirradiation is 14% from the enhancement of photon emission. Neutrons are also produced by counterpropagating fast deuterons accelerated by the photon pressure of the heating pulses. A collisional two-dimensional particle-in-cell simulation reveals that the collisionless two counterpropagating fast-electron currents induce mega-Gauss magnetic filaments in the center of the core due to the Weibel instability. The counterpropagating fast-electron currents are absolutely unstable and independent of the core density and resistivity. Fast electrons with energy below a few MeV are trapped by these filaments in the core region, inducing an additional coupling. This might lead to the observed bright photon emissions.

  10. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    NASA Astrophysics Data System (ADS)

    Mohammed, Abdul Aziz; Pauzi, Anas Muhamad; Rahman, Shaik Mohmmed Haikhal Abdul; Zin, Muhamad Rawi Muhammad; Jamro, Rafhayudi; Idris, Faridah Mohamad

    2016-01-01

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 (233U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintaining the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.

  11. Measurement of neutron spectra in the experimental reactor LR-0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prenosil, Vaclav; Mravec, Filip; Veskrna, Martin

    2015-07-01

    The measurement of fast neutron fluxes is important in many areas of nuclear technology. It affects the stability of the reactor structural components, performance of fuel, and also the fuel manner. The experiments performed at the LR-0 reactor were in the past focused on the measurement of neutron field far from the core, in reactor pressure vessel simulator or in biological shielding simulator. In the present the measurement in closer regions to core became more important, especially measurements in structural components like reactor baffle. This importance increases with both reactor power increase and also long term operation. Other important taskmore » is an increasing need for the measurement close to the fuel. The spectra near the fuel are aimed due to the planned measurements with the FLIBE salt, in FHR / MSR research, where one of the task is the measurement of the neutron spectra in it. In both types of experiments there is strong demand for high working count rate. The high count rate is caused mainly by high gamma background and by high fluxes. The fluxes in core or in its vicinity are relatively high to ensure safe reactor operation. This request is met in the digital spectroscopic apparatus. All experiments were realized in the LR-0 reactor. It is an extremely flexible light water zero-power research reactor, operated by the Research Center Rez (Czech Republic). (authors)« less

  12. 24 CFR 26.3 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Ex parte communications. 26.3... Development HEARING PROCEDURES Hearings Before Hearing Officers Hearing Officer § 26.3 Ex parte communications. (a) Definition. An ex parte communication is any communication with a hearing officer, direct or...

  13. Neutronic and thermal-hydraulic analysis of fission molybdenum-99 production at Tehran Research Reactor using LEU plate targets.

    PubMed

    Abedi, Ebrahim; Ebrahimkhani, Marzieh; Davari, Amin; Mirvakili, Seyed Mohammad; Tabasi, Mohsen; Maragheh, Mohammad Ghannadi

    2016-12-01

    Efficient and safe production of molybdenum-99 ( 99 Mo) radiopharmaceutical at Tehran Research Reactor (TRR) via fission of LEU targets is studied. Neutronic calculations are performed to evaluate produced 99 Mo activity, core neutronic safety parameters and also the power deposition values in target plates during a 7 days irradiation interval. Thermal-hydraulic analysis has been also carried out to obtain thermal behavior of these plates. Using Thermal-hydraulic analysis, it can be concluded that the safety parameters are satisfied in the current study. Consequently, the present neutronic and thermal-hydraulic calculations show efficient 99 Mo production is accessible at significant activity values in TRR current core configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. In situ high-pressure measurement of crystal solubility by using neutron diffraction

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Hu, Qiwei; Fang, Leiming; He, Duanwei; Chen, Xiping; Xie, Lei; Chen, Bo; Li, Xin; Ni, Xiaolin; Fan, Cong; Liang, Akun

    2018-05-01

    Crystal solubility is one of the most important thermo-physical properties and plays a key role in industrial applications, fundamental science, and geoscientific research. However, high-pressure in situ measurements of crystal solubility remain very challenging. Here, we present a method involving high-pressure neutron diffraction for making high-precision in situ measurements of crystal solubility as a function of pressure over a wide range of pressures. For these experiments, we designed a piston-cylinder cell with a large chamber volume for high-pressure neutron diffraction. The solution pressures are continuously monitored in situ based on the equation of state of the sample crystal. The solubility at a high pressure can be obtained by applying a Rietveld quantitative multiphase analysis. To evaluate the proposed method, we measured the high-pressure solubility of NaCl in water up to 610 MPa. At a low pressure, the results are consistent with the previous results measured ex situ. At a higher pressure, more reliable data could be provided by using an in situ high-pressure neutron diffraction method.

  15. 48 CFR 6301.4 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CONTRACT APPEALS BOARD OF CONTRACT APPEALS 6301.4 Ex parte communications. Ex parte communications, that is, written or oral communications with the Board by or for one party only without notice to the other, are... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Ex parte communications...

  16. Effects influencing the grain connectivity in ex-situ MgB 2 wires

    NASA Astrophysics Data System (ADS)

    Kováč, P.; Hušek, I.; Kulich, M.; Melišek, T.; Hušeková, K.; Dobročka, E.

    2010-03-01

    Single-core MgB 2/Fe ex-situ wires have been made by powder-in-tube (PIT) using: (i) commercial Alfa Aesar (AA) powder deformed by variable modes, (ii) AA powder oxidized by air milling and heat treatment and (iii) AA powder chemically treated by acetic and benzoic acid. All samples were finally annealed at 950 °C/0.5 h in Argon. The effect of deformation, oxidation and chemical treatment on the transport properties of MgB 2 wires was tested. Differences in critical currents, transition temperatures and normal state resistivity are shown and discussed.

  17. Gamma Decay of Unbound Neutron-Hole States in 133Sn

    NASA Astrophysics Data System (ADS)

    Vaquero, V.; Jungclaus, A.; Doornenbal, P.; Wimmer, K.; Gargano, A.; Tostevin, J. A.; Chen, S.; Nácher, E.; Sahin, E.; Shiga, Y.; Steppenbeck, D.; Taniuchi, R.; Xu, Z. Y.; Ando, T.; Baba, H.; Garrote, F. L. Bello; Franchoo, S.; Hadynska-Klek, K.; Kusoglu, A.; Liu, J.; Lokotko, T.; Momiyama, S.; Motobayashi, T.; Nagamine, S.; Nakatsuka, N.; Niikura, M.; Orlandi, R.; Saito, T.; Sakurai, H.; Söderström, P. A.; Tveten, G. M.; Vajta, Zs.; Yalcinkaya, M.

    2017-05-01

    Excited states in the nucleus 133Sn, with one neutron outside the double magic 132Sn core, were populated following one-neutron knockout from a 134Sn beam on a carbon target at relativistic energies at the Radioactive Isotope Beam Factory at RIKEN. Besides the γ rays emitted in the decay of the known neutron single-particle states in 133Sn additional γ strength in the energy range 3.5-5.5 MeV was observed for the first time. Since the neutron-separation energy of 133Sn is low, Sn=2.402 (4 ) MeV , this observation provides direct evidence for the radiative decay of neutron-unbound states in this nucleus. The ability of electromagnetic decay to compete successfully with neutron emission at energies as high as 3 MeV above threshold is attributed to a mismatch between the wave functions of the initial and final states in the latter case. These findings suggest that in the region southeast of 132Sn nuclear structure effects may play a significant role in the neutron versus γ competition in the decay of unbound states. As a consequence, the common neglect of such effects in the evaluation of the neutron-emission probabilities in calculations of global β -decay properties for astrophysical simulations may have to be reconsidered.

  18. Neutron stars interiors: Theory and reality

    NASA Astrophysics Data System (ADS)

    Stone, J. R.

    2016-03-01

    There are many fascinating processes in the universe which we observe in more detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in a core-collapse supernova explosion, one of the most violent events in the universe. As a result, the densest objects in the universe, neutron stars and/or black holes, are created. The physical basis of these events should be understood in line with observation. Unfortunately, available data do not provide adequate constraints for many theoretical models of dense matter. One of the most open areas of research is the composition of matter in the cores of neutron stars. Unambiguous fingerprints for the appearance and evolution of particular components, such as strange baryons and mesons, with increasing density, have not been identified. In particular, the hadron-quark phase transition remains a subject of intensive research. In this contribution we briefly survey the most promising observational and theoretical directions leading to progress in understanding high density matter in neutron stars. A possible way forward in modeling high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model makes connection between hadronic structure and the underlying quark make-up. It offers a natural explanation for the saturation of nuclear force and treats high-density matter, containing the full baryon octet, in terms of four uniquely defined parameters adjusted to properties of symmetric nuclear matter at saturation.

  19. 29 CFR 2700.82 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Miscellaneous § 2700.82 Ex parte communications. (a) For purposes of this section, the following definitions shall apply: (1) Ex parte communication means an oral or written communication not on the public record... 29 Labor 9 2010-07-01 2010-07-01 false Ex parte communications. 2700.82 Section 2700.82 Labor...

  20. Constraining Exoplanet Habitability with HabEx

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler

    2018-01-01

    The Habitable Exoplanet Imaging mission, or HabEx, is one of four flagship mission concepts currently under study for the upcoming 2020 Decadal Survey of Astronomy and Astrophysics. The broad goal of HabEx will be to image and study small, rocky planets in the Habitable Zones of nearby stars. Additionally, HabEx will pursue a range of other astrophysical investigations, including the characterization of non-habitable exoplanets and detailed observations of stars and galaxies. Critical to the capability of HabEx to understand Habitable Zone exoplanets will be its ability to search for signs of surface liquid water (i.e., habitability) and an active biosphere. Photometry and moderate resolution spectroscopy, spanning the ultraviolet through near-infrared spectral ranges, will enable constraints on key habitability-related atmospheric species and properties (e.g., surface pressure). In this poster, we will discuss approaches to detecting signs of habitability in reflected-light observations of rocky exoplanets. We will also present initial results for modeling experiments aimed at demonstrating the capabilities of HabEx to study and understand Earth-like worlds around other stars.

  1. ExMC Technology Watch

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Barr, Y.; Watkins, S.; Fung, P.; McGrath, T.; Baumann, D.

    2012-01-01

    The Technology Watch (Tech Watch) project is a NASA endeavor conducted under the Human Research Program's (HRP) Exploration Medical Capability (ExMC) element, and focusing on ExMC technology gaps. The project involves several NASA centers, including the Johnson Space Center (JSC), Glenn Research Center (GRC), Ames Research Center (ARC), and the Langley Research Center (LaRC). The objective of Tech Watch is to identify emerging, high-impact technologies that augment current NASA HRP technology development efforts. Identifying such technologies accelerates the development of medical care and research capabilities for the mitigation of potential health issues encountered during human space exploration missions. The aim of this process is to leverage technologies developed by academia, industry and other government agencies and to identify the effective utilization of NASA resources to maximize the HRP return on investment. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion and further NASA's goal to provide a safe and healthy environment for human exploration. In 2011, the major focus areas for Tech Watch included information dissemination, education outreach and public accessibility to technology gaps and gap reports. The dissemination of information was accomplished through site visits to research laboratories and/or companies, and participation at select conferences where Tech Watch objectives and technology gaps were presented. Presentation of such material provided researchers with insights on NASA ExMC needs for space exploration and an opportunity to discuss potential areas of common interest. The second focus area, education outreach, was accomplished via two mechanisms. First, several senior student projects, each related to an ExMC technology gap, were sponsored by the various NASA centers. These projects presented ExMC related technology problems firsthand to collegiate laboratories

  2. ExMC Technology Watch

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Barr, Y.; Watkins, S.; Fung, P.; McGrath, T.; Baumann, D.

    2012-01-01

    The Technology Watch (Tech Watch) project is a NASA endeavor conducted under the Human Research Programs (HRP) Exploration Medical Capability (ExMC) element, and focusing on ExMC technology gaps. The project involves several NASA centers, including the Johnson Space Center (JSC), Glenn Research Center (GRC), Ames Research Center (ARC), and the Langley Research Center (LaRC). The objective of Tech Watch is to identify emerging, high-impact technologies that augment current NASA HRP technology development efforts. Identifying such technologies accelerates the development of medical care and research capabilities for the mitigation of potential health issues encountered during human space exploration missions. The aim of this process is to leverage technologies developed by academia, industry and other government agencies and to identify the effective utilization of NASA resources to maximize the HRP return on investment. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion and further NASAs goal to provide a safe and healthy environment for human exploration. In 2011, the major focus areas for Tech Watch included information dissemination, education outreach and public accessibility to technology gaps and gap reports. The dissemination of information was accomplished through site visits to research laboratories and/or companies, and participation at select conferences where Tech Watch objectives and technology gaps were presented. Presentation of such material provided researchers with insights on NASA ExMC needs for space exploration and an opportunity to discuss potential areas of common interest. The second focus area, education outreach, was accomplished via two mechanisms. First, several senior student projects, each related to an ExMC technology gap, were sponsored by the various NASA centers. These projects presented ExMC related technology problems firsthand to collegiate laboratories

  3. ExMC Technology Watch

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Watkins, S.; Shaw, T.

    2014-01-01

    The Technology Watch (Tech Watch) project is directed by the NASA Human Research Program's (HRP) Exploration Medical Capability (ExMC) element, and primarily focuses on ExMC technology gaps. The project coordinates the efforts of multiple NASA centers, including the Johnson Space Center (JSC), Glenn Research Center (GRC), Ames Research Center (ARC), and the Langley Research Center (LaRC). The objective of Tech Watch is to identify emerging, high-impact technologies that augment current NASA HRP technology development efforts. Identifying such technologies accelerates the development of medical care and research capabilities for the mitigation of potential health issues encountered during human space exploration missions. The aim of this process is to leverage technologies developed by academia, industry and other government agencies and to identify the effective utilization of NASA resources to maximize the HRP return on investment. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion, and advance NASA's goal to provide a safe and healthy environment for human exploration. In fiscal year 2013, the Tech Watch project maintained student project activity aimed at specific ExMC gaps, completed the gap report review cycle for all gaps through a maturated gap report review process, and revised the ExMC Tech Watch Sharepoint site for enhanced data content and organization. Through site visits, internships and promotions via aerospace journals, several student projects were initiated and completed this past year. Upon project completion, the students presented their results via telecom or WebEx to the ExMC Element as a whole. The upcoming year will continue to forge strategic alliances and student projects in the interest of technology and knowledge gap closure. Through the population of Sharepoint with technologies assessed by the gap owners, the database expansion will develop a more comprehensive

  4. ExMC Technology Watch

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Watkins, S.; Shaw, T.

    2014-01-01

    The Technology Watch (Tech Watch) project is directed by the NASA Human Research Programs (HRP) Exploration Medical Capability (ExMC) element, and primarily focuses on ExMC technology gaps. The project coordinates the efforts of multiple NASA centers, including the Johnson Space Center (JSC), Glenn Research Center (GRC), Ames Research Center (ARC), and the Langley Research Center (LaRC). The objective of Tech Watch is to identify emerging, high-impact technologies that augment current NASA HRP technology development efforts. Identifying such technologies accelerates the development of medical care and research capabilities for the mitigation of potential health issues encountered during human space exploration missions. The aim of this process is to leverage technologies developed by academia, industry and other government agencies and to identify the effective utilization of NASA resources to maximize the HRP return on investment. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion, and advance NASAs goal to provide a safe and healthy environment for human exploration. In fiscal year 2013, the Tech Watch project maintained student project activity aimed at specific ExMC gaps, completed the gap report review cycle for all gaps through a maturated gap report review process, and revised the ExMC Tech Watch Sharepoint site for enhanced data content and organization. Through site visits, internships and promotions via aerospace journals, several student projects were initiated and completed this past year. Upon project completion, the students presented their results via telecom or WebEx to the ExMC Element as a whole. The upcoming year will continue to forge strategic alliances and student projects in the interest of technology and knowledge gap closure. Through the population of Sharepoint with technologies assessed by the gap owners, the database expansion will develop a more comprehensive

  5. Neutronics and Thermal Hydraulics Study for Using a Low-Enriched Uranium Core in the Advanced Test Reactor -- 2008 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. S. Chang; M. A. Lillo; R. G. Ambrosek

    2008-06-01

    The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuelmore » cycle burnup comparison analysis. Using the current HEU U 235 enrichment of 93.0 % as a baseline, an analysis was performed to determine the low-enriched uranium (LEU) density and U-235 enrichment required in the fuel meat to yield an equivalent K-eff versus effective full power days (EFPDs) between the HEU and the LEU cores. The MCNP ATR 1/8th core model was used to optimize the U 235 loading in the LEU core, such that the differences in K-eff and heat flux profiles between the HEU and LEU cores were minimized. The depletion methodology MCWO was used to calculate K-eff versus EFPDs in this paper. The MCWO-calculated results for the LEU demonstrated adequate excess reactivity such that the K-eff versus EFPDs plot is similar to the ATR reference HEU case study. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm (20 mil). In this work, the proposed LEU (U-10Mo) core conversion case with nominal fuel meat thickness of 0.330 mm (13 mil) and U-235 enrichment of 19.7 wt% is used to optimize the radial heat flux profile by varying the fuel meat thickness from 0.191 mm (7.0 mil) to 0.330 mm (13.0 mil) at the inner 4 fuel plates (1-4) and outer 4 fuel plates (16-19). A 0.8g of Boron-10, a burnable absorber, was added in the inner and outer plates to reduce the initial excess reactivity, and the peak to average ratio of

  6. SU-E-T-132: Assess the Shielding of Secondary Neutrons From Patient Collimator in Proton Therapy Considering Secondary Photons Generated in the Shielding Process with Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanaka, M; Takashina, M; Kurosu, K

    Purpose: In this study we present Monte Carlo based evaluation of the shielding effect for secondary neutrons from patient collimator, and secondary photons emitted in the process of neutron shielding by combination of moderator and boron-10 placed around patient collimator. Methods: The PHITS Monte Carlo Simulation radiation transport code was used to simulate the proton beam (Ep = 64 to 93 MeV) from a proton therapy facility. In this study, moderators (water, polyethylene and paraffin) and boron (pure {sup 10}B) were placed around patient collimator in this order. The rate of moderator and boron thicknesses was changed fixing the totalmore » thickness at 3cm. The secondary neutron and photons doses were evaluated as the ambient dose equivalent per absorbed dose [H*(10)/D]. Results: The secondary neutrons are shielded more effectively by combination moderators and boron. The most effective combination of shielding neutrons is the polyethylene of 2.4 cm thick and the boron of 0.6 cm thick and the maximum reduction rate is 47.3 %. The H*(10)/D of secondary photons in the control case is less than that of neutrons by two orders of magnitude and the maximum increase of secondary photons is 1.0 µSv/Gy with the polyethylene of 2.8 cm thick and the boron of 0.2 cm thick. Conclusion: The combination of moderators and boron is beneficial for shielding secondary neutrons. Both the secondary photons of control and those emitted in the shielding neutrons are very lower than the secondary neutrons and photon has low RBE in comparison with neutron. Therefore the secondary photons can be ignored in the shielding neutrons.This work was supported by JSPS Core-to-Core Program (No.23003). This work was supported by JSPS Core-to-Core Program (No.23003)« less

  7. Simulation on reactor TRIGA Puspati core kinetics fueled with thorium (Th) based fuel element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammed, Abdul Aziz, E-mail: azizM@uniten.edu.my; Rahman, Shaik Mohmmed Haikhal Abdul; Pauzi, Anas Muhamad, E-mail: anas@uniten.edu.my

    2016-01-22

    In confronting global energy requirement and the search for better technologies, there is a real case for widening the range of potential variations in the design of nuclear power plants. Smaller and simpler reactors are attractive, provided they can meet safety and security standards and non-proliferation issues. On fuel cycle aspect, thorium fuel cycles produce much less plutonium and other radioactive transuranic elements than uranium fuel cycles. Although not fissile itself, Th-232 will absorb slow neutrons to produce uranium-233 ({sup 233}U), which is fissile. By introducing Thorium, the numbers of highly enriched uranium fuel element can be reduced while maintainingmore » the core neutronic performance. This paper describes the core kinetic of a small research reactor core like TRIGA fueled with a Th filled fuel element matrix using a general purpose Monte Carlo N-Particle (MCNP) code.« less

  8. 19 CFR 207.5 - Ex parte meetings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Ex parte meetings. 207.5 Section 207.5 Customs... EXPORTS TO THE UNITED STATES General Provisions § 207.5 Ex parte meetings. There shall be included in the record of each investigation a record of ex parte meetings as required by section 777(a)(3) of the Act...

  9. Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi

    2013-11-29

    This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implementmore » a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.« less

  10. Determining the Optimal Number of Core Needle Biopsy Passes for Molecular Diagnostics.

    PubMed

    Hoang, Nam S; Ge, Benjamin H; Pan, Lorraine Y; Ozawa, Michael G; Kong, Christina S; Louie, John D; Shah, Rajesh P

    2018-03-01

    The number of core biopsy passes required for adequate next-generation sequencing is impacted by needle cut, needle gauge, and the type of tissue involved. This study evaluates diagnostic adequacy of core needle lung biopsies based on number of passes and provides guidelines for other tissues based on simulated biopsies in ex vivo porcine organ tissues. The rate of diagnostic adequacy for pathology and molecular testing from lung biopsy procedures was measured for eight operators pre-implementation (September 2012-October 2013) and post-implementation (December 2013-April 2014) of a standard protocol using 20-gauge side-cut needles for ten core biopsy passes at a single academic hospital. Biopsy pass volume was then estimated in ex vivo porcine muscle, liver, and kidney using side-cut devices at 16, 18, and 20 gauge and end-cut devices at 16 and 18 gauge to estimate minimum number of passes required for adequate molecular testing. Molecular diagnostic adequacy increased from 69% (pre-implementation period) to 92% (post-implementation period) (p < 0.001) for lung biopsies. In porcine models, both 16-gauge end-cut and side-cut devices require one pass to reach the validated volume threshold to ensure 99% adequacy for molecular characterization, while 18- and 20-gauge devices require 2-5 passes depending on needle cut and tissue type. Use of 20-gauge side-cut core biopsy needles requires a significant number of passes to ensure diagnostic adequacy for molecular testing across all tissue types. To ensure diagnostic adequacy for molecular testing, 16- and 18-gauge needles require markedly fewer passes.

  11. Equation of state for neutron stars. Some recent developments

    NASA Astrophysics Data System (ADS)

    Haensel, P.; Fortin, M.

    2017-12-01

    Calculations using the chiral effective field theory (ChEFT) indicate that the four-body force contribution to the equation of state (EOS) of pure neutron matter (PNM) at the nuclear density n 0 is negligibly small. However, the overall uncertainty in the EOS of PNM at n 0 remains ∼ 20%. Relativistic mean field (RMF) calculations with in-medium scaling, and including hyperons and Δ resonances, can be made consistent with recent nuclear and astrophysical constraints. Dirac-Brueckner-Hartree-Fock calculations with some medium dependence of the nuclear interaction yield neutron star (NS) models with hyperonic cores consistent with 2 M⊙ stars and agreeing with the saturation parameters of nuclear matter. Many unified EOS for the NS crust and core were calculated, and are reviewed here. The effect of the finite size of baryons on the EOS, its treatment via the excluded-volume approximation, and its relevance for the hypothetical hybrid-star twins at ∼ 2 M⊙ are dicussed.

  12. ExGUtils: A Python Package for Statistical Analysis With the ex-Gaussian Probability Density.

    PubMed

    Moret-Tatay, Carmen; Gamermann, Daniel; Navarro-Pardo, Esperanza; Fernández de Córdoba Castellá, Pedro

    2018-01-01

    The study of reaction times and their underlying cognitive processes is an important field in Psychology. Reaction times are often modeled through the ex-Gaussian distribution, because it provides a good fit to multiple empirical data. The complexity of this distribution makes the use of computational tools an essential element. Therefore, there is a strong need for efficient and versatile computational tools for the research in this area. In this manuscript we discuss some mathematical details of the ex-Gaussian distribution and apply the ExGUtils package, a set of functions and numerical tools, programmed for python, developed for numerical analysis of data involving the ex-Gaussian probability density. In order to validate the package, we present an extensive analysis of fits obtained with it, discuss advantages and differences between the least squares and maximum likelihood methods and quantitatively evaluate the goodness of the obtained fits (which is usually an overlooked point in most literature in the area). The analysis done allows one to identify outliers in the empirical datasets and criteriously determine if there is a need for data trimming and at which points it should be done.

  13. ExGUtils: A Python Package for Statistical Analysis With the ex-Gaussian Probability Density

    PubMed Central

    Moret-Tatay, Carmen; Gamermann, Daniel; Navarro-Pardo, Esperanza; Fernández de Córdoba Castellá, Pedro

    2018-01-01

    The study of reaction times and their underlying cognitive processes is an important field in Psychology. Reaction times are often modeled through the ex-Gaussian distribution, because it provides a good fit to multiple empirical data. The complexity of this distribution makes the use of computational tools an essential element. Therefore, there is a strong need for efficient and versatile computational tools for the research in this area. In this manuscript we discuss some mathematical details of the ex-Gaussian distribution and apply the ExGUtils package, a set of functions and numerical tools, programmed for python, developed for numerical analysis of data involving the ex-Gaussian probability density. In order to validate the package, we present an extensive analysis of fits obtained with it, discuss advantages and differences between the least squares and maximum likelihood methods and quantitatively evaluate the goodness of the obtained fits (which is usually an overlooked point in most literature in the area). The analysis done allows one to identify outliers in the empirical datasets and criteriously determine if there is a need for data trimming and at which points it should be done. PMID:29765345

  14. Tracing footprints of environmental events in tree ring chemistry using neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Sahin, Dagistan

    experimental NAA were developed to ensure an acceptable accuracy and certainty in the elemental concentration measurements in tree-ring samples. Two independent analysis methods of NAA were used; the well known k-zero method and a novel method developed in this study, called the Multi-isotope Iterative Westcott (MIW) method. The MIW method uses reaction rate probabilities for a group of isotopes, which can be calculated by a neutronic simulation or measured by experimentation, and determines the representative values for the neutron flux and neutron flux characterization parameters based on Westcott convention. Elemental concentration calculations for standard reference material and tree-ring samples were then performed using the MIW and k-zero analysis methods of the NAA and the results were cross verified. In the computational part of this study, a detailed burnup coupled neutronic simulation was developed to analyze real-time neutronic changes in a TRIGA Mark III reactor core, in this study, the Penn State Breazeale Reactor (PSBR) core. To the best of the author`s knowledge, this is the first burnup coupled neutronic simulation with realistic time steps and full fuel temperature profile for a TRIGA reactor using Monte Carlo Utility for Reactor Evolutions (MURE) code and Monte Carlo Neutral-Particle Code (MCNP) coupling. High fidelity and flexibility in the simulation was aimed to replicate the real core operation through the day. This approach resulted in an enhanced accuracy in neutronic representation of the PSBR core with respect to previous neutronic simulation models for the PSBR core. An important contribution was made in the NAA experimentation practices employed in Dendrochemistry studies at the RSEC. Automated laboratory control and analysis software for NAA measurements in the RSEC Radionuclide Applications Laboratory was developed. Detailed laboratory procedures were written in this study comprising preparation, handling and measurements of tree-ring samples in

  15. Open cycle gas core nuclear rockets

    NASA Technical Reports Server (NTRS)

    Ragsdale, Robert

    1991-01-01

    The open cycle gas core engine is a nuclear propulsion device. Propulsion is provided by hot hydrogen which is heated directly by thermal radiation from the nuclear fuel. Critical mass is sustained in the uranium plasma in the center. It has typically 30 to 50 kg of fuel. It is a thermal reactor in the sense that fissions are caused by absorption of thermal neutrons. The fast neutrons go out to an external moderator/reflector material and, by collision, slow down to thermal energy levels, and then come back in and cause fission. The hydrogen propellant is stored in a tank. The advantage of the concept is very high specific impulse because you can take the plasma to any temperature desired by increasing the fission level by withdrawing or turning control rods or control drums.

  16. Gravitational radiation from rapidly rotating nascent neutron stars

    NASA Technical Reports Server (NTRS)

    Lai, Dong; Shapiro, Stuart L.

    1995-01-01

    We study the secular evolution and gravitational wave signature of a newly formed, rapidly rotating neutron star. The neutron star may arise from core collapse in a massive star or from the accretion-induced collapse of a white dwarf. After a brief dynamical phase, the nascent neutron star settles into an axisymmetric, secularly unstable state. Gravitational radiation drives the star to a nonaxisymmetric, stationary equilibrium configuration via the bar-mode instability. The emitted quasi-periodic gravitational waves have a unique signature: the wave frequency sweeps downward from a few hundred Hertz to zero, while the wave amplitude increase from zero to a maximum and then decays back to zero. Such a wave signal could detected by broadband gravitational wave interferometers currently being constructed. We also characterize two other types of gravitational wave signals that could arise in principle from a rapidly rotating, secularly unstable neutron star: a high-frequency (f greater than or approximately = 1000 Hz) wave which increases the pattern-speed of the star, and a wave that actually increases the angular momentum of the star.

  17. How to Produce a Reactor Neutron Spectrum Using a Proton Accelerator

    DOE PAGES

    Burns, Kimberly A.; Wootan, David W.; Gates, Robert O.; ...

    2015-06-18

    A method for reproducing the neutron energy spectrum present in the core of an operating nuclear reactor using an engineered target in an accelerator proton beam is proposed. The protons interact with a target to create neutrons through various (p,n) type reactions. Spectral tailoring of the emitted neutrons can be used to modify the energy of the generated neutron spectrum to represent various reactor spectra. Through the use of moderators and reflectors, the neutron spectrum can be modified to reproduce many different spectra of interest including spectra in small thermal test reactors, large pressurized water reactors, and fast reactors. Themore » particular application of this methodology is the design of an experimental approach for using an accelerator to measure the betas produced during fission to be used to reduce uncertainties in the interpretation of reactor antineutrino measurements. This approach involves using a proton accelerator to produce a neutron field representative of a power reactor, and using this neutron field to irradiate fission foils of the primary isotopes contributing to fission in the reactor, creating unstable, neutron rich fission products that subsequently beta decay and emit electron antineutrinos. A major advantage of an accelerator neutron source over a neutron beam from a thermal reactor is that the fast neutrons can be slowed down or tailored to approximate various power reactor spectra. An accelerator based neutron source that can be tailored to match various reactor neutron spectra provides an advantage for control in studying how changes in the neutron spectra affect parameters such as the resulting fission product beta spectrum.« less

  18. Ex-vivo quantitative susceptibility mapping of human brain hemispheres

    PubMed Central

    Kotrotsou, Aikaterini; Tamhane, Ashish A.; Dawe, Robert J.; Kapasi, Alifiya; Leurgans, Sue E.; Schneider, Julie A.; Bennett, David A.; Arfanakis, Konstantinos

    2017-01-01

    Ex-vivo brain quantitative susceptibility mapping (QSM) allows investigation of brain characteristics at essentially the same point in time as histopathologic examination, and therefore has the potential to become an important tool for determining the role of QSM as a diagnostic and monitoring tool of age-related neuropathologies. In order to be able to translate the ex-vivo QSM findings to in-vivo, it is crucial to understand the effects of death and chemical fixation on brain magnetic susceptibility measurements collected ex-vivo. Thus, the objective of this work was twofold: a) to assess the behavior of magnetic susceptibility in both gray and white matter of human brain hemispheres as a function of time postmortem, and b) to establish the relationship between in-vivo and ex-vivo gray matter susceptibility measurements on the same hemispheres. Five brain hemispheres from community-dwelling older adults were imaged ex-vivo with QSM on a weekly basis for six weeks postmortem, and the longitudinal behavior of ex-vivo magnetic susceptibility in both gray and white matter was assessed. The relationship between in-vivo and ex-vivo gray matter susceptibility measurements was investigated using QSM data from eleven older adults imaged both antemortem and postmortem. No systematic change in ex-vivo magnetic susceptibility of gray or white matter was observed over time postmortem. Additionally, it was demonstrated that, gray matter magnetic susceptibility measured ex-vivo may be well modeled as a linear function of susceptibility measured in-vivo. In conclusion, magnetic susceptibility in gray and white matter measured ex-vivo with QSM does not systematically change in the first six weeks after death. This information is important for future cross-sectional ex-vivo QSM studies of hemispheres imaged at different postmortem intervals. Furthermore, the linear relationship between in-vivo and ex-vivo gray matter magnetic susceptibility suggests that ex-vivo QSM captures

  19. Ex-companions of Supernovae Progenitors

    NASA Astrophysics Data System (ADS)

    Xue, Zinchao

    Supernovae (SNe) are titanic explosions that end the life of stars. Fast expanding ejecta can create brightness that is comparable to the entire luminosity of the host galaxy for weeks. Eventually, the ejecta run into the ambient medium, creating the so-called supernova remnant (SNR) that fades away in 10,000 years. SNe come from two completely different mechanisms. The Type Ia SNe (SNIa) are powered by thermonuclear runaway when a white dwarf (WD) in a binary system accretes enough mass from a companion star. The Core Collapse supernovae (CCSNe) are massive stars that run out of fuel at the end of their lives and collapse. The basic scenario for SNIa is well established, but the type of the binary system containing the WD is the long-debated 'Type Ia Progenitor Problem'. (1) Searching for an ex-companion within a SNIa SNR would directly solve this problem as a binary system including two WDs should leave nothing behind, while others should leave a non-degenerate star near the site of the explosion. One of the results from this thesis is the determination of the explosion site of Tycho's SN (SN 1572). From this, I reject popular ex-companion candidates, e.g. Tycho star 'G' and a few other ones as they are too far away from the explosion site I determined. (2) Another attempt to address this problem is carried out by studying a rare kind of Type Ia SNe. Detailed photometric and spectral analysis indicates that ASASSN-14dc resembles features from the so-called SN Ia-CSM, in which, a SNIa explodes inside of dense Hydrogen-rich Circumstellar Material (CSM). The origin of the CSM brings serious questions to the traditional views of SNIa formation as none of them can comfortably explain the derived mass and distribution of the CSM. A recent realization of a particular model might solve a lot of puzzles around this rare class of SNIa. (3) CCSNe are known to be massive stars that rapidly evolve off the main sequence and soon explode. Nearly 80% of such stars have one or

  20. Boiling-Water Reactor internals aging degradation study. Phase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luk, K.H.

    1993-09-01

    This report documents the results of an aging assessment study for boiling water reactor (BWR) internals. Major stressors for BWR internals are related to unsteady hydrodynamic forces generated by the primary coolant flow in the reactor vessel. Welding and cold-working, dissolved oxygen and impurities in the coolant, applied loads and exposures to fast neutron fluxes are other important stressors. Based on results of a component failure information survey, stress corrosion cracking (SCC) and fatigue are identified as the two major aging-related degradation mechanisms for BWR internals. Significant reported failures include SCC in jet-pump holddown beams, in-core neutron flux monitor drymore » tubes and core spray spargers. Fatigue failures were detected in feedwater spargers. The implementation of a plant Hydrogen Water Chemistry (HWC) program is considered as a promising method for controlling SCC problems in BWR. More operating data are needed to evaluate its effectiveness for internal components. Long-term fast neutron irradiation effects and high-cycle fatigue in a corrosive environment are uncertainty factors in the aging assessment process. BWR internals are examined by visual inspections and the method is access limited. The presence of a large water gap and an absence of ex-core neutron flux monitors may handicap the use of advanced inspection methods, such as neutron noise vibration measurements, for BWR.« less

  1. Measured Thermal and Fast Neutron Fluence Rates for ATF-1 Holders During ATR Cycle 157D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Larry Don; Miller, David Torbet

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 157D which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains measurements of the fluence rates corresponding to the particular elevations relative to the 80-ft. core elevation. The data in this report consist of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, and (3) plots ofmore » both the thermal and fast neutron fluence rates. The fluence rates reported are for the average power levels given in the table of power history and distribution.« less

  2. Miniature Neutron-Alpha Activation Spectrometer

    NASA Astrophysics Data System (ADS)

    Rhodes, E.; Goldsten, J.

    2001-01-01

    We are developing a miniature neutron-alpha activation spectrometer for in situ analysis of samples including rocks, fines, ices, and drill cores, suitable for a lander or Rover platform, that would meet the severe mass, power, and environmental constraints of missions to the outer planets. In the neutron-activation mode, a gamma-ray spectrometer will first perform a penetrating scan of soil, ice, and loose material underfoot (depths to 10 cm or more) to identify appropriate samples. Chosen samples will be analyzed in bulk in neutron-activation mode, and then the sample surfaces will be analyzed in alpha-activation mode using Rutherford backscatter and x-ray spectrometers. The instrument will provide sample composition over a wide range of elements, including rock-forming elements (such as Na, Mg, Si, Fe, and Ca), rare earths (Sm and Eu for example), radioactive elements (K, Th, and U), and light elements present in water, ices, and biological materials (mainly H, C, O, and N). The instrument is expected to have a mass of about l kg and to require less than 1 W power. Additional information is contained in the original extended abstract.

  3. Neutron and X-ray Tomography (NeXT) system for simultaneous, dual modality tomography.

    PubMed

    LaManna, J M; Hussey, D S; Baltic, E; Jacobson, D L

    2017-11-01

    Dual mode tomography using neutrons and X-rays offers the potential of improved estimation of the composition of a sample from the complementary interaction of the two probes with the sample. We have developed a simultaneous neutron and 90 keV X-ray tomography system that is well suited to the study of porous media systems such as fuel cells, concrete, unconventional reservoir geologies, limestones, and other geological media. We present the characteristic performance of both the neutron and X-ray modalities. We illustrate the use of the simultaneous acquisition through improved phase identification in a concrete core.

  4. Neutron and X-ray Tomography (NeXT) system for simultaneous, dual modality tomography

    NASA Astrophysics Data System (ADS)

    LaManna, J. M.; Hussey, D. S.; Baltic, E.; Jacobson, D. L.

    2017-11-01

    Dual mode tomography using neutrons and X-rays offers the potential of improved estimation of the composition of a sample from the complementary interaction of the two probes with the sample. We have developed a simultaneous neutron and 90 keV X-ray tomography system that is well suited to the study of porous media systems such as fuel cells, concrete, unconventional reservoir geologies, limestones, and other geological media. We present the characteristic performance of both the neutron and X-ray modalities. We illustrate the use of the simultaneous acquisition through improved phase identification in a concrete core.

  5. Gamma Decay of Unbound Neutron-Hole States in ^{133}Sn.

    PubMed

    Vaquero, V; Jungclaus, A; Doornenbal, P; Wimmer, K; Gargano, A; Tostevin, J A; Chen, S; Nácher, E; Sahin, E; Shiga, Y; Steppenbeck, D; Taniuchi, R; Xu, Z Y; Ando, T; Baba, H; Garrote, F L Bello; Franchoo, S; Hadynska-Klek, K; Kusoglu, A; Liu, J; Lokotko, T; Momiyama, S; Motobayashi, T; Nagamine, S; Nakatsuka, N; Niikura, M; Orlandi, R; Saito, T; Sakurai, H; Söderström, P A; Tveten, G M; Vajta, Zs; Yalcinkaya, M

    2017-05-19

    Excited states in the nucleus ^{133}Sn, with one neutron outside the double magic ^{132}Sn core, were populated following one-neutron knockout from a ^{134}Sn beam on a carbon target at relativistic energies at the Radioactive Isotope Beam Factory at RIKEN. Besides the γ rays emitted in the decay of the known neutron single-particle states in ^{133}Sn additional γ strength in the energy range 3.5-5.5 MeV was observed for the first time. Since the neutron-separation energy of ^{133}Sn is low, S_{n}=2.402(4)  MeV, this observation provides direct evidence for the radiative decay of neutron-unbound states in this nucleus. The ability of electromagnetic decay to compete successfully with neutron emission at energies as high as 3 MeV above threshold is attributed to a mismatch between the wave functions of the initial and final states in the latter case. These findings suggest that in the region southeast of ^{132}Sn nuclear structure effects may play a significant role in the neutron versus γ competition in the decay of unbound states. As a consequence, the common neglect of such effects in the evaluation of the neutron-emission probabilities in calculations of global β-decay properties for astrophysical simulations may have to be reconsidered.

  6. Coupled Monte Carlo neutronics and thermal hydraulics for power reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernnat, W.; Buck, M.; Mattes, M.

    The availability of high performance computing resources enables more and more the use of detailed Monte Carlo models even for full core power reactors. The detailed structure of the core can be described by lattices, modeled by so-called repeated structures e.g. in Monte Carlo codes such as MCNP5 or MCNPX. For cores with mainly uniform material compositions, fuel and moderator temperatures, there is no problem in constructing core models. However, when the material composition and the temperatures vary strongly a huge number of different material cells must be described which complicate the input and in many cases exceed code ormore » memory limits. The second problem arises with the preparation of corresponding temperature dependent cross sections and thermal scattering laws. Only if these problems can be solved, a realistic coupling of Monte Carlo neutronics with an appropriate thermal-hydraulics model is possible. In this paper a method for the treatment of detailed material and temperature distributions in MCNP5 is described based on user-specified internal functions which assign distinct elements of the core cells to material specifications (e.g. water density) and temperatures from a thermal-hydraulics code. The core grid itself can be described with a uniform material specification. The temperature dependency of cross sections and thermal neutron scattering laws is taken into account by interpolation, requiring only a limited number of data sets generated for different temperatures. Applications will be shown for the stationary part of the Purdue PWR benchmark using ATHLET for thermal- hydraulics and for a generic Modular High Temperature reactor using THERMIX for thermal- hydraulics. (authors)« less

  7. Full Core TREAT Kinetics Demonstration Using Rattlesnake/BISON Coupling Within MAMMOTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortensi, Javier; DeHart, Mark D.; Gleicher, Frederick N.

    2015-08-01

    This report summarizes key aspects of research in evaluation of modeling needs for TREAT transient simulation. Using a measured TREAT critical measurement and a transient for a small, experimentally simplified core, Rattlesnake and MAMMOTH simulations are performed building from simple infinite media to a full core model. Cross sections processing methods are evaluated, various homogenization approaches are assessed and the neutronic behavior of the core studied to determine key modeling aspects. The simulation of the minimum critical core with the diffusion solver shows very good agreement with the reference Monte Carlo simulation and the experiment. The full core transient simulationmore » with thermal feedback shows a significantly lower power peak compared to the documented experimental measurement, which is not unexpected in the early stages of model development.« less

  8. Applicability of self-activation of an NaI scintillator for measurement of photo-neutrons around a high-energy X-ray radiotherapy machine.

    PubMed

    Wakabayashi, Genichiro; Nohtomi, Akihiro; Yahiro, Eriko; Fujibuchi, Toshioh; Fukunaga, Junichi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Nakamura, Katsumasa; Hosono, Makoto; Itoh, Tetsuo

    2015-01-01

    The applicability of the activation of an NaI scintillator for neutron monitoring at a clinical linac was investigated experimentally. Thermal neutron fluence rates are derived by measurement of the I-128 activity generated in an NaI scintillator irradiated by neutrons; β-rays from I-128 are detected efficiently by the NaI scintillator. In order to verify the validity of this method for neutron measurement, we irradiated an NaI scintillator at a research reactor, and the neutron fluence rate was estimated. The method was then applied to neutron measurement at a 10-MV linac (Varian Clinac 21EX), and the neutron fluence rate was estimated at the isocenter and at 30 cm from the isocenter. When the scintillator was irradiated directly by high-energy X-rays, the production of I-126 was observed due to photo-nuclear reactions, in addition to the generation of I-128 and Na-24. From the results obtained by these measurements, it was found that the neutron measurement by activation of an NaI scintillator has a great advantage in estimates of a low neutron fluence rate by use of a quick measurement following a short-time irradiation. Also, the future application of this method to quasi real-time monitoring of neutrons during patient treatments at a radiotherapy facility is discussed, as well as the method of evaluation of the neutron dose.

  9. Final Report for the “WSU Neutron Capture Therapy Facility Support”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald E. Tripard; Keith G. Fox

    2006-08-24

    The objective for the cooperative research program for which this report has been written was to provide separate NCT facility user support for the students, faculty and scientists who would be doing the U.S. Department of Energy Office (DOE) of Science supported advanced radiotargeted research at the WSU 1 megawatt TRIGA reactor. The participants were the Idaho National laboratory (INL, P.I., Dave Nigg), the Veterinary Medical Research Center of Washington State University (WSU, Janean Fidel and Patrick Gavin), and the Washington State University Nuclear Radiation Center (WSU, P.I., Gerald Tripard). A significant number of DOE supported modifications were made tomore » the WSU reactor in order to create an epithermal neutron beam while at the same time maintaining the other activities of the 1 MW reactor. These modifications were: (1) Removal of the old thermal column. (2) Construction and insertion of a new epithermal filter, collimator and shield. (3) Construction of a shielded room that could accommodate the very high radiation field created by an intense neutron beam. (4) Removal of the previous reactor core fuel cluster arrangement. (5) Design and loading of the new reactor core fuel cluster arrangement in order to optimize the neutron flux entering the epithermal neutron filter. (6) The integration of the shielded rooms interlocks and radiological controls into the SCRAM chain and operating electronics of the reactor. (7) Construction of a motorized mechanism for moving and remotely controlling the position of the entire reactor bridge. (8) The integration of the reactor bridge control electronics into the SCRAM chain and operating electronics of the reactor. (9) The design, construction and attachment to the support structure of the reactor of an irradiation box that could be inserted into position next to the face of the reactor. (Necessitated by the previously mentioned core rearrangement). All of the above modifications were successfully completed and

  10. Willingness to pay for rapid diagnostic tests for the diagnosis and treatment of malaria in southeast Nigeria: ex post and ex ante

    PubMed Central

    2010-01-01

    Background The introduction of rapid diagnostic tests (RDTs) has improved the diagnosis and treatment of malaria. However, any successful control of malaria will depend on socio-economic factors that influence its management in the community. Willingness to pay (WTP) is important because consumer responses to prices will influence utilization of services and revenues collected. Also the consumer's attitude can influence monetary valuation with respect to different conditions ex post and ex ante. Methods WTP for RDT for Malaria was assessed by the contingent valuation method using a bidding game approach in rural and urban communities in southeast Nigeria. The ex post WTP was assessed at the health centers on 618 patients immediately following diagnosis of malaria with RDT and the ex ante WTP was assessed by household interviews on 1020 householders with a prior history of malaria. Results For the ex ante WTP, 51% of the respondents in urban and 24.7% in rural areas were willing to pay for RDT. The mean WTP (235.49 naira) in urban is higher than WTP (182.05 Naira) in rural areas. For the ex post WTP, 89 and 90.7% of the respondents in urban and rural areas respectively were WTP. The mean WTP (372.30 naira) in urban is also higher than (296.28 naira) in rural areas. For the ex post scenario, the lower two Social Economic Status (SES) quartiles were more willing to pay and the mean WTP is higher than the higher two SES while in the ex ante scenario, the higher two SES quartiles were more WTP and with a higher WTP than the lower two SES quartile. Ex ante and ex post WTP were directly dependent on costs. Conclusion The ex post WTP is higher than the ex ante WTP and both are greater than the current cost of RDTs. Urban dwellers were more willing to pay than the rural dwellers. The mean WTP should be considered when designing suitable financial strategies for making RDTs available to communities. PMID:20148118

  11. Impact of Neutron Exposure on Global Gene Expression in a Human Peripheral Blood Model

    PubMed Central

    Broustas, Constantinos G.; Xu, Yanping; Harken, Andrew D.; Chowdhury, Mashkura; Garty, Guy; Amundson, Sally A.

    2017-01-01

    The detonation of an improvised nuclear device would produce prompt radiation consisting of both photons (gamma rays) and neutrons. While much effort in recent years has gone into the development of radiation biodosimetry methods suitable for mass triage, the possible effect of neutrons on the endpoints studied has remained largely uninvestigated. We have used a novel neutron irradiator with an energy spectrum based on that 1–1.5 km from the epicenter of the Hiroshima blast to begin examining the effect of neutrons on global gene expression, and the impact this may have on the development of gene expression signatures for radiation biodosimetry. We have exposed peripheral blood from healthy human donors to 0.1, 0.3, 0.5 or 1 Gy of neutrons ex vivo using our neutron irradiator, and compared the transcriptomic response 24 h later to that resulting from sham exposure or exposure to 0.1, 0.3, 0.5, 1, 2 or 4 Gy of photons (X rays). We identified 125 genes that responded significantly to both radiation qualities as a function of dose, with the magnitude of response to neutrons generally being greater than that seen after X-ray exposure. Gene ontology analysis suggested broad involvement of the p53 signaling pathway and general DNA damage response functions across all doses of both radiation qualities. Regulation of immune response and chromatin-related functions were implicated only following the highest doses of neutrons, suggesting a physiological impact of greater DNA damage. We also identified several genes that seem to respond primarily as a function of dose, with less effect of radiation quality. We confirmed this pattern of response by quantitative real-time RT-PCR for BAX, TNFRSF10B, ITLN2 and AEN and suggest that gene expression may provide a means to differentiate between total dose and a neutron component. PMID:28140791

  12. Impact of Neutron Exposure on Global Gene Expression in a Human Peripheral Blood Model.

    PubMed

    Broustas, Constantinos G; Xu, Yanping; Harken, Andrew D; Chowdhury, Mashkura; Garty, Guy; Amundson, Sally A

    2017-04-01

    The detonation of an improvised nuclear device would produce prompt radiation consisting of both photons (gamma rays) and neutrons. While much effort in recent years has gone into the development of radiation biodosimetry methods suitable for mass triage, the possible effect of neutrons on the endpoints studied has remained largely uninvestigated. We have used a novel neutron irradiator with an energy spectrum based on that 1-1.5 km from the epicenter of the Hiroshima blast to begin examining the effect of neutrons on global gene expression, and the impact this may have on the development of gene expression signatures for radiation biodosimetry. We have exposed peripheral blood from healthy human donors to 0.1, 0.3, 0.5 or 1 Gy of neutrons ex vivo using our neutron irradiator, and compared the transcriptomic response 24 h later to that resulting from sham exposure or exposure to 0.1, 0.3, 0.5, 1, 2 or 4 Gy of photons (X rays). We identified 125 genes that responded significantly to both radiation qualities as a function of dose, with the magnitude of response to neutrons generally being greater than that seen after X-ray exposure. Gene ontology analysis suggested broad involvement of the p53 signaling pathway and general DNA damage response functions across all doses of both radiation qualities. Regulation of immune response and chromatin-related functions were implicated only following the highest doses of neutrons, suggesting a physiological impact of greater DNA damage. We also identified several genes that seem to respond primarily as a function of dose, with less effect of radiation quality. We confirmed this pattern of response by quantitative real-time RT-PCR for BAX, TNFRSF10B, ITLN2 and AEN and suggest that gene expression may provide a means to differentiate between total dose and a neutron component.

  13. Low-lying dipole resonance in neutron-rich Ne isotopes

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenichi; van Giai, Nguyen

    2008-07-01

    Microscopic structure of the low-lying isovector dipole excitation mode in neutron-rich Ne26,28,30 is investigated by performing deformed quasiparticle-random-phase-approximation (QRPA) calculations. The particle-hole residual interaction is derived from a Skyrme force through a Landau-Migdal approximation. We obtain the low-lying resonance in Ne26 at around 8.6 MeV. It is found that the isovector dipole strength at Ex<10 MeV exhausts about 6.0% of the classical Thomas-Reiche-Kuhn dipole sum rule. This excitation mode is composed of several QRPA eigenmodes, one is generated by a ν(2s1/2-12p3/2) transition dominantly and the other mostly by a ν(2s1/2-12p1/2) transition. The neutron excitations take place outside of the nuclear surface reflecting the spatially extended structure of the 2s1/2 wave function. In Ne30, the deformation splitting of the giant resonance is large, and the low-lying resonance overlaps with the giant resonance.

  14. Neutron-gamma flux and dose calculations in a Pressurized Water Reactor (PWR)

    NASA Astrophysics Data System (ADS)

    Brovchenko, Mariya; Dechenaux, Benjamin; Burn, Kenneth W.; Console Camprini, Patrizio; Duhamel, Isabelle; Peron, Arthur

    2017-09-01

    The present work deals with Monte Carlo simulations, aiming to determine the neutron and gamma responses outside the vessel and in the basemat of a Pressurized Water Reactor (PWR). The model is based on the Tihange-I Belgian nuclear reactor. With a large set of information and measurements available, this reactor has the advantage to be easily modelled and allows validation based on the experimental measurements. Power distribution calculations were therefore performed with the MCNP code at IRSN and compared to the available in-core measurements. Results showed a good agreement between calculated and measured values over the whole core. In this paper, the methods and hypotheses used for the particle transport simulation from the fission distribution in the core to the detectors outside the vessel of the reactor are also summarized. The results of the simulations are presented including the neutron and gamma doses and flux energy spectra. MCNP6 computational results comparing JEFF3.1 and ENDF-B/VII.1 nuclear data evaluations and sensitivity of the results to some model parameters are presented.

  15. EX-PRESS Glaucoma Filtration Device: efficacy, safety, and predictability

    PubMed Central

    Chan, Jessica E; Netland, Peter A

    2015-01-01

    Trabeculectomy has been the traditional primary surgical therapy for open-angle glaucoma. While trabeculectomy is effective in lowering intraocular pressure, complications associated with the procedure have motivated the development of alternative techniques and devices, including the EX-PRESS Glaucoma Filtration Device. This review describes the efficacy, safety, complication rates, and potential advantages and disadvantages of the EX-PRESS Glaucoma Filtration Device. EX-PRESS implantation is technically simpler compared with that of trabeculectomy, with fewer surgical steps. Vision recovery has been more rapid after EX-PRESS implantation compared with trabeculectomy. Intraocular pressure variation is lower during the early postoperative period, indicating a more predictable procedure. While efficacy of the EX-PRESS implant has been comparable to trabeculectomy, postoperative complications appear less common after EX-PRESS implantation compared with trabeculectomy. The EX-PRESS Glaucoma Filtration Device appears to be safe and effective in the surgical management of open-angle glaucoma. PMID:26366105

  16. Stress-induced core temperature changes in pigeons (Columba livia).

    PubMed

    Bittencourt, Myla de Aguiar; Melleu, Fernando Falkenburger; Marino-Neto, José

    2015-02-01

    Changes in body temperature are significant physiological consequences of stressful stimuli in mammals and birds. Pigeons (Columba livia) prosper in (potentially) stressful urban environments and are common subjects in neurobehavioral studies; however, the thermal responses to stress stimuli by pigeons are poorly known. Here, we describe acute changes in the telemetrically recorded celomatic (core) temperature (Tc) in pigeons given a variety of potentially stressful stimuli, including transfer to a novel cage (ExC) leading to visual isolation from conspecifics, the presence of the experimenter (ExpR), gentle handling (H), sham intracelomatic injections (SI), and the induction of the tonic immobility (TI) response. Transfer to the ExC cage provoked short-lived hyperthermia (10-20 min) followed by a long-lasting and substantial decrease in Tc, which returned to baseline levels 2 h after the start of the test. After a 2-hour stay in the ExC, the other potentially stressful stimuli evoked only weak, marginally significant hyperthermic (ExpR, IT) or hypothermic (SI) responses. Stimuli delivered 26 h after transfer to the ExC induced definite and intense increases in Tc (ExpR, H) or hypothermic responses (SI). These Tc changes appear to be unrelated to modifications in general activity (as measured via telemetrically recorded actimetric data). Repeated testing failed to affect the hypothermic responses to the transference to the ExC, even after nine trials and at 1- or 8-day intervals, suggesting that the social (visual) isolation from conspecifics may be a strong and poorly controllable stimulus in this species. The present data indicated that stress-induced changes in Tc may be a consistent and reliable physiological parameter of stress but that they may also show stressor type-, direction- and species-specific attributes. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Prediction for a Four-Neutron Resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirokov, A. M.; Papadimitriou, G.; Mazur, A. I.

    Here, we utilize various ab initio approaches to search for a low-lying resonance in the four-neutron (4n) system using the JISP16 realistic NN interaction. Our most accurate prediction is obtained using a J-matrix extension of the no-core shell model and suggests a 4n resonant state at an energy near E r = 0.8 MeV with a width of approximately Γ = 1.4 MeV.

  18. Prediction for a Four-Neutron Resonance

    DOE PAGES

    Shirokov, A. M.; Papadimitriou, G.; Mazur, A. I.; ...

    2016-10-28

    Here, we utilize various ab initio approaches to search for a low-lying resonance in the four-neutron (4n) system using the JISP16 realistic NN interaction. Our most accurate prediction is obtained using a J-matrix extension of the no-core shell model and suggests a 4n resonant state at an energy near E r = 0.8 MeV with a width of approximately Γ = 1.4 MeV.

  19. Extending the maximum operation time of the MNSR reactor.

    PubMed

    Dawahra, S; Khattab, K; Saba, G

    2016-09-01

    An effective modification to extend the maximum operation time of the Miniature Neutron Source Reactor (MNSR) to enhance the utilization of the reactor has been tested using the MCNP4C code. This modification consisted of inserting manually in each of the reactor inner irradiation tube a chain of three polyethylene-connected containers filled of water. The total height of the chain was 11.5cm. The replacement of the actual cadmium absorber with B(10) absorber was needed as well. The rest of the core structure materials and dimensions remained unchanged. A 3-D neutronic model with the new modifications was developed to compare the neutronic parameters of the old and modified cores. The results of the old and modified core excess reactivities (ρex) were: 3.954, 6.241 mk respectively. The maximum reactor operation times were: 428, 1025min and the safety reactivity factors were: 1.654 and 1.595 respectively. Therefore, a 139% increase in the maximum reactor operation time was noticed for the modified core. This increase enhanced the utilization of the MNSR reactor to conduct a long time irradiation of the unknown samples using the NAA technique and increase the amount of radioisotope production in the reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. What about ex post facto

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKee, H.C.

    This note presents a legal question in an attempt to find an answer. The author hopes that some legal scholar can explain the principle of ex post facto in the US Constitution as it applies to some of the environmental laws. One of the major advantages of the Association is that it provides a forum for communication among members with different backgrounds and experience. An ex post facto law is one that is applied retroactively. Under such a law, a person could be punished for some act that violated a law passed after the act was committed, even though themore » act was legal when committed. The US Constitution prohibits such laws, as will be discussed later. States are also prohibited from enacting ex post facto laws.« less

  1. Core-shell structure of Miglyol/poly(D,L-lactide)/Poloxamer nanocapsules studied by small-angle neutron scattering.

    PubMed

    Rübe, Andrea; Hause, Gerd; Mäder, Karsten; Kohlbrecher, Joachim

    2005-10-03

    The contrast variation technique in small angle neutron scattering (SANS) was used to investigate the inner structure of nanocapsules on the example of poly(D,L-lactide) (PLA) nanocapsules. The determination of the PLA and Poloxamer shell thickness was the focus of this study. Highest sensitivity on the inner structure of the nanocapsules was obtained when the scattering length density of the solvent was varied between the one of the Miglyol core and the PLA shell. According to the fit data the PLA shell thickness was 9.8 nm. The z-averaged radius determined by SANS experiments correlated well with dynamic light scattering (DLS) results, although DLS values were systematically slightly higher than the ones measured by SANS. This could be explained by taking into account the influence of Poloxamer attached to the nanocapsules surface. For a refined fit model with a second shell consisting of Poloxamer, SANS values and DLS values fitted well with each other. The characterization method presented here is significant because detailed insights into the nanocapsule and the Poloxamer shell were gained for the first time. This method could be used to develop strategies for the optimization of the shell properties concerning controlled release and to study changes in the shell structure during degradation processes.

  2. Factors associated with ex-nuptial birth.

    PubMed

    Fergusson, D M; Horwood, L J; Shannon, F T

    1979-04-11

    The paper examines the background to 210 live exnuptial births studied in the first phase of the Christ-church Child Development Study. The results show: 1. That nearly half of the children had been conceived within cohabiting situations. 2. That nearly one in five ex-nuptial children was the result of a planned pregnancy. 3. Maternal reactions to the birth and pregnancy varied with the mother's situation: cohabiting mothers reported considerably less adverse reaction to the birth than did non-cohabiting mothers. 4. Overall, mothers of ex-nuptial children had a fairly sophisticated appreciation of contraceptive methods. 5. One quarter of unplanned ex-nuptial pregnancies were the result of contraceptive failure and three-quarters were the result of contraceptive non-usage. 6. In common with previous findings for nuptial pregnancies, about 35 percent of unplanned ex-nuptial pregnancies were ascribed to a breakdown in the mother's pattern of usage of the contraceptive pill.

  3. 24 CFR 180.215 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... AND BUSINESS OPPORTUNITY CONSOLIDATED HUD HEARING PROCEDURES FOR CIVIL RIGHTS MATTERS Administrative Law Judge § 180.215 Ex parte communications. (a) An ex parte communication is any direct or indirect...

  4. Benchmark of Atucha-2 PHWR RELAP5-3D control rod model by Monte Carlo MCNP5 core calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecchia, M.; D'Auria, F.; Mazzantini, O.

    2012-07-01

    Atucha-2 is a Siemens-designed PHWR reactor under construction in the Republic of Argentina. Its geometrical complexity and peculiarities require the adoption of advanced Monte Carlo codes for performing realistic neutronic simulations. Therefore core models of Atucha-2 PHWR were developed using MCNP5. In this work a methodology was set up to collect the flux in the hexagonal mesh by which the Atucha-2 core is represented. The scope of this activity is to evaluate the effect of obliquely inserted control rod on neutron flux in order to validate the RELAP5-3D{sup C}/NESTLE three dimensional neutron kinetic coupled thermal-hydraulic model, applied by GRNSPG/UNIPI formore » performing selected transients of Chapter 15 FSAR of Atucha-2. (authors)« less

  5. Unfolding neutron spectrum with Markov Chain Monte Carlo at MIT research Reactor with He-3 Neutral Current Detectors [Measuring neutron spectrum at MIT research reactor utilizing He-3 Bonner Cylinder Approach with an unfolding analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leder, A.; Anderson, A. J.; Billard, J.

    Here, the Ricochet experiment seeks to measure Coherent (neutral-current) Elastic Neutrino-Nucleus Scattering (CEνNS) using dark-matter-style detectors with sub-keV thresholds placed near a neutrino source, such as the MIT (research) Reactor (MITR), which operates at 5.5 MW generating approximately 2.2 × 10 18 ν/second in its core. Currently, Ricochet is characterizing the backgrounds at MITR, the main component of which comes in the form of neutrons emitted from the core simultaneous with the neutrino signal. To characterize this background, we wrapped Bonner cylinders around a 3 2He thermal neutron detector, whose data was then unfolded via a Markov Chain Monte Carlo (MCMC) to producemore » a neutron energy spectrum across several orders of magnitude. We discuss the resulting spectrum and its implications for deploying Ricochet at the MITR site as well as the feasibility of reducing this background level via the addition of polyethylene shielding around the detector setup.« less

  6. Unfolding neutron spectrum with Markov Chain Monte Carlo at MIT research Reactor with He-3 Neutral Current Detectors [Measuring neutron spectrum at MIT research reactor utilizing He-3 Bonner Cylinder Approach with an unfolding analysis

    DOE PAGES

    Leder, A.; Anderson, A. J.; Billard, J.; ...

    2018-02-02

    Here, the Ricochet experiment seeks to measure Coherent (neutral-current) Elastic Neutrino-Nucleus Scattering (CEνNS) using dark-matter-style detectors with sub-keV thresholds placed near a neutrino source, such as the MIT (research) Reactor (MITR), which operates at 5.5 MW generating approximately 2.2 × 10 18 ν/second in its core. Currently, Ricochet is characterizing the backgrounds at MITR, the main component of which comes in the form of neutrons emitted from the core simultaneous with the neutrino signal. To characterize this background, we wrapped Bonner cylinders around a 3 2He thermal neutron detector, whose data was then unfolded via a Markov Chain Monte Carlo (MCMC) to producemore » a neutron energy spectrum across several orders of magnitude. We discuss the resulting spectrum and its implications for deploying Ricochet at the MITR site as well as the feasibility of reducing this background level via the addition of polyethylene shielding around the detector setup.« less

  7. Neutronics Analysis of SMART Small Modular Reactor using SRAC 2006 Code

    NASA Astrophysics Data System (ADS)

    Ramdhani, Rahmi N.; Prastyo, Puguh A.; Waris, Abdul; Widayani; Kurniadi, Rizal

    2017-07-01

    Small modular reactors (SMRs) are part of a new generation of nuclear reactor being developed worldwide. One of the advantages of SMR is the flexibility to adopt the advanced design concepts and technology. SMART (System integrated Modular Advanced ReacTor) is a small sized integral type PWR with a thermal power of 330 MW that has been developed by KAERI (Korea Atomic Energy Research Institute). SMART core consists of 57 fuel assemblies which are based on the well proven 17×17 array that has been used in Korean commercial PWRs. SMART is soluble boron free, and the high initial reactivity is mainly controlled by burnable absorbers. The goal of this study is to perform neutronics evaluation of SMART core with UO2 as main fuel. Neutronics calculation was performed by using PIJ and CITATION modules of SRAC 2006 code with JENDL 3.3 as nuclear data library.

  8. A comparison of neutron and gamma damage effects on silica glass in a nuclear reactor radiation environment

    NASA Astrophysics Data System (ADS)

    Holcomb, David E.; Miller, Don W.

    1993-08-01

    A study of the relative damage effects of neutrons and gamma rays on silica glass in a nuclear reactor radiation environment is reported. The neutron and gamma energy spectra of the Ohio State University Research Reactor beam port #1 were applied to silica glass to obtain primary knock-on charged particle energy spectra. The resultant charged particle spectra were then applied to the polyatomic forms of the Lindhard et al. integrodifferential equation for damage energy and the Parkin and Coulter integrodifferential equation for net atomic displacement. The results show that near a nuclear reactor core the vast majority of the dose to silica is due to gamma rays (factor of roughly 40) and that neutrons cause much more displacement damage than gamma rays (35 times the oxygen displacement rate and 500 times the silicon displacement rate). However, pure silica core optical fibers irradiated in a nuclear reactor's mixed neutron/gamma environment exhibit little difference in transmission loss on an equal dose basis compared to fibers irradiated in a gamma only environment, indicating that atomic displacement is not a significant damage mechanism.

  9. Neutron detection of the Triga Mark III reactor, using nuclear track methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinosa, G., E-mail: espinosa@fisica.unam.mx; Golzarri, J. I.; Raya-Arredondo, R.

    Nuclear Track Methodology (NTM), based on the neutron-proton interaction is one often employed alternative for neutron detection. In this paper we apply NTM to determine the Triga Mark III reactor operating power and neutron flux. The facility nuclear core, loaded with 85 Highly Enriched Uranium as fuel with control rods in a demineralized water pool, provide a neutron flux around 2 × 10{sup 12} n cm{sup −2} s{sup −1}, at the irradiation channel TO-2. The neutron field is measured at this channel, using Landauer{sup ®} PADC as neutron detection material, covered by 3 mm Plexiglas{sup ®} as converter. After exposure, plasticmore » detectors were chemically etched to make observable the formed latent tracks induced by proton recoils. The track density was determined by a custom made Digital Image Analysis System. The resulting average nuclear track density shows a direct proportionality response for reactor power in the range 0.1-7 kW. We indicate several advantages of the technique including the possibility to calibrate the neutron flux density measured at low reactor power.« less

  10. Neutron-fragment and Neutron-neutron Correlations in Low-energy Fission

    NASA Astrophysics Data System (ADS)

    Lestone, J. P.

    2016-01-01

    A computational method has been developed to simulate neutron emission from thermal-neutron induced fission of 235U and from spontaneous fission of 252Cf. Measured pre-emission mass-yield curves, average total kinetic energies and their variances, both as functions of mass split, are used to obtain a representation of the distribution of fragment velocities. Measured average neutron multiplicities as a function of mass split and their dependence on total kinetic energy are used. Simulations can be made to reproduce measured factorial moments of neutron-multiplicity distributions with only minor empirical adjustments to some experimental inputs. The neutron-emission spectra in the rest-frame of the fragments are highly constrained by ENDF/B-VII.1 prompt-fission neutron-spectra evaluations. The n-f correlation measurements of Vorobyev et al. (2010) are consistent with predictions where all neutrons are assumed to be evaporated isotropically from the rest frame of fully accelerated fragments. Measured n-f and n-n correlations of others are a little weaker than the predictions presented here. These weaker correlations could be used to infer a weak scission-neutron source. However, the effect of neutron scattering on the experimental results must be studied in detail before moving away from a null hypothesis that all neutrons are evaporated from the fragments.

  11. Core-shell designed scaffolds for drug delivery and tissue engineering.

    PubMed

    Perez, Roman A; Kim, Hae-Won

    2015-07-01

    Scaffolds that secure and deliver therapeutic ingredients like signaling molecules and stem cells hold great promise for drug delivery and tissue engineering. Employing a core-shell design for scaffolds provides a promising solution. Some unique methods, such as co-concentric nozzle extrusion, microfluidics generation, and chemical confinement reactions, have been successful in producing core-shelled nano/microfibers and nano/microspheres. Signaling molecules and drugs, spatially allocated to the core and/or shell part, can be delivered in a controllable and sequential manner for optimal therapeutic effects. Stem cells can be loaded within the core part on-demand, safely protected from the environments, which ultimately affords ex vivo culture and in vivo tissue engineering. The encapsulated cells experience three-dimensional tissue-mimic microenvironments in which therapeutic molecules are secreted to the surrounding tissues through the semi-permeable shell. Tuning the material properties of the core and shell, changing the geometrical parameters, and shaping them into proper forms significantly influence the release behaviors of biomolecules and the fate of the cells. This topical issue highlights the immense usefulness of core-shell designs for the therapeutic actions of scaffolds in the delivery of signaling molecules and stem cells for tissue regeneration and disease treatment. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Development of the radial neutron camera system for the HL-2A tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y. P., E-mail: zhangyp@swip.ac.cn; Yang, J. W.; Liu, Yi

    2016-06-15

    A new radial neutron camera system has been developed and operated recently in the HL-2A tokamak to measure the spatial and time resolved 2.5 MeV D-D fusion neutron, enhancing the understanding of the energetic-ion physics. The camera mainly consists of a multichannel collimator, liquid-scintillation detectors, shielding systems, and a data acquisition system. Measurements of the D-D fusion neutrons using the camera have been successfully performed during the 2015 HL-2A experiment campaign. The measurements show that the distribution of the fusion neutrons in the HL-2A plasma has a peaked profile, suggesting that the neutral beam injection beam ions in the plasmamore » have a peaked distribution. It also suggests that the neutrons are primarily produced from beam-target reactions in the plasma core region. The measurement results from the neutron camera are well consistent with the results of both a standard {sup 235}U fission chamber and NUBEAM neutron calculations. In this paper, the new radial neutron camera system on HL-2A and the first experimental results are described.« less

  13. Impact of fission neutron energies on reactor antineutrino spectra

    NASA Astrophysics Data System (ADS)

    Littlejohn, B. R.; Conant, A.; Dwyer, D. A.; Erickson, A.; Gustafson, I.; Hermanek, K.

    2018-04-01

    Recent measurements of reactor-produced antineutrino fluxes and energy spectra are inconsistent with models based on measured thermal fission beta spectra. In this paper, we examine the dependence of antineutrino production on fission neutron energy. In particular, the variation of fission product yields with neutron energy has been considered as a possible source of the discrepancies between antineutrino observations and models. In simulations of low-enriched and highly-enriched reactor core designs, we find a substantial fraction of fissions (from 5% to more than 40%) are caused by nonthermal neutrons. Using tabulated evaluations of nuclear fission and decay, we estimate the variation in antineutrino emission by the prominent fission parents U 235 , Pu 239 , and Pu 241 versus neutron energy. The differences in fission neutron energy are found to produce less than 1% variation in detected antineutrino rate per fission of U 235 , Pu 239 , and Pu 241 . Corresponding variations in the antineutrino spectrum are found to be less than 10% below 7 MeV antineutrino energy, smaller than current model uncertainties. We conclude that insufficient modeling of fission neutron energy is unlikely to be the cause of the various reactor anomalies. Our results also suggest that comparisons of antineutrino measurements at low-enriched and highly-enriched reactors can safely neglect the differences in the distributions of their fission neutron energies.

  14. Oak Ridge National Laboratory Core Competencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberto, J.B.; Anderson, T.D.; Berven, B.A.

    1994-12-01

    A core competency is a distinguishing integration of capabilities which enables an organization to deliver mission results. Core competencies represent the collective learning of an organization and provide the capacity to perform present and future missions. Core competencies are distinguishing characteristics which offer comparative advantage and are difficult to reproduce. They exhibit customer focus, mission relevance, and vertical integration from research through applications. They are demonstrable by metrics such as level of investment, uniqueness of facilities and expertise, and national impact. The Oak Ridge National Laboratory (ORNL) has identified four core competencies which satisfy the above criteria. Each core competencymore » represents an annual investment of at least $100M and is characterized by an integration of Laboratory technical foundations in physical, chemical, and materials sciences; biological, environmental, and social sciences; engineering sciences; and computational sciences and informatics. The ability to integrate broad technical foundations to develop and sustain core competencies in support of national R&D goals is a distinguishing strength of the national laboratories. The ORNL core competencies are: 9 Energy Production and End-Use Technologies o Biological and Environmental Sciences and Technology o Advanced Materials Synthesis, Processing, and Characterization & Neutron-Based Science and Technology. The distinguishing characteristics of each ORNL core competency are described. In addition, written material is provided for two emerging competencies: Manufacturing Technologies and Computational Science and Advanced Computing. Distinguishing institutional competencies in the Development and Operation of National Research Facilities, R&D Integration and Partnerships, Technology Transfer, and Science Education are also described. Finally, financial data for the ORNL core competencies are summarized in the appendices.« less

  15. NEUTRON REACTOR FUEL ELEMENT UTILIZING ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Saller, H.A.; Keeler, J.R.; Szumachowski, E.R.

    1957-11-12

    This patent relates to clad fuel elements for use in neutronic reactors and is drawn to such a fuel element which consists of a core of fissionable material, comprised of an alloy of zirconium and U/sup 235/ enriched uranium, encased in a jacket of a binary zirconium-tin alloy in which the tin content ranges between 1 and 15% by weight.

  16. The Habitable Exoplanet Imaging Mission (HabEx)

    NASA Astrophysics Data System (ADS)

    Gaudi, B. Scott; Habitable Exoplanet Imaging Mission Science and Technology Definition Team

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is a candidate flagship mission being studied by NASA and the astrophysics community in preparation of the 2020 Decadal Survey. The HabEx mission concept is a large (~4 to 6.5m) diffraction-limited optical space telescope, providing unprecedented resolution and contrast in the optical, with likely extensions into the near UV and near infrared domains. We discuss the primary science goals of HabEx. First, HabEx will survey a large sample of stars to search for planets potentially habitable planets: roughly Earth-sized planets with separations consistent with being in the habitable zones of their parent stars. Promising candidates will be followed up in detail, in order to characterize their orbits and atmospheres, and so confirm that they are indeed terrestrial-sized planets in the habitable zones of their parent stars, and search for signatures of habitability and potentially biosignatures. Second, HabEx will perform a ‘deep dive’ survey of roughly a dozen of the nearest and most promising stellar systems, providing the first complete “family portraits” of planets around our nearest Sun-like neighbors, and placing the solar system in the context of a diverse set of these planetary systems. Additionally, HabEx will enable a wide range of other astrophysical investigations, including detailed characterization of the properties of nearby stars and galaxies.

  17. Fe-FeO and Fe-Fe3C melting relations at Earth's core-mantle boundary conditions: Implications for a volatile-rich or oxygen-rich core

    NASA Astrophysics Data System (ADS)

    Morard, G.; Andrault, D.; Antonangeli, D.; Nakajima, Y.; Auzende, A. L.; Boulard, E.; Cervera, S.; Clark, A.; Lord, O. T.; Siebert, J.; Svitlyk, V.; Garbarino, G.; Mezouar, M.

    2017-09-01

    Eutectic melting temperatures in the Fe-FeO and Fe-Fe3C systems have been determined up to 150 GPa. Melting criteria include observation of a diffuse scattering signal by in situ X-Ray diffraction, and textural characterisation of recovered samples. In addition, compositions of eutectic liquids have been established by combining in situ Rietveld analyses with ex situ chemical analyses. Gathering these new results together with previous reports on Fe-S and Fe-Si systems allow us to discuss the specific effect of each light element (Si, S, O, C) on the melting properties of the outer core. Crystallization temperatures of Si-rich core compositional models are too high to be compatible with the absence of extensive mantle melting at the core-mantle boundary (CMB) and significant amounts of volatile elements such as S and/or C (>5 at%, corresponding to >2 wt%), or a large amount of O (>15 at% corresponding to ∼5 wt%) are required to reduce the crystallisation temperature of the core material below that of a peridotitic lower mantle.

  18. Modelling the carbonation of cementitious matrixes by means of the unreacted-core model, UR-CORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castellote, M.; Andrade, C.

    This paper presents a model for the carbonation of cementitious matrixes (UR-CORE). The model is based on the principles of the 'unreacted-core' systems, typical of chemical engineering processes, in which the reacted product remains in the solid as a layer of inert ash, adapted for the specific case of carbonation. Development of the model has been undertaken in three steps: 1) Establishment of the controlling step in the global carbonation rate, by using data of fractional conversion of different phases of the cementitious matrixes, obtained by the authors through neutron diffraction data experiments, and reported in [M. Castellote, C. Andrade,more » X. Turrillas, J. Campo, G. Cuello, Accelerated carbonation of cement pastes in situ monitored by neutron diffraction, Cem. Concr. Res. (2008), doi:10.1016/j.cemconres.2008.07.002]. 2) Then, the model has been adapted and applied to the cementitious materials using different concentrations of CO{sub 2}, with the introduction of the needed assumptions and factors. 3) Finally, the model has been validated with laboratory data at different concentrations (taken from literature) and for long term natural exposure of concretes. As a result, the model seems to be reliable enough to be applied to cementitious materials, being able to extrapolate the results from accelerated tests in any conditions to predict the rate of carbonation in natural exposure, being restricted, at present stage, to conditions with a constant relative humidity.« less

  19. Analysing neutron star in HESS J1731-347 from thermal emission and cooling theory

    NASA Astrophysics Data System (ADS)

    Ofengeim, D. D.; Kaminker, A. D.; Klochkov, D.; Suleimanov, V.; Yakovlev, D. G.

    2015-12-01

    The central compact object in the supernova remnant HESS J1731-347 appears to be the hottest observed isolated cooling neutron star. The cooling theory of neutron stars enables one to explain observations of this star by assuming the presence of strong proton superfluidity in the stellar core and the existence of the surface heat blanketing envelope which almost fully consists of carbon. The cooling model of this star is elaborated to take proper account of the neutrino emission due to neutron-neutron collisions which is not suppressed by proton superfluidity. Using the results of spectral fits of observed thermal spectra for the distance of 3.2 kpc and the cooling theory for the neutron star of age 27 kyr, new constraints on the stellar mass and radius are obtained which are more stringent than those derived from the spectral fits alone.

  20. Surface emission from neutron stars and implications for the physics of their interiors.

    PubMed

    Ozel, Feryal

    2013-01-01

    Neutron stars are associated with diverse physical phenomena that take place in conditions characterized by ultrahigh densities as well as intense gravitational, magnetic and radiation fields. Understanding the properties and interactions of matter in these regimes remains one of the challenges in compact object astrophysics. Photons emitted from the surfaces of neutron stars provide direct probes of their structure, composition and magnetic fields. In this review, I discuss in detail the physics that governs the properties of emission from the surfaces of neutron stars and their various observational manifestations. I present the constraints on neutron star radii, core and crust composition, and magnetic field strength and topology obtained from studies of their broadband spectra, evolution of thermal luminosity, and the profiles of pulsations that originate on their surfaces.

  1. PTSD symptoms and marital adjustment among ex-POWs' wives.

    PubMed

    Levin, Yafit; Greene, Talya; Solomon, Zahava

    2016-02-01

    This study prospectively assessed the implications of war captivity and former prisoners of war's (ex-POWs) posttraumatic stress disorder (PTSD) and PTSD trajectory on their wives' marital adjustment, adjusting for their secondary traumatization (ST). Results show that marital adjustment of the wives of ex-POWs with PTSD (N = 66) was lower compared to wives of ex-POWs (N = 37) and combat veterans (N = 55) without PTSD symptoms. Investigating the possible mechanism underlying the lower marital adjustment, via a mediating model, indicated that husbands' PTSD symptoms mediated the association between captivity and the wives' marital adjustment. Moreover, husbands' PTSD trajectories assessed over 17 years were implicated in their wives' marital adjustment; wives of ex-POWs with chronic PTSD reported lower marital adjustment compared to wives of resilient ex-POWs. The substantial novelty was revealed in prospective deterioration found in dyadic adjustment among wives of ex-POWs with delayed PTSD, but not for wives of chronic or resilient ex-POWs. Implications for research and practice are discussed. (c) 2016 APA, all rights reserved).

  2. Bubbles, Bow Shocks and B Fields: The Interplay Between Neutron Stars and Their Environments

    NASA Astrophysics Data System (ADS)

    Gaensler, Bryan M.

    2006-12-01

    Young neutron stars embody Nature's extremes: they spin incredibly rapidly, move through space at enormous velocities, and are imbued with unimaginably strong magnetic fields. Since their progenitor stars do not have any of these characteristics, these properties are presumably all imparted to a neutron star during or shortly after the supernova explosion in which it is formed. This raises two fundamental questions: how do neutron stars attain these extreme parameters, and how are their vast reservoirs of energy then dissipated? I will explain how multi-wavelength observations of the environments of neutron stars not only provide vital forensic evidence on the physics of supernova core collapse, but also spectacularly reveal the winds, jets, shocks and outflows through which these remarkable objects couple to their surroundings.

  3. A Novel In-Beam Delayed Neutron Counting Technique for Characterization of Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Bentoumi, G.; Rogge, R. B.; Andrews, M. T.; Corcoran, E. C.; Dimayuga, I.; Kelly, D. G.; Li, L.; Sur, B.

    2016-12-01

    A delayed neutron counting (DNC) system, where the sample to be analyzed remains stationary in a thermal neutron beam outside of the reactor, has been developed at the National Research Universal (NRU) reactor of the Canadian Nuclear Laboratories (CNL) at Chalk River. The new in-beam DNC is a novel approach for non-destructive characterization of special nuclear materials (SNM) that could enable identification and quantification of fissile isotopes within a large and shielded sample. Despite the orders of magnitude reduction in neutron flux, the in-beam DNC method can be as informative as the conventional in-core DNC for most cases while offering practical advantages and mitigated risk when dealing with large radioactive samples of unknown origin. This paper addresses (1) the qualification of in-beam DNC using a monochromatic thermal neutron beam in conjunction with a proven counting apparatus designed originally for in-core DNC, and (2) application of in-beam DNC to an examination of large sealed capsules containing unknown radioactive materials. Initial results showed that the in-beam DNC setup permits non-destructive analysis of bulky and gamma shielded samples. The method does not lend itself to trace analysis, and at best could only reveal the presence of a few milligrams of 235U via the assay of in-beam DNC total counts. Through analysis of DNC count rates, the technique could be used in combination with other neutron or gamma techniques to quantify isotopes present within samples.

  4. Dipole response of neutron-rich Sn isotopes

    NASA Astrophysics Data System (ADS)

    Klimkiewicz, A.; Adrich, P.; Boretzky, K.; Fallot, M.; Aumann, T.; Cortina-Gil, D.; Datta Pramanik, U.; Elze, Th. W.; Emling, H.; Geissel, H.; Hellstroem, M.; Jones, K. L.; Kratz, J. V.; Kulessa, R.; Leifels, Y.; Nociforo, C.; Palit, R.; Simon, H.; Surowka, G.; Sümmerer, K.; Typel, S.; Walus, W.

    2007-05-01

    The neutron-rich isotopes 129-133Sn were studied in a Coulomb excitation experiment at about 500 AMeV using the FRS-LAND setup at GSI. From the exclusive measurement of all projectile-like particles following the excitation and decay of the projectile in a high-Z target, the energy differential cross section can be extracted. At these beam energies dipole transitions are dominating, and within the semi-classical approach the Coulomb excitation cross sections can be transformed into photoabsorption cross sections. In contrast to stable Sn nuclei, a substantial fraction of dipole strength is observed at energies below the giant dipole resonance (GDR). For 130Sn and 132Sn this strength is located in a peak-like structure around 10 MeV excitation energy and exhibits a few percent of the Thomas-Reiche Kuhn (TRK) sum-rule strength. Several calculations predict the appearance of dipole strength at low excitation energies in neutron-rich nuclei. This low-lying strength is often referred to as pygmy dipole resonance (PDR) and, in a macroscopic picture, is discussed in terms of a collective oscillation of excess neutrons versus the core nucleons. Moreover, a sharp rise is observed at the neutron separation threshold around 5 MeV for the odd isotopes. A possible contribution of 'threshold strength', which can be described within the direct-breakup model is discussed. The results for the neutron-rich Sn isotopes are confronted with results on stable nuclei investigated in experiments using real photons.

  5. SU-F-T-657: In-Room Neutron Dose From High Energy Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christ, D; Ding, G

    Purpose: To estimate neutron dose inside the treatment room from photodisintegration events in high energy photon beams using Monte Carlo simulations and experimental measurements. Methods: The Monte Carlo code MCNP6 was used for the simulations. An Eberline ESP-1 Smart Portable Neutron Detector was used to measure neutron dose. A water phantom was centered at isocenter on the treatment couch, and the detector was placed near the phantom. A Varian 2100EX linear accelerator delivered an 18MV open field photon beam to the phantom at 400MU/min, and a camera captured the detector readings. The experimental setup was modeled in the Monte Carlomore » simulation. The source was modeled for two extreme cases: a) hemispherical photon source emitting from the target and b) cone source with an angle of the primary collimator cone. The model includes the target, primary collimator, flattening filter, secondary collimators, water phantom, detector and concrete walls. Energy deposition tallies were measured for neutrons in the detector and for photons at the center of the phantom. Results: For an 18MV beam with an open 10cm by 10cm field and the gantry at 180°, the Monte Carlo simulations predict the neutron dose in the detector to be 0.11% of the photon dose in the water phantom for case a) and 0.01% for case b). The measured neutron dose is 0.04% of the photon dose. Considering the range of neutron dose predicted by Monte Carlo simulations, the calculated results are in good agreement with measurements. Conclusion: We calculated in-room neutron dose by using Monte Carlo techniques, and the predicted neutron dose is confirmed by experimental measurements. If we remodel the source as an electron beam hitting the target for a more accurate representation of the bremsstrahlung fluence, it is feasible that the Monte Carlo simulations can be used to help in shielding designs.« less

  6. Neutron induced fission of 237Np - status, challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Ruskov, Ivan; Goverdovski, Andrei; Furman, Walter; Kopatch, Yury; Shcherbakov, Oleg; Hambsch, Franz-Josef; Oberstedt, Stephan; Oberstedt, Andreas

    2018-03-01

    Nowadays, there is an increased interest in a complete study of the neutron-induced fission of 237Np. This is due to the need of accurate and reliable nuclear data for nuclear science and technology. 237Np is generated (and accumulated) in the nuclear reactor core during reactor operation. As one of the most abundant long-lived isotopes in spent fuel ("waste"), the incineration of 237Np becomes an important issue. One scenario for burning of 237Np and other radio-toxic minor actinides suggests they are to be mixed into the fuel of future fast-neutron reactors, employing the so-called transmutation and partitioning technology. For testing present fission models, which are at the basis of new generation nuclear reactor developments, highly accurate and detailed neutron-induced nuclear reaction data is needed. However, the EXFOR nuclear database for 237Np on neutron-induced capture cross-section, σγ, and fission cross-section, σf, as well as on the characteristics of capture and fission resonance parameters (Γγ, Γf, σoΓf, fragments mass-energy yield distributions, multiplicities of neutrons vn and γ-rays vγ), has not been updated for decades.

  7. Magnetic fields in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Viganò, D.; Pons, J. A.; Miralles, J. A.; Rea, N.

    2015-05-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  8. Multi-source irradiation facility with improved space configuration for neutron activation analysis: Design optimization.

    PubMed

    Kotb, N A; Solieman, Ahmed H M; El-Zakla, T; Amer, T Z; Elmeniawi, S; Comsan, M N H

    2018-05-01

    A neutron irradiation facility consisting of six 241 Am-Be neutron sources of 30 Ci total activity and 6.6 × 10 7 n/s total neutron yield is designed. The sources are embedded in a cubic paraffin wax, which plays a dual role as both moderator and reflector. The sample passage and irradiation channel are represented by a cylindrical path of 5 cm diameter passing through the facility core. The proposed design yields a high degree of space symmetry and thermal neutron homogeneity within 98% of flux distribution throughout the irradiated spherical sample of 5 cm diameter. The obtained thermal neutron flux is 8.0 × 10 4 n/cm 2 .s over the sample volume, with thermal-to-fast and thermal-to-epithermal ratios of 1.20 and 3.35, respectively. The design is optimized for maximizing the thermal neutron flux at sample position using the MCNP-5 code. The irradiation facility is supposed to be employed principally for neutron activation analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Impact of intermediate and high energy nuclear data on the neutronic safety parameters of MYRRHA accelerator driven system

    NASA Astrophysics Data System (ADS)

    Stankovskiy, Alexey; Çelik, Yurdunaz; Eynde, Gert Van den

    2017-09-01

    Perturbation of external neutron source can cause significant local power changes transformed into undesired safety-related events in an accelerator driven system. Therefore for the accurate design of MYRRHA sub-critical core it is important to evaluate the uncertainty of power responses caused by the uncertainties in nuclear reaction models describing the particle transport from primary proton energy down to the evaluated nuclear data table range. The calculations with a set of models resulted in quite low uncertainty on the local power caused by significant perturbation of primary neutron yield from proton interactions with lead and bismuth isotopes. The considered accidental event of prescribed proton beam shape loss causes drastic increase in local power but does not practically change the total core thermal power making this effect difficult to detect. In the same time the results demonstrate a correlation between perturbed local power responses in normal operation and misaligned beam conditions indicating that generation of covariance data for proton and neutron induced neutron multiplicities for lead and bismuth isotopes is needed to obtain reliable uncertainties for local power responses.

  10. Modeling Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Mezzacappa, Anthony

    2017-01-01

    Core collapse supernovae, or the death throes of massive stars, are general relativistic, neutrino-magneto-hydrodynamic events. The core collapse supernova mechanism is still not in hand, though key components have been illuminated, and the potential for multiple mechanisms for different progenitors exists. Core collapse supernovae are the single most important source of elements in the Universe, and serve other critical roles in galactic chemical and thermal evolution, the birth of neutron stars, pulsars, and stellar mass black holes, the production of a subclass of gamma-ray bursts, and as potential cosmic laboratories for fundamental nuclear and particle physics. Given this, the so called ``supernova problem'' is one of the most important unsolved problems in astrophysics. It has been fifty years since the first numerical simulations of core collapse supernovae were performed. Progress in the past decade, and especially within the past five years, has been exponential, yet much work remains. Spherically symmetric simulations over nearly four decades laid the foundation for this progress. Two-dimensional modeling that assumes axial symmetry is maturing. And three-dimensional modeling, while in its infancy, has begun in earnest. I will present some of the recent work from the ``Oak Ridge'' group, and will discuss this work in the context of the broader work by other researchers in the field. I will then point to future requirements and challenges. Connections with other experimental, observational, and theoretical efforts will be discussed, as well.

  11. CFD and Neutron codes coupling on a computational platform

    NASA Astrophysics Data System (ADS)

    Cerroni, D.; Da Vià, R.; Manservisi, S.; Menghini, F.; Scardovelli, R.

    2017-01-01

    In this work we investigate the thermal-hydraulics behavior of a PWR nuclear reactor core, evaluating the power generation distribution taking into account the local temperature field. The temperature field, evaluated using a self-developed CFD module, is exchanged with a neutron code, DONJON-DRAGON, which updates the macroscopic cross sections and evaluates the new neutron flux. From the updated neutron flux the new peak factor is evaluated and the new temperature field is computed. The exchange of data between the two codes is obtained thanks to their inclusion into the computational platform SALOME, an open-source tools developed by the collaborative project NURESAFE. The numerical libraries MEDmem, included into the SALOME platform, are used in this work, for the projection of computational fields from one problem to another. The two problems are driven by a common supervisor that can access to the computational fields of both systems, in every time step, the temperature field, is extracted from the CFD problem and set into the neutron problem. After this iteration the new power peak factor is projected back into the CFD problem and the new time step can be computed. Several computational examples, where both neutron and thermal-hydraulics quantities are parametrized, are finally reported in this work.

  12. THEORETICAL MAGNETIC MOMENTS OF PROTON AND NEUTRON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guggenheimer, K.M.

    1960-12-17

    Recently it was shown that the equation E = 38.46 STAl(l+ l) + s(s + 1)! Mev provides a correlation of empirical particle masses and of nucleon excitations. The prediction of a resonance energy E/sub r/ at 750 Mev in free protons has now been fully confirmed. The maximum for pi /sup +/ scattering reported to lie at 1.3 or 1.35 Mev appears to be a doublet. Tabulated data are presented on the energies for the transitions from the core particle/sup 2/ F/sub 1/2/ to the indicated higher levels, and the energies needed for the formation of pairs, all calculatedmore » according to this equation. The observed resonance energies in photoproduction and scattering of pions from free protons are included. This equation provides a numerical interpretation of all observed resonance energies. The agreement is in several cases within 1 per cent, less than the estimated error. This equation also contains quantum numbers which are essential for calculating the magnetic moments of the proton and the neutron. In particular, the state /sup 6/F/sub 1/2/, plays an important part as the core particle of the proton. Theoretical magnetic moments of the proton and neutron are discussed. (C.H.)« less

  13. X-ray and Neutron Scattering Study of the Formation of Core–Shell-Type Polyoxometalates

    DOE PAGES

    Yin, Panchao; Wu, Bin; Mamontov, Eugene; ...

    2016-02-05

    A typical type of core-shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small angle X-ray scattering is used to study the structural features and stability of the core-shell structures in aqueous solutions. Time-resolved small angle X-ray scattering is applied to monitor the synthetic reactions and a three-stage formation mechanism is proposed to describe the synthesis of the core-shell polyoxometalates based on the monitoring results. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core-shell structures and two different types ofmore » water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures. A typical type of core shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small-angle X-ray scattering is used to study the structural features and stability of the core shell structures in aqueous solutions. Time-resolved small-angle X-ray scattering is applied to monitor the synthetic reactions, and a three-stage formation mechanism is proposed to describe the synthesis of the core shell polyoxometalates based on the monitoring results. New protocols have been developed by fitting the X-ray data with custom physical models, which provide more convincing, objective, and completed data interpretation. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core shell structures, and two different types of water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures.« less

  14. Compact Short-Pulsed Electron Linac Based Neutron Sources for Precise Nuclear Material Analysis

    NASA Astrophysics Data System (ADS)

    Uesaka, M.; Tagi, K.; Matsuyama, D.; Fujiwara, T.; Dobashi, K.; Yamamoto, M.; Harada, H.

    2015-10-01

    An X-band (11.424GHz) electron linac as a neutron source for nuclear data study for the melted fuel debris analysis and nuclear security in Fukushima is under development. Originally we developed the linac for Compton scattering X-ray source. Quantitative material analysis and forensics for nuclear security will start several years later after the safe settlement of the accident is established. For the purpose, we should now accumulate more precise nuclear data of U, Pu, etc., especially in epithermal (0.1-10 eV) neutrons. Therefore, we have decided to modify and install the linac in the core space of the experimental nuclear reactor "Yayoi" which is now under the decommission procedure. Due to the compactness of the X-band linac, an electron gun, accelerating tube and other components can be installed in a small space in the core. First we plan to perform the time-of-flight (TOF) transmission measurement for study of total cross sections of the nuclei for 0.1-10 eV energy neutrons. Therefore, if we adopt a TOF line of less than 10m, the o-pulse length of generated neutrons should be shorter than 100 ns. Electronenergy, o-pulse length, power, and neutron yield are ~30 MeV, 100 ns - 1 micros, ~0.4 kW, and ~1011 n/s (~103 n/cm2/s at samples), respectively. Optimization of the design of a neutron target (Ta, W, 238U), TOF line and neutron detector (Ce:LiCAF) of high sensitivity and fast response is underway. We are upgrading the electron gun and a buncher to realize higher current and beam power with a reasonable beam size in order to avoid damage of the neutron target. Although the neutron flux is limited in case of the X-band electron linac based source, we take advantage of its short pulse aspect and availability for nuclear data measurement with a short TOF system. First, we form a tentative configuration in the current experimental room for Compton scattering in 2014. Then, after the decommissioning has been finished, we move it to the "Yayoi" room and perform

  15. Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues

    NASA Astrophysics Data System (ADS)

    Rodriguez-Arco, Laura; Rodriguez, Ismael A.; Carriel, Victor; Bonhome-Espinosa, Ana B.; Campos, Fernando; Kuzhir, Pavel; Duran, Juan D. G.; Lopez-Lopez, Modesto T.

    2016-04-01

    The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core-shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core-shell architecture is doubly advantageous. First, gravitational settling for core-shell nanocomposites is slower because of the reduction of the composite average density connected to the light polymer core. Second, the magnetic response of core-shell nanocomposites can be tuned by changing the thickness of the magnetic layer. The incorporation of the composites into biopolymer hydrogels containing cells results in magnetic field-responsive engineered tissues whose mechanical properties can be controlled by external magnetic forces. Indeed, we obtain a significant increase of the viscoelastic moduli of the engineered tissues when exposed to an external magnetic field. Because the composites are functionalized with polyethylene glycol, the prepared bio-artificial tissue-like constructs also display excellent ex vivo cell viability and proliferation. When implanted in vivo, the engineered tissues show good biocompatibility and outstanding interaction with the host tissue. Actually, they only cause a localized transitory inflammatory reaction at the implantation site, without any effect on other organs. Altogether, our results suggest that the inclusion of magnetic core-shell nanocomposites into biomaterials would enable tissue engineering of artificial substitutes whose mechanical properties could be tuned to match those of the potential target tissue. In a wider perspective, the good biocompatibility and magnetic behavior of the composites could be beneficial for many other applications.The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we

  16. Prevalence of NRT use and associated nicotine intake in smokers, recent ex-smokers and longer-term ex-smokers.

    PubMed

    Shahab, Lion; Beard, Emma; Brown, Jamie; West, Robert

    2014-01-01

    Nicotine replacement therapy (NRT) is used by smokers wanting to reduce their smoking and to quit. However, there are very little data on nicotine intake associated with NRT use in representative population samples. This study aimed to provide estimates for NRT use and associated nicotine exposure among smokers, recent and longer-term ex-smokers in England, a country with a permissive regulatory regime for nicotine substitution. In the Smoking Toolkit Study, a monthly series of representative household surveys of adults aged 16+ in England, current and recent ex-smokers who agreed to be re-contacted were followed up 6 months later and standard socio-demographic and smoking characteristics assessed (N = 5,467, response rate 25.1%). A random sub-sample (N = 1,614; 29.5%) also provided saliva, analysed for cotinine. The sample followed up was broadly representative of the original sample. At follow-up, 11.8% (95%CI 10.9-12.8, N = 565) of current smokers, 34.8% (95%CI 28.9-41.3, N = 77) of recent (≤ 3 months) ex-smokers, and 7.8% (95%CI 5.6-10.6, N = 36) of longer-term (> 3 months) ex-smokers reported using NRT. Smokers who used NRT had similar saliva cotinine concentrations to smokers who did not use NRT (mean ± sd  = 356.0 ± 198.6 ng/ml vs. 313.1 ± 178.4 ng/ml). Recent ex-smokers who used NRT had levels that were somewhat lower, but not significantly so, than current smokers (216.7 ± 179.3 ng/ml). Longer-term ex-smokers using NRT had still lower levels (157.3 ± 227.1 ng/ml), which differed significantly from smokers using NRT (p = 0.024). Concurrent use of nicotine replacement therapy while smoking is relatively uncommon and is not associated with higher levels of nicotine intake. Among ex-smokers, NRT use is common in the short but not longer-term and among longer-term users is associated with lower nicotine intake than in smokers.

  17. Rotational properties of hypermassive neutron stars from binary mergers

    NASA Astrophysics Data System (ADS)

    Hanauske, Matthias; Takami, Kentaro; Bovard, Luke; Rezzolla, Luciano; Font, José A.; Galeazzi, Filippo; Stöcker, Horst

    2017-08-01

    Determining the differential-rotation law of compact stellar objects produced in binary neutron stars mergers or core-collapse supernovae is an old problem in relativistic astrophysics. Addressing this problem is important because it impacts directly on the maximum mass these objects can attain and, hence, on the threshold to black-hole formation under realistic conditions. Using the results from a large number of numerical simulations in full general relativity of binary neutron star mergers described with various equations of state and masses, we study the rotational properties of the resulting hypermassive neutron stars. We find that the angular-velocity distribution shows only a modest dependence on the equation of state, thus exhibiting the traits of "quasiuniversality" found in other aspects of compact stars, both isolated and in binary systems. The distributions are characterized by an almost uniformly rotating core and a "disk." Such a configuration is significantly different from the j -constant differential-rotation law that is commonly adopted in equilibrium models of differentially rotating stars. Furthermore, the rest-mass contained in such a disk can be quite large, ranging from ≃0.03 M⊙ in the case of high-mass binaries with stiff equations of state, up to ≃0.2 M⊙ for low-mass binaries with soft equations of state. We comment on the astrophysical implications of our findings and on the long-term evolutionary scenarios that can be conjectured on the basis of our simulations.

  18. Radiation Characterization Summary: ACRR Central Cavity Free-Field Environment with the 32-Inch Pedestal at the Core Centerline (ACRR-FF-CC-32-cl).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vega, Richard Manuel; Parma, Edward J.; Naranjo, Gerald E.

    2015-08-01

    This document presents the facilit y - recommended characteri zation o f the neutron, prompt gamma - ray, and delayed gamma - ray radiation fields in the Annular Core Research Reactor ( ACRR ) for the cen tral cavity free - field environment with the 32 - inch pedestal at the core centerline. The designation for this environmen t is ACRR - FF - CC - 32 - cl. The neutron, prompt gamma - ray , and delayed gamma - ray energy spectra , uncertainties, and covariance matrices are presented as well as radial and axial neutron and gamma -more » ray fluence profiles within the experiment area of the cavity . Recommended constants are given to facilitate the conversion of various dosimetry readings into radiation metrics desired by experimenters. Representative pulse operations are presented with conversion examples . Acknowledgements The authors wish to th ank the Annular Core Research Reactor staff and the Radiation Metrology Laboratory staff for their support of this work . Also thanks to David Ames for his assistance in running MCNP on the Sandia parallel machines.« less

  19. 39 CFR 3000.735-501 - Ex parte communications prohibited.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Ex parte communications prohibited. 3000.735-501 Section 3000.735-501 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL STANDARDS OF CONDUCT Ex Parte Communications § 3000.735-501 Ex parte communications prohibited. Decision-making Commission personnel, as...

  20. Rehabilitating Ex-Offenders through Non-Formal Education in Lesotho

    ERIC Educational Resources Information Center

    Ngozwana, Nomazulu

    2017-01-01

    This paper reports on the rehabilitation of ex-offenders through non-formal education. It examines how non-formal education has addressed the ex-offenders' adaptive and transformative needs. Using an interpretive paradigm and qualitative approach, individual interviews were conducted with five ex-offenders who were chosen through purposive and…

  1. Stratigraphy and geochemistry of the Stone mountain core (64001/2)

    NASA Technical Reports Server (NTRS)

    Korotev, R. L.; Morris, R. V.; Lauer, H. V., Jr.

    1984-01-01

    Ferromagnetic resonance and magnetic data measured on both sections of the double drive tube cord 64001/2 collected on Stone mountain, station four, Apollo 16 are reported, along with instrumental neutron activation analysis data measured on the lower section. These data provide insight into the depositional and irradiational history and the geochemical provenances of the core.

  2. Stratigraphy and geochemistry of the Stone mountain core (64001/2)

    NASA Astrophysics Data System (ADS)

    Korotev, R. L.; Morris, R. V.; Lauer, H. V.

    1984-11-01

    Ferromagnetic resonance and magnetic data measured on both sections of the double drive tube cord 64001/2 collected on Stone mountain, station four, Apollo 16 are reported, along with instrumental neutron activation analysis data measured on the lower section. These data provide insight into the depositional and irradiational history and the geochemical provenances of the core.

  3. Electrically charged: An effective mechanism for soft EOS supporting massive neutron star

    NASA Astrophysics Data System (ADS)

    Jing, ZhenZhen; Wen, DeHua; Zhang, XiangDong

    2015-10-01

    The massive neutron star discoverer announced that strange particles, such as hyperons should be ruled out in the neutron star core as the soft Equation of State (EOS) can-not support a massive neutron star. However, many of the nuclear theories and laboratory experiments support that at high density the strange particles will appear and the corresponding EOS of super-dense matters will become soft. This situation promotes a challenge between the astro-observation and nuclear physics. In this work, we introduce an effective mechanism to answer this challenge, that is, if a neutron star is electrically charged, a soft EOS will be equivalently stiffened and thus can support a massive neutron star. By employing a representative soft EOS, it is found that in order to obtain an evident effect on the EOS and thus increasing the maximum stellar mass by the electrostatic field, the total net charge should be in an order of 1020 C. Moreover, by comparing the results of two kind of charge distributions, it is found that even for different distributions, a similar total charge: ~ 2.3 × 1020 C is needed to support a ~ 2.0 M ⊙ neutron star.

  4. FEDAL SYSTEM OPERATION DURING STATION START-UP. Test Results (T-643734). Core I, Seed 2. Section I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    An investigation was conducted to determine if any failed blanket fuel elements exist in core locations previously found to have high levels of delayed neutron emitter activity. Data from Fedal System monitors indicate that J5 may have a failed blanket element, there is no evidence of failure at core location F7. (J.R.D.)

  5. ON THE MASS DISTRIBUTION AND BIRTH MASSES OF NEUTRON STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oezel, Feryal; Psaltis, Dimitrios; Santos Villarreal, Antonio

    We investigate the distribution of neutron star masses in different populations of binaries, employing Bayesian statistical techniques. In particular, we explore the differences in neutron star masses between sources that have experienced distinct evolutionary paths and accretion episodes. We find that the distribution of neutron star masses in non-recycled eclipsing high-mass binaries as well as of slow pulsars, which are all believed to be near their birth masses, has a mean of 1.28 M{sub Sun} and a dispersion of 0.24 M{sub Sun }. These values are consistent with expectations for neutron star formation in core-collapse supernovae. On the other hand,more » double neutron stars, which are also believed to be near their birth masses, have a much narrower mass distribution, peaking at 1.33 M{sub Sun }, but with a dispersion of only 0.05 M{sub Sun }. Such a small dispersion cannot easily be understood and perhaps points to a particular and rare formation channel. The mass distribution of neutron stars that have been recycled has a mean of 1.48 M{sub Sun} and a dispersion of 0.2 M{sub Sun }, consistent with the expectation that they have experienced extended mass accretion episodes. The fact that only a very small fraction of recycled neutron stars in the inferred distribution have masses that exceed {approx}2 M{sub Sun} suggests that only a few of these neutron stars cross the mass threshold to form low-mass black holes.« less

  6. 40 CFR 304.25 - Ex parte communication.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 27 2010-07-01 2010-07-01 false Ex parte communication. 304.25 Section 304.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY... CLAIMS Jurisdiction of Arbitrator, Referral of Claims, and Appointment of Arbitrator § 304.25 Ex parte...

  7. Coalescing neutron stars - a step towards physical models. II. Neutrino emission, neutron tori, and gamma-ray bursts.

    NASA Astrophysics Data System (ADS)

    Ruffert, M.; Janka, H.-T.; Takahashi, K.; Schaefer, G.

    1997-03-01

    Three-dimensional hydrodynamical, Newtonian calculations of the coalescence of equal-mass binary neutron stars are performed with the "Piecewise Parabolic Method". The properties of neutron star matter are described by the equation of state of Lattimer & Swesty (1991, Nucl. Phys. A535, 331) which allows us to include the emission of neutrinos and to evaluate our models for the νν-annihilation in the vicinity of the merging stars. When the stars have merged into one rapidly spinning massive body, a hot toroidal cloud of gas with a mass of about 0.1-0.2Msun_ forms around the wobbling and pulsating central ~3Msun_ object. At that time the total neutrino luminosity climbs to a maximum value of 1-1.5x10^53^erg/s of which 90-95% originate from the toroidal gas cloud surrounding the very dense core. The mean energies of ν_e_, ν_e_, and heavy-lepton neutrinos ν_x_ are around 12MeV, 20MeV, and 27MeV, respectively. The characteristics of the neutrino emission are very similar to the emission from type-II supernovae, except for the ν_e_ luminosity from the merged neutron stars which is a factor 3-6 higher than the luminosities of the other neutrino species. When the neutrino luminosities are highest, νν-annihilation deposits about 0.2-0.3% of the emitted neutrino energy in the immediate neighborhood of the merger, and the maximum integral energy deposition rate is 3-4x10^50^erg/s. Since the 3Msun_ core of the merged object will most likely collapse into a black hole within milliseconds, the energy that can be pumped into a pair-photon fireball is insufficient by a factor of about 1000 to explain γ-ray bursts at cosmological distances with an energy of the order of 10^51^/(4π) erg/steradian. Analytical estimates show that the additional energy provided by the annihilation of νν pairs emitted from a possible accretion torus of ~0.1Msun_ around the central black hole is still more than a factor of 10 too small, unless focussing of the fireball into a jet

  8. Measuring Neutron Spectrum at MIT Research Reactor Utilizing He-3 Bonner Cylinder Approach with an Unfolding Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leder, A.; Anderson, A. J.; Billard, J.

    2017-10-02

    The Ricochet experiment seeks to measure Coherent (neutral-current) Elastic Neutrino-Nucleus Scattering using dark-matter-style detectors with sub-keV thresholds placed near a neutrino source, such as the MIT (research) Reactor (MITR), which operates at 5.5 MW generating approximately 2.2e18 neutrinos/second at the core. Currently, Ricochet is characterizing the backgrounds at MITR, the main component of which comes in the form of neutrons emitted from the core simultaneous with the neutrino signal. To characterize this background, we wrapped a Bonner cylinder around a He-3 thermal neutron detector, whose data was then unfolded to produce a neutron energy spectrum across several orders of magnitude.more » We discuss the resulting spectrum and its implications for deploying Ricochet in the future at the MITR site as well as the feasibility of reducing this background level via the addition of polyethylene shielding around the detector setup.« less

  9. 37 CFR 1.510 - Request for ex parte reexamination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Request for ex parte reexamination. 1.510 Section 1.510 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE... for Ex Parte Reexamination § 1.510 Request for ex parte reexamination. (a) Any person may, at any time...

  10. 37 CFR 1.510 - Request for ex parte reexamination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Request for ex parte reexamination. 1.510 Section 1.510 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE... for Ex Parte Reexamination § 1.510 Request for ex parte reexamination. (a) Any person may, at any time...

  11. 37 CFR 1.510 - Request for ex parte reexamination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Request for ex parte reexamination. 1.510 Section 1.510 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE... for Ex Parte Reexamination § 1.510 Request for ex parte reexamination. (a) Any person may, at any time...

  12. 37 CFR 1.510 - Request for ex parte reexamination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Request for ex parte reexamination. 1.510 Section 1.510 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE... for Ex Parte Reexamination § 1.510 Request for ex parte reexamination. (a) Any person may, at any time...

  13. High-sensitivity fast neutron detector KNK-2-7M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshelev, A. S., E-mail: alexsander.coshelev@yandex.ru; Dovbysh, L. Ye.; Ovchinnikov, M. A.

    2015-12-15

    The construction of the fast neutron detector KNK-2-7M is briefly described. The results of the study of the detector in the pulse-counting mode are given for the fissions of {sup 237}Np nuclei in the radiator of the neutron-sensitive section and in the current mode with the separation of sectional currents of functional sections. The possibilities of determining the effective number of {sup 237}Np nuclei in the radiator of the neutronsensitive section are considered. The diagnostic possibilities of the detector in the counting mode are shown by example of the analysis of the reference data from the neutron-field characteristics in themore » working hall of the BR-K1 reactor. The diagnostic possibilities of the detector in the current operating mode are shown by example of the results of measuring the {sup 237}Np-fission intensity in the BR-K1 reactor power start-ups implemented in the mode of fission-pulse generation on delayed neutrons at the detector arrangement inside the reactor core cavity under conditions of a wide variation of the reactor radiation field.« less

  14. 40 CFR 57.809 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Ex parte communications. 57.809 Section 57.809 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Technology § 57.809 Ex parte communications. (a) General. (1) No interested person outside the Agency or...

  15. 13 CFR 400.106 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Ex parte communications. 400.106 Section 400.106 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Board Procedures § 400.106 Ex parte communications. Oral or written communication...

  16. ExM:System Support for Extreme-Scale, Many-Task Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, Daniel S

    The ever-increasing power of supercomputer systems is both driving and enabling the emergence of new problem-solving methods that require the effi cient execution of many concurrent and interacting tasks. Methodologies such as rational design (e.g., in materials science), uncertainty quanti fication (e.g., in engineering), parameter estimation (e.g., for chemical and nuclear potential functions, and in economic energy systems modeling), massive dynamic graph pruning (e.g., in phylogenetic searches), Monte-Carlo- based iterative fi xing (e.g., in protein structure prediction), and inverse modeling (e.g., in reservoir simulation) all have these requirements. These many-task applications frequently have aggregate computing needs that demand the fastestmore » computers. For example, proposed next-generation climate model ensemble studies will involve 1,000 or more runs, each requiring 10,000 cores for a week, to characterize model sensitivity to initial condition and parameter uncertainty. The goal of the ExM project is to achieve the technical advances required to execute such many-task applications efficiently, reliably, and easily on petascale and exascale computers. In this way, we will open up extreme-scale computing to new problem solving methods and application classes. In this document, we report on combined technical progress of the collaborative ExM project, and the institutional financial status of the portion of the project at University of Chicago, over the rst 8 months (through April 30, 2011)« less

  17. Gel in core carbosomes as novel ophthalmic vehicles with enhanced corneal permeation and residence.

    PubMed

    Moustafa, Mona A; El-Refaie, Wessam M; Elnaggar, Yosra S R; Abdallah, Ossama Y

    2018-05-17

    Carbopol is a good bio-adhesive polymer that increases the residence time in the eye. However, the effect of blinking and lacrimation still reduce the amount of polymer and the incorporated drug available for bioadhesion. Gel-core liposomes are advanced systems offering benefits making it a good tool for improved ocular drug delivery and residence time. Incorporation of carbopol in gel-core liposomes and their potential in ocular delivery have not so far been investigated. Fluconazole (FLZ) was selected as a challenging important ocular antifungal suffering from poor corneal permeation and short residence time. In this study, gel-core carbosomes have been elaborated as novel carbopol-based ophthalmic vehicles to solve ocular delivery obstacles of FLZ and to sustain its effect. Full in vitro appraisal was performed considering gel-core structure, entrapment efficiency, particle size and stability of the vesicles as quality attributes. Structure elucidation of the nanocarrier was performed using optical, polarizing and transmission electron microscopy before and after Triton-X100 addition. Ex-vivo ocular permeation and in vivo performance were investigated on male albino rabbits. Optimized formulation (CBS5) showed gel-core structure, nanosize (339.00 ± 5.50 nm) and not defined before (62.00% ± 1.73) entrapment efficiency. Cumulative amount of CBS5 permeated ex-vivo after 6 h, was 2.43 and 3.43 folds higher than that of conventional liposomes and FLZ suspension, respectively. In-vivo corneal permeation of CBS5 showed significantly higher AUC0-24 h (487.12 ± 74.80) compared to that of FLZ suspension (204.34 ± 7.46) with longer residence time in the eye lasts for more than 18 h. In conclusion, novel gel-core carbosomes could successfully be used as a promising delivery system for chronic ocular diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Integrated Fast-Ignition Core-Heating Experiments on OMEGA

    NASA Astrophysics Data System (ADS)

    Theobald, W.

    2010-11-01

    Integrated fast-ignition core-heating experiments are carried out at the Omega Laser Facility. Plastic (CD) shell targets with a re-entrant gold cone are compressed with a ˜20-kJ, UV low-adiabat laser pulse. A 1-kJ, 10-ps pulse from OMEGA EP generates fast electrons in the hollow cone that are transported into the compressed core. The experiments demonstrate a significant enhancement of the neutron yield. The neutron-yield enhancement caused by the high-intensity pulse is 1.5 x 10^7, which is more than 150% of the implosion yield. For the first time, measurements of the breakout time of the compression-induced shock wave through the cone were performed for the same targets as used in the integrated experiments. The shock breakout was measured to be ˜100 ps after peak neutron production. The experiments demonstrate that the cone tip is intact at the time when the short-pulse laser interacts with the cone. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement Nos. DE-FC52-08NA28302, DE-FC02-04ER54789, and DE-FG02-05ER54839. [4pt] In collaboration with A. A. Solodov, K. S. Anderson, R. Betti (LLE/FSC); C. Stoeckl, T.R. Boehly, R.S. Craxton, J.A. Delettrez, V.Yu. Glebov, J.P. Knauer, F.J. Marshall, K.L. Marshall, D.D. Meyerhofer,^ P.M. Nilson, T.C. Sangster, W. Seka (LLE); F.N. Beg (UCSD), H. Habara (ILE), P.K. Patel (LLNL), R.B. Stephens (GA); J.A. Frenje, N. Sinenian (PSFC/MIT).

  19. Ex-ante and ex-post measurement of equality of opportunity in health: a normative decomposition.

    PubMed

    Donni, Paolo Li; Peragine, Vito; Pignataro, Giuseppe

    2014-02-01

    This paper proposes and discusses two different approaches to the definition of inequality in health: the ex-ante and the ex-post approach. It proposes strategies for measuring inequality of opportunity in health based on the path-independent Atkinson equality index. The proposed methodology is illustrated using data from the British Household Panel Survey; the results suggest that in the period 2000-2005, at least one-third of the observed health equalities in the UK were equalities of opportunity. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Neutron Star Mergers and the R process

    NASA Astrophysics Data System (ADS)

    Joniak, Ronald; Ugalde, Claudio

    2017-09-01

    About half of the elements of the periodic table that are present today in the Solar System were synthesized before the formation of the Sun via a rapid neutron capture process (r process). However, the astrophysical site of the r process is a longstanding problem that has captivated both experimental and theoretical astrophysicists. Up to date, two possible scenarios for the site of the r process have been suggested: the first involves the high entropy wind of core collapse supernovae, and the second corresponds to the merger of two compact stellar objects such as neutron stars. We will study the robustness of the nucleosynthesis abundance pattern between the second and third r process peaks as produced by neutron star mergers with r process-like neutron exposures. First, we will vary parameters to obtain an understanding of the astrophysical mechanisms that create the r process. Next, we will create a program to obtain the best possible parameters based on a chi-squared test. Once we have the best fits, we will test the effect of fission in the overall isotope abundance pattern distribution. Later on, we will vary the ratio of masses of the two fission fragments and study its effect on elemental abundances. This research was supported by the UIC College of Liberal Arts and Sciences Undergraduate Research Initiative (LASURI).

  1. Compositional Determination of Shale with Simultaneous Neutron and X-ray Tomography

    NASA Astrophysics Data System (ADS)

    LaManna, J.; Hussey, D. S.; Baltic, E.; Jacobson, D. L.

    2017-12-01

    Understanding the distribution of organic material, mineral inclusions, and porosity are critical to properly model the flow of fluids through rock formations in applications ranging from hydraulic fracturing and gas extraction, CO2 sequestration, geothermal power, and aquifer management. Typically, this information is obtained on the pore scale using destructive techniques such as focused ion beam scanning electron microscopy. Neutrons and X-rays provide non-destructive, complementary probes to gain three-dimensional distributions of porosity, minerals, and organic content along with fluid interactions in fractures and pore networks on the core scale. By capturing both neutron and X-ray tomography simultaneously it is possible to capture slowly dynamic or stochastic processes with both imaging modes. To facilitate this, NIST offers a system for simultaneous neutron and X-ray tomography at the Center for Neutron Research. This instrument provides neutron and X-ray beams capable of penetrating through pressure vessels to image the specimen inside at relevant geological conditions at resolutions ranging from 15 micrometers to 100 micrometers. This talk will discuss current efforts at identifying mineral and organic content and fracture and wettability in shales relevant to gas extraction.

  2. 12 CFR 908.24 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... communications. (a) Definition.(1) Ex parte communication means any material oral or written communication... oral, a memorandum stating the substance of the communication) to be placed on the record of the... days of receipt of service of the ex parte communication or the written record of an oral communication...

  3. 45 CFR 160.510 - Ex parte contacts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Ex parte contacts. 160.510 Section 160.510 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES ADMINISTRATIVE DATA STANDARDS AND RELATED REQUIREMENTS GENERAL ADMINISTRATIVE REQUIREMENTS Procedures for Hearings § 160.510 Ex parte contacts. No party or...

  4. 45 CFR 160.510 - Ex parte contacts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Ex parte contacts. 160.510 Section 160.510 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES ADMINISTRATIVE DATA STANDARDS AND RELATED REQUIREMENTS GENERAL ADMINISTRATIVE REQUIREMENTS Procedures for Hearings § 160.510 Ex parte contacts. No party or...

  5. 7 CFR 1200.18 - Ex parte communications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Ex parte communications. 1200.18 Section 1200.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING... Governing Proceedings To Formulate and Amend an Order § 1200.18 Ex parte communications. (a) At no stage of...

  6. 7 CFR 1200.18 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Ex parte communications. 1200.18 Section 1200.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING... Governing Proceedings To Formulate and Amend an Order § 1200.18 Ex parte communications. (a) At no stage of...

  7. 42 CFR 93.507 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Ex parte communications. 93.507 Section 93.507 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES HEALTH ASSESSMENTS AND... Actions Hearing Process § 93.507 Ex parte communications. (a) No party, attorney, or other party...

  8. Neutron spectrometry and dosimetry study at two research nuclear reactors using Bonner sphere spectrometer (BSS), rotational spectrometer (ROSPEC) and cylindrical nested neutron spectrometer (NNS).

    PubMed

    Atanackovic, J; Matysiak, W; Hakmana Witharana, S S; Aslam, I; Dubeau, J; Waker, A J

    2013-01-01

    Neutron spectrometry and subsequent dosimetry measurements were undertaken at the McMaster Nuclear Reactor (MNR) and AECL Chalk River National Research Universal (NRU) Reactor. The instruments used were a Bonner sphere spectrometer (BSS), a cylindrical nested neutron spectrometer (NNS) and a commercially available rotational proton recoil spectrometer. The purposes of these measurements were to: (1) compare the results obtained by three different neutron measuring instruments and (2) quantify neutron fields of interest. The results showed vastly different neutron spectral shapes for the two different reactors. This is not surprising, considering the type of the reactors and the locations where the measurements were performed. MNR is a heavily shielded light water moderated reactor, while NRU is a heavy water moderated reactor. The measurements at MNR were taken at the base of the reactor pool, where a large amount of water and concrete shielding is present, while measurements at NRU were taken at the top of the reactor (TOR) plate, where there is only heavy water and steel between the reactor core and the measuring instrument. As a result, a large component of the thermal neutron fluence was measured at MNR, while a negligible amount of thermal neutrons was measured at NRU. The neutron ambient dose rates at NRU TOR were measured to be between 0.03 and 0.06 mSv h⁻¹, while at MNR, these values were between 0.07 and 2.8 mSv h⁻¹ inside the beam port and <0.2 mSv h⁻¹ between two operating beam ports. The conservative uncertainty of these values is 15 %. The conservative uncertainty of the measured integral neutron fluence is 5 %. It was also found that BSS over-responded slightly due to a non-calibrated response matrix.

  9. Two-Dimensional Neutronic and Fuel Cycle Analysis of the Transatomic Power Molten Salt Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betzler, Benjamin R.; Powers, Jeffrey J.; Worrall, Andrew

    2017-01-15

    This status report presents the results from the first phase of the collaboration between Transatomic Power Corporation (TAP) and Oak Ridge National Laboratory (ORNL) to provide neutronic and fuel cycle analysis of the TAP core design through the Department of Energy Gateway for Accelerated Innovation in Nuclear, Nuclear Energy Voucher program. The TAP design is a molten salt reactor using movable moderator rods to shift the neutron spectrum in the core from mostly epithermal at beginning of life to thermal at end of life. Additional developments in the ChemTriton modeling and simulation tool provide the critical moderator-to-fuel ratio searches andmore » time-dependent parameters necessary to simulate the continuously changing physics in this complex system. Results from simulations with these tools show agreement with TAP-calculated performance metrics for core lifetime, discharge burnup, and salt volume fraction, verifying the viability of reducing actinide waste production with this design. Additional analyses of time step sizes, mass feed rates and enrichments, and isotopic removals provide additional information to make informed design decisions. This work further demonstrates capabilities of ORNL modeling and simulation tools for analysis of molten salt reactor designs and strongly positions this effort for the upcoming three-dimensional core analysis.« less

  10. 9 CFR 202.122 - Rule 22: Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... be served on all parties. (e) For purposes of this section “ex parte communication” means an oral or... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Rule 22: Ex parte communications. 202....122 Rule 22: Ex parte communications. (a) At no stage of the proceeding between its docketing and the...

  11. Neutron star cooling and pion condensation

    NASA Technical Reports Server (NTRS)

    Umeda, Hideyuki; Nomoto, Ken'ichi; Tsuruta, Sachiko; Muto, Takumi; Tatsumi, Toshitaka

    1994-01-01

    The nonstandard cooling of a neutron star with the central pion core is explored. By adopting the latest results from the pion condensation theory, neutrino emissivity is calulated for both pure charged pions and a mixture of charged and neutral pions, and the equations of state are constructed for the pion condensate. The effect of superfluidity on cooling is investigated, adopting methods more realistic than in previous studies. Our theoretical models are compared with the currently updated observational data, and possible implications are explored.

  12. Neutron Diffraction Studies of the Atomic Vibrations of Bulk and Surface Atoms of Nanocrystalline SiC

    NASA Technical Reports Server (NTRS)

    Stelmakh, S.; Grzanka, E.; Zhao, Y.; Palosz, W.; Palosz, B.

    2004-01-01

    Thermal atomic motions of nanocrystalline Sic were characterized by two temperature atomic factors B(sub core), and B(sub shell). With the use of wide angle neutron diffraction data it was shown that at the diffraction vector above 15A(exp -1) the Wilson plots gives directly the temperature factor of the grain interior (B(sub core)). At lower Q values the slope of the Wilson plot provides information on the relative amplitudes of vibrations of the core and shell atoms.

  13. Analyzing the thermionic reactor critical experiments. [thermal spectrum of uranium 235 core

    NASA Technical Reports Server (NTRS)

    Niederauer, G. F.

    1973-01-01

    The Thermionic Reactor Critical Experiments (TRCE) consisted of fast spectrum highly enriched U-235 cores reflected by different thicknesses of beryllium or beryllium oxide with a transition zone of stainless steel between the core and reflector. The mixed fast-thermal spectrum at the core reflector interface region poses a difficult neutron transport calculation. Calculations of TRCE using ENDF/B fast spectrum data and GATHER library thermal spectrum data agreed within about 1 percent for the multiplication factor and within 6 to 8 percent for the power peaks. Use of GAM library fast spectrum data yielded larger deviations. The results were obtained from DOT R Theta calculations with leakage cross sections, by region and by group, extracted from DOT RZ calculations. Delineation of the power peaks required extraordinarily fine mesh size at the core reflector interface.

  14. IMPROVEMENTS IN THE THERMAL NEUTRON CALIBRATION UNIT, TNF2, AT LNMRI/IRD.

    PubMed

    Astuto, A; Fernandes, S S; Patrão, K C S; Fonseca, E S; Pereira, W W; Lopes, R T

    2018-02-21

    The standard thermal neutron flux unit, TNF2, in the Brazilian National Ionizing Radiation Metrology Laboratory was rebuilt. Fluence is still achieved by moderating of four 241Am-Be sources with 0.6 TBq each. The facility was again simulated and redesigned with graphite core and paraffin added graphite blocks surrounding it. Simulations using the MCNPX code on different geometric arrangements of moderator materials and neutron sources were performed. The resulting neutron fluence quality in terms of intensity, spectrum and cadmium ratio was evaluated. After this step, the system was assembled based on the results obtained from the simulations and measurements were performed with equipment existing in LNMRI/IRD and by simulated equipment. This work focuses on the characterization of a central chamber point and external points around the TNF2 in terms of neutron spectrum, fluence and ambient dose equivalent, H*(10). This system was validated with spectra measurements, fluence and H*(10) to ensure traceability.

  15. Three-dimensional Boltzmann-Hydro Code for Core-collapse in Massive Stars. II. The Implementation of Moving-mesh for Neutron Star Kicks

    NASA Astrophysics Data System (ADS)

    Nagakura, Hiroki; Iwakami, Wakana; Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Matsufuru, Hideo; Imakura, Akira

    2017-04-01

    We present a newly developed moving-mesh technique for the multi-dimensional Boltzmann-Hydro code for the simulation of core-collapse supernovae (CCSNe). What makes this technique different from others is the fact that it treats not only hydrodynamics but also neutrino transfer in the language of the 3 + 1 formalism of general relativity (GR), making use of the shift vector to specify the time evolution of the coordinate system. This means that the transport part of our code is essentially general relativistic, although in this paper it is applied only to the moving curvilinear coordinates in the flat Minknowski spacetime, since the gravity part is still Newtonian. The numerical aspect of the implementation is also described in detail. Employing the axisymmetric two-dimensional version of the code, we conduct two test computations: oscillations and runaways of proto-neutron star (PNS). We show that our new method works fine, tracking the motions of PNS correctly. We believe that this is a major advancement toward the realistic simulation of CCSNe.

  16. 50 CFR 18.80 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Ex parte communications. 18.80 Section 18... WILDLIFE AND PLANTS (CONTINUED) MARINE MAMMALS Notice and Hearing on Section 103 Regulations § 18.80 Ex parte communications. (a) After notice of a hearing is published in the Federal Register, all...

  17. 46 CFR 201.183 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... officer in connection with the disposition of the case. (b) Written or oral communications involving any... 46 Shipping 8 2010-10-01 2010-10-01 false Ex parte communications. 201.183 Section 201.183... PRACTICE AND PROCEDURE Judicial Standards of Practice (Rule 19) § 201.183 Ex parte communications. (a...

  18. 12 CFR 1780.8 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... communications. (a) Definition. (1) Ex parte communication means any material oral or written communication... section, that person shall cause all such written communications (or, if the communication is oral, a... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Ex parte communications. 1780.8 Section 1780.8...

  19. 44 CFR 1.6 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Ex parte communications. 1.6... HOMELAND SECURITY GENERAL RULEMAKING; POLICY AND PROCEDURES General § 1.6 Ex parte communications. In rulemaking proceedings subject only to the procedural requirements of 5 U.S.C. 553: (a) All oral...

  20. 12 CFR 509.9 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... communications. (a) Definition—(1) Ex parte communication means any material oral or written communication... shall cause all such written communications (or, if the communication is oral, a memorandum stating the... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Ex parte communications. 509.9 Section 509.9...

  1. 11 CFR 7.15 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in handling enforcement actions who receives an oral offer or any communication concerning any... 11 Federal Elections 1 2010-01-01 2010-01-01 false Ex parte communications. 7.15 Section 7.15... Employees or Commissioners § 7.15 Ex parte communications. In order to avoid the possibility of prejudice...

  2. 12 CFR 263.9 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... (a) Definition—(1) Ex parte communication means any material oral or written communication relevant... oral, a memorandum stating the substance of the communication) to be placed on the record of the... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Ex parte communications. 263.9 Section 263.9...

  3. 50 CFR 18.80 - Ex parte communications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Ex parte communications. 18.80 Section 18... WILDLIFE AND PLANTS (CONTINUED) MARINE MAMMALS Notice and Hearing on Section 103 Regulations § 18.80 Ex parte communications. (a) After notice of a hearing is published in the Federal Register, all...

  4. 42 CFR 8.29 - Ex parte communications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Ex parte communications. 8.29 Section 8.29 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS CERTIFICATION OF..., and of Adverse Action Regarding Withdrawal of Approval of an Accreditation Body § 8.29 Ex parte...

  5. 42 CFR 8.29 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Ex parte communications. 8.29 Section 8.29 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS CERTIFICATION OF..., and of Adverse Action Regarding Withdrawal of Approval of an Accreditation Body § 8.29 Ex parte...

  6. 45 CFR 81.113 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Ex parte communications. 81.113 Section 81.113 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PRACTICE AND PROCEDURE FOR HEARINGS UNDER PART 80 OF THIS TITLE Judicial Standards of Practice § 81.113 Ex parte communications. Only...

  7. 15 CFR 904.255 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... rule shall place in the record of decision: (1) All such written communications; (2) Memoranda stating... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Ex parte communications. 904.255... PROCEDURES Hearing and Appeal Procedures Hearings § 904.255 Ex parte communications. (a) Except to the extent...

  8. 10 CFR 2.347 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Ex parte communications. 2.347 Section 2.347 Energy..., Selection of Specific Hearing Procedures, Presiding Officer Powers, and General Hearing Management for NRC Adjudicatory Hearings § 2.347 Ex parte communications. In any proceeding under this subpart— (a)(1) Interested...

  9. Gamma heating in reflector heat shield of gas core reactor

    NASA Technical Reports Server (NTRS)

    Lofthouse, J. H.; Kunze, J. F.; Young, T. E.; Young, R. C.

    1972-01-01

    Heating rate measurements made in a mock-up of a BeO heat shield for a gas core nuclear rocket engine yields results nominally a factor of two greater than calculated by two different methods. The disparity is thought to be caused by errors in neutron capture cross sections and gamma spectra from the low cross-section elements, D, O, and Be.

  10. Results on the neutron energy distribution measurements at the RECH-1 Chilean nuclear reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilera, P., E-mail: paguilera87@gmail.com; Romero-Barrientos, J.; Universidad de Chile, Dpto. de Física, Facultad de Ciencias, Las Palmeras 3425, Nuñoa, Santiago

    2016-07-07

    Neutron activations experiments has been perform at the RECH-1 Chilean Nuclear Reactor to measure its neutron flux energy distribution. Samples of pure elements was activated to obtain the saturation activities for each reaction. Using - ray spectroscopy we identify and measure the activity of the reaction product nuclei, obtaining the saturation activities of 20 reactions. GEANT4 and MCNP was used to compute the self shielding factor to correct the cross section for each element. With the Expectation-Maximization algorithm (EM) we were able to unfold the neutron flux energy distribution at dry tube position, near the RECH-1 core. In this work,more » we present the unfolding results using the EM algorithm.« less

  11. Neutron Reference Benchmark Field Specification: ACRR Free-Field Environment (ACRR-FF-CC-32-CL).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vega, Richard Manuel; Parma, Edward J.; Griffin, Patrick J.

    2015-07-01

    This report was put together to support the International Atomic Energy Agency (IAEA) REAL- 2016 activity to validate the dosimetry community’s ability to use a consistent set of activation data and to derive consistent spectral characterizations. The report captures details of integral measurements taken in the Annular Core Research Reactor (ACRR) central cavity free-field reference neutron benchmark field. The field is described and an “a priori” calculated neutron spectrum is reported, based on MCNP6 calculations, and a subject matter expert (SME) based covariance matrix is given for this “a priori” spectrum. The results of 31 integral dosimetry measurements in themore » neutron field are reported.« less

  12. Generation and Characterization of States of Matter at Solar Core Conditions

    NASA Astrophysics Data System (ADS)

    Bachmann, Benjamin

    2016-10-01

    The equation-of-state (EOS) of matter at solar core conditions is important to stellar evolution models and understanding the origin of high Z elements. Temperatures, densities and pressures of stellar cores are, however, orders of magnitude greater than those obtained in state-of-the-art laboratory EOS experiments and therefore such conditions have been limited to observational astronomy and theoretical models. Here we present a method to generate and diagnose these conditions in the laboratory, which is the first step towards characterizing the EOS of such extreme states of matter. By launching a converging shock wave into a deuterated plastic sphere (CD2) we produce solar core conditions (R /RSun < 0.2) which are initiated when the shock reaches the center of the CD2 sphere and extends during transit of the reflected wave until the temperature drops to a level where the neutron production and x-ray self emission drop below threshold levels of the detectors. These conditions are diagnosed by both, the neutron spectral data from D-D nuclear reactions, and temporal, spatial, and spectral x-ray emission data. We will discuss how these observables can be measured and used to help our understanding of dense plasma states that reach well into the thermonuclear regime of stellar cores. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was supported by Laboratory Directed Research and Development Grant No. 13-ERD-073.

  13. 45 CFR 79.15 - Ex parte contacts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Ex parte contacts. 79.15 Section 79.15 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PROGRAM FRAUD CIVIL REMEDIES § 79.15 Ex parte contacts. No party or person (except employees of the ALJ's office) shall communciate in...

  14. 12 CFR 308.9 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Definition—(1) Ex parte communication means any material oral or written communication relevant to the merits... this section, that person shall cause all such written communications (or, if the communication is oral... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Ex parte communications. 308.9 Section 308.9...

  15. 31 CFR 501.719 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... communication is oral, a memorandum stating the substance of the communication) to be placed on the record of... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Ex parte communications. 501.719... Trading With the Enemy Act (TWEA) Penalties § 501.719 Ex parte communications. (a) Prohibition. (1) From...

  16. 42 CFR 3.510 - Ex parte contacts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Ex parte contacts. 3.510 Section 3.510 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PATIENT SAFETY ORGANIZATIONS AND PATIENT SAFETY WORK PRODUCT Enforcement Program § 3.510 Ex parte contacts. No party or person...

  17. 42 CFR 3.510 - Ex parte contacts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Ex parte contacts. 3.510 Section 3.510 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PATIENT SAFETY ORGANIZATIONS AND PATIENT SAFETY WORK PRODUCT Enforcement Program § 3.510 Ex parte contacts. No party or person...

  18. Unfolding Neutron Spectrum with Markov Chain Monte Carlo at MIT Research Reactor with He-3 Neutral Current Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leder, A.; Anderson, A. J.; Billard, J.

    2018-02-02

    The Ricochet experiment seeks to measure Coherent (neutral-current) Elastic Neutrino-Nucleus Scattering (CEνNS) using dark-matter-style detectors with sub-keV thresholds placed near a neutrino source, such as the MIT (research) Reactor (MITR), which operates at 5.5 MW generating approximately 2.2 × 1018 ν/second in its core. Currently, Ricochet is characterizing the backgrounds at MITR, the main component of which comes in the form of neutrons emitted from the core simultaneous with the neutrino signal. To characterize this background, we wrapped Bonner cylinders around a 32He thermal neutron detector, whose data was then unfolded via a Markov Chain Monte Carlo (MCMC) to produce a neutron energymore » spectrum across several orders of magnitude. We discuss the resulting spectrum and its implications for deploying Ricochet at the MITR site as well as the feasibility of reducing this background level via the addition of polyethylene shielding around the detector setup.« less

  19. Unfolding neutron spectrum with Markov Chain Monte Carlo at MIT research Reactor with He-3 Neutral Current Detectors

    NASA Astrophysics Data System (ADS)

    Leder, A.; Anderson, A. J.; Billard, J.; Figueroa-Feliciano, E.; Formaggio, J. A.; Hasselkus, C.; Newman, E.; Palladino, K.; Phuthi, M.; Winslow, L.; Zhang, L.

    2018-02-01

    The Ricochet experiment seeks to measure Coherent (neutral-current) Elastic Neutrino-Nucleus Scattering (CEνNS) using dark-matter-style detectors with sub-keV thresholds placed near a neutrino source, such as the MIT (research) Reactor (MITR), which operates at 5.5 MW generating approximately 2.2 × 1018 ν/second in its core. Currently, Ricochet is characterizing the backgrounds at MITR, the main component of which comes in the form of neutrons emitted from the core simultaneous with the neutrino signal. To characterize this background, we wrapped Bonner cylinders around a 32He thermal neutron detector, whose data was then unfolded via a Markov Chain Monte Carlo (MCMC) to produce a neutron energy spectrum across several orders of magnitude. We discuss the resulting spectrum and its implications for deploying Ricochet at the MITR site as well as the feasibility of reducing this background level via the addition of polyethylene shielding around the detector setup.

  20. The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    NASA Astrophysics Data System (ADS)

    Wagemans, Jan; Malambu, Edouard; Borms, Luc; Fiorito, Luca

    2016-02-01

    The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma) irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f) prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f) prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.

  1. Prompt Photon Measurements with the PHENIX MPC-EX Detector

    NASA Astrophysics Data System (ADS)

    Lajoie, John

    2012-10-01

    The MPC-EX detector is a Si-W preshower extension to the existing PHENIX Muon Piston Calorimeter (MPC). The MPC-EX consists of eight layers of alternating W absorber and Si mini-pad sensors. Covering a large pseudorapidity range, 3.1 < |η| < 3.8, the MPC-EX and MPC access low-x partons in the Au nucleus in d+Au collisions through prompt photon measurements. With the addition of the MPC-EX, the neutral pion reconstruction range extends to energies > 80 GeV, a factor of four improvement over current capabilities. Not only will the MPC-EX strengthen PHENIX's existing forward 0̂ and jet measurements, it also provides the necessary 0̂ rejection to make a prompt photon measurement feasible. With this 0̂ rejection, prompt photon yields at high pT, pT> 3 GeV, can be statistically extracted using a double ratio method. The prompt photon RdAu measured with the MPC-EX will quantify the level of gluon shadowing or saturation in the Au nucleus at low-x, x˜ 10-3, with a projected systematic error band a factor of four smaller than current global fits to current measurements.

  2. Predicted Exoplanet Yields for the HabEx Mission Concept

    NASA Astrophysics Data System (ADS)

    Stark, Christopher; Mennesson, Bertrand; HabEx STDT

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is a concept for a flagship mission to directly image and characterize extrasolar planets around nearby stars and to enable a broad range of general astrophysics. The HabEx Science and Technology Definition Team (STDT) is currently studying two architectures for HabEx. Here we summarize the exoplanet science yield of Architecture A, a 4 m monolithic off-axis telescope that uses a vortex coronagraph and a 72m external starshade occulter. We summarize the instruments' capabilities, present science goals and observation strategies, and discuss astrophysical assumptions. Using a yield optimization code, we predict the yield of potentially Earth-like extrasolar planets that could be detected, characterized, and searched for signs of habitability and/or life by HabEx. We demonstrate that HabEx could also detect and characterize a wide variety of exoplanets while searching for potentially Earth-like planets.

  3. 17 CFR 12.7 - Ex parte communications in reparation proceedings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Memoranda stating the substance of all such oral communications; and (iii) All written responses, and... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Ex parte communications in....7 Ex parte communications in reparation proceedings. (a) Prohibitions against ex parte...

  4. 39 CFR 955.33 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Ex parte communications. 955.33 Section 955.33... OF CONTRACT APPEALS § 955.33 Ex parte communications. No member of the Board or of the Board's staff... or oral, regarding any matter at issue in an appeal. This provision does not apply to consultation...

  5. 13 CFR 500.106 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND GAS GUARANTEED LOAN PROGRAM Board Procedures § 500.106 Ex parte communications. Oral or written communication, not on the public record, between the Board, or any member of the Board, and any party or parties... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Ex parte communications. 500.106...

  6. 6 CFR 13.15 - Ex parte contacts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Ex parte contacts. 13.15 Section 13.15 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY PROGRAM FRAUD CIVIL REMEDIES § 13.15 Ex parte contacts. No party or Person (except employees of the ALJ's office) will communicate in any way...

  7. Fission and activation of uranium by fusion-plasma neutrons

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.; Mcfarland, D. R.

    1978-01-01

    Fusion-fission hybrid reactors are discussed in terms of two main purposes: to breed fissile materials (Pu 233 and Th 233 from U 238 or Th 232) for use in low-reactivity breeders, and to produce tritium from lithium to refuel fusion plasma cores. Neutron flux generation is critical for both processes. Various methods for generating the flux are described, with attention to new geometries for multiple plasma focus arrays, e.g., hypocycloidal pinch and staged plasma focus devices. These methods are evaluated with reference to their applicability to D-D fusion reactors, which will ensure a virtually unlimited energy supply. Accurate observations of the neutron flux from such schemes are obtained by using different target materials in the plasma focus.

  8. Constraint on energy-momentum squared gravity from neutron stars and its cosmological implications

    NASA Astrophysics Data System (ADS)

    Akarsu, Özgür; Barrow, John D.; ćıkıntoǧlu, Sercan; Ekşi, K. Yavuz; Katırcı, Nihan

    2018-06-01

    Deviations from the predictions of general relativity due to energy-momentum squared gravity (EMSG) are expected to become pronounced in the high density cores of neutron stars. We derive the hydrostatic equilibrium equations in EMSG and solve them numerically to obtain the neutron star mass-radius relations for four different realistic equations of state. We use the existing observational measurements of the masses and radii of neutron stars to constrain the free parameter, α , that characterizes the coupling between matter and spacetime in EMSG. We show that -10-38 cm3/erg <α <+10-37 cm3/erg . Under this constraint, we discuss what contributions EMSG can provide to the physics of neutron stars, in particular, their relevance to the so called hyperon puzzle in neutron stars. We also discuss how EMSG alters the dynamics of the early universe from the predictions of the standard cosmological model. We show that EMSG leaves the standard cosmology safely unaltered back to t ˜10-4 seconds at which the energy density of the universe is ˜1034 erg cm-3 .

  9. Ex-vivo machine perfusion for kidney preservation.

    PubMed

    Hamar, Matyas; Selzner, Markus

    2018-06-01

    Machine perfusion is a novel strategy to decrease preservation injury, improve graft assessment, and increase organ acceptance for transplantation. This review summarizes the current advances in ex-vivo machine-based kidney preservation technologies over the last year. Ex-vivo perfusion technologies, such as hypothermic and normothermic machine perfusion and controlled oxygenated rewarming, have gained high interest in the field of organ preservation. Keeping kidney grafts functionally and metabolically active during the preservation period offers a unique chance for viability assessment, reconditioning, and organ repair. Normothermic ex-vivo kidney perfusion has been recently translated into clinical practice. Preclinical results suggest that prolonged warm perfusion appears superior than a brief end-ischemic reconditioning in terms of renal function and injury. An established standardized protocol for continuous warm perfusion is still not available for human grafts. Ex-vivo machine perfusion represents a superior organ preservation method over static cold storage. There is still an urgent need for the optimization of the perfusion fluid and machine technology and to identify the optimal indication in kidney transplantation. Recent research is focusing on graft assessment and therapeutic strategies.

  10. Investigation of the i 13 / 2 neutron orbital in the Sn 132 region: New excited levels in Sb 135

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korgul, A.; Ba̧czyk, P.; Urban, W.

    2015-02-01

    Excited states in Sb-135, populated in spontaneous fission of Cm-248, are studied by means of prompt gamma spectroscopy, using the EUROGAM2 detector array. New excited states containing the neutron i(13/2) orbital in their wave functions are proposed. A more accurate value of the i(13/2) neutron single-particle energy in the Sn-132 core potential is determined

  11. The rotational shear in pre-collapse cores of massive stars

    NASA Astrophysics Data System (ADS)

    Zilberman, Noa; Gilkis, Avishai; Soker, Noam

    2018-02-01

    We evolve stellar models to study the rotational profiles of the pre-explosion cores of single massive stars that are progenitors of core collapse supernovae (CCSNe), and find large rotational shear above the iron core that might play an important role in the jet feedback explosion mechanism by amplifying magnetic fields before and after collapse. Initial masses of 15 and 30 M⊙ and various values of the initial rotation velocity are considered, as well as a reduced mass-loss rate along the evolution and the effect of core-envelope coupling through magnetic fields. We find that the rotation profiles just before core collapse differ between models, but share the following properties. (1) There are narrow zones of very large rotational shear adjacent to convective zones. (2) The rotation rate of the inner core is slower than required to form a Keplerian accretion disc. (3) The outer part of the core and the envelope have non-negligible specific angular momentum compared to the last stable orbit around a black hole (BH). Our results suggest the feasibility of magnetic field amplification which might aid a jet-driven explosion leaving behind a neutron star. Alternatively, if the inner core fails in exploding the star, an accretion disc from the outer parts of the core might form and lead to a jet-driven CCSN which leaves behind a BH.

  12. FOREWORD: Neutron metrology Neutron metrology

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    The International Committee for Weights and Measures (CIPM) has consultative committees covering various areas of metrology. The Consultative Committee for Ionizing Radiation (CCRI) differs from the others in having three sections: Section (I) deals with radiation dosimetry, Section (II) with radionuclide metrology and Section (III) with neutron metrology. In 2003 a proposal was made to publish special issues of Metrologia covering the work of the three Sections. Section (II) was the first to complete their task, and their special issue was published in 2007, volume 44(4). This was followed in 2009 by the special issue on radiation dosimetry, volume 46(2). The present issue, volume 48(6), completes the trilogy and attempts to explain neutron metrology, the youngest of the three disciplines, the neutron only having been discovered in 1932, to a wider audience and to highlight the relevance and importance of this field. When originally approached with the idea of this special issue, Section (III) immediately saw the value of a publication specifically on neutron metrology. It is a topic area where papers tend to be scattered throughout the literature in journals covering, for example, nuclear instrumentation, radiation protection or radiation measurements in general. Review articles tend to be few. People new to the field often ask for an introduction to the various topics. There are some excellent older textbooks, but these are now becoming obsolete. More experienced workers in specific areas of neutron metrology can find it difficult to know the latest position in related areas. The papers in this issue attempt, without presenting a purely historical outline, to describe the field in a sufficiently logical way to provide the novice with a clear introduction, while being sufficiently up-to-date to provide the more experienced reader with the latest scientific developments in the different topic areas. Neutron radiation fields obviously occur throughout the nuclear

  13. General Astrophysics with the HabEx Workhorse Camera

    NASA Astrophysics Data System (ADS)

    Stern, Daniel; Clarke, John; Gaudi, B. Scott; Kiessling, Alina; Krause, Oliver; Martin, Stefan; Scowen, Paul; Somerville, Rachel; HabEx STDT

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) concept has been designed to enable an extensive suite of science, broadly put under the rubric of General Astrophysics, in addition to its exoplanet direct imaging science. General astrophysics directly addresses multiple NASA programmatic branches, and HabEx will enable investigations ranging from cosmology, to galaxy evolution, to stellar population studies, to exoplanet transit spectroscopy, to Solar System studies. This poster briefly describes one of the two primary HabEx General Astrophysics instruments, the HabEx Workhorse Camera (HWC). HWC will be a dual-detector UV-to-near-IR imager and multi-object grism spectrometer with a microshutter array and a moderate (3' x 3') field-of-view. We detail some of the key science we expect HWC to undertake, emphasizing unique capabilities enabled by a large-aperture, highly stable space-borne platform at these wavelengths.

  14. Simulation des fuites neutroniques a l'aide d'un modele B1 heterogene pour des reacteurs a neutrons rapides et a eau legere

    NASA Astrophysics Data System (ADS)

    Faure, Bastien

    The neutronic calculation of a reactor's core is usually done in two steps. After solving the neutron transport equation over an elementary domain of the core, a set of parameters, namely macroscopic cross sections and potentially diffusion coefficients, are defined in order to perform a full core calculation. In the first step, the cell or assembly is calculated using the "fundamental mode theory", the pattern being inserted in an infinite lattice of periodic structures. This simple representation allows a precise modeling for the geometry and the energy variable and can be treated within transport theory with minimalist approximations. However, it supposes that the reactor's core can be treated as a periodic lattice of elementary domains, which is already a big hypothesis, and cannot, at first sight, take into account neutron leakage between two different zones and out of the core. The leakage models propose to correct the transport equation with an additional leakage term in order to represent this phenomenon. For historical reasons, numerical methods for solving the transport equation being limited by computer's features (processor speeds and memory sizes), the leakage term is, in most cases, modeled by a homogeneous and isotropic probability within a "homogeneous leakage model". Driven by technological innovation in the computer science field, "heterogeneous leakage models" have been developed and implemented in several neutron transport calculation codes. This work focuses on a study of some of those models, including the TIBERE model from the DRAGON-3 code developed at Ecole Polytechnique de Montreal, as well as the heterogeneous model from the APOLLO-3 code developed at Commissariat a l'Energie Atomique et aux energies alternatives. The research based on sodium cooled fast reactors and light water reactors has allowed us to demonstrate the interest of those models compared to a homogeneous leakage model. In particular, it has been shown that a heterogeneous

  15. Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tews, Ingo; Lattimer, James M.; Ohnishi, Akira

    We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S {sub 0}. In addition, for assumed values of S {sub 0} above this minimum, this bound impliesmore » both upper and lower limits to the symmetry energy slope parameter L , which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust–core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.« less

  16. Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy

    NASA Astrophysics Data System (ADS)

    Tews, Ingo; Lattimer, James M.; Ohnishi, Akira; Kolomeitsev, Evgeni E.

    2017-10-01

    We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S 0. In addition, for assumed values of S 0 above this minimum, this bound implies both upper and lower limits to the symmetry energy slope parameter L ,which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust-core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.

  17. The CANDELLE experiment for characterization of neutron sensitivity of LiF TLDs

    NASA Astrophysics Data System (ADS)

    Guillou, M. Le; Billebaud, A.; Gruel, A.; Kessedjian, G.; Méplan, O.; Destouches, C.; Blaise, P.

    2018-01-01

    As part of the design studies conducted at CEA for future power and research nuclear reactors, the validation of neutron and photon calculation schemes related to nuclear heating prediction are strongly dependent on the implementation of nuclear heating measurements. Such measurements are usually performed in low-power reactors, whose core dimensions are accurately known and where irradiation conditions (power, flux and temperature) are entirely controlled. Due to the very low operating power of such reactors (of the order of 100 W), nuclear heating is assessed by using dosimetry techniques such as thermoluminescent dosimeters (TLDs). However, although they are highly sensitive to gamma radiation, such dosimeters are also, to a lesser extent, sensitive to neutrons. The neutron dose depends strongly on the TLD composition, typically contributing to 10-30% of the total measured dose in a mixed neutron/gamma field. The experimental determination of the neutron correction appears therefore to be crucial to a better interpretation of doses measured in reactor with reduced uncertainties. A promising approach based on the use of two types of LiF TLDs respectively enriched with lithium-6 and lithium-7, precalibrated both in photon and neutron fields, has been recently developed at INFN (Milan, Italy) for medical purposes. The CANDELLE experiment is dedicated to the implementation of a pure neutron field "calibration" of TLDs by using the GENEPI-2 neutron source of LPSC (Grenoble, France). Those irradiation conditions allowed providing an early assessment of the neutron components of doses measured in EOLE reactor at CEA Cadarache with 10% uncertainty at 1σ.

  18. 10 CFR 13.15 - Ex parte contacts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Ex parte contacts. 13.15 Section 13.15 Energy NUCLEAR REGULATORY COMMISSION PROGRAM FRAUD CIVIL REMEDIES § 13.15 Ex parte contacts. No party or person (except employees of the ALJ's office) shall communicate in any way with the ALJ on any matter at issue in a case...

  19. 46 CFR 502.11 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Information § 502.11 Ex parte communications. (a) No person who is a party to or an agent of a party to any... proceeding should not be dismissed, denied, disregarded, or otherwise adversely affected on account of the making of such communication; (g) An ex parte communication shall not constitute a part of the record for...

  20. Essential Ingredients in Core-collapse Supernovae

    DOE PAGES

    Hix, William Raphael; Lentz, E. J.; Endeve, Eirik; ...

    2014-03-27

    Marking the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae bring together physics at a wide range in spatial scales, from kilometer-sized hydrodynamic motions (eventually growing to gigameter scale) down to femtometer scale nuclear reactions. Carrying 10more » $$^{44}$$ joules of kinetic energy and a rich-mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up ourselves and our solar system. We will discuss our emerging understanding of the convectively unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino-radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Recent multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.« less

  1. Production of gamma ray bursts from asymmetric core combustion of magnetized young neutron stars

    NASA Astrophysics Data System (ADS)

    de Gouveia dal Pino, E. M.; Lugones, G.; Horvath, J. E.; Ghezzi, C. R.

    2005-09-01

    Many works in the past have explored the idea that the conversion of hadronic matter into strange quark matter in neutron stars may be an energy source for GRBs (see references in Lugones et al. 2002, Lugones and Horvath 2003). These models addressed essentially spherically symmetric conversions of the whole neutron star rendering isotropic gamma emission. Accumulating observational evidence suggests that at least ''long'' GRBs are strongly asymmetric, jet-like outflows. The ''short'' burst subclass is not obviously asymmetric, and they may actually be spherically symmetric if the sources are close enough. A new potentially important feature recently recognized (Lugones et al. 2002) is that if a conversion to strange quark matter actually begins near the center of a neutron star, the presence of a magnetic field with intensity B ˜ 1013 G (see also Ghezi, de Gouveia Dal Pino & Horvath 2004) will originate a prompt collimated gamma emission, which may be observed as a short, beamed GRB after the recovery of a fraction of the neutrino energy via ν {barν} → e+e- → γγ. The calculations show that the neutrino luminosity is ˜ 1053 erg/sec and that the e+e- luminosity is about two orders of magnitude smaller ( tet{Lugones2002grb}). We find that 90 % of the e+e- pairs are injected inside small cylinders located just above the polar caps (with radius δ and height 0.4 R) in a timescale of τi ≃ 0.2 s almost independently of the initial temperature. This provides an interesting suitable explanation for the inner engine of short gamma ray bursts.

  2. Neutron Fluence And DPA Rate Analysis In Pebble-Bed HTR Reactor Vessel Using MCNP

    NASA Astrophysics Data System (ADS)

    Hamzah, Amir; Suwoto; Rohanda, Anis; Adrial, Hery; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    In the Pebble-bed HTR reactor, the distance between the core and the reactor vessel is very close and the media inside are carbon and He gas. Neutron moderation capability of graphite material is theoretically lower than that of water-moderated reactors. Thus, it is estimated much more the fast neutrons will reach the reactor vessel. The fast neutron collisions with the atoms in the reactor vessel will result in radiation damage and could be reducing the vessel life. The purpose of this study was to obtain the magnitude of neutron fluence in the Pebble-bed HTR reactor vessel. Neutron fluence calculations in the pebble-bed HTR reactor vessel were performed using the MCNP computer program. By determining the tally position, it can be calculated flux, spectrum and neutron fluence in the position of Pebble-bed HTR reactor vessel. The calculations results of total neutron flux and fast neutron flux in the reactor vessel of 1.82x108 n/cm2/s and 1.79x108 n/cm2/s respectively. The fast neutron fluence in the reactor vessel is 3.4x1017 n/cm2 for 60 years reactor operation. Radiation damage in stainless steel material caused by high-energy neutrons (> 1.0 MeV) will occur when it has reached the neutron flux level of 1.0x1024 n/cm2. The neutron fluence results show that there is no radiation damage in the Pebble-bed HTR reactor vessel, so it is predicted that it will be safe to operate at least for 60 years.

  3. Three-dimensional modeling of the neutron spectrum to infer plasma conditions in cryogenic inertial confinement fusion implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weilacher, F.; Radha, P. B.; Forrest, C.

    Neutron-based diagnostics are typically used to infer compressed core conditions such as areal density and ion temperature in deuterium–tritium (D–T) inertial confinement fusion (ICF) implosions. Asymmetries in the observed neutron-related quantities are important to understanding failure modes in these implosions. Neutrons from fusion reactions and their subsequent interactions including elastic scattering and neutron-induced deuteron breakup reactions are tracked to create spectra. Here, it is shown that background subtraction is important for inferring areal density from backscattered neutrons and is less important for the forward-scattered neutrons. A three-dimensional hydrodynamic simulation of a cryogenic implosion on the OMEGA Laser System [T. R.more » Boehly et al., Opt. Commun. 133, 495 (1997)] using the hydrodynamic code HYDRA [M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001)] is post-processed using the tracking code IRIS3D. It is shown that different parts of the neutron spectrum from the view can be mapped into different regions of the implosion, enabling an inference of an areal-density map. It is also shown that the average areal-density and an areal-density map of the compressed target can be reconstructed with a finite number of detectors placed around the target chamber. Ion temperatures are inferred from the width of the D–D and D–T fusion neutron spectra. Backgrounds can significantly alter the inferred ion temperatures from the D–D reaction, whereas they insignificantly influence the inferred D–T ion temperatures for the areal densities typical of OMEGA implosions. Asymmetries resulting in fluid flow in the core are shown to influence the absolute inferred ion temperatures from both reactions, although relative inferred values continue to reflect the underlying asymmetry pattern. The work presented here is part of the wide range of the first set of studies performed with IRIS3D. Finally, this code will continue to be used for

  4. Three-dimensional modeling of the neutron spectrum to infer plasma conditions in cryogenic inertial confinement fusion implosions

    DOE PAGES

    Weilacher, F.; Radha, P. B.; Forrest, C.

    2018-04-26

    Neutron-based diagnostics are typically used to infer compressed core conditions such as areal density and ion temperature in deuterium–tritium (D–T) inertial confinement fusion (ICF) implosions. Asymmetries in the observed neutron-related quantities are important to understanding failure modes in these implosions. Neutrons from fusion reactions and their subsequent interactions including elastic scattering and neutron-induced deuteron breakup reactions are tracked to create spectra. Here, it is shown that background subtraction is important for inferring areal density from backscattered neutrons and is less important for the forward-scattered neutrons. A three-dimensional hydrodynamic simulation of a cryogenic implosion on the OMEGA Laser System [T. R.more » Boehly et al., Opt. Commun. 133, 495 (1997)] using the hydrodynamic code HYDRA [M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001)] is post-processed using the tracking code IRIS3D. It is shown that different parts of the neutron spectrum from the view can be mapped into different regions of the implosion, enabling an inference of an areal-density map. It is also shown that the average areal-density and an areal-density map of the compressed target can be reconstructed with a finite number of detectors placed around the target chamber. Ion temperatures are inferred from the width of the D–D and D–T fusion neutron spectra. Backgrounds can significantly alter the inferred ion temperatures from the D–D reaction, whereas they insignificantly influence the inferred D–T ion temperatures for the areal densities typical of OMEGA implosions. Asymmetries resulting in fluid flow in the core are shown to influence the absolute inferred ion temperatures from both reactions, although relative inferred values continue to reflect the underlying asymmetry pattern. The work presented here is part of the wide range of the first set of studies performed with IRIS3D. Finally, this code will continue to be used for

  5. Three-dimensional modeling of the neutron spectrum to infer plasma conditions in cryogenic inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Weilacher, F.; Radha, P. B.; Forrest, C.

    2018-04-01

    Neutron-based diagnostics are typically used to infer compressed core conditions such as areal density and ion temperature in deuterium-tritium (D-T) inertial confinement fusion (ICF) implosions. Asymmetries in the observed neutron-related quantities are important to understanding failure modes in these implosions. Neutrons from fusion reactions and their subsequent interactions including elastic scattering and neutron-induced deuteron breakup reactions are tracked to create spectra. It is shown that background subtraction is important for inferring areal density from backscattered neutrons and is less important for the forward-scattered neutrons. A three-dimensional hydrodynamic simulation of a cryogenic implosion on the OMEGA Laser System [Boehly et al., Opt. Commun. 133, 495 (1997)] using the hydrodynamic code HYDRA [Marinak et al., Phys. Plasmas 8, 2275 (2001)] is post-processed using the tracking code IRIS3D. It is shown that different parts of the neutron spectrum from the view can be mapped into different regions of the implosion, enabling an inference of an areal-density map. It is also shown that the average areal-density and an areal-density map of the compressed target can be reconstructed with a finite number of detectors placed around the target chamber. Ion temperatures are inferred from the width of the D-D and D-T fusion neutron spectra. Backgrounds can significantly alter the inferred ion temperatures from the D-D reaction, whereas they insignificantly influence the inferred D-T ion temperatures for the areal densities typical of OMEGA implosions. Asymmetries resulting in fluid flow in the core are shown to influence the absolute inferred ion temperatures from both reactions, although relative inferred values continue to reflect the underlying asymmetry pattern. The work presented here is part of the wide range of the first set of studies performed with IRIS3D. This code will continue to be used for post-processing detailed hydrodynamic simulations

  6. 37 CFR 1.560 - Interviews in ex parte reexamination proceedings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Interviews in ex parte... Patents Ex Parte Reexamination § 1.560 Interviews in ex parte reexamination proceedings. (a) Interviews in... Office hours, as the respective examiners may designate. Interviews will not be permitted at any other...

  7. Unified equation of state for neutron stars on a microscopic basis

    NASA Astrophysics Data System (ADS)

    Sharma, B. K.; Centelles, M.; Viñas, X.; Baldo, M.; Burgio, G. F.

    2015-12-01

    We derive a new equation of state (EoS) for neutron stars (NS) from the outer crust to the core based on modern microscopic calculations using the Argonne v18 potential plus three-body forces computed with the Urbana model. To deal with the inhomogeneous structures of matter in the NS crust, we use a recent nuclear energy density functional that is directly based on the same microscopic calculations, and which is able to reproduce the ground-state properties of nuclei along the periodic table. The EoS of the outer crust requires the masses of neutron-rich nuclei, which are obtained through Hartree-Fock-Bogoliubov calculations with the new functional when they are unknown experimentally. To compute the inner crust, Thomas-Fermi calculations in Wigner-Seitz cells are performed with the same functional. Existence of nuclear pasta is predicted in a range of average baryon densities between ≃0.067 fm-3 and ≃0.0825 fm-3, where the transition to the core takes place. The NS core is computed from the new nuclear EoS assuming non-exotic constituents (core of npeμ matter). In each region of the star, we discuss the comparison of the new EoS with previous EoSs for the complete NS structure, widely used in astrophysical calculations. The new microscopically derived EoS fulfills at the same time a NS maximum mass of 2 M⊙ with a radius of 10 km, and a 1.5 M⊙ NS with a radius of 11.6 km.

  8. Exploring forward physics with the PHENIX MPC-EX upgrade

    NASA Astrophysics Data System (ADS)

    Novitzky, Norbert; Phenix Collaboration

    2014-09-01

    The MPC-EX detector is a Si-W preshower extension to the existing Muon Piston Calorimeter (MPC) at PHENIX. Located at forward rapidity, 3 . 1 < | η | < 3 . 8 , the MPC-EX consists of eight layers of alternating W absorber and Si minipad sensors. Covering a large range at forward rapidity makes the MPC-EX and MPC ideal to access low-x partons in the A nucleus of p + A collisions. The neutral pion and direct photon are excellent probes to separate between the initial and final state effects of the pA collisions. Isolating the direct photon signal requires the MPC-EX to be able to distinguish single showers from double showers. The single versus double shower separation was tested with an electron beam at the SLAC test beam facility. Results from the test beam data will be presented in this talk. The MPC-EX detector is a Si-W preshower extension to the existing Muon Piston Calorimeter (MPC) at PHENIX. Located at forward rapidity, 3 . 1 < | η | < 3 . 8 , the MPC-EX consists of eight layers of alternating W absorber and Si minipad sensors. Covering a large range at forward rapidity makes the MPC-EX and MPC ideal to access low-x partons in the A nucleus of p + A collisions. The neutral pion and direct photon are excellent probes to separate between the initial and final state effects of the pA collisions. Isolating the direct photon signal requires the MPC-EX to be able to distinguish single showers from double showers. The single versus double shower separation was tested with an electron beam at the SLAC test beam facility. Results from the test beam data will be presented in this talk. Norbert Novitzky for PHENIX collaboration.

  9. On formation of the asymptotic spectrum of delayed neutron emitters in measuring the VVER-1000 scram system effectiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shishkov, L. K., E-mail: slk@vver.kiae.ru; Zizin, M. N., E-mail: zizin_m@mail.ru

    The process of formation of an asymptotic distribution of the neutron flux density in the reactor systems after introducing different negative reactivities is considered. The impact of two factors after the reactivity introduction is evaluated: (1) nonuniformity of perturbation of core properties, on one hand, and (2) a sharp reduction in the density of prompt neutrons, which prevents the appearance of new delayed neutron emitters distributed in accordance with the “new” prompt neutron distribution, on the other hand. The results of calculations show that the errors of measuring the scram system effectiveness using the method of inverse solution of themore » kinetics equation are caused by the fact that, after the negative reactivity insertion, the sources of prompt and delayed neutrons have different spatial distributions. In the case of high negative reactivities, this difference remains while the system still has neutrons, which can be measured.« less

  10. A debris disk around an isolated young neutron star.

    PubMed

    Wang, Zhongxiang; Chakrabarty, Deepto; Kaplan, David L

    2006-04-06

    Pulsars are rotating, magnetized neutron stars that are born in supernova explosions following the collapse of the cores of massive stars. If some of the explosion ejecta fails to escape, it may fall back onto the neutron star or it may possess sufficient angular momentum to form a disk. Such 'fallback' is both a general prediction of current supernova models and, if the material pushes the neutron star over its stability limit, a possible mode of black hole formation. Fallback disks could dramatically affect the early evolution of pulsars, yet there are few observational constraints on whether significant fallback occurs or even the actual existence of such disks. Here we report the discovery of mid-infrared emission from a cool disk around an isolated young X-ray pulsar. The disk does not power the pulsar's X-ray emission but is passively illuminated by these X-rays. The estimated mass of the disk is of the order of 10 Earth masses, and its lifetime (> or = 10(6) years) significantly exceeds the spin-down age of the pulsar, supporting a supernova fallback origin. The disk resembles protoplanetary disks seen around ordinary young stars, suggesting the possibility of planet formation around young neutron stars.

  11. Comments on the feasibility of developing gas core nuclear reactors. [for manned interplanetary spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Rom, F. E.

    1969-01-01

    Recent developments in the fields of gas core hydrodynamics, heat transfer, and neutronics indicate that gas core nuclear rockets may be feasible from the point of view of basic principles. Based on performance predictions using these results, mission analyses indicate that gas core nuclear rockets may have the potential for reducing the initial weight in orbit of manned interplanetary vehicles by a factor of 5 when compared to the best chemical rocket systems. In addition, there is a potential for reducing total trip times from 450 to 500 days for chemical systems to 250 to 300 days for gas core systems. The possibility of demonstrating the feasibility of gas core nuclear rocket engines by means of a logical series of experiments of increasing difficulty that ends with ground tests of full scale gas core reactors is considered.

  12. Strangeness in nuclei and neutron stars: A challenging puzzle

    DOE PAGES

    Lonardoni, Diego; Lovato, Alessandro; Gandolfi, Stefano; ...

    2016-03-25

    The prediction of neutron stars properties is strictly connected to the employed nuclear interactions. The appearance of hyperons in the inner core of the star is strongly dependent on the details of the underlying hypernuclear force. Here, we summarize our recent quantum Monte Carlo results on the development of realistic two- and threebody hyperon-nucleon interactions based on the available experimental data for light- and medium-heavy hypernuclei.

  13. Vocational Psychology and Ex-Offenders' Reintegration: A Call for Action

    ERIC Educational Resources Information Center

    Brown, Chris

    2011-01-01

    Failure to find steady and rewarding employment and stabilizing economic resources are key contributors to recidivism among ex-offenders. Within 3 years of their release, almost two thirds of ex-offenders return to prison. Ex-offenders face formidable barriers to employment including legal limitations and those specific to their skills, education,…

  14. Resident-performed Ex-PRESS shunt implantation versus trabeculectomy.

    PubMed

    Seider, Michael I; Rofagha, Soraya; Lin, Shan C; Stamper, Robert L

    2012-09-01

    To compare outcomes between resident-performed trabeculectomy and Ex-PRESS shunt implantation. A consecutive cohort of 36 Ex-PRESS shunt implantations and 57 trabeculectomies (1 eye/patient) performed by resident surgeons in their third year of ophthalmic training at the University of California, San Francisco and at the San Francisco Veterans Administration Hospital, under the supervision of a single glaucoma fellowship-trained surgeon were included in this study. Eyes with < 6 months of follow-up or previous glaucoma surgery were excluded. Preoperative and postoperative intraocular pressure (IOP), preoperative and postoperative number of ocular antihypertensive medications and complication rates were compared between the 2 procedures retrospectively. No difference was found in postoperative IOP (all, P≥0.099) or proportional decrease in IOP (all, P≥0.092) between the trabeculectomy and Ex-PRESS shunt groups at all follow-up points. On average, the Ex-PRESS shunt group required significantly less ocular antihypertensive medication to control IOP at 3 months postoperative (P=0.01), but no difference was found at 6 months or 1 year (all, P≥0.28). A larger proportion of Ex-PRESS shunt patients had good IOP control without medication at 3 (P=0.057) and 6 months (P=0.076) postoperatively. No difference was found in the rates of sight-threatening complications between groups (all, P≥0.22). In the hands of ophthalmology residents in their third year of training, the trabeculectomy and Ex-PRESS shunt implantation procedures perform comparably in terms of postoperative IOP control, reduction in patient dependence on ocular antihypertensive medications, and risk of complication in our population.

  15. Fabrication of (Ba,K)Fe2As2 tapes by ex situ PIT process using Ag-Sn alloy single sheath

    NASA Astrophysics Data System (ADS)

    Togano, K.; Gao, Z.; Matsumoto, A.; Kikuchi, A.; Kumakura, H.

    2017-01-01

    Instead of ordinal pure Ag, Ag-based Sn binary alloys (up to 7.5 at%Sn) with higher mechanical strength are used for the sheath material of ex situ powder-in-tube (PIT)-processed (Ba,K)Fe2As2(Ba-122) tapes. We found that the use of the Ag-Sn alloy enhances the densification and texturing of the Ba-122 core, resulting in higher transport, J c. Moreover, the optimum heat treatment temperature for a high J c can be lowered by around 100 °C due to the higher packing density of the Ba-122 core prior to the final heat treatment. We also found that the smoothness of the interface between the sheath and Ba-122 core is significantly improved by using the Ag-Sn binary alloy sheaths. These results show that the Ag-Sn alloy is promising as a sheath material in PIT-processed Ba-122 superconducting wires.

  16. Half-lives and branchings for {beta}-delayed neutron emission for neutron-rich Co-Cu isotopes in the r-process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosmer, P.; Estrade, A.; Montes, F.

    The {beta} decays of very neutron-rich nuclides in the Co-Zn region were studied experimentally at the National Superconducting Cyclotron Laboratory using the NSCL {beta}-counting station in conjunction with the neutron detector NERO. We measured the branchings for {beta}-delayed neutron emission (P{sub n} values) for {sup 74}Co (18{+-}15%) and {sup 75-77}Ni (10{+-}2.8%, 14{+-}3.6%, and 30{+-}24%, respectively) for the first time, and remeasured the P{sub n} values of {sup 77-79}Cu, {sup 79,81}Zn, and {sup 82}Ga. For {sup 77-79}Cu and for {sup 81}Zn we obtain significantly larger P{sub n} values compared to previous work. While the new half-lives for the Ni isotopes frommore » this experiment had been reported before, we present here in addition the first half-life measurements of {sup 75}Co (30{+-}11 ms) and {sup 80}Cu (170{sub -50}{sup +110} ms). Our results are compared with theoretical predictions, and their impact on various types of models for the astrophysical rapid neutron-capture process (r-process) is explored. We find that with our new data, the classical r-process model is better able to reproduce the A=78-80 abundance pattern inferred from the solar abundances. The new data also influence r-process models based on the neutrino-driven high-entropy winds in core collapse supernovae.« less

  17. The Los Alamos Neutron Science Center Spallation Neutron Sources

    NASA Astrophysics Data System (ADS)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ∼100 keV. The characteristics of these sources, and

  18. 40 CFR 78.10 - Ex parte communications during pendency of a hearing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ex parte communications and memoranda stating the substance of any such oral ex parte communication... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Ex parte communications during... (CONTINUED) AIR PROGRAMS (CONTINUED) APPEAL PROCEDURES § 78.10 Ex parte communications during pendency of a...

  19. The Gamow-state description of the decay energy spectrum of neutron-unbound 25O

    NASA Astrophysics Data System (ADS)

    Id Betan, R. M.; de la Madrid, R.

    2018-02-01

    We show the feasibility of calculating the decay energy spectrum of neutron emitting nuclei within the Gamow-state description of resonances by obtaining the decay energy spectrum of 25O. We model this nucleus as a valence neutron interacting with an 24O inert core, and we obtain the resulting resonant energies, widths and decay energy spectra for the ground and first excited states. We also discuss the similarities and differences between the decay energy spectrum of a Gamow state and the Breit-Wigner distribution with energy-dependent width.

  20. Planning for ex situ conservation in the face of uncertainty

    USGS Publications Warehouse

    Canessa, Stefano; Converse, Sarah J.; West, Matt; Clemann, Nick; Gillespie, Graeme; McFadden, Michael; Silla, Aimee J; Parris, Kirsten M; McCarthy, Michael A

    2016-01-01

    Ex situ conservation strategies for threatened species often require long-term commitment and financial investment to achieve management objectives. We present a framework that considers the decision to adopt ex situ management for a target species as the end point of several linked decisions. We used a decision tree to intuitively represent the logical sequence of decision making. The first decision is to identify the specific management actions most likely to achieve the fundamental objectives of the recovery plan, with or without the use of ex-situ populations. Once this decision has been made, one decides whether to establish an ex situ population, accounting for the probability of success in the initial phase of the recovery plan, for example, the probability of successful breeding in captivity. Approaching these decisions in the reverse order (attempting to establish an ex situ population before its purpose is clearly defined) can lead to a poor allocation of resources, because it may restrict the range of available decisions in the second stage. We applied our decision framework to the recovery program for the threatened spotted tree frog (Litoria spenceri) of southeastern Australia. Across a range of possible management actions, only those including ex situ management were expected to provide >50% probability of the species’ persistence, but these actions cost more than use of in situ alternatives only. The expected benefits of ex situ actions were predicted to be offset by additional uncertainty and stochasticity associated with establishing and maintaining ex situ populations. Naïvely implementing ex situ conservation strategies can lead to inefficient management. Our framework may help managers explicitly evaluate objectives, management options, and the probability of success prior to establishing a captive colony of any given species.

  1. Planning for ex situ conservation in the face of uncertainty.

    PubMed

    Canessa, Stefano; Converse, Sarah J; West, Matt; Clemann, Nick; Gillespie, Graeme; McFadden, Michael; Silla, Aimee J; Parris, Kirsten M; McCarthy, Michael A

    2016-06-01

    Ex situ conservation strategies for threatened species often require long-term commitment and financial investment to achieve management objectives. We present a framework that considers the decision to adopt ex situ management for a target species as the end point of several linked decisions. We used a decision tree to intuitively represent the logical sequence of decision making. The first decision is to identify the specific management actions most likely to achieve the fundamental objectives of the recovery plan, with or without the use of ex-situ populations. Once this decision has been made, one decides whether to establish an ex situ population, accounting for the probability of success in the initial phase of the recovery plan, for example, the probability of successful breeding in captivity. Approaching these decisions in the reverse order (attempting to establish an ex situ population before its purpose is clearly defined) can lead to a poor allocation of resources, because it may restrict the range of available decisions in the second stage. We applied our decision framework to the recovery program for the threatened spotted tree frog (Litoria spenceri) of southeastern Australia. Across a range of possible management actions, only those including ex situ management were expected to provide >50% probability of the species' persistence, but these actions cost more than use of in situ alternatives only. The expected benefits of ex situ actions were predicted to be offset by additional uncertainty and stochasticity associated with establishing and maintaining ex situ populations. Naïvely implementing ex situ conservation strategies can lead to inefficient management. Our framework may help managers explicitly evaluate objectives, management options, and the probability of success prior to establishing a captive colony of any given species. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  2. X-ray continuum as a measure of pressure and fuel–shell mix in compressed isobaric hydrogen implosion cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epstein, R.; Goncharov, V. N.; Marshall, F. J.

    Pressure, by definition, characterizes the conditions within an isobaric implosion core at peak compression [Gus'kov et al., Nucl. Fusion 16, 957 (1976); Betti et al., Phys. Plasmas 8, 5257 (2001)] and is a key parameter in quantifying its near-ignition performance [Lawson, Proc. Phys. Soc. London, B 70, 6 (1957); Betti et al., Phys. Plasmas 17, 058102 (2010); Goncharov et al., Phys. Plasmas 21, 056315 (2014); and Glenzer et al., Phys. Plasmas 19, 056318 (2012)]. At high spectral energy, where the x-ray emission from an imploded hydrogen core is optically thin, the emissivity profile can be inferred from the spatially resolvedmore » core emission. This emissivity, which can be modeled accurately under hot-core conditions, is dependent almost entirely on the pressure when measured within a restricted spectral range matched to the temperature range anticipated for the emitting volume. In this way, the hot core pressure at the time of peak emission can be inferred from the measured free-free emissivity profile. The pressure and temperature dependences of the x-ray emissivity and the neutron-production rate explain a simple scaling of the total filtered x-ray emission as a constant power of the total neutron yield for implosions of targets of similar design over a broad range of shell implosion isentropes. This scaling behavior has been seen in implosion simulations and is confirmed by measurements of high-isentrope implosions [Sangster et al., Phys. Plasmas 20, 056317 (2013)] on the OMEGA laser system [Boehly et al., Opt. Commun. 133, 495 (1997)]. Attributing the excess emission from less-stable, low-isentrope implosions, above the level expected from this neutron-yield scaling, to the higher emissivity of shell carbon mixed into the implosion's central hot spot, the hot-spot “fuel–shell” mix mass can be inferred.« less

  3. X-ray continuum as a measure of pressure and fuel–shell mix in compressed isobaric hydrogen implosion cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epstein, R.; Goncharov, V. N.; Marshall, F. J.

    Pressure, by definition, characterizes the conditions within an isobaric implosion core at peak compression [Gus’kov et al., Nucl. Fusion 16, 957 (1976); Betti et al., Phys. Plasmas 8, 5257 (2001)] and is a key parameter in quantifying its near-ignition performance [Lawson, Proc. Phys. Soc. London, B 70, 6 (1957); Betti et al., Phys. Plasmas 17, 058102 (2010); Goncharov et al., Phys. Plasmas 21, 056315 (2014); and Glenzer et al., Phys. Plasmas 19, 056318 (2012)]. At high spectral energy, where the x-ray emission from an imploded hydrogen core is optically thin, the emissivity profile can be inferred from the spatially resolvedmore » core emission. This emissivity, which can be modeled accurately under hot-core conditions, is dependent almost entirely on the pressure when measured within a restricted spectral range matched to the temperature range anticipated for the emitting volume. In this way, the hot core pressure at the time of peak emission can be inferred from the measured free-free emissivity profile. The pressure and temperature dependences of the x-ray emissivity and the neutron-production rate explain a simple scaling of the total filtered x-ray emission as a constant power of the total neutron yield for implosions of targets of similar design over a broad range of shell implosion isentropes. This scaling behavior has been seen in implosion simulations and is confirmed by measurements of high-isentrope implosions [Sangster et al., Phys. Plasmas 20, 056317 (2013)] on the OMEGA laser system [Boehly et al., Opt. Commun. 133, 495 (1997)]. Attributing the excess emission from less-stable, low-isentrope implosions, above the level expected from this neutron-yield scaling, to the higher emissivity of shell carbon mixed into the implosion’s central hot spot, the hot-spot “fuel–shell” mix mass can be inferred.« less

  4. Excited delirium syndrome (ExDS): treatment options and considerations.

    PubMed

    Vilke, Gary M; Bozeman, William P; Dawes, Donald M; Demers, Gerard; Wilson, Michael P

    2012-04-01

    The term Excited Delirium Syndrome (ExDS) has traditionally been used in the forensic literature to describe findings in a subgroup of patients with delirium who suffered lethal consequences from their untreated severe agitation.(1-5) Excited delirium syndrome, also known as agitated delirium, is generally defined as altered mental status and combativeness or aggressiveness. Although the exact signs and symptoms are difficult to define precisely, clinical findings often include many of the following: tolerance to significant pain, rapid breathing, sweating, severe agitation, elevated temperature, delirium, non-compliance or poor awareness to direction from police or medical personnel, lack of fatiguing, unusual or superhuman strength, and inappropriate clothing for the current environment. It has become increasingly recognized that individuals displaying ExDS are at high risk for sudden death, and ExDS therefore represents a true medical emergency. Recently the American College of Emergency Physicians (ACEP) published the findings of a white paper on the topic of ExDS to better find consensus on the issues of definition, diagnosis, and treatment.(6) In so doing, ACEP joined the National Association of Medical Examiners (NAME) in recognizing ExDS as a medical condition. For both paramedics and physicians, the difficulty in diagnosing the underlying cause of ExDS in an individual patient is that the presenting clinical signs and symptoms of ExDS can be produced by a wide variety of clinical disease processes. For example, agitation, combativeness, and altered mental status can be produced by hypoglycemia, thyroid storm, certain kinds of seizures, and these conditions can be difficult to distinguish from those produced by cocaine or methamphetamine intoxication.(7) Prehospital personnel are generally not expected to differentiate between the multiple possible causes of the patient's presentation, but rather simply to recognize that the patient has a medical emergency

  5. Starquakes, Heating Anomalies, and Nuclear Reactions in the Neutron Star Crust

    NASA Astrophysics Data System (ADS)

    Deibel, Alex Thomas

    When the most massive stars perish, their cores may remain intact in the form of extremely dense and compact stars. These stellar remnants, called neutron stars, are on the cusp of becoming black holes and reach mass densities greater than an atomic nucleus in their centers. Although the interiors of neutron stars were difficult to investigate at the time of their discovery, the advent of modern space-based telescopes (e.g., Chandra X-ray Observatory) has pushed our understanding of the neutron star interior into exciting new realms. It has been shown that the neutron star interior spans an enormous range of densities and contains many phases of matter, and further theoretical progress must rely on numerical calculations of neutron star phenomena built with detailed nuclear physics input. To further investigate the properties of the neutron star interior, this dissertation constructs numerical models of neutron stars, applies models to various observations of neutron star high-energy phenomena, and draws new conclusions about the neutron star interior from these analyses. In particular, we model the neutron star's outermost ? 1 km that encompasses the neutron star's envelope, ocean, and crust. The model must implement detailed nuclear physics to properly simulate the hydrostatic and thermal structure of the neutron star. We then apply our model to phenomena that occur in these layers, such as: thermonuclear bursts in the envelope, g-modes in the ocean, torsional oscillations of the crust, and crust cooling of neutron star transients. A comparison of models to observations provides new insights on the properties of dense matter that are often difficult to probe through terrestrial experiments. For example, models of the quiescent cooling of neutron stars, such as the accreting transient MAXI J0556-332, at late times into quiescence probe the thermal transport properties of the deep neutron star crust. This modeling provides independent data from astronomical

  6. Measuring and monitoring KIPT Neutron Source Facility Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yan; Gohar, Yousry; Zhong, Zhaopeng

    2015-08-01

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on developing and constructing a neutron source facility at Kharkov, Ukraine. The facility consists of an accelerator-driven subcritical system. The accelerator has a 100 kW electron beam using 100 MeV electrons. The subcritical assembly has k eff less than 0.98. To ensure the safe operation of this neutron source facility, the reactivity of the subcritical core has to be accurately determined and continuously monitored. A technique which combines the area-ratio method and the flux-to-current ratio method is purposed to determine themore » reactivity of the KIPT subcritical assembly at various conditions. In particular, the area-ratio method can determine the absolute reactivity of the subcritical assembly in units of dollars by performing pulsed-neutron experiments. It provides reference reactivities for the flux-to-current ratio method to track and monitor the reactivity deviations from the reference state while the facility is at other operation modes. Monte Carlo simulations are performed to simulate both methods using the numerical model of the KIPT subcritical assembly. It is found that the reactivities obtained from both the area-ratio method and the flux-to-current ratio method are spatially dependent on the neutron detector locations and types. Numerical simulations also suggest optimal neutron detector locations to minimize the spatial effects in the flux-to-current ratio method. The spatial correction factors are calculated using Monte Carlo methods for both measuring methods at the selected neutron detector locations. Monte Carlo simulations are also performed to verify the accuracy of the flux-to-current ratio method in monitoring the reactivity swing during a fuel burnup cycle.« less

  7. Theoretical constraints on the properties of low-mass neutron stars from the equation of state of nuclear matter in the inner crust

    NASA Astrophysics Data System (ADS)

    Wen, Yong-Mei; Wen, De-Hua

    2017-06-01

    By employing four typical equation of states (EOSs) of nuclear matter in the inner crust, the properties of low-mass neutron stars are investigated theoretically. Based on the well-known fact that there is a big gap between the neutron stars and white dwarfs in the mass-radius sequence of compact stars, according to the mass-radius relations of the four adopted EOSs, we conclude that there is a rough forbidden region for the central density and stellar radius to form a compact star; that is, there is no compact star in nature having central density in the region from about 1012kgm-3 to 1017kgm-3 , and there is also no compact star having a radius in the region from about 400 km to 2000 km. Moreover, the properties of the low-mass neutron stars are also explored. It is shown that for a stable neutron star near the minimum mass point, the stellar size (with radius >200 km) is much larger than that of normal neutron stars, and there is a compact "core" concentrated at about 95% of the stellar mass in the inner core with a radius of about 13 km and density higher than the neutron-drip point (4.3 ×1014kgm-3) . This property totally differs from that of normal neutron stars and white dwarfs. Furthermore, the Keplerian period, the moment of inertia, and the surface gravitational redshift of the star near the minimum-mass point are also investigated.

  8. Suicide Ideation and Deliberate Self-Harm among Ex-Prisoners of War.

    PubMed

    Levi-Belz, Yossi; Zerach, Gadi; Solomon, Zahava

    2015-01-01

    The current study aims to assess the relations among war captivity, PTSD, suicidal ideation (SI), and deliberate self-harm (DSH) among former prisoners of war (ex-POWs). Israeli ex-POWs (N = 176) and a matched control group of combat veterans (controls; N = 118) were assessed using self-report measures. Ex-POWs with PTSD reported higher levels of both SI and DSH compared to ex-POWs and comparable veterans without PTSD. Furthermore, captivity-related variables as well as PTSD symptom clusters were positively related to both SI and DSH. However, only loss of emotional control in captivity and posttraumatic intrusion and emotional numbing symptoms, predicted SI. Ex-POWs with PTSD endorse high levels of SI and DSH. Among ex-POWs, both SI and DSH share similar captivity-related and posttraumatic symptoms correlates but only posttraumatic intrusion and emotional numbing symptoms predict SI.

  9. The perceived employability of ex-prisoners and offenders.

    PubMed

    Graffam, Joseph; Shinkfield, Alison J; Hardcastle, Lesley

    2008-12-01

    A large-scale study was conducted to examine the perceived employability of ex-prisoners and offenders. Four participant groups comprising 596 (50.4%) employers, 234 (19.8%) employment service workers, 176 (14.9%) corrections workers, and 175 (14.8%) prisoners and offenders completed a questionnaire assessing the likelihood of a hypothetical job seeker's both obtaining and maintaining employment; the importance of specific skills and characteristics to employability; and the likelihood that ex-prisoners, offenders, and the general workforce exhibit these skills and characteristics. Apart from people with an intellectual or psychiatric disability, those with a criminal background were rated as being less likely than other disadvantaged groups to obtain and maintain employment. In addition, ex-prisoners were rated as being less likely than offenders and the general workforce to exhibit the skills and characteristics relevant to employability. Implications for the preparation and support of ex-prisoners and offenders into employment are discussed, together with broader community-wide initiatives to promote reintegration.

  10. The Los Alamos Neutron Science Center Spallation Neutron Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutronsmore » are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources

  11. The Los Alamos Neutron Science Center Spallation Neutron Sources

    DOE PAGES

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    2017-10-26

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutronsmore » are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources

  12. The 14 MeV Neutron Irradiation Facility in MARIA Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokopowicz, R.; Pytel, K.; Dorosz, M.

    2015-07-01

    converter and formulate its operation limits and conditions. During first tested operation of the converter the 14 MeV neutron flux density was estimated to 10{sup 9} cm{sup -2} s{sup -1}, whereas fast fission neutrons inside converter achieved 10{sup 12} cm{sup -2} s{sup -1}, and thermal neutrons were reduced down to 109 cm-2 s-1. Taking into account the feasibility of almost incessant converter operation for a number of months, its arisen as one of the most powerful (in terms of fluence), currently available 14 MeV neutron source. Such a converter currently under operation in the MARIA reactor core will be presented. (authors)« less

  13. Neutron range spectrometer

    DOEpatents

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  14. A Theoretical Analysis of Thermal Radiation from Neutron Stars

    NASA Technical Reports Server (NTRS)

    Applegate, James H.

    1993-01-01

    As soon as it was realized that the direct URCA process is allowed by many modern nuclear equation of state, an analysis of its effect on the cooling of neutron stars was undertaken. A primary study showed that the occurrence of the direct URCA process makes the surface temperature of a neutron star suddenly drop by almost an order of magnitude when the cold wave from the core reaches the surface when the star is a few years old. The results of this study are published in Page and Applegate. As a work in progress, we are presently extending the above work. Improved expressions for the effect of nucleon pairing on the neutrino emissivity and specific heat are now available, and we have incorporated them in a recalculation of rate of the direct URCA process.

  15. 41 CFR 60-30.20 - Ex parte communications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 1 2011-07-01 2009-07-01 true Ex parte communications. 60-30.20 Section 60-30.20 Public Contracts and Property Management Other Provisions Relating to... EXECUTIVE ORDER 11246 Hearings and Related Matters § 60-30.20 Ex parte communications. The Administrative...

  16. 41 CFR 60-30.20 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Ex parte communications. 60-30.20 Section 60-30.20 Public Contracts and Property Management Other Provisions Relating to... EXECUTIVE ORDER 11246 Hearings and Related Matters § 60-30.20 Ex parte communications. The Administrative...

  17. A neutron-X-ray, NMR and calorimetric study of glassy Probucol synthesized using containerless techniques

    NASA Astrophysics Data System (ADS)

    Weber, J. K. R.; Benmore, C. J.; Tailor, A. N.; Tumber, S. K.; Neuefeind, J.; Cherry, B.; Yarger, J. L.; Mou, Q.; Weber, W.; Byrn, S. R.

    2013-10-01

    Acoustic levitation was used to trap 1-3 mm diameter drops of Probucol and other pharmaceutical materials in containerless conditions. Samples were studied in situ using X-ray diffraction and ex situ using neutron diffraction, NMR and DSC techniques. The materials were brought into non-equilibrium states by supersaturating solutions or by supercooling melts. The glass transition and crystallization temperatures of glassy Probucol were 29 ± 1 and 71 ± 1 °C respectively. The glassy form was stable with a shelf life of at least 8 months. A neutron/X-ray difference function of the glass showed that while molecular sub-groups remain rigid, many of the hydrogen correlations observed in the crystal become smeared out in the disordered material. The glass is principally comprised of slightly distorted Form I Probucol molecules with disordered packing rather than large changes in the individual molecular structure. Avoiding surface contact-induced nucleation provided access to highly non-equilibrium phases and enabled synthesis of phase-pure glasses.

  18. THE LANDSCAPE OF THE NEUTRINO MECHANISM OF CORE-COLLAPSE SUPERNOVAE: NEUTRON STAR AND BLACK HOLE MASS FUNCTIONS, EXPLOSION ENERGIES, AND NICKEL YIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pejcha, Ondřej; Thompson, Todd A., E-mail: pejcha@astro.princeton.edu, E-mail: thompson@astronomy.ohio-state.edu

    2015-03-10

    If the neutrino luminosity from the proto-neutron star formed during a massive star core collapse exceeds a critical threshold, a supernova (SN) results. Using spherical quasi-static evolutionary sequences for hundreds of progenitors over a range of metallicities, we study how the explosion threshold maps onto observables, including the fraction of successful explosions, the neutron star (NS) and black hole (BH) mass functions, the explosion energies (E {sub SN}) and nickel yields (M {sub Ni}), and their mutual correlations. Successful explosions are intertwined with failures in a complex pattern that is not simply related to initial progenitor mass or compactness. Wemore » predict that progenitors with initial masses of 15 ± 1, 19 ± 1, and ∼21-26 M {sub ☉} are most likely to form BHs, that the BH formation probability is non-zero at solar-metallicity and increases significantly at low metallicity, and that low luminosity, low Ni-yield SNe come from progenitors close to success/failure interfaces. We qualitatively reproduce the observed E {sub SN}-M {sub Ni} correlation, we predict a correlation between the mean and width of the NS mass and E {sub SN} distributions, and that the means of the NS and BH mass distributions are correlated. We show that the observed mean NS mass of ≅ 1.33 M {sub ☉} implies that the successful explosion fraction is higher than 0.35. Overall, we show that the neutrino mechanism can in principle explain the observed properties of SNe and their compact objects. We argue that the rugged landscape of progenitors and outcomes mandates that SN theory should focus on reproducing the wide ranging distributions of observed SN properties.« less

  19. Prompt photon measurements with PHENIX's MPC-EX detector

    NASA Astrophysics Data System (ADS)

    Campbell, Sarah; PHENIX Collaboration

    2013-08-01

    The MPC-EX detector is a Si-W preshower extension to the existing Muon Piston Calorimeter (MPC). The MPC-EX consists of eight layers of alternating W absorber and Si mini-pad sensors. Located at forward rapidity, 3.1 < |η| < 3.8, the MPC and MPC-EX will access low-x partons in the Au nucleus in p+Au collisions and high-x partons in the projectile in polarized p+p collisions. With the addition of the MPC-EX, the neutral pion reconstruction energy range extends to the luminosity limit, energies > 80 GeV, a factor of four improvement over current capabilities. Not only will the MPC-EX strengthen PHENIX's existing forward π0 and jet measurements, it will provide sufficient prompt photon and π0 separation to make a prompt photon measurement possible. Prompt photon yields at high pT, pT > 3 GeV/c, can be statistically extracted using the double ratio method. In transversely polarized p+p collisions, the measurement of the prompt photon single spin asymmetry, AN, will resolve the sign discrepancy between the Sivers and twist-3 extractions of AN. In p+Au collisions, the prompt photon RpAu will quantify the level of gluon saturation in the Au nucleus at low-x, x ~ 10-3, with a projected systematic error band a factor of four smaller than EPS09's current allowable range. The MPC-EX detector will expand our understanding of the gluon nuclear parton distribution functions, providing important information about the initial state of heavy ion collisions, and clarify how the valence parton's transverse momentum and spin correlates to the proton spin.

  20. A Unified Equation of State on a Microscopic Basis : Implications for Neutron Stars Structure and Cooling

    NASA Astrophysics Data System (ADS)

    Burgio, G. F.

    2018-03-01

    We discuss the structure of Neutron Stars by modelling the homogeneous nuclear matter of the core by a suitable microscopic Equation of State, based on the Brueckner-Hartree-Fock many-body theory, and the crust, including the pasta phase, by the BCPM energy density functional which is based on the same Equation of State. This allows for a uni ed description of the Neutron Star matter over a wide density range. A comparison with other uni ed approaches is discussed. With the same Equation of State, which features strong direct Urca processes and using consistent nuclear pairing gaps as well as effective masses, we model neutron star cooling, in particular the current rapid cooldown of the neutron star Cas A. We nd that several scenarios are possible to explain the features of Cas A, but only large and extended proton 1 S 0 gaps and small neutron 3 PF 2 gaps can accommodate also the major part of the complete current cooling data.

  1. NEUTRONIC REACTORS

    DOEpatents

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  2. Radiation Characterization Summary: ACRR Polyethylene-Lead-Graphite (PLG) Bucket Located in the Central Cavity on the 32-Inch Pedestal at the Core Centerline (ACRR-PLG-CC-32-cl).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parma, Edward J.,; Vehar, David W.; Lippert, Lance L.

    2015-06-01

    This document presents the facility-recommended characterization of the neutron, prompt gamma-ray, and delayed gamma-ray radiation fields in the Annular Core Research Reactor (ACRR) for the polyethylene-lead-graphite (PLG) bucket in the central cavity on the 32-inch pedestal at the core centerline. The designation for this environment is ACRR-PLG-CC-32-cl. The neutron, prompt gamma-ray, and delayed gamma-ray energy spectra, uncertainties, and covariance matrices are presented as well as radial and axial neutron and gamma-ray fluence profiles within the experiment area of the bucket. Recommended constants are given to facilitate the conversion of various dosimetry readings into radiation metrics desired by experimenters. Representative pulsemore » operations are presented with conversion examples. Acknowledgements The authors wish to thank the Annular Core Research Reactor staff and the Radiation Metrology Laboratory staff for their support of this work. Also thanks to David Ames for his assistance in running MCNP on the Sandia parallel machines.« less

  3. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  4. Ex Vivo Artifacts and Histopathologic Pitfalls in the Lung.

    PubMed

    Thunnissen, Erik; Blaauwgeers, Hans J L G; de Cuba, Erienne M V; Yick, Ching Yong; Flieder, Douglas B

    2016-03-01

    Surgical and pathologic handling of lung physically affects lung tissue. This leads to artifacts that alter the morphologic appearance of pulmonary parenchyma. To describe and illustrate mechanisms of ex vivo artifacts that may lead to diagnostic pitfalls. In this study 4 mechanisms of ex vivo artifacts and corresponding diagnostic pitfalls are described and illustrated. The 4 patterns of artifacts are: (1) surgical collapse, due to the removal of air and blood from pulmonary resections; (2) ex vivo contraction of bronchial and bronchiolar smooth muscle; (3) clamping edema of open lung biopsies; and (4) spreading of tissue fragments and individual cells through a knife surface. Morphologic pitfalls include diagnostic patterns of adenocarcinoma, asthma, constrictive bronchiolitis, and lymphedema. Four patterns of pulmonary ex vivo artifacts are important to recognize in order to avoid morphologic misinterpretations.

  5. 32 CFR 728.71 - Ex-service maternity care.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Ex-service maternity care. 728.71 Section 728.71 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL MEDICAL AND DENTAL CARE FOR ELIGIBLE PERSONS AT NAVY MEDICAL DEPARTMENT FACILITIES Other Persons § 728.71 Ex-service maternity...

  6. 32 CFR 728.71 - Ex-service maternity care.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Ex-service maternity care. 728.71 Section 728.71 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL MEDICAL AND DENTAL CARE FOR ELIGIBLE PERSONS AT NAVY MEDICAL DEPARTMENT FACILITIES Other Persons § 728.71 Ex-service maternity...

  7. 32 CFR 728.71 - Ex-service maternity care.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Ex-service maternity care. 728.71 Section 728.71 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL MEDICAL AND DENTAL CARE FOR ELIGIBLE PERSONS AT NAVY MEDICAL DEPARTMENT FACILITIES Other Persons § 728.71 Ex-service maternity...

  8. 32 CFR 728.71 - Ex-service maternity care.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Ex-service maternity care. 728.71 Section 728.71 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL MEDICAL AND DENTAL CARE FOR ELIGIBLE PERSONS AT NAVY MEDICAL DEPARTMENT FACILITIES Other Persons § 728.71 Ex-service maternity...

  9. A GDT-based fusion neutron source for academic and industrial applications

    NASA Astrophysics Data System (ADS)

    Anderson, J. K.; Forest, C. B.; Mirnov, V. V.; Peterson, E. E.; Waleffe, R.; Wallace, J.; Harvey, R. W.

    2017-10-01

    The design of a fusion neutron source based on the gas dynamic trap (GDT) configuration is underway. The motivation is both the ends and the means. There are immediate applications for neutrons including medical isotope production and actinide burners. Taking the next step in the magnetic mirror path will leverage advances in high-temperature superconducting magnets and additive manufacturing in confining a fusion plasma, and both the technological and physics bases exist. Recent breakthrough results at the GDT facility in Russia demonstrate stable confinement of a beta 60% mirror plasma at high Te ( 1 keV). These scale readily to a fusion neutron source with an increase in magnetic field, mirror ratio, and ion energy. Studies of a next-step compact device focus on calculations of MHD equilibrium and stability, and Fokker-Planck modeling to optimize the heating scenario. The conceptualized device uses off-the-shelf MRI magnets for a 1 T central field, REBCO superconducting mirror coils (which can currently produce fields in excess of 30T), and existing 75 keV NBI and 140 GHz ECRH. High harmonic fast wave injection is damped on beam ions, dramatically increasing the fusion reactivity for an incremental bump in input power. MHD stability is achieved with the vortex confinement scheme, where a biasing profile imposes optimal ExB rotation of the plasma. Liquid metal divertors are being considered in the end cells. Work supported by the Wisconsin Alumni Research Foundation.

  10. 76 FR 24376 - Commission's Ex Parte Rules and Other Procedural Rules

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ...'s Ex Parte Rules and Other Procedural Rules AGENCY: Federal Communications Commission. ACTION: Final rule. SUMMARY: In this document the Commission revises certain ex parte and organizational rules. This document amends and reforms the Commission's rules on ex parte presentations made in the course of...

  11. "Salivary exRNA biomarkers to detect gingivitis and monitor disease regression".

    PubMed

    Kaczor-Urbanowicz, Karolina Elżbieta; Trivedi, Harsh M; Lima, Patricia O; Camargo, Paulo M; Giannobile, William V; Grogan, Tristan R; Gleber-Netto, Frederico O; Whiteman, Yair; Li, Feng; Lee, Hyo Jung; Dharia, Karan; Aro, Katri; Carerras-Presas, Carmen Martin; Amuthan, Saarah; Vartak, Manjiri; Akin, David; Al-Adbullah, Hiba; Bembey, Kanika; Klokkevold, Perry R; Elashoff, David; Barnes, Virginia Monsul; Richter, Rose; DeVizio, William; Masters, James G; Wong, David

    2018-05-19

    This study tests the hypothesis that salivary extracellular RNA (exRNA) biomarkers can be developed for gingivitis detection and monitoring disease regression. Salivary exRNA biomarker candidates were developed from a total of 100 gingivitis and non-gingivitis individuals using Affymetrix's expression microarrays. The top ten differentially expressed exRNAs were tested in a clinical cohort to determine if the discovered salivary exRNA markers for gingivitis were associated with clinical gingivitis and disease regression. For this purpose, unstimulated saliva was collected from 30 randomly selected gingivitis subjects, the gingival and plaque indexes scores were taken at baseline, 3 & 6 weeks and salivary exRNAs were assayed by means of reverse transcription quantitative polymerase chain reaction. Eight salivary exRNA biomarkers developed for gingivitis were statistically significantly changed over time, consistent with disease regression. A panel of four salivary exRNAs [SPRR1A, lnc-TET3-2:1, FAM25A, CRCT1] can detect gingivitis with a clinical performance of 0.91 area under the curve (AUC), with 71% sensitivity and 100% specificity. The clinical values of the developed salivary exRNA biomarkers are associated with gingivitis regression. They offer strong potential to be advanced for definitive validation and clinical laboratory development test (LDT). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Multiple-wavelength neutron holography with pulsed neutrons

    PubMed Central

    Hayashi, Kouichi; Ohoyama, Kenji; Happo, Naohisa; Matsushita, Tomohiro; Hosokawa, Shinya; Harada, Masahide; Inamura, Yasuhiro; Nitani, Hiroaki; Shishido, Toetsu; Yubuta, Kunio

    2017-01-01

    Local structures around impurities in solids provide important information for understanding the mechanisms of material functions, because most of them are controlled by dopants. For this purpose, the x-ray absorption fine structure method, which provides radial distribution functions around specific elements, is most widely used. However, a similar method using neutron techniques has not yet been developed. If one can establish a method of local structural analysis with neutrons, then a new frontier of materials science can be explored owing to the specific nature of neutron scattering—that is, its high sensitivity to light elements and magnetic moments. Multiple-wavelength neutron holography using the time-of-flight technique with pulsed neutrons has great potential to realize this. We demonstrated multiple-wavelength neutron holography using a Eu-doped CaF2 single crystal and obtained a clear three-dimensional atomic image around trivalent Eu substituted for divalent Ca, revealing an interesting feature of the local structure that allows it to maintain charge neutrality. The new holography technique is expected to provide new information on local structures using the neutron technique. PMID:28835917

  13. Multiple-wavelength neutron holography with pulsed neutrons.

    PubMed

    Hayashi, Kouichi; Ohoyama, Kenji; Happo, Naohisa; Matsushita, Tomohiro; Hosokawa, Shinya; Harada, Masahide; Inamura, Yasuhiro; Nitani, Hiroaki; Shishido, Toetsu; Yubuta, Kunio

    2017-08-01

    Local structures around impurities in solids provide important information for understanding the mechanisms of material functions, because most of them are controlled by dopants. For this purpose, the x-ray absorption fine structure method, which provides radial distribution functions around specific elements, is most widely used. However, a similar method using neutron techniques has not yet been developed. If one can establish a method of local structural analysis with neutrons, then a new frontier of materials science can be explored owing to the specific nature of neutron scattering-that is, its high sensitivity to light elements and magnetic moments. Multiple-wavelength neutron holography using the time-of-flight technique with pulsed neutrons has great potential to realize this. We demonstrated multiple-wavelength neutron holography using a Eu-doped CaF 2 single crystal and obtained a clear three-dimensional atomic image around trivalent Eu substituted for divalent Ca, revealing an interesting feature of the local structure that allows it to maintain charge neutrality. The new holography technique is expected to provide new information on local structures using the neutron technique.

  14. Neutron Capture Rates and the r-Process Abundance Pattern in Shocked Neutrino-Driven Winds

    NASA Astrophysics Data System (ADS)

    Barringer, Daniel; Surman, Rebecca

    2009-10-01

    The r-process is an important process in nucleosynthesis in which nuclei will undergo rapid neutron captures. Models of the r-process require nuclear data such as neutron capture rates for thousands of individual nuclei, many of which lie far from stability. Among the potential sites for the r-process, and the one that we investigate, is the shocked neutrino-driven wind in core-collapse supernovae. Here we examine the importance of the neutron capture rates of specific, individual nuclei in the second r-process abundance peak occurring at A ˜ 130 for a range of parameterized neutrino-driven wind trajectories. Of specific interest are the nuclei whose capture rates affect the abundances of nuclei outside of the A ˜ 130 peak. We found that increasing the neutron capture rate for a number of nuclei including ^135In, ^132Sn, ^133Sb, ^137Sb, and ^136Te can produce changes in the resulting abundance pattern of up to 13%.

  15. Neutron Capture Energies for Flux Normalization and Approximate Model for Gamma-Smeared Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kang Seog; Clarno, Kevin T.; Liu, Yuxuan

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) Virtual Environment for Reactor Applications (VERA) neutronics simulator MPACT has used a single recoverable fission energy for each fissionable nuclide assuming that all recoverable energies come only from fission reaction, for which capture energy is merged with fission energy. This approach includes approximations and requires improvement by separating capture energy from the merged effective recoverable energy. This report documents the procedure to generate recoverable neutron capture energies and the development of a program called CapKappa to generate capture energies. Recoverable neutron capture energies have been generated by using CapKappa withmore » the evaluated nuclear data file (ENDF)/B-7.0 and 7.1 cross section and decay libraries. The new capture kappas were compared to the current SCALE-6.2 and the CASMO-5 capture kappas. These new capture kappas have been incorporated into the Simplified AMPX 51- and 252-group libraries, and they can be used for the AMPX multigroup (MG) libraries and the SCALE code package. The CASL VERA neutronics simulator MPACT does not include a gamma transport capability, which limits it to explicitly estimating local energy deposition from fission, neutron, and gamma slowing down and capture. Since the mean free path of gamma rays is typically much longer than that for the neutron, and the total gamma energy is about 10% to the total energy, the gamma-smeared power distribution is different from the fission power distribution. Explicit local energy deposition through neutron and gamma transport calculation is significantly important in multi-physics whole core simulation with thermal-hydraulic feedback. Therefore, the gamma transport capability should be incorporated into the CASL neutronics simulator MPACT. However, this task will be timeconsuming in developing the neutron induced gamma production and gamma cross section libraries. This study is to

  16. Radiation Characterization Summary: ACRR Cadmium-Polyethylene (CdPoly) Bucket Located in the Central Cavity on the 32-Inch Pedestal at the Core Centerline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parma, Edward J.; Naranjo, Gerald E.; Kaiser, Krista Irene

    This document presents the facility-recommended characterization of the neutron, prompt gamma-ray, and delayed gamma-ray radiation fields in the Annular Core Research Reactor (ACRR) for the cadmium-polyethylene (CdPoly) bucket in the central cavity on the 32-inch pedestal at the core centerline. The designation for this environment is ACRR-CdPoly-CC-32-cl. The neutron, prompt gamma-ray, and delayed gamma-ray energy spectra, uncertainties, and covariance matrices are presented as well as radial and axial neutron and gamma-ray fluence profiles within the experiment area of the bucket. Recommended constants are given to facilitate the conversion of various dosimetry readings into radiation metrics desired by experimenters. Representative pulsemore » operations are presented with conversion examples. Acknowledgements The authors wish to thank the Annular Core Research Reactor staff and the Radiation Metrology Laboratory staff for their support of this work. Also thanks to Drew Tonigan for helping field the activation experiments in ACRR, David Samuel for helping to finalize the drawings and get the parts fabricated, and Elliot Pelfrey for preparing the active dosimetry plots.« less

  17. 28 CFR 50.17 - Ex parte communications in informal rulemaking proceedings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... private, ex parte oral or written communications is undesirable, because it would deprive the Department... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Ex parte communications in informal...) STATEMENTS OF POLICY § 50.17 Ex parte communications in informal rulemaking proceedings. In rulemaking...

  18. From hadrons to quarks in neutron stars: a review.

    PubMed

    Baym, Gordon; Hatsuda, Tetsuo; Kojo, Toru; Powell, Philip D; Song, Yifan; Takatsuka, Tatsuyuki

    2018-05-01

    In recent years our understanding of neutron stars has advanced remarkably, thanks to research converging from many directions. The importance of understanding neutron star behavior and structure has been underlined by the recent direct detection of gravitational radiation from merging neutron stars. The clean identification of several heavy neutron stars, of order two solar masses, challenges our current understanding of how dense matter can be sufficiently stiff to support such a mass against gravitational collapse. Programs underway to determine simultaneously the mass and radius of neutron stars will continue to constrain and inform theories of neutron star interiors. At the same time, an emerging understanding in quantum chromodynamics (QCD) of how nuclear matter can evolve into deconfined quark matter at high baryon densities is leading to advances in understanding the equation of state of the matter under the extreme conditions in neutron star interiors. We review here the equation of state of matter in neutron stars from the solid crust through the liquid nuclear matter interior to the quark regime at higher densities. We focus in detail on the question of how quark matter appears in neutron stars, and how it affects the equation of state. After discussing the crust and liquid nuclear matter in the core we briefly review aspects of microscopic quark physics relevant to neutron stars, and quark models of dense matter based on the Nambu-Jona-Lasinio framework, in which gluonic processes are replaced by effective quark interactions. We turn then to describing equations of state useful for interpretation of both electromagnetic and gravitational observations, reviewing the emerging picture of hadron-quark continuity in which hadronic matter turns relatively smoothly, with at most only a weak first order transition, into quark matter with increasing density. We review construction of unified equations of state that interpolate between the reasonably well

  19. From hadrons to quarks in neutron stars: a review

    NASA Astrophysics Data System (ADS)

    Baym, Gordon; Hatsuda, Tetsuo; Kojo, Toru; Powell, Philip D.; Song, Yifan; Takatsuka, Tatsuyuki

    2018-05-01

    In recent years our understanding of neutron stars has advanced remarkably, thanks to research converging from many directions. The importance of understanding neutron star behavior and structure has been underlined by the recent direct detection of gravitational radiation from merging neutron stars. The clean identification of several heavy neutron stars, of order two solar masses, challenges our current understanding of how dense matter can be sufficiently stiff to support such a mass against gravitational collapse. Programs underway to determine simultaneously the mass and radius of neutron stars will continue to constrain and inform theories of neutron star interiors. At the same time, an emerging understanding in quantum chromodynamics (QCD) of how nuclear matter can evolve into deconfined quark matter at high baryon densities is leading to advances in understanding the equation of state of the matter under the extreme conditions in neutron star interiors. We review here the equation of state of matter in neutron stars from the solid crust through the liquid nuclear matter interior to the quark regime at higher densities. We focus in detail on the question of how quark matter appears in neutron stars, and how it affects the equation of state. After discussing the crust and liquid nuclear matter in the core we briefly review aspects of microscopic quark physics relevant to neutron stars, and quark models of dense matter based on the Nambu–Jona–Lasinio framework, in which gluonic processes are replaced by effective quark interactions. We turn then to describing equations of state useful for interpretation of both electromagnetic and gravitational observations, reviewing the emerging picture of hadron-quark continuity in which hadronic matter turns relatively smoothly, with at most only a weak first order transition, into quark matter with increasing density. We review construction of unified equations of state that interpolate between the reasonably well

  20. Probing the Hydrogen Sublattice of FeHx with High-Pressure Neutron Diffraction

    NASA Astrophysics Data System (ADS)

    Murphy, C. A.; Guthrie, M.; Boehler, R.; Somayazulu, M.; Fei, Y.; Molaison, J.; dos Santos, A. M.

    2013-12-01

    The combination of seismic, cosmochemical, and mineral physics observations have revealed that Earth's iron-rich core must contain some light elements, such as hydrogen, carbon, oxygen, silicon, and/or sulfur. Therefore, understanding the influence of these light elements on the structural, thermoelastic, and electronic properties of iron is important for constraining the composition of this remote layer of the Earth and, in turn, providing constraints on planetary differentiation and core formation models. The high-pressure structural and magnetic properties of iron hydride (FeHx) have previously been studied using synchrotron x-ray diffraction and Mössbauer spectroscopy. Such experiments revealed that the double hexagonal close-packed (dhcp) structure of FeHx is stable above a pressure of ~5 GPa and up to at least 80 GPa at 300 K [1]. In addition, dhcp-FeHx is ferromagnetic at low-pressures, but undergoes a magnetic collapse around 22 GPa [2]. X-ray experiments provide valuable insight into the properties of FeHx, but such techniques are largely sensitive to the iron component because it is difficult to detect the hydrogen sublattice with x-rays. Therefore, neutron diffraction has been used to investigate metastable FeHx, which is formed by quenching the high-pressure phase to liquid nitrogen temperatures and probing the sample at ambient pressure [3]. However, such neutron experiments have been limited to formation pressures below 10 GPa, and cannot be performed at ambient temperature. Here we present the first in-situ investigation of FeHx at 300 K using high-pressure neutron diffraction experiments performed at the Spallation Neutrons and Pressure Diffractometer (SNAP) instrument at the Spallation Neutron Source, Oak Ridge National Laboratory. In order to achieve pressures of ~50 GPa, we loaded iron samples with a hydrogen gas pressure medium into newly designed large-volume panoramic diamond-anvil cells (DACs) for neutron diffraction experiments [4; 5]. We

  1. Comparative Genomic Analysis of Globally Dominant ST131 Clone with Other Epidemiologically Successful Extraintestinal Pathogenic Escherichia coli (ExPEC) Lineages.

    PubMed

    Shaik, Sabiha; Ranjan, Amit; Tiwari, Sumeet K; Hussain, Arif; Nandanwar, Nishant; Kumar, Narender; Jadhav, Savita; Semmler, Torsten; Baddam, Ramani; Islam, Mohammed Aminul; Alam, Munirul; Wieler, Lothar H; Watanabe, Haruo; Ahmed, Niyaz

    2017-10-24

    Escherichia coli sequence type 131 (ST131), a pandemic clone responsible for the high incidence of extraintestinal pathogenic E. coli (ExPEC) infections, has been known widely for its contribution to the worldwide dissemination of multidrug resistance. Although other ExPEC-associated and extended-spectrum-β-lactamase (ESBL)-producing E. coli clones, such as ST38, ST405, and ST648 have been studied widely, no comparative genomic data with respect to other genotypes exist for ST131. In this study, comparative genomic analysis was performed for 99 ST131 E. coli strains with 40 genomes from three other STs, including ST38 ( n = 12), ST405 ( n = 10), and ST648 ( n = 18), and functional studies were performed on five in-house strains corresponding to the four STs. Phylogenomic analysis results from this study corroborated with the sequence type-specific clonality. Results from the genome-wide resistance profiling confirmed that all strains were inherently multidrug resistant. ST131 genomes showed unique virulence profiles, and analysis of mobile genetic elements and their associated methyltransferases (MTases) has revealed that several of them were missing from the majority of the non-ST131 strains. Despite the fact that non-ST131 strains lacked few essential genes belonging to the serum resistome, the in-house strains representing all four STs demonstrated similar resistance levels to serum antibactericidal activity. Core genome analysis data revealed that non-ST131 strains usually lacked several ST131-defined genomic coordinates, and a significant number of genes were missing from the core of the ST131 genomes. Data from this study reinforce adaptive diversification of E. coli strains belonging to the ST131 lineage and provide new insights into the molecular mechanisms underlying clonal diversification of the ST131 lineage. IMPORTANCE E. coli , particularly the ST131 extraintestinal pathogenic E. coli (ExPEC) lineage, is an important cause of community- and

  2. Deflection Measurements of a Thermally Simulated Nuclear Core Using a High-Resolution CCD-Camera

    NASA Technical Reports Server (NTRS)

    Stanojev, B. J.; Houts, M.

    2004-01-01

    Space fission systems under consideration for near-term missions all use compact. fast-spectrum reactor cores. Reactor dimensional change with increasing temperature, which affects neutron leakage. is the dominant source of reactivity feedback in these systems. Accurately measuring core dimensional changes during realistic non-nuclear testing is therefore necessary in predicting the system nuclear equivalent behavior. This paper discusses one key technique being evaluated for measuring such changes. The proposed technique is to use a Charged Couple Device (CCD) sensor to obtain deformation readings of electrically heated prototypic reactor core geometry. This paper introduces a technique by which a single high spatial resolution CCD camera is used to measure core deformation in Real-Time (RT). Initial system checkout results are presented along with a discussion on how additional cameras could be used to achieve a three- dimensional deformation profile of the core during test.

  3. Two fluorescent wavelengths, 440(ex)/520(em) nm and 370(ex)/440(em) nm, reflect advanced glycation and oxidation end products in human skin without diabetes.

    PubMed

    Beisswenger, Paul J; Howell, Scott; Mackenzie, Todd; Corstjens, Hugo; Muizzuddin, Neelam; Matsui, Mary S

    2012-03-01

    Advanced glycation end products (AGEs) and oxidation products (OPs) play an important role in diabetes complications, aging, and damage from sun exposure. Measurement of skin autofluorescence (SAF) has been promoted as a noninvasive technique to measure skin AGEs, but the actual products quantified are uncertain. We have compared specific SAF measurements with analytically determined AGEs and oxidative biomarkers in skin collagen and determined if these measurements can be correlated with chronological aging and actinic exposure. SAF at four excitation (ex)/emission (em) intensities was measured on the upper inner arm ("sun protected") and dorsal forearm ("sun exposed") in 40 subjects without diabetes 20-60 years old. Skin collagen from the same sites was analyzed by liquid chromatography-tandem mass spectrometry for three AGEs-pentosidine, carboxymethyllysine (CML), and carboxyethyllysine (CEL)-and the OP methionine sulfoxide (MetSO). There was poor correlation of AGE-associated fluorescence spectra with AGEs and OP in collagen, with only pentosidine correlating with fluorescence at 370(ex)/440(em) nm. A little-studied SAF (440(ex)/520(em) nm), possibly reflecting elastin cross-links, correlated with all AGEs and OPs. Levels of CML, pentosidine, and MetSO, but not SAF, were significantly higher in sun-exposed skin. These AGEs and OPs, as well as SAF at 370(ex)/440(em) nm and 440(ex)/520(em) nm, increased with chronological aging. SAF measurements at 370(ex)/440(em) nm and 335(ex)/385(em) nm, except for pentosidine, which correlated with fluorescence at 370(ex)/440(em), correlate poorly with glycated and oxidatively modified protein in human skin and do not reflect actinic modification. A new fluorescence measurement (440(ex)/520(em) nm) appears to reflect AGEs and OPs in skin.

  4. Measured thermal and fast neutron fluence rates for ATF-1 holders during ATR cycle 160A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, B. J.; Miller, D. T.

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 160A which were measured by the Radiation Measurements Laboratory (RML).

  5. Status report on the cold neutron source of the Garching neutron research facility FRM-II

    NASA Astrophysics Data System (ADS)

    Gobrecht, K.; Gutsmiedl, E.; Scheuer, A.

    2002-01-01

    The new high flux research reactor of the Technical University of Munich (Technische Universität München, TUM) will be equipped with a cold neutron source (CNS). The centre of the CNS will be located in the D 2O-reflector tank at 400 mm from the reactor core axis close to the thermal neutron flux maximum. The power of 4500 W developed by the nuclear heating in the 16 l of liquid deuterium at 25 K, and in the structures, is evacuated by a two-phase thermal siphon avoiding film boiling and flooding. The thermal siphon is a single tube with counter current flow. It is inclined by 10° from vertical, and optimised for a deuterium flow rate of 14 g/s. Optimisation of structure design and material, as well as safety aspects will be discussed. Those parts of the structure, which are exposed to high thermal neutron flux, are made from Zircaloy 4 and 6061T6 aluminium. Structure failure due to embrittlement of the structure material under high rapid neutron flux is very improbable during the lifetime of the CNS (30 years). Double, in pile even triple, containment with inert gas liner guarantees lack of explosion risk and of tritium contamination to the environment. Adding a few percent of hydrogen (H 2) to the deuterium (D 2) will improve the moderating properties of our relatively small moderator volume. Nearly all of the hydrogen is bound in the form of HD molecules. A long-term change of the hydrogen content in the deuterium is avoided by storing the mixture not in a gas buffer volume but as a metal hydride at low pressure. The metal hydride storage system contains two getter beds, one with 250 kg of LaCo 3Ni 2, the other one with 150 kg of ZrCo 0.8Ni 0.2. Each bed can take the total gas inventory, both beds together can absorb the total gas inventory in <6 min at a pressure <3 bar. The new reactor will have 13 beam tubes, 4 of which are looking at the CNS, including two for very cold (VCN) and ultra-cold neutron (UCN) production. The latter will take place in the

  6. Roles of nuclear weak rates on the evolution of degenerate cores in stars

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Tsunodaa, Naofumi; Tsunoda, Yuhsuke; Shimizu, Noritaka; Otsuka, Takaharu

    2018-01-01

    Electron-capture and β-decay rates in stellar environments are evaluated with the use of new shell-model Hamiltonians for sd-shell and pf-shell nuclei as well as for nuclei belonging to the island of inversion. Important role of the nuclear weak rates on the final evolution of stellar degenerate cores is presented. The weak interaction rates for sd-shell nuclei are calculated to study nuclear Urca processes in O-Ne-Mg cores of stars with 8-10 M⊙ (solar mass) and their effects on the final fate of the stars. Nucleosynthesis of iron-group elements in Type Ia supernova explosions are studied with the weak rates for pf-shell nuclei. The problem of the neutron-rich iron-group isotope over-production compared to the solar abundances is shown to be nearly solved with the use of the new rates and explosion model of slow defraglation with delayed detonation. Evaluation of the weak rates is extended to the island of inversion and the region of neutron-rich nuclei near 78Ni, where two major shells contribute to their configurations.

  7. 75 FR 56656 - Proposed Collection; Comment Request for Form 8879-EX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ... Form 8879-EX, IRS e-file Signature Authorization for Forms 720, 2290, and 8849. DATES: Written comments....gov . SUPPLEMENTARY INFORMATION: Title: IRS e-file Signature Authorization for Forms 720, 2290, and 8849. OMB Number: 1545-2081. Form Number: 8879-EX. Abstract: The Form 8879-EX, IRS e-file Signature...

  8. 10 CFR 205.199F - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... communications include any ex parte oral or written communications relative to the merits of a Proposed Remedial... public and serve a copy of a written communication or a memorandum summarizing an oral communication to... 10 Energy 3 2010-01-01 2010-01-01 false Ex parte communications. 205.199F Section 205.199F Energy...

  9. Developments in neutron beam devices and an advanced cold source for the NIST research reactor

    NASA Astrophysics Data System (ADS)

    Williams, Robert E.; Rowe, J. Michael

    2002-01-01

    The last 5 yr has been a period of steady growth in instrument capabilities and utilization at the National Institute of Standards and Technology Center for Neutron Research. Since the installation of the liquid hydrogen cold source in 1995, all of the instruments originally planned for the Cold Neutron Research Facility have been completed and made available to users, and three new thermal neutron instruments have been installed. Currently, an advanced cold source is being fabricated that will better couple the reactor core and the existing network of neutron guides. Many improvements are also being made in neutron optics to enhance the beam characteristics of certain instruments. For example, optical filters will be installed that will increase the fluxes at the two 30-m SANS instruments by as much as two. Sets of MgF 2 biconcave lenses have been developed for SANS that have demonstrated a significant improvement in resolution over conventional pinhole collimation. The recently commissioned high-flux backscattering spectrometer incorporates a converging guide, a large spherically focusing monochromator and analyzer, and a novel phase space transform chopper, to achieve very high intensity while maintaining excellent energy resolution. Finally, a prototype low background, doubly focusing neutron monochromator is nearing completion that will be the heart of a new cold neutron spectrometer, as well as two new thermal neutron triple axis spectrometers.

  10. Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.

    1977-01-01

    Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

  11. Neutron-beam-shaping assembly for boron neutron-capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaidi, L.; Kashaeva, E. A.; Lezhnin, S. I.

    A neutron-beam-shaping assembly consisting of a moderator, a reflector, and an absorber is used to form a therapeutic neutron beam for the boron neutron-capture therapy of malignant tumors at accelerator neutron sources. A new structure of the moderator and reflector is proposed in the present article, and the results of a numerical simulation of the neutron spectrum and of the absorbed dose in a modified Snyder head phantom are presented. The application of a composite moderator and of a composite reflector and the implementation of neutron production at the proton energy of 2.3MeV are shown to permit obtaining a high-qualitymore » therapeutic neutron beam.« less

  12. 39 CFR 3000.735-502 - Public record of ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Public record of ex parte communications. 3000.735... Parte Communications § 3000.735-502 Public record of ex parte communications. As ex parte communications (either oral or written) may occur inadvertently notwithstanding § 3000.735-501, the employee who receives...

  13. 39 CFR 3000.735-502 - Public record of ex parte communications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 39 Postal Service 1 2014-07-01 2014-07-01 false Public record of ex parte communications. 3000.735... Parte Communications § 3000.735-502 Public record of ex parte communications. As ex parte communications... such a communication, shall—within 2 workdays after the receipt of such a communication—prepare a...

  14. 39 CFR 3000.735-502 - Public record of ex parte communications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 39 Postal Service 1 2013-07-01 2013-07-01 false Public record of ex parte communications. 3000.735... Parte Communications § 3000.735-502 Public record of ex parte communications. As ex parte communications... such a communication, shall—within 2 workdays after the receipt of such a communication—prepare a...

  15. 39 CFR 3000.735-502 - Public record of ex parte communications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 39 Postal Service 1 2012-07-01 2012-07-01 false Public record of ex parte communications. 3000.735... Parte Communications § 3000.735-502 Public record of ex parte communications. As ex parte communications... such a communication, shall—within 2 workdays after the receipt of such a communication—prepare a...

  16. 39 CFR 3000.735-502 - Public record of ex parte communications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 39 Postal Service 1 2011-07-01 2011-07-01 false Public record of ex parte communications. 3000.735... Parte Communications § 3000.735-502 Public record of ex parte communications. As ex parte communications... such a communication, shall—within 2 workdays after the receipt of such a communication—prepare a...

  17. Noninvasive quantification of alveolar morphometry in elderly never- and ex-smokers

    PubMed Central

    Paulin, Gregory A; Ouriadov, Alexei; Lessard, Eric; Sheikh, Khadija; McCormack, David G; Parraga, Grace

    2015-01-01

    Diffusion-weighted magnetic resonance imaging (MRI) provides a way to generate in vivo lung images with contrast sensitive to the molecular displacement of inhaled gas at subcellular length scales. Here, we aimed to evaluate hyperpolarized 3He MRI estimates of the alveolar dimensions in 38 healthy elderly never-smokers (73 ± 6 years, 15 males) and 21 elderly ex-smokers (70 ± 10 years, 14 males) with (n = 8, 77 ± 6 years) and without emphysema (n = 13, 65 ± 10 years). The ex-smoker and never-smoker subgroups were significantly different for FEV1/FVC (P = 0.0001) and DLCO (P = 0.009); while ex-smokers with emphysema reported significantly diminished FEV1/FVC (P = 0.02) and a trend toward lower DLCO (P = 0.05) than ex-smokers without emphysema. MRI apparent diffusion coefficients (ADC) and CT measurements of emphysema (relative area–CT density histogram, RA950) were significantly different (P = 0.001 and P = 0.007) for never-smoker and ex-smoker subgroups. In never-smokers, the MRI estimate of mean linear intercept (260 ± 27 μm) was significantly elevated as compared to the results previously reported in younger never-smokers (210 ± 30 μm), and trended smaller than in the age-matched ex-smokers (320 ± 72 μm, P = 0.06) evaluated here. Never-smokers also reported significantly smaller internal (220 ± 24 μm, P = 0.01) acinar radius but greater alveolar sheath thickness (120 ± 4 μm, P < 0.0001) than ex-smokers. Never-smokers were also significantly different than ex-smokers without emphysema for alveolar sheath thickness but not ADC, while ex-smokers with emphysema reported significantly different ADC but not alveolar sheath thickness compared to ex-smokers without CT evidence of emphysema. Differences in alveolar measurements in never- and ex-smokers demonstrate the sensitivity of MRI measurements to the different effects of smoking and aging on acinar morphometry. PMID:26462748

  18. 11 CFR 201.3 - Public funding, audits and litigation: Ex parte contacts prohibited.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) A Commissioner or member of a Commissioner's staff who receives an oral ex parte communication... REGULATIONS EX PARTE COMMUNICATIONS § 201.3 Public funding, audits and litigation: Ex parte contacts... be made to any Commissioner or any member of any Commissioner's staff any ex parte communication...

  19. Spontaneous extrusion of a stainless steel glaucoma drainage implant (Ex-PRESS).

    PubMed

    Tavolato, M; Babighian, S; Galan, A

    2006-01-01

    To report a case of spontaneous extrusion of a stainless steel glaucoma drainage implant (Ex-PRESS). An Ex-PRESS was implanted under the conjunctiva in a 76-year-old man with primary open-angle glaucoma. Two years after implantation, the Ex-Press extruded spontaneously. Despite this adverse event, there was no increase in intraocular pressure. This is the first report of spontaneous extrusion of an Ex-PRESS device. Implanting the device under a scleral flap should be considered to avoid adverse events such as extrusion or conjunctival erosion.

  20. Hematopoietic Stem Cells: Transcriptional Regulation, Ex Vivo Expansion and Clinical Application

    PubMed Central

    Aggarwal, R.; Lu, J.; Pompili, V.J.; Das, H.

    2012-01-01

    Maintenance of ex vivo hematopoietic stem cells (HSC) pool and its differentiated progeny is regulated by complex network of transcriptional factors, cell cycle proteins, extracellular matrix, and their microenvironment through an orchestrated fashion. Strides have been made to understand the mechanisms regulating in vivo quiescence and proliferation of HSCs to develop strategies for ex vivo expansion. Ex vivo expansion of HSCs is important to procure sufficient number of stem cells and as easily available source for HSC transplants for patients suffering from hematological disorders and malignancies. Our lab has established a nanofiber-based ex vivo expansion strategy for HSCs, while preserving their stem cell characteristics. Ex vivo expanded cells were also found biologically functional in various disease models. However, the therapeutic potential of expanded stem cells at clinical level still needs to be verified. This review outlines transcriptional factors that regulate development of HSCs and their commitment, genes that regulate cell cycle status, studies that attempt to develop an effective and efficient protocol for ex vivo expansion of HSCs and application of HSC in various non-malignant and malignant disorders. Overall the goal of the current review is to deliver an understanding of factors that are critical in resolving the challenges that limit the expansion of HSCs in vivo and ex vivo. PMID:22082480