Science.gov

Sample records for hand rim wheelchair

  1. Effect of power-assisted hand-rim wheelchair propulsion on shoulder load in experienced wheelchair users: A pilot study with an instrumented wheelchair.

    PubMed

    Kloosterman, Marieke G M; Buurke, Jaap H; de Vries, Wiebe; Van der Woude, Lucas H V; Rietman, Johan S

    2015-10-01

    This study aims to compare hand-rim and power-assisted hand-rim propulsion on potential risk factors for shoulder overuse injuries: intensity and repetition of shoulder loading and force generation in the extremes of shoulder motion. Eleven experienced hand-rim wheelchair users propelled an instrumented wheelchair on a treadmill while upper-extremity kinematic, kinetic and surface electromyographical data was collected during propulsion with and without power-assist. As a result during power-assisted propulsion the peak resultant force exerted at the hand-rim decreased and was performed with significantly less abduction and internal rotation at the shoulder. At shoulder level the anterior directed force and internal rotation and flexion moments decreased significantly. In addition, posterior and the minimal inferior directed forces and the external rotation moment significantly increased. The stroke angle decreased significantly, as did maximum shoulder flexion, extension, abduction and internal rotation. Stroke-frequency significantly increased. Muscle activation in the anterior deltoid and pectoralis major also decreased significantly. In conclusion, compared to hand-rim propulsion power-assisted propulsion seems effective in reducing potential risk factors of overuse injuries with the highest gain on decreased range of motion of the shoulder joint, lower peak propulsion force on the rim and reduced muscle activity. PMID:26307457

  2. Effect of power-assisted hand-rim wheelchair propulsion on shoulder load in experienced wheelchair users: A pilot study with an instrumented wheelchair.

    PubMed

    Kloosterman, Marieke G M; Buurke, Jaap H; de Vries, Wiebe; Van der Woude, Lucas H V; Rietman, Johan S

    2015-10-01

    This study aims to compare hand-rim and power-assisted hand-rim propulsion on potential risk factors for shoulder overuse injuries: intensity and repetition of shoulder loading and force generation in the extremes of shoulder motion. Eleven experienced hand-rim wheelchair users propelled an instrumented wheelchair on a treadmill while upper-extremity kinematic, kinetic and surface electromyographical data was collected during propulsion with and without power-assist. As a result during power-assisted propulsion the peak resultant force exerted at the hand-rim decreased and was performed with significantly less abduction and internal rotation at the shoulder. At shoulder level the anterior directed force and internal rotation and flexion moments decreased significantly. In addition, posterior and the minimal inferior directed forces and the external rotation moment significantly increased. The stroke angle decreased significantly, as did maximum shoulder flexion, extension, abduction and internal rotation. Stroke-frequency significantly increased. Muscle activation in the anterior deltoid and pectoralis major also decreased significantly. In conclusion, compared to hand-rim propulsion power-assisted propulsion seems effective in reducing potential risk factors of overuse injuries with the highest gain on decreased range of motion of the shoulder joint, lower peak propulsion force on the rim and reduced muscle activity.

  3. Hand-rim forces and gross mechanical efficiency in asynchronous and synchronous wheelchair propulsion: a comparison.

    PubMed

    Lenton, J P; van der Woude, L; Fowler, N; Nicholson, G; Tolfrey, K; Goosey-Tolfrey, V

    2014-03-01

    To compare the force application characteristics at various push frequencies of asynchronous (ASY) and synchronous (SYN) hand-rim propulsion, 8 able-bodied participants performed a separate sub-maximal exercise test on a wheelchair roller ergometer for each propulsion mode. Each test consisted of a series of 5, 4-min exercise blocks at 1.8 m · s-1 - initially at their freely chosen frequency (FCF), followed by four counter-balanced trials at 60, 80, 120 and 140% FCF. Kinetic data was obtained using a SMARTWheel, measuring forces and moments. The gross efficiency (GE) was determined as the ratio of external work done and the total energy expended. The ASY propulsion produced higher force measures for FRES, FTAN, rate of force development & FEF (P<0.05), while there was no difference in GE values (P=0.518). In pair-matched push frequencies (ASY80:SYN60, ASY100:SYN80, ASY120:SYN100 and ASY140:SYN120), ASY propulsion forces remained significantly higher (FRES, FTAN, rate of force development & FEF P<0.05), and there was no significant effect on GE (P=0.456). Both ASY and SYN propulsion demonstrate similar trends: changes in push frequency are accompanied by changes in absolute force even without changes in the gross pattern/trend of force application, FEF or GE. Matched push frequencies continue to produce significant differences in force measures but not GE. This suggests ASY propulsion is the predominant factor in force application differences. The ASY would appear to offer a kinetic disadvantage to SYN propulsion and no physiological advantage under current testing conditions.

  4. Wheelchair

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA-developed aerospace computerized structural-analysis techniques and aerospace composite materials have resulted in an advanced wheelchair that weighs only 25 pounds. With only half the weight of a normal wheelchair, this advanced wheelchair is as strong and durable as a 50-pound stainless steel wheelchair yet can be easily collapsed forauto stowage. Its features include a seat, wheelguards, dynamic brakes, shaped hand rims, and a footrest with smooth contours to aid in opening doors.

  5. Hand Rim Wheelchair Propulsion Training Using Biomechanical Real-Time Visual Feedback Based on Motor Learning Theory Principles

    PubMed Central

    Rice, Ian; Gagnon, Dany; Gallagher, Jere; Boninger, Michael

    2010-01-01

    Background/Objective: As considerable progress has been made in laboratory-based assessment of manual wheelchair propulsion biomechanics, the necessity to translate this knowledge into new clinical tools and treatment programs becomes imperative. The objective of this study was to describe the development of a manual wheelchair propulsion training program aimed to promote the development of an efficient propulsion technique among long-term manual wheelchair users. Methods: Motor learning theory principles were applied to the design of biomechanical feedback-based learning software, which allows for random discontinuous real-time visual presentation of key spatio-temporal and kinetic parameters. This software was used to train a long-term wheelchair user on a dynamometer during 3 low-intensity wheelchair propulsion training sessions over a 3-week period. Biomechanical measures were recorded with a SmartWheel during over ground propulsion on a 50-m level tile surface at baseline and 3 months after baseline. Results: Training software was refined and administered to a participant who was able to improve his propulsion technique by increasing contact angle while simultaneously reducing stroke cadence, mean resultant force, peak and mean moment out of plane, and peak rate of rise of force applied to the pushrim after training. Conclusions: The proposed propulsion training protocol may lead to favorable changes in manual wheelchair propulsion technique. These changes could limit or prevent upper limb injuries among manual wheelchair users. In addition, many of the motor learning theory–based techniques examined in this study could be applied to training individuals in various stages of rehabilitation to optimize propulsion early on. PMID:20397442

  6. Wheelchair propulsion biomechanics: implications for wheelchair sports.

    PubMed

    Vanlandewijck, Y; Theisen, D; Daly, D

    2001-01-01

    The aim of this article is to provide the reader with a state-of-the-art review on biomechanics in hand rim wheelchair propulsion, with special attention to sport-specific implications. Biomechanical studies in wheelchair sports mainly aim at optimising sport performance or preventing sport injuries. The sports performance optimisation question has been approached from an ergonomic, as well as a skill proficiency perspective. Sports medical issues have been addressed in wheelchair sports mainly because of the extremely high prevalence of repetitive strain injuries such as shoulder impingement and carpal tunnel syndrome. Sports performance as well as sports medical reflections are made throughout the review. Insight in the underlying musculoskeletal mechanisms of hand rim wheelchair propulsion has been achieved through a combination of experimental data collection under realistic conditions, with a more fundamental mathematical modelling approach. Through a synchronised analysis of the movement pattern, force generation pattern and muscular activity pattern, insight has been gained in the hand rim wheelchair propulsion dynamics of people with a disability, varying in level of physical activity and functional potential. The limiting environment of a laboratory, however, has hampered the drawing of sound conclusions. Through mathematical modelling, simulation and optimisation (minimising injury and maximising performance), insight in the underlying musculoskeletal mechanisms during wheelchair propulsion is sought. The surplus value of inverse and forward dynamic simulation of hand rim stroke dynamics is addressed. Implications for hand rim wheelchair sports are discussed. Wheelchair racing, basketball and rugby were chosen because of the significance and differences in sport-specific movement dynamics. Conclusions can easily be transferred to other wheelchair sports where movement dynamics are fundamental. PMID:11347685

  7. Wheelchair propulsion biomechanics: implications for wheelchair sports.

    PubMed

    Vanlandewijck, Y; Theisen, D; Daly, D

    2001-01-01

    The aim of this article is to provide the reader with a state-of-the-art review on biomechanics in hand rim wheelchair propulsion, with special attention to sport-specific implications. Biomechanical studies in wheelchair sports mainly aim at optimising sport performance or preventing sport injuries. The sports performance optimisation question has been approached from an ergonomic, as well as a skill proficiency perspective. Sports medical issues have been addressed in wheelchair sports mainly because of the extremely high prevalence of repetitive strain injuries such as shoulder impingement and carpal tunnel syndrome. Sports performance as well as sports medical reflections are made throughout the review. Insight in the underlying musculoskeletal mechanisms of hand rim wheelchair propulsion has been achieved through a combination of experimental data collection under realistic conditions, with a more fundamental mathematical modelling approach. Through a synchronised analysis of the movement pattern, force generation pattern and muscular activity pattern, insight has been gained in the hand rim wheelchair propulsion dynamics of people with a disability, varying in level of physical activity and functional potential. The limiting environment of a laboratory, however, has hampered the drawing of sound conclusions. Through mathematical modelling, simulation and optimisation (minimising injury and maximising performance), insight in the underlying musculoskeletal mechanisms during wheelchair propulsion is sought. The surplus value of inverse and forward dynamic simulation of hand rim stroke dynamics is addressed. Implications for hand rim wheelchair sports are discussed. Wheelchair racing, basketball and rugby were chosen because of the significance and differences in sport-specific movement dynamics. Conclusions can easily be transferred to other wheelchair sports where movement dynamics are fundamental.

  8. Development and evaluation of one-hand drivable manual wheelchair device for hemiplegic patients.

    PubMed

    Jung, Hwa S; Park, Gemus; Kim, Young-Shim; Jung, Hyung-Shik

    2015-05-01

    This study was conducted for one-hand users including hemiplegic clients currently using standard manual wheelchairs, so as to analyze their specific problems and recommend solutions regarding usage. Thirty hemiplegic clients who were admitted to rehabilitation and convalescent hospitals participated as subjects. The research tools were standard manual wheelchairs commonly used by people with impaired gait and a "one-hand drivable manual wheelchair," which was developed for this study. The Wheelchair Skills Test (WST) was adopted for the objective assessment tool, while drivability, convenience, difference, and acceptability were developed for the subjective evaluation tools. The assessment procedures comprise two phases of pre-assessment and post-assessment. In the pre-assessment phase, the WST and subjective evaluation (drivability, convenience) were conducted using the existing standard manual wheelchair and with/without use of a foot to control the wheelchair. In the post-assessment phase, the WST and subjective evaluation (drivability, convenience, difference, acceptability) were also carried out using the developed one-hand drivable manual wheelchair. The results showed that the highest pass rate recorded for the WST items was 3.3% when the participants drove standard manual wheelchairs without the use of either foot and 96.7% when using the manual wheelchairs equipped with developed device. As compared to the existing wheelchair, statistical results showed significant effects on the WST, drivability, convenience, difference and acceptability when the participants drove wheelchairs equipped with the developed device. These findings imply that the one-hand drivable wheelchair equipped with the developed device can be an active and effective solution for hemiplegic clients using existing manual wheelchairs to increase their mobility and occupational performance.

  9. Wheelchairs

    MedlinePlus

    ... Others have disabilities due to muscular dystrophy or cerebral palsy . In some cases, kids have wheelchairs but don' ... Therapist In the Band: Jens' Story Spina Bifida Cerebral Palsy Contact Us Print Resources Send to a friend ...

  10. Measurement of Hand/Handrim Grip Forces in Two Different One Arm Drive Wheelchairs

    PubMed Central

    2014-01-01

    Purpose. The aim of this study was to explore the total and regional grip forces in the hand when propelling two different manual one arm drive wheelchairs: the Neater Uni-wheelchair (NUW) and a foot steered Action3 wheelchair. Methods. 17 nondisabled users were randomly assigned to each wheelchair to drive around an indoor obstacle course. The Grip, a multiple sensor system taking continuous measurement of handgrip force, was attached to the propelling hand. Total grip force in each region of the hand and total grip force across the whole hand were calculated per user per wheelchair. Results. The Action3 with foot steering only generated significantly greater total grip force in straight running compared to the NUW and also in the fingers and thumb in straight running. Conclusions. The results suggest that the Action3 with foot steering generated greater grip forces which may infer a greater potential for repetitive strain injury in the upper limb. Further work is required to explore whether the difference in grip force is of clinical significance in a disabled population. PMID:25045684

  11. Physiological evaluation of a newly designed lever mechanism for wheelchairs.

    PubMed

    van der Woude, L H; Veeger, H E; de Boer, Y; Rozendal, R H

    1993-01-01

    Lever-propelled wheelchairs have been described as more efficient and less physically demanding than hand-rim-propelled wheelchairs. To evaluate a newly designed lever mechanism (MARC) in both one- and two-arm use, a series of wheelchair exercise tests were performed on a motor-driven treadmill. Eight able-bodied male subjects performed a standard exercise test in the prototype MARC, both in an asynchronic and a synchronic bimanual propelling mode and in an unilateral (left-sided) mode. Subsequently the subjects performed additional exercise tests in a conventional crank-to-rod lever mechanism with unilateral and bimanual propulsion and in a conventional hand rim wheelchair. Analysis of variance was used to study the effect of the different work modes upon power output and cardiorespiratory parameters statistically (p < 0.05). The MARC stood out well in comparison with the conventional lever design. The additional design features which are to be implemented (variable gearing, reverse gear) will make the MARC a useful wheelchair. One-arm wheelchair propulsion is a very strenuous form of locomotion, requiring careful consideration in terms of provision. Mechanical and ergonomic improvements are quite feasible in lever propulsion and may to a certain extent reduce this problem. To improve overall mobility of wheelchair-dependent subjects further, ergonomic and mechanical design improvements are very necessary in lever as well as hand-rim wheelchairs. A combined biomechanical and physiological research approach will help in the definition of design criteria and fitting guidelines. PMID:8169940

  12. The influence of wheelchair propulsion hand pattern on upper extremity muscle power and stress.

    PubMed

    Slowik, Jonathan S; Requejo, Philip S; Mulroy, Sara J; Neptune, Richard R

    2016-06-14

    The hand pattern (i.e., full-cycle hand path) used during manual wheelchair propulsion is frequently classified as one of four distinct hand pattern types: arc, single loop, double loop or semicircular. Current clinical guidelines recommend the use of the semicircular pattern, which is based on advantageous levels of broad biomechanical metrics implicitly related to the demand placed on the upper extremity (e.g., lower cadence). However, an understanding of the influence of hand pattern on specific measures of upper extremity muscle demand (e.g., muscle power and stress) is needed to help make such recommendations, but these quantities are difficult and impractical to measure experimentally. The purpose of this study was to use musculoskeletal modeling and forward dynamics simulations to investigate the influence of the hand pattern used on specific measures of upper extremity muscle demand. The simulation results suggest that the double loop and semicircular patterns produce the most favorable levels of overall muscle stress and total muscle power. The double loop pattern had the lowest full-cycle and recovery-phase upper extremity demand but required high levels of muscle power during the relatively short contact phase. The semicircular pattern had the second-lowest full-cycle levels of overall muscle stress and total muscle power, and demand was more evenly distributed between the contact and recovery phases. These results suggest that in order to decrease upper extremity demand, manual wheelchair users should consider using either the double loop or semicircular pattern when propelling their wheelchairs at a self-selected speed on level ground. PMID:27062591

  13. The influence of wheelchair propulsion hand pattern on upper extremity muscle power and stress.

    PubMed

    Slowik, Jonathan S; Requejo, Philip S; Mulroy, Sara J; Neptune, Richard R

    2016-06-14

    The hand pattern (i.e., full-cycle hand path) used during manual wheelchair propulsion is frequently classified as one of four distinct hand pattern types: arc, single loop, double loop or semicircular. Current clinical guidelines recommend the use of the semicircular pattern, which is based on advantageous levels of broad biomechanical metrics implicitly related to the demand placed on the upper extremity (e.g., lower cadence). However, an understanding of the influence of hand pattern on specific measures of upper extremity muscle demand (e.g., muscle power and stress) is needed to help make such recommendations, but these quantities are difficult and impractical to measure experimentally. The purpose of this study was to use musculoskeletal modeling and forward dynamics simulations to investigate the influence of the hand pattern used on specific measures of upper extremity muscle demand. The simulation results suggest that the double loop and semicircular patterns produce the most favorable levels of overall muscle stress and total muscle power. The double loop pattern had the lowest full-cycle and recovery-phase upper extremity demand but required high levels of muscle power during the relatively short contact phase. The semicircular pattern had the second-lowest full-cycle levels of overall muscle stress and total muscle power, and demand was more evenly distributed between the contact and recovery phases. These results suggest that in order to decrease upper extremity demand, manual wheelchair users should consider using either the double loop or semicircular pattern when propelling their wheelchairs at a self-selected speed on level ground.

  14. The ergonomics of wheelchair configuration for optimal performance in the wheelchair court sports.

    PubMed

    Mason, Barry S; van der Woude, Lucas H V; Goosey-Tolfrey, Victoria L

    2013-01-01

    Optimizing mobility performance in wheelchair court sports (basketball, rugby and tennis) is dependent on a combination of factors associated with the user, the wheelchair and the interfacing between the two. Substantial research has been attributed to the wheelchair athlete yet very little has focused on the role of the wheelchair and the wheelchair-user combination. This article aims to review relevant scientific literature that has investigated the effects of wheelchair configuration on aspects of mobility performance from an ergonomics perspective. Optimizing performance from an ergonomics perspective requires a multidisciplinary approach. This has resulted in laboratory-based investigations incorporating a combination of physiological and biomechanical analyses to assess the efficiency, health/safety and comfort of various wheelchair configurations. To a lesser extent, field-based testing has also been incorporated to determine the effects of wheelchair configuration on aspects of mobility performance specific to the wheelchair court sports. The available literature has demonstrated that areas of seat positioning, rear wheel camber, wheel size and hand-rim configurations can all influence the ergonomics of wheelchair performance. Certain configurations have been found to elevate the physiological demand of wheelchair propulsion, others have been associated with an increased risk of injury and some have demonstrated favourable performance on court. A consideration of all these factors is required to identify optimal wheelchair configurations. Unfortunately, a wide variety of different methodologies have immerged between studies, many of which are accompanied by limitations, thus making the identification of optimal configurations problematic. When investigating an area of wheelchair configuration, many studies have failed to adequately standardize other areas, which has prevented reliable cause and effect relationships being established. In addition, a large

  15. The ergonomics of wheelchair configuration for optimal performance in the wheelchair court sports.

    PubMed

    Mason, Barry S; van der Woude, Lucas H V; Goosey-Tolfrey, Victoria L

    2013-01-01

    Optimizing mobility performance in wheelchair court sports (basketball, rugby and tennis) is dependent on a combination of factors associated with the user, the wheelchair and the interfacing between the two. Substantial research has been attributed to the wheelchair athlete yet very little has focused on the role of the wheelchair and the wheelchair-user combination. This article aims to review relevant scientific literature that has investigated the effects of wheelchair configuration on aspects of mobility performance from an ergonomics perspective. Optimizing performance from an ergonomics perspective requires a multidisciplinary approach. This has resulted in laboratory-based investigations incorporating a combination of physiological and biomechanical analyses to assess the efficiency, health/safety and comfort of various wheelchair configurations. To a lesser extent, field-based testing has also been incorporated to determine the effects of wheelchair configuration on aspects of mobility performance specific to the wheelchair court sports. The available literature has demonstrated that areas of seat positioning, rear wheel camber, wheel size and hand-rim configurations can all influence the ergonomics of wheelchair performance. Certain configurations have been found to elevate the physiological demand of wheelchair propulsion, others have been associated with an increased risk of injury and some have demonstrated favourable performance on court. A consideration of all these factors is required to identify optimal wheelchair configurations. Unfortunately, a wide variety of different methodologies have immerged between studies, many of which are accompanied by limitations, thus making the identification of optimal configurations problematic. When investigating an area of wheelchair configuration, many studies have failed to adequately standardize other areas, which has prevented reliable cause and effect relationships being established. In addition, a large

  16. Wheelchair ergonomic hand drive mechanism use improves wrist mechanics associated with carpal tunnel syndrome.

    PubMed

    Zukowski, Lisa A; Roper, Jaimie A; Shechtman, Orit; Otzel, Dana M; Hovis, Patty W; Tillman, Mark D

    2014-01-01

    Among conventional manual wheelchair (CMW) users, 49% to 63% experience carpal tunnel syndrome (CTS) that is likely induced by large forces transmitted through the wrist and extreme wrist orientations. The ergonomic hand drive mechanism (EHDM) tested in this study has been shown to utilize a more neutral wrist orientation. This study evaluates the use of an EHDM in terms of wrist orientations that may predispose individuals to CTS. Eleven adult full-time CMW users with spinal cord injury participated. Motion data were captured as participants propelled across a flat surface, completing five trials in a CMW and five trials in the same CMW fitted with the EHDM. Average angular wrist orientations were compared between the two propulsion styles. Use of the EHDM resulted in reduced wrist extension and ulnar deviation. The shift to more neutral wrist orientations observed with EHDM use may reduce median nerve compression.

  17. Relationship Between Hand Contact Angle and Shoulder Loading During Manual Wheelchair Propulsion by Individuals with Paraplegia

    PubMed Central

    Mulroy, Sara J.; Ruparel, Puja; Hatchett, Patricia E.; Haubert, Lisa Lighthall; Eberly, Valerie J.; Gronley, JoAnne K.

    2015-01-01

    Background: Shoulder loading during manual wheelchair propulsion (WCP) contributes to the development of shoulder pain in individuals with spinal cord injury (SCI). Objective: To use regression analysis to investigate the relationships between the hand contact angle (location of the hand on the pushrim at initial contact and release during the push phase of the WCP cycle) with propulsion characteristics, pushrim forces, and shoulder kinetics during WCP in individuals with paraplegia. Methods: Biomechanical data were collected from 222 individuals (198 men and 24 women) with paraplegia from SCI during WCP on a stationary ergometer at a self-selected speed. The average age of participants was 34.7 years (±9.3), mean time since SCI was 9.3 years (±6.1), and average body weight was 74.4 kg (±15.9). The majority (n = 127; 56%) of participants had lower level paraplegia (T8 to L5) and 95 (42%) had high paraplegia (T2 to T7). Results: Increased push arc (mean = 75.3°) was associated with greater velocity (R = 0.384, P < .001) and cycle distance (R = 0.658, P < .001) and reduced cadence (R = -0.419, P < .001). Initial contact angle and hand release angles were equally associated with cycle distance and cadence, whereas a more anterior release angle was associated with greater velocity (R = 0.372, P < .001). When controlling for body weight, a more posterior initial contact angle was associated with greater posterior shoulder net joint force (R = 0.229, P = .001) and greater flexor net joint moment (R = 0.204, P = .002), whereas a more anterior hand release angle was significantly associated with increased vertical (R = 0.270, P < .001) and greater lateral (R = .293, P < .001) pushrim forces; greater shoulder net joint forces in all 3 planes — posterior (R = 0.164, P = .015), superior (R = 0.176, P = .009), and medial (R = 0.284, P < .001); and greater external rotator (R = 0.176, P = .009) and adductor (R = 0.259, P = .001) net joint moments. Conclusions: Current

  18. Constraints influencing sports wheelchair propulsion performance and injury risk

    PubMed Central

    2013-01-01

    The Paralympic Games are the pinnacle of sport for many athletes with a disability. A potential issue for many wheelchair athletes is how to train hard to maximise performance while also reducing the risk of injuries, particularly to the shoulder due to the accumulation of stress placed on this joint during activities of daily living, training and competition. The overall purpose of this narrative review was to use the constraints-led approach of dynamical systems theory to examine how various constraints acting upon the wheelchair-user interface may alter hand rim wheelchair performance during sporting activities, and to a lesser extent, their injury risk. As we found no studies involving Paralympic athletes that have directly utilised the dynamical systems approach to interpret their data, we have used this approach to select some potential constraints and discussed how they may alter wheelchair performance and/or injury risk. Organism constraints examined included player classifications, wheelchair setup, training and intrinsic injury risk factors. Task constraints examined the influence of velocity and types of locomotion (court sports vs racing) in wheelchair propulsion, while environmental constraints focused on forces that tend to oppose motion such as friction and surface inclination. Finally, the ecological validity of the research studies assessing wheelchair propulsion was critiqued prior to recommendations for practice and future research being given. PMID:23557065

  19. Vision based interface system for hands free control of an intelligent wheelchair

    PubMed Central

    Ju, Jin Sun; Shin, Yunhee; Kim, Eun Yi

    2009-01-01

    Background Due to the shift of the age structure in today's populations, the necessities for developing the devices or technologies to support them have been increasing. Traditionally, the wheelchair, including powered and manual ones, is the most popular and important rehabilitation/assistive device for the disabled and the elderly. However, it is still highly restricted especially for severely disabled. As a solution to this, the Intelligent Wheelchairs (IWs) have received considerable attention as mobility aids. The purpose of this work is to develop the IW interface for providing more convenient and efficient interface to the people the disability in their limbs. Methods This paper proposes an intelligent wheelchair (IW) control system for the people with various disabilities. To facilitate a wide variety of user abilities, the proposed system involves the use of face-inclination and mouth-shape information, where the direction of an IW is determined by the inclination of the user's face, while proceeding and stopping are determined by the shapes of the user's mouth. Our system is composed of electric powered wheelchair, data acquisition board, ultrasonic/infra-red sensors, a PC camera, and vision system. Then the vision system to analyze user's gestures is performed by three stages: detector, recognizer, and converter. In the detector, the facial region of the intended user is first obtained using Adaboost, thereafter the mouth region is detected based on edge information. The extracted features are sent to the recognizer, which recognizes the face inclination and mouth shape using statistical analysis and K-means clustering, respectively. These recognition results are then delivered to the converter to control the wheelchair. Result & conclusion The advantages of the proposed system include 1) accurate recognition of user's intention with minimal user motion and 2) robustness to a cluttered background and the time-varying illumination. To prove these

  20. Design and Fabrication of an Instrumented Handrim to Measure the Kinetic and Kinematic Information by the Hand of User for 3D Analysis of Manual Wheelchair Propulsion Dynamics

    PubMed Central

    Mallakzadeh, Mohammadreza; Akbari, Hossein

    2014-01-01

    The repetitious nature of propelling a wheelchair has been associated with the high incidence of injury among manual wheelchair users (MWUs), mainly in the shoulder, elbow and wrist. Recent literature has found a link between handrim biomechanics and risk of injury to the upper extremity. The valid measurement of three-dimensional net joint forces and torques, however, can lead to a better understanding of the mechanisms of injury, the development of prevention techniques, and the reduction of serious injuries to the joints. In this project, an instrumented wheel system was developed to measure the applied loads dynamically by the hand of the user and the angular position of the wheelchair user's hand on the handrim during the propulsion phase. The system is composed of an experimental six-axis load cell, and a wireless eight channel data logger mounted on a wheel hub. The angular position of the wheel is measured by an absolute magnetic encoder. The angular position of the wheelchair user's hand on the handrim during the propulsion phase (ɸ) or point of force application (PFA) is calculated by means of a new-experimental method using 36 pairs of infrared emitter/receiver diodes mounted around the handrim. In this regard, the observed data extracted from an inexperienced able-bodied subject pushed a wheelchair with the instrumented handrim are presented to show the output behavior of the instrumented handrim. The recorded forces and torques were in agreement with previously reported magnitudes. However, this paper can provide readers with some technical insights into possible solutions for measuring the manual wheelchair propulsion biomechanical data. PMID:25426429

  1. Design and Fabrication of an Instrumented Handrim to Measure the Kinetic and Kinematic Information by the Hand of User for 3D Analysis of Manual Wheelchair Propulsion Dynamics.

    PubMed

    Mallakzadeh, Mohammadreza; Akbari, Hossein

    2014-10-01

    The repetitious nature of propelling a wheelchair has been associated with the high incidence of injury among manual wheelchair users (MWUs), mainly in the shoulder, elbow and wrist. Recent literature has found a link between handrim biomechanics and risk of injury to the upper extremity. The valid measurement of three-dimensional net joint forces and torques, however, can lead to a better understanding of the mechanisms of injury, the development of prevention techniques, and the reduction of serious injuries to the joints. In this project, an instrumented wheel system was developed to measure the applied loads dynamically by the hand of the user and the angular position of the wheelchair user's hand on the handrim during the propulsion phase. The system is composed of an experimental six-axis load cell, and a wireless eight channel data logger mounted on a wheel hub. The angular position of the wheel is measured by an absolute magnetic encoder. The angular position of the wheelchair user's hand on the handrim during the propulsion phase (ɸ) or point of force application (PFA) is calculated by means of a new-experimental method using 36 pairs of infrared emitter/receiver diodes mounted around the handrim. In this regard, the observed data extracted from an inexperienced able-bodied subject pushed a wheelchair with the instrumented handrim are presented to show the output behavior of the instrumented handrim. The recorded forces and torques were in agreement with previously reported magnitudes. However, this paper can provide readers with some technical insights into possible solutions for measuring the manual wheelchair propulsion biomechanical data. PMID:25426429

  2. Design and Fabrication of an Instrumented Handrim to Measure the Kinetic and Kinematic Information by the Hand of User for 3D Analysis of Manual Wheelchair Propulsion Dynamics.

    PubMed

    Mallakzadeh, Mohammadreza; Akbari, Hossein

    2014-10-01

    The repetitious nature of propelling a wheelchair has been associated with the high incidence of injury among manual wheelchair users (MWUs), mainly in the shoulder, elbow and wrist. Recent literature has found a link between handrim biomechanics and risk of injury to the upper extremity. The valid measurement of three-dimensional net joint forces and torques, however, can lead to a better understanding of the mechanisms of injury, the development of prevention techniques, and the reduction of serious injuries to the joints. In this project, an instrumented wheel system was developed to measure the applied loads dynamically by the hand of the user and the angular position of the wheelchair user's hand on the handrim during the propulsion phase. The system is composed of an experimental six-axis load cell, and a wireless eight channel data logger mounted on a wheel hub. The angular position of the wheel is measured by an absolute magnetic encoder. The angular position of the wheelchair user's hand on the handrim during the propulsion phase (ɸ) or point of force application (PFA) is calculated by means of a new-experimental method using 36 pairs of infrared emitter/receiver diodes mounted around the handrim. In this regard, the observed data extracted from an inexperienced able-bodied subject pushed a wheelchair with the instrumented handrim are presented to show the output behavior of the instrumented handrim. The recorded forces and torques were in agreement with previously reported magnitudes. However, this paper can provide readers with some technical insights into possible solutions for measuring the manual wheelchair propulsion biomechanical data.

  3. Real-time performance of a hands-free semi-autonomous wheelchair system using a combination of stereoscopic and spherical vision.

    PubMed

    Nguyen, Jordan S; Nguyen, Tuan Nghia; Tran, Yvonne; Su, Steven W; Craig, Ashley; Nguyen, Hung T

    2012-01-01

    This paper is concerned with the operational performance of a semi-autonomous wheelchair system named TIM (Thought-controlled Intelligent Machine), which uses cameras in a system configuration modeled on the vision system of a horse. This new camera configuration utilizes stereoscopic vision for 3-Dimensional (3D) depth perception and mapping ahead of the wheelchair, combined with a spherical camera system for 360-degrees of monocular vision. The unique combination allows for static components of an unknown environment to be mapped and any surrounding dynamic obstacles to be detected, during real-time autonomous navigation, minimizing blind-spots and preventing accidental collisions with people or obstacles. Combining this vision system with a shared control strategy provides intelligent assistive guidance during wheelchair navigation, and can accompany any hands-free wheelchair control technology for people with severe physical disability. Testing of this system in crowded dynamic environments has displayed the feasibility and real-time performance of this system when assisting hands-free control technologies, in this case being a proof-of-concept brain-computer interface (BCI).

  4. Mechanical efficiency of two commercial lever-propulsion mechanisms for manual wheelchair locomotion.

    PubMed

    Lui, Jordon; MacGillivray, Megan K; Sheel, A William; Jeyasurya, Jeswin; Sadeghi, Mahsa; Sawatzky, Bonita Jean

    2013-01-01

    The purpose of this study was to (1) evaluate the mechanical efficiency (ME) of two commercially available lever-propulsion mechanisms for wheelchairs and (2) compare the ME of lever propulsion with hand rim propulsion within the same wheelchair. Of the two mechanisms, one contained a torsion spring while the other used a roller clutch design. We hypothesized that the torsion spring mechanism would increase the ME of propulsion due to a passive recovery stroke enabled by the mechanism. Ten nondisabled male participants with no prior manual wheeling experience performed submaximal exercise tests using both lever-propulsion mechanisms and hand rim propulsion on two different wheelchairs. Cardiopulmonary parameters including oxygen uptake (VO2), heart rate (HR), and energy expenditure (En) were determined. Total external power (Pext) was measured using a drag test protocol. ME was determined by the ratio of Pext to En. Results indicated no significant effect of lever-propulsion mechanism for all physiological measures tested. This suggests that the torsion spring did not result in a physiological benefit compared with the roller clutch mechanism. However, both lever-propulsion mechanisms showed decreased VO2 and HR and increased ME (as a function of slope) compared with hand rim propulsion (p < 0.001). This indicates that both lever-propulsion mechanisms tested are more mechanically efficient than conventional hand rim propulsion, especially when slopes are encountered.

  5. Mechanical efficiency of two commercial lever-propulsion mechanisms for manual wheelchair locomotion.

    PubMed

    Lui, Jordon; MacGillivray, Megan K; Sheel, A William; Jeyasurya, Jeswin; Sadeghi, Mahsa; Sawatzky, Bonita Jean

    2013-01-01

    The purpose of this study was to (1) evaluate the mechanical efficiency (ME) of two commercially available lever-propulsion mechanisms for wheelchairs and (2) compare the ME of lever propulsion with hand rim propulsion within the same wheelchair. Of the two mechanisms, one contained a torsion spring while the other used a roller clutch design. We hypothesized that the torsion spring mechanism would increase the ME of propulsion due to a passive recovery stroke enabled by the mechanism. Ten nondisabled male participants with no prior manual wheeling experience performed submaximal exercise tests using both lever-propulsion mechanisms and hand rim propulsion on two different wheelchairs. Cardiopulmonary parameters including oxygen uptake (VO2), heart rate (HR), and energy expenditure (En) were determined. Total external power (Pext) was measured using a drag test protocol. ME was determined by the ratio of Pext to En. Results indicated no significant effect of lever-propulsion mechanism for all physiological measures tested. This suggests that the torsion spring did not result in a physiological benefit compared with the roller clutch mechanism. However, both lever-propulsion mechanisms showed decreased VO2 and HR and increased ME (as a function of slope) compared with hand rim propulsion (p < 0.001). This indicates that both lever-propulsion mechanisms tested are more mechanically efficient than conventional hand rim propulsion, especially when slopes are encountered. PMID:24699972

  6. Initial Skill Acquisition of Handrim Wheelchair Propulsion: A New Perspective.

    PubMed

    Vegter, Riemer J K; de Groot, Sonja; Lamoth, Claudine J; Veeger, Dirkjan Hej; van der Woude, Lucas H V

    2014-01-01

    To gain insight into cyclic motor learning processes, hand rim wheelchair propulsion is a suitable cyclic task, to be learned during early rehabilitation and novel to almost every individual. To propel in an energy efficient manner, wheelchair users must learn to control bimanually applied forces onto the rims, preserving both speed and direction of locomotion. The purpose of this study was to evaluate mechanical efficiency and propulsion technique during the initial stage of motor learning. Therefore, 70 naive able-bodied men received 12-min uninstructed wheelchair practice, consisting of three 4-min blocks separated by 2 min rest. Practice was performed on a motor-driven treadmill at a fixed belt speed and constant power output relative to body mass. Energy consumption and the kinetics of propulsion technique were continuously measured. Participants significantly increased their mechanical efficiency and changed their propulsion technique from a high frequency mode with a lot of negative work to a longer-slower movement pattern with less power losses. Furthermore a multi-level model showed propulsion technique to relate to mechanical efficiency. Finally improvers and non-improvers were identified. The non-improving group was already more efficient and had a better propulsion technique in the first block of practice (i.e., the fourth minute). These findings link propulsion technique to mechanical efficiency, support the importance of a correct propulsion technique for wheelchair users and show motor learning differences.

  7. Seat height in handrim wheelchair propulsion.

    PubMed

    van der Woude, L H; Veeger, D J; Rozendal, R H; Sargeant, T J

    1989-01-01

    To study the effect of seat height on the cardiorespiratory system and kinematics in handrim wheelchair ambulation, nine non-wheelchair users participated in a wheelchair exercise experiment on a motor-driven treadmill. The subjects conducted five progressive exercise tests. After an initial try-out test, four tests were performed at different standardized seat heights of 100, 120, 140, and 160 degrees elbow extension (subject sitting erect, hands on the rim in top-dead-center = 12.00 hrs; full extension = 180 degrees). Each test consisted of four 3-minute exercise blocks at speeds of respectively 0.55, 0.83, 1.11, and 1.39 m.s-1 (2-5 km.hr-1). Analysis of variance revealed significant effects of seat height (P less than 0.05) on gross mechanical efficiency (ME), oxygen cost, push range, and push duration, and on the ranges of motion in the different arm segments and trunk. Mean ME appeared higher at the lower seat heights of 100 and 120 degrees elbow extension. This is reflected in an enhanced oxygen consumption at seat heights of 140 and 160 degrees elbow extension. Simultaneously, the push range showed a 15 to 20 degree decrease with increasing seat height, which is reflected in a decreased push duration. In the push phase, decreases in retroflexion and abduction/adduction of the upper arm were seen. The trunk shifted further forward, and the motion range in the elbow joint shifted to extension with increasing seat height. No shifts in minimum and maximum angular velocities were seen with increasing seat height. The results showed an interrelationship between wheelchair seat height and both cardiorespiratory and kinematic parameters. With respect to the cardiorespiratory system, the optimization of the wheelchair geometry, based on functional characteristics of the user, appears beneficial.

  8. Kinematics of sport wheelchair propulsion.

    PubMed

    Coutts, K D

    1990-01-01

    Eight international caliber wheelchair male athletes (3 basketball, 5 distance track) performed an all-out propulsion effort from a standing start for 10 seconds on a wheelchair ergometer. Comparisons between the basketball and track athletes on linear wheelchair and push rim velocity during the first 3 pushes and the peak value indicated that the basketball players had a significantly (p less than .05) higher push rim velocity throughout the effort and a higher wheelchair velocity only at the end of the first push. The track athletes attained a significantly higher peak wheelchair velocity. Graphical comparison of the best individual basketball and track athletes' performances indicated that the track athletes caught up to the basketball players after about 3.7 seconds or 12 meters and travelled 49 meters in the 10 seconds, compared to 37 meters for the basketball players. Differences in push rim and wheel diameter are considered the major factor in the noted differences in propulsion kinematics of basketball and track wheelchairs.

  9. Effect of choice of recovery patterns on handrim kinetics in manual wheelchair users with paraplegia and tetraplegia

    PubMed Central

    Raina, Shashank; McNitt-Gray, Jill; Mulroy, Sara; Requejo, Philip

    2012-01-01

    Background Impact forces experienced by the upper limb at the beginning of each wheelchair propulsion (WCP) cycle are among the highest forces experienced by wheelchair users. Objective To determine whether the magnitude of hand/forearm velocity prior to impact and effectiveness of rim impact force are dependent on the type of hand trajectory pattern chosen by the user during WCP. Avoiding patterns that inherently cause higher impact force and have lower effectiveness can be another step towards preserving upper limb function in wheelchair users. Methods Kinematic (50 Hz) and kinetic (2500 Hz) data were collected on 34 wheelchair users (16 with paraplegia and 18 with tetraplegia); all participants had motor complete spinal cord injuries ASIA A or B. The four-hand trajectory patterns were analyzed based on velocity prior to contact, peak impact force and the effectiveness of force at impact. Results A high correlation was found between the impact force and the relative velocity of the hand with respect to the wheel (P < 0.05). The wheelchair users with paraplegia were found to have higher effectiveness of force at impact as compared to the users with tetraplegia (P < 0.05). No significant differences in the impact force magnitudes were found between the four observed hand trajectory patterns. Conclusion The overall force effectiveness tended to be associated with the injury level of the user and was found to be independent of the hand trajectory patterns. PMID:22507024

  10. Variability in bimanual wheelchair propulsion: consistency of two instrumented wheels during handrim wheelchair propulsion on a motor driven treadmill

    PubMed Central

    2013-01-01

    Background Handrim wheelchair propulsion is a complex bimanual motor task. The bimanually applied forces on the rims determine the speed and direction of locomotion. Measurements of forces and torques on the handrim are important to study status and change of propulsion technique (and consequently mechanical strain) due to processes of learning, training or the wheelchair configuration. The purpose of this study was to compare the simultaneous outcomes of two different measurement-wheels attached to the different sides of the wheelchair, to determine measurement consistency within and between these wheels given the expected inter- and intra-limb variability as a consequence of motor control. Methods Nine able-bodied subjects received a three-week low-intensity handrim wheelchair practice intervention. They then performed three four-minute trials of wheelchair propulsion in an instrumented hand rim wheelchair on a motor-driven treadmill at a fixed belt speed. The two measurement-wheels on each side of the wheelchair measured forces and torques of one of the two upper limbs, which simultaneously perform the push action over time. The resulting data were compared as direct output using cross-correlation on the torque around the wheel-axle. Calculated push characteristics such as power production and speed were compared using an intra-class correlation. Results Measured torque around the wheel axle of the two measurement-wheels had a high average cross-correlation of 0.98 (std=0.01). Unilateral mean power output over a minute was found to have an intra-class correlation of 0.89 between the wheels. Although the difference over the pushes between left and right power output had a high variability, the mean difference between the measurement-wheels was low at 0.03 W (std=1.60). Other push characteristics showed even higher ICC’s (>0.9). Conclusions A good agreement between both measurement-wheels was found at the level of the power output. This indicates a high

  11. Relationship Between Shoulder Pain and Kinetic and Temporal-Spatial Variability In Wheelchair Users

    PubMed Central

    Rice, Ian M; Jayaraman, Chandrasekaran; Hsiao-Wecksler, Elizabeth T.; Sosnoff, Jacob J.

    2014-01-01

    Objective To examine intra-individual variability of kinetic and temporal-spatial parameters of wheelchair propulsion as a function of shoulder pain in manual wheelchair users (MWU). Design Cohort Setting University Research Laboratory Participants 26 adults with physical disabilities who use a manual wheelchair for mobility full time (>80% ambulation) Interventions Participants propelled their own wheelchairs with force sensing wheels at a steady state pace on a dynamometer at 3 speeds (self-selected, 0.7m/s, 1.1m/s) for 3 minutes. Temporal-spatial and kinetic data were recorded unilaterally at the hand rim. Main Outcome Measures Shoulder pain was quantified with the wheelchair users shoulder pain index (WUSPI). Intra-individual mean, standard deviation (SD), and coefficient of variation of (CV = mean/SD) with kinetic and temporal spatial metrics were determined at the handrim. Results There were no differences in mean kinetic and temporal spatial metrics as a function of pain group (p's > 0.016). However, individuals with pain displayed less relative variability (CV) in peak resultant force and push time then pain free individuals (p<0.016). Conclusions Shoulder pain had no influence on mean kinetic and temporal-spatial propulsion variables at the handrim however group differences were found in relative variability. These results suggest that intra-individual variability analysis is sensitive to pain. It is proposed that variability analysis may offer an approach of earlier identification of manual wheelchair users at risk for developing shoulder pain. PMID:24291595

  12. A robotic wheelchair

    NASA Technical Reports Server (NTRS)

    Miller, David P.; Grant, Edward

    1994-01-01

    Many people who are mobility impaired are incapable, for a variety of reasons, of using an ordinary wheelchair. These people must rely on either a power wheelchair, which they control, or another person to push and guide them while they are in an ordinary or power wheelchair. Power wheelchairs can be difficult to operate. If a person has additional disabilities, either in perception or fine motor control of their hands, a power chair can be difficult or impossible for them to use safely. Having one person push and guide a person who is mobility impaired is very expensive, and if the disabled person is otherwise independent, very inefficient and frustrating. This paper describes a low-cost robotic addition to a power wheelchair that assists the rider of the chair in avoiding obstacles, going to pre-designated places, and maneuvering through doorways and other narrow or crowded areas. This system can be interfaced to a variety of input devices, and can give the operator as much or as little moment by moment control of the chair as they wish.

  13. Advanced Wheelchair

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A prototype lightweight wheelchair based on aerospace technology resulted from a Langley Research Center/University of VA project. The chair weighs 25 pounds and is collapsable. Commercial applications are under consideration.

  14. Training Visual Control in Wheelchair Basketball Shooting

    ERIC Educational Resources Information Center

    Oudejans, Raoul R. D.; Heubers, Sjoerd; Ruitenbeek, Jean-Rene J. A. C.; Janssen, Thomas W. J.

    2012-01-01

    We examined the effects of visual control training on expert wheelchair basketball shooting, a skill more difficult than in regular basketball, as players shoot from a seated position to the same rim height. The training consisted of shooting with a visual constraint that forced participants to use target information as late as possible.…

  15. Talking Wheelchair

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Communication is made possible for disabled individuals by means of an electronic system, developed at Stanford University's School of Medicine, which produces highly intelligible synthesized speech. Familiarly known as the "talking wheelchair" and formally as the Versatile Portable Speech Prosthesis (VPSP). Wheelchair mounted system consists of a word processor, a video screen, a voice synthesizer and a computer program which instructs the synthesizer how to produce intelligible sounds in response to user commands. Computer's memory contains 925 words plus a number of common phrases and questions. Memory can also store several thousand other words of the user's choice. Message units are selected by operating a simple switch, joystick or keyboard. Completed message appears on the video screen, then user activates speech synthesizer, which generates a voice with a somewhat mechanical tone. With the keyboard, an experienced user can construct messages as rapidly as 30 words per minute.

  16. Airline Wheelchair

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Accutron Tool & Instrument Co.'s wheelchair was designed to increase mobility within the airplane. Utilizing NASA's structural analysis and materials engineering technologies, it allows passage through narrow airline aisles to move passengers to their seats and give access to lavatories. Stable, durable, comfortable and easy to handle, it's made of composite materials weighing only 17 pounds, yet is able to support a 200 pound person. Folded easily and stored when not in use.

  17. A neural net representation of experienced and nonexperienced users during manual wheelchair propulsion.

    PubMed

    Patterson, P; Draper, S

    1998-01-01

    A neural net approach was used to classify and analyze combinations of the physiological and kinematic responses (the factor patterns) of experienced and novice individuals during wheelchair propulsion, and to determine the key characteristics (individual factors) used in making this determination. A sequence of artificial neural networks (ANN) was developed and used to classify differences between eight nonimpaired controls and seven individuals using wheelchairs, who ranged in age from 24 to 36 years. The subjects propelled a wheelchair on a specially constructed dynamometer at three different velocity levels during which stroke pattern, force, energy, and efficiency data were collected. The data from 10 subjects (5 from each group) were used to train a net, with the data from the remaining 5 subjects used to test the resulting net. The nets correctly classified the training subjects in all 10 cases and correctly classified all 5 test subjects, indicating that the developed networks were able to generalize to new data sets. It was concluded that a minimal net consisting of only three variables, peak VO2 at the high velocity, hand force on the rim at the low velocity, and push angle at the high velocity, could accurately represent the differences between these groups.

  18. Influence of varied tempo music on wheelchair mechanical efficiency following 3-week practice.

    PubMed

    Goosey-Tolfrey, V L; West, M; Lenton, J P; Tolfrey, K

    2011-02-01

    The purpose of this study was to analyse adaptations in propulsion technique and gross efficiency in novice able-bodied subjects during the initial phase of learning hand-rim wheelchair propulsion to music. 22 able bodied participants performed wheelchair propulsion (1.1 m·s(-1)) followed by a VO(2) peak test on a wheelchair ergometer. Push frequency, gross efficiency (GE), heart rate, rating of perceived exertion and propulsion technique variables (force application and temporal characteristics) were recorded. Participants were then assigned to a 3-wk practice period listening to i) 125 beats·min(-1) tempo music (LOW); ii) 170 beats·min(-1) tempo music (HIGH); or iii) a control group (CON). Following practice, all participants repeated the pre-testing protocol whilst force application data was collected in practice trials 1 and 9. After accounting for the pre-practice differences in GE (using ANCOVA), GE was higher in LOW compared with CON (P=0.038; 6.6 vs. 6.1% respectively). The differences between CON vs. HIGH and LOW vs. HIGH (P=0.830; P=0.188) were trivial suggesting that only LOW experienced an increase in GE. Practice had a favourable effect on the perceptions of effort, work per cycle, push and cycle time in contrast to the CON group. The use of music in a rehabilitation setting warrants further investigation.

  19. A comparison of static and dynamic optimization muscle force predictions during wheelchair propulsion.

    PubMed

    Morrow, Melissa M; Rankin, Jeffery W; Neptune, Richard R; Kaufman, Kenton R

    2014-11-01

    The primary purpose of this study was to compare static and dynamic optimization muscle force and work predictions during the push phase of wheelchair propulsion. A secondary purpose was to compare the differences in predicted shoulder and elbow kinetics and kinematics and handrim forces. The forward dynamics simulation minimized differences between simulated and experimental data (obtained from 10 manual wheelchair users) and muscle co-contraction. For direct comparison between models, the shoulder and elbow muscle moment arms and net joint moments from the dynamic optimization were used as inputs into the static optimization routine. RMS errors between model predictions were calculated to quantify model agreement. There was a wide range of individual muscle force agreement that spanned from poor (26.4% Fmax error in the middle deltoid) to good (6.4% Fmax error in the anterior deltoid) in the prime movers of the shoulder. The predicted muscle forces from the static optimization were sufficient to create the appropriate motion and joint moments at the shoulder for the push phase of wheelchair propulsion, but showed deviations in the elbow moment, pronation-supination motion and hand rim forces. These results suggest the static approach does not produce results similar enough to be a replacement for forward dynamics simulations, and care should be taken in choosing the appropriate method for a specific task and set of constraints. Dynamic optimization modeling approaches may be required for motions that are greatly influenced by muscle activation dynamics or that require significant co-contraction. PMID:25282075

  20. A comparison of static and dynamic optimization muscle force predictions during wheelchair propulsion.

    PubMed

    Morrow, Melissa M; Rankin, Jeffery W; Neptune, Richard R; Kaufman, Kenton R

    2014-11-01

    The primary purpose of this study was to compare static and dynamic optimization muscle force and work predictions during the push phase of wheelchair propulsion. A secondary purpose was to compare the differences in predicted shoulder and elbow kinetics and kinematics and handrim forces. The forward dynamics simulation minimized differences between simulated and experimental data (obtained from 10 manual wheelchair users) and muscle co-contraction. For direct comparison between models, the shoulder and elbow muscle moment arms and net joint moments from the dynamic optimization were used as inputs into the static optimization routine. RMS errors between model predictions were calculated to quantify model agreement. There was a wide range of individual muscle force agreement that spanned from poor (26.4% Fmax error in the middle deltoid) to good (6.4% Fmax error in the anterior deltoid) in the prime movers of the shoulder. The predicted muscle forces from the static optimization were sufficient to create the appropriate motion and joint moments at the shoulder for the push phase of wheelchair propulsion, but showed deviations in the elbow moment, pronation-supination motion and hand rim forces. These results suggest the static approach does not produce results similar enough to be a replacement for forward dynamics simulations, and care should be taken in choosing the appropriate method for a specific task and set of constraints. Dynamic optimization modeling approaches may be required for motions that are greatly influenced by muscle activation dynamics or that require significant co-contraction.

  1. Gardening from a Wheelchair

    MedlinePlus

    ... Paralysis > Health > Staying active > Gardening from a wheelchair Gardening from a wheelchair ☷ ▾ Page contents Tips from community ... round handles) on gate latches, doors, and faucets. Gardening as therapy For Gene Rothert gardening is a ...

  2. Isidis Rim

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 03 April 2002) This lunar-like scene occurs along the southeastern rim of the Isidis Planitia basin. The Isidis basin is an ancient impact crater some 1200 km across that is found along the boundary separating the heavily-cratered southern highland terrain of Mars from the northern lowlands. Elements of both terrains are evident in this image as an island of rugged highland terrain surrounded by smoother lowland terrain. The resurfacing of the Isidis basin produced a system of wrinkle ridges, some of which are seen on the lowland terrain in the image. Wrinkle ridges are a common feature on the surface of the moon and add to the lunar-like quality of this image. Layers are visible in the large island, the most resistant of which likely are from lava flows that created the highland terrain. The process by which the global-scale highland/lowland dichotomy was created remains a mystery.

  3. The effect of wheel size on mobility performance in wheelchair athletes.

    PubMed

    Mason, B; van der Woude, L; Lenton, J P; Goosey-Tolfrey, V

    2012-10-01

    The purpose of the current study was to investigate the effects of different wheel sizes, with fixed gear ratios, on maximal effort mobility performance in wheelchair athletes. 13 highly trained wheelchair basketball players, grouped by classification level, performed a battery of 3 field tests in an adjustable wheelchair with 3 different wheel sizes (0.59 m, 0.61 m and 0.65 m). Performance was assessed using the time taken to perform drills, with velocity and acceleration data also collected via a wheelchair velocometer. 20 m sprint time improved in the 0.65 m condition (5.58 ± 0.43 s, P=0.029) compared with 0.59 m (5.72 ± 0.40 s). Acceleration performance over the first 2 (P=0.299) and 3 (P=0.145) pushes was not statistically influenced by wheel size. However, the peak velocities reached were greater in the 0.65 m condition (4.77 ± 0.46 m ∙ s(-1), P=0.078, Effect Size [ES]=0.63) compared with 0.59 m (4.61 ± 0.40 m ∙ s(-1)). Impact velocity, calculated as the change in velocity from the onset of a push to the following impact peak, to define coupling performance, was also significantly improved in 0.65 m wheels (0.14 ± 0.14 m ∙ s(-1), P=0.006) than 0.59 m wheels (0.05 ± 0.10 m ∙ s(-1)). The time taken to complete the linear mobility (P=0.630) and the agility drill (P=0.505) were not affected by wheel size. Finally, no significant interactions existed between wheel size, classification and any performance measure. To conclude, larger 0.65 m wheels improved the maximal sprinting performance of highly trained wheelchair basketball players, without any negative effects on acceleration or manoeuvrability. Improvements in sprinting were attributed to a combination of the reduced drag forces experienced and improvements in coupling thought to be due to the lower angular velocities of the wheel/hand-rim when developing high wheelchair velocities in larger wheels.

  4. Crater Rim

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The late afternoon sun casts a shadow over a 700 meter-high rim of Huygens Crater.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude -15.2, Longitude 51.6 East (308.4 West). 19 meter/pixel resolution.

  5. A theory of wheelchair wheelie performance.

    PubMed

    Kauzlarich, J J; Thacker, J G

    1987-01-01

    The results of this analytical study of wheelchair wheelie performance can be summarized into two wheelchair design equations, or rules of thumb, as developed in the paper. The equation containing the significant parameters involved in popping a wheelie for curb climbing is: fh = 0.8 mg theta c.g. [A] where fh is handrim force, m is the mass of the wheelchair + user less rear wheels, g is acceleration of gravity (9.807 m/s2), and theta c.g. is "c.g. angle," i.e., the angle between the vertical through the rear axle and a line connecting the rear axle and the system center-of-gravity. Equation [A] shows that reducing the mass and/or the c.g. angle will make it easier to pop a wheelie. The c.g. angle is reduced by moving the rear axle position forward on the wheelchair. Wheelie balance is the other aspect of performance considered; where the user balances the wheelchair on the rear wheels for going down curbs or just for fun. The ease with which a system can be controlled (balanced) is related to the static stability of the system. The static stability is defined as: omega 2 = mgl/J [B] where J is the mass moment of inertia at the center of gravity of the system about the direction perpendicular to the sideframe. For better wheelchair control during wheelchair balance the static stability should be reduced. Measurements of the value for the polar mass moment of inertia for a typical wheelchair + user of m = 90 kg was found to be J = 8.7 kg-m2. In order to decrease the value of the static stability, Equation [B], one can increase J or decrease m and/or l, where l is the distance from the rear axle to the c.g. of the system. It is also shown that balancing a rod in the palm of the hand (inverted pendulum) is a mathematical problem similar to the wheelie balance problem, and a rod of length 1.56 meters is similar to a wheelchair + user system mass of 90 kg. However, balancing a rod is done primarily by using visual perception, whereas wheelie balance involves human

  6. Training visual control in wheelchair basketball shooting.

    PubMed

    Oudejans, Raôul R D; Heubers, Sjoerd; Ruitenbeek, Jean-René J A C; Janssen, Thomas W J

    2012-09-01

    We examined the effects of visual control training on expert wheelchair basketball shooting, a skill more difficult than in regular basketball, as players shoot from a seated position to the same rim height. The training consisted of shooting with a visual constraint that forced participants to use target information as late as possible. Participants drove under a large screen that initially blocked the basket. As soon as they saw the basket they shot. When training with the screen, shooting percentages increased. We conclude that visual control training is an effective method to improve wheelchair basketball shooting. The findings support the idea that perceptual-motor learning can be enhanced by manipulating relevant constraints in the training environment, even for expert athletes.

  7. Biomechanics and the wheelchair.

    PubMed

    McLaurin, C A; Brubaker, C E

    1991-04-01

    Wheelchair biomechanics involves the study of how a wheelchair user imparts power to the wheels to achieve mobility. Because a wheelchair can coast, power input need not be continuous, but each power strike can be followed by a period of recovery, with the stroking frequency depending on user preferences and the coasting characteristics of the wheelchair. The latter is described in terms of rolling resistance, wind resistance and the slope of the surface. From these three factors the power required to propel the wheelchair is determined, and must be matched by the power output of the user. The efficiency of propulsion is the ratio of this power output to the metabolic cost and is typically in the order of 5% in normal use. The features required in a wheelchair depend upon user characteristics and intended activities. The ideal wheelchair for an individual will have the features that closely match these characteristics and activities. Thus prescription is not just choosing a wheelchair, but choosing the components of the wheelchair that best serve the intended purpose. In this paper, each component is examined for available options and how these options effect the performance of the wheelchair for the individual. The components include wheels, tyres, castors, frames, bearings, materials, construction details, seats, backrests, armrests, foot and legrests, headrests, wheel locks, running brakes, handrims, levers, accessories, adjustments and detachable parts. Each component is considered in relation to performance characteristics including rolling resistance, versatility, weight, comfort, stability, maneouvrability, transfer, stowage, durability and maintenance. Where they exist, wheelchair standards are referred to as a source of information regarding these characteristics.

  8. Autonomous assistance navigation for robotic wheelchairs in confined spaces.

    PubMed

    Cheein, Fernando Auat; Carelli, Ricardo; De la Cruz, Celso; Muller, Sandra; Bastos Filho, Teodiano F

    2010-01-01

    In this work, a visual interface for the assistance of a robotic wheelchair's navigation is presented. The visual interface is developed for the navigation in confined spaces such as narrows corridors or corridor-ends. The interface performs two navigation modus: non-autonomous and autonomous. The non-autonomous driving of the robotic wheelchair is made by means of a hand-joystick. The joystick directs the motion of the vehicle within the environment. The autonomous driving is performed when the user of the wheelchair has to turn (90, 90 or 180 degrees) within the environment. The turning strategy is performed by a maneuverability algorithm compatible with the kinematics of the wheelchair and by the SLAM (Simultaneous Localization and Mapping) algorithm. The SLAM algorithm provides the interface with the information concerning the environment disposition and the pose -position and orientation-of the wheelchair within the environment. Experimental and statistical results of the interface are also shown in this work.

  9. Autonomous assistance navigation for robotic wheelchairs in confined spaces.

    PubMed

    Cheein, Fernando Auat; Carelli, Ricardo; De la Cruz, Celso; Muller, Sandra; Bastos Filho, Teodiano F

    2010-01-01

    In this work, a visual interface for the assistance of a robotic wheelchair's navigation is presented. The visual interface is developed for the navigation in confined spaces such as narrows corridors or corridor-ends. The interface performs two navigation modus: non-autonomous and autonomous. The non-autonomous driving of the robotic wheelchair is made by means of a hand-joystick. The joystick directs the motion of the vehicle within the environment. The autonomous driving is performed when the user of the wheelchair has to turn (90, 90 or 180 degrees) within the environment. The turning strategy is performed by a maneuverability algorithm compatible with the kinematics of the wheelchair and by the SLAM (Simultaneous Localization and Mapping) algorithm. The SLAM algorithm provides the interface with the information concerning the environment disposition and the pose -position and orientation-of the wheelchair within the environment. Experimental and statistical results of the interface are also shown in this work. PMID:21095654

  10. The wheelchair thrombosis syndrome.

    PubMed Central

    Lohiya, Ghan-Shyam; Tan-Figueroa, Lilia; Silverman, Steve; Le, Hung Van

    2006-01-01

    OBJECTIVE: To report a case of deep vein thrombosis (DVT) related to prolonged wheelchair use. CASE REPORT: A 48-year-old patient with spastic quadriplegia usually spent 10-12 hours daily in a wheelchair. He suddenly developed marked swelling of his right foot, leg and thigh. His plasma D-dimer level was 1,030 (normal <500) ng/ml. A duplex ultrasound revealed common femoral vein thrombosis. He was hospitalized and anticoagulated; his extremity swelling decreased considerably by day 45. Hypercoagulability work-up disclosed previously subclinical mild elevation of serum cardiolipin immunoglobulin G (antiphospholipid syndrome). This patient will receive longterm anticoagulation. CONCLUSION: Prolonged sitting in wheelchair may cause DVT. To enhance public recognition of this avoidable risk, we propose the term "wheelchair thrombosis syndrome." PMID:16895294

  11. Wheelchair basketball quantification.

    PubMed

    Gil-Agudo, Angel; Del Ama-Espinosa, Antonio; Crespo-Ruiz, Beatriz

    2010-02-01

    Classification systems are one of the key elements in sports for people with disability, including wheelchair basketball. Further scientific studies to validate classification systems are needed. This article describes the most relevant research, with emphasis on biomechanics.

  12. Finite element analysis of a composite wheelchair wheel design

    NASA Technical Reports Server (NTRS)

    Ortega, Rene

    1994-01-01

    The finite element analysis of a composite wheelchair wheel design is presented. The design is the result of a technology utilization request. The designer's intent is to soften the riding feeling by incorporating a mechanism attaching the wheel rim to the spokes that would allow considerable deflection upon compressive loads. A finite element analysis was conducted to verify proper structural function. Displacement and stress results are presented and conclusions are provided.

  13. Fiber composite flywheel rim

    DOEpatents

    Davis, D.E.; Ingham, K.T.

    1987-04-28

    A flywheel comprising a hub having at least one radially projecting disc, an annular rim secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers wound about said rim congruent to said surface, and a shell enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface. 2 figs.

  14. Fiber composite flywheel rim

    DOEpatents

    Davis, Donald E.; Ingham, Kenneth T.

    1987-01-01

    A flywheel 2 comprising a hub 4 having at least one radially projecting disc 6, an annular rim 14 secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers 22 wound about said rim congruent to said surface, and a shell 26 enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface.

  15. Dynamics of wheelchair basketball.

    PubMed

    Coutts, K D

    1992-02-01

    A sport model wheelchair instrumented with a portable computer and a switch activated with each half revolution of a rear wheel was used to record serial time and distance data on two subjects (1 male, 1 female) during a portion of a basketball game. These and two additional subjects (1 male, 1 female) also completed a series of coast down and maximal sprint trials on the basketball court. The drag force while coasting was positively related to the mass of the subject, and the male subjects had a higher maximal speed, acceleration, force, and power output in the sprint trials. During the wheelchair basketball game, it was estimated that 64% of the time was spent in propulsive action and 36% in braking activity. Projections for a complete 40 minute game indicated that both subjects would travel about 5 km at an average speed of 2 m.s-1 and attain a peak speed of 4 m.s-1. Plots of speed and power vs time showed the intermittent nature of playing wheelchair basketball. The greater amount of propulsive work (52.6 vs 37.5 kJ) and braking ("negative") work (43.9 vs 30.8 kJ) in a game for the male subject can be related to the male's higher body mass and wheelchair drag force. PMID:1532225

  16. Dynamics of wheelchair basketball.

    PubMed

    Coutts, K D

    1992-02-01

    A sport model wheelchair instrumented with a portable computer and a switch activated with each half revolution of a rear wheel was used to record serial time and distance data on two subjects (1 male, 1 female) during a portion of a basketball game. These and two additional subjects (1 male, 1 female) also completed a series of coast down and maximal sprint trials on the basketball court. The drag force while coasting was positively related to the mass of the subject, and the male subjects had a higher maximal speed, acceleration, force, and power output in the sprint trials. During the wheelchair basketball game, it was estimated that 64% of the time was spent in propulsive action and 36% in braking activity. Projections for a complete 40 minute game indicated that both subjects would travel about 5 km at an average speed of 2 m.s-1 and attain a peak speed of 4 m.s-1. Plots of speed and power vs time showed the intermittent nature of playing wheelchair basketball. The greater amount of propulsive work (52.6 vs 37.5 kJ) and braking ("negative") work (43.9 vs 30.8 kJ) in a game for the male subject can be related to the male's higher body mass and wheelchair drag force.

  17. Electrooculogram wheelchair control.

    PubMed

    Philips, Gavin R; Catellier, Andrew A; Barrett, Steven F; Wright, Cameron H G

    2007-01-01

    This paper describes the research, development, and implementation of an electrooculogram-controlled wheelchair. This system was designed specifically to fit the demands of users with limited use of their arms and legs. By monitoring ocular bio-electrical signals, this system allows the user to steer the wheelchair using only eye movements. The first generation prototype described here used a "sip and puff" unit for overall control of the system, allowing the user to change modes of operation using only his/her breath. Finally, an ultra-sonic rangefinder was added to provide an extra measure of safety, alerting the user to sudden changes in grade. This is part of an ongoing project to allow greater independence for those with special needs. PMID:17487075

  18. RESNA Wheelchair Service Provision Guide

    ERIC Educational Resources Information Center

    Arledge, Stan; Armstrong, William; Babinec, Mike; Dicianno, Brad E.; Digiovine, Carmen; Dyson-Hudson, Trevor; Pederson, Jessica; Piriano, Julie; Plummer, Teresa; Rosen, Lauren; Schmeler, Mark; Shea, Mary; Stogner, Jody

    2011-01-01

    The purpose of the Wheelchair Service Provision Guide is to provide an appropriate framework for identifying the essential steps in the provision of a wheelchair. It is designed for use by all participants in the provision process including consumers, family members, caregivers, social service and health care professionals, suppliers,…

  19. Next generation autonomous wheelchair control.

    PubMed

    Benson, John; Barrett, Steven

    2005-01-01

    Often times the physically challenged, limited to a wheelchair, also have difficulty with vision. In order to help, something must "see" for them. Therefore there must be some way for a wheelchair to know its environment, sense where it is, and where it must go. It also must be able to avoid any obstacles which are not normally part of the environment. An autonomous wheelchair will serve an important role by allowing users more freedom and independence. This design challenge is broken into four major steps: wheelchair control, environment recognition, route planning, and obstacle avoidance. The first step is to reverse engineer a wheelchair and rebuild the controls, which will be the main topic of discussion for this paper. Two big challenges with this step are high power motor control and joystick control. An H-bridge motor interface, controlled by a microprocessor, was designed for the motors. The joystick control is handled with the same microprocessor. PMID:15850119

  20. Next generation autonomous wheelchair control.

    PubMed

    Benson, John; Barrett, Steven

    2005-01-01

    Often times the physically challenged, limited to a wheelchair, also have difficulty with vision. In order to help, something must "see" for them. Therefore there must be some way for a wheelchair to know its environment, sense where it is, and where it must go. It also must be able to avoid any obstacles which are not normally part of the environment. An autonomous wheelchair will serve an important role by allowing users more freedom and independence. This design challenge is broken into four major steps: wheelchair control, environment recognition, route planning, and obstacle avoidance. The first step is to reverse engineer a wheelchair and rebuild the controls, which will be the main topic of discussion for this paper. Two big challenges with this step are high power motor control and joystick control. An H-bridge motor interface, controlled by a microprocessor, was designed for the motors. The joystick control is handled with the same microprocessor.

  1. Degraded Crater Rim

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 3 May 2002) The Science The eastern rim of this unnamed crater in Southern Arabia Terra is very degraded (beaten up). This indicates that this crater is very ancient and has been subjected to erosion and subsequent bombardment from other impactors such as asteroids and comets. One of these later (younger) craters is seen in the upper right of this image superimposed upon the older crater rim material. Note that this smaller younger crater rim is sharper and more intact than the older crater rim. This region is also mantled with a blanket of dust. This dust mantle causes the underlying topography to take on a more subdued appearance. The Story When you think of Arabia, you probably think of hot deserts and a lot of profitable oil reserves. On Mars, however, Southern Arabia Terra is a cold place of cratered terrain. This almost frothy-looking image is the badly battered edge of an ancient crater, which has suffered both erosion and bombardment from asteroids, comets, or other impacting bodies over the long course of its existence. A blanket of dust has also settled over the region, which gives the otherwise rugged landscape a soft and more subdued appearance. The small, round crater (upper left) seems almost gemlike in its setting against the larger crater ring. But this companionship is no easy romance. Whatever formed the small crater clearly whammed into the larger crater rim at some point, obliterating part of its edge. You can tell the small crater was formed after the first and more devastating impact, because it is laid over the other larger crater. How much younger is the small one? Well, its rim is also much sharper and more intact, which gives a sense that it is probably far more youthful than the very degraded, ancient crater.

  2. The Pacific Rim.

    ERIC Educational Resources Information Center

    Thomas, Paul F., Ed.

    1988-01-01

    The articles in this special edition were compiled to provide information to Canadian social studies teachers about Pacific Rim countries. Section 1, entitled "The Big Picture and Future Interests," contains: (1) "Social Studies for the 21st Century" (J. Tucker); (2) "Culture and Communication: A Perspective on Asian Studies for Tomorrow's…

  3. A five-wheel wheelchair with an active-caster drive system.

    PubMed

    Munakata, Yu; Tanaka, Aki; Wada, Masayoshi

    2013-06-01

    A novel wheelchair system with an active-caster drive mechanism is presented in this paper. A manual (hand propelled) wheelchair with an external single-wheel drive system forms a five-wheel configuration. The active-caster mechanism is applied to a drive system to motorize a manual wheelchair. Two electric motors which drive a wheel axis and a steering axis of a drive wheel independently are equipped on the active-caster. A coordinated control of the two motors enables the velocity vector on the steering shaft to direct in an arbitrary direction with an arbitrary magnitude. The generated velocity vector allows a wheelchair to go straight and/or rotate completely in a same way as a standard electric wheelchair. Namely 2DOF of the wheelchair can be controlled independently by a single drive wheel without any constraint, such as the orientation of the drive wheel which is well known as a non-holonomic constraint. In addition to the 2DOF mobility, the proposed system enables wheelchair users to change drive modes, a rear drive and a front drive. The drive wheel on the back side of the wheelchair is vertically actuated by a linear motor to change the height of the drive wheel that can vary load distribution and the number of wheels contacting to the ground. The five-wheel-contact makes the wheelchair to move as the normal mode in which the center of rotation is located at the midpoint of the main wheels. Depressing the drive wheel results in lost contacts of the main wheels from the ground in which the center of rotation is jumped at the midpoint of the front wheels, namely it performs as a front drive wheelchair. In this paper, kinematic models of the wheelchair and that with an active-caster drive system are analyzed and a control method by using a 2DOF joystick is derived. Based on the kinematic model, a prototype mechanism of the active-caster is designed and mounted on a manual wheelchair to realize the five-wheel wheelchair. In the experiments, the independent 2

  4. A five-wheel wheelchair with an active-caster drive system.

    PubMed

    Munakata, Yu; Tanaka, Aki; Wada, Masayoshi

    2013-06-01

    A novel wheelchair system with an active-caster drive mechanism is presented in this paper. A manual (hand propelled) wheelchair with an external single-wheel drive system forms a five-wheel configuration. The active-caster mechanism is applied to a drive system to motorize a manual wheelchair. Two electric motors which drive a wheel axis and a steering axis of a drive wheel independently are equipped on the active-caster. A coordinated control of the two motors enables the velocity vector on the steering shaft to direct in an arbitrary direction with an arbitrary magnitude. The generated velocity vector allows a wheelchair to go straight and/or rotate completely in a same way as a standard electric wheelchair. Namely 2DOF of the wheelchair can be controlled independently by a single drive wheel without any constraint, such as the orientation of the drive wheel which is well known as a non-holonomic constraint. In addition to the 2DOF mobility, the proposed system enables wheelchair users to change drive modes, a rear drive and a front drive. The drive wheel on the back side of the wheelchair is vertically actuated by a linear motor to change the height of the drive wheel that can vary load distribution and the number of wheels contacting to the ground. The five-wheel-contact makes the wheelchair to move as the normal mode in which the center of rotation is located at the midpoint of the main wheels. Depressing the drive wheel results in lost contacts of the main wheels from the ground in which the center of rotation is jumped at the midpoint of the front wheels, namely it performs as a front drive wheelchair. In this paper, kinematic models of the wheelchair and that with an active-caster drive system are analyzed and a control method by using a 2DOF joystick is derived. Based on the kinematic model, a prototype mechanism of the active-caster is designed and mounted on a manual wheelchair to realize the five-wheel wheelchair. In the experiments, the independent 2

  5. Voice Controlled Wheelchair

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Michael Condon, a quadraplegic from Pasadena, California, demonstrates the NASA-developed voice-controlled wheelchair and its manipulator, which can pick up packages, open doors, turn a TV knob, and perform a variety of other functions. A possible boon to paralyzed and other severely handicapped persons, the chair-manipulator system responds to 35 one-word voice commands, such as "go," "stop," "up," "down," "right," "left," "forward," "backward." The heart of the system is a voice-command analyzer which utilizes a minicomputer. Commands are taught I to the computer by the patient's repeating them a number of times; thereafter the analyzer recognizes commands only in the patient's particular speech pattern. The computer translates commands into electrical signals which activate appropriate motors and cause the desired motion of chair or manipulator. Based on teleoperator and robot technology for space-related programs, the voice-controlled system was developed by Jet Propulsion Laboratory under the joint sponsorship of NASA and the Veterans Administration. The wheelchair-manipulator has been tested at Rancho Los Amigos Hospital, Downey, California, and is being evaluated at the VA Prosthetics Center in New York City.

  6. A robotic wheelchair trainer: design overview and a feasibility study

    PubMed Central

    2010-01-01

    Background Experiencing independent mobility is important for children with a severe movement disability, but learning to drive a powered wheelchair can be labor intensive, requiring hand-over-hand assistance from a skilled therapist. Methods To improve accessibility to training, we developed a robotic wheelchair trainer that steers itself along a course marked by a line on the floor using computer vision, haptically guiding the driver's hand in appropriate steering motions using a force feedback joystick, as the driver tries to catch a mobile robot in a game of "robot tag". This paper provides a detailed design description of the computer vision and control system. In addition, we present data from a pilot study in which we used the chair to teach children without motor impairment aged 4-9 (n = 22) to drive the wheelchair in a single training session, in order to verify that the wheelchair could enable learning by the non-impaired motor system, and to establish normative values of learning rates. Results and Discussion Training with haptic guidance from the robotic wheelchair trainer improved the steering ability of children without motor impairment significantly more than training without guidance. We also report the results of a case study with one 8-year-old child with a severe motor impairment due to cerebral palsy, who replicated the single-session training protocol that the non-disabled children participated in. This child also improved steering ability after training with guidance from the joystick by an amount even greater than the children without motor impairment. Conclusions The system not only provided a safe, fun context for automating driver's training, but also enhanced motor learning by the non-impaired motor system, presumably by demonstrating through intuitive movement and force of the joystick itself exemplary control to follow the course. The case study indicates that a child with a motor system impaired by CP can also gain a short-term benefit

  7. Rim Dispute Explodes in Maryland.

    ERIC Educational Resources Information Center

    Hartmann, Bennie C.

    1984-01-01

    This article reviews the history of Maryland's controversial requirement that school buses use single-piece wheel rims. The author suggests precautions for using explosion-prone multipiece rims. (MCG)

  8. RIMS: Resource Information Management System

    NASA Technical Reports Server (NTRS)

    Symes, J.

    1983-01-01

    An overview is given of the capabilities and functions of the resource management system (RIMS). It is a simple interactive DMS tool which allows users to build, modify, and maintain data management applications. The RIMS minimizes programmer support required to develop/maintain small data base applications. The RIMS also assists in bringing the United Information Services (UIS) budget system work inhouse. Information is also given on the relationship between the RIMS and the user community.

  9. Gusev's Rim Revealed

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Mars Exploration Rover Spirit took this panoramic camera image on sol 91 (April 5, 2004). Spirit is looking to the southeast, and through the martian haze has captured the rim of Gusev Crater approximately 80 kilometers (49.7 miles) away on the horizon.

    The right side of this image reveals the portion of the crater edge that descends into the mouth of Ma'adim Vallis, a channel that opens into Gusev Crater. Spirit is currently traveling toward the informally named 'Columbia Hills,' which lie to the left of the region pictured here.

    This image is similar to a panoramic camera image taken on sol 68, but Gusev's ridge is more visible here because the atmospheric dust caused by winter dust storms has settled. Scientists expect to get even clearer images than this one in upcoming sols.

    This image has been modified to make the crater rim more visible.

  10. Biomechanical Model for Evaluation of Pediatric Upper Extremity Joint Dynamics during Wheelchair Mobility

    PubMed Central

    Schnorenberg, Alyssa J.; Slavens, Brooke A.; Wang, Mei; Vogel, Lawrence; Smith, Peter; Harris, Gerald F.

    2014-01-01

    Pediatric manual wheelchair users (MWU) require high joint demands on their upper extremity (UE) during wheelchair mobility, leading them to be at risk of developing pain and pathology. Studies have examined UE biomechanics during wheelchair mobility in the adult population; however, current methods for evaluating UE joint dynamics of pediatric MWU are limited. An inverse dynamics model is proposed to characterize three-dimensional UE joint kinematics and kinetics during pediatric wheelchair mobility using a SmartWheel instrumented handrim system. The bilateral model comprises thorax, clavicle, scapula, upper arm, forearm, and hand segments and includes the sternoclavicular, acromioclavicular, glenohumeral, elbow and wrist joints. A single 17 year-old male with a C7 spinal cord injury (SCI) was evaluated while propelling his wheelchair across a 15-meter walkway. The subject exhibited wrist extension angles up to 60°, large elbow ranges of motion and peak glenohumeral joint forces up to 10% body weight. Statistically significant asymmetry of the wrist, elbow, glenohumeral and acromioclavicular joints was detected by the model. As demonstrated, the custom bilateral UE pediatric model may provide considerable quantitative insight into UE joint dynamics to improve wheelchair prescription, training, rehabilitation and long-term care of children with orthopaedic disabilities. Further research is warranted to evaluate pediatric wheelchair mobility in a larger population of children with SCI to investigate correlations to pain, function and transitional changes to adulthood. PMID:24309622

  11. Biomechanical model for evaluation of pediatric upper extremity joint dynamics during wheelchair mobility.

    PubMed

    Schnorenberg, Alyssa J; Slavens, Brooke A; Wang, Mei; Vogel, Lawrence C; Smith, Peter A; Harris, Gerald F

    2014-01-01

    Pediatric manual wheelchair users (MWU) require high joint demands on their upper extremity (UE) during wheelchair mobility, leading them to be at risk of developing pain and pathology. Studies have examined UE biomechanics during wheelchair mobility in the adult population; however, current methods for evaluating UE joint dynamics of pediatric MWU are limited. An inverse dynamics model is proposed to characterize three-dimensional UE joint kinematics and kinetics during pediatric wheelchair mobility using a SmartWheel instrumented handrim system. The bilateral model comprises thorax, clavicle, scapula, upper arm, forearm, and hand segments and includes the sternoclavicular, acromioclavicular, glenohumeral, elbow and wrist joints. A single 17 year-old male with a C7 spinal cord injury (SCI) was evaluated while propelling his wheelchair across a 15-meter walkway. The subject exhibited wrist extension angles up to 60°, large elbow ranges of motion and peak glenohumeral joint forces up to 10% body weight. Statistically significant asymmetry of the wrist, elbow, glenohumeral and acromioclavicular joints was detected by the model. As demonstrated, the custom bilateral UE pediatric model may provide considerable quantitative insight into UE joint dynamics to improve wheelchair prescription, training, rehabilitation and long-term care of children with orthopedic disabilities. Further research is warranted to evaluate pediatric wheelchair mobility in a larger population of children with SCI to investigate correlations to pain, function and transitional changes to adulthood.

  12. From Wheelchair to Cane

    PubMed Central

    Mayo, Amanda; Berbrayer, David

    2015-01-01

    ABSTRACT Spina bifida is associated with foot deformities, which may lead to foot ulcers, osteomyelitis, and limb amputation. Calcanectomy and Symes amputations have been reported successful in spina bifida. There is lack of evidence for transtibial amputations. This case describes a 27-yr-old woman with L4 level spina bifida who underwent bilateral transtibial amputations. She ambulated with bilateral ankle foot orthoses and canes until age 22. At age 22, she had bilateral foot reconstructive surgeries complicated by nonunion, ulcerations, and osteomyelitis. She was using a wheelchair by age 25. She had elective bilateral transtibial amputations at age 27 for progressive osteomyelitis. Four weeks after amputations, she was fit with bilateral prostheses. On completion of 2 mos of rehabilitation, she ambulated with a cane. This case demonstrates good functional outcomes after transtibial amputations in a young spina bifida patient. Prosthetic fitting should be considered for similar, previously high functioning spina bifida patients with transtibial amputation(s). PMID:26259056

  13. Tetraplegic wheelchair basketball.

    PubMed

    Uchida, A; Yamaguchi, S; Hayashi, T; Inasaka, R; Fukuda, J; Hasegawa, T; Hashitani, T; Owashi, M

    1994-01-01

    Tetraplegic wheelchair basketball was started in the Kanagawa Rehabilitation Center (KRC) as a recreational sport for tetraplegics in 1980. In this game, there are two goals on each side, thus we call it 'twin basketball'. One goal is of ordinary height and the other is low. Three ways of shooting and two ways of dribbling are allowed according to the player's level of tetraplegia and technical skill. The first official game was held in 1983. Since then, the game has been taken up in several areas of Japan. The first All Japan championship game was held in 1987, ten teams including 98 tetraplegics attending. Five years later, in the sixth championship game, 18 teams including 171 tetraplegics attended. As official physicians, we have examined the physical condition and technical skills of all players since 1987. All players are classified, and assigned points from 1 to 4.5. The total number of points of five players in one team are limited to 11.

  14. Upper extremity peripheral nerve entrapments among wheelchair athletes: prevalence, location, and risk factors.

    PubMed

    Burnham, R S; Steadward, R D

    1994-05-01

    Wheelchair athletes commonly experience hand pain and numbness. This investigation studied the prevalence, location, and risk factors of upper extremity peripheral nerve entrapment among wheelchair athletes. Clinical and electrodiagnostic assessments were performed on both upper extremities of 28 wheelchair athletes and 30 able-bodied controls. Included in the assessment were short-segment stimulation techniques of the median nerve across the carpal tunnel and the ulnar nerve across the elbow. By clinical criteria, the prevalence of nerve entrapment among the wheelchair athletes was 23%, whereas it was 64% electrodiagnostically. The most common electrodiagnostic dysfunction was of the median nerve at the carpal tunnel (46%), and the portion of the nerve within the proximal carpal tunnel was most frequently affected. Ulnar neuropathy was the second most common entrapment electrodiagnostically (39%) and occurred at the wrist and forearm segments. Disability duration correlated significantly with electrophysiologic median nerve dysfunction.

  15. Rim of 'Erebus'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The center upper portion of this image shows a portion of the rim of 'Erebus Crater' in the Meridiani Planum region of Mars. This approximately true-color view from the panoramic camera on NASA's Mars Exploration Rover Opportunity is a composite of frames acquired on the rover's 657th Martian day, or sol, (Nov. 28, 2005). This is a small portion of a large panorama. Other portions of the panorama were still being shot three sols later. This view is a composite of separate images taken through the camera's 750-nanometer, 530-nanometer and 430-nanometer filters.

  16. The Functional Classification and Field Test Performance in Wheelchair Basketball Players.

    PubMed

    Gil, Susana María; Yanci, Javier; Otero, Montserrat; Olasagasti, Jurgi; Badiola, Aduna; Bidaurrazaga-Letona, Iraia; Iturricastillo, Aitor; Granados, Cristina

    2015-06-27

    Wheelchair basketball players are classified in four classes based on the International Wheelchair Basketball Federation (IWBF) system of competition. Thus, the aim of the study was to ascertain if the IWBF classification, the type of injury and the wheelchair experience were related to different performance field-based tests. Thirteen basketball players undertook anthropometric measurements and performance tests (hand dynamometry, 5 m and 20 m sprints, 5 m and 20 m sprints with a ball, a T-test, a Pick-up test, a modified 10 m Yo-Yo intermittent recovery test, a maximal pass and a medicine ball throw). The IWBF class was correlated (p<0.05) to the hand dynamometry (r= 0.84), the maximal pass (r=0.67) and the medicine ball throw (r= 0.67). Whereas the years of dependence on the wheelchair were correlated to the velocity (p<0.01): 5 m (r= -0.80) and 20 m (r= -0.77) and agility tests (r= -0.77, p<0.01). Also, the 20 m sprint with a ball (r= 0.68) and the T-test (r= -0.57) correlated (p<0.05) with the experience in playing wheelchair basketball. Therefore, in this team the correlations of the performance variables differed when they were related to the disability class, the years of dependence on the wheelchair and the experience in playing wheelchair basketball. These results should be taken into account by the technical staff and coaches of the teams when assessing performance of wheelchair basketball players. PMID:26240665

  17. The Functional Classification and Field Test Performance in Wheelchair Basketball Players.

    PubMed

    Gil, Susana María; Yanci, Javier; Otero, Montserrat; Olasagasti, Jurgi; Badiola, Aduna; Bidaurrazaga-Letona, Iraia; Iturricastillo, Aitor; Granados, Cristina

    2015-06-27

    Wheelchair basketball players are classified in four classes based on the International Wheelchair Basketball Federation (IWBF) system of competition. Thus, the aim of the study was to ascertain if the IWBF classification, the type of injury and the wheelchair experience were related to different performance field-based tests. Thirteen basketball players undertook anthropometric measurements and performance tests (hand dynamometry, 5 m and 20 m sprints, 5 m and 20 m sprints with a ball, a T-test, a Pick-up test, a modified 10 m Yo-Yo intermittent recovery test, a maximal pass and a medicine ball throw). The IWBF class was correlated (p<0.05) to the hand dynamometry (r= 0.84), the maximal pass (r=0.67) and the medicine ball throw (r= 0.67). Whereas the years of dependence on the wheelchair were correlated to the velocity (p<0.01): 5 m (r= -0.80) and 20 m (r= -0.77) and agility tests (r= -0.77, p<0.01). Also, the 20 m sprint with a ball (r= 0.68) and the T-test (r= -0.57) correlated (p<0.05) with the experience in playing wheelchair basketball. Therefore, in this team the correlations of the performance variables differed when they were related to the disability class, the years of dependence on the wheelchair and the experience in playing wheelchair basketball. These results should be taken into account by the technical staff and coaches of the teams when assessing performance of wheelchair basketball players.

  18. The Functional Classification and Field Test Performance in Wheelchair Basketball Players

    PubMed Central

    Gil, Susana María; Yanci, Javier; Otero, Montserrat; Olasagasti, Jurgi; Badiola, Aduna; Bidaurrazaga-Letona, Iraia; Iturricastillo, Aitor; Granados, Cristina

    2015-01-01

    Wheelchair basketball players are classified in four classes based on the International Wheelchair Basketball Federation (IWBF) system of competition. Thus, the aim of the study was to ascertain if the IWBF classification, the type of injury and the wheelchair experience were related to different performance field-based tests. Thirteen basketball players undertook anthropometric measurements and performance tests (hand dynamometry, 5 m and 20 m sprints, 5 m and 20 m sprints with a ball, a T-test, a Pick-up test, a modified 10 m Yo-Yo intermittent recovery test, a maximal pass and a medicine ball throw). The IWBF class was correlated (p<0.05) to the hand dynamometry (r= 0.84), the maximal pass (r=0.67) and the medicine ball throw (r= 0.67). Whereas the years of dependence on the wheelchair were correlated to the velocity (p<0.01): 5 m (r= −0.80) and 20 m (r= −0.77) and agility tests (r= −0.77, p<0.01). Also, the 20 m sprint with a ball (r= 0.68) and the T-test (r= −0.57) correlated (p<0.05) with the experience in playing wheelchair basketball. Therefore, in this team the correlations of the performance variables differed when they were related to the disability class, the years of dependence on the wheelchair and the experience in playing wheelchair basketball. These results should be taken into account by the technical staff and coaches of the teams when assessing performance of wheelchair basketball players. PMID:26240665

  19. Arsia Mons Caldera Rim

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    This VIS image shows part of the caldera rim and floor of Arsia Mons. The arcuate fractures along the rim indicate multiple periods of activity -- both eruptions and collapse after eruptions. The floor of the caldera is very flat, having been filled by lava.

    Image information: VIS instrument. Latitude -9, Longitude 238.8 East (121.2 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Comparison of wheelchair athletes and nonathletes on selected mood states.

    PubMed

    Paulsen, P; French, R; Sherrill, C

    1990-12-01

    The Profile of Mood States was administered to two groups of male university students in wheelchairs. Both the 26 wheelchair athletes and the 28 wheelchair nonathletes exhibited the iceberg profile associated with positive mental health. Multivariate analysis indicated that wheelchair athletes had a significantly lower score on Depression than the wheelchair nonathletes but all scores were in the normal range.

  1. Adaptive sports technology and biomechanics: wheelchairs.

    PubMed

    Cooper, Rory A; De Luigi, Arthur Jason

    2014-08-01

    Wheelchair sports are an important tool in the rehabilitation of people with severe chronic disabilities and have been a driving force for innovation in technology and practice. In this paper, we will present an overview of the adaptive technology used in Paralympic sports with a special focus on wheeled technology and the impact of design on performance (defined as achieving the greatest level of athletic ability and minimizing the risk of injury). Many advances in manual wheelchairs trace their origins to wheelchair sports. Features of wheelchairs that were used for racing and basketball 25 or more years ago have become integral to the manual wheelchairs that people now use every day; moreover, the current components used on ultralight wheelchairs also have benefitted from technological advances developed for sports wheelchairs. For example, the wheels now used on chairs for daily mobility incorporate many of the components first developed for sports chairs. Also, advances in manufacturing and the availability of aerospace materials have driven current wheelchair design and manufacture. Basic principles of sports wheelchair design are universal across sports and include fit; minimizing weight while maintaining high stiffness; minimizing rolling resistance; and optimizing the sports-specific design of the chair. However, a well-designed and fitted wheelchair is not sufficient for optimal sports performance: the athlete must be well trained, skilled, and use effective biomechanics because wheelchair athletes face some unique biomechanical challenges.

  2. Clouds Over Crater Rim

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Clouds above the rim of 'Endurance Crater' in this image from NASA's Mars Exploration Rover Opportunity can remind the viewer that Mars, our celestial neighbor, is subject to weather. On Earth, clouds like these would be referred to as 'cirrus' or the aptly nicknamed 'mares' tails.' These clouds occur in a region of strong vertical shear. The cloud particles (ice in this martian case) fall out, and get dragged along away from the location where they originally condensed, forming characteristic streamers. Opportunity took this picture with its navigation camera during the rover's 269th martian day (Oct. 26, 2004).

    The mission's atmospheric science team is studying cloud observations to deduce seasonal and time-of-day behavior of the clouds. This helps them gain a better understanding of processes that control cloud formation.

  3. Technological advances in powered wheelchairs.

    PubMed

    Edlich, Richard F; Nelson, Kenneth P; Foley, Marni L; Buschbacher, Ralph M; Long, William B; Ma, Eva K

    2004-01-01

    During the last 40 years, there have been revolutionary advances in power wheelchairs. These unique wheelchair systems, designed for the physically immobile patient, have become extremely diversified, allowing the user to achieve different positions, including tilt, recline, and, more recently, passive standing. Because of this wide diversity of powered wheelchair products, there is a growing realization of the need for certification of wheeled mobility suppliers. Legislation in Tennessee (Consumer Protection Act for Wheeled Mobility) passed in 2003 will ensure that wheeled mobility suppliers must have Assistive Technology Supplier certification and maintain their continuing education credits when fitting individuals in wheelchairs for long-term use. Fifteen other legislative efforts are currently underway in general assemblies throughout the US. Manufacturers, dealers, hospitals, and legislators are working toward the ultimate goal of passing federal legislation delineating the certification process of wheeled mobility suppliers. The most recent advance in the design of powered wheelchairs is the development of passive standing positions. The beneficial effects of passive standing have been documented by comprehensive scientific studies. These benefits include reduction of seating pressure, decreased bone demineralization, increased bladder pressure, enhanced orthostatic circulatory regulation, reduction in muscular tone, decrease in upper extremity muscle stress, and enhanced functional status in general. In February 2003, Permobil, Inc., introduced the powered Permobil Chairman 2K Stander wheelchair, which can tilt, recline, and stand. Other companies are now manufacturing powered wheelchairs that can achieve a passive standing position. These wheelchairs include the Chief SR Powerchair, VERTRAN, and LifeStand Compact. Another new addition to the wheelchair industry is the iBOT, which can elevate the user to reach cupboards and climb stairs but has no passive

  4. Teaching about the Pacific Rim.

    ERIC Educational Resources Information Center

    Wojtan, Linda S.

    1988-01-01

    Presents ERIC Digest No. 43 which examines the meaning of the term "Pacific Rim," reasons for emphasizing the Pacific Rim in the social studies curriculum, and useful strategies for teaching about that part of the world. Lists references, including ERIC resources, used in the digest's preparation. (GEA)

  5. Teaching about the Pacific Rim.

    ERIC Educational Resources Information Center

    Wojtan, Linda S.

    1988-01-01

    Examines (1) the meaning of the term Pacific Rim, (2) the reasons for emphasizing the Pacific Rim in the social studies curriculum, and (3) useful strategies for teaching about this part of the world. Provides a list of reference and ERIC resources dealing with this subject. (GEA)

  6. Weight Training for Wheelchair Sports.

    ERIC Educational Resources Information Center

    Practical Pointers, 1978

    1978-01-01

    The article examines weight lifting training procedures for persons involved in wheelchair sports. Popular myths about weight training are countered, and guidelines for a safe and sound weight or resistance training program are given. Diagrams and descriptions follow for specific weightlifting activities: regular or standing press, military press,…

  7. Aft outer rim seal arrangement

    SciTech Connect

    Lee, Ching-Pang; Tham, Kok-Mun; Schroeder, Eric; Meeroff, Jamie; Miller, Jr., Samuel R; Marra, John J; Campbell, Christian X

    2015-04-28

    An outer rim seal arrangement (10), including: an annular rim (70) centered about a longitudinal axis (30) of a rotor disc (31), extending fore and having a fore-end (72), an outward-facing surface (74), and an inward-facing surface (76); a lower angel wing (62) extending aft from a base of a turbine blade (22) and having an aft end (64) disposed radially inward of the rim inward-facing surface to define a lower angel wing seal gap (80); an upper angel wing (66) extending aft from the turbine blade base and having an aft end (68) disposed radially outward of the rim outward-facing surface to define a upper angel wing seal gap (80, 82); and guide vanes (100) disposed on the rim inward-facing surface in the lower angel wing seal gap. Pumping fins (102) may be disposed on the upper angel wing seal aft end in the upper angel wing seal gap.

  8. Noise Robust Speech Recognition Applied to Voice-Driven Wheelchair

    NASA Astrophysics Data System (ADS)

    Sasou, Akira; Kojima, Hiroaki

    2009-12-01

    Conventional voice-driven wheelchairs usually employ headset microphones that are capable of achieving sufficient recognition accuracy, even in the presence of surrounding noise. However, such interfaces require users to wear sensors such as a headset microphone, which can be an impediment, especially for the hand disabled. Conversely, it is also well known that the speech recognition accuracy drastically degrades when the microphone is placed far from the user. In this paper, we develop a noise robust speech recognition system for a voice-driven wheelchair. This system can achieve almost the same recognition accuracy as the headset microphone without wearing sensors. We verified the effectiveness of our system in experiments in different environments, and confirmed that our system can achieve almost the same recognition accuracy as the headset microphone without wearing sensors.

  9. Coordination patterns of shoulder muscles during level-ground and incline wheelchair propulsion.

    PubMed

    Qi, Liping; Wakeling, James; Grange, Simon; Ferguson-Pell, Martin

    2013-01-01

    The aim of this study was to investigate how the coordination patterns of shoulder muscles change with level-ground and incline wheelchair propulsion. Wheelchair kinetics and electromyography (EMG) activity of seven muscles were recorded with surface electrodes for 15 nondisabled subjects during wheelchair propulsion on a stationary ergometer and wooden ramp (4 degree slope). Kinetic data were measured by a SmartWheel. The kinetics variables and the onset, cessation, and duration of EMG activity from seven muscles were compared with paired t-tests for two sessions. Muscle coordination patterns across seven muscles were analyzed by principal component analysis. Push forces on the push rim and the percentage of push phase in the cycle increased significantly during incline propulsion. Propulsion condition and posture affected muscle coordination patterns. During incline propulsion, there was more intense and longer EMG activity of push muscles in the push phase and less EMG activity of the recovery muscles, which corresponded with the increased kinetic data total force output and longer push phase in the incline condition. This work establishes a framework for developing a performance feedback system for wheelchair users to better coordinate their muscle patterning activity.

  10. Characterization of pediatric wheelchair kinematics and wheelchair tiedown and occupant restraint system loading during rear impact.

    PubMed

    Fuhrman, Susan I; Karg, Patricia; Bertocci, Gina

    2010-04-01

    This study characterizes pediatric wheelchair kinematic responses and wheelchair tiedown and occupant restraint system (WTORS) loading during rear impact. It also examines the kinematic and loading effects of wheelchair headrest inclusion in rear impact. In two separate rear-impact test scenarios, identical WC19-compliant manual pediatric wheelchairs were tested using a seated Hybrid III 6-year-old anthropomorphic test device (ATD) to evaluate wheelchair kinematics and WTORS loading. Three wheelchairs included no headrests, and three were equipped with slightly modified wheelchair-mounted headrests. Surrogate WTORS properly secured the wheelchairs; three-point occupant restraints properly restrained the ATD. All tests used a 26km/h, 11g rear-impact test pulse. Headrest presence affected wheelchair kinematics and WTORS loading; headrest-equipped wheelchairs had greater mean seatback deflections, mean peak front and rear tiedown loads and decreased mean lap belt loads. Rear-impact tiedown loads differed from previously measured loads in frontal impact, with comparable tiedown load levels reversed in frontal and rear impacts. The front tiedowns in rear impact had the highest mean peak loads despite lower rear-impact severity. These outcomes have implications for wheelchair and tiedown design, highlighting the need for all four tiedowns to have an equally robust design, and have implications in the development of rear-impact wheelchair transportation safety standards. PMID:19398366

  11. Training a Parent in Wheelchair Skills to Improve Her Child's Wheelchair Skills: A Case Study

    ERIC Educational Resources Information Center

    Kirby, R. Lee; Smith, Cher; Billard, Jessica L.; Irving, Jenny D. H.; Pitts, Janice E.; White, Rebecca S.

    2010-01-01

    We tested the hypothesis that training a parent in wheelchair-user and caregiver wheelchair skills would improve the child's wheelchair skills. We studied an 11-year-old girl with spina bifida and her mother. The mother received 4 training sessions averaging 42.5 minutes per session, over a period of 3 weeks. The total pre-training and, 4 weeks…

  12. Getting the Right Wheelchair for Travel: A WC19-Compliant Wheelchair

    ERIC Educational Resources Information Center

    Manary, Miriam A.; Hobson, Douglas A.; Schneider, Lawrence W.

    2007-01-01

    Children and adults who must remain seated in their wheelchairs while traveling are often at a disadvantage in terms of crash safety. The new voluntary wheelchair industry standard WC19 (short for Section 19 of the ANSI/RESNA wheelchair standards) works to close the safety gap by providing design and performance criteria and test methods to assess…

  13. Characterization of pediatric wheelchair kinematics and wheelchair tiedown and occupant restraint system loading during rear impact.

    PubMed

    Fuhrman, Susan I; Karg, Patricia; Bertocci, Gina

    2010-04-01

    This study characterizes pediatric wheelchair kinematic responses and wheelchair tiedown and occupant restraint system (WTORS) loading during rear impact. It also examines the kinematic and loading effects of wheelchair headrest inclusion in rear impact. In two separate rear-impact test scenarios, identical WC19-compliant manual pediatric wheelchairs were tested using a seated Hybrid III 6-year-old anthropomorphic test device (ATD) to evaluate wheelchair kinematics and WTORS loading. Three wheelchairs included no headrests, and three were equipped with slightly modified wheelchair-mounted headrests. Surrogate WTORS properly secured the wheelchairs; three-point occupant restraints properly restrained the ATD. All tests used a 26km/h, 11g rear-impact test pulse. Headrest presence affected wheelchair kinematics and WTORS loading; headrest-equipped wheelchairs had greater mean seatback deflections, mean peak front and rear tiedown loads and decreased mean lap belt loads. Rear-impact tiedown loads differed from previously measured loads in frontal impact, with comparable tiedown load levels reversed in frontal and rear impacts. The front tiedowns in rear impact had the highest mean peak loads despite lower rear-impact severity. These outcomes have implications for wheelchair and tiedown design, highlighting the need for all four tiedowns to have an equally robust design, and have implications in the development of rear-impact wheelchair transportation safety standards.

  14. Rim of Henry Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 02 April 2002) This portion of the rim of Henry Crater has numerous dark streaks located on the slopes of the inner crater wall. These dark slope streaks have been suggested to have formed when the relatively bright dust that mantles the slopes slides downhill, either exposing a dust-free darker surface or creating a darker surface by increasing its roughness. The topography in this region appears muted, indicating the presence of regional dust mantling. The materials on floor of the crater (middle to lower left) are layered, with differing degrees of hardness and resistance to erosion producing cliffs (resistant layers) and ledges (easily eroded layers). These layered materials may have been originally deposited in water, although deposition by other means, such as windblown dust and sand, is also possible. Henry Crater, named after a 19th Century French astronomer, is 170 km in diameter and is located at 10.9o N, 336.7o W (23.3o E) in a region called Arabia Terra.

  15. Experimental study on a smart wheelchair system using a combination of stereoscopic and spherical vision.

    PubMed

    Nguyen, Jordan S; Su, Steven W; Nguyen, Hung T

    2013-01-01

    This paper is concerned with the experimental study performance of a smart wheelchair system named TIM (Thought-controlled Intelligent Machine), which uses a unique camera configuration for vision. Included in this configuration are stereoscopic cameras for 3-Dimensional (3D) depth perception and mapping ahead of the wheelchair, and a spherical camera system for 360-degrees of monocular vision. The camera combination provides obstacle detection and mapping in unknown environments during real-time autonomous navigation of the wheelchair. With the integration of hands-free wheelchair control technology, designed as control methods for people with severe physical disability, the smart wheelchair system can assist the user with automated guidance during navigation. An experimental study on this system was conducted with a total of 10 participants, consisting of 8 able-bodied subjects and 2 tetraplegic (C-6 to C-7) subjects. The hands-free control technologies utilized for this testing were a head-movement controller (HMC) and a brain-computer interface (BCI). The results showed the assistance of TIM's automated guidance system had a statistically significant reduction effect (p-value = 0.000533) on the completion times of the obstacle course presented in the experimental study, as compared to the test runs conducted without the assistance of TIM.

  16. Upper Body-Based Power Wheelchair Control Interface for Individuals with Tetraplegia

    PubMed Central

    Thorp, Elias B.; Abdollahi, Farnaz; Chen, David; Farshchiansadegh, Ali; Lee, Mei-Hua; Pedersen, Jessica; Pierella, Camilla; Roth, Elliot J.; Gonzalez, Ismael Seanez; Mussa-Ivaldi, Ferdinando A.

    2016-01-01

    Many power wheelchair control interfaces are not sufficient for individuals with severely limited upper limb mobility. The majority of controllers that do not rely on coordinated arm and hand movements provide users a limited vocabulary of commands and often do not take advantage of the user’s residual motion. We developed a body-machine interface (BMI) that leverages the flexibility and customizability of redundant control by using high dimensional changes in shoulder kinematics to generate proportional controls commands for a power wheelchair. In this study, three individuals with cervical spinal cord injuries were able to control the power wheelchair safely and accurately using only small shoulder movements. With the BMI, participants were able to achieve their desired trajectories and, after five sessions driving, were able to achieve smoothness that was similar to the smoothness with their current joystick. All participants were twice as slow using the BMI however improved with practice. Importantly, users were able to generalize training controlling a computer to driving a power wheelchair, and employed similar strategies when controlling both devices. Overall, this work suggests that the BMI can be an effective wheelchair control interface for individuals with high-level spinal cord injuries who have limited arm and hand control. PMID:26054071

  17. [Standard requirements for electric wheelchairs (author's transl)].

    PubMed

    Fritsch, M

    1979-02-01

    Electric Wheelchairs are driven on public roads. Neither an operating license, liability insurance nor special driving license is necessary according to Road Traffic and Road Licensing Regulations. Statutory regulations prescribe that these wheelchairs must be fitted with two independent brakes and adequate lighting equipment. Safety can be increased by: Totmann brake system - battery servicing - improved battery chargers and technical safety tests. Maintenance of the wheelchair prolongs its life. Social security agencies should allow a large number of the most severely handicapped people to benefit from medically prescribed wheelchairs.

  18. Partitioning kinetic energy during freewheeling wheelchair maneuvers.

    PubMed

    Medola, Fausto O; Dao, Phuc V; Caspall, Jayme J; Sprigle, Stephen

    2014-03-01

    This paper describes a systematic method to partition the kinetic energy (KE) of a free-wheeling wheelchair. An ultralightweight rigid frame wheelchair was instrumented with two axle-mounted encoders and data acquisition equipment to accurately measure the velocity of the drive wheels. A mathematical model was created combining physical specifications and geometry of the wheelchair and its components. Two able-bodied subjects propelled the wheelchair over four courses that involved straight and turning maneuvers at differing speeds. The KE of the wheelchair was divided into three components: translational, rotational, and turning energy. This technique was sensitive to the changing contributions of the three energy components across maneuvers. Translational energy represented the major component of total KE in all maneuvers except a zero radius turn in which turning energy was dominant. Both translational and rotational energies are directly related to wheelchair speed. Partitioning KE offers a useful means of investigating the dynamics of a moving wheelchair. The described technique permits analysis of KE imparted to the wheelchair during maneuvers involving changes in speed and direction, which are most representative of mobility in everyday life. This technique can be used to study the effort required to maneuver different types and configurations of wheelchairs.

  19. Wheelchair driving. Evaluation of a new training outfit.

    PubMed

    Lundberg, A

    1980-01-01

    A training apparatus for wheelchair drivers has been constructed. Its purpose is to offer an alternative for outdoor training or in indoor halls. Wheelchair driving/training is performed on a simple system of rollers (originally designed for racing cyclists), which was tested by 10 skilled wheelchair drivers (participants in the Swedish national wheelchair basketball team) and 6 unskilled wheelchair drivers. Maximal working tests have been performed and compared with arm ergometer work. The results show that skilled wheelchair drivers are subject to a greater load on the oxygen transport system during wheelchair work on rollers as compared with arm ergometer work. This is probably because they are capable of increasing their working muscle mass in wheelchair driving by engaging the muscles of the trunk. Corresponding differences cannot be found for the unskilled wheelchair drivers. Wheelchair work on rollers also offers an adequate neuromuscular training for this category of participants in 'wheelchair' sports.

  20. Wheelchair propulsion: functional ability dependent factors in wheelchair basketball players.

    PubMed

    Vanlandewijck, Y C; Spaepen, A J; Lysens, R J

    1994-03-01

    The aim of this study was to examine the user-related parameters, 1) force generation 2) maximal aerobic power and 3) propulsion technique, in respect to functional ability level [ISMWSF] wheelchair basketball classification: groups 1, 2 and 3) of 40 elite wheelchair basketball players. Isometric (position on the handrims = -30, 0 degrees, +30 degrees and +60 degrees) and dynamic force application (velocities = 0.56, 0.83 and 1.11 m.s-1) on the handrims (test 1) was measured by means of a computerised wheelchair simulator, with the subjects sitting in a standardised position. Each subject performed a maximal exercise test (test 2) on a motor driven treadmill at 1.67 m.s-1 and four subsequent submaximal tests (test 3) at two exercise levels (60 and 80% of individual VO2) and two velocities (1.11 and 2.22 m.s-1) with constant power output. In tests 2 and 3, cardiorespiratory and kinematic data were recorded simultaneously. Although no significant differences between functional ability groups were found in relation to force application on the handrims, three different force application strategies were observed (test 1). Maximal aerobic capacity and power output (test 2) differed significantly (p < 0.05) between groups 1 and 2 and between groups 1 and 3. No differences in mechanical efficiency were observed between the three functional ability groups, irrespective of changes in wheelchair velocity and external load (test 3). Propulsion technique was not proven to be functional ability dependent although remarkable differences in movement pattern were observed, especially during the recovery phase.

  1. Rim seal for turbine wheel

    DOEpatents

    Glezer, Boris; Boyd, Gary L.; Norton, Paul F.

    1996-01-01

    A turbine wheel assembly includes a disk having a plurality of blades therearound. A ceramic ring is mounted to the housing of the turbine wheel assembly. A labyrinth rim seal mounted on the disk cooperates with the ceramic ring to seal the hot gases acting on the blades from the disk. The ceramic ring permits a tighter clearance between the labyrinth rim seal and the ceramic ring.

  2. Electric Wheelchair Controlled by Human Body Motion Interface

    NASA Astrophysics Data System (ADS)

    Yokota, Sho; Hashimoto, Hiroshi; Ohyama, Yasuhiro; She, Jin-Hua

    This research studies the possibility of an intuitive interface for an electric wheelchair by using human body except hands. For this purpose, we focused on the human body motion which has relation to actions or behavior. This motion comes from the human stabilization function for holding expectable collapsing caused by voluntary motion. Thus this motion is considered as a kind of characteristics of human motion, and is linked to intentions unconsciously. Therefore, the interface which does not require conscious and complex motion is realized by applying this human body motion to the interface of electric wheelchair. In this paper, first, we did experiment to search a part which vividly shows the pressure change on the seat. As a result, it was confirmed that pressure change of the seat back vividly shows the human body motion. Next, we designed the prototype based on this evidence. Finally, experiment was conducted by using 10 subjects and SD method to evaluate feeling of operation. For this result, it was turned out that all subjects feel that proposed interface was intuitive, or to control at their direction. Therefore it was confirmed that human body motion interface has a possibility to be used for an interface of electric wheelchair.

  3. Optimization of Turbine Rim Seals

    NASA Technical Reports Server (NTRS)

    Wagner, J. H.; Tew, D. E.; Stetson, G. M.; Sabnis, J. S.

    2006-01-01

    Experiments are being conducted to gain an understanding of the physics of rim scale cavity ingestion in a turbine stage with the high-work, single-stage characteristics envisioned for Advanced Subsonic Transport (AST) aircraft gas turbine engines fo the early 21st century. Initial experimental measurements to be presented include time-averaged turbine rim cavity and main gas path static pressure measurements for rim seal coolant to main gas path mass flow ratios between 0 and 0.02. The ultimate objective of this work is develop improved rim seal design concepts for use in modern high-work, single sage turbines n order to minimize the use of secondary coolant flow. Toward this objective the time averaged and unsteady data to be obtained in these experiments will be used to 1) Quantify the impact of the rim cavity cooling air on the ingestion process. 2) Quantify the film cooling benefits of the rim cavity purge flow in the main gas path. 3) Quantify the impact of the cooling air on turbine efficiency. 4) Develop/evaluate both 3D CFD and analytical models of the ingestion/cooling process.

  4. Real-time head movement system and embedded Linux implementation for the control of power wheelchairs.

    PubMed

    Nguyen, H T; King, L M; Knight, G

    2004-01-01

    Mobility has become very important for our quality of life. A loss of mobility due to an injury is usually accompanied by a loss of self-confidence. For many individuals, independent mobility is an important aspect of self-esteem. Head movement is a natural form of pointing and can be used to directly replace the joystick whilst still allowing for similar control. Through the use of embedded LINUX and artificial intelligence, a hands-free head movement wheelchair controller has been designed and implemented successfully. This system provides for severely disabled users an effective power wheelchair control method with improved posture, ease of use and attractiveness.

  5. Flux Coupling for Wheelchair Battery Chargers

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W.

    1985-01-01

    Battery-charger concept for wheelchairs includes magnetic-flux coupling instead of electrical connections between power sources and wheelchairs. Concept meant to facilitate operation by patients whose disabilities make it difficult or impossible to maneuver common electrical plugs into or out of ac wall outlets.

  6. 21 CFR 890.3860 - Powered wheelchair.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Powered wheelchair. 890.3860 Section 890.3860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3860 Powered wheelchair....

  7. 21 CFR 890.3900 - Standup wheelchair.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Standup wheelchair. 890.3900 Section 890.3900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3900 Standup wheelchair....

  8. 21 CFR 890.3860 - Powered wheelchair.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered wheelchair. 890.3860 Section 890.3860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3860 Powered wheelchair....

  9. 21 CFR 890.3900 - Standup wheelchair.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Standup wheelchair. 890.3900 Section 890.3900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3900 Standup wheelchair....

  10. 21 CFR 890.3860 - Powered wheelchair.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Powered wheelchair. 890.3860 Section 890.3860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3860 Powered wheelchair....

  11. 21 CFR 890.3900 - Standup wheelchair.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Standup wheelchair. 890.3900 Section 890.3900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3900 Standup wheelchair....

  12. 21 CFR 890.3860 - Powered wheelchair.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Powered wheelchair. 890.3860 Section 890.3860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3860 Powered wheelchair....

  13. 21 CFR 890.3860 - Powered wheelchair.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Powered wheelchair. 890.3860 Section 890.3860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3860 Powered wheelchair....

  14. 21 CFR 890.3900 - Standup wheelchair.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Standup wheelchair. 890.3900 Section 890.3900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3900 Standup wheelchair....

  15. 21 CFR 890.3900 - Standup wheelchair.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Standup wheelchair. 890.3900 Section 890.3900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3900 Standup wheelchair....

  16. Context-Based Filtering for Assisted Brain-Actuated Wheelchair Driving

    PubMed Central

    Vanacker, Gerolf; del R. Millán, José; Lew, Eileen; Ferrez, Pierre W.; Moles, Ferran Galán; Philips, Johan; Van Brussel, Hendrik; Nuttin, Marnix

    2007-01-01

    Controlling a robotic device by using human brain signals is an interesting and challenging task. The device may be complicated to control and the nonstationary nature of the brain signals provides for a rather unstable input. With the use of intelligent processing algorithms adapted to the task at hand, however, the performance can be increased. This paper introduces a shared control system that helps the subject in driving an intelligent wheelchair with a noninvasive brain interface. The subject's steering intentions are estimated from electroencephalogram (EEG) signals and passed through to the shared control system before being sent to the wheelchair motors. Experimental results show a possibility for significant improvement in the overall driving performance when using the shared control system compared to driving without it. These results have been obtained with 2 healthy subjects during their first day of training with the brain-actuated wheelchair. PMID:18354739

  17. Portable basketball rim testing device

    DOEpatents

    Abbott, W. Bruce; Davis, Karl C.

    1993-01-01

    A portable basketball rim rebound testing device 10 is illustrated in two preferred embodiments for testing the rebound or energy absorption characteristics of a basketball rim 12 and its accompanying support to determine likely rebound or energy absorption charcteristics of the system. The apparatus 10 includes a depending frame 28 having a C-clamp 36 for releasably rigidly connecting the frame to the basketball rim 12. A glide weight 60 is mounted on a guide rod 52 permitting the weight 60 to be dropped against a calibrated spring 56 held on an abutment surface on the rod to generate for deflecting the basketball rim and then rebounding the weight upwardly. A photosensor 66 is mounted on the depending frame 28 to sense passage of reflective surfaces 75 on the weight to thereby obtain sufficient data to enable a processing means 26 to calculate the rebound velocity and relate it to an energy absorption percentage rate of the rim system 12. A readout is provided to display the energy absorption percentage.

  18. The wheelchair as a full-body tool extending the peripersonal space

    PubMed Central

    Galli, Giulia; Noel, Jean Paul; Canzoneri, Elisa; Blanke, Olaf; Serino, Andrea

    2015-01-01

    Dedicated multisensory mechanisms in the brain represent peripersonal space (PPS), a limited portion of space immediately surrounding the body. Previous studies have illustrated the malleability of PPS representation through hand-object interaction, showing that tool use extends the limits of the hand-centered PPS. In the present study we investigated the effects of a special tool, the wheelchair, in extending the action possibilities of the whole body. We used a behavioral measure to quantify the extension of the PPS around the body before and after Active (Experiment 1) and Passive (Experiment 2) training with a wheelchair and when participants were blindfolded (Experiment 3). Results suggest that a wheelchair-mediated passive exploration of far space extended PPS representation. This effect was specifically related to the possibility of receiving information from the environment through vision, since no extension effect was found when participants were blindfolded. Surprisingly, the active motor training did not induce any modification in PPS representation, probably because the wheelchair maneuver was demanding for non-expert users and thus they may have prioritized processing of information from close to the wheelchair rather than at far spatial locations. Our results suggest that plasticity in PPS representation after tool use seems not to strictly depend on active use of the tool itself, but is triggered by simultaneous processing of information from the body and the space where the body acts in the environment, which is more extended in the case of wheelchair use. These results contribute to our understanding of the mechanisms underlying body–environment interaction for developing and improving applications of assistive technological devices in different clinical populations. PMID:26042069

  19. Autonomous caregiver following robotic wheelchair

    NASA Astrophysics Data System (ADS)

    Ratnam, E. Venkata; Sivaramalingam, Sethurajan; Vignesh, A. Sri; Vasanth, Elanthendral; Joans, S. Mary

    2011-12-01

    In the last decade, a variety of robotic/intelligent wheelchairs have been proposed to meet the need in aging society. Their main research topics are autonomous functions such as moving toward some goals while avoiding obstacles, or user-friendly interfaces. Although it is desirable for wheelchair users to go out alone, caregivers often accompany them. Therefore we have to consider not only autonomous functions and user interfaces but also how to reduce caregivers' load and support their activities in a communication aspect. From this point of view, we have proposed a robotic wheelchair moving with a caregiver side by side based on the MATLAB process. In this project we discussing about robotic wheel chair to follow a caregiver by using a microcontroller, Ultrasonic sensor, keypad, Motor drivers to operate robot. Using camera interfaced with the DM6437 (Davinci Code Processor) image is captured. The captured image are then processed by using image processing technique, the processed image are then converted into voltage levels through MAX 232 level converter and given it to the microcontroller unit serially and ultrasonic sensor to detect the obstacle in front of robot. In this robot we have mode selection switch Automatic and Manual control of robot, we use ultrasonic sensor in automatic mode to find obstacle, in Manual mode to use the keypad to operate wheel chair. In the microcontroller unit, c language coding is predefined, according to this coding the robot which connected to it was controlled. Robot which has several motors is activated by using the motor drivers. Motor drivers are nothing but a switch which ON/OFF the motor according to the control given by the microcontroller unit.

  20. DE 1 RIMS operational characteristics

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.; Comfort, R. H.; Chandler, M. O.; Moore, T. E.; Waite, J. H., Jr.; Reasoner, D. L.; Biddle, A. P.

    1985-01-01

    The Retarding Ion Mass Spectrometer (RIMS) on the Dynamics Explorer 1 spacecraft observes both the thermal and superthermal (50 eV) ions of the ionosphere and inner magnetosphere. It is capable of measuring the detailed species distribution function of these ions in many cases. It was equipped with an integral electrometer to permit in-flight calibration of the detector sensitivities and variations thereof. A guide to understanding the RIMS data set is given. The reduction process from count rates to physical quantities is discussed in some detail. The procedure used to establish in-flight calibration is described, and results of a comparison with densities from plasma wave measurements are provided. Finally, a discussion is provided of various anomalies in the data set, including changes of channeltron efficiency with time, spin modulation of the axial sensor heads, apparent potential differences between the sensor heads, and failures of the radial head retarding potential sweep and of the -Z axial head aperture plane bias. Studies of the RIMS data set should be conducted only with a thorough awareness of the material presented here, or in collaboration with one of the scientists actively involved with RIMS data analysis.

  1. Trade in the Pacific Rim.

    ERIC Educational Resources Information Center

    Dollar, David

    1988-01-01

    States that international trade is a prime factor linking the Pacific Rim nations. Discusses the differences in each nation's productive factors (land, labor, capital) and examines the emerging technological competition. Concludes that if U.S. firms cannot meet the challenge of foreign competition, then protectionism might limit further economic…

  2. Wheelchair batteries: driving cycles and testing.

    PubMed

    Kauzlarich, J J; Ulrich, V; Bresler, M; Bruning, T

    1983-07-01

    The battery performance of electric wheelchairs was measured under indoor and outdoor conditions, and simulated driving cycles for these two environments were derived from these tests. Driving cycles were used to bench-test deep discharge wet cell and gel cell lead-acid batteries, nickel-cadmium batteries, and experimental nickel-zinc batteries. Results of this study support the conclusion that deep discharge wet cell lead-acid batteries satisfy wheelchair requirements and are the most economical choice. The effect of simulated wheelchair controller pulse width modulation on battery discharge compared to d.c. discharge was found to be negligible. A simple model analogous to Miner's Rule (3) plus results plotted on a Ragone chart of average power versus discharge time were found to correlate the effect of the highly variable actual power requirements of an electric wheelchair. Miner's Rule can predict battery performance for a given driving cycle.

  3. An embedded control system for intelligent wheelchair.

    PubMed

    Lu, Tao; Yuan, Kui; Zhu, Haibing; Hu, Huosheng

    2005-01-01

    Due to recent advancement of AI and robotics technology, the research of intelligent wheelchair (iWheelChair) begins to draw attention from both scientific community and industry. iWheelchair is a kind of home welfare tools and can help the handicapped and elderly people to gain mobility and lead to independent life. This paper describes a newly developed intelligent wheelchair. The controller of the iWheelChair adopts the advanced DSP technology, and plays the role of data acquisition and processing of joystick and ultrasonic sensors. 8 ultrasonic sensors are mounted on iWheelchair and can detect the environment changes for safe operation. Experiments are presented to show that iWheelChair is able to avoid obstacles safely while controlled by its user via the joystick.

  4. Riding the Rim of 'Endurance'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This cylindrical-projection view was created from navigation camera images that NASA's Mars Exploration Rover Opportunity acquired on sol 103 (May 8, 2004). Opportunity traversed approximately 13 meters (about 43 feet) farther south along the eastern rim of 'Endurance Crater' before reaching the beginning of the 'Karatepe' area. Scientists believe this layered band of rock may be a good place to begin studying Endurance because it is less steep and more approachable than the rest of the crater's rocky outcrops.

  5. Motion Evaluation Of A Wheelchair Prototype For Disabled People

    NASA Astrophysics Data System (ADS)

    Geonea, Ionut Daniel; Dumitru, Nicolae; Margine, Alexandru

    2015-09-01

    In this paper is presented the design solution and experimental prototype of a wheelchair for disabled people. Design solution proposed to be implemented uses two reduction gears motors and a mechanical transmission with chains. It's developed a motion controller based on a PWM technology, which allows the user to control the wheelchair motion. The wheelchair has the ability of forward - backward motion and steering. The design solution is developed in Solid Works, and it's implemented to a wheelchair prototype model. Wheelchair design and motion makes him suitable especially for indoor use. It is made a study of the wheelchair kinematics, first using a kinematic simulation in Adams. Are presented the wheelchair motion trajectory and kinematics parameters. The experimental prototype is tested with a motion analysis system based on ultra high speed video cameras recording. The obtained results from simulation and experimentally tests, demonstrate the efficiency of wheelchair proposed solution.

  6. Effectiveness of a Wheelchair Skills Training Program for Powered Wheelchair Users: A Randomized Controlled Trial

    PubMed Central

    Kirby, R. Lee; Miller, William C.; Routhier, Francois; Demers, Louise; Mihailidis, Alex; Polgar, Jan Miller; Rushton, Paula W.; Titus, Laura; Smith, Cher; McAllister, Mike; Theriault, Chris; Thompson, Kara; Sawatzky, Bonita

    2015-01-01

    Objectives To test the hypothesis that powered wheelchair users who receive the Wheelchair Skills Training Program (WSTP) improve their wheelchair skills in comparison with a Control group that receives standard care. Our secondary objectives were to assess goal achievement, satisfaction with training, retention, injury rate, confidence with wheelchair use and participation. Design Randomized controlled trial (RCT). Setting Rehabilitation centers and communities. Participants 116 powered wheelchair users. Intervention Five 30-minute WSTP training sessions. Main Outcome Measures Assessments were done at baseline (T1), post-training (T2) and 3 months post-training (T3) using the Wheelchair Skills Test Questionnaire (WST-Q 4.1), Goal Attainment Score (GAS), Satisfaction Questionnaire, Injury Rate, Wheelchair Use Confidence Scale for Power Wheelchair Users (WheelCon) and Life Space Assessment (LSA). Results There was no significant T2-T1 difference between the groups for WST-Q capacity scores (p = 0.600) but the difference for WST-Q performance scores was significant (p = 0.016) with a relative (T2/T1 x 100%) improvement of the median score for the Intervention group of 10.8%. The mean (SD) GAS for the Intervention group after training was 92.8% (11.4) and satisfaction with training was high. The WST-Q gain was not retained at T3. There was no clinically significant difference between the groups in injury rate and no statistically significant differences in WheelCon or LSA scores at T3. Conclusions Powered wheelchair users who receive formal wheelchair skills training demonstrate modest transient post-training improvements in their WST-Q performance scores, they have substantial improvements on individualized goals and they are positive about training. PMID:26232684

  7. Accretionary dark rims in unequilibrated chondrites

    NASA Astrophysics Data System (ADS)

    King, T. V. V.; King, E. A.

    1981-12-01

    Textural and qualitative EDX investigations of dark-rimmed particles in six low petrologic type chondrites indicate that the rims accreted on host particles over a wide range of temperatures prior to initial accumulation and lithification of the meteorites in which the rimmed particles are now contained. Many dark rims are enriched in moderately volatile trace elements such as Na, Cl, P, and K, relative to the host particles and matrix. The range of physical/chemical environments associated with hypervelocity impacts may have offered the setting for the formation of dark-rimmed particles early in solar system history.

  8. 49 CFR 37.205 - Additional passengers who use wheelchairs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Additional passengers who use wheelchairs. 37.205 Section 37.205 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR... wheelchairs. If a number of wheelchair users exceeding the number of securement locations on the bus seek...

  9. 49 CFR 37.205 - Additional passengers who use wheelchairs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Additional passengers who use wheelchairs. 37.205 Section 37.205 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR... wheelchairs. If a number of wheelchair users exceeding the number of securement locations on the bus seek...

  10. 49 CFR 37.205 - Additional passengers who use wheelchairs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Additional passengers who use wheelchairs. 37.205 Section 37.205 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR... wheelchairs. If a number of wheelchair users exceeding the number of securement locations on the bus seek...

  11. 49 CFR 37.205 - Additional passengers who use wheelchairs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Additional passengers who use wheelchairs. 37.205 Section 37.205 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR... wheelchairs. If a number of wheelchair users exceeding the number of securement locations on the bus seek...

  12. Principles and Practices for Championship Performances in Wheelchair Field Events.

    ERIC Educational Resources Information Center

    Practical Pointers, 1980

    1980-01-01

    The article discusses training and competing in wheelchair sports. General principles of training, including scheduling and content considerations, are listed. Principles for specific wheelchair events (shotput, discus, and javelin) are detailed. A final part addresses training for the wheelchair pentathlon, which includes archery, swimming,…

  13. Feasibility of a bimanual, lever-driven wheelchair for people with severe arm impairment after stroke.

    PubMed

    Smith, Brendan W; Zondervan, Daniel K; Lord, Thomas J; Chan, Vicky; Reinkensmeyer, David J

    2014-01-01

    Individuals with severe arm impairment after stroke are thought to be unable to use a manual wheelchair in the conventional bimanual fashion, because they cannot grip and push the pushrim with their impaired hand. Instead, they are often taught to propel a wheelchair with their good arm and leg, a compensatory strategy that encourages disuse and may cause asymmetric tone. Here, we show that four stroke survivors (9, 27 50 and 16 months post stroke) with severe arm impairment (upper extremity Fugl Meyer scores of 21, 17, 16 and 15 of 66 respectively) were able to propel themselves overground during ten, 3.3 meter movement trials, using a specially designed lever-driven wheelchair adapted with a splint and elastic bands. Their average speed on the tenth trial was about 0.1 m/sec. These results suggest that individuals with stroke could use bimanual wheelchair propulsion for mobility, both avoiding the problems associated with good-arm/good-leg propulsion and increasing the number of daily arm movements they achieve, which may improve arm movement recovery.

  14. Semi-autonomous wheelchair developed using a unique camera system configuration biologically inspired by equine vision.

    PubMed

    Nguyen, Jordan S; Tran, Yvonne; Su, Steven W; Nguyen, Hung T

    2011-01-01

    This paper is concerned with the design and development of a semi-autonomous wheelchair system using cameras in a system configuration modeled on the vision system of a horse. This new camera configuration utilizes stereoscopic vision for 3-Dimensional (3D) depth perception and mapping ahead of the wheelchair, combined with a spherical camera system for 360-degrees of monocular vision. This unique combination allows for static components of an unknown environment to be mapped and any surrounding dynamic obstacles to be detected, during real-time autonomous navigation, minimizing blind-spots and preventing accidental collisions with people or obstacles. This novel vision system combined with shared control strategies provides intelligent assistive guidance during wheelchair navigation and can accompany any hands-free wheelchair control technology. Leading up to experimental trials with patients at the Royal Rehabilitation Centre (RRC) in Ryde, results have displayed the effectiveness of this system to assist the user in navigating safely within the RRC whilst avoiding potential collisions. PMID:22255649

  15. Semi-autonomous wheelchair developed using a unique camera system configuration biologically inspired by equine vision.

    PubMed

    Nguyen, Jordan S; Tran, Yvonne; Su, Steven W; Nguyen, Hung T

    2011-01-01

    This paper is concerned with the design and development of a semi-autonomous wheelchair system using cameras in a system configuration modeled on the vision system of a horse. This new camera configuration utilizes stereoscopic vision for 3-Dimensional (3D) depth perception and mapping ahead of the wheelchair, combined with a spherical camera system for 360-degrees of monocular vision. This unique combination allows for static components of an unknown environment to be mapped and any surrounding dynamic obstacles to be detected, during real-time autonomous navigation, minimizing blind-spots and preventing accidental collisions with people or obstacles. This novel vision system combined with shared control strategies provides intelligent assistive guidance during wheelchair navigation and can accompany any hands-free wheelchair control technology. Leading up to experimental trials with patients at the Royal Rehabilitation Centre (RRC) in Ryde, results have displayed the effectiveness of this system to assist the user in navigating safely within the RRC whilst avoiding potential collisions.

  16. Participation motivation and competition anxiety among Korean and non-Korean wheelchair tennis players

    PubMed Central

    Jeong, Irully; Park, Sunghee

    2013-01-01

    The purpose of this study was to examine differences in participation motivation and competition anxiety between Korean and non-Korean wheelchair tennis players and to identify relations between participation motivation and competition anxiety in each group. Sixty-six wheel-chair tennis players who participated in the 2013 Korea Open Wheel-chair Tennis Tournament in Seoul completed the Participation Motivation Survey and the Competitive State Anxiety Inventory II. Data were analyzed by a frequency analysis, descriptive statistics, Pearson’s correlation analysis, and independent samples t-test to identify participants’ demographic characteristics, differences in participation motivation, competition anxiety between Korean and non-Korean players, and correlations between participation motivation and competition anxiety in each group. Korean players reported significantly higher motivation in purification compared to non-Korean players, whereas non-Korean players reported significantly higher motivation in enjoyment. In addition, non-Korean players demonstrated higher cognitive anxiety and self-confidence compared to Korean players. Moreover, the physical anxiety of Korean players was negatively correlated with learning, health-fitness, and enjoyment motivation. On the other hand, only self-confidence was significantly related to learning motivation and enjoyment motivation in non-Korean players. Thus, the results presented herein provide evidence for the development of specialized counseling programs that consider the psychological characteristics of Korean wheelchair tennis players. PMID:24409429

  17. Semi-autonomous wheelchair system using stereoscopic cameras.

    PubMed

    Nguyen, Jordan S; Nguyen, Thanh H; Nguyen, Hung T

    2009-01-01

    This paper is concerned with the design and development of a semi-autonomous wheelchair system using stereoscopic cameras to assist hands-free control technologies for severely disabled people. The stereoscopic cameras capture an image from both the left and right cameras, which are then processed with a Sum of Absolute Differences (SAD) correlation algorithm to establish correspondence between image features in the different views of the scene. This is used to produce a stereo disparity image containing information about the depth of objects away from the camera in the image. A geometric projection algorithm is then used to generate a 3-Dimensional (3D) point map, placing pixels of the disparity image in 3D space. This is then converted to a 2-Dimensional (2D) depth map allowing objects in the scene to be viewed and a safe travel path for the wheelchair to be planned and followed based on the user's commands. This assistive technology utilising stereoscopic cameras has the purpose of automated obstacle detection, path planning and following, and collision avoidance during navigation. Experimental results obtained in an indoor environment displayed the effectiveness of this assistive technology.

  18. On the Rim of 'Erebus'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on the image for On the Rim of 'Erebus' (QTVR)

    This is the Opportunity panoramic camera's 'Erebus Rim' panorama, acquired on sols 652 to 663 (Nov. 23 to Dec. 5, 2005 ), as NASA's Mars Exploration Rover Opportunity was exploring sand dunes and outcrop rocks in Meridiani Planum. The panorama originally consisted of 635 separate images in four different Pancam filters, and covers 360 degrees of terrain around the rover and the full rover deck. Since the time that this panorama was acquired, and while engineers have been diagnosing and testing Opportunity's robotic arm, the panorama has been expanded to include more than 1,300 images of this terrain through all of the Pancam multispectral filters. It is the largest panorama acquired by either rover during the mission.

    The panorama shown here is an approximate true-color rendering using Pancam's 750 nanometer, 530 nanometer and 430 nanometer filters. It is presented here as a cylindrical projection. Image-to-image seams have been eliminated from the sky portion of the mosaic to better simulate the vista a person standing on Mars would see.

    This panorama provides the team's highest resolution view yet of the finely-layered outcrop rocks, wind ripples, and small cobbles and grains along the rim of the wide but shallow 'Erebus' crater. Once the arm diagnostics and testing are completed, the team hopes to explore other layered outcrop rocks at Erebus and then eventually continue southward toward the large crater known as 'Victoria.'

  19. Using a Wheelchair as a Seat in a Motor Vehicle: An Overview of Wheelchair Transportation Safety and Related Standards

    ERIC Educational Resources Information Center

    Schneider, Larry

    2007-01-01

    This is the first of a series of six articles on the topic of transportation safety for wheelchair-seated travelers and will highlight some of the basic issues and principles that have been considered in the development of voluntary standards for wheelchair tiedown and occupant restraints systems (WTORS) as well as for wheelchairs that are used as…

  20. Evaluation of aluminum ultralight rigid wheelchairs versus other ultralight wheelchairs using ANSI/RESNA standards.

    PubMed

    Liu, Hsin-yi; Pearlman, Jonathan; Cooper, Rosemarie; Hong, Eun-kyoung; Wang, Hongwu; Salatin, Benjamin; Cooper, Rory A

    2010-01-01

    Previous studies found that select titanium ultralight rigid wheelchairs (TURWs) had fewer equivalent cycles and less value than select aluminum ultralight folding wheelchairs (AUFWs). The causes of premature failure of TURWs were not clear because the TURWs had different frame material and design than the AUFWs. We tested 12 aluminum ultralight rigid wheelchairs (AURWs) with similar frame designs and dimensions as the TURWs using the American National Standards Institute/Rehabilitation Engineering and Assistive Technology Society of North America and International Organization for Standardization wheelchair standards and hypothesized that the AURWs would be more durable than the TURWs. Across wheelchair models, no significant differences were found in the test results between the AURWs and TURWs, except in their overall length. Tire pressure, tube-wall thickness, and tube manufacturing were proposed to be the factors affecting wheelchair durability through comparison of the failure modes, frames, and components. The frame material did not directly affect the performance of AURWs and TURWs, but proper wheelchair manufacture and design based on mechanical properties are important.

  1. Dynamic characteristics of a sport wheelchair.

    PubMed

    Coutts, K D

    1991-01-01

    A single subject performed 36 coast-down trials on a hardwood floor in a sport model wheelchair with velocity ranging from 1.28 to 5.31 m/s (4.6 to 19.1 km/h). A portable computer attached to the wheelchair was used to record the time to the nearest 0.001-second of each half-revolution of a rear wheel. The deceleration during each trial was determined with an average coefficient of variation of 2.6 percent from linear regression of velocity versus time values. A significant relationship (r = 0.97) between deceleration and the square of the velocity was noted in an analysis of the values from the 36 trials. Total drag force and power was calculated as a function of wheelchair velocity from this relationship, indicating that the power output needed to propel the wheelchair increased as a function of the velocity cubed. It is speculated that this noted exponential increase in the energy cost of wheelchair propulsion at higher speeds was due mainly to an increase in air drag.

  2. Facing rim cavities fluctuation modes

    NASA Astrophysics Data System (ADS)

    Casalino, Damiano; Ribeiro, André F. P.; Fares, Ehab

    2014-06-01

    Cavity modes taking place in the rims of two opposite wheels are investigated through Lattice-Boltzmann CFD simulations. Based on previous observations carried out by the authors during the BANC-II/LAGOON landing gear aeroacoustic study, a resonance mode can take place in the volume between the wheels of a two-wheel landing gear, involving a coupling between shear-layer vortical fluctuations and acoustic modes resulting from the combination of round cavity modes and wheel-to-wheel transversal acoustic modes. As a result, side force fluctuations and tonal noise side radiation take place. A parametric study of the cavity mode properties is carried out in the present work by varying the distance between the wheels. Moreover, the effects due to the presence of the axle are investigated by removing the axle from the two-wheel assembly. The azimuthal properties of the modes are scrutinized by filtering the unsteady flow in narrow bands around the tonal frequencies and investigating the azimuthal structure of the filtered fluctuation modes. Estimation of the tone frequencies with an ad hoc proposed analytical formula confirms the observed modal properties of the filtered unsteady flow solutions. The present study constitutes a primary step in the description of facing rim cavity modes as a possible source of landing gear tonal noise.

  3. [Wheelchair basketball from the orthopedic viewpoint].

    PubMed

    Stöhr, H; Zimmer, M

    1997-09-01

    155 (aged 16 to 52 years) wheelchair basketball players were surveyed to determine athletic injuries and overload-syndromes. During their active participation in wheelchair basketball 60.6% of the players have suffered 272 injuries and overload-syndromes. Those were mainly localised at the upper extremity (74.6%). Acute injuries predominate with 57.7%. Strains of the finger joint and skin injuries were found to be the most common injuries. Myogelosis and tendinosis were the most common reported overload-syndromes. A significantly higher number of complaints were associated with wheelchair basketball participation at league-level and depending on the player's position. At the end of the article the means of possible additional disability and consequences to specify therapy and prevention for disabled will be discussed.

  4. Arm crank vs handrim wheelchair propulsion: metabolic and cardiopulmonary responses.

    PubMed

    Smith, P A; Glaser, R M; Petrofsky, J S; Underwood, P D; Smith, G B; Richard, J J

    1983-06-01

    The handrim propulsion system of most manual wheelchairs has been shown to be inefficient and stressful to the cardiovascular and pulmonary systems. Arm crank propulsion has been suggested to reduce these stresses. In order to compare conventional handrim wheelchair propulsion to arm crank type wheelchair propulsion, 16 volunteers (9 able-bodied, 7 wheelchair-dependent) operated both wheelchairs over level tiled and carpeted test courses at 3km.hr-1. The arm crank propelled wheelchair was operated in 3 gear ratios: low, medium and high. Exercise bouts were 5 minutes in duration. During the final minute of each test, oxygen uptake (VO2), net locomotive energy cost (NLEC), pulmonary ventilation (VE) and heart rate (HR) were monitored. Subjects exhibited significantly lower magnitude of these physiologic responses during arm crank wheelchair propulsion relative to handrim wheelchair propulsion for all gear drive ratios. Average percent differences were 30% and 32% for VO2; 50% and 50% for NLEC; 27% and 34% for VE; and 16% and 19% for HR on the tiled and carpeted test surfaces, respectively. From these data we conclude that arm crank wheelchair propulsion is less strenuous than conventional handrim wheelchair propulsion and that arm crank propulsion systems should be considered as a possible means to improve wheelchair design. PMID:6860094

  5. A paired outcomes study comparing two pediatric wheelchairs for low-resource settings: the regency pediatric wheelchair and a similarly sized wheelchair made in Kenya.

    PubMed

    Rispin, Karen; Wee, Joy

    2014-01-01

    This comparative study of two similar wheelchairs designed for less-resourced settings provides feedback to manufacturers, informing ongoing improvement in wheelchair design. It also provides practical familiarity to clinicians in countries where these chairs are available, in their selection of prescribed wheelchairs. In Kenya, 24 subjects completed 3 timed skills and assessments of energy cost on 2 surfaces in each of 2 wheelchairs: the Regency pediatric chair and a pediatric wheelchair manufactured by the Association of the Physically Disabled of Kenya (APDK). Both wheelchairs are designed for and distributed in less-resourced settings. The Regency chair significantly outperformed the APDK chair in one of the energy cost assessments on both surfaces and in one of three timed skills tests.

  6. Folding and unfolding manual wheelchairs: an ergonomic evaluation of health-care workers.

    PubMed

    White, Heather A; Lee Kirby, R

    2003-11-01

    The objective of this study was to test the hypotheses (i) that health-care workers vary greatly in the methods used to fold and unfold selected manual wheelchairs, and (ii) that many of the methods used include bent and twisted back postures that are known to be associated with a high risk of injury. We studied 20 health-care workers in a rehabilitation center. Subjects folded and unfolded two wheelchairs of cross-brace design, one with and one without a sling seat. As outcome measures, we used a questionnaire, time taken, visual analog scales of perceived exertion and back strain, folded width, videotape and Ovako Working Posture Analysis System (OWAS) back scores (1-4). Subjects used up to 14 different combinations of approach, hand placement and back posture to accomplish the tasks. The mean OWAS scores were in the 2.4-3.1 range and 49 (42%) of the 118 scores recorded were class 4 (back simultaneously "bent and twisted", considered to be associated with the highest risk of injury). We also observed methods that appeared to be safe and effective. Age, gender, profession, experience and seat condition did not generally influence the outcome measures. We conclude that health-care workers use a variety of methods to fold and unfold wheelchairs, many of which include bent and twisted back postures that may carry a risk of injury. Further study is needed to confirm this risk, to identify more ergonomically sound wheelchair designs and to develop better methods of carrying out the common and important task of folding and unfolding wheelchairs.

  7. Field test evaluation of aerobic, anaerobic, and wheelchair basketball skill performances.

    PubMed

    Vanlandewijck, Y C; Daly, D J; Theisen, D M

    1999-11-01

    Forty-six male wheelchair basketball players performed a set of field tests to evaluate aerobic capacity (25 m shuttle run), anaerobic capacity (30s sprint), and six specific wheelchair basketball skills. Overall test-retest reliability (n = 20) ranged from r = 0.65 to r = 0.97. To study the validity (criterion related evidence) of the shuttle run test, heart rate (HR) was recorded for 15 subjects, who also performed a continuous, multistage arm cranking exercise until volitional fatigue. Moderate to high correlations were calculated between shuttle run distances covered (1375 243,6 m) and VO2max (2208+/-461.6 mL/min) and POmax (93.8+/-17.97 W), measured during maximal arm cranking (respectively r = 0.64 and r = 0.87). Maximal HR during shuttle run (174.9+/-16.6 B/min) and arm cranking (169+/-14.21 B/min) were correlated (r = 0.78). High correlations between shuttle run test and anaerobic field tests, however, indicate high implication of anaerobic and wheelchair maneuverability performances. The 30 s sprint test was validated (n = 15) against a Wingate Anaerobic Test (WAnT) on a roller ergometer. Comparing distance (field test: 90+/-6.7 m) with mean power output (WAnT: 852.1+/-234.9 W) the correlation was r = 0.93. Principal components factor analysis identified 'wheelchair propulsion dynamics' and 'eye-hand-coordination' as the underlying constructs of the six skill proficiency measurements, accounting for 80.1% of the variance. In conclusion, the newly developed field test battery is a reliable and valid tool for anaerobic capacity and skill proficiency assessment in wheelchair basketball players.

  8. At the Rim, Looking In

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Mars Exploration Rover Spirit took this navigation camera mosaic of the crater called 'Bonneville' after driving approximately 13 meters (42.7 feet) to get a better vantage point. Spirit's current position is close enough to the edge to see the interior of the crater, but high enough and far enough back to get a view of all of the walls. Because scientists and rover controllers are so pleased with this location, they will stay here for at least two more martian days, or sols, to take high resolution panoramic camera images of 'Bonneville' in its entirety. Just above the far crater rim, on the left side, is the rover's heatshield, which is visible as a tiny reflective speck.

  9. Evaluation of lightweight wheelchairs using ANSI/RESNA testing standards.

    PubMed

    Gebrosky, Benjamin; Pearlman, Jonathan; Cooper, Rory A; Cooper, Rosemarie; Kelleher, Annmarie

    2013-01-01

    Lightweight wheelchairs are characterized by their low cost and limited range of adjustment. Our study evaluated three different folding lightweight wheelchair models using the American National Standards Institute/Rehabilitation Engineering Society of North America (ANSI/RESNA) standards to see whether quality had improved since the previous data were reported. On the basis of reports of increasing breakdown rates in the community, we hypothesized that the quality of these wheelchairs had declined. Seven of the nine wheelchairs tested failed to pass the multidrum test durability requirements. An average of 194,502 +/- 172,668 equivalent cycles was completed, which is similar to the previous test results and far below the 400,000 minimum required to pass the ANSI/RESNA requirements. This was also significantly worse than the test results for aluminum ultralight folding wheelchairs. Overall, our results uncovered some disturbing issues with these wheelchairs and suggest that manufacturers should put more effort into this category to improve quality. To improve the durability of lightweight wheelchairs, we suggested that stronger regulations be developed that require wheelchairs to be tested by independent and certified test laboratories. We also proposed a wheelchair rating system based on the National Highway Transportation Safety Administration vehicle crash ratings to assist clinicians and end users when comparing the durability of different wheelchairs.

  10. The Pacific Rim: New Geographic Opportunity.

    ERIC Educational Resources Information Center

    Phillips, Douglas A.

    1990-01-01

    Explores the vital development of the Pacific Rim. Advocates integrating the study of this region into social studies curricula. Criticizes the Eurocentric bias that results in ignoring the Pacific Rim's geography, history, literature, and languages. Reports on social studies programs, primarily in Alaska schools, where study of the Pacific Rim…

  11. Biomechanics of Pediatric Manual Wheelchair Mobility.

    PubMed

    Slavens, Brooke A; Schnorenberg, Alyssa J; Aurit, Christine M; Tarima, Sergey; Vogel, Lawrence C; Harris, Gerald F

    2015-01-01

    Currently, there is limited research of the biomechanics of pediatric manual wheelchair mobility. Specifically, the biomechanics of functional tasks and their relationship to joint pain and health is not well understood. To contribute to this knowledge gap, a quantitative rehabilitation approach was applied for characterizing upper extremity biomechanics of manual wheelchair mobility in children and adolescents during propulsion, starting, and stopping tasks. A Vicon motion analysis system captured movement, while a SmartWheel simultaneously collected three-dimensional forces and moments occurring at the handrim. A custom pediatric inverse dynamics model was used to evaluate three-dimensional upper extremity joint motions, forces, and moments of 14 children with spinal cord injury (SCI) during the functional tasks. Additionally, pain and health-related quality of life outcomes were assessed. This research found that joint demands are significantly different amongst functional tasks, with greatest demands placed on the shoulder during the starting task. Propulsion was significantly different from starting and stopping at all joints. We identified multiple stroke patterns used by the children, some of which are not standard in adults. One subject reported average daily pain, which was minimal. Lower than normal physical health and higher than normal mental health was found in this population. It can be concluded that functional tasks should be considered in addition to propulsion for rehabilitation and SCI treatment planning. This research provides wheelchair users and clinicians with a comprehensive, biomechanical, mobility assessment approach for wheelchair prescription, training, and long-term care of children with SCI. PMID:26442251

  12. Medical Concerns among Wheelchair Road Racers.

    ERIC Educational Resources Information Center

    Martinez, Santos F.

    1989-01-01

    Results of a questionnaire administered to 43 wheelchair road racers suggest that their medical problems may lead to complications while training or racing. The study looked at the effects of training, injuries, bladder management, medications, and spasms. Sports medicine professionals are provided with information on handling disabled athletes.…

  13. Just a Body in a Wheelchair

    ERIC Educational Resources Information Center

    Rosen, Betty

    2014-01-01

    This article has no direct link with academics, children, students or those who teach: I severed almost all such connections several years ago. It describes the rewards and challenges of leading a reminiscence group of elderly people, all of whom suffer some level of memory loss and/or severe physical disability; most are wheelchair-bound. It…

  14. Reaching High Bookshelves From a Wheelchair

    NASA Technical Reports Server (NTRS)

    Walch, A. J.

    1982-01-01

    "Book retriever" allows people confined to wheelchairs to remove or replace books from upper shelves of library stacks. Retriever is mechanical device composed of aluminum tube approximately 5 feet long with two jaws at upper end. Jaws securely clamp selected book; they are thin enough to be inserted between adjacent books.

  15. The Mobility Decision. 1990 Wheelchair Guide.

    ERIC Educational Resources Information Center

    Henke, Cliff

    1990-01-01

    This article presents tips for parents shopping for wheelchairs for children with special mobility needs. Manual versus power chairs, dimensions, maneuverability, weight, transportability, durability, adaptability, maximum/minimum speeds, battery life (for power chairs), climbing angle, and other features are discussed. Factors to consider in…

  16. 21 CFR 890.3910 - Wheelchair accessory.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Wheelchair accessory. 890.3910 Section 890.3910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3910...

  17. 21 CFR 890.3920 - Wheelchair component.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Wheelchair component. 890.3920 Section 890.3920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3920...

  18. 21 CFR 890.3930 - Wheelchair elevator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Wheelchair elevator. 890.3930 Section 890.3930 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3930...

  19. 21 CFR 890.3850 - Mechanical wheelchair.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Mechanical wheelchair. 890.3850 Section 890.3850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3850...

  20. 21 CFR 890.3930 - Wheelchair elevator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Wheelchair elevator. 890.3930 Section 890.3930 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3930...

  1. 21 CFR 890.3910 - Wheelchair accessory.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wheelchair accessory. 890.3910 Section 890.3910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3910...

  2. 21 CFR 890.3850 - Mechanical wheelchair.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Mechanical wheelchair. 890.3850 Section 890.3850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3850...

  3. 21 CFR 890.3850 - Mechanical wheelchair.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mechanical wheelchair. 890.3850 Section 890.3850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3850...

  4. 21 CFR 890.3930 - Wheelchair elevator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wheelchair elevator. 890.3930 Section 890.3930 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3930...

  5. 21 CFR 890.3920 - Wheelchair component.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wheelchair component. 890.3920 Section 890.3920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3920...

  6. 21 CFR 890.3920 - Wheelchair component.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Wheelchair component. 890.3920 Section 890.3920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3920...

  7. 21 CFR 890.3910 - Wheelchair accessory.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Wheelchair accessory. 890.3910 Section 890.3910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3910...

  8. 21 CFR 890.3930 - Wheelchair elevator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Wheelchair elevator. 890.3930 Section 890.3930 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3930...

  9. 21 CFR 890.3910 - Wheelchair accessory.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Wheelchair accessory. 890.3910 Section 890.3910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3910...

  10. 21 CFR 890.3910 - Wheelchair accessory.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Wheelchair accessory. 890.3910 Section 890.3910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3910...

  11. 21 CFR 890.3850 - Mechanical wheelchair.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Mechanical wheelchair. 890.3850 Section 890.3850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3850...

  12. 21 CFR 890.3920 - Wheelchair component.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Wheelchair component. 890.3920 Section 890.3920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3920...

  13. 21 CFR 890.3850 - Mechanical wheelchair.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Mechanical wheelchair. 890.3850 Section 890.3850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3850...

  14. 21 CFR 890.3920 - Wheelchair component.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Wheelchair component. 890.3920 Section 890.3920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3920...

  15. 21 CFR 890.3930 - Wheelchair elevator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Wheelchair elevator. 890.3930 Section 890.3930 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3930...

  16. Biomechanics of Pediatric Manual Wheelchair Mobility

    PubMed Central

    Slavens, Brooke A.; Schnorenberg, Alyssa J.; Aurit, Christine M.; Tarima, Sergey; Vogel, Lawrence C.; Harris, Gerald F.

    2015-01-01

    Currently, there is limited research of the biomechanics of pediatric manual wheelchair mobility. Specifically, the biomechanics of functional tasks and their relationship to joint pain and health is not well understood. To contribute to this knowledge gap, a quantitative rehabilitation approach was applied for characterizing upper extremity biomechanics of manual wheelchair mobility in children and adolescents during propulsion, starting, and stopping tasks. A Vicon motion analysis system captured movement, while a SmartWheel simultaneously collected three-dimensional forces and moments occurring at the handrim. A custom pediatric inverse dynamics model was used to evaluate three-dimensional upper extremity joint motions, forces, and moments of 14 children with spinal cord injury (SCI) during the functional tasks. Additionally, pain and health-related quality of life outcomes were assessed. This research found that joint demands are significantly different amongst functional tasks, with greatest demands placed on the shoulder during the starting task. Propulsion was significantly different from starting and stopping at all joints. We identified multiple stroke patterns used by the children, some of which are not standard in adults. One subject reported average daily pain, which was minimal. Lower than normal physical health and higher than normal mental health was found in this population. It can be concluded that functional tasks should be considered in addition to propulsion for rehabilitation and SCI treatment planning. This research provides wheelchair users and clinicians with a comprehensive, biomechanical, mobility assessment approach for wheelchair prescription, training, and long-term care of children with SCI. PMID:26442251

  17. A Cost-Effective Virtual Environment for Simulating and Training Powered Wheelchairs Manoeuvres.

    PubMed

    Headleand, Christopher J; Day, Thomas; Pop, Serban R; Ritsos, Panagiotis D; John, Nigel W

    2016-01-01

    Control of a powered wheelchair is often not intuitive, making training of new users a challenging and sometimes hazardous task. Collisions, due to a lack of experience can result in injury for the user and other individuals. By conducting training activities in virtual reality (VR), we can potentially improve driving skills whilst avoiding the risks inherent to the real world. However, until recently VR technology has been expensive and limited the commercial feasibility of a general training solution. We describe Wheelchair-Rift, a cost effective prototype simulator that makes use of the Oculus Rift head mounted display and the Leap Motion hand tracking device. It has been assessed for face validity by a panel of experts from a local Posture and Mobility Service. Initial results augur well for our cost-effective training solution. PMID:27046566

  18. Transportation Safety Standards for Wheelchair Users: A Review of Voluntary Standards for Improved Safety, Usability, and Independence of Wheelchair-Seated Travelers

    ERIC Educational Resources Information Center

    Schneider, Lawrence W.; Manary, Miriam A.; Hobson, Douglas A.

    2008-01-01

    Safe transportation for wheelchair users who do not transfer to the vehicle seat when traveling in motor vehicles requires after-market wheelchair tiedown and occupant restraint systems (WTORS) to secure the wheelchair and provide crashworthy restraint for the wheelchair-seated occupant. In the absence of adequate government safety standards,…

  19. Aspects of Manual Wheelchair Configuration Affecting Mobility: A Review

    PubMed Central

    Medola, Fausto Orsi; Elui, Valeria Meirelles Carril; Santana, Carla da Silva; Fortulan, Carlos Alberto

    2014-01-01

    Many aspects relating to equipment configuration affect users’ actions in a manual wheelchair, determining the overall mobility performance. Since the equipment components and configuration determine both stability and mobility efficiency, configuring the wheelchair with the most appropriate set-up for individual users’ needs is a difficult task. Several studies have shown the importance of seat/backrest assembly and the relative position of the rear wheels to the user in terms of the kinetics and kinematics of manual propulsion. More recently, new studies have brought to light evidence on the inertial properties of different wheelchair configurations. Further new studies have highlighted the handrim as a key component of wheelchair assembly, since it is the interface through which the user drives the chair. In light of the new evidence on wheelchair mechanics and propulsion kinetics and kinematics, this article presents a review of the most important aspects of wheelchair configuration that affect the users’ actions and mobility. PMID:24648656

  20. Linking wheelchair kinetics to glenohumeral joint demand during everyday accessibility activities.

    PubMed

    Holloway, Catherine S; Symonds, Andrew; Suzuki, Tatsuto; Gall, Angela; Smitham, Peter; Taylor, Stephen

    2015-01-01

    The aim of the study was to investigate if push-rim kinetics could be used as markers of glenohumeral joint demand during manual wheelchair accessibility activities; demonstrating a method of biomechanical analysis that could be used away from the laboratory. Propulsion forces, trunk and upper limb kinematics and surface electromyography were recorded during four propulsion tasks (level, 2.5% cross slope, 6.5% incline and 12% incline). Kinetic and kinematic data were applied to an OpenSim musculoskeletal model of the trunk and upper limb, to enable calculation of glenohumeral joint contact force. Results demonstrated a positive correlation between propulsion forces and glenohumeral joint contact forces. Both propulsion forces and joint contact forces increased as the task became more challenging. Participants demonstrated increases in trunk flexion angle as the requirement for force application increased, significantly so in the 12% incline. There were significant increases in both resultant glenohumeral joint contact forces and peak and mean normalized muscle activity levels during the incline tasks. This study demonstrated the high demand placed on the glenohumeral joint during accessibility tasks, especially as the gradient of incline increases. A lightweight instrumented wheelchair wheel has potential to guide the user to minimize upper limb demand during daily activity.

  1. 'Mazatzal' Rock on Crater Rim

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Spirit took this navigation camera image of the 2-meter-wide (6.6-foot-wide) rock called 'Mazatzal' on sol 76, March 21, 2004. Scientists intend to aggressively analyze this target with Spirit's microscopic imager, Moessbauer spectrometer and alpha particle X-ray spectrometer before brushing and 'digging in' with the rock abrasion tool on upcoming sols.

    Mazatzal stood out to scientists because of its large size, light tone and sugary surface texture. It is the largest rock the team has seen at the rim of the crater informally named 'Bonneville.' It is lighter-toned than previous rock targets Adirondack and Humphrey. Its scalloped pattern may be a result of wind sculpting, a very slow process in which wind-transported silt and sand abrade the rock's surface, creating depressions. This leads scientists to believe that Mazatzal may have been exposed to the wind in this location for an extremely long time.

    The name 'Mazatzal' comes from a mountain range and rock formation that was deposited around 1.2 billion years ago in the Four Peaks area of Arizona.

  2. A wind tunnel database using RIM

    NASA Technical Reports Server (NTRS)

    Wray, W. O., Jr.

    1984-01-01

    Engineering data base development which has become increasingly widespread to industry with the availability of data management systems is examined. A large data base was developed for wind tunnel data and related model test information, using RIM as the data base manager. The arrangement of the wind tunnel data into the proper schema for the most efficient database utilization is discussed. The FORTRAN interface program of RIM is used extensively in the loading phases of the data base and by the users. Several examples to illustrate how the Wind Tunnel Data base might be searched for specific data items and test information using RIM are presented.

  3. Shoulder pain and time dependent structure in wheelchair propulsion variability.

    PubMed

    Jayaraman, Chandrasekaran; Moon, Yaejin; Sosnoff, Jacob J

    2016-07-01

    Manual wheelchair propulsion places considerable repetitive mechanical strain on the upper limbs leading to shoulder injury and pain. While recent research indicates that the amount of variability in wheelchair propulsion and shoulder pain may be related. There has been minimal inquiry into the fluctuation over time (i.e. time-dependent structure) in wheelchair propulsion variability. Consequently the purpose of this investigation was to examine if the time-dependent structure in the wheelchair propulsion parameters are related to shoulder pain. 27 experienced wheelchair users manually propelled their own wheelchair fitted with a SMARTWheel on a roller at 1.1m/s for 3min. Time-dependent structure of cycle-to-cycle fluctuations in contact angle and inter push time interval was quantified using sample entropy (SampEn) and compared between the groups with/without shoulder pain using non-parametric statistics. Overall findings were, (1) variability observed in contact angle fluctuations during manual wheelchair propulsion is structured (Z=3.15;p<0.05), (2) individuals with shoulder pain exhibited higher SampEn magnitude for contact angle during wheelchair propulsion than those without pain (χ(2)(1)=6.12;p<0.05); and (3) SampEn of contact angle correlated significantly with self-reported shoulder pain (rs (WUSPI) =0.41;rs (VAS)=0.56;p<0.05). It was concluded that the time-dependent structure in wheelchair propulsion may provide novel information for tracking and monitoring shoulder pain.

  4. The development of a nationwide registry of wheelchair users.

    PubMed

    Fitzgerald, Shirley G; Kelleher, Annmarie; Teodorski, Emily; Collins, Diane M; Boninger, Michael; Cooper, Rory A

    2007-11-01

    This paper provides an overview of the development of a wheelchair users registry and subsequently describes a population of individuals who use wheelchairs. The characteristics of Americans who permanently use wheelchairs and scooters are currently unknown. As the result of developing a Registry of individuals who use wheeled mobility devices for systematic recruitment for research studies, this study provides a description of a nationwide sample of over 1000 individuals who used wheelchairs or scooters for their daily mobility. The Registry is predominantly Caucasian (83%), 63% male, with a mean age of 50 years. Some 54% used manual wheelchairs for an average of 16 years. When quality of wheelchairs was compared, results indicated those in more customizable manual wheelchairs were significantly more likely to be younger. Males were significantly more likely to receive more customizable, heavy duty power wheelchairs than females. The Wheelchair Users Registry provides an organized and systematic way to maintain contact with previous research participants. Expected to grow in size, the Registry may enable an even more diverse pool of subjects interested in participating in research studies.

  5. The Injury Risk to Wheelchair Occupants Using Motor Vehicle Transportation

    PubMed Central

    Songer, Thomas J.; Fitzgerald, Shirley G.; Rotko, Katherine A.

    2004-01-01

    The transportation safety experience for persons using wheelchairs is largely unknown. Motor vehicle crash involvement and injury frequency was examined in a telephone interview completed by 596 wheelchair users. Overall, 42% were drivers. Most subjects also rode as passengers in private vehicles (87%) and public vehicles (61%). Wheelchair use as a seat in the vehicle was higher among passengers than drivers. Crash involvement was highest among drivers and lower in passengers. Reported injuries from non-crash scenarios, though, were higher in passengers compared to drivers. Persons seated in wheelchairs in vehicles appear to be at a greater safety risk. PMID:15319121

  6. Rim Fire Time Lapse, August 2013

    NASA Video Gallery

    Time-lapse photography shows various perspectives of the 2013 Rim Fire, as viewed from Yosemite National Park. The first part of this video is from the Crane Flat Helibase. The fire is currently bu...

  7. Rim sign: association with acute cholecystitis

    SciTech Connect

    Bushnell, D.L.; Perlman, S.B.; Wilson, M.A.; Polcyn, R.E.

    1986-03-01

    In a retrospective analysis of 218 hepatobiliary studies in patients clinically suspected of acute cholecystitis, a rim of increased hepatic activity adjacent to the gallbladder fossa (the rim sign) has been evaluated as a scintigraphic predictor of confirmed acute cholecystitis. Of 28 cases with pathologic confirmation of acute cholecystitis in this series, 17 (60%) demonstrated this sign. When associated with nonvisualization of the gallbladder at 1 hr, the positive predictive value of this photon-intense rim for acute cholecystitis was 94%. When the rim sign was absent, the positive predictive value of nonvisualization of the gallbladder at 1 hr for acute cholecystitis was only 36%. As this sign was always seen during the first hour postinjection, it can, when associated with nonvisualization, reduce the time required for completion of an hepatobiliary examination in suspected acute cholecystitis.

  8. How to Make an Active Zone: Unexpected Universal Functional Redundancy between RIMs and RIM-BPs.

    PubMed

    Acuna, Claudio; Liu, Xinran; Südhof, Thomas C

    2016-08-17

    RIMs and RIM-binding proteins (RBPs) are evolutionary conserved multidomain proteins of presynaptic active zones that are known to recruit Ca(2+) channels; in addition, RIMs perform well-recognized functions in tethering and priming synaptic vesicles for exocytosis. However, deletions of RIMs or RBPs in mice cause only partial impairments in various active zone functions and have no effect on active zone structure, as visualized by electron micrographs, suggesting that their contribution to active zone functions is limited. Here, we show in synapses of the calyx of Held in vivo and hippocampal neurons in culture that combined, but not individual, deletions of RIMs and RBPs eliminate tethering and priming of synaptic vesicles, deplete presynaptic Ca(2+) channels, and ablate active zone complexes, as analyzed by electron microscopy of chemically fixed synapses. Thus, RBPs perform unexpectedly broad roles at the active zone that together with those of RIMs are essential for all active zone functions. PMID:27537484

  9. How to Make an Active Zone: Unexpected Universal Functional Redundancy between RIMs and RIM-BPs.

    PubMed

    Acuna, Claudio; Liu, Xinran; Südhof, Thomas C

    2016-08-17

    RIMs and RIM-binding proteins (RBPs) are evolutionary conserved multidomain proteins of presynaptic active zones that are known to recruit Ca(2+) channels; in addition, RIMs perform well-recognized functions in tethering and priming synaptic vesicles for exocytosis. However, deletions of RIMs or RBPs in mice cause only partial impairments in various active zone functions and have no effect on active zone structure, as visualized by electron micrographs, suggesting that their contribution to active zone functions is limited. Here, we show in synapses of the calyx of Held in vivo and hippocampal neurons in culture that combined, but not individual, deletions of RIMs and RBPs eliminate tethering and priming of synaptic vesicles, deplete presynaptic Ca(2+) channels, and ablate active zone complexes, as analyzed by electron microscopy of chemically fixed synapses. Thus, RBPs perform unexpectedly broad roles at the active zone that together with those of RIMs are essential for all active zone functions.

  10. Relation between kinematic analysis of wheelchair propulsion and wheelchair functional basketball classification.

    PubMed

    Crespo-Ruiz, Beatriz M; Del Ama-Espinosa, Antonio J; Gil-Agudo, Angel M

    2011-04-01

    The objective was to conduct a methodological pilot study to analyze wheelchair propulsion upper limb kinematics in standard competitive play considering the functional classification of each athlete. Ten basketball players with a functional classification ranging from 1 to 4 were included in the study. Four camcorders (Kinescan-IBV) and a treadmill for wheelchairs were used. Temporal parameters were analyzed and the upper limb kinematics was obtained using ISB recommendations. The value of the temporal parameters such as push phase duration, the ratio of push phase/recovery phase, contact, and propulsion angle seems to reduce as the functional classification increases. A methodological protocol has been developed that allows the analysis of kinematic characteristics of wheelchair propulsion in basketball players taking into account their functional classification.

  11. Sport orientation model for wheelchair basketball athletes.

    PubMed

    Skordilis, E K; Stavrou, N A

    2005-06-01

    This study examined the validity of the Sport Orientation Questionnaire (Competitiveness: 13 items, Win Orientation: 6 items, and Goal Orientation: 6 items) in a sample of 195 wheelchair basketball athletes from the USA. Following evidence for sample-specific validity, the measurement model that underlies the questionnaire was examined. A short-form with 15 items for three factors of Competitiveness (7 items), Win Orientation (5 items) and Goal Orientation (3 items) fit the data (X2/df ratio=2.21, NNFI=.892, CFI=.991, RCFI=.935, SRMR=.058, RMSEA=.071). To evaluate the findings further, we cross-validated the short-form by sex. Structural equation modeling indicated there were similar measurement properties and factor structures for the men and women, indicating similar conceptualization of sport orientations. Meaningful comparisons across sex may be undertaken, since both men and women who are wheelchair basketball athletes perceive the three short-form SOQ factors similarly.

  12. Heart rates of participants in wheelchair sports.

    PubMed

    Coutts, K D

    1988-02-01

    The relative stress of participation in wheelchair basketball, volleyball, tennis, and racquetball were determined by monitoring the heart rates of wheelchair athletes. Heart rates were recorded for 5 seconds every 30 seconds during monitoring sessions of 10 min or longer under game or practice conditions. Subjects were volunteer paraplegic athletes with lesions below T5 or with equivalent disability according to an international sport classification system. Average heart rates were 89 beats/min for tennis 'practice', 96 for racquetball 'practice' 107 for volleyball 'practice', 114 for volleyball 'game', 127 for tennis 'game', 129 for basketball 'practice', 135 for racquetball 'game', and 149 for basketball 'game' conditions. The percentage of time when heart rates were above 140 beats/min, followed the same pattern as the average heart rates and ranged from 0 to 62%.

  13. Rimmed and edge thickened Stodola shaped flywheel

    DOEpatents

    Kulkarni, S.V.; Stone, R.G.

    1983-10-11

    A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body composed of essentially planar isotropic high strength material. The flywheel body is enclosed by a rim of circumferentially wound fiber embedded in resin. The rim promotes flywheel safety and survivability. The flywheel has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability. 6 figs.

  14. Anthropometry and Performance in Wheelchair Basketball.

    PubMed

    Granados, Cristina; Yanci, Javier; Badiola, Aduna; Iturricastillo, Aitor; Otero, Montse; Olasagasti, Jurgi; Bidaurrazaga-Letona, Iraia; Gil, Susana M

    2015-07-01

    This study investigated whether anthropometric characteristics, generic and specific sprinting, agility, strength, and endurance capacity could differentiate between First-Division and Third-Division wheelchair basketball (WB) players. A First-Division WB team (n = 8; age = 36.05 ± 8.25 years, sitting body height = 91.38 ± 4.24 cm, body mass = 79.80 ± 12.63 kg) and a Third-Division WB team (n = 11; age = 31.10 ± 6.37 years, sitting body height = 85.56 ± 6.48 cm, body mass = 71.18 ± 17.63 kg) participated in the study. Wheelchair sprint, agility, strength, and endurance tests were performed. The First-Division team was faster (8.7%) in 20 m without the ball, more agile (13-22%), stronger (18-33%), covered more distance (20%) in the endurance test, and presented higher values of rate of perceived exertion for the exercise load (48%) than the Third-Division team. Moreover, the individual 20-m sprint time values correlated inversely with the individual strength/power values (from r = -0.54 to -0.77, p ≤ 0.05, n = 19). Wheelchair basketball coaches should structure strength and conditioning training to improve sprint and agility and evaluate players accordingly, so that they can receive appropriate training stimuli to match the physiological demands of their competitive level.

  15. Biomechanics and energetics of basketball wheelchairs evolution.

    PubMed

    Ardigo', L P; Goosey-Tolfrey, V L; Minetti, A E

    2005-06-01

    The aim of this study was to investigate metabolic demand and mechanical work of different basketball wheelchairs that represented significant stages of its evolution from 1960 to date. Four subjects pushed each model on a basketball court at different speeds (from 0.90 to 2.35 m.s(-1)). During the trials, oxygen consumption was measured. Also, the different forms of mechanical work involved in the exercise were investigated. The oxygen consumption decreased from the oldest model to the next ones, remaining then quite constant. This was also the same with breathing and pushing frequencies. Both the work against air drag and rolling resistance decreased, air drag always played a minor role due to the low speeds investigated. The total mechanical work was highest in the oldest wheelchair and lowest in the newest one. The efficiencies were found similar for all the chairs but the most recent one (less efficient). Already by the 1970's the wheelchair economy had reached an acceptable level, at least partially because of its improved ergonomics. Yet, when focusing on the efficiency, the surprisingly low value with the newest model suggests factors other than the economy (need of better balance, responsiveness, and ground grip) as determinants of the evolution of this device. PMID:15895323

  16. Biomechanics and energetics of basketball wheelchairs evolution.

    PubMed

    Ardigo', L P; Goosey-Tolfrey, V L; Minetti, A E

    2005-06-01

    The aim of this study was to investigate metabolic demand and mechanical work of different basketball wheelchairs that represented significant stages of its evolution from 1960 to date. Four subjects pushed each model on a basketball court at different speeds (from 0.90 to 2.35 m.s(-1)). During the trials, oxygen consumption was measured. Also, the different forms of mechanical work involved in the exercise were investigated. The oxygen consumption decreased from the oldest model to the next ones, remaining then quite constant. This was also the same with breathing and pushing frequencies. Both the work against air drag and rolling resistance decreased, air drag always played a minor role due to the low speeds investigated. The total mechanical work was highest in the oldest wheelchair and lowest in the newest one. The efficiencies were found similar for all the chairs but the most recent one (less efficient). Already by the 1970's the wheelchair economy had reached an acceptable level, at least partially because of its improved ergonomics. Yet, when focusing on the efficiency, the surprisingly low value with the newest model suggests factors other than the economy (need of better balance, responsiveness, and ground grip) as determinants of the evolution of this device.

  17. 43 CFR 6302.17 - When may I use a wheelchair in BLM wilderness?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false When may I use a wheelchair in BLM... § 6302.17 When may I use a wheelchair in BLM wilderness? If you have a disability that requires the use of a wheelchair, you may use a wheelchair in a wilderness. Consistent with the Wilderness Act and...

  18. 43 CFR 6302.17 - When may I use a wheelchair in BLM wilderness?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false When may I use a wheelchair in BLM... § 6302.17 When may I use a wheelchair in BLM wilderness? If you have a disability that requires the use of a wheelchair, you may use a wheelchair in a wilderness. Consistent with the Wilderness Act and...

  19. 43 CFR 6302.17 - When may I use a wheelchair in BLM wilderness?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false When may I use a wheelchair in BLM... § 6302.17 When may I use a wheelchair in BLM wilderness? If you have a disability that requires the use of a wheelchair, you may use a wheelchair in a wilderness. Consistent with the Wilderness Act and...

  20. 43 CFR 6302.17 - When may I use a wheelchair in BLM wilderness?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false When may I use a wheelchair in BLM... § 6302.17 When may I use a wheelchair in BLM wilderness? If you have a disability that requires the use of a wheelchair, you may use a wheelchair in a wilderness. Consistent with the Wilderness Act and...

  1. Anaerobic work capacity in elite wheelchair athletes.

    PubMed

    van der Woude, L H; Bakker, W H; Elkhuizen, J W; Veeger, H E; Gwinn, T

    1997-01-01

    To study the anaerobic work capacity in wheelchair athletes, 67 elite wheelchair athletes (50 male) were studied in a 30-second sprint test on a computer-controlled wheelchair ergometer during the World Championships and Games for the Disabled in Assen (1990). The experimental set-up (ergometer, protocol) proved to be adequate in terms of power output (P30, P5) velocity and heart rate. Male and female athletes were comparable with respect to personal characteristics (age, body weight, training hours). Track athletes (classified in 4 different functional classes) showed a class-related mean power output (P30: mean power produced during the 30-second sprint period) of 23, 68, 100, and 138 W for the male athletes (n = 38) and 38, 77, and 76 W for females in the upper three classes (n = 10). Sprint power was low for the group of subjects with cerebral palsy (35 W; mixed, n = 6) and relatively high for the amputee group (121 W; mixed, n = 6), female basketball players (81 W; n = 5), and two male field athletes (110 W). Significant differences between male and female athletes were found for P30 and P5 (highest mean power output over any of the six 5-second periods). As was to be expected, mean maximum heart rate in the sprint test varied significantly between the track groups from 112 (high lesion group) to 171 beats/minute(-1) (low lesion group) but not for both genders. The lower P30 in the T1 and T2 groups must be explained not only by the reduced functional muscle mass and impaired coordination but also by phenomena of cardiovascular dysfunction. Based on the performance parameters, the functional classification of the track athletes into four groups seems adequate. P30 was significantly associated with the personal characteristics of gender and hours of training. A significant correlation was found between P30 and sprint performance times for 200 meters (r = -0.79). No correlation was found between either of the forms of power output and the marathon times

  2. 49 CFR 37.205 - Additional passengers who use wheelchairs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... INDIVIDUALS WITH DISABILITIES (ADA) Over-the-Road Buses (OTRBs) § 37.205 Additional passengers who use wheelchairs. If a number of wheelchair users exceeding the number of securement locations on the bus seek to... transportation to them on the bus....

  3. Learning to Drive a Wheelchair in Virtual Reality

    ERIC Educational Resources Information Center

    Inman, Dean P.; Loge, Ken; Cram, Aaron; Peterson, Missy

    2011-01-01

    This research project studied the effect that a technology-based training program, WheelchairNet, could contribute to the education of children with physical disabilities by providing a chance to practice driving virtual motorized wheelchairs safely within a computer-generated world. Programmers created three virtual worlds for training. Scenarios…

  4. Female Wheelchair Athletes and Changes to Body Image.

    ERIC Educational Resources Information Center

    Sands, Robert Thomas; Wettenhall, Robyn Sandra

    2000-01-01

    The effects of a psychological intervention program on attitudes of body image of six national female wheelchair basketball players was examined. As a result of the cognitive behavioral intervention program, physical self-perception increased for the wheelchair athletes and for 50 percent of the athletes on multidimensional components of body…

  5. Adolescents' Attitudes toward Wheelchair Users: A Provincial Survey

    ERIC Educational Resources Information Center

    Arbour-Nicitopoulos, Kelly P.

    2010-01-01

    The study aims were to examine (i) adolescents' attitudes towards family members who use a wheelchair in relation to other health problems and conditions, and (ii) the association between perceived wheelchair stigma and socio-demographic factors. Data were based on surveys from 2790 seventh to 12th grade students derived from the 2007 cycle of the…

  6. Training Patterns of Wheelchair Basketball Players in Turkey

    ERIC Educational Resources Information Center

    Tatar, Yasar

    2008-01-01

    The aim of this study was to analyze technical drills, warm-up and cool-down exercises used by wheelchair basketball players of the Turkish league in relation to training sessions. 33 male wheelchair basketball players participated in the study (mean age 26.6[plus or minus]5,95 years). All players reported that they used warm-up exercises before…

  7. Teaching about the Pacific Rim. ERIC Digest No. 43.

    ERIC Educational Resources Information Center

    Wojtan, Linda S.

    This ERIC Digest examines: (1) the meaning of the term "Pacific Rim"; (2) reasons for emphasizing the Pacific Rim in the social studies curriculum; and (3) useful strategies for teaching about this part of the world. The terms, Pacific Rim and Pacific Basin, are used. interchangeably; however, the "Rim" refers to those nations bordering the…

  8. Recycling of polyurethane-urea RIM

    SciTech Connect

    Xiao, H.X.; Kresta, J.E.; Suthar, B.; Li, X.H.

    1997-12-31

    Polyurethane-urea (PUU) RIM are crosslinked materials, which cannot be reprocessed or recycled by using the conventional process. The chemical decrosslinking reaction or transesterification of themosetting polyurethanes by using various inorganic and organic catalysts were investigated. The recycling of waste PUU RIM materials (unpainted, painted and filler reinforced) through decrosslinking (transesterification) using low molecular weight glycols in presence of catalyst was evaluated. It was established that the transestification of PUU RIM can be carried out at the low glycol (EG)/RIM ratio (15/84.5) and that the usual recovery step for the excess glycol (EG) can be avoided resulting in an economical process. The process was scaled up in a 50 gallon reactor at the LymTal International Inc. successfully. It was established that the products from the decrosslinking of PUU RIM are a mixture of the liquid oligomers (LOs) containing urethane, OH and NH{sub 2} groups. These functional groups in LOs exhibit many potential applications as raw materials in the preparation of RIM coatings, adhesives, foams, sealants and composites. PUU RIM made from LOs exhibited promising and interesting results. Both solvent-based and waterborne urethane coatings could be made from LOs. Urethane adhesives made from LOs showed improvement of properties with increasing amounts of LOs. Structural adhesives based on epoxy and LOs were prepared and the effects of equivalent ratios and curing conditions on the adhesive strength of the epoxy/LO adhesives were investigated. Solvent-free coating based on epoxy and LOs was prepared and their properties were determined. Both wood fiber and glass fabric reinforced composites were prepared by using epoxy and LOs and they exhibited interesting properties for different potential applications.

  9. On the development of an expert system for wheelchair selection

    NASA Technical Reports Server (NTRS)

    Madey, Gregory R.; Bhansin, Charlotte A.; Alaraini, Sulaiman A.; Nour, Mohamed A.

    1994-01-01

    The presentation of wheelchairs for the Multiple Sclerosis (MS) patients involves the examination of a number of complicated factors including ambulation status, length of diagnosis, and funding sources, to name a few. Consequently, only a few experts exist in this area. To aid medical therapists with the wheelchair selection decision, a prototype medical expert system (ES) was developed. This paper describes and discusses the steps of designing and developing the system, the experiences of the authors, and the lessons learned from working on this project. Wheelchair Advisor, programmed in CLIPS, serves as diagnosis, classification, prescription, and training tool in the MS field. Interviews, insurance letters, forms, and prototyping were used to gain knowledge regarding the wheelchair selection problem. Among the lessons learned are that evolutionary prototyping is superior to the conventional system development life-cycle (SDLC), the wheelchair selection is a good candidate for ES applications, and that ES can be applied to other similar medical subdomains.

  10. Design And Structural Analysis Of A Powered Wheelchair Transmission

    NASA Astrophysics Data System (ADS)

    Geonea, Ionut Daniel; Dumitru, Nicolae; Margine, Alexandru

    2015-09-01

    In this paper are presented the author's researches on designing, dynamical and structural evaluation of a transmission for a wheelchair, intended to persons with locomotors disabilities. The kinematics of proposed transmission is analyzed in order to realize a proper synthesis and design of gears. A 3D model of the transmission and wheelchair are designed in Solid Works, and they will be used for the dynamic simulation of the wheelchair robotic system in Adams software. In Adams is analyzed wheelchair trajectory and dynamics for a combined trajectory: linear motion and steering. Dynamic parameters obtained from simulation are used to perform a finite element analysis of bevel and worm gears. Simulation results reveal the transmission dynamics parameters, emphasize the efficiency of the transmission and enable implementation of this design to a wheelchair model.

  11. Home in a Wheelchair: House Design Ideas for Easier Wheelchair Living.

    ERIC Educational Resources Information Center

    Chasin, Joseph

    Intended to aid in the building or purchase of a home suitable for use by a handicapped individual in a wheelchair, the booklet provides detailed design guidelines. Included is information on the decision process, finances, ramps, a car shelter, doors communication devices, electrical needs, windows, elevators and chair lifts, the kitchen, an…

  12. Wheelchair propulsion biomechanics and wheelers' quality of life: an exploratory review.

    PubMed

    Chow, John W; Levy, Charles E

    2011-01-01

    PURPOSE. To provide an overview of associations between wheelchair propulsion biomechanics for both everyday and racing wheelchairs, wheeling-related upper limb injuries, and quality of life of manual wheelchair users through a synthesis of the available information. METHODS. A search of publications was carried out in PubMed and SportsDiscus databases. Studies on wheelchair propulsion biomechanics, upper limb injuries associated with wheelchair propulsion and quality of life of wheelchair users were identified. Relevant articles cited in identified articles but not cited in PubMed or SportsDiscus were also included. RESULTS. Wheelchair sports participation has positive impact on quality of life and research in racing wheelchair biomechanics can indirectly promote the visibility of wheelchair sports. The impact of pushrim-activated power-assisted wheelchairs (a hybrid between manual and battery-powered wheelchairs) and geared manual wheels on wheelers' everyday life were discussed. CONCLUSIONS. The study of wheelchair propulsion biomechanics focuses on how a wheelchair user imparts power to the wheels to achieve mobility and the accumulated knowledge can help to improve wheelchair users' mobility, reduce physical stress associated with wheelchair propulsion, and as a result, enhance quality of life. PMID:20932232

  13. Wheelchair propulsion biomechanics and wheelers' quality of life: an exploratory review.

    PubMed

    Chow, John W; Levy, Charles E

    2011-01-01

    PURPOSE. To provide an overview of associations between wheelchair propulsion biomechanics for both everyday and racing wheelchairs, wheeling-related upper limb injuries, and quality of life of manual wheelchair users through a synthesis of the available information. METHODS. A search of publications was carried out in PubMed and SportsDiscus databases. Studies on wheelchair propulsion biomechanics, upper limb injuries associated with wheelchair propulsion and quality of life of wheelchair users were identified. Relevant articles cited in identified articles but not cited in PubMed or SportsDiscus were also included. RESULTS. Wheelchair sports participation has positive impact on quality of life and research in racing wheelchair biomechanics can indirectly promote the visibility of wheelchair sports. The impact of pushrim-activated power-assisted wheelchairs (a hybrid between manual and battery-powered wheelchairs) and geared manual wheels on wheelers' everyday life were discussed. CONCLUSIONS. The study of wheelchair propulsion biomechanics focuses on how a wheelchair user imparts power to the wheels to achieve mobility and the accumulated knowledge can help to improve wheelchair users' mobility, reduce physical stress associated with wheelchair propulsion, and as a result, enhance quality of life.

  14. Gender differences in wheelchair marathon performance – Oita International Wheelchair Marathon from 1983 to 2011

    PubMed Central

    Lepers, Romuald; Stapley, Paul J; Knechtle, Beat

    2012-01-01

    Background The purpose of the study was (1) to examine the changes in participation and performance of males and females at the Oita International Wheelchair Marathon in Oita, Japan, between 1983 and 2011, and (2) to analyze the gender difference in the age of peak wheelchair marathon performance. Methods Age and time performance data for all wheelchair athletes completing the Oita International Wheelchair Marathon from 1983 to 2011 were analyzed. Results Mean annual number of finishers was 123 ± 43 for males and 6 ± 3 for females (5.0% ± 2.0% of all finishers), respectively. Mean age of overall finishers was significantly (P = 0.026) greater for males (41.3 ± 1.8 years) compared to females (32.7 ± 1.4 years). In contrast, there was no difference in the mean age of the top three overall finishers between males (35.8 ± 3.2 years) and females (31.6 ± 1.5 years). The race time of the top three overall finishers was significantly lower (P < 0.01) for males (1:34 ± 0:11 hours:minutes) compared to females (1:59 ± 0:20 hours:minutes), but it was not significantly different between male (2:06 ± 0:12 hours:minutes) and female (2:12 ± 0:18 hours:minutes) overall finishers. The mean gender difference in time was 26.1% ± 9.7% for the top three overall finishers. Conclusion Further studies are required to investigate the reasons for the low participation of females in wheelchair marathons and why the gender difference in marathon performance is much greater for disabled athletes than for able-bodied athletes. PMID:24198599

  15. Field-based physiological testing of wheelchair athletes.

    PubMed

    Goosey-Tolfrey, Victoria L; Leicht, Christof A

    2013-02-01

    The volume of literature on field-based physiological testing of wheelchair sports, such as basketball, rugby and tennis, is considerably smaller when compared with that available for individuals and team athletes in able-bodied (AB) sports. In analogy to the AB literature, it is recognized that performance in wheelchair sports not only relies on fitness, but also sport-specific skills, experience and technical proficiency. However, in contrast to AB sports, two major components contribute towards 'wheeled sports' performance, which are the athlete and the wheelchair. It is the interaction of these two that enable wheelchair propulsion and the sporting movements required within a given sport. Like any other athlete, participants of wheelchair sports are looking for efficient ways to train and/or analyse their technique and fitness to improve their performance. Consequently, laboratory and/or field-based physiological monitoring tools used at regular intervals at key time points throughout the year must be considered to help with training evaluation. The present review examines methods available in the literature to assess wheelchair sports fitness in a field-based environment, with special attention on outcome variables, validity and reliability issues, and non-physiological influences on performance. It also lays out the context of field-based testing by providing details about the Paralympic court sports and the impacts of a disability on sporting performance. Due to the limited availability of specialized equipment for testing wheelchair-dependent participants in the laboratory, the adoption of field-based testing has become the preferred option by team coaches of wheelchair athletes. An obvious advantage of field-based testing is that large groups of athletes can be tested in less time. Furthermore, athletes are tested in their natural environment (using their normal sports wheelchair set-up and floor surface), potentially making the results of such testing

  16. Field-based physiological testing of wheelchair athletes.

    PubMed

    Goosey-Tolfrey, Victoria L; Leicht, Christof A

    2013-02-01

    The volume of literature on field-based physiological testing of wheelchair sports, such as basketball, rugby and tennis, is considerably smaller when compared with that available for individuals and team athletes in able-bodied (AB) sports. In analogy to the AB literature, it is recognized that performance in wheelchair sports not only relies on fitness, but also sport-specific skills, experience and technical proficiency. However, in contrast to AB sports, two major components contribute towards 'wheeled sports' performance, which are the athlete and the wheelchair. It is the interaction of these two that enable wheelchair propulsion and the sporting movements required within a given sport. Like any other athlete, participants of wheelchair sports are looking for efficient ways to train and/or analyse their technique and fitness to improve their performance. Consequently, laboratory and/or field-based physiological monitoring tools used at regular intervals at key time points throughout the year must be considered to help with training evaluation. The present review examines methods available in the literature to assess wheelchair sports fitness in a field-based environment, with special attention on outcome variables, validity and reliability issues, and non-physiological influences on performance. It also lays out the context of field-based testing by providing details about the Paralympic court sports and the impacts of a disability on sporting performance. Due to the limited availability of specialized equipment for testing wheelchair-dependent participants in the laboratory, the adoption of field-based testing has become the preferred option by team coaches of wheelchair athletes. An obvious advantage of field-based testing is that large groups of athletes can be tested in less time. Furthermore, athletes are tested in their natural environment (using their normal sports wheelchair set-up and floor surface), potentially making the results of such testing

  17. East Rim of Endeavour Crater on Horizon

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site]

    A high point on the distant eastern rim of Endeavour Crater is visible on the horizon in this image taken by the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity on March 8, 2009, during the 1,821st Martian day, or sol, of the rover's mission on Mars.

    That portion of Endeavour's rim is about 34 kilometers (21 miles) away from Opportunity's position west of the crater when the image was taken. The width of the image covers approximately one degree of the horizon.

  18. North Rim of Endeavour Crater on Horizon

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site]

    A northern portion of the rim of Endeavour Crater is visible on the horizon of this image taken by the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity on March 7, 2009, during the 1,820st Martian day, or sol, of the rover's mission on Mars.

    That portion of Endeavour's rim is about 20 kilometers (12 miles) away from Opportunity's position west of the crater when the image was taken. The width of the image covers approximately one degree of the horizon.

  19. Rimmed and edge thickened Stodola shaped flywheel

    DOEpatents

    Kulkarni, Satish V.; Stone, Richard G.

    1983-01-01

    A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body (15) composed of essentially planar isotropic high strength material. The flywheel (10) body (15) is enclosed by a rim (50) of circumferentially wound fiber (2) embedded in resin (3). The rim (50) promotes flywheel (10) safety and survivability. The flywheel (10) has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability.

  20. Evaluation of pediatric manual wheelchair mobility using advanced biomechanical methods.

    PubMed

    Slavens, Brooke A; Schnorenberg, Alyssa J; Aurit, Christine M; Graf, Adam; Krzak, Joseph J; Reiners, Kathryn; Vogel, Lawrence C; Harris, Gerald F

    2015-01-01

    There is minimal research of upper extremity joint dynamics during pediatric wheelchair mobility despite the large number of children using manual wheelchairs. Special concern arises with the pediatric population, particularly in regard to the longer duration of wheelchair use, joint integrity, participation and community integration, and transitional care into adulthood. This study seeks to provide evaluation methods for characterizing the biomechanics of wheelchair use by children with spinal cord injury (SCI). Twelve subjects with SCI underwent motion analysis while they propelled their wheelchair at a self-selected speed and propulsion pattern. Upper extremity joint kinematics, forces, and moments were computed using inverse dynamics methods with our custom model. The glenohumeral joint displayed the largest average range of motion (ROM) at 47.1° in the sagittal plane and the largest average superiorly and anteriorly directed joint forces of 6.1% BW and 6.5% BW, respectively. The largest joint moments were 1.4% body weight times height (BW × H) of elbow flexion and 1.2% BW × H of glenohumeral joint extension. Pediatric manual wheelchair users demonstrating these high joint demands may be at risk for pain and upper limb injuries. These evaluation methods may be a useful tool for clinicians and therapists for pediatric wheelchair prescription and training. PMID:25802860

  1. Capturing and analyzing wheelchair maneuvering patterns with mobile cloud computing.

    PubMed

    Fu, Jicheng; Hao, Wei; White, Travis; Yan, Yuqing; Jones, Maria; Jan, Yih-Kuen

    2013-01-01

    Power wheelchairs have been widely used to provide independent mobility to people with disabilities. Despite great advancements in power wheelchair technology, research shows that wheelchair related accidents occur frequently. To ensure safe maneuverability, capturing wheelchair maneuvering patterns is fundamental to enable other research, such as safe robotic assistance for wheelchair users. In this study, we propose to record, store, and analyze wheelchair maneuvering data by means of mobile cloud computing. Specifically, the accelerometer and gyroscope sensors in smart phones are used to record wheelchair maneuvering data in real-time. Then, the recorded data are periodically transmitted to the cloud for storage and analysis. The analyzed results are then made available to various types of users, such as mobile phone users, traditional desktop users, etc. The combination of mobile computing and cloud computing leverages the advantages of both techniques and extends the smart phone's capabilities of computing and data storage via the Internet. We performed a case study to implement the mobile cloud computing framework using Android smart phones and Google App Engine, a popular cloud computing platform. Experimental results demonstrated the feasibility of the proposed mobile cloud computing framework.

  2. Evaluation of pediatric manual wheelchair mobility using advanced biomechanical methods.

    PubMed

    Slavens, Brooke A; Schnorenberg, Alyssa J; Aurit, Christine M; Graf, Adam; Krzak, Joseph J; Reiners, Kathryn; Vogel, Lawrence C; Harris, Gerald F

    2015-01-01

    There is minimal research of upper extremity joint dynamics during pediatric wheelchair mobility despite the large number of children using manual wheelchairs. Special concern arises with the pediatric population, particularly in regard to the longer duration of wheelchair use, joint integrity, participation and community integration, and transitional care into adulthood. This study seeks to provide evaluation methods for characterizing the biomechanics of wheelchair use by children with spinal cord injury (SCI). Twelve subjects with SCI underwent motion analysis while they propelled their wheelchair at a self-selected speed and propulsion pattern. Upper extremity joint kinematics, forces, and moments were computed using inverse dynamics methods with our custom model. The glenohumeral joint displayed the largest average range of motion (ROM) at 47.1° in the sagittal plane and the largest average superiorly and anteriorly directed joint forces of 6.1% BW and 6.5% BW, respectively. The largest joint moments were 1.4% body weight times height (BW × H) of elbow flexion and 1.2% BW × H of glenohumeral joint extension. Pediatric manual wheelchair users demonstrating these high joint demands may be at risk for pain and upper limb injuries. These evaluation methods may be a useful tool for clinicians and therapists for pediatric wheelchair prescription and training.

  3. Evaluation of Pediatric Manual Wheelchair Mobility Using Advanced Biomechanical Methods

    PubMed Central

    Slavens, Brooke A.; Schnorenberg, Alyssa J.; Aurit, Christine M.; Graf, Adam; Krzak, Joseph J.; Reiners, Kathryn; Vogel, Lawrence C.; Harris, Gerald F.

    2015-01-01

    There is minimal research of upper extremity joint dynamics during pediatric wheelchair mobility despite the large number of children using manual wheelchairs. Special concern arises with the pediatric population, particularly in regard to the longer duration of wheelchair use, joint integrity, participation and community integration, and transitional care into adulthood. This study seeks to provide evaluation methods for characterizing the biomechanics of wheelchair use by children with spinal cord injury (SCI). Twelve subjects with SCI underwent motion analysis while they propelled their wheelchair at a self-selected speed and propulsion pattern. Upper extremity joint kinematics, forces, and moments were computed using inverse dynamics methods with our custom model. The glenohumeral joint displayed the largest average range of motion (ROM) at 47.1° in the sagittal plane and the largest average superiorly and anteriorly directed joint forces of 6.1% BW and 6.5% BW, respectively. The largest joint moments were 1.4% body weight times height (BW × H) of elbow flexion and 1.2% BW × H of glenohumeral joint extension. Pediatric manual wheelchair users demonstrating these high joint demands may be at risk for pain and upper limb injuries. These evaluation methods may be a useful tool for clinicians and therapists for pediatric wheelchair prescription and training. PMID:25802860

  4. Wheelchair propulsion efficiency: movement pattern adaptations to speed changes.

    PubMed

    Vanlandewijck, Y C; Spaepen, A J; Lysens, R J

    1994-11-01

    Low mechanical efficiency values in wheelchair propulsion are usually explained on the basis of the supply of force and power generated during the push phase. The purpose of this study is to analyze the movement and muscular activity pattern in handrim wheelchair propulsion, focusing on both the push and recovery phases. Data on cardiorespiratory and propulsion technique parameters were obtained from 40 wheelchair basketball players with extensive experience in wheelchair propulsion in six situations: two exercise levels (60% and 80% of individual VO2peak), and three velocities (1.11, 1.67, and 2.22 m.s-1) with constant power output on a treadmill. A two-factor analysis of variance with repeated measurements was applied with "exercise level" and "speed" as the main factors. A significant effect on gross mechanical efficiency was found when the velocity was increased from 1.67 to 2.22 m.s-1. Decreased mechanical efficiency could be explained by a significant change in the acceleration of the wheelchair-user system during recovery, caused by arm and trunk movements, inducing inertial forces to act on the wheelchair. Consequently, mechanical work increased significantly during the recovery phase. These findings indicate that studies on mechanical efficiency in wheelchair propulsion should not only be focussed on power supply during the push phase, but also on the movement pattern during recovery.

  5. Simulation model of a lever-propelled wheelchair.

    PubMed

    Sasaki, Makoto; Ota, Yuki; Hase, Kazunori; Stefanov, Dimitar; Yamaguchi, Masaki

    2014-01-01

    Wheelchair efficiency depends significantly on the individual adjustment of the wheelchair propulsion interface. Wheelchair prescription involves reconfiguring the wheelchair to optimize it for specific user characteristics. Wheelchair tuning procedure is a complicated task that is performed usually by experienced rehabilitation engineers. In this study, we report initial results from the development of a musculoskeletal model of the wheelchair lever propulsion. Such a model could be used for the development of new advanced wheelchair approaches that allow wheelchair designers and practitioners to explore virtually, on a computer, the effects of the intended settings of the lever-propulsion interface. To investigate the lever-propulsion process, we carried out wheelchair lever propulsion experiments where joint angle, lever angle and three-directional forces and moments applied to the lever were recorded during the execution of defined propulsion motions. Kinematic and dynamic features of lever propulsion motions were extracted from the recorded data to be used for the model development. Five healthy male adults took part in these initial experiments. The analysis of the collected kinematic and dynamic motion parameters showed that lever propulsion is realized by a cyclical three-dimensional motion of upper extremities and that joint torque for propulsion is maintained within a certain range. The synthesized propulsion model was verified by computer simulation where the measured lever-angles were compared with the angles generated by the developed model simulation. Joint torque amplitudes were used to impose the torque limitation to the model joints. The results evidenced that the developed model can simulate successfully basic lever propulsion tasks such as pushing and pulling the lever.

  6. Shoulder pain and time dependent structure in wheelchair propulsion variability.

    PubMed

    Jayaraman, Chandrasekaran; Moon, Yaejin; Sosnoff, Jacob J

    2016-07-01

    Manual wheelchair propulsion places considerable repetitive mechanical strain on the upper limbs leading to shoulder injury and pain. While recent research indicates that the amount of variability in wheelchair propulsion and shoulder pain may be related. There has been minimal inquiry into the fluctuation over time (i.e. time-dependent structure) in wheelchair propulsion variability. Consequently the purpose of this investigation was to examine if the time-dependent structure in the wheelchair propulsion parameters are related to shoulder pain. 27 experienced wheelchair users manually propelled their own wheelchair fitted with a SMARTWheel on a roller at 1.1m/s for 3min. Time-dependent structure of cycle-to-cycle fluctuations in contact angle and inter push time interval was quantified using sample entropy (SampEn) and compared between the groups with/without shoulder pain using non-parametric statistics. Overall findings were, (1) variability observed in contact angle fluctuations during manual wheelchair propulsion is structured (Z=3.15;p<0.05), (2) individuals with shoulder pain exhibited higher SampEn magnitude for contact angle during wheelchair propulsion than those without pain (χ(2)(1)=6.12;p<0.05); and (3) SampEn of contact angle correlated significantly with self-reported shoulder pain (rs (WUSPI) =0.41;rs (VAS)=0.56;p<0.05). It was concluded that the time-dependent structure in wheelchair propulsion may provide novel information for tracking and monitoring shoulder pain. PMID:27134151

  7. Hand Safety

    MedlinePlus

    ... en gatillo See More... Hand Anatomy Hand Safety Fireworks Safety Lawnmower Safety Snowblower safety Pumpkin Carving Gardening ... en gatillo See More... Hand Anatomy Hand Safety Fireworks Safety Lawnmower Safety Snowblower safety Pumpkin Carving Gardening ...

  8. Radial Internal Material Handling System (RIMS) for Circular Habitat Volumes

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Haselschwardt, Sally

    2012-01-01

    A Radial Internal Material Handling System (RIMS) has been developed to service a circular floor area in variable gravity. On planetary surfaces, pressurized human habitable volumes will require a means to carry heavy equipment between various locations within the volume of the habitat, regardless of the partial gravity (Earth, moon, Mars, etc). On the NASA Habitat Demonstration Unit (HDU), a vertical cylindrical volume, it was determined that a variety of heavy items would need to be carried back and forth from deployed locations to the General Maintenance Work Station (GMWS) when in need of repair, and other equipment may need to be carried inside for repairs, such as rover parts and other external equipment. The vertical cylindrical volume of the HDU lent itself to a circular overhead track and hoist system that allows lifting of heavy objects from anywhere in the habitat to any other point in the habitat interior. In addition, the system is able to hand off lifted items to other material handling systems through the side hatches, such as through an airlock. This paper describes the RIMS system which is scalable for application in a variety of circular habitat volumes.

  9. Design considerations for a personalized wheelchair navigation system.

    PubMed

    Ding, Dan; Parmanto, Bambang; Karimi, Hassan A; Roongpiboonsopit, Duangduen; Pramana, Gede; Conahan, Thomas; Kasemsuppakorn, Piyawan

    2007-01-01

    Individuals with mobility impairments such as wheelchair users are often at a disadvantage when traveling to a new place, as their mobility can be easily affected by environmental barriers, and as such, even short trips can be difficult and perhaps impossible. We envision a personalized wheelchair navigation system based on a PDA equipped with wireless Internet access and GPS that can provide adaptive navigation support to wheelchair users in any geographic environment. Requirements, architectures and components of such a system are described in this paper. PMID:18003077

  10. Pacific Rim Partnerships: Alaska's Bold Initiative.

    ERIC Educational Resources Information Center

    Parrett, William H.; Calkins, Annie

    1989-01-01

    Describes the Alaska Sister Schools Network, formed in 1985 to create opportunities for Alaskan students to experience more directly the cultural and economic perspectives of their Pacific Rim neighbors. Network organizers go beyond the "pen-pal" approach to encourage three partnership levels: initial acquaintance, curriculum development, and…

  11. More Material on the Pacific Rim.

    ERIC Educational Resources Information Center

    Seiter, David M.

    1988-01-01

    Highlights a variety of ERIC materials for teaching about the Pacific Rim. Titles include "Teaching about South Korea"; "Bringing Chinese Culture Alive through Language"; "Teaching about Japan"; "Teaching about Korea: Elementary and Secondary Activities"; and "Cultural Differences in Self-Consciousness and Self-Monitoring." (GEA)

  12. Effects of rim thickness on spur gear bending stress

    NASA Technical Reports Server (NTRS)

    Bibel, G. D.; Reddy, S. K.; Savage, M.; Handschuh, R. F.

    1991-01-01

    Thin rim gears find application in high-power, light-weight aircraft transmissions. Bending stresses in thin rim spur gear tooth fillets and root areas differ from the stresses in solid gears due to rim deformations. Rim thickness is a significant design parameter for these gears. To study this parameter, a finite element analysis was conducted on a segment of a thin rim gear. The rim thickness was varied and the location and magnitude of the maximum bending stresses reported. Design limits are discussed and compared with the results of other researchers.

  13. Powered wheelchairs: are we enabling or disabling?

    PubMed

    Beaumont-White, S; Ham, R O

    1997-04-01

    Following the unsuccessful issue of three powered indoor National Health Service (NHS) wheelchairs, a survey was carried out of 40 users in a London wheelchair service to identify the problems with issue and possible areas for improvement to practice. The survey identified improvements that were necessary both from the service and the manufacturers' booklets. The improvements include the issue of written instructions and information to complement verbal instruction given at handover. Such information should be as interesting to read as possible, make use of appropriate language and diagrams (especially in area where English is often not the first language), colour, text and print size to maximise comprehension to these severely disabled users and often their elderly relatives or carers. The importance of the role of the rehabilitation engineer in training the user, giving instruction at handover and annual review are highlighted to ensure that the equipment remains working, suitable and up to date for the individual's needs. Training in interpersonal and communication skills and the importance of recall should also be emphasised. The implementation of the findings should lead to increasing contact with the service by the user, reduction in repair and replacement costs, regular review, correct supply and will therefore enable users to increase their independence with appropriate equipment. PMID:9141127

  14. Reaction kinetics of dolomite rim growth

    NASA Astrophysics Data System (ADS)

    Helpa, V.; Rybacki, E.; Abart, R.; Morales, L. F. G.; Rhede, D.; Jeřábek, P.; Dresen, G.

    2014-04-01

    Reaction rims of dolomite (CaMg[CO3]2) were produced by solid-state reactions at the contacts of oriented calcite (CaCO3) and magnesite (MgCO3) single crystals at 400 MPa pressure, 750-850 °C temperature, and 3-146 h annealing time to determine the reaction kinetics. The dolomite reaction rims show two different microstructural domains. Elongated palisades of dolomite grew perpendicular into the MgCO3 interface with length ranging from about 6 to 41 µm. At the same time, a 5-71 µm wide rim of equiaxed granular dolomite grew at the contact with CaCO3. Platinum markers showed that the original interface is located at the boundary between the granular and palisade-forming dolomite. In addition to dolomite, a 12-80 µm thick magnesio-calcite layer formed between the dolomite reaction rims and the calcite single crystals. All reaction products show at least an axiotactic crystallographic relationship with respect to calcite reactant, while full topotaxy to calcite prevails within the granular dolomite and magnesio-calcite. Dolomite grains frequently exhibit growth twins characterized by a rotation of 180° around one of the equivalent axis. From mass balance considerations, it is inferred that the reaction rim of dolomite grew by counter diffusion of MgO and CaO. Assuming an Arrhenius-type temperature dependence, activation energies for diffusion of CaO and MgO are E a (CaO) = 192 ± 54 kJ/mol and E a (MgO) = 198 ± 44 kJ/mol, respectively.

  15. Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control.

    PubMed

    Huang, Dandan; Qian, Kai; Fei, Ding-Yu; Jia, Wenchuan; Chen, Xuedong; Bai, Ou

    2012-05-01

    This study aims to propose an effective and practical paradigm for a brain-computer interface (BCI)-based 2-D virtual wheelchair control. The paradigm was based on the multi-class discrimination of spatiotemporally distinguishable phenomenon of event-related desynchronization/synchronization (ERD/ERS) in electroencephalogram signals associated with motor execution/imagery of right/left hand movement. Comparing with traditional method using ERD only, where bilateral ERDs appear during left/right hand mental tasks, the 2-D control exhibited high accuracy within a short time, as incorporating ERS into the paradigm hypothetically enhanced the spatiotemoral feature contrast of ERS versus ERD. We also expected users to experience ease of control by including a noncontrol state. In this study, the control command was sent discretely whereas the virtual wheelchair was moving continuously. We tested five healthy subjects in a single visit with two sessions, i.e., motor execution and motor imagery. Each session included a 20 min calibration and two sets of games that were less than 30 min. Average target hit rate was as high as 98.4% with motor imagery. Every subject achieved 100% hit rate in the second set of wheelchair control games. The average time to hit a target 10 m away was about 59 s, with 39 s for the best set. The superior control performance in subjects without intensive BCI training suggested a practical wheelchair control paradigm for BCI users. PMID:22498703

  16. Distal Radius Volar Rim Fracture Fixation Using DePuy-Synthes Volar Rim Plate.

    PubMed

    Kachooei, Amir Reza; Tarabochia, Matthew; Jupiter, Jesse B

    2016-03-01

    Background To assess the results of distal radius fractures with the involvement of the volar rim fixed with the DePuy-Synthes Volar Rim Plate. Case Description We searched for the patients with volar rim fracture and/or volar rim fractures as part of a complex fracture fixed with a volar rim plate. Ten patients met the inclusion criteria: three patients with type 23B3, six patients with type 23C, and one patient with very distal type 23A. The mean follow-up was 14 months (range: 2-26). Fractures healed in all patients. Of the three patients with isolated volar rim fractures (type 23B3), two patients had no detectable deficits in motion. These patients had an average Gartland and Werley score of 9 (range: 2-14). Of the other seven patients (six with type 23C and one with type 23A fracture), three patients healed with full range of motion and four had some deficits in range of motion. Two patients had excellent results, three had good results, and two had fair results using the Gartland and Werley categorical rating. One patient healed with a shortened radius and ulnar impingement requiring a second surgery for ulnar head resection arthroplasty. Literature Review Results after nonoperative treatment of volar rim fractures are not satisfactory and often require subsequent corrective osteotomy. Satisfactory outcomes are achieved when the fragments are well reduced and secured regardless of the device type. Clinical Relevance Volar rim plates give an adequate buttress of the volar radius distal to volar projection of the lunate facet and do not interfere with wrist mobility. Furthermore, the dorsal fragments can be fixed securely through the volar approach eliminating the need for a secondary posterior incision. However, patients should be informed of the potential problems and the need to remove the plate if symptoms develop.

  17. Impact of Surface Type, Wheelchair Weight, and Axle Position on Wheelchair Propulsion by Novice Older Adults

    PubMed Central

    Cowan, Rachel E.; Nash, Mark S.; Collinger, Jennifer L.; Koontz, Alicia M.; Boninger, Michael L.

    2009-01-01

    Objective To examine the impact of surface type, wheelchair weight, and rear axle position on older adult propulsion biomechanics. Design Crossover trial. Setting Biomechanics laboratory. Participants Convenience sample of 53 ambulatory older adults with minimal wheelchair experience (65−87y); men = 20, women = 33. Intervention Participants propelled 4 different wheelchair configurations over 4 surfaces; tile, low carpet, high carpet, and an 8% grade ramp (surface, chair order randomized). Chair configurations included: (1) unweighted chair with an anterior axle position, (2) 9.05kg weighted chair with an anterior axle position, (3) unweighted chair with a posterior axle position (Δ0.08m), and (4) 9.05kg weighted chair with a posterior axle position (Δ0.08m). Weight was added to a titanium folding chair, simulating the weight difference between very light and depot wheelchairs. Instrumented wheels measured propulsion kinetics. Main Outcome Measures Average self-selected velocity, push-frequency, stroke length, peak resultant and tangential force. Results Velocity decreased as surface rolling resistance or chair weight increased. Peak resultant and tangential forces increased as chair weight increased, surface resistance increased, and with a posterior axle position. The effect of a posterior axle position was greater on high carpet and the ramp. The effect of weight was constant, but more easily observed on high carpet and ramp. The effects of axle position and weight were independent of one another. Conclusion Increased surface resistance decreases self-selected velocity and increases peak forces. Increased weight decreases self-selected velocity and increases forces. Anterior axle positions decrease forces, more so on high carpet. Effects of weight and axle position are independent. Greatest reductions in peak forces occur in lighter chairs with anterior axle positions. PMID:19577019

  18. WISDOM: wheelchair inertial sensors for displacement and orientation monitoring

    NASA Astrophysics Data System (ADS)

    Pansiot, J.; Zhang, Z.; Lo, B.; Yang, G. Z.

    2011-10-01

    Improved wheelchair design in recent years has significantly increased the mobility of people with disabilities, which has also enhanced the competitive advantage of wheelchair sports. For the latter, detailed assessment of biomechanical factors influencing individual performance and team tactics requires real-time wireless sensing and data modelling. In this paper, we propose the use of a miniaturized wireless wheel-mounted inertial sensor for wheelchair motion monitoring and tracking in an indoor sport environment. Based on a combined use of 3D microelectromechanical system (MEMS) gyroscopes and 2D MEMS accelerometers, the proposed system provides real-time velocity, heading, ground distance covered and motion trajectory of the wheelchair across the sports court. The proposed system offers a number of advantages compared to existing platforms in terms of size, weight and ease of installation. Beyond sport applications, it also has important applications for training and rehabilitation for people with disabilities.

  19. Re-embodiment: incorporation through embodied learning of wheelchair skills.

    PubMed

    Standal, Øyvind F

    2011-05-01

    In this article, the notion of re-embodiment is developed to include the ways that rearrangement and renewals of body schema take place in rehabilitation. More specifically, the embodied learning process of acquiring wheelchair skills serves as a starting point for fleshing out a phenomenological understanding of incorporation of assistive devices. By drawing on the work of Merleau-Ponty, the reciprocal relation between acquisition habits and incorporation of instruments is explored in relation to the learning of wheelchair skills. On the basis of this, it is argued that through learning to manoeuvre the wheelchair, a reversible relation between is established between the moving body-subject and the wheelchair. In this sense, re-embodiment involves a gestalt switch from body image to body schema. PMID:20865328

  20. Using Virtual Reality to Dynamically Setting an Electrical Wheelchair

    NASA Astrophysics Data System (ADS)

    Dir, S.; Habert, O.; Pruski, A.

    2008-06-01

    This work uses virtual reality to find or refine in a recurring way the best adequacy between a person with physically disability and his electrical wheelchair. A system architecture based on "Experiment→Analyze and decision-making→Modification of the wheelchair" cycles is proposed. This architecture uses a decision-making module based on a fuzzy inference system which has to be parameterized so that the system converges quickly towards the optimal solution. The first challenge consists in computing criteria which must represent as well as possible particular situations that the user meets during each navigation experiment. The second challenge consists in transforming these criteria into relevant modifications about the active or non active functionalities or into adjustment of intrinsic setting of the wheelchair. These modifications must remain most stable as possible during the successive experiments. Objectives are to find the best wheelchair to give a beginning of mobility to a given person with physically disability.

  1. A Driving Behaviour Model of Electrical Wheelchair Users

    PubMed Central

    Hamam, Y.; Djouani, K.; Daachi, B.; Steyn, N.

    2016-01-01

    In spite of the presence of powered wheelchairs, some of the users still experience steering challenges and manoeuvring difficulties that limit their capacity of navigating effectively. For such users, steering support and assistive systems may be very necessary. To appreciate the assistance, there is need that the assistive control is adaptable to the user's steering behaviour. This paper contributes to wheelchair steering improvement by modelling the steering behaviour of powered wheelchair users, for integration into the control system. More precisely, the modelling is based on the improved Directed Potential Field (DPF) method for trajectory planning. The method has facilitated the formulation of a simple behaviour model that is also linear in parameters. To obtain the steering data for parameter identification, seven individuals participated in driving the wheelchair in different virtual worlds on the augmented platform. The obtained data facilitated the estimation of user parameters, using the ordinary least square method, with satisfactory regression analysis results. PMID:27148362

  2. A Driving Behaviour Model of Electrical Wheelchair Users.

    PubMed

    Onyango, S O; Hamam, Y; Djouani, K; Daachi, B; Steyn, N

    2016-01-01

    In spite of the presence of powered wheelchairs, some of the users still experience steering challenges and manoeuvring difficulties that limit their capacity of navigating effectively. For such users, steering support and assistive systems may be very necessary. To appreciate the assistance, there is need that the assistive control is adaptable to the user's steering behaviour. This paper contributes to wheelchair steering improvement by modelling the steering behaviour of powered wheelchair users, for integration into the control system. More precisely, the modelling is based on the improved Directed Potential Field (DPF) method for trajectory planning. The method has facilitated the formulation of a simple behaviour model that is also linear in parameters. To obtain the steering data for parameter identification, seven individuals participated in driving the wheelchair in different virtual worlds on the augmented platform. The obtained data facilitated the estimation of user parameters, using the ordinary least square method, with satisfactory regression analysis results. PMID:27148362

  3. Influence of Handrim Wheelchair Propulsion Training in Adolescent Wheelchair Users, A Pilot Study

    PubMed Central

    Dysterheft, Jennifer L.; Rice, Ian M.; Rice, Laura A.

    2015-01-01

    Ten full-time adolescent wheelchair users (ages 13–18) completed a total of three propulsion trials on carpet and tile surfaces, at a self-selected velocity, and on a concrete surface, at a controlled velocity. All trials were performed in their personal wheelchair with force and moment sensing wheels attached bilaterally. The first two trials on each surface were used as pre-intervention control trials. The third trial was performed after receiving training on proper propulsion technique. Peak resultant force, contact angle, stroke frequency, and velocity were recorded during all trials for primary analysis. Carpet and tile trials resulted in significant increases in contact angle and peak total force with decreased stroke frequency after training. During the velocity controlled trials on concrete, significant increases in contact angle occurred, as well as decreases in stroke frequency after training. Overall, the use of a training video and verbal feedback may help to improve short-term propulsion technique in adolescent wheelchair users and decrease the risk of developing upper limb pain and injury. PMID:26042217

  4. Influence of handrim wheelchair propulsion training in adolescent wheelchair users, a pilot study.

    PubMed

    Dysterheft, Jennifer L; Rice, Ian M; Rice, Laura A

    2015-01-01

    Ten full-time adolescent wheelchair users (ages 13-18) completed a total of three propulsion trials on carpet and tile surfaces, at a self-selected velocity, and on a concrete surface, at a controlled velocity. All trials were performed in their personal wheelchair with force and moment sensing wheels attached bilaterally. The first two trials on each surface were used as pre-intervention control trials. The third trial was performed after receiving training on proper propulsion technique. Peak resultant force, contact angle, stroke frequency, and velocity were recorded during all trials for primary analysis. Carpet and tile trials resulted in significant increases in contact angle and peak total force with decreased stroke frequency after training. During the velocity controlled trials on concrete, significant increases in contact angle occurred, as well as decreases in stroke frequency after training. Overall, the use of a training video and verbal feedback may help to improve short-term propulsion technique in adolescent wheelchair users and decrease the risk of developing upper limb pain and injury.

  5. 9. CRATER RIM DRIVE NEAR THURSTON LAVA TUBE. VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. CRATER RIM DRIVE NEAR THURSTON LAVA TUBE. VIEW OF CRENELATED LAVA STONE GUARD WALL AND ROCK CUT OPPOSITE. NOTE CATTLE GUARD ACROSS ROAD PARTIALLY PAVED OVER. - Crater Rim Drive, Volcano, Hawaii County, HI

  6. Rim-spoke composite flywheels: Stress and vibration analysis

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Kiraly, L. J.

    1976-01-01

    Elementary relations are described to determine the material utilization efficiency of a thin wall rim composite flywheel over other configurations. An algorithm is generated for the automatic selection of the optimum composite material for a given thin rim flywheel environment. Subsequently, the computer program NASTRAN is used to perform a detailed stress and vibration analysis of thin wall cylindrical shell rim spoke, single rim and multirim composite flywheels for a specific application.

  7. Yaw rate and linear velocity stabilized manual wheelchair.

    PubMed

    Seifert, Sara J; Dahlstrom, Robert J; Condon, John P; Hedin, Daniel S

    2013-01-01

    We present the development of a prototype novel low-power, inexpensive stability control system for manual wheelchairs. Manual wheelchairs, while providing the ability to maneuver in relatively small indoor spaces, have a high center of gravity making them prone to tipping. Additionally, they can easily slide on sloped surfaces and can even spin and tip when attempting to turn or brake too quickly. When used on ramps and in outdoor environments where the surface is rarely perfectly flat (slopes greater than 1∶20 (5%) are common), wheelchair users can easily encounter potentially dangerous situations. The design and evaluation of an accident prevention system for independent manual wheelchair users that increases independence by enabling mobility with greater confidence and safety is described. The system does not limit a wheelchair user's ability to manually brake, rather, if the system detects that the wheelchair is out of control, braking force will be added by the system to either one or both wheels. The prototype utilized inexpensive bicycle technologies for the wheel brake and electrical power generator assemblies. Custom servos were designed along with custom electronics and firmware in the prototype to evaluate performance. The goal of the project was to derive specifications for a control and actuation system that utilizes inexpensive bicycle components in this cost-sensitive application. The design is detailed and the final specifications provided. PMID:24109828

  8. Guidelines for safe transportation of children in wheelchairs.

    PubMed

    DiGaudio, K M; Msall, M E

    1991-06-01

    Advocacy efforts by health care professionals have prompted state legislative changes mandating the use of car seats and seat belts by children. These initiatives have greatly improved the level of safety in transportation of nonhandicapped children. Despite these positive changes, the transportation needs of nonambulatory children have not been addressed. In addition, implementation of Public Law 99-457 will result in larger numbers of young children with motor impairments requiring transportation to preschool early intervention programs. This study sought to describe how safely children in wheelchairs are transported. Observations of subjects were made as they were transported by their families or agencies at a residential summer camp, a preschool program for children with developmental disabilities, and a school for children with cerebral palsy. A safety score system was developed based on laboratory studies conducted on wheelchair restraint systems. This observation tool described the position of the wheelchair in the vehicle, the occupant restraint system, and the wheelchair restraint system. These structured observations revealed inadequate safety measures. Comparisons of safety scores of subjects transported by families with those transported by agencies were not found to have statistically significant differences. The findings of this study demonstrate a gap between minimal safety standards in wheelchair transportation and actual observed practices. In an effort to promote safe transportation practices of children regardless of their developmental differences, we present guidelines for health care providers for monitoring safe wheelchair practices in family, school, and community settings.

  9. Acceptance and meanings of wheelchair use in senior stroke survivors.

    PubMed

    Barker, Donna J; Reid, Denise; Cott, Cheryl

    2004-01-01

    The purpose of this qualitative study was to gain understanding of the lived experience of senior stroke survivors who used prescribed wheelchairs in their homes and communities. The study involved semistructured, in-depth interviews that were conducted with 10 participants, ages 70 to 80 years old, who had used a wheelchair for a mean of 5.6 years. A constant comparative inductive method of analysis was performed. Three different categories of acceptance of wheelchair use were identified; reluctant acceptance, grateful acceptance, and internal acceptance. Increased mobility, varied social response, and loss of some valued roles were common to all three wheelchair acceptance categories. Aspects of level of burden, freedom, and spontaneity varied in degree among the three acceptance categories. As the wheelchair provided opportunity for increased continuity in the lives of these stroke survivors, it appeared to be accepted more fully and viewed more positively. Prestroke lifestyle and values need to be carefully considered in order to maximize acceptance of wheelchair use among senior stroke survivors.

  10. Wheelchair rider risk in motor vehicles: a technical note.

    PubMed

    Shaw, G

    2000-01-01

    A better understanding of the risk involved in riding different sizes and types of motor vehicles is required to make informed decisions regarding a reasonable level of protection for wheelchair riders. Wheelchair rider accident information that can be used to estimate risk is quite limited. This paper reviewed the resources available, including the National Electronic Injury Surveillance System database. Motor vehicle accident data for the general public were analyzed in order to better characterize wheelchair rider risk. Using the National Safety Council annual transportation mode fatality rates and the (inverse) relationship of vehicle mass and occupant fatality rate, fatality rates for vehicles that transport wheelchair riders (minivans, vans, paratransit vans, and small and large buses) were estimated. Despite the large margins of error that must be assumed for accident data and the conclusions drawn from it, the available information suggests that 1) the majority of wheelchair rider injuries could be prevented by providing protection for abrupt vehicle maneuvers; 2) the type, size, and mass of the vehicle have a substantial effect on the fatality rate, although this effect decreases for heavier (<3,000 kg) vehicles; and 3) wheelchair riders who cannot properly use tiedown and occupant restraint systems or who are frail would face a lower risk of injury if transported in larger vehicles.

  11. Development and pilot testing of a kneeling ultralight wheelchair design.

    PubMed

    Mattie, Johanne L; Leland, Danny; Borisoff, Jaimie F

    2015-01-01

    "Dynamic wheeled mobility" offers "on the fly" seating adjustments for wheelchair users such that various activities performed throughout the day can be matched by an appropriate seat position. While this has benefits for user participation and health, the added weight in existing dynamic wheelchairs may impact the user's ability to transport the frame, e.g. into cars. Other dynamic features to enable more participation avenues are also desirable. This paper outlines the development of a "kneeling" ultralight wheelchair design that offers dynamic wheeled mobility functionality at a weight that is comparable to many existing ultralight wheelchairs. In addition, the wheelchair's kneeling function allows a lowered seat position to facilitate low-to-the-ground tasks such as floor transfers and other activities where sustained low level reaching may be required (e.g. playing with children, changing a tire, etc.). This paper also describes the development and pilot testing of an end user evaluation protocol designed to validate the wheelchair's functionality and performance. Successful realization and commercialization of the technology would offer a novel product choice for people with mobility disabilities, and that may support daily activities, health, improved quality of life, and greater participation in the community. PMID:26737420

  12. Cardiorespiratory fitness and muscular strength of wheelchair users.

    PubMed Central

    Davis, G. M.; Kofsky, P. R.; Kelsey, J. C.; Shephard, R. J.

    1981-01-01

    The classification of lower-limb disabilities is commonly based on the site of the spinal cord lesion or the amount of functional muscle. Another important variable in assessing wheelchair users is their ability to carry out the activities of daily living. The cardiorespiratory fitness of those with lower-limb disabilities is usually assessed with arm-ergometry and wheelchair tests, each of which has some advantages. Muscle strength and endurance are also important aspects of the disabled person's ability to function. Fitness is often poor in the disabled, and normal wheelchair use does not seem to prove an adequate training stimulus. Exercise with an arm ergometer and with pulleys and participation in vigorous wheelchair sports can improve physical condition. Participation in exercise programs should be based on the results of a fitness assessment and on the level of the spinal cord lesion in those with paraplegia. Progression in such programs should be gradual to ensure that the exerciser does not become discouraged and drop out of classes before fitness is increased. Data on wheelchair athletes suggest that, with persistence, many individuals in wheelchairs can adjust relatively well to their disabilities. Images FIG. 1 FIG. 2 PMID:6459841

  13. Aerobic capacity and anaerobic threshold of wheelchair basketball players.

    PubMed

    Rotstein, A; Sagiv, M; Ben-Sira, D; Werber, G; Hutzler, J; Annenburg, H

    1994-03-01

    This study evaluated the aerobic capacity and anaerobic threshold of national level Israeli wheelchair basketball players. Subjects were tested working on a wheelchair rolling on a motor driven treadmill and on an arm cycle ergometer. Metabolic and cardiopulmonary parameters were measured during graded maximal exercise tests. Blood lactic acid (LA) concentration was measured in the intervals between loads during the test on the wheelchair. Heart rate (HR) and % heart rate reserve (%HRR) corresponding to the anaerobic threshold (4 mM blood LA) were evaluated while working on the wheelchair rolling on a motor driven treadmill. While working on the wheelchair the following peak exercise values were obtained: VO2 = 24.7 ml.kg/min, VE = 92.09 l/min HR = 181.5 b/min and R = 1.22. Values corresponding to the anaerobic threshold were found to be, HR = 139 b/min and %HRR = 57.02. Low correlations were obtained between peak exercise VO2 and VE measured while working on the wheelchair and those measured with arm cycle ergometer (r = 0.57 p = 0.137 and r = 0.4 p = 0.233 respectively). As athletes, subjects in the present study may be classified as having a low aerobic capacity and anaerobic threshold. It is also concluded that the ergometer type may have an important influence on test results.

  14. Drive Control Scheme of Electric Power Assisted Wheelchair Based on Neural Network Learning of Human Wheelchair Operation Characteristics

    NASA Astrophysics Data System (ADS)

    Tanohata, Naoki; Seki, Hirokazu

    This paper describes a novel drive control scheme of electric power assisted wheelchairs based on neural network learning of human wheelchair operation characteristics. “Electric power assisted wheelchair” which enhances the drive force of the operator by employing electric motors is expected to be widely used as a mobility support system for elderly and disabled people. However, some handicapped people with paralysis of the muscles of one side of the body cannot maneuver the wheelchair as desired because of the difference in the right and left input force. Therefore, this study proposes a neural network learning system of such human wheelchair operation characteristics and a drive control scheme with variable distribution and assistance ratios. Some driving experiments will be performed to confirm the effectiveness of the proposed control system.

  15. Rim instability of bursting thin smectic films

    NASA Astrophysics Data System (ADS)

    Trittel, Torsten; John, Thomas; Tsuji, Kinko; Stannarius, Ralf

    2013-05-01

    The rupture of thin smectic bubbles is studied by means of high speed video imaging. Bubbles of centimeter diameter and film thicknesses in the nanometer range are pierced, and the instabilities of the moving rim around the opening hole are described. Scaling laws describe the relation between film thickness and features of the filamentation process of the rim. A flapping motion of the retracting smectic film is assumed as the origin of the observed filamentation instability. A comparison with similar phenomena in soap bubbles is made. The present experiments extend studies on soap films [H. Lhuissier and E. Villermaux, Phys. Rev. Lett. 103, 054501 (2009), 10.1103/PhysRevLett.103.054501] to much thinner, uniform films of thermotropic liquid crystals.

  16. Estimation of wheelchair states during movement using WELL-SphERE for evaluation of power wheelchair safety.

    PubMed

    Komoto, Kengo; Suzurikawa, Jun

    2013-01-01

    To comprehensively evaluate the usability and safety of a power wheelchair (PWC), monitoring multimodal data related to the PWC in a real environment is crucial. In most studies exploring actual wheelchair conditions, modification of PWCs has been required. Especially modification of controlling circuits aiming for measurement of joystick operation may lead to controller malfunction and thus increase safety risk. It is essential, therefore, to ensure the safety of PWC users during experiments so that they can measure PWC-related data with their own wheelchairs. To achieve this aim, we developed a recording device that is easily installed on PWCs without any electronic modifications. The device, called a "WELL-SphERE," has sensing units that can be attached to PWCs a data management unit that can store and transfer measurement data. Here, we focused on joystick operation logged by the system. Seven participants were pre-tested to examine the characteristics of logged operations during runs through four test courses. Subsequently, all participants completed a questionnaire regarding the difficulty of the test courses. From these results, we classified the logged operations into four categories of "wheelchair states." Two participants--a novice driver and a mature driver--were also evaluated to verify the accuracy of the estimated wheelchair states. The accuracies of the estimates by the mature and novice driver were 98.8% and 89.0%, respectively. The wheelchair states for both participants showed characteristic patterns. Therefore, the wheelchair states estimated with the data logged using WELL-SphERE are valid indicators of the wheelchair conditions during movement.

  17. Riding the Rim of 'Endurance' (polar)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This polar-projection view was created from navigation camera images that NASA's Mars Exploration Rover Opportunity acquired on sol 103 (May 8, 2004). Opportunity traversed approximately 13 meters (about 43 feet) farther south along the eastern rim of 'Endurance Crater' before reaching the beginning of the 'Karatepe' area. Scientists believe this layered band of rock may be a good place to begin studying Endurance because it is less steep and more approachable than the rest of the crater's rocky outcrops.

  18. Crater Rim Path, Sol 1,215

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The route followed by NASA's Mars Exploration Rover Opportunity during its exploration partway around the rim of Victoria Crater is marked on this map. The rover first reached the edge of the crater on it's 951st Martian day, or sol (Sept. 26, 2006). This map shows travels through sol 1,215 (June 24, 2007). The underlying image is from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter.

  19. The Rocky Road to the Crater Rim

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the panoramic camera on the Mars Exploration Rover Spirit shows the rocky road the rover traversed to reach its current position 16 meters (52 feet) away from the rim of the crater called 'Bonneville.' The terrain here slopes upward about five degrees. To the upper right is the rock dubbed 'Hole Point,' which is about 60 centimeters (two feet) across. This image was taken on the 63rd martian day, or sol, of Spirit's mission.

  20. Rim Sim: A Role-Play Simulation

    USGS Publications Warehouse

    Barrett, Robert C.; Frew, Suzanne L.; Howell, David G.; Karl, Herman A.; Rudin, Emily B.

    2003-01-01

    Rim Sim is a 6-hour, eight-party negotiation that focuses on creating a framework for the long-term disaster-recovery efforts. It involves a range of players from five countries affected by two natural disasters: a typhoon about a year ago and an earthquake about 6 months ago. The players are members of an International Disaster Working Group (IDWG) that has been created by an international commission. The IDWG has been charged with drawing up a framework for managing two issues: the reconstruction of regionally significant infrastructure and the design of a mechanism for allocating funding to each country for reconstruction of local infrastructure and ongoing humanitarian needs. The first issue will involve making choices among five options (two harbor options, two airport options, and one rail-line option), each of which will have three levels at which to rebuild. The second issue will involve five starting-point options. Participants are encouraged to invent other options for both issues. The goal of Rim Sim is to raise questions about traditional approaches to disaster-preparedness planning and reconstruction efforts in an international setting, in this case the Pacific Rim. Players must confront the reverberating effects of disasters and the problems of using science and technical information in decisionmaking, and are introduced to a consensus-building approach emphasizing face-to-face dialog and multinational cooperation in dealing with humanitarian concerns, as well as long-term efforts to reconstruct local and regional infrastructure. The Rim Sim simulation raises four key points: ripple effects of disasters, role of science, multiparty negotiation, and building personal relationships.

  1. The Articulated Alar Rim Graft: Reengineering the Conventional Alar Rim Graft for Improved Contour and Support.

    PubMed

    Ballin, Annelyse C; Kim, Haena; Chance, Elizabeth; Davis, Richard E

    2016-08-01

    Surgical refinement of the wide nasal tip is challenging. Achieving an attractive, slender, and functional tip complex without destabilizing the lower nasal sidewall or deforming the contracture-prone alar rim is a formidable task. Excisional refinement techniques that rely upon incremental weakening of wide lower lateral cartilages (LLC) often destabilize the tip complex and distort tip contour. Initial destabilization of the LLC is usually further exacerbated by "shrink-wrap" contracture, which often leads to progressive cephalic retraction of the alar margin. The result is a misshapen tip complex accentuated by a conspicuous and highly objectionable nostril deformity that is often very difficult to treat. The "articulated" alar rim graft (AARG) is a modification of the conventional rim graft that improves treatment of secondary alar rim deformities, including postsurgical alar retraction (PSAR). Unlike the conventional alar rim graft, the AARG is sutured to the underlying tip complex to provide direct stationary support to the alar margin, thereby enhancing graft efficacy. When used in conjunction with a well-designed septal extension graft (SEG) to stabilize the central tip complex, lateral crural tensioning (LCT) to tighten the lower nasal sidewalls and minimize soft-tissue laxity, and lysis of scar adhesions to unfurl the retracted and scarred nasal lining, the AARG can eliminate PSAR in a majority of patients. The AARG is also highly effective for prophylaxis against alar retraction and in the treatment of most other contour abnormalities involving the alar margin. Moreover, the AARG requires comparatively little graft material, and complications are rare. We present a retrospective series of 47 consecutive patients treated with the triad of AARG, SEG, and LCT for prophylaxis and/or treatment of alar rim deformities. Outcomes were favorable in nearly all patients, and no complications were observed. We conclude the AARG is a simple and effective method for

  2. The Inner Rim in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Flock, Mario; Turner, Neal J.

    2016-10-01

    Many stars host planets orbiting within one astronomical unit (AU). These close planets origins are a mystery that motivates investigating protoplanetary disks central regions.A key factor governing the conditions near the star is the silicate sublimation front, which largely determines where the starlight is absorbed, and which is often called the inner rim. We present the first radiation hydrodynamical modeling of the sublimation front in the disks around the young intermediate-mass stars called Herbig Ae stars. The models are axisymmetric, and include starlight heating, silicate grains sublimating and condensing to equilibrium at the local, timedependent temperature and density, and accretion stresses parametrizing the results of MHD magneto-rotational turbulence models.The results show for the first time the dynamical stability of the rim. Passing the model disks into Monte Carlo radiative transfer calculations allows us to directly compare with observational constraints. The inner rim has a substantial radial extent, corresponding to several disk scale heights. A pressure maximum develops at the position of thermal ionization at temperatures about 1000 K. The pressure maximum is capable of halting solid pebbles radial drift and concentrating them in a zone where temperatures are sufficiently high for annealing to form crystalline silicates.

  3. Quantification of activity during wheelchair basketball and rugby at the National Veterans Wheelchair Games: A pilot study.

    PubMed

    Sporner, Michelle L; Grindle, Garrett G; Kelleher, Annmarie; Teodorski, Emily E; Cooper, Rosemarie; Cooper, Rory A

    2009-09-01

    To date, no published data exists on distances and speeds traveled by rugby or basketball players during game play. The purpose of this study was to provide quantitative information of selected characteristics of wheelchair basketball and rugby game play. A miniaturized data logger was used to collect the distance traveled, average velocity, activity time, and number of starts and stops during basketball and rugby games. Participants were recruited prior to wheelchair basketball and rugby tournaments during the 2007 and 2008 National Veterans Wheelchair Games. Inclusion criteria were age 18 years or older and been participating in wheelchair basketball or rugby. The wheelchair rugby athletes on average traveled 2364.78 +/- 956.35 meters at 1.33 +/- 0.25 m/sec with 242.61 +/- 80.31 stops and starts in 29.98 +/- 11.79 min of play per game. The wheelchair basketball athletes on average traveled 2679.52 +/- 1103.66 m at 1.48 +/- 0.13 m/sec with 239.78 +/- 60.61 stops and starts in 30.28 +/- 9.59 min of play per game. Previous research has not reported basketball or rugby game play variables such as these, making this data set unique. The information could be used by players and coaches to create training protocols to better prepare for game conditions.

  4. Accessibilities of Wheelchair Users to Cross the Gaps and Steps between Platforms and Trains

    NASA Astrophysics Data System (ADS)

    Hashizume, Tsutomu; Yoneda, Ikuo; Kitagawa, Hiroshi; Fujisawa, Shoichiro; Sueda, Osamu

    Gaps and steps between platforms and trains reduce the accessibility and mobility of people with wheelchairs in railway transportations. Using an experimental platform, the observations are performed how gaps and steps influence their capabilities for manual wheelchair or electric powered wheelchair users with spinal cord injury. A quantity of Normalized Driving Force (NDF) is introduced to evaluate the manual wheelchair user's abilities in the case of getting on or off the trains. Three types of electric powered wheelchairs are also tested under the same experimental conditions as the manual wheelchair. The dynamic wheelchair driving force is measured by using a torque meter equipped on a wheelchair to analyze the required force when getting on the trains. To improve practical accessibility of such people, an assistive device for boarding the trains is designed and its effect is verified.

  5. Respondent driven sampling of wheelchair users: A lack of traction?

    PubMed Central

    Bourke, John A.; Schluter, Philip J.; Hay-Smith, E. Jean C.; Snell, Deborah L.

    2016-01-01

    Background: Internationally, wheelchair users are an emerging demographic phenomenon, due to their increased prevalence and rapidly increasing life-span. While having significant healthcare implications, basic robust epidemiological information about wheelchair users is often lacking due, in part, to this population’s ‘hidden’ nature. Increasingly popular in epidemiological research, Respondent Driven Sampling (RDS) provides a mechanism for generating unbiased population-based estimates for hard-to-reach populations, overcoming biases inherent within other sampling methods. This paper reports the first published study to employ RDS amongst wheelchair users. Methods: Between October 2015 and January 2016, a short, successfully piloted, internet-based national survey was initiated. Twenty seeds from diverse organisations were invited to complete the survey then circulate it to peers within their networks following a well-defined protocol. A predetermined reminder protocol was triggered when seeds or their peers failed to respond. All participants were entered into a draw for an iPad. Results: Overall, 19 people participated (nine women); 12 initial seeds, followed by seven second-wave participants arising from four seeds . Completion time for the survey ranged between 7 and 36 minutes. Despite repeated reminders, no further people were recruited. Discussion: While New Zealand wheelchair user numbers are unknown, an estimated 14% of people have physical impairments that limited mobility. The 19 respondents generated from adopting the RDS methodology here thus represents a negligible fraction of wheelchair users in New Zealand, and an insufficient number to ensure equilibrium required for unbiased analyses. While successful in other hard-to-reach populations, applying RDS methodology to wheelchair users requires further consideration. Formative research exploring areas of network characteristics, acceptability of RDS, appropriate incentive options, and seed

  6. Respondent driven sampling of wheelchair users: A lack of traction?

    PubMed Central

    Bourke, John A.; Schluter, Philip J.; Hay-Smith, E. Jean C.; Snell, Deborah L.

    2016-01-01

    Background: Internationally, wheelchair users are an emerging demographic phenomenon, due to their increased prevalence and rapidly increasing life-span. While having significant healthcare implications, basic robust epidemiological information about wheelchair users is often lacking due, in part, to this population’s ‘hidden’ nature. Increasingly popular in epidemiological research, Respondent Driven Sampling (RDS) provides a mechanism for generating unbiased population-based estimates for hard-to-reach populations, overcoming biases inherent within other sampling methods. This paper reports the first published study to employ RDS amongst wheelchair users. Methods: Between October 2015 and January 2016, a short, successfully piloted, internet-based national survey was initiated. Twenty seeds from diverse organisations were invited to complete the survey then circulate it to peers within their networks following a well-defined protocol. A predetermined reminder protocol was triggered when seeds or their peers failed to respond. All participants were entered into a draw for an iPad. Results: Overall, 19 people participated (nine women); 12 initial seeds, followed by seven second-wave participants arising from four seeds . Completion time for the survey ranged between 7 and 36 minutes. Despite repeated reminders, no further people were recruited. Discussion: While New Zealand wheelchair user numbers are unknown, an estimated 14% of people have physical impairments that limited mobility. The 19 respondents generated from adopting the RDS methodology here thus represents a negligible fraction of wheelchair users in New Zealand, and an insufficient number to ensure equilibrium required for unbiased analyses. While successful in other hard-to-reach populations, applying RDS methodology to wheelchair users requires further consideration. Formative research exploring areas of network characteristics, acceptability of RDS, appropriate incentive options, and seed

  7. Relationship between Functional Classification Levels and Anaerobic Performance of Wheelchair Basketball Athletes

    ERIC Educational Resources Information Center

    Molik, Bartosz; Laskin, James J.; Kosmol, Andrzej; Skucas, Kestas; Bida, Urszula

    2010-01-01

    Wheelchair basketball athletes are classified using the International Wheelchair Basketball Federation (IWBF) functional classification system. The purpose of this study was to evaluate the relationship between upper extremity anaerobic performance (AnP) and all functional classification levels in wheelchair basketball. Ninety-seven male athletes…

  8. Aerobic, Anaerobic, and Skill Performance with Regard to Classification in Wheelchair Rugby Athletes

    ERIC Educational Resources Information Center

    Morgulec-Adamowicz, Natalia; Kosmol, Andrzej; Molik, Bartosz; Yilla, Abu B.; Laskin, James J.

    2011-01-01

    The purpose of the study was to examine the sport-specific performance of wheelchair rugby players with regard to their classification. A group of 30 male athletes from the Polish Wheelchair Rugby League participated in the study. The seven International Wheelchair Rugby Federation classes were collapsed into four groups. Standardized measures of…

  9. The Role of Parents and Caregivers in Providing Safe Transportation for Occupants Seated in Wheelchairs

    ERIC Educational Resources Information Center

    Schneider, Lawrence W.; Manary, Miriam; Bertocci, Gina

    2007-01-01

    The responsibility for providing safe transportation for travelers seated in wheelchairs is shared by many stakeholders, including wheelchair and tiedown/restraint manufacturers, vehicle modifiers and equipment installers, transit providers, rehabilitation technology suppliers, wheelchair/seating clinicians, and even informed and responsible…

  10. 49 CFR 37.91 - Wheelchair locations and food service on intercity rail trains.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Wheelchair locations and food service on intercity... Entities § 37.91 Wheelchair locations and food service on intercity rail trains. (a) As soon as practicable... on each train a number of spaces— (1) To park wheelchairs (to accommodate individuals who wish...

  11. Wheelchair Use among Community-Dwelling Older Adults: Prevalence and Risk Factors in a National Sample

    ERIC Educational Resources Information Center

    Clarke, Philippa; Colantonio, Angela

    2005-01-01

    Older adults are the largest group of wheelchair users yet there are no peer-reviewed studies on the national profile of older wheelchair users in Canada. We investigated the characteristics of wheelchair users in a national sample of community-dwelling older adults from the Canadian Study of Health and Aging (CSHA-2). Questions on the use of…

  12. 14 CFR 382.65 - What are the requirements concerning on-board wheelchairs?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-board wheelchairs? 382.65 Section 382.65 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... TRAVEL Accessibility of Aircraft § 382.65 What are the requirements concerning on-board wheelchairs? (a...-board wheelchair. The Aerospatiale/Aeritalia ATR-72 and the British Aerospace Advanced Turboprop...

  13. 49 CFR 37.91 - Wheelchair locations and food service on intercity rail trains.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Wheelchair locations and food service on intercity... Entities § 37.91 Wheelchair locations and food service on intercity rail trains. (a) As soon as practicable... on each train a number of spaces— (1) To park wheelchairs (to accommodate individuals who wish...

  14. 14 CFR 382.65 - What are the requirements concerning on-board wheelchairs?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-board wheelchairs? 382.65 Section 382.65 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... TRAVEL Accessibility of Aircraft § 382.65 What are the requirements concerning on-board wheelchairs? (a...-board wheelchair. The Aerospatiale/Aeritalia ATR-72 and the British Aerospace Advanced Turboprop...

  15. 49 CFR 37.91 - Wheelchair locations and food service on intercity rail trains.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... on each train a number of spaces— (1) To park wheelchairs (to accommodate individuals who wish to... providing intercity rail service shall provide on each train a number of spaces— (1) To park wheelchairs (to... providing intercity rail service may not provide more than two spaces to park wheelchairs nor more than...

  16. 49 CFR 37.91 - Wheelchair locations and food service on intercity rail trains.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Wheelchair locations and food service on intercity... Entities § 37.91 Wheelchair locations and food service on intercity rail trains. (a) As soon as practicable... on each train a number of spaces— (1) To park wheelchairs (to accommodate individuals who wish...

  17. 49 CFR 37.91 - Wheelchair locations and food service on intercity rail trains.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Wheelchair locations and food service on intercity... Entities § 37.91 Wheelchair locations and food service on intercity rail trains. (a) As soon as practicable... on each train a number of spaces— (1) To park wheelchairs (to accommodate individuals who wish...

  18. Shoulder pain: a comparison of wheelchair basketball players with trunk control and without trunk control.

    PubMed

    Yildirim, Necmiye Un; Comert, Esra; Ozengin, Nuriye

    2010-01-01

    The purpose of this study was to compare shoulder pain between wheelchair basketball players with trunk control and wheelchair basketball players without trunk control. Players were evaluated according the International Wheelchair Basketball Federation (IWBF) classification system. The study group comprised 60 wheelchair basketball players, who were rated according to the International Wheelchair Basketball Federation classification system. Players were divided into two groups according to their trunk control. Study participants completed an anonymous survey that included demographic data, medical history data, and the Wheelchair User's Shoulder Pain Index (WUSPI). There was no statistically significant difference between the two groups based on the number of years of wheelchair use, active sport years, weekly working hours, and weekly training hours (p> 0.05). Statistically significant differences were found between wheelchair basketball players with trunk control and wheelchair basketball players with trunk control with respect to the duration of their disability, the daily number of transfers made to wheelchair, and Performance Corrected Wheelchair User's Shoulder Pain Index (PC-WUSPI) score (p< 0.05). The total PC-WUSPI score was higher among players without trunk control (p< 0.05). Study findings suggest that the shoulder pain of wheelchair basketball players must be analyzed. Trunk stabilization is the key factor affecting the function of the shoulder and is of primary importance for appropriate loading of the shoulder joint's many forms of articulation.

  19. Radial Internal Material Handling System (RIMS) for Circular Habitat Volumes

    NASA Technical Reports Server (NTRS)

    Howe, Alan S.; Haselschwardt, Sally; Bogatko, Alex; Humphrey, Brian; Patel, Amit

    2013-01-01

    On planetary surfaces, pressurized human habitable volumes will require a means to carry equipment around within the volume of the habitat, regardless of the partial gravity (Earth, Moon, Mars, etc.). On the NASA Habitat Demonstration Unit (HDU), a vertical cylindrical volume, it was determined that a variety of heavy items would need to be carried back and forth from deployed locations to the General Maintenance Work Station (GMWS) when in need of repair, and other equipment may need to be carried inside for repairs, such as rover parts and other external equipment. The vertical cylindrical volume of the HDU lent itself to a circular overhead track and hoist system that allows lifting of heavy objects from anywhere in the habitat to any other point in the habitat interior. In addition, the system is able to hand-off lifted items to other material handling systems through the side hatches, such as through an airlock. The overhead system consists of two concentric circle tracks that have a movable beam between them. The beam has a hoist carriage that can move back and forth on the beam. Therefore, the entire system acts like a bridge crane curved around to meet itself in a circle. The novelty of the system is in its configuration, and how it interfaces with the volume of the HDU habitat. Similar to how a bridge crane allows coverage for an entire rectangular volume, the RIMS system covers a circular volume. The RIMS system is the first generation of what may be applied to future planetary surface vertical cylinder habitats on the Moon or on Mars.

  20. Ejecta thickness and structural rim uplift measurements of Martian impact craters: Implications for the rim formation of complex impact craters

    NASA Astrophysics Data System (ADS)

    Sturm, Sebastian; Kenkmann, Thomas; Hergarten, Stefan

    2016-06-01

    The elevated rim in simple craters results from the structural uplift of preimpact target rocks and the deposition of a coherent proximal ejecta blanket at the outer edge of the transient cavity. Given the considerable, widening of the transient cavity during crater modification and ejecta thickness distributions, the cause of elevated crater rims in complex craters is less obvious. The thick, proximal ejecta in complex impact craters is deposited well inside the final crater rim and target thickening should rapidly diminish with increasing distance from the transient cavity rim. Our study of 10 complex Martian impact craters ranging from 8.2 to 53.0 km in diameter demonstrates that the mean structural rim uplift at the final crater rim makes 81% of the total rim elevation, while the mean ejecta thickness contributes 19%. Thus, the structural rim uplift seems to be the dominant factor to build up the total amount of the raised crater rim of complex craters. To measure the widening of the transient cavity during modification and the distance between the rim of the final crater and that of the transient cavity, we constructed balanced cross section restorations to estimate the transient cavity of nine complex Martian impact craters. The final crater radii are ~1.38-1.87 times the transient cavity radii. We propose that target uplift at the position of the final crater rim was established during the excavation stage.

  1. 14 CFR 382.103 - May a carrier leave a passenger unattended in a wheelchair or other device?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in a wheelchair or other device? 382.103 Section 382.103 Aeronautics and Space OFFICE OF THE... leave a passenger unattended in a wheelchair or other device? As a carrier, you must not leave a... enplaning, deplaning, or connecting assistance in a ground wheelchair, boarding wheelchair, or other...

  2. 14 CFR 382.103 - May a carrier leave a passenger unattended in a wheelchair or other device?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in a wheelchair or other device? 382.103 Section 382.103 Aeronautics and Space OFFICE OF THE... leave a passenger unattended in a wheelchair or other device? As a carrier, you must not leave a... enplaning, deplaning, or connecting assistance in a ground wheelchair, boarding wheelchair, or other...

  3. Rare diseases: matching wheelchair users with rare metabolic, neuromuscular or neurological disorders to electric powered indoor/outdoor wheelchairs (EPIOCs)

    PubMed Central

    De Souza, Lorraine H.; Frank, Andrew O.

    2016-01-01

    Abstract Purpose: To describe the clinical features of electric powered indoor/outdoor wheelchair (EPIOC) users with rare diseases (RD) impacting on EPIOC provision and seating. Method: Retrospective review by a consultant in rehabilitation medicine of electronic and case note records of EPIOC recipients with RDs attending a specialist wheelchair service between June 2007 and September 2008. Data were systematically extracted, entered into a database and analysed under three themes; demographic, diagnostic/clinical (including comorbidity and associated clinical features (ACFs) of the illness/disability) and wheelchair factors. Results: Fifty-four (27 male) EPIOC users, mean age 37.3 (SD 18.6, range 11–70) with RDs were identified and reviewed a mean of 64 (range 0–131) months after receiving their wheelchair. Diagnoses included 27 types of RDs including Friedreich’s ataxia, motor neurone disease, osteogenesis imperfecta, arthrogryposis, cerebellar syndromes and others. Nineteen users had between them 36 comorbidities and 30 users had 44 ACFs likely to influence the prescription. Tilt-in-space was provided to 34 (63%) users and specialised seating to 17 (31%). Four users had between them complex control or interfacing issues. Conclusions: The complex and diverse clinical problems of those with RDs present unique challenges to the multiprofessional wheelchair team to maintain successful independent mobility and community living.Implications for RehabilitationPowered mobility is a major therapeutic tool for those with rare diseases enhancing independence, participation, reducing pain and other clinical features.The challenge for rehabilitation professionals is reconciling the physical disabilities with the individual’s need for function and participation whilst allowing for disease progression and/or growth.Powered wheelchair users with rare diseases with a (kypho) scoliosis require a wheelchair system that balances spine stability and movement to maximise

  4. Launch system development in the Pacific Rim

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.; Page, John R.

    1993-01-01

    Several Western Pacific Rim nations are beginning to challenge the domination of the United States, Europe, and the former Soviet Union in the international market for commercial launch sevices. This paper examines the current development of launch systems in China, Japan, and Australia. China began commercial launch services with their Long March-3 in April 1990, and is making enhancements to vehicles in this family. Japan is developing the H-2 rocket which will be marketed on a commercial basis. In Australia, British Aerospace Ltd. is leading a team conducting a project definition study for an Australian Launch Vehicle, aimed at launching the new generation of satellites into low Earth orbit.

  5. Sports Injuries in Wheelchair Rugby – A Pilot Study

    PubMed Central

    Bauerfeind, Joanna; Koper, Magdalena; Wieczorek, Jacek; Urbański, Piotr; Tasiemski, Tomasz

    2015-01-01

    The aim of the study was to analyze etiology and the incidence of sports injuries among wheelchair rugby players. Moreover, we verified if the levels of aggressiveness and anger presented by the athletes and their roles in the team influenced the incidence and severity of the injuries. The study involved 14 male players, members of the Polish National Wheelchair Rugby Team. During a 9-month period, the athletes participated in up to 9 training camps and 4 Wheelchair Rugby tournaments. The study was based on the Competitive Aggressiveness and Anger Scale, registry of sports injuries consulted and non-consulted with a physician and a demographic questionnaire. The following observations were made during the 9-month period corresponding to a mean of 25 training and tournament days: 1) wheelchair rugby players experienced primarily minor injuries (n=102) that did not require a medical intervention, 2) only four injuries needed to be consulted by a physician, 3) sports injuries occurred more frequently among offensive players than in defensive players, 4) offensive players showed a tendency to higher levels of anger and aggressiveness than defensive players. It can be concluded that wheelchair rugby is a discipline associated with a high incidence of minor injuries that do not require a medical intervention. The incidence rate of injuries during the analyzed period was 0.3 per athlete per training day. PMID:26834880

  6. Comparing handrim biomechanics for treadmill and overground wheelchair propulsion

    PubMed Central

    Kwarciak, Andrew M.; Turner, Jeffrey T.; Guo, Liyun; Richter, W. Mark

    2010-01-01

    Study design Cross-sectional study. Objectives To compare handrim biomechanics recorded during overground propulsion to those recorded during propulsion on a motor-driven treadmill. Setting Biomechanics laboratory. Methods Twenty-eight manual wheelchair users propelled their own wheelchairs, at a self-selected speed, on a low-pile carpet and on a wheelchair accessible treadmill. Handrim biomechanics were recorded with an OptiPush instrumented wheelchair wheel. Results Across the two conditions, all handrim biomechanics were found to be similar and highly correlated (r > 0.85). Contact angle, peak force, average force, and peak axle moment differed by 1.6% or less across the two conditions. While not significant, power output and cadence tended to be slightly higher for the treadmill condition (3.5% and 3.6%, respectively), due to limitations in adjusting the treadmill grade. Conclusion Based on the results of this study, a motor-driven treadmill can serve as a valid surrogate for overground studies of wheelchair propulsion. PMID:21042332

  7. An Investigation of Bilateral Symmetry During Manual Wheelchair Propulsion.

    PubMed

    Soltau, Shelby L; Slowik, Jonathan S; Requejo, Philip S; Mulroy, Sara J; Neptune, Richard R

    2015-01-01

    Studies of manual wheelchair propulsion often assume bilateral symmetry to simplify data collection, processing, and analysis. However, the validity of this assumption is unclear. Most investigations of wheelchair propulsion symmetry have been limited by a relatively small sample size and a focus on a single propulsion condition (e.g., level propulsion at self-selected speed). The purpose of this study was to evaluate bilateral symmetry during manual wheelchair propulsion in a large group of subjects across different propulsion conditions. Three-dimensional kinematics and handrim kinetics along with spatiotemporal variables were collected and processed from 80 subjects with paraplegia while propelling their wheelchairs on a stationary ergometer during three different conditions: level propulsion at their self-selected speed (free), level propulsion at their fastest comfortable speed (fast), and propulsion on an 8% grade at their level, self-selected speed (graded). All kinematic variables had significant side-to-side differences, primarily in the graded condition. Push angle was the only spatiotemporal variable with a significant side-to-side difference, and only during the graded condition. No kinetic variables had significant side-to-side differences. The magnitudes of the kinematic differences were low, with only one difference exceeding 5°. With differences of such small magnitude, the bilateral symmetry assumption appears to be reasonable during manual wheelchair propulsion in subjects without significant upper-extremity pain or impairment. However, larger asymmetries may exist in individuals with secondary injuries and pain in their upper extremity and different etiologies of their neurological impairment.

  8. Crash simulations of wheelchair-occupant systems in transport.

    PubMed

    Kang, W; Pilkey, W D

    1998-01-01

    A nonlinear multirigid body dynamic computer model has been developed to simulate the dynamic responses of a wheelchair-occupant system in a vehicle during a crash. The occupant, restrained by safety belts, is seated in a wheelchair that is, in turn, tied down in a vehicle. Validated extensively by crash sled tests at three laboratories, this model has been used to predict the responses of wheelchair-occupant systems in various crash environments. To evaluate the crashworthiness of different wheelchair tie-downs, the sensitivity of several design parameters, such as tiedown stiffness, wheel stiffness, and tiedown positions, has been studied using this model, and optimal values of these parameters for the wheelchair-occupant system have been obtained. Moreover, the model has been used to study the sensitivity of crash sled test pulse corridors in an effort to develop a sled test standard. It has been found that an existing ISO corridor allows large variation and should be "tightened." The model was implemented using a version of the multibody dynamic simulator, the Articulated Total Body program. PMID:9505255

  9. Walking and wheelchair navigation in patients with left visual neglect.

    PubMed

    Turton, Ailie J; Dewar, Sophie J; Lievesley, Alex; O'Leary, Kelly; Gabb, Jude; Gilchrist, Iain D

    2009-04-01

    Patients with neglect veer to one side when walking or driving a wheelchair, however there is a contradiction in the literature about the direction of this deviation. The study investigated the navigational trajectory of a sample of neglect patients of mixed mobility status in an ecological setting. Fifteen patients with left-sided neglect after right hemisphere stroke were recorded walking or driving a powered wheelchair along a stretch of corridor. Their position in the corridor and the number of collisions was recorded. The results showed that the patients' path was dependent on their mobility status: wheelchair patients with neglect consistently deviated to the left of the centre of the corridor and walking patients with neglect consistently deviated to the right. A further two ambulant patients with neglect were recorded both walking and using the wheelchair to determine whether the differences were task or patient dependent. These two patients also exhibited leftward deviation when driving the wheelchair, but a rightward deviation when walking. These results suggest that the direction of the deviation is task dependent. Further work will be required to identify what features of the two modes of navigation lead to this dissociation.

  10. An approach to measure wheelchair stability. Concept and benefits.

    PubMed

    Stefanov, Dimitar H; Pasco, Damien

    2014-01-01

    Wheelchair stability is dependent on user's body characteristics that can shift significantly the original center of mass in the cases of limb amputation, severe skeletal deformities or obesity. The center of gravity may change with the installation of additional devices such as oxygen cylinders or ventilators on the wheelchair. Therefore, quantitative evaluation and prediction of the behavior of the user-wheelchair system in a variety of static and dynamic situations is essential for user's safety and for the optimal tuning of the human-wheelchair system. In this paper we discuss an approach for wheelchair stability assessment that only requires two inclinations and weight measurements. We also discuss the algorithm associated to the procedure based on the use of the reaction forces in the contact points of the wheels measured by the load cells. Further, the paper includes an analysis of the influence of the errors in measurement of the input parameters on the output results and demonstrates that the proposed approach possesses high accuracy. The advantage of the proposed approach is the use of a reliable procedure based on three simple steps and five weight measurements with four independent load scales which may lead to the design of an affordable and accurate measurement system.

  11. West Rim of Endeavour and a Farther Crater's Rim on Horizon

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site]

    In the left half of this view from the panoramic camera (Pancam) of NASA's Mars Exploration Rover Opportunity, a western portion of the rim of Endeavour Crater is visible on the horizon. In the right half, the rim of a smaller crater, farther away, appears faintly on the horizon.

    Opportunity's Pancam took this image on March 8, 2009, during the 1,821st Martian day, or sol, of the rover's mission on Mars. The width of the image covers approximately one degree of the horizon.

    The part of Endeavour's rim visible here is about 16 kilometers (10 miles) from where Opportunity was when the image was taken. The rover was at the same location as when its Pancam took images after a drive on Sol 1820. Opportunity remained at that location until a drive on Sol 1823.

    The more-distant rim to the right, part of Iazu Crater, is about 38 kilometers (24 miles) away. Iazu is south of Endeavour and about 7 kilometers (4 miles) in diameter.

  12. On the Rim of 'Victoria Crater'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's Mars rover Opportunity reached the rim of 'Victoria Crater' in Mars' Meridiani Planum region with a 26-meter (85-foot) drive during the rover's 951st Martian day, or sol (Sept. 26, 2006). After the drive, the rover's navigation camera took the three exposures combined into this view of the crater's interior. This crater has been the mission's long-term destination for the past 21 Earth months.

    A half mile in the distance one can see about 20 percent of the far side of the crater framed by the rocky cliffs in the foreground to the left and right of the image. The rim of the crater is composed of alternating promontories, rocky points towering approximately 70 meters (230 feet) above the crater floor, and recessed alcoves. The bottom of the crater is covered by sand that has been shaped into ripples by the Martian wind.

    The position at the end of the sol 951 drive is about six meters from the lip of an alcove called 'Duck Bay.' The rover team planned a drive for sol 952 that would move a few more meters forward, plus more imaging of the near and far walls of the crater.

    Victoria Crater is about five times wider than 'Endurance Crater,' which Opportunity spent six months examining in 2004, and about 40 times wider than 'Eagle Crater,' where Opportunity first landed.

    This view is presented as a cylindrical projection with geometric seam correction.

  13. Genetic Relationships Between Chondrules, Rims and Matrix

    NASA Technical Reports Server (NTRS)

    Huss, G. R.; Alexander, C. M. OD.; Palme, H.; Bland, P. A.; Wasson, J. T.

    2004-01-01

    The most primitive chondrites are composed of chondrules and chondrule fragments, various types of inclusions, discrete mineral grains, metal, sulfides, and fine-grained materials that occur as interchondrule matrix and as chondrule/inclusion rims. Understanding how these components are related is essential for understanding how chondrites and their constituents formed and were processed in the solar nebula. For example, were the first generations of chondrules formed by melting of matrix or matrix precursors? Did chondrule formation result in appreciable transfer of chondrule material into the matrix? Here, we consider three types of data: 1) compositional data for bulk chondrites and matrix, 2) mineralogical and textural information, and 3) the abundances and characteristics of presolar materials that reside in the matrix and rims. We use these data to evaluate the roles of evaporation and condensation, chondrule formation, mixing of different nebular components, and secondary processing both in the nebula and on the parent bodies. Our goal is to identify the things that are reasonably well established and to point out the areas that need additional work.

  14. Motion analysis of wheelchair propulsion movements in hemiplegic patients: effect of a wheelchair cushion on suppressing posterior pelvic tilt.

    PubMed

    Kawada, Kyohei; Matsuda, Tadamitsu; Takanashi, Akira; Miyazima, Shigeki; Yamamoto, Sumiko

    2015-03-01

    [Purpose] This study sought to ascertain whether, in hemiplegic patients, the effect of a wheelchair cushion to suppress pelvic posterior tilt when initiating wheelchair propulsion would continue in subsequent propulsions. [Subjects] Eighteen hemiplegic patients who were able to propel a wheelchair in a seated position participated in this study. [Methods] An adjustable wheelchair was fitted with a cushion that had an anchoring function, and a thigh pad on the propulsion side was removed. Propulsion movements from the seated position without moving through three propulsion cycles were measured using a three-dimensional motion analysis system, and electromyography was used to determine the angle of pelvic posterior tilt, muscle activity of the biceps femoris long head, and propulsion speed. [Results] Pelvic posterior tilt could be suppressed through the three propulsion cycles, which served to increase propulsion speed. Muscle activity of the biceps femoris long head was highest when initiating propulsion and decreased thereafter. [Conclusion] The effect of the wheelchair cushion on suppressing pelvic posterior tilt continued through three propulsion cycles.

  15. Design intelligent wheelchair with ECG measurement and wireless transmission function.

    PubMed

    Chou, Hsi-Chiang; Wang, Yi-Ming; Chang, Huai-Yuan

    2015-01-01

    The phenomenon of aging populations has produced widespread health awareness and magnified the need for improved medical quality and technologies. Statistics show that ischemic heart disease is the leading cause of death for older people and people with reduced mobility; therefore, wheelchairs have become their primary means of transport. Hence, an arrhythmia-detecting smart wheelchair was proposed in this study to provide real-time electrocardiography (ECG)-monitoring to patients with heart disease and reduced mobility. A self-developed, handheld ECG-sensing instrument was integrated with a wheelchair and a lab-written, arrhythmia-detecting program. The measured ECG data were transmitted through a Wi-Fi module and analyzed and diagnosed using the human-machine interface.

  16. Development of a wheelchair-mounted folding standing frame.

    PubMed

    Nash, R S; Davy, M S; Orpwood, R; Swain, I D

    1990-05-01

    Functional electrical stimulation (FES) is capable of providing standing function to certain mid-thoracic paraplegics following spinal injury. To be of use in the community such systems require the provision of a mechanical support attached to the user's wheelchair so that it is available for use at all times. The design specification was such that the frame should fit a wide range of wheelchairs, not increase the external dimensions of the wheelchair, be easily removed to enable transfers, provide a safe, stable support once erect and be quick and simple both to erect and to fold away. Although primarily designed for use as part of the FES standing system, the frame is also applicable for patients with a number of other chronic neurological or arthritic conditions. As such the specification has been extended so that the design is suitable for users with tremor or reduced upper limb function.

  17. REAL-TIME MODEL-BASED ELECTRICAL POWERED WHEELCHAIR CONTROL

    PubMed Central

    Wang, Hongwu; Salatin, Benjamin; Grindle, Garrett G.; Ding, Dan; Cooper, Rory A.

    2009-01-01

    The purpose of this study was to evaluate the effects of three different control methods on driving speed variation and wheel-slip of an electric-powered wheelchair (EPW). A kinematic model as well as 3-D dynamic model was developed to control the velocity and traction of the wheelchair. A smart wheelchair platform was designed and built with a computerized controller and encoders to record wheel speeds and to detect the slip. A model based, a proportional-integral-derivative (PID) and an open-loop controller were applied with the EPW driving on four different surfaces at three specified speeds. The speed errors, variation, rise time, settling time and slip coefficient were calculated and compared for a speed step-response input. Experimental results showed that model based control performed best on all surfaces across the speeds. PMID:19733494

  18. Design intelligent wheelchair with ECG measurement and wireless transmission function.

    PubMed

    Chou, Hsi-Chiang; Wang, Yi-Ming; Chang, Huai-Yuan

    2015-01-01

    The phenomenon of aging populations has produced widespread health awareness and magnified the need for improved medical quality and technologies. Statistics show that ischemic heart disease is the leading cause of death for older people and people with reduced mobility; therefore, wheelchairs have become their primary means of transport. Hence, an arrhythmia-detecting smart wheelchair was proposed in this study to provide real-time electrocardiography (ECG)-monitoring to patients with heart disease and reduced mobility. A self-developed, handheld ECG-sensing instrument was integrated with a wheelchair and a lab-written, arrhythmia-detecting program. The measured ECG data were transmitted through a Wi-Fi module and analyzed and diagnosed using the human-machine interface. PMID:26444818

  19. Survey of wheelchair athletic injuries: common patterns and prevention.

    PubMed

    Curtis, K A; Dillon, D A

    1985-06-01

    Twelve hundred wheelchair athletes were surveyed to determine commonly experienced athletic injuries, sports participation and training patterns associated with injuries. Soft tissue trauma, blisters, lacerations, decubiti and joint disorders were the most commonly reported injuries of the 128 respondents. Over 70 per cent of all reported injuries occurred during wheelchair track, road racing and basketball. Common mechanisms of injury were also identified. A significantly higher number of reported injuries were associated with increased sports participation (p less than 001), with the 21-30 year-old age group (p less than .01), and with a high number of training hours per week (p less than .05). There was no significant relationship between number of reported injuries and disability type, National Wheelchair Athletic Association classification, or sex. Decubitus ulcers and temperature regulation disorders were identified as particular risks for the spinal cord injury population. Educating the athlete and coach in means to prevent injury is necessary to promote optimal performance and safe participation.

  20. Design and Experimental Verification of Vibration Suppression Device on the Lift of Wheelchair-accessible Vehicles

    NASA Astrophysics Data System (ADS)

    Hatano, Yasuyoshi; Takahashi, Masaki

    2016-09-01

    In recent years, the number of wheelchair-accessible vehicles has increased with the aging of the population. Such vehicles are effective in reducing the burden on caregivers because the wheelchair user does not have to move from his/her wheelchair to a seat of the vehicle. Wheelchair-accessible vehicles are expected to be widely used in the future. However, wheelchair users have reported poor ride comfort. It is thus necessary to suppress the vibration of the vehicle considering the wheelchair user. We designed a passive damping device on the lift of wheelchair-accessible vehicles to improve the ride comfort for wheelchair users. The vibration due to road disturbances reaches the wheelchair user's body through the vehicle and wheelchair. Our control device decreases the acceleration of the torso and improves the ride comfort by ensuring that the frequency of the vibration reaching the wheelchair user differs from the resonance frequency band of the acceleration of the torso, which is the body part that feels the most discomfort. The effectiveness of the control device is verified experimentally.

  1. Valid detection of self-propelled wheelchair driving with two accelerometers.

    PubMed

    Kooijmans, H; Horemans, H L D; Stam, H J; Bussmann, J B J

    2014-11-01

    This study assessed whether self-propelled wheelchair driving can be validly detected by a new method using a set of two commonly used accelerometers.In a rehabilitation centre, 10 wheelchair-bound persons with spinal cord injury (SCI) (aged 29-63 years) performed a series of representative daily activities according to a protocol including self-propelled wheelchair driving and other activities. Two ActiGraph GT3X+ accelerometers were used; one was attached at the wrist, the other to the spokes of the wheelchair wheel. Based on the movement intensity of the two accelerometers, a custom-made algorithm in MatLab differentiated between self-propelled wheelchair driving and other activities (e.g. being pushed or arm movements not related to wheelchair driving). Video recordings were used for reference. Validity scores between the accelerometer output and the video analyses were expressed in terms of agreement, sensitivity and specificity scores.Overall agreement for the detection of self-propelled wheelchair driving was 85%; sensitivity was 88% and specificity 83%. Disagreement between accelerometer output and video analysis was largest for wheelchair driving at very low speed on a treadmill, wheelchair driving on a slope on a treadmill, and being pushed in the wheelchair whilst making excessive arm movements.Valid detection of self-propelled wheelchair driving is provided by two accelerometers and a simple algorithm. Disagreement with the video analysis was largest during three atypical daily activities.

  2. Chapped hands

    MedlinePlus

    ... mild soaps or non-soap cleansers Use moisturizing lotions on your hands regularly, especially if you live ... To soothe chapped and sore hands: Apply skin lotion frequently (if this does not work, try creams ...

  3. Variability in Wheelchair Propulsion: A New Window into an Old Problem.

    PubMed

    Sosnoff, Jacob J; Rice, Ian M; Hsiao-Wecksler, Elizabeth T; Hsu, Iris M K; Jayaraman, Chandrasekaran; Moon, Yaejin

    2015-01-01

    Manual wheelchair users are at great risk for the development of upper extremity injury and pain. Any loss of upper limb function due to pain adversely impacts the independence and mobility of manual wheelchair users. There is growing theoretical and empirical evidence that fluctuations in movement (i.e., motor variability) are related to musculoskeletal pain. This perspectives paper discusses a local review on several investigations examining the association between variability in wheelchair propulsion and shoulder pain in manual wheelchair users. The experimental data reviewed highlights that the variability of wheelchair propulsion is impacted by shoulder pain in manual wheelchair users. We maintain that inclusion of these metrics in future research on wheelchair propulsion and upper limb pain may yield novel data. Several promising avenues for future research based on this collective work are discussed.

  4. Drag and sprint performance of wheelchair basketball players.

    PubMed

    Coutts, K D

    1994-01-01

    The purpose of this study was to measure the wheelchair drag and maximal sprint performance abilities of wheelchair basketball players and to make comparisons between male and female players. A group of nine male and eight female wheelchair basketball players attending a national training camp consented to serve as subjects. Each subject completed six coast-down trials at speeds from a walking pace (1 to 1.5 m/s) to maximal for determining wheelchair drag and then performed four maximal sprint trials from a stationary start over the length (35 m) of the gymnasium floor. A portable computer that recorded the time to the nearest 0.001 second of each half revolution of a rear wheel was attached to the wheelchair of each subject. The drag force during the coast-down trials and the power output during the sprint trials were determined from the recorded data. Differences between the genders in a number of subject and trial variables were evaluated by t-tests using the 0.05 level of significance. There were no significant differences between the means of the male and female groups in age (27 vs. 28 yrs), wheelchair mass (12.0 vs. 11.61 kg), or regression predicted drag forces at speeds of 2 m/s (5.3 vs. 5.5 N) and 5 m/s (16.7 vs. 13.5 N). The male subjects were significantly heavier (78.3 vs. 59.1 kg) and had a higher tire pressure (123 vs. 94 psi). In the sprint trial results, the males exhibited a significantly higher maximal speed (4.75 vs. 4.08 m/s), higher peak acceleration (1.32 vs. 1.03 m/s/s), and a higher peak power output (530 vs. 264 w).

  5. Wheelchair integrated occupant restraints: feasibility in frontal impact.

    PubMed

    VanRoosmalen, L; Bertocci, G E; Ha, D; Karg, P

    2001-12-01

    Individuals often use their wheelchair as a motor vehicle seat when traveling in motor vehicles. The current use of fixed vehicle-mounted wheelchair occupant restraint systems (FWORSs) often results in poor belt fit and discomfort. Additionally, satisfaction, usability and usage rate of FWORSs during transit use are often low. The automotive industry has shown improved occupant restraint usage, belt fit and injury protection when integrating the upper torso and pelvic restraint in a motor vehicle seat. This study compared occupant injury measures of a FWORS to a concept wheelchair integrated restraint system (WIRS) using a 20g frontal sled impact test with a 30 mph change in velocity. Neck loads, neck moments, head, pelvis and chest acceleration, sternum compression and knee and head excursion data were recorded from the wheelchair seated 50th percentile male hybrid III anthropomorphic test dummy (ATD). The WIRS resulted in a lower head injury criteria (HIC) value, lower sternum compression and a lower upper-torso restraint load than the FWORS. Compared with the FWORS, increased head, knee and wheelchair excursions and higher neck loads and moments were measured in the WIRS test. Both restraint scenario injury parameters were complied with occupant injury criteria based on General Motors Injury Assessment Reference Values (GM-IARVs) and occupant kinematic requirements defined by the Society of Automotive Engineers (SAE) voluntary standard, J2249. A higher motion criteria index was calculated for the WIRS scenario and a comparable combined injury criteria index was calculated for both restraint scenarios. The sled impact test showed WIRS concept feasibility, facilitating further development by industrial manufacturers who might further want to pursue this restraint principle to increase wheelchair occupant safety and comfort during transport in motor vehicles.

  6. Improvements of a Brain-Computer Interface Applied to a Robotic Wheelchair

    NASA Astrophysics Data System (ADS)

    Ferreira, André; Bastos-Filho, Teodiano Freire; Sarcinelli-Filho, Mário; Sánchez, José Luis Martín; García, Juan Carlos García; Quintas, Manuel Mazo

    Two distinct signal features suitable to be used as input to a Support-Vector Machine (SVM) classifier in an application involving hands motor imagery and the correspondent EEG signal are evaluated in this paper. Such features are the Power Spectral Density (PSD) components and the Adaptive Autoregressive (AAR) parameters. The best result (an accuracy of 97.1%) is obtained when using PSD components, while the AAR parameters generated an accuracy of 91.4%. The results also demonstrate that it is possible to use only two EEG channels (bipolar configuration around C 3 and C 4), discarding the bipolar configuration around C z . The algorithms were tested with a proprietary EEG data set involving 4 individuals and with a data set provided by the University of Graz (Austria) as well. The resulting classification system is now being implemented in a Brain-Computer Interface (BCI) used to guide a robotic wheelchair.

  7. Astronaut John Young on rim of Plum crater gathering lunar rock samples

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, stands on the rim of Plum crater while collecting lunar rock samples at Station No.1 during the first Apollo 16 extravehicular activity (EVA-1) at the Descartes landing site. This scene, looking eastward, was photographed by Astronaut Charles M. Duke Jr., lunar module pilot. The small boulder in the center foreground was chip sampled by the crewmen. Plum crater is 40 meters in diameter and 10 meters deep. The Lunar Roving Vehicle is parked on the far rim of the crater. The gnomon, which is used as a photographic reference to establish local vertical sun angle, scale, and lunar color, is deployed in the center of the picture. Young holds a geological hammer in his right hand.

  8. Physical performance and cardiovascular and metabolic adaptation of elite female wheelchair basketball players in wheelchair ergometry and in competition.

    PubMed

    Schmid, A; Huonker, M; Stober, P; Barturen, J M; Schmidt-Trucksäss, A; Dürr, H; Völpel, H J; Keul, J

    1998-01-01

    Spinal cord injury leads to a pronounced reduction of cardiovascular, pulmonary, and metabolic ability. Physical activity, up to and including high-performance sports, has obtained importance in the course of rehabilitation and the postclinical phase. Thirteen elite female wheelchair basketball players from the German National Basketball Team and 10 female sedentary spinal cord-injured persons were examined in the study. Heart volume was measured by an echocardiography. All subjects underwent a graded exercise test on a wheelchair ergometer. Additionally, heart rate, lactate, and player points were measured during a competitive basketball game in wheelchair basketball players. Cardiac dimensions were larger for spinal cord-injured wheelchair basketball players (620.3 ml; 9.6 ml x kg(-1)) in comparison with spinal cord-injured persons (477.4 ml; 8.2 ml x kg(-1)) but did not exceed the heart volume of untrained nonhandicapped persons. In contrast, athletes with amputations or those having had poliomyelitis reached training-induced cardiac hypertrophy in relation to body mass (713.7 ml; 13.2 ml x kg(-1)), as observed in nonhandicapped athletes. During graded wheelchair ergometry, wheelchair basketball players showed a higher maximal work rate (59.9 v 45.5 W), maximal oxygen consumption (33.7 v 18.3 ml x min(-1) x kg(-1)), and maximal lactate (9.1 v 5.47 mmol x l(-1)) without a difference in maximal heart rate and workload at AT4 than did spinal cord-injured persons. The average heart rate during the wheelchair basketball game was 151 x min(-1), and the lactate concentration was 1.92 mmol x l(-1). Female athletes with a less severe handicap and higher maximal oxygen consumption during the graded exercise test reached a higher game level in the evaluation. During the competitive basketball game, high cardiovascular stress was observed, indicating a fast aerobic metabolism; the anaerobic lactic acid capacity played a subordinate role. Wheelchair basketball is an

  9. On the Rim of 'Victoria Crater' (Stereo)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Left-eye view of a stereo pair for PIA08780

    [figure removed for brevity, see original site] Right-eye view of a stereo pair for PIA08780

    NASA's Mars rover Opportunity reached the rim of 'Victoria Crater' in Mars' Meridiani Planum region with a 26-meter (85-foot) drive during the rover's 951st Martian day, or sol (Sept. 26, 2006). After the drive, the rover's navigation camera took the three exposures combined into this view of the crater's interior. This crater has been the mission's long-term destination for the past 21 Earth months.

    A half mile in the distance one can see about 20 percent of the far side of the crater framed by the rocky cliffs in the foreground to the left and right of the image. The rim of the crater is composed of alternating promontories, rocky points towering approximately 70 meters (230 feet) above the crater floor, and recessed alcoves. The bottom of the crater is covered by sand that has been shaped into ripples by the Martian wind.

    The position at the end of the sol 951 drive is about six meters from the lip of an alcove called 'Duck Bay.' The rover team planned a drive for sol 952 that would move a few more meters forward, plus more imaging of the near and far walls of the crater.

    Victoria Crater is about five times wider than 'Endurance Crater,' which Opportunity spent six months examining in 2004, and about 40 times wider than 'Eagle Crater,' where Opportunity first landed.

    This view is presented as a cylindrical-perspective projection with geometric seam correction.

  10. Dynamics of squeezing fluids: Clapping wet hands

    NASA Astrophysics Data System (ADS)

    Gart, Sean; Chang, Brian; Slama, Brice; Goodnight, Randy; Um, Soong Ho; Jung, Sunghwan

    2013-08-01

    Droplets splash around when a fluid volume is quickly compressed. This phenomenon has been observed during common activities such as kids clapping with wet hands. The underlying mechanism involves a fluid volume being compressed vertically between two objects. This compression causes the fluid volume to be ejected radially and thereby generate fluid threads and droplets at a high speed. In this study, we designed and performed laboratory experiments to observe the process of thread and drop formation after a fluid is squeezed. A thicker rim at the outer edge forms and moves after the squeezing, and then becomes unstable and breaks into smaller drops. This process differs from previous well-known examples (i.e., transient crown splashes and continuous water bells) in aspects of transient fluid feeding, expanding rim dynamics, or sparsely distributed drops. We compared experimental measurements with theoretical models over three different stages; early squeezing, intermediate sheet-expansion, and later break-up of the liquid thread. In the earlier stage, the fluid is squeezed and its initial velocity is governed by the lubrication force. The outer rim of the liquid sheet forms curved trajectories due to gravity, inertia, drag, and surface tension. At the late stage, drop spacing set by the initial capillary instability does not change in the course of rim expansion, consequently final ejected droplets are very sparse compared to the size of the rim.

  11. Effect of Wheelchair Frame Material on Users' Mechanical Work and Transmitted Vibration

    PubMed Central

    Aissaoui, Rachid

    2014-01-01

    Wheelchair propulsion exposes the user to a high risk of shoulder injury and to whole-body vibration that exceeds recommendations of ISO 2631-1:1997. Reducing the mechanical work required to travel a given distance (WN-WPM, weight-normalized work-per-meter) can help reduce the risk of shoulder injury, while reducing the vibration transmissibility (VT) of the wheelchair frame can reduce whole-body vibration. New materials such as titanium and carbon are used in today's wheelchairs and are advertised to improve both parameters, but current knowledge on this matter is limited. In this study, WN-WPM and VT were measured simultaneously and compared between six folding wheelchairs (1 titanium, 1 carbon, and 4 aluminium). Ten able-bodied users propelled the six wheelchairs on three ground surfaces. Although no significant difference of WN-WPM was found between wheelchairs (P < 0.1), significant differences of VT were found (P < 0.05). The carbon wheelchair had the lowest VT. Contrarily to current belief, the titanium wheelchair VT was similar to aluminium wheelchairs. A negative correlation between VT and WN-WPM was found, which means that reducing VT may be at the expense of increasing WN-WPM. Based on our results, use of carbon in wheelchair construction seems promising to reduce VT without increasing WN-WPM. PMID:25276802

  12. Physical and Leisure Activity in Older Community-Dwelling Canadians Who Use Wheelchairs: A Population Study

    PubMed Central

    Best, Krista L.; Miller, William C.

    2011-01-01

    Background. Physical and leisure activities are proven health promotion modalities and have not been examined in older wheelchair users. Main Objectives. Examine physical and leisure activity in older wheelchair users and explore associations between wheelchair use and participation in physical and leisure activity, and wheelchair use, physical and leisure activity, and perceived health. Methods. 8301 Canadians ≥60 years of age were selected from the Canadian Community Health Survey. Sociodemographic, health-related, mobility-related, and physical and leisure activity variables were analysed using logistic regression to determine, the likelihood of participation in physical and leisure activity, and whether participation in physical and leisure activities mediates the relationship between wheelchair use and perceived health. Results. 8.3% and 41.3% older wheelchair users were physically and leisurely active. Wheelchair use was a risk factor for reduced participation in physical (OR = 44.71) and leisure activity (OR = 10.83). Wheelchair use was a risk factor for poor perceived health (OR = 10.56) and physical and leisure activity negatively mediated the relationship between wheelchair user and perceived health. Conclusion. There is a need for the development of suitable physical and leisure activity interventions for older wheelchair users. Participation in such interventions may have associations with health benefits. PMID:21584226

  13. Effect of wheelchair frame material on users' mechanical work and transmitted vibration.

    PubMed

    Chénier, Félix; Aissaoui, Rachid

    2014-01-01

    Wheelchair propulsion exposes the user to a high risk of shoulder injury and to whole-body vibration that exceeds recommendations of ISO 2631-1:1997. Reducing the mechanical work required to travel a given distance (WN-WPM, weight-normalized work-per-meter) can help reduce the risk of shoulder injury, while reducing the vibration transmissibility (VT) of the wheelchair frame can reduce whole-body vibration. New materials such as titanium and carbon are used in today's wheelchairs and are advertised to improve both parameters, but current knowledge on this matter is limited. In this study, WN-WPM and VT were measured simultaneously and compared between six folding wheelchairs (1 titanium, 1 carbon, and 4 aluminium). Ten able-bodied users propelled the six wheelchairs on three ground surfaces. Although no significant difference of WN-WPM was found between wheelchairs (P < 0.1), significant differences of VT were found (P < 0.05). The carbon wheelchair had the lowest VT. Contrarily to current belief, the titanium wheelchair VT was similar to aluminium wheelchairs. A negative correlation between VT and WN-WPM was found, which means that reducing VT may be at the expense of increasing WN-WPM. Based on our results, use of carbon in wheelchair construction seems promising to reduce VT without increasing WN-WPM.

  14. Wheelchair Athletes Need Special Treatment--But Only for Injuries.

    ERIC Educational Resources Information Center

    Monahan, Terry

    1986-01-01

    Disabled athletes now compete in many sports, but many physicians don't know what opportunities for sports participation are available for disabled people. Research into injuries is needed because wheelchair athletes have different needs in terms of injury management and rehabilitation. Resources for physicians are listed. (Author/MT)

  15. An observational study of powered wheelchair provision in Italy.

    PubMed

    Salatino, Claudia; Andrich, Renzo; Converti, R M; Saruggia, M

    2016-01-01

    Powered wheelchairs are complex and expensive assistive devices that must be selected and configured on the basis of individual user needs, lifestyle, motivation, driving ability, and environment. Providing agencies often require evidence that their financial investment will lead to a successful outcome. The authors surveyed a sample of 79 users who had obtained powered wheelchairs from a Regional Health Service in Italy in the period 2008-2013. Follow-up interviews were conducted at the users' homes in order to collect information about wheelchair use, and its effectiveness, usefulness, and economic impact. The instruments used in the interviews included an introductory questionnaire, QUEST (Quebec User Evaluation of Satisfaction with Assistive Technology), PIADS (Psychosocial Impact of Assistive Devices Scale), FABS/M (Facilitators and Barriers Survey/Mobility), and SCAI (Siva Cost Analysis Instrument). The results indicated positive outcomes, especially in relation to user satisfaction and psychosocial impact. A number of barriers were identified in various settings that sometimes restrict user mobility, and suggest corrective actions. The provision of a powered wheelchair generated considerable savings in social costs for most users: an average of about $38,000 per person over a projected 5-year period was estimated by comparing the cost of the intervention with that of non-intervention.

  16. Prevalence of Sensor Saturation in Wheelchair Seat Interface Pressure Mapping.

    PubMed

    Wininger, Michael; Crane, Barbara A

    2015-01-01

    Pressure mapping is a frequently used tool with great power to provide information about the forces between a patient and a wheelchair seat. One widely recognized limitation to this paradigm is the possibility of data loss due to sensor saturation. In this study, we seek to quantify and describe the saturation observed in the measurement of interface pressures of wheelchair users. We recorded approximately two minutes of interface pressure data from 22 elderly wheelchair users (11M/11F, 80 ± 10 years) and found that 4.7% of data frames had 1 saturated sensor, and 9.0% had more than one saturated sensor, for a total of 13.7% of all frames of data. Data from three of the 22 subjects (13.6%) were substantially affected by the persistent presence of saturated sensors. We conclude that for this population of elderly wheelchair users, sensor saturation may be a concern and should be factored properly into study design a priori. PMID:26132350

  17. Gender and Attitudes toward People Using Wheelchairs: A Multidimensional Perspective

    ERIC Educational Resources Information Center

    Vilchinsky, Noa; Werner, Shirli; Findler, Liora

    2010-01-01

    This study aims to investigate the effect of observer's gender and target's gender on attitudes toward people who use wheelchairs due to a physical disability. Four hundred four Jewish Israeli students without disabilities completed the "Multidimensional Attitudes Scale Toward Persons With Disabilities" (MAS). Initially, confirmatory factor…

  18. HMM based automated wheelchair navigation using EOG traces in EEG

    NASA Astrophysics Data System (ADS)

    Aziz, Fayeem; Arof, Hamzah; Mokhtar, Norrima; Mubin, Marizan

    2014-10-01

    This paper presents a wheelchair navigation system based on a hidden Markov model (HMM), which we developed to assist those with restricted mobility. The semi-autonomous system is equipped with obstacle/collision avoidance sensors and it takes the electrooculography (EOG) signal traces from the user as commands to maneuver the wheelchair. The EOG traces originate from eyeball and eyelid movements and they are embedded in EEG signals collected from the scalp of the user at three different locations. Features extracted from the EOG traces are used to determine whether the eyes are open or closed, and whether the eyes are gazing to the right, center, or left. These features are utilized as inputs to a few support vector machine (SVM) classifiers, whose outputs are regarded as observations to an HMM. The HMM determines the state of the system and generates commands for navigating the wheelchair accordingly. The use of simple features and the implementation of a sliding window that captures important signatures in the EOG traces result in a fast execution time and high classification rates. The wheelchair is equipped with a proximity sensor and it can move forward and backward in three directions. The asynchronous system achieved an average classification rate of 98% when tested with online data while its average execution time was less than 1 s. It was also tested in a navigation experiment where all of the participants managed to complete the tasks successfully without collisions.

  19. Student Attitudes toward Intimacy with Persons Who Are Wheelchair Users

    ERIC Educational Resources Information Center

    Marini, Irmo; Chan, Roy; Feist, Amber; Flores-Torres, Lelia

    2011-01-01

    The present study explored whether students would be attracted to having an intimate relationship with a wheelchair user if participants were able to first see a head shot photo and later read a short biography of the person. Four hundred and eight undergraduate students were surveyed regarding their interest in potentially being friends, dating…

  20. Promoting Independence for Wheelchair Users: The Role of Home Accommodations

    ERIC Educational Resources Information Center

    Allen, Susan; Resnik, Linda; Roy, Jason

    2006-01-01

    Purpose: The objective of this research is to investigate whether home accommodations influence the amount of human help provided to a nationally representative sample of adults who use wheelchairs. Design and Methods: We analyzed data from the Adult Disability Follow-back Survey (DFS), Phase II, of the Disability Supplement to the 1994-1995…

  1. Multidimensional Self-Efficacy and Affect in Wheelchair Basketball Players

    ERIC Educational Resources Information Center

    Martin, Jeffrey J.

    2008-01-01

    In the current study, variables grounded in social cognitive theory with athletes with disabilities were examined. Performance, training, resiliency, and thought control self-efficacy, and positive (PA) and negative (NA) affect were examined with wheelchair basketball athletes (N = 79). Consistent with social cognitive theory, weak to strong…

  2. Contingent feedback for training children to propel their wheelchairs.

    PubMed

    Grove, D N; Dalke, B A

    1976-07-01

    Three multiply handicapped children were taught self-movement of their wheelchairs. This behavior was established through the use of contingent reinforcement within 30-minute therapy sessions. When a high number of self-movement responses were obtained, the reinforcement was systematically withdrawn to allow the responses to come under the control of the natural environmental consequences.

  3. Prevalence of Sensor Saturation in Wheelchair Seat Interface Pressure Mapping.

    PubMed

    Wininger, Michael; Crane, Barbara A

    2015-01-01

    Pressure mapping is a frequently used tool with great power to provide information about the forces between a patient and a wheelchair seat. One widely recognized limitation to this paradigm is the possibility of data loss due to sensor saturation. In this study, we seek to quantify and describe the saturation observed in the measurement of interface pressures of wheelchair users. We recorded approximately two minutes of interface pressure data from 22 elderly wheelchair users (11M/11F, 80 ± 10 years) and found that 4.7% of data frames had 1 saturated sensor, and 9.0% had more than one saturated sensor, for a total of 13.7% of all frames of data. Data from three of the 22 subjects (13.6%) were substantially affected by the persistent presence of saturated sensors. We conclude that for this population of elderly wheelchair users, sensor saturation may be a concern and should be factored properly into study design a priori.

  4. Relationship of Physiological Parameters and Achievement in Wheelchair Athletics.

    ERIC Educational Resources Information Center

    Hurst, Judith A.

    The relationship between achievement in track and field events (60, 100, 200, 400 meter runs and shotput, discus, and javelin throws) and selected physiological parameters (grip strength, body fat, vital lung capacity, and cardiovascular efficiency) of 20 wheelchair athletes was investigated. Results of track and field events were obtained from…

  5. 21 CFR 890.3940 - Wheelchair platform scale.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Wheelchair platform scale. 890.3940 Section 890.3940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3940...

  6. 21 CFR 890.3880 - Special grade wheelchair.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Special grade wheelchair. 890.3880 Section 890.3880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3880 Special...

  7. 21 CFR 890.3890 - Stair-climbing wheelchair.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Stair-climbing wheelchair. 890.3890 Section 890.3890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3890...

  8. 21 CFR 890.3880 - Special grade wheelchair.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Special grade wheelchair. 890.3880 Section 890.3880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3880 Special...

  9. 21 CFR 890.3890 - Stair-climbing wheelchair.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stair-climbing wheelchair. 890.3890 Section 890.3890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3890...

  10. 21 CFR 890.3890 - Stair-climbing wheelchair.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Stair-climbing wheelchair. 890.3890 Section 890.3890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3890...

  11. 21 CFR 890.3940 - Wheelchair platform scale.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wheelchair platform scale. 890.3940 Section 890.3940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3940...

  12. 21 CFR 890.3880 - Special grade wheelchair.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Special grade wheelchair. 890.3880 Section 890.3880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3880 Special...

  13. 21 CFR 890.3940 - Wheelchair platform scale.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Wheelchair platform scale. 890.3940 Section 890.3940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3940...

  14. 21 CFR 890.3880 - Special grade wheelchair.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Special grade wheelchair. 890.3880 Section 890.3880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3880 Special...

  15. 21 CFR 890.3890 - Stair-climbing wheelchair.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Stair-climbing wheelchair. 890.3890 Section 890.3890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3890...

  16. 21 CFR 890.3890 - Stair-climbing wheelchair.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Stair-climbing wheelchair. 890.3890 Section 890.3890 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3890...

  17. 21 CFR 890.3940 - Wheelchair platform scale.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Wheelchair platform scale. 890.3940 Section 890.3940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3940...

  18. 21 CFR 890.3940 - Wheelchair platform scale.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Wheelchair platform scale. 890.3940 Section 890.3940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3940...

  19. 21 CFR 890.3880 - Special grade wheelchair.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Special grade wheelchair. 890.3880 Section 890.3880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3880 Special...

  20. Is the Sun Setting on the Pacific Rim?

    ERIC Educational Resources Information Center

    Dearing, James W.

    1988-01-01

    Contends that the growing political and emotional split between the United States and Japan, the Pacific's two most powerful nations, may sever the unity of the Pacific Rim. Presents statistics, such as literacy and population growth rates, as well as economic data for thirteen Pacific Rim nations. (GEA)

  1. Car Transfer and Wheelchair Loading Techniques in Independent Drivers with Paraplegia

    PubMed Central

    Haubert, Lisa Lighthall; Mulroy, Sara J.; Hatchett, Patricia E.; Eberly, Valerie J.; Maneekobkunwong, Somboon; Gronley, Joanne K.; Requejo, Philip S.

    2015-01-01

    Car transfers and wheelchair (WC) loading are crucial for independent community participation in persons with complete paraplegia from spinal cord injury, but are complex, physically demanding, and known to provoke shoulder pain. This study aimed to describe techniques and factors influencing car transfer and WC loading for individuals with paraplegia driving their own vehicles and using their personal WCs. Sedans were the most common vehicle driven (59%). Just over half (52%) of drivers place their right leg only into the vehicle prior to transfer. Overall, the leading hand was most frequently placed on the driver’s seat (66%) prior to transfer and the trailing hand was most often place on the WC seat (48%). Vehicle height influenced leading hand placement but not leg placement such that drivers of higher profile vehicles were more likely to place their hand on the driver’s seat than those who drove sedans. Body lift time was negatively correlated with level of injury and age and positively correlated with vehicle height and shoulder abduction strength. Drivers who transferred with their leading hand on the steering wheel had significantly higher levels of shoulder pain than those who placed their hand on the driver’s seat or overhead. The majority of participants used both hands (62%) to load their WC frame, and overall, most loaded their frame into the back (62%) vs. the front seat. Sedan drivers were more likely to load their frame into the front seat than drivers of higher profile vehicles (53 vs. 17%). Average time to load the WC frame (10.7 s) was 20% of the total WC loading time and was not related to shoulder strength, frame weight, or demographic characteristics. Those who loaded their WC frame into the back seat had significantly weaker right shoulder internal rotators. Understanding car transfers and WC loading in independent drivers is crucial to prevent shoulder pain and injury and preserve community participation. PMID:26442253

  2. Rim for rotary inertial energy storage device and method

    DOEpatents

    Knight, Jr., Charles E.; Pollard, Roy E.

    1980-01-01

    The present invention is directed to an improved rim or a high-performance rotary inertial energy storage device (flywheel). The improved rim is fabricated from resin impregnated filamentary material which is circumferentially wound in a side-by-side relationship to form a plurality of discretely and sequentially formed concentric layers of filamentary material that are bound together in a resin matrix. The improved rim is provided by prestressing the filamentary material in each successive layer to a prescribed tension loading in accordance with a predetermined schedule during the winding thereof and then curing the resin in each layer prior to forming the next layer for providing a prestress distribution within the rim to effect a self-equilibrating compressive prestress within the windings which counterbalances the transverse or radial tensile stresses generated during rotation of the rim for inhibiting deleterious delamination problems.

  3. An Investigation of Bilateral Symmetry During Manual Wheelchair Propulsion

    PubMed Central

    Soltau, Shelby L.; Slowik, Jonathan S.; Requejo, Philip S.; Mulroy, Sara J.; Neptune, Richard R.

    2015-01-01

    Studies of manual wheelchair propulsion often assume bilateral symmetry to simplify data collection, processing, and analysis. However, the validity of this assumption is unclear. Most investigations of wheelchair propulsion symmetry have been limited by a relatively small sample size and a focus on a single propulsion condition (e.g., level propulsion at self-selected speed). The purpose of this study was to evaluate bilateral symmetry during manual wheelchair propulsion in a large group of subjects across different propulsion conditions. Three-dimensional kinematics and handrim kinetics along with spatiotemporal variables were collected and processed from 80 subjects with paraplegia while propelling their wheelchairs on a stationary ergometer during three different conditions: level propulsion at their self-selected speed (free), level propulsion at their fastest comfortable speed (fast), and propulsion on an 8% grade at their level, self-selected speed (graded). All kinematic variables had significant side-to-side differences, primarily in the graded condition. Push angle was the only spatiotemporal variable with a significant side-to-side difference, and only during the graded condition. No kinetic variables had significant side-to-side differences. The magnitudes of the kinematic differences were low, with only one difference exceeding 5°. With differences of such small magnitude, the bilateral symmetry assumption appears to be reasonable during manual wheelchair propulsion in subjects without significant upper-extremity pain or impairment. However, larger asymmetries may exist in individuals with secondary injuries and pain in their upper extremity and different etiologies of their neurological impairment. PMID:26125019

  4. Sitting pressure in the tilted position: manual tilt-in-space wheelchair vs. manual wheelchair with a new rear antitip device.

    PubMed

    MacDonald, Blair; Kirby, R Lee; Smith, Cher; MacLeod, Donald A; Webber, Adam

    2009-01-01

    To test the hypothesis that, in comparison with a heavier, larger and more expensive manual tilt-in-space wheelchair, a lightweight manual wheelchair equipped with new rear antitip devices provides comparable mean sitting pressures in the tilted position, each of eight able-bodied participants sat for 8 mins in each wheelchair, upright, and tilted back (38-39 degrees). The mean (+/-SD) sitting pressures (of all active sensors in a force-sensing array) at the eighth minute in the upright and tilted positions with the new rear antitip device wheelchair were 58.6 (+/-14.0) and 45.8 (+/-9.3) mm Hg (a 20.7% reduction) (P = 0.005). For the tilt-in-space wheelchair, the mean values were 55.7 (+/-13.9) and 47.2 (+/-10.8) mm Hg (a 26.3% reduction) (P = 0.008). There were no significant differences between the wheelchairs in the upright (P = 0.843) or tilted (P = 0.624) positions. A lightweight manual wheelchair equipped with a new rear antitip device provides equivalent reductions of sitting pressures in the tilted position to a comparably tilted tilt-in-space wheelchair.

  5. Hand Washing

    MedlinePlus

    ... dirty little secrets: Students don't wash their hands often or well. In one study, only 58% of female and 48% of male middle- and high-school students washed their hands after using the bathroom. Yuck! previous continue How ...

  6. Hand washing.

    PubMed

    2016-07-01

    A surgery matron has writt en a hand hygiene promotional video rap to encourage staff, patients and visitors to wash their hands. Vicky Cartwright from University Hospitals of Leicester NHS Trust rewrote the lyrics to 1990s hit rap, Ice Ice Baby.

  7. (Robotic hands)

    SciTech Connect

    Mann, R.C.

    1988-09-23

    The traveler attended the International Workshop on Robot Hands at the Palace Hotel in Dubrovnik, Yugoslavia. The traveler presented a lecture on An integrated sensor system for the ORNL mobile robot.'' The traveler obtained important information on current R D efforts in multi-fingered robot hands and object recognition using touch sensing.

  8. Hand washing.

    PubMed

    2016-07-01

    A surgery matron has writt en a hand hygiene promotional video rap to encourage staff, patients and visitors to wash their hands. Vicky Cartwright from University Hospitals of Leicester NHS Trust rewrote the lyrics to 1990s hit rap, Ice Ice Baby. PMID:27380706

  9. Torque and power outputs on different subjects during manual wheelchair propulsion under different conditions

    NASA Astrophysics Data System (ADS)

    Hwang, Seonhong; Kim, Seunghyeon; Son, Jongsang; Kim, Youngho

    2012-02-01

    Manual wheelchair users are at a high risk of pain and injuries to the upper extremities due to mechanical inefficiency of wheelchair propulsion motion. The kinetic analysis of the upper extremities during manual wheelchair propulsion in various conditions needed to be investigated. We developed and calibrated a wheelchair dynamometer for measuring kinetic parameters during propulsion. We utilized the dynamometer to investigate and compare the propulsion torque and power values of experienced and novice users under four different conditions. Experienced wheelchair users generated lower torques with more power than novice users and reacted alertly and sensitively to changing conditions. We expect that these basic methods and results may help to quantitatively evaluate the mechanical efficiency of manual wheelchair propulsion.

  10. Design of a Robotic System to Measure Propulsion Work of Over-Ground Wheelchair Maneuvers.

    PubMed

    Liles, Howard; Huang, Morris; Caspall, Jayme; Sprigle, Stephen

    2015-11-01

    A wheelchair-propelling robot has been developed to measure the efficiency of manual wheelchairs. The use of a robot has certain advantages compared to the use of human operators with respect to repeatability of measurements and the ability to compare many more wheelchair configurations than possible with human operators. Its design and implementation required significant engineering and validation of hardware and control systems. The robot can propel a wheelchair according to pre-programmed accelerations and velocities and measures the forces required to achieve these maneuvers. Wheel velocities were within 0.1 m/s of programmed values and coefficients of variation . Torque measurements were also repeatable with . By determining the propulsion torque required to propel the wheelchair through a series of canonical maneuvers, task-dependent input work for various wheelchairs and configurations can be compared. This metric would serve to quantify the combined inertial and frictional resistance of the mechanical system.

  11. Hand Eczema

    PubMed Central

    Agarwal, Uma Shankar; Besarwal, Raj Kumar; Gupta, Rahul; Agarwal, Puneet; Napalia, Sheetal

    2014-01-01

    Hand eczema is often a chronic, multifactorial disease. It is usually related to occupational or routine household activities. Exact etiology of the disease is difficult to determine. It may become severe enough and disabling to many of patients in course of time. An estimated 2-10% of population is likely to develop hand eczema at some point of time during life. It appears to be the most common occupational skin disease, comprising 9-35% of all occupational diseases and up to 80% or more of all occupational contact dermatitis. So, it becomes important to find the exact etiology and classification of the disease and to use the appropriate preventive and treatment measures. Despite its importance in the dermatological practice, very few Indian studies have been done till date to investigate the epidemiological trends, etiology, and treatment options for hand eczema. In this review, we tried to find the etiology, epidemiology, and available treatment modalities for chronic hand eczema patients. PMID:24891648

  12. Ergonomic evaluation of a wheelchair for transfer of disabled passengers at a large airport.

    PubMed

    Rohmert, W; Löwenthal, I; Rückert, A

    1990-01-01

    Transferring disabled passengers to the aircraft, both arriving and departing, is one passenger service at a big airport. We use different ergonomic research methods (registration of heart rate, AET job analysis as well as a standardized questionnaire) to evaluate the present wheelchair design. Due to e.g. the high wheelchair backrest, the forces needed to handle the chair and other facts, the current wheelchair causes a strain bottleneck. The results of the AET analysis and the rating of the perceived exertion confirm this finding. A redesigned wheelchair based on ergonomic principles, which reduces stress on the employees and offers more comfort to disabled passengers, is presented.

  13. Design and development of solar power-assisted manual/electric wheelchair.

    PubMed

    Chien, Chi-Sheng; Huang, Tung-Yung; Liao, Tze-Yuan; Kuo, Tsung-Yuan; Lee, Tzer-Min

    2014-01-01

    Wheelchairs are an essential assistive device for many individuals with injury or disability. Manual wheelchairs provide a relatively low-cost solution to the mobility needs of such individuals. Furthermore, they provide an effective means of improving the user's cardiopulmonary function and upper-limb muscle strength. However, manual wheelchairs have a loss gross mechanical efficiency, and thus the risk of user fatigue and upper-limb injury is increased. Electric-powered wheelchairs reduce the risk of injury and provide a more convenient means of transportation. However, they have a large physical size and are relatively expensive. Accordingly, the present study utilizes a quality function deployment method to develop a wheelchair with a user-selectable manual/electric propulsion mode and an auxiliary solar power supply system. The auxiliary solar power supply increased the travel range of the wheelchair by approximately 26% compared with that of a wheelchair powered by battery alone. Moreover, the wheelchair has a modular design and can be disassembled and folded for ease of transportation or storage. Overall, the present results suggest that the proposed wheelchair provides an effective and convenient means of meeting the mobility needs of individuals with mobility difficulties. PMID:25785910

  14. Changes in inertia and effect on turning effort across different wheelchair configurations.

    PubMed

    Caspall, Jayme J; Seligsohn, Erin; Dao, Phuc V; Sprigle, Stephen

    2013-01-01

    When executing turning maneuvers, manual wheelchair users must overcome the rotational inertia of the wheelchair system. Differences in wheelchair rotational inertia can result in increases in torque required to maneuver, resulting in greater propulsion effort and stress on the shoulder joints. The inertias of various configurations of an ultralightweight wheelchair were measured using a rotational inertia-measuring device. Adjustments in axle position, changes in wheel and tire type, and the addition of several accessories had various effects on rotational inertias. The configuration with the highest rotational inertia (solid tires, mag wheels with rearward axle) exceeded the configuration with the lowest (pneumatic tires, spoke wheels with forward axle) by 28%. The greater inertia requires increased torque to accelerate the wheelchair during turning. At a representative maximum acceleration, the reactive torque spanned the range of 11.7 to 15.0 N-m across the wheelchair configurations. At higher accelerations, these torques exceeded that required to overcome caster scrub during turning. These results indicate that a wheelchair's rotational inertia can significantly influence the torque required during turning and that this influence will affect active users who turn at higher speeds. Categorizing wheelchairs using both mass and rotational inertia would better represent differences in effort during wheelchair maneuvers. PMID:24699971

  15. Distribution and cost of wheelchairs and scooters provided by Veterans Health Administration.

    PubMed

    Hubbard, Sandra L; Fitzgerald, Shirley G; Vogel, Bruce; Reker, Dean M; Cooper, Rory A; Boninger, Michael L

    2007-01-01

    During fiscal years 2000 and 2001, the Veterans Health Administration provided veterans with more than 131,000 wheelchairs and scooters at a cost of $109 million. This national study is the first to investigate Veterans Health Administration costs in providing wheelchairs and scooters and to compare regional prescription patterns. With a retrospective design, we used descriptive methods to analyze fiscal years 2000 and 2001 National Prosthetics Patient Database data (cleaned data set of 113,724 records). Wheelchairs were categorized by function, weight, and adjustability options for meeting individual needs (e.g., axle position, camber, position of wheels, tilt, and recline options). Results displayed a cost distribution that was negatively skewed by low-cost accessories coded as wheelchairs. Of the standard manual wheelchairs, 3.5% could be considered beyond the customary cost. Regionally, 71% to 86% of all wheelchairs provided were manual wheelchairs, 5% to 11% were power wheelchairs, and 5% to 20% were scooters. The considerable variation found in the types of wheelchairs and scooters provided across Veterans Integrated Service Networks may indicate a need for evidence-based prescription guidelines and clinician training in wheeled-mobility technologies.

  16. Support of Wheelchairs Using Pheromone Information with Two Types of Communication Methods

    NASA Astrophysics Data System (ADS)

    Yamamoto, Koji; Nitta, Katsumi

    In this paper, we propose a communication framework which combined two types of communication among wheelchairs and mobile devices. Due to restriction of range of activity, there is a problem that wheelchair users tend to shut themselves up in their houses. We developed a navigational wheelchair which loads a system that displays information on a map through WWW. However, this wheelchair is expensive because it needs a solid PC, a precise GPS, a battery, and so on. We introduce mobile devices and use this framework to provide information to wheelchair users and to facilitate them to go out. When a user encounters other users, they exchange messages which they have by short-distance wireless communication. Once a message is delivered to a navigational wheelchair, the wheelchair uploads the message to the system. We use two types of pheromone information which represent trends of user's movement and existences of a crowd of users. First, when users gather, ``crowd of people pheromone'' is emitted virtually. Users do not send these pheromones to the environment but carry them. If the density exceeds the threshold, messages that express ``people gethered'' are generated automatically. The other pheromone is ``movement trend pheromone'', which is used to improve probability of successful transmissions. From results of experiments, we concluded that our method can deliver information that wheelchair users gathered to other wheelchairs.

  17. Design and development of solar power-assisted manual/electric wheelchair.

    PubMed

    Chien, Chi-Sheng; Huang, Tung-Yung; Liao, Tze-Yuan; Kuo, Tsung-Yuan; Lee, Tzer-Min

    2014-01-01

    Wheelchairs are an essential assistive device for many individuals with injury or disability. Manual wheelchairs provide a relatively low-cost solution to the mobility needs of such individuals. Furthermore, they provide an effective means of improving the user's cardiopulmonary function and upper-limb muscle strength. However, manual wheelchairs have a loss gross mechanical efficiency, and thus the risk of user fatigue and upper-limb injury is increased. Electric-powered wheelchairs reduce the risk of injury and provide a more convenient means of transportation. However, they have a large physical size and are relatively expensive. Accordingly, the present study utilizes a quality function deployment method to develop a wheelchair with a user-selectable manual/electric propulsion mode and an auxiliary solar power supply system. The auxiliary solar power supply increased the travel range of the wheelchair by approximately 26% compared with that of a wheelchair powered by battery alone. Moreover, the wheelchair has a modular design and can be disassembled and folded for ease of transportation or storage. Overall, the present results suggest that the proposed wheelchair provides an effective and convenient means of meeting the mobility needs of individuals with mobility difficulties.

  18. Changes in inertia and effect on turning effort across different wheelchair configurations.

    PubMed

    Caspall, Jayme J; Seligsohn, Erin; Dao, Phuc V; Sprigle, Stephen

    2013-01-01

    When executing turning maneuvers, manual wheelchair users must overcome the rotational inertia of the wheelchair system. Differences in wheelchair rotational inertia can result in increases in torque required to maneuver, resulting in greater propulsion effort and stress on the shoulder joints. The inertias of various configurations of an ultralightweight wheelchair were measured using a rotational inertia-measuring device. Adjustments in axle position, changes in wheel and tire type, and the addition of several accessories had various effects on rotational inertias. The configuration with the highest rotational inertia (solid tires, mag wheels with rearward axle) exceeded the configuration with the lowest (pneumatic tires, spoke wheels with forward axle) by 28%. The greater inertia requires increased torque to accelerate the wheelchair during turning. At a representative maximum acceleration, the reactive torque spanned the range of 11.7 to 15.0 N-m across the wheelchair configurations. At higher accelerations, these torques exceeded that required to overcome caster scrub during turning. These results indicate that a wheelchair's rotational inertia can significantly influence the torque required during turning and that this influence will affect active users who turn at higher speeds. Categorizing wheelchairs using both mass and rotational inertia would better represent differences in effort during wheelchair maneuvers.

  19. A Frosty Rim In False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    Our final image combines the features of the past two days, with a dust covered frosty crater rim and the bluer sand dunes of the north polar region.

    Image information: VIS instrument. Latitude 70.1, Longitude 351.8 East (8.2 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. A Front-Row Seat at a Wheelchair Crash Test: EP Kicks Off Its Wheelchair Transportation Safety Series with a Visit to the University of Michigan's Transportation Research Institute

    ERIC Educational Resources Information Center

    Hollingsworth, Jan Carter

    2007-01-01

    The centerpiece of the University of Michigan's Transportation Research Institute (UMTRI) Sled Lab is "the impact sled," as it is called in the business. It's the business of conducting sled impact tests, perhaps better known as crash tests, on all types of wheelchairs and wheelchair seating systems as well as wheelchair tiedowns and…

  1. 19. Detail of original leveraction rim lock, downstairs door between ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Detail of original lever-action rim lock, downstairs door between central hall and southwest room, looking northwest - Merkel Farmstead, House, 8570 Louella Lane, south side of U.S. Route 64, Shiloh, St. Clair County, IL

  2. DETAIL OF THE GROOVED RIM ON TOP FACE OF CHAMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE GROOVED RIM ON TOP FACE OF CHAMBER SHELL, ALTITUDE CHAMBER L, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  3. Super Rapid Scan Imagery of the California Rim Fire

    NASA Video Gallery

    The GOES-14 provided many SRSOR loops of the California Rim Fire. A sequence of these GOES-14 SRSOR 0.63 µm visible channel images showed that the initial northward motion of the smoke plume began ...

  4. 12. HALEMAUMAUUWEKAHUNA ROAD AT SOUTHWEST RIM OF KILAUEA CRATER, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. HALEMAUMAU-UWEKAHUNA ROAD AT SOUTHWEST RIM OF KILAUEA CRATER, SHOWING HEAVY FILL AND ROCK BANK. LOOKING EAST. FROM SUPERINTENDENT'S MONTHLY REPORT, JANUARY 1934. - Mauna Loa Road, Volcano, Hawaii County, HI

  5. Evaluation of the new flexible contour backrest for wheelchairs.

    PubMed

    Parent, F; Dansereau, J; Lacoste, M; Aissaoui, R

    2000-01-01

    A new flexible contour backrest for wheelchairs was designed with the objectives of offering adequate posture, uniform pressure distribution, and comfort to the users while keeping the advantages of conventional sling backrests, such as easy to fold, light weight, unobtrusive, and airy. The purpose of this study is to compare the new backrest with two commercially available wheelchair backrests, an adjustable-tension (AT) backrest and a back cushion on a rigid support (RS), in terms of pressure distribution, back profile accommodation, and short-term comfort. Evaluations were done with 15 nonimpaired subjects in a static position. It was shown that the new backrest distributes pressure in a more uniform way than the AT and in a way similar to the RS, while giving a better fit to subjects' trunks than other backrests because of its multiple adjustments. Finally, subjects felt that the new backrest is as comfortable as the RS and more comfortable than the AT.

  6. Sport orientation and athletic identity of Greek wheelchair basketball players.

    PubMed

    Kokaridas, Dimitrios; Perkos, Stefanos; Harbalis, Thomas; Koltsidas, Evaggelos

    2009-12-01

    The purpose of this study was to examine sport orientation and athletic identity of Greek wheelchair basketball players. The sample consisted of 50 male wheelchair basketball players all coming from different teams participating at the Greek National Championship. Thirty-three (n = 33) participants had acquired disabilities, and 17 (n = 17) participants had congenital disabilities. The years of training of the participants ranged from 1 to 22 years. All subjects completed the Sport Orientation Questionnaire, with factors of competitiveness, goal orientation, and win orientation, and the Athletic Orientation Questionnaire which assesses personal identity, social identity, exclusivity, and negative effect. The study indicated satisfactory internal consistency for the questionnaires' factors. Furthermore, players with congenital disabilities appeared more win-oriented and focused on specific goals and with stronger self-perception of their athletic role compared to players with acquired disabilities.

  7. Effects of Seated Postural Stability and Trunk and Upper Extremity Strength on Performance during Manual Wheelchair Propulsion Tests in Individuals with Spinal Cord Injury: An Exploratory Study.

    PubMed

    Gagnon, Dany H; Roy, Audrey; Gabison, Sharon; Duclos, Cyril; Verrier, Molly C; Nadeau, Sylvie

    2016-01-01

    Objectives. To quantify the association between performance-based manual wheelchair propulsion tests (20 m propulsion test, slalom test, and 6 min propulsion test), trunk and upper extremity (U/E) strength, and seated reaching capability and to establish which ones of these variables best predict performance at these tests. Methods. 15 individuals with a spinal cord injury (SCI) performed the three wheelchair propulsion tests prior to discharge from inpatient SCI rehabilitation. Trunk and U/E strength and seated reaching capability with unilateral hand support were also measured. Bivariate correlation and multiple linear regression analyses allowed determining the best determinants and predictors, respectively. Results. The performance at the three tests was moderately or strongly correlated with anterior and lateral flexion trunk strength, anterior seated reaching distance, and the shoulder, elbow, and handgrip strength measures. Shoulder adductor strength-weakest side explained 53% of the variance on the 20-meter propulsion test-maximum velocity. Shoulder adductor strength-strongest side and forward seated reaching distance explained 71% of the variance on the slalom test. Handgrip strength explained 52% of the variance on the 6-minute propulsion test. Conclusion. Performance at the manual wheelchair propulsion tests is explained by a combination of factors that should be considered in rehabilitation.

  8. Effects of Seated Postural Stability and Trunk and Upper Extremity Strength on Performance during Manual Wheelchair Propulsion Tests in Individuals with Spinal Cord Injury: An Exploratory Study

    PubMed Central

    Roy, Audrey; Gabison, Sharon; Verrier, Molly C.

    2016-01-01

    Objectives. To quantify the association between performance-based manual wheelchair propulsion tests (20 m propulsion test, slalom test, and 6 min propulsion test), trunk and upper extremity (U/E) strength, and seated reaching capability and to establish which ones of these variables best predict performance at these tests. Methods. 15 individuals with a spinal cord injury (SCI) performed the three wheelchair propulsion tests prior to discharge from inpatient SCI rehabilitation. Trunk and U/E strength and seated reaching capability with unilateral hand support were also measured. Bivariate correlation and multiple linear regression analyses allowed determining the best determinants and predictors, respectively. Results. The performance at the three tests was moderately or strongly correlated with anterior and lateral flexion trunk strength, anterior seated reaching distance, and the shoulder, elbow, and handgrip strength measures. Shoulder adductor strength-weakest side explained 53% of the variance on the 20-meter propulsion test-maximum velocity. Shoulder adductor strength-strongest side and forward seated reaching distance explained 71% of the variance on the slalom test. Handgrip strength explained 52% of the variance on the 6-minute propulsion test. Conclusion. Performance at the manual wheelchair propulsion tests is explained by a combination of factors that should be considered in rehabilitation.

  9. Effects of Seated Postural Stability and Trunk and Upper Extremity Strength on Performance during Manual Wheelchair Propulsion Tests in Individuals with Spinal Cord Injury: An Exploratory Study

    PubMed Central

    Roy, Audrey; Gabison, Sharon; Verrier, Molly C.

    2016-01-01

    Objectives. To quantify the association between performance-based manual wheelchair propulsion tests (20 m propulsion test, slalom test, and 6 min propulsion test), trunk and upper extremity (U/E) strength, and seated reaching capability and to establish which ones of these variables best predict performance at these tests. Methods. 15 individuals with a spinal cord injury (SCI) performed the three wheelchair propulsion tests prior to discharge from inpatient SCI rehabilitation. Trunk and U/E strength and seated reaching capability with unilateral hand support were also measured. Bivariate correlation and multiple linear regression analyses allowed determining the best determinants and predictors, respectively. Results. The performance at the three tests was moderately or strongly correlated with anterior and lateral flexion trunk strength, anterior seated reaching distance, and the shoulder, elbow, and handgrip strength measures. Shoulder adductor strength-weakest side explained 53% of the variance on the 20-meter propulsion test-maximum velocity. Shoulder adductor strength-strongest side and forward seated reaching distance explained 71% of the variance on the slalom test. Handgrip strength explained 52% of the variance on the 6-minute propulsion test. Conclusion. Performance at the manual wheelchair propulsion tests is explained by a combination of factors that should be considered in rehabilitation. PMID:27635262

  10. Effects of Seated Postural Stability and Trunk and Upper Extremity Strength on Performance during Manual Wheelchair Propulsion Tests in Individuals with Spinal Cord Injury: An Exploratory Study.

    PubMed

    Gagnon, Dany H; Roy, Audrey; Gabison, Sharon; Duclos, Cyril; Verrier, Molly C; Nadeau, Sylvie

    2016-01-01

    Objectives. To quantify the association between performance-based manual wheelchair propulsion tests (20 m propulsion test, slalom test, and 6 min propulsion test), trunk and upper extremity (U/E) strength, and seated reaching capability and to establish which ones of these variables best predict performance at these tests. Methods. 15 individuals with a spinal cord injury (SCI) performed the three wheelchair propulsion tests prior to discharge from inpatient SCI rehabilitation. Trunk and U/E strength and seated reaching capability with unilateral hand support were also measured. Bivariate correlation and multiple linear regression analyses allowed determining the best determinants and predictors, respectively. Results. The performance at the three tests was moderately or strongly correlated with anterior and lateral flexion trunk strength, anterior seated reaching distance, and the shoulder, elbow, and handgrip strength measures. Shoulder adductor strength-weakest side explained 53% of the variance on the 20-meter propulsion test-maximum velocity. Shoulder adductor strength-strongest side and forward seated reaching distance explained 71% of the variance on the slalom test. Handgrip strength explained 52% of the variance on the 6-minute propulsion test. Conclusion. Performance at the manual wheelchair propulsion tests is explained by a combination of factors that should be considered in rehabilitation. PMID:27635262

  11. Lower-Rim Substituted Calixarenes and Their Applications

    PubMed Central

    Jose, Princy; Menon, Shobana

    2007-01-01

    This review discusses in detail “calixarenes” since their discovery as by-products of the phenol formaldehyde bakelites till the present scenario wherein calixarene has assumed a new dimension in the field of supramolecular chemistry. Extensive literature exists for calixarenes; but herein we have tried to concentrate on the different lower-rim modified calixarenes with their potential applications. An attempt has also been made to critically evaluate the synthesis procedures for different lower-rim substituted calixarenes. PMID:17611612

  12. Rimmed and edge thickened stodola shaped flywheel. [Patent application

    DOEpatents

    Kulkarni, S.V.; Stone, R.G.

    1980-09-24

    A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body composed of essentially planar isotropic high strength material. The flywheel body is enclosed by a rim of circumferentially wound fiber embedded in resin. The rim promotes flywheel safety and survivability. The flywheel has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability.

  13. Wheeled mobility (wheelchair) service delivery: scope of the evidence.

    PubMed

    Greer, Nancy; Brasure, Michelle; Wilt, Timothy J

    2012-01-17

    Identifying the appropriate wheelchair for a person who needs one has implications for both disabled persons and society. For someone with severe locomotive problems, the right wheelchair can affect mobility and quality of life. However, policymakers are concerned about the increasing demand for unnecessarily elaborate chairs. The Office of Inspector General, U.S. Department of Health and Human Services, issued 4 reports between 2009 and 2011 detailing fraud and misapplication of Medicare funds for powered wheelchairs, more than a decade after similar concerns were first raised by 4 contractors who process claims for durable medical equipment. Subsequent concerns have arisen about whether some impaired persons who need wheeled mobility devices may now be inappropriately denied coverage. A transparent, evidence-based approach to wheeled mobility service delivery (the matching of mobility-impaired persons to appropriate devices and supporting services) might lessen these concerns. This review describes the process of wheeled mobility service delivery for long-term wheelchair users with complex rehabilitation needs and presents findings from a survey of the literature (published and gray) and interviews with key informants. Recommended steps in the delivery process were identified in textbooks, guidelines, and published literature. Delivery processes shared many commonalities; however, no research supports the recommended approaches. A search of bibliographic databases through March 2011 identified 24 studies that evaluated aspects of wheeled mobility service delivery. Most were observational, exploratory studies designed to determine consumer use of and satisfaction with the process. The evidence base for the effectiveness of approaches to wheeled mobility service delivery is insufficient, and additional research is needed to develop standards and guidelines. PMID:22250145

  14. Upper limb joint kinetics of three sitting pivot wheelchair transfer techniques in individuals with spinal cord injury

    PubMed Central

    Kankipati, Padmaja; Boninger, Michael L.; Gagnon, Dany; Cooper, Rory A.; Koontz, Alicia M.

    2015-01-01

    Study design Repeated measures design. Objective This study compared the upper extremity (UE) joint kinetics between three transfer techniques. Setting Research laboratory. Methods Twenty individuals with spinal cord injury performed three transfer techniques from their wheelchair to a level tub bench. Two of the techniques involved a head–hips method with leading hand position close (HH-I) and far (HH-A) from the body, and the third technique with the trunk upright (TU) and hand far from body. Motion analysis equipment recorded upper body movements and force sensors recorded their hand and feet reaction forces during the transfers. Results Several significant differences were found between HH-A and HH-I and TU and HH-I transfers indicating that hand placement was a key factor influencing the UE joint kinetics. Peak resultant hand, elbow, and shoulder joint forces were significantly higher for the HH-A and TU techniques at the trailing arm (P < 0.036) and lower at the leading arm (P < 0.021), compared to the HH-I technique. Conclusion Always trailing with the same arm if using HH-A or TU could predispose that arm to overuse related pain and injuries. Technique training should focus on initial hand placement close to the body followed by the amount of trunk flexion needed to facilitate movement. PMID:25130053

  15. 14 CFR 382.125 - What procedures do carriers follow when wheelchairs, other mobility aids, and other assistive...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... wheelchairs, other mobility aids, and other assistive devices must be stowed in the cargo compartment? 382.125... Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.125 What procedures do carriers follow when wheelchairs, other mobility aids, and other assistive devices must be stowed in the...

  16. 14 CFR 382.129 - What other requirements apply when passengers' wheelchairs, other mobility aids, and other...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... passengers' wheelchairs, other mobility aids, and other assistive devices must be disassembled for stowage... Stowage of Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.129 What other requirements apply when passengers' wheelchairs, other mobility aids, and other assistive devices must...

  17. 14 CFR 382.129 - What other requirements apply when passengers' wheelchairs, other mobility aids, and other...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... passengers' wheelchairs, other mobility aids, and other assistive devices must be disassembled for stowage... Stowage of Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.129 What other requirements apply when passengers' wheelchairs, other mobility aids, and other assistive devices must...

  18. 14 CFR 382.129 - What other requirements apply when passengers' wheelchairs, other mobility aids, and other...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... passengers' wheelchairs, other mobility aids, and other assistive devices must be disassembled for stowage... Stowage of Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.129 What other requirements apply when passengers' wheelchairs, other mobility aids, and other assistive devices must...

  19. 14 CFR 382.125 - What procedures do carriers follow when wheelchairs, other mobility aids, and other assistive...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... wheelchairs, other mobility aids, and other assistive devices must be stowed in the cargo compartment? 382.125... Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.125 What procedures do carriers follow when wheelchairs, other mobility aids, and other assistive devices must be stowed in the...

  20. 14 CFR 382.129 - What other requirements apply when passengers' wheelchairs, other mobility aids, and other...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... passengers' wheelchairs, other mobility aids, and other assistive devices must be disassembled for stowage... Stowage of Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.129 What other requirements apply when passengers' wheelchairs, other mobility aids, and other assistive devices must...

  1. 14 CFR 382.129 - What other requirements apply when passengers' wheelchairs, other mobility aids, and other...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... passengers' wheelchairs, other mobility aids, and other assistive devices must be disassembled for stowage... Stowage of Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.129 What other requirements apply when passengers' wheelchairs, other mobility aids, and other assistive devices must...

  2. 14 CFR 382.125 - What procedures do carriers follow when wheelchairs, other mobility aids, and other assistive...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... wheelchairs, other mobility aids, and other assistive devices must be stowed in the cargo compartment? 382.125... Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.125 What procedures do carriers follow when wheelchairs, other mobility aids, and other assistive devices must be stowed in the...

  3. 14 CFR 382.125 - What procedures do carriers follow when wheelchairs, other mobility aids, and other assistive...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... wheelchairs, other mobility aids, and other assistive devices must be stowed in the cargo compartment? 382.125... Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.125 What procedures do carriers follow when wheelchairs, other mobility aids, and other assistive devices must be stowed in the...

  4. 14 CFR 382.125 - What procedures do carriers follow when wheelchairs, other mobility aids, and other assistive...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... wheelchairs, other mobility aids, and other assistive devices must be stowed in the cargo compartment? 382.125... Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.125 What procedures do carriers follow when wheelchairs, other mobility aids, and other assistive devices must be stowed in the...

  5. 14 CFR 382.123 - What are the requirements concerning priority cabin stowage for wheelchairs and other assistive...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... priority cabin stowage for wheelchairs and other assistive devices? 382.123 Section 382.123 Aeronautics and... NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Stowage of Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.123 What are the requirements concerning priority cabin stowage for wheelchairs...

  6. 14 CFR 382.67 - What is the requirement for priority space in the cabin to store passengers' wheelchairs?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in the cabin to store passengers' wheelchairs? 382.67 Section 382.67 Aeronautics and Space OFFICE OF... requirement for priority space in the cabin to store passengers' wheelchairs? (a) As a carrier, you must...-sized folding, collapsible, or break-down manual passenger wheelchair, the dimensions of which...

  7. 49 CFR 39.93 - What wheelchairs and other assistive devices may passengers with a disability bring onto a...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false What wheelchairs and other assistive devices may... and Services to Passengers With Disabilities § 39.93 What wheelchairs and other assistive devices may... must permit individuals with mobility disabilities to use wheelchairs and manually powered...

  8. 14 CFR 382.123 - What are the requirements concerning priority cabin stowage for wheelchairs and other assistive...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... priority cabin stowage for wheelchairs and other assistive devices? 382.123 Section 382.123 Aeronautics and... NONDISCRIMINATION ON THE BASIS OF DISABILITY IN AIR TRAVEL Stowage of Wheelchairs, Other Mobility Aids, and Other Assistive Devices § 382.123 What are the requirements concerning priority cabin stowage for wheelchairs...

  9. 14 CFR 382.67 - What is the requirement for priority space in the cabin to store passengers' wheelchairs?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in the cabin to store passengers' wheelchairs? 382.67 Section 382.67 Aeronautics and Space OFFICE OF... requirement for priority space in the cabin to store passengers' wheelchairs? (a) As a carrier, you must...-sized folding, collapsible, or break-down manual passenger wheelchair, the dimensions of which...

  10. 49 CFR 39.93 - What wheelchairs and other assistive devices may passengers with a disability bring onto a...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false What wheelchairs and other assistive devices may... and Services to Passengers With Disabilities § 39.93 What wheelchairs and other assistive devices may... must permit individuals with mobility disabilities to use wheelchairs and manually powered...

  11. 49 CFR 39.93 - What wheelchairs and other assistive devices may passengers with a disability bring onto a...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false What wheelchairs and other assistive devices may... and Services to Passengers With Disabilities § 39.93 What wheelchairs and other assistive devices may... must permit individuals with mobility disabilities to use wheelchairs and manually powered...

  12. 49 CFR 39.93 - What wheelchairs and other assistive devices may passengers with a disability bring onto a...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false What wheelchairs and other assistive devices may... and Services to Passengers With Disabilities § 39.93 What wheelchairs and other assistive devices may... must permit individuals with mobility disabilities to use wheelchairs and manually powered...

  13. Transfer component skill deficit rates among Veterans who use wheelchairs.

    PubMed

    Koontz, Alicia M; Tsai, Chung-Ying; Hogaboom, Nathan S; Boninger, Michael L

    2016-01-01

    The purpose of this study was to quantify the deficit rates for transfer component skills in a Veteran cohort and explore the relationship between deficit rates and subject characteristics. Seventy-four men and 18 women performed up to four transfers independently from their wheelchair to a mat table while a therapist evaluated their transfer techniques using the Transfer Assessment Instrument. The highest deficit rates concerned the improper use of handgrips (63%). Other common problems included not setting the wheelchair up at the proper angle (50%) and not removing the armrest (58%). Veterans over 60 yr old and Veterans with moderate shoulder pain were more likely to set up their wheelchairs inappropriately than younger Veterans (p = 0.003) and Veterans with mild shoulder pain (p = 0.004). Women were less likely to remove their armrests than men (p = 0.03). Subjects with disabilities other than spinal cord injury were less inclined to set themselves up for a safe and easy transfer than the subjects with spinal cord injury (p ≤ 0.001). The results provide insight into the disparities present in transfer skills among Veterans and will inform the development of future transfer training programs both within and outside of the Department of Veterans Affairs. PMID:27149389

  14. Kinematic analysis of the wheelchair tennis serve: Implications for classification.

    PubMed

    Cavedon, V; Zancanaro, C; Milanese, C

    2014-10-01

    The aim of the present study was to assess the validity of the classification system used in Open-class wheelchair tennis by investigating the relationship between post-impact ball velocity in the serve (measured using a sports radar gun) and the severity of impairment. Shoulder and wrist angles at the instant of ball impact were also estimated from 2D motion analysis. Forty-three nationally ranked Italian Open-class wheelchair tennis players were assigned to four groups (A–D) according to descending level of activity limitation. Ten successful flat serves (WFSs) and 10 successful kick serves (WKSs) for each player were recorded. One-way ANOVA showed that the severity of impairment significantly (P < 0.05) affected post-impact ball velocity and shoulder angle at the instant of ball impact. Furthermore, the mean value of post-impact ball velocity in WFS increased from group A to group D, i.e., with descending level of activity limitation. The results of this cross-sectional study indicate that the severity of impairment per se is associated with velocity of the wheelchair tennis serve, suggesting that the current classification is flawed in that it overlooks the impact of severity of impairment on players' performance. PMID:25371933

  15. Performance analysis of elite men's and women's wheelchair basketball teams.

    PubMed

    Gómez, Miguel Ángel; Pérez, Javier; Molik, Bartosz; Szyman, Robert J; Sampaio, Jaime

    2014-01-01

    The purpose of the present study was to identify which game-related statistics discriminate winning and losing teams in men's and women's elite wheelchair basketball. The sample comprised all the games played during the Beijing Paralympics 2008 and the World Wheelchair Basketball Championship 2010. The game-related statistics from the official box scores were gathered and data were analysed in 2 groups: balanced games (final score differences ≤ 12 points) and unbalanced games (final score differences >13 points). Discriminant analysis allowed identifying the successful 2-point field-goals and free-throws, the unsuccessful 3-point field-goals and free-throws, the assists and fouls received as discriminant statistics between winning and losing teams in men's balanced games. In women's games, the teams were discriminated only by the successful 2-point field-goals. Linear regression analysis showed that the quality of opposition had great effects in final point differential. The field-goals percentage and free-throws rate were the most important factors in men's games, and field-goals percentage and offensive rebounding percentage in women's games. The identified trends allow improving game understanding and helping wheelchair basketball coaches to plan accurate practice sessions and, ultimately, deciding better in competition.

  16. Participatory design and validation of mobility enhancement robotic wheelchair.

    PubMed

    Daveler, Brandon; Salatin, Benjamin; Grindle, Garrett G; Candiotti, Jorge; Wang, Hongwu; Cooper, Rory A

    2015-01-01

    The design of the mobility enhancement robotic wheelchair (MEBot) was based on input from electric powered wheelchair (EPW) users regarding the conditions they encounter when driving in both indoor and outdoor environments that may affect their safety and result in them becoming immobilized, tipping over, or falling out of their wheelchair. Phase I involved conducting a participatory design study to understand the conditions and barriers EPW users found to be difficult to drive in/over. Phase II consisted of creating a computer-aided design (CAD) prototype EPW to provide indoor and outdoor mobility that addressed these conditions with advanced applications. Phase III involved demonstrating the advanced applications and gathering feedback from end users about the likelihood they would use the advanced applications. The CAD prototype incorporated advanced applications, including self-leveling, curb climbing, and traction control, that addressed the challenging conditions and barriers discussed with EPW users (n = 31) during the participatory design study. Feedback of the CAD design and applications in phase III from end users (n = 12) showed a majority would use self-leveling (83%), traction control (83%), and curb climbing (75%). The overall design of MEBot received positive feedback from EPW users. However, these opinions will need to be reevaluated through user trials as the design advances. PMID:26562492

  17. Wheelchair seating: a state of the science report.

    PubMed

    Geyer, Mary Jo; Brienza, David M; Bertocci, Gina E; Crane, Barbara; Hobson, Douglas; Karg, Patricia; Schmeler, Mark; Trefler, Elaine

    2003-01-01

    Regardless of the field, agenda-setting processes are integral to establishing research and development priorities. Beginning in 1998, the National Institute on Disability and Rehabilitation Research mandated that each newly funded Rehabilitation Engineering and Research Center (RERC) hold a state-of-the-science consensus forum during the third year of its 5-year funding cycle. NIDRR's aim in formalizing this agenda-setting process was to facilitate the formulation of future research and development priorities for each respective RERC. In February 2001, the RERC on Wheeled Mobility, University of Pittsburgh, conducted one of the first such forums. The scope encompassed both current scientific knowledge and clinical issues. In preparation, expert interviews were carried out to establish the focus for the forum. Because a stakeholder forum on wheelchair technology had recently been held, opinion favored wheelchair seating as the focus and included the following core areas: seating for use in wheelchair transportation, seated postural control, seating discomfort, and tissue integrity management. The aim of this report is to present a summary of the workshop outcomes, describe the process, and increase awareness of this agenda-setting process in order to enhance future participation in a process that critically influences the field of wheeled mobility.

  18. Accessibility of outpatient healthcare providers for wheelchair users: Pilot study.

    PubMed

    Frost, Karen L; Bertocci, Gina; Stillman, Michael D; Smalley, Craig; Williams, Steve

    2015-01-01

    The Americans with Disabilities Act (ADA) requires full and equal access to healthcare services and facilities, yet studies indicate individuals with mobility disabilities receive less than thorough care as a result of ADA noncompliance. The objective of our pilot study was to assess ADA compliance within a convenience sample of healthcare clinics affiliated with a statewide healthcare network. Site assessments based on the ADA Accessibility Guidelines for Buildings and Facilities were performed at 30 primary care and specialty care clinics. Clinical managers completed a questionnaire on standard practices for examining and treating patients whose primary means of mobility is a wheelchair. We found a majority of restrooms (83%) and examination rooms (93%) were noncompliant with one or more ADA requirements. Seventy percent of clinical managers reported not owning a height-adjustable examination table or wheelchair accessible weight scale. Furthermore, patients were examined in their wheelchairs (70%-87%), asked to bring someone to assist with transfers (30%), or referred elsewhere due to an inaccessible clinic (6%). These methods of accommodation are not compliant with the ADA. We recommend clinics conduct ADA self-assessments and provide training for clinical staff on the ADA and requirements for accommodating individuals with mobility disabilities.

  19. Survey of wheelchair athletic injuries: common patterns and prevention.

    PubMed

    Curtis, K A; Dillon, D A

    1985-06-01

    Twelve hundred wheelchair athletes were surveyed to determine commonly experienced athletic injuries, sports participation and training patterns associated with injuries. Soft tissue trauma, blisters, lacerations, decubiti and joint disorders were the most commonly reported injuries of the 128 respondents. Over 70 per cent of all reported injuries occurred during wheelchair track, road racing and basketball. Common mechanisms of injury were also identified. A significantly higher number of reported injuries were associated with increased sports participation (p less than 001), with the 21-30 year-old age group (p less than .01), and with a high number of training hours per week (p less than .05). There was no significant relationship between number of reported injuries and disability type, National Wheelchair Athletic Association classification, or sex. Decubitus ulcers and temperature regulation disorders were identified as particular risks for the spinal cord injury population. Educating the athlete and coach in means to prevent injury is necessary to promote optimal performance and safe participation. PMID:4011292

  20. Body composition comparison in two elite female wheelchair athletes.

    PubMed

    Lussier, L; Knight, J; Bell, G; Lohman, T; Morris, A F

    1983-02-01

    It was the purpose of this study to determine body composition by two methods in two excellent female athletes. One sportswoman (SRH) was national wheelchair marathon champion in 1977 in 3 hours, 40 minutes on the Boston course. She still competes internationally and has won three gold medals and set three world records in the last Olympiad for the handicapped in 1980. The second woman athlete (LSJ) competes in wheelchair basketball and track on a national level. Body density was determined by the standard underwater weighing procedure and residual volume determination. A second method to calculate cellular body mass was the measure of potassium 40 (40K) activity by whole body scintillation counter. The characteristics of these athletes are listed as follows: (formula; see text) The results show that both methods of determining adiposity produce results differing by only one percentage point. It is important to determine body composition in these wheelchair athletes since their cellular body mass is decreased because of their disability.

  1. Southern rim of Isidis Planitia basin

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 11 April 2002) The Science This image, crossing the southern rim of the Isidis Planitia basin, displays the contrasting morphologies of the relatively rough highland terrain (in the lower portion of the image) and the relatively smooth materials of the basin (at top). Upon closer viewing, the basin materials display an extensive record of cratering, including a small cluster of craters just north and west of the two prominent craters in the upper part of the image. This cluster of craters may represent what are called 'secondary' craters, which are craters that form as a result of the ejection of debris from a nearby impact. Alternatively, these craters may have formed simultaneously by the impact of many pieces of a larger meteoroid that broke up upon entry into Mars' atmosphere. The large craters in the image are approximately 800 meters (875 yards) in diameter. Also visible in the image are dark streaks on the east-facing side of the north-south trending ridge. These streaks are likely the result of debris movement down slope. A dark patch of material is visible at the left of the image; dark materials are typically mobile sands, and linear dune forms are apparent within the dark patch. The Story Battered and beaten up, the surface of Mars reads like a history book to geologists, who want to study what has happened to the red planet over its geological history. Look for two larger craters diagonal from one another in the northern part of this image, and then for the smattering of tinier craters near them. How did these smaller craters come to be? Did a large meteoroid streak in through the Martian atmosphere and get broken up as it passed through, pummeling Mars moments later with its smaller, scattered pieces? Or were rocks and dirt blasted off the surface when the two larger craters were formed, only to rain down again on Mars shortly afterwards? No one quite knows for sure.... Another enigmatic-looking feature is near the left center of this image

  2. Schiaparelli Crater Rim and Interior Deposits

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A portion of the rim and interior of the large impact crater Schiaparelli is seen at different resolutions in images acquired October 18, 1997 by the Mars Global Surveyor Orbiter Camera (MOC) and by the Viking Orbiter 1 twenty years earlier. The left image is a MOC wide angle camera 'context' image showing much of the eastern portion of the crater at roughly 1 km (0.6 mi) per picture element. The image is about 390 by 730 km (240 X 450 miles). Shown within the wide angle image is the outline of a portion of the best Viking image (center, 371S53), acquired at a resolution of about 240 m/pixel (790 feet). The area covered is 144 X 144 km (89 X 89 miles). The right image is the high resolution narrow angle camera view. The area covered is very small--3.9 X 10.2 km (2.4 X 6.33 mi)--but is seen at 63 times higher resolution than the Viking image. The subdued relief and bright surface are attributed to blanketing by dust; many small craters have been completely filled in, and only the most recent (and very small) craters appear sharp and bowl-shaped. Some of the small craters are only 10-12 m (30-35 feet) across. Occasional dark streaks on steeper slopes are small debris slides that have probably occurred in the past few decades. The two prominent, narrow ridges in the center of the image may be related to the adjustment of the crater floor to age or the weight of the material filling the basin.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  3. Rim region growth and its composition in reaction bonded boron carbide composites with core-rim structure

    NASA Astrophysics Data System (ADS)

    Hayun, S.; Weizmann, A.; Dilman, H.; Dariel, M. P.; Frage, N.

    2009-06-01

    Aluminum was detected in reaction-bonded boron carbide that had been prepared by pressureless infiltration of boron carbide preforms with molten silicon in a graphite furnace under vacuum. The presence of Al2O3 in the heated zone, even though not in contact with the boron carbide preform, stands behind the presence of aluminium in the rim region that interconnects the initial boron carbide particles. The composition of the rim corresponds to the Bx(C,Si,Al)y quaternary carbide phase. The reaction of alumina with graphite and the formation of a gaseous aluminum suboxide (Al2O) accounts for the transfer of aluminum in the melt and, subsequently in the rim regions. The presence of Al increases the solubility of boron in liquid silicon, but with increasing aluminum content the activity of boron decreases. These features dominate the structural evolution of the rim-core in the presence of aluminum in the melt.

  4. Innovative Power Wheelchair Control Interface: A Proof-of-Concept Study

    PubMed Central

    Romero, Sergio; Prather, Emily; Ramroop, Marisa; Slaibe, Emmy; Christensen, Matthew

    2016-01-01

    Some people without independent mobility are candidates for powered mobility but are unable to use a traditional power wheelchair joystick. This proof-of-concept study tested and further developed an innovative method of driving power wheelchairs for people whose impairments prevent them from operating commercial wheelchair controls. Our concept, Self-referenced Personal Orthotic Omni-purpose Control Interface (SPOOCI), is distinguished by referencing the control sensor not to the wheelchair frame but instead to the adjacent proximal lower-extremity segment via a custom-formed orthosis. Using a descriptive case-series design, we compared the pre–post functional power wheelchair driving skill data of 4 participants, measured by the Power Mobility Program, using descriptive analyses. The intervention consisted of standard-care power wheelchair training during 12 outpatient occupational or physical therapy sessions. All 4 participants who completed the 12-wk intervention improved their functional power wheelchair driving skills using SPOOCI, but only 3 were deemed safe to continue with power wheelchair driving. PMID:26943118

  5. Demographic Profile and Athletic Identity of Traumatic Spinal Cord Injured Wheelchair Basketball Athletes in Greece

    ERIC Educational Resources Information Center

    Vasiliadis, Angelo; Evaggelinou, Christina; Avourdiadou, Sevastia; Grekinis, Petros

    2010-01-01

    An epidemiological study conducted across the country of Greece was conducted in order to determine the profile and the athletic identity of spinal cord injured (SCI) wheelchair basketball athletes who participated to the 13th Greek Wheelchair Basketball Championship and Cup. The Disability Sport Participation questionnaire was used for data…

  6. The development and testing of a system for wheelchair stability measurement.

    PubMed

    Stefanov, Dimitar; Avtanski, Alexander; Shapcott, Nigel; Magee, Paul; Dryer, Paul; Fielden, Simon; Heelis, Mike; Evans, Jill; Moody, Louise

    2015-11-01

    Wheelchair stability has an impact on safety as well as wheelchair performance, propulsion and manoeuvrability. Wheelchair stability is affected by the addition of life-supporting heavy equipment, e.g. ventilators and oxygen cylinders, as well as the characteristics of the user e.g. limb amputations, obesity. The aim of the research described here was to develop and test a stability assessment system that would guide and support the adjustment of wheelchairs to individual needs, characteristics and lifestyles. The resulting system provides assessment of centre of gravity and wheelchair stability and calculates the wheelchair tipping angles. The system consists of a force platform that senses the weight distribution of the wheelchair and calculates the centres of the contact points of the wheels and the distances between them. The measurement data are transferred via a WiFi connection to a portable tablet computer where wheelchair stability parameters are calculated. A touchscreen GUI provides visualization of the stability results and navigation through the measurement modes. The developed new concept has been evaluated through technical laboratory-based testing to determine the validity of the data collected. Initial testing has been undertaken within the clinical setting in 3 large hospitals in the UK. Initial results suggest that Wheelsense® provides a valuable tool to support clinical judgement. PMID:26403319

  7. The development and testing of a system for wheelchair stability measurement.

    PubMed

    Stefanov, Dimitar; Avtanski, Alexander; Shapcott, Nigel; Magee, Paul; Dryer, Paul; Fielden, Simon; Heelis, Mike; Evans, Jill; Moody, Louise

    2015-11-01

    Wheelchair stability has an impact on safety as well as wheelchair performance, propulsion and manoeuvrability. Wheelchair stability is affected by the addition of life-supporting heavy equipment, e.g. ventilators and oxygen cylinders, as well as the characteristics of the user e.g. limb amputations, obesity. The aim of the research described here was to develop and test a stability assessment system that would guide and support the adjustment of wheelchairs to individual needs, characteristics and lifestyles. The resulting system provides assessment of centre of gravity and wheelchair stability and calculates the wheelchair tipping angles. The system consists of a force platform that senses the weight distribution of the wheelchair and calculates the centres of the contact points of the wheels and the distances between them. The measurement data are transferred via a WiFi connection to a portable tablet computer where wheelchair stability parameters are calculated. A touchscreen GUI provides visualization of the stability results and navigation through the measurement modes. The developed new concept has been evaluated through technical laboratory-based testing to determine the validity of the data collected. Initial testing has been undertaken within the clinical setting in 3 large hospitals in the UK. Initial results suggest that Wheelsense® provides a valuable tool to support clinical judgement.

  8. Innovative Power Wheelchair Control Interface: A Proof-of-Concept Study.

    PubMed

    Winkler, Sandra L; Romero, Sergio; Prather, Emily; Ramroop, Marisa; Slaibe, Emmy; Christensen, Matthew

    2016-01-01

    Some people without independent mobility are candidates for powered mobility but are unable to use a traditional power wheelchair joystick. This proof-of-concept study tested and further developed an innovative method of driving power wheelchairs for people whose impairments prevent them from operating commercial wheelchair controls. Our concept, Self-referenced Personal Orthotic Omni-purpose Control Interface (SPOOCI), is distinguished by referencing the control sensor not to the wheelchair frame but instead to the adjacent proximal lower-extremity segment via a custom-formed orthosis. Using a descriptive case-series design, we compared the pre-post functional power wheelchair driving skill data of 4 participants, measured by the Power Mobility Program, using descriptive analyses. The intervention consisted of standard-care power wheelchair training during 12 outpatient occupational or physical therapy sessions. All 4 participants who completed the 12-wk intervention improved their functional power wheelchair driving skills using SPOOCI, but only 3 were deemed safe to continue with power wheelchair driving.

  9. Power Wheelchair Use in Persons With Amyotrophic Lateral Sclerosis: Changes Over Time.

    PubMed

    Ward, Amber Lea; Hammond, Sara; Holsten, Scott; Bravver, Elena; Brooks, Benjamin Rix

    2015-01-01

    The objectives of this study were to survey persons with Amyotrophic Lateral Sclerosis (ALS) at 1 and 6 months after receiving power wheelchairs to determine long-term use, comfort, and function as well as the power wheelchair's impact on daily tasks and quality of life. A 33-question survey and Psychosocial Impact of Assistive Devices Scale (PIADS) were sent 1 month after getting a new power wheelchair; a follow-up survey was sent at 6 months. Based on satisfaction and feature use survey results, at 1 month, 81% of users found the power wheelchair overall comfort to be high, 88% found their overall mobility to be improved, and 95% found it easy to use. Their quality of life increased and pain decreased at 1 and 6 months. According to the PIADS, the power wheelchair gave users increased ability to participate and sense of competence. This study has important results for the ALS community, as it is the first to assess power wheelchair users at 1 and 6 months after power wheelchair procurement. The results demonstrate the impact the power wheelchair has on mobility, psychosocial issues, functional abilities, and quality of life for a person with ALS.

  10. Visual Estimation of Spatial Requirements for Locomotion in Novice Wheelchair Users

    ERIC Educational Resources Information Center

    Higuchi, Takahiro; Takada, Hajime; Matsuura, Yoshifusa; Imanaka, Kuniyasu

    2004-01-01

    Locomotion using a wheelchair requires a wider space than does walking. Two experiments were conducted to test the ability of nonhandicapped adults to estimate the spatial requirements for wheelchair use. Participants judged from a distance whether doorlike apertures of various widths were passable or not passable. Experiment 1 showed that…

  11. RESNA Position on the Application of Seat-Elevating Devices for Wheelchair Users

    ERIC Educational Resources Information Center

    Arva, Julianna; Schmeler, Mark R.; Lange, Michelle L.; Lipka, Daniel D.; Rosen, Lauren E.

    2009-01-01

    This document, approved by the Rehabilitation Engineering & Assistive Technology Society of North America (RESNA) Board of Directors in September 2005, shares typical clinical applications and provides evidence from the literature supporting the use of seat-elevating devices for wheelchair users. Wheelchair mobility is often only considered from…

  12. Ethnic, Gender, and Contact Differences in Intimacy Attitudes toward Wheelchair Users

    ERIC Educational Resources Information Center

    Marini, Irmo; Wang, Xiaohui; Etzbach, Colleen A.; Del Castillo, Alinka

    2013-01-01

    Student attitudes toward having a relationship with a wheelchair user were explored. Participants initially selected one of six opposite gender head shots and subsequently viewed their selection's whole body photograph in a wheelchair along with reading a short biography. Primarily undergraduate Hispanic and Caucasian students (N = 810) were…

  13. 77 FR 32644 - Medical Devices; Exemption From Premarket Notification: Wheelchair Elevator

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ..., 1998 (63 FR 3142). Section 510(m)(2) of the FD&C Act provides that, 1 day after date of publication of...: Wheelchair Elevator AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug... notification requirements for wheelchair elevator devices commonly known as inclined platform lifts...

  14. Aerodynamic characteristics of wheelchairs. [Langley V/STOL wind tunnel tests for human factors engineering

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.

    1979-01-01

    The overall aerodynamic drag characteristics of a conventional wheelchair were defined and the individual drag contributions of its components were determined. The results show that a fiftieth percentile man sitting in the complete wheelchair would experience an aerodynamic drag coefficient on the order of 1.4.

  15. 14 CFR 382.65 - What are the requirements concerning on-board wheelchairs?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false What are the requirements concerning on-board wheelchairs? 382.65 Section 382.65 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... TRAVEL Accessibility of Aircraft § 382.65 What are the requirements concerning on-board wheelchairs?...

  16. 14 CFR 382.65 - What are the requirements concerning on-board wheelchairs?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false What are the requirements concerning on-board wheelchairs? 382.65 Section 382.65 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... TRAVEL Accessibility of Aircraft § 382.65 What are the requirements concerning on-board wheelchairs?...

  17. 14 CFR 382.65 - What are the requirements concerning on-board wheelchairs?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false What are the requirements concerning on-board wheelchairs? 382.65 Section 382.65 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... TRAVEL Accessibility of Aircraft § 382.65 What are the requirements concerning on-board wheelchairs?...

  18. Innovative Power Wheelchair Control Interface: A Proof-of-Concept Study.

    PubMed

    Winkler, Sandra L; Romero, Sergio; Prather, Emily; Ramroop, Marisa; Slaibe, Emmy; Christensen, Matthew

    2016-01-01

    Some people without independent mobility are candidates for powered mobility but are unable to use a traditional power wheelchair joystick. This proof-of-concept study tested and further developed an innovative method of driving power wheelchairs for people whose impairments prevent them from operating commercial wheelchair controls. Our concept, Self-referenced Personal Orthotic Omni-purpose Control Interface (SPOOCI), is distinguished by referencing the control sensor not to the wheelchair frame but instead to the adjacent proximal lower-extremity segment via a custom-formed orthosis. Using a descriptive case-series design, we compared the pre-post functional power wheelchair driving skill data of 4 participants, measured by the Power Mobility Program, using descriptive analyses. The intervention consisted of standard-care power wheelchair training during 12 outpatient occupational or physical therapy sessions. All 4 participants who completed the 12-wk intervention improved their functional power wheelchair driving skills using SPOOCI, but only 3 were deemed safe to continue with power wheelchair driving. PMID:26943118

  19. Comparison of mood states of college able-bodied and wheelchair basketball players.

    PubMed

    Paulsen, P; French, R; Sherrill, C

    1991-10-01

    The mood states of 26 college wheelchair basketball players were examined in relation to 11 varsity college basketball players and normative data from 340 college men. Multivariate analysis indicated that the wheelchair basketball players had significantly better mental health profiles than the two comparison groups.

  20. Why do complex impact craters have elevated crater rims?

    NASA Astrophysics Data System (ADS)

    Kenkmann, Thomas; Sturm, Sebastian; Krueger, Tim

    2014-05-01

    Most of the complex impact craters on the Moon and on Mars have elevated crater rims like their simple counterparts. The raised rim of simple craters is the result of (i) the deposition of a coherent proximal ejecta blanket at the edge of the transient cavity (overturned flap) and (ii) a structural uplift of the pre-impact surface near the transient cavity rim during the excavation stage of cratering [1]. The latter occurs either by plastic thickening or localized buckling of target rocks, as well as by the emplacement of interthrust wedges [2] or by the injection of dike material. Ejecta and the structural uplift contribute equally to the total elevation of simple crater rims. The cause of elevated crater rims of large complex craters [3] is less obvious, but still, the rim height scales with the final crater diameter. Depending on crater size, gravity, and target rheology, the final crater rim of complex craters can be situated up to 1.5-2.0 transient crater radii distance from the crater center. Here the thickness of the ejecta blanket is only a fraction of that occurring at the rim of simple craters, e.g. [4], and thus cannot account for a strong elevation. Likewise, plastic thickening including dike injection of the underlying target may not play a significant role at this distance any more. We started to systematically investigate the structural uplift and ejecta thickness along the rim of complex impact craters to understand the cause of their elevation. Our studies of two lunar craters (Bessel, 16 km diameter and Euler, 28 km diameter) [5] and one unnamed complex martian crater (16 km diameter) [6] showed that the structural uplift at the final crater rim makes 56-67% of the total rim elevation while the ejecta thickness contributes 33-44%. Thus with increasing distance from the transient cavity rim, the structural uplift seems to dominate. As dike injection and plastic thickening are unlikely at such a distance from the transient cavity, we propose that

  1. Implications of the β Lyrae accretion disk rim Teff

    NASA Astrophysics Data System (ADS)

    Linnell, A. P.

    2000-12-01

    Photometric evidence indicates that the massive gainer in the β Lyrae system is hidden from the observer by a thick accretion disk (Linnell, Hubeny, & Harmanec, 1998, ApJ, 509, 379). It is believed that the gainer approximates a main sequence star of Teff= 30000K. Spectroscopic analysis by Balachrandan et al. (1986, MNRAS, 219, 479) establishes a Teff of 13,300K for the donor. System synthetic spectra, fitted via the BINSYN suite to spectrophotometric scan data and IUE spectra, establish a mean rim Teff of 9000K. Assuming conservative mass transfer, Harmanec & Scholz (1993, A&A, 279, 131) use the rate of period change to derive a mass transfer rate of 20x10-6M⊙ yr-1. Connecting the rim Teff to the accretion disk face Teff with the Hubeny theory (Hubeny & Plavec 1991, AJ, 102, 1156) and using the standard accretion disk relations (Frank, King & Raine), the adopted mass transfer rate predicts a rim Teff of 4500K. The BINSYN-derived 9000K rim Teff would require a mass transfer rate 30 times larger than the adopted value. The observed rate of period change excludes such a large mass transfer rate. The bolometric luminosity of the rim, from the BINSYN model, is 5.6x1036erg sec-1. The bolometric luminosity of the gainer, on the adopted model, is 9.8x1037erg sec-1. Thus, the luminosity of the rim is 6% of the luminosity of the gainer. On the BINSYN model, the accretion disk covers 26% of the sky, as seen by the gainer. Absorption of radiation from the gainer, and its reradiation by the accretion disk, could explain the derived Teff of the rim. The conclusion is that the β Lyrae accretion disk structure must be strongly affected by radiation from the hot gainer (unseen by the observer) at the center of the accretion disk.

  2. Origin of strongly reversed rims on plagioclase in cumulates

    NASA Astrophysics Data System (ADS)

    Morse, S. A.; Nolan, Kathleen M.

    1984-06-01

    Narrow reversed rims on plagioclase are ubiquitous in troctolites and olivine gabbros of the Kiglapait intrusion and may be a common feature of all such cumulates. The rims occur at plag/plag, plag/ol, and less strongly at plag/aug grain boundaries. They are optically obvious at ΔAn < 10 mol.% and can reach ΔAn = 32 mol.% or more. In parallel, K/Na drops sharply. Although ubiquitous from sample to sample, the reversed rims are only locally present at grain boundaries even for the same pair of crystals in contact; they are prominent in linear networks suggesting the last trace of intercumulus liquid. A subsolidus origin is ruled out by the absence of reactants at plag/plag and plag/ol boundaries and by the local rather than pervasive development of rims. The rims are required to grow from intercumulus liquid, in which the partition of An component between crystals and liquid increases with the trapped augite component of the liquid. Calculations from published experimental data show that ΔAn > 30 can easily be achieved by such a process. It is also probable that the trapped liquid is part of an An-rich boundary layer generated by solute rejection during adcumulus growth. The ability of the rims to sustain steep K/Na gradients despite a long subsolidus cooling history proves that the K sbnd Na exchange rate is vanishingly small over a geologic time scale in An-rich feldspar, suggesting that at low K content the potassium is site-bound to the tetrahedral Al/Si distribution. Reversed rims therefore provide important information on diffusion limits as well as on the late-stage solidification history of plagioclase-rich cumulates. Moreover, they demonstrate that plagioclase geothermometry cannot be divorced from effects of liquid composition and structure as monitored, for example, by augite content.

  3. Effectiveness of Social Behaviors for Autonomous Wheelchair Robot to Support Elderly People in Japan

    PubMed Central

    Shiomi, Masahiro; Iio, Takamasa; Kamei, Koji; Sharma, Chandraprakash; Hagita, Norihiro

    2015-01-01

    We developed a wheelchair robot to support the movement of elderly people and specifically implemented two functions to enhance their intention to use it: speaking behavior to convey place/location related information and speed adjustment based on individual preferences. Our study examines how the evaluations of our wheelchair robot differ when compared with human caregivers and a conventional autonomous wheelchair without the two proposed functions in a moving support context. 28 senior citizens participated in the experiment to evaluate three different conditions. Our measurements consisted of questionnaire items and the coding of free-style interview results. Our experimental results revealed that elderly people evaluated our wheelchair robot higher than the wheelchair without the two functions and the human caregivers for some items. PMID:25993038

  4. The power of power wheelchairs: Mobility choices of community-dwelling, older adults

    PubMed Central

    Mortenson, WB; Hammell, KW; Luts, A; Soles, C; Miller, WC

    2015-01-01

    Background Power wheelchairs are purported to have a positive effect on health, occupation, and quality of life. However, there is limited knowledge about what factors shape power wheelchair use decisions. Aims/Objectives A study was undertaken to understand the mobility choices of community-dwelling, power wheelchair users. Methods A series of semi-structured qualitative interviews was conducted with 13 older adult power wheelchair users. Participants were interviewed at enrollment and four months later. Data analysis was informed by Bourdieu’s theoretical constructs of habitus, capital, and field. Results Three main styles of power wheelchair use were identified: reluctant use, strategic use and essential use, and each type is illustrated using an aggregate case study. Conclusion/Significance These findings highlight the need to alter the power relationship that exists between prescribers and device users and to effect policy changes that enable people with physical impairments to make as wide a range of mobility choices as possible. PMID:26027749

  5. Effectiveness of social behaviors for autonomous wheelchair robot to support elderly people in Japan.

    PubMed

    Shiomi, Masahiro; Iio, Takamasa; Kamei, Koji; Sharma, Chandraprakash; Hagita, Norihiro

    2015-01-01

    We developed a wheelchair robot to support the movement of elderly people and specifically implemented two functions to enhance their intention to use it: speaking behavior to convey place/location related information and speed adjustment based on individual preferences. Our study examines how the evaluations of our wheelchair robot differ when compared with human caregivers and a conventional autonomous wheelchair without the two proposed functions in a moving support context. 28 senior citizens participated in the experiment to evaluate three different conditions. Our measurements consisted of questionnaire items and the coding of free-style interview results. Our experimental results revealed that elderly people evaluated our wheelchair robot higher than the wheelchair without the two functions and the human caregivers for some items. PMID:25993038

  6. Pilot study of strap-based custom wheelchair seating system in persons with spinal cord injury.

    PubMed

    Ferguson, John E; Wittig, Becky L; Payette, Mark; Goldish, Gary D; Hansen, Andrew H

    2014-01-01

    Custom wheelchair seats can be used to help prevent pressure ulcers in individuals with spinal cord injury. In this study, a strap-based system was evaluated in three Veterans with spinal cord injury. Interface pressure distributions were measured after transfers, wheeling, and pressure relief maneuvers and after fittings by three different therapists. We found that pressure distribution measures were not generally affected after transfers and wheeling using the strap-based wheelchair and that pressure relief maneuvers were able to be performed. Additionally, all therapists were able to customize the wheelchair seat to clinically acceptable levels in 4 to 40 min for the three subjects. Future studies can test the long-term effects of using the strap-based wheelchair seat and identifying individuals that would most benefit from a rapidly customizable wheelchair seat.

  7. Pilot study of strap-based custom wheelchair seating system in persons with spinal cord injury.

    PubMed

    Ferguson, John E; Wittig, Becky L; Payette, Mark; Goldish, Gary D; Hansen, Andrew H

    2014-01-01

    Custom wheelchair seats can be used to help prevent pressure ulcers in individuals with spinal cord injury. In this study, a strap-based system was evaluated in three Veterans with spinal cord injury. Interface pressure distributions were measured after transfers, wheeling, and pressure relief maneuvers and after fittings by three different therapists. We found that pressure distribution measures were not generally affected after transfers and wheeling using the strap-based wheelchair and that pressure relief maneuvers were able to be performed. Additionally, all therapists were able to customize the wheelchair seat to clinically acceptable levels in 4 to 40 min for the three subjects. Future studies can test the long-term effects of using the strap-based wheelchair seat and identifying individuals that would most benefit from a rapidly customizable wheelchair seat. PMID:25626113

  8. Effectiveness of social behaviors for autonomous wheelchair robot to support elderly people in Japan.

    PubMed

    Shiomi, Masahiro; Iio, Takamasa; Kamei, Koji; Sharma, Chandraprakash; Hagita, Norihiro

    2015-01-01

    We developed a wheelchair robot to support the movement of elderly people and specifically implemented two functions to enhance their intention to use it: speaking behavior to convey place/location related information and speed adjustment based on individual preferences. Our study examines how the evaluations of our wheelchair robot differ when compared with human caregivers and a conventional autonomous wheelchair without the two proposed functions in a moving support context. 28 senior citizens participated in the experiment to evaluate three different conditions. Our measurements consisted of questionnaire items and the coding of free-style interview results. Our experimental results revealed that elderly people evaluated our wheelchair robot higher than the wheelchair without the two functions and the human caregivers for some items.

  9. Towards a new modality-independent interface for a robotic wheelchair.

    PubMed

    Bastos-Filho, Teodiano Freire; Cheein, Fernando Auat; Müller, Sandra Mara Torres; Celeste, Wanderley Cardoso; de la Cruz, Celso; Cavalieri, Daniel Cruz; Sarcinelli-Filho, Mário; Amaral, Paulo Faria Santos; Perez, Elisa; Soria, Carlos Miguel; Carelli, Ricardo

    2014-05-01

    This work presents the development of a robotic wheelchair that can be commanded by users in a supervised way or by a fully automatic unsupervised navigation system. It provides flexibility to choose different modalities to command the wheelchair, in addition to be suitable for people with different levels of disabilities. Users can command the wheelchair based on their eye blinks, eye movements, head movements, by sip-and-puff and through brain signals. The wheelchair can also operate like an auto-guided vehicle, following metallic tapes, or in an autonomous way. The system is provided with an easy to use and flexible graphical user interface onboard a personal digital assistant, which is used to allow users to choose commands to be sent to the robotic wheelchair. Several experiments were carried out with people with disabilities, and the results validate the developed system as an assistive tool for people with distinct levels of disability.

  10. Measuring usability of assistive technology from a multicontextual perspective: the case of power wheelchairs.

    PubMed

    Arthanat, Sajay; Nochajski, Susan M; Lenker, James A; Bauer, Stephen M; Wu, Yow Wu B

    2009-01-01

    Assistive technology (AT) devices enable people with disabilities to function in multiple contexts and activities. The usability of such devices is fundamentally indicative of the user's level of participation in multiple roles and occupations. Seventy people who used power wheelchairs were interviewed using a novel tool, the Usability Scale for Assistive Technology (USAT). The USAT uses a human factors science framework to investigate the wheelchair user's perceived independence in mobility-related activities within home, workplace, community, and outdoors in accordance with the characteristics of the wheelchair, environmental factors, and abilities and skills of the user to operate the wheelchair. Descriptive analysis of the data revealed usability issues with the use of power wheelchairs in all contexts. Users confronted far more significant issues within the community and outdoor environment compared with those at home and in the workplace. These issues have been elucidated and applied to an intervention framework with relevance to a multitude of AT stakeholders. PMID:20092111

  11. Aqueous Alteration of Endeavour Crater Rim Apron Rocks

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Ming, Douglas W.; Gellert, Ralf; Clark, Benton C.; Morris, Richard V.; Yen, Albert S.; Arvidson, Raymond E.; Crumpler, Larry S.; Farrand, William H.; Grant, John A.; Jolliff, Bradley L.; Parker, Timothy J.; Peretyazhko, Tanya

    2014-01-01

    Mars Exploration Rover Opportunity is exploring Noachian age rocks of the rim of 22 km diameter Endeavour crater. Overlying the pre-impact lithologies and rim breccias is a thin apron of fine-grained sediments, the Grasberg fm, forming annuli on the lower slopes of rim segments. Hesperian Burns fm sandstones overly the Grasberg fm. Grasberg rocks have major element compositions that are distinct from Burns fm sandstones, especially when comparing interior compositions exposed by the Rock Abrasion Tool. Grasberg rocks are also different from Endeavour rim breccias, but have general compositional similarities to them. Grasberg sediments are plausibly fine-grained materials derived from the impact breccias. Veins of CaSO4 transect Grasberg fm rocks demonstrating post-formation aqueous alteration. Minor/trace elements show variations consistent with mobilization by aqueous fluids. Grasberg fm rocks have low Mn and high Fe/Mn ratios compared to the other lithologies. Manganese likely was mobilized and removed from the Grasberg host rock by redox reactions. We posit that Fe2+ from acidic solutions associated with formation of the Burns sulfate-rich sandstones acted as an electron donor to reduce more oxidized Mn to Mn2+. The Fe contents of Grasberg rocks are slightly higher than in other rocks suggesting precipitation of Fe phases in Grasberg materials. Pancam spectra show that Grasberg rocks have a higher fraction of ferric oxide minerals than other Endeavour rim rocks. Solutions transported Mn2+ into the Endeavour rim materials and oxidized and/or precipitated it in them. Grasberg has higher contents of the mobile elements K, Zn, Cl, and Br compared to the rim materials. Similar enrichments of mobile elements were measured by the Spirit APXS on West Spur and around Home Plate in Gusev crater. Enhancements in these elements are attributed to interactions of hydrothermal acidic fluids with the host rocks. Interactions of fluids with the Grasberg fm postdate the genesis

  12. Applying basic principles of child passenger safety to improving transportation safety for children who travel while seated in wheelchairs.

    PubMed

    Manary, Miriam A; Schneider, Lawrence W

    2011-01-01

    Occupant restraint systems are designed based on knowledge of crash dynamics and the application of proven occupant-protection principles. For ambulatory children or children who use wheelchairs but can transfer out of their wheelchair when traveling in motor vehicles, there is a range of child safety seats that comply with federal safety standards and that therefore offer high levels of crash protection. For children who remain seated in wheelchairs for travel, the use of wheelchairs and wheelchair tiedown and occupant restraint systems (WTORS) that comply with voluntary industry standards significantly enhances safety. Revisions to the initial versions of these standards will further improve safety for smaller children who travel seated in wheelchairs by requiring wheelchairs for children between 13 and 22 kg (18 and 50 lb) to provide a five-point, wheelchair-integrated crash-tested harness similar to that used in forward-facing child safety seats. While wheelchair and tiedown/restraint manufacturers, van modifiers, transportation personnel, clinicians, and others involved with children who use wheelchairs have clearly defined responsibilities relative to providing these children with safe transportation, parents and caregivers should be knowledgeable about best-practice in wheelchair transportation safety and should use this knowledge to advocate for the safest transportation possible.

  13. Accretionary rims on inclusions in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Macpherson, G. J.; Hashimoto, A.; Grossman, L.

    1985-01-01

    The origin and composition of the rim sequence on the refractory inclusion in the Allende meteorite are studied. The different textures, mineralogy, and mineral-chemistry of the four layers of the rim are described. The layers are composed of: pyroxene, needles, olivine, hedenbergite, and andradite. Tables of the element and chemical compositions of the layers are presented. The data reveals that: (1) the layers are highly porous masses of euhedral crystals with no intergrowth; (2) layers contain highly disequilibrium mineral assemblages; and (3) the thickness of the layers varies with the underlying topography. These results support the theory that rim structures are accretionary aggregates formed from accretion of independently grown particles onto the surface of inclusions. The formation of the grains in the layers and matrix from nebular condensates is studied.

  14. Performance evaluation of biosignal measurement at the wheelchair system.

    PubMed

    Han, Dong-Kyoon; Kim, Jong-Myoung; Hong, Joo-Hyun; Cha, Eun-Jong; Lee, Tae-Soo

    2008-01-01

    The purpose of this study is to measure both ECG and BCG(Ballistocariograph) signal of a subject on moving or resting wheelchair and detect the heart rate and respiratory rate and transmit an event message to remote server on emergent situation. To acquire ECG and BCG data, amplifier circuits were composed to be suitable for their characteristics. 3-axial accelerometer was built in the developed device to measure the mechanical noise that can be generated on moving wheelchair.The output signals were converted to digital data and stored in bio-signal archiving media(SD card). CDMA module was used to transmit the event data on ECG electrode detachment and the received data was monitored by the developed C# application program. 8 volunteers participated in the experiment to evaluate the validity of the developed device. When the event occurs in each subject, 48 Kbyte data, stored for 32 seconds from that point, was transmitted to remote server through CDMA cellular phone network correctly. The received data of ECG , BCG, and 3-axial acceleration could be archived in server and the heart rate and respiratory rate could be measured and analyzed. The correlation coefficients of respiratory rate in resting and moving with the real value were 0.9636 and 0.9237, respectively. The correlation coefficient ofR-R intervals between the developed and reference device was 0.999.In conclusion, the developed device in this study could acquire the ECG and BCG data of subjects on wheelchair simultaneously and measure their heart rate and respiratory rate. In addition, event data was verified to be transmitted to remote server without any errors.

  15. Data logger device applicability for wheelchair tennis court movement.

    PubMed

    Sindall, Paul; Lenton, John; Cooper, Rory; Tolfrey, Keith; Goosey-Tolfrey, Vicky

    2015-01-01

    Assessment of movement logging devices is required to ensure suitability for the determination of court-movement variables during competitive sports performance and allow for practical recommendations to be made. Hence, the purpose was to examine wheelchair tennis speed profiles to assess data logger device applicability for court-movement quantification, with match play stratified by rank (HIGH, LOW), sex (male, female) and format (singles, doubles). Thirty-one wheelchair tennis players were monitored during competitive match play. Mixed sampling was employed (male = 23, female = 8). Friedman's test with Wilcoxon signed-rank post hoc testing revealed a higher percentage of time below 2.5 m · s(-1) [<2.5 vs. ≥2.5 m · s(-1): 89.4 (5.0) vs. 1.2 (3.5)%, Z = -4.860, P < 0.0005, r = 0.87] with the remaining time [9.0 (4.9%)] spent stationary. LOW-ranked players were stationary for longer than HIGH-ranked counterparts [12.6 (8.7) vs. 8.2 (5.1)%, U = 30.000, P = 0.011, r = 0.46] with more time at low propulsion speeds (<1.0 m · s(-1)). HIGH-ranked and doubles players spent more time in higher speed zones than respective counterparts. Females spent more time in the 1.0-1.49 m · s(-1) zone (U = 48.000, P = 0.047, r = 0.36). Regardless of rank, sex or format, propulsion speeds during wheelchair tennis match play are consistent with data logger accuracy. Hence, data logging is appropriate for court-movement quantification. PMID:25278114

  16. Prototype development and comparative evaluation of wheelchair pressure mapping system.

    PubMed

    Ferguson-Pell, M; Cardi, M D

    1993-01-01

    Wheelchair pressure mapping devices used in the prescription of seat cushions and postural supports have been limited in durability, data presentation, and/or clinical efficiency. This project sought to establish the ideal specifications for clinically useful pressure mapping systems, and to use these specifications to influence the design of an innovative wheelchair pressure mapping system (Tekscan "Seat"). Technology, previously developed for measurement of forces of dental occlusion and of the foot during gait, was applied to wheelchair seat mapping. Tests were designed to compare the performance of three pressure mapping systems: the Tekscan system, the FSA system, and the Talley TPM3. Bench tests were done to measure reproducibility, hysteresis, and creep of each of the pressure mapping systems. A contoured loader gauge was developed to test for the influence of hammocking. Tests were also performed using spinal cord-injured subjects to demonstrate the relative performance of the pressure mapping systems in a clinical setting. A focus group session was conducted with seating specialists to review the strengths and weakness of the systems for routine clinical use. The TPM3 was found to be the most accurate, stable, and reproducible but limited in ease of use, speed, and data presentation. FSA was rated well in clinical application and data management but demonstrated a pronounced hysteresis (+/-19%) and creep (4%). The Tekscan system also showed substantial hysteresis (+/-20%) and creep (19%) but was preferred by clinicians for its real-time display capabilities, resolution, and display options. Some trends in system performance on varied support surfaces were identified and can be a valuable guide to interpretation of measurements and prescription decision making in the clinic. Problems identified with the accuracy and stability of the Tekscan and FSA systems may be amenable to resolution with software correction and changes in fabrication. With these

  17. Data logger device applicability for wheelchair tennis court movement.

    PubMed

    Sindall, Paul; Lenton, John; Cooper, Rory; Tolfrey, Keith; Goosey-Tolfrey, Vicky

    2015-01-01

    Assessment of movement logging devices is required to ensure suitability for the determination of court-movement variables during competitive sports performance and allow for practical recommendations to be made. Hence, the purpose was to examine wheelchair tennis speed profiles to assess data logger device applicability for court-movement quantification, with match play stratified by rank (HIGH, LOW), sex (male, female) and format (singles, doubles). Thirty-one wheelchair tennis players were monitored during competitive match play. Mixed sampling was employed (male = 23, female = 8). Friedman's test with Wilcoxon signed-rank post hoc testing revealed a higher percentage of time below 2.5 m · s(-1) [<2.5 vs. ≥2.5 m · s(-1): 89.4 (5.0) vs. 1.2 (3.5)%, Z = -4.860, P < 0.0005, r = 0.87] with the remaining time [9.0 (4.9%)] spent stationary. LOW-ranked players were stationary for longer than HIGH-ranked counterparts [12.6 (8.7) vs. 8.2 (5.1)%, U = 30.000, P = 0.011, r = 0.46] with more time at low propulsion speeds (<1.0 m · s(-1)). HIGH-ranked and doubles players spent more time in higher speed zones than respective counterparts. Females spent more time in the 1.0-1.49 m · s(-1) zone (U = 48.000, P = 0.047, r = 0.36). Regardless of rank, sex or format, propulsion speeds during wheelchair tennis match play are consistent with data logger accuracy. Hence, data logging is appropriate for court-movement quantification.

  18. Geothermal development in the Pacific rim. Transactions, Volume 20

    SciTech Connect

    1996-12-31

    This document entitled Geothermal Development in the Pacific Rim contains the Transactions, Volume 20 of the Geothermal Resources Council, 1996 Annual Meeting. Topics of the presentations include: Air quality assessment and mitigation, District heating and other direct-uses of geothermal energy, Environmental permitting in the Pacific Rim, Geothermal exploration strategies, tools and techniques, and Focus of IEA Geothermal programs. Geothermal resources and resource development in the USA, Indonesia, Mexico, Japan, and the Philippines are highlighted. Also included is a section on Geothermal power plant design, construction, and operation, and Geothermal reservoir assessment, the key to international financing.

  19. Stability of a Wheel with Various Radius Rim

    NASA Astrophysics Data System (ADS)

    Kinugasa, Tetsuya; Yoshida, Koji

    This paper describes the dynamics and impact model of a wheel with various radius rim. The dynamics is expressed by a rst order linear ordinary dierential equation with respect to the absolute orientation of the wheel, and an analytic solution is derived. Poincaré map is also derived analytically. Stability and basin of attraction (BoA) of the Poincaré map are discussed. Finally, the analysis is validated through some numerical simulations. As a result, the rim radius aects the stability and broadens its BoA. The analysis helps understanding of not only a geometric tracking control but also many underactuated control methods for bipeds.

  20. Training for emergency response with RimSim:Response!

    NASA Astrophysics Data System (ADS)

    Campbell, Bruce D.; Schroder, Konrad A.

    2009-05-01

    Since developing and promoting a Pacific Rim community emergency response simulation software platform called RimSim, the PARVAC team at the University of Washington has developed a variety of first responder agents who can participate within a response simulation. Agents implement response heuristics and communications strategies in conjunction with live players trying to develop their own heuristics and communications strategies to participate in a successful community response crisis. The effort is facilitated by shared visualization of the affected geographical extent. We present initial findings from interacting with a wide variety of mixed agent simulation sessions and make the software available for others to perform their own experiments.e

  1. RIM1 and RIM2 redundantly determine Ca2+ channel density and readily releasable pool size at a large hindbrain synapse.

    PubMed

    Han, Yunyun; Babai, Norbert; Kaeser, Pascal; Südhof, Thomas C; Schneggenburger, Ralf

    2015-01-01

    The localization and density of voltage-gated Ca(2+) channels at active zones are essential for the amount and kinetics of transmitter release at synapses. RIM proteins are scaffolding proteins at the active zone that bind to several other presynaptic proteins, including voltage-gated Ca(2+) channel α-subunits. The long isoforms of RIM proteins, which contain NH2-terminal Rab3- and Munc13-interacting domains, as well as a central PDZ domain and two COOH-terminal C2 domains, are encoded by two genes, Rim1 and Rim2. Here, we used the ideal accessibility of the large calyx of Held synapse for direct presynaptic electrophysiology to investigate whether the two Rim genes have redundant, or separate, functions in determining the presynaptic Ca(2+) channel density, and the size of a readily releasable vesicle pool (RRP). Quantitative PCR showed that cochlear nucleus neurons, which include calyx of Held generating neurons, express both RIM1 and RIM2. Conditional genetic inactivation of RIM2 at the calyx of Held led to a subtle reduction in presynaptic Ca(2+) current density, whereas deletion of RIM1 was ineffective. The release efficiency of brief presynaptic Ca(2+) "tail" currents and the RRP were unaffected in conditional single RIM1 and RIM2 knockout (KO) mice, whereas both parameters were strongly reduced in RIM1/2 double KO mice. Thus, despite a somewhat more decisive role for RIM2 in determining presynaptic Ca(2+) channel density, RIM1 and RIM2 can overall replace each other's presynaptic functions at a large relay synapse in the hindbrain, the calyx of Held.

  2. Ambulation without wheelchairs for paraplegics with complete lesions.

    PubMed

    Natvig, H; McAdam, R

    1978-08-01

    Some salient features of the physical training programme for paraplegics at the State Rehabilitation Institute in Oslo are mentioned. A ten-year follow-up study of 42 clients with complete lesions (TI-L3) is presented. After an intensive physical training programme of some 10--15 weeks 74 per cent were able to climb and go down 20 standard stairs and 71 per cent were able to walk 100 metres indoors with crutches. The authors stress the importance of ambulations independent of wheelchairs whenever this is possible. PMID:733293

  3. Mapping and navigational control for a “smart” wheelchair.

    PubMed

    Schultz, Dana L; Shea, Kathleen M; Barrett, Steven F

    2012-01-01

    A “smart” wheelchair is in development to provide mobility to those unable to control a traditional wheelchair. A “smart” wheelchair is an autonomous machine with the ability to navigate a mapped environment while avoiding obstacles. The flexibility and complex design of “smart” wheelchairs have made those currently available expensive. Ongoing research at the University of Wyoming has been aimed at designing a cheaper, alternative control system that could be interfaced with a typical powered wheelchair. The goal of this project is to determine methods for mapping and navigational control for the wheelchair. The control system acquires data from eighteen sensors and uses the data to navigate around a pre-programmed map which is stored on a micro SD card. The control system also provides a user interface in the form of a touchscreen LCD. The designed system will be an easy-to-use and cost effective alternative to current “smart” wheelchair technology.

  4. A novel mobile-cloud system for capturing and analyzing wheelchair maneuvering data: A pilot study.

    PubMed

    Fu, Jicheng; Jones, Maria; Liu, Tao; Hao, Wei; Yan, Yuqing; Qian, Gang; Jan, Yih-Kuen

    2016-01-01

    The purpose of this pilot study was to provide a new approach for capturing and analyzing wheelchair maneuvering data, which are critical for evaluating wheelchair users' activity levels. We proposed a mobile-cloud (MC) system, which incorporated the emerging mobile and cloud computing technologies. The MC system employed smartphone sensors to collect wheelchair maneuvering data and transmit them to the cloud for storage and analysis. A k-nearest neighbor (KNN) machine-learning algorithm was developed to mitigate the impact of sensor noise and recognize wheelchair maneuvering patterns. We conducted 30 trials in an indoor setting, where each trial contained 10 bouts (i.e., periods of continuous wheelchair movement). We also verified our approach in a different building. Different from existing approaches that require sensors to be attached to wheelchairs' wheels, we placed the smartphone into a smartphone holder attached to the wheelchair. Experimental results illustrate that our approach correctly identified all 300 bouts. Compared to existing approaches, our approach was easier to use while achieving similar accuracy in analyzing the accumulated movement time and maximum period of continuous movement (p > 0.8). Overall, the MC system provided a feasible way to ease the data collection process and generated accurate analysis results for evaluating activity levels. PMID:26479684

  5. Mapping and navigational control for a “smart” wheelchair.

    PubMed

    Schultz, Dana L; Shea, Kathleen M; Barrett, Steven F

    2012-01-01

    A “smart” wheelchair is in development to provide mobility to those unable to control a traditional wheelchair. A “smart” wheelchair is an autonomous machine with the ability to navigate a mapped environment while avoiding obstacles. The flexibility and complex design of “smart” wheelchairs have made those currently available expensive. Ongoing research at the University of Wyoming has been aimed at designing a cheaper, alternative control system that could be interfaced with a typical powered wheelchair. The goal of this project is to determine methods for mapping and navigational control for the wheelchair. The control system acquires data from eighteen sensors and uses the data to navigate around a pre-programmed map which is stored on a micro SD card. The control system also provides a user interface in the form of a touchscreen LCD. The designed system will be an easy-to-use and cost effective alternative to current “smart” wheelchair technology. PMID:22846309

  6. A novel mobile-cloud system for capturing and analyzing wheelchair maneuvering data: A pilot study.

    PubMed

    Fu, Jicheng; Jones, Maria; Liu, Tao; Hao, Wei; Yan, Yuqing; Qian, Gang; Jan, Yih-Kuen

    2016-01-01

    The purpose of this pilot study was to provide a new approach for capturing and analyzing wheelchair maneuvering data, which are critical for evaluating wheelchair users' activity levels. We proposed a mobile-cloud (MC) system, which incorporated the emerging mobile and cloud computing technologies. The MC system employed smartphone sensors to collect wheelchair maneuvering data and transmit them to the cloud for storage and analysis. A k-nearest neighbor (KNN) machine-learning algorithm was developed to mitigate the impact of sensor noise and recognize wheelchair maneuvering patterns. We conducted 30 trials in an indoor setting, where each trial contained 10 bouts (i.e., periods of continuous wheelchair movement). We also verified our approach in a different building. Different from existing approaches that require sensors to be attached to wheelchairs' wheels, we placed the smartphone into a smartphone holder attached to the wheelchair. Experimental results illustrate that our approach correctly identified all 300 bouts. Compared to existing approaches, our approach was easier to use while achieving similar accuracy in analyzing the accumulated movement time and maximum period of continuous movement (p > 0.8). Overall, the MC system provided a feasible way to ease the data collection process and generated accurate analysis results for evaluating activity levels.

  7. Brain-Computer Interface for Control of Wheelchair Using Fuzzy Neural Networks

    PubMed Central

    Akkaya, Nurullah; Aytac, Ersin; Günsel, Irfan; Çağman, Ahmet

    2016-01-01

    The design of brain-computer interface for the wheelchair for physically disabled people is presented. The design of the proposed system is based on receiving, processing, and classification of the electroencephalographic (EEG) signals and then performing the control of the wheelchair. The number of experimental measurements of brain activity has been done using human control commands of the wheelchair. Based on the mental activity of the user and the control commands of the wheelchair, the design of classification system based on fuzzy neural networks (FNN) is considered. The design of FNN based algorithm is used for brain-actuated control. The training data is used to design the system and then test data is applied to measure the performance of the control system. The control of the wheelchair is performed under real conditions using direction and speed control commands of the wheelchair. The approach used in the paper allows reducing the probability of misclassification and improving the control accuracy of the wheelchair. PMID:27777953

  8. Hand rejuvenation.

    PubMed

    Riyaz, Farhaad R; Ozog, David

    2015-09-01

    Aging of the hands results from both natural processes and chronic ultraviolet light exposure. Together, these cause textural and pigmentary changes, excess skin laxity, rhytides, and soft tissue atrophy that presents as prominent bones and tendons with easily visible veins. Many options are available for the reversal of these changes. Photoaging can be improved with chemical peels and light-based treatments (such as Q-switched lasers), resurfacing lasers, intense pulsed light, and photodynamic therapy. Soft tissue atrophy can be corrected with autologous fat, nonanimal stabilized hyaluronic acid, calcium hydroxylapatite, and poly-L lactic acid injections. The literature shows that these treatments have favorable outcomes for most patients; but in order to reduce known complications, it is important to understand the proper use and limitations of each modality. PMID:26566571

  9. Shoulder Disease Patterns of the Wheelchair Athletes of Table-Tennis and Archery: A Pilot Study

    PubMed Central

    2016-01-01

    Objective To investigate the shoulder disease patterns for the table-tennis (TT) and archery (AR) wheelchair athletes via ultrasonographic evaluations. Methods A total of 35 wheelchair athletes were enrolled, made up of groups of TT (n=19) and AR (n=16) athletes. They were all paraplegic patients and were investigated for their wheelchair usage duration, careers as sports players, weekly training times, the Wheelchair User's Shoulder Pain Index (WUSPI) scores and ultrasonographic evaluation. Shoulders were divided into playing arm of TT, non-playing arm of TT, bow-arm of AR, and draw arm of AR athletes. Shoulder diseases were classified into five entities of subscapularis tendinopathy, supraspinatus tendinopathy, infraspinatus tendinopathy, biceps long head tendinopathy, and subacromial-subdeltoid bursitis. The pattern of shoulder diseases were compared between the two groups using the Mann-Whitney and the chi-square tests Results WSUPI did not significantly correlate with age, wheelchair usage duration, career as players or weekly training times for all the wheelchair athletes. For the non-playing arm of TT athletes, there was a high percentage of subscapularis (45.5%) and supraspinatus (40.9%) tendinopathy. The percentage of subacromial-subdeltoid bursitis showed a tendency to be present in the playing arm of TT athletes (20.0%) compared with their non-playing arm (4.5%), even though this was not statistically significant. Biceps long head tendinopathy was the most common disease of the shoulder in the draw arm of AR athletes, and the difference was significant when compared to the non-playing arm of TT athletes (p<0.05). Conclusion There was a high percentage of subscapularis and supraspinatus tendinopathy cases for the non-playing arm of TT wheelchair athletes, and a high percentage of biceps long head tendinopathy for the draw arm for the AR wheelchair athletes. Consideration of the biomechanical properties of each sport may be needed to tailor specific

  10. Shoulder Disease Patterns of the Wheelchair Athletes of Table-Tennis and Archery: A Pilot Study

    PubMed Central

    2016-01-01

    Objective To investigate the shoulder disease patterns for the table-tennis (TT) and archery (AR) wheelchair athletes via ultrasonographic evaluations. Methods A total of 35 wheelchair athletes were enrolled, made up of groups of TT (n=19) and AR (n=16) athletes. They were all paraplegic patients and were investigated for their wheelchair usage duration, careers as sports players, weekly training times, the Wheelchair User's Shoulder Pain Index (WUSPI) scores and ultrasonographic evaluation. Shoulders were divided into playing arm of TT, non-playing arm of TT, bow-arm of AR, and draw arm of AR athletes. Shoulder diseases were classified into five entities of subscapularis tendinopathy, supraspinatus tendinopathy, infraspinatus tendinopathy, biceps long head tendinopathy, and subacromial-subdeltoid bursitis. The pattern of shoulder diseases were compared between the two groups using the Mann-Whitney and the chi-square tests Results WSUPI did not significantly correlate with age, wheelchair usage duration, career as players or weekly training times for all the wheelchair athletes. For the non-playing arm of TT athletes, there was a high percentage of subscapularis (45.5%) and supraspinatus (40.9%) tendinopathy. The percentage of subacromial-subdeltoid bursitis showed a tendency to be present in the playing arm of TT athletes (20.0%) compared with their non-playing arm (4.5%), even though this was not statistically significant. Biceps long head tendinopathy was the most common disease of the shoulder in the draw arm of AR athletes, and the difference was significant when compared to the non-playing arm of TT athletes (p<0.05). Conclusion There was a high percentage of subscapularis and supraspinatus tendinopathy cases for the non-playing arm of TT wheelchair athletes, and a high percentage of biceps long head tendinopathy for the draw arm for the AR wheelchair athletes. Consideration of the biomechanical properties of each sport may be needed to tailor specific

  11. Wheelchair use by residents of nursing homes: effectiveness in meeting positioning and mobility needs.

    PubMed

    Fuchs, Robert H; Gromak, Patricia A

    2003-01-01

    The purpose of this study was to assess the effectiveness of wheelchairs purchased by Nebraska Medicaid for residents of nursing homes. Effectiveness was defined as (a) meeting therapist goals, (b) matching the request form wheelchair specifications, (c) conforming to accepted physical or occupational therapy practices for positioning and mobility, and (d) degree of user satisfaction. The authors completed a 16-item evaluation form for each of 42 subjects. Competent subjects completed a satisfaction questionnaire. Changing postural alignment (67% of subjects), mobility (43%), risk for pressure ulcers (38%), and comfort status (31%) were most frequently included in therapist goals. For 21 subjects, one or more therapist goals for wheelchair use were not met. The most frequently unmet goal was independent propulsion for a specified distance or destination within the facility (15 out of 18 subjects having that goal). Ninety-three instances of inadequate wheelchair equipment were discovered. Twenty subjects were at increased risk for pressure ulcers. Frame or seating dimensions did not match those of 19 subjects in one or more ways. Seat frames (27 subjects), seat cushions (24), and trunk supports (22) were most frequently inadequate. For 67% of the subjects, all wheelchair frames and components were of the same type or style as those specified on request forms, and when they were not, the deviations from request specifications were minor. Twenty-six percent of the subjects owned wheelchair components purchased by Medicaid that were not in use, but in only one instance was this an actual wheelchair frame. Eighty-six percent of the subjects who completed the questionnaire were mostly satisfied with their wheelchairs. Overall, the wheelchairs were meeting many subject needs and therapist goals. Lack of adequate follow-up and follow-along services may have contributed to the frequency of problems discovered.

  12. Evaluating the usability of a smartphone virtual seating coach application for powered wheelchair users.

    PubMed

    Wu, Yu-Kuang; Liu, Hsin-Yi; Kelleher, Annmarie; Pearlman, Jonathan; Cooper, Rory A

    2016-06-01

    The aim of the smartphone virtual seating coach (SVSC) was to provide a personalized reminder/warning system to encourage powered wheelchair users to use their powered seating functions (PSFs) as clinically recommended. This study evaluated the usability of the SVSC system by gathering feedback from five powered wheelchair users and five rehabilitation professionals through questionnaires and interviews. The results indicated that clear and understandable instructions to adjust the PSFs are the most important requirement for SVSC application. The instructions must be intuitive, could benefit from animations or indications of PSFs control buttons so powered wheelchair users can adjust their PSFs immediately and appropriately. PMID:27079179

  13. An examination of the Rosenberg Self-Esteem Scale using collegiate wheelchair basketball student athletes.

    PubMed

    Vermillion, Mark; Dodder, Richard A

    2007-04-01

    The purpose was to examine the construct validity of the Rosenberg Self-esteem Scale (RSES). The construct validity of the scale was examined by applying it to collegiate wheelchair basketball student athletes at an NCAA sanctioned wheelchair basketball tournament at a mid-sized university in the south central United States (N=68). In accordance with previous research on the scale, Cronbach alpha was .86; confirmatory factor analysis supported a one-factor structure. The scale is useful for measuring global self-esteem in collegiate wheelchair basketball student athletes.

  14. Special Education Policies and Practices in the Pacific Rim Region.

    ERIC Educational Resources Information Center

    Mitchell, David R.

    This paper examines both the emerging consensus among Pacific Rim countries, especially East and Southeast Asian countries, as to current and future directions of special education and the many differences among these countries in economics, cultural perspectives on disability, concepts of education, and administrative structures. The paper…

  15. Pacific Rim Cultures in the Classroom. Multicultural Education Resource Series.

    ERIC Educational Resources Information Center

    Ogilvie, A. Barretto, Ed.; Magnusson, Elaine, Ed.

    Seventeen instructional units on Asian and Pacific culture, society, and economic life are provided in this handbook, the result of a workshop entitled "Pacific Rim Cultures in the Classroom." Most of the lessons include suggestions for classroom activities, quizzes, and supplementary reading matter. The instructional units are organized according…

  16. 7. View down between paddlehweel rims from inside paddlweheel box ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. View down between paddlehweel rims from inside paddlweheel box off main deck. Eccentric center for Mason feathering mechanism is mounted on rub rail at left, housing for paddlewheel shaft bearing is shown at right. - Ferry TICONDEROGA, Route 7, Shelburne, Chittenden County, VT

  17. Child-Centered Education for Pacific-Rim Cultures?

    ERIC Educational Resources Information Center

    Jackson, Peter W.

    1998-01-01

    Argues for a cautious approach to transplanting theory from one culture to another, particularly considering the case for applying Friedrich Froebel's child-centered theory to early childhood education in Pacific Rim cultures. Uses a historical approach to distinguish three distinct versions of the theory, the Christian, the Progressive, and the…

  18. Asia and the Pacific Rim in the Curriculum.

    ERIC Educational Resources Information Center

    Schlene, Vickie J.

    1991-01-01

    Presents a sampling of items from the ERIC database dealing with Asia and the Pacific Rim. Urges the inclusion of these countries in the curriculum as exchange of peoples, goods, and cultures increases. Emphasizes the growing importance of the region as a global force. Includes articles and books on culture, economies, and cultural exchange…

  19. The Pacific Rim: An Annotated Bibliography for Social Studies Teachers.

    ERIC Educational Resources Information Center

    Kumamoto, Bob

    1992-01-01

    Lists a selection of books about the Pacific Rim area for social studies teachers who wish to add to their knowledge of the area. Includes selections on Japan, China, Southeast Asia, and the Pacific Islands. Describes and gives a brief critique of each book. (DK)

  20. The Pacific Rim: A Growing Force in the Global Community.

    ERIC Educational Resources Information Center

    Altbach, Philip G.

    1990-01-01

    Examination of the expanding academic systems of Pacific Rim countries and their nexus of relationships with the United States suggests the U.S. will have the opportunity to participate in the development of education in these increasingly self-confident and sophisticated countries, where the climate for higher education should remain very…

  1. Children's and Adolescent Literature from the Pacific Rim.

    ERIC Educational Resources Information Center

    Spiegel, Lisa A.; Richardson, Maurine

    Noting that literature written for children and adolescents can help students gain an understanding of the Pacific Rim area and its people, this paper presents advice on selecting appropriate literature, a children's literature bibliography, and an adolescent literature bibliography. The paper notes that to select appropriate literature, a teacher…

  2. View of Arizona rim towers from top of power plant. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Arizona rim towers from top of power plant. Left tower supports Circuit 3, second tower from left supports Circuit 12, middle tower supports Circuit 10, second tower from right supports Circuit 9, and right tower supports Circuit 8, view southeast - Hoover Dam, Circuits 1-15, U.S. Highway 93, Boulder City, Clark County, NV

  3. View of Nevada rim towers from top of power plant. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Nevada rim towers from top of power plant. Left tower supports Circuits 7 and 14, middle tower supports Circuit 6, and right tower supports Circuit 5, view west - Hoover Dam, Circuits 1-15, U.S. Highway 93, Boulder City, Clark County, NV

  4. View of Nevada rim towers from Arizona side. Left tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Nevada rim towers from Arizona side. Left tower supports Circuit 6, middle tower supports Circuit 5, and right tower supports Circuits 4 and 15, view north - Hoover Dam, Circuits 1-15, U.S. Highway 93, Boulder City, Clark County, NV

  5. Parent to Parent Peer Support across the Pacific Rim

    ERIC Educational Resources Information Center

    Singer, George H. S.; Hornby, Garry; Park, Jiyeon; Wang, Mian; Xu, Jiacheng

    2012-01-01

    In Pacific Rim countries parents of children with developmental disabilities have organized peer support organizations. One form of peer support is Parent to Parent based on one to one connections between two parents. The movements to create and sustain peer support in the U.S., New Zealand, China, and Korea are described. Qualitative evidence…

  6. What's Going on Over There: A Pacific Rim Update.

    ERIC Educational Resources Information Center

    Neal, Larry L.

    Horace Greeley was historically correct when he admonished the early pioneers to "Go West!" While historically insightful he was geographically limited. The West now extends beyond the borders and across the vast Pacific Ocean to the entire Pacific Rim. Characteristically, these countries are growing economically, politically, and socially with…

  7. An exercise trial for wheelchair users: Project Workout on Wheels

    PubMed Central

    Froehlich-Grobe, Katherine; Aaronson, Lauren S.; Washburn, Richard A.; Little, Todd D.; Lee, Jaehoon; Nary, Dorothy E.; VanSciver, Angela; Nesbitt, Jill; Norman, Sarah E.

    2011-01-01

    There is growing interest in promoting health for people with disabilities, yet evidence regarding community-based interventions is sparse. This paper describes the design details of a randomized controlled trial (RCT) that will test the effectiveness of a multi-component behaviorally-based, intervention to promote exercise adoption (over 6 months) and maintenance (up to one year) among wheelchair users and includes descriptive data on participant characteristics at baseline. Participants were randomly assigned to either a staff-supported intervention group or a self-guided comparison group. The primary study aim is to assess the effectiveness of the multi-component behaviorally-based intervention for promoting physical activity adoption and maintenance. The RCT will also assess the physical and psychosocial effects of the intervention and the complex interplay of factors that influence the effectiveness of the intervention. Therefore, the primary outcome derives from participant reports of weekly exercise (type, frequency, duration) over 52 weeks. Secondary outcomes collected on four occasions (baseline, 3 months, 6 months, 12 months) included physiological outcomes (VO2 peak, strength), disability-related outcomes (pain, fatigue, participation), and psychosocial outcomes (exercise self-efficacy, exercise barriers, quality of life, depression, mood). This study will provide evidence regarding the effectiveness of a multi-component behaviorally-based intervention for promoting exercise adoption among people with mobility impairments that necessitate wheelchair use. PMID:22101206

  8. Anthropometric data of adult wheelchair users for Mexican population.

    PubMed

    Lucero-Duarte, Karla; de la Vega-Bustillos, Enrique; López-Millán, Francisco; Soto-Félix, Selene

    2012-01-01

    The aim of the study was to obtain anthropometric data of adult wheelchair users at Mexico. This study count with 108 disabled people (56 men and 52 women) using the wheelchair and having the upper extremities sufficiently efficient to perform professional activities. The subjects were aged 18-60. From the measurements obtained, it can be said that in each of these measures was observed that men have larger dimensions than women, except for body depth, in which women had a slightly greater difference. When comparing the data in this study against other studies it shows that there is a significant difference between the averages of these studies. Similar results were obtained when comparing our data against data of standard population. Anthropometric data obtained through this study appear to be the only of this kind in Mexico and showed significant differences between measures of disabled persons and standard persons. the use of these data may be helpful for the proper design of workstations designed for use by adults who use.

  9. Shoulder joint kinetics during the push phase of wheelchair propulsion.

    PubMed

    Kulig, K; Rao, S S; Mulroy, S J; Newsam, C J; Gronley, J K; Bontrager, E L; Perry, J

    1998-09-01

    The purpose of this investigation was to quantify the forces and moments at the shoulder joint during free, level wheelchair propulsion and to document changes imposed by increased speed, inclined terrain, and 15 minutes of continuous propulsion. Data were collected using a six-camera VICON motion analysis system, a strain gauge instrumented wheel, and a wheelchair ergometer. Seventeen men with low level paraplegia participated in this study. Shoulder joint forces and moments were calculated using a three-dimensional model applying the inverse dynamics approach. During free propulsion, peak shoulder joint forces were in the posterior (46 N) and superior directions (14 N), producing a peak resultant force of 51 N at an angle of 185 degrees (180 degrees = posterior). Peak shoulder joint moments were greatest in extension (14 Newton-meters [Nm]), followed by abduction (10 Nm), and internal rotation (6 Nm). With fast and inclined propulsion, peak vertical force increased by greater than 360%, and the increase in posterior force and shoulder moments ranged from 107% to 167%. At the end of 15 minutes of continuous free propulsion, there were no significant changes compared with short duration free propulsion. The increased joint loads documented during fast and inclined propulsion could lead to compression of subacromial structures against the overlying acromion.

  10. Nutritional practices of competitive British wheelchair games players.

    PubMed

    Goosey-Tolfrey, Victoria L; Crosland, Jeanette

    2010-01-01

    This study described the dietary intake profiles of 14 female (F) and 9 male (M) trained British wheelchair games players. The M group showed significantly higher daily energy (2060 +/- 904 vs. 1520 +/- 342 kcal x day(-1)), carbohydrate and protein intakes than the F group (p < .05). The energy derived from carbohydrate, protein, and fat for both F and M groups were similar (53.6%, 16.9% and 29.3% and 53.3%, 19.0% and 26.8%, respectively), yet the carbohydrate intakes were slightly lower than those recommended for athletes. Only two participants from the F group showed adequate intakes of iron, and 19 participants from both F and M groups did not meet the dietary fiber recommendation but this may be related to individualized bowel management strategies. Overall, the dietary practices encompassed aspects of the dietary guidelines recommended for sport, but balancing the energy needs of wheelchair games play with the promotion of long-term health still needs careful consideration.

  11. [CT rim effects in various head and neck lesions].

    PubMed

    Ito, K; Iinuma, T; Kase, Y; Oyama, K

    1992-06-01

    The authors evaluated various head and neck lesions seen from April 1988 through March 1990 both by plain and enhanced CT, examined the incidence of rim effect (or rim enhancement), classified these effects, and discussed underlying mechanisms. Materials consisted of 177 cases including primary tumors (28 benign and 49 malignant cases) and lymphadenopathy associated with malignancy (9 cases, metastatic nodes and malignant lymphomas), inflammatory lesions (20 cases), cystic lesions (12 cases), other lesions (7 cases, jugular thrombosis, carotid atheroma and aural lesions), and 22 cases without abnormal findings. Among the 177 cases, rim effects were observed in 22 cases (12%). These effects were analyzed and classified. The incidences of rim effect according lesion type are as follows; cervical lymphadenopathy associated with malignancy 5/9 (56%), primary tumors 8/77 (10%), inflammatory lesions none, cystic lesions 7/12 (58%), and others 3/7 (43%). The highest incidence was seen with cystic lesions including mucoceles of the paranasal sinuses and cervical cysts. Rim effects were classified as follows; Type 1: cystic pattern, Type 2: parenchymatous pattern, Type 3: vascular pattern and Type 4: others. Type 1 was seen in 15 cases (68%), Type 2 in 3 cases (14%), Type 3 in 3 cases (14%), and Type 4 in 1 case (5%). Type 1 included 6 cystic lesions, 3 malignant lymphadenopathies, 3 benign tumors and others. Type 2 included 2 malignant lymphadenopathies and 1 benign tumor, and Type 3, 2 jugular thromboses and 1 carotid atheroma. There was only one Type 4, a cystic lesion. Of interest is the mode of incidences among cervical lymphadenopathies associated with malignancy.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Physiographic rim of the Grand Canyon, Arizona: a digital database

    USGS Publications Warehouse

    Billingsley, George H.; Hampton, Haydee M.

    1999-01-01

    This Open-File report is a digital physiographic map database. This pamphlet serves to introduce and describe the digital data. There is no paper map included in the Open-File report. The report does include, however, PostScript and PDF format plot files, each containing an image of the map. For those interested in a paper plot of information contained in the database or in obtaining the PostScript plot files, please see the section entitled "For Those Who Don't Use Digital Geologic Map Databases" below. This physiographic map of the Grand Canyon is modified from previous versions by Billingsley and Hendricks (1989), and Billingsley and others (1997). The boundary is drawn approximately along the topographic rim of the Grand Canyon and its tributary canyons between Lees Ferry and Lake Mead (shown in red). Several isolated small mesas, buttes, and plateaus are within this area, which overall encompasses about 2,600 square miles. The Grand Canyon lies within the southwestern part of the Colorado Plateaus of northern Arizona between Lees Ferry, Colorado River Mile 0, and Lake Mead, Colorado River Mile 277. The Colorado River is the corridor for raft trips through the Grand Canyon. Limestone rocks of the Kaibab Formation form most of the north and south rims of the Grand Canyon, and a few volcanic rocks form the north rim of parts of the Uinkaret and Shivwits Plateaus. Limestones of the Redwall Limestone and lower Supai Group form the rim of the Hualapai Plateau area, and Limestones of Devonian and Cambrian age form the boundary rim near the mouth of Grand Canyon at the Lake Mead. The natural physiographic boundary of the Grand Canyon is roughly the area a visitor would first view any part of the Grand Canyon and its tributaries.

  13. Exploring Powered Wheelchair Users and Their Caregivers’ Perspectives on Potential Intelligent Power Wheelchair Use: A Qualitative Study

    PubMed Central

    Kairy, Dahlia; Rushton, Paula W.; Archambault, Philippe; Pituch, Evelina; Torkia, Caryne; El Fathi, Anas; Stone, Paula; Routhier, François; Forget, Robert; Demers, Louise; Pineau, Joelle; Gourdeau, Richard

    2014-01-01

    Power wheelchairs (PWCs) can have a positive impact on user well-being, self-esteem, pain, activity and participation. Newly developed intelligent power wheelchairs (IPWs), allowing autonomous or collaboratively-controlled navigation, could enhance mobility of individuals not able to use, or having difficulty using, standard PWCs. The objective of this study was to explore the perspectives of PWC users (PWUs) and their caregivers regarding if and how IPWs could impact on current challenges faced by PWUs, as well as inform current development of IPWs. A qualitative exploratory study using individual interviews was conducted with PWUs (n = 12) and caregivers (n = 4). A semi-structured interview guide and video were used to facilitate informed discussion regarding IPWs. Thematic analysis revealed three main themes: (1) “challenging situations that may be overcome by an IPW” described how the IPW features of obstacle avoidance, path following, and target following could alleviate PWUs’ identified mobility difficulties; (2) “cautious optimism concerning IPW use revealed participants” addresses concerns regarding using an IPW as well as technological suggestions; (3) “defining the potential IPW user” revealed characteristics of PWUs that would benefit from IPW use. Findings indicate how IPW use may help overcome PWC difficulties and confirm the importance of user input in the ongoing development of IPWs. PMID:24566051

  14. Exploring powered wheelchair users and their caregivers' perspectives on potential intelligent power wheelchair use: a qualitative study.

    PubMed

    Kairy, Dahlia; Rushton, Paula W; Archambault, Philippe; Pituch, Evelina; Torkia, Caryne; El Fathi, Anas; Stone, Paula; Routhier, François; Forget, Robert; Demers, Louise; Pineau, Joelle; Gourdeau, Richard

    2014-02-21

    Power wheelchairs (PWCs) can have a positive impact on user well-being, self-esteem, pain, activity and participation. Newly developed intelligent power wheelchairs (IPWs), allowing autonomous or collaboratively-controlled navigation, could enhance mobility of individuals not able to use, or having difficulty using, standard PWCs. The objective of this study was to explore the perspectives of PWC users (PWUs) and their caregivers regarding if and how IPWs could impact on current challenges faced by PWUs, as well as inform current development of IPWs. A qualitative exploratory study using individual interviews was conducted with PWUs (n = 12) and caregivers (n = 4). A semi-structured interview guide and video were used to facilitate informed discussion regarding IPWs. Thematic analysis revealed three main themes: (1) "challenging situations that may be overcome by an IPW" described how the IPW features of obstacle avoidance, path following, and target following could alleviate PWUs' identified mobility difficulties; (2) "cautious optimism concerning IPW use revealed participants" addresses concerns regarding using an IPW as well as technological suggestions; (3) "defining the potential IPW user" revealed characteristics of PWUs that would benefit from IPW use. Findings indicate how IPW use may help overcome PWC difficulties and confirm the importance of user input in the ongoing development of IPWs.

  15. Exploring powered wheelchair users and their caregivers' perspectives on potential intelligent power wheelchair use: a qualitative study.

    PubMed

    Kairy, Dahlia; Rushton, Paula W; Archambault, Philippe; Pituch, Evelina; Torkia, Caryne; El Fathi, Anas; Stone, Paula; Routhier, François; Forget, Robert; Demers, Louise; Pineau, Joelle; Gourdeau, Richard

    2014-02-01

    Power wheelchairs (PWCs) can have a positive impact on user well-being, self-esteem, pain, activity and participation. Newly developed intelligent power wheelchairs (IPWs), allowing autonomous or collaboratively-controlled navigation, could enhance mobility of individuals not able to use, or having difficulty using, standard PWCs. The objective of this study was to explore the perspectives of PWC users (PWUs) and their caregivers regarding if and how IPWs could impact on current challenges faced by PWUs, as well as inform current development of IPWs. A qualitative exploratory study using individual interviews was conducted with PWUs (n = 12) and caregivers (n = 4). A semi-structured interview guide and video were used to facilitate informed discussion regarding IPWs. Thematic analysis revealed three main themes: (1) "challenging situations that may be overcome by an IPW" described how the IPW features of obstacle avoidance, path following, and target following could alleviate PWUs' identified mobility difficulties; (2) "cautious optimism concerning IPW use revealed participants" addresses concerns regarding using an IPW as well as technological suggestions; (3) "defining the potential IPW user" revealed characteristics of PWUs that would benefit from IPW use. Findings indicate how IPW use may help overcome PWC difficulties and confirm the importance of user input in the ongoing development of IPWs. PMID:24566051

  16. Development of a wheelchair skills home program for older adults using a participatory action design approach.

    PubMed

    Giesbrecht, Edward M; Miller, William C; Mitchell, Ian M; Woodgate, Roberta L

    2014-01-01

    Restricted mobility is the most common impairment among older adults and a manual wheelchair is often prescribed to address these limitations. However, limited access to rehabilitation services results in older adults typically receiving little or no mobility training when they receive a wheelchair. As an alternative and novel approach, we developed a therapist-monitored wheelchair skills home training program delivered via a computer tablet. To optimize efficacy and adherence, principles of self-efficacy and adult learning theory were foundational in the program design. A participatory action design approach was used to engage older adult wheelchair users, care providers, and prescribing clinicians in an iterative design and development process. A series of prototypes were fabricated and revised, based on feedback from eight stakeholder focus groups, until a final version was ready for evaluation in a clinical trial. Stakeholder contributions affirmed and enhanced the foundational theoretical principles and provided validation of the final product for the target population. PMID:25276768

  17. Evaluation of Dynamics of Pushing a Wheelchair Up or Down a Slope

    NASA Astrophysics Data System (ADS)

    Miyawaki, Kazuto; Sasaki, Makoto; Iwami, Takehiro; Obinata, Goro; Shimada, Yoichi

    Japan's progressing aging society increasingly needs evaluation of equipment used for human assistance. Earlier studies have evaluated the use of wheelchairs. However, the manner in which the equipment moderates the generated consumption energy of helpers has not been described sufficiently. This study performs mechanical evaluation of a helper's walking using a wheelchair on a slope. We use the Musculoskeletal Model to estimate the joint moment and energy consumption. Results obtained with 14 volunteers who assisted these wheelchair experiments were considered for cases in which the energy consumption of the wheelchair increased by 13% from that of a normal gait when moving up an incline. This evaluation method is useful for developing practical assistance equipment.

  18. Development of a Wheelchair Skills Home Program for Older Adults Using a Participatory Action Design Approach

    PubMed Central

    Giesbrecht, Edward M.; Miller, William C.; Mitchell, Ian M.; Woodgate, Roberta L.

    2014-01-01

    Restricted mobility is the most common impairment among older adults and a manual wheelchair is often prescribed to address these limitations. However, limited access to rehabilitation services results in older adults typically receiving little or no mobility training when they receive a wheelchair. As an alternative and novel approach, we developed a therapist-monitored wheelchair skills home training program delivered via a computer tablet. To optimize efficacy and adherence, principles of self-efficacy and adult learning theory were foundational in the program design. A participatory action design approach was used to engage older adult wheelchair users, care providers, and prescribing clinicians in an iterative design and development process. A series of prototypes were fabricated and revised, based on feedback from eight stakeholder focus groups, until a final version was ready for evaluation in a clinical trial. Stakeholder contributions affirmed and enhanced the foundational theoretical principles and provided validation of the final product for the target population. PMID:25276768

  19. Driving Control for Electric Power Assisted Wheelchair Based on Regenerative Brake

    NASA Astrophysics Data System (ADS)

    Seki, Hirokazu; Takahashi, Kazuki; Tadakuma, Susumu

    This paper describes a novel safety driving control scheme for electric power assisted wheelchairs based on the regenerative braking system. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the safe and secure driving performance especially on downhill roads must be further improved because electric power assisted wheelchairs have no braking devices. The proposed control system automatically switches the driving mode, from “assisting mode” to “braking mode”, based on the wheelchair's velocity and the declined angle and smoothly suppresses the wheelchair's acceleration based on variable duty ratio control in order to realize the safety driving and to improve the ride quality. Some experiments on the practical roads and subjective evaluation show the effectiveness of the proposed control system.

  20. RESNA position on the application of power wheelchairs for pediatric users.

    PubMed

    Rosen, Lauren; Arva, Julianna; Furumasu, Jan; Harris, Michele; Lange, Michelle L; McCarthy, Elisabeth; Kermoian, Rosanne; Pinkerton, Heather; Plummer, Teresa; Roos, Jodi; Sabet, Andrina; Vander Schaaf, Paula; Wonsettler, Terri

    2009-01-01

    This document, approved by the Rehabilitation Engineering & Assistive Technology Society of North America (RESNA) Board of Directors in March 2007, shares typical clinical applications and provides evidence from the literature supporting the use of power wheelchairs for children.

  1. Muscle fiber type characteristics of M. deltoideus in wheelchair athletes. Comparison with other trained athletes.

    PubMed

    Tesch, P A; Karlsson, J

    1983-10-01

    Muscle biopsies were obtained from the midportion of m. deltoideus of seven male wheelchair basketball athletes. High caliber kayak paddlers (n = 8) and wrestlers (n = 8) as well as mountain ranger soldiers (n = 8) served as controls. Histochemical methods were applied to identify fast twitch (FT) and slow twitch (ST) fibers and furthermore assess muscle fiber type distribution and muscle fiber cross-sectional area. The relative percentage of FT fibers averaged (+/-SD) 47 +/- 12% and 52 +/- 9% in wheelchair athletes and soldiers. The value obtained in kayakers was significantly lower (30 +/- 11). Both FT area (p less than 0.01) and mean fiber area (p less than 0.05) were significantly larger in wheelchair athletes as compared with soldiers and kayakers. It is suggested that the involvement in specific physical training was the main cause for hypertrophy of individual muscle fibers observed in m. deltoideus of wheelchair athletes.

  2. Design and validation of an intelligent wheelchair towards a clinically-functional outcome

    PubMed Central

    2013-01-01

    Background Many people with mobility impairments, who require the use of powered wheelchairs, have difficulty completing basic maneuvering tasks during their activities of daily living (ADL). In order to provide assistance to this population, robotic and intelligent system technologies have been used to design an intelligent powered wheelchair (IPW). This paper provides a comprehensive overview of the design and validation of the IPW. Methods The main contributions of this work are three-fold. First, we present a software architecture for robot navigation and control in constrained spaces. Second, we describe a decision-theoretic approach for achieving robust speech-based control of the intelligent wheelchair. Third, we present an evaluation protocol motivated by a meaningful clinical outcome, in the form of the Robotic Wheelchair Skills Test (RWST). This allows us to perform a thorough characterization of the performance and safety of the system, involving 17 test subjects (8 non-PW users, 9 regular PW users), 32 complete RWST sessions, 25 total hours of testing, and 9 kilometers of total running distance. Results User tests with the RWST show that the navigation architecture reduced collisions by more than 60% compared to other recent intelligent wheelchair platforms. On the tasks of the RWST, we measured an average decrease of 4% in performance score and 3% in safety score (not statistically significant), compared to the scores obtained with conventional driving model. This analysis was performed with regular users that had over 6 years of wheelchair driving experience, compared to approximately one half-hour of training with the autonomous mode. Conclusions The platform tested in these experiments is among the most experimentally validated robotic wheelchairs in realistic contexts. The results establish that proficient powered wheelchair users can achieve the same level of performance with the intelligent command mode, as with the conventional command mode

  3. Opportunities for measuring wheelchair kinematics in match settings; reliability of a three inertial sensor configuration.

    PubMed

    van der Slikke, R M A; Berger, M A M; Bregman, D J J; Lagerberg, A H; Veeger, H E J

    2015-09-18

    Knowledge of wheelchair kinematics during a match is prerequisite for performance improvement in wheelchair basketball. Unfortunately, no measurement system providing key kinematic outcomes proved to be reliable in competition. In this study, the reliability of estimated wheelchair kinematics based on a three inertial measurement unit (IMU) configuration was assessed in wheelchair basketball match-like conditions. Twenty participants performed a series of tests reflecting different motion aspects of wheelchair basketball. During the tests wheelchair kinematics were simultaneously measured using IMUs on wheels and frame, and a 24-camera optical motion analysis system serving as gold standard. Results showed only small deviations of the IMU method compared to the gold standard, once a newly developed skid correction algorithm was applied. Calculated Root Mean Square Errors (RMSE) showed good estimates for frame displacement (RMSE≤0.05 m) and speed (RMSE≤0.1m/s), except for three truly vigorous tests. Estimates of frame rotation in the horizontal plane (RMSE<3°) and rotational speed (RMSE<7°/s) were very accurate. Differences in calculated Instantaneous Rotation Centres (IRC) were small, but somewhat larger in tests performed at high speed (RMSE up to 0.19 m). Average test outcomes for linear speed (ICCs>0.90), rotational speed (ICC>0.99) and IRC (ICC> 0.90) showed high correlations between IMU data and gold standard. IMU based estimation of wheelchair kinematics provided reliable results, except for brief moments of wheel skidding in truly vigorous tests. The IMU method is believed to enable prospective research in wheelchair basketball match conditions and contribute to individual support of athletes in everyday sports practice.

  4. Opportunities for measuring wheelchair kinematics in match settings; reliability of a three inertial sensor configuration.

    PubMed

    van der Slikke, R M A; Berger, M A M; Bregman, D J J; Lagerberg, A H; Veeger, H E J

    2015-09-18

    Knowledge of wheelchair kinematics during a match is prerequisite for performance improvement in wheelchair basketball. Unfortunately, no measurement system providing key kinematic outcomes proved to be reliable in competition. In this study, the reliability of estimated wheelchair kinematics based on a three inertial measurement unit (IMU) configuration was assessed in wheelchair basketball match-like conditions. Twenty participants performed a series of tests reflecting different motion aspects of wheelchair basketball. During the tests wheelchair kinematics were simultaneously measured using IMUs on wheels and frame, and a 24-camera optical motion analysis system serving as gold standard. Results showed only small deviations of the IMU method compared to the gold standard, once a newly developed skid correction algorithm was applied. Calculated Root Mean Square Errors (RMSE) showed good estimates for frame displacement (RMSE≤0.05 m) and speed (RMSE≤0.1m/s), except for three truly vigorous tests. Estimates of frame rotation in the horizontal plane (RMSE<3°) and rotational speed (RMSE<7°/s) were very accurate. Differences in calculated Instantaneous Rotation Centres (IRC) were small, but somewhat larger in tests performed at high speed (RMSE up to 0.19 m). Average test outcomes for linear speed (ICCs>0.90), rotational speed (ICC>0.99) and IRC (ICC> 0.90) showed high correlations between IMU data and gold standard. IMU based estimation of wheelchair kinematics provided reliable results, except for brief moments of wheel skidding in truly vigorous tests. The IMU method is believed to enable prospective research in wheelchair basketball match conditions and contribute to individual support of athletes in everyday sports practice. PMID:26141162

  5. Comparison of sport achievement orientation between wheelchair and able-bodied basketball athletes.

    PubMed

    Skordilis, E K; Koutsouki, D; Asonitou, K; Evans, E; Jensen, B

    2002-02-01

    Differences in sport achievement orientations between 31 recreational wheelchair and 76 able-bodied basketball athletes were tested. Athletes from the New England region completed the three subscales of the Sport Orientation Questionnaire (competitiveness, win orientation, and goal orientation). Wheelchair athletes responded higher on the Competitiveness and Goal Orientation subscales. In discriminative function analysis competitiveness scores were the only significant discriminator between the two groups.

  6. The Cryptococcus neoformans alkaline response pathway: identification of a novel rim pathway activator.

    PubMed

    Ost, Kyla S; O'Meara, Teresa R; Huda, Naureen; Esher, Shannon K; Alspaugh, J Andrew

    2015-04-01

    The Rim101/PacC transcription factor acts in a fungal-specific signaling pathway responsible for sensing extracellular pH signals. First characterized in ascomycete fungi such as Aspergillus nidulans and Saccharomyces cerevisiae, the Rim/Pal pathway maintains conserved features among very distantly related fungi, where it coordinates cellular adaptation to alkaline pH signals and micronutrient deprivation. However, it also directs species-specific functions in fungal pathogens such as Cryptococcus neoformans, where it controls surface capsule expression. Moreover, disruption of the Rim pathway central transcription factor, Rim101, results in a strain that causes a hyper-inflammatory response in animal infection models. Using targeted gene deletions, we demonstrate that several genes encoding components of the classical Rim/Pal pathway are present in the C. neoformans genome. Many of these genes are in fact required for Rim101 activation, including members of the ESCRT complex (Vps23 and Snf7), ESCRT-interacting proteins (Rim20 and Rim23), and the predicted Rim13 protease. We demonstrate that in neutral/alkaline pH, Rim23 is recruited to punctate regions on the plasma membrane. This change in Rim23 localization requires upstream ESCRT complex components but does not require other Rim101 proteolysis components, such as Rim20 or Rim13. Using a forward genetics screen, we identified the RRA1 gene encoding a novel membrane protein that is also required for Rim101 protein activation and, like the ESCRT complex, is functionally upstream of Rim23-membrane localization. Homologs of RRA1 are present in other Cryptococcus species as well as other basidiomycetes, but closely related genes are not present in ascomycetes. These findings suggest that major branches of the fungal Kingdom developed different mechanisms to sense and respond to very elemental extracellular signals such as changing pH levels.

  7. A wheelchair modified for leg propulsion using voluntary activity or electrical stimulation.

    PubMed

    Stein, R B; Roetenberg, D; Chong, S L; James, K B

    2003-01-01

    A commercially available wheelchair has been modified for propulsion by movements of the lower legs. The feet are attached securely to a foot rest that can rotate around the knee joint. Movement is generated either with residual voluntary activation of the quadriceps (knee extensor) and hamstring (knee flexor) muscles, or with electrical stimulation of these muscles, if voluntary control is absent. Either a chain or a lever can couple the movements through a gearbox to the wheel to propel the wheelchair forward. Control of a wheelchair with the legs is more efficient than using the arms and has the potential to increase the mobility and whole-body fitness of many wheelchair users, but there is considerable variability between subjects. To address this variability, we measured for individual subjects the passive properties of the legs and foot at rest (effective stiffness and viscosity), the length-tension (torque-angle) properties of the active muscle groups, as well as their force-velocity curve and their activation and fatigue rates. The measured values were then inserted into a model of the leg-propelled wheelchair. The purpose of this paper is to test whether the model could predict the performance of individual subjects accurately and could be used, for example, to optimize the speed of the wheelchair for a given subject.

  8. Manual wheelchairs: Research and innovation in rehabilitation, sports, daily life and health.

    PubMed

    van der Woude, Lucas H V; de Groot, Sonja; Janssen, Thomas W J

    2006-11-01

    Those with lower limb disabilities are often dependent on manually propelled wheelchairs for their mobility, in Europe today some 3.3 million people. This implies a transfer from leg to arm work for ambulation and all other activities of daily living (ADL). Compared to the legs, arm work is less efficient and more straining, and leads to a lower physical capacity. Also, there is a major risk of mechanical overuse. Problems of long-term wheelchair use are not only pain or discomfort, but also a risk of a physically inactive lifestyle. Subsequently, serious secondary impairments (obesity, diabetes and cardiovascular problems) may eventually emerge. Wheelchair quality, including the ergonomic fitting to the individual may play a preventive role here, but also other modes of physical activity, and the understanding of training, rehabilitation, active lifestyle and sports on health and wellbeing. The 'International Classification of Functioning, Health and Disability' (ICF) model, a stress-strain-work capacity model, as well as the ergonomics model that relates human-activity-assistive technology are instrumental to the concepts, structure and aims of research in assistive technology for mobility. Apart from empirical developments and innovations from within wheelchair sports, systematic research has played a role in wheelchair development and design in three important areas: (1) the vehicle mechanics, (2) the human movement system and (3) the wheelchair-user interface. Current practical developments in design and technology are discussed. A position stand on the key-issues of a current and future research agenda in this area is presented.

  9. Wheeling à petit pas: Parkinsonism detected by observation of wheelchair propulsion.

    PubMed

    Worley, Scott W; Kirby, R Lee; MacLeod, Donald A

    2006-11-01

    We present a man with parkinsonism detected by the observation of wheelchair propulsion. His manual wheelchair propulsion technique was observed to include rapid, brief, low-power strokes resembling the marche à petit pas (walking with tiny steps) phenomenon of parkinsonism. We videotaped his wheelchair propulsion and compared him with ten age-, gender-, and diagnosis-matched controls. The patient had a propulsion velocity of 0.14 m/sec compared with a mean (+/- standard deviation) of 0.73 (+/- 0.16) m/sec for the controls, a cadence of 209 strokes/min vs. 60 (+/- 12) strokes/min for the controls, and a mechanical efficiency of 0.04 m/stroke compared with 0.75 (+/- 0.25) m/stroke for the controls. This observation shifted the course of his medical investigations and management as well as his rehabilitation care. This is the first detailed report of how parkinsonian features may affect manual wheelchair propulsion. It suggests that observation of wheelchair mobility should be a routine component of the physical examination of wheelchair users. PMID:17079968

  10. A new dynamic model of the wheelchair propulsion on straight and curvilinear level-ground paths.

    PubMed

    Chénier, Félix; Bigras, Pascal; Aissaoui, Rachid

    2015-08-01

    Independent-roller ergometers (IREs) are commonly used to simulate the behaviour of a wheelchair propelled in a straight line. They cannot, however, simulate curvilinear propulsion. To this effect, a motorised wheelchair ergometer could be used, provided that a dynamic model of the wheelchair-user system propelled on straight and curvilinear paths (WSC) is available. In this article, we present such a WSC model, its parameter identification procedure and its prediction error. Ten healthy subjects propelled an instrumented wheelchair through a controlled path. Both IRE and WSC models estimated the rear wheels' velocities based on the users' propulsive moments. On curvilinear paths, the outward wheel shows root mean square (RMS) errors of 13% in an IRE vs 8% in a WSC. The inward wheel shows RMS errors of 21% in an IRE vs 11% in a WSC. Differences between both models are highly significant (p < 0.001). A wheelchair ergometer based on this new WSC model will be more accurate than a roller ergometer when simulating wheelchair propulsion in tight environments, where many turns are necessary.

  11. Rolling resistance and propulsion efficiency of manual and power-assisted wheelchairs.

    PubMed

    Pavlidou, Efthymia; Kloosterman, Marieke G M; Buurke, Jaap H; Rietman, Johan S; Janssen, Thomas W J

    2015-11-01

    Rolling resistance is one of the main forces resisting wheelchair propulsion and thus affecting stress exerted on the upper limbs. The present study investigates the differences in rolling resistance, propulsion efficiency and energy expenditure required by the user during power-assisted and manual propulsion. Different tire pressures (50%, 75%, 100%) and two different levels of motor assistance were tested. Drag force, energy expenditure and propulsion efficiency were measured in 10 able-bodied individuals under different experimental settings on a treadmill. Results showed that drag force levels were significantly higher in the 50%, compared to the 75% and 100% inflation conditions. In terms of wheelchair type, the manual wheelchair displayed significantly lower drag force values than the power-assisted one. The use of extra-power-assisted wheelchair appeared to be significantly superior to conventional power-assisted and manual wheelchairs concerning both propulsion efficiency and energy expenditure required by the user. Overall, the results of the study suggest that the use of power-assisted wheelchair was more efficient and required less energy input by the user, depending on the motor assistance provided.

  12. Measurement of wheelchair rolling resistance with a handle bar push technique.

    PubMed

    van der Woude, L H V; Geurts, C; Winkelman, H; Veeger, H E J

    2003-01-01

    The purpose of this study was to evaluate a technique of pushing a wheelchair at the level of the handle bars as a method for measuring rolling resistance of wheelchair-user systems under different field conditions. Under standardized conditions on a motor driven treadmill, rolling resistance was determined using a 2D strain gauge-based push technique at the level of the handle bars and a commonly used 1D strain gauge-based wheelchair drag test using an adapted push wheelchair and ISO dummy at several velocities and using different push handle heights. After verification of the method, rolling resistance of six different floor surfaces was measured with the experimental push wheelchair in a centre for rehabilitation. Using an analysis of variance for repeated measures, small but significant differences in rolling resistance were found between the drag and push tests on a motor driven treadmill. Belt velocity and push handle height significantly affected rolling resistance. In the field study in the rehabilitation centre, tiles and tarpaulin had the lowest rolling resistance, while high piled carpet had the highest values. It is concluded that the wheelchair pushing method described in this study is usable for the determination of (relative) differences in rolling resistance of different floor materials if performed under standardized conditions and procedures, such as a stable velocity (within a small range of variation), using an ISO-dummy and a constant pushing handle bar height.

  13. Investigation of large transit vehicle accidents and establishing appropriate protection for wheelchair riders.

    PubMed

    Shaw, Greg

    2008-01-01

    Securing wheelchairs and restraining wheelchair riders on buses is difficult for many wheelchair riders and transit providers. This study examined injury-producing events aboard large transit buses in general in an attempt to better understand the potential risks and required protection for wheelchair users. The study found that few injuries and fatalities occur on large transit buses. Examination of the relatively few injury-producing events advanced the understanding of these events in terms of acceleration/deceleration magnitude and direction. Low acceleration/deceleration, or low-g, events such as those involving abrupt braking or turning occur frequently and are associated with approximately half of onboard passenger injuries. Unfortunately, the actual frequency of high-g events was not determined. Most of the injurious events involved the bus rapidly decelerating because of frontal impacts with another vehicle or roadside object. Further study is needed to determine the magnitude and frequency of high-g events. This information is necessary to determine the level of protection commensurate with real-world risk necessary for wheelchair riders in the transit bus environment and may ultimately facilitate the development of easier-to-use safety systems that secure and restrain wheelchairs and their riders.

  14. Energy Dependence of Synchrotron X-Ray Rims in Tycho's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Tran, Aaron; Williams, Brian J.; Petre, Robert; Ressler, Sean M.; Reynolds, Stephen P.

    2015-01-01

    Several young supernova remnants exhibit thin X-ray bright rims of synchrotron radiation at their forward shocks. Thin rims require strong magnetic field amplification beyond simple shock compression if rim widths are only limited by electron energy losses. But, magnetic field damping behind the shock could produce similarly thin rims with less extreme field amplification. Variation of rim width with energy may thus discriminate between competing influences on rim widths. We measured rim widths around Tycho's supernova remnant in 5 energy bands using an archival 750 ks Chandra observation. Rims narrow with increasing energy and are well described by either loss-limited or damped scenarios, so X-ray rim width-energy dependence does not uniquely specify a model. But, radio counterparts to thin rims are not loss-limited and better reflect magnetic field structure. Joint radio and X-ray modeling favors magnetic damping in Tycho's SNR with damping lengths approximately 1-5% of remnant radius and magnetic field strengths approximately 50-400 micron G assuming Bohm diffusion. X-ray rim widths are approximately 1% of remnant radius, somewhat smaller than inferred damping lengths. Electron energy losses are important in all models of X-ray rims, suggesting that the distinction between loss-limited and damped models is blurred in soft X-rays. All loss-limited and damping models require magnetic fields approximately greater than 20 micron G, arming the necessity of magnetic field amplification beyond simple compression.

  15. 30 CFR 56.19074 - Riding the bail, rim, bonnet, or crosshead.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Riding the bail, rim, bonnet, or crosshead. 56... Personnel Hoisting Hoisting Procedures § 56.19074 Riding the bail, rim, bonnet, or crosshead. Persons shall not ride the bail, rim, bonnet, or crosshead of any shaft conveyance except when necessary...

  16. 30 CFR 56.19074 - Riding the bail, rim, bonnet, or crosshead.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Riding the bail, rim, bonnet, or crosshead. 56... Personnel Hoisting Hoisting Procedures § 56.19074 Riding the bail, rim, bonnet, or crosshead. Persons shall not ride the bail, rim, bonnet, or crosshead of any shaft conveyance except when necessary...

  17. 30 CFR 57.19074 - Riding the bail, rim, bonnet, or crosshead.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Riding the bail, rim, bonnet, or crosshead. 57... MINES Personnel Hoisting Hoisting Procedures § 57.19074 Riding the bail, rim, bonnet, or crosshead. Persons shall not ride the bail, rim, bonnet, or crosshead of any shaft conveyance except when...

  18. 30 CFR 57.19074 - Riding the bail, rim, bonnet, or crosshead.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Riding the bail, rim, bonnet, or crosshead. 57... MINES Personnel Hoisting Hoisting Procedures § 57.19074 Riding the bail, rim, bonnet, or crosshead. Persons shall not ride the bail, rim, bonnet, or crosshead of any shaft conveyance except when...

  19. 30 CFR 56.19074 - Riding the bail, rim, bonnet, or crosshead.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Riding the bail, rim, bonnet, or crosshead. 56... Personnel Hoisting Hoisting Procedures § 56.19074 Riding the bail, rim, bonnet, or crosshead. Persons shall not ride the bail, rim, bonnet, or crosshead of any shaft conveyance except when necessary...

  20. 30 CFR 56.19074 - Riding the bail, rim, bonnet, or crosshead.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Riding the bail, rim, bonnet, or crosshead. 56... Personnel Hoisting Hoisting Procedures § 56.19074 Riding the bail, rim, bonnet, or crosshead. Persons shall not ride the bail, rim, bonnet, or crosshead of any shaft conveyance except when necessary...