Sample records for hand shape b-bent

  1. The Signs B [Image Omitted] and B-Bent [Image Omitted] in Israeli Sign Language According to the Theory of Phonology as Human Behavior

    ERIC Educational Resources Information Center

    Fuks, Orit; Tobin, Yishai

    2008-01-01

    The purpose of the present research is to examine which of the two factors: (1) the iconic-semiotic factor; or (2) the human-phonetic factor is more relevant in explaining the appearance and distribution of the hand shape B-bent in Israeli Sign Language (ISL). The B-bent shape has been the subject of much attention in sign language research…

  2. Bent shaft motor

    DOEpatents

    Benavides, Gilbert L.

    1998-01-01

    A nonelectromagnetic motor comprising a base, a bent shaft which is rotable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor.

  3. Bent shaft motor

    DOEpatents

    Benavides, G.L.

    1998-05-05

    A nonelectromagnetic motor comprising a base, a bent shaft which is rotatable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor. 11 figs.

  4. Replication origins oriGNAI3 and oriB of the mammalian AMPD2 locus nested in a region of straight DNA flanked by intrinsically bent DNA sites.

    PubMed

    Balani, Valério Américo; de Lima Neto, Quirino Alves; Takeda, Karen Izumi; Gimenes, Fabrícia; Fiorini, Adriana; Debatisse, Michelle; Fernandez, Maria Aparecida

    2010-11-01

    The aim of this work was to determine whether intrinsically bent DNA sites are present at, or close to, the mammalian replication origins oriGNAI3 and oriB in the Chinese hamster AMPD2 locus. Using an electrophoretic mobility shift assay and in silico analysis, we located four intrinsically bent DNA sites (b1 to b4) in a fragment that contains the oriGNAI3 and one site (b5) proximal to oriB. The helical parameters show that each bent DNA site is curved in a left-handed superhelical writhe. A 2D projection of 3D fragment trajectories revealed that oriGNAI3 is located in a relatively straight segment flanked by bent sites b1 and b2, which map in previously identified Scaffold/Matrix Attachment Region. Sites b3 and b4 are located approximately 2 kb downstream and force the fragment into a strong closed loop structure. The b5 site is also located in an S/MAR that is found just downstream of oriB.

  5. Bent dendrite growth in undercooled Fe-B alloy melts

    NASA Astrophysics Data System (ADS)

    Karrasch, C.; Volkmann, T.; Valloton, J.; Kolbe, M.; Herlach, DM

    2016-03-01

    Dendritic growth is the main solidification mode in alloy casting. In order to control dendrite growth for materials design from the melt it is important to fully understand the influence of process conditions. This study stands as an experimental note observing bent dendrite growth in Fe-B alloys and suggesting possible explanations as induced by fluid flow, thermal, and concentrational diffusion or impurities. Electromagnetic levitation technique (EML) is used for containerless processing of undercooled melts under 1g and reduced gravity conditions in parabolic flight. Further investigations are needed to find a suitable explanation for the observed bent dendrite growth behaviour.

  6. Coordination of hand shape.

    PubMed

    Pesyna, Colin; Pundi, Krishna; Flanders, Martha

    2011-03-09

    The neural control of hand movement involves coordination of the sensory, motor, and memory systems. Recent studies have documented the motor coordinates for hand shape, but less is known about the corresponding patterns of somatosensory activity. To initiate this line of investigation, the present study characterized the sense of hand shape by evaluating the influence of differences in the amount of grasping or twisting force, and differences in forearm orientation. Human subjects were asked to use the left hand to report the perceived shape of the right hand. In the first experiment, six commonly grasped items were arranged on the table in front of the subject: bottle, doorknob, egg, notebook, carton, and pan. With eyes closed, subjects used the right hand to lightly touch, forcefully support, or imagine holding each object, while 15 joint angles were measured in each hand with a pair of wired gloves. The forces introduced by supporting or twisting did not influence the perceptual report of hand shape, but for most objects, the report was distorted in a consistent manner by differences in forearm orientation. Subjects appeared to adjust the intrinsic joint angles of the left hand, as well as the left wrist posture, so as to maintain the imagined object in its proper spatial orientation. In a second experiment, this result was largely replicated with unfamiliar objects. Thus, somatosensory and motor information appear to be coordinated in an object-based, spatial-coordinate system, sensitive to orientation relative to gravitational forces, but invariant to grasp forcefulness.

  7. Long-Lived Triplet Excited States of Bent-Shaped Pentacene Dimers by Intramolecular Singlet Fission.

    PubMed

    Sakuma, Takao; Sakai, Hayato; Araki, Yasuyuki; Mori, Tadashi; Wada, Takehiko; Tkachenko, Nikolai V; Hasobe, Taku

    2016-03-24

    Intramolecular singlet fission (ISF) is a promising photophysical process to construct more efficient light energy conversion systems as one excited singlet state converts into two excited triplet states. Herein we synthesized and evaluated bent-shaped pentacene dimers as a prototype of ISF to reveal intrinsic characters of triplet states (e.g., lifetimes of triplet excited states). In this study, meta-phenylene-bridged TIPS-pentacene dimer (PcD-3Ph) and 2,2'-bipheynyl bridged TIPS-pentacene dimer (PcD-Biph) were newly synthesized as bent-shaped dimers. In the steady-state spectroscopy, absorption and emission bands of these dimers were fully characterized, suggesting the appropriate degree of electronic coupling between pentacene moieties in these dimers. In addition, the electrochemical measurements were also performed to check the electronic interaction between two pentacene moieties. Whereas the successive two oxidation peaks owing to the delocalization were observed in a directly linked-pentacene dimer (PcD) by a single bond, the cyclic voltammograms in PcD-Biph and PcD-3Ph implied the weaker interaction compared to that of p-phenylene-bridged TIPS-pentacene dimer (PcD-4Ph) and PcD. The femtosecond and nanosecond transient absorption spectra clearly revealed the slower ISF process in bent-shaped pentacene dimers (PcD-Biph and PcD-3Ph), more notably, the slower relaxation of the excited triplet states in PcD-Biph and PcD-3Ph. Namely, the quantum yields of triplet states (ΦT) by ISF approximately remain constant (ca. 180-200%) in all dimer systems, whereas the lifetimes of the triplet excited states became much longer (up to 360 ns) in PcD-Biph as compared to PcD-4Ph (15 ns). Additionally, the lifetimes of the corresponding triplet states in PcD-Biph and PcD-3Ph were sufficiently affected by solvent viscosity. In particular, the lifetimes of PcD-Biph triplet state in THF/paraffin (1.0 μs) increased up to approximately three times as compared to that in THF

  8. Personal recognition using hand shape and texture.

    PubMed

    Kumar, Ajay; Zhang, David

    2006-08-01

    This paper proposes a new bimodal biometric system using feature-level fusion of hand shape and palm texture. The proposed combination is of significance since both the palmprint and hand-shape images are proposed to be extracted from the single hand image acquired from a digital camera. Several new hand-shape features that can be used to represent the hand shape and improve the performance are investigated. The new approach for palmprint recognition using discrete cosine transform coefficients, which can be directly obtained from the camera hardware, is demonstrated. None of the prior work on hand-shape or palmprint recognition has given any attention on the critical issue of feature selection. Our experimental results demonstrate that while majority of palmprint or hand-shape features are useful in predicting the subjects identity, only a small subset of these features are necessary in practice for building an accurate model for identification. The comparison and combination of proposed features is evaluated on the diverse classification schemes; naive Bayes (normal, estimated, multinomial), decision trees (C4.5, LMT), k-NN, SVM, and FFN. Although more work remains to be done, our results to date indicate that the combination of selected hand-shape and palmprint features constitutes a promising addition to the biometrics-based personal recognition systems.

  9. Chiral Superstructure Mesophases of Achiral Bent-Shaped Molecules - Hierarchical Chirality Amplification and Physical Properties.

    PubMed

    Le, Khoa V; Takezoe, Hideo; Araoka, Fumito

    2017-07-01

    Chiral mesophases in achiral bent-shaped molecules have attracted particular attention since their discovery in the middle 1990s, not only because of their homochirality and polarity, but also due to their unique physical/physicochemical properties. Here, the most intriguing results in the studies of such symmetry-broken states, mainly helical-nanofilament (HNF) and dark-conglomerate (DC) phases, are reviewed. Firstly, basic information on the typical appearance and optical activity in these phases is introduced. In the following section, the formation of mesoscopic chiral superstructures in the HNF and DC phases is discussed in terms of hierarchical chirality. Nanoscale phase segregation in mixture systems and gelation ability in the HNF phase are also described. In addition, some other related chiral phases of bent-shaped molecules are shown. Recent attempts to control such mesoscopic chiral structure and the alignment/confinement of HNFs are also discussed, along with several examples of their fascinating advanced physical properties, i.e. huge enhancement of circular dichroism, electro- and photo-tunable optical activities, chirality-induced nonlinear optics (second-harmonic-generation circular difference and electrogyration effect), enhanced hydrophobicity through the dual-scale surface morphological modulation, and photoconductivity in the HNF/fullerene binary system. Future prospects from basic science and application viewpoints are also indicated in the concluding section. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Development of X-ray spectroscopic polarimetry with bent Si crystals and CFRP substrate

    NASA Astrophysics Data System (ADS)

    Iizuka, Ryo; Izumiya, Takanori; Tsuboi, Yohko

    2016-07-01

    The light from celestial objects includes four important quantities; images, time variation, energy spectrum, and polarization. In the field of X-ray astronomy, the capabilities of the former three have remarkably developed. On the other hand, the progress for the polarimetry is considerably delayed because of technical difficulties. In order to make a breakthrough in the field of X-ray polarimetry, we have developed a new type of optics for X-ray polarimetry. The system is collecting Bragg crystal with large area and very high sensitivity for the polarization dedicated to Fe-K lines. We adopt the 400 re ection of Si(100) crystals with high sensitivity for the polarization around Fe-K lines (6 7 keV), and bent the crystals with the wide X-ray band and high S/N ratio. Furthermore, to install small area of CCD to non-focal plane, it also has the spectroscopic capability with the better resolution than that of general X-ray CCD. Our previous development was to bent Si crystals to the cylindrical shape of circle and parabola with the DLC deposition. However, for the better optics for the X-ray polarimetry, the shape should be the paraboloid of revolution to collect X-rays with high S/N ratio. We searched for the method to bent the Si crystals to the shape of the paraboloid of revolution. We devised the method to mold the crystal and the CFRP substrate simultaneously pushed to the sophisticated foundation with the paraboloid of revolution. We developed the prototype of about 8 inch in radius of one-quater size. The crystals was also bent in the circumferential direction. Therefore, the image capability examined with optical parallel beam is 0.6 degree. In this thesis, we discussed the new design for X-ray spectroscopic polarimetry, the evaluation of image capability.

  11. 31 CFR 100.11 - Exchange of bent and partial coins.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Exchange of bent and partial coins... of bent and partial coins. (a) Definitions. (1) Bent coins are U.S. coins which are bent or deformed... readily and clearly identifiable as to genuineness and denomination. (b) Redemption basis. Bent and...

  12. Droplets on bent fibers

    NASA Astrophysics Data System (ADS)

    Weyer, Floriane; Pan, Zhao; Pitt, William; Truscott, Tadd; Vandewalle, Nicolas

    Droplets on fibers are part of our everyday lives. Many phenomena involve drops and fibers such as the formation of dew droplets on a spiderweb, the trapping of water droplets on cactus spines or the motion of droplets on wetted moss hairs. These topics have been widely studied. In particular, Lorenceau et al. determined the critical volume of a water droplet hanging on a horizontal fiber. Here, we address a similar question : we try to find out the maximum droplet size on bent fibers, which are able to hold significantly more water than horizontal fibers. Indeed, we noticed that, in nature, some specific plants can hold large rain droplets thanks to their Y-shaped leaves. We try to mimic these structures with nylon fibers, of different diameters, bent with various angles. For each set-up, the critical water volume is determined. Finally, we propose models of the physics involved in determining droplet size that could be implemented in future fiber-based microfluidic devices.

  13. Motor Responses to Objects: Priming and Hand Shaping

    DTIC Science & Technology

    1988-09-20

    actual manual responses to objects indicates that interactions involving different hand shapes have a common timecourse during reaching and preshaping...objects could be used with different hand shapes, given different functional contexts (e.g., picking up a stapler with a clench or stapling with the palm...research focused on the utility of these representations. We propose that when manual interactions with objects are represented cognitively, for example

  14. Beam-smiling in bent-Laue monochromators

    NASA Astrophysics Data System (ADS)

    Ren, B.; Dilmanian, F. A.; Chapman, L. D.; Wu, X. Y.; Zhong, Z.; Ivanov, I.; Thomlinson, W. C.; Huang, X.

    1997-07-01

    When a wide fan-shaped x-ray beam is diffracted by a bent crystal in the Laue geometry, the profile of the diffracted beam generally does not appear as a straight line, but as a line with its ends curved up or curved down. This effect, referred to as "beam-smiling", has been a major obstacle in developing bent-Laue crystal monochromators for medical applications of synchrotron x-ray. We modeled a cylindrically bent crystal using the Finite Element Analysis (FEA) method, and we carried out experiments at the National Synchrotron Light Source and Cornell High Energy Synchrotron Source. Our studies show that, while beam-smiling exists in most of the crystal's area because of anticlastic bending effects, there is a region parallel to the bending axis of the crystal where the diffracted beam is "smile-free". By applying asymmetrical bending, this smile-free region can be shifted vertically away from the geometric center of the crystal, as desired. This leads to a novel method of compensating for beam-smiling. We will discuss the method of "differential bending" for smile removal, beam-smiling in the Cauchios and the polychromatic geometry, and the implications of the method on developing single- and double-bent Laue monochromators. The experimental results will be discussed, concentrating on specific beam-smiling observation and removal as applied to the new monochromator of the Multiple Energy Computed Tomography [MECT] project of the Medical Department, Brookhaven National Laboratory.

  15. Approach to a manufacture-oriented modeling of bent tubes depending on the curvature distribution during three-roll-push-bending

    NASA Astrophysics Data System (ADS)

    Groth, Sebastian; Engel, Bernd; Frohn, Peter

    2018-05-01

    Kinematic bending processes such as three-roll-push-bending are used to manufacture freeform bent part systems. Due to the kinematic shaping, the bent parts have a characteristic infeed and outfeed area in the transition zone from the straight section into the curved area. These transition zones are currently not considered in the design process, which results in a geometric shape deviation between the CAD model and the bent part. Within this publication, a sensitivity analysis examines the influence of different parameters on the transition zone and the shape deviation. In addition, an approach is presented, which allows a manufacture-oriented modeling of the bending geometry.

  16. Effects of molecular chirality on self-assembly and switching in liquid crystals at the cross-over between rod-like and bent shapes.

    PubMed

    Ocak, Hale; Poppe, Marco; Bilgin-Eran, Belkız; Karanlık, Gürkan; Prehm, Marko; Tschierske, Carsten

    2016-09-21

    A bent-core compound derived from a 4-cyanoresorcinol core unit with two terephthalate based rod-like wings and carrying chiral 3,7-dimethyloctyloxy side chains has been synthesized in racemic and enantiomerically pure form and characterized by polarizing microscopy, differential scanning calorimetry, X-ray diffraction and electro-optical investigations to study the influence of molecular chirality on the superstructural chirality and polar order in lamellar liquid crystalline phases. Herein we demonstrate that the coupling of molecular chirality with superstructural layer chirality in SmCsPF domain phases (forming energetically distinct diastereomeric pairs) can fix the tilt direction and thus stabilize synpolar order, leading to bistable ferroelectric switching in the SmC* phases of the (S)-enantiomer, whereas tristable modes determine the switching of the racemate. Moreover, the mechanism of electric field induced molecular reorganization changes from a rotation around the molecular long axis in the racemate to a rotation on the tilt-cone for the (S)-enantiomer. At high temperature the enantiomer behaves like a rod-like molecule with a chirality induced ferroelectric SmC* phase and an electroclinic effect in the SmA'* phase. At reduced temperature sterically induced polarization, due to the bent molecular shape, becomes dominating, leading to much higher polarization values, thus providing access to high polarization ferroelectric materials with weakly bent compounds having only "weakly chiral" stereogenic units. Moreover, the field induced alignment of the SmCsPF(()*()) domains gives rise to a special kind of electroclinic effect appearing even in the absence of molecular chirality. Comparison with related compounds indicates that the strongest effects of chirality appear for weakly bent molecules with a relatively short coherence length of polar order, whereas for smectic phases with long range polar order the effects of the interlayer interfaces can override

  17. Clues from Bent Jets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-04-01

    Powerful jets emitted from the centers of distant galaxies make for spectacular signposts in the radio sky. Can observations of these jets reveal information about the environments that surround them?Signposts in the SkyVLA FIRST images of seven bent double-lobed radio galaxies from the authors sample. [Adapted from Silverstein et al. 2018]An active supermassive black hole lurking in a galactic center can put on quite a show! These beasts fling out accreting material, often forming intense jets that punch their way out of their host galaxies. As the jets propagate, they expand into large lobes of radio emission that we can spot from Earth observable signs of the connection between distant supermassive black holes and the galaxies in which they live.These distinctive double-lobed radio galaxies (DLRGs) dont all look the same. In particular, though the jets are emitted from the black holes two poles, the lobes of DLRGs dont always extend perfectly in opposite directions; often, the jets become bent on larger scales, appearing to us to subtend angles of less than 180 degrees.Can we use our observations of DLRG shapes and distributions to learn about their surroundings? A new study led by Ezekiel Silverstein (University of Michigan) has addressed this question by exploring DLRGs living in dense galaxy-cluster environments.Projected density of DLRGcentral galaxy matches (black) compared to a control sample of random positionscentral galaxy matches (red) for different distances from acluster center. DLRGs have a higher likelihood of being located close to a cluster center. [Silverstein et al. 2018]Living Near the HubTo build a sample of DLRGs in dense environments, Silverstein and collaborators started from a large catalog of DLRGs in Sloan Digital Sky Survey quasars with radio lobes visible in Very Large Array data. They then cross-matched these against three galaxy catalogs to produce a sample of 44 DLRGs that are each paired to a nearby massive galaxy, galaxy group

  18. From the molecular structure to spectroscopic and material properties: computational investigation of a bent-core nematic liquid crystal.

    PubMed

    Greco, Cristina; Marini, Alberto; Frezza, Elisa; Ferrarini, Alberta

    2014-05-19

    We present a computational investigation of the nematic phase of the bent-core liquid crystal A131. We use an integrated approach that bridges density functional theory calculations of molecular geometry and torsional potentials to elastic properties through the molecular conformational and orientational distribution function. This unique capability to simultaneously access different length scales enables us to consistently describe molecular and material properties. We can reassign (13)C NMR chemical shifts and analyze the dependence of phase properties on molecular shape. Focusing on the elastic constants we can draw some general conclusions on the unconventional behavior of bent-core nematics and highlight the crucial role of a properly-bent shape. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The apparent mass and mechanical impedance of the hand and the transmission of vibration to the fingers, hand, and arm

    NASA Astrophysics Data System (ADS)

    Concettoni, Enrico; Griffin, Michael

    2009-08-01

    Although hand-transmitted vibration causes injury and disease, most often evident in the fingers, the biodynamic responses of the fingers, hand, and arm are not yet well understood. A method of investigating the motion of the entire finger-hand-arm system, based on the simultaneous measurement of the biodynamic response at the driving point and the transmissibility to many points on the finger-hand-arm system, is illustrated. Fourteen male subjects participated in an experiment in which they pushed down on a vertically vibrating metal plate with their right forearm pronated and their elbow bent at 90°. The apparent mass and mechanical impedance of the finger-hand-arm system were measured for each of seven different contact conditions between the plate and the fingers and hand. Simultaneously, the vibration of the fingers, hand, and arm was measured at 41 locations using a scanning laser Doppler vibrometer. Transmissibilities showed how the vibration was transmitted along the arm and allowed the construction of spectral operating deflection shapes showing the vibration pattern of the fingers, hand, and arm for each of the seven contact conditions. The vibration patterns at critical frequencies for each contact condition have been used to explain features in the driving point biodynamic responses and the vibration behaviour of the hand-arm system. Spectral operating deflection shapes for the upper limb assist the interpretation of driving point biodynamic responses and help to advance understanding required to predict, explain, and control the various effects of hand-transmitted vibration.

  20. Mechanical design of a shape memory alloy actuated prosthetic hand.

    PubMed

    De Laurentis, Kathryn J; Mavroidis, Constantinos

    2002-01-01

    This paper presents the mechanical design for a new five fingered, twenty degree-of-freedom dexterous hand patterned after human anatomy and actuated by Shape Memory Alloy artificial muscles. Two experimental prototypes of a finger, one fabricated by traditional means and another fabricated by rapid prototyping techniques, are described and used to evaluate the design. An important aspect of the Rapid Prototype technique used here is that this multi-articulated hand will be fabricated in one step, without requiring assembly, while maintaining its desired mobility. The use of Shape Memory Alloy actuators combined with the rapid fabrication of the non-assembly type hand, reduce considerably its weight and fabrication time. Therefore, the focus of this paper is the mechanical design of a dexterous hand that combines Rapid Prototype techniques and smart actuators. The type of robotic hand described in this paper can be utilized for applications requiring low weight, compactness, and dexterity such as prosthetic devices, space and planetary exploration.

  1. Finger-Shaped GelForce: Sensor for Measuring Surface Traction Fields for Robotic Hand.

    PubMed

    Sato, K; Kamiyama, K; Kawakami, N; Tachi, S

    2010-01-01

    It is believed that the use of haptic sensors to measure the magnitude, direction, and distribution of a force will enable a robotic hand to perform dexterous operations. Therefore, we develop a new type of finger-shaped haptic sensor using GelForce technology. GelForce is a vision-based sensor that can be used to measure the distribution of force vectors, or surface traction fields. The simple structure of the GelForce enables us to develop a compact finger-shaped GelForce for the robotic hand. GelForce that is developed on the basis of an elastic theory can be used to calculate surface traction fields using a conversion equation. However, this conversion equation cannot be analytically solved when the elastic body of the sensor has a complicated shape such as the shape of a finger. Therefore, we propose an observational method and construct a prototype of the finger-shaped GelForce. By using this prototype, we evaluate the basic performance of the finger-shaped GelForce. Then, we conduct a field test by performing grasping operations using a robotic hand. The results of this test show that using the observational method, the finger-shaped GelForce can be successfully used in a robotic hand.

  2. Breakdown of Shape Memory Effect in Bent Cu-Al-Ni Nanopillars: When Twin Boundaries Become Stacking Faults.

    PubMed

    Liu, Lifeng; Ding, Xiangdong; Sun, Jun; Li, Suzhi; Salje, Ekhard K H

    2016-01-13

    Bent Cu-Al-Ni nanopillars (diameters 90-750 nm) show a shape memory effect, SME, for diameters D > 300 nm. The SME and the associated twinning are located in a small deformed section of the nanopillar. Thick nanopillars (D > 300 nm) transform to austenite under heating, including the deformed region. Thin nanopillars (D < 130 nm) do not twin but generate highly disordered sequences of stacking faults in the deformed region. No SME occurs and heating converts only the undeformed regions into austenite. The defect-rich, deformed region remains in the martensite phase even after prolonged heating in the stability field of austenite. A complex mixture of twins and stacking faults was found for diameters 130 nm < D < 300 nm. The size effect of the SME in Cu-Al-Ni nanopillars consists of an approximately linear reduction of the SME between 300 and 130 nm when the SME completely vanishes for smaller diameters.

  3. The relationship between hand anthropometrics, total grip strength and individual finger force for various handle shapes.

    PubMed

    Kong, Yong-Ku; Kim, Dae-Min

    2015-01-01

    The design and shape of hand tool handles are critical factors for preventing musculoskeletal disorders (MSDs) caused by the use of hand tools. We explored how these factors are related to total force and individual finger force in males and females with various hand anthropometrics. Using the MFFM system, we assessed four indices of anthropometry, and measured total force and individual finger force on various handle designs and shapes. Both total force and individual finger force were significant according to gender and handle shape. Total grip strength to the handle shape indicated the greatest strength with D shape and the least with A shape. From the regression analysis of hand anthropometric indices, the value of R was respectably high at 0.608-0.696. The current study examined the gender and handle shape factors affecting grip strength based on the force measurements from various handle types, in terms of influence on different hand anthropometric indices.

  4. The past, present, and future of hockey-stick-shaped liquid crystals

    NASA Astrophysics Data System (ADS)

    Choi, E.-Joon

    2014-02-01

    Recently, the liquid crystalline materials with a bent-core mesogen have attracted attentions because their interesting properties such as polarity and biaxiality of the mesophase. There are several types of bent-core mesogenic structures have been reported, for instance, banana-shaped, V-shaped molecules, boomerang-shaped, hockey stick-shaped, and Yshaped molecules. In this study, the liquid crystals and the reactive mesogens with the hockey-stick shaped mesogens will be described concerning with the structure-property relationship.

  5. A Day of Great Illumination: B. F. Skinner's Discovery of Shaping

    ERIC Educational Resources Information Center

    Peterson, Gail B.

    2004-01-01

    Despite the seminal studies of response differentiation by the method of successive approximation detailed in chapter 8 of "The Behavior of Organisms" (1938), B. F. Skinner never actually shaped an operant response by hand until a memorable incident of startling serendipity on the top floor of a flour mill in Minneapolis in 1943. That occasion…

  6. Ion implantation for manufacturing bent and periodically bent crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellucci, Valerio; Camattari, Riccardo; Guidi, Vincenzo, E-mail: guidi@fe.infn.it

    2015-08-10

    Ion implantation is proposed to produce self-standing bent monocrystals. A Si sample 0.2 mm thick was bent to a radius of curvature of 10.5 m. The sample curvature was characterized by interferometric measurements; the crystalline quality of the bulk was tested by X-ray diffraction in transmission geometry through synchrotron light at ESRF (Grenoble, France). Dislocations induced by ion implantation affect only a very superficial layer of the sample, namely, the damaged region is confined in a layer 1 μm thick. Finally, an elective application of a deformed crystal through ion implantation is here proposed, i.e., the realization of a crystalline undulator to producemore » X-ray beams.« less

  7. Bent Bonds and Multiple Bonds.

    ERIC Educational Resources Information Center

    Robinson, Edward A.; Gillespie, Ronald J.

    1980-01-01

    Considers carbon-carbon multiple bonds in terms of Pauling's bent bond model, which allows direct calculation of double and triple bonds from the length of a CC single bond. Lengths of these multiple bonds are estimated from direct measurements on "bent-bond" models constructed of plastic tubing and standard kits. (CS)

  8. Biaxial and antiferroelectric structure of the orthogonal smectic phase of a bent-shaped molecule and helical structure in a chiral mixture system

    NASA Astrophysics Data System (ADS)

    Kang, Sungmin; Nguyen, Ha; Nakajima, Shunpei; Tokita, Masatoshi; Watanabe, Junji

    2013-05-01

    We examined the biaxial and antiferroelectric properties in the Smectic-APA (Sm-APA) phase of bent-shaped DC-S-8. The biaxiality, which results from the existence of a secondary director, was well established from birefringence observations in the homeotropically aligned Sm-APA. By entering into Sm-APA phase, the birefringence (Δn, difference between two refractive indices of short axes) continuously increased from 0 to 0.02 with decreasing temperature. The antiferroelectric switching and second harmonic generation (SHG) activity on the field-on state were also observed in the Sm-APA phase, and the evaluated spontaneous polarization (PS) value strongly depended on temperature. The temperature dependence of Δn and PS resembles each other and follows Haller's approximation, showing that the biaxiality is due to polar packing in which the molecules are preferentially packed with their bent direction arranged in the same direction, and that the phase transition of Sm-APA to Sm-A is second order. The biaxiality was further examined in chiral Sm-APA*. Doping with chiral components induced the helical twisting of the secondary director in the Sm-APA* phase, which was confirmed by observing the reflection of the circular dichroism (CD) bands in the homeotropically aligned cell. The helical pitch of Sm-APA* is tunable in the range of 300-700 nm wavelength with a variation in the chiral content of 5 to 10 weight (wt)%.

  9. Lanthanum induced B-to-Z transition in self-assembled Y-shaped branched DNA structure

    PubMed Central

    Nayak, Ashok K.; Mishra, Aseem; Jena, Bhabani S.; Mishra, Barada K.; Subudhi, Umakanta

    2016-01-01

    Controlled conversion of right-handed B-DNA to left-handed Z-DNA is one of the greatest conformational transitions in biology. Recently, the B-Z transition has been explored from nanotechnological points of view and used as the driving machinery of many nanomechanical devices. Using a combination of CD spectroscopy, fluorescence spectroscopy, and PAGE, we demonstrate that low concentration of lanthanum chloride can mediate B-to-Z transition in self-assembled Y-shaped branched DNA (bDNA) structure. The transition is sensitive to the sequence and structure of the bDNA. Thermal melting and competitive dye binding experiments suggest that La3+ ions are loaded to the major and minor grooves of DNA and stabilize the Z-conformation. Our studies also show that EDTA and EtBr play an active role in reversing the transition from Z-to-B DNA. PMID:27241949

  10. Lanthanum induced B-to-Z transition in self-assembled Y-shaped branched DNA structure

    NASA Astrophysics Data System (ADS)

    Nayak, Ashok K.; Mishra, Aseem; Jena, Bhabani S.; Mishra, Barada K.; Subudhi, Umakanta

    2016-05-01

    Controlled conversion of right-handed B-DNA to left-handed Z-DNA is one of the greatest conformational transitions in biology. Recently, the B-Z transition has been explored from nanotechnological points of view and used as the driving machinery of many nanomechanical devices. Using a combination of CD spectroscopy, fluorescence spectroscopy, and PAGE, we demonstrate that low concentration of lanthanum chloride can mediate B-to-Z transition in self-assembled Y-shaped branched DNA (bDNA) structure. The transition is sensitive to the sequence and structure of the bDNA. Thermal melting and competitive dye binding experiments suggest that La3+ ions are loaded to the major and minor grooves of DNA and stabilize the Z-conformation. Our studies also show that EDTA and EtBr play an active role in reversing the transition from Z-to-B DNA.

  11. The effect of hand dimensions, hand shape and some anthropometric characteristics on handgrip strength in male grip athletes and non-athletes.

    PubMed

    Fallahi, Ali Asghar; Jadidian, Ali Akbar

    2011-09-01

    It has been suggested that athletes with longer fingers and larger hand surfaces enjoy stronger grip power. Therefore, some researchers have examined a number of factors and anthropometric variables that explain this issue. To our knowledge, the data is scarce. Thus, the aim of this study was to investigate the effect of hand dimensions, hand shape and some anthropometric characteristics on handgrip strength in male grip athletes and non-athletes. 80 subjects aged between 19 and 29 participated in this study in two groups including: national and collegian grip athletes (n=40), and non-athletes (n=40). Body height and mass were measured to calculate body mass index. The shape of the dominant hand was drawn on a piece of paper with a thin marker so that finger spans, finger lengths, and perimeters of the hand could be measured. The hand shape was estimated as the ratio of the hand width to hand length. Handgrip strength was measured in the dominant and non-dominant hand using a standard dynamometer. Descriptive statistics were used for each variable and independent t test was used to analyze the differences between the two groups. The Pearson correlation coefficient test was used to evaluate the correlation between studied variables. Also, to predict important variables in handgrip strength, the linear trend was assessed using a linear regression analysis. There was a significant difference between the two groups in absolute handgrip strength (p<0.001) and handgrip/height ratio (p<0.001). The indices of body height, body mass, lean body mass and body fat content (p<0.001) were significantly greater in grip athletes. All hand variables except FS1-4 (p>0.05) were significantly different between the groups (p<0.001). After controlling body mass all hand anthropometric characteristics except thumb length (r=0.240, p= 0.135), hand shape (r=-0.029, p=0.858), middle finger length (r=0.305, p=0.056) and forearm circumference (r=0.162, p=0.319) significantly correlated with

  12. The Effect of Hand Dimensions, Hand Shape and Some Anthropometric Characteristics on Handgrip Strength in Male Grip Athletes and Non-Athletes

    PubMed Central

    Fallahi, Ali Asghar; Jadidian, Ali Akbar

    2011-01-01

    It has been suggested that athletes with longer fingers and larger hand surfaces enjoy stronger grip power. Therefore, some researchers have examined a number of factors and anthropometric variables that explain this issue. To our knowledge, the data is scarce. Thus, the aim of this study was to investigate the effect of hand dimensions, hand shape and some anthropometric characteristics on handgrip strength in male grip athletes and non-athletes. 80 subjects aged between 19 and 29 participated in this study in two groups including: national and collegian grip athletes (n=40), and non-athletes (n=40). Body height and mass were measured to calculate body mass index. The shape of the dominant hand was drawn on a piece of paper with a thin marker so that finger spans, finger lengths, and perimeters of the hand could be measured. The hand shape was estimated as the ratio of the hand width to hand length. Handgrip strength was measured in the dominant and non-dominant hand using a standard dynamometer. Descriptive statistics were used for each variable and independent t test was used to analyze the differences between the two groups. The Pearson correlation coefficient test was used to evaluate the correlation between studied variables. Also, to predict important variables in handgrip strength, the linear trend was assessed using a linear regression analysis. There was a significant difference between the two groups in absolute handgrip strength (p<0.001) and handgrip/height ratio (p<0.001). The indices of body height, body mass, lean body mass and body fat content (p<0.001) were significantly greater in grip athletes. All hand variables except FS1-4 (p>0.05) were significantly different between the groups (p<0.001). After controlling body mass all hand anthropometric characteristics except thumb length (r=0.240, p= 0.135), hand shape (r=−0.029, p=0.858), middle finger length (r=0.305, p=0.056) and forearm circumference (r=0.162, p=0.319) significantly correlated with

  13. Objectivity, Reliability, and Validity of the Bent-Knee Push-Up for College-Age Women

    ERIC Educational Resources Information Center

    Wood, Heather M.; Baumgartner, Ted A.

    2004-01-01

    The revised push-up test has been found to have good validity but it produces many zero scores for women. Maybe there should be an alternative to the revised push-up test for college-age women. The purpose of this study was to determine the objectivity, reliability, and validity for the bent-knee push-up test (executed on hands and knees) for…

  14. Bent Laue X-ray Fluorescence Imaging of Manganese in Biological Tissues—Preliminary Results

    NASA Astrophysics Data System (ADS)

    Zhu, Ying; Bewer, Brian; Zhang, Honglin; Nichol, Helen; Thomlinson, Bill; Chapman, Dean

    2010-06-01

    Manganese (Mn) is not abundant in human brain tissue, but it is recognized as a neurotoxin. The symptoms of manganese intoxication are similar to Parkinson's disease (PD), but the link between environmental, occupational or dietary Mn exposure and PD in humans is not well established. X-ray Absorption Spectroscopy (XAS) and in particular X-ray fluorescence can provide precise information on the distribution, concentration and chemical form of metals. However the scattered radiation and fluorescence from the adjacent abundant element, iron (Fe), may interfere with and limit the ability to detect ultra-dilute Mn. A bent Laue analyzer based Mn fluorescence detection system has been designed and fabricated to improve elemental specificity in XAS imaging. This bent Laue analyzer of logarithmic spiral shape placed upstream of an energy discriminating detector should improve the energy resolution from hundreds of eV to several eV. The bent Laue detection system was validated by imaging Mn fluorescence from Mn foils, gelatin calibration samples and adult Drosophila at the Hard X-ray MicroAnalysis (HXMA) beamline at the Canadian Light Source (CLS). Optimization of the design parameters, fabrication procedures and preliminary experimental results are presented along with future plans.

  15. 31 CFR 100.11 - Exchange of bent and partial coins.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Exchange of bent and partial coins... OF PAPER CURRENCY AND COIN Exchange of Coin § 100.11 Exchange of bent and partial coins. (a) Definitions. (1) Bent coins are U.S. coins which are bent or deformed so as to preclude normal machine...

  16. Personal authentication using hand vein triangulation and knuckle shape.

    PubMed

    Kumar, Ajay; Prathyusha, K Venkata

    2009-09-01

    This paper presents a new approach to authenticate individuals using triangulation of hand vein images and simultaneous extraction of knuckle shape information. The proposed method is fully automated and employs palm dorsal hand vein images acquired from the low-cost, near infrared, contactless imaging. The knuckle tips are used as key points for the image normalization and extraction of region of interest. The matching scores are generated in two parallel stages: (i) hierarchical matching score from the four topologies of triangulation in the binarized vein structures and (ii) from the geometrical features consisting of knuckle point perimeter distances in the acquired images. The weighted score level combination from these two matching scores are used to authenticate the individuals. The achieved experimental results from the proposed system using contactless palm dorsal-hand vein images are promising (equal error rate of 1.14%) and suggest more user friendly alternative for user identification.

  17. Orbital Debris Shape Characterization Project Abstract

    NASA Technical Reports Server (NTRS)

    Pease, Jessie

    2016-01-01

    I have been working on a project to further our understanding of orbital debris by helping create a new dataset previously too complex to be implemented in past orbital debris propagation models. I am doing this by creating documentation and 3D examples and illustrations of the shape categories. Earlier models assumed all orbital debris to be spherical aluminum fragments. My project will help expand our knowledge of shape populations to 6 categories: Straight Needle/Rod/Cylinder, Bent Needle/Rod/Cylinder, Flat Plate, Bent Plate, Nugget/Parallelepiped/Spheroid, and Flexible. The last category, Flexible, is still up for discussion and may be modified. These categories will be used to characterize fragments in the DebriSat experiment.

  18. Computational Fluid Dynamics Study of Swimmer's Hand Velocity, Orientation, and Shape: Contributions to Hydrodynamics

    PubMed Central

    Bilinauskaite, Milda; Mantha, Vishveshwar Rajendra; Rouboa, Abel Ilah; Ziliukas, Pranas; Silva, Antonio Jose

    2013-01-01

    The aim of this paper is to determine the hydrodynamic characteristics of swimmer's scanned hand models for various combinations of both the angle of attack and the sweepback angle and shape and velocity of swimmer's hand, simulating separate underwater arm stroke phases of freestyle (front crawl) swimming. Four realistic 3D models of swimmer's hand corresponding to different combinations of separated/closed fingers positions were used to simulate different underwater front crawl phases. The fluid flow was simulated using FLUENT (ANSYS, PA, USA). Drag force and drag coefficient were calculated using (computational fluid dynamics) CFD in steady state. Results showed that the drag force and coefficient varied at the different flow velocities on all shapes of the hand and variation was observed for different hand positions corresponding to different stroke phases. The models of the hand with thumb adducted and abducted generated the highest drag forces and drag coefficients. The current study suggests that the realistic variation of both the orientation angles influenced higher values of drag, lift, and resultant coefficients and forces. To augment resultant force, which affects swimmer's propulsion, the swimmer should concentrate in effectively optimising achievable hand areas during crucial propulsive phases. PMID:23691493

  19. Intrinsically bent DNA in replication origins and gene promoters.

    PubMed

    Gimenes, F; Takeda, K I; Fiorini, A; Gouveia, F S; Fernandez, M A

    2008-06-24

    Intrinsically bent DNA is an alternative conformation of the DNA molecule caused by the presence of dA/dT tracts, 2 to 6 bp long, in a helical turn phase DNA or with multiple intervals of 10 to 11 bp. Other than flexibility, intrinsic bending sites induce DNA curvature in particular chromosome regions such as replication origins and promoters. Intrinsically bent DNA sites are important in initiating DNA replication, and are sometimes found near to regions associated with the nuclear matrix. Many methods have been developed to localize bent sites, for example, circular permutation, computational analysis, and atomic force microscopy. This review discusses intrinsically bent DNA sites associated with replication origins and gene promoter regions in prokaryote and eukaryote cells. We also describe methods for identifying bent DNA sites for circular permutation and computational analysis.

  20. Endodontic shaping performance using nickel-titanium hand and motor ProTaper systems by novice dental students.

    PubMed

    Tu, Ming-Gene; Chen, San-Yue; Huang, Heng-Li; Tsai, Chi-Cheng

    2008-05-01

    Preparing a continuous tapering conical shape and maintaining the original shape of a canal are obligatory in root canal preparation. The purpose of this study was to compare the shaping performance in simulated curved canal resin blocks of the same novice dental students using hand-prepared and engine-driven nickel-titanium (NiTi) rotary ProTaper instruments in an endodontic laboratory class. Twenty-three fourth-year dental students attending China Medical University Dental School prepared 46 simulated curved canals in resin blocks with two types of NiTi rotary systems: hand and motor ProTaper files. Composite images were prepared for estimation. Material removed, canal width and canal deviation were measured at five levels in the apical 4 mm of the simulated curved canals using AutoCAD 2004 software. Data were analyzed using Wilcoxon's rank-sum test. The hand ProTaper group cut significantly wider than the motor rotary ProTaper group in the outer wall, except for the apical 0 mm point. The total canal width was cut significantly larger in the hand group than in the motor group. There was no significant difference between the two groups in centering canal shape, except at the 3 mm level. These findings show that the novice students prepared the simulated curved canal that deviated more outwardly from apical 1 mm to 4 mm using the hand ProTaper. The ability to maintain the original curvature was better in the motor rotary ProTaper group than in the hand ProTaper group. Undergraduate students, if following the preparation sequence carefully, could successfully perform canal shaping by motor ProTaper files and achieve better root canal geometry than by using hand ProTaper files within the same teaching and practicing sessions.

  1. Bent's Old Fort: Amphibians and Reptiles

    USGS Publications Warehouse

    Muths, E.

    2008-01-01

    Bent's Old Fort National Historic Site sits along the Arkansas River in the semi-desert prairie of southeastern Colorado. The USGS provided assistance in designing surveys to assess the variety of herpetofauna (amphibians and reptiles) resident at this site. This brochure is the results of those efforts and provides visitors with information on what frogs, toads, snakes and salamanders might be seen and heard at Bent's Old Fort.

  2. Calamitic Smectic A-Polar Smectic APA Transition Observed in Bent Molecules with Large Bent-Angle Central Core of 4,6-Dichlorobenzene and Alkylthio Terminal Tail

    NASA Astrophysics Data System (ADS)

    Nguyen, Ha; Kang, Sungmin; Tokita, Masatoshi; Watanabe, Junji

    2011-07-01

    New homologs of bent molecules with a large bent-angle central core of 4,6-dichloro benzene and an alkylthio terminal tail have been synthesized. Although the corresponding alkoxy-tail homologs show only the calamitic phases because of its large bent angles around 160°, the new homologs with an alkylthio tail exhibit the antiferroelectric smectic APA (SmAPA) banana phase that is transformed on cooling from the calamitic smectic A (SmA) phase. The biaxial polar packing of bent molecules in the SmAPA phase is considered to arise from the hindered rotation around the molecular long axis due to the expansion of the mesophase temperatures to a lower temperature region. This study indicates that the bent molecules, even with a large bent angle, have the potential to form a switchable banana phase with a remarkable decrease in its phase temperature range to around 60 °C.

  3. Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler.

    PubMed

    Dai, Daoxin; Bowers, John E

    2011-09-12

    A novel ultra-short polarization beam splitter (PBS) based on a bent directional coupler is proposed by utilizing the evanescent coupling between two bent optical waveguides with different core widths. For the bent directional coupler, there is a significant phase-mismatch for TE polarization while the phase-matching condition is satisfied for TM polarization. Therefore, the TM polarized light can be coupled from the narrow input waveguide to the adjacent wide waveguide while the TE polarization goes through the coupling region without significant coupling. An ultra-short (<10 μm-long) PBS is designed based on silicon-on-insulator nanowires and the length of the bent coupling region is as small as 4.5 μm while the gap width is chosen as 200 nm (large enough to simplify the fabrication). Numerical simulations show that the present PBS has a good fabrication tolerance for the variation of the waveguide width (more than ± 60 nm) and a very broad band (~200 nm) for an extinction ratio of >10 dB.

  4. Alcohol sensor based on u-bent hetero-structured fiber optic

    NASA Astrophysics Data System (ADS)

    Patrialova, Sefi N.; Hatta, Agus M.; Sekartedjo, Sekartedjo

    2016-11-01

    A sensor based on a fiber optic hetero-structure to determine the concentration of alcohol has been proposed. The structure of the sensing probe in this research is a singlemode-multimode-singlemode (SMS) which bent into Ushaped and soon called as SMS u-bent. The SMS structure was chosen to get a higher sensitivity. This research utilizes the principle of multimode interference and evanescent field by modifying the cladding with various alcohol concentration. Testing of the sensor's performance has been done by measuring the sensor's power output response to the length of the SMS fiber optic, bending diameter, and alcohol concentration. Based on the experiment result, the ubent SMS fiber optic with 50 mm bending diameter and 63 mm MMF lenght has the highest sensitivity, 3.87 dB/% and the minimum resolution, 0.26 x 10-3 %.

  5. Human immunoglobulin E flexes between acutely bent and extended conformations

    PubMed Central

    Keeble, Anthony H; Wright, Michael; Cain, Katharine; Hailu, Hanna; Oxbrow, Amanda; Delgado, Jean; Shuttleworth, Lindsay K; Kao, Michael W-P; McDonnell, James M; Beavil, Andrew J; Henry, Alistair J; Sutton, Brian J

    2014-01-01

    Crystallographic and solution studies have shown that IgE molecules are acutely bent in their Fc region. Crystal structures reveal the Cε2 domain pair folded back onto the Cε3-Cε4 domains, but is the molecule exclusively bent or can the Cε2 domains adopt extended conformations and even “flip” from one side of the molecule to the other? We report the crystal structure of IgE-Fc captured in a fully extended, symmetrical conformation and show by molecular dynamics, calorimetry, stopped-flow kinetic, SPR and FRET analyses, that the antibody can indeed adopt such extended conformations in solution. This diversity of conformational states available to IgE-Fc offers a new perspective on IgE function in allergen recognition, as part of the B cell receptor and as a therapeutic target in allergic disease. PMID:24632569

  6. Localized states in an arbitrarily bent quantum wire (bend-imitating approach)

    NASA Astrophysics Data System (ADS)

    Vakhnenko, Oleksity O.

    1996-02-01

    The bend-imitating matching technique is proposed to simplify the quantum mechanical treatment of singly and multiply bent 2D quantum wires of constant width, arbitrary bending angles, arbitrary bending radii and arbitrary distances between the bends. The spectrum of one-electron localized states and its dependence on the bending angle and the bending radius in a singly bent wire is explicitly calculated. Doubly bent wires are shown to possess doubly split localized states. The splitting energies as a function of the distance between the bends and the bending angles and bending radii have also been obtained. A similar description of bent 3D quantum wires and bent optical fibers is expected to be possible.

  7. FIBER AND INTEGRAL OPTICS: Properties of active bent waveguides

    NASA Astrophysics Data System (ADS)

    Kobyl'chak, V. V.; Parygin, V. N.; Shapaev, A. G.

    1989-06-01

    A bent dielectric waveguide with a continuous profile of the complex refractive nc is investigated. It is shown that a negative perturbation of the real part of nc can reduce the losses in a bent waveguide. For a given radius of curvature and given parameters of the medium there is an optimal width of a planar waveguide layer for which the losses are minimal. It is shown that the properties of straight and bent waveguides of this type are different.

  8. Bent Bragg–Laue monochromator for high-energy X-rays

    DOE PAGES

    Shi, Xianbo; Xu, Wenqian; Yakovenko, Andrey; ...

    2017-07-26

    A bent Bragg–Laue monochromator (BLM) is proposed for high-energy X-ray (~25–60 keV) beamlines. The BLM has the unique feature of bi-directional focusing. A sagittally bent Laue crystal can focus the large horizontal fan of a bending magnet or wiggler source. A meridionally bent Bragg crystal focuses the beam vertically and corrects for the anticlastic bending effects of the Laue crystal. This monochromator geometry relies on the crystal orientations being optimized. We show that the focusing condition and Rowland condition can be simultaneously satisfied at a given energy. A detailed ray tracings indicate that a BLM can provide similar energy resolutionmore » and higher flux density compared to a sagittally bent double-Laue monochromator configuration. A prototype BLM with a symmetric Bragg crystal and an asymmetric Laue crystal was tested. Matching of the bend radii of the two crystals in the meridional direction was demonstrated. Generally, the horizontal acceptance of the sagittally bent Laue crystal is limited by the large curvature. This horizontal BLM acceptance could be increased by translating the Laue crystal along its sagittal bending axis.« less

  9. Bent Bragg–Laue monochromator for high-energy X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xianbo; Xu, Wenqian; Yakovenko, Andrey

    A bent Bragg–Laue monochromator (BLM) is proposed for high-energy X-ray (~25–60 keV) beamlines. The BLM has the unique feature of bi-directional focusing. A sagittally bent Laue crystal can focus the large horizontal fan of a bending magnet or wiggler source. A meridionally bent Bragg crystal focuses the beam vertically and corrects for the anticlastic bending effects of the Laue crystal. This monochromator geometry relies on the crystal orientations being optimized. We show that the focusing condition and Rowland condition can be simultaneously satisfied at a given energy. A detailed ray tracings indicate that a BLM can provide similar energy resolutionmore » and higher flux density compared to a sagittally bent double-Laue monochromator configuration. A prototype BLM with a symmetric Bragg crystal and an asymmetric Laue crystal was tested. Matching of the bend radii of the two crystals in the meridional direction was demonstrated. Generally, the horizontal acceptance of the sagittally bent Laue crystal is limited by the large curvature. This horizontal BLM acceptance could be increased by translating the Laue crystal along its sagittal bending axis.« less

  10. Non-astigmatic imaging with matched pairs of spherically bent reflectors

    DOEpatents

    Bitter, Manfred Ludwig [Princeton, NJ; Hill, Kenneth Wayne [Plainsboro, NJ; Scott, Steven Douglas [Wellesley, MA; Feder, Russell [Newton, PA; Ko, Jinseok [Cambridge, MA; Rice, John E [N. Billerica, MA; Ince-Cushman, Alexander Charles [New York, NY; Jones, Frank [Manalapan, NJ

    2012-07-10

    Arrangements for the point-to-point imaging of a broad spectrum of electromagnetic radiation and ultrasound at large angles of incidence employ matched pairs of spherically bent reflectors to eliminate astigmatic imaging errors. Matched pairs of spherically bent crystals or spherically bent multi-layers are used for X-rays and EUV radiation; and matched pairs of spherically bent mirrors that are appropriate for the type of radiation are used with microwaves, infrared and visible light, or ultrasound. The arrangements encompass the two cases, where the Bragg angle--the complement to the angle of incidence in optics--is between 45.degree. and 90.degree. on both crystals/mirrors or between 0.degree. and 45.degree. on the first crystal/mirror and between 45.degree. and 90.degree. on the second crystal/mirror, where the angles of convergence and divergence are equal. For x-rays and EUV radiation, also the Bragg condition is satisfied on both spherically bent crystals/multi-layers.

  11. Bent channel design in buried Er3+/Yb3+ codoped phosphate glass waveguide fabricated by field-assisted annealing

    NASA Astrophysics Data System (ADS)

    Zhao, Ruitu; Wang, Mu; Chen, Baojie; Liu, Ke; Pun, Edwin Yue-Bun; Lin, Hai

    2011-04-01

    Bent waveguide structures (S-, U-, and F-bend) based on buried Er3+/Yb3+ codoped phosphate glass waveguide channel fabricated by field-assisted annealing have been designed to achieve high-gain C-band integrated amplification. Using a simulated-bend method, the optimal radius for the curved structure is derived to be 0.90 cm with loss coefficient of 0.02 dB/cm, as the substrate size is schemed to be 4×3 cm2. In the wavelength range of 1520 to 1575 nm, obvious gain enhancement for the bent structure waveguides is anticipated, and for the F-bend waveguide, the internal gain at 1534-nm wavelength is derived to be 41.61 dB, which is much higher than the value of 26.22 and 13.81 dB in the U- and S-bend waveguides, respectively, and over three times higher than that of the straight one. The simulation results indicate that the bent structure design is beneficial in obtaining high signal gain in buried Er3+/Yb3+ codoped phosphate glass waveguides, which lays the foundation for further design and fabrication of integrated devices.

  12. Accurate ab initio Quartic Force Fields of Cyclic and Bent HC2N Isomers

    NASA Technical Reports Server (NTRS)

    Inostroza, Natalia; Huang, Xinchuan; Lee, Timothy J.

    2012-01-01

    Highly correlated ab initio quartic force field (QFFs) are used to calculate the equilibrium structures and predict the spectroscopic parameters of three HC2N isomers. Specifically, the ground state quasilinear triplet and the lowest cyclic and bent singlet isomers are included in the present study. Extensive treatment of correlation effects were included using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, denoted CCSD(T). Dunning s correlation-consistent basis sets cc-pVXZ, X=3,4,5, were used, and a three-point formula for extrapolation to the one-particle basis set limit was used. Core-correlation and scalar relativistic corrections were also included to yield highly accurate QFFs. The QFFs were used together with second-order perturbation theory (with proper treatment of Fermi resonances) and variational methods to solve the nuclear Schr dinger equation. The quasilinear nature of the triplet isomer is problematic, and it is concluded that a QFF is not adequate to describe properly all of the fundamental vibrational frequencies and spectroscopic constants (though some constants not dependent on the bending motion are well reproduced by perturbation theory). On the other hand, this procedure (a QFF together with either perturbation theory or variational methods) leads to highly accurate fundamental vibrational frequencies and spectroscopic constants for the cyclic and bent singlet isomers of HC2N. All three isomers possess significant dipole moments, 3.05D, 3.06D, and 1.71D, for the quasilinear triplet, the cyclic singlet, and the bent singlet isomers, respectively. It is concluded that the spectroscopic constants determined for the cyclic and bent singlet isomers are the most accurate available, and it is hoped that these will be useful in the interpretation of high-resolution astronomical observations or laboratory experiments.

  13. Compensatory motor control after stroke: an alternative joint strategy for object-dependent shaping of hand posture.

    PubMed

    Raghavan, Preeti; Santello, Marco; Gordon, Andrew M; Krakauer, John W

    2010-06-01

    Efficient grasping requires planned and accurate coordination of finger movements to approximate the shape of an object before contact. In healthy subjects, hand shaping is known to occur early in reach under predominantly feedforward control. In patients with hemiparesis after stroke, execution of coordinated digit motion during grasping is impaired as a result of damage to the corticospinal tract. The question addressed here is whether patients with hemiparesis are able to compensate for their execution deficit with a qualitatively different grasp strategy that still allows them to differentiate hand posture to object shape. Subjects grasped a rectangular, concave, and convex object while wearing an instrumented glove. Reach-to-grasp was divided into three phases based on wrist kinematics: reach acceleration (reach onset to peak horizontal wrist velocity), reach deceleration (peak horizontal wrist velocity to reach offset), and grasp (reach offset to lift-off). Patients showed reduced finger abduction, proximal interphalangeal joint (PIP) flexion, and metacarpophalangeal joint (MCP) extension at object grasp across all three shapes compared with controls; however, they were able to partially differentiate hand posture for the convex and concave shapes using a compensatory strategy that involved increased MCP flexion rather than the PIP flexion seen in controls. Interestingly, shape-specific hand postures did not unfold initially during reach acceleration as seen in controls, but instead evolved later during reach deceleration, which suggests increased reliance on sensory feedback. These results indicate that kinematic analysis can identify and quantify within-limb compensatory motor control strategies after stroke. From a clinical perspective, quantitative study of compensation is important to better understand the process of recovery from brain injury. From a motor control perspective, compensation can be considered a model for how joint redundancy is exploited

  14. Two-dimensional fluid dynamics in a sharply bent channel: Laminar flow, separation bubble, and vortex dynamics

    NASA Astrophysics Data System (ADS)

    Matsumoto, Daichi; Fukudome, Koji; Wada, Hirofumi

    2016-10-01

    Understanding the hydrodynamic properties of fluid flow in a curving pipe and channel is important for controlling the flow behavior in technologies and biomechanics. The nature of the resulting flow in a bent pipe is extremely complicated because of the presence of a cross-stream secondary flow. In an attempt to disentangle this complexity, we investigate the fluid dynamics in a bent channel via the direct numerical simulation of the Navier-Stokes equation in two spatial dimensions. We exploit the absence of secondary flow from our model and systematically investigate the flow structure along the channel as a function of both the bend angle and Reynolds number of the laminar-to-turbulent regime. We numerically suggest a scaling relation between the shape of the separation bubble and the flow conductance, and construct an integrated phase diagram.

  15. Bend-imitating models of abruptly bent electron waveguides

    NASA Astrophysics Data System (ADS)

    Vakhnenko, Oleksiy O.

    2011-07-01

    The fundamentals of bend-imitating approach regarding the one-electron quantum mechanics in abruptly bent ideal electron waveguides are given. In general, the theory allows to model each particular circularlike bend of a continuous quantum wire as some effective multichannel scatterer being pointlike in longitudinal direction. Its scattering ability is determined by the bending angle, mean bending radius, lateral coordinate (or coordinates) in wire cross section, time (or electronic energy), and possibly by the applied magnetic field. In an equivalent formulation, the theory gives rise to rather simple matching rules for the electron wave function and its longitudinal derivative affecting only the straight parts of a wire and thereby permitting to bypass a detailed quantum mechanical consideration of elbow domains. The proposed technique is applicable for the analytical investigation of spectral and transport electronic properties related to the ideal abruptly bent 3D wirelike structures of fixed cross section and is adaptable to the 2D wirelike structures as well as to the wirelike structures subjected to the magnetic field perpendicular to the plane of wire bending. In the framework of bend-imitating approach, the investigation of electron scattering in a singly bent 2D quantum wire and a doubly bent 2D quantum wire with S-like bend has been made and the explicit dependences of transmission and reflection coefficients on geometrical parameters of respective structure as well as on electron energy have been obtained. The total suppression of mixing between the scattering channels of S-like bent quantum wire is predicted.

  16. The relative cost of bent-hip bent-knee walking is reduced in water.

    PubMed

    Kuliukas, Algis V; Milne, Nick; Fournier, Paul

    2009-01-01

    The debate about how early hominids walked may be characterised as two competing hypotheses: They moved with a fully upright (FU) gait, like modern humans, or with a bent-hip, bent-knee (BK) gait, like apes. Both have assumed that this bipedalism was almost exclusively on land, in trees or a combination of the two. Recent findings favoured the FU hypothesis by showing that the BK gait is 50-60% more energetically costly than a FU human gait on land. We confirm these findings but show that in water this cost differential is markedly reduced, especially in deeper water, at slower speeds and with greater knee flexion. These data suggest that the controversy about australopithecine locomotion may be eased if it is assumed that wading was a component of their locomotor repertoire and supports the idea that shallow water might have been an environment favourable to the evolution of early forms of "non-optimal" hominid bipedalism.

  17. The incidence of bent dorsal fins in free-ranging cetaceans.

    PubMed

    Alves, F; Towers, J R; Baird, R W; Bearzi, G; Bonizzoni, S; Ferreira, R; Halicka, Z; Alessandrini, A; Kopelman, A H; Yzoard, C; Rasmussen, M H; Bertulli, C G; Jourdain, E; Gullan, A; Rocha, D; Hupman, K; Mrusczok, M-T; Samarra, F I P; Magalhães, S; Weir, C R; Ford, J K B; Dinis, A

    2018-02-01

    Laterally bent dorsal fins are rarely observed in free-ranging populations of cetaceans, contrary to captivity, where most killer whale Orcinus orca adult males have laterally collapsed fins. This topic has been poorly explored, and data/information on its occurrence and possible causes are limited. The present study: (i) undertakes a review of the available information on bent dorsal fins in free-ranging cetaceans, and updates it with new records, (ii) reports on the proportion of bent fins in different study populations, and (iii) discusses possible causes. An empirical approach based on bibliographic research and compilation of 52 new records collected worldwide resulted in a total of 17 species of cetaceans displaying bent dorsal fins. The species with the highest number of records (64%) and from most locations was O. orca. On average, individuals with bent dorsal fins represent < 1% of their populations, with the exception of false killer whales Pseudorca crassidens and O. orca. While line injuries associated with fisheries interactions may be the main cause for P. crassidens, and the vulnerability to health issues caused by the evolutionary enlargement of the fin may be the cause for O. orca adult males, factors contributing to this abnormality for other species are still unclear. The occurrence of bent dorsals could be influenced by a set of variables rather than by a single factor but, irrespective of the cause, it is suggested that it does not directly affect the animals' survivorship. While still rare in nature, this incident is more common (at least 101 known cases) and widespread (geographically and in species diversity) than hypothesized, and is not confined only to animals in captive environments. Investigation into the occurrence of bent fins may be an interesting avenue of research. © 2017 Anatomical Society.

  18. Channeling through Bent Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mack, Stephanie; /Ottawa U. /SLAC

    2012-09-07

    Bent crystals have demonstrated potential for use in beam collimation. A process called channeling is when accelerated particle beams are trapped by the nuclear potentials in the atomic planes within a crystal lattice. If the crystal is bent then the particles can follow the bending angle of the crystal. There are several different effects that are observed when particles travel through a bent crystal including dechanneling, volume capture, volume reflection and channeling. With a crystal placed at the edge of a particle beam, part of the fringe of the beam can be deflected away towards a detector or beam dump,more » thus helping collimate the beam. There is currently FORTRAN code by Igor Yazynin that has been used to model the passage of particles through a bent crystal. Using this code, the effects mentioned were explored for beam energy that would be seen at the Facility for Advanced Accelerator Experimental Tests (FACET) at a range of crystal orientations with respect to the incoming beam. After propagating 5 meters in vacuum space past the crystal the channeled particles were observed to separate from most of the beam with some noise due to dechanneled particles. Progressively smaller bending radii, with corresponding shorter crystal lengths, were compared and it was seen that multiple scattering decreases with the length of the crystal therefore allowing for cleaner detection of the channeled particles. The input beam was then modified and only a portion of the beam sent through the crystal. With the majority of the beam not affected by the crystal, most particles were not deflected and after propagation the channeled particles were seen to be deflected approximately 5mm. After a portion of the beam travels through the crystal, the entire beam was then sent through a quadrupole magnet, which increased the separation of the channeled particles from the remainder of the beam to a distance of around 20mm. A different code, which was developed at SLAC, was used

  19. Quality improvement program for the B83 bomb hand truck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loll, M.B.; Buck, S.A.

    1998-04-01

    This report describes the problems, issues, and history of the H1347 bomb hand truck for the B83 bomb after the bomb was put into stockpile in the mid-1980s. Major issues that were reported in Unsatisfactory Reports (URs) were cracking problems on stacking fixture welds, cracked welds on the caster bracket receptacles on the cradle, cracked caster mounting brackets, casters unlocking from the swivel lock position, and caster tires rubbing and binding on the stacking frame. Resolution of these and other problems is described. The introduction of the H695B storage-only bomb hand truck to alleviate a shortage of bomb hand trucksmore » in the mid-1990s is described. The development and qualification of the H1347A bomb hand truck as a replacement for the H695 B is covered. The results from load test evaluations on the stacking fixture, cradle, and casters for the H1347 are described along with towing results on one and two-high stack configurations of B83 bombs in bomb hand trucks. New towing and truck/trailer transport procedures are described. Development, evaluation, and production recommendations for a stronger caster mounting bracket are described.« less

  20. Jumbo Cutter for Removal of A Bent Femoral Interlocking Nail: A Cost Effective Method

    PubMed Central

    Dhanda, Manjeet Singh; Sharma, Sansar C; Ali, Nadeem; Bhat, Abedullah

    2015-01-01

    Closed diaphyseal femoral shaft fractures can be treated with multiple surgical options. It is more challenging to remove a bent nail than a broken one because it is difficult to retrieve the bent nail through the intramedullary canal. Various authors have published their techniques for removal of bent femoral interlocking nail. This article describes a simple technique using Jumbo cutter for sectioning and removal of bent interlocking nail. This technique will help orthopaedic surgeons to remove bent nail without using any specialised metal cutting instruments. PMID:26266173

  1. Bent Creek demonstration program

    Treesearch

    Erik C. Berg

    1997-01-01

    Bent Creek Research and Demonstration Forest scientists have transferred the results of research on the ecology and management of Southern Appalachian hardwoods since 1925. Since 1989, a full-time technology transfer specialist has led demonstration efforts. The demonstration program was designed to quickly transfer research results to interested users and to free...

  2. Bent Creek demonstration program

    Treesearch

    Erik C. Berg

    1997-01-01

    Bent Creek Research and Demonstration Forest scientists have transferred the results of research on the ecology and management of Southern Appalachian hardwoods since 1925. Since 1989, a full-time technology transfer specialist has led demonstration efforts. The demonstration program was designed to quickly transfer research results to interested users, and free-up...

  3. A day of great illumination: B. F. Skinner's discovery of shaping.

    PubMed Central

    Peterson, Gail B

    2004-01-01

    Despite the seminal studies of response differentiation by the method of successive approximation detailed in chapter 8 of The Behavior of Organisms (1938), B. F. Skinner never actually shaped an operant response by hand until a memorable incident of startling serendipity on the top floor of a flour mill in Minneapolis in 1943. That occasion appears to have been a genuine eureka experience for Skinner, causing him to appreciate as never before the significance of reinforcement mediated by biological connections with the animate social environment, as opposed to purely mechanical connections with the inanimate physical environment. This insight stimulated him to coin a new term (shaping), and also led directly to a shift in his perspective on verbal behavior from an emphasis on antecedents and molecular topographical details to an emphasis on consequences and more molar, functional properties in which the social dyad inherent to the shaping process became the definitive property of verbal behavior. Moreover, the insight seems to have emboldened Skinner to explore the greater implications of his behaviorism for human behavior writ large, an enterprise that characterized the bulk of his post-World War II scholarship. PMID:15693526

  4. Magnetic-Force-Assisted Straightening of Bent Mild Steel Strip by Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Dutta, Polash P.; Kalita, Karuna; Dixit, Uday S.; Liao, Hengcheng

    2017-12-01

    This study proposes a technique to straighten bent metallic strips with magnetic-force-assisted laser irradiation. Experiments were conducted for three different types of mechanically-bent mild strips. The first type was bent strips without any heat treatment. The second type was stress-relieved and third type was subcritical-annealed bent strips. These strips were straightened following different schemes of laser irradiation sequence to understand the performance of straightening. A parametric study was conducted by varying laser power and scanning speed. Micro-hardness, tensile test, Charpy impact test and microstructure after straightening were also studied. Different scanning schemes provided different microstructures and mechanical properties. Any serious deterioration in the quality of straightened strips was not noticed. Overall, subcritical-annealed bent strips provided the best performance in straightening. The proposed straightening scheme has potential of becoming an industrial practice.

  5. Further Results on Constructions of Generalized Bent Boolean Functions

    DTIC Science & Technology

    2016-03-01

    China; 2Naval Postgraduate School, Applied Mathematics Department, Monterey, CA 93943, USA; 3Science and Technology on Communication Security...in 1976 as an interesting combinatorial object with the important property of having op- timal nonlinearity [1]. Since bent functions have many...77–94 10 Zhao Y, Li H L. On bent functions with some symmet- ric properties. Discret Appl Math, 2006, 154: 2537– 2543

  6. Recent progress on the mechanics of sharply bent DNA

    NASA Astrophysics Data System (ADS)

    Cong, PeiWen; Yan, Jie

    2016-08-01

    Despite extensive studies on the mechanics of DNA under external constrains, such as tension, torsion, and bending, several important aspects have remained poorly understood. One biologically important example is the mechanics of DNA under sharp bending conditions, which has been debated for a decade without thorough comprehension. The debate is about the interesting phenomenon raised from a series of different experiments: sharply bent DNA has a surprisingly high apparent bending flexibility that deviates from the canonical bending elasticity of DNA. This finding has motivated various theoretical models, which mainly incorporate the excitation of mechanical defects inside severely bent DNA molecules. Here, we review the recent progress on the understanding of the mechanics of sharply bent DNA and provide our view on this important question by interrogating the theoretical foundation of these experimental measurements.

  7. Aerodynamic characteristics of generalized bent biconic bodies for aero-assisted, orbital-transfer vehicles

    NASA Technical Reports Server (NTRS)

    Davies, C. B.; Park, C.

    1983-01-01

    A method was developed to generate the surface coordinates of body shapes suitable for aeroassisted, orbital-transfer vehicles (AOTVs) by extending bent biconic geometries. Lift, drag, and longitudinal moments were calculated for the bodies using Newtonian flow theory. These techniques were applied to symmetric and asymmetric aerobraking vehicles, and to an aeromaneuvering vehicle with high L/D. Results for aerobraking applications indicate that a 70 deg, fore half cone angle with a spherically blunted nose, rounded edges, and a slight asymmetry would be appropriate. Moreover, results show that an aeromaneuvering vehicle with L/D 2.0, and with sufficient stability, is feasible.

  8. Mathematical modeling of bent-axis hydraulic piston motors

    NASA Technical Reports Server (NTRS)

    Bartos, R. D.

    1992-01-01

    Each of the DSN 70-m antennas uses 16 bent-axis hydraulic piston motors as part of the antenna drive system. On each of the two antenna axes, four motors are used to drive the antenna and four motors provide counter torque to remove the backlash in the antenna drive train. This article presents a mathematical model for bent-axis hydraulic piston motors. The model was developed to understand the influence of the hydraulic motors on the performance of the DSN 70-m antennas' servo control system.

  9. Precast, Prestressed Concrete Bent Caps : Volume 2, Design Recommendations and Design Examples

    DOT National Transportation Integrated Search

    2018-04-01

    Recommendations for design of pretensioned bent caps are developed based on the findings of full-scale experimental tests of bent cap subassemblages. Companion examples are provided to demonstrate implementation of the design recommendations. First, ...

  10. Tree-shaped fractal meta-surface with left-handed characteristics for absorption application

    NASA Astrophysics Data System (ADS)

    Faruque, M. R. I.; Hasan, M. M.; Islam, M. T.

    2018-02-01

    A tri-band fractal meta-surface absorber composed of metallic branches of a tree connected with a straight metal strip has been presented in this paper for high absorption application. The proposed tree-shaped structure shows resonance in C-, X-, and Ku-bands and left-handed characteristics in 14.15 GHz. The dimension of the tree-shaped meta-surface single unit cell structure is 9 × 9 mm2 and the effective medium ratio is 5.50. In addition, the designed absorber structure shows absorption above 84%, whereas the absorber structure printed on epoxy resin fiber substrate material. The FIT-based CST-MWS has been utilized for the design, simulation, and analysis purposes. Fabrication is also done for the experimental validation.

  11. Rapid prototyping prosthetic hand acting by a low-cost shape-memory-alloy actuator.

    PubMed

    Soriano-Heras, Enrique; Blaya-Haro, Fernando; Molino, Carlos; de Agustín Del Burgo, José María

    2018-06-01

    The purpose of this article is to develop a new concept of modular and operative prosthetic hand based on rapid prototyping and a novel shape-memory-alloy (SMA) actuator, thus minimizing the manufacturing costs. An underactuated mechanism was needed for the design of the prosthesis to use only one input source. Taking into account the state of the art, an underactuated mechanism prosthetic hand was chosen so as to implement the modifications required for including the external SMA actuator. A modular design of a new prosthesis was developed which incorporated a novel SMA actuator for the index finger movement. The primary objective of the prosthesis is achieved, obtaining a modular and functional low-cost prosthesis based on additive manufacturing executed by a novel SMA actuator. The external SMA actuator provides a modular system which allows implementing it in different systems. This paper combines rapid prototyping and a novel SMA actuator to develop a new concept of modular and operative low-cost prosthetic hand.

  12. Bent-core fiber structure: Experimental and theoretical studies of fiber stability

    NASA Astrophysics Data System (ADS)

    Bailey, C.; Gartland, E.; Jakli, A.

    2007-03-01

    Recent studies have shown that bent core liquid crystals in the B7 and B2 phases can form stable freestanding fibers with a so called ``jelly-roll'' layer configuration, which means that the smectic layers would be arranged in concentric cylindrical shells. This configuration shows layer curvature is necessary for fiber stability. Classically this effect would destabilize the fiber configuration because of the energy cost of layer distortions and surface tension. We propose a model that can predict fiber stability in the experimentally observed range of a few micrometers, by assuming that layer curvature can be stabilized by including a term dealing with the linear divergence of the polarization direction if the polarization is allowed to have a component normal to the smectic layers. We show that this term can stabilize the fiber configuration if its strength is larger than the surface tension. We also propose an entropic model to explain the strength of this term by considering steric effects. Finally we will take results from this model and apply them to better understand experimental findings of bent-core fibers. Financial support by NSF FRG under contract DMS-0456221. Prof. Daniel Phillips, Particia Bauman and Jie Shen at Purdue Univ., Prof. Maria Carme Calderer at Univ. of Minnesota, and Prof. Jonathan Selinger at Kent State Univ. Liou Qiu and Dr. O.D. Lavrentovich, Characterization Facilities, Liquid Crystal Institute, Kent State Univ. Julie Kim and Dr. Quan Li, Chemical Synthesis Facilities, Liquid Crystal Institute, Kent State Univ.

  13. Self-shaping of bioinspired chiral composites

    NASA Astrophysics Data System (ADS)

    Rong, Qing-Qing; Cui, Yu-Hong; Shimada, Takahiro; Wang, Jian-Shan; Kitamura, Takayuki

    2014-08-01

    Self-shaping materials such as shape memory polymers have recently drawn considerable attention owing to their high shape-changing ability in response to changes in ambient conditions, and thereby have promising applications in the biomedical, biosensing, soft robotics and aerospace fields. Their design is a crucial issue of both theoretical and technological interest. Motivated by the shape-changing ability of Towel Gourd tendril helices during swelling/deswelling, we present a strategy for realizing self-shaping function through the deformation of micro/nanohelices. To guide the design and fabrication of self-shaping materials, the shape equations of bent configurations, twisted belts, and helices of slender chiral composite are developed using the variation method. Furthermore, it is numerically shown that the shape changes of a chiral composite can be tuned by the deformation of micro/nanohelices and the fabricated fiber directions. This work paves a new way to create self-shaping composites.

  14. Propagation of polarised light in bent hi-bi spun fibres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Przhiyalkovsky, Ya V; Morshnev, S K; Starostin, N I

    The evolution of polarisation states (PS's) of broadband light propagating through a bent optical fibre with a helical structure of its refractive index anisotropy (hi-bi spun fibre) has been studied theoretically and experimentally. It has been shown that there exists a coordinate system of PS's in which the differential Jones matrix can be replaced by a diagonal matrix, which allows the polarisation parameters of the output broadband light to be readily calculated with sufficient accuracy. We have derived a formula for evaluating the magneto-optical sensitivity of a bent spun fibre. An approach has been proposed for restoring the degree ofmore » polarisation of light in a bent hi-bi spun fibre and, as a consequence, the visibility (contrast) of the interferometer in a current sensor with a sensing element based on the fibre under consideration. (optical fibres)« less

  15. Propagation of polarised light in bent hi-bi spun fibres

    NASA Astrophysics Data System (ADS)

    Przhiyalkovsky, Ya V.; Morshnev, S. K.; Starostin, N. I.; Gubin, V. P.

    2015-11-01

    The evolution of polarisation states (PS's) of broadband light propagating through a bent optical fibre with a helical structure of its refractive index anisotropy (hi-bi spun fibre) has been studied theoretically and experimentally. It has been shown that there exists a coordinate system of PS's in which the differential Jones matrix can be replaced by a diagonal matrix, which allows the polarisation parameters of the output broadband light to be readily calculated with sufficient accuracy. We have derived a formula for evaluating the magneto-optical sensitivity of a bent spun fibre. An approach has been proposed for restoring the degree of polarisation of light in a bent hi-bi spun fibre and, as a consequence, the visibility (contrast) of the interferometer in a current sensor with a sensing element based on the fibre under consideration.

  16. Behavior of micropiles in bridge bent applications.

    DOT National Transportation Integrated Search

    2010-12-01

    This project concerned the behavior of micropiles under lateral loads. The North Carolina Department of Transportation was specifically interested in the use of micropiles to support bridge bents. In this configuration micropiles would be subjected t...

  17. Transnasal Endoscope Locked in a Bent Position Causing Difficult Withdrawal

    PubMed Central

    Kumada, Takashi; Hisanaga, Yasuhiro

    2014-01-01

    We report a rare but severe complication of routine transnasal esophagogastroduodenoscopy (EGD). The tip of a transnasal endoscope was locked in a bent position. Since the bent tip was unable to be returned to a neutral position, the snare from another endoscope inserted transorally was used to straighten it, which allowed the transnasal endoscope to be withdrawn with only mild injury to the gastric mucosa. Endoscopists should be aware of this complication and how to manage it. PMID:26157831

  18. Welcome to Wonderland: The Influence of the Size and Shape of a Virtual Hand On the Perceived Size and Shape of Virtual Objects

    PubMed Central

    Linkenauger, Sally A.; Leyrer, Markus; Bülthoff, Heinrich H.; Mohler, Betty J.

    2013-01-01

    The notion of body-based scaling suggests that our body and its action capabilities are used to scale the spatial layout of the environment. Here we present four studies supporting this perspective by showing that the hand acts as a metric which individuals use to scale the apparent sizes of objects in the environment. However to test this, one must be able to manipulate the size and/or dimensions of the perceiver’s hand which is difficult in the real world due to impliability of hand dimensions. To overcome this limitation, we used virtual reality to manipulate dimensions of participants’ fully-tracked, virtual hands to investigate its influence on the perceived size and shape of virtual objects. In a series of experiments, using several measures, we show that individuals’ estimations of the sizes of virtual objects differ depending on the size of their virtual hand in the direction consistent with the body-based scaling hypothesis. Additionally, we found that these effects were specific to participants’ virtual hands rather than another avatar’s hands or a salient familiar-sized object. While these studies provide support for a body-based approach to the scaling of the spatial layout, they also demonstrate the influence of virtual bodies on perception of virtual environments. PMID:23874681

  19. Development of a precast bent cap system

    DOT National Transportation Integrated Search

    2001-01-01

    Improved speed of construction and economy can be achieved through the use of precast bridge substructures. As a step in the advancement of precast bridge substructures, a precast bent cap system is developed for nonseismic regions, including a desig...

  20. Recognizing familiar objects by hand and foot: Haptic shape perception generalizes to inputs from unusual locations and untrained body parts.

    PubMed

    Lawson, Rebecca

    2014-02-01

    The limits of generalization of our 3-D shape recognition system to identifying objects by touch was investigated by testing exploration at unusual locations and using untrained effectors. In Experiments 1 and 2, people found identification by hand of real objects, plastic 3-D models of objects, and raised line drawings placed in front of themselves no easier than when exploration was behind their back. Experiment 3 compared one-handed, two-handed, one-footed, and two-footed haptic object recognition of familiar objects. Recognition by foot was slower (7 vs. 13 s) and much less accurate (9 % vs. 47 % errors) than recognition by either one or both hands. Nevertheless, item difficulty was similar across hand and foot exploration, and there was a strong correlation between an individual's hand and foot performance. Furthermore, foot recognition was better with the largest 20 of the 80 items (32 % errors), suggesting that physical limitations hampered exploration by foot. Thus, object recognition by hand generalized efficiently across the spatial location of stimuli, while object recognition by foot seemed surprisingly good given that no prior training was provided. Active touch (haptics) thus efficiently extracts 3-D shape information and accesses stored representations of familiar objects from novel modes of input.

  1. Increased Prevalence of Bent Lobes for Double-lobed Radio Galaxies in Dense Environments

    NASA Astrophysics Data System (ADS)

    Silverstein, Ezekiel M.; Anderson, Michael E.; Bregman, Joel N.

    2018-01-01

    Double-lobed radio galaxies (DLRGs) often have radio lobes that subtend an angle of less than 180°, and these bent DLRGs have been shown to associate preferentially with galaxy clusters and groups. In this study, we utilize a catalog of DLRGs in SDSS quasars with radio lobes visible in VLA FIRST 20 cm radio data. We cross-match this catalog against three catalogs of galaxies over the redshift range 0< z< 0.70, obtaining 81 tentative matches. We visually examine each match and apply a number of selection criteria, eventually obtaining a sample of 44 securely detected DLRGs, which are paired to a nearby massive galaxy, galaxy group, or galaxy cluster. Most of the DLRGs identified in this manner are not central galaxies in the systems to which they are matched. Using this sample, we quantify the projected density of these matches as a function of projected separation from the central galaxy, finding a very steep decrease in matches as the impact parameter increases (for {{Σ }}\\propto {b}-m we find m={2.5}-0.3+0.4) out to b∼ 2 Mpc. In addition, we show that the fraction of DLRGs with bent lobes also decreases with radius, so that if we exclude DLRGs associated with the central galaxy in the system, the bent fraction is 78% within 1 Mpc and 56% within 2 Mpc, compared to just 29% in the field; these differences are significant at 3.6σ and 2.8σ , respectively. This behavior is consistent with ram pressure being the mechanism that causes the lobes to bend.

  2. Hand shape selection in pantomimed grasping: Interaction between the dorsal and the ventral visual streams and convergence on the ventral premotor area

    PubMed Central

    Makuuchi, Michiru; Someya, Yoshiaki; Ogawa, Seiji; Takayama, Yoshihiro

    2011-01-01

    In visually guided grasping, possible hand shapes are computed from the geometrical features of the object, while prior knowledge about the object and the goal of the action influence both the computation and the selection of the hand shape. We investigated the system dynamics of the human brain for the pantomiming of grasping with two aspects accentuated. One is object recognition, with the use of objects for daily use. The subjects mimed grasping movements appropriate for an object presented in a photograph either by precision or power grip. The other is the selection of grip hand shape. We manipulated the selection demands for the grip hand shape by having the subjects use the same or different grip type in the second presentation of the identical object. Effective connectivity analysis revealed that the increased selection demands enhance the interaction between the anterior intraparietal sulcus (AIP) and posterior inferior temporal gyrus (pITG), and drive the converging causal influences from the AIP, pITG, and dorsolateral prefrontal cortex to the ventral premotor area (PMv). These results suggest that the dorsal and ventral visual areas interact in the pantomiming of grasping, while the PMv integrates the neural information of different regions to select the hand posture. The present study proposes system dynamics in visually guided movement toward meaningful objects, but further research is needed to examine if the same dynamics is found also in real grasping. PMID:21739528

  3. Galactic shape and age go hand in hand

    NASA Astrophysics Data System (ADS)

    Weijmans, Anne-Marie

    2018-04-01

    Recently, large integral-field spectroscopic studies of galaxies have greatly increased our knowledge of their structure and evolution. A new analysis of such data reveals a relationship between the age and the intrinsic — three-dimensional — shape of galaxies.

  4. Galactic shape and age go hand in hand

    NASA Astrophysics Data System (ADS)

    Weijmans, Anne-Marie

    2018-06-01

    Recently, large integral-field spectroscopic studies of galaxies have greatly increased our knowledge of their structure and evolution. A new analysis of such data reveals a relationship between the age and the intrinsic — three-dimensional — shape of galaxies.

  5. Cell shape can mediate the spatial organization of the bacterial cytoskeleton

    NASA Astrophysics Data System (ADS)

    Wang, Siyuan; Wingreen, Ned

    2013-03-01

    The bacterial cytoskeleton guides the synthesis of cell wall and thus regulates cell shape. Since spatial patterning of the bacterial cytoskeleton is critical to the proper control of cell shape, it is important to ask how the cytoskeleton spatially self-organizes in the first place. In this work, we develop a quantitative model to account for the various spatial patterns adopted by bacterial cytoskeletal proteins, especially the orientation and length of cytoskeletal filaments such as FtsZ and MreB in rod-shaped cells. We show that the combined mechanical energy of membrane bending, membrane pinning, and filament bending of a membrane-attached cytoskeletal filament can be sufficient to prescribe orientation, e.g. circumferential for FtsZ or helical for MreB, with the accuracy of orientation increasing with the length of the cytoskeletal filament. Moreover, the mechanical energy can compete with the chemical energy of cytoskeletal polymerization to regulate filament length. Notably, we predict a conformational transition with increasing polymer length from smoothly curved to end-bent polymers. Finally, the mechanical energy also results in a mutual attraction among polymers on the same membrane, which could facilitate tight polymer spacing or bundling. The predictions of the model can be verified through genetic, microscopic, and microfluidic approaches.

  6. Hands-Off and Hands-On Casting Consistency of Amputee below Knee Sockets Using Magnetic Resonance Imaging

    PubMed Central

    Rowe, Philip

    2013-01-01

    Residual limb shape capturing (Casting) consistency has a great influence on the quality of socket fit. Magnetic Resonance Imaging was used to establish a reliable reference grid for intercast and intracast shape and volume consistency of two common casting methods, Hands-off and Hands-on. Residual limbs were cast for twelve people with a unilateral below knee amputation and scanned twice for each casting concept. Subsequently, all four volume images of each amputee were semiautomatically segmented and registered to a common coordinate system using the tibia and then the shape and volume differences were calculated. The results show that both casting methods have intra cast volume consistency and there is no significant volume difference between the two methods. Inter- and intracast mean volume differences were not clinically significant based on the volume of one sock criteria. Neither the Hands-off nor the Hands-on method resulted in a consistent residual limb shape as the coefficient of variation of shape differences was high. The resultant shape of the residual limb in the Hands-off casting was variable but the differences were not clinically significant. For the Hands-on casting, shape differences were equal to the maximum acceptable limit for a poor socket fit. PMID:24348164

  7. Hands-off and hands-on casting consistency of amputee below knee sockets using magnetic resonance imaging.

    PubMed

    Safari, Mohammad Reza; Rowe, Philip; McFadyen, Angus; Buis, Arjan

    2013-01-01

    Residual limb shape capturing (Casting) consistency has a great influence on the quality of socket fit. Magnetic Resonance Imaging was used to establish a reliable reference grid for intercast and intracast shape and volume consistency of two common casting methods, Hands-off and Hands-on. Residual limbs were cast for twelve people with a unilateral below knee amputation and scanned twice for each casting concept. Subsequently, all four volume images of each amputee were semiautomatically segmented and registered to a common coordinate system using the tibia and then the shape and volume differences were calculated. The results show that both casting methods have intra cast volume consistency and there is no significant volume difference between the two methods. Inter- and intracast mean volume differences were not clinically significant based on the volume of one sock criteria. Neither the Hands-off nor the Hands-on method resulted in a consistent residual limb shape as the coefficient of variation of shape differences was high. The resultant shape of the residual limb in the Hands-off casting was variable but the differences were not clinically significant. For the Hands-on casting, shape differences were equal to the maximum acceptable limit for a poor socket fit.

  8. Two-Thumbed Robot Hand

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan

    1989-01-01

    Robot hand includes thumblike members on left and right sides and fingerlike member at middle. Configuration of digits enables hand to adapt to variously shaped objects, grasp them robustly and reliably, and manipulate them. Reduces complexity of control mechanisms and provides kinesthetic perception of shapes of grasped objects. Mechanical hand with two thumbs and middle finger made from commercially available components. With specially designed dc motors and assemblies of gears, size of hand reduced considerably. Suited to handling objects in industrial tasks.

  9. Structural and electronic stability of a volleyball-shaped B80 fullerene

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Qian

    2010-10-01

    We have studied the structural and electronic characteristics of a volleyball-shaped B80 cage using first-principles density-functional calculations. In contrast to the popularly ratified “magic” B80 buckyball with 20 hexagonal pyramids and 12 hollow pentagons, the volleyball-shaped B80 constitutes 12 pentagonal pyramids, 8 hexagonal pyramids, and 12 hollow hexagons. The B80 volleyball is markedly more stable than the previously assumed magic B80 buckyball, which is attributed to the improved aromaticity associated with the distinct configuration.

  10. Photoinduced Changes of Surface Topography in Amorphous, Liquid-Crystalline, and Crystalline Films of Bent-Core Azobenzene-Containing Substance.

    PubMed

    Bobrovsky, Alexey; Mochalov, Konstantin; Oleinikov, Vladimir; Solovyeva, Daria; Shibaev, Valery; Bogdanova, Yulia; Hamplová, Vĕra; Kašpar, Miroslav; Bubnov, Alexej

    2016-06-09

    Recently, photofluidization and mass-transfer effects have gained substantial interest because of their unique abilities of photocontrolled manipulation with material structure and physicochemical properties. In this work, the surface topographies of amorphous, nematic, and crystalline films of an azobenzene-containing bent-core (banana-shaped) compound were studied using a special experimental setup combining polarizing optical microscopy and atomic force microscopy. Spin-coating or rapid cooling of the samples enabled the formation of glassy amorphous or nematic films of the substance. The effects of UV and visible-light irradiation on the surface roughness of the films were investigated. It was found that UV irradiation leads to the fast isothermal transition of nematic and crystalline phases into the isotropic phase. This effect is associated with E-Z photoisomerization of the compound accompanied by a decrease of the anisometry of the bent-core molecules. Focused polarized visible-light irradiation (457.9 nm) results in mass-transfer phenomena and induces the formation of so-called "craters" in amorphous and crystalline films of the substance. The observed photofluidization and mass-transfer processes allow glass-forming bent-core azobenzene-containing substances to be considered for the creation of promising materials with photocontrollable surface topographies. Such compounds are of principal importance for the solution of a broad range of problems related to the investigation of surface phenomena in colloid and physical chemistry, such as surface modification for chemical and catalytic reactions, predetermined morphology of surfaces and interfaces in soft matter, and chemical and biochemical sensing.

  11. Classifying bent radio galaxies from a mixture of point-like/extended images with Machine Learning.

    NASA Astrophysics Data System (ADS)

    Bastien, David; Oozeer, Nadeem; Somanah, Radhakrishna

    2017-05-01

    The hypothesis that bent radio sources are supposed to be found in rich, massive galaxy clusters and the avalibility of huge amount of data from radio surveys have fueled our motivation to use Machine Learning (ML) to identify bent radio sources and as such use them as tracers for galaxy clusters. The shapelet analysis allowed us to decompose radio images into 256 features that could be fed into the ML algorithm. Additionally, ideas from the field of neuro-psychology helped us to consider training the machine to identify bent galaxies at different orientations. From our analysis, we found that the Random Forest algorithm was the most effective with an accuracy rate of 92% for a classification of point and extended sources as well as an accuracy of 80% for bent and unbent classification.

  12. Enhancement of bending strain tolerance and current carrying property of MgB2 based multifilamentary wires

    NASA Astrophysics Data System (ADS)

    Thomas, Syju; Varghese, Neson; Rahul, S.; Devadas, K. M.; Vinod, K.; Syamaprasad, U.

    2012-12-01

    The effect of bending strain on current carrying capacity of MgB2 multifilamentary wires was studied with 4, 8 and 16 multifilamentary wires. The critical current density (JC) of straight wires and bent wires with 5, 10, and 15 cm diameter was measured. Both annealed & bent and bent & annealed wires were used for measurement. The JC of annealed & bent wires were found to decrease with decrease in bent diameter and the rate of degradation of JC decreased with increasing number of filaments, while bent & annealed wires almost retained its JC at all diameters studied.

  13. Purkinje cells signal hand shape and grasp force during reach-to-grasp in the monkey.

    PubMed

    Mason, Carolyn R; Hendrix, Claudia M; Ebner, Timothy J

    2006-01-01

    The cerebellar cortex and nuclei play important roles in the learning, planning, and execution of reach-to-grasp and prehensile movements. However, few studies have investigated the signals carried by cerebellar neurons during reach-to-grasp, particularly signals relating to target object properties, hand shape, and grasp force. In this study, the simple spike discharge of 77 Purkinje cells was recorded as two rhesus monkeys reached and grasped 16 objects. The objects varied systematically in volume, shape, and orientation and each was grasped at five different force levels. Linear multiple regression analyses showed the simple spike discharge was significantly modulated in relation to objects and force levels. Object related modulation occurred preferentially during reach or early in the grasp and was linearly related to grasp aperture. The simple spike discharge was positively correlated with grasp force during both the reach and the grasp. There was no significant interaction between object and grasp force modulation, supporting previous kinematic findings that grasp kinematics and force are signaled independently. Singular value decomposition (SVD) was used to quantify the temporal patterns in the simple spike discharge. Most cells had a predominant discharge pattern that remained relatively constant across object grasp dimensions and force levels. A single predominant simple spike discharge pattern that spans reach and grasp and accounts for most of the variation (>60%) is consistent with the concept that the cerebellum is involved with synergies underlying prehension. Therefore Purkinje cells are involved with the signaling of prehension, providing independent signals for hand shaping and grasp force.

  14. Repair of Morganza Spillway Bridge bent pile cap using carbon fiber reinforcement (CFR) : tech summary.

    DOT National Transportation Integrated Search

    2016-04-01

    The pile cap of an end bent of the Morganza Spillway Bridge suffered extensive damage at the girder bearing locations, particularly on the side where the pounding of the girders by the adjacent concrete deck located on the approach side of the bent. ...

  15. Characterization of MreB polymers in E. coli and their correlations to cell shape

    NASA Astrophysics Data System (ADS)

    Nguyen, Jeffrey; Ouzonov, Nikolay; Gitai, Zemer; Shaevitz, Joshua

    2015-03-01

    Shape influences all facets of how bacteria interact with their environment. The size of E. coli is determined by the peptidoglycan cell wall and internal turgor pressure. The cell wall is patterned by MreB, an actin homolog that forms short polymers on the cytoplasmic membrane. MreB coordinates the breaking of old material and the insertion of new material for growth, but it is currently unknown what mechanism sets the absolute diameter of the cell. Using new techniques in fluorescence microscopy and image processing, we are able to quantify cell shape in 3- dimensions and access previously unattainable data on the conformation of MreB polymers. To study how MreB affects the diameter of bacteria, we analyzed the shapes and polymers of cells that have had MreB perturbed by one of two methods. We first treated cells with the MreB polymerization-inhibiting drug A22. Secondly, we created point mutants in MreB that change MreB polymer conformation and the cell shape. By analyzing the correlations between different shape and polymer metrics, we find that under both treatments, the average helical pitch angle of the polymers correlates strongly with the cell diameter. This observation links the micron scale shape of the cell to the nanometer scale MreB cytoskeleton.

  16. Bent CNN bond of diazo compounds, RR'(Cdbnd N+dbnd N-)

    NASA Astrophysics Data System (ADS)

    Akita, Motoko; Takahashi, Mai; Kobayashi, Keiji; Hayashi, Naoto; Tukada, Hideyuki

    2013-02-01

    The reaction of ninhydrin with benzophenone hydrazone afforded 2-diazo-3-diphenylmethylenehydrazono-1-indanone 1 and 2-diazo-1,3-bis(diphenylmethylenehydrazono)indan 2. X-ray crystal structure analyses of these products showed that the diazo functional group Cdbnd N+dbnd N- of 1 is bent by 172.9°, while that of 2 has a linear geometry. The crystal structure data of diazo compounds have been retrieved from the Cambridge Structural Database (CSD), which hit 177 entries to indicate that the angle of 172.9° in 1 lies in one of the most bent structures. The CSD search also indicated that diazo compounds consisting of a distorted diazo carbon tend to bend the Cdbnd N+dbnd N- bond. On the basis of DFT calculations (B3LYP/6-311++G(d,p)) of model compounds, it was revealed that the bending of the CNN bond is principally induced by steric factors and that the neighboring carbonyl group also plays a role in bending toward the carbonyl side owing to an electrostatic attractive interaction. The potential surface along the path of Cdbnd N+dbnd N- bending in 2-diazopropane shows a significantly shallow profile with only 4 kcal/mol needed to bend the Cdbnd N+dbnd N- bond from 180° to 160°. Thus, the bending of the diazo group in 1 is reasonable as it is provided with all of the factors for facile bending disclosed in this investigation.

  17. Effect of stress on amorphous bent cores

    NASA Astrophysics Data System (ADS)

    Saito, Akihiko; Yamamoto, Ken-ichi; Kunimori, Osamu

    1992-07-01

    The effect of stress on bent amorphous cores with positive magnetostriction has been investigated. Tension has been applied to the ribbon while winding into the toroid to improve the magnetic properties of the core. The properties of the coercive force of the tension winding core due to applied tension have been made clear from the observation of the domain structure.

  18. U-bent plastic optical fiber based plasmonic biosensor for nucleic acid detection

    NASA Astrophysics Data System (ADS)

    Gowri, A.; Sai, V. V. R.

    2017-05-01

    This study presents the development of low cost, rapid and highly sensitive plasmonic sandwich DNA biosensor using U-bent plastic optical fiber (POF) probes with high evanescent wave absorbance sensitivity and gold nanoparticles (AuNP) as labels. Plastic optical fiber (PMMA core and fluorinated polymer as cladding) offer ease in machinability and handling due to which optimum U-bent geometry (with fiber and bend diameter of 0.5 and 1.5 mm respectively) for high sensitivity could be achieved. A sensitive fiber optic DNA biosensor is realized by (i) modifying the PMMA surface using ethylenediamine (EDA) in order to maximize the immobilization of capture oligonucleotides (ONs) and (ii) conjugating probe ONs to AuNP labels of optimum size ( 35 nm) with high extinction coefficient and optimal ON surface density. The sandwich hybridization assay on U-bent POF probes results in increase in optical absorbance through the probe with increase in target ON concentration due to the presence of increased number of AuNPs. The absorbance of light passing through the U-bent probe due to the presence of AuNP labels on its surface as result of sandwich DNA hybridization is measured using a halogen lamp and a fiber optic spectrometer. A picomolar limit of detection of target ON (0.2 pM or 1 pg/ml or 5 attomol in 25 μL) is achieved with this biosensing scheme, indicating its potential for the development of a highly sensitive DNA biosensor.

  19. Technology transfer: taking science from the books to the ground at Bent Creek Experimental Forest

    Treesearch

    Julia Kirschman

    2014-01-01

    Technology transfer has been an important part of the research program at Bent Creek Experimental Forest (Bent Creek) since its establishment in 1925. Our stated mission is to develop and disseminate knowledge and strategies for restoring, managing, sustaining, and enhancing the vegetation and wildlife of upland hardwood-dominated forest ecosystems of the Southern...

  20. Outcomes of torsional microcoaxial phacoemulsification performed by 12-degree and 22-degree bent tips.

    PubMed

    Helvacioglu, Firat; Yeter, Celal; Tunc, Zeki; Sencan, Sadik

    2013-08-01

    To compare the safety and efficacy of Ozil Intelligent Phaco torsional microcoaxial phacoemulsification surgeries performed with 12-degree and 22-degree bent tips using the Infiniti Vision System. Maltepe University School of Medicine Department of Ophthalmology, Istanbul, Turkey. Comparative case series. Eyes were assigned to 2.2 mm microcoaxial phacoemulsification using the torsional mode with a 22-degree bent tip (Group 1) or a 12-degree bent tip (Group 2). The primary outcome measures were ultrasound time (UST), cumulative dissipated energy (CDE), longitudinal and torsional ultrasound (US) amplitudes, mean surgical time, mean volume of balanced salt solution used, and surgical complications. Both groups included 45 eyes. The mean UST, CDE, longitudinal US amplitude, and torsional US amplitude were 65 seconds ± 27.23 (SD), 11.53 ± 6.99, 0.22 ± 0.26, and 42.86 ± 15.64, respectively, in Group 1 and 84 ± 45.04 seconds, 16.68 ± 10.66, 0.48 ± 0.68, and 46.27 ± 14.74, respectively, in Group 2. The mean UST, CDE, and longitudinal amplitudes were significantly lower in Group 1 (P=.003, P=.008, and P=.022, respectively). The mean volume of balanced salt solution was 73.33 ± 28.58 cc in Group 1 and 82.08 ± 26.21 cc in Group 2 (P=.134). Torsional phacoemulsification performed with 22-degree bent tips provided more effective lens removal than 12-degree bent tips, with a lower UST and CDE. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  1. A computer program to analyze bending of bent caps.

    DOT National Transportation Integrated Search

    1966-10-01

    This report is one of a series of developments planned to facilitate the : use of computers in the analysis of highway bridge structures. It specifically : concerns a computer program for the bending analysis of bent caps. : The development of this p...

  2. Earlier and greater hand pre-shaping in the elderly: a study based on kinematic analysis of reaching movements to grasp objects.

    PubMed

    Tamaru, Yoshiki; Naito, Yasuo; Nishikawa, Takashi

    2017-11-01

    Elderly people are less able to manipulate objects skilfully than young adults. Although previous studies have examined age-related deterioration of hand movements with a focus on the phase after grasping objects, the changes in the reaching phase have not been studied thus far. We aimed to examine whether changes in hand shape patterns during the reaching phase of grasping movements differ between young adults and the elderly. Ten healthy elderly adults and 10 healthy young adults were examined using the Simple Test for Evaluating Hand Functions and kinetic analysis of hand pre-shaping reach-to-grasp tasks. The results were then compared between the two groups. For kinetic analysis, we measured the time of peak tangential velocity of the wrist and the inter-fingertip distance (the distance between the tips of the thumb and index finger) at different time points. The results showed that the elderly group's performance on the Simple Test for Evaluating Hand Functions was significantly lower than that of the young adult group, irrespective of whether the dominant or non-dominant hand was used, indicating deterioration of hand movement in the elderly. The peak tangential velocity of the wrist in either hand appeared significantly earlier in the elderly group than in the young adult group. The elderly group also showed larger inter-fingertip distances with arch-like fingertip trajectories compared to the young adult group for all object sizes. To perform accurate prehension, elderly people have an earlier peak tangential velocity point than young adults. This allows for a longer adjustment time for reaching and grasping movements and for reducing errors in object prehension by opening the hand and fingers wider. Elderly individuals gradually modify their strategy based on previous successes and failures during daily living to compensate for their decline in dexterity and operational capabilities. © 2017 Japanese Psychogeriatric Society.

  3. Measurement and models of bent KAP(001) crystal integrated reflectivity and resolution (invited)

    NASA Astrophysics Data System (ADS)

    Loisel, G. P.; Wu, M.; Stolte, W.; Kruschwitz, C.; Lake, P.; Dunham, G. S.; Bailey, J. E.; Rochau, G. A.

    2016-11-01

    The Advanced Light Source beamline-9.3.1 x-rays are used to calibrate the rocking curve of bent potassium acid phthalate (KAP) crystals in the 2.3-4.5 keV photon-energy range. Crystals are bent on a cylindrically convex substrate with a radius of curvature ranging from 2 to 9 in. and also including the flat case to observe the effect of bending on the KAP spectrometric properties. As the bending radius increases, the crystal reflectivity converges to the mosaic crystal response. The X-ray Oriented Programs (xop) multi-lamellar model of bent crystals is used to model the rocking curve of these crystals and the calibration data confirm that a single model is adequate to reproduce simultaneously all measured integrated reflectivities and rocking-curve FWHM for multiple radii of curvature in both 1st and 2nd order of diffraction.

  4. Measurement and models of bent KAP(001) crystal integrated reflectivity and resolution (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loisel, G. P., E-mail: gploise@sandia.gov; Wu, M.; Lake, P.

    2016-11-15

    The Advanced Light Source beamline-9.3.1 x-rays are used to calibrate the rocking curve of bent potassium acid phthalate (KAP) crystals in the 2.3-4.5 keV photon-energy range. Crystals are bent on a cylindrically convex substrate with a radius of curvature ranging from 2 to 9 in. and also including the flat case to observe the effect of bending on the KAP spectrometric properties. As the bending radius increases, the crystal reflectivity converges to the mosaic crystal response. The X-ray Oriented Programs (XOP) multi-lamellar model of bent crystals is used to model the rocking curve of these crystals and the calibration datamore » confirm that a single model is adequate to reproduce simultaneously all measured integrated reflectivities and rocking-curve FWHM for multiple radii of curvature in both 1st and 2nd order of diffraction.« less

  5. Controlled manipulation of flexible carbon nanotubes through shape-dependent pushing by atomic force microscopy.

    PubMed

    Yang, Seung-Cheol; Qian, Xiaoping

    2013-09-17

    A systematic approach to manipulating flexible carbon nanotubes (CNTs) has been developed on the basis of atomic force microscope (AFM) based pushing. Pushing CNTs enables efficient transport and precise location of individual CNTs. A key issue for pushing CNTs is preventing defective distortion in repetitive bending and unbending deformation. The approach presented here controls lateral movement of an AFM tip to bend CNTs without permanent distortion. The approach investigates possible defects caused by tensile strain of the outer tube under uniform bending and radial distortion by kinking. Using the continuum beam model and experimental bending tests, dependency of maximum bending strain on the length of bent CNTs and radial distortion on bending angles at a bent point have been demonstrated. Individual CNTs are manipulated by limiting the length of bent CNTs and the bending angle. In our approach, multiwalled CNTs with 5-15 nm diameter subjected to bending deformation produce no outer tube breakage under uniform bending and reversible radial deformation with bending angles less than 110°. The lateral tip movement is determined by a simple geometric model that relies on the shape of multiwalled CNTs. The model effectively controls deforming CNT length and bending angle for given CNT shape. Experimental results demonstrate successful manipulation of randomly dispersed CNTs without visual defects. This approach to pushing can be extended to develop a wide range of CNT based nanodevice applications.

  6. X-24B on Lakebed Showing Upper Body Shape

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The sleek, futuristic shape of the X-24B lifting body research vehicle can be clearly seen in this look-down view of the aircraft on Rogers Dry Lake, adjacent to the NASA Flight Research Center, Edwards, California. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered glide flight was on April 17, 1969, with Air Force Maj. Jerauld Gentry at the controls. Gentry also piloted its first powered flight on March 19, 1970. The X-24A was flown 28 times in the program that, like the HL-10, validated the concept that a Space Shuttle vehicle could be landed unpowered. The fastest speed achieved by the X-24A was 1,036 miles per hour (mph-Mach 1.6). Its maximum altitude was 71,400 feet. It was powered by an XLR-11 rocket engine with a maximum theoretical vacuum thrust of 8,480 pounds. The X-24A was later modified into the X-24B. The bulbous shape of the X-24A was converted into a 'flying flatiron' shape with a rounded top, flat bottom, and double delta platform that ended in a pointed nose. The X-24B demonstrated

  7. 35. DETAIL VIEW OF GUNITEENCASED CONCRETE PILINGS AT BENT 6, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. DETAIL VIEW OF GUNITE-ENCASED CONCRETE PILINGS AT BENT 6, LOOKING SOUTHWEST (CAMERA AGAINST CHAIN-LINK FENCE) - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  8. Haptic shape discrimination and interhemispheric communication.

    PubMed

    Dowell, Catherine J; Norman, J Farley; Moment, Jackie R; Shain, Lindsey M; Norman, Hideko F; Phillips, Flip; Kappers, Astrid M L

    2018-01-10

    In three experiments participants haptically discriminated object shape using unimanual (single hand explored two objects) and bimanual exploration (both hands were used, but each hand, left or right, explored a separate object). Such haptic exploration (one versus two hands) requires somatosensory processing in either only one or both cerebral hemispheres; previous studies related to the perception of shape/curvature found superior performance for unimanual exploration, indicating that shape comparison is more effective when only one hemisphere is utilized. The current results, obtained for naturally shaped solid objects (bell peppers, Capsicum annuum) and simple cylindrical surfaces demonstrate otherwise: bimanual haptic exploration can be as effective as unimanual exploration, showing that there is no necessary reduction in ability when haptic shape comparison requires interhemispheric communication. We found that while successive bimanual exploration produced high shape discriminability, the participants' bimanual performance deteriorated for simultaneous shape comparisons. This outcome suggests that either interhemispheric interference or the need to attend to multiple objects simultaneously reduces shape discrimination ability. The current results also reveal a significant effect of age: older adults' shape discrimination abilities are moderately reduced relative to younger adults, regardless of how objects are manipulated (left hand only, right hand only, or bimanual exploration).

  9. [Evaluation of preparation of curved root canals using hand-used ProTaper].

    PubMed

    Nie, Min; Zhao, Xin-Chen; Peng, Bin; Fan, Ming-Wen; Bian, Zhuan

    2009-05-01

    To evaluate the shaping ability of hand-used ProTaper on curved canals using Endodontic Cube. Fifty-four curved root canals in vitro were selected and divided into three groups according to the curved degree (alpha), group A: 0 degrees < or = alpha < 25 degrees , group B: 25 degrees < or = alpha < 40 degrees , group C: 40 degrees < or = alpha < 55 degrees . Endodontic Cube was assembled, and each sample was sectioned perpendicular to the axis of the tooth into four sections with Isomer-Buhler in low speed. Then the root canals were prepared with hand-used ProTaper. Before and after shaping, photograph of all the sections were taken under a stereomicroscope. Statistical analyses were performed. The dentin cutting quantity of the whole canal prepared with ProTaper in group B and C was larger than that of group A. The deviation distance of the whole canal prepared by ProTaper in group C was significantly larger than that in group A, and the deviation distance in middle portion larger than that in group B. The maintaining ability in the middle portion of group C by ProTaper was worse than that of group A and B. The curvature of root canal may increase the cutting quantity of the -dentin and reduce the ability of remaining original canal shape prepared by ProTaper.

  10. Deformation mechanisms of bent Si nanowires governed by the sign and magnitude of strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lihua, E-mail: wlh@bjut.edu.cn, E-mail: xdhan@bjut.edu.cn, E-mail: j.zou@uq.edu.au; Materials Engineering, The University of Queensland, Brisbane, QLD 4072; Kong, Deli

    2016-04-11

    In this study, the deformation mechanisms of bent Si nanowires are investigated at the atomic scale with bending strain up to 12.8%. The sign and magnitude of the applied strain are found to govern their deformation mechanisms, in which the dislocation types (full or partial dislocations) can be affected by the sign (tensile or compressive) and magnitude of the applied strain. In the early stages of bending, plastic deformation is controlled by 60° full dislocations. As the bending increases, Lomer dislocations can be frequently observed. When the strain increases to a significant level, 90° partial dislocations induced from the tensilemore » surfaces of the bent nanowires are observed. This study provides a deeper understanding of the effect of the sign and magnitude of the bending strain on the deformation mechanisms in bent Si nanowires.« less

  11. The fourth Bent-toed Gecko of the genus Cyrtodactylus (Squamata: Gekkonidae) from Java, Indonesia.

    PubMed

    Riyanto, Awal; Grismer, L Lee; Wood, Perry L

    2015-12-22

    Cyrtodactylus petani sp. nov. is a new species of Bent-toed Gecko from Java, Indonesia that had been masquerading under the name C. fumosus (Müller, 1895). The new species is differentiated from C. fumosus and all its Sundaland congeners by having the following combination of morphological characters: a maximum SVL of 57.2 mm; nine or ten supralabials; seven or eight infralabials; strongly tuberculate body and limbs; 20-25 paravertebral tubercles; 30-35 ventral scales; enlarged precloacal scales; enlarged femoral scales; 17-18 subdigital lamellae on the fourth toe; 31-35 continuous precloacal and femoral pores in males, pores absent in females; no precloacal groove; no enlarged median subcaudals; tubercles on anterior portion of tail; no reticulated pattern on top of head; a blotched dorsal pattern; and no paired, dark, semi-lunar shaped blotches on the nape.

  12. 25. GROUND VIEW OF PIER, LOOKING SOUTHEAST, SHOWING (LEFTRIGHT) BENTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. GROUND VIEW OF PIER, LOOKING SOUTHEAST, SHOWING (LEFT-RIGHT) BENTS 16-25, NEPTUNE'S LOCKER (LEFT), WITH CAPTAIN'S GALLEY BEHIND - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  13. 26. GROUND VIEW OF PIER, LOOKING SOUTHEAST, SHOWING (LEFTRIGHT) BENTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. GROUND VIEW OF PIER, LOOKING SOUTHEAST, SHOWING (LEFT-RIGHT) BENTS 18-23 NEPTUNE'S LOCKER (RIGHT), WITH CAPTAIN'S GALLEY BEHIND - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  14. 24. GROUND VIEW OF PIER, LOOKING SOUTHEAST, SHOWING (LEFTRIGHT) BENTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. GROUND VIEW OF PIER, LOOKING SOUTHEAST, SHOWING (LEFT-RIGHT) BENTS 10-19, NEPTUNE'S LOCKER (RIGHT), WITH CAPTAIN'S GALLEY BEHIND - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  15. 38. DETAIL VIEW OF PILINGS AT BENT 17 (CAPTAIN'S GALLEY), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. DETAIL VIEW OF PILINGS AT BENT 17 (CAPTAIN'S GALLEY), LOOKING SOUTHWEST, SHOWING CONCRETE COLLARS AROUND GUNITE-ENCASED CONCRETE PILINGS - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  16. 37. DETAIL VIEW OF PILINGS AT BENT 8, LOOKING SOUTHWEST, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. DETAIL VIEW OF PILINGS AT BENT 8, LOOKING SOUTHWEST, SHOWING PILING WITH CONCRETE COLLAR (LEFT) AND GUNITE-ENCASED PILING (RIGHT) - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  17. Substructure detail view of the castinplace concrete bents and steel, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Substructure detail view of the cast-in-place concrete bents and steel, longitudinal "I" beams. - Marion Creek Bridge, Spanning Marion Creek at Milepoint 66.42 on North Santiam Highway (OR-22), Marion Forks, Linn County, OR

  18. Design criteria for post and beam bents with drilled shafts.

    DOT National Transportation Integrated Search

    2007-12-01

    The research work presented in the report addresses the potential areas of conservatism in the current practice related to bridge : bents supported by drilled shafts and piles. The research encompasses modeling efforts and an experimental program. Mo...

  19. A natural approach to convey numerical digits using hand activity recognition based on hand shape features

    NASA Astrophysics Data System (ADS)

    Chidananda, H.; Reddy, T. Hanumantha

    2017-06-01

    This paper presents a natural representation of numerical digit(s) using hand activity analysis based on number of fingers out stretched for each numerical digit in sequence extracted from a video. The analysis is based on determining a set of six features from a hand image. The most important features used from each frame in a video are the first fingertip from top, palm-line, palm-center, valley points between the fingers exists above the palm-line. Using this work user can convey any number of numerical digits using right or left or both the hands naturally in a video. Each numerical digit ranges from 0 to9. Hands (right/left/both) used to convey digits can be recognized accurately using the valley points and with this recognition whether the user is a right / left handed person in practice can be analyzed. In this work, first the hand(s) and face parts are detected by using YCbCr color space and face part is removed by using ellipse based method. Then, the hand(s) are analyzed to recognize the activity that represents a series of numerical digits in a video. This work uses pixel continuity algorithm using 2D coordinate geometry system and does not use regular use of calculus, contours, convex hull and datasets.

  20. Mutations in cell elongation genes mreB, mrdA and mrdB suppress the shape defect of RodZ-deficient cells.

    PubMed

    Shiomi, Daisuke; Toyoda, Atsushi; Aizu, Tomoyuki; Ejima, Fumio; Fujiyama, Asao; Shini, Tadasu; Kohara, Yuji; Niki, Hironori

    2013-03-01

    RodZ interacts with MreB and both factors are required to maintain the rod shape of Escherichia coli. The assembly of MreB into filaments regulates the subcellular arrangement of a group of enzymes that synthesizes the peptidoglycan (PG) layer. However, it is still unknown how polymerization of MreB determines the rod shape of bacterial cells. Regulatory factor(s) are likely to be involved in controlling the function and dynamics of MreB. We isolated suppressor mutations to partially recover the rod shape in rodZ deletion mutants and found that some of the suppressor mutations occurred in mreB. All of the mreB mutations were in or in the vicinity of domain IA of MreB. Those mreB mutations changed the property of MreB filaments in vivo. In addition, suppressor mutations were found in the periplasmic regions in PBP2 and RodA, encoded by mrdA and mrdB genes. Similar to MreB and RodZ, PBP2 and RodA are pivotal to the cell wall elongation process. Thus, we found that mutations in domain IA of MreB and in the periplasmic domain of PBP2 and RodA can restore growth and rod shape to ΔrodZ cells, possibly by changing the requirements of MreB in the process. © 2013 Blackwell Publishing Ltd.

  1. Mutations in cell elongation genes mreB, mrdA and mrdB suppress the shape defect of RodZ-deficient cells

    PubMed Central

    Shiomi, Daisuke; Toyoda, Atsushi; Aizu, Tomoyuki; Ejima, Fumio; Fujiyama, Asao; Shini, Tadasu; Kohara, Yuji; Niki, Hironori

    2013-01-01

    RodZ interacts with MreB and both factors are required to maintain the rod shape of Escherichia coli. The assembly of MreB into filaments regulates the subcellular arrangement of a group of enzymes that synthesizes the peptidoglycan (PG) layer. However, it is still unknown how polymerization of MreB determines the rod shape of bacterial cells. Regulatory factor(s) are likely to be involved in controlling the function and dynamics of MreB. We isolated suppressor mutations to partially recover the rod shape in rodZ deletion mutants and found that some of the suppressor mutations occurred in mreB. All of the mreB mutations were in or in the vicinity of domain IA of MreB. Those mreB mutations changed the property of MreB filaments in vivo. In addition, suppressor mutations were found in the periplasmic regions in PBP2 and RodA, encoded by mrdA and mrdB genes. Similar to MreB and RodZ, PBP2 and RodA are pivotal to the cell wall elongation process. Thus, we found that mutations in domain IA of MreB and in the periplasmic domain of PBP2 and RodA can restore growth and rod shape to ΔrodZ cells, possibly by changing the requirements of MreB in the process. PMID:23301723

  2. Shuttle Ku-band bent-pipe implementation considerations. [for Space Shuttle digital communication systems

    NASA Technical Reports Server (NTRS)

    Batson, B. H.; Seyl, J. W.; Huth, G. K.

    1977-01-01

    This paper describes an approach for relay of data-modulated subcarriers from Shuttle payloads through the Shuttle Ku-band communications subsystem (and subsequently through a tracking and data relay satellite system to a ground terminal). The novelty is that a channel originally provided for baseband digital data is shown to be suitable for this purpose; the resulting transmission scheme is referred to as a narrowband bent-pipe scheme. Test results demonstrating the validity of the narrowband bent-pipe mode are presented, and limitations on system performance are described.

  3. ASR/DEF-damaged bent caps : shear tests and field implications.

    DOT National Transportation Integrated Search

    2009-08-01

    Over the last decade, a number of reinforced concrete bent caps within Houston, Texas have exhibited premature concrete damage (cracking, spalling and a loss of material : strength) due to alkali-silica reaction (ASR) and/or delayed ettringite format...

  4. In-situ growth of AuNPs on WS2@U-bent optical fiber for evanescent wave absorption sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Suzhen; Zhao, Yuefeng; Zhang, Chao; Jiang, Shouzhen; Yang, Cheng; Xiu, Xianwu; Li, Chonghui; Li, Zhen; Zhao, Xiaofei; Man, Baoyuan

    2018-05-01

    The sensitivity of the evanescent wave absorption sensor is always a hot topic which has been attracted researchers' discussion. It is still a challenge for developing the effective sensor to sensitively detect some biochemical molecules solution in a simple and low-cost way. In this paper, an evanescent wave absorption (EWA) sensor has been presented based on the U-bent multimode fiber coated with tungsten disulfide (WS2) film and in-situ growth of gold nanoparticles (AuNPs) for the detection of ethanol solution and sodium chloride (NaCl) solution. Benefitted from the effective light coupling produced between U-bent probe and AuNPs, we attained the optimal size of the AuNPs by changing the reaction time between WS2 and tetrachloroauric acid (HAuCl4). With the AuNPs/WS2@U-bent optical fiber, we discussed the behaviors of EWA sensor, such as sensitivity, reproducibility, fast response-recovery time and stability. The sensitivity (△A/△C) of the proposed AuNPs/WS2@U-bent optical fiber EWA sensor is 0.65 for the detection of the ethanol solution. Besides, the AuNPs/WS2@U-bent optical fiber EWA sensor exhibits high sensitivity in detection of the sodium chloride (NaCl), which can reach 1.5 when the proposed sensor was immersed into NaCl solution. Our work demonstrates that the U-bent optical fiber EWA sensor may have promising applications in testing the solution of concentration.

  5. Dextrous robot hands

    NASA Technical Reports Server (NTRS)

    Venkataraman, Subramanian T. (Editor); Iberall, Thea (Editor)

    1990-01-01

    Recent studies of human hand function and their implications for the design of robot hands are discussed in reviews and reports. Topics addressed include human grasp choice and robotic grasp analysis, opposition space and human prehension, coordination in normal and prosthetic reaching, and intelligent exploration by the human hand. Consideration is given to a task-oriented dextrous manipulation architecture, the control architecture for the Belgrade/USC hand, the analysis of multifingered grasping and manipulation, and tactile sensing for shape interpretation. Diagrams, graphs, and photographs are provided.

  6. Dynamic and magneto-optic properties of bent-core liquid crystals

    NASA Astrophysics Data System (ADS)

    Salili, Seyyed Muhammad

    In this work, we describe dynamic behavior of free-standing bent-core liquid crystal filaments under dilative and axial compressive stresses in the B7 phase. We found that such filaments demonstrate very complex structures depending on the filament's temperature relative to the isotropic phase, initial filament thickness, and velocity at which the filament is pulled or compressed. We also present our experimental methods, results and analysis of the rupture and recoil properties of several bent-core liquid crystal filaments, anticipating that they may serve as a model system for complex biological fibers. After that, we systematically describe rheological measurements for dimeric liquid crystal compounds. We studied the shear-induced alignment properties, measured the viscoelastic properties as a function of temperature, shear rate, stress and frequency, and compared the results with the rheological properties of conventional chiral nematic and smectic phases. Then we present results of chiral nematic liquid crystals composed of flexible dimer molecules subject to large DC magnetic fields between 0 and 31T. We observe that these fields lead to selective reflection of light depending on temperature and magnetic field. The band of reflected wavelengths can be tuned from ultraviolet to beyond the IR-C band. A similar effect induced by electric fields has been presented previously, and was explained by a field-induced oblique-heliconical director deformation in accordance with early theoretical predictions. Finally, we report an unprecedented magnetic field-induced shifts of the isotropic-nematic phase transition temperature observed in liquid crystal dimers where two rigid linear mesogens are linked by flexible chains of either even- or odd-numbered hydrocarbon groups. This effect is explained in terms of quenching of the thermal fluctuations and decrease of the average bend angle of molecules in the odd-numbered dimers.

  7. Design of two-way reversible bending actuator based on a shape memory alloy/shape memory polymer composite

    NASA Astrophysics Data System (ADS)

    Taya, Minoru; Liang, Yuanchang; Namli, Onur C.; Tamagawa, Hirohisa; Howie, Tucker

    2013-10-01

    The design of a reversible bending actuator based on a SMA/SMP composite is presented. The SMA/SMP composite is made of SMA NiTi wires with a bent ‘U’-shape in the austenite phase embedded in an epoxy SMP matrix which has a memorized flat shape. The bending motion is caused by heating the composite above TAf to activate the NiTi recovery. Upon cooling, the softening from the austenite to R-phase transformation results in a relaxation of the composite towards its original flat shape. In the three-point bending measurement the composite was able to exhibit a reversible deflection of 1.3 mm on a support with a 10 mm span. In addition, a material model for predicting the composite’s deflection is presented and predicts the experimental results reasonably well. The model also estimates the in-plane internal force and the degree of the SMA phase transformation.

  8. Spatially resolved analysis of short-range structure perturbations in a plastically bent molecular crystal

    NASA Astrophysics Data System (ADS)

    Panda, Manas K.; Ghosh, Soumyajit; Yasuda, Nobuhiro; Moriwaki, Taro; Mukherjee, Goutam Dev; Reddy, C. Malla; Naumov, Panče

    2015-01-01

    The exceptional mechanical flexibility observed with certain organic crystals defies the common perception of single crystals as brittle objects. Here, we describe the morphostructural consequences of plastic deformation in crystals of hexachlorobenzene that can be bent mechanically at multiple locations to 360° with retention of macroscopic integrity. This extraordinary plasticity proceeds by segregation of the bent section into flexible layers that slide on top of each other, thereby generating domains with slightly different lattice orientations. Microscopic, spectroscopic and diffraction analyses of the bent crystal showed that the preservation of crystal integrity when stress is applied on the (001) face requires sliding of layers by breaking and re-formation of halogen-halogen interactions. Application of stress on the (100) face, in the direction where π···π interactions dominate the packing, leads to immediate crystal disintegration. Within a broader perspective, this study highlights the yet unrecognized extraordinary malleability of molecular crystals with strongly anisotropic supramolecular interactions.

  9. Field alignment of bent-core smectic liquid crystals for analog optical phase modulation

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Goodhew, L.; Shao, R.; Moran, M.; Korblova, E.; Walba, D. M.; Clark, N. A.; Maclennan, J. E.; Rudquist, P.

    2015-05-01

    A general method for aligning bent-core smectic liquid crystal materials is described. Alternating electric fields between interdigitated electrodes patterned on one cell surface create torques on the liquid crystal that result in uniform "bookshelf" orientation of the smectic layers. The aligned cell can then be driven in the conventional way by applying an electric field between all of the stripe electrodes connected together and a monolithic electrode on the other cell surface. Fast, analog, optical phase-only modulation is demonstrated in a device containing a polar, bent-core SmAPF material aligned using this technique.

  10. 16. VIEW OF PIN CONNECTION AT U1, AND BENT TOP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF PIN CONNECTION AT U1, AND BENT TOP LATERAL BAR, WEST TRUSS, SPAN 1, LOOKING WEST - Emlenton Bridge, Spanning Allegheny River, Travel Route 38 (Legislative Route 75), Emlenton, Venango County, PA

  11. [Influence of two positions for measuring instrument adapter on measurement of hand-transmitted vibration in grinding machine].

    PubMed

    Xie, X S; Zhang, M; Zheng, Y D; Du, X Y; Qi, C

    2016-06-20

    To investigate the influence of two positions for measuring instrument adapter on the measurement of hand-transmitted vibration in grinding machine using the intraclass correlation coefficient (ICC) of reliability assessment index, and to provide a basis for studies on the measurement standard for hand-transmitted vibration. With reference to the measurement standard for hand-transmitted vibration ISO 5349 Mechanical vibration-Measurement and evaluation of human exposure to hand-transmitted vibration-Part 1: General requirements and Mechanical vibration-Measurement and evaluation of human exposure to hand-transmitted vibration-Part 2: Practical guidance for measurement at the workplace, the domestic AWA5936 hand-transmitted vibration measuring instrument and SVAN-106 hand-transmitted vibration measuring instrument from Poland were used to measure hand-transmitted vibration in 3 workers for grinding machine in a foundry for 5 days continuously from September to October, 2014, and Y-axis data were recorded and compared. In worker A, the "T" -shaped adapter had a significantly higher mean Y-axis accelerated speed effective value than the "O" -shaped adapter [4.34 m/s(2) (95%CI 4.05(-)4.63) vs 2.32 m/s(2) (95%CI 2.27~2.38) , t=13.781, P<0.01]. In workers B and C, AWA5936 "U" -shaped adapter (placed at the position of the handle of grinding machine) had lower degrees of data variation of 12.55% and 15.77%, respectively, suggesting good data stability. The measurement results showed significant differences across different positions of adapter (P<0.01) and between all adapters except "O" -shaped and line-shaped adapters (all P<0.01) , while the measurement results showed no significant differences between the "O" -shaped and line-shaped adapters (P>0.01). The comparison of the measurement results of AWA5936 vibration measuring instrument with an "U" -shaped adapter and SVAN-106 vibration measuring instrument with an "S" -shaped adapter showed an ICC of >0.80 (ICC=0

  12. Computational Predictions of the Performance Wright 'Bent End' Propellers

    NASA Technical Reports Server (NTRS)

    Wang, Xiang-Yu; Ash, Robert L.; Bobbitt, Percy J.; Prior, Edwin (Technical Monitor)

    2002-01-01

    Computational analysis of two 1911 Wright brothers 'Bent End' wooden propeller reproductions have been performed and compared with experimental test results from the Langley Full Scale Wind Tunnel. The purpose of the analysis was to check the consistency of the experimental results and to validate the reliability of the tests. This report is one part of the project on the propeller performance research of the Wright 'Bent End' propellers, intend to document the Wright brothers' pioneering propeller design contributions. Two computer codes were used in the computational predictions. The FLO-MG Navier-Stokes code is a CFD (Computational Fluid Dynamics) code based on the Navier-Stokes Equations. It is mainly used to compute the lift coefficient and the drag coefficient at specified angles of attack at different radii. Those calculated data are the intermediate results of the computation and a part of the necessary input for the Propeller Design Analysis Code (based on Adkins and Libeck method), which is a propeller design code used to compute the propeller thrust coefficient, the propeller power coefficient and the propeller propulsive efficiency.

  13. Micromirror structure actuated by TiNi shape memory thin films

    NASA Astrophysics Data System (ADS)

    Fu, Y. Q.; Luo, J. K.; Hu, M.; Du, H. J.; Flewitt, A. J.; Milne, W. I.

    2005-10-01

    TiNi films were deposited by co-sputtering TiNi and Ti targets. Results from differential scanning calorimetry and curvature measurement revealed martensitic transformation and shape memory effect upon heating and cooling. Two types of TiNi/Si micromirror structures with a Si mirror cap (40 µm thick) and TiNi/Si actuation beams were designed and fabricated. For the first design, a V-shaped cantilever based on the TiNi/Si bimorph structure was used as the actuation mechanism for the micromirror. In the second design, three elbow-shaped Si beams with TiNi electrodes were used as the arms to actuate the mirror. The TiNi/Si microbeams were flat at room temperature and bent up by applying voltage in the TiNi electrodes (due to phase transformation and shape memory effect), thus causing changes in angles of the micromirror.

  14. 31. Photographic copy of Leanto Roof Framing Plan & Bent ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. Photographic copy of Leanto Roof Framing Plan & Bent Details (Ammann and Whitney and The Balinger Company, April 12, 1955). In files of the City of Philadelphia, Division of Aviation, Terminal E, Philadelphia International Airport. Reprinted with permission of the Division of Aviation. - TWA Maintenance Hangar, South side of Tinicum Island Road, Philadelphia International Airport, Philadelphia, Philadelphia County, PA

  15. 10. DETAILS OF STEEL FLUME, TYPICAL BENTS AND TRUSSES. EXHIBIT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAILS OF STEEL FLUME, TYPICAL BENTS AND TRUSSES. EXHIBIT L, SANTA ANA RIVER NO. 1 PROJECT, APR. 30, 1945. SCE drawing no. 523196 (sheet no. 6; for filing with Federal Power Commission). - Santa Ana River Hydroelectric System, Flumes & Tunnels below Sandbox, Redlands, San Bernardino County, CA

  16. Microstructure and pinning properties of hexagonal-disc shaped single crystalline MgB2

    NASA Astrophysics Data System (ADS)

    Jung, C. U.; Kim, J. Y.; Chowdhury, P.; Kim, Kijoon H.; Lee, Sung-Ik; Koh, D. S.; Tamura, N.; Caldwell, W. A.; Patel, J. R.

    2002-11-01

    We synthesized hexagonal-disc-shaped MgB2 single crystals under high-pressure conditions and analyzed the microstructure and pinning properties. The lattice constants and the Laue pattern of the crystals from x-ray micro-diffraction showed the crystal symmetry of MgB2. A thorough crystallographic mapping within a single crystal showed that the edge and c axis of hexagonal-disc shape exactly matched the [101¯0] and the [0001] directions of the MgB2 phase. Thus, these well-shaped single crystals may be the best candidates for studying the direction dependences of the physical properties. The magnetization curve and the magnetic hysteresis curve for these single crystals showed the existence of a wide reversible region and weak pinning properties, which supported our single crystals being very clean.

  17. Study of the efficiency for ion transfer through bent capillaries.

    PubMed

    Chen, Tsung-Chi; Xu, Wei; Garimella, Sandilya; Ouyang, Zheng

    2012-11-01

    Discontinuous atmospheric pressure interfaces (DAPIs) with bent capillaries represent a highly simplified and flexible means for introducing ions into a vacuum manifold for mass analysis or gas phase ion reactions. In this work, a series of capillaries of different radians and curvatures were used with DAPI for studying the impact of the capillary bending on the ion transfer. The variation of transfer efficiency was systematically characterized for dry and solvated ions. The efficiency loss for dry ions was less than one order of magnitude, even with a three-turn bent capillary. The transfer of solvated ions generated by electrospray was found to be minimally impacted by the bending of the transfer capillary. For multiply protonated ions, the transfer efficiency for ions at lower charge states could be relatively well retained, presumably due to the lower reactivity associated with proton transfer reaction and the compensation in intensity by conversion of ions at higher charge states. Copyright © 2012 John Wiley & Sons, Ltd.

  18. 36. VIEW OF FRAMING BENT BETWEEN SECONDARY THICKENER No. 3 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. VIEW OF FRAMING BENT BETWEEN SECONDARY THICKENER No. 3 AND PRIMARY THICKENER No. 2 FROM WEST. NOTE MECHANISM ON PRIMARY No. 2 ON LEFT, BARREN SOLUTION FEED PIPE AT LOWER RIGHT. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  19. The Free Energy Profile of Tubulin Straight-Bent Conformational Changes, with Implications for Microtubule Assembly and Drug Discovery

    PubMed Central

    Bonomi, Massimiliano; Agard, David A.; Jacobson, Matthew P.

    2014-01-01

    αβ-tubulin dimers need to convert between a ‘bent’ conformation observed for free dimers in solution and a ‘straight’ conformation required for incorporation into the microtubule lattice. Here, we investigate the free energy landscape of αβ-tubulin using molecular dynamics simulations, emphasizing implications for models of assembly, and modulation of the conformational landscape by colchicine, a tubulin-binding drug that inhibits microtubule polymerization. Specifically, we performed molecular dynamics, potential-of-mean force simulations to obtain the free energy profile for unpolymerized GDP-bound tubulin as a function of the ∼12° intradimer rotation differentiating the straight and bent conformers. Our results predict that the unassembled GDP-tubulin heterodimer exists in a continuum of conformations ranging between straight and bent, but, in agreement with existing structural data, suggests that an intermediate bent state has a lower free energy (by ∼1 kcal/mol) and thus dominates in solution. In agreement with predictions of the lattice model of microtubule assembly, lateral binding of two αβ-tubulins strongly shifts the conformational equilibrium towards the straight state, which is then ∼1 kcal/mol lower in free energy than the bent state. Finally, calculations of colchicine binding to a single αβ-tubulin dimer strongly shifts the equilibrium toward the bent states, and disfavors the straight state to the extent that it is no longer thermodynamically populated. PMID:24516374

  20. Development of a Prototype Over-Actuated Biomimetic Prosthetic Hand

    PubMed Central

    Williams, Matthew R.; Walter, Wayne

    2015-01-01

    The loss of a hand can greatly affect quality of life. A prosthetic device that can mimic normal hand function is very important to physical and mental recuperation after hand amputation, but the currently available prosthetics do not fully meet the needs of the amputee community. Most prosthetic hands are not dexterous enough to grasp a variety of shaped objects, and those that are tend to be heavy, leading to discomfort while wearing the device. In order to attempt to better simulate human hand function, a dexterous hand was developed that uses an over-actuated mechanism to form grasp shape using intrinsic joint mounted motors in addition to a finger tendon to produce large flexion force for a tight grip. This novel actuation method allows the hand to use small actuators for grip shape formation, and the tendon to produce high grip strength. The hand was capable of producing fingertip flexion force suitable for most activities of daily living. In addition, it was able to produce a range of grasp shapes with natural, independent finger motion, and appearance similar to that of a human hand. The hand also had a mass distribution more similar to a natural forearm and hand compared to contemporary prosthetics due to the more proximal location of the heavier components of the system. This paper describes the design of the hand and controller, as well as the test results. PMID:25790306

  1. Behavior of Pile to Bent Cap Connections Subjected to Seismic Forces

    DOT National Transportation Integrated Search

    2012-06-01

    Currently the South Carolina Department of Transportation employs a detail of a plain pile embedment for the : connection between precast prestressed piles and cast-in-place bent caps. This connection has proved beneficial in terms : of time and cost...

  2. How Follicular Dendritic Cells Shape the B-Cell Antigenome

    PubMed Central

    Kranich, Jan; Krautler, Nike Julia

    2016-01-01

    Follicular dendritic cells (FDCs) are stromal cells residing in primary follicles and in germinal centers of secondary and tertiary lymphoid organs (SLOs and TLOs). There, they play a crucial role in B-cell activation and affinity maturation of antibodies. FDCs have the unique capacity to bind and retain native antigen in B-cell follicles for long periods of time. Therefore, FDCs shape the B-cell antigenome (the sum of all B-cell antigens) in SLOs and TLOs. In this review, we discuss recent findings that explain how this stromal cell type can arise in almost any tissue during TLO formation and, furthermore, focus on the mechanisms of antigen capture and retention involved in the generation of long-lasting antigen depots displayed on FDCs. PMID:27446069

  3. Teaching Skills to Use a Computer Mouse in Preschoolers with Developmental Disabilities: Shaping Moving a Mouse and Eye-Hand Coordination

    ERIC Educational Resources Information Center

    Shimizu, Hirofumi; Yoon, Soyoung; McDonough, Christopher S.

    2010-01-01

    We taught seven preschoolers with developmental disabilities to point-and-click with a computer mouse. The computer-based training program consisted of three parts, based on a task analysis of the behavioral prerequisites to point-and-click. Training 1 was designed to shape moving the mouse. Training 2 was designed to build eye-hand coordination…

  4. Hand biometric recognition based on fused hand geometry and vascular patterns.

    PubMed

    Park, GiTae; Kim, Soowon

    2013-02-28

    A hand biometric authentication method based on measurements of the user's hand geometry and vascular pattern is proposed. To acquire the hand geometry, the thickness of the side view of the hand, the K-curvature with a hand-shaped chain code, the lengths and angles of the finger valleys, and the lengths and profiles of the fingers were used, and for the vascular pattern, the direction-based vascular-pattern extraction method was used, and thus, a new multimodal biometric approach is proposed. The proposed multimodal biometric system uses only one image to extract the feature points. This system can be configured for low-cost devices. Our multimodal biometric-approach hand-geometry (the side view of the hand and the back of hand) and vascular-pattern recognition method performs at the score level. The results of our study showed that the equal error rate of the proposed system was 0.06%.

  5. HandTutor™ enhanced hand rehabilitation after stroke--a pilot study.

    PubMed

    Carmeli, Eli; Peleg, Sara; Bartur, Gadi; Elbo, Enbal; Vatine, Jean-Jacques

    2011-12-01

    This study assessed the potential therapeutic benefi t of using HandTutor™ in combination with traditional rehabilitation in a post-stroke sub-acute population. The study compares an experimental group receiving traditional therapy combined with HandTutorTM treatment, against a control group receiving only traditional therapy. An assessor-blinded, randomized controlled pilot trial, was conducted in the Reuth rehabilitation unit in Israel. Thirty-one stroke patients in the sub-acute phase, were randomly assigned to one of the two groups (experimental or control) in sets of three. The experimental group (n = 16) underwent a hand rehabilitation programme using the HandTutorTM combined with traditional therapy. The control group (n = 15) received only traditional therapy. The treatment schedules for both groups were of similar duration and frequency. Improvements were evaluated using three indicators: 1) The Brunnström-Fugl-Meyer (FM) test, 2) the Box and Blocks (B&B) test and 3) improvement parameters as determined by the HandTutorTM software. Following 15 consecutive treatment sessions, a signifi cant improvement was observed within the experimental group (95% confi dence intervals) compared with the control group: B&B p = 0.015; FM p = 0.041, HandTutor™ performance accuracy on x axis and performance accuracy on y axis p < 0.0003. The results from this pilot study support further investigation of the use of the HandTutorTM in combination with traditional occupational therapy and physiotherapy during post stroke hand function rehabilitation.

  6. Shear repair methods for conventionally reinforced concrete girders and bent caps.

    DOT National Transportation Integrated Search

    2009-12-01

    Thirteen large-scale girders and two bent caps that replicated as close as possible bridge components from the 1950s were cast and loaded to cause initial cracking similar to that observed in the field. The girders were repaired with epoxy crack inje...

  7. 31 CFR 100.11 - Exchange of bent and partial coins.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... partial coins shall be presented separately by denomination category in lots of at least one pound for... redeemed at the face value equivalent of copper one cent coins. (c) Redemption site. Bent and partial coins will be redeemed only at the United States Mint, P.O. Box 400, Philadelphia, PA 19105. Coins are...

  8. X-ray study of mesomorphism of bent-core and chromonic mesogens

    NASA Astrophysics Data System (ADS)

    Joshi, Leela Pradhan

    The discovery of thermotropic biaxial nematic phase in bent-core mesogens, have engendered interest in these systems. Also, it undergoes optical switching about 100 times faster than conventional uniaxial nematic liquid crystal. Azo-substituted bent-core compounds, A131 and A103, were investigated as both offer an opportunity to observe their structures and phase transitions from the uniaxial nematic (Nu) to biaxial nematic (Nb) phase and from Nb to the underlying smectic-C (SmC) phase. Plank-like molecular systems are also expected to form Nb phase. Chromonic liquid crystals formed by aqueous solutions of plank-like dye molecules are interesting for their unique self-assembly and structural evolution. They have applications in optical element, coloring in food and textiles, and etc. Both systems were investigated with synchrotron x-ray scattering, polarizing optical microscopy, and differential scanning calorimetry. Temperature dependence of d-spacing and positional order correlations along the director clearly mark the phase boundaries where Nu-Nb transition was approximately 27° below the clearing point. Positional order correlation length of A131 increased from 1.5 in Nu to 3.3 molecular lengths in Nb phase, before it jumps by a factor of at least 5 in SmC phase. The lack of large discontinuous changes in the structural parameters and the subtle signatures in heat capacity establish the second order nature of Nu-Nb and Nb-SmC phase transitions. The chromonic system investigation results provide quantitative information of structural properties in nematic and columnar mesophases. We studied water solutions of (achiral) sunset yellow dye and (chiral and achiral) dihydrochloride salts of perylenebis-dicarboxydiimide. Positional order correlation lengths measurements, parallel and perpendicular to the aggregate axis, revealed that they increase with concentration and decrease with temperature. Temperature dependence of correlation lengths yielded the scission

  9. Hand Biometric Recognition Based on Fused Hand Geometry and Vascular Patterns

    PubMed Central

    Park, GiTae; Kim, Soowon

    2013-01-01

    A hand biometric authentication method based on measurements of the user's hand geometry and vascular pattern is proposed. To acquire the hand geometry, the thickness of the side view of the hand, the K-curvature with a hand-shaped chain code, the lengths and angles of the finger valleys, and the lengths and profiles of the fingers were used, and for the vascular pattern, the direction-based vascular-pattern extraction method was used, and thus, a new multimodal biometric approach is proposed. The proposed multimodal biometric system uses only one image to extract the feature points. This system can be configured for low-cost devices. Our multimodal biometric-approach hand-geometry (the side view of the hand and the back of hand) and vascular-pattern recognition method performs at the score level. The results of our study showed that the equal error rate of the proposed system was 0.06%. PMID:23449119

  10. Evaluation of bent caps in reinforced concrete deck girder bridges : part 2.

    DOT National Transportation Integrated Search

    2008-09-01

    This report describes research conducted to enable evaluation of existing vintage bent cap beams in reinforced concrete : deck girder bridges. The report is organized into two parts: 1) flexural anchorage capacity response and prediction of : reduced...

  11. Evaluation of bent caps in reinforced concrete deck girder bridges : part 1.

    DOT National Transportation Integrated Search

    2008-09-01

    This report describes research conducted to enable evaluation of existing vintage bent cap beams in reinforced concrete : deck girder bridges. The report is organized into two parts: 1) flexural anchorage capacity response and prediction of : reduced...

  12. Two conformational states in D-shaped DNA: Effects of local denaturation

    NASA Astrophysics Data System (ADS)

    Lee, O.-Chul; Kim, Cheolhee; Kim, Jae-Yeol; Lee, Nam Ki; Sung, Wokyung

    2016-06-01

    The bending of double-stranded(ds) DNA on the nano-meter scale plays a key role in many cellular processes such as nucleosome packing, transcription-control, and viral-genome packing. In our recent study, a nanometer-sized dsDNA bent into a D shape was formed by hybridizing a circular single-stranded(ss) DNA and a complementary linear ssDNA. Our fluorescence resonance energy transfer (FRET) measurement of D-DNA revealed two types of conformational states: a less-bent state and a kinked state, which can transform into each other. To understand the origin of the two deformed states of D-DNA, here we study the presence of open base-pairs in the ds portion by using the breathing-DNA model to simulate the system. We provide strong evidence that the two states are due to the emergence of local denaturation, i.e., a bubble in the middle and two forks at ends of the dsDNA portion. We also study the system analytically and find that the free-energy landscape is bistable with two minima representative of the two states. The kink and fork sizes estimated by the analytical calculation are also in excellent agreement with the results of the simulation. Thus, this combined experimental-simulation-analytical study corroborates that highly bent D-DNA reduces bending stress via local denaturation.

  13. Seismic performance of an I-girder to inverted-T bent cap connection.

    DOT National Transportation Integrated Search

    2011-09-01

    This report presents the research conducted as part of an investigation for the California Department of Transportation (Caltrans) regarding the seismic response and overall moment capacity of precast I-girder to inverted-T bent cap bridge connection...

  14. Improved (10)B-loaded liquid scintillator with pulse-shape discrimination.

    PubMed

    Greenwood, L R; Chellew, N R

    1979-04-01

    An improved (10)B-loaded liquid scintillator solution has been developed containing trimethylborate, 1-methylnaphthalene, and 9,10-diphenylanthracene. Cells up to 5 cm in diameter by 15.2 cm long have been prepared and tested with (10)B-loadings up to 7.2% by weight (80% trimethylborate). The solution has excellent light output and pulse-shape discrimination properties and is stable at temperatures as low as -17 degrees C. Neutron efficiency calculations are also presented.

  15. Broadband silicon polarization beam splitter with a high extinction ratio using a triple-bent-waveguide directional coupler.

    PubMed

    Ong, Jun Rong; Ang, Thomas Y L; Sahin, Ezgi; Pawlina, Bryan; Chen, G F R; Tan, D T H; Lim, Soon Thor; Png, Ching Eng

    2017-11-01

    We report on the design and experimental demonstration of a broadband silicon polarization beam splitter (PBS) with a high extinction ratio (ER)≥30  dB. This was achieved using triple-bent-waveguide directional coupling in a single PBS, and cascaded PBS topology. For the single PBS, the bandwidths for an ER≥30  dB are 20 nm for the quasi-TE mode, and 70 nm for the quasi-TM mode when a broadband light source (1520-1610 nm) was employed. The insertion loss (IL) varies from 0.2 to 1 dB for the quasi-TE mode and 0.2-2 dB for the quasi-TM mode. The cascaded PBS improved the bandwidth of the quasi-TE mode for an ER≥30  dB to 90 nm, with a low IL of 0.2-2 dB. To the best of our knowledge, our PBS system is one of the best broadband PBSs with an ER as high as ∼42  dB and a low IL below 1 dB around the central wavelength, and experimentally demonstrated using edge-coupling.

  16. A novel cluster-tube self-adaptive robot hand.

    PubMed

    Fu, Hong; Yang, Haokun; Song, Weishu; Zhang, Wenzeng

    2017-01-01

    This paper proposes a novel cluster-tube self-adaptive robot hand (CTSA Hand). The CTSA Hand consists of a base, a motor, a transmission mechanism, multiple elastic tendons, and a group of sliding-tube assemblies. Each sliding-tube assembly is composed of a sliding tube, a guide rod, two springs and a hinge. When the hand grasping an object, the object pushes some sliding tubes to different positions according to the surface shape of the object, the motor pulls the tendons tight to cluster tubes. The CTSA Hand can realize self-adaptive grasping of objects of different sizes and shapes. The CTSA Hand can grasp multiple objects simultaneously because the grasping of the hand acts as many grippers in different directions and heights. The grasping forces of the hand are adjusted by a closed-loop control system with potentiometer. Experimental results show that the CTSA Hand has the features of highly self-adaption and large grasping forces when grasping various objects.

  17. Direct numerical simulation of turbulence in a bent pipe

    NASA Astrophysics Data System (ADS)

    Schlatter, Philipp; Noorani, Azad

    2013-11-01

    A series of direct numerical simulations of turbulent flow in a bent pipe is presented. The setup employs periodic (cyclic) boundary conditions in the axial direction, leading to a nominally infinitely long pipe. The discretisation is based on the high-order spectral element method, using the code Nek5000. Four different curvatures, defined as the ratio between pipe radius and coil radius, are considered: κ = 0 (straight), 0.01 (mild curvature), 0.1 and 0.3 (strong curvature), at bulk Reynolds numbers of up to 11700 (corresponding to Reτ = 360 in the straight pipe case). The result show the turbulence-reducing effect of the curvature (similar to rotation), leading close to relaminarisation in the inner side; the outer side, however, remains fully turbulent. Prpoer orthogonal decomposition (POD) is used to extract the dominant modes, in an effort to explain low-frequency switching of sides inside the pipe. A number of additional interesting features are explored, which include sub-straight and sub-laminar drag for specific choices of curvature and Reynolds number: In particular the case with sub-laminar drag is investigated further, and our analysis shows the existence of a spanwise wave in the bent pipe, which in fact leads to lower overall pressure drop.

  18. Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture.

    PubMed

    Grasso, R; Zago, M; Lacquaniti, F

    2000-01-01

    Human erect locomotion is unique among living primates. Evolution selected specific biomechanical features that make human locomotion mechanically efficient. These features are matched by the motor patterns generated in the CNS. What happens when humans walk with bent postures? Are normal motor patterns of erect locomotion maintained or completely reorganized? Five healthy volunteers walked straight and forward at different speeds in three different postures (regular, knee-flexed, and knee- and trunk-flexed) while their motion, ground reaction forces, and electromyographic (EMG) activity were recorded. The three postures imply large differences in the position of the center of body mass relative to the body segments. The elevation angles of the trunk, pelvis, and lower limb segments relative to the vertical in the sagittal plane, the ground reaction forces and the rectified EMGs were analyzed over the gait cycle. The waveforms of the elevation angles along the gait cycle remained essentially unchanged irrespective of the adopted postures. The first two harmonics of these kinematic waveforms explain >95% of their variance. The phase shift but not the amplitude ratio between the first harmonic of the elevation angle waveforms of adjacent pairs was affected systematically by changes in posture. Thigh, shank, and foot angles covaried close to a plane in all conditions, but the plane orientation was systematically different in bent versus erect locomotion. This was explained by the changes in the temporal coupling among the three segments. For walking speeds >1 m s(-1), the plane orientation of bent locomotion indicates a much lower mechanical efficiency relative to erect locomotion. Ground reaction forces differed prominently in bent versus erect posture displaying characteristics intermediate between those typical of walking and those of running. Mean EMG activity was greater in bent postures for all recorded muscles independent of the functional role. The waveforms

  19. Prolonged disengagement from distractors near the hands

    PubMed Central

    Vatterott, Daniel B.; Vecera, Shaun P.

    2013-01-01

    Because items near our hands are often more important than items far from our hands, the brain processes visual items near our hands differently than items far from our hands. Multiple experiments have attributed this processing difference to spatial attention, but the exact mechanism behind how spatial attention near our hands changes is still under investigation. The current experiments sought to differentiate between two of the proposed mechanisms: a prioritization of the space near the hands and a prolonged disengagement of spatial attention near the hands. To differentiate between these two accounts, we used the additional singleton paradigm in which observers searched for a shape singleton among homogenously shaped distractors. On half the trials, one of the distractors was a different color. Both the prioritization and disengagement accounts predict differently colored distractors near the hands will slow target responses more than differently colored distractors far from the hands, but the prioritization account also predicts faster responses to targets near the hands than far from the hands. The disengagement account does not make this prediction, because attention does not need to be disengaged when the target appears near the hand. We found support for the disengagement account: Salient distractors near the hands slowed responses more than those far from the hands, yet observers did not respond faster to targets near the hands. PMID:23966971

  20. The small protein MbiA interacts with MreB and modulates cell shape in Caulobacter crescentus

    PubMed Central

    Yakhnina, Anastasiya A.; Gitai, Zemer

    2014-01-01

    Summary In Caulobacter crescentus, the actin homologue MreB is critical for cell shape maintenance. Despite the central importance of MreB for cell morphology and viability, very little is known about MreB-interacting factors. Here, we use an overexpression approach to identify a novel MreB interactor, MbiA. MbiA interacts with MreB in both biochemical and genetic assays, colocalizes with MreB throughout the cell cycle, and relies on MreB for its localization. MbiA over-expression mimics the loss of MreB function, severely perturbing cell morphology, inhibiting growth and inducing cell lysis. Additionally, mbiA deletion shows a synthetic growth phenotype with a hypomorphic allele of the MreB interactor RodZ, suggesting that these two MreB-interacting proteins either have partially redundant functions or participate in the same functional complex. Our work thus establishes MbiA as a novel cell shape regulator that appears to function through regulating MreB, and opens avenues for discovery of more MreB-regulating factors by showing that overexpression screens are a valuable tool for uncovering potentially redundant cell shape effectors. PMID:22804814

  1. The small protein MbiA interacts with MreB and modulates cell shape in Caulobacter crescentus.

    PubMed

    Yakhnina, Anastasiya A; Gitai, Zemer

    2012-09-01

    In Caulobacter crescentus, the actin homologue MreB is critical for cell shape maintenance. Despite the central importance of MreB for cell morphology and viability, very little is known about MreB-interacting factors. Here, we use an overexpression approach to identify a novel MreB interactor, MbiA. MbiA interacts with MreB in both biochemical and genetic assays, colocalizes with MreB throughout the cell cycle, and relies on MreB for its localization. MbiA overexpression mimics the loss of MreB function, severely perturbing cell morphology, inhibiting growth and inducing cell lysis. Additionally, mbiA deletion shows a synthetic growth phenotype with a hypomorphic allele of the MreB interactor RodZ, suggesting that these two MreB-interacting proteins either have partially redundant functions or participate in the same functional complex. Our work thus establishes MbiA as a novel cell shape regulator that appears to function through regulating MreB, and opens avenues for discovery of more MreB-regulating factors by showing that overexpression screens are a valuable tool for uncovering potentially redundant cell shape effectors. © 2012 Blackwell Publishing Ltd.

  2. Shear repair methods for conventionally reinforced concrete girders and bent caps : appendices.

    DOT National Transportation Integrated Search

    2009-12-01

    Thirteen large-scale girders and two bent caps that replicated as close as possible bridge components from the 1950s were cast and loaded to cause initial cracking similar to that observed in the field. The girders were repaired with epoxy crack inje...

  3. Bent dark soliton dynamics in two spatial dimensions beyond the mean field approximation

    NASA Astrophysics Data System (ADS)

    Mistakidis, Simeon; Katsimiga, Garyfallia; Koutentakis, Georgios; Kevrekidis, Panagiotis; Schmelcher, Peter; Theory Group of Fundamental Processes in Quantum Physics Team

    2017-04-01

    The dynamics of a bented dark soliton embedded in two spatial dimensions beyond the mean-field approximation is explored. We examine the case of a single bented dark soliton comparing the mean-field approximation to a correlated approach that involves multiple orbitals. Fragmentation is generally present and significantly affects the dynamics, especially in the case of stronger interparticle interactions and in that of lower atom numbers. It is shown that the presence of fragmentation allows for the appearance of solitonic and vortex structures in the higher-orbital dynamics. In particular, a variety of excitations including dark solitons in multiple orbitals and vortex-antidark complexes is observed to arise spontaneously within the beyond mean-field dynamics. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.

  4. Particle shape inhomogeneity and plasmon-band broadening of solar-control LaB6 nanoparticles

    NASA Astrophysics Data System (ADS)

    Machida, Keisuke; Adachi, Kenji

    2015-07-01

    An ensemble inhomogeneity of non-spherical LaB6 nanoparticles dispersion has been analyzed with Mie theory to account for the observed broad plasmon band. LaB6 particle shape has been characterized using small-angle X-ray scattering (SAXS) and electron tomography (ET). SAXS scattering intensity is found to vary exponentially with exponent -3.10, indicating the particle shape of disk toward sphere. ET analysis disclosed dually grouped distribution of nanoparticle dispersion; one is large-sized at small aspect ratio and the other is small-sized with scattered high aspect ratio, reflecting the dual fragmentation modes during the milling process. Mie extinction calculations have been integrated for 100 000 particles of varying aspect ratio, which were produced randomly by using the Box-Muller method. The Mie integration method has produced a broad and smooth absorption band expanded towards low energy, in remarkable agreement with experimental profiles by assuming a SAXS- and ET-derived shape distribution, i.e., a majority of disks with a little incorporation of rods and spheres for the ensemble. The analysis envisages a high potential of LaB6 with further-increased visible transparency and plasmon peak upon controlled particle-shape and its distribution.

  5. Flexible bent rod model with a saturating induced dipole moment to study the electric linear dichroism of DNA fragments

    NASA Astrophysics Data System (ADS)

    Bertolotto, Jorge A.; Umazano, Juan P.

    2016-06-01

    In the present work we make a theoretical study of the steady state electric linear dichroism of DNA fragments in aqueous solution. The here developed theoretical approach considers a flexible bent rod model with a saturating induced dipole moment. The electric polarizability tensor of bent DNA fragments is calculated considering a phenomenological model which theoretical and experimental backgroung is presented here. The model has into account the electric polarizability longitudinal and transversal to the macroion. Molecular flexibility is described using an elastic potential. We consider DNA fragments originally bent with bending fluctuations around an average bending angle. The induced dipole moment is supposed constant once the electric field strength grows up at critical value. To calculate the reduced electric linear dichroism we determine the optical factor considering the basis of the bent DNA perpendicular to the molecular axis. The orientational distribution function has into account the anisotropic electric properties and the molecule flexibility. We applied the present theoretical background to fit electric dichroism experimental data of DNA fragments reported in the bibliography in a wide range of molecular weight and electric field. From these fits, values of DNA physical properties are estimated. We compare and discuss the results here obtained with the theoretical and experimental data presented by other authors. The original contributions of this work are: the inclusion of the transversal electric polarizability saturating with the electric field, the description of the electric properties with an electric polarizability tensor dependant on the bending angle and the use of an arc model originally bent.

  6. The bHLH transcription factor Hand is regulated by Alk in the Drosophila embryonic gut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varshney, Gaurav K.; Palmer, Ruth H.

    2006-12-29

    During embryonic development the midgut visceral muscle is formed by fusion of cells within the visceral mesoderm, a process initiated by the specification of a specialised cell type, the founder cell, within this tissue. Activation of the receptor tyrosine kinase Anaplastic lymphoma kinase (Alk) in the developing visceral muscle of Drosophila melanogaster initiates a signal transduction pathway required for muscle fusion. In this paper, we have investigated downstream components which are regulated by this novel signalling pathway. Here we show that Alk-mediated signal transduction drives the expression of the bHLH transcription factor Hand in vivo. Loss of Alk function resultsmore » in a complete lack of Hand expression in this tissue, whereas Alk gain of function results in an expansion of Hand expression. Finally, we have investigated the process of muscle fusion in the gut of Hand mutant animals and can find no obvious defects in this process, suggesting that Hand is not critical for visceral muscle fusion per se.« less

  7. The role of vision on hand preshaping during reach to grasp.

    PubMed

    Winges, Sara A; Weber, Douglas J; Santello, Marco

    2003-10-01

    During reaching to grasp objects with different shapes hand posture is molded gradually to the object's contours. The present study examined the extent to which the temporal evolution of hand posture depends on continuous visual feedback. We asked subjects to reach and grasp objects with different shapes under five vision conditions (VCs). Subjects wore liquid crystal spectacles that occluded vision at four different latencies from onset of the reach. As a control, full-vision trials (VC5) were interspersed among the blocked vision trials. Object shapes and all VCs were presented to the subjects in random order. Hand posture was measured by 15 sensors embedded in a glove. Linear regression analysis, discriminant analysis, and information theory were used to assess the effect of removing vision on the temporal evolution of hand shape. We found that reach duration increased when vision was occluded early in the reach. This was caused primarily by a slower approach of the hand toward the object near the end of the reach. However, vision condition did not have a significant effect on the covariation patterns of joint rotations, indicating that the gradual evolution of hand posture occurs in a similar fashion regardless of vision. Discriminant analysis further supported this interpretation, as the extent to which hand posture resembled object shape and the rate at which hand posture discrimination occurred throughout the movement were similar across vision conditions. These results extend previous observations on memory-guided reaches by showing that continuous visual feedback of the hand and/or object is not necessary to allow the hand to gradually conform to object contours.

  8. Artificial dexterous hand

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan (Inventor)

    1990-01-01

    An artificial dexterous hand is provided for conformally engaging and manipulating objects. The hand includes an articulated digit which is connected to an engagement sub-assembly and has a first shape adaption mechanism associated with it. The digit has a digit base and first and second phalanges. The digit base is operatively interconnected to the first phalange by a base joint having a base pulley. The phalanges are operatively interconnected by a separate first phalange joint having a first phalange pulley. The engagement sub-assembly includes a tendon, which is received by the base pulley and by the first phalange pulley, and an actuation device for selectively tensioning the tendon. The first shape adaption mechanism is responsive to and receives the tendon. It is also situated between the base joint and the first phalange joint and is connected to the first phalange. Upon actuation by the actuation device, the phalanges are caused to pivot relative to the base joint and the second phalange is caused to pivot relative to the first phalange. At the same time, the first shape adaption mechanism controls the sequence of the aforementioned pivoting of the phalanges through application of braking force to the tendon.

  9. Effects of Cone-Shaped Bend Inlet Cannulas of an Axial Blood Pump on Thrombus Formation: An Experiment and Simulation Study.

    PubMed

    Liu, Guangmao; Zhou, Jianye; Sun, Hansong; Zhang, Yan; Chen, Haibo; Hu, Shengshou

    2017-04-05

    BACKGROUND Cannula shape and connection style influence the risk of thrombus formation in the blood pump by varying the blood flow characteristics inside the pump. Inlet cannulas should be designed based on the need for anatomical fit and reducing the risk of thrombus generation in the blood pump. The effects on thrombus formation of the cone-shaped bend inlet cannulas of axial blood pumps should be studied. MATERIAL AND METHODS The cannulas were designed as cone-shaped, with 1 bent section connecting 2 straight sections. Both the silicone tube and novel cone-shaped cannula were simulated for comparison. The flow fields of a blood pump with inlet cannula were simulated by computational fluid dynamics (CFD) at flows of 2.0, 2.5, and 3.0 liters per minute (lpm), with pump rotational speeds of 7500, 8000, and 8500 rpm, respectively. Then, 6 two-dimensional (2D) particle image velocimetry (PIV) tests were conducted and the velocity distributions were analyzed. RESULTS A low-velocity region was located inside the pump entrance when a soft silicone tube was used. At 8500 rpm and 3.0 lpm working condition, the minimum velocity inside the pump with cone-shaped cannulas was 2.5×10^-1 m/s. The cone-shaped cannulas eliminated the low-velocity region inside the pump. Both CFD and PIV results showed that the low-velocity region did not spread to the entrance of the blood pump within the flow range from 2.0 lpm to 7.0 lpm. CONCLUSIONS The designed cone-shaped bent cannulas can eliminate the low-velocity region inside the blood pump and reduce the risk of thrombus formation in the blood pump.

  10. Corrosion of NiTi Wires with Cracked Oxide Layer

    NASA Astrophysics Data System (ADS)

    Racek, Jan; Šittner, Petr; Heller, Luděk; Pilch, Jan; Petrenec, Martin; Sedlák, Petr

    2014-07-01

    Corrosion behavior of superelastic NiTi shape memory alloy wires with cracked TiO2 surface oxide layers was investigated by electrochemical corrosion tests (Electrochemical Impedance Spectroscopy, Open Circuit Potential, and Potentiodynamic Polarization) on wires bent into U-shapes of various bending radii. Cracks within the oxide on the surface of the bent wires were observed by FIB-SEM and TEM methods. The density and width of the surface oxide cracks dramatically increase with decreasing bending radius. The results of electrochemical experiments consistently show that corrosion properties of NiTi wires with cracked oxide layers (static load keeps the cracks opened) are inferior compared to the corrosion properties of the straight NiTi wires covered by virgin uncracked oxides. Out of the three methods employed, the Electrochemical Impedance Spectroscopy seems to be the most appropriate test for the electrochemical characterization of the cracked oxide layers, since the impedance curves (Nyquist plot) of differently bent NiTi wires can be associated with increasing state of the surface cracking and since the NiTi wires are exposed to similar conditions as the surfaces of NiTi implants in human body. On the other hand, the potentiodynamic polarization test accelerates the corrosion processes and provides clear evidence that the corrosion resistance of bent superelastic NiTi wires degrades with oxide cracking.

  11. Precast, Prestressed Concrete Bent Caps : Volume 1, Preliminary Design Considerations and Experimental Test Program

    DOT National Transportation Integrated Search

    2018-04-01

    Precast prestressed concrete bent caps may provide significant benefits by enabling accelerated construction of bridge substructures and improve longevity by reducing the propensity for cracking. The Texas Department of Transportation enables the use...

  12. Bent optical fiber tapers for refractometery and biosensing

    NASA Astrophysics Data System (ADS)

    Penchev, Emil; Eftimov, Tinko; Bock, Wojtek

    2015-01-01

    We report the results of our study of the spectral shifts caused by surrounding refractive index changes (SRI) in bent fibre tapers. Fused and etched fibre tapers were fabricated using a gas burner and HF acid. Spectral shifts as high as 200 nm have been observed for SRI variations from 1.33 to 1.44 and sensitivity as high as 830 nm/r.i.u. around water RI values. We present results for refractometric measurements of cow milk of varying fat content and compare results with those obtained with conventional Abbe refractometers and high sensitivity double resonance LPGs.

  13. Mechanical impedance and absorbed power of hand-arm under x(h)-axis vibration and role of hand forces and posture.

    PubMed

    Aldien, Yasser; Marcotte, Pierre; Rakheja, Subhash; Boileau, Paul-Emile

    2005-07-01

    The biodynamic responses of the hand-arm system under x(h)-axis vibration are investigated in terms of the driving point mechanical impedance (DPMI) and absorbed power in a laboratory study. For this purpose, seven healthy male subjects are exposed to two levels of random vibration in the 8-1,000 Hz frequency range, using three instrumented cylindrical handles of different diameters (30, 40 and 50 mm), and different combinations of grip (10, 30 and 50 N) and push (0, 25 and 50 N) forces. The experiments involve grasping the handle while adopting two different postures, involving elbow flexion of 90 degrees and 180 degrees, with wrist in the neutral position for both postures. The analyses of the results revealed peak DPMI magnitude and absorbed power responses near 25 Hz and 150 Hz, for majority of the test conditions considered. The frequency corresponding to the peak response increased with increasing hand forces. Unlike the absorbed power, the DPMI response was mostly observed to be insensitive to variations in the excitation magnitude. The handle diameter revealed obvious effects on the DPMI magnitude, specifically at frequencies above 250 Hz, which was not evident in the absorbed power due to relatively low velocity at higher frequencies. The influence of hand forces was also evident on the DPMI magnitude response particularly at frequencies. above 100 Hz, while the effect of hand-arm posture on the DPMI magnitude was nearly negligible. The magnitude of power absorbed within the hand and arm was observed to be strongly dependent upon the excitation level over the entire frequency range, while the influence of hand-arm posture on the total absorbed power was observed to be important. The effect of variations in the hand forces on the absorbed power was relatively small for the bent elbow posture, while an increase in either the grip or the push force coupled with the extended arm posture resulted in considerably higher energy absorption. The results suggested

  14. Learning through hand- or typewriting influences visual recognition of new graphic shapes: behavioral and functional imaging evidence.

    PubMed

    Longcamp, Marieke; Boucard, Céline; Gilhodes, Jean-Claude; Anton, Jean-Luc; Roth, Muriel; Nazarian, Bruno; Velay, Jean-Luc

    2008-05-01

    Fast and accurate visual recognition of single characters is crucial for efficient reading. We explored the possible contribution of writing memory to character recognition processes. We evaluated the ability of adults to discriminate new characters from their mirror images after being taught how to produce the characters either by traditional pen-and-paper writing or with a computer keyboard. After training, we found stronger and longer lasting (several weeks) facilitation in recognizing the orientation of characters that had been written by hand compared to those typed. Functional magnetic resonance imaging recordings indicated that the response mode during learning is associated with distinct pathways during recognition of graphic shapes. Greater activity related to handwriting learning and normal letter identification was observed in several brain regions known to be involved in the execution, imagery, and observation of actions, in particular, the left Broca's area and bilateral inferior parietal lobules. Taken together, these results provide strong arguments in favor of the view that the specific movements memorized when learning how to write participate in the visual recognition of graphic shapes and letters.

  15. Repair of Morganza Spillway Bridge bent pile cap using carbon fiber reinforcement (CFR).

    DOT National Transportation Integrated Search

    2016-04-01

    The pile cap of an end bent of the Morganza Spillway Bridge suffered extensive damage at the girder bearing locations, : particularly on the side where the pounding of the girders by the adjacent concrete deck located on the approach side of the : be...

  16. A Printed Xi-Shaped Left-Handed Metamaterial on Low-Cost Flexible Photo Paper.

    PubMed

    Ashraf, Farhad Bin; Alam, Touhidul; Islam, Mohammad Tariqul

    2017-07-05

    A Xi-shaped meta structure, has been introduced in this paper. A modified split-ring resonator (MSRR) and a capacitive loaded strip (CLS) were used to achieve the left-handed property of the metamaterial. The structure was printed using silver metallic nanoparticle ink, using a very low-cost photo paper as a substrate material. Resonators were inkjet-printed using silver nanoparticle metallic ink on paper to make this metamaterial flexible. It is also free from any kind of chemical waste, which makes it eco-friendly. A double negative region from 8.72 GHz to 10.91 GHz (bandwidth of 2.19 GHz) in the X-band microwave spectra was been found. Figure of merit was also obtained to measure any loss in the double negative region. The simulated result was verified by the performance of the fabricated prototype. The total dimensions of the proposed structure were 0.29 λ × 0.29 λ × 0.007 λ . It is a promising unit cell because of its simplicity, cost-effectiveness, and easy fabrication process.

  17. Quantification of hand synovitis in rheumatoid arthritis: Arterial mask subtraction reinforced with mutual information can improve accuracy of pixel-by-pixel time-intensity curve shape analysis in dynamic MRI.

    PubMed

    Kobayashi, Yuto; Kamishima, Tamotsu; Sugimori, Hiroyuki; Ichikawa, Shota; Noguchi, Atsushi; Kono, Michihito; Iiyama, Toshitake; Sutherland, Kenneth; Atsumi, Tatsuya

    2018-03-01

    Synovitis, which is a hallmark of rheumatoid arthritis (RA), needs to be precisely quantified to determine the treatment plan. Time-intensity curve (TIC) shape analysis is an objective assessment method for characterizing the pixels as artery, inflamed synovium, or other tissues using dynamic contrast-enhanced MRI (DCE-MRI). To assess the feasibility of our original arterial mask subtraction method (AMSM) with mutual information (MI) for quantification of synovitis in RA. Prospective study. Ten RA patients (nine women and one man; mean age, 56.8 years; range, 38-67 years). 3T/DCE-MRI. After optimization of TIC shape analysis to the hand region, a combination of TIC shape analysis and AMSM was applied to synovial quantification. The MI between pre- and postcontrast images was utilized to determine the arterial mask phase objectively, which was compared with human subjective selection. The volume of objectively measured synovitis by software was compared with that of manual outlining by an experienced radiologist. Simple TIC shape analysis and TIC shape analysis combined with AMSM were compared in slices without synovitis according to subjective evaluation. Pearson's correlation coefficient, paired t-test and intraclass correlation coefficient (ICC). TIC shape analysis was successfully optimized in the hand region with a correlation coefficient of 0.725 (P < 0.01) with the results of manual assessment regarded as ground truth. Objective selection utilizing MI had substantial agreement (ICC = 0.734) with subjective selection. Correlation of synovial volumetry in combination with TIC shape analysis and AMSM with manual assessment was excellent (r = 0.922, P < 0.01). In addition, negative predictive ability in slices without synovitis pixels was significantly increased (P < 0.01). The combination of TIC shape analysis and image subtraction reinforced with MI can accurately quantify synovitis of RA in the hand by eliminating arterial pixels. 2

  18. [Continuous observation of canal aberrations in S-shaped simulated root canal prepared by hand-used ProTaper files].

    PubMed

    Xia, Ling-yun; Leng, Wei-dong; Mao, Min; Yang, Guo-biao; Xiang, Yong-gang; Chen, Xin-mei

    2009-08-01

    To observe the formation of canal aberrations in S-shaped root canals prepared by every file of hand-used ProTaper. Fifteen S-shaped simulated resin root canals were selected. Each root canal was prepared by every file of hand-used ProTaper following the manufacturer instruction. The images of canals prepared by S1, S2, F1, F2 and F3 were taken and stored, which were divided into group S1, S2, F1, F2 and F3. One image of canal unprepared was superposed with the images of the same root canal in these five groups respectively to observe the types and number of canal aberrations, which included unprepared area, danger zone, ledge, elbow, zip and perforation. SPSS12.0 software pakage was used for Fisher's exact probabilities in 2x2 table. Unprepared area decreased following preparation by every file of ProTaper, but it still existed when the canal preparation was finished. The incidence of danger zone, elbow and zip in group F1 was 15/15, 11/15, 4/15, respectively, which was significantly higher than that in group S2(2/15,0,0) (P<0.001). Ledge appeared after prepared by F2, and increased sharply in group F3. None perforation was found in all groups. The incidence of canal aberrations begins to increase after prepared by finishing files of ProTaper.The presence of unprepared area suggests that it is essential to rinse canal abundantly during complicated canal preparation and canal antisepsis after preparation.

  19. Hand function in workers with hand-arm vibration syndrome.

    PubMed

    Cederlund, R; Isacsson, A; Lundborg, G

    1999-01-01

    Hand-arm vibration syndrome has been specially addressed in the Scandinavian countries in recent years, but the syndrome is still not sufficiently recognized in many countries. The object of this preliminary study was to describe the nature and character of vibration-induced impairment in the hands of exposed workers. Twenty symptomatic male workers (aged 28 to 65 years) subjected to vibration by hand-held tools were interviewed about subjective symptoms and activities of daily living and were assessed with a battery of objective tests for sensibility, dexterity, grip function, and grip strength. The test results were compared with normative data. The majority of patients complained of cold intolerance, numbness, pain, sensory impairment, and difficulties in handling manual tools and in handwriting. The various objective tests showed considerable variation in indications of pathologic outcome, revealing differences in sensitivity to detect impaired hand function. Semmes-Weinstein monofilament testing for perception of light touch-deep pressure sensation, the small-object shape identification test, and moving two-point discrimination testing for functional sensibility provided the most indications of pathologic outcomes. The authors conclude that vibration-exposed patients present considerable impairment in hand function.

  20. Emergence of a confined state in a weakly bent wire

    NASA Astrophysics Data System (ADS)

    Granot, Er'El

    2002-06-01

    In this paper we use a simple straightforward technique to investigate the emergence of a bound state in a weakly bent wire. We show that the bend behaves like an infinitely shallow potential well, and in the limit of small bending angle (φ<<1) and low energy the bend can be presented by a simple one-dimensional δ-function potential, V(x)=-(2(cb)φ2)δ(x) where cb≅2.1.

  1. Evaluation of bent caps in reinforced concrete deck girder bridges, part 2 : final report.

    DOT National Transportation Integrated Search

    2008-09-01

    This report describes research conducted to enable evaluation of existing vintage bent cap beams in reinforced concrete : deck girder bridges. The report is organized into two parts: 1) flexural anchorage capacity response and prediction of : reduced...

  2. Evaluation of bent caps in reinforced concrete deck girder bridges, part 1 : final report.

    DOT National Transportation Integrated Search

    2008-09-01

    This report describes research conducted to enable evaluation of existing vintage bent cap beams in reinforced concrete : deck girder bridges. The report is organized into two parts: 1) flexural anchorage capacity response and prediction of : reduced...

  3. Hand synergies during reach-to-grasp.

    PubMed

    Mason, C R; Gomez, J E; Ebner, T J

    2001-12-01

    An emerging viewpoint is that the CNS uses synergies to simplify the control of the hand. Previous work has shown that static hand postures for mimed grasps can be described by a few principal components in which the higher order components explained only a small fraction of the variance yet provided meaningful information. Extending that earlier work, this study addressed whether the entire act of grasp can be described by a small number of postural synergies and whether these synergies are similar for different grasps. Five right-handed adults performed five types of reach-to-grasps including power grasp, power grasp with a lift, precision grasp, and mimed power grasp and mimed precision grasp of 16 different objects. The object shapes were cones, cylinders, and spindles, systematically varied in size to produce a large range of finger joint angle combinations. Three-dimensional reconstructions of 21 positions on the hand and wrist throughout the reach-to-grasp were obtained using a four-camera video system. Singular value decomposition on the temporal sequence of the marker positions was used to identify the common patterns ("eigenpostures") across the 16 objects for each task and their weightings as a function of time. The first eigenposture explained an average of 97.3 +/- 0.89% (mean +/- SD) of the variance of the hand shape, and the second another 1.9 +/- 0.85%. The first eigenposture was characterized by an open hand configuration that opens and closes during reach. The second eigenposture contributed to the control of the thumb and long fingers, particularly in the opening of the hand during the reach and the closing in preparation for object grasp. The eigenpostures and their temporal evolutions were similar across subjects and grasps. The higher order eigenpostures, although explaining only small amounts of the variance, contributed to the movements of the fingers and thumb. These findings suggest that much of reach-to-grasp is effected using a base

  4. Nanoforging - Innovation in three-dimensional processing and shaping of nanoscaled structures.

    PubMed

    Landefeld, Andreas; Rösler, Joachim

    2014-01-01

    This paper describes the shaping of freestanding objects out of metallic structures in the nano- and submicron size. The technique used, called nanoforging, is very similar to the macroscopic forging process. With spring actuated tools produced by focused ion beam milling, controlled forging is demonstrated. With only three steps, a conical bar stock is transformed to a flat- and semicircular bent bar stock. Compared with other forming techniques in the reduced scale, nanoforging represents a beneficial approach in forming freestanding metallic structures, due to its simplicity, and supplements other forming techniques.

  5. A biometric authentication model using hand gesture images.

    PubMed

    Fong, Simon; Zhuang, Yan; Fister, Iztok; Fister, Iztok

    2013-10-30

    A novel hand biometric authentication method based on measurements of the user's stationary hand gesture of hand sign language is proposed. The measurement of hand gestures could be sequentially acquired by a low-cost video camera. There could possibly be another level of contextual information, associated with these hand signs to be used in biometric authentication. As an analogue, instead of typing a password 'iloveu' in text which is relatively vulnerable over a communication network, a signer can encode a biometric password using a sequence of hand signs, 'i' , 'l' , 'o' , 'v' , 'e' , and 'u'. Subsequently the features from the hand gesture images are extracted which are integrally fuzzy in nature, to be recognized by a classification model for telling if this signer is who he claimed himself to be, by examining over his hand shape and the postures in doing those signs. It is believed that everybody has certain slight but unique behavioral characteristics in sign language, so are the different hand shape compositions. Simple and efficient image processing algorithms are used in hand sign recognition, including intensity profiling, color histogram and dimensionality analysis, coupled with several popular machine learning algorithms. Computer simulation is conducted for investigating the efficacy of this novel biometric authentication model which shows up to 93.75% recognition accuracy.

  6. Bacterial actin MreB assembles in complex with cell shape protein RodZ.

    PubMed

    van den Ent, Fusinita; Johnson, Christopher M; Persons, Logan; de Boer, Piet; Löwe, Jan

    2010-03-17

    Bacterial actin homologue MreB is required for cell shape maintenance in most non-spherical bacteria, where it assembles into helical structures just underneath the cytoplasmic membrane. Proper assembly of the actin cytoskeleton requires RodZ, a conserved, bitopic membrane protein that colocalises to MreB and is essential for cell shape determination. Here, we present the first crystal structure of bacterial actin engaged with a natural partner and provide a clear functional significance of the interaction. We show that the cytoplasmic helix-turn-helix motif of Thermotoga maritima RodZ directly interacts with monomeric as well as filamentous MreB and present the crystal structure of the complex. In vitro and in vivo analyses of mutant T. maritima and Escherichia coli RodZ validate the structure and reveal the importance of the MreB-RodZ interaction in the ability of cells to propagate as rods. Furthermore, the results elucidate how the bacterial actin cytoskeleton might be anchored to the membrane to help constrain peptidoglycan synthesis in the periplasm.

  7. On Weak and Strong 2k- bent Boolean Functions

    DTIC Science & Technology

    2016-01-01

    U.S.A. Email: pstanica@nps.edu Abstract—In this paper we introduce a sequence of discrete Fourier transforms and define new versions of bent...denotes the complex conjugate of z. An important tool in our analysis is the discrete Fourier transform , known in Boolean functions literature, as Walsh...Hadamard, or Walsh–Hadamard transform , which is the func- tion Wf : Fn2 → C, defined by Wf (u) = 2− n 2 ∑ x∈Vn (−1)f(x)⊕u·x. Any f ∈ Bn can be

  8. Enhanced visuo-haptic integration for the non-dominant hand.

    PubMed

    Yalachkov, Yavor; Kaiser, Jochen; Doehrmann, Oliver; Naumer, Marcus J

    2015-07-21

    Visuo-haptic integration contributes essentially to object shape recognition. Although there has been a considerable advance in elucidating the neural underpinnings of multisensory perception, it is still unclear whether seeing an object and exploring it with the dominant hand elicits the same brain response as compared to the non-dominant hand. Using fMRI to measure brain activation in right-handed participants, we found that for both left- and right-hand stimulation the left lateral occipital complex (LOC) and anterior cerebellum (aCER) were involved in visuo-haptic integration of familiar objects. These two brain regions were then further investigated in another study, where unfamiliar, novel objects were presented to a different group of right-handers. Here the left LOC and aCER were more strongly activated by bimodal than unimodal stimuli only when the left but not the right hand was used. A direct comparison indicated that the multisensory gain of the fMRI activation was significantly higher for the left than the right hand. These findings are in line with the principle of "inverse effectiveness", implying that processing of bimodally presented stimuli is particularly enhanced when the unimodal stimuli are weak. This applies also when right-handed subjects see and simultaneously touch unfamiliar objects with their non-dominant left hand. Thus, the fMRI signal in the left LOC and aCER induced by visuo-haptic stimulation is dependent on which hand was employed for haptic exploration. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Sensing human hand motions for controlling dexterous robots

    NASA Technical Reports Server (NTRS)

    Marcus, Beth A.; Churchill, Philip J.; Little, Arthur D.

    1988-01-01

    The Dexterous Hand Master (DHM) system is designed to control dexterous robot hands such as the UTAH/MIT and Stanford/JPL hands. It is the first commercially available device which makes it possible to accurately and confortably track the complex motion of the human finger joints. The DHM is adaptable to a wide variety of human hand sizes and shapes, throughout their full range of motion.

  10. On the feasibility of interoperable schemes in hand biometrics.

    PubMed

    Morales, Aythami; González, Ester; Ferrer, Miguel A

    2012-01-01

    Personal recognition through hand-based biometrics has attracted the interest of many researchers in the last twenty years. A significant number of proposals based on different procedures and acquisition devices have been published in the literature. However, comparisons between devices and their interoperability have not been thoroughly studied. This paper tries to fill this gap by proposing procedures to improve the interoperability among different hand biometric schemes. The experiments were conducted on a database made up of 8,320 hand images acquired from six different hand biometric schemes, including a flat scanner, webcams at different wavelengths, high quality cameras, and contactless devices. Acquisitions on both sides of the hand were included. Our experiment includes four feature extraction methods which determine the best performance among the different scenarios for two of the most popular hand biometrics: hand shape and palm print. We propose smoothing techniques at the image and feature levels to reduce interdevice variability. Results suggest that comparative hand shape offers better performance in terms of interoperability than palm prints, but palm prints can be more effective when using similar sensors.

  11. On the Feasibility of Interoperable Schemes in Hand Biometrics

    PubMed Central

    Morales, Aythami; González, Ester; Ferrer, Miguel A.

    2012-01-01

    Personal recognition through hand-based biometrics has attracted the interest of many researchers in the last twenty years. A significant number of proposals based on different procedures and acquisition devices have been published in the literature. However, comparisons between devices and their interoperability have not been thoroughly studied. This paper tries to fill this gap by proposing procedures to improve the interoperability among different hand biometric schemes. The experiments were conducted on a database made up of 8,320 hand images acquired from six different hand biometric schemes, including a flat scanner, webcams at different wavelengths, high quality cameras, and contactless devices. Acquisitions on both sides of the hand were included. Our experiment includes four feature extraction methods which determine the best performance among the different scenarios for two of the most popular hand biometrics: hand shape and palm print. We propose smoothing techniques at the image and feature levels to reduce interdevice variability. Results suggest that comparative hand shape offers better performance in terms of interoperability than palm prints, but palm prints can be more effective when using similar sensors. PMID:22438714

  12. The 3-D vision system integrated dexterous hand

    NASA Technical Reports Server (NTRS)

    Luo, Ren C.; Han, Youn-Sik

    1989-01-01

    Most multifingered hands use a tendon mechanism to minimize the size and weight of the hand. Such tendon mechanisms suffer from the problems of striction and friction of the tendons resulting in a reduction of control accuracy. A design for a 3-D vision system integrated dexterous hand with motor control is described which overcomes these problems. The proposed hand is composed of three three-jointed grasping fingers with tactile sensors on their tips, a two-jointed eye finger with a cross-shaped laser beam emitting diode in its distal part. The two non-grasping fingers allow 3-D vision capability and can rotate around the hand to see and measure the sides of grasped objects and the task environment. An algorithm that determines the range and local orientation of the contact surface using a cross-shaped laser beam is introduced along with some potential applications. An efficient method for finger force calculation is presented which uses the measured contact surface normals of an object.

  13. THE FIRST BENT DOUBLE LOBE RADIO SOURCE IN A KNOWN CLUSTER FILAMENT: CONSTRAINTS ON THE INTRAFILAMENT MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Louise O. V.; Fadda, Dario; Frayer, David T., E-mail: louise@ipac.caltech.ed

    2010-12-01

    We announce the first discovery of a bent double lobe radio source (DLRS) in a known cluster filament. The bent DLRS is found at a distance of 3.4 Mpc from the center of the rich galaxy cluster, A1763. We derive a bend angle {alpha} = 25{sup 0}, and infer that the source is most likely seen at a viewing angle of {Phi} = 10{sup 0}. From measuring the flux in the jet between the core and further lobe and assuming a spectral index of 1, we calculate the minimum pressure in the jet, (8.0 {+-} 3.2) x 10{sup -13} dynmore » cm{sup -2}, and derive constraints on the intrafilament medium (IFM) assuming the bend of the jet is due to ram pressure. We constrain the IFM to be between (1-20) x 10{sup -29} gm cm{sup -3}. This is consistent with recent direct probes of the IFM and theoretical models. These observations justify future searches for bent double lobe radio sources located several megaparsecs from cluster cores, as they may be good markers of super cluster filaments.« less

  14. Shape-Memory Effect and Pseudoelasticity in Fe-Mn-Based Alloys

    NASA Astrophysics Data System (ADS)

    La Roca, P.; Baruj, A.; Sade, M.

    2017-03-01

    Several Fe-based alloys are being considered as potential candidates for applications which require shape-memory behavior or superelastic properties. The possibility of using fabrication methods which are well known in the steel industry is very attractive and encourages a large amount of research in the field. In the present article, Fe-Mn-based alloys are mainly addressed. On the one hand, attention is paid to the shape-memory effect where the alloys contain (a) a maximum amount of Mn up to around 30 wt%, (b) several possible substitutional elements like Si, Cr, Ni, Co, and Nb and (c) some possible interstitial elements like C. On the other hand, superelastic alloys are analyzed, mainly the Fe-Mn-Al-Ni system discovered a few years ago. The most noticeable properties resulting from the martensitic transformations which are responsible for the mentioned properties, i.e., the fcc-hcp in the first case and the bcc-fcc in the latter are discussed. Selected potential applications are also analyzed.

  15. iHand: an interactive bare-hand-based augmented reality interface on commercial mobile phones

    NASA Astrophysics Data System (ADS)

    Choi, Junyeong; Park, Jungsik; Park, Hanhoon; Park, Jong-Il

    2013-02-01

    The performance of mobile phones has rapidly improved, and they are emerging as a powerful platform. In many vision-based applications, human hands play a key role in natural interaction. However, relatively little attention has been paid to the interaction between human hands and the mobile phone. Thus, we propose a vision- and hand gesture-based interface in which the user holds a mobile phone in one hand but sees the other hand's palm through a built-in camera. The virtual contents are faithfully rendered on the user's palm through palm pose estimation, and reaction with hand and finger movements is achieved that is recognized by hand shape recognition. Since the proposed interface is based on hand gestures familiar to humans and does not require any additional sensors or markers, the user can freely interact with virtual contents anytime and anywhere without any training. We demonstrate that the proposed interface works at over 15 fps on a commercial mobile phone with a 1.2-GHz dual core processor and 1 GB RAM.

  16. A biometric authentication model using hand gesture images

    PubMed Central

    2013-01-01

    A novel hand biometric authentication method based on measurements of the user’s stationary hand gesture of hand sign language is proposed. The measurement of hand gestures could be sequentially acquired by a low-cost video camera. There could possibly be another level of contextual information, associated with these hand signs to be used in biometric authentication. As an analogue, instead of typing a password ‘iloveu’ in text which is relatively vulnerable over a communication network, a signer can encode a biometric password using a sequence of hand signs, ‘i’ , ‘l’ , ‘o’ , ‘v’ , ‘e’ , and ‘u’. Subsequently the features from the hand gesture images are extracted which are integrally fuzzy in nature, to be recognized by a classification model for telling if this signer is who he claimed himself to be, by examining over his hand shape and the postures in doing those signs. It is believed that everybody has certain slight but unique behavioral characteristics in sign language, so are the different hand shape compositions. Simple and efficient image processing algorithms are used in hand sign recognition, including intensity profiling, color histogram and dimensionality analysis, coupled with several popular machine learning algorithms. Computer simulation is conducted for investigating the efficacy of this novel biometric authentication model which shows up to 93.75% recognition accuracy. PMID:24172288

  17. Status of the semileptonic B decays and muon g-2 in general 2HDMs with right-handed neutrinos

    NASA Astrophysics Data System (ADS)

    Iguro, Syuhei; Omura, Yuji

    2018-05-01

    In this paper, we study the extended Standard Model (SM) with an extra Higgs doublet and right-handed neutrinos. If the symmetry to distinguish the two Higgs doublets is not assigned, flavor changing neutral currents (FCNCs) involving the scalars are predicted even at the tree level. We investigate the constraints on the FCNCs at the one-loop level, and especially study the semileptonic B meson decays, e.g. B → D (∗) τ ν and B → K (∗) ll processes, where the SM predictions are more than 2 σ away from the experimental results. We also consider the flavor-violating couplings involving right-handed neutrinos and discuss if the parameters to explain the excesses of the semileptonic B decays can resolve the discrepancy in the anomalous muon magnetic moment. Based on the analysis, we propose the smoking-gun signals of our model at the LHC.

  18. The Impact of Injector-Based Contrast Agent Administration on Bolus Shape and Magnetic Resonance Angiography Image Quality.

    PubMed

    Jost, Gregor; Endrikat, Jan; Pietsch, Hubertus

    2017-01-01

    To compare injector-based contrast agent (CA) administration with hand injection in magnetic resonance angiography (MRA). Gadobutrol was administered in 6 minipigs with 3 protocols: (a) hand injection (one senior technician), (b) hand injection (6 less-experienced technicians), and (c) power injector administration. The arterial bolus shape was quantified by test bolus measurements. A head and neck MRA was performed for quantitative and qualitative comparison of signal enhancement. A significantly shorter time to peak was observed for protocol C, whereas no significant differences between protocols were found for peak height and bolus width. However, for protocol C, these parameters showed a much lower variation. The MRA revealed a significantly higher signal-to-noise ratio for injector-based administration. A superimposed strong contrast of the jugular vein was found in 50% of the hand injections. Injector-based CA administration results in a more standardized bolus shape, a higher vascular contrast, and a more robust visualization of target vessels.

  19. Field-Induced Alignment of Polar Bent-Ccore Smectic A Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Shen, Yongqiang; Goodhew, Lisa; Shao, Renfan; Maclennan, Joseph; Clark, Noel; Rudquist, Per

    2014-03-01

    The SmAPF phase is a promising phase modulator mode. To use the SmAPF materials for applications, we need to obtain uniform, large-area alignment of the samples. However, bent-core liquid crystals are notoriously difficult to align with conventional surface treatment methods because most of them have no nematic phase. We have developed a powerful, new method using in-plane applied electric fields that allows us to create a perfect bookshelf alignment of orthogonal bent-core smectics. By using an interdigitated, finger-like electrode arrangement on one of the cell surfaces, we can align the materials by applying in-plane electric fields. This stripe geometry, which produces curved field lines, allows for only one smectic layer orientation, normal both to the cell walls and to the finger electrodes. After alignment, the cell can be operated in the conventional way by connecting the finger electrodes together to make one effective electrode, opposing continuous, common electrode on the opposite side of the cell. This alignment method opens up the use of these materials in perfectly aligned cells for both amplitude and phase-only modulation applications. This work was supported by NSF MRSEC Grant No. DMR-0820579, by NSF Grant No. DMR-1008300, and by Swedish Research Council (VR) Grant No. 621-2009-3621.

  20. Direct synchrotron x-ray measurements of local strain fields in elastically and plastically bent metallic glasses

    DOE PAGES

    Wu, Yuan; Stoica, Alexandru Dan; Ren, Yang; ...

    2015-09-03

    In situ high-energy synchrotron X-ray diffraction was conducted on elastically and plastically bent bulk metallic glass (BMG) thin plates, from which distinct local elastic strain fields were mapped spatially. These directly measured residual strain fields can be nicely interpreted by our stress analysis, and also validate a previously proposed indirect residual-stress-measurement method by relating nanoindentation hardness to residual stresses. Local shear strain variations on the cross sections of these thin plates were found in the plastically bent BMG, which however cannot be determined from the indirect indentation method. As a result, this study has important implications in designing and manipulatingmore » internal strain fields in BMGs for the purpose of ductility enhancement.« less

  1. Hand controller commonality evaluation process

    NASA Technical Reports Server (NTRS)

    Stuart, Mark A.; Bierschwale, John M.; Wilmington, Robert P.; Adam, Susan C.; Diaz, Manuel F.; Jensen, Dean G.

    1993-01-01

    Hand controller selection for NASA's Orbiter and Space Station Freedom is an important area of human-telerobot interface design and evaluation. These input devices will control remotely operated systems that include large crane-like manipulators (e.g., Remote Manipulator System or RMS), smaller, more dexterous manipulators (e.g., Flight Telerobotic Servicer or FTS), and free flyers (e.g., Orbital Maneuvering Vehicle or OMV). Candidate hand controller configurations for these systems vary in many ways: shape, size, number of degrees-of-freedom (DOF), operating modes, provision of force reflection, range of movement, and 'naturalness' of use. Unresolved design implementation issues remain, including such topics as how the current Orbiter RMS rotational and translational rate hand controllers compare with the proposed Space Station Freedom hand controllers, the advantages that position hand controllers offer for these applications, and whether separate hand controller configurations are required for each application. Since previous studies contain little empirical hand controller task performance data, a controlled study is needed that tests Space Station Freedom candidate hand controllers during representative tasks. This study also needs to include anthropometric and biomechanical considerations.

  2. Shaping van der Waals nanoribbons via torsional constraints: Scrolls, folds and supercoils

    NASA Astrophysics Data System (ADS)

    Shahabi, Alireza; Wang, Hailong; Upmanyu, Moneesh

    2014-11-01

    Interplay between structure and function in atomically thin crystalline nanoribbons is sensitive to their conformations yet the ability to prescribe them is a formidable challenge. Here, we report a novel paradigm for controlled nucleation and growth of scrolled and folded shapes in finite-length nanoribbons. All-atom computations on graphene nanoribbons (GNRs) and experiments on macroscale magnetic thin films reveal that decreasing the end distance of torsionally constrained ribbons below their contour length leads to formation of these shapes. The energy partitioning between twisted and bent shapes is modified in favor of these densely packed soft conformations due to the non-local van der Waals interactions in these 2D crystals; they subvert the formation of supercoils that are seen in their natural counterparts such as DNA and filamentous proteins. The conformational phase diagram is in excellent agreement with theoretical predictions. The facile route can be readily extended for tailoring the soft conformations of crystalline nanoscale ribbons, and more general self-interacting filaments.

  3. Effects of topical application of B-Resorcinol and Glycyrrhetinic acid monotherapy and in combination with fractional CO2 laser treatment for benign hand hyperpigmentation treatment.

    PubMed

    Grippaudo, Francesca Romana; Di Russo, Pier Paolo

    2016-12-01

    Hand solar lentigines are frequent benign lesions of elderly population, requiring longtime treatments with topical agents or laser to lighten. The aim of this study was to evaluate and compare the efficacy of CO 2 fractional laser photothermolysis followed by topical application of B-Resorcinol and Glycyrrhetinic acid vs. only topical B-Resorcinol and Glycyrrhetinic acid application for hand solar lentigines treatment. Hand solar lentigines of eleven volunteers were divided into two groups: Group A spots received CO 2 fractional laser photothermolysis followed by 4 weeks topical application of B-Resorcinol and Glycyrrhetinic acid, and Group B spots received only 4 weeks topical treatments. All hands were photographed, and hand solar lentigines scanned with dermatoscope at the beginning of the study (T 0 ), 1 month after laser treatment (T 1 ), and at the end of the study (T 2 ) to document spots dimensions and color. A blinded dermatologist evaluated dermoscopic T 0 and T 2 images. The considered variables were assessed for significance by the nonparametric Mann-Whitney U-test. In all volunteers, investigators and blinded dermatologist's evaluation hand solar lentigines features improved, with no statistical differences in the two groups. Topical application of B-Resorcinol and Glycyrrhetinic acid is effective to lighten hand solar lentigines after 4 weeks of treatment, with or without a previous fractional laser photothermolysis. © 2016 Wiley Periodicals, Inc.

  4. Long, elliptically bent, active X-ray mirrors with slope errors <200 nrad.

    PubMed

    Nistea, Ioana T; Alcock, Simon G; Kristiansen, Paw; Young, Adam

    2017-05-01

    Actively bent X-ray mirrors are important components of many synchrotron and X-ray free-electron laser beamlines. A high-quality optical surface and good bending performance are essential to ensure that the X-ray beam is accurately focused. Two elliptically bent X-ray mirror systems from FMB Oxford were characterized in the optical metrology laboratory at Diamond Light Source. A comparison of Diamond-NOM slope profilometry and finite-element analysis is presented to investigate how the 900 mm-long mirrors sag under gravity, and how this deformation can be adequately compensated using a single, spring-loaded compensator. It is shown that two independent mechanical actuators can accurately bend the trapezoidal substrates to a range of elliptical profiles. State-of-the-art residual slope errors of <200 nrad r.m.s. are achieved over the entire elliptical bending range. High levels of bending repeatability (ΔR/R = 0.085% and 0.156% r.m.s. for the two bending directions) and stability over 24 h (ΔR/R = 0.07% r.m.s.) provide reliable beamline performance.

  5. Illumination-invariant hand gesture recognition

    NASA Astrophysics Data System (ADS)

    Mendoza-Morales, América I.; Miramontes-Jaramillo, Daniel; Kober, Vitaly

    2015-09-01

    In recent years, human-computer interaction (HCI) has received a lot of interest in industry and science because it provides new ways to interact with modern devices through voice, body, and facial/hand gestures. The application range of the HCI is from easy control of home appliances to entertainment. Hand gesture recognition is a particularly interesting problem because the shape and movement of hands usually are complex and flexible to be able to codify many different signs. In this work we propose a three step algorithm: first, detection of hands in the current frame is carried out; second, hand tracking across the video sequence is performed; finally, robust recognition of gestures across subsequent frames is made. Recognition rate highly depends on non-uniform illumination of the scene and occlusion of hands. In order to overcome these issues we use two Microsoft Kinect devices utilizing combined information from RGB and infrared sensors. The algorithm performance is tested in terms of recognition rate and processing time.

  6. Effect of finishing instrumentation using NiTi hand files on volume, surface area and uninstrumented surfaces in C-shaped root canal systems.

    PubMed

    Amoroso-Silva, P; Alcalde, M P; Hungaro Duarte, M A; De-Deus, G; Ordinola-Zapata, R; Freire, L G; Cavenago, B C; De Moraes, I G

    2017-06-01

    To assess the effect of 90°-oscillatory instrumentation with hand files on several morphological parameters (volume, surface area and uninstrumented surface) in C-shaped root canals after instrumentation using a single-file reciprocation system (Reciproc; VDW, Munich, Germany) and a Self-Adjusting File System (SAF; ReDent Nova, Ra'anana, Israel). Twenty mandibular second molars with C-shaped canals and C1 canal configurations were divided into two groups (n = 10) and instrumented with Reciproc and SAF instruments. A size 30 NiTi hand K-file attached to a 90°-oscillatory motion handpiece was used as final instrumentation in both groups. The specimens were scanned using micro-computed tomography after all procedures. Volume, surface area increase and uninstrumented root canal surface were analysed using CTAn software (Bruker-microCT, Kontich, Belgium). Also, the uninstrumented root canal surface was calculated for each canal third. All values were compared between groups using the Mann-Whitney test and within groups using the Wilcoxon's signed-rank test. Instrumentation with Reciproc significantly increased canal volume compared with instrumentation with SAF. Additionally, the canal volumes were significantly increased after 90°-oscillatory instrumentation (between and within group comparison; (P < 0.05)). Regarding the increase in surface area after all instrumentation protocols, statistical analysis only revealed significant differences in the within groups comparison (P < 0.05). Reciproc and SAF instrumentation yielded an uninstrumented root canal surface of 28% and 34%, respectively, which was not significantly different (P > 0.05). Final oscillatory instrumentation significantly reduced the uninstrumented root canal surface from 28% to 9% (Reciproc) and from 34% to 15% (SAF; P < 0.05). The apical and middle thirds exhibited larger uninstrumented root canal surfaces after the first instrumentation that was significantly reduced after oscillatory

  7. Shear repair methods for conventionally reinforced concrete girders and bent caps : final report, December 2009.

    DOT National Transportation Integrated Search

    2009-12-01

    Thirteen large-scale girders and two bent caps that replicated as close as possible bridge components from the 1950s were cast and loaded to cause initial cracking similar to that observed in the field. The girders were repaired with epoxy crack inje...

  8. Electromagnetic dipole moments of charged baryons with bent crystals at the LHC

    NASA Astrophysics Data System (ADS)

    Bagli, E.; Bandiera, L.; Cavoto, G.; Guidi, V.; Henry, L.; Marangotto, D.; Martinez Vidal, F.; Mazzolari, A.; Merli, A.; Neri, N.; Ruiz Vidal, J.

    2017-12-01

    We propose a unique program of measurements of electric and magnetic dipole moments of charm, beauty and strange charged baryons at the LHC, based on the phenomenon of spin precession of channeled particles in bent crystals. Studies of crystal channeling and spin precession of positively- and negatively-charged particles are presented, along with feasibility studies and expected sensitivities for the proposed experiment using a layout based on the LHCb detector.

  9. Nanoforging – Innovation in three-dimensional processing and shaping of nanoscaled structures

    PubMed Central

    Rösler, Joachim

    2014-01-01

    Summary Background: This paper describes the shaping of freestanding objects out of metallic structures in the nano- and submicron size. The technique used, called nanoforging, is very similar to the macroscopic forging process. Results: With spring actuated tools produced by focused ion beam milling, controlled forging is demonstrated. With only three steps, a conical bar stock is transformed to a flat- and semicircular bent bar stock. Conclusion: Compared with other forming techniques in the reduced scale, nanoforging represents a beneficial approach in forming freestanding metallic structures, due to its simplicity, and supplements other forming techniques. PMID:25161840

  10. Experimental study on incident wave speed and the mechanisms of deflagration-to-detonation transition in a bent geometry

    NASA Astrophysics Data System (ADS)

    Li, L.; Li, J.; Teo, C. J.; Chang, P. H.; Khoo, B. C.

    2018-03-01

    The study of deflagration-to-detonation transition (DDT) in bent tubes is important with many potential applications including fuel pipeline and mine tunnel designs for explosion prevention and detonation engines for propulsion. The aim of this study is to exploit low-speed incident shock waves for DDT using an S-shaped geometry and investigate its effectiveness as a DDT enhancement device. Experiments were conducted in a valveless detonation chamber using ethylene-air mixture at room temperature and pressure (303 K, 1 bar). High-speed Schlieren photography was employed to keep track of the wave dynamic evolution. Results showed that waves with velocity as low as 500 m/s can experience a successful DDT process through this S-shaped geometry. To better understand the mechanism, clear images of local explosion processes were captured in either the first curved section or the second curved section depending on the inlet wave velocity, thus proving that this S-shaped tube can act as a two-stage device for DDT. Owing to the curved wall structure, the passing wave was observed to undergo a continuous compression phase which could ignite the local unburnt mixture and finally lead to a local explosion and a detonation transition. Additionally, the phenomenon of shock-vortex interaction near the wave diffraction region was also found to play an important role in the whole process. It was recorded that this interaction could not only result in local head-on reflection of the reflected wave on the wall that could ignite the local mixture, and it could also contribute to the recoupling of the shock-flame complex when a detonation wave is successfully formed in the first curved section.

  11. Shape Memory Polymers: A Joint Chemical and Materials Engineering Hands-On Experience

    ERIC Educational Resources Information Center

    Seif, Mujan; Beck, Matthew

    2018-01-01

    Hands-on experiences are excellent tools for increasing retention of first year engineering students. They also encourage interdisciplinary collaboration, a critical skill for modern engineers. In this paper, we describe and evaluate a joint Chemical and Materials Engineering hands-on lab that explores cross-linking and glass transition in…

  12. Evaluation of a timber column bent substructure after more than 60 years in-service

    Treesearch

    James P. Wacker; Xiping Wang; Douglas R. Rammer; William J. Nelson

    2011-01-01

    This paper describes both the field evaluation and laboratory testing of two timber-column-bent bridge substructures. These substructures served as intermediate pier supports for the East Deer Park Drive Bridge located in Gaithersburg, Maryland. A field evaluation of the bridge substructure was conducted in September 2008. Nondestructive testing was performed with a...

  13. A precast concrete bridge bent designed to re-center after an earthquake : research report, October 2008.

    DOT National Transportation Integrated Search

    2008-10-01

    In this study the post-earthquake residual displacements of reinforced concrete bridge bents were investigated. The system had mild steel that was intended to dissipate energy and an unbonded, post-tensioned tendon that was supposed to remain elastic...

  14. Confocal micrographs: automated segmentation and quantitative shape analysis of neuronal cells treated with ostreolysin A/pleurotolysin B pore-forming complex.

    PubMed

    Kopanja, Lazar; Kovacevic, Zorana; Tadic, Marin; Žužek, Monika Cecilija; Vrecl, Milka; Frangež, Robert

    2018-04-23

    Detailed shape analysis of cells is important to better understand the physiological mechanisms of toxins and determine their effects on cell morphology. This study aimed to develop a procedure for accurate morphological analysis of cell shape and use it as a tool to estimate toxin activity. With the aim of optimizing the method of cell morphology analysis, we determined the influence of ostreolysin A and pleurotolysin B complex (OlyA/PlyB) on the morphology of murine neuronal NG108-15 cells. A computational method was introduced and successfully applied to quantify morphological attributes of the NG108-15 cell line before and after 30 and 60 min exposure to OlyA/PlyB using confocal microscopy. The modified circularity measure [Formula: see text] for shape analysis was applied, which defines the degree to which the shape of the neuron differs from a perfect circle. It enables better detection of small changes in the shape of cells, making the outcome easily detectable numerically. Additionally, we analyzed the influence of OlyA/PlyB on the cell area, allowing us to detect the cells with blebs. This is important because the formation of plasma membrane protrusions such as blebs often reflects cell injury that leads to necrotic cell death. In summary, we offer a novel analytical method of neuronal cell shape analysis and its correlation with the toxic effects of the pore-forming OlyA/PlyB toxin in situ.

  15. Curvature effect on the mechanical behaviour of a martensitic shape-memory-alloy wire for applications in civil engineering

    NASA Astrophysics Data System (ADS)

    Tran, Hanh; Balandraud, Xavier; Destrebecq, Jean-François

    2015-02-01

    The mechanical response of a bent shape memory alloy (SMA) wire is a key point for the understanding of the process of the creation of confining effects in a wrapped concrete cylinder for example. The objective of the present study is to model the phenomena involved in the bending of a martensitic SMA wire. The mechanism of martensite reorientation is considered in the model, which also takes into account the asymmetry between tension and compression. For validation purposes, experiments were performed on Ni-Ti wires: measurement of residual curvatures after bending release and tensile tests on pre-bent wires. In particular, the analysis shows a variation in axial stiffness as a function of the preliminary curvature. This result shows the necessity of modelling the distributions of the state variables within the wire cross-section for the simulation of confinement processes using SMA wires. It also opens prospects to potential application to the bending of SMA fibres in smart textiles.

  16. Comparison of photon organ and effective dose coefficients for PIMAL stylized phantom in bent positions in standard irradiation geometries.

    PubMed

    Dewji, Shaheen; Reed, K Lisa; Hiller, Mauritius

    2017-08-01

    Computational phantoms with articulated arms and legs have been constructed to enable the estimation of radiation dose in different postures. Through a graphical user interface, the Phantom wIth Moving Arms and Legs (PIMAL) version 4.1.0 software can be employed to articulate the posture of a phantom and generate a corresponding input deck for the Monte Carlo N-Particle (MCNP) radiation transport code. In this work, photon fluence-to-dose coefficients were computed using PIMAL to compare organ and effective doses for a stylized phantom in the standard upright position with those for phantoms in realistic work postures. The articulated phantoms represent working positions including fully and half bent torsos with extended arms for both the male and female reference adults. Dose coefficients are compared for both the upright and bent positions across monoenergetic photon energies: 0.05, 0.1, 0.5, 1.0, and 5.0 MeV. Additionally, the organ doses are compared across the International Commission on Radiological Protection's standard external radiation exposure geometries: antero-posterior, postero-anterior, left and right lateral, and isotropic (AP, PA, LLAT, RLAT, and ISO). For the AP and PA irradiation geometries, differences in organ doses compared to the upright phantom become more profound with increasing bending angles and have doses largely overestimated for all organs except the brain in AP and bladder in PA. In LLAT and RLAT irradiation geometries, energy deposition for organs is more likely to be underestimated compared to the upright phantom, with no overall change despite increased bending angle. The ISO source geometry did not cause a significant difference in absorbed organ dose between the different phantoms, regardless of position. Organ and effective fluence-to-dose coefficients are tabulated. In the AP geometry, the effective dose at the 45° bent position is overestimated compared to the upright phantom below 1 MeV by as much as 27% and 82% in the 90

  17. Characterization of a bent Laue double-crystal beam-expanding monochromator

    DOE PAGES

    Martinson, Mercedes; Samadi, Nazanin; Shi, Xianbo; ...

    2017-10-19

    A bent Laue double-crystal monochromator system has been designed for vertically expanding the X-ray beam at the Canadian Light Source's BioMedical Imaging and Therapy beamlines. Expansion by a factor of 12 has been achieved without deteriorating the transverse coherence of the beam, allowing phase-based imaging techniques to be performed with high flux and a large field of view. However, preliminary studies revealed a lack of uniformity in the beam, presumed to be caused by imperfect bending of the silicon crystal wafers used in the system. Results from finite-element analysis of the system predicted that the second crystal would be mostmore » severely affected and has been shown experimentally. It has been determined that the majority of the distortion occurs in the second crystal and is likely caused by an imperfection in the surface of the bending frame. Here, measurements were then taken to characterize the bending of the crystal using both mechanical and diffraction techniques. In particular, two techniques commonly used to map dislocations in crystal structures have been adapted to map local curvature of the bent crystals. One of these, a variation of Berg–Berrett topography, has been used to quantify the diffraction effects caused by the distortion of the crystal wafer. This technique produces a global mapping of the deviation of the diffraction angle relative to a perfect cylinder. Finally, this information is critical for improving bending and measuring tolerances of imperfections by correlating this mapping to areas of missing intensity in the beam.« less

  18. Characterization of a bent Laue double-crystal beam-expanding monochromator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinson, Mercedes; Samadi, Nazanin; Shi, Xianbo

    A bent Laue double-crystal monochromator system has been designed for vertically expanding the X-ray beam at the Canadian Light Source's BioMedical Imaging and Therapy beamlines. Expansion by a factor of 12 has been achieved without deteriorating the transverse coherence of the beam, allowing phase-based imaging techniques to be performed with high flux and a large field of view. However, preliminary studies revealed a lack of uniformity in the beam, presumed to be caused by imperfect bending of the silicon crystal wafers used in the system. Results from finite-element analysis of the system predicted that the second crystal would be mostmore » severely affected and has been shown experimentally. It has been determined that the majority of the distortion occurs in the second crystal and is likely caused by an imperfection in the surface of the bending frame. Here, measurements were then taken to characterize the bending of the crystal using both mechanical and diffraction techniques. In particular, two techniques commonly used to map dislocations in crystal structures have been adapted to map local curvature of the bent crystals. One of these, a variation of Berg–Berrett topography, has been used to quantify the diffraction effects caused by the distortion of the crystal wafer. This technique produces a global mapping of the deviation of the diffraction angle relative to a perfect cylinder. Finally, this information is critical for improving bending and measuring tolerances of imperfections by correlating this mapping to areas of missing intensity in the beam.« less

  19. An adaptive explanation for the horse-like shape of seahorses.

    PubMed

    Van Wassenbergh, Sam; Roos, Gert; Ferry, Lara

    2011-01-25

    The body shape of seahorses resembles the head and neck of horses because of their curved trunk, their ventrally bent head and their long snout. Seahorses evolved from ancestral, pipefish-like species, which have a straight body. Here, we use a biomechanical analysis and show that the seahorse's peculiar head, neck and trunk posture allows for the capture of small shrimps at larger distances from the eyes compared with pipefish. The results from the mathematical modelling were confirmed by kinematic data of prey-capturing syngnathids: compared with straight-bodied pipefish, all seahorse species studied consistently show an additional forward-reaching component in the path travelled by the mouth during their strikes at prey. This increased strike distance enlarges the volume of water they can probe for food, which is especially useful for tail-attached, sit-and-wait predators like seahorses. The biomechanics of prey capture thus provides a putative selective advantage that may explain the bending of the trunk into a horse-like shape.

  20. Probing Structural Perturbation in a Bent Molecular Crystal with Synchrotron Infrared Microspectroscopy and Periodic Density Functional Theory Calculations.

    PubMed

    Pejov, Ljupčo; Panda, Manas K; Moriwaki, Taro; Naumov, Panče

    2017-02-15

    The range of unit cell orientations generated at the kink of a bent single crystal poses unsurmountable challenges with diffraction analysis and limits the insight into the molecular-scale mechanism of bending. On a plastically bent crystal of hexachlorobenzene, it is demonstrated here that spatially resolved microfocus infrared spectroscopy using synchrotron radiation can be applied in conjunction with periodic density functional theory calculations to predict spectral changes or to extract information on structural changes that occur as a consequence of bending. The approach reproduces well the observed trends, such as the wall effects, and provides estimations of the vibrational shifts, unit cell deformations, and intramolecular parameters. Generally, expansion of the lattice induces red-shift while compression induces larger blue-shift of the characteristic ν(C-C) and ν(C-Cl) modes. Uniform or non-uniform expansion or contraction of the unit cell of 0.1 Å results in shifts of several cm -1 , whereas deformation of the cell of 0.5° at the unique angle causes shifts of <0.5 cm -1 . Since this approach does not include parameters related to the actual stimulus by which the deformation has been induced, it can be generalized and applied to other mechanically, photochemically, or thermally bent crystals.

  1. 24 DOF EMG controlled hybrid actuated prosthetic hand.

    PubMed

    Atasoy, A; Kaya, E; Toptas, E; Kuchimov, S; Kaplanoglu, E; Ozkan, M

    2016-08-01

    A complete mechanical design concept of an electromyogram (EMG) controlled hybrid prosthetic hand, with 24 degree of freedom (DOF) anthropomorphic structure is presented. Brushless DC motors along with Shape Memory Alloy (SMA) actuators are used to achieve dexterous functionality. An 8 channel EMG is used for detecting 7 basic hand gestures for control purposes. The prosthetic hand will be integrated with the Neural Network (NNE) based controller in the next phase of the study.

  2. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haugh, M. J., E-mail: haughmj@nv.doe.gov; Jacoby, K. D.; Wu, M.

    2014-11-15

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals thatmore » we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.« less

  3. Measuring the X-ray Resolving Power of Bent Potassium Acid Phthalate Diffraction Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haugh, M. J.; Wu, M.; Jacoby, K. D.

    2014-11-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals thatmore » we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories (SNL) in Albuquerque, NM. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a dual goniometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.« less

  4. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystalsa)

    NASA Astrophysics Data System (ADS)

    Haugh, M. J.; Wu, M.; Jacoby, K. D.; Loisel, G. P.

    2014-11-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  5. The influence of tip shape on bending force during needle insertion

    PubMed Central

    van de Berg, Nick J.; de Jong, Tonke L.; van Gerwen, Dennis J.; Dankelman, Jenny; van den Dobbelsteen, John J.

    2017-01-01

    Steering of needles involves the planning and timely modifying of instrument-tissue force interactions to allow for controlled deflections during the insertion in tissue. In this work, the effect of tip shape on these forces was studied using 10 mm diameter needle tips. Six different tips were selected, including beveled and conical versions, with or without pre-bend or pre-curve. A six-degree-of-freedom force/torque sensor measured the loads during indentations in tissue simulants. The increased insertion (axial) and bending (radial) forces with insertion depth — the force-displacement slopes — were analyzed. Results showed that the ratio between radial and axial forces was not always proportional. This means that the tip load does not have a constant orientation, as is often assumed in mechanics-based steering models. For all tip types, the tip-load assumed a more radial orientation with increased axial load. This effect was larger for straight tips than for pre-bent or pre-curved tips. In addition, the force-displacement slopes were consistently higher for (1) increased tip angles, and for (2) beveled tips compared to conical tips. Needles with a bent or curved tip allow for an increased bending force and a decreased variability of the tip load vector orientation. PMID:28074939

  6. Biaxial order parameter in the homologous series of orthogonal bent-core smectic liquid crystals

    NASA Astrophysics Data System (ADS)

    Sreenilayam, S.; Panarin, Y. P.; Vij, J. K.; Osipov, M.; Lehmann, A.; Tschierske, C.

    2013-07-01

    The fundamental parameter of the uniaxial liquid crystalline state that governs nearly all of its physical properties is the primary orientational order parameter (S) for the long axes of molecules with respect to the director. The biaxial liquid crystals (LCs) possess biaxial order parameters depending on the phase symmetry of the system. In this paper we show that in the first approximation a biaxial orthogonal smectic phase can be described by two primary order parameters: S for the long axes and C for the ordering of the short axes of molecules. The temperature dependencies of S and C are obtained by the Haller's extrapolation technique through measurements of the optical birefringence and biaxiality on a nontilted polar antiferroelectric (Sm-APA) phase of a homologous series of LCs built from the bent-core achiral molecules. For such a biaxial smectic phase both S and C, particularly the temperature dependency of the latter, are being experimentally determined. Results show that S in the orthogonal smectic phase composed of bent cores is higher than in Sm-A calamatic LCs and C is also significantly large.

  7. In vivo longitudinal micro-CT study of bent long limb bones in rat offspring.

    PubMed

    De Schaepdrijver, Luc; Delille, Peter; Geys, Helena; Boehringer-Shahidi, Christian; Vanhove, Christian

    2014-07-01

    Micro-computed X-ray tomography (micro-CT) has been reported as a reliable method to assess ex vivo rat and rabbit fetal skeletons in embryo-fetal developmental toxicity studies. Since micro-CT is a non-invasive imaging modality it has the potential for longitudinal, in vivo investigation of postnatal skeletal development. This is the first paper using micro-CT to assess the reversibility of drug-induced bent long bones in a longitudinal study from birth to early adulthood in rat offspring. Analysis of the scans obtained on postnatal Day 0, 7, 21 and 80 showed complete recovery or repair of the bent long limb bones (including the scapula) within the first 3 weeks. When assessing risk the ability to demonstrate recovery is highly advantageous when interpreting such transient skeletal change. In summary, in vivo micro-CT of small laboratory animals can aid in non-clinical safety assessment, particularly for specific mechanistic purposes or to address a particular concern in developmental biology. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Hot metal gas forming of titanium grade 2 bent tubes

    NASA Astrophysics Data System (ADS)

    Paul, Alexander; Werner, Markus; Trân, Ricardo; Landgrebe, Dirk

    2017-10-01

    Within the framework of investigations, an exhaust gas component made of Titanium Grade 2 was produced by means of Hot Metal Gas Forming (HMGF) at the Fraunhofer IWU in Chemnitz, Germany. The semi-finished products were two-fold bent, thermal joined, calibrated and pre-formed tubes. So far, a three-stage internal high-pressure forming process at room temperature plus two necessary intermediate heat treatments were used to produce the component. Due to its complexity as well as the limited forming ability of Titanium Grade 2 at room temperature an one step Hot Metal Gas Forming was developed to replace the former procedure.

  9. Design of bent waveguide semiconductor lasers using nonlinear equivalent chirp

    NASA Astrophysics Data System (ADS)

    Li, Lianyan; Shi, Yuechun; Zhang, Yunshan; Chen, Xiangfei

    2018-01-01

    Reconstruction equivalent chirp (REC) technique is widely used in the design and fabrication of semiconductor laser arrays and tunable lasers with low cost and high wavelength accuracy. Bent waveguide is a promising method to suppress the zeroth order resonance, which is an intrinsic problem in REC technique. However, it may introduce basic grating chirp and deteriorate the single longitudinal mode (SLM) property of the laser. A nonlinear equivalent chirp pattern is proposed in this paper to compensate the grating chirp and improve the SLM property. It will benefit the realization of low-cost Distributed feedback (DFB) semiconductor laser arrays with accurate lasing wavelength.

  10. Computer simulation of the classical entanglement of U-shaped particles in three dimensions

    NASA Astrophysics Data System (ADS)

    Maddock, Brian; Lindner, John

    2014-03-01

    Classical entanglement is important in a wide range of phenomena, such as velcro hook-and-loop-fasteners, seed dispersal by animal fur, and bent liquid crystal molecules. We present a computer simulation of the entanglement of U-shaped particles in three dimensions. We represent the particles by phenomenological potentials and evolve them by integrating Newton's laws of motion. We drop them into a virtual cylinder, shake them, and ultimately release the cylinder. As the particle piles relax, we quantify their entanglement by the exponential decay times of their heights, which we correlate to the particles' height-to-length ratios.

  11. Elbow joint variability for different hand positions of the round off in gymnastics.

    PubMed

    Farana, Roman; Irwin, Gareth; Jandacka, Daniel; Uchytil, Jaroslav; Mullineaux, David R

    2015-02-01

    The aim of the present study was to conduct within-gymnast analyses of biological movement variability in impact forces, elbow joint kinematics and kinetics of expert gymnasts in the execution of the round-off with different hand positions. Six international level female gymnasts performed 10 trials of the round-off from a hurdle step to a back-handspring using two hand potions: parallel and T-shape. Two force plates were used to determine ground reaction forces. Eight infrared cameras were employed to collect the kinematic data automatically. Within gymnast variability was calculated using biological coefficient of variation (BCV) discretely for ground reaction force, kinematic and kinetic measures. Variability of the continuous data was quantified using coefficient of multiple correlations (CMC). Group BCV and CMC were calculated and T-test with effect size statistics determined differences between the variability of the two techniques examined in this study. The major observation was a higher level of biological variability in the elbow joint abduction angle and adduction moment of force in the T-shaped hand position. This finding may lead to a reduced repetitive abduction stress and thus protect the elbow joint from overload. Knowledge of the differences in biological variability can inform clinicians and practitioners with effective skill selection. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Comparison of hand hygiene procedures for removing Bacillus cereus spores.

    PubMed

    Sasahara, Teppei; Hayashi, Shunji; Hosoda, Kouichi; Morisawa, Yuji; Hirai, Yoshikazu

    2014-01-01

    Bacillus cereus is a spore-forming bacterium. B. cereus occasionally causes nosocomial infections, in which hand contamination with the spores plays an important role. Therefore, hand hygiene is the most important practice for controlling nosocomial B. cereus infections. This study aimed to determine the appropriate hand hygiene procedure for removing B. cereus spores. Thirty volunteers' hands were experimentally contaminated with B. cereus spores, after which they performed 6 different hand hygiene procedures. We compared the efficacy of the procedures in removing the spores from hands. The alcohol-based hand-rubbing procedures scarcely removed them. The soap washing procedures reduced the number of spores by more than 2 log10. Extending the washing time increased the spore-removing efficacy of the washing procedures. There was no significant difference in efficacy between the use of plain soap and antiseptic soap. Handwashing with soap is appropriate for removing B. cereus spores from hands. Alcohol-based hand-rubbing is not effective.

  13. Channeling, Volume Reection and Gamma Emission Using 14GeV Electrons in Bent Silicon Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, Brandon

    2015-08-14

    High energy electrons can be deflected with very tight bending radius using a bent silicon crystal. This produces gamma radiation. As these crystals can be thin, a series of bent silicon crystals with alternating direction has the potential to produce coherent gamma radiation with reasonable energy of the driving electron beam. Such an electron crystal undulator offers the prospect for higher energy radiation at lower cost than current methods. Permanent magnetic undulators like LCLS at SLAC National Accelerator Laboratory are expensive and very large (about 100 m in case of the LCLS undulator). Silicon crystals are inexpensive and compact whenmore » compared to the large magnetic undulators. Additionally, such a high energy coherent light source could be used for probing through materials currently impenetrable by x-rays. In this work we present the experimental data and analysis of experiment T523 conducted at SLAC National Accelerator Laboratory. We collected the spectrum of gamma ray emission from 14 GeV electrons on a bent silicon crystal counting single photons. We also investigated the dynamics of electron motion in the crystal i.e. processes of channeling and volume reflection at 14 GeV, extending and building off previous work. Our single photon spectrum for the amorphous crystal orientation is consistent with bremsstrahlung radiation and the volume reflection crystal orientation shows a trend consistent with synchrotron radiation at a critical energy of 740 MeV. We observe that in these two cases the data are consistent, but we make no further claims because of statistical limitations. We also extended the known energy range of electron crystal dechanneling length and channeling efficiency to 14 GeV.« less

  14. THE SPINDLE: AN IRRADIATED DISK AND BENT PROTOSTELLAR JET IN ORION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bally, John; Youngblood, Allison; Ginsburg, Adam, E-mail: John.Bally@colorado.edu, E-mail: Allison.Youngblood@colorado.edu, E-mail: Adam.Ginsburg@colorado.edu

    2012-09-10

    We present Hubble Space Telescope observations of a bent, pulsed Herbig-Haro jet, HH 1064, emerging from the young star Parenago 2042 embedded in the H II region NGC 1977 located about 30' north of the Orion Nebula. This outflow contains eight bow shocks in the redshifted western lobe and five bow shocks in the blueshifted eastern lobe. Shocks within a few thousand AU of the source star exhibit proper motions of {approx}160 km s{sup -1} but motions decrease with increasing distance. Parenago 2042 is embedded in a proplyd-a photoevaporating protoplanetary disk. A remarkable set of H{alpha} arcs resembling a spindlemore » surround the redshifted (western) jet. The largest arc with a radius of 500 AU may trace the ionized edge of a circumstellar disk inclined by {approx}30 Degree-Sign . The spindle may be the photoionized edge of either a {approx}3 km s{sup -1} FUV-driven wind from the outer disk or a faster MHD-powered flow from an inner disk. The HH 1064 jet appears to be deflected north by photoablation of the south-facing side of a mostly neutral jet beam. V2412 Ori, located 1' west of Parenago 2042 drives a second bent flow, HH 1065. Both HH 1064 and 1065 are surrounded by LL Ori-type bows marking the boundary between the outflow cavity and the surrounding nebula.« less

  15. Micromirror structure based on TiNi shape memory thin films

    NASA Astrophysics Data System (ADS)

    Fu, Yong Qing; Hu, Min; Du, Hejun; Luo, Jack; Flewitt, Andrew J.; Milne, William I.

    2005-02-01

    TiNi films were deposited on silicon by co-sputtering TiNi target and a separate Ti target at a temperature of 450°C. Results from differential scanning calorimeter, in-situ X-ray diffraction and curvature measurement revealed clearly martensitic transformation upon heating and cooling. Two types of TiNi/Si optical micromirror structures with a Si mirror cap (20 micron thick) and TiNi/Si actuation beams were designed and fabricated. For the first design, three elbow shaped Si beams with TiNi electrodes were used as the arms to actuate the mirror. In the second design, a V-shaped cantilever based on TiNi/Si bimorph beams was used as the actuation mechanism for micromirror. TiNi electrodes were patterned and wet-etched in a solutions of HF:HNO3:H2O (1:1:20) with an etch rate of 0.6 μm/min. The TiNi/Si microbeams were flat at room temperature, and bent up with applying voltage in TiNi electrodes (due to phase transformation and shape memory effect), thus causing the changes in angles of micromirror.

  16. Method for characterization of a spherically bent crystal for K.alpha. X-ray imaging of laser plasmas using a focusing monochromator geometry

    DOEpatents

    Kugland, Nathan; Doeppner, Tilo; Glenzer, Siegfried; Constantin, Carmen; Niemann, Chris; Neumayer, Paul

    2015-04-07

    A method is provided for characterizing spectrometric properties (e.g., peak reflectivity, reflection curve width, and Bragg angle offset) of the K.alpha. emission line reflected narrowly off angle of the direct reflection of a bent crystal and in particular of a spherically bent quartz 200 crystal by analyzing the off-angle x-ray emission from a stronger emission line reflected at angles far from normal incidence. The bent quartz crystal can therefore accurately image argon K.alpha. x-rays at near-normal incidence (Bragg angle of approximately 81 degrees). The method is useful for in-situ calibration of instruments employing the crystal as a grating by first operating the crystal as a high throughput focusing monochromator on the Rowland circle at angles far from normal incidence (Bragg angle approximately 68 degrees) to make a reflection curve with the He-like x-rays such as the He-.alpha. emission line observed from a laser-excited plasma.

  17. Electrostatic potential in a bent piezoelectric nanowire with consideration of size-dependent piezoelectricity and semiconducting characterization.

    PubMed

    Wang, K F; Wang, B L

    2018-06-22

    Determining the electric potential in a bent piezoelectric nanowire (NW) is a fundamental issue of nanogenerators and nanopiezotronics. The combined influence of the flexoelectric effect, the semiconducting performance and the angle of atomic force microscope (AFM) tip has never been studied previously and will be investigated in this paper. The exact solution for the electric potential of a bent piezoelectric semiconductor NW is derived. The electric potential of the present model with consideration of flexoelectric effect varies along the length of the NW and is different from that of the classical piezoelectric model. Flexoelectric effect enhances but the semiconducting performance reduces the electric potential of the NW. In addition, it is found that if the angle of the AFM tip reaches 30°, the error of the electric potential obtained from the model ignored the effect of the angle of the AFM tip is almost 16%, which is unacceptable.

  18. Electrostatic potential in a bent piezoelectric nanowire with consideration of size-dependent piezoelectricity and semiconducting characterization

    NASA Astrophysics Data System (ADS)

    Wang, K. F.; Wang, B. L.

    2018-06-01

    Determining the electric potential in a bent piezoelectric nanowire (NW) is a fundamental issue of nanogenerators and nanopiezotronics. The combined influence of the flexoelectric effect, the semiconducting performance and the angle of atomic force microscope (AFM) tip has never been studied previously and will be investigated in this paper. The exact solution for the electric potential of a bent piezoelectric semiconductor NW is derived. The electric potential of the present model with consideration of flexoelectric effect varies along the length of the NW and is different from that of the classical piezoelectric model. Flexoelectric effect enhances but the semiconducting performance reduces the electric potential of the NW. In addition, it is found that if the angle of the AFM tip reaches 30°, the error of the electric potential obtained from the model ignored the effect of the angle of the AFM tip is almost 16%, which is unacceptable.

  19. Nematic biaxiality in a bent-core material

    NASA Astrophysics Data System (ADS)

    Yoon, Hyung Guen; Kang, Shin-Woong; Dong, Ronald Y.; Marini, Alberto; Suresh, Kattera A.; Srinivasarao, Mohan; Kumar, Satyendra

    2010-05-01

    The results of a recent investigation of the nematic biaxiality in a bent-core mesogen (A131) are in apparent disagreement with earlier claims. Samples of mesogen A131 used in the two studies were investigated with polarized optical microscopy, conoscopy, carbon-13 NMR, and crossover frequency measurements. The results demonstrate that textural changes associated with the growth of biaxial nematic order appear at ˜149°C . The Maltese cross observed in the conoscopic figure gradually splits into two isogyres at lower temperatures indicating phase biaxiality. Presence of the uniaxial to biaxial nematic phase transition is further confirmed by temperature trends of local order parameters based on C13 chemical shifts in NMR experiments. Frequency switching measurements also clearly reveal a transition at 149°C . Differences between the two reports appear to be related to the presence of solvent, impurities, and/or adsorbed gases in samples of A131 used in the study of Van Le [Phys. Rev. E 79, 030701 (2009)].

  20. Exploring the Outdoor Classroom with a Hand Lens.

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    Information about hand lenses and their use in the classroom and out-of-doors for curriculum enrichment is presented in this paper. Some basic attributes of the hand lens, including shape, focal length, and magnification power, are described. Directions for making holders for the lenses in the classroom are given. Two classroom activities and 14…

  1. Long term type 1 diabetes is associated with hand pain, disability and stiffness but not with structural hand osteoarthritis features – The Dialong hand study

    PubMed Central

    Magnusson, Karin; Bech Holte, Kristine; Juel, Niels Gunnar; Brox, Jens Ivar; Hagen, Kåre Birger; Haugen, Ida Kristin; Berg, Tore Julsrud

    2017-01-01

    Objective To explore whether having long-term type 1 diabetes (>45 years) is associated with a higher prevalence of radiographic hand OA, erosive hand OA and increased hand pain, disability and stiffness. Methods In total N = 96 persons with type 1 diabetes diagnosed before 1970 were included (mean [SD] age: 62.2 [7.4], mean [SD] HbA1c: 7.43 [0.80] and N = 49 [51%] men). Regular measurements of their HbA1c were obtained till 2015. We included N = 69 healthy controls without any diabetes (mean [SD] age: 63.0 [7.0], mean [SD] HbA1c: 5.41 [0.32], N = 29 [42%] men). The groups were compared for radiographic hand OA (Kellgren-Lawrence grade ≥2 in ≥1 joint) and erosive hand OA (central erosions in ≥1 joint), Australian/Canadian index (AUSCAN) for hand pain, disability and stiffness using regression analyses adjusted for age, sex, educational level and waist circumference. Results We found no associations between having long term type 1 diabetes and more prevalent radiographic hand OA (OR = 0.83, 95% CI = 0.38–1.81). We found a trend towards higher prevalence of erosive hand OA in diabetes patients (OR = 2.96, 95% CI = 0.82–10.64). Strong and consistent associations were observed between long term type 1 diabetes and increased hand pain (B = 2.78, 95% CI = 1.65–3.91), disability (B = 5.30, 95% CI = 3.48–7.12) and stiffness (B = 2.00, 95% CI = 1.33–2.67). These associations were particularly strong for women and participants below the median age of 61 years. Conclusion Long-term type 1 diabetes was not associated with radiographic hand OA, but was strongly associated with hand pain, disability and stiffness. The association between diabetes and erosive hand OA warrants further investigation. PMID:28510594

  2. Grasping with the eyes of your hands: hapsis and vision modulate hand preference.

    PubMed

    Stone, Kayla D; Gonzalez, Claudia L R

    2014-02-01

    Right-hand preference has been demonstrated for visually guided reaching and grasping. Grasping, however, requires the integration of both visual and haptic cues. To what extent does vision influence hand preference for grasping? Is there a hand preference for haptically guided grasping? Two experiments were designed to address these questions. In Experiment 1, individuals were tested in a reaching-to-grasp task with vision (sighted condition) and with hapsis (blindfolded condition). Participants were asked to put together 3D models using building blocks scattered on a tabletop. The models were simple, composed of ten blocks of three different shapes. Starting condition (Vision-First or Hapsis-First) was counterbalanced among participants. Right-hand preference was greater in visually guided grasping but only in the Vision-First group. Participants who initially built the models while blindfolded (Hapsis-First group) used their right hand significantly less for the visually guided portion of the task. To investigate whether grasping using hapsis modifies subsequent hand preference, participants received an additional haptic experience in a follow-up experiment. While blindfolded, participants manipulated the blocks in a container for 5 min prior to the task. This additional experience did not affect right-hand use on visually guided grasping but had a robust effect on haptically guided grasping. Together, the results demonstrate first that hand preference for grasping is influenced by both vision and hapsis, and second, they highlight how flexible this preference could be when modulated by hapsis.

  3. Phase behavior of diblock copolymer/star-shaped polymer thin film mixtures.

    PubMed

    Zhao, Junnan; Sakellariou, Georgios; Green, Peter F

    2016-05-07

    We investigated the phase behavior of thin film, thickness h≈ 100 nm, mixtures of a polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer with star-shaped polystyrene (SPS) molecules of varying functionalities f, where 4 ≤f≤ 64, and molecular weights per arm Marm. The miscibility of the system and the surface composition varied appreciably with Marm and f. For large values of Marm, regardless of f, the miscibility of the system was qualitatively similar to that of linear chain PS/PS-b-P2VP mixtures - the copolymer chains aggregate to form micelles, each composed of an inner P2VP core and PS corona, which preferentially segregate to the free surface. On the other hand, for large f and small Marm, SPS molecules preferentially resided at the free surface. Moreover, blends containing SPS molecules with the highest values of f and lowest values of Marm were phase separated. These observations are rationalized in terms of competing entropic interactions and the dependence of the surface tension of the star-shaped molecules on Marm and f.

  4. Data acquisition of neutron crystallography on tetragonal and triclinic forms of hen-egg-white (HEW) lysozyme with an elastically bent Si monochromator

    NASA Astrophysics Data System (ADS)

    Tanaka, I.; Minezaki, Y.; Harada, K.; Niimura, N.

    An elastically bent silicon (EBSi) as a monochromator has been optimized for neutron diffractometers of biocrystallography. It was found that several stacked thin Si plates were easier to be bent much for the near focusing point and they increased neutron reflectivity by aligning the plates. Currently, an EBSi(1 1 1) monochromator system was equipped at a diffractometer (BIX-I). It took 50 days to collect about 12 000 reflections of hen-egg-white lysozyme. The minimum d-spacing was 2.1 Å.

  5. Repair of Morganza Spillway Bridge Bent Pile Cap Using Carbon Fiber Reinforcement (CFR) : Research Project Capsule

    DOT National Transportation Integrated Search

    2012-09-01

    The pile cap of an end bent of the Morganza Spillway Bridge suff ered extensive damage at the girder bearing : locations on one side, due to the pounding of the girders at these locations by the adjacent concrete deck : located on the approach side o...

  6. Hand Hygiene and Tuberculosis Risk in Korea: An Ecological Association.

    PubMed

    Han, Mi Ah

    2018-01-01

    Hand hygiene is a basic but effective strategy against infectious disease. This study investigated an ecological association between hand hygiene and tuberculosis (TB) risk in Korea. Hand hygiene data were obtained from the 2015 Community Health Survey. Information on TB incidence and mortality in 2015 were obtained from the National Infectious Diseases Surveillance System and death monitoring database, respectively. In multiple linear regression analysis, frequent hand washing rates after using the restroom (B = -0.78, P = .037), after returning from the outdoors (B = -0.28, P = .049), and with soap or hand sanitizer (B = -0.54, P = .018) were negatively associated with TB incidence. TB mortality were associated with frequent hand washing rates after returning from the outdoors (B = -0.05, P = .035), and with soap or hand sanitizer (B = -0.10, P = .010), respectively. Hand washing was associated with lower TB incidence and mortality at the community level. These results could contribute to develop community-based health promotion strategies.

  7. A precast concrete bridge bent designed to re-center after an earthquake : draft research report, August 2008.

    DOT National Transportation Integrated Search

    2008-08-01

    In this study the post-earthquake residual displacements of reinforced concrete bridge bents were investigated. The system had mild steel that was intended to dissipate energy and an unbonded, post-tensioned tendon that was supposed to remain elastic...

  8. Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve.

    PubMed

    Radak, Zsolt; Ishihara, Kazunari; Tekus, Eva; Varga, Csaba; Posa, Aniko; Balogh, Laszlo; Boldogh, Istvan; Koltai, Erika

    2017-08-01

    It is debated whether exercise-induced ROS production is obligatory to cause adaptive response. It is also claimed that antioxidant treatment could eliminate the adaptive response, which appears to be systemic and reportedly reduces the incidence of a wide range of diseases. Here we suggest that if the antioxidant treatment occurs before the physiological function-ROS dose-response curve reaches peak level, the antioxidants can attenuate function. On the other hand, if the antioxidant treatment takes place after the summit of the bell-shaped dose response curve, antioxidant treatment would have beneficial effects on function. We suggest that the effects of antioxidant treatment are dependent on the intensity of exercise, since the adaptive response, which is multi pathway dependent, is strongly influenced by exercise intensity. It is further suggested that levels of ROS concentration are associated with peak physiological function and can be extended by physical fitness level and this could be the basis for exercise pre-conditioning. Physical inactivity, aging or pathological disorders increase the sensitivity to oxidative stress by altering the bell-shaped dose response curve. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes

    PubMed Central

    Yasinskii, V. M.; Filimonenko, D. S.; Rostova, E.; Dietler, G.; Sekatskii, S. K.

    2018-01-01

    In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF) and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm) and the probe's tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000–6000) of the TF + probe system (Cherkun et al., 2006). We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation. PMID:29849857

  10. True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes.

    PubMed

    Smirnov, A; Yasinskii, V M; Filimonenko, D S; Rostova, E; Dietler, G; Sekatskii, S K

    2018-01-01

    In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF) and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm) and the probe's tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO 2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000-6000) of the TF + probe system (Cherkun et al., 2006). We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation.

  11. Nanodoping: a route for enhancing electro-optic performance of bent core nematic system

    NASA Astrophysics Data System (ADS)

    Kumar, Pradeep; Debnath, Somen; Rao, Nandiraju V. S.; Sinha, Aloka

    2018-03-01

    We report the effect of dispersion of barium titanate (BaTiO3) nanoparticles (BNPs) in a four ring bent core nematic (BCN) liquid crystal. Polarizing optical microscopy reveals the presence of a single nematic phase in pure and doped states. Polar switching has been observed in the bent core system and the value of spontaneous polarization (P s) increases with increase in doping concentration of BNPs in BCN. Dielectric study shows a lower frequency mode, which can be ascribed to the formation of cybotactic clusters. These clusters are also responsible for the observed polar switching in pure, as well as, in doped BCNs. Another higher frequency mode, observed only in pure BCN, indicates the rotation of molecules about their long molecular axis. The conductivity of doped samples is also found to decrease as compared to the pure BCN. This reduction helps in the minimization of negative effects caused by free ions in liquid crystal based devices. This study demonstrates that the interaction between BNPs and BCN molecules improves the P s, dielectric behaviour, viscosity and reduces the conductivity of pure BCN. Hence, nanodoping in a BCN is an effective method for the enhancement of electro-optic performances and will lead to the development of faster electro-optic devices.

  12. A Tactile Stimulator for Studying Passive Shape Perception

    PubMed Central

    Lane, John W.; Fitzgerald, Paul J.; Yau, Jeffrey M.; Pembeci, Izzet; Hsiao, Steven S.

    2009-01-01

    We describe a computer-controlled tactile stimulator for use in human psychophysical and monkey neurophysiological studies of 3-D shape perception. The stimulator is constructed primarily of commercially available parts, as well as a few custom-built pieces for which we will supply diagrams upon request. There are two components to the stimulator: a tactile component and a hand positioner component. The tactile component consists of multiple stimulating units that move about in a Cartesian plane above the restrained hand. Each stimulating unit contains a servo-controlled linear motor with an attached small rotary stepper motor, allowing arbitrary stimulus shapes to contact the skin through vibration, static indentation, or scanning. The hand positioner component modifies the conformation of the restrained hand through a set of mechanical linkages under motorized control. The present design controls the amount of spread between digits two and three, the spread between digits four and three, and the degree to which digit three is flexed or extended, thereby simulating different conformations of the hand in contact with objects. This design is easily modified to suit the needs of the experimenter. Because the two components of the stimulator are independently controlled, the stimulator allows for parametric study of the mechanoreceptive and proprioceptive contributions to 3-D tactile shape perception. PMID:19800916

  13. Second-harmonic generation studies in the B2 and B4 phases of a banana-shaped liquid crystal.

    PubMed

    Ortega, J; Pereda, N; Folcia, C L; Etxebarria, J; Ros, M B

    2001-01-01

    Second-harmonic generation (SHG) measurements have been performed in the B2 phase of the achiral banana-shaped molecule with n=12 alkoxy end chains (P-12-O-PIMB). A quantitative value of the nonlinear efficiency has been obtained from SHG curves at oblique incidences, taking into account that the signal is generated by a random orientation of different domains. In the B4 phase, circular dichroism, optical absorption and SHG studies have been carried out. It has been found that there are no simple helical arrangements giving rise to selective reflection in the visible region of the spectrum. In addition, some unusual features of the SHG behavior are pointed out. It is concluded that the phase is intrinsically inactive for the SHG process. The detected signal is due to the presence of some birefringent inclusions that are created at the B2 to B4 transition and slowly disappear while the sample is maintained within the B4 phase. A structural model for these inclusions is presented.

  14. Second-harmonic generation studies in the B2 and B4 phases of a banana-shaped liquid crystal

    NASA Astrophysics Data System (ADS)

    Ortega, J.; Pereda, N.; Folcia, C. L.; Etxebarria, J.; Ros, M. B.

    2001-01-01

    Second-harmonic generation (SHG) measurements have been performed in the B2 phase of the achiral banana-shaped molecule with n=12 alkoxy end chains (P-12-O-PIMB). A quantitative value of the nonlinear efficiency has been obtained from SHG curves at oblique incidences, taking into account that the signal is generated by a random orientation of different domains. In the B4 phase, circular dichroism, optical absorption and SHG studies have been carried out. It has been found that there are no simple helical arrangements giving rise to selective reflection in the visible region of the spectrum. In addition, some unusual features of the SHG behavior are pointed out. It is concluded that the phase is intrinsically inactive for the SHG process. The detected signal is due to the presence of some birefringent inclusions that are created at the B2 to B4 transition and slowly disappear while the sample is maintained within the B4 phase. A structural model for these inclusions is presented.

  15. Three-dimensional beam pattern of regular sperm whale clicks confirms bent-horn hypothesis

    NASA Astrophysics Data System (ADS)

    Zimmer, Walter M. X.; Tyack, Peter L.; Johnson, Mark P.; Madsen, Peter T.

    2005-03-01

    The three-dimensional beam pattern of a sperm whale (Physeter macrocephalus) tagged in the Ligurian Sea was derived using data on regular clicks from the tag and from hydrophones towed behind a ship circling the tagged whale. The tag defined the orientation of the whale, while sightings and beamformer data were used to locate the whale with respect to the ship. The existence of a narrow, forward-directed P1 beam with source levels exceeding 210 dBpeak re: 1 μPa at 1 m is confirmed. A modeled forward-beam pattern, that matches clicks >20° off-axis, predicts a directivity index of 26.7 dB and source levels of up to 229 dBpeak re: 1 μPa at 1 m. A broader backward-directed beam is produced by the P0 pulse with source levels near 200 dBpeak re: 1 μPa at 1 m and a directivity index of 7.4 dB. A low-frequency component with source levels near 190 dBpeak re: 1 μPa at 1 m is generated at the onset of the P0 pulse by air resonance. The results support the bent-horn model of sound production in sperm whales. While the sperm whale nose appears primarily adapted to produce an intense forward-directed sonar signal, less-directional click components convey information to conspecifics, and give rise to echoes from the seafloor and the surface, which may be useful for orientation during dives..

  16. Keep your hands crossed: the valence-by-left/right interaction is related to hand, not side, in an incongruent hand-response key assignment.

    PubMed

    de la Vega, Irmgard; Dudschig, Carolin; De Filippis, Mónica; Lachmair, Martin; Kaup, Barbara

    2013-02-01

    The body-specificity hypothesis (Casasanto, 2009) associates positive emotional valence and the space surrounding the dominant hand, and negative valence and the space surrounding the non-dominant hand. This effect has not only been found for manual responses, but also for the left and right side. In the present study, we investigated whether this compatibility effect still shows when hand and side carry incongruent information, and whether it is then related to hand or to side. We conducted two experiments which used an incongruent hand-response key assignment, that is, participants had their hands crossed. Participants were instructed to respond with their right vs. left hand (Experiment 1) or with the right vs. left key (Experiment 2). In both experiments, a compatibility effect related to hand emerged, indicating that the association between hand and valence overrides the one between side and valence when hand and side carry contradicting information. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. 29 CFR 1926.301 - Hand tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Tools-Hand and Power § 1926.301 Hand tools. (a) Employers shall not issue or permit the use of unsafe hand tools. (b) Wrenches, including adjustable, pipe, end...

  18. State-space control of prosthetic hand shape.

    PubMed

    Velliste, M; McMorland, A J C; Diril, E; Clanton, S T; Schwartz, A B

    2012-01-01

    In the field of neuroprosthetic control, there is an emerging need for simplified control of high-dimensional devices. Advances in robotic technology have led to the development of prosthetic arms that now approach the look and number of degrees of freedom (DoF) of a natural arm. These arms, and especially hands, now have more controllable DoFs than the number of control DoFs available in many applications. In natural movements, high correlations exist between multiple joints, such as finger flexions. Therefore, discrepancy between the number of control and effector DoFs can be overcome by a control scheme that maps low-DoF control space to high-DoF joint space. Imperfect effectors, sensor noise and interactions with external objects require the use of feedback controllers. The incorporation of feedback in a system where the command is in a different space, however, is challenging, requiring a potentially difficult inverse high-DoF to low-DoF transformation. Here we present a solution to this problem based on the Extended Kalman Filter.

  19. To bend or not to bend: electronic structural analysis of linear versus bent M-H-M interactions in dinickel bis(dialkylphosphino)methane complexes.

    PubMed

    Wilson, Zakiya S; Stanley, George G; Vicic, David A

    2010-06-21

    The M-H-M bonding in the dinuclear complexes Ni(2)(mu-H)(mu-P(2))(2)X(2) (P(2) = R(2)PCH(2)PR(2), R = iPr, Cy; X = Cl, Br) has been investigated. These dinickel A-frames were studied via density functional theory (DFT) calculations to analyze the factors that influence linear and bent M-H-M bonding. The DFT calculations indicate that the bent geometry is favored electronically, with ligand steric effects driving the formation of the linear M-H-M structures.

  20. The Crystal Backlighter Imager: a spherically-bent crystal imager for radiography on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hall, Gareth; Krauland, Christine; Buscho, Justin; Hibbard, Robin; McCarville, Thomas; Lowe-Webb, Roger; Ayers, Shannon; Kalantar, Daniel; Kohut, Thomas; Kemp, G. Elijah; Bradley, David; Bell, Perry; Landen, Otto; Brewster, Nathaniel; Piston, Kenneth

    2017-10-01

    The Crystal Backlighter Imager (CBI) is a quasi-monochromatic, near-normal incidence, spherically-bent crystal imager being developed for the NIF, which will allow ICF capsule implosions to be radiographed close to stagnation for the first time. This has not been possible using the previous pinhole-based area-backlighter configuration, as the self-emission from the capsule hotspot overwhelms the backlighter in the final stages of the implosion. CBI mitigates the broadband self-emission from the capsule hot spot by using the extremely narrow bandwidth (a few eV) inherent to imagers based on near-normal-incidence Bragg x-ray optics. The development of a diagnostic with the capability to image the capsule during the final stages of the implosion (r less than 200um) is important, as it will allow the shape, integrity and density of the shell to be measured, and will allow the evolution of features, such as the fill tube and capsule support structure, to be imaged close to bang time. The concept and operation of the 11.6keV CBI diagnostic will be discussed, and the first results from experiments on the NIF will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344.

  1. Focusing effect of bent GaAs crystals for γ-ray Laue lenses: Monte Carlo and experimental results

    NASA Astrophysics Data System (ADS)

    Virgilli, E.; Frontera, F.; Rosati, P.; Bonnini, E.; Buffagni, E.; Ferrari, C.; Stephen, J. B.; Caroli, E.; Auricchio, N.; Basili, A.; Silvestri, S.

    2016-02-01

    We report on results of observation of the focusing effect from the planes (220) of Gallium Arsenide (GaAs) crystals. We have compared the experimental results with the Monte Carlo simulations of the focusing capability of GaAs tiles performed with a dedicated ray-tracer. The GaAs tiles were bent using a lapping process developed at the cnr/imem - Parma (Italy) in the framework of the laue project, funded by ASI, dedicated to build a broad band Laue lens prototype for astrophysical applications in the hard X-/soft γ-ray energy range (80-600 keV). We present and discuss the results obtained from their characterization, mainly in terms of focusing capability. Bent crystals will significantly increase the signal to noise ratio of a telescope based on a Laue lens, consequently leading to an unprecedented enhancement of sensitivity with respect to the present non focusing instrumentation.

  2. Static hand gesture recognition from a video

    NASA Astrophysics Data System (ADS)

    Rokade, Rajeshree S.; Doye, Dharmpal

    2011-10-01

    A sign language (also signed language) is a language which, instead of acoustically conveyed sound patterns, uses visually transmitted sign patterns to convey meaning- "simultaneously combining hand shapes, orientation and movement of the hands". Sign languages commonly develop in deaf communities, which can include interpreters, friends and families of deaf people as well as people who are deaf or hard of hearing themselves. In this paper, we proposed a novel system for recognition of static hand gestures from a video, based on Kohonen neural network. We proposed algorithm to separate out key frames, which include correct gestures from a video sequence. We segment, hand images from complex and non uniform background. Features are extracted by applying Kohonen on key frames and recognition is done.

  3. Portable hand hold device

    NASA Technical Reports Server (NTRS)

    Redmon, Jr., John W. (Inventor); McQueen, Donald H. (Inventor); Sanders, Fred G. (Inventor)

    1990-01-01

    A hand hold device (A) includes a housing (10) having a hand hold (14) and clamping brackets (32,34) for grasping and handling an object. A drive includes drive lever (23), spur gear (22), and rack gears (24,26) carried on rods (24a, 26a) for moving the clamping brackets. A lock includes ratchet gear (40) and pawl (42) biased between lock and unlock positions by a cantilever spring (46,48) and moved by handle (54). Compliant grip pads (32b, 34b) provide compliance to lock, unlock, and hold an object between the clamp brackets.

  4. Structure design for a Two-DoF myoelectric prosthetic hand to realize basic hand functions in ADLs.

    PubMed

    Hoshigawa, Suguru; Jiang, Yinlai; Kato, Ryu; Morishita, Soichiro; Nakamura, Tatsuhiro; Yabuki, Yoshiko; Yokoi, Hiroshi

    2015-01-01

    Prosthetic hands are desired by those who have lost a hand or both hands not only for decoration but also for the functions to help them with their activities of daily living (ADL). Prosthetic robotic hands that are developed to fully realize the function of a human hand are usually too expensive to be economically available, difficult to operate and maintain, or over heavy for longtime wearing. The aim of this study is therefore to develop a simplified prosthetic hand (sim-PH), which is to be controlled by myoelectric signals from the user, to realize the most important grasp motions in ADL by trading off the cost and performance. This paper reports the structure design of a two-DoF sim-PH with two motors to drive the CM joint of the thumb and the interlocked MP joints of the other four fingers. In order to optimize the structure, the model of the sim-PH was proposed based on which 7 sim-PHs with different structural parameters were manufactured and tested in a pick-and-place experiment. Correspondence analysis of the experimental results clarified the relationship between the hand functions and the shapes of fingers.

  5. Radiological evaluation of the morphological changes of root canals shaped with ProTaper for hand use and the ProTaper and RaCe rotary instruments.

    PubMed

    Aguiar, Carlos M; Câmara, Andréa C

    2008-12-01

    This study evaluated, by means of the radiography examination, the occurrence of deviations in the apical third of root canals shaped with hand and rotary instruments. Sixty mandibular human molars were divided into three groups. The root canals in group 1 were instrumented with ProTaper (Dentsply/Maillefer, Ballaigues, Switzerland) for hand use, group 2 with ProTaper and group 3 with RaCe. The images obtained by double superimposition of the pre- and postoperative radiographs were evaluated by two endodontists with the aid of a magnifier-viewer and a fivefold magnifier. Statistical analysis was performed using the Fisher-Freeman-Halton. The instrumentation using the ProTaper for hand use showed 25% of the canals with a deviation in the apical third, as did the ProTaper, while the corresponding figure for the RaCe (FKG Dentaire, La-Chaux-de-Fonds, Switzerland) was 20%, but these results were not statistically significant. There was no correlation between the occurrence of deviations in the apical third and the systems used.

  6. Systematic study of aggregation structure and thermal behavior of a series of unique H-shape alkane molecules.

    PubMed

    Yamamoto, Hiroko; Tashiro, Kohji; Nemoto, Norio; Motoyama, Yukihiro; Takahashi, Yoshiaki

    2011-08-11

    The H-shape alkanes of various arm lengths have been synthesized successfully through the Grignard reaction. The detailed investigation of these novel compounds may allow us to widen the topological chemistry field furthermore. The molecular form and molecular packing structure in the crystal lattice have been revealed successfully on the basis of X-ray structure analysis as well as the analysis of Raman longitudinal acoustic modes (LAM) sensitive to the alkyl zigzag chain segments. The molecular conformation in the crystal lattice is deformed markedly from the originally imagined H-shape. In the cases of C3HOH to C6HOH, for example, the molecules are packed in a complicated manner and the OH···O hydrogen bonds govern the whole intermolecular interactions mainly. Since the alkyl segmental length is not very long, the conformational change is not very drastic, i.e., the small configurational entropy. Synergic effect of the hydrogen bonds and the small configurational entropy gives the higher melting point as known from the thermal data. On the other hand, in the cases of C10HOH and C12HOH, one of the long alkyl chain arms is found to be bent by 90° so that all of the alky chain segments of planar-zigzag conformation can be packed as closely as possible, and the intermolecular OH···O hydrogen bonds are also formed effectively without any mistake. As a result, the contribution of nonbonded intra- and intermolecular van der Waals interactions between the trans-zigzag alkyl chain segments become major, and the coupling of this enthalpy effect with the larger configurational entropy effect of the molecular shape results in the decrement of the melting point which approaches gradually that of longer n-alkane compound. In this way a sensitive balance between the nonbonded van der Waals interactions, the OH···O hydrogen bonds, as well as the configurational entropy effect gives the characteristic thermal behavior of the H-shape compounds. The thus

  7. Model-based segmentation of hand radiographs

    NASA Astrophysics Data System (ADS)

    Weiler, Frank; Vogelsang, Frank

    1998-06-01

    An important procedure in pediatrics is to determine the skeletal maturity of a patient from radiographs of the hand. There is great interest in the automation of this tedious and time-consuming task. We present a new method for the segmentation of the bones of the hand, which allows the assessment of the skeletal maturity with an appropriate database of reference bones, similar to the atlas based methods. The proposed algorithm uses an extended active contour model for the segmentation of the hand bones, which incorporates a-priori knowledge of shape and topology of the bones in an additional energy term. This `scene knowledge' is integrated in a complex hierarchical image model, that is used for the image analysis task.

  8. Forming of the Most Convenient Bent Constructional Elements with a Permissible Strength Given

    NASA Astrophysics Data System (ADS)

    Fligiel, M.

    2014-11-01

    In the present study, the limiting values are determined of the criteria quantities of optimal forming of the most convenient bent supporting structure for the case of static loads in the range of the Hooke's law applicability. As the criterion of the most convenient constructional element, the following were accepted: the smallest length of the activity of internal forces as well as the equal potential and the gradient of the potential energy of elastic deformation at each point of the constructional element.

  9. Left hand tactile agnosia after posterior callosal lesion.

    PubMed

    Balsamo, Maddalena; Trojano, Luigi; Giamundo, Arcangelo; Grossi, Dario

    2008-09-01

    We report a patient with a hemorrhagic lesion encroaching upon the posterior third of the corpus callosum but sparing the splenium. She showed marked difficulties in recognizing objects and shapes perceived through her left hand, while she could appreciate elementary sensorial features of items tactually presented to the same hand flawlessly. This picture, corresponding to classical descriptions of unilateral associative tactile agnosia, was associated with finger agnosia of the left hand. This very unusual case report can be interpreted as an instance of disconnection syndrome, and allows a discussion of mechanisms involved in tactile object recognition.

  10. Purification and characterization of Escherichia coli MreB protein.

    PubMed

    Nurse, Pearl; Marians, Kenneth J

    2013-02-01

    The actin homolog MreB is required in rod-shaped bacteria for maintenance of cell shape and is intimately connected to the holoenzyme that synthesizes the peptidoglycan layer. The protein has been reported variously to exist in helical loops under the cell surface, to rotate, and to move in patches in both directions around the cell surface. Studies of the Escherichia coli protein in vitro have been hampered by its tendency to aggregate. Here we report the purification and characterization of native E. coli MreB. The protein requires ATP hydrolysis for polymerization, forms bundles with a left-hand twist that can be as long as 4 μm, forms sheets in the presence of calcium, and has a critical concentration for polymerization of 1.5 μM.

  11. Purification and Characterization of Escherichia coli MreB Protein*

    PubMed Central

    Nurse, Pearl; Marians, Kenneth J.

    2013-01-01

    The actin homolog MreB is required in rod-shaped bacteria for maintenance of cell shape and is intimately connected to the holoenzyme that synthesizes the peptidoglycan layer. The protein has been reported variously to exist in helical loops under the cell surface, to rotate, and to move in patches in both directions around the cell surface. Studies of the Escherichia coli protein in vitro have been hampered by its tendency to aggregate. Here we report the purification and characterization of native E. coli MreB. The protein requires ATP hydrolysis for polymerization, forms bundles with a left-hand twist that can be as long as 4 μm, forms sheets in the presence of calcium, and has a critical concentration for polymerization of 1.5 μm. PMID:23235161

  12. Hand-operated and rotary ProTaper instruments: a comparison of working time and number of rotations in simulated root canals.

    PubMed

    Pasqualini, Damiano; Scotti, Nicola; Tamagnone, Lorenzo; Ellena, Federica; Berutti, Elio

    2008-03-01

    The aim of this study was to compare the effective shaping time and number of rotations required by an endodontist working with hand and rotary ProTaper instruments to completely shape simulated root canals. Eighty Endo Training Blocks (curved canal shape) were used. Manual preflaring was performed with K-Flexofiles #08-10-12-15-17 and #20 Nitiflex at a working length of 18 mm. Specimens were then randomly assigned to 2 different groups (n = 40); group 1 was shaped by using hand ProTaper and group 2 with ProTaper rotary. The number of rotations made in the canal and the effective time required to achieve complete canal shaping were recorded for each instrument. Differences between groups were analyzed with the nonparametric Mann-Whitney U test (P < .05). Hand ProTaper required significantly fewer rotations (P < .001) than rotary ProTaper, whereas the effective working time to fully shape the simulated canal was significantly higher (P < .001) with hand ProTaper.

  13. Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths

    NASA Astrophysics Data System (ADS)

    Noual, A.; Akjouj, A.; Pennec, Y.; Gillet, J.-N.; Djafari-Rouhani, B.

    2009-10-01

    Numerical simulations, based on a finite-difference-time-domain (FDTD) method, of infrared light propagation for add/drop filtering in two-dimensional (2D) metal-insulator-metal (Ag-SiO2-Ag) resonators are reported to design 2D Y-bent plasmonic waveguides with possible applications in telecommunication wavelength demultiplexing (WDM). First, we study optical transmission and reflection of a nanoscale SiO2 waveguide coupled to a nanocavity of the same insulator located either inside or on the side of a linear waveguide sandwiched between Ag. According to the inside or outside positioning of the nanocavity with respect to the waveguide, the transmission spectrum displays peaks or dips, respectively, which occur at the same central frequency. A fundamental study of the possible cavity modes in the near-infrared frequency band is also given. These filtering properties are then exploited to propose a nanoscale demultiplexer based on a Y-shaped plasmonic waveguide for separation of two different wavelengths, in selection or rejection, from an input broadband signal around 1550 nm. We detail coupling of the 2D add/drop Y connector to two cavities inserted on each of its branches. Selection or rejection of a pair of different wavelengths depends on the inside or outside locations (respectively) of each cavity in the Y plasmonic device.

  14. Estimating volume, biomass, and potential emissions of hand-piled fuels

    Treesearch

    Clinton S. Wright; Cameron S. Balog; Jeffrey W. Kelly

    2009-01-01

    Dimensions, volume, and biomass were measured for 121 hand-constructed piles composed primarily of coniferous (n = 63) and shrub/hardwood (n = 58) material at sites in Washington and California. Equations using pile dimensions, shape, and type allow users to accurately estimate the biomass of hand piles. Equations for estimating true pile volume from simple geometric...

  15. MreB is important for cell shape but not for chromosome segregation of the filamentous cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Hu, Bin; Yang, Guohua; Zhao, Weixing; Zhang, Yingjiao; Zhao, Jindong

    2007-03-01

    MreB is a bacterial actin that plays important roles in determination of cell shape and chromosome partitioning in Escherichia coli and Caulobacter crescentus. In this study, the mreB from the filamentous cyanobacterium Anabaena sp. PCC 7120 was inactivated. Although the mreB null mutant showed a drastic change in cell shape, its growth rate, cell division and the filament length were unaltered. Thus, MreB in Anabaena maintains cell shape but is not required for chromosome partitioning. The wild type and the mutant had eight and 10 copies of chromosomes per cell respectively. We demonstrated that DNA content in two daughter cells after cell division in both strains was not always identical. The ratios of DNA content in two daughter cells had a Gaussian distribution with a standard deviation much larger than a value expected if the DNA content in two daughter cells were identical, suggesting that chromosome partitioning is a random process. The multiple copies of chromosomes in cyanobacteria are likely required for chromosome random partitioning in cell division.

  16. Role of B19' martensite deformation in stabilizing two-way shape memory behavior in NiTi

    DOE PAGES

    Benafan, O.; Padula, S. A.; Noebe, R. D.; ...

    2012-11-01

    Deformation of a B19' martensitic, polycrystallineNi49.9Ti50.1 (at. %) shape memoryalloy and its influence on the magnitude and stability of the ensuing two-way shape memory effect (TWSME) was investigated by combined ex situ mechanical experimentation and in situneutron diffraction measurements at stress and temperature. The microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were captured and compared to the bulk macroscopic response of the alloy. With increasing uniaxial strain, it was observed that B19' martensite deformed by reorientation and detwinning with preferred selection of the (1¯50) M and (010) M variants, (201¯) B19' deformationmore » twinning, and dislocation activity. These mechanisms were indicated by changes in bulk texture from the neutron diffraction measurements. Partial reversibility of the reoriented variants and deformation twins was also captured upon load removal and thermal cycling, which after isothermal deformation to strains between 6% and 22% resulted in a strong TWSME. Consequently, TWSME functional parameters including TWSME strain, strain reduction, and transformation temperatures were characterized and it was found that prior martensite deformation to 14% strain provided the optimum condition for the TWSME, resulting in a stable two-way shape memory strain of 2.2%. Thus, isothermal deformation of martensite was found to be a quick and efficient method for creating a strong and stable TWSME in Ni₄₉.₉Ti₅₀.₁.« less

  17. Standing Helicon Wave Induced by a Rapidly Bent Magnetic Field in Plasmas.

    PubMed

    Takahashi, Kazunori; Takayama, Sho; Komuro, Atsushi; Ando, Akira

    2016-04-01

    An electron energy probability function and a rf magnetic field are measured in a rf hydrogen helicon source, where axial and transverse static magnetic fields are applied to the source by solenoids and to the diffusion chamber by filter magnets, respectively. It is demonstrated that the helicon wave is reflected by the rapidly bent magnetic field and the resultant standing wave heats the electrons between the source and the magnetic filter, while the electron cooling effect by the magnetic filter is maintained. It is interpreted that the standing wave is generated by the presence of a spatially localized change of a refractive index.

  18. Standing Helicon Wave Induced by a Rapidly Bent Magnetic Field in Plasmas

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Takayama, Sho; Komuro, Atsushi; Ando, Akira

    2016-04-01

    An electron energy probability function and a rf magnetic field are measured in a rf hydrogen helicon source, where axial and transverse static magnetic fields are applied to the source by solenoids and to the diffusion chamber by filter magnets, respectively. It is demonstrated that the helicon wave is reflected by the rapidly bent magnetic field and the resultant standing wave heats the electrons between the source and the magnetic filter, while the electron cooling effect by the magnetic filter is maintained. It is interpreted that the standing wave is generated by the presence of a spatially localized change of a refractive index.

  19. Data-driven grasp synthesis using shape matching and task-based pruning.

    PubMed

    Li, Ying; Fu, Jiaxin L; Pollard, Nancy S

    2007-01-01

    Human grasps, especially whole-hand grasps, are difficult to animate because of the high number of degrees of freedom of the hand and the need for the hand to conform naturally to the object surface. Captured human motion data provides us with a rich source of examples of natural grasps. However, for each new object, we are faced with the problem of selecting the best grasp from the database and adapting it to that object. This paper presents a data-driven approach to grasp synthesis. We begin with a database of captured human grasps. To identify candidate grasps for a new object, we introduce a novel shape matching algorithm that matches hand shape to object shape by identifying collections of features having similar relative placements and surface normals. This step returns many grasp candidates, which are clustered and pruned by choosing the grasp best suited for the intended task. For pruning undesirable grasps, we develop an anatomically-based grasp quality measure specific to the human hand. Examples of grasp synthesis are shown for a variety of objects not present in the original database. This algorithm should be useful both as an animator tool for posing the hand and for automatic grasp synthesis in virtual environments.

  20. Peeling behavior and spalling resistance of CFRP sheets bonded to bent concrete surfaces

    NASA Astrophysics Data System (ADS)

    Yuan, Hong; Li, Faping

    2010-05-01

    In this paper, the peeling behavior and the spalling resistance effect of carbon fiber reinforced polymer (CFRP) sheets externally bonded to bent concrete surfaces are firstly investigated experimentally. Twenty one curved specimens and seven plane specimens are studied in the paper, in which curved specimens with bonded CFRP sheets can simulate the concrete spalling in tunnel, culvert, arch bridge etc., whereas plane specimens with bonded CFRP sheets can simulate the concrete spalling in beam bridge, slab bridge and pedestrian bridge. Three kinds of curved specimens with different radii of curvature are chosen by referring to practical tunnel structures, and plane specimens are used for comparison with curved ones. A peeling load is applied on the FRP sheet by loading a circular steel tube placed into the central notch of beam to debond CFRP sheets from the bent concrete surface, meanwhile full-range load-deflection curves are recorded by a MTS 831.10 Elastomer Test System. Based on the experimental results, a theoretical analysis is also conducted for the specimens. Both theoretical and experimental results show that only two material parameters, the interfacial fracture energy of CFRP-concrete interface and the tensile stiffness of CFRP sheets, are needed for describing the interfacial spalling behavior. It is found that the radius of curvature has remarkable influence on peeling load-deflection curves. The test methods and test results given in the paper are helpful and available for reference to the designer of tunnel strengthening.

  1. History of early settlement and land use on the Bent Creek Experimental Forest Buncombe County, NC

    Treesearch

    William A. Nesbitt

    1941-01-01

    This report has been prepared for two reasons: first, it is believed that a description of past land use on the Bent Creek Experimental Forest may enable the research forester to better interpret the forest conditions as he finds them today; and second, a record of the rise and fall of a once prosperous rural community will be preserved for its future sociological...

  2. Do the hands talk on mind's behalf? Differences in language ability between left- and right-handed children.

    PubMed

    Natsopoulos, D; Kiosseoglou, G; Xeromeritou, A; Alevriadou, A

    1998-09-01

    Two hundred seventy children of school age, 135 of whom were left-handed and an equivalent number of whom were right-handed, have been examined in the present study using a test battery of nine language ability measures: Vocabulary, Similarities, Comprehension (WISC-R), Deductive Reasoning, Inductive Reasoning, Sentence Completion, Comprehension of Sentential Semantics, Comprehension of Syntax, and Text Processing. The data analysis has indicated that: (1) One-factor solution applies both to the right- and left-handed population according to Standard Error Scree Method (Zoski & Jurs, 1996) with regard to language ability measures. (2) Handedness discriminates between right-handers (superior) and left-handers (inferior) in language ability. (3) There have been subgroups of left-handed children who differ in language ability distribution compared with right-handed children according to Hierarchical Cluster Analysis. (4) Extreme versus mild bias to hand preference and hand skill do not differentiate performance subgroups neither within the left-handed nor within the right-handed main group. (5) Sex and familial sinistrality do not affect performance. The results are discussed in relation to (a) "human balanced polymorphism" theory advocated by Annett (mainly Annett, 1985, 1993a; Annett & Manning, 1989), (b) potential pathology (mainly Bishop, 1984, 1990a; Coren & Halpern, 1991; Satz, Orsini, Saslow & Henry, 1985) and "developmental instability" (Yeo, Gangestad & Daniel, 1993), and delay of left-hemisphere maturation in left-handed individuals (Geschwind & Galaburda, 1985a,b, 1987), by pointing out the strength and weaknesses of these theoretical approaches in accounting for the present data. Copyright 1998 Academic Press.

  3. Global cortical activity predicts shape of hand during grasping

    PubMed Central

    Agashe, Harshavardhan A.; Paek, Andrew Y.; Zhang, Yuhang; Contreras-Vidal, José L.

    2015-01-01

    Recent studies show that the amplitude of cortical field potentials is modulated in the time domain by grasping kinematics. However, it is unknown if these low frequency modulations persist and contain enough information to decode grasp kinematics in macro-scale activity measured at the scalp via electroencephalography (EEG). Further, it is unclear as to whether joint angle velocities or movement synergies are the optimal kinematics spaces to decode. In this offline decoding study, we infer from human EEG, hand joint angular velocities as well as synergistic trajectories as subjects perform natural reach-to-grasp movements. Decoding accuracy, measured as the correlation coefficient (r) between the predicted and actual movement kinematics, was r = 0.49 ± 0.02 across 15 hand joints. Across the first three kinematic synergies, decoding accuracies were r = 0.59 ± 0.04, 0.47 ± 0.06, and 0.32 ± 0.05. The spatial-temporal pattern of EEG channel recruitment showed early involvement of contralateral frontal-central scalp areas followed by later activation of central electrodes over primary sensorimotor cortical areas. Information content in EEG about the grasp type peaked at 250 ms after movement onset. The high decoding accuracies in this study are significant not only as evidence for time-domain modulation in macro-scale brain activity, but for the field of brain-machine interfaces as well. Our decoding strategy, which harnesses the neural “symphony” as opposed to local members of the neural ensemble (as in intracranial approaches), may provide a means of extracting information about motor intent for grasping without the need for penetrating electrodes and suggests that it may be soon possible to develop non-invasive neural interfaces for the control of prosthetic limbs. PMID:25914616

  4. Quantitative performance measurements of bent crystal Laue analyzers for X-ray fluorescence spectroscopy.

    PubMed

    Karanfil, C; Bunker, G; Newville, M; Segre, C U; Chapman, D

    2012-05-01

    Third-generation synchrotron radiation sources pose difficult challenges for energy-dispersive detectors for XAFS because of their count rate limitations. One solution to this problem is the bent crystal Laue analyzer (BCLA), which removes most of the undesired scatter and fluorescence before it reaches the detector, effectively eliminating detector saturation due to background. In this paper experimental measurements of BCLA performance in conjunction with a 13-element germanium detector, and a quantitative analysis of the signal-to-noise improvement of BCLAs are presented. The performance of BCLAs are compared with filters and slits.

  5. Retraining and assessing hand movement after stroke using the MusicGlove: comparison with conventional hand therapy and isometric grip training

    PubMed Central

    2014-01-01

    Background It is thought that therapy should be functional, be highly repetitive, and promote afferent input to best stimulate hand motor recovery after stroke, yet patients struggle to access such therapy. We developed the MusicGlove, an instrumented glove that requires the user to practice gripping-like movements and thumb-finger opposition to play a highly engaging, music-based, video game. The purpose of this study was to 1) compare the effect of training with MusicGlove to conventional hand therapy 2) determine if MusicGlove training was more effective than a matched form of isometric hand movement training; and 3) determine if MusicGlove game scores predict clinical outcomes. Methods 12 chronic stroke survivors with moderate hemiparesis were randomly assigned to receive MusicGlove, isometric, and conventional hand therapy in a within-subjects design. Each subject participated in six one-hour treatment sessions three times per week for two weeks, for each training type, for a total of 18 treatment sessions. A blinded rater assessed hand impairment before and after each training type and at one-month follow-up including the Box and Blocks (B & B) test as the primary outcome measure. Subjects also completed the Intrinsic Motivation Inventory (IMI). Results Subjects improved hand function related to grasping small objects more after MusicGlove compared to conventional training, as measured by the B & B score (improvement of 3.21±3.82 vs. -0.29±2.27 blocks; P=0.010) and the 9 Hole Peg test (improvement of 2.14±2.98 vs. -0.85±1.29 pegs/minute; P=0.005). There was no significant difference between training types in the broader assessment batteries of hand function. Subjects benefited less from isometric therapy than MusicGlove training, but the difference was not significant (P>0.09). Subjects sustained improvements in hand function at a one month follow-up, and found the MusicGlove more motivating than the other two therapies, as measured by the IMI. Music

  6. Retraining and assessing hand movement after stroke using the MusicGlove: comparison with conventional hand therapy and isometric grip training.

    PubMed

    Friedman, Nizan; Chan, Vicky; Reinkensmeyer, Andrea N; Beroukhim, Ariel; Zambrano, Gregory J; Bachman, Mark; Reinkensmeyer, David J

    2014-04-30

    It is thought that therapy should be functional, be highly repetitive, and promote afferent input to best stimulate hand motor recovery after stroke, yet patients struggle to access such therapy. We developed the MusicGlove, an instrumented glove that requires the user to practice gripping-like movements and thumb-finger opposition to play a highly engaging, music-based, video game. The purpose of this study was to 1) compare the effect of training with MusicGlove to conventional hand therapy 2) determine if MusicGlove training was more effective than a matched form of isometric hand movement training; and 3) determine if MusicGlove game scores predict clinical outcomes. 12 chronic stroke survivors with moderate hemiparesis were randomly assigned to receive MusicGlove, isometric, and conventional hand therapy in a within-subjects design. Each subject participated in six one-hour treatment sessions three times per week for two weeks, for each training type, for a total of 18 treatment sessions. A blinded rater assessed hand impairment before and after each training type and at one-month follow-up including the Box and Blocks (B & B) test as the primary outcome measure. Subjects also completed the Intrinsic Motivation Inventory (IMI). Subjects improved hand function related to grasping small objects more after MusicGlove compared to conventional training, as measured by the B & B score (improvement of 3.21±3.82 vs. -0.29±2.27 blocks; P=0.010) and the 9 Hole Peg test (improvement of 2.14±2.98 vs. -0.85±1.29 pegs/minute; P=0.005). There was no significant difference between training types in the broader assessment batteries of hand function. Subjects benefited less from isometric therapy than MusicGlove training, but the difference was not significant (P>0.09). Subjects sustained improvements in hand function at a one month follow-up, and found the MusicGlove more motivating than the other two therapies, as measured by the IMI. MusicGlove games scores correlated

  7. Intermanual Transfer of Shapes in Preterm Human Infants from 33 to 34 + 6 Weeks Postconceptional Age

    ERIC Educational Resources Information Center

    Lejeune, Fleur; Marcus, Leila; Berne-Audeoud, Frederique; Streri, Arlette; Debillon, Thierry; Gentaz, Edouard

    2012-01-01

    This study investigated the ability of preterm infants to learn an object shape with one hand and discriminate a new shape in the opposite hand (without visual control). Twenty-four preterm infants between 33 and 34 + 6 gestational weeks received a tactile habituation task with either their right or left hand followed by a tactile discrimination…

  8. Expected performances of a Laue lens made with bent crystals

    NASA Astrophysics Data System (ADS)

    Virgilli, Enrico; Valsan, Vineeth; Frontera, Filippo; Caroli, Ezio; Liccardo, Vincenzo; Stephen, John Buchan

    2017-10-01

    In the context of the Laue project devoted to build a Laue lens prototype for focusing celestial hard x-/soft gamma-rays, a Laue lens made of bent crystal tiles, with 20-m focal length, is simulated. The focusing energy passband is assumed to be 90 to 600 keV. The distortion of the image produced by the lens on the focal plane, due to effects of crystal tile misalignment and radial distortion of the crystal curvature, is investigated. The corresponding effective area of the lens, its point spread function, and sensitivity are calculated and compared with those exhibited by a nominal Laue lens with no misalignment and/or distortion. Such analysis is crucial to estimate the optical properties of a real lens, in which the investigated shortcomings could be present.

  9. Hand aperture patterns in prehension.

    PubMed

    Bongers, Raoul M; Zaal, Frank T J M; Jeannerod, Marc

    2012-06-01

    Although variations in the standard prehensile pattern can be found in the literature, these alternative patterns have never been studied systematically. This was the goal of the current paper. Ten participants picked up objects with a pincer grip. Objects (3, 5, or 7cm in diameter) were placed at 30, 60, 90, or 120cm from the hands' starting location. Usually the hand was opened gradually to a maximum immediately followed by hand closing, called the standard hand opening pattern. In the alternative opening patterns the hand opening was bumpy, or the hand aperture stayed at a plateau before closing started. Two participants in particular delayed the start of grasping with respect to start of reaching, with the delay time increasing with object distance. For larger object distances and smaller object sizes, the bumpy and plateau hand opening patterns were used more often. We tentatively concluded that the alternative hand opening patterns extended the hand opening phase, to arrive at the appropriate hand aperture at the appropriate time to close the hand for grasping the object. Variations in hand opening patterns deserve attention because this might lead to new insights into the coordination of reaching and grasping. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Revealing the neural fingerprints of a missing hand.

    PubMed

    Kikkert, Sanne; Kolasinski, James; Jbabdi, Saad; Tracey, Irene; Beckmann, Christian F; Johansen-Berg, Heidi; Makin, Tamar R

    2016-08-23

    The hand area of the primary somatosensory cortex contains detailed finger topography, thought to be shaped and maintained by daily life experience. Here we utilise phantom sensations and ultra high-field neuroimaging to uncover preserved, though latent, representation of amputees' missing hand. We show that representation of the missing hand's individual fingers persists in the primary somatosensory cortex even decades after arm amputation. By demonstrating stable topography despite amputation, our finding questions the extent to which continued sensory input is necessary to maintain organisation in sensory cortex, thereby reopening the question what happens to a cortical territory once its main input is lost. The discovery of persistent digit topography of amputees' missing hand could be exploited for the development of intuitive and fine-grained control of neuroprosthetics, requiring neural signals of individual digits.

  11. Evanescent wave absorbance based fiber optic biosensor for label-free detection of E. coli at 280 nm wavelength.

    PubMed

    Bharadwaj, Reshma; Sai, V V R; Thakare, Kamini; Dhawangale, Arvind; Kundu, Tapanendu; Titus, Susan; Verma, Pradeep Kumar; Mukherji, Soumyo

    2011-03-15

    A novel label-free technique for the detection of pathogens based on evanescent wave absorbance (EWA) changes at 280 nm from a U-bent optical fiber sensor is demonstrated. Bending a decladded fiber into a U-shaped structure enhances the penetration depth of evanescent waves and hence sensitivity of the probe. We show that the enhanced EWA response from such U-bent probes, caused by the inherent optical absorbance properties of bacterial cells or biomolecules specifically bound to the sensor surface, can be exploited for the detection of pathogens. A portable optical set-up with a UV light emitting diode, a spectrometer and U-bent fiber optic probe of 200 μm core diameter, 0.75 mm bend radius and effective probe length of 1cm demonstrated an ability to detect less than 1000 cfu/ml. Copyright © 2011. Published by Elsevier B.V.

  12. The failures of root canal preparation with hand ProTaper.

    PubMed

    Bătăiosu, Marilena; Diaconu, Oana; Moraru, Iren; Dăguci, C; Tuculină, Mihaela; Dăguci, Luminiţa; Gheorghiţă, Lelia

    2012-07-01

    The failures of root canal preparation are due to some anatomical deviation (canal in "C" or "S") and some technique errors. The technique errors are usually present in canal root cleansing and shaping stage and are the result of endodontic treatment objectives deviation. Our study was made on technique errors while preparing the canal roots with hand ProTaper. Our study was made "in vitro" on 84 extracted teeth (molars, premolars, incisors and canines). The canal root of these teeth were cleansed and shaped with hand ProTaper by crown-down technique and canal irrigation with NaOCl(2,5%). The dental preparation control was made by X-ray. During canal root preparation some failures were observed like: canal root overinstrumentation, zipping and stripping phenomenon, discarded and/or fractured instruments. Hand ProTaper represents a revolutionary progress of endodontic treatment, but a deviation from accepted rules of canal root instrumentation can lead to failures of endodontic treatment.

  13. The failures of root canal preparation with hand ProTaper

    PubMed Central

    Bătăiosu, Marilena; Diaconu, Oana; Moraru, Iren; Dăguci, C.; Ţuculină, Mihaela; Dăguci, Luminiţa; Gheorghiţă, Lelia

    2012-01-01

    The failures of root canal preparation are due to some anatomical deviation (canal in “C” or “S”) and some technique errors. The technique errors are usually present in canal root cleansing and shaping stage and are the result of endodontic treatment objectives deviation. Objectives: Our study was made on technique errors while preparing the canal roots with hand ProTaper. Methodology: Our study was made “in vitro” on 84 extracted teeth (molars, premolars, incisors and canines). The canal root of these teeth were cleansed and shaped with hand ProTaper by crown-down technique and canal irrigation with NaOCl(2,5%). The dental preparation control was made by X-ray. Results: During canal root preparation some failures were observed like: canal root overinstrumentation, zipping and stripping phenomenon, discarded and/or fractured instruments. Conclusions: Hand ProTaper represents a revolutionary progress of endodontic treatment, but a deviation from accepted rules of canal root instrumentation can lead to failures of endodontic treatment. PMID:24778848

  14. Three-dimensional cell shapes and arrangements in human sweat glands as revealed by whole-mount immunostaining

    PubMed Central

    Kurata, Ryuichiro; Futaki, Sugiko; Nakano, Itsuko; Fujita, Fumitaka; Tanemura, Atsushi; Murota, Hiroyuki; Katayama, Ichiro; Okada, Fumihiro

    2017-01-01

    Because sweat secretion is facilitated by mechanical contraction of sweat gland structures, understanding their structure-function relationship could lead to more effective treatments for patients with sweat gland disorders such as heat stroke. Conventional histological studies have shown that sweat glands are three-dimensionally coiled tubular structures consisting of ducts and secretory portions, although their detailed structural anatomy remains unclear. To better understand the details of the three-dimensional (3D) coiled structures of sweat glands, a whole-mount staining method was employed to visualize 3D coiled gland structures with sweat gland markers for ductal luminal, ductal basal, secretory luminal, and myoepithelial cells. Imaging the 3D coiled gland structures demonstrated that the ducts and secretory portions were comprised of distinct tubular structures. Ductal tubules were occasionally bent, while secretory tubules were frequently bent and formed a self-entangled coiled structure. Whole-mount staining of complex coiled gland structures also revealed the detailed 3D cellular arrangements in the individual sweat gland compartments. Ducts were composed of regularly arranged cuboidal shaped cells, while secretory portions were surrounded by myoepithelial cells longitudinally elongated along entangled secretory tubules. Whole-mount staining was also used to visualize the spatial arrangement of blood vessels and nerve fibers, both of which facilitate sweat secretion. The blood vessels ran longitudinally parallel to the sweat gland tubules, while nerve fibers wrapped around secretory tubules, but not ductal tubules. Taken together, whole-mount staining of sweat glands revealed the 3D cell shapes and arrangements of complex coiled gland structures and provides insights into the mechanical contraction of coiled gland structures during sweat secretion. PMID:28636607

  15. 29 CFR 1915.133 - Hand tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Tools and Related Equipment § 1915.133 Hand...) Employers shall not issue or permit the use of unsafe hand tools. (b) Wrenches, including crescent, pipe...

  16. Adapting a Robot Hand to Specialized Functions

    NASA Technical Reports Server (NTRS)

    Clark, Keith H.

    1987-01-01

    Adaptor enables mechanical and electrical connections made easily between special-purpose end effector and arm of robot or remote mainpulator. Use in prosthetic devices also contemplatd. With adaptor, hand changed quickly from device designed to grasp objects of various sizes and shapes to device intended to do specific task efficiently.

  17. Modeling Defects, Shape Evolution, and Programmed Auto-origami in Liquid Crystal Elastomers

    NASA Astrophysics Data System (ADS)

    Konya, Andrew; Gimenez-Pinto, Vianney; Selinger, Robin

    2016-06-01

    Liquid crystal elastomers represent a novel class of programmable shape-transforming materials whose shape change trajectory is encoded in the material’s nematic director field. Using three-dimensional nonlinear finite element elastodynamics simulation, we model a variety of different actuation geometries and device designs: thin films containing topological defects, patterns that induce formation of folds and twists, and a bas-relief structure. The inclusion of finite bending energy in the simulation model reveals features of actuation trajectory that may be absent when bending energy is neglected. We examine geometries with a director pattern uniform through the film thickness encoding multiple regions of positive Gaussian curvature. Simulations indicate that heating such a system uniformly produces a disordered state with curved regions emerging randomly in both directions due to the film’s up/down symmetry. By contrast, applying a thermal gradient by heating the material first on one side breaks up/down symmetry and results in a deterministic trajectory producing a more ordered final shape. We demonstrate that a folding zone design containing cut-out areas accommodates transverse displacements without warping or buckling; and demonstrate that bas-relief and more complex bent/twisted structures can be assembled by combining simple design motifs.

  18. Hand Controller Assembly

    NASA Technical Reports Server (NTRS)

    Bandera, Pablo (Inventor); Buchele, Paul (Inventor)

    2015-01-01

    A user input device for a vehicular electrical system is provided. The user input device includes a handle sized and shaped to be gripped by a human hand and a gimbal assembly within the handle. The gimbal assembly includes a first gimbal component, a second gimbal component coupled to the first gimbal component such that the second gimbal component is rotatable relative to the first gimbal component about a first axis, and a third gimbal component coupled to the second gimbal component such that the third gimbal component is rotatable relative to the second gimbal component about a second axis.

  19. Hand function with touch screen technology in children with normal hand formation, congenital differences, and neuromuscular disease.

    PubMed

    Shin, David H; Bohn, Deborah K; Agel, Julie; Lindstrom, Katy A; Cronquist, Sara M; Van Heest, Ann E

    2015-05-01

    To measure and compare hand function for children with normal hand development, congenital hand differences (CHD), and neuromuscular disease (NMD) using a function test with touch screen technology designed as an iPhone application. We measured touch screen hand function in 201 children including 113 with normal hand formation, 43 with CHD, and 45 with NMD. The touch screen test was developed on the iOS platform using an Apple iPhone 4. We measured 4 tasks: touching dots on a 3 × 4 grid, dragging shapes, use of the touch screen camera, and typing a line of text. The test takes 60 to 120 seconds and includes a pretest to familiarize the subject with the format. Each task is timed independently and the overall time is recorded. Children with normal hand development took less time to complete all 4 subtests with increasing age. When comparing children with normal hand development with those with CHD or NMD, in children aged less than 5 years we saw minimal differences; those aged 5 to 6 years with CHD took significantly longer total time; those aged 7 to 8 years with NMD took significantly longer total time; those aged 9 to 11 years with CHD took significantly longer total time; and those aged 12 years and older with NMD took significantly longer total time. Touch screen technology has becoming increasingly relevant to hand function in modern society. This study provides standardized age norms and shows that our test discriminates between normal hand development and that in children with CHD or NMD. Diagnostic III. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  20. Spool-shaped proximal pedal phalanges.

    PubMed

    Sutro, C J; Sutro, W H

    1986-01-01

    We have observed that "spool-shaped" proximal pedal phalanges sometimes are found in single or multiple toes, often affecting both feet. These changes may be present in normal as well as abnormal feet. The etiology is unknown. Such changes do not occur in the hands.

  1. Manifestation of two-channel nonlocal spin transport in the shapes of Hanle curves

    NASA Astrophysics Data System (ADS)

    Roundy, R. C.; Prestgard, M. C.; Tiwari, A.; Mishchenko, E. G.; Raikh, M. E.

    2014-09-01

    The dynamics of charge-density fluctuations in a system of two tunnel-coupled wires contains two diffusion modes with dispersion iω =Dq2 and iω =Dq2+2/τt, where D is the diffusion coefficient and τt is the tunneling time between the wires. The dispersion of corresponding spin-density modes depends on magnetic field as a result of the spin precession with Larmour frequency ωL. The presence of two modes affects the shape of the Hanle curve describing the spin-dependent resistance R between the ferromagnetic strips covering the nonmagnetic wires. We demonstrate that the relative shapes of the R (ωL) curves, one measured within the same wire and the other measured between the wires, depends on the ratio τt/τs, where τs is the spin-diffusion time. If the coupling between the wires is local, i.e., only at the point x =0, then the difference of the shapes of intrawire and interwire Hanle curves reflects the difference in statistics of diffusive trajectories, which "switch" or do not switch near x =0. When one of the coupled wires is bent into a loop with a radius a, the shape of the Hanle curve reflects the statistics of random walks on the loop. This statistics is governed by the dimensionless parameter a /√Dτs .

  2. The effects of shape crowding on grasping.

    PubMed

    Chen, Juan; Jayawardena, Sanasi; Goodale, Melvyn Alan

    2015-03-10

    Crowding refers to the deleterious effect of nearby objects on the identification of a target in the peripheral visual field. A recent study (Chen, Sperandio, & Goodale, 2015) showed that when a three-dimensional (3D) disk was crowded by disks of different sizes, participants could scale their grip aperture to the size of the target, even when they could not perceive its size. It is still unclear, however, whether or not grasping can also escape to some degree the crowding of other object features, such as shape. To test this, we presented 3D rectangular blocks in isolation or crowded by other blocks in the periphery. The target and flanking blocks had the same surface area but different dimensions. Participants were required either to grasp the target block across its width or to estimate its width. We found that, consistent with what we observed earlier with size, participants can also scale their grasp to the width of the target block even when they could not perceive its width. To further explore whether or not the effect of crowding on grasping depends on how proficient people are with their right hand, we had right-handed participants perform the same test but with their left hand. We found that left-hand grasping did not escape the crowding effect on shape perception at all. Taken together, our results suggest that people can also use invisible shape information to guide actions and that this ability depends on the proficiency of the action. © 2015 ARVO.

  3. 1,2,4-oxadiazole-based bent-core liquid crystals with cybotactic nematic phases.

    PubMed

    Shanker, Govindaswamy; Prehm, Marko; Nagaraj, Mamatha; Vij, Jagdish K; Weyland, Marvin; Eremin, Alexey; Tschierske, Carsten

    2014-05-19

    Several series of bent-core mesogens derived from 3,5-diphenyl-1,2,4-oxadiazole with or without lateral groups and with different length terminal chains at both ends, and polycatenar molecules with three to six alkoxy chains are synthesized and their mesomorphic behaviour is investigated by polarizing microscopy, differential scanning calorimetry, X-ray diffraction (XRD), dielectric, electro-optical and second-harmonic generation (SHG) experiments. Most compounds exhibit broad regions of skewed cybotactic nematic (NcybC ) and tilted smectic (SmC) phases with a strong tilt of the aromatic cores (up to 63°), but non-tilted SmA and NcybA phases are also observed for a compound that has only one terminal chain. The XRD patterns of the nematic phases of most of the compounds investigated indicate a 2D periodicity with short correlation length in the magnetically aligned samples. This is of importance for the general interpretation of the small-angle XRD splitting patterns typically observed for aligned samples of bent-core nematic phases. In most nematic phases one current peak is observed in the half period of an applied electric field, though no coherent signal is found in the SHG experiments. Based on additional electro-optical and dielectric results, the nematic phases are considered to be cybotactic nematic phases with local polar order, and show a dielectric reorientation of the polar domains. Only chiral nematic phases (NcybC *), but not blue phases, are obtained for compounds with one or two chiral (3S)-3,7-dimethyloctyloxy tail(s). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Monte Carlo N-Particle Tracking of Ultrafine Particle Flow in Bent Micro-Tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casella, Andrew M.; Loyalka, Sudarsham K.

    2016-02-16

    The problem of large pressure-differential driven laminar convective-diffusive ultrafine aerosol flow through bent micro-tubes is of interest in several contemporary research areas including; release of contents from pressurized containment vessels, aerosol sampling equipment, advanced scientific instruments, gas-phase micro-heat exchangers, and microfluidic devices. In each of these areas, the predominant problem is the determination of the fraction of particles entering the micro-tube that is deposited within the tube and the fraction that is transmitted through. Due to the extensive parameter restrictions of this class of problems, a Lagrangian particle tracking method making use of the coupling of the analytical stream linemore » solutions of Dean and the simplified Langevin equation is quite a useful tool in problem characterization. This method is a direct analog to the Monte Carlo N-Particle method of particle transport extensively used in nuclear physics and engineering. In this work, 10 nm diameter particles with a density of 1 g/cm3 are tracked within micro-tubes with toroidal bends with pressure differentials ranging between 0.2175 and 0.87 atmospheres. The tubes have radii of 25 microns and 50 microns and the radius of curvature is between 1 m and 0.3183 cm. The carrier gas is helium, and temperatures of 298 K and 558 K are considered. Numerical convergence is considered as a function of time step size and of the number of particles per simulation. Particle transmission rates and deposition patterns within the bent micro-tubes are calculated.« less

  5. Lepton universality violation and right-handed currents in b → cτν

    NASA Astrophysics Data System (ADS)

    He, Xiao-Gang; Valencia, German

    2018-04-01

    We consider the recent LHCb result for Bc → J / ψτν in conjunction with the existing anomalies in R (D) and R (D⋆) within the framework of a right-handed current with enhanced couplings to the third generation. The model predicts a linear relation between the observables and their SM values in terms of two combinations of parameters. The strong constraints from b → sγ on W -W‧ mixing effectively remove one of the combinations of parameters resulting in an approximate proportionality between all three observables and their SM values. To accommodate the current averages for R (D) and R (D⋆), the W‧ mass should be near 1 TeV, and possibly accessible to direct searches at the LHC. In this scenario we find that R (J / ψ) is enhanced by about 20% with respect to its SM value and about 1.5σ below the central value of the LHCb measurement. The predicted dΓ / dq2 distribution for B → D (D⋆) τν is in agreement with the measurement and the model satisfies the constraint from the Bc lifetime.

  6. Exploring laterality and memory effects in the haptic discrimination of verbal and non-verbal shapes.

    PubMed

    Stoycheva, Polina; Tiippana, Kaisa

    2018-03-14

    The brain's left hemisphere often displays advantages in processing verbal information, while the right hemisphere favours processing non-verbal information. In the haptic domain due to contra-lateral innervations, this functional lateralization is reflected in a hand advantage during certain functions. Findings regarding the hand-hemisphere advantage for haptic information remain contradictory, however. This study addressed these laterality effects and their interaction with memory retention times in the haptic modality. Participants performed haptic discrimination of letters, geometric shapes and nonsense shapes at memory retention times of 5, 15 and 30 s with the left and right hand separately, and we measured the discriminability index d'. The d' values were significantly higher for letters and geometric shapes than for nonsense shapes. This might result from dual coding (naming + spatial) or/and from a low stimulus complexity. There was no stimulus-specific laterality effect. However, we found a time-dependent laterality effect, which revealed that the performance of the left hand-right hemisphere was sustained up to 15 s, while the performance of the right-hand-left hemisphere decreased progressively throughout all retention times. This suggests that haptic memory traces are more robust to decay when they are processed by the left hand-right hemisphere.

  7. Hand2 loss-of-function in Hand1-expressing Cells Reveals Distinct Roles In Epicardial And Coronary Vessel Development

    PubMed Central

    Barnes, Ralston M.; Firulli, Beth A.; VanDusen, Nathan J.; Morikawa, Yuka; Conway, Simon J.; Cserjesi, Peter; Vincentz, Joshua W.; Firulli, Anthony B.

    2011-01-01

    Rationale The bHLH transcription factors Hand1 and Hand2 are essential for embryonic development. Given their requirement for cardiogenesis, it is imperative to determine their impact on cardiovascular function. Objective Deduce the role of Hand2 within the epicardium. Method & Results We engineered a Hand1 allele expressing Cre recombinase. Cardiac Hand1 expression is largely limited to cells of the primary heart field, overlapping little with Hand2 expression. Hand1 is expressed within the septum transversum (ST) and the Hand1-lineage marks the proepicardial organ and epicardium. To examine Hand factor functional overlap, we conditionally deleted Hand2 from Hand1-expressing cells. Hand2 mutants display defective epicardialization and fail to form coronary arteries, coincident with altered ECM deposition and Pdgfr expression. Conclusion These data demonstrate a hierarchal relationship whereby transient Hand1 ST expression defines epicardial precursors that are subsequently dependent upon Hand2 function. PMID:21350214

  8. Levelized cost of energy for a Backward Bent Duct Buoy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bull, Diana; Jenne, D. Scott; Smith, Christopher S.

    2016-12-01

    The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publically available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied withinmore » the Reference Model Project. Comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device.« less

  9. Levelized cost of energy for a Backward Bent Duct Buoy

    DOE PAGES

    Bull, Diana; Jenne, D. Scott; Smith, Christopher S.; ...

    2016-07-18

    The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publicly available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied withinmore » the Reference Model Project. Furthermore, comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device.« less

  10. Novel Processing of Boron Carbide (B4C): Plasma Synthesized Nano Powders and Pressureless Sintering Forming of Complex Shapes

    DTIC Science & Technology

    2008-12-01

    Figure 4. B4C plates formed via hot pressing with a curved shape. Commercial B4C shows a large number of lenticular graphitic inclusions, Figure 5...materials and they act as crack initiation points in flexure testing. Figure 5. SEM micrograph showing large lenticular graphitic inclusions in commercial

  11. Path integration in tactile perception of shapes.

    PubMed

    Moscatelli, Alessandro; Naceri, Abdeldjallil; Ernst, Marc O

    2014-11-01

    Whenever we move the hand across a surface, tactile signals provide information about the relative velocity between the skin and the surface. If the system were able to integrate the tactile velocity information over time, cutaneous touch may provide an estimate of the relative displacement between the hand and the surface. Here, we asked whether humans are able to form a reliable representation of the motion path from tactile cues only, integrating motion information over time. In order to address this issue, we conducted three experiments using tactile motion and asked participants (1) to estimate the length of a simulated triangle, (2) to reproduce the shape of a simulated triangular path, and (3) to estimate the angle between two-line segments. Participants were able to accurately indicate the length of the path, whereas the perceived direction was affected by a direction bias (inward bias). The response pattern was thus qualitatively similar to the ones reported in classical path integration studies involving locomotion. However, we explain the directional biases as the result of a tactile motion aftereffect. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Automatic segmentation of bones from digital hand radiographs

    NASA Astrophysics Data System (ADS)

    Liu, Brent J.; Taira, Ricky K.; Shim, Hyeonjoon; Keaton, Patricia

    1995-05-01

    The purpose of this paper is to develop a robust and accurate method that automatically segments phalangeal and epiphyseal bones from digital pediatric hand radiographs exhibiting various stages of growth. The algorithm uses an object-oriented approach comprising several stages beginning with the most general objects to be segmented, such as the outline of the hand from background, and proceeding in a succession of stages to the most specific object, such as a specific phalangeal bone from a digit of the hand. Each stage carries custom operators unique to the needs of that specific stage which will aid in more accurate results. The method is further aided by a knowledge base where all model contours and other information such as age, race, and sex, are stored. Shape models, 1-D wrist profiles, as well as an interpretation tree are used to map model and data contour segments. Shape analysis is performed using an arc-length orientation transform. The method is tested on close to 340 phalangeal and epiphyseal objects to be segmented from 17 cases of pediatric hand images obtained from our clinical PACS. Patient age ranges from 2 - 16 years. A pediatric radiologist preliminarily assessed the results of the object contours and were found to be accurate to within 95% for cases with non-fused bones and to within 85% for cases with fused bones. With accurate and robust results, the method can be applied toward areas such as the determination of bone age, the development of a normal hand atlas, and the characterization of many congenital and acquired growth diseases. Furthermore, this method's architecture can be applied to other image segmentation problems.

  13. [Arm Motor Function Recovery during Rehabilitation with the Use of Hand Exoskeleton Controlled by Brain-Computer Interface: a Patient with Severe Brain Damage].

    PubMed

    Biryukova, E V; Pavlova, O G; Kurganskaya, M E; Bobrov, P D; Turbina, L G; Frolov, A A; Davydov, V I; Sil'tchenko, A V; Mokienko, O A

    2016-01-01

    We studied the dynamics of motor function recovery in a patient with severe brain damage in the course of neurorehabilitation using hand exoskeleton controlled by brain-computer interface. For estimating the motor function of paretic arm, we used the biomechanical analysis of movements registered during the course of rehabilitation. After 15 weekly sessions of hand exoskeleton control, the following results were obtained: a) the velocity profile of goal-directed movements of paretic hand became bell-shaped, b) the patient began to extend and abduct the hand which was flexed and adducted in the beginning of rehabilitation, and c) the patient began to supinate the forearm which was pronated in the beginning of rehabilitation. The first result is an evidence of the general improvement of the quality of motor control, while the second and third results prove that the spasticity of paretic arm has decreased.

  14. Motion of the drawing hand induces a progressive increase in muscle activity of the non-dominant hand in Ramachandran's mirror-box therapy.

    PubMed

    Furukawa, Kiminobu; Suzuki, Harue; Fukuda, Jun

    2012-11-01

    To observe the real-time muscle activity of bilateral hands while subjects draw circles under 2 conditions: with and without using Ramachandran's mirror-box. A total of 24 healthy volunteers. Subjects drew 4 circles sequentially using their dominant hand with the other hand at rest, both with and without looking at a mirror image. Circles were marked by 8 dots on the paper, which subjects connected up to draw the shape. The activity of the bilateral first dorsal interosseus muscles was recorded using surface electromyography. Muscle activity of the dominant hand remained constant during each task. In contrast, muscle activity of the non-dominant hand increased under the condition of watching the image in the mirror, but was low under the non-watching condition. Furthermore, muscle activity of the non-dominant hand increased over the duration of the task. However, wide variation between subjects was observed under the mirror-image condition. Increased muscle action potential of the non-dominant hand may be induced by the circle drawing task of the dominant hand during Ramachandran's mirror-box therapy, which supports previous observations of increased brain activity caused by watching a mirror image.

  15. The Nature of the Idealized Triple Bonds Between Principal Elements and the σ Origins of Trans-Bent Geometries-A Valence Bond Study.

    PubMed

    Ploshnik, Elina; Danovich, David; Hiberty, Philippe C; Shaik, Sason

    2011-04-12

    We describe herein a valence bond (VB) study of 27 triply bonded molecules of the general type X≡Y, where X and Y are main element atoms/fragments from groups 13-15 in the periodic table. The following conclusions were derived from the computational data: (a) Single π-bond and double π-bond energies for the entire set correlate with the "molecular electronegativity", which is the sum of the X and Y electronegativites for X≡Y. The correlation with the molecular electronegativity establishes a simple rule of periodicity: π-bonding strength generally increases from left to right in a period and decreases down a column in the periodic table. (b) The σ frame invariably prefers trans bending, while π-bonding gets destabilized and opposes the trans distortion. In HC≡CH, the π-bonding destabilization overrides the propensity of the σ frame to distort, while in the higher row molecules, the σ frame wins out and establishes trans-bent molecules with 2(1)/2 bonds, in accord with recent experimental evidence based on solid state (29)Si NMR of the Sekiguchi compound. Thus, in the trans-bent molecules "less bonds pay more". (c) All of the π bonds show significant bonding contributions from the resonance energy due to covalent-ionic mixing. This quantity is shown to correlate linearly with the corresponding "molecular electronegativity" and to reflect the mechanism required to satisfy the equilibrium condition for the bond. The π bonds for molecules possessing high molecular electronegativity are charge-shift bonds, wherein bonding is dominated by the resonance energy of the covalent and ionic forms, rather than by either form by itself.

  16. Investigation of the Electromagnetic Radiation Emitted by Sub-GeV Electrons in a Bent Crystal.

    PubMed

    Bandiera, L; Bagli, E; Germogli, G; Guidi, V; Mazzolari, A; Backe, H; Lauth, W; Berra, A; Lietti, D; Prest, M; De Salvador, D; Vallazza, E; Tikhomirov, V

    2015-07-10

    The radiation emitted by 855 MeV electrons via planar channeling and volume reflection in a 30.5-μm-thick bent Si crystal has been investigated at the MAMI (Mainzer Mikrotron) accelerator. The spectral intensity was much more intense than for an equivalent amorphous material, and peaked in the MeV range in the case of channeling radiation. Differently from a straight crystal, also for an incidence angle larger than the Lindhard angle, the spectral intensity remains nearly as high as for channeling. This is due to volume reflection, for which the intensity remains high at a large incidence angle over the whole angular acceptance, which is equal to the bending angle of the crystal. Monte Carlo simulations demonstrated that incoherent scattering significantly influences both the radiation spectrum and intensity, either for channeling or volume reflection. In the latter case, it has been shown that incoherent scattering increases the radiation intensity due to the contribution of volume-captured particles. As a consequence, the experimental spectrum becomes a mixture of channeling and pure volume reflection radiations. These results allow a better understanding of the radiation emitted by electrons subjected to coherent interactions in bent crystals within a still-unexplored energy range, which is relevant for possible applications for innovative and compact x-ray or γ-ray sources.

  17. Development of B2 Shape Memory Intermetallics Beyond NiAl, CoNiAl and CoNiGa

    NASA Astrophysics Data System (ADS)

    Gerstein, G.; Firstov, G. S.; Kosorukova, T. A.; Koval, Yu. N.; Maier, H. J.

    2018-06-01

    The present study describes the development of shape memory alloys based on NiAl. Initially, this system was considered a promising but unsuccessful neighbour of NiTi. Later, however, shape memory alloys like CoNiAl or CoNiGa were developed that can be considered as NiAl derivatives and already demonstrated good mechanical properties. Yet, these alloys were still inferior to NiTi in most respects. Lately, using a multi-component approach, a CoNiCuAlGaIn high entropy intermetallic compound was developed from the NiAl prototype. This new alloy featured a B2 phase and a martensitic transformation along with a remarkable strength in the as-cast state. In the long-term, this new approach might led to a breakthrough for shape memory alloys in general.

  18. Virtual hand: a 3D tactile interface to virtual environments

    NASA Astrophysics Data System (ADS)

    Rogowitz, Bernice E.; Borrel, Paul

    2008-02-01

    We introduce a novel system that allows users to experience the sensation of touch in a computer graphics environment. In this system, the user places his/her hand on an array of pins, which is moved about space on a 6 degree-of-freedom robot arm. The surface of the pins defines a surface in the virtual world. This "virtual hand" can move about the virtual world. When the virtual hand encounters an object in the virtual world, the heights of the pins are adjusted so that they represent the object's shape, surface, and texture. A control system integrates pin and robot arm motions to transmit information about objects in the computer graphics world to the user. It also allows the user to edit, change and move the virtual objects, shapes and textures. This system provides a general framework for touching, manipulating, and modifying objects in a 3-D computer graphics environment, which may be useful in a wide range of applications, including computer games, computer aided design systems, and immersive virtual worlds.

  19. Factors predicting health status and recovery of hand function after hand burns in the second year after hospital discharge.

    PubMed

    Knight, Amber; Wasiak, Jason; Salway, Jacqueline; O'Brien, Lisa

    2017-02-01

    Hands are the most commonly burnt body part given humans' innate response to guard their face from injury, and are known to have detrimental functional and psychological consequences. Conflicting evidence exists regarding the impact of hand burns on long-term health status and global functioning. The objective of this study was to identify patient and clinical characteristics that predict health status and hand function of people at 12-24 months after hand burn. The Burns Specific Health Scale-Brief (BSHS-B) and the Brief Michigan Hand Outcome Questionnaire (Brief MHQ) were administered to community-dwelling adults who were between one and two years after admission to a statewide burns service for burns including one or both hands. Demographic, injury, and treatment data were collected to identify which factors predict health status and hand function in the second year after admission. Linear regression analyses adjusted for total burn surface area and burn depth were conducted to identify important predictors or outcomes. The sample (n=41) was 80.5% male, with a mean age of 44.5 years and total body surface area (TBSA) of 8.4%. Psychiatric illness (regression coefficient -56.6, confidence interval (95% CI) -76.70, -36.49) and female gender (-20.3; 95% CI -0.77, -40.29) were key predictors of poorer global health status on the BSHS-B. Females also scored worse on body image (-5.35; 95% CI -1.83, -8.87) and work (-4.13; 95% CI -0.64, -7.62) domains of BSHS-B. The need for reconstructive or secondary surgery (-38.84; 95% CI -58.04, -19.65) and female gender (-16.30; 95% CI -4.03, -28.57) were important predictors of poorer hand function. Women and those with a history of psychiatric illness are particularly vulnerable to poorer outcomes in health status and/or hand function after burns, and may benefit from more intensive rehabilitation support and long-term follow-up. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  20. Study of an Educational Hand Sorting Intervention for Reducing Aflatoxin B1 in Groundnuts in Rural Gambia.

    PubMed

    Xu, Y A; Doel, Andrew; Watson, Sinead; Routledge, Michael N; Elliott, Christopher T; Moore, Sophie E; Gong, Yun Yun

    2017-01-01

    Aflatoxin, a human liver carcinogen, frequently contaminates groundnuts, maize, rice, and other grains, especially in Africa. The aim of this study was to evaluate the effectiveness of an educational intervention that involved training rural Gambian women on how to identify and remove moldy groundnuts to reduce aflatoxin B 1 (AFB 1 ) contamination. In total, 25 women, recruited from the West Kiang region of The Gambia, were trained on how to recognize and remove moldy groundnuts. Market-purchased groundnuts were hand sorted by the women. Groundnuts were sampled at baseline (n =5), after hand sorting ("clean," n =25 and "moldy," n =25), and after roasting (n =5). All samples were analyzed for AFB 1 by enzyme-linked immunosorbent assay. A reduction of 42.9% was achieved based on the median AFB 1 levels at baseline and after hand sorting (clean groundnuts), whereas an alternative estimate, based on the total AFB 1 in moldy and clean groundnuts, indicated a reduction of 96.7%, with a loss of only 2% of the groundnuts. By roasting the already clean sorted groundnuts, the AFB 1 reduction achieved (based on median levels) was 39.3%. This educational intervention on how to identify and remove moldy groundnuts was simple and effective in reducing AFB 1 contamination.

  1. Ultrathin Shape Change Smart Materials.

    PubMed

    Xu, Weinan; Kwok, Kam Sang; Gracias, David H

    2018-02-20

    With the discovery of graphene, significant research has focused on the synthesis, characterization, and applications of ultrathin materials. Graphene has also brought into focus other ultrathin materials composed of organics, polymers, inorganics, and their hybrids. Together, these ultrathin materials have unique properties of broad significance. For example, ultrathin materials have a large surface area and high flexibility which can enhance conformal contact in wearables and sensors leading to improved sensitivity. When porous, the short transverse diffusion length in these materials allows rapid mass transport. Alternatively, when impermeable, these materials behave as an ultrathin barrier. Such controlled permeability is critical in the design of encapsulation and drug delivery systems. Finally, ultrathin materials often feature defect-free and single-crystal-like two-dimensional atomic structures resulting in superior mechanical, optical, and electrical properties. A unique property of ultrathin materials is their low bending rigidity, which suggests that they could easily be bent, curved, or folded into 3D shapes. In this Account, we review the emerging field of 2D to 3D shape transformations of ultrathin materials. We broadly define ultrathin to include materials with a thickness below 100 nm and composed of a range of organic, inorganic, and hybrid compositions. This topic is important for both fundamental and applied reasons. Fundamentally, bending and curving of ultrathin films can cause atomistic and molecular strain which can alter their physical and chemical properties and lead to new 3D forms of matter which behave very differently from their planar precursors. Shape change can also lead to new 3D architectures with significantly smaller form factors. For example, 3D ultrathin materials would occupy a smaller space in on-chip devices or could permeate through tortuous media which is important for miniaturized robots and smart dust applications. Our

  2. Prosthetic helping hand

    NASA Technical Reports Server (NTRS)

    Vest, Thomas W. (Inventor); Carden, James R. (Inventor); Norton, William E. (Inventor); Belcher, Jewell G. (Inventor)

    1992-01-01

    A prosthetic device for below-the-elbow amputees, having a C-shaped clamping mechanism for grasping cylindrical objects, is described. The clamping mechanism is pivotally mounted to a cuff that fits on the amputee's lower arm. The present invention is utilized by placing an arm that has been amputated below the elbow into the cuff. The clamping mechanism then serves as a hand whenever it becomes necessary for the amputee to grasp a cylindrical object such as a handle, a bar, a rod, etc. To grasp the cylindrical object, the object is jammed against the opening in the C-shaped spring, causing the spring to open, the object to pass to the center of the spring, and the spring to snap shut behind the object. Various sizes of clamping mechanisms can be provided and easily interchanged to accommodate a variety of diameters. With the extension that pivots and rotates, the clamping mechanism can be used in a variety of orientations. Thus, this invention provides the amputee with a clamping mechanism that can be used to perform a number of tasks.

  3. Pre-shaping of the Fingertip of Robot Hand Covered with Net Structure Proximity Sensor

    NASA Astrophysics Data System (ADS)

    Suzuki, Kenji; Suzuki, Yosuke; Hasegawa, Hiroaki; Ming, Aiguo; Ishikawa, Masatoshi; Shimojo, Makoto

    To achieve skillful tasks with multi-fingered robot hands, many researchers have been working on sensor-based control of them. Vision sensors and tactile sensors are indispensable for the tasks, however, the correctness of the information from the vision sensors decreases as a robot hand approaches to a grasping object because of occlusion. This research aims to achieve seamless detection for reliable grasp by use of proximity sensors: correcting the positional error of the hand in vision-based approach, and contacting the fingertip in the posture for effective tactile sensing. In this paper, we propose a method for adjusting the posture of the fingertip to the surface of the object. The method applies “Net-Structure Proximity Sensor” on the fingertip, which can detect the postural error in the roll and pitch axes between the fingertip and the object surface. The experimental result shows that the postural error is corrected in the both axes even if the object dynamically rotates.

  4. Right Hand Presence Modulates Shifts of Exogenous Visuospatial Attention in Near Perihand Space

    ERIC Educational Resources Information Center

    Lloyd, Donna M.; Azanon, Elena; Poliakoff, Ellen

    2010-01-01

    To investigate attentional shifting in perihand space, we measured performance on a covert visual orienting task under different hand positions. Participants discriminated visual shapes presented on a screen and responded using footpedals placed under their right foot. With the right hand positioned by the right side of the screen, mean cueing…

  5. Reduced asymmetry in motor skill learning in left-handed compared to right-handed individuals.

    PubMed

    McGrath, Robert L; Kantak, Shailesh S

    2016-02-01

    Hemispheric specialization for motor control influences how individuals perform and adapt to goal-directed movements. In contrast to adaptation, motor skill learning involves a process wherein one learns to synthesize novel movement capabilities in absence of perturbation such that they are performed with greater accuracy, consistency and efficiency. Here, we investigated manual asymmetry in acquisition and retention of a complex motor skill that requires speed and accuracy for optimal performance in right-handed and left-handed individuals. We further determined if degree of handedness influences motor skill learning. Ten right-handed (RH) and 10 left-handed (LH) adults practiced two distinct motor skills with their dominant or nondominant arms during separate sessions two-four weeks apart. Learning was quantified by changes in the speed-accuracy tradeoff function measured at baseline and one-day retention. Manual asymmetry was evident in the RH group but not the LH group. RH group demonstrated significantly greater skill improvement for their dominant-right hand than their nondominant-left hand. In contrast, for the LH group, both dominant and nondominant hands demonstrated comparable learning. Less strongly-LH individuals (lower EHI scores) exhibited more learning of their dominant hand. These results suggest that while hemispheric specialization influences motor skill learning, these effects may be influenced by handedness. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A laser-based ice shape profilometer for use in icing wind tunnels

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.; Vargas, Mario

    1995-01-01

    A laser-based profilometer was developed to measure the thickness and shape of ice accretions on the leading edge of airfoils and other models in icing wind tunnels. The instrument is a hand held device that is connected to a desk top computer with a 10 meter cable. It projects a laser line onto an ice shape and used solid state cameras to detect the light scattered by the ice. The instrument corrects the image for camera angle distortions, displays an outline of the ice shape on the computer screen, saves the data on a disk, and can print a full scale drawing of the ice shape. The profilometer has undergone extensive testing in the laboratory and in the NASA Lewis Icing Research Tunnel. Results of the tests show very good agreement between profilometer measurements and known simulated ice shapes and fair agreement between profilometer measurements and hand tracing techniques.

  7. An effective hand vein feature extraction method.

    PubMed

    Li, Haigang; Zhang, Qian; Li, Chengdong

    2015-01-01

    As a new authentication method developed years ago, vein recognition technology features the unique advantage of bioassay. This paper studies the specific procedure for the extraction of hand back vein characteristics. There are different positions used in the collecting process, so that a suitable intravenous regional orientation method is put forward, allowing the positioning area to be the same for all hand positions. In addition, to eliminate the pseudo vein area, the valley regional shape extraction operator can be improved and combined with multiple segmentation algorithms. The images should be segmented step by step, making the vein texture to appear clear and accurate. Lastly, the segmented images should be filtered, eroded, and refined. This process helps to filter the most of the pseudo vein information. Finally, a clear vein skeleton diagram is obtained, demonstrating the effectiveness of the algorithm. This paper presents a hand back vein region location method. This makes it possible to rotate and correct the image by working out the inclination degree of contour at the side of hand back.

  8. Individual left-hand and right-hand intra-digit representations in human primary somatosensory cortex.

    PubMed

    Schweisfurth, Meike A; Frahm, Jens; Schweizer, Renate

    2015-09-01

    Individual intra-digit somatotopy of all phalanges of the middle and little finger of the right and left hand was studied by functional magnetic resonance imaging in 12 healthy subjects. Phalanges were tactilely stimulated and activation in BA 3b of the human primary somatosensory cortex could be observed for each individual phalanx. Activation peaks were further analysed using the Direction/Order (DiOr) method, which identifies somatotopy, if a significantly high number of subjects exhibit ordered distal-to-proximal phalanx representions along a similar direction. Based on DiOr, ordered and similar-direction-aligned intra-digit maps across subjects were found at the left hand for the little and middle finger and at the right hand for the little finger. In these digits the proximal phalanges were represented more medially along the course of the central sulcus than the distal phalanges. This is contrasted by the intra-digit maps for the middle finger of the right hand, which showed larger inter-subject variations of phalanx alignments without a similar within-digit representation across subjects. As all subjects were right-handed and as the middle finger of the dominant hand probably plays a more individual role in everyday tactile performance than the little finger of the right hand and all left-hand digits, the observed variation might reflect a functional somatotopy based on individual use of that particular digit at the dominant hand. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Evolution of one-handed piano compositions.

    PubMed

    Drozdov, Ignat; Kidd, Mark; Modlin, Irvin M

    2008-01-01

    Electronic searches were performed to investigate the evolution of one-handed piano compositions and one-handed music techniques, and to identify individuals responsible for the development of music meant for playing with one hand. Particularly, composers such as Liszt, Ravel, Scriabin, and Prokofiev established a new model in music by writing works to meet the demands of a variety of pianist-amputees that included Count Géza Zichy (1849-1924), Paul Wittgenstein (1887-1961), and Siegfried Rapp (b. 1915). Zichy was the first to amplify the scope of the repertoire to improve the variety of one-handed music; Wittgenstein developed and adapted specific and novel performance techniques to accommodate one-handedness; and Rapp sought to promote the stature of one-handed pianists among a musically sophisticated public able to appreciate the nuances of such maestros.

  10. Assessment of input-output properties and control of neuroprosthetic hand grasp.

    PubMed

    Hines, A E; Owens, N E; Crago, P E

    1992-06-01

    Three tests have been developed to evaluate rapidly and quantitatively the input-output properties and patient control of neuroprosthetic hand grasp. Each test utilizes a visual pursuit tracking task during which the subject controls the grasp force and grasp opening (position) of the hand. The first test characterizes the static input-output properties of the hand grasp, where the input is a slowly changing patient generated command signal and the outputs are grasp force and grasp opening. Nonlinearities and inappropriate slopes have been documented in these relationships, and in some instances the need for system returning has been indicated. For each subject larger grasp forces were produced when grasping larger objects, and for some subjects the shapes of the relationships also varied with object size. The second test quantifies the ability of the subject to control the hand grasp outputs while tracking steps and ramps. Neuroprosthesis users had rms errors two to three times larger when tracking steps versus ramps, and had rms errors four to five times larger than normals when tracking ramps. The third test provides an estimate of the frequency response of the hand grasp system dynamics, from input and output data collected during a random tracking task. Transfer functions were estimated by spectral analysis after removal of the static input-output nonlinearities measured in the first test. The dynamics had low-pass filter characteristics with 3 dB cutoff frequencies from 1.0 to 1.4 Hz. The tests developed in this study provide a rapid evaluation of both the system and the user. They provide information to 1) help interpret subject performance of functional tasks, 2) evaluate the efficacy of system features such as closed-loop control, and 3) screen the neuroprosthesis to indicate the need for retuning.

  11. An ultrastructural study on corkscrew hairs and cigarette-ash-shaped hairs observed by dermoscopy of tinea capitis.

    PubMed

    Lu, Mao; Ran, Yuping; Dai, Yaling; Lei, Song; Zhang, Chaoliang; Zhuang, Kaiwen; Hu, Wenying

    2016-01-01

    This study was aimed to explain the formation mechanisms of corkscrew hairs and cigarette-ash-shaped hairs observed by dermoscopy of tinea capitis. In the present work, the ultrastructure of the involved hairs collected from a girl with tinea capitis caused by Trichophyton violaceum was observed by scanning electron microscope (SEM) and transmission electron microscope (TEM). SEM observation of the corkscrew hair revealed bent hair shaft and asymmetrically disrupted cuticle layer. TEM findings demonstrated the hair shaft became weak. The corkscrew hairs closely covered by scales on the scalp were observed under dermoscopy. We speculate that the formation of corkscrew hairs is a result of a combination of internal damage due to hair degradation by T. violaceum and external resistance due to scales covering the hair. SEM observation of the cigarette-ash-shaped hair revealed irregularly disrupted and incompact end, which might represent the stump of the broken corkscrew hair after treatment. © Wiley Periodicals, Inc.

  12. Geometric morphometric evaluation of cervical vertebrae shape and its relationship to skeletal maturation.

    PubMed

    Chatzigianni, Athina; Halazonetis, Demetrios J

    2009-10-01

    Cervical vertebrae shape has been proposed as a diagnostic factor for assessing skeletal maturation in orthodontic patients. However, evaluation of vertebral shape is mainly based on qualitative criteria. Comprehensive quantitative measurements of shape and assessments of its predictive power have not been reported. Our aims were to measure vertebral shape by using the tools of geometric morphometrics and to evaluate the correlation and predictive power of vertebral shape on skeletal maturation. Pretreatment lateral cephalograms and corresponding hand-wrist radiographs of 98 patients (40 boys, 58 girls; ages, 8.1-17.7 years) were used. Skeletal age was estimated from the hand-wrist radiographs. The first 4 vertebrae were traced, and 187 landmarks (34 fixed and 153 sliding semilandmarks) were used. Sliding semilandmarks were adjusted to minimize bending energy against the average of the sample. Principal components analysis in shape and form spaces was used for evaluating shape patterns. Shape measures, alone and combined with centroid size and age, were assessed as predictors of skeletal maturation. Shape alone could not predict skeletal maturation better than chronologic age. The best prediction was achieved with the combination of form space principal components and age, giving 90% prediction intervals of approximately 200 maturation units in the girls and 300 units in the boys. Similar predictive power could be obtained by using centroid size and age. Vertebrae C2, C3, and C4 gave similar results when examined individually or combined. C1 showed lower correlations, signifying lower integration with hand-wrist maturation. Vertebral shape is strongly correlated to skeletal age but does not offer better predictive value than chronologic age.

  13. Many-body quantum dynamics in the decay of bent dark solitons of Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Katsimiga, G. C.; Mistakidis, S. I.; Koutentakis, G. M.; Kevrekidis, P. G.; Schmelcher, P.

    2017-12-01

    The beyond mean-field (MF) dynamics of a bent dark soliton (BDS) embedded in a two-dimensional repulsively interacting Bose-Einstein condensate is explored. We examine the case of a single BDS comparing the MF dynamics to a correlated approach, the multi-configuration time-dependent Hartree method for bosons. Dynamical snaking of this bent structure is observed, signaling the onset of fragmentation which becomes significant during the vortex nucleation. In contrast to the MF approximation ‘filling’ of the vortex core is observed, leading in turn to the formation of filled-core vortices, instead of the MF vortex-antivortex pairs. The resulting smearing effect in the density is a rather generic feature, occurring when solitonic structures are exposed to quantum fluctuations. Here, we show that this filling owes its existence to the dynamical building of an antidark structure developed in the next-to-leading order orbital. We further demonstrate that the aforementioned beyond MF dynamics can be experimentally detected using the variance of single shot measurements. Additionally, a variety of excitations including vortices, oblique dark solitons, and open ring dark soliton-like structures building upon higher-lying orbitals is observed. We demonstrate that signatures of the higher-lying orbital excitations emerge in the total density, and can be clearly captured by inspecting the one-body coherence. In the latter context, the localization of one-body correlations exposes the existence of the multi-orbital vortex-antidark structure.

  14. Hand hygiene using a new hand-cleansing formulation without sanitizers: Effect on Staphylococcus aureus removal and recovery of properties against skin damage.

    PubMed

    Asaoka, Kentaro; Endo, Shiro; Suzuki, Yuki; Komuro, Satoru; Nemoto, Tadanobu; Kaku, Mitsuo

    2016-08-01

    Staphylococcus aureus is known to form a biofilm and colonize on damaged skin of the hands. We investigated changes in the quantity of S aureus on the hands and changes in skin damage when using a hand-cleansing formulation with potassium oleate but without a sanitizer (formulation A), which is highly effective in removing S aureus biofilm and causes minimal skin damage. The participants (14 medical staff members) used 2 types of hand-cleansing formulations (formulations A and B), each for 4 weeks. S aureus of the hands was cultured from swab samples on agar plates. Surface of hands was measured using an ultraviolet light microscope. The quantity of S aureus after using formulation A for 4 weeks was 10(1.08 ± 0.05) CFU/mL, a statistically significant decrease from the quantity of S aureus (10(1.59 ± 0.19) CFU/mL) just before use (P = .029). Also, dryness of hand surfaces decreased. With formulation B, the quantity of S aureus did not significantly change from before to after use (P > .05). This presumably occurs because formulation A gently removes S aureus biofilm. Formulation A removed S aureus from the hands of participants, and skin damage on the hands improved. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  15. System description document for the Anthrobot-2: A dexterous robot hand

    NASA Technical Reports Server (NTRS)

    Ali, Michael S.; Engler, Charles, Jr.

    1991-01-01

    The Anthrobot-2 is an anatomically correct, fully functioning robot hand. The number of fingers, the proportions of the links, the placement and motion of the thumb, and the shape of the palm follow those of the human hand. Each of the finger and thumb joints are servo-controlled. The Anthrobot-2 also includes a two-degree-of-freedom wrist. The entire package, including wrist, hand, and actuators, will mount on the ends of a variety of industrial manipulators. A patent has been applied for on the design. The Anthrobot-2 will be useful in tasks where dexterous manipulation or telemanipulation are required.

  16. Corresponding-states behavior of SPC/E-based modified (bent and hybrid) water models

    NASA Astrophysics Data System (ADS)

    Weiss, Volker C.

    2017-02-01

    The remarkable and sometimes anomalous properties of water can be traced back at the molecular level to the tetrahedral coordination of molecules due to the ability of a water molecule to form four hydrogen bonds to its neighbors; this feature allows for the formation of a network that greatly influences the thermodynamic behavior. Computer simulations are becoming increasingly important for our understanding of water. Molecular models of water, such as SPC/E, are needed for this purpose, and they have proved to capture many important features of real water. Modifications of the SPC/E model have been proposed, some changing the H-O-H angle (bent models) and others increasing the importance of dispersion interactions (hybrid models), to study the structural features that set water apart from other polar fluids and from simple fluids such as argon. Here, we focus on the properties at liquid-vapor equilibrium and study the coexistence curve, the interfacial tension, and the vapor pressure in a corresponding-states approach. In particular, we calculate Guggenheim's ratio for the reduced apparent enthalpy of vaporization and Guldberg's ratio for the reduced normal boiling point. This analysis offers additional insight from a more macroscopic, thermodynamic perspective and augments that which has already been learned at the molecular level from simulations. In the hybrid models, the relative importance of dispersion interactions is increased, which turns the modified water into a Lennard-Jones-like fluid. Consequently, in a corresponding-states framework, the typical behavior of simple fluids, such as argon, is seen to be approached asymptotically. For the bent models, decreasing the bond angle turns the model essentially into a polar diatomic fluid in which the particles form linear molecular arrangements; as a consequence, characteristic features of the corresponding-states behavior of hydrogen halides emerge.

  17. A comparison of hand-wrist bone and cervical vertebral analyses in measuring skeletal maturation.

    PubMed

    Gandini, Paola; Mancini, Marta; Andreani, Federico

    2006-11-01

    To compare skeletal maturation as measured by hand-wrist bone analysis and by cervical vertebral analysis. A radiographic hand-wrist bone analysis and cephalometric cervical vertebral analysis of 30 patients (14 males and 16 females; 7-18 years of age) were examined. The hand-wrist bone analysis was evaluated by the Bjork index, whereas the cervical vertebral analysis was assessed by the cervical vertebral maturation stage (CVMS) method. To define vertebral stages, the analysis consisted of both cephalometric (13 points) and morphologic evaluation of three cervical vertebrae (concavity of second, third, and fourth vertebrae and shape of third and fourth vertebrae). These measurements were then compared with the hand-wrist bone analysis, and the results were statistically analyzed by the Cohen kappa concordance index. The same procedure was repeated after 6 months and showed identical results. The Cohen kappa index obtained (mean +/- SD) was 0.783 +/- 0.098, which is in the significant range. The results show a concordance of 83.3%, considering that the estimated percentage for each case is 23.3%. The results also show a correlation of CVMS I with Bjork stages 1-3 (interval A), CVMS II with Bjork stage 4 (interval B), CVMS III with Bjork stage 5 (interval C), CVMS IV with Bjork stages 6 and 7 (interval D), and CVMS V with Bjork stages 8 and 9 (interval E). Vertebral analysis on a lateral cephalogram is as valid as the hand-wrist bone analysis with the advantage of reducing the radiation exposure of growing subjects.

  18. Defect reduction in GaN on dome-shaped patterned-sapphire substrates

    NASA Astrophysics Data System (ADS)

    Chen, Po-Hsun; Su, Vin-Cent; Wu, Shang-Hsuan; Lin, Ray-Ming; Kuan, Chieh-Hsiung

    2018-02-01

    This paper demonstrates the behavior of defect reduction in un-doped GaN (u-GaN) grown on a commercial dome-shaped patterned-sapphire substrate (CDPSS). Residual strain inside the u-GaN grown on the CDPSS have been investigated as well. As verified by the experimentally measured data, the limited growth rate of the u-GaN on the sidewall of the CDPSS enhances the lateral growth of the GaN on the trench region while increasing the growth time. This subsequently contributes to improve the crystalline quality of the GaN on the CDPSS. The more prominent dislocations occur in the u-GaN epilayers on the CDPSS after reaching the summit of the accumulated strain inside the epilayers. Such prominent bent dislocations improve their blocking abilities, followed by the achievement of the better crystalline quality for the growth of the u-GaN on the CDPSS.

  19. Develop Strong and Serviceable Details for Precast, Prestressed Concrete Bent Cap Standards That Can Be Implemented on Everyday Bridge Construction Projects, Project Summary

    DOT National Transportation Integrated Search

    2018-01-01

    Pretensioned bent caps are an attractive substructure component because they offer contractors an option for fabrication by prestressing plants and can be used to eliminate or reduce cracks. Two sets of design recommendations were developed to enable...

  20. Note: Formation of the nematic splay-bend in two-dimensional systems of bow-shaped particles

    NASA Astrophysics Data System (ADS)

    Karbowniczek, Paweł

    2018-04-01

    Recently, Tavarone et al. (J. Chem. Phys. 143, 114505 (2015)) discussed phase behavior of zig-zag and bow-shaped particles composed of three needles. The authors presented very interesting results of extensive Monte Carlo simulations with periodic boundary conditions in the constant-NVT and the constant-NPT ensembles. In addition to isotropic, nematic, and smectic phases, they identified a modulated nematic, which is actually the nematic splay-bend phase ($N_{SB}$), long-anticipated for bent-core systems (Europhys. Lett. 56, 247 (2001)). They also described isotropic-nematic and nematic-smectic transitions using Density Functional Theory in mean-field approximation. The authors, however, did not provided a theoretical description of the $N_{SB}$. Here, we present a simple theory of a phase transition to the $N_{SB}$ phase to fill the gap. In our study, we use Onsager-type Density Functional Theory with perfect order approximation and Meyer parametrization of modulated structures. We present results for arbitrary ratios of the length of central and side segments and opening angles of bow-shaped particles.

  1. 49 CFR Appendix A to Part 231 - Schedule of Civil Penalties 1

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 120.B1Brake Step or Brace Bent 2,500 5,000 120.B2Brake Step or Wrong Dimensions 2,500 5,000 120...,000 124.B1Running Board Bent to the Extent that It is Unsafe 2,500 5,000 124.B2Running Board Wrong... 126.B1End Platform or Brace Bent 2,500 5,000 126.B2End Platform Wrong Dimensions 2,500 5,000 126.C1End...

  2. Capacity achieving nonbinary LDPC coded non-uniform shaping modulation for adaptive optical communications.

    PubMed

    Lin, Changyu; Zou, Ding; Liu, Tao; Djordjevic, Ivan B

    2016-08-08

    A mutual information inspired nonbinary coded modulation design with non-uniform shaping is proposed. Instead of traditional power of two signal constellation sizes, we design 5-QAM, 7-QAM and 9-QAM constellations, which can be used in adaptive optical networks. The non-uniform shaping and LDPC code rate are jointly considered in the design, which results in a better performance scheme for the same SNR values. The matched nonbinary (NB) LDPC code is used for this scheme, which further improves the coding gain and the overall performance. We analyze both coding performance and system SNR performance. We show that the proposed NB LDPC-coded 9-QAM has more than 2dB gain in symbol SNR compared to traditional LDPC-coded star-8-QAM. On the other hand, the proposed NB LDPC-coded 5-QAM and 7-QAM have even better performance than LDPC-coded QPSK.

  3. Short-wavelength InAlGaAs/AlGaAs quantum dot superluminescent diodes

    NASA Astrophysics Data System (ADS)

    Liang, De-Chun; An, Qi; Jin, Peng; Li, Xin-Kun; Wei, Heng; Wu, Ju; Wang, Zhan-Guo

    2011-10-01

    This paper reports the fabrication of J-shaped bent-waveguide superluminescent diodes utilizing an InAlGaAs/AlGaAs quantum dot active region. The emission spectrum of the device is centred at 884 nm with a full width at half maximum of 37 nm and an output power of 18 mW. By incorporating an Al composition into the quantum dot active region, short-wavelength superluminescent diode devices can be obtained. An intersection was found for the light power-injection current curves measured from the straight-waveguide facet and the bent-waveguide facet, respectively. The result is attributed to the conjunct effects of the gain and the additional loss of the bent waveguide. A numerical simulation is performed to verify the qualitative explanation. It is shown that bent waveguide loss is an important factor that affects the output power of J-shaped superluminescent diode devices.

  4. Self-accommodation of B19' martensite in Ti-Ni shape memory alloys - Part I. Morphological and crystallographic studies of the variant selection rule

    NASA Astrophysics Data System (ADS)

    Nishida, M.; Nishiura, T.; Kawano, H.; Inamura, T.

    2012-06-01

    The self-accommodation morphologies of B19‧ martensite in Ti-Ni alloys have been investigated by optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Twelve pairs of minimum units consisting of two habit plane variants (HPVs) with V-shaped morphology connected to a ? B19‧ type I variant accommodation twin were observed. Three types of self-accommodation morphologies, based on the V-shaped minimum unit, developed around one of the {111}B2 traces, which were triangular, rhombic and hexangular and consisted of three, four and six HPVs, respectively. In addition, the variant selection rule and the number of possible HPV combinations in each of these self-accommodation morphologies are discussed.

  5. Measurement of the B0→π-ℓ+ν and B+→η(')ℓ+ν branching fractions, the B0→π-ℓ+ν and B+→ηℓ+ν form-factor shapes, and determination of |Vub|

    NASA Astrophysics Data System (ADS)

    Del Amo Sanchez, P.; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Randle-Conde, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Jasper, H.; Karbach, T. M.; Petzold, A.; Spaan, B.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Firmino da Costa, J.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Sciolla, G.; Zhao, M.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Simard, M.; Taras, P.; de Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Renga, F.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Lynch, H. L.; Macfarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.; Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.; Guttman, N.; Soffer, A.; Lund, P.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Lanceri, L.; Vitale, L.; Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.; Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.

    2011-03-01

    We report the results of a study of the exclusive charmless semileptonic decays, B+→η(')ℓ+ν and B0→π-ℓ+ν, undertaken with approximately 464×106 BB¯ pairs collected at the Υ(4S) resonance with the BABAR detector. The analysis uses events in which the signal B decays are reconstructed with a loose neutrino reconstruction technique. We obtain partial branching fractions for B+→ηℓ+ν and B0→π-ℓ+ν decays in three and 12 bins of q2, respectively, from which we extract the f+(q2) form-factor shapes and the total branching fractions B(B+→ηℓ+ν)=(0.36±0.05stat±0.04syst)×10-4 and B(B0→π-ℓ+ν)=(1.42±0.05stat±0.07syst)×10-4. We also measure B(B+→η'ℓ+ν)=(0.24±0.08stat±0.03syst)×10-4. We obtain values for the magnitude of the CKM matrix element |Vub| using three different QCD calculations.

  6. Monolithic photonic integrated circuit with a GaN-based bent waveguide

    NASA Astrophysics Data System (ADS)

    Cai, Wei; Qin, Chuan; Zhang, Shuai; Yuan, Jialei; Zhang, Fenghua; Wang, Yongjin

    2018-06-01

    Integration of a transmitter, waveguide and receiver into a single chip can generate a multicomponent system with multiple functionalities. Here, we fabricate and characterize a GaN-based photonic integrated circuit (PIC) on a GaN-on-silicon platform. With removal of the silicon and back wafer thinning of the epitaxial film, ultrathin membrane-type devices and highly confined suspended GaN waveguides were formed. Two suspended-membrane InGaN/GaN multiple-quantum-well diodes (MQW-diodes) served as an MQW light-emitting diode (MQW-LED) to emit light and an MQW photodiode (MQW-PD) to sense light. The optical interconnects between the MQW-LED and MQW-PD were achieved using the GaN bent waveguide. The GaN-based PIC consisting of an MQW-LED, waveguides and an MQW-PD forms an in-plane light communication system with a data transmission rate of 70 Mbps.

  7. Standing helicon induced by a rapidly bent magnetic field in plasmas

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Takayama, Sho; Komuro, Atsushi; Ando, Akira; Plasma physics Team

    2016-09-01

    An electron energy probability function and an rf magnetic field are measured in an rf hydrogen helicon source, where axial and transverse static magnetic fields are applied to the source by solenoids and to the diffusion chamber by filter magnets, respectively. It is demonstrated that the helicon wave is reflected by the rapidly bent magnetic field and the resultant standing wave heats the electrons between the source and the magnetic filter, while the electron cooling effect by the magnetic filter is maintained. It is interpreted that the standing wave is generated by the presence of spatially localized change of a refractive index. The application to the hydrogen negative ion source used for the neutral beam injection system for fusion plasma heating is discussed. This work is partially supported by grant-in-aid for scientific research (16H04084 and 26247096) from the Japan Society for the Promotion of Science.

  8. Change in single cystathionine β-synthase domain-containing protein from a bent to flat conformation upon adenosine monophosphate binding.

    PubMed

    Jeong, Byung-Cheon; Park, Si Hoon; Yoo, Kyoung Shin; Shin, Jeong Sheop; Song, Hyun Kyu

    2013-07-01

    Cystathionine β-synthase (CBS) domains are small intracellular modules that can act as binding domains for adenosine derivatives, and they may regulate the activity of associated enzymes or other functional domains. Among these, the single CBS domain-containing proteins, CBSXs, from Arabidopsis thaliana, have recently been identified as redox regulators of the thioredoxin system. Here, the crystal structure of CBSX2 in complex with adenosine monophosphate (AMP) is reported at 2.2Å resolution. The structure of dimeric CBSX2 with bound-AMP is shown to be approximately flat, which is in stark contrast to the bent form of apo-CBSXs. This conformational change in quaternary structure is triggered by a local structural change of the unique α5 helix, and by moving each loop P into an open conformation to accommodate incoming ligands. Furthermore, subtle rearrangement of the dimer interface triggers movement of all subunits, and consequently, the bent structure of the CBSX2 dimer becomes a flat structure. This reshaping of the structure upon complex formation with adenosine-containing ligand provides evidence that ligand-induced conformational reorganization of antiparallel CBS domains is an important regulatory mechanism. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. A patient with mandibular deviation and 3 mandibular incisors treated with asymmetrically bent improved superelastic nickel-titanium alloy wires.

    PubMed

    Ikeda, Yuhei; Kokai, Satoshi; Ono, Takashi

    2018-01-01

    Skeletal and dental discrepancies cause asymmetric malocclusions in orthodontic patients. It is difficult to achieve adequate functional occlusion and guidance in patients with congenital absence of a mandibular incisor due to the tooth-size discrepancy. Here, we describe the orthodontic treatment of a 22-year-old woman with an asymmetric Angle Class II malocclusion, mandibular deviation to the left, and 3 mandibular incisors. The anterior teeth and maxillary canines were crowded. We used an improved superelastic nickel-titanium alloy wire (Tomy International, Tokyo, Japan) to compensate for the asymmetric mandibular arch and an asymmetrically bent archwire to move the maxillary molars distally. A skeletal anchorage system provided traction for intermaxillary elastics, and extractions were not needed. We alleviated the crowding and created an ideal occlusion with proper overjet, overbite, and anterior guidance with Class I canine and molar relationships. This method of treatment with an asymmetrically bent nickel-titanium alloy wire provided proper Class I occlusion and anterior guidance despite the mandibular deviation to the left and 3 mandibular incisors, without the need for extractions. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  10. 5,10-Methylene-5,6,7,8-tetrahydrofolate conformational transitions upon binding to thymidylate synthase: molecular mechanics and continuum solvent studies

    NASA Astrophysics Data System (ADS)

    Jarmuła, Adam; Cieplak, Piotr; Montfort, William R.

    2005-02-01

    We applied the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approach to evaluate relative stability of the extended (flat) and C-shaped (bent) solution conformational forms of the 5,10-methylene-5,6,7,8-tetrahydrofolate (mTHF) molecule in aqueous solution. Calculations indicated that both forms have similar free energies in aqueous solution but detailed energy components are different. The bent solution form has lower intramolecular electrostatic and van der Waals interaction energies. The flat form has more favorable solvation free energy and lower contribution from the bond, angle and torsion angle molecular mechanical internal energies. We exploit these results and combine them with known crystallographic data to provide a model for the progressive binding of the mTHF molecule, a natural cofactor of thymidylate synthase (TS), to the complex forming in the TS-catalyzed reaction. We propose that at the time of initial weak binding in the open enzyme the cofactor molecule remains in a close balance between the flat and bent solution conformations, with neither form clearly favored. Later, thymidylate synthase undergoes conformational change leading to the closure of the active site and the mTHF molecule is withdrawn from the solvent. That effect shifts the thermodynamic equilibrium of the mTHF molecule toward the bent solution form. At the same time, burying the cofactor molecule in the closed active site produces numerous contacts between mTHF and protein that render change in the shape of the mTHF molecule. As a result, the bent solution conformer is converted to more strained L-shaped bent enzyme conformer of the mTHF molecule. The strain in the bent enzyme conformation allows for the tight binding of the cofactor molecule to the productive ternary complex that forms in the closed active site, and facilitates the protonation of the imidazolidine N10 atom, which promotes further reaction.

  11. Distractor objects affect fingers' angular distances but not fingers' shaping during grasping.

    PubMed

    Ansuini, Caterina; Tognin, Veronica; Turella, Luca; Castiello, Umberto

    2007-04-01

    The aim of the present study was to determine whether and how hand shaping was affected by the presence of a distractor object adjacent to the to-be-grasped object. Twenty subjects were requested to reach towards and grasp a 'convex' or a 'concave' object in the presence or absence of a distractor object either of the same or different shape than the target object. Flexion/extension at the metacarpal-phalangeal (MCP) and proximal interphalangeal joints of all digits, and abduction angle between digits were measured by resistive sensors embedded in a glove. The results indicate robust interference effects at the level of reach duration and the extent of fingers' abduction angles together with changes at the level of a single joint for the thumb. No distractor effects on individual fingers' joints except for the MCP of the middle and little fingers were found. These findings suggest that the presence of distractor object affects hand shaping in terms of fingers' abduction angles, but not at the level of 'shape dependent' fingers' angular excursions. Furthermore, they support the importance of the thumb for the guidance of selective reach-to-grasp movements. We discuss these results in the context of current theories proposed to explain the object selection processes underlying the control of hand action.

  12. Creep-Rupture Behavior and Recrystallization in HR6W and Haynes Alloy 230 Cold-Bent Boiler Tubing for Ultrasupercritical (USC) Steam Boiler Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shingledecker, John P

    2007-01-01

    Creep-rupture experiments were conducted on HR6W and Haynes 230, candidate Ultrasupercritical (USC) alloys, tubes to evaluate the effects of cold-work and recrystallization during high-temperature service. These creep tests were performed by internally pressurizing cold-bent boiler tubes at 775 C for times up to 8000 hours. The bends were fabricated with cold-work levels beyond the current ASME Boiler and Pressure Vessel (ASME B&PV) Code Section I limits for austenitic stainless steels. Destructive metallographic evaluation of the crept tube bends was used to determine the effects of cold-work and the degree of recrystallization. The metallographic analysis combined with an evaluation of themore » creep and rupture data suggest that solid-solution strengthened nickel-based alloys can be fabricated for high-temperature service at USC conditions utilizing levels of cold-work higher than the current allowed levels for austenitic stainless steels.« less

  13. High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals

    DOEpatents

    Smither, Robert K [Hinsdale, IL

    2008-12-23

    A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

  14. Adequate Hand Washing and Glove Use Are Necessary To Reduce Cross-Contamination from Hands with High Bacterial Loads.

    PubMed

    Robinson, Andrew L; Lee, Hyun Jung; Kwon, Junehee; Todd, Ewen; Rodriguez, Fernando Perez; Ryu, Dojin

    2016-02-01

    Hand washing and glove use are the main methods for reducing bacterial cross-contamination from hands to ready-to-eat food in a food service setting. However, bacterial transfer from hands to gloves is poorly understood, as is the effect of different durations of soap rubbing on bacterial reduction. To assess bacterial transfer from hands to gloves and to compare bacterial transfer rates to food after different soap washing times and glove use, participants' hands were artificially contaminated with Enterobacter aerogenes B199A at ∼9 log CFU. Different soap rubbing times (0, 3, and 20 s), glove use, and tomato dicing activities followed. The bacterial counts in diced tomatoes and on participants' hands and gloves were then analyzed. Different soap rubbing times did not significantly change the amount of bacteria recovered from participants' hands. Dicing tomatoes with bare hands after 20 s of soap rubbing transferred significantly less bacteria (P < 0.01) to tomatoes than did dicing with bare hands after 0 s of soap rubbing. Wearing gloves while dicing greatly reduced the incidence of contaminated tomato samples compared with dicing with bare hands. Increasing soap washing time decreased the incidence of bacteria recovered from outside glove surfaces (P < 0.05). These results highlight that both glove use and adequate hand washing are necessary to reduce bacterial cross-contamination in food service environments.

  15. Stimuli-Responsive, Shape-Transforming Nanostructured Particles.

    PubMed

    Lee, Junhyuk; Ku, Kang Hee; Kim, Mingoo; Shin, Jae Man; Han, Junghun; Park, Chan Ho; Yi, Gi-Ra; Jang, Se Gyu; Kim, Bumjoon J

    2017-08-01

    Development of particles that change shape in response to external stimuli has been a long-thought goal for producing bioinspired, smart materials. Herein, the temperature-driven transformation of the shape and morphology of polymer particles composed of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) block copolymers (BCPs) and temperature-responsive poly(N-isopropylacrylamide) (PNIPAM) surfactants is reported. PNIPAM acts as a temperature-responsive surfactant with two important roles. First, PNIPAM stabilizes oil-in-water droplets as a P4VP-selective surfactant, creating a nearly neutral interface between the PS and P4VP domains together with cetyltrimethylammonium bromide, a PS-selective surfactant, to form anisotropic PS-b-P4VP particles (i.e., convex lenses and ellipsoids). More importantly, the temperature-directed positioning of PNIPAM depending on its solubility determines the overall particle shape. Ellipsoidal particles are produced above the critical temperature, whereas convex lens-shaped particles are obtained below the critical temperature. Interestingly, given that the temperature at which particle shape change occurs depends solely on the lower critical solution temperature (LCST) of the polymer surfactants, facile tuning of the transition temperature is realized by employing other PNIPAM derivatives with different LCSTs. Furthermore, reversible transformations between different shapes of PS-b-P4VP particles are successfully demonstrated using a solvent-adsorption annealing with chloroform, suggesting great promise of these particles for sensing, smart coating, and drug delivery applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Performance of bent-crystal x-ray microscopes for high energy density physics research

    DOE PAGES

    Schollmeier, Marius S.; Geissel, Matthias; Shores, Jonathon E.; ...

    2015-05-29

    We present calculations for the field of view (FOV), image fluence, image monochromaticity, spectral acceptance, and image aberrations for spherical crystal microscopes, which are used as self-emission imaging or backlighter systems at large-scale high energy density physics facilities. Our analytic results are benchmarked with ray-tracing calculations as well as with experimental measurements from the 6.151 keV backlighter system at Sandia National Laboratories. Furthermore, the analytic expressions can be used for x-ray source positions anywhere between the Rowland circle and object plane. We discovered that this enables quick optimization of the performance of proposed but untested, bent-crystal microscope systems to findmore » the best compromise between FOV, image fluence, and spatial resolution for a particular application.« less

  17. A framework for joint image-and-shape analysis

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Tannenbaum, Allen; Bouix, Sylvain

    2014-03-01

    Techniques in medical image analysis are many times used for the comparison or regression on the intensities of images. In general, the domain of the image is a given Cartesian grids. Shape analysis, on the other hand, studies the similarities and differences among spatial objects of arbitrary geometry and topology. Usually, there is no function defined on the domain of shapes. Recently, there has been a growing needs for defining and analyzing functions defined on the shape space, and a coupled analysis on both the shapes and the functions defined on them. Following this direction, in this work we present a coupled analysis for both images and shapes. As a result, the statistically significant discrepancies in both the image intensities as well as on the underlying shapes are detected. The method is applied on both brain images for the schizophrenia and heart images for atrial fibrillation patients.

  18. Pre-bent instruments used in single-port laparoscopic surgery versus conventional laparoscopic surgery: comparative study of performance in a dry lab.

    PubMed

    Miernik, Arkadiusz; Schoenthaler, Martin; Lilienthal, Kerstin; Frankenschmidt, Alexander; Karcz, Wojciech Konrad; Kuesters, Simon

    2012-07-01

    Different types of single-incision laparoscopic surgery (SILS) have become increasingly popular. Although SILS is technically even more challenging than conventional laparoscopy, published data of first clinical series seem to demonstrate the feasibility of these approaches. Various attempts have been made to overcome restrictions due to loss of triangulation in SILS by specially designed SILS-specific instruments. This study involving novices in a dry lab compared task performances between conventional laparoscopic surgery (CLS) and single-port laparoscopic surgery (SPLS) using newly designed pre-bent instruments. In this study, 90 medical students without previous experience in laparoscopic techniques were randomly assigned to undergo one of three procedures: CLS, SPLS using two pre-bent instruments (SPLS-pp), or SPLS using one pre-bent and one straight laparoscopic instrument (SPLS-ps). In the dry lab, the participants performed four typical laparoscopic tasks of increasing difficulty. Evaluation included performance times or number of completed tasks within a given time frame. All performances were videotaped and evaluated for unsuccessful attempts and unwanted interactions of instruments. Using subjective questionnaires, the participants rated difficulties with two-dimensional vision and coordination of instruments. Task performances were significantly better in the CLS group than in either SPLS group. The SPLS-ps group showed a tendency toward better performances than the SPLS-pp group, but the difference was not significant. Video sequences and participants` questionnaires showed instrument interaction as the major problem in the single-incision surgery groups. Although SILS is feasible, as shown in clinical series published by laparoscopically experienced experts, SILS techniques are demanding due to restrictions that come with the loss of triangulation. These can be compensated only partially by currently available SILS-designed instruments. The future of

  19. Division of Labor in Hand Usage Is Associated with Higher Hand Performance in Free-Ranging Bonnet Macaques, Macaca radiata

    PubMed Central

    Mangalam, Madhur; Desai, Nisarg; Singh, Mewa

    2015-01-01

    A practical approach to understanding lateral asymmetries in body, brain, and cognition would be to examine the performance advantages/disadvantages associated with the corresponding functions and behavior. In the present study, we examined whether the division of labor in hand usage, marked by the preferential usage of the two hands across manual operations requiring maneuvering in three-dimensional space (e.g., reaching for food, grooming, and hitting an opponent) and those requiring physical strength (e.g., climbing), is associated with higher hand performance in free-ranging bonnet macaques, Macaca radiata. We determined the extent to which the macaques exhibit laterality in hand usage in an experimental unimanual and a bimanual food-reaching task, and the extent to which manual laterality is associated with hand performance in an experimental hand-performance-differentiation task. We observed negative relationships between (a) the latency in food extraction by the preferred hand in the hand-performance-differentiation task (wherein, lower latency implies higher performance), the preferred hand determined using the bimanual food-reaching task, and the normalized difference between the performance of the two hands, and (b) the normalized difference between the performance of the two hands and the absolute difference between the laterality in hand usage in the unimanual and the bimanual food-reaching tasks (wherein, lesser difference implies higher manual specialization). Collectively, these observations demonstrate that the division of labor between the two hands is associated with higher hand performance. PMID:25806511

  20. Bent Spoke

    NASA Image and Video Library

    2007-03-07

    A bright spoke extends across the unilluminated side of Saturn B ring about the same distance as that from London to Cairo. The background ring material displays some azimuthal i.e., left to right asymmetry

  1. Postural Hand Synergies during Environmental Constraint Exploitation

    PubMed Central

    Della Santina, Cosimo; Bianchi, Matteo; Averta, Giuseppe; Ciotti, Simone; Arapi, Visar; Fani, Simone; Battaglia, Edoardo; Catalano, Manuel Giuseppe; Santello, Marco; Bicchi, Antonio

    2017-01-01

    Humans are able to intuitively exploit the shape of an object and environmental constraints to achieve stable grasps and perform dexterous manipulations. In doing that, a vast range of kinematic strategies can be observed. However, in this work we formulate the hypothesis that such ability can be described in terms of a synergistic behavior in the generation of hand postures, i.e., using a reduced set of commonly used kinematic patterns. This is in analogy with previous studies showing the presence of such behavior in different tasks, such as grasping. We investigated this hypothesis in experiments performed by six subjects, who were asked to grasp objects from a flat surface. We quantitatively characterized hand posture behavior from a kinematic perspective, i.e., the hand joint angles, in both pre-shaping and during the interaction with the environment. To determine the role of tactile feedback, we repeated the same experiments but with subjects wearing a rigid shell on the fingertips to reduce cutaneous afferent inputs. Results show the persistence of at least two postural synergies in all the considered experimental conditions and phases. Tactile impairment does not alter significantly the first two synergies, and contact with the environment generates a change only for higher order Principal Components. A good match also arises between the first synergy found in our analysis and the first synergy of grasping as quantified by previous work. The present study is motivated by the interest of learning from the human example, extracting lessons that can be applied in robot design and control. Thus, we conclude with a discussion on implications for robotics of our findings. PMID:28900393

  2. Hand specific representations in language comprehension.

    PubMed

    Moody-Triantis, Claire; Humphreys, Gina F; Gennari, Silvia P

    2014-01-01

    Theories of embodied cognition argue that language comprehension involves sensory-motor re-enactments of the actions described. However, the degree of specificity of these re-enactments as well as the relationship between action and language remains a matter of debate. Here we investigate these issues by examining how hand-specific information (left or right hand) is recruited in language comprehension and action execution. An fMRI study tested self-reported right-handed participants in two separate tasks that were designed to be as similar as possible to increase sensitivity of the comparison across task: an action execution go/no-go task where participants performed right or left hand actions, and a language task where participants read sentences describing the same left or right handed actions as in the execution task. We found that language-induced activity did not match the hand-specific patterns of activity found for action execution in primary somatosensory and motor cortex, but it overlapped with pre-motor and parietal regions associated with action planning. Within these pre-motor regions, both right hand actions and sentences elicited stronger activity than left hand actions and sentences-a dominant hand effect. Importantly, both dorsal and ventral sections of the left pre-central gyrus were recruited by both tasks, suggesting different action features being recruited. These results suggest that (a) language comprehension elicits motor representations that are hand-specific and akin to multimodal action plans, rather than full action re-enactments; and (b) language comprehension and action execution share schematic hand-specific representations that are richer for the dominant hand, and thus linked to previous motor experience.

  3. "Like the palm of my hands": Motor imagery enhances implicit and explicit visual recognition of one's own hands.

    PubMed

    Conson, Massimiliano; Volpicella, Francesco; De Bellis, Francesco; Orefice, Agnese; Trojano, Luigi

    2017-10-01

    A key point in motor imagery literature is that judging hands in palm view recruits sensory-motor information to a higher extent than judging hands in back view, due to the greater biomechanical complexity implied in rotating hands depicted from palm than from back. We took advantage from this solid evidence to test the nature of a phenomenon known as self-advantage, i.e. the advantage in implicitly recognizing self vs. others' hand images. The self-advantage has been actually found when implicitly but not explicitly judging self-hands, likely due to dissociation between implicit and explicit body representations. However, such a finding might be related to the extent to which motor imagery is recruited during implicit and explicit processing of hand images. We tested this hypothesis in two behavioural experiments. In Experiment 1, right-handed participants judged laterality of either self or others' hands, whereas in Experiment 2, an explicit recognition of one's own hands was required. Crucially, in both experiments participants were randomly presented with hand images viewed from back or from palm. The main result of both experiments was the self-advantage when participants judged hands from palm view. This novel finding demonstrate that increasing the "motor imagery load" during processing of self vs. others' hands can elicit a self-advantage in explicit recognition tasks as well. Future studies testing the possible dissociation between implicit and explicit visual body representations should take into account the modulatory effect of motor imagery load on self-hand processing. Copyright © 2017. Published by Elsevier B.V.

  4. Precise Restraightening of Bent Studs

    NASA Technical Reports Server (NTRS)

    Boardman, R. E.

    1982-01-01

    Special tool quickly bends studs back into shape accurately and safely by force applied by hydraulic ram, with deflection being measured by dial indicator. Ram and indicator can be interchanged for straightening in reverse direction.

  5. Tailored laser beam shaping for efficient and accurate microstructuring

    NASA Astrophysics Data System (ADS)

    Häfner, T.; Strauß, J.; Roider, C.; Heberle, J.; Schmidt, M.

    2018-02-01

    Large-area processing with high material removal rates by ultrashort pulsed (USP) lasers is coming into focus by the development of high-power USP laser systems. However, currently the bottleneck for high-rate production is given by slow and inefficient beam manipulation. On the one hand, slow beam deflection with regard to high pulse repetition rates leads to heat accumulation and shielding effects, on the other hand, a conventional focus cannot provide the optimum fluence due to the Gaussian intensity profile. In this paper, we emphasize on two approaches of dynamic laser beam shaping with liquid crystal on silicon spatial light modulation and acousto-optic beam shaping. Advantages and limitations of dynamic laser beam shaping with regard to USP laser material processing and methods for reducing the influence of speckle are discussed. Additionally, the influence of optics induced aberrations on speckle characteristics is evaluated. Laser material processing results are presented correlating the achieved structure quality with the simulated and measured beam quality. Experimental and analytical investigations show a certain fluence dependence of the necessary number of alternative holograms to realize homogeneous microstructures.

  6. Musculoskeletal loading during the round-off in female gymnastics: the effect of hand position.

    PubMed

    Farana, Roman; Jandacka, Daniel; Uchytil, Jaroslav; Zahradnik, David; Irwin, Gareth

    2014-06-01

    Chronic elbow injuries from tumbling in female gymnastics present a serious problem for performers. This research examined how the biomechanical characteristics of impact loading and elbow kinematics and kinetics change as a function of technique selection. Seven international-level female gymnasts performed 10 trials of the round-off from a hurdle step to flic-flac with 'parallel' and 'T-shape' hand positions. Synchronized kinematic (3D-automated motion analysis system; 247 Hz) and kinetic (two force plates; 1,235 Hz) data were collected for each trial. Wilcoxon non-parametric test and effect-size statistics determined differences between the hand positions examined in this study. Significant differences (p < 0.05) and large effect sizes (ES > 0.8) were observed for peak vertical ground reaction force (GRF), anterior-posterior GRF, resultant GRF, loading rates of these forces and elbow joint angles, and internal moments of force in sagittal, transverse, and frontal planes. In conclusion, the T-shape hand position reduces vertical, anterior-posterior, and resultant contact forces and has a decreased loading rate indicating a safer technique for the round-off. Significant differences observed in joint elbow moments highlighted that the T-shape position may prevent overloading of the joint complex and consequently reduce the potential for elbow injury.

  7. Shaping ability and safety of five different rotary nickel-titanium instruments compared with stainless steel hand instrumentation in simulated curved root canals.

    PubMed

    Schirrmeister, Jörg F; Strohl, Christian; Altenburger, Markus J; Wrbas, Karl-Thomas; Hellwig, Elmar

    2006-06-01

    To compare the shaping ability and safety of engine-driven FlexMaster, GT Rotary, ProFile, ProTaper, and RaCe rotary instrumentation and Hedström hand instrumentation in simulated root canals. One hundred fifty simulated colored root canals with a curvature of 20 degrees and a radius of 10 mm were randomly distributed among 6 groups of 25 specimens each. After preparation to apical size 30 the area of remaining color on the canal wall indicating unprepared areas was measured in mm2 using image analyzer software. Specimens treated with RaCe left least areas of remaining color compared to all other groups (P < .001), followed by ProTaper. Preparation with ProFile left behind the highest amount of unprepared areas. The ProFile group revealed significantly more remaining color than ProTaper, GT Rotary, and FlexMaster (P < .05). Four FlexMaster files separated. RaCe rotary files were safe and more effective compared to the other instruments.

  8. Optimal Inlet Shape Design of N2B Hybrid Wing Body Configuration

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungjin; Liou, Meng-Sing

    2012-01-01

    The N2B hybrid wing body aircraft was conceptually designed to meet environmental and performance goals for the N+2 generation transport set by the Subsonic Fixed Wing project of NASA Fundamental Aeronautics Program. In the present study, flow simulations are conducted around the N2B configuration by a Reynolds-averaged Navier-Stokes flow solver using unstructured meshes. Boundary conditions at engine fan face and nozzle exhaust planes are provided by the NPSS thermodynamic engine cycle model. The flow simulations reveal challenging design issues arising from boundary layer ingestion offset inlet and airframe-propulsion integration. Adjoint-based optimal designs are then conducted for the inlet shape to minimize the airframe drag force and flow distortion at fan faces. Design surfaces are parameterized by NURBS, and the cowl lip geometry is modified by a spring analogy approach. By the drag minimization design, flow separation on the cowl surfaces are almost removed, and shock wave strength got remarkably reduced. For the distortion minimization design, a circumferential distortion indicator DPCP(sub avg) is adopted as the design objective and diffuser bottom and side wall surfaces are perturbed for the design. The distortion minimization results in a 12.5 % reduction in the objective function.

  9. Hybridization trends for main group elements and expanding the Bent's rule beyond carbon: more than electronegativity.

    PubMed

    Alabugin, Igor V; Bresch, Stefan; Manoharan, Mariappan

    2014-05-22

    Trends in hybridization were systematically analyzed through the combination of DFT calculations with NBO analysis for the five elements X (X = B, C, N, O, and F) in 75 HnX-YHm compounds, where Y spans the groups 13-17 of the periods 2-4. This set of substrates probes the flexibility of the hybridization at five atoms X through variations in electronegativity, polarizability, and orbital size of Y. The results illustrate the scope and limitations of the Bent's rule, the classic correlation between electronegativity and hybridization, commonly used in analyzing structural effects in carbon compounds. The rehybridization effects are larger for fluorine- and oxygen-bonds than they are in the similar bonds to carbon. For bonds with the larger elements Y of the lower periods, trends in orbital hybridization depend strongly on both electronegativity and orbital size. For charged species, the effects of substituent orbital size in the more polarizable bonds to heavier elements show a particularly strong response to the charge introduction at the central atom. In the final section, we provide an example of the interplay between hybridization effects with molecular structure and reactivity. In particular, the ability to change hybridization without changes in polarization provides an alternative way to control structure and reactivity, as illustrated by the strong correlation of strain in monosubstituted cyclopropanes with hybridization in the bond to the substituent.

  10. Powered exoskeleton with palm degrees of freedom for hand rehabilitation.

    PubMed

    Richards, Daniel S; Georgilas, Ioannis; Dagnino, Giulio; Dogramadzi, Sanja

    2015-08-01

    Robotic rehabilitation is a currently underutilised field with the potential to allow huge cost savings within healthcare. Existing rehabilitation exoskeletons oversimplify the importance of movement of the hand while undertaking everyday tasks. Within this study, an investigation was undertaken to establish the extent to which the degrees of freedom within the palm affect ability to undertake everyday tasks. Using a 5DT data glove, bend sensing resistors and restrictors of palm movement, 20 participants were recruited to complete tasks that required various hand shapes. Collected data was processed and palm arching trends were identified for each grasping task. It was found that the extent of utilizing arches in the palm varied with each exercise, but was extensively employed throughout. An exoskeleton was subsequently designed with consideration of the identified palm shapes. This design included a number of key features that accommodated for a variety of hand sizes, a novel thumb joint and a series of dorsally mounted servos. Initial exoskeleton testing was undertaken by having a participant complete the same exercises while wearing the exoskeleton. The angles formed by the user during this process were then compared to those recorded by 2 other participants who had completed the same tasks without exoskeleton. It was found that the exoskeleton was capable of forming the required arches for completing the tasks, with differences between participants attributed to individual ergonomic differences.

  11. Constraining Cometary Crystal Shapes from IR Spectral Features

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lindsay, Sean; Harker, David E.; Kelley, Michael S. P.; Woodward, Charles E.; Murphy, James Richard

    2013-01-01

    A major challenge in deriving the silicate mineralogy of comets is ascertaining how the anisotropic nature of forsterite crystals affects the spectral features' wavelength, relative intensity, and asymmetry. Forsterite features are identified in cometary comae near 10, 11.05-11.2, 16, 19, 23.5, 27.5 and 33 microns [1-10], so accurate models for forsterite's absorption efficiency (Qabs) are a primary requirement to compute IR spectral energy distributions (SEDs, lambdaF lambda vs. lambda) and constrain the silicate mineralogy of comets. Forsterite is an anisotropic crystal, with three crystallographic axes with distinct indices of refraction for the a-, b-, and c-axis. The shape of a forsterite crystal significantly affects its spectral features [13-16]. We need models that account for crystal shape. The IR absorption efficiencies of forsterite are computed using the discrete dipole approximation (DDA) code DDSCAT [11,12]. Starting from a fiducial crystal shape of a cube, we systematically elongate/reduce one of the crystallographic axes. Also, we elongate/reduce one axis while the lengths of the other two axes are slightly asymmetric (0.8:1.2). The most significant grain shape characteristic that affects the crystalline spectral features is the relative lengths of the crystallographic axes. The second significant grain shape characteristic is breaking the symmetry of all three axes [17]. Synthetic spectral energy distributions using seven crystal shape classes [17] are fit to the observed SED of comet C/1995 O1 (Hale-Bopp). The Hale-Bopp crystalline residual better matches equant, b-platelets, c-platelets, and b-columns spectral shape classes, while a-platelets, a-columns and c-columns worsen the spectral fits. Forsterite condensation and partial evaporation experiments demonstrate that environmental temperature and grain shape are connected [18-20]. Thus, grain shape is a potential probe for protoplanetary disk temperatures where the cometary crystalline

  12. Model of Fission Yeast Cell Shape Driven by Membrane-Bound Growth Factors and the Cytoskeleton

    PubMed Central

    Drake, Tyler; Vavylonis, Dimitrios

    2013-01-01

    Fission yeast serves as a model for how cellular polarization machinery consisting of signaling molecules and the actin and microtubule cytoskeleton regulates cell shape. In this work, we develop mathematical models to investigate how these cells maintain a tubular shape of approximately constant diameter. Many studies identify active Cdc42, found in a cap at the inner membrane of growing cell tips, as an important regulator of local cell wall remodeling, likely through control of exocyst tethering and the targeting of other polarity-enhancing structures. First, we show that a computational model with Cdc42-dependent local cell wall remodeling under turgor pressure predicts a relationship between spatial extent of growth signal and cell diameter that is in agreement with prior experiments. Second, we model the consequences of feedback between cell shape and distribution of Cdc42 growth signal at cell tips. We show that stability of cell diameter over successive cell divisions places restrictions on their mutual dependence. We argue that simple models where the spatial extent of the tip growth signal relies solely on geometrical alignment of confined microtubules might lead to unstable width regulation. Third, we study a computational model that combines a growth signal distributed over a characteristic length scale (as, for example, by a reaction-diffusion mechanism) with an axis-sensing microtubules system that places landmarks at positions where microtubule tips touch the cortex. A two-dimensional implementation of this model leads to stable cell diameter for a wide range of parameters. Changes to the parameters of this model reproduce straight, bent, and bulged cell shapes, and we discuss how this model is consistent with other observed cell shapes in mutants. Our work provides an initial quantitative framework for understanding the regulation of cell shape in fission yeast, and a scaffold for understanding this process on a more molecular level in the future

  13. Contribution of Cage-Shaped Structure of Physalins to Their Mode of Action in Inhibition of NF-κB Activation.

    PubMed

    Ozawa, Masaaki; Morita, Masaki; Hirai, Go; Tamura, Satoru; Kawai, Masao; Tsuchiya, Ayako; Oonuma, Kana; Maruoka, Keiji; Sodeoka, Mikiko

    2013-08-08

    A library of oxygenated natural steroids, including physalins, withanolides, and perulactones, coupled with the synthetic cage-shaped right-side structure of type B physalins, was constructed. SAR studies for inhibition of NF-κB activation showed the importance of both the B-ring and the oxygenated right-side partial structure. The 5β,6β-epoxy derivatives of both physalins and withanolides showed similar profiles of inhibition of NF-κB activation and appeared to act on NF-κB signaling via inhibition of phosphorylation and degradation of IκBα. In contrast, type B physalins with C5-C6 olefin functionality inhibited nuclear translocation and DNA binding of RelA/p50 protein dimer, which lie downstream of IκBα degradation, although withanolides having the same AB-ring functionality did not. These results indicated that the right-side partial structure of these steroids influences their mode of action.

  14. Firefighter Hand Anthropometry and Structural Glove Sizing: A New Perspective

    PubMed Central

    Hsiao, Hongwei; Whitestone, Jennifer; Kau, Tsui-Ying; Hildreth, Brooke

    2015-01-01

    Objective We evaluated the current use and fit of structural firefighting gloves and developed an improved sizing scheme that better accommodates the U.S. firefighter population. Background Among surveys, 24% to 30% of men and 31% to 62% of women reported experiencing problems with the fit or bulkiness of their structural firefighting gloves. Method An age-, race/ethnicity-, and gender-stratified sample of 863 male and 88 female firefighters across the United States participated in the study. Fourteen hand dimensions relevant to glove design were measured. A cluster analysis of the hand dimensions was performed to explore options for an improved sizing scheme. Results The current national standard structural firefighting glove-sizing scheme underrepresents firefighter hand size range and shape variation. In addition, mismatch between existing sizing specifications and hand characteristics, such as hand dimensions, user selection of glove size, and the existing glove sizing specifications, is significant. An improved glove-sizing plan based on clusters of overall hand size and hand/finger breadth-to-length contrast has been developed. Conclusion This study presents the most up-to-date firefighter hand anthropometry and a new perspective on glove accommodation. The new seven-size system contains narrower variations (standard deviations) for almost all dimensions for each glove size than the current sizing practices. Application The proposed science-based sizing plan for structural firefighting gloves provides a step-forward perspective (i.e., including two women hand model–based sizes and two wide-palm sizes for men) for glove manufacturers to advance firefighter hand protection. PMID:26169309

  15. Firefighter Hand Anthropometry and Structural Glove Sizing: A New Perspective.

    PubMed

    Hsiao, Hongwei; Whitestone, Jennifer; Kau, Tsui-Ying; Hildreth, Brooke

    2015-12-01

    We evaluated the current use and fit of structural firefighting gloves and developed an improved sizing scheme that better accommodates the U.S. firefighter population. Among surveys, 24% to 30% of men and 31% to 62% of women reported experiencing problems with the fit or bulkiness of their structural firefighting gloves. An age-, race/ethnicity-, and gender-stratified sample of 863 male and 88 female firefighters across the United States participated in the study. Fourteen hand dimensions relevant to glove design were measured. A cluster analysis of the hand dimensions was performed to explore options for an improved sizing scheme. The current national standard structural firefighting glove-sizing scheme underrepresents firefighter hand size range and shape variation. In addition, mismatch between existing sizing specifications and hand characteristics, such as hand dimensions, user selection of glove size, and the existing glove sizing specifications, is significant. An improved glove-sizing plan based on clusters of overall hand size and hand/finger breadth-to-length contrast has been developed. This study presents the most up-to-date firefighter hand anthropometry and a new perspective on glove accommodation. The new seven-size system contains narrower variations (standard deviations) for almost all dimensions for each glove size than the current sizing practices. The proposed science-based sizing plan for structural firefighting gloves provides a step-forward perspective (i.e., including two women hand model-based sizes and two wide-palm sizes for men) for glove manufacturers to advance firefighter hand protection. © 2015, Human Factors and Ergonomics Society.

  16. Chlamydia co-opts the rod shape-determining proteins MreB and Pbp2 for cell division.

    PubMed

    Ouellette, Scot P; Karimova, Gouzel; Subtil, Agathe; Ladant, Daniel

    2012-07-01

    Chlamydiae are obligate intracellular bacterial pathogens that have extensively reduced their genome in adapting to the intracellular environment. The chlamydial genome contains only three annotated cell division genes and lacks ftsZ. How this obligate intracellular pathogen divides is uncharacterized. Chlamydiae contain two high-molecular-weight (HMW) penicillin binding proteins (Pbp) implicated in peptidoglycan synthesis, Pbp2 and Pbp3/FtsI. We show here, using HMW Pbp-specific penicillin derivatives, that both Pbp2 and Pbp3 are essential for chlamydial cell division. Ultrastructural analyses of antibiotic-treated cultures revealed distinct phenotypes: Pbp2 inhibition induced internal cell bodies within a single outer membrane whereas Pbp3 inhibition induced elongated phenotypes with little internal division. Each HMW Pbp interacts with the Chlamydia cell division protein FtsK. Chlamydiae are coccoid yet contain MreB, a rod shape-determining protein linked to Pbp2 in bacilli. Using MreB-specific antibiotics, we show that MreB is essential for chlamydial growth and division. Importantly, co-treatment with MreB-specific and Pbp-specific antibiotics resulted in the MreB-inhibited phenotype, placing MreB upstream of Pbp function in chlamydial cell division. Finally, we showed that MreB also interacts with FtsK. We propose that, in Chlamydia, MreB acts as a central co-ordinator at the division site to substitute for the lack of FtsZ in this bacterium. © 2012 Blackwell Publishing Ltd.

  17. Subsystems of sensory attention for skilled reaching: vision for transport and pre-shaping and somatosensation for grasping, withdrawal and release.

    PubMed

    Sacrey, Lori-Ann R; Whishaw, Ian Q

    2012-06-01

    Skilled reaching is a forelimb movement in which a subject reaches for a piece of food that is placed in the mouth for eating. It is a natural movement used by many animal species and is a routine, daily activity for humans. Its prominent features include transport of the hand to a target, shaping the digits in preparation for grasping, grasping, and withdrawal of the hand to place the food in the mouth. Studies on normal human adults show that skilled reaching is mediated by at least two sensory attention processes. Hand transport to the target and hand shaping are temporally coupled with visual fixation on the target. Grasping, withdrawal, and placing the food into the mouth are associated with visual disengagement and somatosensory guidance. Studies on nonhuman animal species illustrate that shared visual and somatosensory attention likely evolved in the primate lineage. Studies on developing infants illustrate that shared attention requires both experience and maturation. Studies on subjects with Parkinson's disease and Huntington's disease illustrate that decomposition of shared attention also features compensatory visual guidance. The evolutionary, developmental, and neural control of skilled reaching suggests that associative learning processes are importantly related to normal adult attention sharing and so can be used in remediation. The economical use of sensory attention in the different phases of skilled reaching ensures efficiency in eating, reduces sensory interference between sensory reference frames, and provides efficient neural control of the advance and withdrawal components of skilled reaching movements. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Evaluation of a functional hand orthosis combined with electrical stimulation adjunct to arm-hand rehabilitation in subacute stroke patients with a severely to moderately affected hand function.

    PubMed

    Franck, Johan Anton; Smeets, Rob Johannes Elise Marie; Seelen, Henk Alexander Maria

    2018-01-09

    To investigate the usability and effectiveness of a functional hand orthosis, combined with electrical stimulation adjunct to therapy-as-usual, on functional use of the moderately/severely impaired hand in sub-acute stroke patients. Single case experiment (A-B-A'-design) involving eight sub-acute stroke patients. The functional hand orthosis and electrical stimulation were used for six weeks, four days/week, 45'/day. Action_Research_Arm_Test, Intrinsic_Motivation_Inventory. At group level, patients improved 19.2 points (median value) (interquartile range: [8.8, 29.5] points) on the Action_Research_Arm_Test (p = 0.001). After correcting for spontaneous recovery and/or therapy-as-usual effects Action_Research_Arm_Test scores still improved significantly (median: 17.2 points; interquartile range: [5.1, 29.2] points) (p = 0.002). At individual level, six patients had improved as to arm-hand skill performance at follow-up (p < = 0.010). In one patient, arm-hand skill performance improvement did not attain statistical significance. In another patient, no arm-hand skill performance improvement was observed. Average Intrinsic_Motivation_Inventory sub-scores were between 4.6 and 6.3 (maximum: 7), except for 'perceived pressure/tension' (3.3). Sub-acute stroke patients who display only little/modest improvement on their capacity to perform daily activities, seem to benefit from training with a dynamic arm orthosis in combination with electrical stimulation. Patients' perceived intrinsic motivation and sense of self-regulation was high. Implications for rehabilitation Arm-hand training featuring the dynamic hand orthosis in combination with electrical stimulation shows a shift from no dexterity to dexterity. As to the users' experience regarding the dynamic hand orthosis, patients perceive a high-intrinsic motivation and sense of self-regulation. Combining the orthosis with electrical stimulation creates opportunities for a nonfunctional hand towards task

  19. Chiral domain formation from the mixture of achiral rod-like liquid crystal and tri boomerang-shaped molecule

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Hoon; Yoon, Tae-Hoon

    2013-08-01

    Spontaneous formation of chiral domains such as a helical filament and a bent-broom texture was observed from the mixture of a rod-like liquid crystal octylcyano-biphenyl (8CB) and a tri boomerang-shaped 2,4,6-triphenoxy-1,3,5-triazine (triphenoxy) molecule. Although the constituent molecules were achiral, their mixture showed the chiral domains with the equal fraction of the opposite handedness. No tilt of 8CB molecules in the smectic layer was observed, implying the chirality is not due to the polar packing and tilt of the molecules. In addition, the splay and bend elastic constant of 8CB was decreased after doping triphenoxy. A structural conformation of triphenoxy and an orientational coupling between 8CB and triphenoxy are considered to be related to the chiral domain formation.

  20. New Results from the Solar Maximum Mission/Bent Crystal Spectrometer

    NASA Astrophysics Data System (ADS)

    Rapley, C. G.; Sylwester, J.; Phillips, K. J. H.

    2017-04-01

    The Bent Crystal Spectrometer (BCS) onboard the NASA Solar Maximum Mission was part of the X-ray Polychromator, which observed numerous flares and bright active regions from February to November 1980, when operation was suspended as a result of the failure of the spacecraft fine-pointing system. Observations resumed following the Space Shuttle SMM Repair Mission in April 1984 and continued until November 1989. BCS spectra have been widely used in the past to obtain temperatures, emission measures, and turbulent and bulk flows during flares, as well as element abundances. Instrumental details including calibration factors not previously published are given here, and the in-orbit performance of the BCS is evaluated. Some significant changes during the mission are described, and recommendations for future instrumentation are made. Using improved estimates for the instrument parameters and operational limits, it is now possible to obtain de-convolved calibrated spectra that show finer detail than before, providing the means for improved interpretation of the physics of the emitting plasmas. The results indicate how historical archived data can be re-used to obtain enhanced and new, scientifically valuable results.

  1. Individual risk factors for carpal tunnel syndrome: an evaluation of body mass index, wrist index and hand anthropometric measurements.

    PubMed

    Boz, Cavit; Ozmenoglu, Mehmet; Altunayoglu, Vildan; Velioglu, Sibel; Alioglu, Zekeriya

    2004-09-01

    In this study we aimed to identify the role of the body mass index (BMI), wrist index and hand anthropometric measures as risk factors for carpal tunnel syndrome (CTS) in both genders. Based on clinical and electrophysiologic diagnostic criteria, 154 female and 44 male CTS patients, as well as 150 female and 44 male age-matched control subjects, were selected. BMI, wrist index, hand shape index, digit index and hand length/height ratio were compared between the CTS patients and the control subjects for each gender separately. Mean BMI was found to be a significant risk factor for CTS in both genders. The wrist index was found to be higher in female (P < 0.001) and in male (P = 0.034) CTS groups than in the respective control groups. Logistic regression analysis revealed the wrist index to be an independent risk factor in females, but not in males. Shape and digit indices were significantly higher in female CTS patients than in corresponding control subjects, and regression analysis showed the shape and digit indices to be independent risk factors for CTS. In the male CTS group, the shape and digit indices did not significantly differ from their controls. Differences in the hand length/height ratio were not statistically significant in female and male CTS patients compared to their controls and it was not found to be an independent risk factor for CTS. Our study confirmed BMI as an independent risk factor for CTS in both genders. Hand and wrist anthropometrics were found to be independent risk factors for CTS in females, but not in males.

  2. Neural representation of hand kinematics during prehension in posterior parietal cortex of the macaque monkey.

    PubMed

    Chen, Jessie; Reitzen, Shari D; Kohlenstein, Jane B; Gardner, Esther P

    2009-12-01

    Studies of hand manipulation neurons in posterior parietal cortex of monkeys suggest that their spike trains represent objects by the hand postures needed for grasping or by the underlying patterns of muscle activation. To analyze the role of hand kinematics and object properties in a trained prehension task, we correlated the firing rates of neurons in anterior area 5 with hand behaviors as monkeys grasped and lifted knobs of different shapes and locations in the workspace. Trials were divided into four classes depending on the approach trajectory: forward, lateral, and local approaches, and regrasps. The task factors controlled by the animal-how and when he used the hand-appeared to play the principal roles in modulating firing rates of area 5 neurons. In all, 77% of neurons studied (58/75) showed significant effects of approach style on firing rates; 80% of the population responded at higher rates and for longer durations on forward or lateral approaches that included reaching, wrist rotation, and hand preshaping prior to contact, but only 13% distinguished the direction of reach. The higher firing rates in reach trials reflected not only the arm movements needed to direct the hand to the target before contact, but persisted through the contact, grasp, and lift stages. Moreover, the approach style exerted a stronger effect on firing rates than object features, such as shape and location, which were distinguished by half of the population. Forty-three percent of the neurons signaled both the object properties and the hand actions used to acquire them. However, the spread in firing rates evoked by each knob on reach and no-reach trials was greater than distinctions between different objects grasped with the same approach style. Our data provide clear evidence for synergies between reaching and grasping that may facilitate smooth, coordinated actions of the arm and hand.

  3. A preliminary study on ice shape tracing with a laser light sheet

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Vargas, Mario; Oldenburg, John R.

    1993-01-01

    Preliminary work towards the development of an automated method of measuring the shape of ice forming on an airfoil during wind tunnel tests has been completed. A thin sheet of light illuminated the front surfaces of rime, glaze, and mixed ice shapes and a solid-state camera recorded images of each. A maximum intensity algorithm extracted the profiles of the ice shapes and the results were compared to hand tracings. Very good general agreement was found in each case.

  4. Nudging to improve hand hygiene.

    PubMed

    Caris, M G; Labuschagne, H A; Dekker, M; Kramer, M H H; van Agtmael, M A; Vandenbroucke-Grauls, C M J E

    2018-04-01

    Hand hygiene is paramount to prevent healthcare-associated infections, but improving compliance is challenging. When healthcare workers seldom encounter healthcare-associated infections, they will consider the odds of causing infections through poor hand hygiene negligible. Cognitive biases such as these may induce non-compliance. Nudging, 'a friendly push to encourage desired behaviour', could provide an easily implemented, inexpensive measure to address cognitive biases and thus support hand hygiene interventions. To investigate whether behavioural nudges, displayed as posters, can increase the use of alcohol-based hand rub. We developed nudges based on a systematic review of previously described cognitive biases, and tested these through a cross-sectional survey among the target audience. We then conducted a controlled before-after trial on two hospital wards, to assess the effect of these nudges on the use of alcohol-based hand rub, measured with electronic dispensers. Poisson regression analyses adjusted for workload showed that nudges displayed next to dispensers increased their overall use on one ward [poster 1: relative risk: 1.6 (95% confidence interval: 1.2-2.2); poster 2: 1.7 (1.2-2.5)] and during doctor's rounds on both wards [poster 1: ward A: 1.7 (1.1-2.6); ward B: 2.2 (1.3-3.8)]. Use of dispensers without adjacent nudges did not increase. Nudges based on cognitive biases that play a role in hand hygiene, and displayed as posters, could provide an easy, inexpensive measure to increase use of alcohol-based hand rub. When applying nudges to change behaviour, it is important to identify the right nudge for the right audience. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  5. Cognitive Distortions Associated with Imagination of the Thin Ideal: Validation of the Thought-Shape Fusion Body Questionnaire (TSF-B)

    PubMed Central

    Wyssen, Andrea; Debbeler, Luka J.; Meyer, Andrea H.; Coelho, Jennifer S.; Humbel, Nadine; Schuck, Kathrin; Lennertz, Julia; Messerli-Bürgy, Nadine; Biedert, Esther; Trier, Stephan N.; Isenschmid, Bettina; Milos, Gabriella; Whinyates, Katherina; Schneider, Silvia; Munsch, Simone

    2017-01-01

    Thought-shape fusion (TSF) describes the experience of body-related cognitive distortions associated with eating disorder (ED) pathology. In the laboratory TSF has been activated by thoughts about fattening/forbidden foods and thin ideals. This study aims at validating a questionnaire to assess the trait susceptibility to TSF (i.e., body-related cognitive distortions) associated with the imagination of thin ideals, and developing an adapted version of the original TSF trait questionnaire, the Thought-Shape Fusion Body Questionnaire (TSF-B). Healthy control women (HC, n = 317) and women diagnosed with subthreshold and clinical EDs (n = 243) completed an online-questionnaire. The factor structure of the TSF-B questionnaire was examined using exploratory (EFA) and subsequent confirmatory factor analysis (CFA). EFA pointed to a two-factor solution, confirmed by CFA. Subscale 1 was named Imagination of thin ideals, containing five items referring to the imagination of female thin ideals. Subscale 2 was named Striving for own thin ideal, with seven items about pursuing/abandoning attempts to reach one’s own thin ideal. The total scale and both subscales showed good convergent validity, excellent reliability, and good ability to discriminate between individuals with subthreshold/clinical EDs and HCs. Results indicate that cognitive distortions are also related to the imagination of thin ideals, and are associated with ED pathology. With two subscales, the TSF-B trait questionnaire appropriately measures this construct. Future studies should clarify whether TSF-B is predictive for the development and course of EDs. Assessing cognitive distortions with the TSF-B questionnaire could improve understanding of EDs and stimulate the development of cognitively oriented interventions. Clinical Trial Registration Number: DRKS-ID: DRKS00005709. PMID:29312059

  6. FOREWORD: Shape Memory and Related Technologies

    NASA Astrophysics Data System (ADS)

    Liu, Yong

    2005-10-01

    The International Symposium on Shape Memory and Related Technologies (SMART2004) successfully took place in Singapore from November 24 to 26, 2004. SMART2004 aimed to provide a forum for presenting and discussing recent developments in the processing, characterization, application and performance prediction of shape memory materials, particularly shape memory alloys and magnetic shape memory materials. In recent years, we have seen a surge in the research and application of shape memory materials. This is due on the one hand to the successful applications of shape memory alloys (SMAs), particularly NiTi (nitinol), in medical practices and, on the other hand, to the discovery of magnetic shape memory (MSM) materials (or, ferromagnetic shape memory alloys, FSMAs). In recent years, applications of SMAs in various engineering practices have flourished owing to the unique combination of novel properties including high power density related to shape recovery, superelasticity with tunable hysteresis, high damping capacity combined with good fatigue resistance, excellent wear resistance due to unconventional deformation mechanisms (stress-induced phase transformation and martensite reorientation), and excellent biocompatibility and anticorrosion resistance, etc. In~the case of MSMs (or FSMAs), their giant shape change in a relatively low magnetic field has great potential to supplement the traditional actuation mechanisms and to have a great impact on the world of modern technology. Common mechanisms existing in both types of materials, namely thermoelastic phase transformation, martensite domain switching and their controlling factors, are of particular interest to the scientific community. Despite some successful applications, some fundamental issues remain unsatisfactorily understood. This conference hoped to link the fundamental research to engineering practices, and to further identify remaining problems in order to further promote the applications of shape memory

  7. Silky bent grass resistance to herbicides: one year of monitoring in Belgium.

    PubMed

    Henriet, F; Bodson, B; Morales, R Meza

    2013-01-01

    Silky bent grass (Apera spica-venti (L.) P. Beauv.) is a common weed of cereal crops widely spread in Northern and Easthern Europe (Germany, Czech Republic,...), Northern Asia, Siberia and Canada. Up to now, no resistant case has been detected in Belgium but some chemical weeding failures have been observed in Wallonia fields. During summer 2011, 37 seed samples of Apera spica-venti were collected in Wallonia and submitted to resistance tests in controlled conditions. Three modes of action were tested: acetyl coenzyme-A carboxylase inhibitors (pinoxaden and cycloxydim), acetolactate synthase inhibitors (mesosulfuron+iodosulfu-ron, pyroxsulam and sulfometuron) and photosynthesis inhibitors (isoproturon). One susceptible standard population was included in the test in order to validate it and to permit wild populations classification according to "R" rating system developed by Moss et al (2007). Most of populations were susceptible but some populations showed resistance to at least one of the three tested modes of action.

  8. The sweetest thing: the influence of angularity, symmetry, and the number of elements on shape-valence and shape-taste matches

    PubMed Central

    Salgado-Montejo, Alejandro; Alvarado, Jorge A.; Velasco, Carlos; Salgado, Carlos J.; Hasse, Kendra; Spence, Charles

    2015-01-01

    A within-participants experiment was conducted in two countries (the UK and Colombia) in order to investigate the matching of shapes to taste words. Comparing the two countries allowed us to explore some of the cultural differences that have been reported thus far solely in terms of people's visual preferences. In particular, we addressed the question of whether properties other than angularity influence shape-valence and shape-taste matching (crossmodal correspondences). The participants in the present study repeatedly matched eight shapes, varying in terms of their angularity, symmetry, and number of elements to one of two words—pleasant or unpleasant and sweet or sour. Participants' choices, as well as the latency of their responses, and their hand movements, were evaluated. The participants were more likely to judge those shapes that were rounder, symmetrical, and those shapes that had fewer elements as both pleasant and sweet. Those shapes that were more angular, asymmetrical, and that had a greater number of elements, were more likely to be judged as both unpleasant and sour instead. The evidence presented here therefore suggests that aside from angularity and roundness, both symmetry/asymmetry and the number of elements present in a shape also influence valence and taste categorizations. PMID:26441757

  9. Subjective scaling of hand-arm vibration.

    PubMed

    Maeda, Setsuo; Shibata, Nobuyuki

    2008-04-01

    The purpose of this research was to establish a scale for comfort with regard to hand-arm vibration using the category judgment method and to validate the frequency-weighting method of the ISO 5349-1 standard. Experiments were conducted using random signals as stimuli. These stimuli consisted of three types of signal, namely designated stimulus F, with flat power spectrum density (PSD) ranging from 1 to 1,000 Hz, stimulus H with PSD which became 20 dB higher at 1,000 Hz than at 1 Hz, and stimulus L that had a PSD 20 dB lower at 1,000 Hz. These stimuli were selected from the specific spectrum patterns of hand-held vibration tools. These signals were modified by the Wh frequency weighting in accordance with ISO 5349-1, and the R.M.S. values were adjusted to be equal. In addition, the signal levels were varied over a range of five steps to create 15 kinds of individual stimuli. The subjects sat in front of a vibrator and grasped the mounted handle which exposed them to vertical vibrations after which they were asked to choose a numerical category to best indicate their perceived level of comfort (or otherwise) during each stimulus. From the experimental results of the category judgment method, the relationship between the psychological values and the frequency-weighted R.M.S. acceleration according to the ISO 5349-1 standard was obtained. It was found that the subjective response scaling of hand-arm vibration can be used for design-objective values of hand-held tool vibration.

  10. Mentor's hand hygiene practices influence student's hand hygiene rates.

    PubMed

    Snow, Michelle; White, George L; Alder, Stephen C; Stanford, Joseph B

    2006-02-01

    There were 3 objectives for this prospective quasiexperimental study. The first was to determine the effect of mentor's hand hygiene practices on student's hand hygiene rates during clinical rotations. The second was to assess the difference in hand hygiene rates for students with and without prior medical experience. The third was to assess the student's opinion and beliefs regarding hand hygiene. Sixty students enrolled in a certified nursing program were selected to participate in the study. Each study group was observed twice during the 30-day span. The first observational period was conducted on day 1 of clinical rotation. The second observational period was conducted on day 30 of clinical rotation. Students were observed for hand hygiene. Also assessed were medical experience, sex, gloving, age, and mentor's hand hygiene practices. After observational period 2, a brief questionnaire was given to students to determine their opinion and beliefs regarding hand hygiene. The questionnaire was divided into 5 sections: student's commitment to hand hygiene, their perception of hand hygiene inconvenience, the necessity of hand hygiene, the student's ability to perform hand hygiene, and their opinion on the frequency of medical staff's hand hygiene. The mentor's practice of hand hygiene was the strongest predictor of the student's rate of hand hygiene for both observational periods (P < .01). Furthermore, students without prior medical experience had a significant increase in hand hygiene rates when comparing observational period 1 to observational period 2 (P < .01). Glove usage was associated with increased hand hygiene rates by 50% during observational period 1 (P = .01) and 44% during observational period 2 (P < .01). Male students during observational period 1 practiced hand hygiene 30% less often than female students (P < .01); however, during observational period 2, there was no significant difference between hand hygiene rates for males and females (P = .82

  11. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands.

    PubMed

    Santello, Marco; Bianchi, Matteo; Gabiccini, Marco; Ricciardi, Emiliano; Salvietti, Gionata; Prattichizzo, Domenico; Ernst, Marc; Moscatelli, Alessandro; Jörntell, Henrik; Kappers, Astrid M L; Kyriakopoulos, Kostas; Albu-Schäffer, Alin; Castellini, Claudio; Bicchi, Antonio

    2016-07-01

    The term 'synergy' - from the Greek synergia - means 'working together'. The concept of multiple elements working together towards a common goal has been extensively used in neuroscience to develop theoretical frameworks, experimental approaches, and analytical techniques to understand neural control of movement, and for applications for neuro-rehabilitation. In the past decade, roboticists have successfully applied the framework of synergies to create novel design and control concepts for artificial hands, i.e., robotic hands and prostheses. At the same time, robotic research on the sensorimotor integration underlying the control and sensing of artificial hands has inspired new research approaches in neuroscience, and has provided useful instruments for novel experiments. The ambitious goal of integrating expertise and research approaches in robotics and neuroscience to study the properties and applications of the concept of synergies is generating a number of multidisciplinary cooperative projects, among which the recently finished 4-year European project "The Hand Embodied" (THE). This paper reviews the main insights provided by this framework. Specifically, we provide an overview of neuroscientific bases of hand synergies and introduce how robotics has leveraged the insights from neuroscience for innovative design in hardware and controllers for biomedical engineering applications, including myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand kinematics. The review also emphasizes how this multidisciplinary collaboration has generated new ways to conceptualize a synergy-based approach for robotics, and provides guidelines and principles for analyzing human behavior and synthesizing artificial robotic systems based on a theory of synergies. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Dissociated active and passive tactile shape recognition: a case study of pure tactile apraxia.

    PubMed

    Valenza, N; Ptak, R; Zimine, I; Badan, M; Lazeyras, F; Schnider, A

    2001-11-01

    Disorders of tactile object recognition (TOR) may result from primary motor or sensory deficits or higher cognitive impairment of tactile shape representations or semantic memory. Studies with healthy participants suggest the existence of exploratory motor procedures directly linked to the extraction of specific properties of objects. A pure deficit of these procedures without concomitant gnostic disorders has never been described in a brain-damaged patient. Here, we present a patient with a right hemispheric infarction who, in spite of intact sensorimotor functions, had impaired TOR with the left hand. Recognition of 2D shapes and objects was severely deficient under the condition of spontaneous exploration. Tactile exploration of shapes was disorganized and exploratory procedures, such as the contour-following strategy, which is necessary to identify the precise shape of an object, were severely disturbed. However, recognition of 2D shapes under manually or verbally guided exploration and the recognition of shapes traced on the skin were intact, indicating a dissociation in shape recognition between active and passive touch. Functional MRI during sensory stimulation of the left hand showed preserved activation of the spared primary sensory cortex in the right hemisphere. We interpret the deficit of our patient as a pure tactile apraxia without tactile agnosia, i.e. a specific inability to use tactile feedback to generate the exploratory procedures necessary for tactile shape recognition.

  13. FMRI evidence of 'mirror' responses to geometric shapes.

    PubMed

    Press, Clare; Catmur, Caroline; Cook, Richard; Widmann, Hannah; Heyes, Cecilia; Bird, Geoffrey

    2012-01-01

    Mirror neurons may be a genetic adaptation for social interaction. Alternatively, the associative hypothesis proposes that the development of mirror neurons is driven by sensorimotor learning, and that, given suitable experience, mirror neurons will respond to any stimulus. This hypothesis was tested using fMRI adaptation to index populations of cells with mirror properties. After sensorimotor training, where geometric shapes were paired with hand actions, BOLD response was measured while human participants experienced runs of events in which shape observation alternated with action execution or observation. Adaptation from shapes to action execution, and critically, observation, occurred in ventral premotor cortex (PMv) and inferior parietal lobule (IPL). Adaptation from shapes to execution indicates that neuronal populations responding to the shapes had motor properties, while adaptation to observation demonstrates that these populations had mirror properties. These results indicate that sensorimotor training induced populations of cells with mirror properties in PMv and IPL to respond to the observation of arbitrary shapes. They suggest that the mirror system has not been shaped by evolution to respond in a mirror fashion to biological actions; instead, its development is mediated by stimulus-general processes of learning within a system adapted for visuomotor control.

  14. Wire in the Cable-Driven System of Surgical Robot

    NASA Astrophysics Data System (ADS)

    Wang, X. F.; Lv, N.; Mu, H. Z.; Xue, L. J.

    2017-07-01

    During the evolution of the surgical robot, cable plays an important role. It translates motion and force precisely from surgeon’s hand to the tool’s tips. In the paper, the vertical wires, the composition of cable, are mathematically modeled from a geometric point of view. The cable structure and tension are analyzed according to the characteristics of wire screw twist. The structural equations of the wires in different positions are derived for both non-bent cable and bent cable, respectively. The bending moment formula of bent cable is also obtained. This will help researchers find suitable cable and design more matched pulley.

  15. Back to basics: hand hygiene and surgical hand antisepsis.

    PubMed

    Spruce, Lisa

    2013-11-01

    Health care-associated infections (HAIs) are a significant issue in the United States and throughout the world, but following proper hand hygiene practices is the most effective and least expensive way to prevent HAIs. Hand hygiene is inexpensive and protects patients and health care personnel alike. The four general types of hand hygiene that should be performed in the perioperative environment are washing hands that are visibly soiled, hand hygiene using alcohol-based products, surgical hand scrubs, and surgical hand scrubs using an alcohol-based surgical hand rub product. Barriers to proper hand hygiene may include not thinking about it, forgetting, skin irritation, a lack of role models, or a lack of a safety culture. One strategy for improving hand hygiene practices is monitoring hand hygiene as part of a quality improvement project, but the most important aspect for perioperative team members is to set an example for other team members by following proper hand hygiene practices and reminding each other to perform hand hygiene. Copyright © 2013 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  16. Hands4U: the effects of a multifaceted implementation strategy on hand eczema prevalence in a healthcare setting. Results of a randomized controlled trial.

    PubMed

    van der Meer, Esther W C; Boot, Cécile R L; van der Gulden, Joost W J; Knol, Dirk L; Jungbauer, Frank H W; Coenraads, Pieter Jan; Anema, Johannes R

    2015-05-01

    Healthcare workers have an increased risk of developing hand eczema. A multifaceted implementation strategy was developed to implement a guideline to prevent hand eczema among healthcare workers. To investigate the effects of the implementation strategy on self-reported hand eczema and preventive behaviour. A randomized controlled trial was performed. A total of 48 departments (n = 1649) were randomly allocated to the multifaceted implementation strategy or the control group. The strategy consisted of education, participatory working groups, and role models. Outcome measures were self-reported hand eczema and preventive behaviour. Data were collected at baseline, and 3, 6, 9 and 12 months of follow-up. Participants in the intervention group were significantly more likely to report hand eczema [odds ratio (OR) 1.45; 95% confidence interval (CI) 1.03-2.04], and they reported significantly less hand washing (B, - 0.38; 95%CI: - 0.48 to - 0.27), reported significantly more frequent use of a moisturizer (B, 0.30; 95%CI: 0.22-0.39) and were more likely to report wearing cotton undergloves (OR 6.33; 95%CI: 3.23-12.41) than participants in the control group 12 months after baseline. The strategy implemented can be used in practice, as it showed positive effects on preventive behaviour. More research is needed to investigate the unexpected effects on hand eczema. © 2014 The Authors. Contact Dermatitis published by John Wiley & Sons Ltd.

  17. Broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface

    NASA Astrophysics Data System (ADS)

    Mao, Chenyang; Yang, Yang; He, Xiaoxiang; Zheng, Jingming; Zhou, Chun

    2017-12-01

    In this paper, a broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface is proposed. The proposed metasurface can effectively convert linear-polarized (TE/TM) incident wave into the reflected wave with three different polarizations within the frequency bands of 5.5-22.75 GHz. Based on the electric and magnetic resonant features of the double-L-shaped structure, the proposed metasurface can convert linearly polarized waves into cross-polarized waves at three resonant frequency bands. Furthermore, the incident linearly polarized waves can be effectively converted into left/right handed circular-polarized (LHCP and RHCP) waves at other four non-resonance frequency bands. Thus, the proposed metasurface can be regarded as a seven-band multi-polarization converter. The prototype of the proposed polarization converter is analyzed and measured. Both simulated and measured results show the 3-dB axis ratio bandwidth of circular polarization bands and the high polarization conversion efficiency of cross-polarization bands when the incident wave changes from 0° to 30° at both TE and TM modes.

  18. RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis

    PubMed Central

    Morgenstein, Randy M.; Bratton, Benjamin P.; Nguyen, Jeffrey P.; Ouzounov, Nikolay; Shaevitz, Joshua W.; Gitai, Zemer

    2015-01-01

    The rod shape of most bacteria requires the actin homolog, MreB. Whereas MreB was initially thought to statically define rod shape, recent studies found that MreB dynamically rotates around the cell circumference dependent on cell wall synthesis. However, the mechanism by which cytoplasmic MreB is linked to extracytoplasmic cell wall synthesis and the function of this linkage for morphogenesis has remained unclear. Here we demonstrate that the transmembrane protein RodZ mediates MreB rotation by directly or indirectly coupling MreB to cell wall synthesis enzymes. Furthermore, we map the RodZ domains that link MreB to cell wall synthesis and identify mreB mutants that suppress the shape defect of ΔrodZ without restoring rotation, uncoupling rotation from rod-like growth. Surprisingly, MreB rotation is dispensable for rod-like shape determination under standard laboratory conditions but is required for the robustness of rod shape and growth under conditions of cell wall stress. PMID:26396257

  19. RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis.

    PubMed

    Morgenstein, Randy M; Bratton, Benjamin P; Nguyen, Jeffrey P; Ouzounov, Nikolay; Shaevitz, Joshua W; Gitai, Zemer

    2015-10-06

    The rod shape of most bacteria requires the actin homolog, MreB. Whereas MreB was initially thought to statically define rod shape, recent studies found that MreB dynamically rotates around the cell circumference dependent on cell wall synthesis. However, the mechanism by which cytoplasmic MreB is linked to extracytoplasmic cell wall synthesis and the function of this linkage for morphogenesis has remained unclear. Here we demonstrate that the transmembrane protein RodZ mediates MreB rotation by directly or indirectly coupling MreB to cell wall synthesis enzymes. Furthermore, we map the RodZ domains that link MreB to cell wall synthesis and identify mreB mutants that suppress the shape defect of ΔrodZ without restoring rotation, uncoupling rotation from rod-like growth. Surprisingly, MreB rotation is dispensable for rod-like shape determination under standard laboratory conditions but is required for the robustness of rod shape and growth under conditions of cell wall stress.

  20. A Caulobacter MreB mutant with irregular cell shape exhibits compensatory widening to maintain a preferred surface area to volume ratio

    PubMed Central

    Harris, Leigh K.; Dye, Natalie A.; Theriot, Julie A.

    2014-01-01

    Summary Rod-shaped bacteria typically elongate at a uniform width. To investigate the genetic and physiological determinants involved in this process, we studied a mutation in the morphogenetic protein MreB in Caulobacter crescentus that gives rise to cells with a variable-width phenotype, where cells have regions that are both thinner and wider than wild-type. During growth, individual cells develop a balance of wide and thin regions, and mutant MreB dynamically localizes to poles and thin regions. Surprisingly, the surface area to volume ratio of these irregularly-shaped cells is, on average, very similar to wild-type. We propose that, while mutant MreB localizes to thin regions and promotes rod-like growth there, wide regions develop as a compensatory mechanism, allowing cells to maintain a wild-type-like surface area to volume ratio. To support this model, we have shown that cell widening is abrogated in growth conditions that promote higher surface area to volume ratios, and we have observed individual cells with high ratios return to wild-type levels over several hours by developing wide regions, suggesting that compensation can take place at the level of individual cells. PMID:25266768

  1. The Low-Degree Shape of Mercury

    NASA Astrophysics Data System (ADS)

    Perry, M. E.; Neumann, G. A.; Mazarico, E.; Hauck, S. A., II; Solomon, S. C.; Zuber, M. T.; Smith, D. E.; Phillips, R. J.; Margot, J. L.; Johnson, C. L.; Ernst, C. M.; Oberst, J.

    2015-12-01

    The shape of Mercury, particularly when combined with its geoid, provides clues to the planet's internal structure, thermal evolution, and rotational history. Twenty-five million elevation measurements of the northern hemisphere, acquired by the Mercury Laser Altimeter on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft, were combined with 378 occultation measurements of radio-frequency signals from the spacecraft in the planet's southern hemisphere to reveal the low-degree shape of Mercury. We solved for the spherical-harmonic coefficients through degree and order 128 and found that Mercury's mean radius is 2439.36±0.02 km. The offset between the planet's centers of mass and figure is negligible (40±40 m) along the polar axis and modest (140±50 m) in the equatorial plane. Mercury's spherical-harmonic shape spectrum is dominated by degree 2, and the planet's first-order shape is that of a triaxial ellipsoid with semimajor axes a, b, and c. The polar radius, c, is 1.65 km less than (a+b)/2, and the equatorial difference, a-b, is 1.25 km. The long axis is rotated 15° west of Mercury's dynamically defined principal axis. Mercury's geoid is similarly dominated by degree 2 and well described by a triaxial ellipsoid. The degree-2 geoid and shape are highly correlated, but the power spectral density of the geoid at degree 2 is only 1% of its shape counterpart, implying substantial compensation of elevation variations on a global scale and that Mercury is not in hydrostatic equilibrium.

  2. Electromechanical properties of superconducting MgB2 wire

    NASA Astrophysics Data System (ADS)

    Salama, K.; Zhou, Y. X.; Hanna, M.; Alessandrini, M.; Putman, P. T.; Fang, H.

    2005-12-01

    The current-carrying capability of superconducting wires is degraded by stress. Therefore electromechanical properties are one of the key feedback parameters needed for progress in conductor applications. In this work, uniaxial tensile stresses and bending stresses were applied to Fe /MgB2 wires at room temperature, followed by measurement of critical current using a transport method at 4.2 K. Basic mechanical properties were calculated from the measured stress-strain characteristics. The irreversible tensile strain at which the critical current density of MgB2 wire starts to degrade was found to be 0.5%. In addition, the degradation of Ic with decreasing bending diameters was found to be very rapid for wires that were deformed after the heat treatment that forms the MgB2 compound, while not much degradation of Ic was found for wires that were bent before being annealed. SEM observations confirmed that cracks could be healed by post-annealing.

  3. Shape of vaginal suppositories affects willingness-to-try and preference.

    PubMed

    Li, Bangde; Zaveri, Toral; Ziegler, Gregory R; Hayes, John E

    2013-03-01

    HIV and other sexually transmitted infections (STIs) are a global threat to public health that may be countered, in part, by microbicides. A successful microbicide must be both biologically efficacious and highly acceptable to users. Sensory attributes have a direct influence on product acceptability. We created a series of vaginal suppositories appropriate for use as microbicides to investigate the influence of shape on women's willingness-to-try. The influence of perceived size and firmness on acceptability was also assessed. Sexually-active women (n=99) were invited to participate in an evaluation of vaginal suppositories in 5 different shapes including: Bullet, Long Oval, Round Oval, Teardrop and Tampon. The volume (3mL) and formulation for these five prototypes were identical. After manipulating prototypes ex vivo (in their hands), participants rated their willingness-to-try on a 100-point visual analog scale. The appropriateness of size and firmness were evaluated using 5-point just-about-right (JAR) scales. Each participant evaluated all five prototypes individually. Samples were presented in a counterbalanced monadic sequence using a Williams design. Mean willingness-to-try varied by shape, with Bullet and Long Oval receiving significantly higher scores. This was consistent with JAR data for size, as 70% and 65% of women indicated these shapes were 'just-about-right', respectively. In contrast, a minority of women endorsed the other 3 shapes as having a size that was 'just-about-right'. The proportion of women who felt the firmness was 'just-about-right' was uniformly high, irrespective of shape, suggesting prior attempts to optimize the formula were successful. Perceptions of size and firmness were influenced by the physical length and width of the prototypes, in spite of having constant volume. Women showed high willingness-to-try when asked to assume they were at risk. These results are relevant for behavioral and formulation scientists working on

  4. Phase transition analysis of V-shaped liquid crystal: Combined temperature-dependent FTIR and density functional theory approach

    NASA Astrophysics Data System (ADS)

    Singh, Swapnil; Singh, Harshita; Karthick, T.; Tandon, Poonam; Prasad, Veena

    2018-01-01

    Temperature-dependent Fourier transform infrared spectroscopy (FTIR) combined with density functional theory (DFT) is employed to study the mechanism of phase transitions of V-shaped bent-core liquid crystal. Since it has a large number of flexible bonds, one-dimensional potential energy scan (PES) was performed on the flexible bonds and predicted the most stable conformer I. A detailed analysis of vibrational normal modes of conformer I have been done on the basis of potential energy distribution. The good agreement between the calculated spectrum of conformer I and observed FTIR spectrum at room temperature validates our theoretical structure model. Furthermore, the prominent changes observed in the stretching vibrational bands of CH3/CH2, Cdbnd O, ring CC, ring CO, ring CH in-plane bending, and ring CH out-of-plane bending at Iso → nematic phase transition (at 155 °C) have been illustrated. However, the minor changes in the spectral features observed for the other phase transitions might be due to the shape or bulkiness of molecules. Combined FTIR and PES study beautifully explained the dynamics of the molecules, molecular realignment, H-bonding, and conformational changes at the phase transitions.

  5. A novel C-shaped, gold nanoparticle coated, embedded polymer waveguide for localized surface plasmon resonance based detection.

    PubMed

    Prabhakar, Amit; Mukherji, Soumyo

    2010-12-21

    In this study, a novel embedded optical waveguide based sensor which utilizes localized surface plasmon resonance of gold nanoparticles coated on a C-shaped polymer waveguide is being reported. The sensor, as designed, can be used as an analysis chip for detection of minor variations in the refractive index of its microenvironment, which makes it suitable for wide scale use as an affinity biosensor. The C-shaped waveguide coupled with microfluidic channel was fabricated by single step patterning of SU8 on an oxidized silicon wafer. The absorbance due to the localized surface plasmon resonance (LSPR) of SU8 waveguide bound gold nano particle (GNP) was found to be linear with refractive index changes between 1.33 and 1.37. A GNP coated C-bent waveguide of 200 μ width with a bend radius of 1 mm gave rise to a sensitivity of ~5 ΔA/RIU at 530 nm as compared to the ~2.5 ΔA/RIU (refractive index units) of the same dimension bare C-bend SU8 waveguide. The resolution of the sensor probe was ~2 × 10(-4) RIU.

  6. Hand preference and skilled hand performance among individuals with successful rightward conversions of the writing hand.

    PubMed

    Porac, Clare

    2009-03-01

    Searleman and Porac (2001) studied lateral preference patterns among successfully switched left-hand writers, left-hand writers with no switch pressure history, and left-hand writers who did not switch when pressured. They concluded that left-handers who successfully shift to right-hand writing are following an inherent right-sided lateralisation pattern that they already possess. Searleman and Porac suggested that the neural mechanisms that control lateralisation in the successfully switched individuals are systematically different from those of other groups of left-handers. I examined patterns of skilled and less-skilled hand preference and skilled hand performance in a sample of 394 adults (ages 18-94 years). The sample contained successfully switched left-hand writers, left-handers pressured to shift who remained left-hand writers, left-handers who did not experience shift pressures, and right-handers. Both skilled hand preference and skilled hand performance were shifted towards the right side in successfully switched left-hand writers. This group also displayed mixed patterns of hand preference and skilled hand performance in that they were not as right-sided as "natural" right-handers nor were they as left-sided as the two left-hand writing groups, which did not differ from each other. The experience of being pressured to switch to right-hand writing was not sufficient to shift lateralisation patterns; the pressures must be experienced in the context of an underlying neural control mechanism that is amenable to change as a result of these external influences.

  7. Thermal response of novel shape memory polymer-shape memory alloy hybrids

    NASA Astrophysics Data System (ADS)

    Rossiter, Jonathan; Takashima, Kazuto; Mukai, Toshiharu

    2014-03-01

    Shape memory polymers (SMP) and shape memory alloys (SMA) have both been proven important smart materials in their own fields. Shape memory polymers can be formed into complex three-dimensional structures and can undergo shape programming and large strain recovery. These are especially important for deployable structures including those for space applications and micro-structures such as stents. Shape memory alloys on the other hand are readily exploitable in a range of applications where simple, silent, light-weight and low-cost repeatable actuation is required. These include servos, valves and mobile robotic artificial muscles. Despite their differences, one important commonality between SMPs and SMAs is that they are both typically activated by thermal energy. Given this common characteristic it is important to consider how these two will behave when in close environmental proximity, and hence exposed to the same thermal stimulus, and when they are incorporated into a hybrid SMA-SMP structure. In this paper we propose and examine the operation of SMA-SMP hybrids. The relationship between the two temperatures Tg, the glass transition temperature of the polymer, and Ta, the nominal austenite to martensite transition temperature of the alloy is considered. We examine how the choice of these two temperatures affects the thermal response of the hybrid. Electrical stimulation of the SMA is also considered as a method not only of actuating the SMA but also of inducing heating in the surrounding polymer, with consequent effects on actuator behaviour. Likewise by varying the rate and degree of thermal stimulation of the SMA significantly different actuation and structural stiffness can be achieved. Novel SMP-SMA hybrid actuators and structures have many ready applications in deployable structures, robotics and tuneable engineering systems.

  8. Custom-made silicone hand prosthesis: A case study.

    PubMed

    Nayak, S; Lenka, P K; Equebal, A; Biswas, A

    2016-09-01

    Up to now, a cosmetic glove was the most common method for managing transmetacarpal (TMC) and carpometacarpal (CMC) amputations, but it is devoid of markings and body color. At this amputation level, it is very difficult to fit a functional prosthesis because of the short available length, unsightly shape, grafted skin, contracture and lack of functional prosthetic options. A 30-year-old male came to our clinic with amputation at the 1st to 4th carpometacarpal level and a 5th metacarpal that was projected laterally and fused with the carpal bone. The stump had grafted skin, redness, and an unhealed suture line. He complained of pain projected over the metacarpal and suture area. The clinical team members decided to fabricate a custom-made silicone hand prosthesis to accommodate the stump, protect the grafted skin, improve the hand's appearance and provide some passive function. The custom silicone hand prosthesis was fabricated with modified flexible wires to provide passive interphalangeal movement. Basic training, care and maintenance instructions for the prosthesis were given to the patient. The silicone hand prosthesis was able to restore the appearance of the lost digits and provide some passive function. His pain (VAS score) was reduced. Improvement in activities of daily living was found in the DASH questionnaire and Jebsen-Taylor Hand Function test. A silicone glove is a good option for more distal amputations, as it can accommodate any deformity, protect the skin, enhance the appearance and provide functional assistance. This case study provides a simple method to get passively movable fingers after proximal hand amputation. Copyright © 2016. Published by Elsevier Masson SAS.

  9. 49 CFR 218.105 - Additional operational requirements for hand-operated main track switches.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Additional operational requirements for hand... hand-operated main track switches. (a) Each railroad shall adopt and comply with an operating rule... the requirements of this section. (b) Designating switch position. The normal position of a hand...

  10. Development of anthropomorphic robotic hand driven by Pneumatic Artificial Muscles for robotic applications

    NASA Astrophysics Data System (ADS)

    Farag, Mohannad; Zainul Azlan, Norsinnira; Hayyan Alsibai, Mohammed

    2018-04-01

    This paper presents the design and fabrication of a three-fingered anthropomorphic robotic hand. The fingers are driven by tendons and actuated by human muscle-like actuators known as Pneumatic Artificial Muscle (PAM). The proposed design allows the actuators to be mounted outside the hand where each finger can be driven by one PAM actuator and six indirectly interlinked tendons. With this design, the three-fingered hand has a compact size and a lightweight with a mass of 150.25 grams imitating the human being hand in terms of size and weight. The hand also successfully grasped objects with different shapes and weights up to 500 g. Even though the number of PAM actuators equals the number of Degrees of Freedom (DOF), the design guarantees driving of three joints by only one actuator reducing the number of required actuators from 3 to 1. Therefore, this hand is suitable for researches of robotic applications in terms of design, cost and ability to be equipped with several types of sensors.

  11. [Does the hand solely belong in the hands of a qualified hand surgeon?

    PubMed

    Güven, Asim; Kols, Kerstin; Fischer, Klaus; Schönberger, Michael; Allert, Sixtus

    2017-09-01

    Background In Germany, Hand Surgery is an additional qualification that can only be obtained by a three-year training after a completed residency in General Surgery, Plastic Surgery or Trauma and Orthopaedic Surgery. Nevertheless, injuries and diseases of the hand are also treated by physicians without this particular qualification. It is questionable whether these treatments more often lead to medical malpractice. Material and Methods 376 charges of medical malpractice in surgical treatments of the hand and forearm that were closed in 2014 and 2015 were collected by the Arbitration Board for Medical Liability Issues of the Medical Association of North Germany.Cases with proven medical malpractice were classified by the qualification of the physician in charge and analysed. A statistical analysis was performed with the use of the program SPSS (IBM). Results Medical malpractice was proven in 42 of 113 cases with an attending physician who held the additional qualification for Hand Surgery (37.2 %). For physicians without this qualification, the figures were 79 out of 155 (51.0 %) in the group of trauma and orthopaedic surgeons and 54 out of 108 (50.0 %) in the group of general surgeons. The differences between the hand surgeons and the trauma and orthopaedic surgeons (p = 0.017) and between hand surgeons and general surgeons were significant (p = 0.037). Conclusions It was shown that physicians with an additional qualification in hand surgery had signifcantly fewer proven medical malpratice cases than physicians without this qualification. The following trends were observed in the cases of the physicians without the additional qualification in hand surgery: underestimation of the severity of trauma to soft tissues and infections of the hand, errors in the surgical examination of the hand, including functional tests of tendons and nerves, as well as in diagnostic findings after X-ray studies of the hand. Georg Thieme Verlag KG Stuttgart · New York.

  12. Channeling and radiation of 855 MeV electrons and positrons in straight and bent tungsten (1 1 0) crystals

    NASA Astrophysics Data System (ADS)

    Shen, H.; Zhao, Q.; Zhang, F. S.; Sushko, Gennady B.; Korol, Andrei V.; Solov'yov, Andrey V.

    2018-06-01

    Planar channeling of 855 MeV electrons and positrons in straight and bent tungsten (1 1 0) crystal is simulated by means of the MBN EXPLORER software package. The results of simulations for a broad range of bending radii are analyzed in terms of the channel acceptance, dechanneling length, and spectral distribution of the emitted radiation. Comparison of the results with predictions of other theories as well as with the data for (1 1 0) oriented diamond, silicon and germanium crystals is carried out.

  13. Laser engineered net shaping of quasi-continuous network microstructural TiB reinforced titanium matrix bulk composites: Microstructure and wear performance

    NASA Astrophysics Data System (ADS)

    Hu, Yingbin; Ning, Fuda; Wang, Hui; Cong, Weilong; Zhao, Bo

    2018-02-01

    Titanium (Ti) and its alloys have been successfully applied to the aeronautical and biomedical industries. However, their poor tribological properties restrict their fields of applications under severe wear conditions. Facing to these challenges, this study investigated TiB reinforced Ti matrix composites (TiB-TMCs), fabricated by in-situ laser engineered net shaping (LENS) process, through analyzing parts quality, microstructure formation mechanisms, microstructure characterizations, and workpiece wear performance. At high B content areas (original B particle locations), reaction between Ti and B particles took place, generating flower-like microstructure. At low B content areas, eutectic TiB nanofibers contacted with each other with the formation of crosslinking microstructure. The crosslinking microstructural TiB aggregated and connected at the boundaries of Ti grains, forming a three-dimensional quasi-continuous network microstructure. The results show that compared with commercially pure Ti bulk parts, the TiB-TMCs exhibited superior wear performance (i.e. indentation wear resistance and friction wear resistance) due to the present of TiB reinforcement and the innovative microstructures formed inside TiB-TMCs. In addition, the qualities of the fabricated parts were improved with fewer interior defects by optimizing laser power, thus rendering better wear performance.

  14. How Britannia bent the waves

    NASA Astrophysics Data System (ADS)

    Bridgman, Roger

    2009-08-01

    In 1901 Guglielmo Marconi succeeded in linking Britain and North America by radio. Physicists were aghast. Did this upstart not realize that the curvature of the Earth shapes the Atlantic into an impenetrable, 100-mile-high mountain of water? Your problem, said Marconi. Our opportunity, said Britain, whose empire, then at its height, was founded as much on superior communications as on military muscle.

  15. Cognitive bias, hand preference and welfare of common marmosets.

    PubMed

    Gordon, Dianne J; Rogers, Lesley J

    2015-01-01

    Common marmosets (Callithrix jacchus) have hand preferences for grasping pieces of food and holding them while eating and these are stable throughout adult life. We report here that left-handed marmosets have negative cognitive bias compared to right-handed marmosets. Twelve marmosets were trained to expect a food reward from a bowl with a black lid and not from one with a white lid, or vice versa. In probe tests with ambiguous, grey-lidded bowls a left-handed group (N=7) were less likely to remove the lid to inspect the bowl than a right-handed group (N=5). This difference between left- and right-handed marmosets was not dependent on rate of learning, sex or age. In fact, hand-preference was not associated with rate of learning the task. Furthermore, retrospective examination of colony records of 39 marmosets revealed that more aggression was directed towards left- than right-handed marmosets. Hence, hand preference, which can be measured easily, could serve as an indicator of cognitive bias and may signal a need for particular care in laboratory environments. We explain the results by arguing that hand preference reflects more frequent (or dominant) use of the opposite hemisphere and this predisposes individuals to behave differently. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Bimanual Force Variability and Chronic Stroke: Asymmetrical Hand Control

    PubMed Central

    Kang, Nyeonju; Cauraugh, James H.

    2014-01-01

    The purpose of this study was to investigate force variability generated by both the paretic and non-paretic hands during bimanual force control. Nine chronic stroke individuals and nine age-matched individuals with no stroke history performed a force control task with both hands simultaneously. The task involved extending the wrist and fingers at 5%, 25%, and 50% of maximum voluntary contraction. Bimanual and unimanual force variability during bimanual force control was determined by calculating the coefficient of variation. Analyses revealed two main findings: (a) greater bimanual force variability in the stroke group than the control group and (b) increased force variability by the paretic hands during bimanual force control in comparison to the non-paretic hands at the 5% and 25% force production conditions. A primary conclusion is that post stroke bimanual force variability is asymmetrical between hands. PMID:25000185

  17. Functional Assessment of Children and Adolescents with Symbrachydactyly: A Unilateral Hand Malformation.

    PubMed

    Goodell, Parker B; Bauer, Andrea S; Oishi, Scott; Arner, Marianne; Laurell, Tobias; Taylor, Sandra L; James, Michelle A

    2017-07-05

    We studied children and adolescents with symbrachydactyly to determine whether hand function depends on digit opposability and whether scores for function and quality-of-life measures differ from population norms. Participants were grouped on the basis of hand morphology: Group A lacked opposable digits, and Group B had ≥2 digits that were opposable. The groups were compared with each other and with norms with respect to pinch strength, the performance of bimanual activities and in-hand manipulation, and questionnaires regarding psychosocial status and the ability to perform activities of daily living (ADLs). Participants and parents also rated the appearance and function of the hand. Pinch strength was higher for participants in Group B (4.1 compared with 2.4 kg; p = 0.008), but the groups did not differ with respect to the proportion of participants outside of pinch norms. Participants in Group B were more likely to actively use their affected hand to perform bimanual activities (p ≤ 0.0009), and to use normal or supination strategies to accomplish in-hand manipulation (p = 0.031). The groups did not differ in the proportion of ADLs rated "difficult" or "impossible," and both groups tested within normal limits for psychosocial function. Participants from both groups and their parents rated their satisfaction with hand appearance and function similarly high. Participants with ≥2 opposable digits incorporated their hand better in bimanual activities and used more effective strategies to accomplish in-hand manipulation than those who did not. These groups reported no difference in the ability to perform ADLs or with psychosocial function, which was within the normal range. Children and adolescents with symbrachydactyly demonstrated and reported a high level of function in all domains of validated function tests. This study provides information to help parents of children with a unilateral hand malformation understand their child's potential function, and

  18. Cyrtodactylus tahuna sp. nov., a new bent-toed gecko (Reptilia: Squamata: Gekkonidae) from Sangihe Island, North Sulawesi, Indonesia.

    PubMed

    Riyanto, Awal; Arida, Evy; Koch, AndrÉ

    2018-03-21

    Cyrtodactylus tahuna sp. nov. is a new bent-toed gecko we describe herein based on three specimens from Sangihe, North Sulawesi, Indonesia, an island situated in the northern corner of the Wallacea biodiversity hotspot. The new species is a medium sized Cyrtodactylus with a SVL of up to 78.5 mm in adult males and 79.2 mm in females. It is easily distinguished from all but four species (Cyrtodactylus fumosus, C. halmahericus, C. papuensis, and C. tambora) occurring on Sulawesi as well as in the Moluccas and the Lesser Sunda Islands, by possessing precloacal and femoral pores, enlarged precloacal and femoral scales, and lacking transversely enlarged median subcaudal scales. It differs from C. fumosus by the presence of tubercles on the ventrolateral fold, more unkeeled dorsal tubercles (19 versus 4-7) and a pit-like precloacal depression in males (versus groove in males); from C. halmahericus by presence of smaller scales between the enlarged precloacal and femoral scales (versus a continuous series of enlarged precloacofemoral scales) and a continuous series of precloacofemoral pores, as well as the presence of a pit-like precloacal depression in male (versus groove in males), from C. papuensis by possessing a pit-like precloacal depression in males (versus a groove ); and from C. tambora by the presence of tubercles on the dorsal surface of the brachium and the possession of femoral pores. Our contribution, along with several other recent descriptions of bent-toad geckos from Southeast Asia, clearly indicating that the diversity of the genus Cyrtodactylus in Indonesia is still underestimated.

  19. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation.

    PubMed

    Leonardis, Daniele; Barsotti, Michele; Loconsole, Claudio; Solazzi, Massimiliano; Troncossi, Marco; Mazzotti, Claudio; Castelli, Vincenzo Parenti; Procopio, Caterina; Lamola, Giuseppe; Chisari, Carmelo; Bergamasco, Massimo; Frisoli, Antonio

    2015-01-01

    This paper presents a novel electromyography (EMG)-driven hand exoskeleton for bilateral rehabilitation of grasping in stroke. The developed hand exoskeleton was designed with two distinctive features: (a) kinematics with intrinsic adaptability to patient's hand size, and (b) free-palm and free-fingertip design, preserving the residual sensory perceptual capability of touch during assistance in grasping of real objects. In the envisaged bilateral training strategy, the patient's non paretic hand acted as guidance for the paretic hand in grasping tasks. Grasping force exerted by the non paretic hand was estimated in real-time from EMG signals, and then replicated as robotic assistance for the paretic hand by means of the hand-exoskeleton. Estimation of the grasping force through EMG allowed to perform rehabilitation exercises with any, non sensorized, graspable objects. This paper presents the system design, development, and experimental evaluation. Experiments were performed within a group of six healthy subjects and two chronic stroke patients, executing robotic-assisted grasping tasks. Results related to performance in estimation and modulation of the robotic assistance, and to the outcomes of the pilot rehabilitation sessions with stroke patients, positively support validity of the proposed approach for application in stroke rehabilitation.

  20. Observation of polar order and thermochromic behaviour in a chiral bent-core system exhibiting exotic mesophases due to superstructural frustration.

    PubMed

    Punjani, Vidhika; Mohiuddin, Golam; Kaur, Supreet; Khan, Raj Kumar; Ghosh, Sharmistha; Pal, Santanu Kumar

    2018-04-03

    A new approach accompanied by superstructural frustration is reported. By attaching a cholesterol moiety directly to the central bent-core system it displayed exotic BPIII, BPII/I, Ncyb*, TGBA, SmAPA, SmA and SmX phases as shown by X-ray scattering results. While higher homologues of the series exhibited spontaneous formation of polar order (Ps ∼ 61 nC cm-2) upon applied voltage, the lower homologues showed thermochromic behaviour which can also be trapped via temperature quenching.

  1. Spectral algorithms for multiple scale localized eigenfunctions in infinitely long, slightly bent quantum waveguides

    NASA Astrophysics Data System (ADS)

    Boyd, John P.; Amore, Paolo; Fernández, Francisco M.

    2018-03-01

    A "bent waveguide" in the sense used here is a small perturbation of a two-dimensional rectangular strip which is infinitely long in the down-channel direction and has a finite, constant width in the cross-channel coordinate. The goal is to calculate the smallest ("ground state") eigenvalue of the stationary Schrödinger equation which here is a two-dimensional Helmholtz equation, ψxx +ψyy + Eψ = 0 where E is the eigenvalue and homogeneous Dirichlet boundary conditions are imposed on the walls of the waveguide. Perturbation theory gives a good description when the "bending strength" parameter ɛ is small as described in our previous article (Amore et al., 2017) and other works cited therein. However, such series are asymptotic, and it is often impractical to calculate more than a handful of terms. It is therefore useful to develop numerical methods for the perturbed strip to cover intermediate ɛ where the perturbation series may be inaccurate and also to check the pertubation expansion when ɛ is small. The perturbation-induced change-in-eigenvalue, δ ≡ E(ɛ) - E(0) , is O(ɛ2) . We show that the computation becomes very challenging as ɛ → 0 because (i) the ground state eigenfunction varies on both O(1) and O(1 / ɛ) length scales and (ii) high accuracy is needed to compute several correct digits in δ, which is itself small compared to the eigenvalue E. The multiple length scales are not geographically separate, but rather are inextricably commingled in the neighborhood of the boundary deformation. We show that coordinate mapping and immersed boundary strategies both reduce the computational domain to the uniform strip, allowing application of pseudospectral methods on tensor product grids with tensor product basis functions. We compared different basis sets; Chebyshev polynomials are best in the cross-channel direction. However, sine functions generate rather accurate analytical approximations with just a single basis function. In the down

  2. The parietal cortices participate in encoding, short-term memory, and decision-making related to tactile shape.

    PubMed

    Rojas-Hortelano, Eduardo; Concha, Luis; de Lafuente, Victor

    2014-10-15

    We routinely identify objects with our hands, and the physical attributes of touched objects are often held in short-term memory to aid future decisions. However, the brain structures that selectively process tactile information to encode object shape are not fully identified. In this article we describe the areas within the human cerebral cortex that specialize in encoding, short-term memory, and decision-making related to the shape of objects explored with the hand. We performed event-related functional magnetic resonance imaging in subjects performing a shape discrimination task in which two sequentially presented objects had to be explored to determine whether they had the same shape or not. To control for low-level and nonspecific brain activations, subjects performed a temperature discrimination task in which they compared the temperature of two spheres. Our results show that although a large network of brain structures is engaged in somatosensory processing, it is the areas lining the intraparietal sulcus that selectively participate in encoding, maintaining, and deciding on tactile information related to the shape of objects. Copyright © 2014 the American Physiological Society.

  3. Registration-based segmentation with articulated model from multipostural magnetic resonance images for hand bone motion animation.

    PubMed

    Chen, Hsin-Chen; Jou, I-Ming; Wang, Chien-Kuo; Su, Fong-Chin; Sun, Yung-Nien

    2010-06-01

    The quantitative measurements of hand bones, including volume, surface, orientation, and position are essential in investigating hand kinematics. Moreover, within the measurement stage, bone segmentation is the most important step due to its certain influences on measuring accuracy. Since hand bones are small and tubular in shape, magnetic resonance (MR) imaging is prone to artifacts such as nonuniform intensity and fuzzy boundaries. Thus, greater detail is required for improving segmentation accuracy. The authors then propose using a novel registration-based method on an articulated hand model to segment hand bones from multipostural MR images. The proposed method consists of the model construction and registration-based segmentation stages. Given a reference postural image, the first stage requires construction of a drivable reference model characterized by hand bone shapes, intensity patterns, and articulated joint mechanism. By applying the reference model to the second stage, the authors initially design a model-based registration pursuant to intensity distribution similarity, MR bone intensity properties, and constraints of model geometry to align the reference model to target bone regions of the given postural image. The authors then refine the resulting surface to improve the superimposition between the registered reference model and target bone boundaries. For each subject, given a reference postural image, the proposed method can automatically segment all hand bones from all other postural images. Compared to the ground truth from two experts, the resulting surface image had an average margin of error within 1 mm (mm) only. In addition, the proposed method showed good agreement on the overlap of bone segmentations by dice similarity coefficient and also demonstrated better segmentation results than conventional methods. The proposed registration-based segmentation method can successfully overcome drawbacks caused by inherent artifacts in MR images and

  4. Hands4U: the effectiveness of a multifaceted implementation strategy on behaviour related to the prevention of hand eczema-a randomised controlled trial among healthcare workers.

    PubMed

    van der Meer, Esther W C; Boot, Cécile R L; Twisk, Jos W R; Coenraads, Pieter Jan; Jungbauer, Frank H W; van der Gulden, Joost W J; Anema, Johannes R

    2014-07-01

    To investigate the effects of a multifaceted implementation strategy on behaviour, behavioural determinants, knowledge and awareness of healthcare workers regarding the use of recommendations to prevent hand eczema. The Hands4U study is a randomised controlled trial. A total of 48 departments (n=1649 workers) were randomly allocated to the multifaceted implementation strategy or the control group (minimal implementation strategy). Within the departments designated to the multifaceted implementation strategy, participatory working groups were set up to enhance the implementation of the recommendations for hand eczema. In addition, working group members were trained to become role models, and an education session was given within the department. Outcome measures were awareness, knowledge, receiving information, behaviour and behavioural determinants. Data were collected at baseline, with a 3- and 6-month follow-up. Statistically significant effects were found after 6 months for awareness (OR 6.30; 95% CI 3.41 to 11.63), knowledge (B 0.74; 95% CI 0.54 to 0.95), receiving information (OR 9.81; 95% CI 5.60 to 17.18), washing hands (B -0.40; 95% -0.51 to -0.29), use of moisturiser (B 0.29; 95% CI 0.20 to 0.38), cotton under gloves (OR 3.94; 95% CI 2.04 to 7.60) and the overall compliance measure (B 0.14; 95% CI 0.02 to 0.26), as a result of the multifaceted implementation strategy. No effects were found for behavioural determinants. The multifaceted implementation strategy can be used in healthcare settings to enhance the implementation of recommendations for the prevention of hand eczema. NTR2812. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. High-resolution Bent-crystal Spectrometer for the Ultra-soft X-ray Region

    DOE R&D Accomplishments Database

    Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K. W.; Hulse, R. A.; Walling, R. S.

    1988-10-01

    A multichannel vacuum Brag-crystal spectrometer has been developed for high-resolution measurements of the line emission from tokamak plasmas in the wavelength region between 4 and 25 angstrom. The spectrometer employs a bent crystal in Johann geometry and a microchannel-plate intensified photodiode array. The instrument is capable of measuring high-resolution spectra (lambda/..delta..lambda approx. 3000) with fast time resolution (4 msec per spectrum) and good spatial resolution (3 cm). The spectral bandwidth is ..delta..lambda/lambda{sub 0} = 8 angstrom. A simple tilt mechanism allows access to different wavelength intervals. In order to illustrate the utility of the new spectrometer, time- and space-resolved measurements of the n = 3 to n = 2 spectrum of selenium from the Princeton Large Torus tokamak plasmas are presented. The data are used to determine the plasma transport parameters and to infer the radial distribution of fluorinelike, neonlike, and sodiumlike ions of selenium in the plasma. The new ultra-soft x-ray spectrometer has thus enabled us to demonstrate the utility of high-resolution L-shell spectroscopy of neonlike ions as a fusion diagnostic.

  6. Acoustic measurements of a full-scale rotor with four tip shapes. Volume 1: Text, appendices A and B

    NASA Technical Reports Server (NTRS)

    Mosher, M.

    1984-01-01

    A full-scale helicopter with four different blade-tip geometries was tested in the 40- by 80-foot wind tunnel at Ames Research Center. Performance, loads, and noise were measured. The four tip shapes tested were rectangular, tapered, swept, and swept-tapered. Noise measurements from that test are presented in the form of tables and plots. The noise data include measurements of the sound pressure level in dB, dBA, and tone-corrected PNdB, for all of the conditions tested. Detailed measurements, 1/3-octave spectra and time-histories for some selected data are included as well as plots of dBA as function of test condition. Some performance measurements are given to aid interpretation of the noise data.

  7. Smart mug to measure hand's geometrical mechanical impedance.

    PubMed

    Hondori, Hossein Mousavi; Tech, Ang Wei

    2011-01-01

    A novel device, which looks like a mug, has been proposed for measuring the impedance of human hand. The device is designed to have convenient size and light weight similar to an ordinary coffee mug. It contains a 2-axis inertia sensor to monitor vibration and a small motor to carry an eccentric mass (m=100 gr, r=2 cm, rpm=600). The centrifugal force due to the rotating mass applies a dynamic force to the hand that holds the mug. Correlation of the acceleration signals with the perturbing force gives the geometrical mechanical impedance. Experimental results on a healthy subject shows that impedance is posture dependant while it changes with the direction of the applied perturbing force. For nine postures the geometrical impedance is obtained all of which have elliptical shapes. The method can be used for assessment of spasticity and monitoring stability in patients with stroke or similar problems.

  8. Mechanical evaluation of articulating instruments and cross-handed manipulation in laparoendoscopic single-site surgery.

    PubMed

    Xu, An An; Zhu, Jiang Fan; Xie, Xiaofeng; Su, Yuantao

    2014-08-01

    Laparoendoscopic single-site surgery (LESS) is limited by loss of triangulation and internal instruments conflict. To overcome these difficulties, some concepts have been introduced, namely, articulating instruments and cross-handed manipulation, which causes the right hand to control the left instrument tip and vice versa. The aim of this study was to compare task performance with different approaches based on a mechanical evaluation platform. A LESS mechanical evaluation platform was set up to investigate the performance of 2 tasks (suture pass-through rings and clip-cut) with 3 different settings: uncrossed manipulation with straight instruments (group A, the control group), uncrossed manipulation with articulating instruments (group B), and cross-handed manipulation with articulating instruments (group C). The operation time and average load required for accomplishment of the standard tasks were measured. Group A presented significantly better time scores than group B, and group C consumed the longest time to accomplish the 2 tasks (P < .05). Comparing of average load required to perform the suture pass-through rings task, it differed significantly between dominant and nondominant hand in all groups (P < .01) and was less in group A and group B than group C in dominant hand (P < .01), while it was almost the same in all groups in the nondominant hand. In terms of average load requirement to accomplish clip-cut task, it was almost equal not only between group A and B but also between dominant and nondominant hand while the increase reached statistical significance when comparing group C with other groups (P < .05). Compared with conventional devices and maneuvering techniques, articulating instruments and cross-handed manipulation are associated with longer operation time and higher workload. Instruments with better maneuverability should be developed in the future for LESS. © The Author(s) 2013.

  9. About the Transformation Phase Zones of Shape Memory Alloys' Fracture Tests on Single Edge-Cracked Specimen

    NASA Astrophysics Data System (ADS)

    Taillebot, V.; Lexcellent, C.; Vacher, P.

    2012-03-01

    The thermomechanical behavior of shape memory alloys is now well mastered. However, a hindrance to their sustainable use is the lack of knowledge of their fracture behavior. With the aim of filling this partial gap, fracture tests on edge-cracked specimens in NiTi have been made. Particular attention was paid to determine the phase transformation zones in the vicinity of the crack tip. In one hand, experimental kinematic fields are observed using digital image correlation showing strain localization around the crack tip. In the other hand, an analytical prediction, based on a modified equivalent stress criterion and taking into account the asymmetric behavior of shape memory alloys in tension-compression, provides shape and size of transformation outset zones. Experimental results are relatively in agreement with our analytical modeling.

  10. Bacillus subtilis MreB paralogues have different filament architectures and lead to shape remodelling of a heterologous cell system.

    PubMed

    Soufo, Hervé Joël Defeu; Graumann, Peter L

    2010-12-01

    Like many bacteria, Bacillus subtilis cells contain three actin-like MreB proteins. We show that the three paralogues, MreB, Mbl and MreBH, have different filament architectures in a heterologous cell system, and form straight filaments, helices or ring structures, different from the regular helical arrangement in B. subtilis cells. However, when coexpressed, they colocalize into a single filamentous helical structure, showing that the paralogues influence each other's filament architecture. Ring-like MreBH structures can be converted into MreB-like helical filaments by a single point mutation affecting subunit contacts, showing that MreB paralogues feature flexible filament arrangements. Time-lapse and FRAP experiments show that filaments can extend as well as shrink at both ends, and also show internal rearrangement, suggesting that filaments consist of overlapping bundles of shorter filaments that continuously turn over. Upon induction in Escherichia coli cells, B. subtilis MreB (BsMreB) filaments push the cells into strikingly altered cell morphology, showing that MreB filaments can change cell shape. E. coli cells with a weakened cell wall were ruptured upon induction of BsMreB filaments, suggesting that the bacterial actin orthologue may exert force against the cell membrane and envelope, and thus possibly plays an additional mechanical role in bacteria. © 2010 Blackwell Publishing Ltd.

  11. Dramatic Evolution of the Disk-shaped Secondary in the Orion Trapezium Star θ1 Ori B1 (BM Ori): MOST Satellite Observations

    NASA Astrophysics Data System (ADS)

    Windemuth, Diana; Herbst, William; Tingle, Evan; Fuechsl, Rachel; Kilgard, Roy; Pinette, Melanie; Templeton, Matthew; Henden, Arne

    2013-05-01

    The eclipsing binary θ1 Orionis B1, variable star designation BM Ori, is the faintest of the four well-known Trapezium stars at the heart of the Orion Nebula. The primary is a B3 star (~6 M ⊙) but the nature of the secondary (~2 M ⊙) has long been mysterious, since the duration and shape of primary eclipse are inappropriate for any sort of ordinary star. Here we report nearly continuous photometric observations obtained with the MOST satellite over ~4 cycles of the 6.47 d binary period. The light curve is of unprecedented quality, revealing a deep, symmetric primary eclipse as well as a clear reflection effect and secondary eclipse. In addition, there are other small disturbances, some of which repeat at the same phase over the four cycles monitored. The shape of the primary light curve has clearly evolved significantly over the past 40 years. While its overall duration and depth have remained roughly constant, the slopes of the descent and ascent phases are significantly shallower now than in the past and its distinctive flat-bottomed "pseudo-totality" is much less obvious or even absent in the most recent data. We further demonstrate that the primary eclipse was detected at X-ray wavelengths during the Chandra Orion Ultradeep Project (COUP) study. The light curve continues to be well modeled by a self-luminous and reflective disk-shaped object seen nearly edge-on orbiting the B3 primary. The dramatic change in shape over four decades is modeled as an opacity variation in a tenuous outer envelope or disk of the secondary object. We presume that the secondary is an extremely young protostar at an earlier evolutionary phase than can be commonly observed elsewhere in the Galaxy and that the opacity variations observed are related to its digestion of some accreted matter over the last 50-100 years. Indeed, this object deserves continued observational and theoretical attention as the youngest known eclipsing binary system.

  12. YodL and YisK Possess Shape-Modifying Activities That Are Suppressed by Mutations in Bacillus subtilis mreB and mbl.

    PubMed

    Duan, Yi; Sperber, Anthony M; Herman, Jennifer K

    2016-08-01

    Many bacteria utilize actin-like proteins to direct peptidoglycan (PG) synthesis. MreB and MreB-like proteins are thought to act as scaffolds, guiding the localization and activity of key PG-synthesizing proteins during cell elongation. Despite their critical role in viability and cell shape maintenance, very little is known about how the activity of MreB family proteins is regulated. Using a Bacillus subtilis misexpression screen, we identified two genes, yodL and yisK, that when misexpressed lead to loss of cell width control and cell lysis. Expression analysis suggested that yodL and yisK are previously uncharacterized Spo0A-regulated genes, and consistent with these observations, a ΔyodL ΔyisK mutant exhibited reduced sporulation efficiency. Suppressors resistant to YodL's killing activity occurred primarily in mreB mutants and resulted in amino acid substitutions at the interface between MreB and the highly conserved morphogenic protein RodZ, whereas suppressors resistant to YisK occurred primarily in mbl mutants and mapped to Mbl's predicted ATP-binding pocket. YodL's shape-altering activity appears to require MreB, as a ΔmreB mutant was resistant to the effects of YodL but not YisK. Similarly, YisK appears to require Mbl, as a Δmbl mutant was resistant to the cell-widening effects of YisK but not of YodL. Collectively, our results suggest that YodL and YisK likely modulate MreB and Mbl activity, possibly during the early stages of sporulation. The peptidoglycan (PG) component of the cell envelope confers structural rigidity to bacteria and protects them from osmotic pressure. MreB and MreB-like proteins are thought to act as scaffolds for PG synthesis and are essential in bacteria exhibiting nonpolar growth. Despite the critical role of MreB-like proteins, we lack mechanistic insight into how their activities are regulated. Here, we describe the discovery of two B. subtilis proteins, YodL and YisK, which modulate MreB and Mbl activities. Our data suggest

  13. YodL and YisK Possess Shape-Modifying Activities That Are Suppressed by Mutations in Bacillus subtilis mreB and mbl

    PubMed Central

    Duan, Yi; Sperber, Anthony M.

    2016-01-01

    ABSTRACT Many bacteria utilize actin-like proteins to direct peptidoglycan (PG) synthesis. MreB and MreB-like proteins are thought to act as scaffolds, guiding the localization and activity of key PG-synthesizing proteins during cell elongation. Despite their critical role in viability and cell shape maintenance, very little is known about how the activity of MreB family proteins is regulated. Using a Bacillus subtilis misexpression screen, we identified two genes, yodL and yisK, that when misexpressed lead to loss of cell width control and cell lysis. Expression analysis suggested that yodL and yisK are previously uncharacterized Spo0A-regulated genes, and consistent with these observations, a ΔyodL ΔyisK mutant exhibited reduced sporulation efficiency. Suppressors resistant to YodL's killing activity occurred primarily in mreB mutants and resulted in amino acid substitutions at the interface between MreB and the highly conserved morphogenic protein RodZ, whereas suppressors resistant to YisK occurred primarily in mbl mutants and mapped to Mbl's predicted ATP-binding pocket. YodL's shape-altering activity appears to require MreB, as a ΔmreB mutant was resistant to the effects of YodL but not YisK. Similarly, YisK appears to require Mbl, as a Δmbl mutant was resistant to the cell-widening effects of YisK but not of YodL. Collectively, our results suggest that YodL and YisK likely modulate MreB and Mbl activity, possibly during the early stages of sporulation. IMPORTANCE The peptidoglycan (PG) component of the cell envelope confers structural rigidity to bacteria and protects them from osmotic pressure. MreB and MreB-like proteins are thought to act as scaffolds for PG synthesis and are essential in bacteria exhibiting nonpolar growth. Despite the critical role of MreB-like proteins, we lack mechanistic insight into how their activities are regulated. Here, we describe the discovery of two B. subtilis proteins, YodL and YisK, which modulate MreB and Mbl

  14. Reduction in the Incidence of Influenza A but Not Influenza B Associated with Use of Hand Sanitizer and Cough Hygiene in Schools: A Randomized Controlled Trial

    PubMed Central

    STEBBINS, SAMUEL; CUMMINGS, DEREK A.T.; STARK, JAMES H.; VUKOTICH, CHUCK; MITRUKA, KIREN; THOMPSON, WILLIAM; RINALDO, CHARLES; ROTH, LOREN; WAGNER, MICHAEL; WISNIEWSKI, STEPHEN R.; DATO, VIRGINIA; ENG, HEATHER; BURKE, DONALD S.

    2012-01-01

    Background Laboratory-based evidence is lacking regarding the efficacy of non-pharmaceutical interventions such as alcohol-based hand sanitizer and respiratory hygiene to reduce the spread of influenza. Methods The Pittsburgh Influenza Prevention Project was a cluster-randomized trial conducted in ten Pittsburgh, PA elementary schools during the 2007-2008 influenza season. Children in five intervention schools received training in hand and respiratory hygiene, and were provided and encouraged to use hand sanitizer regularly. Children in five schools acted as controls. Children with influenza-like illness were tested for influenza A and B by RT-PCR. Results 3360 children participated. Using RT-PCR, 54 cases of influenza A and 50 cases of influenza B were detected. We found no significant effect of the intervention on the primary study outcome of all laboratory confirmed influenza cases (IRR 0.81 95% CI 0.54, 1.23). However, we did find statistically significant differences in protocol-specified ancillary outcomes. Children in intervention schools had significantly fewer laboratory-confirmed influenza A infections than children in control schools, with an adjusted IRR of 0.48 (95% CI 0.26, 0.87). Total absent episodes were also significantly lower among the intervention group than among the control group; adjusted IRR 0.74 (95% CI 0.56, 0.97). Conclusions Non-pharmaceutical interventions (respiratory hygiene education and the regular use of hand sanitizer) did not reduce total laboratory confirmed influenza. However the interventions did reduce school total absence episodes by 26% and laboratory-confirmed influenza A infections by 52%. Our results suggest that NPIs can be an important adjunct to influenza vaccination programs to reduce the number of influenza A infections among children. PMID:21691245

  15. Blocking of Goal-Location Learning Based on Shape

    ERIC Educational Resources Information Center

    Alexander, Tim; Wilson, Stuart P.; Wilson, Paul N.

    2009-01-01

    Using desktop, computer-simulated virtual environments (VEs), the authors conducted 5 experiments to investigate blocking of learning about a goal location based on Shape B as a consequence of preliminary training to locate that goal using Shape A. The shapes were large 2-dimensional horizontal figures on the ground. Blocking of spatial learning…

  16. Measurement of the shape of the Λb0→Λc+μ-ν¯μ differential decay rate

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Baszczyk, M.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Bjoern, M. B.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Bordyuzhin, I.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Borysova, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britton, T.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chitic, S.-G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Déléage, N.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Federici, L.; Ferguson, D.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski, J. P.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hancock, T.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hatch, M.; He, J.; Hecker, M.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, P. H.; Huard, Z.-C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Komarov, I.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, T.; Li, Y.; Li, Z.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; Maddock, B.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M. W.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Millard, E.; Minard, M.-N.; Minzoni, L.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Gonzalo, D.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Lavra, l. Soares; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; Szymanski, M.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Toriello, F.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M. A.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.; LHCb Collaboration

    2017-12-01

    A measurement of the shape of the differential decay rate and the associated Isgur-Wise function for the decay Λb0→Λc+μ-ν¯μ is reported, using data corresponding to 3 fb-1 collected with the LHCb detector in proton-proton collisions. The Λc+μ-ν¯ μ(+anything ) final states are reconstructed through the detection of a muon and a Λc+ baryon decaying into p K-π+, and the decays Λb0→Λc+π+π-μ-ν¯μ are used to determine contributions from Λb0→Λc*+μ-ν¯μ decays. The measured dependence of the differential decay rate upon the squared four-momentum transfer between the heavy baryons, q2, is compared with expectations from heavy-quark effective theory and from unquenched lattice QCD predictions.

  17. Constraining Cometary Crystal Shapes from IR Spectral Features

    NASA Astrophysics Data System (ADS)

    Wooden, D. H.; Lindsay, S.; Harker, D. E.; Kelley, M. S.; Woodward, C. E.; Murphy, J. R.

    2013-12-01

    A major challenge in deriving the silicate mineralogy of comets is ascertaining how the anisotropic nature of forsterite crystals affects the spectral features' wavelength, relative intensity, and asymmetry. Forsterite features are identified in cometary comae near 10, 11.05-11.2, 16, 19, 23.5, 27.5 and 33 μm [1-10], so accurate models for forsterite's absorption efficiency (Qabs) are a primary requirement to compute IR spectral energy distributions (SEDs, λFλ vs. λ) and constrain the silicate mineralogy of comets. Forsterite is an anisotropic crystal, with three crystallographic axes with distinct indices of refraction for the a-, b-, and c-axis. The shape of a forsterite crystal significantly affects its spectral features [13-16]. We need models that account for crystal shape. The IR absorption efficiencies of forsterite are computed using the discrete dipole approximation (DDA) code DDSCAT [11,12]. Starting from a fiducial crystal shape of a cube, we systematically elongate/reduce one of the crystallographic axes. Also, we elongate/reduce one axis while the lengths of the other two axes are slightly asymmetric (0.8:1.2). The most significant grain shape characteristic that affects the crystalline spectral features is the relative lengths of the crystallographic axes. The second significant grain shape characteristic is breaking the symmetry of all three axes [17]. Synthetic spectral energy distributions using seven crystal shape classes [17] are fit to the observed SED of comet C/1995 O1 (Hale-Bopp). The Hale-Bopp crystalline residual better matches equant, b-platelets, c-platelets, and b-columns spectral shape classes, while a-platelets, a-columns and c-columns worsen the spectral fits. Forsterite condensation and partial evaporation experiments demonstrate that environmental temperature and grain shape are connected [18-20]. Thus, grain shape is a potential probe for protoplanetary disk temperatures where the cometary crystalline forsterite formed. The

  18. Poor shape perception is the reason reaches-to-grasp are visually guided online.

    PubMed

    Lee, Young-Lim; Crabtree, Charles E; Norman, J Farley; Bingham, Geoffrey P

    2008-08-01

    Both judgment studies and studies of feedforward reaching have shown that the visual perception of object distance, size, and shape are inaccurate. However, feedback has been shown to calibrate feedfoward reaches-to-grasp to make them accurate with respect to object distance and size. We now investigate whether shape perception (in particular, the aspect ratio of object depth to width) can be calibrated in the context of reaches-to-grasp. We used cylindrical objects with elliptical cross-sections of varying eccentricity. Our participants reached to grasp the width or the depth of these objects with the index finger and thumb. The maximum grasp aperture and the terminal grasp aperture were used to evaluate perception. Both occur before the hand has contacted an object. In Experiments 1 and 2, we investigated whether perceived shape is recalibrated by distorted haptic feedback. Although somewhat equivocal, the results suggest that it is not. In Experiment 3, we tested the accuracy of feedforward grasping with respect to shape with haptic feedback to allow calibration. Grasping was inaccurate in ways comparable to findings in shape perception judgment studies. In Experiment 4, we hypothesized that online guidance is needed for accurate grasping. Participants reached to grasp either with or without vision of the hand. The result was that the former was accurate, whereas the latter was not. We conclude that shape perception is not calibrated by feedback from reaches-to-grasp and that online visual guidance is required for accurate grasping because shape perception is poor.

  19. Optimized mirror shape tuning using beam weightings based on distance, angle of incidence, reflectivity, and power.

    PubMed

    Goldberg, Kenneth A; Yashchuk, Valeriy V

    2016-05-01

    For glancing-incidence optical systems, such as short-wavelength optics used for nano-focusing, incorporating physical factors in the calculations used for shape optimization can improve performance. Wavefront metrology, including the measurement of a mirror's shape or slope, is routinely used as input for mirror figure optimization on mirrors that can be bent, actuated, positioned, or aligned. Modeling shows that when the incident power distribution, distance from focus, angle of incidence, and the spatially varying reflectivity are included in the optimization, higher Strehl ratios can be achieved. Following the works of Maréchal and Mahajan, optimization of the Strehl ratio (for peak intensity with a coherently illuminated system) occurs when the expectation value of the phase error's variance is minimized. We describe an optimization procedure based on regression analysis that incorporates these physical parameters. This approach is suitable for coherently illuminated systems of nearly diffraction-limited quality. Mathematically, this work is an enhancement of the methods commonly applied for ex situ alignment based on uniform weighting of all points on the surface (or a sub-region of the surface). It follows a similar approach to the optimization of apodized and non-uniformly illuminated optical systems. Significantly, it reaches a different conclusion than a more recent approach based on minimization of focal plane ray errors.

  20. Aging and the haptic perception of 3D surface shape.

    PubMed

    Norman, J Farley; Kappers, Astrid M L; Beers, Amanda M; Scott, A Kate; Norman, Hideko F; Koenderink, Jan J

    2011-04-01

    Two experiments evaluated the ability of older and younger adults to perceive the three-dimensional (3D) shape of object surfaces from active touch (haptics). The ages of the older adults ranged from 64 to 84 years, while those of the younger adults ranged from 18 to 27 years. In Experiment 1, the participants haptically judged the shape of large (20 cm diameter) surfaces with an entire hand. In contrast, in Experiment 2, the participants explored the shape of small (5 cm diameter) surfaces with a single finger. The haptic surfaces varied in shape index (Koenderink, Solid shape, 1990; Koenderink, Image and Vision Computing, 10, 557-564, 1992) from -1.0 to +1.0 in steps of 0.25. For both types of surfaces (large and small), the participants were able to judge surface shape reliably. The older participants' judgments of surface shape were just as accurate and precise as those of the younger participants. The results of the current study demonstrate that while older adults do possess reductions in tactile sensitivity and acuity, they nevertheless can effectively perceive 3D surface shape from haptic exploration.

  1. The utility of hand transplantation in hand amputee patients.

    PubMed

    Alolabi, Noor; Chuback, Jennifer; Grad, Sharon; Thoma, Achilles

    2015-01-01

    To measure the desirable health outcome, termed utility, and the expected quality-adjusted life years (QALYs) gained with hand composite tissue allotransplantation (CTA) using hand amputee patients and the general public. Using the standard gamble (SG) and time trade-off (TTO) techniques, utilities were obtained from 30 general public participants and 12 amputee patients. The health utility and net QALYs gained or lost with transplantation were computed. A sensitivity analysis was conducted to account for the effects of lifelong immunosuppression on the life expectancy of transplant recipients. Higher scores represent greater utility. Hand amputation mean health utility as measured by the SG and TTO methods, respectively, was 0.72 and 0.80 for the general public and 0.69 and 0.70 for hand amputees. In comparison, hand CTA mean health utility was 0.74 and 0.82 for the general public and 0.83 and 0.86 for amputees. Hand CTA imparted an expected gain of 0.9 QALYs (SG and TTO) in the general public and 7.0 (TTO) and 7.8 (SG) QALYs in hand amputees. A loss of at least 1.7 QALYs was demonstrated when decreasing the life expectancy in the sensitivity analysis in the hand amputee group. Hand amputee patients did not show a preference toward hand CTA with its inherent risks. With this procedure being increasingly adopted worldwide, the benefits must be carefully weighed against the risks of lifelong immunosuppressive therapy. This study does not show clear benefit to advocate hand CTA. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  2. Enhanced associative memory for colour (but not shape or location) in synaesthesia.

    PubMed

    Pritchard, Jamie; Rothen, Nicolas; Coolbear, Daniel; Ward, Jamie

    2013-05-01

    People with grapheme-colour synaesthesia have been shown to have enhanced memory on a range of tasks using both stimuli that induce synaesthesia (e.g. words) and, more surprisingly, stimuli that do not (e.g. certain abstract visual stimuli). This study examines the latter by using multi-featured stimuli consisting of shape, colour and location conjunctions (e.g. shape A+colour A+location A; shape B+colour B+location B) presented in a recognition memory paradigm. This enables distractor items to be created in which one of these features is 'unbound' with respect to the others (e.g. shape A+colour B+location A; shape A+colour A+location C). Synaesthetes had higher recognition rates suggesting an enhanced ability to bind certain visual features together into memory. Importantly, synaesthetes' false alarm rates were lower only when colour was the unbound feature, not shape or location. We suggest that synaesthetes are "colour experts" and that enhanced perception can lead to enhanced memory in very specific ways; but, not for instance, an enhanced ability to form associations per se. The results support contemporary models that propose a continuum between perception and memory. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. [Retrospective analysis of effects of metacarpus and phalanx traction on correction of scar contracture of hand after burn on the palm side].

    PubMed

    Chunsheng, Hou; Qingye, Liu; Hongfei, Hao; Yuying, Dong; Feng, Wang; Jin, Lei

    2015-06-01

    To analyze the effects of metacarpus and phalanx traction on correction of scar contracture of hand after burn on the palm side retrospectively. A total of 32 patients with 39 affected hands with scar contracture on the palm side after burn were hospitalized from May 2010 to December 2014. Method of treatment: scar contracture was conservatively released followed by skin grafting, which was referred to as method A; Kirschner wire was inserted into the middle or distal phalanx of finger with contracture and the corresponding metacarpus in the shape of U for 2 to 7 weeks' traction, which was referred to as method B; traction frame was built based on the traction pile and anchor formed by Kirschner wire inserted through the second to the fifth metacarpus and distal phalanx of finger with contracture, and then the affected fingers were pulled into a straight position with rubber bands for 2 to 6 months, which was referred to as method C. Method A was used in patients who would be treated with thorough release of scar followed by skin grafting routinely. Method B was used in patients who would be treated with intramedullary Kirschner wire fixation after release of scar contracture and skin transplantation routinely. Method C was further used in patients when methods A and B failed to accomplish the expected result. Method C was used in the first place followed by method A in whom there might be vascular decompensation or exposure of tendon and bone after scar release, and those who failed to meet the expectation were treated with method C in addition. Patients who were unwilling to undergo surgery were treated with method C exclusively. During the course of treatment, the presence or absence of infection and slipping of Kirschner wire or its slitting through soft tissue were observed. The presence or absence of tendency of recurrence of scar contracture within 1 to 2 weeks after treatment was observed. The length of palmar skin measuring from the root of finger with

  4. Design and fabrication of a three-finger prosthetic hand using SMA muscle wires

    NASA Astrophysics Data System (ADS)

    Simone, Filomena; York, Alexander; Seelecke, Stefan

    2015-03-01

    Bio-inspired hand-like gripper systems based on shape memory alloy (SMA) wire actuation have the potential to enable a number of useful applications in, e.g., the biomedical field or industrial assembly systems. The inherent high energy density makes SMA solutions a natural choice for systems with lightweight, low noise and high force requirements, such as hand prostheses or robotic systems in a human/machine environment. The focus of this research is the development, design and realization of a SMA-actuated prosthetic hand prototype with three fingers. The use of thin wires (100 μm diameter) allows for high cooling rates and therefore fast movement of each finger. Grouping several small wires mechanically in parallel allows for high force actuation. To save space and to allow for a direct transmission of the motion to each finger, the SMA wires are attached directly within each finger, across each phalanx. In this way, the contraction of the wires will allow the movement of the fingers without the use of any additional gears. Within each finger, two different bundles of wires are mounted: protagonist ones that create bending movement and the antagonist ones that enable stretching of each phalanx. The resistance change in the SMA wires is measured during actuation, which allows for monitoring of the wire stroke and potentially the gripping force without the use of additional sensors. The hand is built with modern 3D-printing technologies and its performance while grasping objects of different size and shape is experimentally investigated illustrating the usefulness of the actuator concept.

  5. A Wearable Multi-Site System for NMES-Based Hand Function Restoration.

    PubMed

    Crema, Andrea; Malesevic, Nebojsa; Furfaro, Ivan; Raschella, Flavio; Pedrocchi, Alessandra; Micera, Silvestro

    2018-02-01

    Reaching and grasping impairments significantly affect the quality of life for people who have experienced a stroke or spinal cord injury. The long-term well-being of patients varies greatly according to the restorable residual capabilities. Electrical stimulation could be a promising solution to restore motor functions in these conditions, but its use is not clinically widespread. Here, we introduce the HandNMES, an electrode array (EA) for neuromuscular electrical stimulation (NMES) aimed at grasp training and assistance. The device was designed to deliver electrical stimulation to extrinsic and intrinsic hand muscles. Six independent EAs, positioned on the user forearm and hand, deliver NMES pulses originating from an external stimulator equipped with demultiplexers for interfacing with a large number of electrodes. The garment was designed to be adaptable to user needs and anthropometric characteristics; size, shape, and contact materials can be customized, and stimulation characteristics such as intensity of stimulation and virtual electrode location, and size can be adjusted. We performed extensive tests with nine healthy subjects showing the efficacy of the HandNMES in terms of stimulation performance and personalization. Because encouraging results were achieved, in the coming months, the HandNMES device will be tested in pilot clinical trials.

  6. Job Burnout Reduces Hand Hygiene Compliance Among Nursing Staff.

    PubMed

    Manomenidis, Georgios; Panagopoulou, Efharis; Montgomery, Anthony

    2017-10-13

    Health professional burnout has been associated with suboptimal care and reduced patient safety. However, the extent to which burnout influences hand hygiene compliance among health professionals has yet to be explored. The aim of the study was to examine whether job burnout reduces hand washing compliance among nursing staff. A diary study was conducted. Forty registered nurses working in a general city hospital in Thessaloniki, Greece, completed a questionnaire, while they were monitored for hand hygiene compliance following the World Health Organization protocol for hand hygiene assessment. Burnout was measured using validated items from the Maslach Burnout Inventory. Data were collected from September to October 2015. Multiple regression analysis showed that controlling for years in practice, burnout was negatively associated with hand hygiene compliance (R = 0.322, F(3,36) = 5.704, P < 0.01). Nurses reporting higher levels of burnout were less likely to comply with hand hygiene opportunities (b = - 3.72, 95% confidence interval = -5.94 to -1.51). This study showed that burnout contributes to suboptimal care by reducing compliance to hand hygiene among nurses. Given the crucial role of hand hygiene compliance for the prevention of in-hospital infections, this study highlights the need for interventions targeting the prevention of burnout among nursing staff.

  7. Modeling and Bayesian Parameter Estimation for Shape Memory Alloy Bending Actuators

    DTIC Science & Technology

    2012-02-01

    prosthetic hand,” Technology and Health Care 10, 91–106 (2002). 4. Hartl , D., Lagoudas, D., Calkins, F., and Mabe , J., “Use of a ni60ti shape memory...alloy for active jet engine chevron application: I. thermomechanical characterization,” Smart Materials and Structures 19, 1–14 (2010). 5. Hartl , D...Lagoudas, D., Calkins, F., and Mabe , J., “Use of a ni60ti shape memory alloy for active jet engine chevron application: II. experimentally validated

  8. Star-Shaped Conjugated Systems

    PubMed Central

    Detert, Heiner; Lehmann, Matthias; Meier, Herbert

    2010-01-01

    The present review deals with the preparation and the properties of star-shaped conjugated compounds. Three, four or six conjugated arms are attached to cross-conjugated cores, which consist of single atoms (B, C+, N), benzene or azine rings or polycyclic ring systems, as for example triphenylene or tristriazolotriazine. Many of these shape-persistent [n]star compounds tend to π-stacking and self-organization, and exhibit interesting properties in materials science: Linear and non-linear optics, electrical conductivity, electroluminescence, formation of liquid crystalline phases, etc.

  9. Hand Matters: Left-Hand Gestures Enhance Metaphor Explanation

    ERIC Educational Resources Information Center

    Argyriou, Paraskevi; Mohr, Christine; Kita, Sotaro

    2017-01-01

    Research suggests that speech-accompanying gestures influence cognitive processes, but it is not clear whether the gestural benefit is specific to the gesturing hand. Two experiments tested the "(right/left) hand-specificity" hypothesis for self-oriented functions of gestures: gestures with a particular hand enhance cognitive processes…

  10. [Hand osteoarthritis].

    PubMed

    Šenolt, Ladislav

    Hand osteoarthritis (OA) is a common chronic disorder causing pain and limitation of mobility of affected joints. The prevalence of hand OA increases with age and more often affects females. Clinical signs obviously do not correlate with radiographic findings - symptomatic hand OA affects approximately 26 % of adult subjects, but radiographic changes can be found in up to two thirds of females and half of males older than 55 years.Disease course differ among individual patients. Hand OA is a heterogeneous disease. Nodal hand OA is the most common subtype affecting interphalangeal joints, thumb base OA affects first carpometacarpal joint. Erosive OA represents a specific subtype of hand OA, which is associated with joint inflammation, more pain, functional limitation and erosive findings on radiographs.Treatment of OA is limited. Analgesics and nonsteroidal anti-inflammatory drugs are the only agents reducing symptoms. New insights into the pathogenesis of disease should contribute to the development of novel effective treatment of hand OA.

  11. Estimation of stature from hand and foot dimensions in a Korean population.

    PubMed

    Kim, Wonjoon; Kim, Yong Min; Yun, Myung Hwan

    2018-04-01

    The estimation of stature using foot and hand dimensions is essential in the process of personal identification. The shapes of feet and hands vary depending on races and gender, and it is of great importance to design an adequate equation in consideration of variances to estimate stature. This study is based on a total of 5,195 South Korean males and females, aged from 20 to 59 years. Body dimensions of stature, hand length, hand breadth, foot length, and foot breadth were measured according to standard anthropometric procedures. The independent t-test was performed in order to verify significant gender-induced differences and the results showed that there was significant difference between males and females for all the foot-hand dimensions (p<0.01). All dimensions showed a positive and statistically significant relation with stature in both genders (p<0.01). For both genders, the foot length showed highest correlation, whereas the hand breadth showed least correlation. The stepwise regression analysis was conducted, and the results showed that males had the highest prediction accuracy in the regression equation consisting of foot length and hand length (R 2 =0.532), whereas females had the highest accuracy in the regression model consisting of foot length and hand breadth (R 2 =0.437) The findings of this study indicated that hand and foot dimensions can be used to predict the stature of South Korean in the forensic science field. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  12. Analysis of Hand and Wrist Postural Synergies in Tolerance Grasping of Various Objects

    PubMed Central

    Liu, Yuan; Jiang, Li; Yang, Dapeng; Liu, Hong

    2016-01-01

    Human can successfully grasp various objects in different acceptable relative positions between human hand and objects. This grasp functionality can be described as the grasp tolerance of human hand, which is a significant functionality of human grasp. To understand the motor control of human hand completely, an analysis of hand and wrist postural synergies in tolerance grasping of various objects is needed. Ten healthy right-handed subjects were asked to perform the tolerance grasping with right hand using 6 objects of different shapes, sizes and relative positions between human hand and objects. Subjects were wearing CyberGlove attaching motion tracker on right hand, allowing a measurement of the hand and wrist postures. Correlation analysis of joints and inter-joint/inter-finger modules were carried on to explore the coordination between joints or modules. As the correlation between hand and wrist module is not obvious in tolerance grasping, individual analysis of wrist synergies would be more practical. In this case, postural synergies of hand and wrist were then presented separately through principal component analysis (PCA), expressed through the principal component (PC) information transmitted ratio, PC elements distribution and reconstructed angle error of joints. Results on correlation comparison of different module movements can be well explained by the influence factors of the joint movement correlation. Moreover, correlation analysis of joints and modules showed the wrist module had the lowest correlation among all inter-finger and inter-joint modules. Hand and wrist postures were both sufficient to be described by a few principal components. In terms of the PC elements distribution of hand postures, compared with previous investigations, there was a greater proportion of movement in the thumb joints especially the interphalangeal (IP) and opposition rotation (ROT) joint. The research could serve to a complete understanding of hand grasp, and the design

  13. Dropping the Other U: An Alternative Approach to U-Shaped Developmental Functions

    ERIC Educational Resources Information Center

    Brainerd, C. J.

    2004-01-01

    The aim of this article is to introduce readers to an alternative way of applying U-shaped functions to understand development, especially cognitive development. In classical developmental applications, age is the abscissa; that is, in the fundamental equation B = f(A), some behavioral variable (B) plots as a U-shaped or inverted U-shaped function…

  14. Stiff Hands

    MedlinePlus

    ... Stiff Hands Find a hand surgeon near you. Videos Figures Figure 1: Hand splint to help straighten ... or "in." Also, avoid using media types like "video," "article," and "picture." Tip 4: Your results can ...

  15. Hand Fractures

    MedlinePlus

    ... Hand Fractures Find a hand surgeon near you. Videos Hand Fractures Close Popup Figures Figure 1 - Examples ... or "in." Also, avoid using media types like "video," "article," and "picture." Tip 4: Your results can ...

  16. The cell shape proteins MreB and MreC control cell morphogenesis by positioning cell wall synthetic complexes.

    PubMed

    Divakaruni, Arun V; Baida, Cyril; White, Courtney L; Gober, James W

    2007-10-01

    MreB, the bacterial actin homologue, is thought to function in spatially co-ordinating cell morphogenesis in conjunction with MreC, a protein that wraps around the outside of the cell within the periplasmic space. In Caulobacter crescentus, MreC physically associates with penicillin-binding proteins (PBPs) which catalyse the insertion of intracellularly synthesized precursors into the peptidoglycan cell wall. Here we show that MreC is required for the spatial organization of components of the peptidoglycan-synthesizing holoenzyme in the periplasm and MreB directs the localization of a peptidoglycan precursor synthesis protein in the cytosol. Additionally, fluorescent vancomycin (Van-FL) labelling revealed that the bacterial cytoskeletal proteins MreB and FtsZ, as well as MreC and RodA, were required for peptidoglycan synthetic activity. MreB and FtsZ were found to be required for morphogenesis of the polar stalk. FtsZ was required for a cell cycle-regulated burst of peptidoglycan synthesis early in the cell cycle resulting in the synthesis of cross-band structures, whereas MreB was required for lengthening of the stalk. Thus, the bacterial cytoskeleton and cell shape-determining proteins such as MreC, function in concert to orchestrate the localization of cell wall synthetic complexes resulting in spatially co-ordinated and efficient peptidoglycan synthetic activity.

  17. X-ray spectrometer based on a bent diamond crystal for high repetition rate free-electron laser applications

    DOE PAGES

    Boesenberg, Ulrike; Samoylova, Liubov; Roth, Thomas; ...

    2017-02-03

    A precise spectral characterization of every single pulse is required in many x-ray free-electron laser (XFEL) experiments due to the fluctuating spectral content of self-amplified spontaneous emission (SASE) beams. Bent single-crystal spectrometers can provide sufficient spectral resolution to resolve the SASE spikes while also covering the full SASE bandwidth. To better withstand the high heat load induced by the 4.5 MHz repetition rate of pulses at the forthcoming European XFEL facility, a spectrometer based on single-crystal diamond has been developed. Here, we report a direct comparison of the diamond spectrometer with its Si counterpart in experiments performed at the Linacmore » Coherent Light Source.« less

  18. 50 CFR Figures 14a and 14b to Part... - Maximum Angle of Deflector Bars With Straight Bars Attached to the Bottom of the Frame and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Maximum Angle of Deflector Bars With Straight Bars Attached to the Bottom of the Frame and Maximum Angle of Deflector Bars With Bent Bars Attached to the Bottom of the Frame 14a Figures 14a and 14b to Part 223 Wildlife and Fisheries NATIONAL...

  19. 50 CFR Figures 14a and 14b to Part... - Maximum Angle of Deflector Bars With Straight Bars Attached to the Bottom of the Frame and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Maximum Angle of Deflector Bars With Straight Bars Attached to the Bottom of the Frame and Maximum Angle of Deflector Bars With Bent Bars Attached to the Bottom of the Frame 14a Figures 14a and 14b to Part 223 Wildlife and Fisheries NATIONAL...

  20. Nano to Meso-scale Structure in Liquid Crystals: the Cybotactic Nematic Phase of Bent-core Mesogens

    NASA Astrophysics Data System (ADS)

    Francescangeli, Oriano

    2012-02-01

    The extent of molecular order and the resulting broken symmetry determine the properties and mesophase type of liquid crystals (LCs). Thermotropic bent-core mesogens (BCMs) represent a new class of LCs exhibiting substantially different physical properties than traditional linear (calamitic) materials. In recent years BCMs have become the focus of intense experimental and theoretical investigation, with several exciting new developments. These include chiral mesophases composed of achiral BCMs, giant flexoelectricity, biaxial nematic (N) order, a ferroelectric response in the N phase, and a large flow birefringence. A key issue that is currently widely debated concerns the actual nature of the N phase of BCMs which gives rise to some of the above mentioned effects and is unambiguously identified by a peculiar low-angle X-ray diffraction pattern (the ``four-spot pattern''). The consensus emerging is that this N phase of BCMs constitutes a new type of mesophase, namely, a cybotactic nematic (Ncyb) phase unrelated to pretransition cybotaxis, in agreement with experimental [1-3] and theoretical findings [4]. This Ncyb phase is composed of nanometer-size clusters of BCMs exhibiting a relatively high degree of internal order---orientational as well as translational order (strata) imposed by close packing the BCM nonlinear shape. This peculiar supramolecular structure of the Ncyb mesophase of BCMs---evanescent, biaxial clusters of tilted and stratified nonlinear mesogens percolating the nematic fluid---accounts for their unusual properties, e.g., biaxial order [4], ferroelectric response [1], and extraordinary field-induced effects [5]. In this talk I will give an overview of the most recent developments and the current state of research on this subject. [4pt] [1] O. Francescangeli et al., Adv. Funct. Mater. 19,2592 (2009). [0pt] [2] O. Francescangeli and E.T. Samulski, Soft Matter 6, 2413 (2010) [0pt] [3] O. Francescangeli et al., Soft Matter 7, 895 (2011). [0pt] [4] A

  1. Reduction in the incidence of influenza A but not influenza B associated with use of hand sanitizer and cough hygiene in schools: a randomized controlled trial.

    PubMed

    Stebbins, Samuel; Cummings, Derek A T; Stark, James H; Vukotich, Chuck; Mitruka, Kiren; Thompson, William; Rinaldo, Charles; Roth, Loren; Wagner, Michael; Wisniewski, Stephen R; Dato, Virginia; Eng, Heather; Burke, Donald S

    2011-11-01

    Laboratory-based evidence is lacking regarding the efficacy of nonpharmaceutical interventions (NPIs) such as alcohol-based hand sanitizer and respiratory hygiene to reduce the spread of influenza. The Pittsburgh Influenza Prevention Project was a cluster-randomized trial conducted in 10 elementary schools in Pittsburgh, PA, during the 2007 to 2008 influenza season. Children in 5 intervention schools received training in hand and respiratory hygiene, and were provided and encouraged to use hand sanitizer regularly. Children in 5 schools acted as controls. Children with influenza-like illness were tested for influenza A and B by reverse-transcriptase polymerase chain reaction. A total of 3360 children participated in this study. Using reverse-transcriptase polymerase chain reaction, 54 cases of influenza A and 50 cases of influenza B were detected. We found no significant effect of the intervention on the primary study outcome of all laboratory-confirmed influenza cases (incidence rate ratio [IRR]: 0.81; 95% confidence interval [CI]: 0.54, 1.23). However, we did find statistically significant differences in protocol-specified ancillary outcomes. Children in intervention schools had significantly fewer laboratory-confirmed influenza A infections than children in control schools, with an adjusted IRR of 0.48 (95% CI: 0.26, 0.87). Total absent episodes were also significantly lower among the intervention group than among the control group; adjusted IRR 0.74 (95% CI: 0.56, 0.97). NPIs (respiratory hygiene education and the regular use of hand sanitizer) did not reduce total laboratory-confirmed influenza. However, the interventions did reduce school total absence episodes by 26% and laboratory-confirmed influenza A infections by 52%. Our results suggest that NPIs can be an important adjunct to influenza vaccination programs to reduce the number of influenza A infections among children.

  2. Hand gesture recognition by analysis of codons

    NASA Astrophysics Data System (ADS)

    Ramachandra, Poornima; Shrikhande, Neelima

    2007-09-01

    The problem of recognizing gestures from images using computers can be approached by closely understanding how the human brain tackles it. A full fledged gesture recognition system will substitute mouse and keyboards completely. Humans can recognize most gestures by looking at the characteristic external shape or the silhouette of the fingers. Many previous techniques to recognize gestures dealt with motion and geometric features of hands. In this thesis gestures are recognized by the Codon-list pattern extracted from the object contour. All edges of an image are described in terms of sequence of Codons. The Codons are defined in terms of the relationship between maxima, minima and zeros of curvature encountered as one traverses the boundary of the object. We have concentrated on a catalog of 24 gesture images from the American Sign Language alphabet (Letter J and Z are ignored as they are represented using motion) [2]. The query image given as an input to the system is analyzed and tested against the Codon-lists, which are shape descriptors for external parts of a hand gesture. We have used the Weighted Frequency Indexing Transform (WFIT) approach which is used in DNA sequence matching for matching the Codon-lists. The matching algorithm consists of two steps: 1) the query sequences are converted to short sequences and are assigned weights and, 2) all the sequences of query gestures are pruned into match and mismatch subsequences by the frequency indexing tree based on the weights of the subsequences. The Codon sequences with the most weight are used to determine the most precise match. Once a match is found, the identified gesture and corresponding interpretation are shown as output.

  3. Body movement selectively shapes the neural representation of musical rhythms.

    PubMed

    Chemin, Baptiste; Mouraux, André; Nozaradan, Sylvie

    2014-12-01

    It is increasingly recognized that motor routines dynamically shape the processing of sensory inflow (e.g., when hand movements are used to feel a texture or identify an object). In the present research, we captured the shaping of auditory perception by movement in humans by taking advantage of a specific context: music. Participants listened to a repeated rhythmical sequence before and after moving their bodies to this rhythm in a specific meter. We found that the brain responses to the rhythm (as recorded with electroencephalography) after body movement were significantly enhanced at frequencies related to the meter to which the participants had moved. These results provide evidence that body movement can selectively shape the subsequent internal representation of auditory rhythms. © The Author(s) 2014.

  4. Hand Washing

    MedlinePlus

    ... study, only 58% of female and 48% of male middle- and high-school students washed their hands after using the bathroom. Yuck! How to Wash Your Hands Correctly There's a right way to wash your hands. Follow these simple ...

  5. Minimal realization of right-handed gauge symmetry

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2018-01-01

    We propose a minimally extended gauge symmetry model with U (1 )R , where only the right-handed fermions have nonzero charges in the fermion sector. To achieve both anomaly cancellations and minimality, three right-handed neutrinos are naturally required, and the standard model Higgs has to have nonzero charge under this symmetry. Then we find that its breaking scale(Λ ) is restricted by precise measurement of neutral gauge boson in the standard model; therefore, O (10 ) TeV ≲Λ . We also discuss its testability of the new gauge boson and discrimination of U (1 )R model from U (1 )B-L one at collider physics such as LHC and ILC.

  6. Bending effects and temperature dependence of magnetic properties in a Fe-rich amorphous wire

    NASA Astrophysics Data System (ADS)

    Bordin, G.; Buttino, G.; Poppi, M.

    2001-08-01

    Amorphous wires with composition Fe 77.5Si 7.5B 15 exhibit a very peculiar magnetization process characterized by a single and quite large Barkhausen jump. This gives rise to a squared hysteresis loop at a critical magnetic field. The bistable behaviour, widely studied in wires with typical length of 10 cm and diameter of 125 μm, appears above a length of about 7 cm in straight wires and disappears for curvature radius within the range 2-12 cm in bent wires. In this work it is shown that bistability occurs in bent wires, whatever their curvature is, provided the wires are long enough. To this purpose spiral-shaped samples with several turns are considered. However, when the wire length is not a integer number of turns the magnetization reverses through many large Barkhausen jumps. In this condition, varying the measuring temperature can activate the energy barriers for the jumps.

  7. Numerical simulations of negative-index refraction in wedge-shaped metamaterials.

    PubMed

    Dong, Z G; Zhu, S N; Liu, H; Zhu, J; Cao, W

    2005-07-01

    A wedge-shaped structure made of split-ring resonators (SRR) and wires is numerically simulated to evaluate its refraction behavior. Four frequency bands, namely, the stop band, left-handed band, ultralow-index band, and positive-index band, are distinguished according to the refracted field distributions. Negative phase velocity inside the wedge is demonstrated in the left-handed band and the Snell's Law is conformed in terms of its refraction behaviors in different frequency bands. Our results confirmed that negative index of refraction indeed exists in such a composite metamaterial and also provided a convincing support to the results of previous Snell's Law experiments.

  8. Applying Hand-Held 3D Printing Technology to the Teaching of VSEPR Theory

    ERIC Educational Resources Information Center

    Dean, Natalie L.; Ewan, Corrina; McIndoe, J. Scott

    2016-01-01

    The use of hand-held 3D printing technology provides a unique and engaging approach to learning VSEPR theory by enabling students to draw three-dimensional depictions of different molecular geometries, giving them an appreciation of the shapes of the building blocks of complex molecular structures. Students are provided with 3D printing pens and…

  9. Influence of body heat content on hand function during prolonged cold exposures.

    PubMed

    Flouris, A D; Cheung, S S; Fowles, J R; Kruisselbrink, L D; Westwood, D A; Carrillo, A E; Murphy, R J L

    2006-09-01

    We examined the influence of 1) prior increase [preheating (PHT)], 2) increase throughout [heating (HT)], and 3) no increase [control (Con)] of body heat content (H(b)) on neuromuscular function and manual dexterity of the hands during a 130-min exposure to -20 degrees C (coldEx). Ten volunteers randomly underwent three passive coldEx, incorporating a 10-min moderate-exercise period at the 65th min while wearing a liquid conditioning garment (LCG) and military arctic clothing. In PHT, 50 degrees C water was circulated in the LCG before coldEx until core temperature was increased by 0.5 degrees C. In HT, participants regulated the inlet LCG water temperature throughout coldEx to subjective comfort, while the LCG was not operating in Con. Thermal comfort, rectal temperature, mean skin temperature, mean finger temperature (T(fing)), change in H(b) (DeltaH(b)), rate of body heat storage, Purdue pegboard test, finger tapping, handgrip, maximum voluntary contraction, and evoked twitch force of the first dorsal interosseus muscle were recorded. Results demonstrated that, unlike in HT and PHT, thermal comfort, rectal temperature, mean skin temperature, twitch force, maximum voluntary contraction, and finger tapping declined significantly in Con. In contrast, T(fing) and Purdue pegboard test remained constant only in HT. Generalized estimating equations demonstrated that DeltaH(b) and T(fing) were associated over time with hand function, whereas no significant association was detected for rate of body heat storage. It is concluded that increasing H(b) not only throughout but also before a coldEx is effective in maintaining hand function. In addition, we found that the best indicator of hand function is DeltaH(b) followed by T(fing).

  10. Mapping From an Instrumented Glove to a Robot Hand

    NASA Technical Reports Server (NTRS)

    Goza, Michael

    2005-01-01

    An algorithm has been developed to solve the problem of mapping from (1) a glove instrumented with joint-angle sensors to (2) an anthropomorphic robot hand. Such a mapping is needed to generate control signals to make the robot hand mimic the configuration of the hand of a human attempting to control the robot. The mapping problem is complicated by uncertainties in sensor locations caused by variations in sizes and shapes of hands and variations in the fit of the glove. The present mapping algorithm is robust in the face of these uncertainties, largely because it includes a calibration sub-algorithm that inherently adapts the mapping to the specific hand and glove, without need for measuring the hand and without regard for goodness of fit. The algorithm utilizes a forward-kinematics model of the glove derived from documentation provided by the manufacturer of the glove. In this case, forward-kinematics model signifies a mathematical model of the glove fingertip positions as functions of the sensor readings. More specifically, given the sensor readings, the forward-kinematics model calculates the glove fingertip positions in a Cartesian reference frame nominally attached to the palm. The algorithm also utilizes an inverse-kinematics model of the robot hand. In this case, inverse-kinematics model signifies a mathematical model of the robot finger-joint angles as functions of the robot fingertip positions. Again, more specifically, the inverse-kinematics model calculates the finger-joint commands needed to place the fingertips at specified positions in a Cartesian reference frame that is attached to the palm of the robot hand and that nominally corresponds to the Cartesian reference frame attached to the palm of the glove. Initially, because of the aforementioned uncertainties, the glove fingertip positions calculated by the forwardkinematics model in the glove Cartesian reference frame cannot be expected to match the robot fingertip positions in the robot-hand

  11. Finger tracking for hand-held device interface using profile-matching stereo vision

    NASA Astrophysics Data System (ADS)

    Chang, Yung-Ping; Lee, Dah-Jye; Moore, Jason; Desai, Alok; Tippetts, Beau

    2013-01-01

    Hundreds of millions of people use hand-held devices frequently and control them by touching the screen with their fingers. If this method of operation is being used by people who are driving, the probability of deaths and accidents occurring substantially increases. With a non-contact control interface, people do not need to touch the screen. As a result, people will not need to pay as much attention to their phones and thus drive more safely than they would otherwise. This interface can be achieved with real-time stereovision. A novel Intensity Profile Shape-Matching Algorithm is able to obtain 3-D information from a pair of stereo images in real time. While this algorithm does have a trade-off between accuracy and processing speed, the result of this algorithm proves the accuracy is sufficient for the practical use of recognizing human poses and finger movement tracking. By choosing an interval of disparity, an object at a certain distance range can be segmented. In other words, we detect the object by its distance to the cameras. The advantage of this profile shape-matching algorithm is that detection of correspondences relies on the shape of profile and not on intensity values, which are subjected to lighting variations. Based on the resulting 3-D information, the movement of fingers in space from a specific distance can be determined. Finger location and movement can then be analyzed for non-contact control of hand-held devices.

  12. Relationship between speed and EEG activity during imagined and executed hand movements

    NASA Astrophysics Data System (ADS)

    Yuan, Han; Perdoni, Christopher; He, Bin

    2010-04-01

    The relationship between primary motor cortex and movement kinematics has been shown in nonhuman primate studies of hand reaching or drawing tasks. Studies have demonstrated that the neural activities accompanying or immediately preceding the movement encode the direction, speed and other information. Here we investigated the relationship between the kinematics of imagined and actual hand movement, i.e. the clenching speed, and the EEG activity in ten human subjects. Study participants were asked to perform and imagine clenching of the left hand and right hand at various speeds. The EEG activity in the alpha (8-12 Hz) and beta (18-28 Hz) frequency bands were found to be linearly correlated with the speed of imagery clenching. Similar parametric modulation was also found during the execution of hand movements. A single equation relating the EEG activity to the speed and the hand (left versus right) was developed. This equation, which contained a linear independent combination of the two parameters, described the time-varying neural activity during the tasks. Based on the model, a regression approach was developed to decode the two parameters from the multiple-channel EEG signals. We demonstrated the continuous decoding of dynamic hand and speed information of the imagined clenching. In particular, the time-varying clenching speed was reconstructed in a bell-shaped profile. Our findings suggest an application to providing continuous and complex control of noninvasive brain-computer interface for movement-impaired paralytics.

  13. 29 CFR 780.312 - “Hand harvest laborer” defined.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-harvesting is defined as manually gathering or severing the crop from the soil, stems, or roots at its.... (b) The definition is limited to harvesting, and the performance by the hand harvester of any...

  14. 29 CFR 780.312 - “Hand harvest laborer” defined.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-harvesting is defined as manually gathering or severing the crop from the soil, stems, or roots at its.... (b) The definition is limited to harvesting, and the performance by the hand harvester of any...

  15. 29 CFR 780.312 - “Hand harvest laborer” defined.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-harvesting is defined as manually gathering or severing the crop from the soil, stems, or roots at its.... (b) The definition is limited to harvesting, and the performance by the hand harvester of any...

  16. High-energy e- /e+ spectrometer via coherent interaction in a bent crystal

    NASA Astrophysics Data System (ADS)

    Bagli, Enrico; Guidi, Vincenzo; Howard, Alexander

    2018-01-01

    We propose a novel spectrometer based on the crystal channeling effect capable of discriminating between positive and negative particles well beyond the TeV energy scale. The atomic order of a crystalline structure generates an electrostatic field built up by all the atoms in the crystals, which confines charged particle trajectories between neighbouring atomic planes. Through such an interaction in a tiny curved crystal, the same dynamical action on the highest energy particles as that of a huge superconducting magnet is achieved. Depending on the charge sign, points of equilibrium of the oscillatory motion under channeling lie between or on atomic planes for positive and negative particles, respectively, forcing positive particles to stably oscillate far from the planes, while negative ones repeatedly cross them. The different interaction rate with atomic planes causes a tremendous discrepancy between the deflection efficiency of positive and negative particles under channeling. We suggest the use of interactions between charged particles and oriented bent crystals as a novel non-cryogenic passive charge spectrometer to aid the search for dark matter in the Universe in satellite-borne experiment. The limited angular acceptance makes this technique particularly suited for directional local sources of energetic charged particles.

  17. Rubber Hands Feel Touch, but Not in Blind Individuals

    PubMed Central

    Ehrsson, H. Henrik

    2012-01-01

    Psychology and neuroscience have a long-standing tradition of studying blind individuals to investigate how visual experience shapes perception of the external world. Here, we study how blind people experience their own body by exposing them to a multisensory body illusion: the somatic rubber hand illusion. In this illusion, healthy blindfolded participants experience that they are touching their own right hand with their left index finger, when in fact they are touching a rubber hand with their left index finger while the experimenter touches their right hand in a synchronized manner (Ehrsson et al. 2005). We compared the strength of this illusion in a group of blind individuals (n = 10), all of whom had experienced severe visual impairment or complete blindness from birth, and a group of age-matched blindfolded sighted participants (n = 12). The illusion was quantified subjectively using questionnaires and behaviorally by asking participants to point to the felt location of the right hand. The results showed that the sighted participants experienced a strong illusion, whereas the blind participants experienced no illusion at all, a difference that was evident in both tests employed. A further experiment testing the participants' basic ability to localize the right hand in space without vision (proprioception) revealed no difference between the two groups. Taken together, these results suggest that blind individuals with impaired visual development have a more veridical percept of self-touch and a less flexible and dynamic representation of their own body in space compared to sighted individuals. We speculate that the multisensory brain systems that re-map somatosensory signals onto external reference frames are less developed in blind individuals and therefore do not allow efficient fusion of tactile and proprioceptive signals from the two upper limbs into a single illusory experience of self-touch as in sighted individuals. PMID:22558268

  18. Rubber hands feel touch, but not in blind individuals.

    PubMed

    Petkova, Valeria I; Zetterberg, Hedvig; Ehrsson, H Henrik

    2012-01-01

    Psychology and neuroscience have a long-standing tradition of studying blind individuals to investigate how visual experience shapes perception of the external world. Here, we study how blind people experience their own body by exposing them to a multisensory body illusion: the somatic rubber hand illusion. In this illusion, healthy blindfolded participants experience that they are touching their own right hand with their left index finger, when in fact they are touching a rubber hand with their left index finger while the experimenter touches their right hand in a synchronized manner (Ehrsson et al. 2005). We compared the strength of this illusion in a group of blind individuals (n = 10), all of whom had experienced severe visual impairment or complete blindness from birth, and a group of age-matched blindfolded sighted participants (n = 12). The illusion was quantified subjectively using questionnaires and behaviorally by asking participants to point to the felt location of the right hand. The results showed that the sighted participants experienced a strong illusion, whereas the blind participants experienced no illusion at all, a difference that was evident in both tests employed. A further experiment testing the participants' basic ability to localize the right hand in space without vision (proprioception) revealed no difference between the two groups. Taken together, these results suggest that blind individuals with impaired visual development have a more veridical percept of self-touch and a less flexible and dynamic representation of their own body in space compared to sighted individuals. We speculate that the multisensory brain systems that re-map somatosensory signals onto external reference frames are less developed in blind individuals and therefore do not allow efficient fusion of tactile and proprioceptive signals from the two upper limbs into a single illusory experience of self-touch as in sighted individuals.

  19. Ray-tracing method for creeping waves on arbitrarily shaped nonuniform rational B-splines surfaces.

    PubMed

    Chen, Xi; He, Si-Yuan; Yu, Ding-Feng; Yin, Hong-Cheng; Hu, Wei-Dong; Zhu, Guo-Qiang

    2013-04-01

    An accurate creeping ray-tracing algorithm is presented in this paper to determine the tracks of creeping waves (or creeping rays) on arbitrarily shaped free-form parametric surfaces [nonuniform rational B-splines (NURBS) surfaces]. The main challenge in calculating the surface diffracted fields on NURBS surfaces is due to the difficulty in determining the geodesic paths along which the creeping rays propagate. On one single parametric surface patch, the geodesic paths need to be computed by solving the geodesic equations numerically. Furthermore, realistic objects are generally modeled as the union of several connected NURBS patches. Due to the discontinuity of the parameter between the patches, it is more complicated to compute geodesic paths on several connected patches than on one single patch. Thus, a creeping ray-tracing algorithm is presented in this paper to compute the geodesic paths of creeping rays on the complex objects that are modeled as the combination of several NURBS surface patches. In the algorithm, the creeping ray tracing on each surface patch is performed by solving the geodesic equations with a Runge-Kutta method. When the creeping ray propagates from one patch to another, a transition method is developed to handle the transition of the creeping ray tracing across the border between the patches. This creeping ray-tracing algorithm can meet practical requirements because it can be applied to the objects with complex shapes. The algorithm can also extend the applicability of NURBS for electromagnetic and optical applications. The validity and usefulness of the algorithm can be verified from the numerical results.

  20. Principal components analysis based control of a multi-DoF underactuated prosthetic hand.

    PubMed

    Matrone, Giulia C; Cipriani, Christian; Secco, Emanuele L; Magenes, Giovanni; Carrozza, Maria Chiara

    2010-04-23

    Functionality, controllability and cosmetics are the key issues to be addressed in order to accomplish a successful functional substitution of the human hand by means of a prosthesis. Not only the prosthesis should duplicate the human hand in shape, functionality, sensorization, perception and sense of body-belonging, but it should also be controlled as the natural one, in the most intuitive and undemanding way. At present, prosthetic hands are controlled by means of non-invasive interfaces based on electromyography (EMG). Driving a multi degrees of freedom (DoF) hand for achieving hand dexterity implies to selectively modulate many different EMG signals in order to make each joint move independently, and this could require significant cognitive effort to the user. A Principal Components Analysis (PCA) based algorithm is used to drive a 16 DoFs underactuated prosthetic hand prototype (called CyberHand) with a two dimensional control input, in order to perform the three prehensile forms mostly used in Activities of Daily Living (ADLs). Such Principal Components set has been derived directly from the artificial hand by collecting its sensory data while performing 50 different grasps, and subsequently used for control. Trials have shown that two independent input signals can be successfully used to control the posture of a real robotic hand and that correct grasps (in terms of involved fingers, stability and posture) may be achieved. This work demonstrates the effectiveness of a bio-inspired system successfully conjugating the advantages of an underactuated, anthropomorphic hand with a PCA-based control strategy, and opens up promising possibilities for the development of an intuitively controllable hand prosthesis.

  1. Alternating twist structures formed by electroconvection in the nematic phase of an achiral bent-core molecule.

    PubMed

    Tanaka, Shingo; Dhara, Surajit; Sadashiva, B K; Shimbo, Yoshio; Takanishi, Yoichi; Araoka, Fumito; Ishikawa, Ken; Takezoe, Hideo

    2008-04-01

    We report an unusual electroconvection in the nematic phase of a bent-core liquid crystal. In a voltage-frequency diagram, two frequency regions exhibiting prewavy stripe patterns were found, as reported by Wiant We found that these stripes never show extinction dark when cells were rotated under crossed polarizers. Based on the color interchange in between neighboring stripes by the rotation of the cells or an analyzer, twisted molecular orientation is suggested; i.e., the directors are alternately twisted from the top to the bottom surfaces with a pretilt angle in adjacent stripes, which is an analogue of the twisted (splayed) structure observed in surface-stabilized ferroelectric liquid crystal cells. The transmittance spectra calculated using the 4x4 matrix method from the model structure are consistent with the experimental observation.

  2. Optofluidic refractive-index sensors employing bent waveguide structures for low-cost, rapid chemical and biomedical sensing.

    PubMed

    Liu, I-Chen; Chen, Pin-Chuan; Chau, Lai-Kwan; Chang, Guo-En

    2018-01-08

    We propose and develop an intensity-detection-based refractive-index (RI) sensor for low-cost, rapid RI sensing. The sensor is composed of a polymer bent ridge waveguide (BRWG) structure on a low-cost glass substrate and is integrated with a microfluidic channel. Different-RI solutions flowing through the BRWG sensing region induce output optical power variations caused by optical bend losses, enabling simple and real-time RI detection. Additionally, the sensors are fabricated using rapid and cost-effective vacuum-less processes, attaining the low cost and high throughput required for mass production. A good RI solution of 5.31 10 -4 × RIU -1 is achieved from the RI experiments. This study demonstrates mass-producible and compact RI sensors for rapid and sensitive chemical analysis and biomedical sensing.

  3. Inspections of hand washing supplies and hand sanitizer in public schools.

    PubMed

    Ramos, Mary M; Blea, Mary; Trujillo, Rebecca; Greenberg, Cynthia

    2010-10-01

    Hand washing and hand antisepsis are proven infection control measures in the school setting, yet barriers such as lack of soap, paper towels, and hand sanitizer can hinder compliance. This pilot study measured the prevalence of hand cleaning supplies in public schools. Ten school districts (93 schools) participated in school nurse inspections. In November 2008, 90 schools (97%) reported their inspection results. Among 697 total bathrooms, 88.8% had soap and 91.7% had paper towels or hand dryers. Hand sanitizer was reported in 1.2% of bathrooms and 15.2% of cafeterias. No difference was observed between boys' and girls' bathrooms, or primary and secondary schools, in the prevalence of soap or paper towels/hand dryers. Hand washing supplies were generally available in public school bathrooms. Alcohol-based hand sanitizer in school bathrooms was reported occasionally and should be discouraged. Hand sanitizer in a supervised setting, the school cafeteria, was not often reported and should be promoted.

  4. Moisturizing alcohol hand gels for surgical hand preparation.

    PubMed

    Jones, R D; Jampani, H; Mulberry, G; Rizer, R L

    2000-03-01

    With the use of novel formulary technology, unique moisturizing hand gels have been developed that offer significant advantages in perioperative and other health care settings. These advantages include the time-saving capabilities of a waterless formulation, the persistence and effectiveness of a surgical scrub, and the moisturization and protective properties of a lotion. Extensive laboratory and clinical studies, involving in vivo antimicrobial activity against resident and transient flora, skin moisturization on normal and dry skin, and compatibility with latex gloves, have supported these advantages. Nondrying alcohol hand gels can be used for antiseptic hand washing, hand scrubs between procedures (i.e., reentry scrubs), brushless surgical scrubs, moisturizers, and glove-donning aids.

  5. Analysis of Global Properties of Shapes

    DTIC Science & Technology

    2010-06-01

    Conference on Computer Vision (ICCV) ( Bejing , China , 2005), IEEE. [113] Thrun, S., and Wegbreit, B. Shape from symmetry. In Proceedings of the...International Conference on Computer Vision (ICCV) ( Bejing , China , 2005), IEEE. [114] Toshev, A., Shi, J., and Daniilidis, K. Image matching via saliency...applications ranging from sampling points to finding correspondences to shape simplification. Discrete variants of the Laplace-Beltrami opera - tor [108] and

  6. Dynamic Shaping of the Defensive Peripersonal Space through Predictive Motor Mechanisms: When the "Near" Becomes "Far".

    PubMed

    Bisio, Ambra; Garbarini, Francesca; Biggio, Monica; Fossataro, Carlotta; Ruggeri, Piero; Bove, Marco

    2017-03-01

    The hand blink reflex is a subcortical defensive response, known to dramatically increase when the stimulated hand is statically positioned inside the defensive peripersonal space (DPPS) of the face. Here, we tested in a group of healthy human subjects the hand blink reflex in dynamic conditions, investigating whether the direction of the hand movements (up-to/down-from the face) could modulate it. We found that, on equal hand position, the response enhancement was present only when the hand approached to (and not receded from) the DPPS of the face. This means that, when the hand is close to the face but the subject is planning to move the hand down, the predictive motor system can anticipate the consequence of the movement: the "near" becomes "far." We found similar results both in passive movement condition, when only afferent (visual and proprioceptive) information can be used to estimate the final state of the system, and in motor imagery task, when only efferent (intentional) information is available to predict the consequences of the movement. All these findings provide evidence that the DPPS is dynamically shaped by predictive mechanisms run by the motor system and based on the integration of feedforward and sensory feedback signals. SIGNIFICANCE STATEMENT The defensive peripersonal space (DPPS) has a crucial role for survival, and its modulation is fundamental when we interact with the environment, as when we move our arms. Here, we focused on a defensive response, the hand blink reflex, known to increase when a static hand is stimulated inside the DPPS of the face. We tested the hand blink reflex in dynamic conditions (voluntary, passive, and imagined movements) and we found that, on equal hand position, the response enhancement was present only when the hand approached to (and not receded from) the DPPS of the face. This suggests that, through the integration of efferent and afferent signals, the safety boundary around the body is continuously shaped by

  7. Analysis on the stress corrosion crack inception based on pit shape and size of the FV520B tensile specimen

    NASA Astrophysics Data System (ADS)

    Xiang, Longhao; Pan, Juyi; Chen, Songying

    2018-06-01

    The influence of pit shape and size on local stress concentration in the tensile specimen and the stress corrosion cracks inception was studied by employing the element remove technique. The maximum stress located in the bottom of pit on FV520B tensile specimen. The location of maximum strain was near the mouth of the pit or the shoulder and plastic strain existed in this region. Stress concentration factor and plastic deformation on four different geometrical shape pits of hemisphere, semi-ellipsoid, bullet and butterfly were numerically investigated, respectively. The simulation results showed that butterfly pit got the biggest stress concentration factor. The plastic strain rate during pit growth was in the sensitivity range of stress corrosion cracks inception, indicating that stress corrosion cracks were more likely to nucleate near the pit tip or the shoulder.

  8. Randomized, noninferiority study between video versus hand ultrasound with wet foam dressing materials to simulate B-lines in lung ultrasound: A CONSORT-compliant article.

    PubMed

    Park, Eun Jung; Yoon, Young Tak; Hong, Chong Kun; Ha, Young Rock; Ahn, Jung Hwan

    2017-07-01

    This study evaluated the efficacy of a teaching method using simulated B-lines of hand ultrasound with a wet foam dressing material. This prospective, randomized, noninferiority study was conducted on emergency medical technician students without any relevant training in ultrasound. Following a lecture including simulated (SG) or real video clips (RG) of B-lines, a posttest was conducted and a retention test was performed after 2 months. The test consisted of questions about B-lines in 40 randomly mixed video clips (20 simulated and 20 real videos) with 4 answer scores (R-1 [the correct answer score for the real video clips] vs S-1 [the correct answer score for the simulated video clips] in the posttest, R-2 [the correct answer score for the real video clips] vs S-2 [the correct answer score for the simulated video clips] in the retention test). A total of 77 and 73 volunteers participated in the posttest (RG, 38; SG, 39) and retention test (RG, 36; SG, 37), respectively. There was no significant (P > .05) difference in scores of R-1, S-1, R-2, or S-2 between RG and SG. The mean score differences between RG and SG were -0.6 (95% confidence interval [CI]: -1.49 to 0.11) in R-1, -0.1 (95% CI: -1.04 to 0.86) in S-1, 0 (95% CI: -1.57 to 1.50) in R-2, and -0.2 (95% CI: -1.52 to 0.25) in S-2. The mean differences and 95% CIs for all parameters fell within the noninferiority margin of 2 points (10%). Simulated B-lines of hand ultrasound with a wet foam dressing material were not inferior to real B-lines. They were effective for teaching and simulations. The study was registered with the Clinical Trial Registry of Korea: https://cris.nih.go.kr/cris/index.jsp (KCT0002144).

  9. Efficacy of Low Level Laser Therapy After Hand Flexor Tendon Repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayad, K. E.; Abd El Mejeed, S. F.; El Gohary, H. M.

    Flexor tendon injury is a common problem requiring suturing repair followed by early postoperative mobilization. Muscle atrophy, joint stiffness, osteoarthritis, infection, skin necrosis, ulceration of joint cartilage and tendocutaneous adhesion are familiar complications produced by prolonged immobilization of surgically repaired tendon ruptures. The purpose of this study was to clarify the importance of low level laser therapy after hand flexor tendon repair in zone II. Thirty patients aging between 20 and 40 years were divided into two groups. Patients in group A (n = 15) received a conventional therapeutic exercise program while patients in group B (n = 15) receivedmore » low level laser therapy combined with the same therapeutic exercise program. The results showed a statistically significant increase in total active motion of the proximal and distal interphalangeal joints as well as maximum hand grip strength at three weeks and three months postoperative, but improvement was more significant in group B. It was concluded that the combination of low level laser therapy and early therapeutic exercises was more effective than therapeutic exercises alone in improving total active motion of proximal and distal interphalangeal joints and hand grip strength after hand flexor tendon repair.« less

  10. Glide path preparation in S-shaped canals with rotary pathfinding nickel-titanium instruments.

    PubMed

    Ajuz, Natasha C C; Armada, Luciana; Gonçalves, Lucio S; Debelian, Gilberto; Siqueira, José F

    2013-04-01

    This study compared the incidence of deviation along S-shaped (double-curved) canals after glide path preparation with 2 nickel-titanium (NiTi) rotary pathfinding instruments and hand K-files. S-shaped canals from 60 training blocks were filled with ink, and preinstrumentation images were obtained by using a stereomicroscope. Glide path preparation was performed by an endodontist who used hand stainless steel K-files (up to size 20), rotary NiTi PathFile instruments (up to size 19), or rotary NiTi Scout RaCe instruments (up to size 20). Postinstrumentation images were taken by using exactly the same conditions as for the preinstrumentation images, and both pictures were superimposed. Differences along the S-shaped canal for the mesial and distal aspects were measured to evaluate the occurrence of deviation. Intragroup analysis showed that all instruments promoted some deviation in virtually all levels. Overall, regardless of the group, deviations were observed in the mesial wall at the canal terminus and at levels 4, 5, 6 and 7 mm and in the distal wall at levels 1, 2, and 3 mm. These levels corresponded to the inner walls of each curvature. Both rotary NiTi instruments performed significantly better than hand K-files at all levels (P < .05), except for PathFiles at the 0-mm level. ScoutRaCe instruments showed significantly better results than PathFiles at levels 0, 2, 3, 5, and 6 mm (P < .05). Findings suggest that rotary NiTi instruments are suitable for adequate glide path preparation because they promoted less deviation from the original canal anatomy when compared with hand-operated instruments. Of the 2 rotary pathfinding instruments, Scout RaCe showed an overall significantly better performance. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Extrusion-mixing compared with hand-mixing of polyether impression materials?

    PubMed

    McMahon, Caroline; Kinsella, Daniel; Fleming, Garry J P

    2010-12-01

    The hypotheses tested were two-fold (a) whether altering the base:catalyst ratio influences working time, elastic recovery and strain in compression properties of a hand-mixed polyether impression material and (b) whether an extrusion-mixed polyether impression material would have a significant advantage over a hand-mixed polyether impression material mixed to the optimum base:catalyst ratio. The polyether was hand-mixed at the optimum (manufacturers recommended) base:catalyst ratios (7:1) and further groups were made by increasing or decreasing the catalyst length by 25%. Additionally specimens were also made from an extrusion-mixed polyether impression material and compared with the optimum hand-mixed base:catalyst ratio. A penetrometer assembly was used to measure the working time (n=5). Five cylindrical specimens for each hand-mixed and extrusion mixed group investigated were employed for elastic recovery and strain in compression testing. Hand-mixing polyether impression materials with 25% more catalyst than that recommended significantly decreased the working time while hand-mixing with 25% less catalyst than that recommended significantly increased the strain in compression. The extrusion-mixed polyether impression material provided similar working time, elastic recovery and strain in compression to the hand-mixed polyether mixed at the optimum base:catalyst ratio.

  12. Combining heterogenous features for 3D hand-held object recognition

    NASA Astrophysics Data System (ADS)

    Lv, Xiong; Wang, Shuang; Li, Xiangyang; Jiang, Shuqiang

    2014-10-01

    Object recognition has wide applications in the area of human-machine interaction and multimedia retrieval. However, due to the problem of visual polysemous and concept polymorphism, it is still a great challenge to obtain reliable recognition result for the 2D images. Recently, with the emergence and easy availability of RGB-D equipment such as Kinect, this challenge could be relieved because the depth channel could bring more information. A very special and important case of object recognition is hand-held object recognition, as hand is a straight and natural way for both human-human interaction and human-machine interaction. In this paper, we study the problem of 3D object recognition by combining heterogenous features with different modalities and extraction techniques. For hand-craft feature, although it reserves the low-level information such as shape and color, it has shown weakness in representing hiconvolutionalgh-level semantic information compared with the automatic learned feature, especially deep feature. Deep feature has shown its great advantages in large scale dataset recognition but is not always robust to rotation or scale variance compared with hand-craft feature. In this paper, we propose a method to combine hand-craft point cloud features and deep learned features in RGB and depth channle. First, hand-held object segmentation is implemented by using depth cues and human skeleton information. Second, we combine the extracted hetegerogenous 3D features in different stages using linear concatenation and multiple kernel learning (MKL). Then a training model is used to recognize 3D handheld objects. Experimental results validate the effectiveness and gerneralization ability of the proposed method.

  13. Hand preference for sending mobile-phone text messages: associations with sex, writing hand, and throwing hand.

    PubMed

    Lambert, Anthony; Hallett, Charlene

    2009-07-01

    Hand preference for sending mobile-phone text messages ("texting") and its relationship with hand preference for other activities were investigated in a questionnaire study with 886 participants. Overall rates of both sinistrality and dextrality were reduced for texting, in comparison with other activities, due to the substantial number of individuals who use both hands simultaneously when performing this activity. Because they both involve verbal expression, it was hypothesised that the association between hand preferences for texting and writing might be stronger than the association between either of these tasks and more spatial activities, such as throwing. This prediction was not confirmed, either in the sample as a whole or in a sub-group of individuals who reported writing and throwing with opposite hands. Females were less likely than males to use their left hand when sending text messages. Implications of these findings are discussed, in relation to theoretical views of handedness and in relation to practical aspects of mobile-phone design.

  14. fMRI Evidence of ‘Mirror’ Responses to Geometric Shapes

    PubMed Central

    Press, Clare; Catmur, Caroline; Cook, Richard; Widmann, Hannah; Heyes, Cecilia; Bird, Geoffrey

    2012-01-01

    Mirror neurons may be a genetic adaptation for social interaction [1]. Alternatively, the associative hypothesis [2], [3] proposes that the development of mirror neurons is driven by sensorimotor learning, and that, given suitable experience, mirror neurons will respond to any stimulus. This hypothesis was tested using fMRI adaptation to index populations of cells with mirror properties. After sensorimotor training, where geometric shapes were paired with hand actions, BOLD response was measured while human participants experienced runs of events in which shape observation alternated with action execution or observation. Adaptation from shapes to action execution, and critically, observation, occurred in ventral premotor cortex (PMv) and inferior parietal lobule (IPL). Adaptation from shapes to execution indicates that neuronal populations responding to the shapes had motor properties, while adaptation to observation demonstrates that these populations had mirror properties. These results indicate that sensorimotor training induced populations of cells with mirror properties in PMv and IPL to respond to the observation of arbitrary shapes. They suggest that the mirror system has not been shaped by evolution to respond in a mirror fashion to biological actions; instead, its development is mediated by stimulus-general processes of learning within a system adapted for visuomotor control. PMID:23251653

  15. Phase Transformation and Shape Memory Effect of Ti-Pd-Pt-Zr High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Yamabe-Mitarai, Yoko; Takebe, Wataru; Shimojo, Masayuki

    2017-12-01

    To understand the potential of high-temperature shape memory alloys, we have investigated the phase transformation and shape memory effect of Ti-(50 - x)Pt- xPd-5Zr alloys ( x = 0, 5, and 15 at.%), which present the B2 structure in the austenite phase and B19 structure in the martensite phase. Their phase transformation temperatures are very high; A f and M f of Ti-50Pt are 1066 and 1012 °C, respectively. By adding Zr and Pd, the phase transition temperatures decrease, ranging between 804 and 994 °C for A f and 590 and 865 °C for M f. Even at the high phase transformation temperature, a maximum recovery ratio of 70% was obtained for one cycle in a thermal cyclic test. A work output of 1.2 J/cm3 was also obtained. The recovery ratio obtained by the thermal cyclic test was less than 70% because the recovery strain was < 1% and a large irrecoverable strain was obtained. The shape recovery was explained by the austenite strength. The training effect was also investigated.

  16. Effect of Graphene Addition on Shape Memory Behavior of Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Williams, Tiffany; Meador, Michael; Miller, Sandi; Scheiman, Daniel

    2011-01-01

    Shape memory polymers (SMPs) and composites are a special class of smart materials known for their ability to change size and shape upon exposure to an external stimulus (e.g. light, heat, pH, or magnetic field). These materials are commonly used for biomedical applications; however, recent attempts have been made towards developing SMPs and composites for use in aircraft and space applications. Implementing SMPs and composites to create a shape change effect in some aircraft structures could potentially reduce drag, decrease fuel consumption, and improve engine performance. This paper discusses the development of suitable materials to use in morphing aircraft structures. Thermally responsive epoxy SMPs and nanocomposites were developed and the shape memory behavior and thermo-mechanical properties were studied. Overall, preliminary results from dynamic mechanical analysis (DMA) showed that thermally actuated shape memory epoxies and nanocomposites possessed Tgs near approximately 168 C. When graphene nanofiller was added, the storage modulus and crosslinking density decreased. On the other hand, the addition of graphene enhanced the recovery behavior of the shape memory nanocomposites. It was assumed that the addition of graphene improved shape memory recovery by reducing the crosslinking density and increasing the elasticity of the nanocomposites.

  17. Intermittent bilateral coherence in physiological and essential hand tremor.

    PubMed

    Chakraborty, Soma; Kopecká, Jana; Šprdlík, Otakar; Hoskovcová, Martina; Ulmanová, Olga; Růžička, Evžen; Zapotocky, Martin

    2017-04-01

    To investigate the prevalence and the temporal structure of bilateral coherence in physiological (PT) and essential (ET) hand tremor. Triaxial accelerometric recordings from both hands in 30 healthy subjects and 34 ET patients were analyzed using spectral coherence and wavelet coherence methods. In 12 additional healthy subjects, the relation between the hand tremor and the chest wall acceleration was evaluated using partial coherence analysis. The majority of both PT and ET subjects displayed significant bilateral coherence. While in PT, bilateral coherence was most frequently found in resting hand position (97% of subjects), in ET the prevalence was comparable for resting (54%) and postural (49%-57%) positions. In both PT and ET, epochs of strong coherence lasting several to a dozen seconds were separated by intervals of insignificant coherence. In PT, bilateral coherence at the main tremor frequency (8-12Hz) was coupled with the ballistocardiac rhythm. The oscillations of the two hands are intermittently synchronized in both PT and ET. We propose that in postural PT, bilateral coherence at the main tremor frequency arises from transient simultaneous entrainment of the left and right hand oscillations to ballistocardiac forcing. Bilateral coherence of hand kinematics provides a sensitive measure of synchronizing influences on the left and right tremor oscillators. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  18. Acute muscular strength assessment using free weight bars of different thickness.

    PubMed

    Ratamess, Nicholas A; Faigenbaum, Avery D; Mangine, Gerald T; Hoffman, Jay R; Kang, Jie

    2007-02-01

    The purpose of the present investigation was to examine strength performance of 6 common resistance training exercises using free weight bars of different thickness. Eleven resistance-trained men (8.2 +/- 2.6 years of experience; age: 22.1 +/- 1.6 years; body mass: 90.5 +/- 8.9 kg) underwent 1 repetition maximum (1RM) strength testing on 6 occasions in random order for the deadlift, bent-over row, upright row, bench press, seated shoulder press, and arm curl exercises under 3 conditions using: (a) a standard Olympic bar (OL), (b) a 2-inch thick bar (5.08 cm grip span), and (c) a 3-inch thick bar (7.62 cm grip span). Significant (p < 0.05) interactions were observed for the "pulling" exercises. For the deadlift and bent-over row, highest 1RM values were obtained with OL, followed by the 2- and 3-inch bar. Significant 1RM performance decrements for the 2- and 3-inch bars were approximately 28.3 and 55.0%, respectively, for the deadlift; decrements for the 2- and 3-inch bars were approximately 8.9 and 37.3%, respectively, for the bent-over row. For the upright row and arm curl, similar 1RMs were obtained for OL and the 2-inch bar. However, a significant performance reduction was observed using the 3-inch bar (approximately 26.1% for the upright row and 17.6% for the arm curl). The reductions in 1RM loads correlated significantly to hand size and maximal isometric grip strength (r = -0.55 to -0.73). No differences were observed between bars for the bench press or shoulder press. In conclusion, the use of 2- and 3-inch thick bars may result in initial weight reductions primarily for pulling exercises presumably due to greater reliance on maximal grip strength and larger hand size.

  19. DRAMATIC EVOLUTION OF THE DISK-SHAPED SECONDARY IN THE ORION TRAPEZIUM STAR {theta}{sup 1} Ori B{sub 1} (BM Ori): MOST SATELLITE OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windemuth, Diana; Herbst, William; Tingle, Evan

    2013-05-01

    The eclipsing binary {theta}{sup 1} Orionis B{sub 1}, variable star designation BM Ori, is the faintest of the four well-known Trapezium stars at the heart of the Orion Nebula. The primary is a B3 star ({approx}6 M{sub Sun }) but the nature of the secondary ({approx}2 M{sub Sun }) has long been mysterious, since the duration and shape of primary eclipse are inappropriate for any sort of ordinary star. Here we report nearly continuous photometric observations obtained with the MOST satellite over {approx}4 cycles of the 6.47 d binary period. The light curve is of unprecedented quality, revealing a deep,more » symmetric primary eclipse as well as a clear reflection effect and secondary eclipse. In addition, there are other small disturbances, some of which repeat at the same phase over the four cycles monitored. The shape of the primary light curve has clearly evolved significantly over the past 40 years. While its overall duration and depth have remained roughly constant, the slopes of the descent and ascent phases are significantly shallower now than in the past and its distinctive flat-bottomed ''pseudo-totality'' is much less obvious or even absent in the most recent data. We further demonstrate that the primary eclipse was detected at X-ray wavelengths during the Chandra Orion Ultradeep Project (COUP) study. The light curve continues to be well modeled by a self-luminous and reflective disk-shaped object seen nearly edge-on orbiting the B3 primary. The dramatic change in shape over four decades is modeled as an opacity variation in a tenuous outer envelope or disk of the secondary object. We presume that the secondary is an extremely young protostar at an earlier evolutionary phase than can be commonly observed elsewhere in the Galaxy and that the opacity variations observed are related to its digestion of some accreted matter over the last 50-100 years. Indeed, this object deserves continued observational and theoretical attention as the youngest known

  20. Pure associative tactile agnosia for the left hand: clinical and anatomo-functional correlations.

    PubMed

    Veronelli, Laura; Ginex, Valeria; Dinacci, Daria; Cappa, Stefano F; Corbo, Massimo

    2014-09-01

    Associative tactile agnosia (TA) is defined as the inability to associate information about object sensory properties derived through tactile modality with previously acquired knowledge about object identity. The impairment is often described after a lesion involving the parietal cortex (Caselli, 1997; Platz, 1996). We report the case of SA, a right-handed 61-year-old man affected by first ever right hemispheric hemorrhagic stroke. The neurological examination was normal, excluding major somaesthetic and motor impairment; a brain magnetic resonance imaging (MRI) confirmed the presence of a right subacute hemorrhagic lesion limited to the post-central and supra-marginal gyri. A comprehensive neuropsychological evaluation detected a selective inability to name objects when handled with the left hand in the absence of other cognitive deficits. A series of experiments were conducted in order to assess each stage of tactile recognition processing using the same stimulus sets: materials, 3D geometrical shapes, real objects and letters. SA and seven matched controls underwent the same experimental tasks during four sessions in consecutive days. Tactile discrimination, recognition, pantomime, drawing after haptic exploration out of vision and tactile-visual matching abilities were assessed. In addition, we looked for the presence of a supra-modal impairment of spatial perception and of specific difficulties in programming exploratory movements during recognition. Tactile discrimination was intact for all the stimuli tested. In contrast, SA was able neither to recognize nor to pantomime real objects manipulated with the left hand out of vision, while he identified them with the right hand without hesitations. Tactile-visual matching was intact. Furthermore, SA was able to grossly reproduce the global shape in drawings but failed to extract details of objects after left-hand manipulation, and he could not identify objects after looking at his own drawings. This case