Effect of visuomotor-map uncertainty on visuomotor adaptation.
Saijo, Naoki; Gomi, Hiroaki
2012-03-01
Vision and proprioception contribute to generating hand movement. If a conflict between the visual and proprioceptive feedback of hand position is given, reaching movement is disturbed initially but recovers after training. Although previous studies have predominantly investigated the adaptive change in the motor output, it is unclear whether the contributions of visual and proprioceptive feedback controls to the reaching movement are modified by visuomotor adaptation. To investigate this, we focused on the change in proprioceptive feedback control associated with visuomotor adaptation. After the adaptation to gradually introduce visuomotor rotation, the hand reached the shifted position of the visual target to move the cursor to the visual target correctly. When the cursor feedback was occasionally eliminated (probe trial), the end point of the hand movement was biased in the visual-target direction, while the movement was initiated in the adapted direction, suggesting the incomplete adaptation of proprioceptive feedback control. Moreover, after the learning of uncertain visuomotor rotation, in which the rotation angle was randomly fluctuated on a trial-by-trial basis, the end-point bias in the probe trial increased, but the initial movement direction was not affected, suggesting a reduction in the adaptation level of proprioceptive feedback control. These results suggest that the change in the relative contribution of visual and proprioceptive feedback controls to the reaching movement in response to the visuomotor-map uncertainty is involved in visuomotor adaptation, whereas feedforward control might adapt in a manner different from that of the feedback control.
Proprioceptive recalibration in the right and left hands following abrupt visuomotor adaptation.
Salomonczyk, Danielle; Henriques, Denise Y P; Cressman, Erin K
2012-03-01
Previous studies have demonstrated that after reaching with misaligned visual feedback of the hand, one adapts his or her reaches and partially recalibrates proprioception, such that sense of felt hand position is shifted to match the seen hand position. However, to date, this has only been demonstrated in the right (dominant) hand following reach training with a visuomotor distortion in which the rotated cursor distortion was introduced gradually. As reach adaptation has been shown to differ depending on how the distortion is introduced (gradual vs. abrupt), we sought to examine proprioceptive recalibration following reach training with a cursor that was abruptly rotated 30° clockwise relative to hand motion. Furthermore, because the left and right arms have demonstrated selective advantages when matching visual and proprioceptive targets, respectively, we assessed proprioceptive recalibration in right-handed subjects following training with either the right or the left hand. On average, we observed shifts in felt hand position of approximately 7.6° following training with misaligned visual feedback of the hand, which is consistent with our previous findings in which the distortion was introduced gradually. Moreover, no difference was observed in proprioceptive recalibration across the left and right hands. These findings suggest that proprioceptive recalibration is a robust process that arises symmetrically in the two hands following visuomotor adaptation regardless of the initial magnitude of the error signal.
The role of differential delays in integrating transient visual and proprioceptive information
Cameron, Brendan D.; de la Malla, Cristina; López-Moliner, Joan
2014-01-01
Many actions involve limb movements toward a target. Visual and proprioceptive estimates are available online, and by optimally combining (Ernst and Banks, 2002) both modalities during the movement, the system can increase the precision of the hand estimate. The notion that both sensory modalities are integrated is also motivated by the intuition that we do not consciously perceive any discrepancy between the felt and seen hand's positions. This coherence as a result of integration does not necessarily imply realignment between the two modalities (Smeets et al., 2006). For example, the two estimates (visual and proprioceptive) might be different without either of them (e.g., proprioception) ever being adjusted after recovering the other (e.g., vision). The implication that the felt and seen positions might be different has a temporal analog. Because the actual feedback from the hand at a given instantaneous position reaches brain areas at different times for proprioception and vision (shorter for proprioception), the corresponding instantaneous unisensory position estimates will be different, with the proprioceptive one being ahead of the visual one. Based on the assumption that the system integrates optimally and online the available evidence from both senses, we introduce a temporal mechanism that explains the reported overestimation of hand positions when vision is occluded for active and passive movements (Gritsenko et al., 2007) without the need to resort to initial feedforward estimates (Wolpert et al., 1995). We set up hypotheses to test the validity of the model, and we contrast simulation-based predictions with empirical data. PMID:24550870
Influence of Visual Prism Adaptation on Auditory Space Representation.
Pochopien, Klaudia; Fahle, Manfred
2017-01-01
Prisms shifting the visual input sideways produce a mismatch between the visual versus felt position of one's hand. Prism adaptation eliminates this mismatch, realigning hand proprioception with visual input. Whether this realignment concerns exclusively the visuo-(hand)motor system or it generalizes to acoustic inputs is controversial. We here show that there is indeed a slight influence of visual adaptation on the perceived direction of acoustic sources. However, this shift in perceived auditory direction can be fully explained by a subconscious head rotation during prism exposure and by changes in arm proprioception. Hence, prism adaptation does only indirectly generalize to auditory space perception.
Proprioception Is Robust under External Forces
Kuling, Irene A.; Brenner, Eli; Smeets, Jeroen B. J.
2013-01-01
Information from cutaneous, muscle and joint receptors is combined with efferent information to create a reliable percept of the configuration of our body (proprioception). We exposed the hand to several horizontal force fields to examine whether external forces influence this percept. In an end-point task subjects reached visually presented positions with their unseen hand. In a vector reproduction task, subjects had to judge a distance and direction visually and reproduce the corresponding vector by moving the unseen hand. We found systematic individual errors in the reproduction of the end-points and vectors, but these errors did not vary systematically with the force fields. This suggests that human proprioception accounts for external forces applied to the hand when sensing the position of the hand in the horizontal plane. PMID:24019959
Ceux, Tanja; Montagne, Gilles; Buekers, Martinus J
2010-12-01
The present study examined whether the beneficial role of coherently grouped visual motion structures for performing complex (interlimb) coordination patterns can be generalized to synchronization behavior in a visuo-proprioceptive conflict situation. To achieve this goal, 17 participants had to synchronize a self-moved circle, representing the arm movement, with a visual target signal corresponding to five temporally shifted visual feedback conditions (0%, 25%, 50%, 75%, and 100% of the target cycle duration) in three synchronization modes (in-phase, anti-phase, and intermediate). The results showed that the perception of a newly generated perceptual Gestalt between the visual feedback of the arm and the target signal facilitated the synchronization performance in the preferred in-phase synchronization mode in contrast to the less stable anti-phase and intermediate mode. Our findings suggest that the complexity of the synchronization mode defines to what extent the visual and/or proprioceptive information source affects the synchronization performance in the present unimanual synchronization task. Copyright © 2010 Elsevier B.V. All rights reserved.
Interaction between gaze and visual and proprioceptive position judgements.
Fiehler, Katja; Rösler, Frank; Henriques, Denise Y P
2010-06-01
There is considerable evidence that targets for action are represented in a dynamic gaze-centered frame of reference, such that each gaze shift requires an internal updating of the target. Here, we investigated the effect of eye movements on the spatial representation of targets used for position judgements. Participants had their hand passively placed to a location, and then judged whether this location was left or right of a remembered visual or remembered proprioceptive target, while gaze direction was varied. Estimates of position of the remembered targets relative to the unseen position of the hand were assessed with an adaptive psychophysical procedure. These positional judgements significantly varied relative to gaze for both remembered visual and remembered proprioceptive targets. Our results suggest that relative target positions may also be represented in eye-centered coordinates. This implies similar spatial reference frames for action control and space perception when positions are coded relative to the hand.
Proprioceptive versus Visual Control in Autistic Children.
ERIC Educational Resources Information Center
Masterton, B. A.; Biederman, G. B.
1983-01-01
The autistic children's presumed preference for proximal over distal sensory input was studied by requiring that "autistic," retarded, and "normal" children (7-15 years old) adapt to lateral displacement of the visual field. Only autistic Ss demonstrated transfer of adaptation to the nonadapted hand, indicating reliance on proprioception rather…
Biases in rhythmic sensorimotor coordination: effects of modality and intentionality.
Debats, Nienke B; Ridderikhoff, Arne; de Boer, Betteco J; Peper, C Lieke E
2013-08-01
Sensorimotor biases were examined for intentional (tracking task) and unintentional (distractor task) rhythmic coordination. The tracking task involved unimanual tracking of either an oscillating visual signal or the passive movements of the contralateral hand (proprioceptive signal). In both conditions the required coordination patterns (isodirectional and mirror-symmetric) were defined relative to the body midline and the hands were not visible. For proprioceptive tracking the two patterns did not differ in stability, whereas for visual tracking the isodirectional pattern was performed more stably than the mirror-symmetric pattern. However, when visual feedback about the unimanual hand movements was provided during visual tracking, the isodirectional pattern ceased to be dominant. Together these results indicated that the stability of the coordination patterns did not depend on the modality of the target signal per se, but on the combination of sensory signals that needed to be processed (unimodal vs. cross-modal). The distractor task entailed rhythmic unimanual movements during which a rhythmic visual or proprioceptive distractor signal had to be ignored. The observed biases were similar as for intentional coordination, suggesting that intentionality did not affect the underlying sensorimotor processes qualitatively. Intentional tracking was characterized by active sensory pursuit, through muscle activity in the passively moved arm (proprioceptive tracking task) and rhythmic eye movements (visual tracking task). Presumably this pursuit afforded predictive information serving the coordination process. Copyright © 2013 Elsevier B.V. All rights reserved.
Shibuya, Satoshi; Unenaka, Satoshi; Ohki, Yukari
2017-01-01
Body ownership and agency are fundamental to self-consciousness. These bodily experiences have been intensively investigated using the rubber hand illusion, wherein participants perceive a fake hand as their own. After presentation of the illusion, the position of the participant's hand then shifts toward the location of the fake hand (proprioceptive drift). However, it remains controversial whether proprioceptive drift is able to provide an objective measurement of body ownership, and whether agency also affects drift. Using the virtual hand illusion (VHI), the current study examined the effects of body ownership and agency on proprioceptive drift, with three different visuo-motor tasks. Twenty healthy adults (29.6 ± 9.2 years old) completed VH manipulations using their right hand under a 2 × 2 factorial design (active vs. passive manipulation, and congruent vs. incongruent virtual hand). Prior to and after VH manipulation, three different tasks were performed to assess proprioceptive drift, in which participants were unable to see their real hands. The effects of the VHI on proprioceptive drift were task-dependent. When participants were required to judge the position of their right hand using a ruler, or by reaching toward a visual target, both body ownership and agency modulated proprioceptive drift. Comparatively, when participants aligned both hands, drift was influenced by ownership but not agency. These results suggest that body ownership and agency might differentially modulate various body representations in the brain.
Crossing the Hands Increases Illusory Self-Touch
Pozeg, Polona; Rognini, Giulio; Salomon, Roy; Blanke, Olaf
2014-01-01
Manipulation of hand posture, such as crossing the hands, has been frequently used to study how the body and its immediately surrounding space are represented in the brain. Abundant data show that crossed arms posture impairs remapping of tactile stimuli from somatotopic to external space reference frame and deteriorates performance on several tactile processing tasks. Here we investigated how impaired tactile remapping affects the illusory self-touch, induced by the non-visual variant of the rubber hand illusion (RHI) paradigm. In this paradigm blindfolded participants (Experiment 1) had their hands either uncrossed or crossed over the body midline. The strength of illusory self-touch was measured with questionnaire ratings and proprioceptive drift. Our results showed that, during synchronous tactile stimulation, the strength of illusory self-touch increased when hands were crossed compared to the uncrossed posture. Follow-up experiments showed that the increase in illusion strength was not related to unfamiliar hand position (Experiment 2) and that it was equally strengthened regardless of where in the peripersonal space the hands were crossed (Experiment 3). However, while the boosting effect of crossing the hands was evident from subjective ratings, the proprioceptive drift was not modulated by crossed posture. Finally, in contrast to the illusion increase in the non-visual RHI, the crossed hand postures did not alter illusory ownership or proprioceptive drift in the classical, visuo-tactile version of RHI (Experiment 4). We argue that the increase in illusory self-touch is related to misalignment of somatotopic and external reference frames and consequently inadequate tactile-proprioceptive integration, leading to re-weighting of the tactile and proprioceptive signals.The present study not only shows that illusory self-touch can be induced by crossing the hands, but importantly, that this posture is associated with a stronger illusion. PMID:24699795
Prism adaptation in virtual and natural contexts: Evidence for a flexible adaptive process.
Veilleux, Louis-Nicolas; Proteau, Luc
2015-01-01
Prism exposure when aiming at a visual target in a virtual condition (e.g., when the hand is represented by a video representation) produces no or only small adaptations (after-effects), whereas prism exposure in a natural condition produces large after-effects. Some researchers suggested that this difference may arise from distinct adaptive processes, but other studies suggested a unique process. The present study reconciled these conflicting interpretations. Forty participants were divided into two groups: One group used visual feedback of their hand (natural context), and the other group used computer-generated representational feedback (virtual context). Visual feedback during adaptation was concurrent or terminal. All participants underwent laterally displacing prism perturbation. The results showed that the after-effects were twice as large in the "natural context" than in the "virtual context". No significant differences were observed between the concurrent and terminal feedback conditions. The after-effects generalized to untested targets and workspace. These results suggest that prism adaptation in virtual and natural contexts involves the same process. The smaller after-effects in the virtual context suggest that the depth of adaptation is a function of the degree of convergence between the proprioceptive and visual information that arises from the hand.
Saidi, Maryam; Towhidkhah, Farzad; Gharibzadeh, Shahriar; Lari, Abdolaziz Azizi
2013-12-01
Humans perceive the surrounding world by integration of information through different sensory modalities. Earlier models of multisensory integration rely mainly on traditional Bayesian and causal Bayesian inferences for single causal (source) and two causal (for two senses such as visual and auditory systems), respectively. In this paper a new recurrent neural model is presented for integration of visual and proprioceptive information. This model is based on population coding which is able to mimic multisensory integration of neural centers in the human brain. The simulation results agree with those achieved by casual Bayesian inference. The model can also simulate the sensory training process of visual and proprioceptive information in human. Training process in multisensory integration is a point with less attention in the literature before. The effect of proprioceptive training on multisensory perception was investigated through a set of experiments in our previous study. The current study, evaluates the effect of both modalities, i.e., visual and proprioceptive training and compares them with each other through a set of new experiments. In these experiments, the subject was asked to move his/her hand in a circle and estimate its position. The experiments were performed on eight subjects with proprioception training and eight subjects with visual training. Results of the experiments show three important points: (1) visual learning rate is significantly more than that of proprioception; (2) means of visual and proprioceptive errors are decreased by training but statistical analysis shows that this decrement is significant for proprioceptive error and non-significant for visual error, and (3) visual errors in training phase even in the beginning of it, is much less than errors of the main test stage because in the main test, the subject has to focus on two senses. The results of the experiments in this paper is in agreement with the results of the neural model simulation.
ERIC Educational Resources Information Center
Cascio, Carissa J.; Foss-Feig, Jennifer H.; Burnette, Courtney P.; Heacock, Jessica L.; Cosby, Akua A.
2012-01-01
In the rubber hand illusion, perceived hand ownership can be transferred to a rubber hand after synchronous visual and tactile stimulation. Perceived body ownership and self-other relation are foundational for development of self-awareness, imitation, and empathy, which are all affected in autism spectrum disorders (ASD). We examined the rubber…
Proprioceptive coordination of movement sequences: role of velocity and position information.
Cordo, P; Carlton, L; Bevan, L; Carlton, M; Kerr, G K
1994-05-01
1. Recent studies have shown that the CNS uses proprioceptive information to coordinate multijoint movement sequences; proprioceptive input related to the kinematics of one joint rotation in a movement sequence can be used to trigger a subsequent joint rotation. In this paper we adopt a broad definition of "proprioception," which includes all somatosensory information related to joint posture and kinematics. This paper addresses how the CNS uses proprioceptive information related to the velocity and position of joints to coordinate multijoint movement sequences. 2. Normal human subjects sat at an experimental apparatus and performed a movement sequence with the right arm without visual feedback. The apparatus passively rotated the right elbow horizontally in the extension direction with either a constant velocity trajectory or an unpredictable velocity trajectory. The subjects' task was to open briskly the right hand when the elbow passed through a prescribed target position, similar to backhand throwing in the horizontal plane. The randomization of elbow velocities and the absence of visual information was used to discourage subjects from using any information other than proprioceptive input to perform the task. 3. Our results indicate that the CNS is able to extract the necessary kinematic information from proprioceptive input to trigger the hand opening at the correct elbow position. We estimated the minimal sensory conduction and processing delay to be 150 ms, and on the basis of this estimate, we predicted the expected performance with different degrees of reduced proprioceptive information. These predictions were compared with the subjects' actual performances, revealing that the CNS was using proprioceptive input related to joint velocity in this motor task. To determine whether position information was also being used, we examined the subjects' performances with unpredictable velocity trajectories. The results from experiments with unpredictable velocity trajectories indicate that the CNS extracts proprioceptive information related to both the velocity and the angular position of the joint to trigger the hand movement in this movement sequence. 4. To determine the generality of proprioceptive triggering in movement sequences, we estimated the minimal movement duration with which proprioceptive information can be used as well as the amount of learning required to use proprioceptive input to perform the task. The temporal limits for proprioceptive processing in this movement task were established by determining the minimal movement time during which the task could be performed.(ABSTRACT TRUNCATED AT 400 WORDS)
Morita, Tomoyo; Saito, Daisuke N; Ban, Midori; Shimada, Koji; Okamoto, Yuko; Kosaka, Hirotaka; Okazawa, Hidehiko; Asada, Minoru; Naito, Eiichi
2017-04-21
Proprioception is somatic sensation that allows us to sense and recognize position, posture, and their changes in our body parts. It pertains directly to oneself and may contribute to bodily awareness. Likewise, one's face is a symbol of oneself, so that visual self-face recognition directly contributes to the awareness of self as distinct from others. Recently, we showed that right-hemispheric dominant activity in the inferior fronto-parietal cortices, which are connected by the inferior branch of the superior longitudinal fasciculus (SLF III), is associated with proprioceptive illusion (awareness), in concert with sensorimotor activity. Herein, we tested the hypothesis that visual self-face recognition shares brain regions active during proprioceptive illusion in the right inferior fronto-parietal SLF III network. We scanned brain activity using functional magnetic resonance imaging while twenty-two right-handed healthy adults performed two tasks. One was a proprioceptive illusion task, where blindfolded participants experienced a proprioceptive illusion of right hand movement. The other was a visual self-face recognition task, where the participants judged whether an observed face was their own. We examined whether the self-face recognition and the proprioceptive illusion commonly activated the inferior fronto-parietal cortices connected by the SLF III in a right-hemispheric dominant manner. Despite the difference in sensory modality and in the body parts involved in the two tasks, both tasks activated the right inferior fronto-parietal cortices, which are likely connected by the SLF III, in a right-side dominant manner. Here we discuss possible roles for right inferior fronto-parietal activity in bodily awareness and self-awareness. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Bimanual proprioceptive performance differs for right- and left-handed individuals.
Han, Jia; Waddington, Gordon; Adams, Roger; Anson, Judith
2013-05-10
It has been proposed that asymmetry between the upper limbs in the utilization of proprioceptive feedback arises from functional differences in the roles of the preferred and non-preferred hands during bimanual tasks. The present study investigated unimanual and bimanual proprioceptive performance in right- and left-handed young adults with an active finger pinch movement discrimination task. With visual information removed, participants were required to make absolute judgments about the extent of pinch movements made to physical stops, either by one hand, or by both hands concurrently, with the sequence of presented movement extents varied randomly. Discrimination accuracy scores were derived from participants' responses using non-parametric signal detection analysis. Consistent with previous findings, a non-dominant hand/hemisphere superiority effect was observed, where the non-dominant hands of right- and left-handed individuals performed overall significantly better than their dominant hands. For all participants, bimanual movement discrimination scores were significantly lower than scores obtained in the unimanual task. However, the magnitude of the performance reduction, from the unimanual to the bimanual task, was significantly greater for left-handed individuals. The effect whereby bimanual proprioception was disproportionately affected in left-handed individuals could be due to enhanced neural communication between hemispheres in left-handed individuals leading to less distinctive separation of information obtained from the two hands in the cerebral cortex. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Optimal visuotactile integration for velocity discrimination of self-hand movements
Chancel, M.; Blanchard, C.; Guerraz, M.; Montagnini, A.
2016-01-01
Illusory hand movements can be elicited by a textured disk or a visual pattern rotating under one's hand, while proprioceptive inputs convey immobility information (Blanchard C, Roll R, Roll JP, Kavounoudias A. PLoS One 8: e62475, 2013). Here, we investigated whether visuotactile integration can optimize velocity discrimination of illusory hand movements in line with Bayesian predictions. We induced illusory movements in 15 volunteers by visual and/or tactile stimulation delivered at six angular velocities. Participants had to compare hand illusion velocities with a 5°/s hand reference movement in an alternative forced choice paradigm. Results showed that the discrimination threshold decreased in the visuotactile condition compared with unimodal (visual or tactile) conditions, reflecting better bimodal discrimination. The perceptual strength (gain) of the illusions also increased: the stimulation required to give rise to a 5°/s illusory movement was slower in the visuotactile condition compared with each of the two unimodal conditions. The maximum likelihood estimation model satisfactorily predicted the improved discrimination threshold but not the increase in gain. When we added a zero-centered prior, reflecting immobility information, the Bayesian model did actually predict the gain increase but systematically overestimated it. Interestingly, the predicted gains better fit the visuotactile performances when a proprioceptive noise was generated by covibrating antagonist wrist muscles. These findings show that kinesthetic information of visual and tactile origins is optimally integrated to improve velocity discrimination of self-hand movements. However, a Bayesian model alone could not fully describe the illusory phenomenon pointing to the crucial importance of the omnipresent muscle proprioceptive cues with respect to other sensory cues for kinesthesia. PMID:27385802
Scheidt, Robert A.; Lillis, Kyle P.; Emerson, Scott J.
2010-01-01
We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject-driven) and passive (robot-driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target vs. when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel “visual channel” condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed. PMID:20532489
Limanowski, Jakub; Blankenburg, Felix
2016-03-02
The brain constructs a flexible representation of the body from multisensory information. Previous work on monkeys suggests that the posterior parietal cortex (PPC) and ventral premotor cortex (PMv) represent the position of the upper limbs based on visual and proprioceptive information. Human experiments on the rubber hand illusion implicate similar regions, but since such experiments rely on additional visuo-tactile interactions, they cannot isolate visuo-proprioceptive integration. Here, we independently manipulated the position (palm or back facing) of passive human participants' unseen arm and of a photorealistic virtual 3D arm. Functional magnetic resonance imaging (fMRI) revealed that matching visual and proprioceptive information about arm position engaged the PPC, PMv, and the body-selective extrastriate body area (EBA); activity in the PMv moreover reflected interindividual differences in congruent arm ownership. Further, the PPC, PMv, and EBA increased their coupling with the primary visual cortex during congruent visuo-proprioceptive position information. These results suggest that human PPC, PMv, and EBA evaluate visual and proprioceptive position information and, under sufficient cross-modal congruence, integrate it into a multisensory representation of the upper limb in space. The position of our limbs in space constantly changes, yet the brain manages to represent limb position accurately by combining information from vision and proprioception. Electrophysiological recordings in monkeys have revealed neurons in the posterior parietal and premotor cortices that seem to implement and update such a multisensory limb representation, but this has been difficult to demonstrate in humans. Our fMRI experiment shows that human posterior parietal, premotor, and body-selective visual brain areas respond preferentially to a virtual arm seen in a position corresponding to one's unseen hidden arm, while increasing their communication with regions conveying visual information. These brain areas thus likely integrate visual and proprioceptive information into a flexible multisensory body representation. Copyright © 2016 the authors 0270-6474/16/362582-08$15.00/0.
Virtual Hand Illusion Induced by Visuomotor Correlations
Sanchez-Vives, Maria V.; Spanlang, Bernhard; Frisoli, Antonio; Bergamasco, Massimo; Slater, Mel
2010-01-01
Background Our body schema gives the subjective impression of being highly stable. However, a number of easily-evoked illusions illustrate its remarkable malleability. In the rubber-hand illusion, illusory ownership of a rubber-hand is evoked by synchronous visual and tactile stimulation on a visible rubber arm and on the hidden real arm. Ownership is concurrent with a proprioceptive illusion of displacement of the arm position towards the fake arm. We have previously shown that this illusion of ownership plus the proprioceptive displacement also occurs towards a virtual 3D projection of an arm when the appropriate synchronous visuotactile stimulation is provided. Our objective here was to explore whether these illusions (ownership and proprioceptive displacement) can be induced by only synchronous visuomotor stimulation, in the absence of tactile stimulation. Methodology/Principal Findings To achieve this we used a data-glove that uses sensors transmitting the positions of fingers to a virtually projected hand in the synchronous but not in the asynchronous condition. The illusion of ownership was measured by means of questionnaires. Questions related to ownership gave significantly larger values for the synchronous than for the asynchronous condition. Proprioceptive displacement provided an objective measure of the illusion and had a median value of 3.5 cm difference between the synchronous and asynchronous conditions. In addition, the correlation between the feeling of ownership of the virtual arm and the size of the drift was significant. Conclusions/Significance We conclude that synchrony between visual and proprioceptive information along with motor activity is able to induce an illusion of ownership over a virtual arm. This has implications regarding the brain mechanisms underlying body ownership as well as the use of virtual bodies in therapies and rehabilitation. PMID:20454463
Role of orientation reference selection in motion sickness
NASA Technical Reports Server (NTRS)
Peterka, Robert J.; Black, F. Owen
1988-01-01
Previous experiments with moving platform posturography have shown that different people have varying abilities to resolve conflicts among vestibular, visual, and proprioceptive sensory signals used to control upright posture. In particular, there is one class of subjects with a vestibular disorder known as benign paroxysmal positional vertigo (BPPV) who often are particularly sensitive to inaccurate visual information. That is, they will use visual sensory information for the control of their posture even when that visual information is inaccurate and is in conflict with accurate proprioceptive and vestibular sensory signals. BPPV has been associated with disorders of both posterior semicircular canal function and possibly otolith function. The present proposal hopes to take advantage of the similarities between the space motion sickness problem and the sensory orientation reference selection problems associated with the BPPV syndrome. These similarities include both etiology related to abnormal vertical canal-otolith function, and motion sickness initiating events provoked by pitch and roll head movements. The objectives of this proposal are to explore and quantify the orientation reference selection abilities of subjects and the relation of this selection to motion sickness in humans.
Implicit and Explicit Representations of Hand Position in Tool Use
Rand, Miya K.; Heuer, Herbert
2013-01-01
Understanding the interactions of visual and proprioceptive information in tool use is important as it is the basis for learning of the tool's kinematic transformation and thus skilled performance. This study investigated how the CNS combines seen cursor positions and felt hand positions under a visuo-motor rotation paradigm. Young and older adult participants performed aiming movements on a digitizer while looking at rotated visual feedback on a monitor. After each movement, they judged either the proprioceptively sensed hand direction or the visually sensed cursor direction. We identified asymmetric mutual biases with a strong visual dominance. Furthermore, we found a number of differences between explicit and implicit judgments of hand directions. The explicit judgments had considerably larger variability than the implicit judgments. The bias toward the cursor direction for the explicit judgments was about twice as strong as for the implicit judgments. The individual biases of explicit and implicit judgments were uncorrelated. Biases of these judgments exhibited opposite sequential effects. Moreover, age-related changes were also different between these judgments. The judgment variability was decreased and the bias toward the cursor direction was increased with increasing age only for the explicit judgments. These results indicate distinct explicit and implicit neural representations of hand direction, similar to the notion of distinct visual systems. PMID:23894307
Perceptual drifts of real and artificial limbs in the rubber hand illusion.
Fuchs, Xaver; Riemer, Martin; Diers, Martin; Flor, Herta; Trojan, Jörg
2016-04-22
In the rubber hand illusion (RHI), transient embodiment of an artificial hand is induced. An often-used indicator for this effect is the "proprioceptive drift", a localization bias of the real hand towards the artificial hand. This measure suggests that the real hand is attracted by the artificial hand. Principles of multisensory integration, however, rather suggest that conflicting sensory information is combined in a "compromise" fashion and that hands should rather be attracted towards each other. Here, we used a new variant of the RHI paradigm in which participants pointed at the artificial hand. Our results indicate that the perceived positions of the real and artificial hand converge towards each other: in addition to the well-known drift of the real hand towards the artificial hand, we also found an opposite drift of the artificial hand towards the real hand. Our results contradict the notion of perceptual substitution of the real hand by the artificial hand. Rather, they are in line with the view that vision and proprioception are fused into an intermediate percept. This is further evidence that the perception of our body is a flexible multisensory construction that is based on integration principles.
Thøgersen, Mikkel; Hansen, John; Arendt-Nielsen, Lars; Flor, Herta; Petrini, Laura
2018-07-16
The purpose of the present study was to assess changes in body perception when visual feedback was removed from the hand and arm with the purpose of resembling the visual deprivation arising from amputation. The illusion was created by removing the visual feedback from the participants' own left forearm using a mixed reality (MR) and green screen environment. Thirty healthy persons (15 female) participated in the study. Each subject experienced two MR conditions, one with and one without visual feedback from the left hand, and a baseline condition with normal vision of the limb (no MR). Body perception was assessed using proprioceptive drift, questionnaires on body perception, and thermal sensitivity measures (cold, warm, heat pain and cold pain detection thresholds). The proprioceptive drift showed a significant shift of the tip of the index finger (p<0.001) towards the elbow in the illusion condition (mean drift: -3.71 cm). Self-report showed a significant decrease in ownership (p<0.001), shift in perceptual distortions, (e.g. "It feels as if my lower arm has become shorter") (p=0.025), and changes in sensations of the hand (tingling, tickling) (p=0.025). A significant decrease was also observed in cold detection threshold (p<0.001), i.e. the detection threshold was cooler than for the control conditions. The proprioceptive drift together with the self-reported questionnaire showed that the participants felt a proximal retraction of their limb, resembling the telescoping experienced by phantom limb patients. The study highlights the influence of missing visual feedback and its possible contribution to phantom limb phenomena. Copyright © 2018 Elsevier B.V. All rights reserved.
Hellman, Randall B; Chang, Eric; Tanner, Justin; Helms Tillery, Stephen I; Santos, Veronica J
2015-01-01
Many upper limb amputees experience an incessant, post-amputation "phantom limb pain" and report that their missing limbs feel paralyzed in an uncomfortable posture. One hypothesis is that efferent commands no longer generate expected afferent signals, such as proprioceptive feedback from changes in limb configuration, and that the mismatch of motor commands and visual feedback is interpreted as pain. Non-invasive therapeutic techniques for treating phantom limb pain, such as mirror visual feedback (MVF), rely on visualizations of postural changes. Advances in neural interfaces for artificial sensory feedback now make it possible to combine MVF with a high-tech "rubber hand" illusion, in which subjects develop a sense of embodiment with a fake hand when subjected to congruent visual and somatosensory feedback. We discuss clinical benefits that could arise from the confluence of known concepts such as MVF and the rubber hand illusion, and new technologies such as neural interfaces for sensory feedback and highly sensorized robot hand testbeds, such as the "BairClaw" presented here. Our multi-articulating, anthropomorphic robot testbed can be used to study proprioceptive and tactile sensory stimuli during physical finger-object interactions. Conceived for artificial grasp, manipulation, and haptic exploration, the BairClaw could also be used for future studies on the neurorehabilitation of somatosensory disorders due to upper limb impairment or loss. A remote actuation system enables the modular control of tendon-driven hands. The artificial proprioception system enables direct measurement of joint angles and tendon tensions while temperature, vibration, and skin deformation are provided by a multimodal tactile sensor. The provision of multimodal sensory feedback that is spatiotemporally consistent with commanded actions could lead to benefits such as reduced phantom limb pain, and increased prosthesis use due to improved functionality and reduced cognitive burden.
Hellman, Randall B.; Chang, Eric; Tanner, Justin; Helms Tillery, Stephen I.; Santos, Veronica J.
2015-01-01
Many upper limb amputees experience an incessant, post-amputation “phantom limb pain” and report that their missing limbs feel paralyzed in an uncomfortable posture. One hypothesis is that efferent commands no longer generate expected afferent signals, such as proprioceptive feedback from changes in limb configuration, and that the mismatch of motor commands and visual feedback is interpreted as pain. Non-invasive therapeutic techniques for treating phantom limb pain, such as mirror visual feedback (MVF), rely on visualizations of postural changes. Advances in neural interfaces for artificial sensory feedback now make it possible to combine MVF with a high-tech “rubber hand” illusion, in which subjects develop a sense of embodiment with a fake hand when subjected to congruent visual and somatosensory feedback. We discuss clinical benefits that could arise from the confluence of known concepts such as MVF and the rubber hand illusion, and new technologies such as neural interfaces for sensory feedback and highly sensorized robot hand testbeds, such as the “BairClaw” presented here. Our multi-articulating, anthropomorphic robot testbed can be used to study proprioceptive and tactile sensory stimuli during physical finger–object interactions. Conceived for artificial grasp, manipulation, and haptic exploration, the BairClaw could also be used for future studies on the neurorehabilitation of somatosensory disorders due to upper limb impairment or loss. A remote actuation system enables the modular control of tendon-driven hands. The artificial proprioception system enables direct measurement of joint angles and tendon tensions while temperature, vibration, and skin deformation are provided by a multimodal tactile sensor. The provision of multimodal sensory feedback that is spatiotemporally consistent with commanded actions could lead to benefits such as reduced phantom limb pain, and increased prosthesis use due to improved functionality and reduced cognitive burden. PMID:25745391
ERIC Educational Resources Information Center
Cardini, Flavia; Haggard, Patrick; Ladavas, Elisabetta
2013-01-01
We have investigated the relation between visuo-tactile interactions and the self-other distinction. In the Visual Enhancement of Touch (VET) effect, non-informative vision of one's own hand improves tactile spatial perception. Previous studies suggested that looking at "another"person's hand could also enhance tactile perception, but did not…
Faivre, Nathan; Dönz, Jonathan; Scandola, Michele; Dhanis, Herberto; Bello Ruiz, Javier; Bernasconi, Fosco; Salomon, Roy; Blanke, Olaf
2017-01-04
Vision is known to be shaped by context, defined by environmental and bodily signals. In the Taylor illusion, the size of an afterimage projected on one's hand changes according to proprioceptive signals conveying hand position. Here, we assessed whether the Taylor illusion does not just depend on the physical hand position, but also on bodily self-consciousness as quantified through illusory hand ownership. Relying on the somatic rubber hand illusion, we manipulated hand ownership, such that participants embodied a rubber hand placed next to their own hand. We found that an afterimage projected on the participant's hand drifted depending on illusory ownership between the participants' two hands, showing an implication of self-representation during the Taylor illusion. Oscillatory power analysis of electroencephalographic signals showed that illusory hand ownership was stronger in participants with stronger α suppression over left sensorimotor cortex, whereas the Taylor illusion correlated with higher β/γ power over frontotemporal regions. Higher γ connectivity between left sensorimotor and inferior parietal cortex was also found during illusory hand ownership. These data show that afterimage drifts in the Taylor illusion do not only depend on the physical hand position but also on subjective ownership, which itself is based on the synchrony of somatosensory signals from the two hands. The effect of ownership on afterimage drifts is associated with β/γ power and γ connectivity between frontoparietal regions and the visual cortex. Together, our results suggest that visual percepts are not only influenced by bodily context but are self-grounded, mapped on a self-referential frame. Vision is influenced by the body: in the Taylor illusion, the size of an afterimage projected on one's hand changes according to tactile and proprioceptive signals conveying hand position. Here, we report a new phenomenon revealing that the perception of afterimages depends not only on bodily signals, but also on the sense of self. Relying on the rubber hand illusion, we manipulated hand ownership, so that participants embodied a rubber hand placed next to their own hand. We found that visual afterimages projected on the participant's hand drifted laterally, only when the rubber hand was embodied. Electroencephalography revealed spectral dissociations between somatic and visual effects, and higher γ connectivity along the dorsal visual pathways when the rubber hand was embodied. Copyright © 2017 the authors 0270-6474/17/370011-12$15.00/0.
The Rubber Hand Illusion: Feeling of Ownership and Proprioceptive Drift Do Not Go Hand in Hand
Rohde, Marieke; Di Luca, Massimiliano; Ernst, Marc O.
2011-01-01
In the Rubber Hand Illusion, the feeling of ownership of a rubber hand displaced from a participant's real occluded hand is evoked by synchronously stroking both hands with paintbrushes. A change of perceived finger location towards the rubber hand (proprioceptive drift) has been reported to correlate with this illusion. To measure the time course of proprioceptive drift during the Rubber Hand Illusion, we regularly interrupted stroking (performed by robot arms) to measure perceived finger location. Measurements were made by projecting a probe dot into the field of view (using a semi-transparent mirror) and asking participants if the dot is to the left or to the right of their invisible hand (Experiment 1) or to adjust the position of the dot to that of their invisible hand (Experiment 2). We varied both the measurement frequency (every 10 s, 40 s, 120 s) and the mode of stroking (synchronous, asynchronous, just vision). Surprisingly, with frequent measurements, proprioceptive drift occurs not only in the synchronous stroking condition but also in the two control conditions (asynchronous stroking, just vision). Proprioceptive drift in the synchronous stroking condition is never higher than in the just vision condition. Only continuous exposure to asynchronous stroking prevents proprioceptive drift and thus replicates the differences in drift reported in the literature. By contrast, complementary subjective ratings (questionnaire) show that the feeling of ownership requires synchronous stroking and is not present in the asynchronous stroking condition. Thus, subjective ratings and drift are dissociated. We conclude that different mechanisms of multisensory integration are responsible for proprioceptive drift and the feeling of ownership. Proprioceptive drift relies on visuoproprioceptive integration alone, a process that is inhibited by asynchronous stroking, the most common control condition in Rubber Hand Illusion experiments. This dissociation implies that conclusions about feelings of ownership cannot be drawn from measuring proprioceptive drift alone. PMID:21738756
Inertial constraints on limb proprioception are independent of visual calibration.
Riley, M A; Turvey, M T
2001-04-01
When the coincidence of a limb's spatial axes and inertial eigenvectors is broken, haptic proprioception of the limb's position conforms to the eigenvectors. Additionally, when prisms break the coincidence between an arm's visual and actual positions, haptic proprioception is shifted toward the visual-spatial direction. In 3 experiments, variation of the arm's mass distribution was combined with prism adaptation to investigate the hypothesis that the proprioceptive effects of inertial and visual manipulations are additive. This hypothesis was supported across manipulations of plane of motion, body posture, proprioceptive target, and proprioceptive experience during prism adaptation. Haptic proprioception seems to depend on local, physical reference frames that are relative to the physical reference frames for the body's environmental position and orientation.
Shabbott, Britne A; Sainburg, Robert L
2010-05-01
Visuomotor adaptation is mediated by errors between intended and sensory-detected arm positions. However, it is not clear whether visual-based errors that are shown during the course of motion lead to qualitatively different or more efficient adaptation than errors shown after movement. For instance, continuous visual feedback mediates online error corrections, which may facilitate or inhibit the adaptation process. We addressed this question by manipulating the timing of visual error information and task instructions during a visuomotor adaptation task. Subjects were exposed to a visuomotor rotation, during which they received continuous visual feedback (CF) of hand position with instructions to correct or not correct online errors, or knowledge-of-results (KR), provided as a static hand-path at the end of each trial. Our results showed that all groups improved performance with practice, and that online error corrections were inconsequential to the adaptation process. However, in contrast to the CF groups, the KR group showed relatively small reductions in mean error with practice, increased inter-trial variability during rotation exposure, and more limited generalization across target distances and workspace. Further, although the KR group showed improved performance with practice, after-effects were minimal when the rotation was removed. These findings suggest that simultaneous visual and proprioceptive information is critical in altering neural representations of visuomotor maps, although delayed error information may elicit compensatory strategies to offset perturbations.
Humanlike robot hands controlled by brain activity arouse illusion of ownership in operators
Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi
2013-01-01
Operators of a pair of robotic hands report ownership for those hands when they hold image of a grasp motion and watch the robot perform it. We present a novel body ownership illusion that is induced by merely watching and controlling robot's motions through a brain machine interface. In past studies, body ownership illusions were induced by correlation of such sensory inputs as vision, touch and proprioception. However, in the presented illusion none of the mentioned sensations are integrated except vision. Our results show that during BMI-operation of robotic hands, the interaction between motor commands and visual feedback of the intended motions is adequate to incorporate the non-body limbs into one's own body. Our discussion focuses on the role of proprioceptive information in the mechanism of agency-driven illusions. We believe that our findings will contribute to improvement of tele-presence systems in which operators incorporate BMI-operated robots into their body representations. PMID:23928891
Visual and proprioceptive interaction in patients with bilateral vestibular loss☆
Cutfield, Nicholas J.; Scott, Gregory; Waldman, Adam D.; Sharp, David J.; Bronstein, Adolfo M.
2014-01-01
Following bilateral vestibular loss (BVL) patients gradually adapt to the loss of vestibular input and rely more on other sensory inputs. Here we examine changes in the way proprioceptive and visual inputs interact. We used functional magnetic resonance imaging (fMRI) to investigate visual responses in the context of varying levels of proprioceptive input in 12 BVL subjects and 15 normal controls. A novel metal-free vibrator was developed to allow vibrotactile neck proprioceptive input to be delivered in the MRI system. A high level (100 Hz) and low level (30 Hz) control stimulus was applied over the left splenius capitis; only the high frequency stimulus generates a significant proprioceptive stimulus. The neck stimulus was applied in combination with static and moving (optokinetic) visual stimuli, in a factorial fMRI experimental design. We found that high level neck proprioceptive input had more cortical effect on brain activity in the BVL patients. This included a reduction in visual motion responses during high levels of proprioceptive input and differential activation in the midline cerebellum. In early visual cortical areas, the effect of high proprioceptive input was present for both visual conditions but in lateral visual areas, including V5/MT, the effect was only seen in the context of visual motion stimulation. The finding of a cortical visuo-proprioceptive interaction in BVL patients is consistent with behavioural data indicating that, in BVL patients, neck afferents partly replace vestibular input during the CNS-mediated compensatory process. An fMRI cervico-visual interaction may thus substitute the known visuo-vestibular interaction reported in normal subject fMRI studies. The results provide evidence for a cortical mechanism of adaptation to vestibular failure, in the form of an enhanced proprioceptive influence on visual processing. The results may provide the basis for a cortical mechanism involved in proprioceptive substitution of vestibular function in BVL patients. PMID:25061564
Visual and proprioceptive interaction in patients with bilateral vestibular loss.
Cutfield, Nicholas J; Scott, Gregory; Waldman, Adam D; Sharp, David J; Bronstein, Adolfo M
2014-01-01
Following bilateral vestibular loss (BVL) patients gradually adapt to the loss of vestibular input and rely more on other sensory inputs. Here we examine changes in the way proprioceptive and visual inputs interact. We used functional magnetic resonance imaging (fMRI) to investigate visual responses in the context of varying levels of proprioceptive input in 12 BVL subjects and 15 normal controls. A novel metal-free vibrator was developed to allow vibrotactile neck proprioceptive input to be delivered in the MRI system. A high level (100 Hz) and low level (30 Hz) control stimulus was applied over the left splenius capitis; only the high frequency stimulus generates a significant proprioceptive stimulus. The neck stimulus was applied in combination with static and moving (optokinetic) visual stimuli, in a factorial fMRI experimental design. We found that high level neck proprioceptive input had more cortical effect on brain activity in the BVL patients. This included a reduction in visual motion responses during high levels of proprioceptive input and differential activation in the midline cerebellum. In early visual cortical areas, the effect of high proprioceptive input was present for both visual conditions but in lateral visual areas, including V5/MT, the effect was only seen in the context of visual motion stimulation. The finding of a cortical visuo-proprioceptive interaction in BVL patients is consistent with behavioural data indicating that, in BVL patients, neck afferents partly replace vestibular input during the CNS-mediated compensatory process. An fMRI cervico-visual interaction may thus substitute the known visuo-vestibular interaction reported in normal subject fMRI studies. The results provide evidence for a cortical mechanism of adaptation to vestibular failure, in the form of an enhanced proprioceptive influence on visual processing. The results may provide the basis for a cortical mechanism involved in proprioceptive substitution of vestibular function in BVL patients.
Rubber Hands Feel Touch, but Not in Blind Individuals
Ehrsson, H. Henrik
2012-01-01
Psychology and neuroscience have a long-standing tradition of studying blind individuals to investigate how visual experience shapes perception of the external world. Here, we study how blind people experience their own body by exposing them to a multisensory body illusion: the somatic rubber hand illusion. In this illusion, healthy blindfolded participants experience that they are touching their own right hand with their left index finger, when in fact they are touching a rubber hand with their left index finger while the experimenter touches their right hand in a synchronized manner (Ehrsson et al. 2005). We compared the strength of this illusion in a group of blind individuals (n = 10), all of whom had experienced severe visual impairment or complete blindness from birth, and a group of age-matched blindfolded sighted participants (n = 12). The illusion was quantified subjectively using questionnaires and behaviorally by asking participants to point to the felt location of the right hand. The results showed that the sighted participants experienced a strong illusion, whereas the blind participants experienced no illusion at all, a difference that was evident in both tests employed. A further experiment testing the participants' basic ability to localize the right hand in space without vision (proprioception) revealed no difference between the two groups. Taken together, these results suggest that blind individuals with impaired visual development have a more veridical percept of self-touch and a less flexible and dynamic representation of their own body in space compared to sighted individuals. We speculate that the multisensory brain systems that re-map somatosensory signals onto external reference frames are less developed in blind individuals and therefore do not allow efficient fusion of tactile and proprioceptive signals from the two upper limbs into a single illusory experience of self-touch as in sighted individuals. PMID:22558268
Rubber hands feel touch, but not in blind individuals.
Petkova, Valeria I; Zetterberg, Hedvig; Ehrsson, H Henrik
2012-01-01
Psychology and neuroscience have a long-standing tradition of studying blind individuals to investigate how visual experience shapes perception of the external world. Here, we study how blind people experience their own body by exposing them to a multisensory body illusion: the somatic rubber hand illusion. In this illusion, healthy blindfolded participants experience that they are touching their own right hand with their left index finger, when in fact they are touching a rubber hand with their left index finger while the experimenter touches their right hand in a synchronized manner (Ehrsson et al. 2005). We compared the strength of this illusion in a group of blind individuals (n = 10), all of whom had experienced severe visual impairment or complete blindness from birth, and a group of age-matched blindfolded sighted participants (n = 12). The illusion was quantified subjectively using questionnaires and behaviorally by asking participants to point to the felt location of the right hand. The results showed that the sighted participants experienced a strong illusion, whereas the blind participants experienced no illusion at all, a difference that was evident in both tests employed. A further experiment testing the participants' basic ability to localize the right hand in space without vision (proprioception) revealed no difference between the two groups. Taken together, these results suggest that blind individuals with impaired visual development have a more veridical percept of self-touch and a less flexible and dynamic representation of their own body in space compared to sighted individuals. We speculate that the multisensory brain systems that re-map somatosensory signals onto external reference frames are less developed in blind individuals and therefore do not allow efficient fusion of tactile and proprioceptive signals from the two upper limbs into a single illusory experience of self-touch as in sighted individuals.
An invisible touch: Body-related multisensory conflicts modulate visual consciousness.
Salomon, Roy; Galli, Giulia; Łukowska, Marta; Faivre, Nathan; Ruiz, Javier Bello; Blanke, Olaf
2016-07-29
The majority of scientific studies on consciousness have focused on vision, exploring the cognitive and neural mechanisms of conscious access to visual stimuli. In parallel, studies on bodily consciousness have revealed that bodily (i.e. tactile, proprioceptive, visceral, vestibular) signals are the basis for the sense of self. However, the role of bodily signals in the formation of visual consciousness is not well understood. Here we investigated how body-related visuo-tactile stimulation modulates conscious access to visual stimuli. We used a robotic platform to apply controlled tactile stimulation to the participants' back while they viewed a dot moving either in synchrony or asynchrony with the touch on their back. Critically, the dot was rendered invisible through continuous flash suppression. Manipulating the visual context by presenting the dot moving on either a body form, or a non-bodily object we show that: (i) conflict induced by synchronous visuo-tactile stimulation in a body context is associated with a delayed conscious access compared to asynchronous visuo-tactile stimulation, (ii) this effect occurs only in the context of a visual body form, and (iii) is not due to detection or response biases. The results indicate that body-related visuo-tactile conflicts impact visual consciousness by facilitating access of non-conflicting visual information to awareness, and that these are sensitive to the visual context in which they are presented, highlighting the interplay between bodily signals and visual experience. Copyright © 2015 Elsevier Ltd. All rights reserved.
The influence of vision, touch, and proprioception on body representation of the lower limbs.
Stone, Kayla D; Keizer, Anouk; Dijkerman, H Chris
2018-04-01
Numerous studies have shown that the representation of the hand is distorted. When participants are asked to localize unseen points on the hand (e.g. the knuckle), it is perceived to be wider and shorter than its physical dimensions. Similar distortions occur when people are asked to judge the distance between two tactile points on the hand; estimates made in the longitudinal direction are perceived as significantly shorter than those made in the transverse direction. Yet, when asked to visually compare the shape and size of one's own hand to a template hand, individuals are accurate at estimating the size of their own hands. Thus, it seems that body representations are, at least in part, a function of the most prominent underlying sensory modality used to perceive the body part. Yet, it remains unknown if the representations of other body parts are similarly distorted. The lower limbs, for example, are structurally and functionally very different from the hands, yet their representation(s) are seldom studied. What does the body representation for the leg look like? And is leg representation dependent on which sense is probed when making judgments about its shape and size? In the current study, we investigated what the representation of the leg looks like in visually-, tactually-, and proprioceptively-guided tasks. Results revealed that the leg, like the hand, is distorted in a highly systematic manner. Distortions seem to rely, at least partly, on sensory input. This is the first study, to our knowledge, to systematically investigate leg representation in healthy individuals. Copyright © 2018 Elsevier B.V. All rights reserved.
Combined Induction of Rubber-Hand Illusion and Out-of-Body Experiences
Olivé, Isadora; Berthoz, Alain
2012-01-01
The emergence of self-consciousness depends on several processes: those of body ownership, attributing self-identity to the body, and those of self-location, localizing our sense of self. Studies of phenomena like the rubber-hand illusion (RHi) and out-of-body experience (OBE) investigate these processes, respectively for representations of a body-part and the full-body. It is supposed that RHi only target processes related to body-part representations, while OBE only relates to full-body representations. The fundamental question whether the body-part and the full-body illusions relate to each other is nevertheless insufficiently investigated. In search for a link between body-part and full-body illusions in the brain we developed a behavioral task combining adapted versions of the RHi and OBE. Furthermore, for the investigation of this putative link we investigated the role of sensory and motor cues. We established a spatial dissociation between visual and proprioceptive feedback of a hand perceived through virtual reality in rest or action. Two experimental measures were introduced: one for the body-part illusion, the proprioceptive drift of the perceived localization of the hand, and one for the full-body illusion, the shift in subjective-straight-ahead (SSA). In the rest and action conditions it was observed that the proprioceptive drift of the left hand and the shift in SSA toward the manipulation side are equivalent. The combined effect was dependent on the manipulation of the visual representation of body parts, rejecting any main or even modulatory role for relevant motor programs. Our study demonstrates for the first time that there is a systematic relationship between the body-part illusion and the full-body illusion, as shown by our measures. This suggests a link between the representations in the brain of a body-part and the full-body, and consequently a common mechanism underpinning both forms of ownership and self-location. PMID:22675312
Provost, Clement P; Tasseel-Ponche, Sophie; Lozeron, Pierre; Piccinini, Giulia; Quintaine, Victorine; Arnulf, Bertrand; Kubis, Nathalie; Yelnik, Alain P
2018-02-28
To investigate the weight of visual and proprioceptive inputs, measured indirectly in standing position control, in patients with chronic acquired demyelinating polyneuropathy (CADP). Prospective case study. Twenty-five patients with CADP and 25 healthy controls. Posture was recorded on a double force platform. Stimulations were optokinetic (60°/s) for visual input and vibration (50 Hz) for proprioceptive input. Visual stimulation involved 4 tests (upward, downward, rightward and leftward) and proprioceptive stimulation 2 tests (triceps surae and tibialis anterior). A composite score, previously published and slightly modified, was used for the recorded postural signals from the different stimulations. Despite their sensitivity deficits, patients with CADP were more sensitive to proprioceptive stimuli than were healthy controls (mean composite score 13.9 ((standard deviation; SD) 4.8) vs 18.4 (SD 4.8), p = 0.002). As expected, they were also more sensitive to visual stimuli (mean composite score 10.5 (SD 8.7) vs 22.9 (SD 7.5), p <0.0001). These results encourage balance rehabilitation of patients with CADP, aimed at promoting the use of proprioceptive information, thereby reducing too-early development of visual compensation while proprioception is still available.
Individual Differences in the Rubber Hand Illusion Are Related to Sensory Suggestibility.
Marotta, Angela; Tinazzi, Michele; Cavedini, Clelia; Zampini, Massimiliano; Fiorio, Mirta
2016-01-01
In the rubber hand illusion (RHI), watching a rubber hand being stroked in synchrony with one's own hidden hand may induce a sense of ownership over the rubber hand. The illusion relies on bottom-up multisensory integration of visual, tactile, and proprioceptive information, and on top-down processes through which the rubber hand is incorporated into pre-existing representations of the body. Although the degree of illusory experience varies largely across individuals, the factors influencing individual differences are unknown. We investigated whether sensory suggestibility might modulate susceptibility to the RHI. Sensory suggestibility is a personality trait related to how individuals react to sensory information. Because of its sensory nature, this trait could be relevant for studies using the RHI paradigm. Seventy healthy volunteers were classified by Sensory Suggestibility Scale (SSS) scores as having high or low suggestibility and assigned to either a high- (High-SSS) or a low-suggestibility (Low-SSS) group. Two components of the RHI were evaluated in synchronous and asynchronous stroking conditions: subjective experience of sense of ownership over the rubber hand via a 9-statement questionnaire, and proprioceptive drift as measured with a ruler. The High-SSS group was generally more susceptible to the subjective component; in the synchronous condition, they rated the statement assessing the sense of ownership higher than the Low-SSS group. The scores for this statement significantly correlated with the total SSS score, indicating that the higher the sensory suggestibility, the stronger the sense of ownership. No effect of sensory suggestibility on proprioceptive drift was observed, suggesting that the effect is specific for the subjective feeling of ownership. This study demonstrates that sensory suggestibility may contribute to participants' experience of the illusion and should be considered when using the RHI paradigm.
Individual Differences in the Rubber Hand Illusion Are Related to Sensory Suggestibility
Marotta, Angela; Tinazzi, Michele; Cavedini, Clelia; Zampini, Massimiliano
2016-01-01
In the rubber hand illusion (RHI), watching a rubber hand being stroked in synchrony with one’s own hidden hand may induce a sense of ownership over the rubber hand. The illusion relies on bottom-up multisensory integration of visual, tactile, and proprioceptive information, and on top-down processes through which the rubber hand is incorporated into pre-existing representations of the body. Although the degree of illusory experience varies largely across individuals, the factors influencing individual differences are unknown. We investigated whether sensory suggestibility might modulate susceptibility to the RHI. Sensory suggestibility is a personality trait related to how individuals react to sensory information. Because of its sensory nature, this trait could be relevant for studies using the RHI paradigm. Seventy healthy volunteers were classified by Sensory Suggestibility Scale (SSS) scores as having high or low suggestibility and assigned to either a high- (High-SSS) or a low-suggestibility (Low-SSS) group. Two components of the RHI were evaluated in synchronous and asynchronous stroking conditions: subjective experience of sense of ownership over the rubber hand via a 9-statement questionnaire, and proprioceptive drift as measured with a ruler. The High-SSS group was generally more susceptible to the subjective component; in the synchronous condition, they rated the statement assessing the sense of ownership higher than the Low-SSS group. The scores for this statement significantly correlated with the total SSS score, indicating that the higher the sensory suggestibility, the stronger the sense of ownership. No effect of sensory suggestibility on proprioceptive drift was observed, suggesting that the effect is specific for the subjective feeling of ownership. This study demonstrates that sensory suggestibility may contribute to participants’ experience of the illusion and should be considered when using the RHI paradigm. PMID:27977783
Kaplan, Ryan A.; Enticott, Peter G.; Hohwy, Jakob; Castle, David J.; Rossell, Susan L.
2014-01-01
Evidence from past research suggests that behaviours and characteristics related to body dissatisfaction may be associated with greater instability of perceptual body image, possibly due to problems in the integration of body-related multisensory information. We investigated whether people with body dysmorphic disorder (BDD), a condition characterised by body image disturbances, demonstrated enhanced susceptibility to the rubber hand illusion (RHI), which arises as a result of multisensory integration processes when a rubber hand and the participant's hidden real hand are stimulated in synchrony. Overall, differences in RHI experience between the BDD group and healthy and schizophrenia control groups (n = 17 in each) were not significant. RHI strength, however, was positively associated with body dissatisfaction and related tendencies. For the healthy control group, proprioceptive drift towards the rubber hand was observed following synchronous but not asynchronous stimulation, a typical pattern when inducing the RHI. Similar drifts in proprioceptive awareness occurred for the BDD group irrespective of whether stimulation was synchronous or not. These results are discussed in terms of possible abnormalities in visual processing and multisensory integration among people with BDD. PMID:24925079
Sensitivity to prediction error in reach adaptation
Haith, Adrian M.; Harran, Michelle D.; Shadmehr, Reza
2012-01-01
It has been proposed that the brain predicts the sensory consequences of a movement and compares it to the actual sensory feedback. When the two differ, an error signal is formed, driving adaptation. How does an error in one trial alter performance in the subsequent trial? Here we show that the sensitivity to error is not constant but declines as a function of error magnitude. That is, one learns relatively less from large errors compared with small errors. We performed an experiment in which humans made reaching movements and randomly experienced an error in both their visual and proprioceptive feedback. Proprioceptive errors were created with force fields, and visual errors were formed by perturbing the cursor trajectory to create a visual error that was smaller, the same size, or larger than the proprioceptive error. We measured single-trial adaptation and calculated sensitivity to error, i.e., the ratio of the trial-to-trial change in motor commands to error size. We found that for both sensory modalities sensitivity decreased with increasing error size. A reanalysis of a number of previously published psychophysical results also exhibited this feature. Finally, we asked how the brain might encode sensitivity to error. We reanalyzed previously published probabilities of cerebellar complex spikes (CSs) and found that this probability declined with increasing error size. From this we posit that a CS may be representative of the sensitivity to error, and not error itself, a hypothesis that may explain conflicting reports about CSs and their relationship to error. PMID:22773782
Guterstam, Arvid; Brozzoli, Claudio; Ehrsson, H. Henrik
2013-01-01
The perception of our limbs in space is built upon the integration of visual, tactile, and proprioceptive signals. Accumulating evidence suggests that these signals are combined in areas of premotor, parietal, and cerebellar cortices. However, it remains to be determined whether neuronal populations in these areas integrate hand signals according to basic temporal and spatial congruence principles of multisensory integration. Here, we developed a setup based on advanced 3D video technology that allowed us to manipulate the spatiotemporal relationships of visuotactile (VT) stimuli delivered on a healthy human participant's real hand during fMRI and investigate the ensuing neural and perceptual correlates. Our experiments revealed two novel findings. First, we found responses in premotor, parietal, and cerebellar regions that were dependent upon the spatial and temporal congruence of VT stimuli. This multisensory integration effect required a simultaneous match between the seen and felt postures of the hand, which suggests that congruent visuoproprioceptive signals from the upper limb are essential for successful VT integration. Second, we observed that multisensory conflicts significantly disrupted the default feeling of ownership of the seen real limb, as indexed by complementary subjective, psychophysiological, and BOLD measures. The degree to which self-attribution was impaired could be predicted from the attenuation of neural responses in key multisensory areas. These results elucidate the neural bases of the integration of multisensory hand signals according to basic spatiotemporal principles and demonstrate that the disintegration of these signals leads to “disownership” of the seen real hand. PMID:23946393
The mirror illusion: does proprioceptive drift go hand in hand with sense of agency?
Tajima, Daisuke; Mizuno, Tota; Kume, Yuichiro; Yoshida, Takako
2015-01-01
Vection can be regarded as the illusion of “whole-body” position perception. In contrast, the mirror illusion is that of “body-part” position perception. When participants viewed their left hands in a mirror positioned along the midsaggital axis while moving both hands synchronously, they hardly noticed the spatial offset between the hand in the mirror and the obscured real right hand. This illusion encompasses two phenomena: proprioceptive drift and sense of agency. Proprioceptive drift represented a perceptual change in the position of the obscured hand relative to that of the hand in the mirror. Sense of agency referred to the participants' subjective sense of controlling body image as they would their own bodies. We examined the spatial offset between these two phenomena. Participants responded to a two-alternative forced choice (2AFC) question regarding the subjective position of their right hands and questionnaires regarding sense of agency at various positions of the right hand. We analyzed the 2AFC data using a support vector machine and compared its classification result and the questionnaire results. Our data analysis suggested that the two phenomena were observed in concentric space, but the estimated range of the proprioceptive drift was slightly narrower than the range of agency. Although this outcome can be attributed to differences in measurement or analysis, to our knowledge, this is the first report to suggest that proprioceptive drift and sense of agency are concentric and almost overlap. PMID:25774145
Brain oscillatory signatures of motor tasks
Birbaumer, Niels
2015-01-01
Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral part of motor regulation. Changes in task-specific frequency power compared with rest were similar between motor tasks, and only significant differences in the time course and some narrow specific frequency bands were observed between motor tasks. We identified EEG features representing active and passive proprioception (with and without muscle contraction) and active intention and passive involvement (with and without voluntary effort) differentiating brain oscillations during motor tasks that could substantially support the design of novel motor BCI-based rehabilitation therapies. The BCI task induced significantly different brain activity compared with the other motor tasks, indicating neural processes unique to the use of body actuators control in a BCI context. PMID:25810484
Kinesthetic information facilitates saccades towards proprioceptive-tactile targets.
Voudouris, Dimitris; Goettker, Alexander; Mueller, Stefanie; Fiehler, Katja
2016-05-01
Saccades to somatosensory targets have longer latencies and are less accurate and precise than saccades to visual targets. Here we examined how different somatosensory information influences the planning and control of saccadic eye movements. Participants fixated a central cross and initiated a saccade as fast as possible in response to a tactile stimulus that was presented to either the index or the middle fingertip of their unseen left hand. In a static condition, the hand remained at a target location for the entire block of trials and the stimulus was presented at a fixed time after an auditory tone. Therefore, the target location was derived only from proprioceptive and tactile information. In a moving condition, the hand was first actively moved to the same target location and the stimulus was then presented immediately. Thus, in the moving condition additional kinesthetic information about the target location was available. We found shorter saccade latencies in the moving compared to the static condition, but no differences in accuracy or precision of saccadic endpoints. In a second experiment, we introduced variable delays after the auditory tone (static condition) or after the end of the hand movement (moving condition) in order to reduce the predictability of the moment of the stimulation and to allow more time to process the kinesthetic information. Again, we found shorter latencies in the moving compared to the static condition but no improvement in saccade accuracy or precision. In a third experiment, we showed that the shorter saccade latencies in the moving condition cannot be explained by the temporal proximity between the relevant event (auditory tone or end of hand movement) and the moment of the stimulation. Our findings suggest that kinesthetic information facilitates planning, but not control, of saccadic eye movements to proprioceptive-tactile targets. Copyright © 2016 Elsevier Ltd. All rights reserved.
The effect of hand position on perceived finger orientation in left- and right-handers.
Fraser, Lindsey E; Harris, Laurence R
2017-12-01
In the absence of visual feedback, the perceived orientation of the fingers is systematically biased. In right-handers these biases are asymmetrical between the left and right hands in the horizontal plane and may reflect common functional postures for the two hands. Here we compared finger orientation perception in right- and left-handed participants for both hands, across various hand positions in the horizontal plane. Participants rotated a white line on a screen optically superimposed over their hand to indicate the perceived position of the finger that was rotated to one of seven orientations with the hand either aligned with the body midline, aligned with the shoulder, or displaced by twice the shoulder-to-midline distance from the midline. We replicated the asymmetric pattern of biases previously reported in right-handed participants (left hand biased towards an orientation ~30° inward, right hand ~10° inward). However, no such asymmetry was found for left-handers, suggesting left-handers may use different strategies when mapping proprioception to body or space coordinates and/or have less specialization of function between the hands. Both groups' responses rotated further outward as distance of the hand from the body midline increased, consistent with other research showing spatial orientation estimates diverge outward in the periphery. Finally, for right-handers, precision of responses was best when the hand was aligned with the shoulder compared to the other two conditions. These results highlight the unique role of hand dominance and hand position in perception of finger orientation, and provide insight into the proprioceptive position sense of the upper limbs.
Toledo, Diana R; Barela, José A; Kohn, André F
2017-09-01
The application of subsensory noise stimulation over the lower limbs has been shown to improve proprioception and postural control under certain conditions. Whereas the effect specificity seems to depend on several factors, studies are still needed to determine the appropriate method for training and rehabilitation purposes. In the current study, we investigated whether the application of subsensory electrical noise over the legs improves proprioceptive function in young and older adults. We aimed to provide evidence that stronger and age-related differential effects occur in more demanding tasks. Proprioceptive function was initially assessed by testing the detection of passive ankle movement (kinesthetic perception) in twenty-eight subjects (14 young and 14 older adults). Thereafter, postural control was assessed during tasks with different sensory challenges: i) by removing visual information (eyes closed) and; ii) by moving the visual scene (moving room paradigm). Tests performed with the application of electrical noise stimulation were compared to those performed without noise. The results showed that electrical noise applied over the legs led to a reduction in the response time to kinesthetic perception in both young and older adults. On the other hand, the magnitude of postural sway was reduced by noise stimulation only during a more challenging task, namely, when the optical flow was changing in an unpredictable (nonperiodic) manner. No differential effects of stimulation between groups were observed. These findings suggest that the relevance of proprioceptive inputs in tasks with different challenges, but not the subjects' age, is a determining factor for sensorimotor improvements due to electrical noise stimulation. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Body Context and Posture Affect Mental Imagery of Hands
Ionta, Silvio; Perruchoud, David; Draganski, Bogdan; Blanke, Olaf
2012-01-01
Different visual stimuli have been shown to recruit different mental imagery strategies. However the role of specific visual stimuli properties related to body context and posture in mental imagery is still under debate. Aiming to dissociate the behavioural correlates of mental processing of visual stimuli characterized by different body context, in the present study we investigated whether the mental rotation of stimuli showing either hands as attached to a body (hands-on-body) or not (hands-only), would be based on different mechanisms. We further examined the effects of postural changes on the mental rotation of both stimuli. Thirty healthy volunteers verbally judged the laterality of rotated hands-only and hands-on-body stimuli presented from the dorsum- or the palm-view, while positioning their hands on their knees (front postural condition) or behind their back (back postural condition). Mental rotation of hands-only, but not of hands-on-body, was modulated by the stimulus view and orientation. Additionally, only the hands-only stimuli were mentally rotated at different speeds according to the postural conditions. This indicates that different stimulus-related mechanisms are recruited in mental rotation by changing the bodily context in which a particular body part is presented. The present data suggest that, with respect to hands-only, mental rotation of hands-on-body is less dependent on biomechanical constraints and proprioceptive input. We interpret our results as evidence for preferential processing of visual- rather than kinesthetic-based mechanisms during mental transformation of hands-on-body and hands-only, respectively. PMID:22479618
Multisensory and Modality-Specific Influences on Adaptation to Optical Prisms
Calzolari, Elena; Albini, Federica; Bolognini, Nadia; Vallar, Giuseppe
2017-01-01
Visuo-motor adaptation to optical prisms displacing the visual scene (prism adaptation, PA) is a method used for investigating visuo-motor plasticity in healthy individuals and, in clinical settings, for the rehabilitation of unilateral spatial neglect. In the standard paradigm, the adaptation phase involves repeated pointings to visual targets, while wearing optical prisms displacing the visual scene laterally. Here we explored differences in PA, and its aftereffects (AEs), as related to the sensory modality of the target. Visual, auditory, and multisensory – audio-visual – targets in the adaptation phase were used, while participants wore prisms displacing the visual field rightward by 10°. Proprioceptive, visual, visual-proprioceptive, auditory-proprioceptive straight-ahead shifts were measured. Pointing to auditory and to audio-visual targets in the adaptation phase produces proprioceptive, visual-proprioceptive, and auditory-proprioceptive AEs, as the typical visual targets did. This finding reveals that cross-modal plasticity effects involve both the auditory and the visual modality, and their interactions (Experiment 1). Even a shortened PA phase, requiring only 24 pointings to visual and audio-visual targets (Experiment 2), is sufficient to bring about AEs, as compared to the standard 92-pointings procedure. Finally, pointings to auditory targets cause AEs, although PA with a reduced number of pointings (24) to auditory targets brings about smaller AEs, as compared to the 92-pointings procedure (Experiment 3). Together, results from the three experiments extend to the auditory modality the sensorimotor plasticity underlying the typical AEs produced by PA to visual targets. Importantly, PA to auditory targets appears characterized by less accurate pointings and error correction, suggesting that the auditory component of the PA process may be less central to the building up of the AEs, than the sensorimotor pointing activity per se. These findings highlight both the effectiveness of a reduced number of pointings for bringing about AEs, and the possibility of inducing PA with auditory targets, which may be used as a compensatory route in patients with visual deficits. PMID:29213233
NASA Technical Reports Server (NTRS)
Berthoz, A.; Pavard, B.; Young, L. R.
1975-01-01
The basic characteristics of the sensation of linear horizontal motion have been studied. Objective linear motion was induced by means of a moving cart. Visually induced linear motion perception (linearvection) was obtained by projection of moving images at the periphery of the visual field. Image velocity and luminance thresholds for the appearance of linearvection have been measured and are in the range of those for image motion detection (without sensation of self motion) by the visual system. Latencies of onset are around 1 sec and short term adaptation has been shown. The dynamic range of the visual analyzer as judged by frequency analysis is lower than the vestibular analyzer. Conflicting situations in which visual cues contradict vestibular and other proprioceptive cues show, in the case of linearvection a dominance of vision which supports the idea of an essential although not independent role of vision in self motion perception.
Sensorimotor aspects of high-speed artificial gravity: I. Sensory conflict in vestibular adaptation
NASA Technical Reports Server (NTRS)
Brown, Erika L.; Hecht, Heiko; Young, Laurence R.
2002-01-01
Short-radius centrifugation offers a promising and affordable countermeasure to the adverse effects of prolonged weightlessness. However, head movements made in a fast rotating environment elicit Coriolis effects, which seriously compromise sensory and motor processes. We found that participants can adapt to these Coriolis effects when exposed intermittently to high rotation rates and, at the same time, can maintain their perceptual-motor coordination in stationary environments. In this paper, we explore the role of inter-sensory conflict in this adaptation process. Different measures (vertical nystagmus, illusory body tilt, motion sickness) react differently to visual-vestibular conflict and adapt differently. In particular, proprioceptive-vestibular conflict sufficed to adapt subjective parameters and the time constant of nystagmus decay, while retinal slip was required for VOR gain adaptation. A simple correlation between the strength of intersensory conflict and the efficacy of adaptation fails to explain the data. Implications of these findings, which differ from existing data for low rotation rates, are discussed.
Miall, R Chris; Kitchen, Nick M; Nam, Se-Ho; Lefumat, Hannah; Renault, Alix G; Ørstavik, Kristin; Cole, Jonathan D; Sarlegna, Fabrice R
2018-05-19
It is uncertain how vision and proprioception contribute to adaptation of voluntary arm movements. In normal participants, adaptation to imposed forces is possible with or without vision, suggesting that proprioception is sufficient; in participants with proprioceptive loss (PL), adaptation is possible with visual feedback, suggesting that proprioception is unnecessary. In experiment 1 adaptation to, and retention of, perturbing forces were evaluated in three chronically deafferented participants. They made rapid reaching movements to move a cursor toward a visual target, and a planar robot arm applied orthogonal velocity-dependent forces. Trial-by-trial error correction was observed in all participants. Such adaptation has been characterized with a dual-rate model: a fast process that learns quickly, but retains poorly and a slow process that learns slowly and retains well. Experiment 2 showed that the PL participants had large individual differences in learning and retention rates compared to normal controls. Experiment 3 tested participants' perception of applied forces. With visual feedback, the PL participants could report the perturbation's direction as well as controls; without visual feedback, thresholds were elevated. Experiment 4 showed, in healthy participants, that force direction could be estimated from head motion, at levels close to the no-vision threshold for the PL participants. Our results show that proprioceptive loss influences perception, motor control and adaptation but that proprioception from the moving limb is not essential for adaptation to, or detection of, force fields. The differences in learning and retention seen between the three deafferented participants suggest that they achieve these tasks in idiosyncratic ways after proprioceptive loss, possibly integrating visual and vestibular information with individual cognitive strategies.
Visuomotor adaptation to a visual rotation is gravity dependent.
Toma, Simone; Sciutti, Alessandra; Papaxanthis, Charalambos; Pozzo, Thierry
2015-03-15
Humans perform vertical and horizontal arm motions with different temporal patterns. The specific velocity profiles are chosen by the central nervous system by integrating the gravitational force field to minimize energy expenditure. However, what happens when a visuomotor rotation is applied, so that a motion performed in the horizontal plane is perceived as vertical? We investigated the dynamic of the adaptation of the spatial and temporal properties of a pointing motion during prolonged exposure to a 90° visuomotor rotation, where a horizontal movement was associated with a vertical visual feedback. We found that participants immediately adapted the spatial parameters of motion to the conflicting visual scene in order to keep their arm trajectory straight. In contrast, the initial symmetric velocity profiles specific for a horizontal motion were progressively modified during the conflict exposure, becoming more asymmetric and similar to those appropriate for a vertical motion. Importantly, this visual effect that increased with repetitions was not followed by a consistent aftereffect when the conflicting visual feedback was absent (catch and washout trials). In a control experiment we demonstrated that an intrinsic representation of the temporal structure of perceived vertical motions could provide the error signal allowing for this progressive adaptation of motion timing. These findings suggest that gravity strongly constrains motor learning and the reweighting process between visual and proprioceptive sensory inputs, leading to the selection of a motor plan that is suboptimal in terms of energy expenditure. Copyright © 2015 the American Physiological Society.
Conson, Massimiliano; Errico, Domenico; Mazzarella, Elisabetta; De Bellis, Francesco; Grossi, Dario; Trojano, Luigi
2015-04-01
Judgments on laterality of hand stimuli are faster and more accurate when dealing with one's own than others' hand, i.e. the self-advantage. This advantage seems to be related to activation of a sensorimotor mechanism while implicitly processing one's own hands, but not during explicit one's own hand recognition. Here, we specifically tested the influence of proprioceptive information on the self-hand advantage by manipulating participants' body posture during self and others' hand processing. In Experiment 1, right-handed healthy participants judged laterality of either self or others' hands, whereas in Experiment 2, an explicit recognition of one's own hands was required. In both experiments, the participants performed the task while holding their left or right arm flexed with their hand in direct contact with their chest ("flexed self-touch posture") or with their hand placed on a wooden smooth surface in correspondence with their chest ("flexed proprioceptive-only posture"). In an "extended control posture", both arms were extended and in contact with thighs. In Experiment 1 (hand laterality judgment), we confirmed the self-advantage and demonstrated that it was enhanced when the subjects judged left-hand stimuli at 270° orientation while keeping their left arm in the flexed proprioceptive-only posture. In Experiment 2 (explicit self-hand recognition), instead, we found an advantage for others' hand ("self-disadvantage") independently from posture manipulation. Thus, position-related proprioceptive information from left non-dominant arm can enhance sensorimotor one's own body representation selectively favouring implicit self-hands processing.
Perspective image comprehension depends on both visual and proprioceptive information.
Michel, Christian W; Ray, Devin G; Kaup, Barbara; Hesse, Friedrich W
2014-11-01
Proprioceptive information can supplement visual information in the comprehension of ambiguous perspective images. The importance of proprioceptive information in unambiguous perspective image comprehension is untested, however. We explored the role of proprioception in perspective image comprehension using three experiments in which participants took or imagined taking an upward- or downward-oriented posture and then made judgments about images viewed from below or viewed from above. Participants were faster and more accurate in their judgments when their actual or simulated posture was consistent with the posture implied by the perspective of the image they were judging. These results support a role for proprioception in the comprehension of unambiguous perspective images as well as ambiguous perspective images.
Agency elicits body-ownership: proprioceptive drift toward a synchronously acting external proxy.
Asai, Tomohisa
2016-05-01
Awareness of our own bodies (sense of body-ownership) and actions (sense of agency) is fundamental for self-consciousness. In the rubber hand illusion, watching a rubber hand being stroked synchronously as one's own unseen hand is also stroked causes the observer to attribute the rubber hand to their own body. The findings of the series of experiments reported here suggest that body-ownership, measured using proprioceptive drift, is elicited by the external acting proxy that drives the sense of agency. While participants clasped and unclasped their left hand for 60 s, they focused on video feedback on a monitor in front of them. Proprioceptive drift was observed only under the conditions, including synchronized conditions, where the sense of agency for the acting proxy occurred, suggesting an essential interaction between body-ownership and agency.
Space adaptation syndrome experiments (8-IML-1)
NASA Technical Reports Server (NTRS)
Watt, D.
1992-01-01
A set of seven experiments will study adaptation of the human nervous system to weightlessness. Particular emphasis will be placed on the vestibular and proprioceptive systems. The experiments are as follows: the sled/H-reflex; rotation/vestibulo-ocular reflex; the visual stimulator experiment; proprioception (relaxed) experiment; proprioception (active) experiment; proprioception (illusion) experiment; and tactile acuity.
Tsuge, Mikio; Izumizaki, Masahiko; Kigawa, Kazuyoshi; Atsumi, Takashi; Homma, Ikuo
2012-12-01
We studied the influence of false proprioceptive information generated by arm vibration and false visual information provided by a mirror in which subjects saw a reflection of another arm on perception of arm position, in a forearm position-matching task in right-handed subjects (n = 17). The mirror was placed between left and right arms, and arranged so that the reflected left arm appeared to the subjects to be their unseen right (reference) arm. The felt position of the right arm, indicated with a paddle, was influenced by vision of the mirror image of the left arm. If the left arm appeared flexed in the mirror, subjects felt their right arm to be more flexed than it was. Conversely, if the left arm was extended, they felt their right arm to be more extended than it was. When reference elbow flexors were vibrated at 70-80 Hz, an illusion of extension of the vibrated arm was elicited. The illusion of a more flexed reference arm evoked by seeing a mirror image of the flexed left arm was reduced by vibration. However, the illusion of extension of the right arm evoked by seeing a mirror image of the extended left arm was increased by vibration. That is, when the mirror and vibration illusions were in the same direction, they reinforced each other. However, when they were in opposite directions, they tended to cancel one another. The present study shows the interaction between proprioceptive and visual information in perception of arm position.
The role of vestibular and support-tactile-proprioceptive inputs in visual-manual tracking
NASA Astrophysics Data System (ADS)
Kornilova, Ludmila; Naumov, Ivan; Glukhikh, Dmitriy; Khabarova, Ekaterina; Pavlova, Aleksandra; Ekimovskiy, Georgiy; Sagalovitch, Viktor; Smirnov, Yuriy; Kozlovskaya, Inesa
Sensorimotor disorders in weightlessness are caused by changes of functioning of gravity-dependent systems, first of all - vestibular and support. The question arises, what’s the role and the specific contribution of the support afferentation in the development of observed disorders. To determine the role and effects of vestibular, support, tactile and proprioceptive afferentation on characteristics of visual-manual tracking (VMT) we conducted a comparative analysis of the data obtained after prolonged spaceflight and in a model of weightlessness - horizontal “dry” immersion. Altogether we examined 16 Russian cosmonauts before and after prolonged spaceflights (129-215 days) and 30 subjects who stayed in immersion bath for 5-7 days to evaluate the state of the vestibular function (VF) using videooculography and characteristics of the visual-manual tracking (VMT) using electrooculography & joystick with biological visual feedback. Evaluation of the VF has shown that both after immersion and after prolonged spaceflight there were significant decrease of the static torsional otolith-cervical-ocular reflex (OCOR) and simultaneous significant increase of the dynamic vestibular-cervical-ocular reactions (VCOR) with a revealed negative correlation between parameters of the otoliths and canals reactions, as well as significant changes in accuracy of perception of the subjective visual vertical which correlated with changes in OCOR. Analyze of the VMT has shown that significant disorders of the visual tracking (VT) occurred from the beginning of the immersion up to 3-4 day after while in cosmonauts similar but much more pronounced oculomotor disorders and significant changes from the baseline were observed up to R+9 day postflight. Significant changes of the manual tracking (MT) were revealed only for gain and occurred on 1 and 3 days in immersion while after spaceflight such changes were observed up to R+5 day postflight. We found correlation between characteristics of the VT and MT, between characteristics of the VF and VT and no correlation between VF and MT. It was found that removal of the support and minimization of the proprioceptive afferentation has a greater impact upon accuracy of the VT then accuracy of the MT. Hand tracking accuracy was higher than the eyes for all subjects. The hand’ motor coordination was more stable to changes in support-proprioceptive afferentation then visual tracking. The observed changes in and after immersion are similar but less pronounced with changes observed on cosmonauts after prolonged spaceflight. Keywords: visual-manual tracking, vestibular function, weightlessness, immersion.
ERIC Educational Resources Information Center
Paton, Bryan; Hohwy, Jakob; Enticott, Peter G.
2012-01-01
Autism spectrum disorder (ASD) is characterised by differences in unimodal and multimodal sensory and proprioceptive processing, with complex biases towards local over global processing. Many of these elements are implicated in versions of the rubber hand illusion (RHI), which were therefore studied in high-functioning individuals with ASD and a…
Upper Limb Asymmetries in the Perception of Proprioceptively Determined Dynamic Position Sense
ERIC Educational Resources Information Center
Goble, Daniel J.; Brown, Susan H.
2010-01-01
Recent studies of position-related proprioceptive sense have provided evidence of a nonpreferred left arm advantage in right-handed individuals. The present study sought to determine whether similar asymmetries might exist in "dynamic position" sense. Thirteen healthy, right-handed adults were blindfolded and seated with arms placed on…
Granek, Joshua A.; Pisella, Laure; Blangero, Annabelle; Rossetti, Yves; Sergio, Lauren E.
2012-01-01
Patients with optic ataxia (OA), who are missing the caudal portion of their superior parietal lobule (SPL), have difficulty performing visually-guided reaches towards extra-foveal targets. Such gaze and hand decoupling also occurs in commonly performed non-standard visuomotor transformations such as the use of a computer mouse. In this study, we test two unilateral OA patients in conditions of 1) a change in the physical location of the visual stimulus relative to the plane of the limb movement, 2) a cue that signals a required limb movement 180° opposite to the cued visual target location, or 3) both of these situations combined. In these non-standard visuomotor transformations, the OA deficit is not observed as the well-documented field-dependent misreach. Instead, OA patients make additional eye movements to update hand and goal location during motor execution in order to complete these slow movements. Overall, the OA patients struggled when having to guide centrifugal movements in peripheral vision, even when they were instructed from visual stimuli that could be foveated. We propose that an intact caudal SPL is crucial for any visuomotor control that involves updating ongoing hand location in space without foveating it, i.e. from peripheral vision, proprioceptive or predictive information. PMID:23071599
The Posture of Putting One's Palms Together Modulates Visual Motion Event Perception.
Saito, Godai; Gyoba, Jiro
2018-02-01
We investigated the effect of an observer's hand postures on visual motion perception using the stream/bounce display. When two identical visual objects move across collinear horizontal trajectories toward each other in a two-dimensional display, observers perceive them as either streaming or bouncing. In our previous study, we found that when observers put their palms together just below the coincidence point of the two objects, the percentage of bouncing responses increased, mainly depending on the proprioceptive information from their own hands. However, it remains unclear if the tactile or haptic (force) information produced by the postures mostly influences the stream/bounce perception. We solved this problem by changing the tactile and haptic information on the palms of the hands. Experiment 1 showed that the promotion of bouncing perception was observed only when the posture of directly putting one's palms together was used, while there was no effect when a brick was sandwiched between the participant's palms. Experiment 2 demonstrated that the strength of force used when putting the palms together had no effect on increasing bounce perception. Our findings indicate that the hands-induced bounce effect derives from the tactile information produced by the direct contact between both palms.
Lakie, Martin; Loram, Ian D
2006-01-01
Ten subjects balanced their own body or a mechanically equivalent unstable inverted pendulum by hand, through a compliant spring linkage. Their balancing process was always characterized by repeated small reciprocating hand movements. These bias adjustments were an observable sign of intermittent alterations in neural output. On average, the adjustments occurred at intervals of ∼400 ms. To generate appropriate stabilizing bias adjustments, sensory information about body or load movement is needed. Subjects used visual, vestibular or proprioceptive sensation alone and in combination to perform the tasks. We first ask, is the time between adjustments (bias duration) sensory specific? Vision is associated with slow responses. Other senses involved with balance are known to be faster. Our second question is; does bias duration depend on sensory abundance? An appropriate bias adjustment cannot occur until unplanned motion is unambiguously perceived (a sensory threshold). The addition of more sensory data should therefore expedite action, decreasing the mean bias adjustment duration. Statistical analysis showed that (1) the mean bias adjustment duration was remarkably independent of the sensory modality and (2) the addition of one or two sensory modalities made a small, but significant, decrease in the mean bias adjustment duration. Thus, a threshold effect can alter only a very minor part of the bias duration. The bias adjustment duration in manual balancing must reflect something more than visual sensation and perceptual thresholds; our suggestion is that it is a common central motor planning process. We predict that similar processes may be identified in the control of standing. PMID:16959857
The effect of contextual cues on the encoding of motor memories.
Howard, Ian S; Wolpert, Daniel M; Franklin, David W
2013-05-01
Several studies have shown that sensory contextual cues can reduce the interference observed during learning of opposing force fields. However, because each study examined a small set of cues, often in a unique paradigm, the relative efficacy of different sensory contextual cues is unclear. In the present study we quantify how seven contextual cues, some investigated previously and some novel, affect the formation and recall of motor memories. Subjects made movements in a velocity-dependent curl field, with direction varying randomly from trial to trial but always associated with a unique contextual cue. Linking field direction to the cursor or background color, or to peripheral visual motion cues, did not reduce interference. In contrast, the orientation of a visual object attached to the hand cursor significantly reduced interference, albeit by a small amount. When the fields were associated with movement in different locations in the workspace, a substantial reduction in interference was observed. We tested whether this reduction in interference was due to the different locations of the visual feedback (targets and cursor) or the movements (proprioceptive). When the fields were associated only with changes in visual display location (movements always made centrally) or only with changes in the movement location (visual feedback always displayed centrally), a substantial reduction in interference was observed. These results show that although some visual cues can lead to the formation and recall of distinct representations in motor memory, changes in spatial visual and proprioceptive states of the movement are far more effective than changes in simple visual contextual cues.
Lobjois, Régis; Dagonneau, Virginie; Isableu, Brice
2016-11-01
Compared with driving or flight simulation, little is known about self-motion perception in riding simulation. The goal of this study was to examine whether or not continuous roll motion supports the sensation of leaning into bends in dynamic motorcycle simulation. To this end, riders were able to freely tune the visual scene and/or motorcycle simulator roll angle to find a pattern that matched their prior knowledge. Our results revealed idiosyncrasy in the combination of visual and proprioceptive information. Some subjects relied more on the visual dimension, but reported increased sickness symptoms with the visual roll angle. Others relied more on proprioceptive information, tuning the direction of the visual scenery to match three possible patterns. Our findings also showed that these two subgroups tuned the motorcycle simulator roll angle in a similar way. This suggests that sustained inertially specified roll motion have contributed to the sensation of leaning in spite of the occurrence of unexpected gravito-inertial stimulation during the tilt. Several hypotheses are discussed. Practitioner Summary: Self-motion perception in motorcycle simulation is a relatively new research area. We examined how participants combined visual and proprioceptive information. Findings revealed individual differences in the visual dimension. However, participants tuned the simulator roll angle similarly, supporting the hypothesis that sustained inertially specified roll motion contributes to a leaning sensation.
Helmchen, Christoph; Kirchhoff, Jan-Birger; Göttlich, Martin; Sprenger, Andreas
2017-01-01
The cerebellum integrates proprioceptive, vestibular and visual signals for postural control. Cerebellar patients with downbeat nystagmus (DBN) complain of unsteadiness of stance and gait as well as blurred vision and oscillopsia. The aim of this study was to elucidate the differential role of visual input, gaze eccentricity, vestibular and proprioceptive input on the postural stability in a large cohort of cerebellar patients with DBN, in comparison to healthy age-matched control subjects. Oculomotor (nystagmus, smooth pursuit eye movements) and postural (postural sway speed) parameters were recorded and related to each other and volumetric changes of the cerebellum (voxel-based morphometry, SPM). Twenty-seven patients showed larger postural instability in all experimental conditions. Postural sway increased with nystagmus in the eyes closed condition but not with the eyes open. Romberg's ratio remained stable and was not different from healthy controls. Postural sway did not change with gaze position or graviceptive input. It increased with attenuated proprioceptive input and on tandem stance in both groups but Romberg's ratio also did not differ. Cerebellar atrophy (vermal lobule VI, VIII) correlated with the severity of impaired smooth pursuit eye movements of DBN patients. Postural ataxia of cerebellar patients with DBN cannot be explained by impaired visual feedback. Despite oscillopsia visual feedback control on cerebellar postural control seems to be preserved as postural sway was strongest on visual deprivation. The increase in postural ataxia is neither related to modulations of single components characterizing nystagmus nor to deprivation of single sensory (visual, proprioceptive) inputs usually stabilizing stance. Re-weighting of multisensory signals and/or inappropriate cerebellar motor commands might account for this postural ataxia.
Helmchen, Christoph; Kirchhoff, Jan-Birger; Göttlich, Martin; Sprenger, Andreas
2017-01-01
Background The cerebellum integrates proprioceptive, vestibular and visual signals for postural control. Cerebellar patients with downbeat nystagmus (DBN) complain of unsteadiness of stance and gait as well as blurred vision and oscillopsia. Objectives The aim of this study was to elucidate the differential role of visual input, gaze eccentricity, vestibular and proprioceptive input on the postural stability in a large cohort of cerebellar patients with DBN, in comparison to healthy age-matched control subjects. Methods Oculomotor (nystagmus, smooth pursuit eye movements) and postural (postural sway speed) parameters were recorded and related to each other and volumetric changes of the cerebellum (voxel-based morphometry, SPM). Results Twenty-seven patients showed larger postural instability in all experimental conditions. Postural sway increased with nystagmus in the eyes closed condition but not with the eyes open. Romberg’s ratio remained stable and was not different from healthy controls. Postural sway did not change with gaze position or graviceptive input. It increased with attenuated proprioceptive input and on tandem stance in both groups but Romberg’s ratio also did not differ. Cerebellar atrophy (vermal lobule VI, VIII) correlated with the severity of impaired smooth pursuit eye movements of DBN patients. Conclusions Postural ataxia of cerebellar patients with DBN cannot be explained by impaired visual feedback. Despite oscillopsia visual feedback control on cerebellar postural control seems to be preserved as postural sway was strongest on visual deprivation. The increase in postural ataxia is neither related to modulations of single components characterizing nystagmus nor to deprivation of single sensory (visual, proprioceptive) inputs usually stabilizing stance. Re-weighting of multisensory signals and/or inappropriate cerebellar motor commands might account for this postural ataxia. PMID:28056109
Sprenger, Andreas; Wojak, Jann F; Jandl, Nico M; Helmchen, Christoph
2017-01-01
Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive deprivation heavily destabilizes BVF, even when visual control is provided.
Sprenger, Andreas; Wojak, Jann F.; Jandl, Nico M.; Helmchen, Christoph
2017-01-01
Patients with bilateral vestibular failure (BVF) suffer from postural and gait unsteadiness with an increased risk of falls. The aim of this study was to elucidate the differential role of otolith, semicircular canal (SSC), visual, proprioceptive, and cognitive influences on the postural stability of BVF patients. Center-of-pressure displacements were recorded by posturography under six conditions: target visibility; tonic head positions in the pitch plane; horizontal head shaking; sensory deprivation; dual task; and tandem stance. Between-group analysis revealed larger postural sway in BVF patients on eye closure; but with the eyes open, BVF did not differ from healthy controls (HCs). Head tilts and horizontal head shaking increased sway but did not differ between groups. In the dual task condition, BVF patients maintained posture indistinguishable from controls. On foam and tandem stance, postural sway was larger in BVF, even with the eyes open. The best predictor for the severity of bilateral vestibulopathy was standing on foam with eyes closed. Postural control of our BVF was indistinguishable from HCs once visual and proprioceptive feedback is provided. This distinguishes them from patients with vestibulo-cerebellar disorders or functional dizziness. It confirms previous reports and explains that postural unsteadiness of BVF patients can be missed easily if not examined by conditions of visual and/or proprioceptive deprivation. In fact, the best predictor for vestibular hypofunction (VOR gain) was examining patients standing on foam with the eyes closed. Postural sway in that condition increased with the severity of vestibular impairment but not with disease duration. In the absence of visual control, impaired otolith input destabilizes BVF with head retroflexion. Stimulating deficient SSC does not distinguish patients from controls possibly reflecting a shift of intersensory weighing toward proprioceptive-guided postural control. Accordingly, proprioceptive deprivation heavily destabilizes BVF, even when visual control is provided. PMID:28919878
Ronchi, Roberta; Revol, Patrice; Katayama, Masahiro; Rossetti, Yves; Farnè, Alessandro
2011-01-01
During the procedure of prism adaptation, subjects execute pointing movements to visual targets under a lateral optical displacement: As consequence of the discrepancy between visual and proprioceptive inputs, their visuo-motor activity is characterized by pointing errors. The perception of such final errors triggers error-correction processes that eventually result into sensori-motor compensation, opposite to the prismatic displacement (i.e., after-effects). Here we tested whether the mere observation of erroneous pointing movements, similar to those executed during prism adaptation, is sufficient to produce adaptation-like after-effects. Neurotypical participants observed, from a first-person perspective, the examiner's arm making incorrect pointing movements that systematically overshot visual targets location to the right, thus simulating a rightward optical deviation. Three classical after-effect measures (proprioceptive, visual and visual-proprioceptive shift) were recorded before and after first-person's perspective observation of pointing errors. Results showed that mere visual exposure to an arm that systematically points on the right-side of a target (i.e., without error correction) produces a leftward after-effect, which mostly affects the observer's proprioceptive estimation of her body midline. In addition, being exposed to such a constant visual error induced in the observer the illusion “to feel” the seen movement. These findings indicate that it is possible to elicit sensori-motor after-effects by mere observation of movement errors. PMID:21731649
Visual enhancing of tactile perception in the posterior parietal cortex.
Ro, Tony; Wallace, Ruth; Hagedorn, Judith; Farnè, Alessandro; Pienkos, Elizabeth
2004-01-01
The visual modality typically dominates over our other senses. Here we show that after inducing an extreme conflict in the left hand between vision of touch (present) and the feeling of touch (absent), sensitivity to touch increases for several minutes after the conflict. Transcranial magnetic stimulation of the posterior parietal cortex after this conflict not only eliminated the enduring visual enhancement of touch, but also impaired normal tactile perception. This latter finding demonstrates a direct role of the parietal lobe in modulating tactile perception as a result of the conflict between these senses. These results provide evidence for visual-to-tactile perceptual modulation and demonstrate effects of illusory vision of touch on touch perception through a long-lasting modulatory process in the posterior parietal cortex.
Hearing visuo-tactile synchrony - Sound-induced proprioceptive drift in the invisible hand illusion.
Darnai, Gergely; Szolcsányi, Tibor; Hegedüs, Gábor; Kincses, Péter; Kállai, János; Kovács, Márton; Simon, Eszter; Nagy, Zsófia; Janszky, József
2017-02-01
The rubber hand illusion (RHI) and its variant the invisible hand illusion (IHI) are useful for investigating multisensory aspects of bodily self-consciousness. Here, we explored whether auditory conditioning during an RHI could enhance the trisensory visuo-tactile-proprioceptive interaction underlying the IHI. Our paradigm comprised of an IHI session that was followed by an RHI session and another IHI session. The IHI sessions had two parts presented in counterbalanced order. One part was conducted in silence, whereas the other part was conducted on the backdrop of metronome beats that occurred in synchrony with the brush movements used for the induction of the illusion. In a first experiment, the RHI session also involved metronome beats and was aimed at creating an associative memory between the brush stroking of a rubber hand and the sounds. An analysis of IHI sessions showed that the participants' perceived hand position drifted more towards the body-midline in the metronome relative to the silent condition without any sound-related session differences. Thus, the sounds, but not the auditory RHI conditioning, influenced the IHI. In a second experiment, the RHI session was conducted without metronome beats. This confirmed the conditioning-independent presence of sound-induced proprioceptive drift in the IHI. Together, these findings show that the influence of visuo-tactile integration on proprioceptive updating is modifiable by irrelevant auditory cues merely through the temporal correspondence between the visuo-tactile and auditory events. © 2016 The British Psychological Society.
A robotic test of proprioception within the hemiparetic arm post-stroke.
Simo, Lucia; Botzer, Lior; Ghez, Claude; Scheidt, Robert A
2014-04-30
Proprioception plays important roles in planning and control of limb posture and movement. The impact of proprioceptive deficits on motor function post-stroke has been difficult to elucidate due to limitations in current tests of arm proprioception. Common clinical tests only provide ordinal assessment of proprioceptive integrity (eg. intact, impaired or absent). We introduce a standardized, quantitative method for evaluating proprioception within the arm on a continuous, ratio scale. We demonstrate the approach, which is based on signal detection theory of sensory psychophysics, in two tasks used to characterize motor function after stroke. Hemiparetic stroke survivors and neurologically intact participants attempted to detect displacement- or force-perturbations robotically applied to their arm in a two-interval, two-alternative forced-choice test. A logistic psychometric function parameterized detection of limb perturbations. The shape of this function is determined by two parameters: one corresponds to a signal detection threshold and the other to variability of responses about that threshold. These two parameters define a space in which proprioceptive sensation post-stroke can be compared to that of neurologically-intact people. We used an auditory tone discrimination task to control for potential comprehension, attention and memory deficits. All but one stroke survivor demonstrated competence in performing two-alternative discrimination in the auditory training test. For the remaining stroke survivors, those with clinically identified proprioceptive deficits in the hemiparetic arm or hand had higher detection thresholds and exhibited greater response variability than individuals without proprioceptive deficits. We then identified a normative parameter space determined by the threshold and response variability data collected from neurologically intact participants. By plotting displacement detection performance within this normative space, stroke survivors with and without intact proprioception could be discriminated on a continuous scale that was sensitive to small performance variations, e.g. practice effects across days. The proposed method uses robotic perturbations similar to those used in ongoing studies of motor function post-stroke. The approach is sensitive to small changes in the proprioceptive detection of hand motions. We expect this new robotic assessment will empower future studies to characterize how proprioceptive deficits compromise limb posture and movement control in stroke survivors.
Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses.
Ramos-Murguialday, Ander; Schürholz, Markus; Caggiano, Vittorio; Wildgruber, Moritz; Caria, Andrea; Hammer, Eva Maria; Halder, Sebastian; Birbaumer, Niels
2012-01-01
Brain computer interface (BCI) technology has been proposed for motor neurorehabilitation, motor replacement and assistive technologies. It is an open question whether proprioceptive feedback affects the regulation of brain oscillations and therefore BCI control. We developed a BCI coupled on-line with a robotic hand exoskeleton for flexing and extending the fingers. 24 healthy participants performed five different tasks of closing and opening the hand: (1) motor imagery of the hand movement without any overt movement and without feedback, (2) motor imagery with movement as online feedback (participants see and feel their hand, with the exoskeleton moving according to their brain signals, (3) passive (the orthosis passively opens and closes the hand without imagery) and (4) active (overt) movement of the hand and rest. Performance was defined as the difference in power of the sensorimotor rhythm during motor task and rest and calculated offline for different tasks. Participants were divided in three groups depending on the feedback receiving during task 2 (the other tasks were the same for all participants). Group 1 (n = 9) received contingent positive feedback (participants' sensorimotor rhythm (SMR) desynchronization was directly linked to hand orthosis movements), group 2 (n = 8) contingent "negative" feedback (participants' sensorimotor rhythm synchronization was directly linked to hand orthosis movements) and group 3 (n = 7) sham feedback (no link between brain oscillations and orthosis movements). We observed that proprioceptive feedback (feeling and seeing hand movements) improved BCI performance significantly. Furthermore, in the contingent positive group only a significant motor learning effect was observed enhancing SMR desynchronization during motor imagery without feedback in time. Furthermore, we observed a significantly stronger SMR desynchronization in the contingent positive group compared to the other groups during active and passive movements. To summarize, we demonstrated that the use of contingent positive proprioceptive feedback BCI enhanced SMR desynchronization during motor tasks.
Proprioception and ankle injuries in soccer.
Ergen, Emin; Ulkar, Bülent
2008-01-01
Because soccer attracts many participants and leads to a substantial number of injuries, especially of the lower extremities, it is important to study possibilities for injury prevention and proper rehabilitation to return safely to activities. Ankle sprains can be prevented by external ankle supports and proprioceptive-coordination training, especially in athletes with previous ankle sprains. Proprioception is a broad concept that includes balance and postural control with visual and vestibular contributions, joint kinesthesia, position sense, and muscle reaction time. Proprioceptive feedback is crucial in the conscious and unconscious awareness of a joint or limb in motion. Enhancement of functional joint stability by proprioceptive (or neuromuscular) training is important both in prevention and rehabilitation of athletic injuries.
Chien, Jung Hung; Eikema, Diderik-Jan Anthony; Mukherjee, Mukul; Stergiou, Nicholas
2014-12-01
Feedback based balance control requires the integration of visual, proprioceptive and vestibular input to detect the body's movement within the environment. When the accuracy of sensory signals is compromised, the system reorganizes the relative contributions through a process of sensory recalibration, for upright postural stability to be maintained. Whereas this process has been studied extensively in standing using the Sensory Organization Test (SOT), less is known about these processes in more dynamic tasks such as locomotion. In the present study, ten healthy young adults performed the six conditions of the traditional SOT to quantify standing postural control when exposed to sensory conflict. The same subjects performed these six conditions using a novel experimental paradigm, the Locomotor SOT (LSOT), to study dynamic postural control during walking under similar types of sensory conflict. To quantify postural control during walking, the net Center of Pressure sway variability was used. This corresponds to the Performance Index of the center of pressure trajectory, which is used to quantify postural control during standing. Our results indicate that dynamic balance control during locomotion in healthy individuals is affected by the systematic manipulation of multisensory inputs. The sway variability patterns observed during locomotion reflect similar balance performance with standing posture, indicating that similar feedback processes may be involved. However, the contribution of visual input is significantly increased during locomotion, compared to standing in similar sensory conflict conditions. The increased visual gain in the LSOT conditions reflects the importance of visual input for the control of locomotion. Since balance perturbations tend to occur in dynamic tasks and in response to environmental constraints not present during the SOT, the LSOT may provide additional information for clinical evaluation on healthy and deficient sensory processing.
Does neuromuscular taping influence hand kinesiology? A pilot study on Down's Syndrome.
Rigoldi, C; Galli, M; Celletti, C; Blow, D; Camerota, F; Albertini, G
2015-01-01
This paper is a first attempt analysis of hand and upper limb proprioception coordination induced by NeuroMuscular Taping (NMT): application in a group of 5 participants with Down syndrome. The participants underwent a drawing test with motion capture system acquisition before and after NMT application. Specific and descriptive parameters were computed and analysed in order to quantify the differences. Results showed statistical differences between pre and post treatment sessions: the 5 participants with Down syndrome evidenced more reliance on proprioceptive signals in the post treatment session during the execution of the specific writing tasks. Based on the hypothesis that modifications in proprioception should alter motor pathway mapping of the motor cortex, Neuromuscular taping may play a role in the treatment of dysgraphia and improving hand coordination following CNS impairment, even though a small treatment group was chosen for this pilot study the results lead to further discussions concerning the role of different afferent signals in a pathological context.
The clinical use of dynamic posturography in the elderly.
Shepard, N T
1989-12-01
We provide an overview of the clinical uses of dynamic posturography. Although the equipment described to perform this testing is expensive, the concepts, especially those for sensory organization, can be applied for +20.00. To apply the six sensory organization conditions, one merely needs some way to disrupt proprioceptive information by maintaining ankle angle and providing for visual conflict stimuli. We found that proprioceptive information can be disrupted easily by asking the patient to stand on a thick (4-inch) dense piece of foam rubber like that used in cushions for furniture. Visual stabilization conflict can be provided by having the patient wear a 19- to 20-inch Japanese lantern with a head-mounting system in the center so that the patient's movements do not reflect themselves in relative movements to the visual environment. With use of these two simple tools, the six sensory organization tests can be approximated in a clinical situation in a short time and can provide some relative information about a patient's postural control capabilities. With minor additional work, a quantitative measure of output that gives indications of the amount of anterior-posterior sway also can be provided. For elderly patients with a variety of problems ranging from general unsteadiness to frank vertigo, the risk of falling can be devastating, and it is important to provide a thorough investigation of the total balance system. The systematic investigation, qualitatively or quantitatively, of integration of sensory input and motor outputs provides a dimension that typically has been lacking in the routine "dizzy patient workup" for all ages but especially for elderly patients. Therefore, the application of the postural maintenance theory with the above-described procedures or variations in these procedures appears to have a great deal of clinical relevance in the evaluation of patients with gait and balance disorders. These types of evaluations represent an adjunct or addition to the evaluation of the vestibular system and the vestibulo-ocular reflexes and by no means should be considered a substitute for that traditional evaluation. It is the combination of information that can provide the clinician with a more global picture of the entire balance system and its functional capabilities.
Stock, Ann-Kathrin; Mückschel, Moritz; Beste, Christian
2017-01-01
Recent research has drawn interest to the effects of binge drinking on response selection. However, choosing an appropriate response is a complex endeavor that usually requires us to process and integrate several streams of information. One of them is proprioceptive information about the position of limbs. As to now, it has however remained elusive how binge drinking affects the processing of proprioceptive information during response selection and control in healthy individuals. We investigated this question using neurophysiological (EEG) techniques in a response selection task, where we manipulated proprioceptive information. The results show a reversal of alcohol-induced effects on response control due to changes in proprioceptive information processing. The most likely explanation for this finding is that proprioceptive information does not seem to be properly integrated in response selection processes during acute alcohol intoxication as found in binge drinking. The neurophysiological data suggest that processes related to the preparation and execution of the motor response, but not upstream processes related to conflict monitoring and spatial attentional orienting, underlie these binge drinking-dependent modulations. Taken together, the results show that even high doses of alcohol have very specific effects within the cascade of neurophysiological processes underlying response control and the integration of proprioceptive information during this process. © 2015 Society for the Study of Addiction.
Force illusions and drifts observed during muscle vibration.
Reschechtko, Sasha; Cuadra, Cristian; Latash, Mark L
2018-01-01
We explored predictions of a scheme that views position and force perception as a result of measuring proprioceptive signals within a reference frame set by ongoing efferent process. In particular, this hypothesis predicts force illusions caused by muscle vibration and mediated via changes in both afferent and efferent components of kinesthesia. Healthy subjects performed accurate steady force production tasks by pressing with the four fingers of one hand (the task hand) on individual force sensors with and without visual feedback. At various times during the trials, subjects matched the perceived force using the other hand. High-frequency vibration was applied to one or both of the forearms (over the hand and finger extensors). Without visual feedback, subjects showed a drop in the task hand force, which was significantly smaller under the vibration of that forearm. Force production by the matching hand was consistently higher than that of the task hand. Vibrating one of the forearms affected the matching hand in a manner consistent with the perception of higher magnitude of force produced by the vibrated hand. The findings were consistent between the dominant and nondominant hands. The effects of vibration on both force drift and force mismatching suggest that vibration led to shifts in both signals from proprioceptors and the efferent component of perception, the referent coordinate and/or coactivation command. The observations fit the hypothesis on combined perception of kinematic-kinetic variables with little specificity of different groups of peripheral receptors that all contribute to perception of forces and coordinates. NEW & NOTEWORTHY We show that vibration of hand/finger extensors produces consistent errors in finger force perception. Without visual feedback, finger force drifted to lower values without a drift in the matching force produced by the other hand; hand extensor vibration led to smaller finger force drift. The findings fit the scheme with combined perception of kinematic-kinetic variables and suggest that vibration leads to consistent shifts of the referent coordinate and, possibly, of coactivation command to the effector.
N270 sensitivity to conflict strength and working memory: A combined ERP and sLORETA study.
Scannella, Sébastien; Pariente, Jérémie; De Boissezon, Xavier; Castel-Lacanal, Evelyne; Chauveau, Nicolas; Causse, Mickaël; Dehais, Frédéric; Pastor, Josette
2016-01-15
The event-related potential N270 component is known to be an electrophysiological marker of the supramodal conflict processing. However little is know about the factors that may modulate its amplitude. In particular, among all studies that have investigated the N270, little or no control of the conflict strength and of the load in working memory have been done leaving a lack in the understanding of this component. We designed a spatial audiovisual conflict task with simultaneous target and cross-modal distractor to evaluate the N270 sensitivity to the conflict strength (i.e., visual target with auditory distractor or auditory target with visual distractor) and the load in working memory (goal task maintenance with frequent change in the target modality). In a first session, participants had to focus on one modality for the target position to be considered (left-hand or right-hand) while the distractor could be at the same side (compatible) or at opposite side (incompatible). In a second session, we used the same set of stimuli as in the first session with an additional distinct auditory signal that clued the participants to frequently switch between the auditory and the visual targets. We found that (1) reaction times and N270 amplitudes for conflicting situations were larger within the auditory target condition compared to the visual one, (2) the increase in target maintenance effort led to equivalent increase of both reaction times and N270 amplitudes within all conditions and (3) the right dorsolateral prefrontal cortex current density was higher for both conflicting and active maintenance of the target situations. These results provide new evidence that the N270 component is an electrophysiological marker of the supramodal conflict processing that is sensitive to the conflict strength and that conflict processing and active maintenance of the task goal are two functions of a common executive attention system. Copyright © 2015 Elsevier B.V. All rights reserved.
Mergner, T; Schweigart, G; Maurer, C; Blümle, A
2005-12-01
The role of visual orientation cues for human control of upright stance is still not well understood. We, therefore, investigated stance control during motion of a visual scene as stimulus, varying the stimulus parameters and the contribution from other senses (vestibular and leg proprioceptive cues present or absent). Eight normal subjects and three patients with chronic bilateral loss of vestibular function participated. They stood on a motion platform inside a cabin with an optokinetic pattern on its interior walls. The cabin was sinusoidally rotated in anterior-posterior (a-p) direction with the horizontal rotation axis through the ankle joints (f=0.05-0.4 Hz; A (max)=0.25 degrees -4 degrees ; v (max)=0.08-10 degrees /s). The subjects' centre of mass (COM) angular position was calculated from opto-electronically measured body sway parameters. The platform was either kept stationary or moved by coupling its position 1:1 to a-p hip position ('body sway referenced', BSR, platform condition), by which proprioceptive feedback of ankle joint angle became inactivated. The visual stimulus evoked in-phase COM excursions (visual responses) in all subjects. (1) In normal subjects on a stationary platform, the visual responses showed saturation with both increasing velocity and displacement of the visual stimulus. The saturation showed up abruptly when visually evoked COM velocity and displacement reached approximately 0.1 degrees /s and 0.1 degrees , respectively. (2) In normal subjects on a BSR platform (proprioceptive feedback disabled), the visual responses showed similar saturation characteristics, but at clearly higher COM velocity and displacement values ( approximately 1 degrees /s and 1 degrees , respectively). (3) In patients on a stationary platform (no vestibular cues), the visual responses were basically similar to those of the normal subjects, apart from somewhat higher gain values and less-pronounced saturation effects. (4) In patients on a BSR platform (no vestibular and proprioceptive cues, presumably only somatosensory graviceptive and visual cues), the visual responses showed an abnormal increase in gain with increasing stimulus frequency in addition to a displacement saturation. On the normal subjects we performed additional experiments in which we varied the gain of the visual response by using a 'virtual reality' visual stimulus or by applying small lateral platform tilts. This did not affect the saturation characteristics of the visual response to a considerable degree. We compared the present results to previous psychophysical findings on motion perception, noting similarities of the saturation characteristics in (1) with leg proprioceptive detection thresholds of approximately 0.1 degrees /s and 0.1 degrees and those in (2) with vestibular detection thresholds of 1 degrees /s and 1 degrees , respectively. From the psychophysical data one might hypothesise that a proprioceptive postural mechanism limits the visually evoked body excursions if these excursions exceed 0.1 degrees /s and 0.1 degrees in condition (1) and that a vestibular mechanism is doing so at 1 degrees /s and 1 degrees in (2). To better understand this, we performed computer simulations using a posture control model with multiple sensory feedbacks. We had recently designed the model to describe postural responses to body pull and platform tilt stimuli. Here, we added a visual input and adjusted its gain to fit the simulated data to the experimental data. The saturation characteristics of the visual responses of the normals were well mimicked by the simulations. They were caused by central thresholds of proprioceptive, vestibular and somatosensory signals in the model, which, however, differed from the psychophysical thresholds. Yet, we demonstrate in a theoretical approach that for condition (1) the model can be made monomodal proprioceptive with the psychophysical 0.1 degrees /s and 0.1 degrees thresholds, and for (2) monomodal vestibular with the psychophysical 1 degrees /s and 1 degrees thresholds, and still shows the corresponding saturation characteristics (whereas our original model covers both conditions without adjustments). The model simulations also predicted the almost normal visual responses of patients on a stationary platform and their clearly abnormal responses on a BSR platform.
Walsh, E; Guilmette, D N; Longo, M R; Moore, J W; Oakley, D A; Halligan, P W; Mehta, M A; Deeley, Q
2015-01-01
Hypnotic suggestibility (HS) is the ability to respond automatically to suggestions and to experience alterations in perception and behavior. Hypnotically suggestible participants are also better able to focus and sustain their attention on an experimental stimulus. The present study explores the relation between HS and susceptibility to the rubber hand illusion (RHI). Based on previous research with visual illusions, it was predicted that higher HS would lead to a stronger RHI. Two behavioral output measures of the RHI, an implicit (proprioceptive drift) and an explicit (RHI questionnaire) measure, were correlated against HS scores. Hypnotic suggestibility correlated positively with the implicit RHI measure contributing to 30% of the variation. However, there was no relation between HS and the explicit RHI questionnaire measure, or with compliance control items. High hypnotic suggestibility may facilitate, via attentional mechanisms, the multisensory integration of visuoproprioceptive inputs that leads to greater perceptual mislocalization of a participant's hand. These results may provide insight into the multisensory brain mechanisms involved in our sense of embodiment.
Ono, Yumie; Wada, Kenya; Kurata, Masaya; Seki, Naoto
2018-06-01
Varied individual ability to control the sensory-motor rhythms may limit the potential use of motor-imagery (MI) in neurorehabilitation and neuroprosthetics. We employed neurofeedback training of MI under action observation (AO: AOMI) with proprioceptive feedback and examined whether it could enhance MI-induced event-related desynchronization (ERD). Twenty-eight healthy young adults participated in the neurofeedback training. They performed MI while watching a video of hand-squeezing motion from a first-person perspective. Eleven participants received correct proprioceptive feedback of the same hand motion with the video, via an exoskeleton robot attached to their hand, upon their successful generation of ERD. Another nine participants received random feedback. The training lasted for approximately 20 min per day and continued for 6 days within an interval of 2 weeks. MI-ERD power was evaluated separately, without AO, on each experimental day. The MI-ERD power of the participants receiving correct feedback, as opposed to random feedback, was significantly increased after training. An additional experiment in which the remaining eight participants were trained with auditory instead of proprioceptive feedback failed to show statistically significant increase in MI-ERD power. The significant training effect obtained in shorter training time relative to previously proposed methods suggests the superiority of AOMI training and physiologically-congruent proprioceptive feedback to enhance the MI-ERD power. The proposed neurofeedback training could help patients with motor deficits to attain better use of brain-machine interfaces for rehabilitation and/or prosthesis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Isolating Visual and Proprioceptive Components of Motor Sequence Learning in ASD.
Sharer, Elizabeth A; Mostofsky, Stewart H; Pascual-Leone, Alvaro; Oberman, Lindsay M
2016-05-01
In addition to defining impairments in social communication skills, individuals with autism spectrum disorder (ASD) also show impairments in more basic sensory and motor skills. Development of new skills involves integrating information from multiple sensory modalities. This input is then used to form internal models of action that can be accessed when both performing skilled movements, as well as understanding those actions performed by others. Learning skilled gestures is particularly reliant on integration of visual and proprioceptive input. We used a modified serial reaction time task (SRTT) to decompose proprioceptive and visual components and examine whether patterns of implicit motor skill learning differ in ASD participants as compared with healthy controls. While both groups learned the implicit motor sequence during training, healthy controls showed robust generalization whereas ASD participants demonstrated little generalization when visual input was constant. In contrast, no group differences in generalization were observed when proprioceptive input was constant, with both groups showing limited degrees of generalization. The findings suggest, when learning a motor sequence, individuals with ASD tend to rely less on visual feedback than do healthy controls. Visuomotor representations are considered to underlie imitative learning and action understanding and are thereby crucial to social skill and cognitive development. Thus, anomalous patterns of implicit motor learning, with a tendency to discount visual feedback, may be an important contributor in core social communication deficits that characterize ASD. Autism Res 2016, 9: 563-569. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
The neural circuits recruited for the production of signs and fingerspelled words
Emmorey, Karen; Mehta, Sonya; McCullough, Stephen; Grabowski, Thomas J.
2016-01-01
Signing differs from typical non-linguistic hand actions because movements are not visually guided, finger movements are complex (particularly for fingerspelling), and signs are not produced as holistic gestures. We used positron emission tomography to investigate the neural circuits involved in the production of American Sign Language (ASL). Different types of signs (one-handed (articulated in neutral space), two-handed (neutral space), and one-handed body-anchored signs) were elicited by asking deaf native signers to produce sign translations of English words. Participants also fingerspelled (one-handed) printed English words. For the baseline task, participants indicated whether a word contained a descending letter. Fingerspelling engaged ipsilateral motor cortex and cerebellar cortex in contrast to both one-handed signs and the descender baseline task, which may reflect greater timing demands and complexity of handshape sequences required for fingerspelling. Greater activation in the visual word form area was also observed for fingerspelled words compared to one-handed signs. Body-anchored signs engaged bilateral superior parietal cortex to a greater extent than the descender baseline task and neutral space signs, reflecting the motor control and proprioceptive monitoring required to direct the hand toward a specific location on the body. Less activation in parts of the motor circuit was observed for two-handed signs compared to one-handed signs, possibly because, for half of the signs, handshape and movement goals were spread across the two limbs. Finally, the conjunction analysis comparing each sign type with the descender baseline task revealed common activation in the supramarginal gyrus bilaterally, which we interpret as reflecting phonological retrieval and encoding processes. PMID:27459390
Prism adaptation in alternately exposed hands.
Redding, Gordon M; Wallace, Benjamin
2013-08-01
We assessed intermanual transfer of the proprioceptive realignment aftereffects of prism adaptation in right-handers by examining alternate target pointing with the two hands for 40 successive trials, 20 with each hand. Adaptation for the right hand was not different as a function of exposure sequence order or postexposure test order, in contrast with adaptation for the left hand. Adaptation was greater for the left hand when the right hand started the alternate pointing than when the sequence of target-pointing movements started with the left hand. Also, the largest left-hand adaptation appeared when that hand was tested first after exposure. Terminal error during exposure varied in cycles for the two hands, converging on zero when the right hand led, but no difference appeared between the two hands when the left hand led. These results suggest that transfer of proprioceptive realignment occurs from the right to the left hand during both exposure and postexposure testing. Such transfer reflects the process of maintaining spatial alignment between the two hands. Normally, the left hand appears to be calibrated with the right-hand spatial map, and when the two hands are misaligned, the left-hand spatial map is realigned with the right-hand spatial map.
Self- and other-agency in people with passivity (first rank) symptoms in schizophrenia.
Graham-Schmidt, Kyran T; Martin-Iverson, Mathew T; Waters, Flavie A V
2018-02-01
Individuals with passivity (first-rank) symptoms report that their actions, thoughts and sensations are influenced or controlled by an external (non-self) agent. Passivity symptoms are closely linked to schizophrenia and related disorders yet they remain poorly understood. One dominant framework posits a role for deficits in the sense of agency. An important question is whether deficits in self-agency can be differentiated from other-agency in schizophrenia and passivity symptoms. This study aimed to evaluate self- and other-agency in 51 people with schizophrenia (n=20 current, 10 past, 21 no history of passivity symptoms), and 48 healthy controls. Participants completed the projected hand illusion (PHI) with active and passive movements, as well as immediate and delayed visual feedback. Experiences of agency and loss of agency over the participant's hand and the image ('the other hand') were assessed with a self-report questionnaire. Those with passivity symptoms (current and past) reported less difference in agency between active and passive movements on items assessing agency over their own hand (but not agency over the other hand). Relative to the healthy controls, the current and never groups continued to experience the illusion with delayed visual feedback suggesting impaired timing mechanisms regardless of symptom profile. These findings are consistent with a reduced contribution of proprioceptive predictive cues to agency judgements specific to self representations in people with passivity symptoms, and a subsequent reliance on external visual cues in these judgements. Altogether, these findings emphasise the multifactorial nature of agency and the contribution of multiple impairments to passivity symptoms. Copyright © 2017 Elsevier B.V. All rights reserved.
Location memory biases reveal the challenges of coordinating visual and kinesthetic reference frames
Simmering, Vanessa R.; Peterson, Clayton; Darling, Warren; Spencer, John P.
2008-01-01
Five experiments explored the influence of visual and kinesthetic/proprioceptive reference frames on location memory. Experiments 1 and 2 compared visual and kinesthetic reference frames in a memory task using visually-specified locations and a visually-guided response. When the environment was visible, results replicated previous findings of biases away from the midline symmetry axis of the task space, with stability for targets aligned with this axis. When the environment was not visible, results showed some evidence of bias away from a kinesthetically-specified midline (trunk anterior–posterior [a–p] axis), but there was little evidence of stability when targets were aligned with body midline. This lack of stability may reflect the challenges of coordinating visual and kinesthetic information in the absence of an environmental reference frame. Thus, Experiments 3–5 examined kinesthetic guidance of hand movement to kinesthetically-defined targets. Performance in these experiments was generally accurate with no evidence of consistent biases away from the trunk a–p axis. We discuss these results in the context of the challenges of coordinating reference frames within versus between multiple sensori-motor systems. PMID:17703284
Asai, Tomohisa
2015-03-01
The sense of body-ownership involves the integration of vision and somatosensation. In the rubber hand illusion (RHI), watching a rubber hand being stroked for a short time synchronously as one's own unseen hand is also stroked causes the observers to attribute the rubber hand to their own body. The RHI may elicit proprioceptive drift: The observers' sense of their own hand's location drifts toward the external proxy hand. The current experiments examined the possibility of observing, not the proprioceptive drift, but the actual drift "movement" during RHI induction. The participants' hand, located on horizontally movable board, tended to move toward the rubber hand only while they observed synchronous visuo-tactile stimulation. Furthermore, even when the participants' hand was located on a fixed, unmovable board (that is, the conventional RHI paradigm), participants automatically administered the force toward the rubber hand. These findings suggest that since awareness of our own body and action are fundamental to self-consciousness, these components of "minimal self" are closely related and integrated into "one agent" with a unified awareness of the body and action.
Thakkar, Katharine N; Nichols, Heathman S; McIntosh, Lindsey G; Park, Sohee
2011-01-01
A weakened sense of self may contribute to psychotic experiences. Body ownership, one component of self-awareness, can be studied with the rubber hand illusion (RHI). Watching a rubber hand being stroked while one's unseen hand is stroked synchronously can lead to a sense of ownership over the rubber hand, a shift in perceived position of the real hand, and a limb-specific drop in stimulated hand temperature. We aimed to assess the RHI in schizophrenia using quantifiable measures: proprioceptive drift and stimulation-dependent changes in hand temperature. The RHI was elicited in 24 schizophrenia patients and 21 matched controls by placing their unseen hand adjacent to a visible rubber hand and brushing real and rubber hands synchronously or asynchronously. Perceived finger location was measured before and after stimulation. Hand temperature was taken before and during stimulation. Subjective strength of the illusion was assessed by a questionnaire. Across groups, the RHI was stronger during synchronous stimulation, indicated by self-report and proprioceptive drift. Patients reported a stronger RHI than controls. Self-reported strength of RHI was associated with schizotypy in controls Proprioceptive drift was larger in patients, but only following synchronous stimulation. Further, we observed stimulation-dependent changes in skin temperature. During right hand stimulation, temperature dropped in the stimulated hand and rose in the unstimulated hand. Interestingly, induction of RHI led to an out-of-body experience in one patient, linking body disownership and psychotic experiences. The RHI is quantitatively and qualitatively stronger in schizophrenia. These findings suggest that patients have a more flexible body representation and weakened sense of self, and potentially indicate abnormalities in temporo-parietal networks implicated in body ownership. Further, results suggest that these body ownership disturbances might be at the heart of a subset of the pathognomonic delusions of passivity.
Thakkar, Katharine N.; Nichols, Heathman S.; McIntosh, Lindsey G.; Park, Sohee
2011-01-01
Background A weakened sense of self may contribute to psychotic experiences. Body ownership, one component of self-awareness, can be studied with the rubber hand illusion (RHI). Watching a rubber hand being stroked while one's unseen hand is stroked synchronously can lead to a sense of ownership over the rubber hand, a shift in perceived position of the real hand, and a limb-specific drop in stimulated hand temperature. We aimed to assess the RHI in schizophrenia using quantifiable measures: proprioceptive drift and stimulation-dependent changes in hand temperature. Methods The RHI was elicited in 24 schizophrenia patients and 21 matched controls by placing their unseen hand adjacent to a visible rubber hand and brushing real and rubber hands synchronously or asynchronously. Perceived finger location was measured before and after stimulation. Hand temperature was taken before and during stimulation. Subjective strength of the illusion was assessed by a questionnaire. Results Across groups, the RHI was stronger during synchronous stimulation, indicated by self-report and proprioceptive drift. Patients reported a stronger RHI than controls. Self-reported strength of RHI was associated with schizotypy in controls Proprioceptive drift was larger in patients, but only following synchronous stimulation. Further, we observed stimulation-dependent changes in skin temperature. During right hand stimulation, temperature dropped in the stimulated hand and rose in the unstimulated hand. Interestingly, induction of RHI led to an out-of-body experience in one patient, linking body disownership and psychotic experiences. Conclusions The RHI is quantitatively and qualitatively stronger in schizophrenia. These findings suggest that patients have a more flexible body representation and weakened sense of self, and potentially indicate abnormalities in temporo-parietal networks implicated in body ownership. Further, results suggest that these body ownership disturbances might be at the heart of a subset of the pathognomonic delusions of passivity. PMID:22073126
Ju, Sung-Bum; Park, Gi Duck; Kim, Sang-Soo
2015-08-01
[Purpose] This study applied proprioceptive circuit exercise to patients with degenerative knee osteoarthritis and examined its effects on knee joint muscle function and the level of pain. [Subjects] In this study, 14 patients with knee osteoarthritis in two groups, a proprioceptive circuit exercise group (n = 7) and control group (n = 7), were examined. [Methods] IsoMed 2000 (D&R Ferstl GmbH, Hemau, Germany) was used to assess knee joint muscle function, and a Visual Analog Scale was used to measure pain level. [Results] In the proprioceptive circuit exercise group, knee joint muscle function and pain levels improved significantly, whereas in the control group, no significant improvement was observed. [Conclusion] A proprioceptive circuit exercise may be an effective way to strengthen knee joint muscle function and reduce pain in patients with knee osteoarthritis.
Rubber Hand Illusion Affects Joint Angle Perception
Butz, Martin V.; Kutter, Esther F.; Lorenz, Corinna
2014-01-01
The Rubber Hand Illusion (RHI) is a well-established experimental paradigm. It has been shown that the RHI can affect hand location estimates, arm and hand motion towards goals, the subjective visual appearance of the own hand, and the feeling of body ownership. Several studies also indicate that the peri-hand space is partially remapped around the rubber hand. Nonetheless, the question remains if and to what extent the RHI can affect the perception of other body parts. In this study we ask if the RHI can alter the perception of the elbow joint. Participants had to adjust an angular representation on a screen according to their proprioceptive perception of their own elbow joint angle. The results show that the RHI does indeed alter the elbow joint estimation, increasing the agreement with the position and orientation of the artificial hand. Thus, the results show that the brain does not only adjust the perception of the hand in body-relative space, but it also modifies the perception of other body parts. In conclusion, we propose that the brain continuously strives to maintain a consistent internal body image and that this image can be influenced by the available sensory information sources, which are mediated and mapped onto each other by means of a postural, kinematic body model. PMID:24671172
Active Manual Movement Improves Directional Perception of Illusory Force.
Amemiya, Tomohiro; Gomi, Hiroaki
2016-01-01
Active touch sensing is known to facilitate the discrimination or recognition of the spatial properties of an object from the movement of tactile sensors on the skin and by integrating proprioceptive feedback about hand positions or motor commands related to ongoing hand movements. On the other hand, several studies have reported that tactile processing is suppressed by hand movement. Thus, it is unclear whether or not the active exploration of force direction by using hand or arm movement improves the perception of the force direction. Here, we show that active manual movement in both the rotational and translational directions enhances the precise perception of the force direction. To make it possible to move a hand in space without any physical constraints, we have adopted a method of inducing the sensation of illusory force by asymmetric vibration. We found that the precision of the perceived force direction was significantly better when the shoulder is rotated medially and laterally. We also found that directional errors supplied by the motor response of the perceived force were smaller than those resulting from perceptual judgments between visual and haptic directional stimuli. These results demonstrate that active manual movement boosts the precision of the perceived direction of an illusory force.
Fiori, Francesca; David, Nicole; Aglioti, Salvatore M
2014-01-01
In the rod and frame test (RFT), participants are asked to set a tilted visual linear marker (i.e., a rod), embedded in a square, to the subjective vertical, irrespective of the surrounding frame. People not influenced by the frame tilt are defined as field-independent, while people biased in their rod verticality perception are field-dependent. Performing RFT requires the integration of proprioceptive, vestibular and visual signals with the latter accounting for field-dependency. Studies indicate that motor experts in body-related, balance-improving disciplines tend to be field-independent, i.e., better at verticality perception, suggesting that proprioceptive and vestibular expertise acquired by such exercise may weaken the influence of irrelevant visual signals. What remains unknown is whether the effect of body-related expertise in weighting perceptual information might also be mediated by personality traits, in particular those indexing self-focusing abilities. To explore this issue, we tested field-dependency in a class of body experts, namely yoga practitioners and in non-expert participants. Moreover we explored any link between performance on RFT and self-transcendence (ST), a complex personality construct, which refers to tendency to experience spiritual feelings and ideas. As expected, yoga practitioners (i) were more accurate in assessing the rod's verticality on the RFT, and (ii) expressed significantly higher ST. Interestingly, the performance in these two tests was negatively correlated. More specifically, when asked to provide verticality judgments, highly self-transcendent yoga practitioners were significantly less influenced by a misleading visual context. Our results suggest that being highly self-transcendent may enable yoga practitioners to optimize verticality judgment tasks by relying more on internal (vestibular and proprioceptive) signals coming from their own body, rather than on exteroceptive, visual cues.
Fiori, Francesca; David, Nicole; Aglioti, Salvatore M.
2014-01-01
In the rod and frame test (RFT), participants are asked to set a tilted visual linear marker (i.e., a rod), embedded in a square, to the subjective vertical, irrespective of the surrounding frame. People not influenced by the frame tilt are defined as field-independent, while people biased in their rod verticality perception are field-dependent. Performing RFT requires the integration of proprioceptive, vestibular and visual signals with the latter accounting for field-dependency. Studies indicate that motor experts in body-related, balance-improving disciplines tend to be field-independent, i.e., better at verticality perception, suggesting that proprioceptive and vestibular expertise acquired by such exercise may weaken the influence of irrelevant visual signals. What remains unknown is whether the effect of body-related expertise in weighting perceptual information might also be mediated by personality traits, in particular those indexing self-focusing abilities. To explore this issue, we tested field-dependency in a class of body experts, namely yoga practitioners and in non-expert participants. Moreover we explored any link between performance on RFT and self-transcendence (ST), a complex personality construct, which refers to tendency to experience spiritual feelings and ideas. As expected, yoga practitioners (i) were more accurate in assessing the rod's verticality on the RFT, and (ii) expressed significantly higher ST. Interestingly, the performance in these two tests was negatively correlated. More specifically, when asked to provide verticality judgments, highly self-transcendent yoga practitioners were significantly less influenced by a misleading visual context. Our results suggest that being highly self-transcendent may enable yoga practitioners to optimize verticality judgment tasks by relying more on internal (vestibular and proprioceptive) signals coming from their own body, rather than on exteroceptive, visual cues. PMID:25278866
Rinaldi, Luca; Vecchi, Tomaso; Fantino, Micaela; Merabet, Lotfi B; Cattaneo, Zaira
2015-10-01
Recent evidence suggests that in representing numbers blind individuals might be affected differently by proprioceptive cues (e.g., hand positions, head turns) than are sighted individuals. In this study, we asked a group of early blind and sighted individuals to perform a numerical bisection task while executing hand movements in left or right peripersonal space and with either hand. We found that in bisecting ascending numerical intervals, the hemi-space in which the hand was moved (but not the moved hand itself) influenced the bisection bias similarly in both early blind and sighted participants. However, when numerical intervals were presented in descending order, the moved hand (and not the hemi-space in which it was moved) affected the bisection bias in all participants. Overall, our data show that the operation to be performed on the mental number line affects the activated spatial reference frame, regardless of participants' previous visual experience. In particular, both sighted and early blind individuals' representation of numerical magnitude is mainly rooted in world-centered coordinates when numerical information is given in canonical orientation (i.e., from small to large), whereas hand-centered coordinates become more relevant when the scanning of the mental number line proceeds in non-canonical direction. Copyright © 2015 Elsevier Ltd. All rights reserved.
The effect of hand movements on numerical bisection judgments in early blind and sighted individuals
Rinaldi, Luca; Vecchi, Tomaso; Fantino, Micaela; Merabet, Lotfi B.; Cattaneo, Zaira
2017-01-01
Recent evidence suggests that in representing numbers blind individuals might be affected differently by proprioceptive cues (e.g., hand positions, head turns) than are sighted individuals. In this study, we asked a group of early blind and sighted individuals to perform a numerical bisection task while executing hand movements in left or right peripersonal space and with either hand. We found that in bisecting ascending numerical intervals, the hemi-space in which the hand was moved (but not the moved hand itself) influenced the bisection bias similarly in both early blind and sighted participants. However, when numerical intervals were presented in descending order, the moved hand (and not the hemi-space in which it was moved) affected the bisection bias in all participants. Overall, our data show that the operation to be performed on the mental number line affects the activated spatial reference frame, regardless of participants’ previous visual experience. In particular, both sighted and early blind individuals’ representation of numerical magnitude is mainly rooted in world-centered coordinates when numerical information is given in canonical orientation (i.e. from small to large), whereas hand-centered coordinates become more relevant when the scanning of the mental number line proceeds in non-canonical direction. PMID:26184675
Tanaka, Yoshiyuki; Mizoe, Genki; Kawaguchi, Tomohiro
2015-01-01
This paper proposes a simple diagnostic methodology for checking the ability of proprioceptive/kinesthetic sensation by using a robotic device. The perception ability of virtual frictional forces is examined in operations of the robotic device by the hand at a uniform slow velocity along the virtual straight/circular path. Experimental results by healthy subjects demonstrate that percentage of correct answers for the designed perceptual tests changes in the motion direction as well as the arm configuration and the HFM (human force manipulability) measure. It can be supposed that the proposed methodology can be applied into the early detection of neuromuscular/neurological disorders.
Upper Limb Asymmetry in the Sense of Effort Is Dependent on Force Level
Mitchell, Mark; Martin, Bernard J.; Adamo, Diane E.
2017-01-01
Previous studies have shown that asymmetries in upper limb sensorimotor function are dependent on the source of sensory and motor information, hand preference and differences in hand strength. Further, the utilization of sensory and motor information and the mode of control of force may differ between the right hand/left hemisphere and left hand/right hemisphere systems. To more clearly understand the unique contribution of hand strength and intrinsic differences to the control of grasp force, we investigated hand/hemisphere differences when the source of force information was encoded at two different force levels corresponding to a 20 and 70% maximum voluntary contraction or the right and left hand of each participant. Eleven, adult males who demonstrated a stronger right than left maximum grasp force were requested to match a right or left hand 20 or 70% maximal voluntary contraction reference force with the opposite hand. During the matching task, visual feedback corresponding to the production of the reference force was available and then removed when the contralateral hand performed the match. The matching relative force error was significantly different between hands for the 70% MVC reference force but not for the 20% MVC reference force. Directional asymmetries, quantified as the matching force constant error, showed right hand overshoots and left undershoots were force dependent and primarily due to greater undershoots when matching with the left hand the right hand reference force. Findings further suggest that the interaction between internal sources of information, such as efferent copy and proprioception, as well as hand strength differences appear to be hand/hemisphere system dependent. Investigations of force matching tasks under conditions whereby force level is varied and visual feedback of the reference force is available provides critical baseline information for building effective interventions for asymmetric (stroke-related, Parkinson’s Disease) and symmetric (Amyotrophic Lateral Sclerosis) upper limb recovery of neurological conditions where the various sources of sensory – motor information have been significantly altered by the disease process. PMID:28491047
Upper Limb Asymmetry in the Sense of Effort Is Dependent on Force Level.
Mitchell, Mark; Martin, Bernard J; Adamo, Diane E
2017-01-01
Previous studies have shown that asymmetries in upper limb sensorimotor function are dependent on the source of sensory and motor information, hand preference and differences in hand strength. Further, the utilization of sensory and motor information and the mode of control of force may differ between the right hand/left hemisphere and left hand/right hemisphere systems. To more clearly understand the unique contribution of hand strength and intrinsic differences to the control of grasp force, we investigated hand/hemisphere differences when the source of force information was encoded at two different force levels corresponding to a 20 and 70% maximum voluntary contraction or the right and left hand of each participant. Eleven, adult males who demonstrated a stronger right than left maximum grasp force were requested to match a right or left hand 20 or 70% maximal voluntary contraction reference force with the opposite hand. During the matching task, visual feedback corresponding to the production of the reference force was available and then removed when the contralateral hand performed the match. The matching relative force error was significantly different between hands for the 70% MVC reference force but not for the 20% MVC reference force. Directional asymmetries, quantified as the matching force constant error, showed right hand overshoots and left undershoots were force dependent and primarily due to greater undershoots when matching with the left hand the right hand reference force. Findings further suggest that the interaction between internal sources of information, such as efferent copy and proprioception, as well as hand strength differences appear to be hand/hemisphere system dependent. Investigations of force matching tasks under conditions whereby force level is varied and visual feedback of the reference force is available provides critical baseline information for building effective interventions for asymmetric (stroke-related, Parkinson's Disease) and symmetric (Amyotrophic Lateral Sclerosis) upper limb recovery of neurological conditions where the various sources of sensory - motor information have been significantly altered by the disease process.
Tagliabue, Michele; McIntyre, Joseph
2013-01-01
Several experimental studies in the literature have shown that even when performing purely kinesthetic tasks, such as reaching for a kinesthetically felt target with a hidden hand, the brain reconstructs a visual representation of the movement. In our previous studies, however, we did not observe any role of a visual representation of the movement in a purely kinesthetic task. This apparent contradiction could be related to a fundamental difference between the studied tasks. In our study subjects used the same hand to both feel the target and to perform the movement, whereas in most other studies, pointing to a kinesthetic target consisted of pointing with one hand to the finger of the other, or to some other body part. We hypothesize, therefore, that it is the necessity of performing inter-limb transformations that induces a visual representation of purely kinesthetic tasks. To test this hypothesis we asked subjects to perform the same purely kinesthetic task in two conditions: INTRA and INTER. In the former they used the right hand to both perceive the target and to reproduce its orientation. In the latter, subjects perceived the target with the left hand and responded with the right. To quantify the use of a visual representation of the movement we measured deviations induced by an imperceptible conflict that was generated between visual and kinesthetic reference frames. Our hypothesis was confirmed by the observed deviations of responses due to the conflict in the INTER, but not in the INTRA, condition. To reconcile these observations with recent theories of sensori-motor integration based on maximum likelihood estimation, we propose here a new model formulation that explicitly considers the effects of covariance between sensory signals that are directly available and internal representations that are ‘reconstructed’ from those inputs through sensori-motor transformations. PMID:23861903
Proprioceptive bimanual test in intrinsic and extrinsic coordinates.
Iandolo, Riccardo; Squeri, Valentina; De Santis, Dalia; Giannoni, Psiche; Morasso, Pietro; Casadio, Maura
2015-01-01
Is there any difference between matching the position of the hands by asking the subjects to move them to the same spatial location or to mirror-symmetric locations with respect to the body midline? If the motion of the hands were planned in the extrinsic space, the mirror-symmetric task would imply an additional challenge, because we would need to flip the coordinates of the target on the other side of the workspace. Conversely, if the planning were done in intrinsic coordinates, in order to move both hands to the same spot in the workspace, we should compute different joint angles for each arm. Even if both representations were available to the subjects, the two tasks might lead to different results, providing some cue on the organization of the "body schema". In order to answer such questions, the middle fingertip of the non-dominant hand of a population of healthy subjects was passively moved by a manipulandum to 20 different target locations. Subjects matched these positions with the middle fingertip of their dominant hand. For most subjects, the matching accuracy was higher in the extrinsic modality both in terms of systematic error and variability, even for the target locations in which the configuration of the arms was the same for both modalities. This suggests that the matching performance of the subjects could be determined not only by proprioceptive information but also by the cognitive representation of the task: expressing the goal as reaching for the physical location of the hand in space is apparently more effective than requiring to match the proprioceptive representation of joint angles.
Feasel, Jeff; Wentz, Erin; Brooks, Frederick P.; Whitton, Mary C.
2012-01-01
Background and Purpose Persistent deficits in gait speed and spatiotemporal symmetry are prevalent following stroke and can limit the achievement of community mobility goals. Rehabilitation can improve gait speed, but has shown limited ability to improve spatiotemporal symmetry. The incorporation of combined visual and proprioceptive feedback regarding spatiotemporal symmetry has the potential to be effective at improving gait. Case Description A 60-year-old man (18 months poststroke) and a 53-year-old woman (21 months poststroke) each participated in gait training to improve gait speed and spatiotemporal symmetry. Each patient performed 18 sessions (6 weeks) of combined treadmill-based gait training followed by overground practice. To assist with relearning spatiotemporal symmetry, treadmill-based training for both patients was augmented with continuous, real-time visual and proprioceptive feedback from an immersive virtual environment and a dual belt treadmill, respectively. Outcomes Both patients improved gait speed (patient 1: 0.35 m/s improvement; patient 2: 0.26 m/s improvement) and spatiotemporal symmetry. Patient 1, who trained with step-length symmetry feedback, improved his step-length symmetry ratio, but not his stance-time symmetry ratio. Patient 2, who trained with stance-time symmetry feedback, improved her stance-time symmetry ratio. She had no step-length asymmetry before training. Discussion Both patients made improvements in gait speed and spatiotemporal symmetry that exceeded those reported in the literature. Further work is needed to ascertain the role of combined visual and proprioceptive feedback for improving gait speed and spatiotemporal symmetry after chronic stroke. PMID:22228605
Robot-Aided Mapping of Wrist Proprioceptive Acuity across a 3D Workspace
Marini, Francesca; Squeri, Valentina; Morasso, Pietro; Konczak, Jürgen; Masia, Lorenzo
2016-01-01
Proprioceptive signals from peripheral mechanoreceptors form the basis for bodily perception and are known to be essential for motor control. However we still have an incomplete understanding of how proprioception differs between joints, whether it differs among the various degrees-of-freedom (DoFs) within a particular joint, and how such differences affect motor control and learning. We here introduce a robot-aided method to objectively measure proprioceptive function: specifically, we systematically mapped wrist proprioceptive acuity across the three DoFs of the wrist/hand complex with the aim to characterize the wrist position sense. Thirty healthy young adults performed an ipsilateral active joint position matching task with their dominant wrist using a haptic robotic exoskeleton. Our results indicate that the active wrist position sense acuity is anisotropic across the joint, with the abduction/adduction DoF having the highest acuity (the error of acuity for flexion/extension is 4.64 ± 0.24°; abduction/adduction: 3.68 ± 0.32°; supination/pronation: 5.15 ± 0.37°) and they also revealed that proprioceptive acuity decreases for smaller joint displacements. We believe this knowledge is imperative in a clinical scenario when assessing proprioceptive deficits and for understanding how such sensory deficits relate to observable motor impairments. PMID:27536882
Dynamic reweighting of three modalities for sensor fusion.
Hwang, Sungjae; Agada, Peter; Kiemel, Tim; Jeka, John J
2014-01-01
We simultaneously perturbed visual, vestibular and proprioceptive modalities to understand how sensory feedback is re-weighted so that overall feedback remains suited to stabilizing upright stance. Ten healthy young subjects received an 80 Hz vibratory stimulus to their bilateral Achilles tendons (stimulus turns on-off at 0.28 Hz), a ± 1 mA binaural monopolar galvanic vestibular stimulus at 0.36 Hz, and a visual stimulus at 0.2 Hz during standing. The visual stimulus was presented at different amplitudes (0.2, 0.8 deg rotation about ankle axis) to measure: the change in gain (weighting) to vision, an intramodal effect; and a change in gain to vibration and galvanic vestibular stimulation, both intermodal effects. The results showed a clear intramodal visual effect, indicating a de-emphasis on vision when the amplitude of visual stimulus increased. At the same time, an intermodal visual-proprioceptive reweighting effect was observed with the addition of vibration, which is thought to change proprioceptive inputs at the ankles, forcing the nervous system to rely more on vision and vestibular modalities. Similar intermodal effects for visual-vestibular reweighting were observed, suggesting that vestibular information is not a "fixed" reference, but is dynamically adjusted in the sensor fusion process. This is the first time, to our knowledge, that the interplay between the three primary modalities for postural control has been clearly delineated, illustrating a central process that fuses these modalities for accurate estimates of self-motion.
Hu, Chunying; Huang, Qiuchen; Yu, Lili; Hu, Yue; Rongming, Xia; Li, Zhou; Xiaojiao, Fu; Gu, Rui; Cui, Yao; Ge, Meng; Xu, Yanfeng; Liu, Jianfeng
2016-05-01
[Purpose] The purpose of this study was to examine immediate effects of strength training and NJF distal resistance training in wrist joints by using writing time and evaluation of proprioception using the JPE test. [Subjects and Methods] The subjects were 12 young healthy people (24.2 ± 3.1 y, 169.7 ± 6.5 cm, 65.3 ± 12.6 kg). Two isotonic contraction techniques were applied on the wrist joint: wrist joint extension muscle strength training (MST) and the wrist joint extension pattern of NJF. The uppercase English alphabet writing time and joint position errors of the left upper limb were measured before and after one intervention session of MST and NJF. [Results] The decrease in errors in wrist extension angle repetition and the writing time represented the improvement resulting from NJF. [Conclusion] This result suggests that the subdominant hands wrist joint proprioception and writing function can be improved by NJF together with proximal resistance training.
Balcı, Nilay Comuk; Yuruk, Zeliha Ozlem; Zeybek, Aslican; Gulsen, Mustafa; Tekindal, Mustafa Agah
2016-01-01
[Purpose] The aim of our study was to compare the initial effects of scapular proprioceptive neuromuscular facilitation techniques and classic exercise interventions with physiotherapy modalities on pain, scapular dyskinesis, range of motion, and function in adhesive capsulitis. [Subjects and Methods] Fifty-three subjects were allocated to 3 groups: scapular proprioceptive neuromuscular facilitation exercies and physiotherapy modalities, classic exercise and physiotherapy modalities, and only physiotherapy modalities. The intervention was applied in a single session. The Visual Analog Scale, Lateral Scapular Slide Test, range of motion and Simple Shoulder Test were evaluated before and just after the one-hour intervention in the same session (all in one session). [Results] All of the groups showed significant differences in shoulder flexion and abduction range of motion and Simple Shoulder Test scores. There were statistically significant differences in Visual Analog Scale scores in the proprioceptive neuromuscular facilitation and control groups, and no treatment method had significant effect on the Lateral Scapular Slide Test results. There were no statistically significant differences between the groups before and after the intervention. [Conclusion] Proprioceptive neuromuscular facilitation, classic exercise, and physiotherapy modalities had immediate effects on adhesive capsulitis in our study. However, there was no additional benefit of exercises in one session over physiotherapy modalities. Also, an effective treatment regimen for shoulder rehabilitation of adhesive capsulitis patients should include scapular exercises. PMID:27190456
Interpersonal synergies: static prehension tasks performed by two actors.
Solnik, Stanislaw; Reschechtko, Sasha; Wu, Yen-Hsun; Zatsiorsky, Vladimir M; Latash, Mark L
2016-08-01
We investigated multidigit synergies stabilizing components of the resultant force vector during joint performance of a static prehension task by two persons as compared to similar tasks performed by a single person using both hands. Subjects transferred the instrumented handle from the right hand to the left hand (one-person condition) or passed that handle to another person (two-person condition) while keeping the handle's position and orientation stationary. Only three digits were involved per hand, the thumb, the index finger, and the middle finger; the forces and moments produced by the digits were measured by six-component sensors. We estimated the performance-stabilizing synergies within the uncontrolled manifold framework by quantifying the intertrial variance structure of digit forces and moments. The analysis was performed at three levels: between hands, between virtual finger and virtual thumb (imagined digits producing the same mechanical variables as the corresponding actual digits combined) produced by the two hands (in both interpersonal and intrapersonal conditions), and between the thumb and virtual finger for one hand only. Additionally, we performed correlation and phase synchronization analyses of resultant tangential forces and internal normal forces. Overall, the one-person conditions were characterized by higher amount of intertrial variance that did not affect resultant normal force components, higher internal components of normal forces, and stronger synchronization of the normal forces generated by the hands. Our observations suggest that in two-person tasks, when participants try to achieve a common mechanical outcome, the performance-stabilizing synergies depend on non-visual information exchange, possibly via the haptic and proprioceptive systems. Therefore, synergies quantified in tasks using visual feedback only may not be generalizable to more natural tasks.
Karl, Jenni M; Wilson, Alexis M; Bertoli, Marisa E; Shubear, Noor S
2018-05-24
Multiple motor channel theory posits that skilled hand movements arise from the coordinated activation of separable neural circuits in parietofrontal cortex, each of which produces a distinct movement and responds to different sensory inputs. Prehension, the act of reaching to grasp an object, consists of at least two movements: a reach movement that transports the hand to a target location and a grasp movement that shapes and closes the hand for target acquisition. During early development, discrete pre-reach and pre-grasp movements are refined based on proprioceptive and tactile feedback, but are gradually coordinated together into a singular hand preshaping movement under feedforward visual control. The neural and behavioural factors that enable this transition are currently unknown. In an attempt to identify such factors, the present descriptive study used frame-by-frame video analysis to examine 9-, 12-, and 15-month-old infants, along with sighted and unsighted adults, as they reached to grasp small ring-shaped pieces of cereal (Cheerios) resting on a table. Compared to sighted adults, infants and unsighted adults were more likely to make initial contact with the underlying table before they contacted the target. The way in which they did so was also similar in that they generally contacted the table with the tip of the thumb and/or pinky finger, a relatively open hand, and poor reach accuracy. Despite this, infants were similar to sighted adults in that they tended to use a pincer digit, defined as the tip of the thumb or index finger, to subsequently contact the target. Only in infants was this ability related to their having made prior contact with the underlying table. The results are discussed in relation to the idea that initial contact with an underlying table or surface may assist infants in learning to use feedforward visual control to direct their digits towards a precise visual target.
Regaining motor control in musician's dystonia by restoring sensorimotor organization.
Rosenkranz, Karin; Butler, Katherine; Williamon, Aaron; Rothwell, John C
2009-11-18
Professional musicians are an excellent model of long-term motor learning effects on structure and function of the sensorimotor system. However, intensive motor skill training has been associated with task-specific deficiency in hand motor control, which has a higher prevalence among musicians (musician's dystonia) than in the general population. Using a transcranial magnetic stimulation paradigm, we previously found an expanded spatial integration of proprioceptive input into the hand motor cortex [sensorimotor organization (SMO)] in healthy musicians. In musician's dystonia, however, this expansion was even larger. Whereas motor skills of musicians are likely to be supported by a spatially expanded SMO, we hypothesized that in musician's dystonia this might have developed too far and now disrupts rather than assists task-specific motor control. If so, motor control should be regained by reversing the excessive reorganization in musician's dystonia. Here, we test this hypothesis and show that a 15 min intervention with proprioceptive input (proprioceptive training) restored SMO in pianists with musician's dystonia to the pattern seen in healthy pianists. Crucially, task-specific motor control improved significantly and objectively as measured with a MIDI (musical instrument digital interface) piano, and the amount of behavioral improvement was significantly correlated to the degree of sensorimotor reorganization. In healthy pianists and nonmusicians, the SMO and motor performance remained essentially unchanged. These findings suggest that the differentiation of SMO in the hand motor cortex and the degree of motor control of intensively practiced tasks are significantly linked and finely balanced. Proprioceptive training restored this balance in musician's dystonia to the behaviorally beneficial level of healthy musicians.
Robot-aided developmental assessment of wrist proprioception in children.
Marini, Francesca; Squeri, Valentina; Morasso, Pietro; Campus, Claudio; Konczak, Jürgen; Masia, Lorenzo
2017-01-09
Several neurodevelopmental disorders and brain injuries in children have been associated with proprioceptive dysfunction that will negatively affect their movement. Unfortunately, there is lack of reliable and objective clinical examination protocols and our current knowledge of how proprioception evolves in typically developing children is still sparse. Using a robotic exoskeleton, we investigated proprioceptive acuity of the wrist in a group of 49 typically developing healthy children (8-15 years), and a group of 40 young adults. Without vision participants performed an ipsilateral wrist joint position matching task that required them to reproduce (match) a previously experienced target position. All three joint degrees-of-freedom of the wrist/hand complex were assessed. Accuracy and precision were evaluated as a measure of proprioceptive acuity. The cross-sectional data indicating the time course of development of acuity were then fitted by four models in order to determine which function best describes developmental changes in proprioception across age. First, the robot-aided assessment proved to be an easy to administer method for objectively measuring proprioceptive acuity in both children and adult populations. Second, proprioceptive acuity continued to develop throughout middle childhood and early adolescence, improving by more than 50% with respect to the youngest group. Adult levels of performance were reached approximately by the age of 12 years. An inverse-root function best described the development of proprioceptive acuity across the age groups. Third, wrist/forearm proprioception is anisotropic across the three DoFs with the Abduction/Adduction exhibiting a higher level of acuity than those of Flexion/extension and Pronation/Supination. This anisotropy did not change across development. Proprioceptive development for the wrist continues well into early adolescence. Our normative data obtained trough this novel robot-aided assessment method provide a basis against which proprioceptive function of pediatric population can be compared. This may aid the design of more effective sensorimotor intervention programs.
The effectiveness of proprioceptive training for improving motor function: a systematic review
Aman, Joshua E.; Elangovan, Naveen; Yeh, I-Ling; Konczak, Jürgen
2015-01-01
Objective: Numerous reports advocate that training of the proprioceptive sense is a viable behavioral therapy for improving impaired motor function. However, there is little agreement of what constitutes proprioceptive training and how effective it is. We therefore conducted a comprehensive, systematic review of the available literature in order to provide clarity to the notion of training the proprioceptive system. Methods: Four major scientific databases were searched. The following criteria were subsequently applied: (1) A quantified pre- and post-treatment measure of proprioceptive function. (2) An intervention or training program believed to influence or enhance proprioceptive function. (3) Contained at least one form of treatment or outcome measure that is indicative of somatosensory function. From a total of 1284 articles, 51 studies fulfilled all criteria and were selected for further review. Results: Overall, proprioceptive training resulted in an average improvement of 52% across all outcome measures. Applying muscle vibration above 30 Hz for longer durations (i.e., min vs. s) induced outcome improvements of up to 60%. Joint position and target reaching training consistently enhanced joint position sense (up to 109%) showing an average improvement of 48%. Cortical stroke was the most studied disease entity but no clear evidence indicated that proprioceptive training is differentially beneficial across the reported diseases. Conclusions: There is converging evidence that proprioceptive training can yield meaningful improvements in somatosensory and sensorimotor function. However, there is a clear need for further work. Those forms of training utilizing both passive and active movements with and without visual feedback tended to be most beneficial. There is also initial evidence suggesting that proprioceptive training induces cortical reorganization, reinforcing the notion that proprioceptive training is a viable method for improving sensorimotor function. PMID:25674059
Fling, Brett W.; Dutta, Geetanjali Gera; Schlueter, Heather; Cameron, Michelle H.; Horak, Fay B.
2014-01-01
Mobility and balance impairments are a hallmark of multiple sclerosis (MS), affecting nearly half of patients at presentation and resulting in decreased activity and participation, falls, injuries, and reduced quality of life. A growing body of work suggests that balance impairments in people with mild MS are primarily the result of deficits in proprioception, the ability to determine body position in space in the absence of vision. A better understanding of the pathophysiology of balance disturbances in MS is needed to develop evidence-based rehabilitation approaches. The purpose of the current study was to (1) map the cortical proprioceptive pathway in vivo using diffusion-weighted imaging and (2) assess associations between proprioceptive pathway white matter microstructural integrity and performance on clinical and behavioral balance tasks. We hypothesized that people with MS (PwMS) would have reduced integrity of cerebral proprioceptive pathways, and that reduced white matter microstructure within these tracts would be strongly related to proprioceptive-based balance deficits. We found poorer balance control on proprioceptive-based tasks and reduced white matter microstructural integrity of the cortical proprioceptive tracts in PwMS compared with age-matched healthy controls (HC). Microstructural integrity of this pathway in the right hemisphere was also strongly associated with proprioceptive-based balance control in PwMS and controls. Conversely, while white matter integrity of the right hemisphere’s proprioceptive pathway was significantly correlated with overall balance performance in HC, there was no such relationship in PwMS. These results augment existing literature suggesting that balance control in PwMS may become more dependent upon (1) cerebellar-regulated proprioceptive control, (2) the vestibular system, and/or (3) the visual system. PMID:25368564
Fling, Brett W; Dutta, Geetanjali Gera; Schlueter, Heather; Cameron, Michelle H; Horak, Fay B
2014-01-01
Mobility and balance impairments are a hallmark of multiple sclerosis (MS), affecting nearly half of patients at presentation and resulting in decreased activity and participation, falls, injuries, and reduced quality of life. A growing body of work suggests that balance impairments in people with mild MS are primarily the result of deficits in proprioception, the ability to determine body position in space in the absence of vision. A better understanding of the pathophysiology of balance disturbances in MS is needed to develop evidence-based rehabilitation approaches. The purpose of the current study was to (1) map the cortical proprioceptive pathway in vivo using diffusion-weighted imaging and (2) assess associations between proprioceptive pathway white matter microstructural integrity and performance on clinical and behavioral balance tasks. We hypothesized that people with MS (PwMS) would have reduced integrity of cerebral proprioceptive pathways, and that reduced white matter microstructure within these tracts would be strongly related to proprioceptive-based balance deficits. We found poorer balance control on proprioceptive-based tasks and reduced white matter microstructural integrity of the cortical proprioceptive tracts in PwMS compared with age-matched healthy controls (HC). Microstructural integrity of this pathway in the right hemisphere was also strongly associated with proprioceptive-based balance control in PwMS and controls. Conversely, while white matter integrity of the right hemisphere's proprioceptive pathway was significantly correlated with overall balance performance in HC, there was no such relationship in PwMS. These results augment existing literature suggesting that balance control in PwMS may become more dependent upon (1) cerebellar-regulated proprioceptive control, (2) the vestibular system, and/or (3) the visual system.
Detecting delay in visual feedback of an action as a monitor of self recognition.
Hoover, Adria E N; Harris, Laurence R
2012-10-01
How do we distinguish "self" from "other"? The correlation between willing an action and seeing it occur is an important cue. We exploited the fact that this correlation needs to occur within a restricted temporal window in order to obtain a quantitative assessment of when a body part is identified as "self". We measured the threshold and sensitivity (d') for detecting a delay between movements of the finger (of both the dominant and non-dominant hands) and visual feedback as seen from four visual perspectives (the natural view, and mirror-reversed and/or inverted views). Each trial consisted of one presentation with minimum delay and another with a delay of between 33 and 150 ms. Participants indicated which presentation contained the delayed view. We varied the amount of efference copy available for this task by comparing performances for discrete movements and continuous movements. Discrete movements are associated with a stronger efference copy. Sensitivity to detect asynchrony between visual and proprioceptive information was significantly higher when movements were viewed from a "plausible" self perspective compared with when the view was reversed or inverted. Further, we found differences in performance between dominant and non-dominant hand finger movements across the continuous and single movements. Performance varied with the viewpoint from which the visual feedback was presented and on the efferent component such that optimal performance was obtained when the presentation was in the normal natural orientation and clear efferent information was available. Variations in sensitivity to visual/non-visual temporal incongruence with the viewpoint in which a movement is seen may help determine the arrangement of the underlying visual representation of the body.
Dissociation of agency and body ownership following visuomotor temporal recalibration
Imaizumi, Shu; Asai, Tomohisa
2015-01-01
Bodily self-consciousness consists of one’s sense of agency (I am causing an action) and body ownership (my body belongs to me). Both stem from the temporal congruence between different modalities, although some visuomotor temporal incongruence is acceptable for agency. To examine the association or dissociation between agency and body ownership in the context of different temporal sensitivities, we applied a temporal recalibration paradigm, in which subjective synchrony between asynchronous hand action and its visual feedback can be perceived after exposure to the asynchronous visuomotor stimulation. In the experiment, participants continuously clasped and unclasped their hand while watching an online video of their hand that was presented with delays of 50, 110, 170, 230, 290, and 350 ms. Then, they rated a video of their hand with a delay of 50 ms (test stimulus) with respect to the synchrony between hand action and hand video and the perceived agency over the video. Moreover, proprioceptive drift of participants’ hand location toward the hand video during the exposure was measured as an index of illusory body ownership. Results indicated that perception of agency emerged over the delayed hand video as subjective visuomotor synchrony was recalibrated, but that body ownership did not emerge for the delayed video, even after the recalibration. We suggest that there is a dissociation between agency and body ownership following visuomotor temporal recalibration. PMID:25999826
Elangovan, Naveen; Cappello, Leonardo; Masia, Lorenzo; Aman, Joshua; Konczak, Jürgen
2017-12-06
Proprioceptive function can become enhanced during motor learning. Yet, we have incomplete knowledge to what extent proprioceptive function is trainable and how a training that enhances proprioception may influence performance in untrained motor skills. To address this knowledge gap, healthy young adults (N = 14) trained in a visuomotor task that required learners to make increasingly accurate wrist movements. Using a robotic exoskeleton coupled with a virtual visual environment, participants tilted a virtual table through continuous wrist flexion/extension movements with the goal to position a rolling ball on table into a target. With learning progress, the level of difficulty increased by altering the virtual ball mechanics and the gain between joint movement and ball velocity. Before and after training, wrist position sense acuity and spatial movement accuracy in an untrained, discrete wrist-pointing task was assessed using the same robot. All participants showed evidence of proprioceptive-motor learning. Mean position sense discrimination threshold improved by 34%. Wrist movement accuracy in the untrained pointing task improved by 27% in 13/14 participants. This demonstrates that a short sensorimotor training challenging proprioception can a) effectively enhance proprioceptive acuity and b) improve the accuracy of untrained movement. These findings provide a scientific basis for applying such somatosensory-based motor training to clinical populations with known proprioceptive dysfunction to enhance sensorimotor performance.
The effects of visual scenes on roll and pitch thresholds in pilots versus nonpilots.
Otakeno, Shinji; Matthews, Roger S J; Folio, Les; Previc, Fred H; Lessard, Charles S
2002-02-01
Previous studies have indicated that, compared with nonpilots, pilots rely more on vision than "seat-of-the-pants" sensations when presented with visual-vestibular conflict. The objective of this study was to evaluate whether pilots and nonpilots differ in their thresholds for tilt perception while viewing visual scenes depicting simulated flight. This study was conducted in the Advanced Spatial Disorientation Demonstrator (ASDD) at Brooks AFB, TX. There were 14 subjects (7 pilots and 7 nonpilots) who recorded tilt detection thresholds in pitch and roll while exposed to sub-threshold movement in each axis. During each test run, subjects were presented with computer-generated visual scenes depicting accelerating forward flight by day or night, and a blank (control) condition. The only significant effect detected by an analysis of variance (ANOVA) was that all subjects were more sensitive to tilt in roll than in pitch [F (2,24) = 18.96, p < 0.001]. Overall, pilots had marginally higher tilt detection thresholds compared with nonpilots (p = 0.055), but the type of visual scene had no significant effect on thresholds. In this study, pilots did not demonstrate greater visual dominance over vestibular and proprioceptive cues than nonpilots, but appeared to have higher pitch and roll thresholds overall. The finding of significantly lower detection thresholds in the roll axis vs. the pitch axis was an incidental finding for both subject groups.
Gravity dependence of the effect of optokinetic stimulation on the subjective visual vertical.
Ward, Bryan K; Bockisch, Christopher J; Caramia, Nicoletta; Bertolini, Giovanni; Tarnutzer, Alexander Andrea
2017-05-01
Accurate and precise estimates of direction of gravity are essential for spatial orientation. According to Bayesian theory, multisensory vestibular, visual, and proprioceptive input is centrally integrated in a weighted fashion based on the reliability of the component sensory signals. For otolithic input, a decreasing signal-to-noise ratio was demonstrated with increasing roll angle. We hypothesized that the weights of vestibular (otolithic) and extravestibular (visual/proprioceptive) sensors are roll-angle dependent and predicted an increased weight of extravestibular cues with increasing roll angle, potentially following the Bayesian hypothesis. To probe this concept, the subjective visual vertical (SVV) was assessed in different roll positions (≤ ± 120°, steps = 30°, n = 10) with/without presenting an optokinetic stimulus (velocity = ± 60°/s). The optokinetic stimulus biased the SVV toward the direction of stimulus rotation for roll angles ≥ ± 30° ( P < 0.005). Offsets grew from 3.9 ± 1.8° (upright) to 22.1 ± 11.8° (±120° roll tilt, P < 0.001). Trial-to-trial variability increased with roll angle, demonstrating a nonsignificant increase when providing optokinetic stimulation. Variability and optokinetic bias were correlated ( R 2 = 0.71, slope = 0.71, 95% confidence interval = 0.57-0.86). An optimal-observer model combining an optokinetic bias with vestibular input reproduced measured errors closely. These findings support the hypothesis of a weighted multisensory integration when estimating direction of gravity with optokinetic stimulation. Visual input was weighted more when vestibular input became less reliable, i.e., at larger roll-tilt angles. However, according to Bayesian theory, the variability of combined cues is always lower than the variability of each source cue. If the observed increase in variability, although nonsignificant, is true, either it must depend on an additional source of variability, added after SVV computation, or it would conflict with the Bayesian hypothesis. NEW & NOTEWORTHY Applying a rotating optokinetic stimulus while recording the subjective visual vertical in different whole body roll angles, we noted the optokinetic-induced bias to correlate with the roll angle. These findings allow the hypothesis that the established optimal weighting of single-sensory cues depending on their reliability to estimate direction of gravity could be extended to a bias caused by visual self-motion stimuli. Copyright © 2017 the American Physiological Society.
Proprioceptive feedback determines visuomotor gain in Drosophila
Bartussek, Jan; Lehmann, Fritz-Olaf
2016-01-01
Multisensory integration is a prerequisite for effective locomotor control in most animals. Especially, the impressive aerial performance of insects relies on rapid and precise integration of multiple sensory modalities that provide feedback on different time scales. In flies, continuous visual signalling from the compound eyes is fused with phasic proprioceptive feedback to ensure precise neural activation of wing steering muscles (WSM) within narrow temporal phase bands of the stroke cycle. This phase-locked activation relies on mechanoreceptors distributed over wings and gyroscopic halteres. Here we investigate visual steering performance of tethered flying fruit flies with reduced haltere and wing feedback signalling. Using a flight simulator, we evaluated visual object fixation behaviour, optomotor altitude control and saccadic escape reflexes. The behavioural assays show an antagonistic effect of wing and haltere signalling on visuomotor gain during flight. Compared with controls, suppression of haltere feedback attenuates while suppression of wing feedback enhances the animal’s wing steering range. Our results suggest that the generation of motor commands owing to visual perception is dynamically controlled by proprioception. We outline a potential physiological mechanism based on the biomechanical properties of WSM and sensory integration processes at the level of motoneurons. Collectively, the findings contribute to our general understanding how moving animals integrate sensory information with dynamically changing temporal structure. PMID:26909184
Gauchard, Gérome C; Gangloff, Pierre; Jeandel, Claude; Perrin, Philippe P
2003-09-01
Balance disorders increase considerably with age due to a decrease in posture regulation quality, and are accompanied by a higher risk of falling. Conversely, physical activities have been shown to improve the quality of postural control in elderly individuals and decrease the number of falls. The aim of this study was to evaluate the impact of two types of exercise on the visual afferent and on the different parameters of static balance regulation. Static postural control was evaluated in 44 healthy women aged over 60 years. Among them, 15 regularly practiced proprioceptive physical activities (Group I), 12 regularly practiced bioenergetic physical activities (Group II), and 18 controls walked on a regular basis (Group III). Group I participants displayed lower sway path and area values, whereas Group III participants displayed the highest, both in eyes-open and eyes-closed conditions. Group II participants displayed intermediate values, close to those of Group I in the eyes-open condition and those of Group III in the eyes-closed condition. Visual afferent contribution was more pronounced for Group II and III participants than for Group I participants. Proprioceptive exercise appears to have the best impact on balance regulation and precision. Besides, even if bioenergetic activity improves postural control in simple postural tasks, more difficult postural tasks show that this type of activity does not develop a neurosensorial proprioceptive input threshold as well, probably on account of the higher contribution of visual afferent.
Kaneko, Fuminari; Blanchard, Caroline; Lebar, Nicolas; Nazarian, Bruno; Kavounoudias, Anne; Romaiguère, Patricia
2015-01-01
It is well known that kinesthetic illusions can be induced by stimulation of several sensory systems (proprioception, touch, vision…). In this study we investigated the cerebral network underlying a kinesthetic illusion induced by visual stimulation by using functional magnetic resonance imaging (fMRI) in humans. Participants were instructed to keep their hand still while watching the video of their own moving hand (Self Hand) or that of someone else's moving hand (Other Hand). In the Self Hand condition they experienced an illusory sensation that their hand was moving whereas the Other Hand condition did not induce any kinesthetic illusion. The contrast between the Self Hand and Other Hand conditions showed significant activation in the left dorsal and ventral premotor cortices, in the left Superior and Inferior Parietal lobules, at the right Occipito-Temporal junction as well as in bilateral Insula and Putamen. Most strikingly, there was no activation in the primary motor and somatosensory cortices, whilst previous studies have reported significant activation in these regions for vibration-induced kinesthetic illusions. To our knowledge, this is the first study that indicates that humans can experience kinesthetic perception without activation in the primary motor and somatosensory areas. We conclude that under some conditions watching a video of one's own moving hand could lead to activation of a network that is usually involved in processing copies of efference, thus leading to the illusory perception that the real hand is indeed moving. PMID:26287488
Kaneko, Fuminari; Blanchard, Caroline; Lebar, Nicolas; Nazarian, Bruno; Kavounoudias, Anne; Romaiguère, Patricia
2015-01-01
It is well known that kinesthetic illusions can be induced by stimulation of several sensory systems (proprioception, touch, vision…). In this study we investigated the cerebral network underlying a kinesthetic illusion induced by visual stimulation by using functional magnetic resonance imaging (fMRI) in humans. Participants were instructed to keep their hand still while watching the video of their own moving hand (Self Hand) or that of someone else's moving hand (Other Hand). In the Self Hand condition they experienced an illusory sensation that their hand was moving whereas the Other Hand condition did not induce any kinesthetic illusion. The contrast between the Self Hand and Other Hand conditions showed significant activation in the left dorsal and ventral premotor cortices, in the left Superior and Inferior Parietal lobules, at the right Occipito-Temporal junction as well as in bilateral Insula and Putamen. Most strikingly, there was no activation in the primary motor and somatosensory cortices, whilst previous studies have reported significant activation in these regions for vibration-induced kinesthetic illusions. To our knowledge, this is the first study that indicates that humans can experience kinesthetic perception without activation in the primary motor and somatosensory areas. We conclude that under some conditions watching a video of one's own moving hand could lead to activation of a network that is usually involved in processing copies of efference, thus leading to the illusory perception that the real hand is indeed moving.
Laterality of proprioception in the orofacial muscles and temporomandibular joint.
Frayne, Ellie; Coulson, Susan; Adams, Roger; Croxson, Glen; Waddington, Gordon
2016-12-02
Laterality of function in the orofacial musculature suggests there may be side-to-side asymmetry of proprioceptive acuity in lip movement compared to the temporomandibular joint (TMJ). In the present work, 14 young adults were tested for acuity of lip and TMJ closure movements onto plugs varying from 5 to 8mm without visual feedback. Testing was conducted on both left and right sides, using the same psychophysical task and stimuli. Results showed superior proprioceptive acuity at the lips, with no significant side effect. However, there was side-to-side asymmetry in the correlations between proprioceptive performance for the two anatomical structures, with performance on the right side strongly correlated but not on the left. This is consistent with the need for coordination between structures during chewing. When acuity at different points in the stimulus range was examined, the right side lips were better with small stimuli. Overall, results support enhanced use-specific proprioception. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The Neural Basis of Obligatory Decomposition of Suffixed Words
ERIC Educational Resources Information Center
Lewis, Gwyneth; Solomyak, Olla; Marantz, Alec
2011-01-01
Recent neurolinguistic studies present somewhat conflicting evidence concerning the role of the inferior temporal cortex (IT) in visual word recognition within the first 200 ms after presentation. On the one hand, fMRI studies of the Visual Word Form Area (VWFA) suggest that the IT might recover representations of the orthographic form of words.…
Leake, Hayley B.; Chalmers, K. Jane; Moseley, G. Lorimer
2016-01-01
Background Despite common use of proprioceptive retraining interventions in people with chronic, idiopathic neck pain, evidence that proprioceptive dysfunction exists in this population is lacking. Determining whether proprioceptive dysfunction exists in people with chronic neck pain has clear implications for treatment prescription. Purpose The aim of this study was to synthesize and critically appraise all evidence evaluating proprioceptive dysfunction in people with chronic, idiopathic neck pain by completing a systematic review and meta-analysis. Data Sources MEDLINE, CINAHL, PubMed, Allied and Complementary Medicine, EMBASE, Academic Search Premier, Scopus, Physiotherapy Evidence Database (PEDro), and Cochrane Collaboration databases were searched. Study Selection All published studies that compared neck proprioception (joint position sense) between a chronic, idiopathic neck pain sample and asymptomatic controls were included. Data Extraction Two independent reviewers extracted relevant population and proprioception data and assessed methodological quality using a modified Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement. Data Synthesis Thirteen studies were included in the present review. Meta-analysis on 10 studies demonstrated that people with chronic neck pain perform significantly worse on head-to-neutral repositioning tests, with a moderate standardized mean difference of 0.44 (95% confidence interval=0.25, 0.63). Two studies evaluated head repositioning using trunk movement (no active head movement thus hypothesized to remove vestibular input) and showed conflicting results. Three studies evaluated complex or postural repositioning tests; postural repositioning was no different between groups, and complex movement tests were impaired only in participants with chronic neck pain if error was continuously evaluated throughout the movement. Limitations A paucity of studies evaluating complex or postural repositioning tests does not permit any solid conclusions about them. Conclusions People with chronic, idiopathic neck pain are worse than asymptomatic controls at head-to-neutral repositioning tests. PMID:26472296
Martinaud, Olivier; Besharati, Sahba; Jenkinson, Paul M; Fotopoulou, Aikaterini
2017-02-01
The various neurocognitive processes contributing to the sense of body ownership have been investigated extensively in healthy participants, but studies in neurological patients can shed unique light into such phenomena. Here, we aimed to investigate whether visual capture by a fake hand (without any synchronous or asynchronous tactile stimulation) affects body ownership in a group of hemiplegic patients with or without disturbed sensation of limb ownership (DSO) following damage to the right hemisphere. We recruited 31 consecutive patients, including seven patients with DSO. The majority of our patients (64.5% overall and up to 86% of the patients with DSO) experienced strong feelings of ownership over a rubber hand within 15 sec following mere visual exposure, which correlated with the degree of proprioceptive deficits across groups and in the DSO group. Using voxel-based lesion-symptom mapping analysis, we were able to identify lesions associated with this pathological visual capture effect in a selective fronto-parietal network, including significant voxels (p < .05) in the frontal operculum and the inferior frontal gyrus. By contrast, lesions associated with DSO involved more posterior lesions, including the right temporoparietal junction and a large area of the supramarginal gyrus, and to a lesser degree the middle frontal gyrus. Thus, this study suggests that our sense of ownership includes dissociable mechanisms of multisensory integration. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cross-sensory reference frame transfer in spatial memory: the case of proprioceptive learning.
Avraamides, Marios N; Sarrou, Mikaella; Kelly, Jonathan W
2014-04-01
In three experiments, we investigated whether the information available to visual perception prior to encoding the locations of objects in a path through proprioception would influence the reference direction from which the spatial memory was formed. Participants walked a path whose orientation was misaligned to the walls of the enclosing room and to the square sheet that covered the path prior to learning (Exp. 1) and, in addition, to the intrinsic structure of a layout studied visually prior to walking the path and to the orientation of stripes drawn on the floor (Exps. 2 and 3). Despite the availability of prior visual information, participants constructed spatial memories that were aligned with the canonical axes of the path, as opposed to the reference directions primed by visual experience. The results are discussed in the context of previous studies documenting transfer of reference frames within and across perceptual modalities.
Riva, Dario; Mamo, Carlo; Fanì, Mara; Saccavino, Patrizia; Rocca, Flavio; Momenté, Manuel; Fratta, Marianna
2013-01-01
In developed countries, falls in older people represent a rising problem. As effective prevention should start before the risk becomes evident, an early predictor is needed. Single stance instability would appear as a major risk factor. Aims of the study were to describe single stance stability, its sensory components, and their correlation with age and gender. A random sample of 597 older adults (319 men, 278 women) living at home, aged 65–84, was studied. Stability tests were performed with an electronic postural station. The single stance test showed the impairment of single stance stability in older individuals (75–84 yrs). The significant decline of stability in the older subjects may be explained by the impairment of proprioceptive control together with the decrease in compensatory visual stabilization and emergency responses. Younger subjects (65–74 yrs) exhibited better, but still inadequate, proprioceptive control with compensatory visual stabilization. Gender differences appeared in older subjects: women were significantly less stable than men. The measurement of the sensory components of single stance stability could aid in the early detection of a decay in antigravity movements many years before the risk of falling becomes evident. Adequate proprioceptive control could mitigate the effects of all other risks of falling. PMID:23984068
Role of orientation reference selection in motion sickness, supplement 2S
NASA Technical Reports Server (NTRS)
Peterka, Robert J.; Black, F. Owen
1987-01-01
Previous experiments with moving platform posturography have shown that different people have varying abilities to resolve conflicts among vestibular, visual, and proprioceptive sensory signals. The conceptual basis of the present proposal hinges on the similarities between the space motion sickness problem and the sensory orientation reference selection problems associated with benign paroxysmal positional vertigo (BPPV) syndrome. These similarities include both etiology related to abnormal vertical canal-otolith function, and motion sickness initiating events provoked by pitch and roll head movements. The objectives are to explore and quantify the orientation reference selection abilities of subjects and the relation of this selection to motion sickness in humans. The overall objectives are to determine: if motion sickness susceptibility is related to sensory orientation reference selection abilities of subjects; if abnormal vertical canal-otolith function is the source of abnormal posture control strategies and if it can be quantified by vestibular and oculomotor reflex measurements, and if it can be quantified by vestibular and oculomotor reflex measurements; and quantifiable measures of perception of vestibular and visual motion cues can be related to motion sickness susceptibility and to orientation reference selection ability.
The relationship between virtual body ownership and temperature sensitivity
Llobera, Joan; Sanchez-Vives, M. V.; Slater, Mel
2013-01-01
In the rubber hand illusion, tactile stimulation seen on a rubber hand, that is synchronous with tactile stimulation felt on the hidden real hand, can lead to an illusion of ownership over the rubber hand. This illusion has been shown to produce a temperature decrease in the hidden hand, suggesting that such illusory ownership produces disownership of the real hand. Here, we apply immersive virtual reality (VR) to experimentally investigate this with respect to sensitivity to temperature change. Forty participants experienced immersion in a VR with a virtual body (VB) seen from a first-person perspective. For half the participants, the VB was consistent in posture and movement with their own body, and in the other half, there was inconsistency. Temperature sensitivity on the palm of the hand was measured before and during the virtual experience. The results show that temperature sensitivity decreased in the consistent compared with the inconsistent condition. Moreover, the change in sensitivity was significantly correlated with the subjective illusion of virtual arm ownership but modulated by the illusion of ownership over the full VB. This suggests that a full body ownership illusion results in a unification of the virtual and real bodies into one overall entity—with proprioception and tactile sensations on the real body integrated with the visual presence of the VB. The results are interpreted in the framework of a ‘body matrix’ recently introduced into the literature. PMID:23720537
Path integration: effect of curved path complexity and sensory system on blindfolded walking.
Koutakis, Panagiotis; Mukherjee, Mukul; Vallabhajosula, Srikant; Blanke, Daniel J; Stergiou, Nicholas
2013-02-01
Path integration refers to the ability to integrate continuous information of the direction and distance traveled by the system relative to the origin. Previous studies have investigated path integration through blindfolded walking along simple paths such as straight line and triangles. However, limited knowledge exists regarding the role of path complexity in path integration. Moreover, little is known about how information from different sensory input systems (like vision and proprioception) contributes to accurate path integration. The purpose of the current study was to investigate how sensory information and curved path complexity affect path integration. Forty blindfolded participants had to accurately reproduce a curved path and return to the origin. They were divided into four groups that differed in the curved path, circle (simple) or figure-eight (complex), and received either visual (previously seen) or proprioceptive (previously guided) information about the path before they reproduced it. The dependent variables used were average trajectory error, walking speed, and distance traveled. The results indicated that (a) both groups that walked on a circular path and both groups that received visual information produced greater accuracy in reproducing the path. Moreover, the performance of the group that received proprioceptive information and later walked on a figure-eight path was less accurate than their corresponding circular group. The groups that had the visual information also walked faster compared to the group that had proprioceptive information. Results of the current study highlight the roles of different sensory inputs while performing blindfolded walking for path integration. Copyright © 2012 Elsevier B.V. All rights reserved.
Chen, Yoa; Yu, Yong; He, Cheng-qi
2015-11-01
To establish correlations between joint proprioception, muscle flexion and extension peak torque, and functional ability in patients with knee osteoarthritis (OA). Fifty-six patients with symptomatic knee OA were recruited in this study. Both proprioceptive acuity and muscle strength were measured using the isomed-2000 isokinetic dynamometer. Proprioceptive acuity was evaluated by establishing the joint motion detection threshold (JMDT). Muscle strength was evaluated by Max torque (Nm) and Max torque/weight (Nm/ kg). Functional ability was assessed by the Western Ontario and McMaster Universities Osteoarthritis Index physical function (WOMAC-PF) questionnaire. Correlational analyses were performed between proprioception, muscle strength, and functional ability. A multiple stepwise regression model was established, with WOMAC-PF as dependent variable and patient age, body mass index (BMI), visual analogue scale (VAS)-score, mean grade for Kellgren-Lawrance of both knees, mean strength for quadriceps and hamstring muscles of both knees, and mean JMDT of both knees as independent variables. Poor proprioception (high JMDT) was negatively correlated with muscle strength (P<0.05). There was no significant correlation between knee proprioception (high JMDT) and joint pain (WOMAC pain score), and between knee proprioception (high JMDT) and joint stiffness (WOMAC stiffness score). Poor proprioception (high JMDT) was correlated with limitation in functional ability (WOMAC physical function score r=0.659, P<0.05). WOMAC score was correlated with poor muscle strength (quadriceps muscle strength r = -0.511, P<0.05, hamstring muscle strength r = -0.408, P<0.05). The multiple stepwise regression model showed that high JMDT C standard partial regression coefficient (B) = 0.385, P<0.50 and high VAS-scale score (B=0.347, P<0.05) were significant predictors of WOMAC-PF score. Patients with poor proprioception is associated with poor muscle strength and limitation in functional ability. Patients with symptomatic OA of knees commonly endure with moderate to considerable dysfunction, which is associated with poor proprioception (high JMDT) and high VAS-scale score.
When writing impairs reading: letter perception's susceptibility to motor interference.
James, Karin H; Gauthier, Isabel
2009-08-01
The effect of writing on the concurrent visual perception of letters was investigated in a series of studies using an interference paradigm. Participants drew shapes and letters while simultaneously visually identifying letters and shapes embedded in noise. Experiments 1-3 demonstrated that letter perception, but not the perception of shapes, was affected by motor interference. This suggests a strong link between the perception of letters and the neural substrates engaged during writing. The overlap both in category (letter vs. shape) and in the perceptual similarity of the features (straight vs. curvy) of the seen and drawn items determined the amount of interference. Experiment 4 demonstrated that intentional production of letters is not necessary for the interference to occur, because passive movement of the hand in the shape of letters also interfered with letter perception. When passive movements were used, however, only the category of the drawn items (letters vs. shapes), but not the perceptual similarity, had an influence, suggesting that motor representations for letters may selectively influence visual perception of letters through proprioceptive feedback, with an additional influence of perceptual similarity that depends on motor programs.
Colnat-Coulbois, S; Gauchard, G C; Maillard, L; Barroche, G; Vespignani, H; Auque, J; Perrin, P P
2011-10-13
Parkinson's disease (PD) is known to affect postural control, especially in situations needing a change in balance strategy or when a concurrent task is simultaneously performed. However, few studies assessing postural control in patients with PD included homogeneous population in late stage of the disease. Thus, this study aimed to analyse postural control and strategies in a homogeneous population of patients with idiopathic advanced (late-stage) PD, and to determine the contribution of peripheral inputs in simple and more complex postural tasks, such as sensory conflicting and dynamic tasks. Twenty-four subjects with advanced PD (duration: median (M)=11.0 years, interquartile range (IQR)=4.3 years; Unified Parkinson's Disease Rating Scale (UPDRS): M "on-dopa"=13.5, IQR=7.8; UPDRS: M "off-dopa"=48.5, IQR=16.8; Hoehn and Yahr stage IV in all patients) and 48 age-matched healthy controls underwent static (SPT) and dynamic posturographic (DPT) tests and a sensory organization test (SOT). In SPT, patients with PD showed reduced postural control precision with increased oscillations in both anterior-posterior and medial-lateral planes. In SOT, patients with PD displayed reduced postural performances especially in situations in which visual and vestibular cues became predominant to organize balance control, as was the ability to manage balance in situations for which visual or proprioceptive inputs are disrupted. In DPT, postural restabilization strategies were often inefficient to maintain equilibrium resulting in falls. Postural strategies were often precarious, postural regulation involving more hip joint than ankle joint in patients with advanced PD than in controls. Difficulties in managing complex postural situations, such as sensory conflicting and dynamic situations might reflect an inadequate sensory organization suggesting impairment in central information processing. Copyright © 2011. Published by Elsevier Ltd.
Dettmer, Marius; Pourmoghaddam, Amir; Lee, Beom-Chan; Layne, Charles S
2015-01-01
Postural control in certain situations depends on functioning of tactile or proprioceptive receptors and their respective dynamic integration. Loss of sensory functioning can lead to increased risk of falls in challenging postural tasks, especially in older adults. Stochastic resonance, a concept describing better function of systems with addition of optimal levels of noise, has shown to be beneficial for balance performance in certain populations and simple postural tasks. In this study, we tested the effects of aging and a tactile stochastic resonance stimulus (TSRS) on balance of adults in a sensory conflict task. Nineteen older (71-84 years of age) and younger participants (22-29 years of age) stood on a force plate for repeated trials of 20 s duration, while foot sole stimulation was either turned on or off, and the visual surrounding was sway-referenced. Balance performance was evaluated by computing an Equilibrium Score (ES) and anterior-posterior sway path length (APPlength). For postural control evaluation, strategy scores and approximate entropy (ApEn) were computed. Repeated-measures ANOVA, Wilcoxon signed-rank tests, and Mann-Whitney U-tests were conducted for statistical analysis. Our results showed that balance performance differed between older and younger adults as indicated by ES (p = 0.01) and APPlength (0.01), and addition of vibration only improved performance in the older group significantly (p = 0.012). Strategy scores differed between both age groups, whereas vibration only affected the older group (p = 0.025). Our results indicate that aging affects specific postural outcomes and that TSRS is beneficial for older adults in a visual sensory conflict task, but more research is needed to investigate the effectiveness in individuals with more severe balance problems, for example, due to neuropathy.
Visual and tactile information in double bass intonation control.
Lage, Guilherme Menezes; Borém, Fausto; Vieira, Maurílio Nunes; Barreiros, João Pardal
2007-04-01
Traditionally, the teaching of intonation on the non-tempered orchestral strings (violin, viola, cello, and double bass) has resorted to the auditory and proprioceptive senses only. This study aims at understanding the role of visual and tactile information in the control of the non-tempered intonation of the acoustic double bass. Eight musicians played 11 trials of an atonal sequence of musical notes on two double basses of different sizes under different sensorial constraints. The accuracy of the played notes was analyzed by measuring their frequencies and comparing them with respective target values. The main finding was that the performance which integrated visual and tactile information was superior in relation to the other performances in the control of double bass intonation. This contradicts the traditional belief that proprioception and hearing are the most effective feedback information in the performance of stringed instruments.
White, Rebekah C; Aimola Davies, Anne M; Kischka, Udo; Davies, Martin
2010-01-01
Following stroke, a patient may fail to report touch administered by another person but claim that she feels touch when it is self-administered. We investigated three explanations for self-touch enhancement: (1) proprioceptive information from the administering hand, (2) attentional modulation, and (3) temporal expectation. Tactile sensation was assessed with vision precluded, and with the affected hand positioned in the left and right hemispace. In four of six experiments, the somatic rubber hand paradigm was used: the Examiner administered stimulation to the patient's affected left hand while guiding the patient's right hand to administer synchronous stimulation to a prosthetic hand. Even though the patient's two hands were not in contact, patients detected the same number of stimulations as when they touched their own hand directly (self-administered condition). Moreover, there was no decline in rates of detection when potentially informative movements of the administering hand were restricted. This demonstrates that patients feel rather than infer stimulation under conditions of self-touch. When patients received stimulation to the affected hand in the opposite hemispace to the hand administering touch to the prosthetic hand, all but one showed self-touch enhancement. Thus, neither proprioceptive information nor attentional modulation at the spatial region of the administering hand provided a sufficient explanation for self-touch enhancement. A follow-up experiment indicated an important role for temporal expectation: a delay, between the patient's stimulation of the prosthetic hand and the Examiner's stimulation of the patient's affected hand, eliminated the self-touch enhancement effect.
Handwriting development, competency, and intervention.
Feder, Katya P; Majnemer, Annette
2007-04-01
Failure to attain handwriting competency during the school-age years often has far-reaching negative effects on both academic success and self-esteem. This complex occupational task has many underlying component skills that may interfere with handwriting performance. Fine motor control, bilateral and visual-motor integration, motor planning, in-hand manipulation, proprioception, visual perception, sustained attention, and sensory awareness of the fingers are some of the component skills identified. Poor handwriting may be related to intrinsic factors, which refer to the child's actual handwriting capabilities, or extrinsic factors which are related to environmental or biomechanical components, or both. It is important that handwriting performance be evaluated using a valid, reliable, standardized tool combined with informal classroom observation and teacher consultation. Studies of handwriting remediation suggest that intervention is effective. There is evidence to indicate that handwriting difficulties do not resolve without intervention and affect between 10 and 30% of school-aged children. Despite the widespread use of computers, legible handwriting remains an important life skill that deserves greater attention from educators and health practitioners.
Optic ataxia and the function of the dorsal stream: contributions to perception and action.
Pisella, Laure; Sergio, Lauren; Blangero, Annabelle; Torchin, Héloïse; Vighetto, Alain; Rossetti, Yves
2009-12-01
Optic ataxia (OA) is one of the symptoms pertaining to Bálint's Syndrome. It has been described clinically for nearly 80 years before it became a cornerstone of the most popular dual stream theory of the visual brain. Over the last 10 years a regain of interest for this neurological condition lead to a number of precise analyses of the deficits found in optic ataxia, giving rise to a renewed outline of its very definition and hence of the function(s) of the occipito-parietal (dorsal) stream. In absence of concomitant clinical symptoms, we review evidence that misreaching errors in central vision result from the "hand effect": an erroneous dynamic spatial processing of proprioceptive information from the hand. When visual feedback of the hand is provided (closed-loop condition), pure optic ataxia is restricted to peripheral vision. This central versus peripheral vision distinction is repeatedly used to argue that action and perception are not unique and dissociated systems. New assessments of optic ataxia patients are provided, confirming on one hand that their visuomotor deficit is specific to peripheral vision (i.e. when the gaze and the hand goals are dissociated), on the other hand that they disclose perceptual deficits in peripheral vision. These results are coherent with the recent demonstration that optic ataxia patients exhibit a general contralesional deficit for dynamic visuo-spatial processing, affecting both hand and eye movements [Gaveau, V., Pélisson, D., Blangero, A., Urquizar, C., Prablanc, C.,Vighetto, A., et al. (2008). A common parietal module for saccade and reach: Eye-hand coordination and saccadic control in optic ataxia. Neuropsychologia, 46, 475-486]. Such module(s) within the dorsal stream could be used for both action and perception in the periphery. It is concluded that optic ataxia cannot be considered as a unitary and specific visuo-manual deficit, and that the modular organisation of the dorsal stream allows for numerous dorsal-ventral interactions for perception and action.
Visuo-proprioceptive interactions in degenerative cervical spine diseases requiring surgery.
Freppel, S; Bisdorff, A; Colnat-Coulbois, S; Ceyte, H; Cian, C; Gauchard, G; Auque, J; Perrin, P
2013-01-01
Cervical proprioception plays a key role in postural control, but its specific contribution is controversial. Postural impairment was shown in whiplash injuries without demonstrating the sole involvement of the cervical spine. The consequences of degenerative cervical spine diseases are underreported in posture-related scientific literature in spite of their high prevalence. No report has focused on the two different mechanisms underlying cervicobrachial pain: herniated discs and spondylosis. This study aimed to evaluate postural control of two groups of patients with degenerative cervical spine diseases with or without optokinetic stimulation before and after surgical treatment. Seventeen patients with radiculopathy were recruited and divided into two groups according to the spondylotic or discal origin of the nerve compression. All patients and a control population of 31 healthy individuals underwent a static posturographic test with 12 recordings; the first four recordings with the head in 0° position: eyes closed, eyes open without optokinetic stimulation, with clockwise and counter clockwise optokinetic stimulations. These four sensorial situations were repeated with the head rotated 30° to the left and to the right. Patients repeated these 12 recordings 6weeks postoperatively. None of the patients reported vertigo or balance disorders before or after surgery. Prior to surgery, in the eyes closed condition, the herniated disc group was more stable than the spondylosis group. After surgery, the contribution of visual input to postural control in a dynamic visual environment was reduced in both cervical spine diseases whereas in a stable visual environment visual contribution was reduced only in the spondylosis group. The relative importance of visual and proprioceptive inputs to postural control varies according to the type of pathology and surgery tends to reduce visual contribution mostly in the spondylosis group. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Brain-actuated gait trainer with visual and proprioceptive feedback
NASA Astrophysics Data System (ADS)
Liu, Dong; Chen, Weihai; Lee, Kyuhwa; Chavarriaga, Ricardo; Bouri, Mohamed; Pei, Zhongcai; Millán, José del R.
2017-10-01
Objective. Brain-machine interfaces (BMIs) have been proposed in closed-loop applications for neuromodulation and neurorehabilitation. This study describes the impact of different feedback modalities on the performance of an EEG-based BMI that decodes motor imagery (MI) of leg flexion and extension. Approach. We executed experiments in a lower-limb gait trainer (the legoPress) where nine able-bodied subjects participated in three consecutive sessions based on a crossover design. A random forest classifier was trained from the offline session and tested online with visual and proprioceptive feedback, respectively. Post-hoc classification was conducted to assess the impact of feedback modalities and learning effect (an improvement over time) on the simulated trial-based performance. Finally, we performed feature analysis to investigate the discriminant power and brain pattern modulations across the subjects. Main results. (i) For real-time classification, the average accuracy was 62.33 +/- 4.95 % and 63.89 +/- 6.41 % for the two online sessions. The results were significantly higher than chance level, demonstrating the feasibility to distinguish between MI of leg extension and flexion. (ii) For post-hoc classification, the performance with proprioceptive feedback (69.45 +/- 9.95 %) was significantly better than with visual feedback (62.89 +/- 9.20 %), while there was no significant learning effect. (iii) We reported individual discriminate features and brain patterns associated to each feedback modality, which exhibited differences between the two modalities although no general conclusion can be drawn. Significance. The study reported a closed-loop brain-controlled gait trainer, as a proof of concept for neurorehabilitation devices. We reported the feasibility of decoding lower-limb movement in an intuitive and natural way. As far as we know, this is the first online study discussing the role of feedback modalities in lower-limb MI decoding. Our results suggest that proprioceptive feedback has an advantage over visual feedback, which could be used to improve robot-assisted strategies for motor training and functional recovery.
Brain-actuated gait trainer with visual and proprioceptive feedback.
Liu, Dong; Chen, Weihai; Lee, Kyuhwa; Chavarriaga, Ricardo; Bouri, Mohamed; Pei, Zhongcai; Del R Millán, José
2017-10-01
Brain-machine interfaces (BMIs) have been proposed in closed-loop applications for neuromodulation and neurorehabilitation. This study describes the impact of different feedback modalities on the performance of an EEG-based BMI that decodes motor imagery (MI) of leg flexion and extension. We executed experiments in a lower-limb gait trainer (the legoPress) where nine able-bodied subjects participated in three consecutive sessions based on a crossover design. A random forest classifier was trained from the offline session and tested online with visual and proprioceptive feedback, respectively. Post-hoc classification was conducted to assess the impact of feedback modalities and learning effect (an improvement over time) on the simulated trial-based performance. Finally, we performed feature analysis to investigate the discriminant power and brain pattern modulations across the subjects. (i) For real-time classification, the average accuracy was [Formula: see text]% and [Formula: see text]% for the two online sessions. The results were significantly higher than chance level, demonstrating the feasibility to distinguish between MI of leg extension and flexion. (ii) For post-hoc classification, the performance with proprioceptive feedback ([Formula: see text]%) was significantly better than with visual feedback ([Formula: see text]%), while there was no significant learning effect. (iii) We reported individual discriminate features and brain patterns associated to each feedback modality, which exhibited differences between the two modalities although no general conclusion can be drawn. The study reported a closed-loop brain-controlled gait trainer, as a proof of concept for neurorehabilitation devices. We reported the feasibility of decoding lower-limb movement in an intuitive and natural way. As far as we know, this is the first online study discussing the role of feedback modalities in lower-limb MI decoding. Our results suggest that proprioceptive feedback has an advantage over visual feedback, which could be used to improve robot-assisted strategies for motor training and functional recovery.
Brain-Computer Interfaces With Multi-Sensory Feedback for Stroke Rehabilitation: A Case Study.
Irimia, Danut C; Cho, Woosang; Ortner, Rupert; Allison, Brendan Z; Ignat, Bogdan E; Edlinger, Guenter; Guger, Christoph
2017-11-01
Conventional therapies do not provide paralyzed patients with closed-loop sensorimotor integration for motor rehabilitation. This work presents the recoveriX system, a hardware and software platform that combines a motor imagery (MI)-based brain-computer interface (BCI), functional electrical stimulation (FES), and visual feedback technologies for a complete sensorimotor closed-loop therapy system for poststroke rehabilitation. The proposed system was tested on two chronic stroke patients in a clinical environment. The patients were instructed to imagine the movement of either the left or right hand in random order. During these two MI tasks, two types of feedback were provided: a bar extending to the left or right side of a monitor as visual feedback and passive hand opening stimulated from FES as proprioceptive feedback. Both types of feedback relied on the BCI classification result achieved using common spatial patterns and a linear discriminant analysis classifier. After 10 sessions of recoveriX training, one patient partially regained control of wrist extension in her paretic wrist and the other patient increased the range of middle finger movement by 1 cm. A controlled group study is planned with a new version of the recoveriX system, which will have several improvements. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Seeing the Errors You Feel Enhances Locomotor Performance but Not Learning.
Roemmich, Ryan T; Long, Andrew W; Bastian, Amy J
2016-10-24
In human motor learning, it is thought that the more information we have about our errors, the faster we learn. Here, we show that additional error information can lead to improved motor performance without any concomitant improvement in learning. We studied split-belt treadmill walking that drives people to learn a new gait pattern using sensory prediction errors detected by proprioceptive feedback. When we also provided visual error feedback, participants acquired the new walking pattern far more rapidly and showed accelerated restoration of the normal walking pattern during washout. However, when the visual error feedback was removed during either learning or washout, errors reappeared with performance immediately returning to the level expected based on proprioceptive learning alone. These findings support a model with two mechanisms: a dual-rate adaptation process that learns invariantly from sensory prediction error detected by proprioception and a visual-feedback-dependent process that monitors learning and corrects residual errors but shows no learning itself. We show that our voluntary correction model accurately predicted behavior in multiple situations where visual feedback was used to change acquisition of new walking patterns while the underlying learning was unaffected. The computational and behavioral framework proposed here suggests that parallel learning and error correction systems allow us to rapidly satisfy task demands without necessarily committing to learning, as the relative permanence of learning may be inappropriate or inefficient when facing environments that are liable to change. Copyright © 2016 Elsevier Ltd. All rights reserved.
Agarwal, Rahul; Thakor, Nitish V; Sarma, Sridevi V; Massaquoi, Steve G
2015-06-24
The premotor cortex (PM) is known to be a site of visuo-somatosensory integration for the production of movement. We sought to better understand the ventral PM (PMv) by modeling its signal encoding in greater detail. Neuronal firing data was obtained from 110 PMv neurons in two male rhesus macaques executing four reach-grasp-manipulate tasks. We found that in the large majority of neurons (∼90%) the firing patterns across the four tasks could be explained by assuming that a high-dimensional position/configuration trajectory-like signal evolving ∼250 ms before movement was encoded within a multidimensional Gaussian field (MGF). Our findings are consistent with the possibility that PMv neurons process a visually specified reference command for the intended arm/hand position trajectory with respect to a proprioceptively or visually sensed initial configuration. The estimated MGF were (hyper) disc-like, such that each neuron's firing modulated strongly only with commands that evolved along a single direction within position/configuration space. Thus, many neurons appeared to be tuned to slices of this input signal space that as a collection appeared to well cover the space. The MGF encoding models appear to be consistent with the arm-referent, bell-shaped, visual target tuning curves and target selectivity patterns observed in PMV visual-motor neurons. These findings suggest that PMv may implement a lookup table-like mechanism that helps translate intended movement trajectory into time-varying patterns of activation in motor cortex and spinal cord. MGFs provide an improved nonlinear framework for potentially decoding visually specified, intended multijoint arm/hand trajectories well in advance of movement. Copyright © 2015 the authors 0270-6474/15/359508-18$15.00/0.
Stock, Ann-Kathrin; Wascher, Edmund; Beste, Christian
2013-01-01
It is well-kown that sensory information influences the way we execute motor responses. However, less is known about if and how sensory and motor information are integrated in the subsequent process of response evaluation. We used a modified Simon Task to investigate how these streams of information are integrated in response evaluation processes, applying an in-depth neurophysiological analysis of event-related potentials (ERPs), time-frequency decomposition and sLORETA. The results show that response evaluation processes are differentially modulated by afferent proprioceptive information and efference copies. While the influence of proprioceptive information is mediated via oscillations in different frequency bands, efference copy based information about the motor execution is specifically mediated via oscillations in the theta frequency band. Stages of visual perception and attention were not modulated by the interaction of proprioception and motor efference copies. Brain areas modulated by the interactive effects of proprioceptive and efference copy based information included the middle frontal gyrus and the supplementary motor area (SMA), suggesting that these areas integrate sensory information for the purpose of response evaluation. The results show how motor response evaluation processes are modulated by information about both the execution and the location of a response. PMID:23658624
Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis
NASA Astrophysics Data System (ADS)
Markovic, Marko; Dosen, Strahinja; Popovic, Dejan; Graimann, Bernhard; Farina, Dario
2015-12-01
Objective. Myoelectric activity volitionally generated by the user is often used for controlling hand prostheses in order to replicate the synergistic actions of muscles in healthy humans during grasping. Muscle synergies in healthy humans are based on the integration of visual perception, heuristics and proprioception. Here, we demonstrate how sensor fusion that combines artificial vision and proprioceptive information with the high-level processing characteristics of biological systems can be effectively used in transradial prosthesis control. Approach. We developed a novel context- and user-aware prosthesis (CASP) controller integrating computer vision and inertial sensing with myoelectric activity in order to achieve semi-autonomous and reactive control of a prosthetic hand. The presented method semi-automatically provides simultaneous and proportional control of multiple degrees-of-freedom (DOFs), thus decreasing overall physical effort while retaining full user control. The system was compared against the major commercial state-of-the art myoelectric control system in ten able-bodied and one amputee subject. All subjects used transradial prosthesis with an active wrist to grasp objects typically associated with activities of daily living. Main results. The CASP significantly outperformed the myoelectric interface when controlling all of the prosthesis DOF. However, when tested with less complex prosthetic system (smaller number of DOF), the CASP was slower but resulted with reaching motions that contained less compensatory movements. Another important finding is that the CASP system required minimal user adaptation and training. Significance. The CASP constitutes a substantial improvement for the control of multi-DOF prostheses. The application of the CASP will have a significant impact when translated to real-life scenarious, particularly with respect to improving the usability and acceptance of highly complex systems (e.g., full prosthetic arms) by amputees.
Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
Markovic, Marko; Dosen, Strahinja; Popovic, Dejan; Graimann, Bernhard; Farina, Dario
2015-12-01
Myoelectric activity volitionally generated by the user is often used for controlling hand prostheses in order to replicate the synergistic actions of muscles in healthy humans during grasping. Muscle synergies in healthy humans are based on the integration of visual perception, heuristics and proprioception. Here, we demonstrate how sensor fusion that combines artificial vision and proprioceptive information with the high-level processing characteristics of biological systems can be effectively used in transradial prosthesis control. We developed a novel context- and user-aware prosthesis (CASP) controller integrating computer vision and inertial sensing with myoelectric activity in order to achieve semi-autonomous and reactive control of a prosthetic hand. The presented method semi-automatically provides simultaneous and proportional control of multiple degrees-of-freedom (DOFs), thus decreasing overall physical effort while retaining full user control. The system was compared against the major commercial state-of-the art myoelectric control system in ten able-bodied and one amputee subject. All subjects used transradial prosthesis with an active wrist to grasp objects typically associated with activities of daily living. The CASP significantly outperformed the myoelectric interface when controlling all of the prosthesis DOF. However, when tested with less complex prosthetic system (smaller number of DOF), the CASP was slower but resulted with reaching motions that contained less compensatory movements. Another important finding is that the CASP system required minimal user adaptation and training. The CASP constitutes a substantial improvement for the control of multi-DOF prostheses. The application of the CASP will have a significant impact when translated to real-life scenarious, particularly with respect to improving the usability and acceptance of highly complex systems (e.g., full prosthetic arms) by amputees.
Rand, Miya Kato; Lemay, Martin; Squire, Linda M; Shimansky, Yury P; Stelmach, George E
2010-03-01
The present project was aimed at investigating how two distinct and important difficulties (coordination difficulty and pronounced dependency on visual feedback) in Parkinson's disease (PD) affect each other for the coordination between hand transport toward an object and the initiation of finger closure during reach-to-grasp movement. Subjects with PD and age-matched healthy subjects made reach-to-grasp movements to a dowel under conditions in which the target object and/or the hand were either visible or not visible. The involvement of the trunk in task performance was manipulated by positioning the target object within or beyond the participant's outstretched arm to evaluate the effects of increasing the complexity of intersegmental coordination under different conditions related to the availability of visual feedback in subjects with PD. General kinematic characteristics of the reach-to-grasp movements of the subjects with PD were altered substantially by the removal of target object visibility. Compared with the controls, the subjects with PD considerably lengthened transport time, especially during the aperture closure period, and decreased peak velocity of wrist and trunk movement without target object visibility. Most of these differences were accentuated when the trunk was involved. In contrast, these kinematic parameters did not change depending on the visibility of the hand for both groups. The transport-aperture coordination was assessed in terms of the control law according to which the initiation of aperture closure during the reach occurred when the hand distance-to-target crossed a hand-target distance threshold for grasp initiation that is a function of peak aperture, hand velocity and acceleration, trunk velocity and acceleration, and trunk-target distance at the time of aperture closure initiation. When the hand or the target object was not visible, both groups increased the hand-target distance threshold for grasp initiation compared to its value under full visibility, implying an increase in the hand-target distance-related safety margin for grasping. The increase in the safety margin due to the absence of target object vision or the absence of hand vision was accentuated in the subjects with PD compared to that in the controls. The pronounced increase in the safety margin due to absence of target object vision for the subjects with PD was further accentuated when the trunk was involved compared to when it was not involved. The results imply that individuals with PD have significant limitations regarding neural computations required for efficient utilization of internal representations of target object location and hand motion as well as proprioceptive information about the hand to compensate for the lack of visual information during the performance of complex multisegment movements.
Pinch aperture proprioception: reliability and feasibility study
Yahya, Abdalghani; von Behren, Timothy; Levine, Shira; dos Santos, Marcio
2018-01-01
[Purpose] To establish the reliability and feasibility of a novel pinch aperture device to measure proprioceptive joint position sense. [Subjects and Methods] Reliability of the pinch aperture device was assessed in 21 healthy subjects. Following familiarization with a 15° target position of the index finger and thumb, subjects performed 5 trials in which they attempted to actively reproduce the target position without visual feedback. This procedure was repeated at a testing session on a separate date, and the between-session intraclass correlation coefficient (ICC) was calculated. In addition, extensor tendon vibration was applied to 19 healthy subjects, and paired t-tests were conducted to compare performance under vibration and no-vibration conditions. Pinch aperture proprioception was also assessed in two individuals with known diabetic neuropathy. [Results] The pinch aperture device demonstrated excellent reliability in healthy subjects (ICC 0.88, 95% confidence interval 0.70–0.95). Tendon vibration disrupted pinch aperture proprioception, causing subjects to undershoot the target position (18.1 ± 2.6° vs. 14.8° ± 0.76, p<0.001). This tendency to undershoot the target position was also noted in individuals with diabetic neuropathy. [Conclusion] This study describes a reliable, feasible, and functional means of measuring finger proprioception. Further research should investigate the assessment and implications of pinch aperture proprioception in neurological and orthopedic populations. PMID:29765192
Toward a Proprioceptive Neural Interface That Mimics Natural Cortical Activity
Tomlinson, Tucker
2017-01-01
The dramatic advances in efferent neural interfaces over the past decade are remarkable, with cortical signals used to allow paralyzed patients to control the movement of a prosthetic limb or even their own hand. However, this success has thrown into relief, the relative lack of progress in our ability to restore somatosensation to these same patients. Somatosensation, including proprioception, the sense of limb position and movement, plays a crucial role in even basic motor tasks like reaching and walking. Its loss results in crippling deficits. Historical work dating back decades and even centuries has demonstrated that modality-specific sensations can be elicited by activating the central nervous system electrically. Recent work has focused on the challenge of refining these sensations by stimulating the somatosensory cortex (S1) directly. Animals are able to detect particular patterns of stimulation and even associate those patterns with particular sensory cues. Most of this work has involved areas of the somatosensory cortex that mediate the sense of touch. Very little corresponding work has been done for proprioception. Here we describe the effort to develop afferent neural interfaces through spatiotemporally precise intracortical microstimulation (ICMS). We review what is known of the cortical representation of proprioception, and describe recent work in our lab that demonstrates for the first time, that sensations like those of natural proprioception may be evoked by ICMS in S1. These preliminary findings are an important first step to the development of an afferent cortical interface to restore proprioception. PMID:28035576
Toward a Proprioceptive Neural Interface that Mimics Natural Cortical Activity.
Tomlinson, Tucker; Miller, Lee E
2016-01-01
The dramatic advances in efferent neural interfaces over the past decade are remarkable, with cortical signals used to allow paralyzed patients to control the movement of a prosthetic limb or even their own hand. However, this success has thrown into relief, the relative lack of progress in our ability to restore somatosensation to these same patients. Somatosensation, including proprioception, the sense of limb position and movement, plays a crucial role in even basic motor tasks like reaching and walking. Its loss results in crippling deficits. Historical work dating back decades and even centuries has demonstrated that modality-specific sensations can be elicited by activating the central nervous system electrically. Recent work has focused on the challenge of refining these sensations by stimulating the somatosensory cortex (S1) directly. Animals are able to detect particular patterns of stimulation and even associate those patterns with particular sensory cues. Most of this work has involved areas of the somatosensory cortex that mediate the sense of touch. Very little corresponding work has been done for proprioception. Here we describe the effort to develop afferent neural interfaces through spatiotemporally precise intracortical microstimulation (ICMS). We review what is known of the cortical representation of proprioception, and describe recent work in our lab that demonstrates for the first time, that sensations like those of natural proprioception may be evoked by ICMS in S1. These preliminary findings are an important first step to the development of an afferent cortical interface to restore proprioception.
Bent, Leah R.
2016-01-01
It has previously been shown that cutaneous sensory input from across a broad region of skin can influence proprioception at joints of the hand. The present experiment tested whether cutaneous input from different skin regions across the foot can influence proprioception at the ankle joint. The ability to passively match ankle joint position (17° and 7° plantar flexion and 7° dorsiflexion) was measured while cutaneous vibration was applied to the sole (heel, distal metatarsals) or dorsum of the target foot. Vibration was applied at two different frequencies to preferentially activate Meissner's corpuscles (45 Hz, 80 μm) or Pacinian corpuscles (255 Hz, 10 μm) at amplitudes ∼3 dB above mean perceptual thresholds. Results indicated that cutaneous input from all skin regions across the foot could influence joint-matching error and variability, although the strongest effects were observed with heel vibration. Furthermore, the influence of cutaneous input from each region was modulated by joint angle; in general, vibration had a limited effect on matching in dorsiflexion compared with matching in plantar flexion. Unlike previous results in the upper limb, we found no evidence that Pacinian input exerted a stronger influence on proprioception compared with Meissner input. Findings from this study suggest that fast-adapting cutaneous input from the foot modulates proprioception at the ankle joint in a passive joint-matching task. These results indicate that there is interplay between tactile and proprioceptive signals originating from the foot and ankle. PMID:26823342
Malik, Raza Naseem; Cote, Rachel; Lam, Tania
2017-01-01
Skilled walking, such as obstacle crossing, is an essential component of functional mobility. Sensorimotor integration of visual and proprioceptive inputs is important for successful obstacle crossing. The objective of this study was to understand how proprioceptive deficits affect obstacle-crossing strategies when controlling for variations in motor deficits in ambulatory individuals with spinal cord injury (SCI). Fifteen ambulatory individuals with SCI and 15 able-bodied controls were asked to step over an obstacle scaled to their motor abilities under full and obstructed vision conditions. An eye tracker was used to determine gaze behaviour and motion capture analysis was used to determine toe kinematics relative to the obstacle. Combined, bilateral hip and knee proprioceptive sense (joint position sense and movement detection sense) was assessed using the Lokomat and customized software controls. Combined, bilateral hip and knee proprioceptive sense in subjects with SCI varied and was significantly different from able-bodied subjects. Subjects with greater proprioceptive deficits stepped higher over the obstacle with their lead and trail limbs in the obstructed vision condition compared with full vision. Subjects with SCI also glanced at the obstacle more frequently and with longer fixation times compared with controls, but this was not related to proprioceptive sense. This study indicates that ambulatory individuals with SCI rely more heavily on vision to cross obstacles and show impairments in key gait parameters required for successful obstacle crossing. Our data suggest that proprioceptive deficits need to be considered in rehabilitation programs aimed at improving functional mobility in ambulatory individuals with SCI. This work is unique since it examines the contribution of combined, bilateral hip and knee proprioceptive sense on the recovery of skilled walking function, in addition to characterizing gaze behavior during a skilled walking task in people with motor-incomplete spinal cord injury. Copyright © 2017 the American Physiological Society.
Changing motor perception by sensorimotor conflicts and body ownership
Salomon, R.; Fernandez, N. B.; van Elk, M.; Vachicouras, N.; Sabatier, F.; Tychinskaya, A.; Llobera, J.; Blanke, O.
2016-01-01
Experimentally induced sensorimotor conflicts can result in a loss of the feeling of control over a movement (sense of agency). These findings are typically interpreted in terms of a forward model in which the predicted sensory consequences of the movement are compared with the observed sensory consequences. In the present study we investigated whether a mismatch between movements and their observed sensory consequences does not only result in a reduced feeling of agency, but may affect motor perception as well. Visual feedback of participants’ finger movements was manipulated using virtual reality to be anatomically congruent or incongruent to the performed movement. Participants made a motor perception judgment (i.e. which finger did you move?) or a visual perceptual judgment (i.e. which finger did you see moving?). Subjective measures of agency and body ownership were also collected. Seeing movements that were visually incongruent to the performed movement resulted in a lower accuracy for motor perception judgments, but not visual perceptual judgments. This effect was modified by rotating the virtual hand (Exp.2), but not by passively induced movements (Exp.3). Hence, sensorimotor conflicts can modulate the perception of one’s motor actions, causing viewed “alien actions” to be felt as one’s own. PMID:27225834
Love and fear of heights: the pathophysiology and psychology of height imbalance.
Salassa, John R; Zapala, David A
2009-01-01
Individual psychological responses to heights vary on a continuum from acrophobia to height intolerance, height tolerance, and height enjoyment. This paper reviews the English literature and summarizes the physiologic and psychological factors that generate different responses to heights while standing still in a static or motionless environment. Perceptual cues to height arise from vision. Normal postural sway of 2 cm for peripheral objects within 3 m increases as eye-object distance increases. Postural sway >10 cm can result in a fall. A minimum of 20 minutes of peripheral retinal arc is required to detect motion. Trigonometry dictates that a 20-minute peripheral retinal arch can no longer be achieved in a standing position at an eye-object distance of >20 m. At this distance, visual cues conflict with somatosensory and vestibular inputs, resulting in variable degrees of imbalance. Co-occurring deficits in the visual, vestibular, and somatosensory systems can significantly increase height imbalance. An individual's psychological makeup, influenced by learned and genetic factors, can influence reactions to height imbalance. Enhancing peripheral vision and vestibular, proprioceptive, and haptic functions may improve height imbalance. Psychotherapy may improve the troubling subjective sensations to heights.
Naito, Eiichi; Morita, Tomoyo; Saito, Daisuke N; Ban, Midori; Shimada, Koji; Okamoto, Yuko; Kosaka, Hirotaka; Okazawa, Hidehiko; Asada, Minoru
2017-11-01
Functional lateralization can be an indicator of brain maturation. We have consistently shown that, in the adult brain, proprioceptive processing of muscle spindle afferents generating illusory movement of the right hand activates inferior frontoparietal cortical regions in a right-side dominant manner in addition to the cerebrocerebellar motor network. Here we provide novel evidence regarding the development of the right-dominant use of the inferior frontoparietal cortical regions in humans using this task. We studied brain activity using functional magnetic resonance imaging while 60 right-handed blindfolded healthy children (8-11 years), adolescents (12-15 years), and young adults (18-23 years) (20 per group) experienced the illusion. Adult-like right-dominant use of the inferior parietal lobule (IPL) was observed in adolescents, while children used the IPL bilaterally. In contrast, adult-like lateralized cerebrocerebellar motor activation patterns were already observable in children. The right-side dominance progresses during adolescence along with the suppression of the left-sided IPL activity that emerges during childhood. Therefore, the neuronal processing implemented in the adult's right IPL during the proprioceptive illusion task is likely mediated bilaterally during childhood, and then becomes right-lateralized during adolescence at a substantially later time than the lateralized use of the cerebrocerebellar motor system for kinesthetic processing. © The Author 2017. Published by Oxford University Press.
Naito, Eiichi; Morita, Tomoyo; Saito, Daisuke N; Ban, Midori; Shimada, Koji; Okamoto, Yuko; Kosaka, Hirotaka; Okazawa, Hidehiko; Asada, Minoru
2017-01-01
Abstract Functional lateralization can be an indicator of brain maturation. We have consistently shown that, in the adult brain, proprioceptive processing of muscle spindle afferents generating illusory movement of the right hand activates inferior frontoparietal cortical regions in a right-side dominant manner in addition to the cerebrocerebellar motor network. Here we provide novel evidence regarding the development of the right-dominant use of the inferior frontoparietal cortical regions in humans using this task. We studied brain activity using functional magnetic resonance imaging while 60 right-handed blindfolded healthy children (8–11 years), adolescents (12–15 years), and young adults (18–23 years) (20 per group) experienced the illusion. Adult-like right-dominant use of the inferior parietal lobule (IPL) was observed in adolescents, while children used the IPL bilaterally. In contrast, adult-like lateralized cerebrocerebellar motor activation patterns were already observable in children. The right-side dominance progresses during adolescence along with the suppression of the left-sided IPL activity that emerges during childhood. Therefore, the neuronal processing implemented in the adult's right IPL during the proprioceptive illusion task is likely mediated bilaterally during childhood, and then becomes right-lateralized during adolescence at a substantially later time than the lateralized use of the cerebrocerebellar motor system for kinesthetic processing. PMID:28968653
Restoring tactile and proprioceptive sensation through a brain interface
Tabot, Gregg A.; Kim, Sung Shin; Winberry, Jeremy E.; Bensmaia, Sliman J.
2014-01-01
Somatosensation plays a critical role in the dexterous manipulation of objects, in emotional communication, and in the embodiment of our limbs. For upper-limb neuroprostheses to be adopted by prospective users, prosthetic limbs will thus need to provide sensory information about the position of the limb in space and about objects grasped in the hand. One approach to restoring touch and proprioception consists of electrically stimulating neurons in somatosensory cortex in the hopes of eliciting meaningful sensations to support the dexterous use of the hands, promote their embodiment, and perhaps even restore the affective dimension of touch. In this review, we discuss the importance of touch and proprioception in everyday life, then describe approaches to providing artificial somatosensory feedback through intracortical microstimulation (ICMS). We explore the importance of biomimicry – the elicitation of naturalistic patterns of neuronal activation – and that of adaptation – the brain’s ability to adapt to novel sensory input, and argue that both biomimicry and adaptation will play a critical role in the artificial restoration of somatosensation. We also propose that the documented re-organization that occurs after injury does not pose a significant obstacle to brain interfaces. While still at an early stage of development, sensory restoration is a critical step in transitioning upper-limb neuroprostheses from the laboratory to the clinic. PMID:25201560
Restoring tactile and proprioceptive sensation through a brain interface.
Tabot, Gregg A; Kim, Sung Shin; Winberry, Jeremy E; Bensmaia, Sliman J
2015-11-01
Somatosensation plays a critical role in the dexterous manipulation of objects, in emotional communication, and in the embodiment of our limbs. For upper-limb neuroprostheses to be adopted by prospective users, prosthetic limbs will thus need to provide sensory information about the position of the limb in space and about objects grasped in the hand. One approach to restoring touch and proprioception consists of electrically stimulating neurons in somatosensory cortex in the hopes of eliciting meaningful sensations to support the dexterous use of the hands, promote their embodiment, and perhaps even restore the affective dimension of touch. In this review, we discuss the importance of touch and proprioception in everyday life, then describe approaches to providing artificial somatosensory feedback through intracortical microstimulation (ICMS). We explore the importance of biomimicry--the elicitation of naturalistic patterns of neuronal activation--and that of adaptation--the brain's ability to adapt to novel sensory input, and argue that both biomimicry and adaptation will play a critical role in the artificial restoration of somatosensation. We also propose that the documented re-organization that occurs after injury does not pose a significant obstacle to brain interfaces. While still at an early stage of development, sensory restoration is a critical step in transitioning upper-limb neuroprostheses from the laboratory to the clinic. Copyright © 2014 Elsevier Inc. All rights reserved.
Beets, Iseult A. M.; Macé, Marc; Meesen, Raf L. J.; Cuypers, Koen; Levin, Oron; Swinnen, Stephan P.
2012-01-01
Perceptual processes play an important role in motor learning. While it is evident that visual information greatly contributes to learning new movements, much less is known about provision of prescriptive proprioceptive information. Here, we investigated whether passive (proprioceptively-based) movement training was comparable to active training for learning a new bimanual task. Three groups practiced a bimanual coordination pattern with a 1∶2 frequency ratio and a 90° phase offset between both wrists with Lissajous feedback over the course of four days: 1) passive training; 2) active training; 3) no training (control). Retention findings revealed that passive as compared to active training resulted in equally successful acquisition of the frequency ratio but active training was more effective for acquisition of the new relative phasing between the limbs in the presence of augmented visual feedback. However, when this feedback was removed, performance of the new relative phase deteriorated in both groups whereas the frequency ratio was better preserved. The superiority of active over passive training in the presence of augmented feedback is hypothesized to result from active involvement in processes of error detection/correction and planning. PMID:22666379
The Effects of Age and Preoral Sensorimotor Cues on Anticipatory Mouth Movement During Swallowing
Moon, Jerald B.; Goodman, Shawn S.
2016-01-01
Purpose The aim of this study was to investigate the effects of preoral sensorimotor cues on anticipatory swallowing/eating-related mouth movements in older and younger adults. It was hypothesized that these cues are essential to timing anticipatory oral motor patterns, and these movements are delayed in older as compared with younger adults. Method Using a 2 × 2 repeated-measures design, eating-related lip, jaw, and hand movements were recorded from 24 healthy older (ages 70–85 years) and 24 healthy younger (ages 18–30 years) adults under 4 conditions: typical self-feeding, typical assisted feeding (proprioceptive loss), sensory-loss self-feeding (auditory and visual loss/degradation), and sensory-loss assisted feeding (loss/degradation of all cues). Results All participants demonstrated anticipatory mouth opening. The absence of proprioception delayed lip-lowering onset, and sensory loss more negatively affected offset. Given at least 1 preoral sensorimotor cue, older adults initiated movement earlier than younger adults. Conclusions Preoral sensorimotor information influences anticipatory swallowing/eating-related mouth movements, highlighting the importance of these cues. Earlier movement in older adults may be a compensation, facilitating safe swallowing given other age-related declines. Further research is needed to determine if the negative impact of cue removal may be further exacerbated in a nonhealthy system (e.g., presence of dysphagia or disease), potentially increasing swallowing- and eating-related risks. PMID:26540553
Contribution of finger tracing to the recognition of Chinese characters.
Yim-Ng, Y Y; Varley, R; Andrade, J
2000-01-01
Finger tracing is a simulation of the act of writing without the use of pen and paper. It is claimed to help in the processing of Chinese characters, possibly by providing additional motor coding. In this study, blindfolded subjects were equally good at identifying Chinese characters and novel visual stimuli through passive movements made with the index finger of the preferred hand and those made with the last finger of that hand. This suggests that finger tracing provides a relatively high level of coding specific to individual characters, but non-specific to motor effectors. Beginning each stroke from the same location, i.e. removing spatial information, impaired recognition of the familiar characters and the novel nonsense figures. Passively tracing the strokes in a random sequence also impaired recognition of the characters. These results therefore suggest that the beneficial effect of finger tracing on writing or recall of Chinese characters is mediated by sequence and spatial information embedded in the motor movements, and that proprioceptive channel may play a part in mediating visuo-spatial information. Finger tracing may be a useful strategy for remediation of Chinese language impairments.
Direct manipulation of virtual objects
NASA Astrophysics Data System (ADS)
Nguyen, Long K.
Interacting with a Virtual Environment (VE) generally requires the user to correctly perceive the relative position and orientation of virtual objects. For applications requiring interaction in personal space, the user may also need to accurately judge the position of the virtual object relative to that of a real object, for example, a virtual button and the user's real hand. This is difficult since VEs generally only provide a subset of the cues experienced in the real world. Complicating matters further, VEs presented by currently available visual displays may be inaccurate or distorted due to technological limitations. Fundamental physiological and psychological aspects of vision as they pertain to the task of object manipulation were thoroughly reviewed. Other sensory modalities -- proprioception, haptics, and audition -- and their cross-interactions with each other and with vision are briefly discussed. Visual display technologies, the primary component of any VE, were canvassed and compared. Current applications and research were gathered and categorized by different VE types and object interaction techniques. While object interaction research abounds in the literature, pockets of research gaps remain. Direct, dexterous, manual interaction with virtual objects in Mixed Reality (MR), where the real, seen hand accurately and effectively interacts with virtual objects, has not yet been fully quantified. An experimental test bed was designed to provide the highest accuracy attainable for salient visual cues in personal space. Optical alignment and user calibration were carefully performed. The test bed accommodated the full continuum of VE types and sensory modalities for comprehensive comparison studies. Experimental designs included two sets, each measuring depth perception and object interaction. The first set addressed the extreme end points of the Reality-Virtuality (R-V) continuum -- Immersive Virtual Environment (IVE) and Reality Environment (RE). This validated, linked, and extended several previous research findings, using one common test bed and participant pool. The results provided a proven method and solid reference points for further research. The second set of experiments leveraged the first to explore the full R-V spectrum and included additional, relevant sensory modalities. It consisted of two full-factorial experiments providing for rich data and key insights into the effect of each type of environment and each modality on accuracy and timeliness of virtual object interaction. The empirical results clearly showed that mean depth perception error in personal space was less than four millimeters whether the stimuli presented were real, virtual, or mixed. Likewise, mean error for the simple task of pushing a button was less than four millimeters whether the button was real or virtual. Mean task completion time was less than one second. Key to the high accuracy and quick task performance time observed was the correct presentation of the visual cues, including occlusion, stereoscopy, accommodation, and convergence. With performance results already near optimal level with accurate visual cues presented, adding proprioception, audio, and haptic cues did not significantly improve performance. Recommendations for future research include enhancement of the visual display and further experiments with more complex tasks and additional control variables.
Intact proprioception and control of labour pain during epidural analgesia.
Abrahams, M; Higgins, P; Whyte, P; Breen, P; Muttu, S; Gardiner, J
1999-01-01
Accurate proprioception is critical while walking, yet an ambulatory epidural regimen that provides adequate analgesia for labour while simultaneously preserving proprioceptive input has not been described. Sixty primigravidae in established labour received bupivacaine 15 mg (15 ml of 0.1% w/v) and fentanyl 100 micrograms through a lumbar epidural catheter. Clinical assessment of dorsal column sensory function included: vibration sense, distal proprioception and the Romberg test, and were all performed before catheter insertion and 30 min after the study bolus. Sensory modalities were also tested compared to an unblocked dermatome. Pain was scored on a 0-10 cm visual analogue scale (VAS) before and 30 min after induction. Intensity of the motor block was tested using a modified Bromage score (grade 1-6). The study bolus provided reliable analgesia with 43 parturients attaining a VAS pain score of zero. Mean duration of analgesia was 67.5 min (SD 22.85). All parturients retained the ability to perform a partial knee bend while standing (grade 6). No mothers exhibited impaired distal proprioception, altered vibration sense or a positive Romberg sign. This study confirms that the addition of lumbar epidural fentanyl 100 micrograms to 15 mg of epidural bupivacaine provides good control of labour pain with no motor block and establishes that this combination preserves dorsal column sensory function.
Mildren, Robyn L; Bent, Leah R
2016-04-15
It has previously been shown that cutaneous sensory input from across a broad region of skin can influence proprioception at joints of the hand. The present experiment tested whether cutaneous input from different skin regions across the foot can influence proprioception at the ankle joint. The ability to passively match ankle joint position (17° and 7° plantar flexion and 7° dorsiflexion) was measured while cutaneous vibration was applied to the sole (heel, distal metatarsals) or dorsum of the target foot. Vibration was applied at two different frequencies to preferentially activate Meissner's corpuscles (45 Hz, 80 μm) or Pacinian corpuscles (255 Hz, 10 μm) at amplitudes ∼3 dB above mean perceptual thresholds. Results indicated that cutaneous input from all skin regions across the foot could influence joint-matching error and variability, although the strongest effects were observed with heel vibration. Furthermore, the influence of cutaneous input from each region was modulated by joint angle; in general, vibration had a limited effect on matching in dorsiflexion compared with matching in plantar flexion. Unlike previous results in the upper limb, we found no evidence that Pacinian input exerted a stronger influence on proprioception compared with Meissner input. Findings from this study suggest that fast-adapting cutaneous input from the foot modulates proprioception at the ankle joint in a passive joint-matching task. These results indicate that there is interplay between tactile and proprioceptive signals originating from the foot and ankle. Copyright © 2016 the American Physiological Society.
Bilateral Proprioceptive Evaluation in Individuals With Unilateral Chronic Ankle Instability
Sousa, Andreia S. P.; Leite, João; Costa, Bianca; Santos, Rubim
2017-01-01
Context: Despite extensive research on chronic ankle instability, the findings regarding proprioception have been conflicting and focused only on the injured limb. Also, the different components of proprioception have been evaluated in isolation. Objective: To evaluate bilateral ankle proprioception in individuals with unilateral ankle instability. Design: Cohort study. Setting: Research laboratory center in a university. Patients or Other Participants: Twenty-four individuals with a history of unilateral ankle sprain and chronic ankle instability (mechanical ankle instability group, n = 10; functional ankle instability [FAI] group, n = 14) and 20 controls. Main Outcome Measure(s): Ankle active and passive joint position sense, kinesthesia, and force sense. Results: We observed a significant interaction between the effects of limb and group for kinesthesia (F = 3.27, P = .049). Increased error values were observed in the injured limb of the FAI group compared with the control group (P = .031, Cohen d = 0.47). Differences were also evident for force sense (F = 9.31, P < .001): the FAI group demonstrated increased error versus the control group (injured limb: P < .001, Cohen d = 1.28; uninjured limb: P = .009, Cohen d = 0.89) and the mechanical ankle instability group (uninjured limb: P = .023, Cohen d = 0.76). Conclusions: Individuals with unilateral FAI had increased error ipsilaterally (injured limb) for inversion movement detection (kinesthesia) and evertor force sense and increased error contralaterally (uninjured limb) for evertor force sense. PMID:28318316
Multisensory Integration and Internal Models for Sensing Gravity Effects in Primates
Lacquaniti, Francesco; La Scaleia, Barbara; Maffei, Vincenzo
2014-01-01
Gravity is crucial for spatial perception, postural equilibrium, and movement generation. The vestibular apparatus is the main sensory system involved in monitoring gravity. Hair cells in the vestibular maculae respond to gravitoinertial forces, but they cannot distinguish between linear accelerations and changes of head orientation relative to gravity. The brain deals with this sensory ambiguity (which can cause some lethal airplane accidents) by combining several cues with the otolith signals: angular velocity signals provided by the semicircular canals, proprioceptive signals from muscles and tendons, visceral signals related to gravity, and visual signals. In particular, vision provides both static and dynamic signals about body orientation relative to the vertical, but it poorly discriminates arbitrary accelerations of moving objects. However, we are able to visually detect the specific acceleration of gravity since early infancy. This ability depends on the fact that gravity effects are stored in brain regions which integrate visual, vestibular, and neck proprioceptive signals and combine this information with an internal model of gravity effects. PMID:25061610
Multisensory integration and internal models for sensing gravity effects in primates.
Lacquaniti, Francesco; Bosco, Gianfranco; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka
2014-01-01
Gravity is crucial for spatial perception, postural equilibrium, and movement generation. The vestibular apparatus is the main sensory system involved in monitoring gravity. Hair cells in the vestibular maculae respond to gravitoinertial forces, but they cannot distinguish between linear accelerations and changes of head orientation relative to gravity. The brain deals with this sensory ambiguity (which can cause some lethal airplane accidents) by combining several cues with the otolith signals: angular velocity signals provided by the semicircular canals, proprioceptive signals from muscles and tendons, visceral signals related to gravity, and visual signals. In particular, vision provides both static and dynamic signals about body orientation relative to the vertical, but it poorly discriminates arbitrary accelerations of moving objects. However, we are able to visually detect the specific acceleration of gravity since early infancy. This ability depends on the fact that gravity effects are stored in brain regions which integrate visual, vestibular, and neck proprioceptive signals and combine this information with an internal model of gravity effects.
Cervical Joint Position Sense in Hypobaric Conditions: A Randomized Double-Blind Controlled Trial.
Bagaianu, Diana; Van Tiggelen, Damien; Duvigneaud, N; Stevens, Veerle; Schroyen, Danny; Vissenaeken, Dirk; D'Hondt, Gino; Pitance, Laurent
2017-09-01
Well-adapted motor actions require intact and well-integrated information from all of the sensory systems, specifically the visual, vestibular, and somatosensory systems, including proprioception. Proprioception is involved in the sensorimotor control by providing the central nervous system with an updated body schema of the biomechanical and spatial properties of the body parts. With regard to the cervical spine, proprioceptive information from joint and muscle mechanoreceptors is integrated with vestibular and visual feedback to control head position, head orientation, and whole body posture. Postural control is highly complex and proprioception from joints is an important contributor to the system. Altitude has been used as a paradigm to study the mechanisms of postural control. Determining the mechanisms of postural control that are affected by moderate altitude is important as unpressurized aircrafts routinely operate at altitudes where hypoxia may be a concern. Deficits in motor performance arise when the reliance on proprioceptive feedback is abolished either experimentally or because of a disorder. As pilots require good neck motor control to counteract the weight of their head gear and proprioceptive information plays an important role in this process, the aim of this study was to determine if hypoxia at moderate altitudes would impair proprioception measured by joint position sense of the cervical spine in healthy subjects. Thirty-six healthy subjects (Neck Disability Index < 5) volunteered to participate. Neck position sense was evaluated using a three-dimensional motion analyzer. To create the environment, a hypobaric chamber was used to simulate artificial moderate altitude. Head repositioning error was measured by asking the subject to perform a head-to-neutral task after submaximal flexion-extension and right/left rotation movements, and a head-to-target task, in which the subjects had to return to a 30° right and left rotation position. Exposure to artificial acute moderate altitude of 7,000 feet had no significant effects on cervical joint position sense measured by head repositioning accuracy in healthy subjects. Discussion/impact/recommendations: Postural control mechanisms are very sensitive to acute mild hypoxia and have been recently investigated. Acute hypobaric hypoxia at moderate and high altitudes has a negative effect on postural control. However, which part of the postural system is affected has not yet been determined and proprioception has been little investigated. The results from this study highlighted that in healthy subjects with good cervical spine proprioception at baseline, artificial hypoxia induced by the simulation of moderate altitude does not increase head repositioning error. Further studies should investigate cervical joint position sense in real aircraft, at different altitudes and in a group of experienced helicopter pilots, to evaluate the impact of moderate altitude on cervical joint position sense in a different population. Conducting the same experiments in a population of pilots and in real flight conditions should be considered, since various factors such as the level of proprioception, head posture, type of movement, head load, muscle fatigue, flight altitude, and the length of flight time might influence the kinesthetic sensitivity. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.
Theta dynamics reveal domain-specific control over stimulus and response conflict.
Nigbur, Roland; Cohen, Michael X; Ridderinkhof, K Richard; Stürmer, Birgit
2012-05-01
Cognitive control allows us to adjust to environmental changes. The medial frontal cortex (MFC) is thought to detect conflicts and recruit additional resources from other brain areas including the lateral prefrontal cortices. Here we investigated how the MFC acts in concert with visual, motor, and lateral prefrontal cortices to support adaptations of goal-directed behavior. Physiologically, these interactions may occur through local and long-range synchronized oscillation dynamics, particularly in the theta range (4-8 Hz). A speeded flanker task allowed us to investigate conflict-type-specific control networks for perceptual and response conflicts. Theta power over MFC was sensitive to both perceptual and response conflict. Interareal theta phase synchrony, however, indicated a selective enhancement specific for response conflicts between MFC and left frontal cortex as well as between MFC and the presumed motor cortex contralateral to the response hand. These findings suggest that MFC theta-band activity is both generally involved in conflict processing and specifically involved in linking a neural network controlling response conflict.
de Rengervé, Antoine; Andry, Pierre; Gaussier, Philippe
2015-04-01
Imitation and learning from humans require an adequate sensorimotor controller to learn and encode behaviors. We present the Dynamic Muscle Perception-Action(DM-PerAc) model to control a multiple degrees-of-freedom (DOF) robot arm. In the original PerAc model, path-following or place-reaching behaviors correspond to the sensorimotor attractors resulting from the dynamics of learned sensorimotor associations. The DM-PerAc model, inspired by human muscles, permits one to combine impedance-like control with the capability of learning sensorimotor attraction basins. We detail a solution to learn incrementally online the DM-PerAc visuomotor controller. Postural attractors are learned by adapting the muscle activations in the model depending on movement errors. Visuomotor categories merging visual and proprioceptive signals are associated with these muscle activations. Thus, the visual and proprioceptive signals activate the motor action generating an attractor which satisfies both visual and proprioceptive constraints. This visuomotor controller can serve as a basis for imitative behaviors. In addition, the muscle activation patterns can define directions of movement instead of postural attractors. Such patterns can be used in state-action couples to generate trajectories like in the PerAc model. We discuss a possible extension of the DM-PerAc controller by adapting the Fukuyori's controller based on the Langevin's equation. This controller can serve not only to reach attractors which were not explicitly learned, but also to learn the state/action couples to define trajectories.
Anthony Eikema, Diderik Jan A.; Chien, Jung Hung; Stergiou, Nicholas; Myers, Sara A.; Scott-Pandorf, Melissa M.; Bloomberg, Jacob J.; Mukherjee, Mukul
2015-01-01
Human locomotor adaptation requires feedback and feed-forward control processes to maintain an appropriate walking pattern. Adaptation may require the use of visual and proprioceptive input to decode altered movement dynamics and generate an appropriate response. After a person transfers from an extreme sensory environment and back, as astronauts do when they return from spaceflight, the prolonged period required for re-adaptation can pose a significant burden. In our previous paper, we showed that plantar tactile vibration during a split-belt adaptation task did not interfere with the treadmill adaptation however, larger overground transfer effects with a slower decay resulted. Such effects, in the absence of visual feedback (of motion) and perturbation of tactile feedback, is believed to be due to a higher proprioceptive gain because, in the absence of relevant external dynamic cues such as optic flow, reliance on body-based cues is enhanced during gait tasks through multisensory integration. In this study we therefore investigated the effect of optic flow on tactile stimulated split-belt adaptation as a paradigm to facilitate the sensorimotor adaptation process. Twenty healthy young adults, separated into two matched groups, participated in the study. All participants performed an overground walking trial followed by a split-belt treadmill adaptation protocol. The tactile group (TC) received vibratory plantar tactile stimulation only, whereas the virtual reality and tactile group (VRT) received an additional concurrent visual stimulation: a moving virtual corridor, inducing perceived self-motion. A post-treadmill overground trial was performed to determine adaptation transfer. Interlimb coordination of spatiotemporal and kinetic variables was quantified using symmetry indices, and analyzed using repeated-measures ANOVA. Marked changes of step length characteristics were observed in both groups during split-belt adaptation. Stance and swing time symmetry were similar in the two groups, suggesting that temporal parameters are not modified by optic flow. However, whereas the TC group displayed significant stance time asymmetries during the post-treadmill session, such aftereffects were absent in the VRT group. The results indicated that the enhanced transfer resulting from exposure to plantar cutaneous vibration during adaptation was alleviated by optic flow information. The presence of visual self-motion information may have reduced proprioceptive gain during learning. Thus, during overground walking, the learned proprioceptive split-belt pattern is more rapidly overridden by visual input due to its increased relative gain. The results suggest that when visual stimulation is provided during adaptive training, the system acquires the novel movement dynamics while maintaining the ability to flexibly adapt to different environments. PMID:26525712
Change in cognitive process during dance video game play with different appendages for motor output
NASA Astrophysics Data System (ADS)
Suzuki, Kota; Ono, Yumie; Shimada, Sotaro; Tachibana, Atsumichi; Noah, Jack Adam
2018-02-01
Playing a dance video game (DVG) requires fine temporal control of foot positions based on simultaneous visuoauditory integration. Despite the highly-demanding nature of its cognitive processes, DVG could offer promising exercise opportunities for elderly people to maintain their cognitive abilities due to its strong adherence. Using functional near-infrared spectroscopy, we have previously shown that DVG play with the foot activates prefrontal and temporoparietal cortices. However, it is still in debate whether this brain-stimulatory effect of DVG could also be maintained in case that DVG is played with the hand by people who have difficulty to play DVG in a standing position. We therefore investigated the regional brain activity of 12 healthy, right-handed young-adults when they played DVG with their dominant hand and foot. We found that the DVG-related hemodynamic activity was comparable in the prefrontal area regardless of the appendages while that was significantly smaller in case of playing with the hand related to the foot in the left superior/middle temporal gyrus (S/MTG). A similar trend was also observed in the right S/MTG. These results suggest that the motor preparatory function mediated by the prefrontal cortices is equally employed regardless of appendages while more cognitive load is required in the temporal cortices with foot-played DVG, possibly to integrate visual, auditory, and proprioceptive information. Hand-played DVG may partially substitute foot-played DVG in the sense of cognitive training in the elderly.
Chen, Juan; Sperandio, Irene; Goodale, Melvyn Alan
2018-03-19
Our brain integrates information from multiple modalities in the control of behavior. When information from one sensory source is compromised, information from another source can compensate for the loss. What is not clear is whether the nature of this multisensory integration and the re-weighting of different sources of sensory information are the same across different control systems. Here, we investigated whether proprioceptive distance information (position sense of body parts) can compensate for the loss of visual distance cues that support size constancy in perception (mediated by the ventral visual stream) [1, 2] versus size constancy in grasping (mediated by the dorsal visual stream) [3-6], in which the real-world size of an object is computed despite changes in viewing distance. We found that there was perfect size constancy in both perception and grasping in a full-viewing condition (lights on, binocular viewing) and that size constancy in both tasks was dramatically disrupted in the restricted-viewing condition (lights off; monocular viewing of the same but luminescent object through a 1-mm pinhole). Importantly, in the restricted-viewing condition, proprioceptive cues about viewing distance originating from the non-grasping limb (experiment 1) or the inclination of the torso and/or the elbow angle of the grasping limb (experiment 2) compensated for the loss of visual distance cues to enable a complete restoration of size constancy in grasping but only a modest improvement of size constancy in perception. This suggests that the weighting of different sources of sensory information varies as a function of the control system being used. Copyright © 2018 Elsevier Ltd. All rights reserved.
Grewal, Gurtej S; Sayeed, Rashad; Schwenk, Michael; Bharara, Manish; Menzies, Robert; Talal, Talal K; Armstrong, David G; Najafi, Bijan
2013-01-01
Individuals with diabetic peripheral neuropathy frequently experience concomitant impaired proprioception and postural instability. Conventional exercise training has been demonstrated to be effective in improving balance but does not incorporate visual feedback targeting joint perception, which is an integral mechanism that helps compensate for impaired proprioception in diabetic peripheral neuropathy. This prospective cohort study recruited 29 participants (mean ± SD: age, 57 ± 10 years; body mass index [calculated as weight in kilograms divided by height in meters squared], 26.9 ± 3.1). Participants satisfying the inclusion criteria performed predefined ankle exercises through reaching tasks, with visual feedback from the ankle joint projected on a screen. Ankle motion in the mediolateral and anteroposterior directions was captured using wearable sensors attached to the participant's shank. Improvements in postural stability were quantified by measuring center of mass sway area and the reciprocal compensatory index before and after training using validated body-worn sensor technology. Findings revealed a significant reduction in center of mass sway after training (mean, 22%; P = .02). A higher postural stability deficit (high body sway) at baseline was associated with higher training gains in postural balance (reduction in center of mass sway) (r = -0.52, P < .05). In addition, significant improvement was observed in postural coordination between the ankle and hip joints (mean, 10.4%; P = .04). The present research implemented a novel balance rehabilitation strategy based on virtual reality technology. The method included wearable sensors and an interactive user interface for real-time visual feedback based on ankle joint motion, similar to a video gaming environment, for compensating impaired joint proprioception. These findings support that visual feedback generated from the ankle joint coupled with motor learning may be effective in improving postural stability in patients with diabetic peripheral neuropathy.
Role of sensory information in the control of postural orientation in Parkinson's disease.
Vaugoyeau, Marianne; Azulay, Jean-Philippe
2010-02-15
Clinical findings and experimental studies both in parkinsonian patients and on animal provide evidence that the control of the axial orientation is markedly impaired in Parkinson's disease (stooped posture, Camptocormia, Pisa syndrome). Nevertheless the postural orientation component in Parkinson's disease has been poorly investigated. One study reports that Parkinsonian patients present a major impairment of the postural orientation component in relation with a proprioceptive impairment. On the basis of these results, the visual dependence observed in Parkinsonian patients is re-defined as an adaptive strategy partly compensating for the impaired proprioception.
Moyano, F Revelles; Valenza, M C; Martin, L Martin; Caballero, Y Castellote; Gonzalez-Jimenez, E; Demet, G Valenza
2013-05-01
To compare the effectiveness of proprioceptive neuromuscular facilitation combined with exercise, classic stretching physiotherapy intervention, and educational intervention at improving patient function and pain in patients with patellofemoral pain syndrome. Randomized, controlled, blind trial over four months. Urban population, Spain. Patients undergoing primary care for retropatellar pain. Subjects were allocated on three different treatment options: a proprioceptive neuromuscular facilitation and aerobic exercise group, a classic stretching group, and a control treatment were applied over four months under the supervision of a physiotherapist. Knee Society Score, pain reported (Visual analogue scale) and knee range of motion. Assessments were completed at baseline and after four months. 74 patients were enrolled in the study and distributed between groups. Both the proprioceptive neuromuscular facilitation and classic stretching group showed significant changes in all variables after four months intervention (p < 0.001). The difference in mean Kujala knee score changes between groups (classic stretching group vs. proprioceptive neuromuscular facilitation group vs. control group) at four months was -24.05 (95% confidence interval (CI) -30.19, -17.90), p ≤ 0.001; vs. -39.03 (95% confidence interval (CI) -42.5, -35.5), p ≤ 0.001; vs. -0.238 (95% confidence interval (CI) -1.2, 0.726), p = 0.621, respectively. A proprioceptive neuromuscular facilitation intervention protocol combined with aerobic exercise showed a better outcome than a classic stretching protocol after four months.
Internal model of gravity influences configural body processing.
Barra, Julien; Senot, Patrice; Auclair, Laurent
2017-01-01
Human bodies are processed by a configural processing mechanism. Evidence supporting this claim is the body inversion effect, in which inversion impairs recognition of bodies more than other objects. Biomechanical configuration, as well as both visual and embodied expertise, has been demonstrated to play an important role in this effect. Nevertheless, the important factor of body inversion effect may also be linked to gravity orientation since gravity is one of the most fundamental constraints of our biology, behavior, and perception on Earth. The visual presentation of an inverted body in a typical body inversion paradigm turns the observed body upside down but also inverts the implicit direction of visual gravity in the scene. The orientation of visual gravity is then in conflict with the direction of actual gravity and may influence configural processing. To test this hypothesis, we dissociated the orientations of the body and of visual gravity by manipulating body posture. In a pretest we showed that it was possible to turn an avatar upside down (inversion relative to retinal coordinates) without inverting the orientation of visual gravity when the avatar stands on his/her hands. We compared the inversion effect in typical conditions (with gravity conflict when the avatar is upside down) to the inversion effect in conditions with no conflict between visual and physical gravity. The results of our experiment revealed that the inversion effect, as measured by both error rate and reaction time, was strongly reduced when there was no gravity conflict. Our results suggest that when an observed body is upside down (inversion relative to participants' retinal coordinates) but the orientation of visual gravity is not, configural processing of bodies might still be possible. In this paper, we discuss the implications of an internal model of gravity in the configural processing of observed bodies. Copyright © 2016 Elsevier B.V. All rights reserved.
2010-01-01
Background In rubber hand illusions and full body illusions, touch sensations are projected to non-body objects such as rubber hands, dolls or virtual bodies. The robustness, limits and further perceptual consequences of such illusions are not yet fully explored or understood. A number of experiments are reported that test the limits of a variant of the rubber hand illusion. Methodology/Principal Findings A variant of the rubber hand illusion is explored, in which the real and foreign hands are aligned in personal space. The presence of the illusion is ascertained with participants' scores and temperature changes of the real arm. This generates a basic illusion of touch projected to a foreign arm. Participants are presented with further, unusual visuotactile stimuli subsequent to onset of the basic illusion. Such further visuotactile stimulation is found to generate very unusual experiences of supernatural touch and touch on a non-hand object. The finding of touch on a non-hand object conflicts with prior findings, and to resolve this conflict a further hypothesis is successfully tested: that without prior onset of the basic illusion this unusual experience does not occur. Conclusions/Significance A rubber hand illusion is found that can arise when the real and the foreign arm are aligned in personal space. This illusion persists through periods of no tactile stimulation and is strong enough to allow very unusual experiences of touch felt on a cardboard box and experiences of touch produced at a distance, as if by supernatural causation. These findings suggest that one's visual body image is explained away during experience of the illusion and they may be of further importance to understanding the role of experience in delusion formation. The findings of touch on non-hand objects may help reconcile conflicting results in this area of research. In addition, new evidence is provided that relates to the recently discovered psychologically induced temperature changes that occur during the illusion. PMID:20195378
What is the Bandwidth of Perceptual Experience?
Cohen, Michael A; Dennett, Daniel C; Kanwisher, Nancy
2016-05-01
Although our subjective impression is of a richly detailed visual world, numerous empirical results suggest that the amount of visual information observers can perceive and remember at any given moment is limited. How can our subjective impressions be reconciled with these objective observations? Here, we answer this question by arguing that, although we see more than the handful of objects, claimed by prominent models of visual attention and working memory, we still see far less than we think we do. Taken together, we argue that these considerations resolve the apparent conflict between our subjective impressions and empirical data on visual capacity, while also illuminating the nature of the representations underlying perceptual experience. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bilateral control in teleoperation of a rehabilitation robot
NASA Astrophysics Data System (ADS)
Rahman, Tariq; Harwin, William S.
1993-03-01
One applications of teleoperation principles is of a manipulator that might be used to augment function in a disabled person. An individual with a paralyzing injury may have complete loss of motor and sensory function in his or her arms, which limits his or her ability to interact with the environment and perform simple tasks such as feeding or turning pages. One way of enhancing functionality is to employ a telemanipulator that might take the place of a care giver, thus providing the person with increased independence. This paper describes how a high level spinal cord injured individual would use head movement to control a robot. It is felt that the key to successful manipulation is in attaining a sense of force and position proprioception. This natural proprioception exists in cable operated prosthetic arms and simple tools such as mouthsticks or laser beam pointers where the user is physically linked to the device. This sense of proprioception is being emulated using a head controlled master-slave arrangement. The goal is for the disabled individual to operate a manipulator and utilize proprioceptive as well as visual feedback. This would lessen the mental burden on the user and ultimately make the device more acceptable.
The self in conflict: actors and agency in the mediated sequential Simon task.
Spapé, Michiel M; Ahmed, Imtiaj; Jacucci, Giulio; Ravaja, Niklas
2015-01-01
Executive control refers to the ability to withstand interference in order to achieve task goals. The effect of conflict adaptation describes that after experiencing interference, subsequent conflict effects are weaker. However, changes in the source of conflict have been found to disrupt conflict adaptation. Previous studies indicated that this specificity is determined by the degree to which one source causes episodic retrieval of a previous source. A virtual reality version of the Simon task was employed to investigate whether changes in a visual representation of the self would similarly affect conflict adaptation. Participants engaged in a mediated Simon task via 3D "avatar" models that either mirrored the participants' movements, or were presented statically. A retrieval cue was implemented as the identity of the avatar: switching it from a male to a female avatar was expected to disrupt the conflict adaptation effect (CAE). The results show that only in static conditions did the CAE depend on the avatar identity, while in dynamic conditions, changes did not cause disruption. We also explored the effect of conflict and adaptation on the degree of movement made with the task-irrelevant hand and replicated the reaction time pattern. The findings add to earlier studies of source-specific conflict adaptation by showing that a visual representation of the self in action can provide a cue that determines episodic retrieval. Furthermore, the novel paradigm is made openly available to the scientific community and is described in its significance for studies of social cognition, cognitive psychology, and human-computer interaction.
NASA Astrophysics Data System (ADS)
Sorce, Salvatore; Malizia, Alessio; Jiang, Pingfei; Atherton, Mark; Harrison, David
2018-04-01
One of the main time and money consuming tasks in the design of industrial devices and parts is the checking of possible patent infringements. Indeed, the great number of documents to be mined and the wide variety of technical language used to describe inventions are reasons why considerable amounts of time may be needed. On the other hand, the early detection of a possible patent conflict, in addition to reducing the risk of legal disputes, could stimulate a designers’ creativity to overcome similarities in overlapping patents. For this reason, there are a lot of existing patent analysis systems, each with its own features and access modes. We have designed a visual interface providing an intuitive access to such systems, freeing the designers from the specific knowledge of querying languages and providing them with visual clues. We tested the interface on a framework aimed at representing mechanical engineering patents; the framework is based on a semantic database and provides patent conflict analysis for early-stage designs. The interface supports a visual query composition to obtain a list of potentially overlapping designs.
Treleaven, Julia; Takasaki, Hiroshi
2015-02-01
Subjective visual vertical (SVV) assesses visual dependence for spacial orientation, via vertical perception testing. Using the computerized rod-and-frame test (CRFT), SVV is thought to be an important measure of cervical proprioception and might be greater in those with whiplash associated disorder (WAD), but to date research findings are inconsistent. The aim of this study was to investigate the most sensitive SVV error measurement to detect group differences between no neck pain control, idiopathic neck pain (INP) and WAD subjects. Cross sectional study. Neck Disability Index (NDI), Dizziness Handicap Inventory short form (DHIsf) and the average constant error (CE), absolute error (AE), root mean square error (RMSE), and variable error (VE) of the SVV were obtained from 142 subjects (48 asymptomatic, 36 INP, 42 WAD). The INP group had significantly (p < 0.03) greater VE and RMSE when compared to both the control and WAD groups. There were no differences seen between the WAD and controls. The results demonstrated that people with INP (not WAD), had an altered strategy for maintaining the perception of vertical by increasing variability of performance. This may be due to the complexity of the task. Further, the SVV performance was not related to reported pain or dizziness handicap. These findings are inconsistent with other measures of cervical proprioception in neck pain and more research is required before the SVV can be considered an important measure and utilized clinically. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Chang, Liangtang; Zhang, Shikun; Poo, Mu-ming; Gong, Neng
2017-01-01
Mirror self-recognition (MSR) is generally considered to be an intrinsic cognitive ability found only in humans and a few species of great apes. Rhesus monkeys do not spontaneously show MSR, but they have the ability to use a mirror as an instrument to find hidden objects. The mechanism underlying the transition from simple mirror use to MSR remains unclear. Here we show that rhesus monkeys could show MSR after learning precise visual-proprioceptive association for mirror images. We trained head-fixed monkeys on a chair in front of a mirror to touch with spatiotemporal precision a laser pointer light spot on an adjacent board that could only be seen in the mirror. After several weeks of training, when the same laser pointer light was projected to the monkey's face, a location not used in training, all three trained monkeys successfully touched the face area marked by the light spot in front of a mirror. All trained monkeys passed the standard face mark test for MSR both on the monkey chair and in their home cage. Importantly, distinct from untrained control monkeys, the trained monkeys showed typical mirror-induced self-directed behaviors in their home cage, such as using the mirror to explore normally unseen body parts. Thus, bodily self-consciousness may be a cognitive ability present in many more species than previously thought, and acquisition of precise visual-proprioceptive association for the images in the mirror is critical for revealing the MSR ability of the animal. PMID:28193875
Chang, Liangtang; Zhang, Shikun; Poo, Mu-Ming; Gong, Neng
2017-03-21
Mirror self-recognition (MSR) is generally considered to be an intrinsic cognitive ability found only in humans and a few species of great apes. Rhesus monkeys do not spontaneously show MSR, but they have the ability to use a mirror as an instrument to find hidden objects. The mechanism underlying the transition from simple mirror use to MSR remains unclear. Here we show that rhesus monkeys could show MSR after learning precise visual-proprioceptive association for mirror images. We trained head-fixed monkeys on a chair in front of a mirror to touch with spatiotemporal precision a laser pointer light spot on an adjacent board that could only be seen in the mirror. After several weeks of training, when the same laser pointer light was projected to the monkey's face, a location not used in training, all three trained monkeys successfully touched the face area marked by the light spot in front of a mirror. All trained monkeys passed the standard face mark test for MSR both on the monkey chair and in their home cage. Importantly, distinct from untrained control monkeys, the trained monkeys showed typical mirror-induced self-directed behaviors in their home cage, such as using the mirror to explore normally unseen body parts. Thus, bodily self-consciousness may be a cognitive ability present in many more species than previously thought, and acquisition of precise visual-proprioceptive association for the images in the mirror is critical for revealing the MSR ability of the animal.
Patients with type 2 diabetes demonstrate proprioceptive deficit in the knee
Ettinger, Lucas Richard; Boucher, Ami; Simonovich, Elisabeth
2018-01-01
AIM To investigate proprioceptive discrepancies in the lower extremity in persons with type 2 diabetes mellitus (T2DM). METHODS In this cross-sectional study, a total of 46 older persons were divided into a T2DM group (n = 23) and a control group who did not have T2DM (n = 23). Participants were given a brief warm up with stretching exercises. Diabetic neuropathy scores were collected prior to proprioceptive testing. For proprioceptive testing, participants performed leg extensions to randomized target positions of 15°, 30°, 45, 60° degrees of elevation in the sagittal plane, each target was repeated a total of four times. Subjects were guided to target positions in the absence of visual feedback via auditory cues from a custom JPS application. When the participant entered the target position, they memorized the location of their limb in space and subsequently attempted to re-locate this position in space. Proprioceptive errors were measured from the target positioned, target remembered, target repositioned protocol. RESULTS Proprioceptive accuracy was lower in the diabetic group at all levels of target angle than the control group (P < 0.05). The diabetic group had 46% greater inaccuracy than the control group at all levels of target position. Diabetics also reported greater neuropathy scores than controls in the past 12 mo P < 0.01. CONCLUSION Deficits in lower limb localization and greater diabetic neuropathy scores were identified in this study. Our findings may be associated with deafferentation as peripheral neuropathy is a common complication with the disease. These findings may help to explain the declining balance function in the older persons with T2DM which is also commonly reported. PMID:29607003
NASA Astrophysics Data System (ADS)
Pastacaldi, P.; Orsini, P.; Bracciaferri, F.; Neri, G.; Porciani, M.; Liuni, L.; Zolesi, V.
2004-01-01
Experiments executed on the upper limb are assuming increasing significance in the frame of the Human Physiology in space, for at least two reasons: the upper limb is the principal means of locomotion for the subject living in a space station; furthermore, fatigue can have a significant effect on the hand, for the ordinary work on board, and in particular for the extra-vehicular activities. The degradation of the performances affecting the muscular-skeletal apparatus can be easily recognized on the upper limb, by exerting specific scientific protocols, to be repeated through the permanence of the subject in weightlessness conditions. Another aspect relevant to the effect of microgravity on the upper limb is associated with the alteration of the motor control programs due to the different gravity factor, affecting not only the bio-mechanics of the subject, but in general all his/her psycho-physical conditions, induced by the totally different environment. Specific protocols on the upper limb can facilitate the studies on learning mechanisms for the motor control. The results of such experiments can be transferred to the Earth, useful for treatment of subjects with local traumas or diseases of the Central Nervous System.
Modeling of Explorative Procedures for Remote Object Identification
1991-09-01
haptic sensory system and the simulated foveal component of the visual system. Eventually it will allow multiple applications in remote sensing and...superposition of sensory channels. The use of a force reflecting telemanipulator and computer simulated visual foveal component are the tools which...representation of human search models is achieved by using the proprioceptive component of the haptic sensory system and the simulated foveal component of the
Batcho, C S; Gagné, M; Bouyer, L J; Roy, J S; Mercier, C
2016-11-19
When subjects learn a novel motor task, several sources of feedback (proprioceptive, visual or auditory) contribute to the performance. Over the past few years, several studies have investigated the role of visual feedback in motor learning, yet evidence remains conflicting. The aim of this study was therefore to investigate the role of online visual feedback (VFb) on the acquisition and retention stages of motor learning associated with training in a reaching task. Thirty healthy subjects made ballistic reaching movements with their dominant arm toward two targets, on 2 consecutive days using a robotized exoskeleton (KINARM). They were randomly assigned to a group with (VFb) or without (NoVFb) VFb of index position during movement. On day 1, the task was performed before (baseline) and during the application of a velocity-dependent resistive force field (adaptation). To assess retention, participants repeated the task with the force field on day 2. Motor learning was characterized by: (1) the final endpoint error (movement accuracy) and (2) the initial angle (iANG) of deviation (motor planning). Even though both groups showed motor adaptation, the NoVFb-group exhibited slower learning and higher final endpoint error than the VFb-group. In some condition, subjects trained without visual feedback used more curved initial trajectories to anticipate for the perturbation. This observation suggests that learning to reach targets in a velocity-dependent resistive force field is possible even when feedback is limited. However, the absence of VFb leads to different strategies that were only apparent when reaching toward the most challenging target. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Honma, Motoyasu; Plass, John; Brang, David; Florczak, Susan M; Grabowecky, Marcia; Paller, Ken A
2016-01-01
Plasticity is essential in body perception so that physical changes in the body can be accommodated and assimilated. Multisensory integration of visual, auditory, tactile, and proprioceptive signals contributes both to conscious perception of the body's current state and to associated learning. However, much is unknown about how novel information is assimilated into body perception networks in the brain. Sleep-based consolidation can facilitate various types of learning via the reactivation of networks involved in prior encoding or through synaptic down-scaling. Sleep may likewise contribute to perceptual learning of bodily information by providing an optimal time for multisensory recalibration. Here we used methods for targeted memory reactivation (TMR) during slow-wave sleep to examine the influence of sleep-based reactivation of experimentally induced alterations in body perception. The rubber-hand illusion was induced with concomitant auditory stimulation in 24 healthy participants on 3 consecutive days. While each participant was sleeping in his or her own bed during intervening nights, electrophysiological detection of slow-wave sleep prompted covert stimulation with either the sound heard during illusion induction, a counterbalanced novel sound, or neither. TMR systematically enhanced feelings of bodily ownership after subsequent inductions of the rubber-hand illusion. TMR also enhanced spatial recalibration of perceived hand location in the direction of the rubber hand. This evidence for a sleep-based facilitation of a body-perception illusion demonstrates that the spatial recalibration of multisensory signals can be altered overnight to stabilize new learning of bodily representations. Sleep-based memory processing may thus constitute a fundamental component of body-image plasticity.
Proceedings, 1972 Carahan Conference on Electronic Prosthetics.
ERIC Educational Resources Information Center
Jackson, John S., Ed.; DeVore, R. William, Ed.
Presented are 28 papers given at a 1972 conference on electronic prosthetics for the handicapped. Among the papers are the following titles: "Therapy for Cerebral Palsy Employing Artifician Sense Organs for Alternatives to Proprioceptive Feedback"; "Excessive Neuromuscular Time Delay as a Possible Cause of Poor Hand-Eye Coordination and…
Hopkins, Brian; Churchill, Andrew; Vogt, Stefan; Rönnqvist, Louise
2004-03-01
Following F. Zaal and R. J. Bootsma (1995), the authors studied whether the decelerative phase of a reaching movement could be modeled as a constant tau-dot strategy resulting in a soft collision with the object. Specifically, they investigated whether that strategy is sustained over different viewing conditions. Participants (N = 11) were required to reach for 15- and 50-mm objects at 2 different distances under 3 conditions in which visual availability of the immediate environment and of the reaching hand were varied. Tau-dot estimates and goodness-of-fit were highly similar across the 3 conditions. Only within-participant variability of tau-dot estimates was increased when environmental cues were removed. That finding suggests that the motor system uses a tau-dot strategy involving the intermodal (i.e., visual, proprioceptive, or both) specification of information to regulate the decelerative phase of reaching under restricted viewing conditions. The authors provide recommendations for improving the derivation of tau;(x) estimates and stress the need for further research on how time-to-contact information is used in the regulation of the dynamics of actions such as reaching.
Tattoo and taboo: on the meaning of tattoos in the analytic process.
Karacaoglan, Uta
2012-02-01
Tattooing projects a visual image in transference to form a backdrop for the most salient unconscious inner conflicts arising during an ongoing analytic process. Like a snapshot, the tattoo is a dialectic record of the mother-father relationship, of desires for closeness and distance, commonality and difference, identification and individuation. As Walter Benjamin famously stated about the nature of visual images in his Arcades Project, the tattoo represents "dialectics at a standstill." What seems paramount to the patient who participates in the act of tattooing is the need for stasis and immutability, as if bringing unconscious conflicts to "standstill" were to deliver a sense of stability. Unconsciously, the need is triggered by a threat to the inner stability resulting from fear of violating a taboo escalating to the point that fears of abandonment and fusion become unbearable. On the one hand, the tattoo is a visual symbolization of a taboo transgression; on the other hand, it activates the same through an act of self-injury that resembles the magical ritual acts of indigenous peoples' use of tattoos. The taboo thus serves as an ersatz for the actual violation of the taboo in real life, so that the tattoo may be ascribed a magical significance or totemic function. And yet the tattoo's success as a vehicle for constructing a transitional object is always contingent on the tangible manipulation of the skin conjoined with the creation of a symbolizing visual image. The image then acts like a "patch" to repair holes blown into Winnicott's "potential space" and to reconstruct it. Copyright © 2011 Institute of Psychoanalysis.
Desensitizing the posterior interosseous nerve alters wrist proprioceptive reflexes.
Hagert, Elisabet; Persson, Jonas K E
2010-07-01
The presence of wrist proprioceptive reflexes after stimulation of the dorsal scapholunate interosseous ligament has previously been described. Because this ligament is primarily innervated by the posterior interosseous nerve (PIN) we hypothesized altered ligamento-muscular reflex patterns following desensitization of the PIN. Eight volunteers (3 women, 5 men; mean age, 26 y; range 21-28 y) participated in the study. In the first study on wrist proprioceptive reflexes (study 1), the scapholunate interosseous ligament was stimulated through a fine-wire electrode with 4 1-ms bipolar pulses at 200 Hz, 30 times consecutively, while EMG activity was recorded from the extensor carpi radialis brevis, extensor carpi ulnaris, flexor carpi radialis, and flexor carpi ulnaris, with the wrist in extension, flexion, radial deviation, and ulnar deviation. After completion of study 1, the PIN was anesthetized in the radial aspect of the fourth extensor compartment using 2-mL lidocaine (10 mg/mL) infiltration anesthesia. Ten minutes after desensitization, the experiment was repeated as in study 1. The average EMG results from the 30 consecutive stimulations were rectified and analyzed using Student's t-test. Statistically significant changes in EMG amplitude were plotted along time lines so that the results of study 1 and 2 could be compared. Dramatic alterations in reflex patterns were observed in wrist flexion, radial deviation, and ulnar deviation following desensitization of the PIN, with an average of 72% reduction in excitatory reactions. In ulnar deviation, the inhibitory reactions of the extensor carpi ulnaris were entirely eliminated. In wrist extension, no differences in the reflex patterns were observed. Wrist proprioception through the scapholunate ligament in flexion, radial deviation, and ulnar deviation depends on an intact PIN function. The unchanged reflex patterns in wrist extension suggest an alternate proprioceptive pathway for this position. Routine excision of the PIN during wrist surgical procedures should be avoided, as it alters the proprioceptive function of the wrist. Therapeutic IV. Copyright 2010 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Cheng, Shan; Ma, Jin; Sun, Jicheng; Wang, Jian; Xiao, Xiao; Wang, Yihan; Hu, Wendong
2018-04-26
Sleep deprivation is known to diminish postural control. We investigated whether sleep deprivation affects sensory reweighting for postural control due to loss of visual and proprioceptive cues. Two cohorts of cadet pilots were deprived of sleep for 40 h. Variabilty in force-platform center of pressure was analyzed based on the whole path length (WPL); circumference area (CA); mean of displacement along x and y axes and corresponding standard deviations (SDx, SDy); and frequency of body-sway intensity, all of which were recorded while the cadets stood with eyes open (NEO), eyes closed (NEC), and eyes closed on a foam platform base (FEC) A sleepiness index (SUBI) based on principal component analysis of selected Cohort 1 data (n = 37) was used to compare Cohort 2 data (n = 29) with scores for the Stanford Sleepiness Scale (SSS) and Pittsburg Sleep Quality Index (PSQI). Balance began to deteriorate at 16 h for NEO and at 28 h for NEC and FEC (p < 0.05). At 40 h, WPL, CA, and SDy of COP for NEO indicated balance deteriorated further while WPL and SDy for NEC and WPL, CA, SDx, and SDy for FEC indicated balance incrementally improved. Frequency bias of body-sway differed between NEO, NEC, and FEC. In Cohort 2, the SUBI correlated significantly with SSS (p < 0.05), but not with PSQI. Effects of sleep deprivation were mitigated over time, suggesting that compensatory mechanisms influenced sensory reweighting for NEC and FEC between 28 and 40 h of sleep deprivation, but not for NEO. Frequency bias of body-sway suggested that sensory reweighting in the absence of visual cues differed from that in the absence of both visual and proprioceptive cues. Copyright © 2018 Elsevier B.V. All rights reserved.
Sensory and motor properties of the cerebellar uvula and modulus
NASA Technical Reports Server (NTRS)
Robinson, F. R.
1985-01-01
The uvula and nodulus (vermal lobules 9 and 10) of the vestibulocerebellum are implicated by behavioral evidence in the control of eye and head movements and in the production of motion sickness. The uvula and nodulus could play a role in these functions through known output pathways. Purkinje cells in both structures project via the fastigial and vestibular nuceli to the ventral horn of the cervical spin cord, to oculomotor neurons, and to the emetic region of the reticular formation (ablation of which abolishes susceptability to motion sickness). Uvula and nodulus Purkinje cells will be analyzed in cats trained to make controlled head movements. The activity of these neurons is expected to modulate well during head and/or eye movements because the uvula and nodulus receive heavy projections from sources of visual, vestibular and neck proprioceptive information. How neuron activity contributes to movement and how different sensory inputs converge to influence this contribution may be determined by characterizing movement related properties of these neurons. A population of neurons that modulates powerfully to the conflict between different head movement signals that can cause motion sickness may be identified.
[Parietal Cortices and Body Information].
Naito, Eiichi; Amemiya, Kaoru; Morita, Tomoyo
2016-11-01
Proprioceptive signals originating from skeletal muscles and joints contribute to the formation of both the human body schema and the body image. In this chapter, we introduce various types of bodily illusions that are elicited by proprioceptive inputs, and we discuss distinct functions implemented by different parietal cortices. First, we illustrate the primary importance of the motor network in the processing of proprioceptive (kinesthetic) signals originating from muscle spindles. Next, we argue that the right inferior parietal cortex, in concert with the inferior frontal cortex (both regions connected by the inferior branch of the superior longitudinal fasciculus-SLF III), may be involved in the conscious experience of body image. Further, we hypothesize other functions of distinct parietal regions: the association between internal hand motor representation with external object representation in the left inferior parietal cortex, visuo-kinesthetic processing in the bilateral posterior parietal cortices, and the integration of somatic signals from different body parts in the higher-order somatosensory parietal cortices. Our results indicate that a distinct parietal region, in concert with its anatomically and functionally connected frontal regions, probably plays specialized roles in the processing of body-related information.
Spatial cell firing during virtual navigation of open arenas by head-restrained mice.
Chen, Guifen; King, John Andrew; Lu, Yi; Cacucci, Francesca; Burgess, Neil
2018-06-18
We present a mouse virtual reality (VR) system which restrains head-movements to horizontal rotations, compatible with multi-photon imaging. This system allows expression of the spatial navigation and neuronal firing patterns characteristic of real open arenas (R). Comparing VR to R: place and grid, but not head-direction, cell firing had broader spatial tuning; place, but not grid, cell firing was more directional; theta frequency increased less with running speed; whereas increases in firing rates with running speed and place and grid cells' theta phase precession were similar. These results suggest that the omni-directional place cell firing in R may require local-cues unavailable in VR, and that the scale of grid and place cell firing patterns, and theta frequency, reflect translational motion inferred from both virtual (visual and proprioceptive) and real (vestibular translation and extra-maze) cues. By contrast, firing rates and theta phase precession appear to reflect visual and proprioceptive cues alone. © 2018, Chen et al.
Kager, Simone; Budhota, Aamani; Deshmukh, Vishwanath A.; Kuah, Christopher W. K.; Yam, Lester H. L.; Xiang, Liming; Chua, Karen S. G.; Masia, Lorenzo; Campolo, Domenico
2017-01-01
Proprioception is a critical component for motor functions and directly affects motor learning after neurological injuries. Conventional methods for its assessment are generally ordinal in nature and hence lack sensitivity. Robotic devices designed to promote sensorimotor learning can potentially provide quantitative precise, accurate, and reliable assessments of sensory impairments. In this paper, we investigate the clinical applicability and validity of using a planar 2 degrees of freedom robot to quantitatively assess proprioceptive deficits in post-stroke participants. Nine stroke survivors and nine healthy subjects participated in the study. Participants’ hand was passively moved to the target position guided by the H-Man robot (Criterion movement) and were asked to indicate during a second passive movement towards the same target (Matching movement) when they felt that they matched the target position. The assessment was carried out on a planar surface for movements in the forward and oblique directions in the contralateral and ipsilateral sides of the tested arm. The matching performance was evaluated in terms of error magnitude (absolute and signed) and its variability. Stroke patients showed higher variability in the estimation of the target position compared to the healthy participants. Further, an effect of target was found, with lower absolute errors in the contralateral side. Pairwise comparison between individual stroke participant and control participants showed significant proprioceptive deficits in two patients. The proposed assessment of passive joint position sense was inherently simple and all participants, regardless of motor impairment level, could complete it in less than 10 minutes. Therefore, the method can potentially be carried out to detect changes in proprioceptive deficits in clinical settings. PMID:29161264
Moving through a multiplex holographic scene
NASA Astrophysics Data System (ADS)
Mrongovius, Martina
2013-02-01
This paper explores how movement can be used as a compositional element in installations of multiplex holograms. My holographic images are created from montages of hand-held video and photo-sequences. These spatially dynamic compositions are visually complex but anchored to landmarks and hints of the capturing process - such as the appearance of the photographer's shadow - to establish a sense of connection to the holographic scene. Moving around in front of the hologram, the viewer animates the holographic scene. A perception of motion then results from the viewer's bodily awareness of physical motion and the visual reading of dynamics within the scene or movement of perspective through a virtual suggestion of space. By linking and transforming the physical motion of the viewer with the visual animation, the viewer's bodily awareness - including proprioception, balance and orientation - play into the holographic composition. How multiplex holography can be a tool for exploring coupled, cross-referenced and transformed perceptions of movement is demonstrated with a number of holographic image installations. Through this process I expanded my creative composition practice to consider how dynamic and spatial scenes can be conveyed through the fragmented view of a multiplex hologram. This body of work was developed through an installation art practice and was the basis of my recently completed doctoral thesis: 'The Emergent Holographic Scene — compositions of movement and affect using multiplex holographic images'.
NASA Technical Reports Server (NTRS)
Rabin, E.; Bortolami, S. B.; DiZio, P.; Lackner, J. R.
1999-01-01
Postural sway during quiet stance is attenuated by actively maintained contact of the index finger with a stationary surface, even if the level of applied force (<1 N) cannot provide mechanical stabilization. In this situation, changes in force level at the fingertip lead changes in center of foot pressure by approximately 250 ms. These and related findings indicate that stimulation of the fingertip combined with proprioceptive information about the hand and arm can serve as an active sensor of body position relative to the point of contact. A geometric analysis of the relationship between hand and torso displacement during body sway led to the prediction that arm and hand proprioceptive and finger somatosensory information about body sway would be maximized with finger contact in the plane of body sway. Therefore, the most postural stabilization should be possible with such contact. To test this analysis, subjects touched a laterally versus anteriorly placed surface while in each of two stances: the heel-to-toe tandem Romberg stance that reduces medial-lateral stability and the heel-to-heel, toes-outward, knees-bent, "duck stance" that reduces fore-aft stability. Postural sway was always least with finger contact in the unstable plane: for the tandem stance, lateral fingertip contact was significantly more effective than frontal contact, and, for the duck stance, frontal contact was more effective than lateral fingertip contact. Force changes at the fingertip led changes in center of pressure of the feet by approximately 250 ms for both fingertip contact locations for both test stances. These results support the geometric analysis, which showed that 1) arm joint angles change by the largest amount when fingertip contact is maintained in the plane of greatest sway, and 2) the somatosensory cues at the fingertip provide both direction and amplitude information about sway when the finger is contacting a surface in the unstable plane.
Rabin, E; Bortolami, S B; DiZio, P; Lackner, J R
1999-12-01
Postural sway during quiet stance is attenuated by actively maintained contact of the index finger with a stationary surface, even if the level of applied force (<1 N) cannot provide mechanical stabilization. In this situation, changes in force level at the fingertip lead changes in center of foot pressure by approximately 250 ms. These and related findings indicate that stimulation of the fingertip combined with proprioceptive information about the hand and arm can serve as an active sensor of body position relative to the point of contact. A geometric analysis of the relationship between hand and torso displacement during body sway led to the prediction that arm and hand proprioceptive and finger somatosensory information about body sway would be maximized with finger contact in the plane of body sway. Therefore, the most postural stabilization should be possible with such contact. To test this analysis, subjects touched a laterally versus anteriorly placed surface while in each of two stances: the heel-to-toe tandem Romberg stance that reduces medial-lateral stability and the heel-to-heel, toes-outward, knees-bent, "duck stance" that reduces fore-aft stability. Postural sway was always least with finger contact in the unstable plane: for the tandem stance, lateral fingertip contact was significantly more effective than frontal contact, and, for the duck stance, frontal contact was more effective than lateral fingertip contact. Force changes at the fingertip led changes in center of pressure of the feet by approximately 250 ms for both fingertip contact locations for both test stances. These results support the geometric analysis, which showed that 1) arm joint angles change by the largest amount when fingertip contact is maintained in the plane of greatest sway, and 2) the somatosensory cues at the fingertip provide both direction and amplitude information about sway when the finger is contacting a surface in the unstable plane.
[Psychotherapies for the Treatment of Phantom Limb Pain].
Cárdenas, Katherine; Aranda, Mariana
The phantom limb pain has been described as a condition in which patients experience a feeling of itching, spasm or pain in a limb or body part that has been previously amputated. Such pain can be induced by a conflict between the representation of the visual and proprioceptive feedback of the previously healthy limb. The phantom limb pain occurs in at least 42 to 90% of amputees. Regular drug treatment of phantom limb pain is almost never effective. A systematic review of the literature was conducted in Medline and Cochrane using the MESH terms "phantom limb pain" and "psychotherapy", published in the last 10 years, in English and Spanish, finding 49 items. After reviewing the abstracts, 25 articles were excluded for not being related to the objective of the research. Additionally cross references of included articles and literature were reviewed. To describe the psychotherapies used in the management of phantom limb pain, their effectiveness and clinical application reported in the literature. The mechanisms underlying phantom limb pain were initially explained, as were the published studies on the usefulness of some psychotherapies such as mirror visual feedback and immersive virtual reality, visual imagery, desensitization and reprocessing eye movements and hypnosis. The phantom limb pain is a complex syndrome that requires pharmacological and psychotherapeutic intervention. The psychotherapies that have been used the most as adjuvants in the treatment of phantom limb pain are mirror visual feedback, desensitization and reprocessing eye movements, imagery and hypnosis. Studies with more representative samples, specifically randomized trials are required. Copyright © 2016 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
Gaudio, Santino; Brooks, Samantha Jane; Riva, Giuseppe
2014-01-01
Background Body image distortion is a central symptom of Anorexia Nervosa (AN). Even if corporeal awareness is multisensory majority of AN studies mainly investigated visual misperception. We systematically reviewed AN studies that have investigated different nonvisual sensory inputs using an integrative multisensory approach to body perception. We also discussed the findings in the light of AN neuroimaging evidence. Methods PubMed and PsycINFO were searched until March, 2014. To be included in the review, studies were mainly required to: investigate a sample of patients with current or past AN and a control group and use tasks that directly elicited one or more nonvisual sensory domains. Results Thirteen studies were included. They studied a total of 223 people with current or past AN and 273 control subjects. Overall, results show impairment in tactile and proprioceptive domains of body perception in AN patients. Interoception and multisensory integration have been poorly explored directly in AN patients. A limitation of this review is the relatively small amount of literature available. Conclusions Our results showed that AN patients had a multisensory impairment of body perception that goes beyond visual misperception and involves tactile and proprioceptive sensory components. Furthermore, impairment of tactile and proprioceptive components may be associated with parietal cortex alterations in AN patients. Interoception and multisensory integration have been weakly explored directly. Further research, using multisensory approaches as well as neuroimaging techniques, is needed to better define the complexity of body image distortion in AN. Key Findings The review suggests an altered capacity of AN patients in processing and integration of bodily signals: body parts are experienced as dissociated from their holistic and perceptive dimensions. Specifically, it is likely that not only perception but memory, and in particular sensorimotor/proprioceptive memory, probably shapes bodily experience in patients with AN. PMID:25303480
Behavioural and neural basis of anomalous motor learning in children with autism.
Marko, Mollie K; Crocetti, Deana; Hulst, Thomas; Donchin, Opher; Shadmehr, Reza; Mostofsky, Stewart H
2015-03-01
Autism spectrum disorder is a developmental disorder characterized by deficits in social and communication skills and repetitive and stereotyped interests and behaviours. Although not part of the diagnostic criteria, individuals with autism experience a host of motor impairments, potentially due to abnormalities in how they learn motor control throughout development. Here, we used behavioural techniques to quantify motor learning in autism spectrum disorder, and structural brain imaging to investigate the neural basis of that learning in the cerebellum. Twenty children with autism spectrum disorder and 20 typically developing control subjects, aged 8-12, made reaching movements while holding the handle of a robotic manipulandum. In random trials the reach was perturbed, resulting in errors that were sensed through vision and proprioception. The brain learned from these errors and altered the motor commands on the subsequent reach. We measured learning from error as a function of the sensory modality of that error, and found that children with autism spectrum disorder outperformed typically developing children when learning from errors that were sensed through proprioception, but underperformed typically developing children when learning from errors that were sensed through vision. Previous work had shown that this learning depends on the integrity of a region in the anterior cerebellum. Here we found that the anterior cerebellum, extending into lobule VI, and parts of lobule VIII were smaller than normal in children with autism spectrum disorder, with a volume that was predicted by the pattern of learning from visual and proprioceptive errors. We suggest that the abnormal patterns of motor learning in children with autism spectrum disorder, showing an increased sensitivity to proprioceptive error and a decreased sensitivity to visual error, may be associated with abnormalities in the cerebellum. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Bisio, Ambra; Garbarini, Francesca; Biggio, Monica; Fossataro, Carlotta; Ruggeri, Piero; Bove, Marco
2017-03-01
The hand blink reflex is a subcortical defensive response, known to dramatically increase when the stimulated hand is statically positioned inside the defensive peripersonal space (DPPS) of the face. Here, we tested in a group of healthy human subjects the hand blink reflex in dynamic conditions, investigating whether the direction of the hand movements (up-to/down-from the face) could modulate it. We found that, on equal hand position, the response enhancement was present only when the hand approached to (and not receded from) the DPPS of the face. This means that, when the hand is close to the face but the subject is planning to move the hand down, the predictive motor system can anticipate the consequence of the movement: the "near" becomes "far." We found similar results both in passive movement condition, when only afferent (visual and proprioceptive) information can be used to estimate the final state of the system, and in motor imagery task, when only efferent (intentional) information is available to predict the consequences of the movement. All these findings provide evidence that the DPPS is dynamically shaped by predictive mechanisms run by the motor system and based on the integration of feedforward and sensory feedback signals. SIGNIFICANCE STATEMENT The defensive peripersonal space (DPPS) has a crucial role for survival, and its modulation is fundamental when we interact with the environment, as when we move our arms. Here, we focused on a defensive response, the hand blink reflex, known to increase when a static hand is stimulated inside the DPPS of the face. We tested the hand blink reflex in dynamic conditions (voluntary, passive, and imagined movements) and we found that, on equal hand position, the response enhancement was present only when the hand approached to (and not receded from) the DPPS of the face. This suggests that, through the integration of efferent and afferent signals, the safety boundary around the body is continuously shaped by the predictive motor system. Copyright © 2017 the authors 0270-6474/17/372415-10$15.00/0.
In Flight Evaluation of Active Inceptor Force-Feel Characteristics and Handling Qualities
2012-05-01
DEGRADED ACCEPTABLE Mitchell Aponso (1995) Watson Schroeder (1990) 0.75 lb/in 2.3 lb/in2.9 lb/in5.9 lb/in Side Stk - lon Side Stk - lat Center Stk Figure...vestibular feedback ( and respectively), and the visual error compensation ( ). A key feature of this approach is the modeling of proprioceptive...and vestibular feedback, and is the proportional component of the visual compensation strategy. At its core the fundamental concept of the HQSF
Contingent sounds change the mental representation of one's finger length.
Tajadura-Jiménez, Ana; Vakali, Maria; Fairhurst, Merle T; Mandrigin, Alisa; Bianchi-Berthouze, Nadia; Deroy, Ophelia
2017-07-18
Mental body-representations are highly plastic and can be modified after brief exposure to unexpected sensory feedback. While the role of vision, touch and proprioception in shaping body-representations has been highlighted by many studies, the auditory influences on mental body-representations remain poorly understood. Changes in body-representations by the manipulation of natural sounds produced when one's body impacts on surfaces have recently been evidenced. But will these changes also occur with non-naturalistic sounds, which provide no information about the impact produced by or on the body? Drawing on the well-documented capacity of dynamic changes in pitch to elicit impressions of motion along the vertical plane and of changes in object size, we asked participants to pull on their right index fingertip with their left hand while they were presented with brief sounds of rising, falling or constant pitches, and in the absence of visual information of their hands. Results show an "auditory Pinocchio" effect, with participants feeling and estimating their finger to be longer after the rising pitch condition. These results provide the first evidence that sounds that are not indicative of veridical movement, such as non-naturalistic sounds, can induce a Pinocchio-like change in body-representation when arbitrarily paired with a bodily action.
Guillaud, Etienne; Simoneau, Martin; Blouin, Jean
2011-06-01
Reaching for a target while rotating the trunk generates substantial Coriolis and centrifugal torques that push the arm in the opposite direction of the rotations. These torques rarely perturb movement accuracy, suggesting that they are compensated for during the movement. Here we tested whether signals generated during body motion (e.g., vestibular) can be used to predict the torques induced by the body rotation and to modify the motor commands accordingly. We asked a deafferented subject to reach for a memorized visual target in darkness. At the onset of the reaching, the patient was rotated 25° or 40° in the clockwise or the counterclockwise directions. During the rotation, the patient's head remained either fixed in space (Head-Fixed condition) or fixed on the trunk (Head Rotation condition). At the rotation onset, the deafferented patient's hand largely deviated from the mid-sagittal plane in both conditions. The hand deviations were compensated for in the Head Rotation condition only. These results highlight the computational faculty of the brain and show that body rotation-related information can be processed for predicting the consequence of the rotation dynamics on the reaching arm movements. Copyright © 2011 Elsevier Ltd. All rights reserved.
Contributions to workload of rotational optical transformations
NASA Technical Reports Server (NTRS)
Atkinson, R. P.; Harrington, T. L.
1985-01-01
An investigation of visuomotor adaptation to optical rotation and optical inversion was conducted. Experiment 1 examined the visuomotor adaptability of subjects to an optically rotating visual world with a univariate repeated measures design. Experiment 1A tested one major prediction of a model of adaptation put forth by Welch who predicted that the aversive drive state that triggers adaptation would be habituated to fairly rapidly. Experiment 2 was conducted to investigate the role of motor activity in adaptation to optical rotation. Specifically, this experiment contrasted the reafference hypothesis and the proprioceptive change hypothesis. Experiment 3 examined the role of cognition, error-corrective feedback, and proprioceptive and/or reafferent feedback in visuomotor adaptation to optical inversion. Implications for research and implications for practice were suggested for all experiments.
Flight simulator with spaced visuals
NASA Technical Reports Server (NTRS)
Gilson, Richard D. (Inventor); Thurston, Marlin O. (Inventor); Olson, Karl W. (Inventor); Ventola, Ronald W. (Inventor)
1980-01-01
A flight simulator arrangement wherein a conventional, movable base flight trainer is combined with a visual cue display surface spaced a predetermined distance from an eye position within the trainer. Thus, three degrees of motive freedom (roll, pitch and crab) are provided for a visual proprioceptive, and vestibular cue system by the trainer while the remaining geometric visual cue image alterations are developed by a video system. A geometric approach to computing runway image eliminates a need to electronically compute trigonometric functions, while utilization of a line generator and designated vanishing point at the video system raster permits facile development of the images of the longitudinal edges of the runway.
Brain-robot interface driven plasticity: Distributed modulation of corticospinal excitability.
Kraus, Dominic; Naros, Georgios; Bauer, Robert; Leão, Maria Teresa; Ziemann, Ulf; Gharabaghi, Alireza
2016-01-15
Brain-robot interfaces (BRI) are studied as novel interventions to facilitate functional restoration in patients with severe and persistent motor deficits following stroke. They bridge the impaired connection in the sensorimotor loop by providing brain-state dependent proprioceptive feedback with orthotic devices attached to the hand or arm of the patients. The underlying neurophysiology of this BRI neuromodulation is still largely unknown. We investigated changes of corticospinal excitability with transcranial magnetic stimulation in thirteen right-handed healthy subjects who performed 40min of kinesthetic motor imagery receiving proprioceptive feedback with a robotic orthosis attached to the left hand contingent to event-related desynchronization of the right sensorimotor cortex in the β-band (16-22Hz). Neural correlates of this BRI intervention were probed by acquiring the stimulus-response curve (SRC) of both motor evoked potential (MEP) peak-to-peak amplitudes and areas under the curve. In addition, a motor mapping was obtained. The specificity of the effects was studied by comparing two neighboring hand muscles, one BRI-trained and one control muscle. Robust changes of MEP amplitude but not MEP area occurred following the BRI intervention, but only in the BRI-trained muscle. The steep part of the SRC showed an MEP increase, while the plateau of the SRC showed an MEP decrease. MEP mapping revealed a distributed pattern with a decrease of excitability in the hand area of the primary motor cortex, which controlled the BRI, but an increase of excitability in the surrounding somatosensory and premotor cortex. In conclusion, the BRI intervention induced a complex pattern of modulated corticospinal excitability, which may boost subsequent motor learning during physiotherapy. Copyright © 2015 Elsevier Inc. All rights reserved.
Postural Control Deficits in Autism Spectrum Disorder: The Role of Sensory Integration
ERIC Educational Resources Information Center
Doumas, Michail; McKenna, Roisin; Murphy, Blain
2016-01-01
We investigated the nature of sensory integration deficits in postural control of young adults with ASD. Postural control was assessed in a fixed environment, and in three environments in which sensory information about body sway from visual, proprioceptive or both channels was inaccurate. Furthermore, two levels of inaccurate information were…
Transcutaneous Electrical Nerve Stimulation Effects on Neglect: A Visual-Evoked Potential Study
Pitzalis, Sabrina; Spinelli, Donatella; Vallar, Giuseppe; Di Russo, Francesco
2013-01-01
We studied the effects of transcutaneous electrical nerve stimulation (TENS) in six right-brain-damaged patients with left unilateral spatial neglect (USN), using both standard clinical tests (reading, line, and letter cancelation, and line bisection), and electrophysiological measures (steady-state visual-evoked potentials, SSVEP). TENS was applied on left neck muscles for 15′, and measures were recorded before, immediately after, and 60′ after stimulation. Behavioral results showed that the stimulation temporarily improved the deficit in all patients. In cancelation tasks, omissions and performance asymmetries between the two hand-sides were reduced, as well as the rightward deviation in line bisection. Before TENS, SSVEP average latency to stimuli displayed in the left visual half-field [LVF (160 ms)] was remarkably longer than to stimuli shown in the right visual half-field [RVF (120 ms)]. Immediately after TENS, latency to LVF stimuli was 130 ms; 1 h after stimulation the effect of TENS faded, with latency returning to baseline. TENS similarly affected also the latency SSVEP of 12 healthy participants, and their line bisection performance, with effects smaller in size. The present study, first, replicates evidence concerning the positive behavioral effects of TENS on the manifestations of left USN in right-brain-damaged patients; second, it shows putatively related electrophysiological effects on the SSVEP latency. These behavioral and novel electrophysiological results are discussed in terms of specific directional effects of left somatosensory stimulation on egocentric coordinates, which in USN patients are displaced toward the side of the cerebral lesion. Showing that visual-evoked potentials latency is modulated by proprioceptive stimulation, we provide electrophysiological evidence to the effect that TENS may improve some manifestations of USN, with implications for its rehabilitation. PMID:23966919
A four-axis hand controller for helicopter flight control
NASA Technical Reports Server (NTRS)
Demaio, Joe
1993-01-01
A proof-of-concept hand controller for controlling lateral and longitudinal cyclic pitch, collective pitch and tail rotor thrust was developed. The purpose of the work was to address problems of operator fatigue, poor proprioceptive feedback and cross-coupling of axes associated with many four-axis controller designs. The present design is an attempt to reduce cross-coupling to a level that can be controlled with breakout force, rather than to eliminate it entirely. The cascaded design placed lateral and longitudinal cyclic in their normal configuration. Tail rotor thrust was placed atop the cyclic controller. A left/right twisting motion with the wrist made the control input. The axis of rotation was canted outboard (clockwise) to minimize cross-coupling with the cyclic pitch axis. The collective control was a twist grip, like a motorcycle throttle. Measurement of the amount of cross-coupling involved in pure, single-axis inputs showed cross coupling under 10 percent of full deflection for all axes. This small amount of cross-coupling could be further reduced with better damping and force gradient control. Fatigue was not found to be a problem, and proprioceptive feedback was adequate for all flight tasks executed.
Gordeev, S A; Voronin, S G
2015-01-01
The proprioceptive sensitivity of healthy volunteers and convalescents after acute cerebrovascular episodes was studied by a new neurophysiological method for registration of kinesthetic evoked potentials emerging in response to passive 50(o) bending of the hand in the wrist joint with the angular acceleration of 350 rad/sec(2). Kinesthetic evoked potentials were recorded above the somatosensory cortex projection areas in the hemispheres contra- and ipsilateral to the stimulated limb. The patients exhibited significantly longer latencies and lesser amplitudes of the early components of response in the involved hemisphere in comparison with normal subjects. The method for registration of the kinesthetic evoked potentials allows a more detailed study of the mechanisms of kinesthetic sensitivity in health and in organic involvement of the brain.
Neural correlates of lower limbs proprioception: An fMRI study of foot position matching.
Iandolo, Riccardo; Bellini, Alessandro; Saiote, Catarina; Marre, Ilaria; Bommarito, Giulia; Oesingmann, Niels; Fleysher, Lazar; Mancardi, Giovanni Luigi; Casadio, Maura; Inglese, Matilde
2018-05-01
Little is known about the neural correlates of lower limbs position sense, despite the impact that proprioceptive deficits have on everyday life activities, such as posture and gait control. We used fMRI to investigate in 30 healthy right-handed and right-footed subjects the regional distribution of brain activity during position matching tasks performed with the right dominant and the left nondominant foot. Along with the brain activation, we assessed the performance during both ipsilateral and contralateral matching tasks. Subjects had lower errors when matching was performed by the left nondominant foot. The fMRI analysis suggested that the significant regions responsible for position sense are in the right parietal and frontal cortex, providing a first characterization of the neural correlates of foot position matching. © 2018 Wiley Periodicals, Inc.
Farias Zuniga, Amanda M; Côté, Julie N
2017-06-01
The effects of performing a 90-minute computer task with a laptop versus a dual monitor desktop workstation were investigated in healthy young male and female adults. Work-related musculoskeletal disorders are common among computer (especially female) users. Laptops have surpassed desktop computer sales, and working with multiple monitors has also become popular. However, few studies have provided objective evidence on how they affect the musculoskeletal system in both genders. Twenty-seven healthy participants (mean age = 24.6 years; 13 males) completed a 90-minute computer task while using a laptop or dual monitor (DualMon) desktop. Electromyography (EMG) from eight upper body muscles and visual strain were measured throughout the task. Neck proprioception was tested before and after the computer task using a head-repositioning test. EMG amplitude (root mean square [RMS]), variability (coefficients of variation [CV]), and normalized mutual information (NMI) were computed. Visual strain ( p < .01) and right upper trapezius RMS ( p = .03) increased significantly over time regardless of workstation. Right cervical erector spinae RMS and cervical NMI were smaller, while degrees of overshoot (mean = 4.15°) and end position error (mean = 1.26°) were larger in DualMon regardless of time. Effects on muscle activity were more pronounced in males, whereas effects on proprioception were more pronounced in females. Results suggest that compared to laptop, DualMon work is effective in reducing cervical muscle activity, dissociating cervical connectivity, and maintaining more typical neck repositioning patterns, suggesting some health-protective effects. This evidence could be considered when deciding on computer workstation designs.
Rosa, Nayza M. B.; Queiroz, Bárbara Z.; Lopes, Renata A.; Sampaio, Natalia R.; Pereira, Daniele S.; Pereira, Leani S. M.
2016-01-01
ABSTRACT Background Low back pain (LBP) is a common musculoskeletal condition among elders and is associated with falls. However, the underlying biological risk factors for falling among elders with LBP has been poorly investigated. The Physiological Profile Assessment (PPA) is a validated fall-risk assessment tool that involves the direct assessment of sensorimotor abilities and may contribute to the understanding of risk factors for falls among elders with LBP. Objective To assess fall risk using the PPA in elders with and without LBP. Method This is an observational, comparative, cross-sectional study with elders aged ≥65 years. The present study was conducted with a subsample of participants from the Back Complaints in the Elders (BACE) - Brazil study. Fall risk was assessed using the PPA, which contains five tests: visual contrast sensitivity, hand reaction time, quadriceps strength, lower limb proprioception, and postural sway. Results Study participants included 104 individuals with average age of 72.3 (SD=4.0) years, divided into two groups: GI) 52 participants with LBP; GII) 52 participants without LBP. The participants with LBP had a significantly higher fall risk (1.10 95% CI 0.72 to 1.48), greater postural sway (49.78 95% CI 13.54 to 86.01), longer reaction time (58.95 95% CI 33.24 to 84.65), and lower quadriceps strength (–4.42 95% CI –8.24 to –0.59) compared to asymptomatic participants. There was no significant difference for vision and proprioception tests between LBP and non-LBP participants. Conclusion Elders with LBP have greater risk for falls than those without LBP. Our results suggest fall-risk screening may be sensible in elders with LBP. PMID:27683833
Visual consciousness and bodily self-consciousness.
Faivre, Nathan; Salomon, Roy; Blanke, Olaf
2015-02-01
In recent years, consciousness has become a central topic in cognitive neuroscience. This review focuses on the relation between bodily self-consciousness - the feeling of being a subject in a body - and visual consciousness - the subjective experience associated with the perception of visual signals. Findings from clinical and experimental work have shown that bodily self-consciousness depends on specific brain networks and is related to the integration of signals from multiple sensory modalities including vision. In addition, recent experiments have shown that visual consciousness is shaped by the body, including vestibular, tactile, proprioceptive, and motor signals. Several lines of evidence suggest reciprocal relationships between vision and bodily signals, indicating that a comprehensive understanding of visual and bodily self-consciousness requires studying them in unison.
The role of spatial integration in the perception of surface orientation with active touch.
Giachritsis, Christos D; Wing, Alan M; Lovell, Paul G
2009-10-01
Vision research has shown that perception of line orientation, in the fovea area, improves with line length (Westheimer & Ley, 1997). This suggests that the visual system may use spatial integration to improve perception of orientation. In the present experiments, we investigated the role of spatial integration in the perception of surface orientation using kinesthetic and proprioceptive information from shoulder and elbow. With their left index fingers, participants actively explored virtual slanted surfaces of different lengths and orientations, and were asked to reproduce an orientation or discriminate between two orientations. Results showed that reproduction errors and discrimination thresholds improve with surface length. This suggests that the proprioceptive shoulder-elbow system may integrate redundant spatial information resulting from extended arm movements to improve orientation judgments.
Similar brain networks for detecting visuo-motor and visuo-proprioceptive synchrony.
Balslev, Daniela; Nielsen, Finn A; Lund, Torben E; Law, Ian; Paulson, Olaf B
2006-05-15
The ability to recognize feedback from own movement as opposed to the movement of someone else is important for motor control and social interaction. The neural processes involved in feedback recognition are incompletely understood. Two competing hypotheses have been proposed: the stimulus is compared with either (a) the proprioceptive feedback or with (b) the motor command and if they match, then the external stimulus is identified as feedback. Hypothesis (a) predicts that the neural mechanisms or brain areas involved in distinguishing self from other during passive and active movement are similar, whereas hypothesis (b) predicts that they are different. In this fMRI study, healthy subjects saw visual cursor movement that was either synchronous or asynchronous with their active or passive finger movements. The aim was to identify the brain areas where the neural activity depended on whether the visual stimulus was feedback from own movement and to contrast the functional activation maps for active and passive movement. We found activity increases in the right temporoparietal cortex in the condition with asynchronous relative to synchronous visual feedback from both active and passive movements. However, no statistically significant difference was found between these sets of activated areas when the active and passive movement conditions were compared. With a posterior probability of 0.95, no brain voxel had a contrast effect above 0.11% of the whole-brain mean signal. These results do not support the hypothesis that recognition of visual feedback during active and passive movement relies on different brain areas.
Perceptualization of geometry using intelligent haptic and visual sensing
NASA Astrophysics Data System (ADS)
Weng, Jianguang; Zhang, Hui
2013-01-01
We present a set of paradigms for investigating geometric structures using haptic and visual sensing. Our principal test cases include smoothly embedded geometry shapes such as knotted curves embedded in 3D and knotted surfaces in 4D, that contain massive intersections when projected to one lower dimension. One can exploit a touch-responsive 3D interactive probe to haptically override this conflicting evidence in the rendered images, by forcing continuity in the haptic representation to emphasize the true topology. In our work, we exploited a predictive haptic guidance, a "computer-simulated hand" with supplementary force suggestion, to support intelligent exploration of geometry shapes that will smooth and maximize the probability of recognition. The cognitive load can be reduced further when enabling an attention-driven visual sensing during the haptic exploration. Our methods combine to reveal the full richness of the haptic exploration of geometric structures, and to overcome the limitations of traditional 4D visualization.
Laterality and body ownership: Effect of handedness on experience of the rubber hand illusion.
Smit, M; Kooistra, D I; van der Ham, I J M; Dijkerman, H C
2017-11-01
Body ownership has mainly been linked to the right hemisphere and larger interhemispheric connectivity has been shown to be associated with greater right hemispheric activation. Mixed-handed participants tend to have more interhemispheric connectivity compared to extreme handed participants. The aim of this study was to examine whether feelings of ownership as assessed with the rubber hand illusion (RHI) are differentiated by handedness and differed between the left and right hand. Sinistrals-, dextrals-, and mixed-handed individuals (n = 63) were subjected to the RHI. Stroking was synchronously and asynchronously performed on both the participant's hand and a rubber hand. Outcome measures were an embodiment questionnaire and proprioceptive drift. In contrast to our hypotheses we show a similar experience of ownership for all groups, which may indicate no hemispheric specialization for the illusion. In addition, plasticity of ownership and body ownership are similar for the left hand and right hand in all participants, which suggests similar representations for both hands in the brain. This might be useful to maintain a coherent sense of the body in space.
Soekadar, Surjo R; Witkowski, Matthias; Mellinger, Jürgen; Ramos, Ander; Birbaumer, Niels; Cohen, Leonardo G
2011-10-01
Event-related desynchronization (ERD) of sensori-motor rhythms (SMR) can be used for online brain-machine interface (BMI) control, but yields challenges related to the stability of ERD and feedback strategy to optimize BMI learning.Here, we compared two approaches to this challenge in 20 right-handed healthy subjects (HS, five sessions each, S1-S5) and four stroke patients (SP, 15 sessions each, S1-S15). ERD was recorded from a 275-sensor MEG system. During daily training,motor imagery-induced ERD led to visual and proprioceptive feedback delivered through an orthotic device attached to the subjects' hand and fingers. Group A trained with a heterogeneous reference value (RV) for ERD detection with binary feedback and Group B with a homogenous RV and graded feedback (10 HS and 2 SP in each group). HS in Group B showed better BMI performance than Group A (p < 0.001) and improved BMI control from S1 to S5 (p = 0.012) while Group A did not. In spite of the small n, SP in Group B showed a trend for a higher BMI performance (p = 0.06) and learning was significantly better (p < 0.05). Using a homogeneous RV and graded feedback led to improved modulation of ipsilesional activity resulting in superior BMI learning relative to use of a heterogeneous RV and binary feedback.
Towards a Digital Body: The Virtual Arm Illusion
Slater, Mel; Perez-Marcos, Daniel; Ehrsson, H. Henrik; Sanchez-Vives, Maria V.
2008-01-01
The integration of the human brain with computers is an interesting new area of applied neuroscience, where one application is replacement of a person's real body by a virtual representation. Here we demonstrate that a virtual limb can be made to feel part of your body if appropriate multisensory correlations are provided. We report an illusion that is invoked through tactile stimulation on a person's hidden real right hand with synchronous virtual visual stimulation on an aligned 3D stereo virtual arm projecting horizontally out of their shoulder. An experiment with 21 male participants showed displacement of ownership towards the virtual hand, as illustrated by questionnaire responses and proprioceptive drift. A control experiment with asynchronous tapping was carried out with a different set of 20 male participants who did not experience the illusion. After 5 min of stimulation the virtual arm rotated. Evidence suggests that the extent of the illusion was also correlated with the degree of muscle activity onset in the right arm as measured by EMG during this period that the arm was rotating, for the synchronous but not the asynchronous condition. A completely virtual object can therefore be experienced as part of one's self, which opens up the possibility that an entire virtual body could be felt as one's own in future virtual reality applications or online games, and be an invaluable tool for the understanding of the brain mechanisms underlying body ownership. PMID:18958207
Feeling form: the neural basis of haptic shape perception.
Yau, Jeffrey M; Kim, Sung Soo; Thakur, Pramodsingh H; Bensmaia, Sliman J
2016-02-01
The tactile perception of the shape of objects critically guides our ability to interact with them. In this review, we describe how shape information is processed as it ascends the somatosensory neuraxis of primates. At the somatosensory periphery, spatial form is represented in the spatial patterns of activation evoked across populations of mechanoreceptive afferents. In the cerebral cortex, neurons respond selectively to particular spatial features, like orientation and curvature. While feature selectivity of neurons in the earlier processing stages can be understood in terms of linear receptive field models, higher order somatosensory neurons exhibit nonlinear response properties that result in tuning for more complex geometrical features. In fact, tactile shape processing bears remarkable analogies to its visual counterpart and the two may rely on shared neural circuitry. Furthermore, one of the unique aspects of primate somatosensation is that it contains a deformable sensory sheet. Because the relative positions of cutaneous mechanoreceptors depend on the conformation of the hand, the haptic perception of three-dimensional objects requires the integration of cutaneous and proprioceptive signals, an integration that is observed throughout somatosensory cortex. Copyright © 2016 the American Physiological Society.
Prism adaptation and neck muscle vibration in healthy individuals: are two methods better than one?
Guinet, M; Michel, C
2013-12-19
Studies involving therapeutic combinations reveal an important benefit in the rehabilitation of neglect patients when compared to single therapies. In light of these observations our present work examines, in healthy individuals, sensorimotor and cognitive after-effects of prism adaptation and neck muscle vibration applied individually or simultaneously. We explored sensorimotor after-effects on visuo-manual open-loop pointing, visual and proprioceptive straight-ahead estimations. We assessed cognitive after-effects on the line bisection task. Fifty-four healthy participants were divided into six groups designated according to the exposure procedure used with each: 'Prism' (P) group; 'Vibration with a sensation of body rotation' (Vb) group; 'Vibration with a move illusion of the LED' (Vl) group; 'Association with a sensation of body rotation' (Ab) group; 'Association with a move illusion of the LED' (Al) group; and 'Control' (C) group. The main findings showed that prism adaptation applied alone or combined with vibration showed significant adaptation in visuo-manual open-loop pointing, visual straight-ahead and proprioceptive straight-ahead. Vibration alone produced significant after-effects on proprioceptive straight-ahead estimation in the Vl group. Furthermore all groups (except C group) showed a rightward neglect-like bias in line bisection following the training procedure. This is the first demonstration of cognitive after-effects following neck muscle vibration in healthy individuals. The simultaneous application of both methods did not produce significant greater after-effects than prism adaptation alone in both sensorimotor and cognitive tasks. These results are discussed in terms of transfer of sensorimotor plasticity to spatial cognition in healthy individuals. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Gravitational Effects on Brain and Behavior
NASA Technical Reports Server (NTRS)
Young, Laurence R.
1991-01-01
Visual, vestibular, tactile, proprioceptive, and perhaps auditory clues are combined with knowledge of commanded voluntary movement to produce a single, usually consistent, perception of spatial orientation. The recent Spacelab flights have provided especially valuable observations on the effects of weightlessness and space flight. The response of the otolith organs to weightlessness and readapting to Earth's gravitation is described. Reference frames for orientation are briefly discussed.
Regaining motor control in musician's dystonia by restoring sensorimotor organisation
Rosenkranz, Karin; Butler, Katherine; Williamon, Aaron; Rothwell, John C.
2010-01-01
Professional musicians are an excellent human model of long term effects of skilled motor training on the structure and function of the motor system. However, such effects are accompanied by an increased risk of developing motor abnormalities, in particular musician's dystonia. Previously we found that there was an expanded spatial integration of proprioceptive input into the hand area of motor cortex (sensorimotor organisation, SMO) in healthy musicians as tested with a transcranial magnetic stimulation (TMS) paradigm. In musician's dystonia, this expansion was even larger, resulting in a complete lack of somatotopic organisation. We hypothesised that the disordered motor control in musician's dystonia is a consequence of the disordered SMO. In the present paper we test this idea by giving pianists with musician's dystonia 15 min experience of a modified proprioceptive training task. This restored SMO towards that seen in healthy pianists. Crucially, motor control of the affected task improved significantly and objectively as measured with a MIDI piano, and the amount of behavioural improvement was significantly correlated to the degree of sensorimotor re-organisation. In healthy pianists and non-musicians, the SMO and motor performance remained essentially unchanged. These findings suggest a link between the differentiation of SMO in the hand motor cortex and the degree of motor control of intensively practiced tasks in highly skilled individuals. PMID:19923295
NASA Technical Reports Server (NTRS)
Kessel, C.; Wickens, C. D.
1978-01-01
The development of the internal model as it pertains to the detection of step changes in the order of control dynamics is investigated for two modes of participation: whether the subjects are actively controlling those dynamics or are monitoring an autopilot controlling them. A transfer of training design was used to evaluate the relative contribution of proprioception and visual information to the overall accuracy of the internal model. Sixteen subjects either tracked or monitored the system dynamics as a 2-dimensional pursuit display under single task conditions and concurrently with a sub-critical tracking task at two difficulty levels. Detection performance was faster and more accurate in the manual as opposed to the autopilot mode. The concurrent tracking task produced a decrement in detection performance for all conditions though this was more marked for the manual mode. The development of an internal model in the manual mode transferred positively to the automatic mode producing enhanced detection performance. There was no transfer from the internal model developed in the automatic mode to the manual mode.
Computational motor control: feedback and accuracy.
Guigon, Emmanuel; Baraduc, Pierre; Desmurget, Michel
2008-02-01
Speed/accuracy trade-off is a ubiquitous phenomenon in motor behaviour, which has been ascribed to the presence of signal-dependent noise (SDN) in motor commands. Although this explanation can provide a quantitative account of many aspects of motor variability, including Fitts' law, the fact that this law is frequently violated, e.g. during the acquisition of new motor skills, remains unexplained. Here, we describe a principled approach to the influence of noise on motor behaviour, in which motor variability results from the interplay between sensory and motor execution noises in an optimal feedback-controlled system. In this framework, we first show that Fitts' law arises due to signal-dependent motor noise (SDN(m)) when sensory (proprioceptive) noise is low, e.g. under visual feedback. Then we show that the terminal variability of non-visually guided movement can be explained by the presence of signal-dependent proprioceptive noise. Finally, we show that movement accuracy can be controlled by opposite changes in signal-dependent sensory (SDN(s)) and SDN(m), a phenomenon that could be ascribed to muscular co-contraction. As the model also explains kinematics, kinetics, muscular and neural characteristics of reaching movements, it provides a unified framework to address motor variability.
Head-controlled assistive telerobot with extended physiological proprioception capability
NASA Astrophysics Data System (ADS)
Salganicoff, Marcos; Rahman, Tariq; Mahoney, Ricardo; Pino, D.; Jayachandran, Vijay; Kumar, Vijay; Chen, Shoupu; Harwin, William S.
1995-12-01
People with disabilities such as quadriplegia can use mouth-sticks and head-sticks as extension devices to perform desired manipulations. These extensions provide extended proprioception which allows users to directly feel forces and other perceptual cues such as texture present at the tip of the mouth-stick. Such devices are effective for two principle reasons: because of their close contact with the user's tactile and proprioceptive sensing abilities; and because they tend to be lightweight and very stiff, and can thus convey tactile and kinesthetic information with high-bandwidth. Unfortunately, traditional mouth-sticks and head-sticks are limited in workspace and in the mechanical power that can be transferred because of user mobility and strength limitations. We describe an alternative implementation of the head-stick device using the idea of a virtual head-stick: a head-controlled bilateral force-reflecting telerobot. In this system the end-effector of the slave robot moves as if it were at the tip of an imaginary extension of the user's head. The design goal is for the system is to have the same intuitive operation and extended proprioception as a regular mouth-stick effector but with augmentation of workspace volume and mechanical power. The input is through a specially modified six DOF master robot (a PerForceTM hand-controller) whose joints can be back-driven to apply forces at the user's head. The manipulation tasks in the environment are performed by a six degree-of-freedom slave robot (the Zebra-ZEROTM) with a built-in force sensor. We describe the prototype hardware/software implementation of the system, control system design, safety/disability issues, and initial evaluation tasks.
Suetterlin, Karen Joan; Sayer, Avan Aihie
2014-05-01
Proprioception, the sense of where one is in space, is essential for effective interaction with the environment. A lack of or reduction in proprioceptive acuity has been directly correlated with falls and with reduced functional independence in older people. Proprioceptive losses have also been shown to negatively correlate with functional recovery post stroke and play a significant role in other conditions such as Parkinson's disease. However, despite its central importance to many geriatric syndromes, the clinical assessment of proprioception has remained remarkably static. We look at approaches to the clinical assessment of proprioception, changes in proprioception across the life course, functional implications of proprioception in health and disease and the potential for targeted interventions in the future such as joint taping, and proprioception-specific rehabilitation and footwear.
Bourdin, C; Bock, O
2006-11-20
The ability of our sensorimotor system to adapt to changing and complex environmental demands has been under experimental scrutiny for more than a century. Previous works have shown that aimed arm movements adapt quickly and completely to Coriolis force, but incompletely to the combination of Coriolis and centrifugal forces without visual cues. Two hypotheses may be advanced to explain this discrepancy: the workspace-exploration hypothesis, and the degraded-proprioception hypothesis. The aim of this study was to distinguish between the above two alternatives by comparing adaptive improvement during off-axis rotation in subjects pointing at one, three or seven different targets in complete darkness. Two main results emerge: (a) off-axis rotation led initially to errors in the direction of Coriolis force and in the opposite direction of the centrifugal force; (b) the size of the visited workspace has no effect on the way the subjects adapt to a multi-force environment. The lack of a target-number effect and the persistence of lateral errors in the pointing movements performed during rotation of the platform, support the degraded-proprioception rather than the workspace-exploration hypothesis of adaptation to a multi-force environment.
NASA Astrophysics Data System (ADS)
Riva, Dario; Rossitto, Franco; Battocchio, Luciano
2009-09-01
The difficulty in applying active exercises during space flights increases the importance of passive countermeasures, but coupling load and instability remains indispensable for generating high frequency (HF) proprioceptive flows and preventing muscle atrophy and osteoporosis. The present study, in microgravity conditions during a parabolic flight, verified whether an electronic system, composed of a rocking board, a postural reader and a bungee-cord loading apparatus creates HF postural instability comparable to that reachable on the Earth. Tracking the subject, in single stance, to real-time visual signals is necessary to obtain HF instability situations. The bungee-cord loading apparatus allowed the subject to manage the 81.5% body weight load (100% could easily be exceeded). A preliminary training programme schedule on the Earth and in space is suggested. Comparison with a pathological muscle atrophy is presented. The possibility of generating HF proprioceptive flows could complement current countermeasures for the prevention and recovery of muscle atrophy and osteoporosis in terrestrial and space environments. These exercises combine massive activation of spindles and joint receptors, applying simultaneously HF variations of pressure to different areas of the sole of the foot. This class of exercises could improve the effectiveness of current countermeasures, reducing working time and fatigue.
Röijezon, Ulrik; Clark, Nicholas C; Treleaven, Julia
2015-06-01
Impaired proprioception has been reported as a feature in a number of musculoskeletal disorders of various body parts, from the cervical spine to the ankle. Proprioception deficits can occur as a result of traumatic damage, e.g., to ligaments and muscles, but can also occur in association with painful disorders of a gradual-onset nature. Muscle fatigue can also adversely affect proprioception and this has implications for both symptomatic and asymptomatic individuals. Due to the importance of proprioception for sensorimotor control, specific methods for assessment and training of proprioception have been developed for both the spine and the extremities. The aim of this first part of a two part series on proprioception in musculoskeletal rehabilitation is to present a theory based overview of the role of proprioception in sensorimotor control, assessment, causes and findings of altered proprioception in musculoskeletal disorders and general principles of interventions targeting proprioception. An understanding of the basic science of proprioception, consequences of disturbances and theories behind assessment and interventions is vital for the clinical management of musculoskeletal disorders. Part one of this series supplies a theoretical base for part two which is more practically and clinically orientated, covering specific examples of methods for clinical assessment and interventions to improve proprioception in the spine and the extremities. Copyright © 2015 Elsevier Ltd. All rights reserved.
Assessing balance through the use of a low-cost head-mounted display in older adults: a pilot study.
Saldana, Santiago J; Marsh, Anthony P; Rejeski, W Jack; Haberl, Jack K; Wu, Peggy; Rosenthal, Scott; Ip, Edward H
2017-01-01
As the population ages, the prevention of falls is an increasingly important public health problem. Balance assessment forms an important component of fall-prevention programs for older adults. The recent development of cost-effective and highly responsive virtual reality (VR) systems means new methods of balance assessment are feasible in a clinical setting. This proof-of-concept study made use of the submillimeter tracking built into modern VR head-mounted displays (VRHMDs) to assess balance through the use of visual-vestibular conflict. The objective of this study was to evaluate the validity, acceptability, and reliability of using a VRHMD to assess balance in older adults. Validity was assessed by comparing measurements from the VRHMD to measurements of postural sway from a force plate. Acceptability was assessed through the use of the Simulator Sickness Questionnaire pre- and postexposure to assess possible side effects of the visual-vestibular conflict. Reliability was assessed by measuring correlations between repeated measurements 1 week apart. Variables of possible importance that were found to be reliable ( r ≥0.9) between tests separated by a week were then tested for differences compared to a control group. Assessment was performed as a cross-sectional single-site community center-based study in 13 older adults (≥65 years old, 80.2±7.3 years old, 77% female, five at risk of falls, eight controls). The VR balance assessment consisted of four modules: a baseline module, a reaction module, a balance module, and a seated assessment. There was a significant difference in the rate at which participants with a risk of falls changed their tilt in the anteroposterior direction compared to the control group. Participants with a risk of falls changed their tilt in the anteroposterior direction at 0.7°/second vs 0.4°/second for those without a history of falls. No significant differences were found between pre/postassessment for oculomotor score or total Simulator Sickness Questionnaire score. Both the force plate and the head-mounted display balance-assessment system were able to detect differences between conditions meant to mask visual and proprioceptive information. This VRHMD is both affordable and portable, causes minimal simulator sickness, and produces repeatable results that can be used to assess balance in older adults.
Multi-electrode stimulation in somatosensory cortex increases probability of detection
NASA Astrophysics Data System (ADS)
Zaaimi, Boubker; Ruiz-Torres, Ricardo; Solla, Sara A.; Miller, Lee E.
2013-10-01
Objective. Brain machine interfaces (BMIs) that decode control signals from motor cortex have developed tremendously in the past decade, but virtually all rely exclusively on vision to provide feedback. There is now increasing interest in developing an afferent interface to replace natural somatosensation, much as the cochlear implant has done for the sense of hearing. Preliminary experiments toward a somatosensory neuroprosthesis have mostly addressed the sense of touch, but proprioception, the sense of limb position and movement, is also critical for the control of movement. However, proprioceptive areas of cortex lack the precise somatotopy of tactile areas. We showed previously that there is only a weak tendency for neighboring neurons in area 2 to signal similar directions of hand movement. Consequently, stimulation with the relatively large currents used in many studies is likely to activate a rather heterogeneous set of neurons. Approach. Here, we have compared the effect of single-electrode stimulation at subthreshold levels to the effect of stimulating as many as seven electrodes in combination. Main results. We found a mean enhancement in the sensitivity to the stimulus (d‧) of 0.17 for pairs compared to individual electrodes (an increase of roughly 30%), and an increase of 2.5 for groups of seven electrodes (260%). Significance. We propose that a proprioceptive interface made up of several hundred electrodes may yield safer, more effective sensation than a BMI using fewer electrodes and larger currents.
Brayanov, Jordan B.
2010-01-01
Which is heavier: a pound of lead or a pound of feathers? This classic trick question belies a simple but surprising truth: when lifted, the pound of lead feels heavier—a phenomenon known as the size–weight illusion. To estimate the weight of an object, our CNS combines two imperfect sources of information: a prior expectation, based on the object's appearance, and direct sensory information from lifting it. Bayes' theorem (or Bayes' law) defines the statistically optimal way to combine multiple information sources for maximally accurate estimation. Here we asked whether the mechanisms for combining these information sources produce statistically optimal weight estimates for both perceptions and actions. We first studied the ability of subjects to hold one hand steady when the other removed an object from it, under conditions in which sensory information about the object's weight sometimes conflicted with prior expectations based on its size. Since the ability to steady the supporting hand depends on the generation of a motor command that accounts for lift timing and object weight, hand motion can be used to gauge biases in weight estimation by the motor system. We found that these motor system weight estimates reflected the integration of prior expectations with real-time proprioceptive information in a Bayesian, statistically optimal fashion that discounted unexpected sensory information. This produces a motor size–weight illusion that consistently biases weight estimates toward prior expectations. In contrast, when subjects compared the weights of two objects, their perceptions defied Bayes' law, exaggerating the value of unexpected sensory information. This produces a perceptual size–weight illusion that biases weight perceptions away from prior expectations. We term this effect “anti-Bayesian” because the bias is opposite that seen in Bayesian integration. Our findings suggest that two fundamentally different strategies for the integration of prior expectations with sensory information coexist in the nervous system for weight estimation. PMID:20089821
Virtual reality applications in improving postural control and minimizing falls.
Virk, Sumandeep; McConville, Kristiina M Valter
2006-01-01
Maintaining balance under all conditions is an absolute requirement for humans. Orientation in space and balance maintenance requires inputs from the vestibular, the visual, the proprioceptive and the somatosensory systems. All the cues coming from these systems are integrated by the central nervous system (CNS) to employ different strategies for orientation and balance. How the CNS integrates all the inputs and makes cognitive decisions about balance strategies has been an area of interest for biomedical engineers for a long time. More interesting is the fact that in the absence of one or more cues, or when the input from one of the sensors is skewed, the CNS "adapts" to the new environment and gives less weight to the conflicting inputs [1]. The focus of this paper is a review of different strategies and models put forward by researchers to explain the integration of these sensory cues. Also, the paper compares the different approaches used by young and old adults in maintaining balance. Since with age the musculoskeletal, visual and vestibular system deteriorates, the older subjects have to compensate for these impaired sensory cues for postural stability. The paper also discusses the applications of virtual reality in rehabilitation programs not only for balance in the elderly but also in occupational falls. Virtual reality has profound applications in the field of balance rehabilitation and training because of its relatively low cost. Studies will be conducted to evaluate the effectiveness of virtual reality training in modifying the head and eye movement strategies, and determine the role of these responses in the maintenance of balance.
Effects of phase proprioceptive training on balance in patients with chronic stroke.
Chae, Seung Hun; Kim, You Lim; Lee, Suk Min
2017-05-01
[Purpose] This study aimed to investigate the effect of phase proprioceptive training on balance in patients with chronic stroke. [Subjects and Methods] Participants included 30 patients with stroke who were randomly assigned to the proprioceptive training group (n=15) or control group (n=15). Participants in the proprioceptive training group underwent proprioceptive training and received general physical therapy each for a total of 20 thirty-minute sessions, five times per week, during a period of four weeks; the control group received general physical therapy for a total of 20 sixty-minute sessions, five times per week, during a period of four weeks. [Results] All participants were evaluated with the Berg Balance Scale, Timed Up and Go (TUG) test, and Activities-specific Balance Confidence (ABC) Scale instrument before and after intervention. After training, the differences in BBS, TUG, and ABC scores in the proprioceptive group were significantly greater than those in the control group. [Conclusion] In conclusion, proprioceptive training was effective on balance ability. Therefore, proprioceptive training may be efficient when combining general physical therapy with phase proprioceptive training for patients with impairments of balance. Further research is needed to investigate proprioceptive training methods.
van der Esch, M; Steultjens, M; Harlaar, J; Knol, D; Lems, W; Dekker, J
2007-06-15
To test the hypotheses that poor knee joint proprioception is related to limitations in functional ability, and poor proprioception aggravates the impact of muscle weakness on limitations in functional ability in osteoarthritis (OA) of the knee. Sixty-three patients with symptomatic OA of the knee were tested. Proprioceptive acuity was assessed by establishing the joint motion detection threshold (JMDT) in the anteroposterior direction. Muscle strength was measured using a computer-driven isokinetic dynamometer. Functional ability was assessed by the 100-meter walking test, the Get Up and Go (GUG) test, and the Western Ontario and McMaster Universities Osteoarthritis Index physical function (WOMAC-PF) questionnaire. Correlation analyses were performed to assess the relationship between proprioception, muscle strength, and functional ability. Regression analyses were performed to assess the impact of proprioception on the relationship between muscle strength and functional ability. Poor proprioception (high JMDT) was related to more limitation in functional ability (walking time r = 0.30, P < 0.05; GUG time r = 0.30, P < 0.05; WOMAC-PF r = 0.26, P <0.05). In regression analyses, the interaction between proprioception and muscle strength was significantly related to functional ability (walking time, P < 0.001 and GUG time, P < 0.001) but not to WOMAC-PF score (P = 0.625). In patients with poor proprioception, reduction of muscle strength was associated with more severe deterioration of functional ability than in patients with accurate proprioception. Patients with poor proprioception show more limitation in functional ability, but this relationship is rather weak. In patients with poor proprioception, muscle weakness has a stronger impact on limitations in functional ability than in patients with accurate proprioception.
Enticott, Peter G; Kennedy, Hayley A; Rinehart, Nicole J; Bradshaw, John L; Tonge, Bruce J; Daskalakis, Zafiris J; Fitzgerald, Paul B
2013-01-01
The mirror neuron hypothesis of autism is highly controversial, in part because there are conflicting reports as to whether putative indices of mirror system activity are actually deficient in autism spectrum disorder (ASD). Recent evidence suggests that a typical putative mirror system response may be seen in people with an ASD when there is a degree of social relevance to the visual stimuli used to elicit that response. Individuals with ASD (n = 32) and matched neurotypical controls (n = 32) completed a transcranial magnetic stimulation (TMS) experiment in which the left primary motor cortex (M1) was stimulated during the observation of static hands, individual (i.e., one person) hand actions, and interactive (i.e., two person) hand actions. Motor-evoked potentials (MEP) were recorded from the contralateral first dorsal interosseous, and used to generate an index of interpersonal motor resonance (IMR; a putative measure of mirror system activity) during action observation. There was no difference between ASD and NT groups in the level of IMR during the observation of these actions. These findings provide evidence against a global mirror system deficit in ASD, and this evidence appears to extend beyond stimuli that have social relevance. Attentional and visual processing influences may be important for understanding the apparent role of IMR in the pathophysiology of ASD.
The Role of Ankle Proprioception for Balance Control in relation to Sports Performance and Injury.
Han, Jia; Anson, Judith; Waddington, Gordon; Adams, Roger; Liu, Yu
2015-01-01
Balance control improvement is one of the most important goals in sports and exercise. Better balance is strongly positively associated with enhanced athletic performance and negatively associated with lower limb sports injuries. Proprioception plays an essential role in balance control, and ankle proprioception is arguably the most important. This paper reviews ankle proprioception and explores synergies with balance control, specifically in a sporting context. Central processing of ankle proprioceptive information, along with other sensory information, enables integration for balance control. When assessing ankle proprioception, the most generalizable findings arise from methods that are ecologically valid, allow proprioceptive signals to be integrated with general vision in the central nervous system, and reflect the signal-in-noise nature of central processing. Ankle proprioceptive intervention concepts driven by such a central processing theory are further proposed and discussed for the improvement of balance control in sport.
The Role of Ankle Proprioception for Balance Control in relation to Sports Performance and Injury
Han, Jia; Waddington, Gordon; Adams, Roger; Liu, Yu
2015-01-01
Balance control improvement is one of the most important goals in sports and exercise. Better balance is strongly positively associated with enhanced athletic performance and negatively associated with lower limb sports injuries. Proprioception plays an essential role in balance control, and ankle proprioception is arguably the most important. This paper reviews ankle proprioception and explores synergies with balance control, specifically in a sporting context. Central processing of ankle proprioceptive information, along with other sensory information, enables integration for balance control. When assessing ankle proprioception, the most generalizable findings arise from methods that are ecologically valid, allow proprioceptive signals to be integrated with general vision in the central nervous system, and reflect the signal-in-noise nature of central processing. Ankle proprioceptive intervention concepts driven by such a central processing theory are further proposed and discussed for the improvement of balance control in sport. PMID:26583139
Abbruzzese, Giovanni; Trompetto, Carlo; Mori, Laura; Pelosin, Elisa
2014-01-01
Movement disorders (MDs) are frequently associated with sensory abnormalities. In particular, proprioceptive deficits have been largely documented in both hypokinetic (Parkinson’s disease) and hyperkinetic conditions (dystonia), suggesting a possible role in their pathophysiology. Proprioceptive feedback is a fundamental component of sensorimotor integration allowing effective planning and execution of voluntary movements. Rehabilitation has become an essential element in the management of patients with MDs, and there is a strong rationale to include proprioceptive training in rehabilitation protocols focused on mobility problems of the upper limbs. Proprioceptive training is aimed at improving the integration of proprioceptive signals using “task-intrinsic” or “augmented feedback.” This perspective article reviews the available evidence on the effects of proprioceptive stimulation in improving upper limb mobility in patients with MDs and highlights the emerging innovative approaches targeted to maximizing the benefits of exercise by means of enhanced proprioception. PMID:25505402
Alexithymia modulates the experience of the rubber hand illusion
Grynberg, Delphine; Pollatos, Olga
2015-01-01
Alexithymia is associated with lower awareness of emotional and non-emotional internal bodily signals. However, evidence suggesting that alexithymia modulates body awareness at an external level is scarce. This study aimed to investigate whether alexithymia is associated with disrupted multisensory integration by using the rubber hand illusion task. Fifty healthy individuals completed the Toronto Alexithymia Scale and underwent the rubber hand illusion measure. In this measure, one watches a rubber hand being stroked synchronously or asynchronously with one’s own hand, which is hidden from view. Compared to the asynchronous stimulation, the synchronous stimulation results in the illusion that the rubber hand and the participant’s hand are closer together than they really are and that the rubber hand belongs to them. Results revealed that higher levels of alexithymia are associated with a lower ownership illusion over the rubber hand. In conclusion, our findings demonstrate that high alexithymia scorers integrate two simultaneous sensory and proprioceptive events into a single experience (lower multisensory integration) to a lesser extent than low alexithymia scorers. Higher susceptibility to the illusion in high alexithymia scorers may indicate that alexithymia is associated with an abnormal focus of one’s own body. PMID:26150779
'When is VISION asked too much'?
van der Wildt, G J; den Brinker, B P; Wertheim, A H
1995-01-01
The last two decades a shift took place from substitutional/compensatory training to utilisation of residual vision regarding rehabilitation of the visually impaired. Some of the visually impaired are able to use their visual perception nearly as complete as normal seeing people in spite of a severe visual disability. On the other hand, people with nearly normal functions can be severely visually handicapped. To illustrate this, two cases are presented. The first case is a man, aged 47 years, with a juvenile macular degeneration on both eyes. In spite of a very low visual acuity of less then 0.05, he finished an university education and he is able to maintain himself very well in a leading position in a scientific environment, by using adequate low vision devices. Also for his leisure activities, as photography and speed skating, he relies upon visual perception. The second case is a woman, aged 30 years, with nearly normal visual functions, who is not able to read for longer periods caused by conflicting information from the body- and eye movements, and the visual input. This causes sickness during reading. She is unable to use books for her study and is working with recordings on tape. The results of a comprehensive visual assessment will be related to the specific low vision devices and its use.
The Integrated Virtual Environment Rehabilitation Treadmill System
Feasel, Jeff; Whitton, Mary C.; Kassler, Laura; Brooks, Frederick P.; Lewek, Michael D.
2015-01-01
Slow gait speed and interlimb asymmetry are prevalent in a variety of disorders. Current approaches to locomotor retraining emphasize the need for appropriate feedback during intensive, task-specific practice. This paper describes the design and feasibility testing of the integrated virtual environment rehabilitation treadmill (IVERT) system intended to provide real-time, intuitive feedback regarding gait speed and asymmetry during training. The IVERT system integrates an instrumented, split-belt treadmill with a front-projection, immersive virtual environment. The novel adaptive control system uses only ground reaction force data from the treadmill to continuously update the speeds of the two treadmill belts independently, as well as to control the speed and heading in the virtual environment in real time. Feedback regarding gait asymmetry is presented 1) visually as walking a curved trajectory through the virtual environment and 2) proprioceptively in the form of different belt speeds on the split-belt treadmill. A feasibility study involving five individuals with asymmetric gait found that these individuals could effectively control the speed of locomotion and perceive gait asymmetry during the training session. Although minimal changes in overground gait symmetry were observed immediately following a single training session, further studies should be done to determine the IVERT’s potential as a tool for rehabilitation of asymmetric gait by providing patients with congruent visual and proprioceptive feedback. PMID:21652279
Bridging the gap between motor imagery and motor execution with a brain-robot interface.
Bauer, Robert; Fels, Meike; Vukelić, Mathias; Ziemann, Ulf; Gharabaghi, Alireza
2015-03-01
According to electrophysiological studies motor imagery and motor execution are associated with perturbations of brain oscillations over spatially similar cortical areas. By contrast, neuroimaging and lesion studies suggest that at least partially distinct cortical networks are involved in motor imagery and execution. We sought to further disentangle this relationship by studying the role of brain-robot interfaces in the context of motor imagery and motor execution networks. Twenty right-handed subjects performed several behavioral tasks as indicators for imagery and execution of movements of the left hand, i.e. kinesthetic imagery, visual imagery, visuomotor integration and tonic contraction. In addition, subjects performed motor imagery supported by haptic/proprioceptive feedback from a brain-robot-interface. Principal component analysis was applied to assess the relationship of these indicators. The respective cortical resting state networks in the α-range were investigated by electroencephalography using the phase slope index. We detected two distinct abilities and cortical networks underlying motor control: a motor imagery network connecting the left parietal and motor areas with the right prefrontal cortex and a motor execution network characterized by transmission from the left to right motor areas. We found that a brain-robot-interface might offer a way to bridge the gap between these networks, opening thereby a backdoor to the motor execution system. This knowledge might promote patient screening and may lead to novel treatment strategies, e.g. for the rehabilitation of hemiparesis after stroke. Copyright © 2014 Elsevier Inc. All rights reserved.
Dilek, Burcu; Ayhan, Cigdem; Yagci, Gozde; Yakut, Yavuz
Single-blinded randomized controlled trial. Pain management is essential in the early stages of the rehabilitation of distal radius fractures (DRFx). Pain intensity at the acute stage is considered important for determining the individual recovery process, given that higher pain intensity and persistent pain duration negatively affect the function and cortical activity of pain response. Graded motor imagery (GMI) and its components are recent pain management strategies, established on a neuroscience basis. To investigate the effectiveness of GMI in hand function in patients with DRFx. Thirty-six participants were randomly allocated to either GMI (n = 17; 52.59 [9.8] years) or control (n = 19; 47.16 [10.5] years) groups. The GMI group received imagery treatment in addition to traditional rehabilitation, and the control group received traditional rehabilitation for 8 weeks. The assessments included pain at rest and during activity using the visual analog scale, wrist and forearm active range of motion (ROM) with universal goniometer, grip strength with the hydraulic dynamometer (Jamar; Bolingbrook, IL), and upper extremity functional status using the Disability of the Arm, Shoulder and Hand Questionnaire, and the Michigan Hand Questionnaire. Assessments were performed twice at baseline and at the end of the eighth week. The GMI group showed greater improvement in pain intensity (during rest, 2.24; activity, 6.18 points), wrist ROM (flexion, -40.59; extension, -45.59; radial deviation, -25.59; and ulnar deviation, -26.77 points) and forearm ROM (supination, -43.82 points), and functional status (Disability of the Arm, Shoulder and Hand Questionnaire, 38.00; Michigan Hand Questionnaire, -32.53 points) when compared with the control group (for all, P < .05). The cortical model of pathological pain suggests new strategies established on a neuroscience basis. These strategies aim to normalize the cortical proprioceptive representation and reduce pain. One of these recent strategies, GMI appears to provide beneficial effects to control pain, improve grip strength, and increase upper extremity functions in patients with DRFx. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Lower-limb proprioceptive awareness in professional ballet dancers.
Kiefer, Adam W; Riley, Michael A; Shockley, Kevin; Sitton, Candace A; Hewett, Timothy E; Cummins-Sebree, Sarah; Haas, Jacqui G
2013-09-01
Enhanced proprioceptive feedback strengthens synergistic muscle groups and stabilizes the coordination of limbs, thus contributing to the movement efficiency of ballet dancers. The present study compared lower-limb proprioceptive awareness in professional ballet dancers to matched controls who had no dance training. Two assessment methods were used to test the hypothesis that ballet dancers would demonstrate increased proprioceptive awareness in the ankle, knee, and hip: 1. a joint-position matching task to assess static proprioceptive joint awareness, and 2. an eyes-closed, quiet standing task to assess both static and dynamic proprioceptive awareness through measures of center of pressure (COP) variability. Results of the matching task indicated that the dancers exhibited greater proprioceptive awareness than controls for all three joints (p < 0.001). Also, dancers were equally aware of the positioning of their ankle, knee, and hip joints (p > 0.05), whereas controls were less aware of their ankle position compared to their knee and hip joints (p < 0.001). Measures indexing COP variability during quiet standing did not differ between groups and thus failed to reflect increased proprioceptive awareness in dancers (all p > 0.05). This indicates that quiet stance may have limited value as a means for evaluating proprioception. These findings provide preliminary evidence that enhanced proprioceptive awareness of lower limb joints should be considered as an evaluative criterion for dancers' ability to learn complex ballet skills. They also indicate that quiet standing tasks may not provide sufficient challenge for dancers' enhanced proprioceptive awareness to manifest.
Nishiike, Suetaka; Okazaki, Suzuyo; Watanabe, Hiroshi; Akizuki, Hironori; Imai, Takao; Uno, Atsuhiko; Kitahara, Tadashi; Horii, Arata; Takeda, Noriaki; Inohara, Hidenori
2013-01-01
In this study, we examined the effects of sensory inputs of visual-vestibulosomatosensory conflict induced by virtual reality (VR) on subjective dizziness, posture stability and visual dependency on postural control in humans. Eleven healthy young volunteers were immersed in two different VR conditions. In the control condition, subjects walked voluntarily with the background images of interactive computer graphics proportionally synchronized to their walking pace. In the visual-vestibulosomatosensory conflict condition, subjects kept still, but the background images that subjects experienced in the control condition were presented. The scores of both Graybiel's and Hamilton's criteria, postural instability and Romberg ratio were measured before and after the two conditions. After immersion in the conflict condition, both subjective dizziness and objective postural instability were significantly increased, and Romberg ratio, an index of the visual dependency on postural control, was slightly decreased. These findings suggest that sensory inputs of visual-vestibulosomatosensory conflict induced by VR induced motion sickness, resulting in subjective dizziness and postural instability. They also suggest that adaptation to the conflict condition decreases the contribution of visual inputs to postural control with re-weighing of vestibulosomatosensory inputs. VR may be used as a rehabilitation tool for dizzy patients by its ability to induce sensory re-weighing of postural control.
Swarm intelligence: when uncertainty meets conflict.
Conradt, Larissa; List, Christian; Roper, Timothy J
2013-11-01
Good decision making is important for the survival and fitness of stakeholders, but decisions usually involve uncertainty and conflict. We know surprisingly little about profitable decision-making strategies in conflict situations. On the one hand, sharing decisions with others can pool information and decrease uncertainty (swarm intelligence). On the other hand, sharing decisions can hand influence to individuals whose goals conflict. Thus, when should an animal share decisions with others? Using a theoretical model, we show that, contrary to intuition, decision sharing by animals with conflicting goals often increases individual gains as well as decision accuracy. Thus, conflict-far from hampering effective decision making-can improve decision outcomes for all stakeholders, as long as they share large-scale goals. In contrast, decisions shared by animals without conflict were often surprisingly poor. The underlying mechanism is that animals with conflicting goals are less correlated in individual choice errors. These results provide a strong argument in the interest of all stakeholders for not excluding other (e.g., minority) factions from collective decisions. The observed benefits of including diverse factions among the decision makers could also be relevant to human collective decision making.
Presbypropria: the effects of physiological ageing on proprioceptive control.
Boisgontier, Matthieu P; Olivier, Isabelle; Chenu, Olivier; Nougier, Vincent
2012-10-01
Several changes in the human sensory systems, like presbycusis or presbyopia, are well-known to occur with physiological ageing. A similar change is likely to occur in proprioception, too, but there are strong and unexplained discrepancies in the literature. It was proposed that assessment of the attentional cost of proprioceptive control could provide information able to unify these previous studies. To this aim, 15 young adults and 15 older adults performed a position matching task in single and dual-task paradigms with different difficulty levels of the secondary task (congruent and incongruent Stroop-type tasks) to assess presumed age-related deficits in proprioceptive control. Results showed that proprioceptive control was as accurate and as consistent in older as in young adults for a single proprioceptive task. However, performing a secondary cognitive task and increasing the difficulty of this secondary task evidenced both a decreased matching performance and/or an increased attentional cost of proprioceptive control in older adults as compared to young ones. These results advocated for an impaired proprioception in physiological ageing.
The Effects of Cryotherapy on Proprioception System
Furmanek, Mariusz Paweł; Słomka, Kajetan; Juras, Grzegorz
2014-01-01
Proprioception plays an important role in the complex mechanism of joint control. Contemporary sport activities impose extremely high physical demands on athletes. Winter sports are played in areas with excessively low temperatures. Moreover, many athletes are subjected to treatments that involve local lowering of the body temperature before, during, and after physical activity. This work reviews the current knowledge regarding the influence of local cryotherapy on the proprioception system. The reviewed literature identified several tests that evaluate different aspects of proprioception. There is no universally agreed protocol, or clear set of criteria for test conditions. The outcomes of different tests and assessments of cryotherapy procedures using different cold modalities are poorly correlated. In general, the published results on the mechanism of cryotherapy effects on proprioception are not uniquely conclusive and are frequently contradictory. Additional high-quality research is required to explicitly answer the following questions: (1) whether local cryotherapy influences all aspects of proprioception; (2) whether the current methods of evaluation are adequate for the exploration of the relationship between cryotherapy and proprioception; and (3) whether the application of local cryotherapy is safe for athletes regarding proprioception. The review clearly showed that there is no comprehensive model relating cryotherapy and proprioception. PMID:25478573
The effects of cryotherapy on proprioception system.
Furmanek, Mariusz Paweł; Słomka, Kajetan; Juras, Grzegorz
2014-01-01
Proprioception plays an important role in the complex mechanism of joint control. Contemporary sport activities impose extremely high physical demands on athletes. Winter sports are played in areas with excessively low temperatures. Moreover, many athletes are subjected to treatments that involve local lowering of the body temperature before, during, and after physical activity. This work reviews the current knowledge regarding the influence of local cryotherapy on the proprioception system. The reviewed literature identified several tests that evaluate different aspects of proprioception. There is no universally agreed protocol, or clear set of criteria for test conditions. The outcomes of different tests and assessments of cryotherapy procedures using different cold modalities are poorly correlated. In general, the published results on the mechanism of cryotherapy effects on proprioception are not uniquely conclusive and are frequently contradictory. Additional high-quality research is required to explicitly answer the following questions: (1) whether local cryotherapy influences all aspects of proprioception; (2) whether the current methods of evaluation are adequate for the exploration of the relationship between cryotherapy and proprioception; and (3) whether the application of local cryotherapy is safe for athletes regarding proprioception. The review clearly showed that there is no comprehensive model relating cryotherapy and proprioception.
A neural network-based exploratory learning and motor planning system for co-robots
Galbraith, Byron V.; Guenther, Frank H.; Versace, Massimiliano
2015-01-01
Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or “learning by doing,” an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object. PMID:26257640
Space Flight and Manual Control: Implications for Sensorimotor Function on Future Missions
NASA Technical Reports Server (NTRS)
Reschke, Millard F.; Kornilova, Ludmila; Tomilovskaya, Elena; Parker, Donald E.; Leigh, R. John; Kozlovskaya, Inessa
2009-01-01
Control of vehicles, and other complex mechanical motion systems, is a high-level integrative function of the central nervous system (CNS) that requires good visual acuity, eye-hand coordination, spatial (and, in some cases, geographic) orientation perception, and cognitive function. Existing evidence from space flight research (Paloski et.al., 2008, Clement and Reschke 2008, Reschke et al., 2007) demonstrates that the function of each of these systems is altered by removing (and subsequently by reintroducing) a gravitational field that can be sensed by vestibular, proprioceptive, and haptic receptors and used by the CNS for spatial orientation, navigation, and coordination of movements. Furthermore, much of the operational performance data collected as a function of space flight has not been available for independent analysis, and those data that have been reviewed are equivocal owing to uncontrolled environmental and/or engineering factors. Thus, our current understanding, when it comes to manual control, is limited primarily to a review of those situations where manual control has been a factor. One of the simplest approaches to the manual control problem is to review shuttle landing data. See the Figure below for those landing for which we have Shuttle velocities over the runway threshold.
A neural network-based exploratory learning and motor planning system for co-robots.
Galbraith, Byron V; Guenther, Frank H; Versace, Massimiliano
2015-01-01
Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or "learning by doing," an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object.
Contemori, Samuele; Biscarini, Andrea; Botti, Fabio Massimo; Busti, Daniele; Panichi, Roberto; Pettorossi, Vito Enrico
2017-06-12
Isolated infraspinatus muscle atrophy (IIMA) only affects the hitting shoulder of overhead-activity athletes, and is caused by suprascapular nerve neuropathy. No study has assessed the static and dynamic stability of the shoulder in overhead professional athletes with IIMA to reveal possible shoulder sensorimotor alterations. To assess the shoulder static stability, dynamic stability, and strength in professional volleyball players with IIMA and in healthy control players. Cross-sectional study. Research laboratory. Twenty-four male professional volleyball players (12 players with diagnosed IIMA and 12 healthy players) recruited from local volleyball teams. Static stability was evaluated with two independent force platforms and dynamic stability was assessed with the "Upper Quarter Y Balance Test". The static stability assessment was conducted in different support (single hand and both hand) and vision (open and closed eyes) conditions. Data from each test were analyzed with ANOVA and paired t-test models, to highlight statistical differences within and between groups. In addition to reduced abduction and external rotation strength, athletes with IIMA consistently demonstrated significant less static (P < 0.001) and dynamic stability (P < 0,001), compared with the contralateral shoulder and with healthy athletes. Closed eyes condition significantly enhanced the static stability deficit of the shoulder with IIMA (P = 0.039 and P = 0.034 for both hand and single hand support, respectively), but had no effect in healthy contralateral and healthy players' shoulders. This study highlights an impairment of the sensorimotor control system of the shoulder with IIMA, which likely results from both proprioceptive and strength deficits. This condition could yield subtle alteration in the functional use of the shoulder and predispose it to acute or overuse injuries. The results of this study may help athletic trainers and physical/physiotherapists to prevent shoulder injuries and create specific proprioceptive and neuromuscular training programs.
Pritchard, Stephen C.; Zopf, Regine; Polito, Vince; Kaplan, David M.; Williams, Mark A.
2016-01-01
The concept of self-representation is commonly decomposed into three component constructs (sense of embodiment, sense of agency, and sense of presence), and each is typically investigated separately across different experimental contexts. For example, embodiment has been explored in bodily illusions; agency has been investigated in hypnosis research; and presence has been primarily studied in the context of Virtual Reality (VR) technology. Given that each component involves the integration of multiple cues within and across sensory modalities, they may rely on similar underlying mechanisms. However, the degree to which this may be true remains unclear when they are independently studied. As a first step toward addressing this issue, we manipulated a range of cues relevant to these components of self-representation within a single experimental context. Using consumer-grade Oculus Rift VR technology, and a new implementation of the Virtual Hand Illusion, we systematically manipulated visual form plausibility, visual–tactile synchrony, and visual–proprioceptive spatial offset to explore their influence on self-representation. Our results show that these cues differentially influence embodiment, agency, and presence. We provide evidence that each type of cue can independently and non-hierarchically influence self-representation yet none of these cues strictly constrains or gates the influence of the others. We discuss theoretical implications for understanding self-representation as well as practical implications for VR experiment design, including the suitability of consumer-based VR technology in research settings. PMID:27826275
Restoring Proprioception via a Cortical Prosthesis: A Novel Learning-Based Approach
2015-10-01
AWARD NUMBER: W81XWH-14-1-0510 TITLE: Restoring Proprioception via a Cortical Prosthesis : A Novel Learning-Based Approach PRINCIPAL INVESTIGATOR...Proprioception via a Cortical Prosthesis : A Novel Learning-Based Approach 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Philip Sabes, PhD 5d...component of this lost sensation is proprioception, the feeling of where the body is in space. The importance of proprioception is often not appreciated
Isableu, B; Ohlmann, T; Cremieux, J; Vuillerme, N; Amblard, B; Gresty, M A
2010-09-01
The causes of the interindividual differences (IDs) in how we perceive and control spatial orientation are poorly understood. Here, we propose that IDs partly reflect preferred modes of spatial referencing and that these preferences or "styles" are maintained from the level of spatial perception to that of motor control. Two groups of experimental subjects, one with high visual field dependency (FD) and one with marked visual field independency (FI) were identified by the Rod and Frame Test, which identifies relative dependency on a visual frame of reference (VFoR). FD and FI subjects were tasked with standing still in conditions of increasing postural difficulty while visual cues of self-orientation (a visual frame tilted in roll) and self-motion (in stroboscopic illumination) were varied and in darkness to assess visual dependency. Postural stability, overall body orientation and modes of segmental stabilization relative to either external (space) or egocentric (adjacent segments) frames of reference in the roll plane were analysed. We hypothesized that a moderate challenge to balance should enhance subjects' reliance on VFoR, particularly in FD subjects, whereas a substantial challenge should constrain subjects to use a somatic-vestibular based FoR to prevent falling in which case IDs would vanish. The results showed that with increasing difficulty, FD subjects became more unstable and more disoriented shown by larger effects of the tilted visual frame on posture. Furthermore, their preference to coalign body/VFoR coordinate systems lead to greater fixation of the head-trunk articulation and stabilization of the hip in space, whereas the head and trunk remained more stabilized in space with the hip fixed on the leg in FI subjects. These results show that FD subjects have difficulties at identifying and/or adopting a more appropriate FoR based on proprioceptive and vestibular cues to regulate the coalignment of posturo/exocentric FoRs. The FI subjects' resistance in the face of altered VFoR and balance challenge resides in their greater ability to coordinate movement by coaligning body axes with more appropriate FoRs (provided by proprioceptive and vestibular co-variance). Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Restoring Proprioception via a Cortical Prosthesis: A Novel Learning Based Approach
2016-10-01
microstimulation from the neural recordings used for BMI control. This allows us to move to a much more efficient paradigm with continuous brain “ read out” for...microstimulation; movement control 3. ACCOMPLISHMENTS: What were the major goals of the project? Specific Aim 1: Determine whether animals ... animals . However, that signal will correlate on a millisecond timescale with visual feedback of the virtual limb. Based on the previous work (Dadarlat
Impaired limb position sense after stroke: a quantitative test for clinical use.
Carey, L M; Oke, L E; Matyas, T A
1996-12-01
A quantitative measure of wrist position sense was developed to advance clinical measurement of proprioceptive limb sensibility after stroke. Test-retest reliability, normative standards, and ability to discriminate impaired and unimpaired performance were investigated. Retest reliability was assessed over three sessions, and a matched-pairs study compared stroke and unimpaired subjects. Both wrists were tested, in counterbalanced order. Patients were tested in hospital-based rehabilitation units. Reliability was investigated on a consecutive sample of 35 adult stroke patients with a range of proprioceptive discrimination abilities and no evidence of neglect. A consecutive sample of 50 stroke patients and convenience sample of 50 healthy volunteers, matched for age, sex, and hand dominance, were tested in the normative-discriminative study. Age and sex were representative of the adult stroke population. The test required matching of imposed wrist positions using a pointer aligned with the axis of movement and a protractor scale. The test was reliable (r = .88 and .92) and observed changes of 8 degrees can be interpreted, with 95% confidence, as genuine. Scores of healthy volunteers ranged from 3.1 degrees to 10.9 degrees average error. The criterion of impairment was conservatively defined as 11 degrees (+/-4.8 degrees) average error. Impaired and unimpaired performance were well differentiated. Clinicians can confidently and quantitatively sample one aspect of proprioceptive sensibility in stroke patients using the wrist position sense test. Development of tests on other joints using the present approach is supported by our findings.
Findlater, Sonja E; Dukelow, Sean P
2017-01-01
Proprioception is an important aspect of function that is often impaired in the upper extremity following stroke. Unfortunately, neurorehabilitation has few evidence based treatment options for those with proprioceptive deficits. The authors consider potential reasons for this disparity. In doing so, typical assessments and proprioceptive intervention studies are discussed. Relevant evidence from the field of neuroscience is examined. Such evidence may be used to guide the development of targeted interventions for upper extremity proprioceptive deficits after stroke. As researchers become more aware of the impact of proprioceptive deficits on upper extremity motor performance after stroke, it is imperative to find successful rehabilitation interventions to target these deficits and ultimately improve daily function.
Torres-Oviedo, Gelsy; Bastian, Amy J
2010-12-15
Devices such as robots or treadmills are often used to drive motor learning because they can create novel physical environments. However, the learning (i.e., adaptation) acquired on these devices only partially generalizes to natural movements. What determines the specificity of motor learning, and can this be reliably made more general? Here we investigated the effect of visual cues on the specificity of split-belt walking adaptation. We systematically removed vision to eliminate the visual-proprioceptive mismatch that is a salient cue specific to treadmills: vision indicates that we are not moving while leg proprioception indicates that we are. We evaluated the adaptation of temporal and spatial features of gait (i.e., timing and location of foot landing), their transfer to walking over ground, and washout of adaptation when subjects returned to the treadmill. Removing vision during both training (i.e., on the treadmill) and testing (i.e., over ground) strongly improved the transfer of treadmill adaptation to natural walking. Removing vision only during training increased transfer of temporal adaptation, whereas removing vision only during testing increased the transfer of spatial adaptation. This dissociation reveals differences in adaptive mechanisms for temporal and spatial features of walking. Finally training without vision increased the amount that was learned and was linked to the variability in the behavior during adaptation. In conclusion, contextual cues can be manipulated to modulate the magnitude, transfer, and washout of device-induced learning in humans. These results bring us closer to our ultimate goal of developing rehabilitation strategies that improve movements beyond the clinical setting.
Visual-Vestibular Conflict Detection Depends on Fixation.
Garzorz, Isabelle T; MacNeilage, Paul R
2017-09-25
Visual and vestibular signals are the primary sources of sensory information for self-motion. Conflict among these signals can be seriously debilitating, resulting in vertigo [1], inappropriate postural responses [2], and motion, simulator, or cyber sickness [3-8]. Despite this significance, the mechanisms mediating conflict detection are poorly understood. Here we model conflict detection simply as crossmodal discrimination with benchmark performance limited by variabilities of the signals being compared. In a series of psychophysical experiments conducted in a virtual reality motion simulator, we measure these variabilities and assess conflict detection relative to this benchmark. We also examine the impact of eye movements on visual-vestibular conflict detection. In one condition, observers fixate a point that is stationary in the simulated visual environment by rotating the eyes opposite head rotation, thereby nulling retinal image motion. In another condition, eye movement is artificially minimized via fixation of a head-fixed fixation point, thereby maximizing retinal image motion. Visual-vestibular integration performance is also measured, similar to previous studies [9-12]. We observe that there is a tradeoff between integration and conflict detection that is mediated by eye movements. Minimizing eye movements by fixating a head-fixed target leads to optimal integration but highly impaired conflict detection. Minimizing retinal motion by fixating a scene-fixed target improves conflict detection at the cost of impaired integration performance. The common tendency to fixate scene-fixed targets during self-motion [13] may indicate that conflict detection is typically a higher priority than the increase in precision of self-motion estimation that is obtained through integration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Crossmodal binding rivalry: A "race" for integration between unequal sensory inputs.
Kostaki, Maria; Vatakis, Argiro
2016-10-01
Exposure to multiple but unequal (in number) sensory inputs often leads to illusory percepts, which may be the product of a conflict between those inputs. To test this conflict, we utilized the classic sound induced visual fission and fusion illusions under various temporal configurations and timing presentations. This conflict between unequal numbers of sensory inputs (i.e., crossmodal binding rivalry) depends on the binding of the first audiovisual pair and its temporal proximity to the upcoming unisensory stimulus. We, therefore, expected that tight coupling of the first audiovisual pair would lead to higher rivalry with the upcoming unisensory stimulus and, thus, weaker illusory percepts. Loose coupling, on the other hand, would lead to lower rivalry and higher illusory percepts. Our data showed the emergence of two different participant groups, those with low discrimination performance and strong illusion reports (particularly for fusion) and those with the exact opposite pattern, thus extending previous findings on the effect of visual acuity in the strength of the illusion. Most importantly, our data revealed differential illusory strength across different temporal configurations for the fission illusion, while for the fusion illusion these effects were only noted for the largest stimulus onset asynchronies tested. These findings support that the optimal integration theory for the double flash illusion should be expanded so as to also take into account the multisensory temporal interactions of the stimuli presented (i.e., temporal sequence and configuration). Copyright © 2016 Elsevier Ltd. All rights reserved.
Bianchi, Roberto; Rocca, Flavio; Mamo, Carlo
2016-01-01
Abstract Riva, D, Bianchi, R, Rocca, F, and Mamo, C. Proprioceptive training and injury prevention in a professional men's basketball team: A six-year prospective study. J Strength Cond Res 30(2): 461–475, 2016—Single limb stance instability is a risk factor for lower extremity injuries. Therefore, the development of proprioception may play an important role in injury prevention. This investigation considered a professional basketball team for 6 years, integrating systematic proprioceptive activity in the training routine. The purpose was to assess the effectiveness of proprioceptive training programs based on quantifiable instability, to reduce ankle sprains, knee sprains, and low back pain through developing refined and long-lasting proprioceptive control. Fifty-five subjects were studied. In the first biennium (2004–2006), the preventive program consisted of classic proprioceptive exercises. In the second biennium (2006–2008), the proprioceptive training became quantifiable and interactive by means of electronic proprioceptive stations. In the third biennium (2008–2010), the intensity and the training volume increased while the session duration became shorter. Analysis of variance was used to analyze the differences in proprioceptive control between groups, years, and bienniums. Injury rates and rate ratios of injury during practices and games were estimated. The results showed a statistically significant reduction in the occurrence of ankle sprains by 81% from the first to the third biennium (p < 0.001). Low back pain showed similar results with a reduction of 77.8% (p < 0.005). The reduction in knee sprains was 64.5% (not significant). Comparing the third biennium with the level of all new entry players, proprioceptive control improved significantly by 72.2% (p < 0.001). These findings indicate that improvements in proprioceptive control in single stance may be a key factor for an effective reduction in ankle sprains, knee sprains, and low back pain. PMID:26203850
Gadkaree, Shekhar K; Sun, Daniel Q; Li, Carol; Lin, Frank R; Ferrucci, Luigi; Simonsick, Eleanor M; Agrawal, Yuri
2016-01-01
Objectives . To investigate whether sensory function declines independently or in parallel with age within a single individual. Methods . Cross-sectional analysis of Baltimore Longitudinal Study of Aging (BLSA) participants who underwent vision (visual acuity threshold), proprioception (ankle joint proprioceptive threshold), vestibular function (cervical vestibular-evoked myogenic potential), hearing (pure-tone average audiometric threshold), and Health ABC physical performance battery testing. Results . A total of 276 participants (mean age 70 years, range 26-93) underwent all four sensory tests. The function of all four systems declined with age. After age adjustment, there were no significant associations between sensory systems. Among 70-79-year-olds, dual or triple sensory impairment was associated with poorer physical performance. Discussion . Our findings suggest that beyond the common mechanism of aging, other distinct (nonshared) etiologic mechanisms may contribute to decline in each sensory system. Multiple sensory impairments influence physical performance among individuals in middle old-age (age 70-79).
Gadkaree, Shekhar K.; Sun, Daniel Q.; Li, Carol; Lin, Frank R.; Ferrucci, Luigi; Simonsick, Eleanor M.
2016-01-01
Objectives. To investigate whether sensory function declines independently or in parallel with age within a single individual. Methods. Cross-sectional analysis of Baltimore Longitudinal Study of Aging (BLSA) participants who underwent vision (visual acuity threshold), proprioception (ankle joint proprioceptive threshold), vestibular function (cervical vestibular-evoked myogenic potential), hearing (pure-tone average audiometric threshold), and Health ABC physical performance battery testing. Results. A total of 276 participants (mean age 70 years, range 26–93) underwent all four sensory tests. The function of all four systems declined with age. After age adjustment, there were no significant associations between sensory systems. Among 70–79-year-olds, dual or triple sensory impairment was associated with poorer physical performance. Discussion. Our findings suggest that beyond the common mechanism of aging, other distinct (nonshared) etiologic mechanisms may contribute to decline in each sensory system. Multiple sensory impairments influence physical performance among individuals in middle old-age (age 70–79). PMID:27774319
Levels of steering control: Reproduction of steering-wheel movements
NASA Technical Reports Server (NTRS)
Godthelp, H.
1982-01-01
A schematic description of the steering control process is presented. It is shown that this process can be described in terms of levels of control. Level of control will depend on driver's skill in making use of 'clever' strategies which may be related to knowledge about the path to follow (input) and/or the vehicle under control. This knowledge may be referred to as an internal model of a particular task element. Internal information, as derived from these internal models will probably be used together with proprioceptive feedback. It is hypothesized that the efficiency of the higher levels of control will be dependent on the accuracy of both the internal and proprioceptive information. Based on this research philosophy a series of experiments is carried out. Two primary experiments were done in order to analyse subjects' ability to reproduce steering-wheel positions and movements without visual feedback. Steering-wheel angle amplitude, steering force and movement frequency were involved as independent variables.
Proprioception in Dance: A Comparative Review of Understandings and Approaches to Research
ERIC Educational Resources Information Center
Barlow, Rachel
2018-01-01
Proprioception is an ongoing topic of interest in dance research. Yet 'proprioception' can have a wide range of meanings, and therefore is studied in many different ways. This research presents a review of existing studies of proprioception in dance. The review comprised 4 main stages: stage (1) background research; stage (2) proposing a working…
To develop behavioral tests of vestibular functioning in the Wistar rat
NASA Technical Reports Server (NTRS)
Nielson, H. C.
1980-01-01
Two tests of vestibular functioning in the rat were developed. The first test was the water maze. In the water maze the rat does not have the normal proprioceptive feedback from its limbs to help it maintain its orientation, and must rely primarily on the sensory input from its visual and vestibular systems. By altering lighting conditions and visual cues the vestibular functioning without visual cues was assessed. Whether there was visual compensation for some vestibular dysfunction was determined. The second test measured vestibular functioning of the rat's behavior on a parallel swing. In this test the rat's postural adjustments while swinging on the swing with the otoliths being stimulated were assessed. Less success was achieved in developing the parallel swing as a test of vestibular functioning than with the water maze. The major problem was incorrect initial assumptions of what the rat's probable behavior on the parallel swing would be.
Brescó de Luna, Ignacio
2017-01-01
Collective memory and identity so often go hand in hand with conflicts. Alongside the use of violence, conflicts unfold against the backdrop of different narratives about the past through which groups constantly remind themselves of the supposed origin of the conflict, and consequently, what position individuals are expected to take as members of the group. Narratives – as symbolic tools for interpreting the past and the present, as well as happenings that have yet to occur – simultaneously underpin, and are underpinned by, the position held by each warring faction. Drawing on previous works, this paper compares different versions of the 2016 truce period in the Basque Country stemming from three subjects identified, to varying degrees, with the main political actors involved in that conflict. These three cases have been selected from a total of 16 participants who were asked to define the Basque conflict and to provide an account of the 2006 truce period by using 23 documents taken from different Spanish newspapers. On the one hand, the results show two narratives reproducing the versions of two of the main political actors involved in the conflict, and on the other hand, a narrative characterized by a more personal and ironic appropriation of those versions. Results are discussed vis-à-vis the use of irony in history teaching in increasingly plural societies. PMID:28904601
Enticott, Peter G.; Kennedy, Hayley A.; Rinehart, Nicole J.; Bradshaw, John L.; Tonge, Bruce J.; Daskalakis, Zafiris J.; Fitzgerald, Paul B.
2013-01-01
The mirror neuron hypothesis of autism is highly controversial, in part because there are conflicting reports as to whether putative indices of mirror system activity are actually deficient in autism spectrum disorder (ASD). Recent evidence suggests that a typical putative mirror system response may be seen in people with an ASD when there is a degree of social relevance to the visual stimuli used to elicit that response. Individuals with ASD (n = 32) and matched neurotypical controls (n = 32) completed a transcranial magnetic stimulation (TMS) experiment in which the left primary motor cortex (M1) was stimulated during the observation of static hands, individual (i.e., one person) hand actions, and interactive (i.e., two person) hand actions. Motor-evoked potentials (MEP) were recorded from the contralateral first dorsal interosseous, and used to generate an index of interpersonal motor resonance (IMR; a putative measure of mirror system activity) during action observation. There was no difference between ASD and NT groups in the level of IMR during the observation of these actions. These findings provide evidence against a global mirror system deficit in ASD, and this evidence appears to extend beyond stimuli that have social relevance. Attentional and visual processing influences may be important for understanding the apparent role of IMR in the pathophysiology of ASD. PMID:23734121
Seeing the hand while reaching speeds up on-line responses to a sudden change in target position
Reichenbach, Alexandra; Thielscher, Axel; Peer, Angelika; Bülthoff, Heinrich H; Bresciani, Jean-Pierre
2009-01-01
Goal-directed movements are executed under the permanent supervision of the central nervous system, which continuously processes sensory afferents and triggers on-line corrections if movement accuracy seems to be compromised. For arm reaching movements, visual information about the hand plays an important role in this supervision, notably improving reaching accuracy. Here, we tested whether visual feedback of the hand affects the latency of on-line responses to an external perturbation when reaching for a visual target. Two types of perturbation were used: visual perturbation consisted in changing the spatial location of the target and kinesthetic perturbation in applying a force step to the reaching arm. For both types of perturbation, the hand trajectory and the electromyographic (EMG) activity of shoulder muscles were analysed to assess whether visual feedback of the hand speeds up on-line corrections. Without visual feedback of the hand, on-line responses to visual perturbation exhibited the longest latency. This latency was reduced by about 10% when visual feedback of the hand was provided. On the other hand, the latency of on-line responses to kinesthetic perturbation was independent of the availability of visual feedback of the hand. In a control experiment, we tested the effect of visual feedback of the hand on visual and kinesthetic two-choice reaction times – for which coordinate transformation is not critical. Two-choice reaction times were never facilitated by visual feedback of the hand. Taken together, our results suggest that visual feedback of the hand speeds up on-line corrections when the position of the visual target with respect to the body must be re-computed during movement execution. This facilitation probably results from the possibility to map hand- and target-related information in a common visual reference frame. PMID:19675067
Pozeg, Polona; Galli, Giulia; Blanke, Olaf
2015-01-01
Experiencing a body part as one’s own, i.e., body ownership, depends on the integration of multisensory bodily signals (including visual, tactile, and proprioceptive information) with the visual top-down signals from peripersonal space. Although it has been shown that the visuo-spatial viewpoint from where the body is seen is an important visual top-down factor for body ownership, different studies have reported diverging results. Furthermore, the role of visuo-spatial viewpoint (sometime also called first-person perspective) has only been studied for hands or the whole body, but not for the lower limbs. We thus investigated whether and how leg visuo-tactile integration and leg ownership depended on the visuo-spatial viewpoint from which the legs were seen and the anatomical similarity of the visual leg stimuli. Using a virtual leg illusion, we tested the strength of visuo-tactile integration of leg stimuli using the crossmodal congruency effect (CCE) as well as the subjective sense of leg ownership (assessed by a questionnaire). Fifteen participants viewed virtual legs or non-corporeal control objects, presented either from their habitual first-person viewpoint or from a viewpoint that was rotated by 90°(third-person viewpoint), while applying visuo-tactile stroking between the participants legs and the virtual legs shown on a head-mounted display. The data show that the first-person visuo-spatial viewpoint significantly boosts the visuo-tactile integration as well as the sense of leg ownership. Moreover, the viewpoint-dependent increment of the visuo-tactile integration was only found in the conditions when participants viewed the virtual legs (absent for control objects). These results confirm the importance of first person visuo-spatial viewpoint for the integration of visuo-tactile stimuli and extend findings from the upper extremity and the trunk to visuo-tactile integration and ownership for the legs. PMID:26635663
Hosp, Simona; Bottoni, Giuliamarta; Heinrich, Dieter; Kofler, Philipp; Hasler, Michael; Nachbauer, Werner
2015-11-01
Kinesiology tape has gained significant popularity in recent years and is widely used as an adjunct for treatment and prevention of musculoskeletal injuries. However, evidence regarding its influence on knee proprioception is scarce. The purpose of this study was to evaluate the effect of Kinesiology tape on knee proprioception after physical activity in healthy women. It was hypothesized that Kinesiology tape enhances knee proprioception. Longitudinal analysis, pretest-posttest design. Twelve young women with healthy knees were tested for knee proprioception without the use of Kinesiology tape and wearing Kinesiology tape at the knee. The joint position sense was measured at the start and after a 30-min uphill walking protocol on a treadmill. Outcome was the knee angle deviation. No significant difference of proprioceptive performance between the application with Kinesiology tape and without Kinesiology tape was found after uphill walking (p > 0.05). However, when the participants' results for knee angle deviation were graded into good (< 6.1°) and poor ( > 6.1°), Kinesiology tape significantly enhanced those with poor proprioceptive ability after uphill walking, compared to the untaped knee (p = 0.002). This study has shown that the application of Kinesiology tape did not improve knee proprioception in a group of healthy young women. However, it also has demonstrated that Kinesiology tape provided significant proprioceptive enhancement at the knee joint after uphill walking in healthy women with poor proprioceptive ability. This may support its use in sports medicine for preventing knee injuries. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bernauer, E. M.; Walby, W. F.; Ertl, A. C.; Dempster, P. T.; Bond, M.; Greenleaf, J. E.
1994-01-01
To determine if daily isotonic exercise or isokinetic exercise training coupled with daily leg proprioceptive training, would influence leg proprioceptive tracking responses during bed rest (BR), 19 men (36 +/- SD 4 years, 178 +/- 7 cm, 76.8 +/- 7.8 kg) were allocated into a no-exercise (NOE) training control group (n = 5), and isotonic exercise (ITE, n = 7) and isokinetic exercise (IKE, n = 7) training groups. Exercise training was conducted during BR for two 30-min periods.d-1, 5 d.week-1. Only the IKE group performed proprioceptive training using a new isokinetic procedure with each lower extremity for 2.5 min before and after the daily exercise training sessions; proprioceptive testing occurred weekly for all groups. There were no significant differences in proprioceptive tracking scores, expressed as a percentage of the perfect score of 100, in the pre-BR ambulatory control period between the three groups. Knee extension and flexion tracking responses were unchanged with NOE during BR, but were significantly greater (*p < 0.05) at the end of BR in both exercise groups when compared with NOE responses (extension: NOE 80.7 +/- 0.7%, ITE 82.9* +/- 0.6%, IKE 86.5* +/- 0.7%; flexion: NOE 77.6 +/- 1.5%, ITE 80.0 +/- 0.8% (NS), IKE 83.6* +/- 0.8%). Although proprioceptive tracking was unchanged during BR with NOE, both isotonic exercise training (without additional proprioceptive training) and especially isokinetic exercise training when combined with daily proprioceptive training, significantly improved knee proprioceptive tracking responses after 30 d of BR.
Bernauer, E M; Walby, W F; Ertl, A C; Dempster, P T; Bond, M; Greenleaf, J E
1994-12-01
To determine if daily isotonic exercise or isokinetic exercise training coupled with daily leg proprioceptive training, would influence leg proprioceptive tracking responses during bed rest (BR), 19 men (36 +/- SD 4 years, 178 +/- 7 cm, 76.8 +/- 7.8 kg) were allocated into a no-exercise (NOE) training control group (n = 5), and isotonic exercise (ITE, n = 7) and isokinetic exercise (IKE, n = 7) training groups. Exercise training was conducted during BR for two 30-min periods.d-1, 5 d.week-1. Only the IKE group performed proprioceptive training using a new isokinetic procedure with each lower extremity for 2.5 min before and after the daily exercise training sessions; proprioceptive testing occurred weekly for all groups. There were no significant differences in proprioceptive tracking scores, expressed as a percentage of the perfect score of 100, in the pre-BR ambulatory control period between the three groups. Knee extension and flexion tracking responses were unchanged with NOE during BR, but were significantly greater (*p < 0.05) at the end of BR in both exercise groups when compared with NOE responses (extension: NOE 80.7 +/- 0.7%, ITE 82.9* +/- 0.6%, IKE 86.5* +/- 0.7%; flexion: NOE 77.6 +/- 1.5%, ITE 80.0 +/- 0.8% (NS), IKE 83.6* +/- 0.8%). Although proprioceptive tracking was unchanged during BR with NOE, both isotonic exercise training (without additional proprioceptive training) and especially isokinetic exercise training when combined with daily proprioceptive training, significantly improved knee proprioceptive tracking responses after 30 d of BR.
Hoellinger, Thomas; McIntyre, Joseph; Jami, Lena; Hanneton, Sylvain; Cheron, Guy; Roby-Brami, Agnes
2017-08-15
It is not known whether, during the course of aging, changes occur in the motor strategies used by the CNS for lifting objects of different weights. Here, we analyzed the kinematics of object-lifting in two different healthy groups (young and elderly people) plus one well-known deafferented patient (GL). The task was to reach and lift onto a shelf an opaque cylindrical object with changing weight. The movements of the hand and object were recorded with electromagnetic sensors. In an ecological context (i.e. no instruction was given about movement speed), we found that younger participants, elderly people and GL did not all move at the same speed and that, surprisingly, elder people are faster. We also observed that the lifting trajectories were constant for both the elderly and the deafferented patient while younger participants raised their hand higher when the object weighed more. It appears that, depending on age and on available proprioceptive information, the CNS uses different strategies of lifting. We suggest that elder people tend to optimize their feedforward control in order to compensate for less functional afferent feedback, perhaps to optimize movement time and energy expenditure at the expense of high precision. In the case of complete loss of proprioceptive input, however, compensation follows a different strategy as suggested by GL's behavior who moved more slowly compared to both our younger and older participants. Copyright © 2017. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Oman, C. M.; Lichtenberg, B. K.; Mccoy, R. K.; Money, K. E.
1986-01-01
Three cases of motion sickness that occurred on Spacelab-1 are described. The relation between head movements and symptom intensity is examined. The effects of visual, tactile, and proprioceptive orientation cues on motion sickness are studied. The effectiveness of the drugs used is evaluated and it is observed that the drugs reduce the frequency of vomiting and overall discomfort. Preflight and postflight motion sickness susceptibility data are presented.
The Effect of Visual Experience on Perceived Haptic Verticality When Tilted in the Roll Plane
Cuturi, Luigi F.; Gori, Monica
2017-01-01
The orientation of the body in space can influence perception of verticality leading sometimes to biases consistent with priors peaked at the most common head and body orientation, that is upright. In this study, we investigate haptic perception of verticality in sighted individuals and early and late blind adults when tilted counterclockwise in the roll plane. Participants were asked to perform a stimulus orientation discrimination task with their body tilted to their left ear side 90° relative to gravity. Stimuli were presented by using a motorized haptic bar. In order to test whether different reference frames relative to the head influenced perception of verticality, we varied the position of the stimulus on the body longitudinal axis. Depending on the stimulus position sighted participants tended to have biases away or toward their body tilt. Visually impaired individuals instead show a different pattern of verticality estimations. A bias toward head and body tilt (i.e., Aubert effect) was observed in late blind individuals. Interestingly, no strong biases were observed in early blind individuals. Overall, these results posit visual sensory information to be fundamental in influencing the haptic readout of proprioceptive and vestibular information about body orientation relative to gravity. The acquisition of an idiotropic vector signaling the upright might take place through vision during development. Regarding early blind individuals, independent spatial navigation experience likely enhanced by echolocation behavior might have a role in such acquisition. In the case of participants with late onset blindness, early experience of vision might lead them to anchor their visually acquired priors to the haptic modality with no disambiguation between head and body references as observed in sighted individuals (Fraser et al., 2015). With our study, we aim to investigate haptic perception of gravity direction in unusual body tilts when vision is absent due to visual impairment. Insofar, our findings throw light on the influence of proprioceptive/vestibular sensory information on haptic perceived verticality in blind individuals showing how this phenomenon is affected by visual experience. PMID:29270109
Age-Related Decline of Wrist Position Sense and its Relationship to Specific Physical Training
Van de Winckel, Ann; Tseng, Yu-Ting; Chantigian, Daniel; Lorant, Kaitlyn; Zarandi, Zinat; Buchanan, Jeffrey; Zeffiro, Thomas A.; Larson, Mia; Olson-Kellogg, Becky; Konczak, Jürgen; Keller-Ross, Manda L.
2017-01-01
Perception of limb and body positions is known as proprioception. Sensory feedback, especially from proprioceptive receptors, is essential for motor control. Aging is associated with a decline in position sense at proximal joints, but there is inconclusive evidence of distal joints being equally affected by aging. In addition, there is initial evidence that physical activity attenuates age-related decline in proprioception. Our objectives were, first, to establish wrist proprioceptive acuity in a large group of seniors and compare their perception to young adults, and second, to determine if specific types of training or regular physical activity are associated with preserved wrist proprioception. We recruited community-dwelling seniors (n = 107, mean age, 70 ± 5 years, range, 65–84 years) without cognitive decline (Mini Mental State Examination-brief version ≥13/16) and young adult students (n = 51, mean age, 20 ± 1 years, range, 19–26 years). Participants performed contralateral and ipsilateral wrist position sense matching tasks with a bimanual wrist manipulandum to a 15° flexion reference position. Systematic error or proprioceptive bias was computed as the mean difference between matched and reference position. The respective standard deviation over five trials constituted a measure of random error or proprioceptive precision. Current levels of physical activity and previous sport, musical, or dance training were obtained through a questionnaire. We employed longitudinal mixed effects linear models to calculate the effects of trial number, sex, type of matching task and age on wrist proprioceptive bias and precision. The main results were that relative proprioceptive bias was greater in older when compared to young adults (mean difference: 36% ipsilateral, 88% contralateral, p < 0.01). Proprioceptive precision for contralateral but not for ipsilateral matching was smaller in older than in young adults (mean difference: 38% contralateral, p < 0.01). Longer years of dance training were associated with smaller bias during ipsilateral matching (p < 0.01). Other types of training or physical activity levels did not affect bias or precision. Our findings demonstrate that aging is associated with a decline in proprioceptive bias in distal arm joints, but age does not negatively affect proprioceptive precision. Further, specific types of long-term dance related training may attenuate age-related decline in proprioceptive bias. PMID:29209188
Age-Related Decline of Wrist Position Sense and its Relationship to Specific Physical Training.
Van de Winckel, Ann; Tseng, Yu-Ting; Chantigian, Daniel; Lorant, Kaitlyn; Zarandi, Zinat; Buchanan, Jeffrey; Zeffiro, Thomas A; Larson, Mia; Olson-Kellogg, Becky; Konczak, Jürgen; Keller-Ross, Manda L
2017-01-01
Perception of limb and body positions is known as proprioception. Sensory feedback, especially from proprioceptive receptors, is essential for motor control. Aging is associated with a decline in position sense at proximal joints, but there is inconclusive evidence of distal joints being equally affected by aging. In addition, there is initial evidence that physical activity attenuates age-related decline in proprioception. Our objectives were, first, to establish wrist proprioceptive acuity in a large group of seniors and compare their perception to young adults, and second, to determine if specific types of training or regular physical activity are associated with preserved wrist proprioception. We recruited community-dwelling seniors ( n = 107, mean age, 70 ± 5 years, range, 65-84 years) without cognitive decline (Mini Mental State Examination-brief version ≥13/16) and young adult students ( n = 51, mean age, 20 ± 1 years, range, 19-26 years). Participants performed contralateral and ipsilateral wrist position sense matching tasks with a bimanual wrist manipulandum to a 15° flexion reference position. Systematic error or proprioceptive bias was computed as the mean difference between matched and reference position. The respective standard deviation over five trials constituted a measure of random error or proprioceptive precision . Current levels of physical activity and previous sport, musical, or dance training were obtained through a questionnaire. We employed longitudinal mixed effects linear models to calculate the effects of trial number, sex, type of matching task and age on wrist proprioceptive bias and precision. The main results were that relative proprioceptive bias was greater in older when compared to young adults (mean difference: 36% ipsilateral, 88% contralateral, p < 0.01). Proprioceptive precision for contralateral but not for ipsilateral matching was smaller in older than in young adults (mean difference: 38% contralateral, p < 0.01). Longer years of dance training were associated with smaller bias during ipsilateral matching ( p < 0.01). Other types of training or physical activity levels did not affect bias or precision. Our findings demonstrate that aging is associated with a decline in proprioceptive bias in distal arm joints, but age does not negatively affect proprioceptive precision. Further, specific types of long-term dance related training may attenuate age-related decline in proprioceptive bias.
Developmental dyslexia and vision
Quercia, Patrick; Feiss, Léonard; Michel, Carine
2013-01-01
Developmental dyslexia affects almost 10% of school-aged children and represents a significant public health problem. Its etiology is unknown. The consistent presence of phonological difficulties combined with an inability to manipulate language sounds and the grapheme–phoneme conversion is widely acknowledged. Numerous scientific studies have also documented the presence of eye movement anomalies and deficits of perception of low contrast, low spatial frequency, and high frequency temporal visual information in dyslexics. Anomalies of visual attention with short visual attention spans have also been demonstrated in a large number of cases. Spatial orientation is also affected in dyslexics who manifest a preference for spatial attention to the right. This asymmetry may be so pronounced that it leads to a veritable neglect of space on the left side. The evaluation of treatments proposed to dyslexics whether speech or oriented towards the visual anomalies remains fragmentary. The advent of new explanatory theories, notably cerebellar, magnocellular, or proprioceptive, is an incentive for ophthalmologists to enter the world of multimodal cognition given the importance of the eye’s visual input. PMID:23690677
van der Esch, M; Knoop, J; Hunter, D J; Klein, J-P; van der Leeden, M; Knol, D L; Reiding, D; Voorneman, R E; Gerritsen, M; Roorda, L D; Lems, W F; Dekker, J
2013-05-01
Osteoarthritis (OA) of the knee is characterized by pain and activity limitations. In knee OA, proprioceptive accuracy is reduced and might be associated with pain and activity limitations. Although causes of reduced proprioceptive accuracy are divergent, medial meniscal abnormalities, which are highly prevalent in knee OA, have been suggested to play an important role. No study has focussed on the association between proprioceptive accuracy and meniscal abnormalities in knee OA. To explore the association between reduced proprioceptive accuracy and medial meniscal abnormalities in a clinical sample of knee OA subjects. Cross-sectional study in 105 subjects with knee OA. Knee proprioceptive accuracy was assessed by determining the joint motion detection threshold in the knee extension direction. The knee was imaged with a 3.0 T magnetic resonance (MR) scanner. Number of regions with medial meniscal abnormalities and the extent of abnormality in the anterior and posterior horn and body were scored according to the Boston-Leeds Osteoarthritis Knee Score (BLOKS) method. Multiple regression analyzes were used to examine whether reduced proprioceptive accuracy was associated with medial meniscal abnormalities in knee OA subjects. Mean proprioceptive accuracy was 2.9° ± 1.9°. Magnetic resonance imaging (MRI)-detected medial meniscal abnormalities were found in the anterior horn (78%), body (80%) and posterior horn (90%). Reduced proprioceptive accuracy was associated with both the number of regions with meniscal abnormalities (P < 0.01) and the extent of abnormality (P = 0.02). These associations were not confounded by muscle strength, joint laxity, pain, age, gender, body mass index (BMI) and duration of knee complaints. This is the first study showing that reduced proprioceptive accuracy is associated with medial meniscal abnormalities in knee OA. The study highlights the importance of meniscal abnormalities in understanding reduced proprioceptive accuracy in persons with knee OA. Copyright © 2013 Osteoarthritis Research Society International. All rights reserved.
Symmetry of proprioceptive sense in female soccer players.
Iwańska, Dagmara; Karczewska, Magdalena; Madej, Anna; Urbanik, Czesław
2015-01-01
The purpose of the study was to assess the symmetry of proprioceptive sense among female soccer players when trying to reproduce isometric knee extensions (right and left) and to analyze the impact of a given level of muscle force on proprioception. The study involved 12 soccer players aged 19.5 ± 2.65 years. Soccer players performed a control measurement of a maximum 3s (knee at the 90°) position in the joint. Subsequently, 70%, 50%, and 30% of the maximum voluntary contraction (MVC) were all calculated and then reproduced by each subject with feedback. Next, the players reproduced the predefined muscle contraction values in three sequences: A - 50%, 70%, 30%; B - 50%, 30%, 70%; C - 70%, 30%, 50% of MVC without visual control. In every sequence, the participants found obtaining the value of 30% of MVC the most difficult. The value they reproduced most accurately was 70% of MVC. Both trial II and trial III demonstrated that the symmetry index SI significantly differed from values considered acceptable (SIRa). In each successive sequence the largest asymmetry occurred while reproducing the lowest values of MVC (30%) (p < 0.05). High level of prioprioceptive sense is important to soccer players due to the extensive overload associated with dynamics stops or changes in direction while running. Special attention should be paid to develop skills in sensing force of varying levels. It was much harder to reproduce the predefined values if there was no feedback.
Treleaven, Julia; Peterson, Gunnel; Ludvigsson, Maria Landén; Kammerlind, Ann-Sofi; Peolsson, Anneli
2016-04-01
Dizziness and unsteadiness are common symptoms following a whiplash injury. To compare the effect of 3 exercise programs on balance, dizziness, proprioception and pain in patients with chronic whiplash complaining of dizziness. A sub-analysis of a randomized study. One hundred and forty subjects were randomized to either a physiotherapist-guided neck-specific exercise (NSE), physiotherapist-guided neck-specific exercise, with a behavioural approach (NSEB) or prescription of general physical activity (PPA) group. Pre intervention, 3, 6 and 12 months post baseline they completed the University of California Los Angeles Dizziness Questionnaire (UCLA-DQ), Visual Analogue Scales (VAS) for, dizziness at rest and during activity and physical measures (static and dynamic clinical balance tests and head repositioning accuracy (HRA)). There were significant time by group differences with respect to dizziness during activity and UCLA-Q favouring the physiotherapy led neck specific exercise group with a behavioural approach. Within group analysis of changes over time also revealed significant changes in most variables apart from static balance. Between and within group comparisons suggest that physiotherapist led neck exercise groups including a behavioural approach had advantages in improving measures of dizziness compared with the general physical activity group, although many still complained of dizziness and balance impairment. Future studies should consider exercises specifically designed to address balance, dizziness and cervical proprioception in those with persistent whiplash. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Smith, Toby O; King, Jonathan J; Hing, Caroline B
2012-11-01
Osteoarthritis (OA) is a leading cause of functional impairment and pain. Proprioceptive defects may be associated with the onset and progression of OA of the knee. The purpose of this study was to determine the effectiveness of proprioceptive exercises for knee OA using meta-analysis. A systematic review was conducted on 12th December 2011 using published (Cochrane Library, MEDLINE, EMBASE, CINAHL, AMED, PubMed, PEDro) and unpublished/trial registry (OpenGrey, the WHO International Clinical Trials Registry Platform, Current Controlled Trials and the UK National Research Register Archive) databases. Studies were included if they were full publications of randomized or non-randomised controlled trials (RCT) comparing a proprioceptive exercise regime, against a non-proprioceptive exercise programme or non-treatment control for adults with knee OA. Methodological appraisal was performed using the PEDro checklist. Seven RCTs including 560 participants (203 males and 357 females) with a mean age of 63 years were eligible. The methodological quality of the evidence base was moderate. Compared to a non-treatment control, proprioceptive exercises significantly improved functional outcomes in people with knee OA during the first 8 weeks following commencement of their exercises (p < 0.02). When compared against a general non-proprioceptive exercise programme, proprioceptive exercises demonstrated similar outcomes, only providing superior results with respect to joint position sense-related measurements such as timed walk over uneven ground (p = 0.03) and joint position angulation error (p < 0.01). Proprioceptive exercises are efficacious in the treatment of knee OA. There is some evidence to indicate the effectiveness of proprioceptive exercises compared to general strengthening exercises in functional outcomes.
Conflict in object affordance revealed by grip force
McBride, Jennifer; Sumner, Petroc; Husain, Masud
2011-01-01
Viewing objects can result in automatic, partial activation of motor plans associated with them—“object affordance”. Here, we recorded grip force simultaneously from both hands in an object affordance task to investigate the effects of conflict between coactivated responses. Participants classified pictures of objects by squeezing force transducers with their left or right hand. Responses were faster on trials where the object afforded an action with the same hand that was required to make the response (congruent trials) compared to the opposite hand (incongruent trials). In addition, conflict between coactivated responses was reduced if it was experienced on the preceding trial, just like Gratton adaptation effects reported in “conflict” tasks (e.g., Eriksen flanker). This finding suggests that object affordance demonstrates conflict effects similar to those shown in other stimulus–response mapping tasks and thus could be integrated into the wider conceptual framework on overlearnt stimulus–response associations. Corrected erroneous responses occurred more frequently when there was conflict between the afforded response and the response required by the task, providing direct evidence that viewing an object activates motor plans appropriate for interacting with that object. Recording continuous grip force, as here, provides a sensitive way to measure coactivated responses in affordance tasks. PMID:21824035
Letafatkar, Amir; Nazarzadeh, Maryam; Hadadnezhad, Malihe; Farivar, Niloufar
2017-08-03
There is a relation between deficits of the proprioceptive system and movement control dysfunction in patients with chronic low back pain (LBP) but, the exact mechanism of this relation is unknown. Exercise therapy has been recognized as an effective method for low back pain treatment. In spite of this, it is not clear which of the various exercise therapy programs lead to better results. Therefore, the present analyze the efficacy of a HUBER study aims to exercise system mediated sensorimotor training protocol on proprioceptive system, lumbar movement control (LMC) and quality of life (QOL) in patients with chronic non-specific LBP. Quasi-experimental study. 53 patients with chronic non-specific LBP (mean age 37.55 ± 6.67 years,and Body Mass Index (BMI) 22.4 ± 3.33) were selected by using Roland-Morris Disability Questionnaire (RMQ) and were assigned into two experimental (N= 27) and control groups (N= 26) The experimental group underwent a five-week (10 sessions) Sensorimotor training by using the Human Body Equalizer (HUBER) spine force under the supervision of an investigator. The movement control battery tests, the HUBER machine testing option, goniometer and visual analogue scale used for movement control, neuromuscular coordination, proprioception and LBP assessment respectively. The assessments were completed in pre-test and after five weeks. The paired and sample T tests were used for data analysis in SPSS program version 18 (Significance level were set at a P value < 0.05). The HUBER system mediated sensorimotor training demonstrated significant improvement in the proprioceptive system, LMC and QOL (P= 0.001). Also There was a significant reduction in the pain scores of subjects with chronic non-specific LBP in the sensorimotor group (P= 0.001). In this study, only the short term effects of the sensorimotor training were examined. The results suggest that a sensorimotor training program causes significant improvement in patients with chronic non-specific LBP. Future research should be carried out with a larger sample size to examine the long term effects of the sensorimotor training program on treatment of patients with chronic non-specific LBP. Considering the efficacy of the sensorimotor training, it is recommended that this intervention should be applied to treatment of patients with chronic non-specific LBP in the future.
Introspection of subjective feelings is sensitive and specific.
Questienne, Laurence; van Dijck, Jean-Philippe; Gevers, Wim
2018-02-01
Conversely to behaviorist ideas, recent studies suggest that introspection can be accurate and reliable. However, an unresolved question is whether people are able to report specific aspects of their phenomenal experience, or whether they report more general nonspecific experiences. To address this question, we investigated the sensitivity and validity of our introspection for different types of conflict. Taking advantage of the congruency sequence effect, we dissociated response conflict while keeping visual conflict unchanged in a Stroop and in a priming task. Participants were subsequently asked to report on either their experience of urge to err or on their feeling of visual conflict. Depending on the focus of the introspection, subjective reports specifically followed either the response conflict or the visual conflict. These results demonstrate that our introspective reports can be sensitive and that we are able to dissociate specific aspects of our phenomenal experiences in a valid manner. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Ito, Tadashi; Sakai, Yoshihito; Nakamura, Eishi; Yamazaki, Kazunori; Yamada, Ayaka; Sato, Noritaka; Morita, Yoshifumi
2015-07-01
[Purpose] The purpose of this study was to examine the relationship between the paraspinal muscle cross-sectional area and the relative proprioceptive weighting ratio during local vibratory stimulation of older persons with lumbar spondylosis in an upright position. [Subjects] In all, 74 older persons hospitalized for lumbar spondylosis were included. [Methods] We measured the relative proprioceptive weighting ratio of postural sway using a Wii board while vibratory stimulations of 30, 60, or 240 Hz were applied to the subjects' paraspinal or gastrocnemius muscles. Back strength, abdominal muscle strength, and erector spinae muscle (L1/L2, L4/L5) and lumbar multifidus (L1/L2, L4/L5) cross-sectional areas were evaluated. [Results] The erector spinae muscle (L1/L2) cross-sectional area was associated with the relative proprioceptive weighting ratio during 60Hz stimulation. [Conclusion] These findings show that the relative proprioceptive weighting ratio compared to the erector spinae muscle (L1/L2) cross-sectional area under 60Hz proprioceptive stimulation might be a good indicator of trunk proprioceptive sensitivity.
Paloski, W H; Black, F O; Reschke, M F; Calkins, D S; Shupert, C
1993-01-01
Orbital spaceflight exposes astronauts to an environment in which gravity is reduced to negligible magnitudes of 10(-3) to 10(-6) G. Upon insertion into earth orbit, the abrupt loss of the constant linear acceleration provided by gravity removes the otolith stimulus for vestibular sensation of vertical orientation constantly present on Earth. Since the central nervous system (CNS) assesses spatial orientation by simultaneously interpreting sensory inputs from the vestibular, visual, and proprioceptive systems, loss of the otolith-mediated vertical reference input results in an incorrect estimation of spatial orientation, which, in turn, causes a degradation in movement control. Over time, however, the CNS adapts to the loss of gravitational signals. Upon return to Earth, the vertical reference provided by gravitational stimulation of the otolith organ reappears. As a result, a period of CNS readaptation must occur upon return to terrestrial environment. Among the physiological changes observed during the postflight CNS readaptation period is a disruption of postural equilibrium control. Using a dynamic posturography system (modified NeuroCom EquiTest), 16 astronauts were tested at 60, 30, and 10 days preflight and retested at 1 to 5 hours, and 8 days postflight. All astronauts tested demonstrated decreased postural stability immediately upon return to Earth. The most dramatic increases in postural sway occurred during those sensory conditions in which both the visual and proprioceptive feedback information used for postural control were altered by the dynamic posturography system, requiring reliance primarily upon vestibular function for control of upright stance. Less marked but statistically significant increases in sway were observed under those conditions in which visual and foot support surface inputs alone were altered.(ABSTRACT TRUNCATED AT 250 WORDS)
Yelnik, A P; Tasseel Ponche, S; Andriantsifanetra, C; Provost, C; Calvalido, A; Rougier, P
2015-12-01
The Romberg test, with the subject standing and with eyes closed, gives diagnostic arguments for a proprioceptive disorder. Closing the eyes is also used in balance rehabilitation as a main way to stimulate neural plasticity with proprioceptive, vestibular and even cerebellar disorders. Nevertheless, standing and walking with eyes closed or with eyes open in the dark are certainly 2 different tasks. We aimed to compare walking with eyes open, closed and wearing black or white goggles in healthy subjects. A total of 50 healthy participants were randomly divided into 2 protocols and asked to walk on a 5-m pressure-sensitive mat, under 3 conditions: (1) eyes open (EO), eyes closed (EC) and eyes open with black goggles (BG) and (2) EO, EO with BG and with white goggles (WG). Gait was described by velocity (m·s(-1)), double support (% gait cycle), gait variability index (GVI/100) and exit from the mat (%). Analysis involved repeated measures Anova, Holm-Sidak's multiple comparisons test for parametric parameters (GVI) and Dunn's multiple comparisons test for non-parametric parameters. As compared with walking with EC, walking with BG produced lower median velocity, by 6% (EO 1.26; BG 1.01 vs EC 1.07 m·s(-1), P=0.0328), and lower mean GVI, by 8% (EO 91.8; BG 66.8 vs EC 72.24, P=0.009). Parameters did not differ between walking under the BG and WG conditions. The goggle task increases the difficulty in walking with visual deprivation compared to the Romberg task, so the goggle task can be proposed to gradually increase the difficulty in walking with visual deprivation (from eyes closed to eyes open in black goggles). Copyright © 2015 Elsevier Masson SAS. All rights reserved.
NASA Technical Reports Server (NTRS)
Igarashi, Makoto; Himi, Tetsuo; Kulecz, Walter B.; Kobayashi, Kazutoyo
1987-01-01
The effects of ablation of the macula utriculi and macula sacculi on vestibular-visual conflict emesis in squirrel monkeys are investigated. An optokinetic drum and a turntable were used for the direction conflict experiment. A significant difference between the preoperative condition and postunilateral and postbilateral utriculo-sacculectomy conditions is observed. It is detected that after unilateral sacculectomy the conflict sickness decreases and no emesis occurs; however, 4.5 months after sacculectomy, the animals regain their conflict sickness. The data reveal that macular afferents are important in the genesis of sensory conflict emesis and two submodalities may be needed to cause conflict sickness onset.
2007-11-14
Artificial intelligence and 4 23 education , Volume 1: Learning environments and tutoring systems. Hillsdale, NJ: Erlbaum. Wickens, C.D. (1984). Processing...and how to use it to best optimize the learning process. Some researchers (see Loftin & Savely, 1991) have proposed adding intelligent systems to the...is experienced as the cognitive centers in an individual’s brain process visual, tactile, kinesthetic , olfactory, proprioceptive, and auditory
McMenamin, Brenton W.; Marsolek, Chad J.; Morseth, Brianna K.; Speer, MacKenzie F.; Burton, Philip C.; Burgund, E. Darcy
2016-01-01
Object categorization and exemplar identification place conflicting demands on the visual system, yet humans easily perform these fundamentally contradictory tasks. Previous studies suggest the existence of dissociable visual processing subsystems to accomplish the two abilities – an abstract category (AC) subsystem that operates effectively in the left hemisphere, and a specific exemplar (SE) subsystem that operates effectively in the right hemisphere. This multiple subsystems theory explains a range of visual abilities, but previous studies have not explored what mechanisms exist for coordinating the function of multiple subsystems and/or resolving the conflicts that would arise between them. We collected functional MRI data while participants performed two variants of a cue-probe working memory task that required AC or SE processing. During the maintenance phase of the task, the bilateral intraparietal sulcus (IPS) exhibited hemispheric asymmetries in functional connectivity consistent with exerting proactive control over the two visual subsystems: greater connectivity to the left hemisphere during the AC task, and greater connectivity to the right hemisphere during the SE task. Moreover, probe-evoked activation revealed activity in a broad fronto-parietal network (containing IPS) associated with reactive control when the two visual subsystems were in conflict, and variations in this conflict signal across trials was related to the visual similarity of the cue/probe stimulus pairs. Although many studies have confirmed the existence of multiple visual processing subsystems, this study is the first to identify the mechanisms responsible for coordinating their operations. PMID:26883940
McMenamin, Brenton W; Marsolek, Chad J; Morseth, Brianna K; Speer, MacKenzie F; Burton, Philip C; Burgund, E Darcy
2016-06-01
Object categorization and exemplar identification place conflicting demands on the visual system, yet humans easily perform these fundamentally contradictory tasks. Previous studies suggest the existence of dissociable visual processing subsystems to accomplish the two abilities-an abstract category (AC) subsystem that operates effectively in the left hemisphere and a specific exemplar (SE) subsystem that operates effectively in the right hemisphere. This multiple subsystems theory explains a range of visual abilities, but previous studies have not explored what mechanisms exist for coordinating the function of multiple subsystems and/or resolving the conflicts that would arise between them. We collected functional MRI data while participants performed two variants of a cue-probe working memory task that required AC or SE processing. During the maintenance phase of the task, the bilateral intraparietal sulcus (IPS) exhibited hemispheric asymmetries in functional connectivity consistent with exerting proactive control over the two visual subsystems: greater connectivity to the left hemisphere during the AC task, and greater connectivity to the right hemisphere during the SE task. Moreover, probe-evoked activation revealed activity in a broad frontoparietal network (containing IPS) associated with reactive control when the two visual subsystems were in conflict, and variations in this conflict signal across trials was related to the visual similarity of the cue-probe stimulus pairs. Although many studies have confirmed the existence of multiple visual processing subsystems, this study is the first to identify the mechanisms responsible for coordinating their operations.
Effects of head movement and proprioceptive feedback in training of sound localization
Honda, Akio; Shibata, Hiroshi; Hidaka, Souta; Gyoba, Jiro; Iwaya, Yukio; Suzuki, Yôiti
2013-01-01
We investigated the effects of listeners' head movements and proprioceptive feedback during sound localization practice on the subsequent accuracy of sound localization performance. The effects were examined under both restricted and unrestricted head movement conditions in the practice stage. In both cases, the participants were divided into two groups: a feedback group performed a sound localization drill with accurate proprioceptive feedback; a control group conducted it without the feedback. Results showed that (1) sound localization practice, while allowing for free head movement, led to improvement in sound localization performance and decreased actual angular errors along the horizontal plane, and that (2) proprioceptive feedback during practice decreased actual angular errors in the vertical plane. Our findings suggest that unrestricted head movement and proprioceptive feedback during sound localization training enhance perceptual motor learning by enabling listeners to use variable auditory cues and proprioceptive information. PMID:24349686
Muaidi, Qassim I
2016-11-21
Knee proprioception in the sagittal plane has been widely investigated in prospective studies, however limited information is known about proprioceptive acuity during active knee rotation and the way most commonly injured. To investigate whether proprioceptive acuity during active internal and external knee rotation varies at different ranges in the transverse plane. Healthy volunteers (N: 26) without previous injury or surgery of the knee joint participated in the study.Knee rotation proprioceptive acuity was measured using a custom-designed device. The measure of proprioceptive acuity used in this study was the just-noticeable-difference (JND). Participants actively rotated the knee at different intervals(initial, mid, and terminal internal or external rotation range) to one of four movement blocks and the magnitude of the permitted motion was judged. The means of the JND for proprioceptive acuity at initial internal rotation (0.80° ± 0.06) were significantly (p< 0.002) lower than for mid (1.62° ± 0.18), and terminal (2.08° ± 0.35) internal rotation. The means of the JND for proprioceptive acuity at initial external rotation (1.16° ± 0.10) were significantly (p< 0.04) lower than for mid (1.95° ± 0.30), and terminal (1.97° ± 0.24) internal rotation. Participants perceived smaller differences between active internal and external rotation movements at initial rotation range than at the mid and terminal rotation range of movement. This suggests better proprioceptive acuity at the initial rotation range of movement in the transverse plane.
NASA Technical Reports Server (NTRS)
Bernauer, E. M.; Walby, W. F.; Ertl, A. C.; Dempster, P. T.; Bond, M.; Greenleaf, J. E.
1994-01-01
To determine if daily isotonic exercise or isokinetic exercise training coupled with daily log proprioceptive training, would influence log proprioceptive tracking responses during Bed Rest (BR), 19 men (36 +/- SD 4 years, 178 +/- 7 cm, 76.8 +/- 7.8 kg) were allocated into a NO-Exercise (NOE) training control group (n = 5), and IsoTanic Exercise (ITE, n = 7) and IsoKinetic Exercise (IKE, n = 7) training groups. Exercise training was conducted during BR for two 30-min period / d, 5 d /week. Only the IKE group performed proprioceptive training using a now isokinetic procedure with each lower extremity for 2.5 min before and after the daily exercise training sessions; proprioceptive testing occurred weekly for all groups. There were no significant differences in proprioceptive tracking scores, expressed as a percentage of the perfect score of 100, in the pro-BR ambulatory control period between the three groups. Knee extension and flexion tracking responses were unchanged with NOE during BR, but were significantly greater (*p less than 0.05) at the end of BR in both exercise groups when compared with NOE responses (extension: NOE 80.7 +/- 0.7%, ITE 82.9 +/- 0.6%, IKE 86.5* +/- 0.7%; flexion: NOE 77.6 +/- 1.50, ITE 80.0 +/- 0.8% (NS), IKE 83.6* +/- 0.8%). Although proprioceptive tracking was unchanged during BR with NOE, both lsotonic exercise training (without additional propriaceptive training) and especially isokinetic exercise training when combined with daily proprioceptive training, significantly improved knee proprioceptive tracking responses after 30 d of BR.
Scheper, Mark; Rombaut, Lies; de Vries, Janneke; De Wandele, Inge; van der Esch, Martin; Visser, Bart; Malfait, Franciska; Calders, Patrick; Engelbert, Raoul
2017-07-01
The patients diagnosed with Ehlers-Danlos Syndrome Hypermobility Type (EDS-HT) are characterized by pain, proprioceptive inacuity, muscle weakness, potentially leading to activity limitations. In EDS-HT, a direct relationship between muscle strength, proprioception and activity limitations has never been studied. The objective of the study was to establish the association between muscle strength and activity limitations and the impact of proprioception on this association in EDS-HT patients. Twenty-four EDS-HT patients were compared with 24 controls. Activity limitations were quantified by Health Assessment Questionnaire (HAQ), Six-Minute Walk test (6MWT) and 30-s chair-rise test (30CRT). Muscle strength was quantified by handheld dynamometry. Proprioception was quantified by movement detection paradigm. In analyses, the association between muscle strength and activity limitations was controlled for proprioception and confounders. Muscle strength was associated with 30CRT (r = 0.67, p = <0.001), 6MWT (r = 0.58, p = <0.001) and HAQ (r = 0.63, p= <0.001). Proprioception was associated with 30CRT (r = 0.55, p < 0.001), 6MWT (r = 0.40, p = <0.05) and HAQ (r = 0.46, p < 0.05). Muscle strength was found to be associated with activity limitations, however, proprioceptive inacuity confounded this association. Muscle strength is associated with activity limitations in EDS-HT patients. Joint proprioception is of influence on this association and should be considered in the development of new treatment strategies for patients with EDS-HT. Implications for rehabilitation Reducing activity limitations by enhancing muscle strength is frequently applied in the treatment of EDS-HT patients. Although evidence regarding treatment efficacy is scarce, the current paper confirms the rationality that muscle strength is an important factor in the occurrence of activity limitations in EDS-HT patients. Although muscle strength is the most dominant factor that is associated with activity limitations, this association is confounded by proprioception. In contrast to common belief proprioception was not directly associated with activity limitations but confounded this association. Controlling muscle strength on the bases of proprioceptive input may be more important for reducing activity limitations than just enhancing sheer muscle strength.
Proprioceptive isokinetic exercise test
NASA Technical Reports Server (NTRS)
Dempster, P. T.; Bernauer, E. M.; Bond, M.; Greenleaf, J. E.
1993-01-01
Proprioception, the reception of stimuli within the body that indicates position, is an important mechanism for optimal human performance. People exposed to prolonged bed rest, microgravity, or other deconditioning situations usually experience reduced proprioceptor and kinesthetic stimuli that compromise body balance, posture, and equilibrium. A new proprioceptive test is described that utilizes the computer-driven LIDO isokinetic ergometer. An overview of the computer logic, software, and testing procedure for this proprioceptive test, which can be performed with the arms or legs, is described.
Visual Occlusion Decreases Motion Sickness in a Flight Simulator.
Ishak, Shaziela; Bubka, Andrea; Bonato, Frederick
2018-05-01
Sensory conflict theories of motion sickness (MS) assert that symptoms may result when incoming sensory inputs (e.g., visual and vestibular) contradict each other. Logic suggests that attenuating input from one sense may reduce conflict and hence lessen MS symptoms. In the current study, it was hypothesized that attenuating visual input by blocking light entering the eye would reduce MS symptoms in a motion provocative environment. Participants sat inside an aircraft cockpit mounted onto a motion platform that simultaneously pitched, rolled, and heaved in two conditions. In the occluded condition, participants wore "blackout" goggles and closed their eyes to block light. In the control condition, participants opened their eyes and had full view of the cockpit's interior. Participants completed separate Simulator Sickness Questionnaires before and after each condition. The posttreatment total Simulator Sickness Questionnaires and subscores for nausea, oculomotor, and disorientation in the control condition were significantly higher than those in the occluded condition. These results suggest that under some conditions attenuating visual input may delay the onset of MS or weaken the severity of symptoms. Eliminating visual input may reduce visual/nonvisual sensory conflict by weakening the influence of the visual channel, which is consistent with the sensory conflict theory of MS.
Neural mechanisms of limb position estimation in the primate brain.
Shi, Ying; Buneo, Christopher A
2011-01-01
Understanding the neural mechanisms of limb position estimation is important both for comprehending the neural control of goal directed arm movements and for developing neuroprosthetic systems designed to replace lost limb function. Here we examined the role of area 5 of the posterior parietal cortex in estimating limb position based on visual and somatic (proprioceptive, efference copy) signals. Single unit recordings were obtained as monkeys reached to visual targets presented in a semi-immersive virtual reality environment. On half of the trials animals were required to maintain their limb position at these targets while receiving both visual and non-visual feedback of their arm position, while on the other trials visual feedback was withheld. When examined individually, many area 5 neurons were tuned to the position of the limb in the workspace but very few neurons modulated their firing rates based on the presence/absence of visual feedback. At the population level however decoding of limb position was somewhat more accurate when visual feedback was provided. These findings support a role for area 5 in limb position estimation but also suggest that visual signals regarding limb position are only weakly represented in this area, and only at the population level.
Gatica-Rojas, Valeska; Méndez-Rebolledo, Guillermo
2014-04-15
Two key characteristics of all virtual reality applications are interaction and immersion. Systemic interaction is achieved through a variety of multisensory channels (hearing, sight, touch, and smell), permitting the user to interact with the virtual world in real time. Immersion is the degree to which a person can feel wrapped in the virtual world through a defined interface. Virtual reality interface devices such as the Nintendo® Wii and its peripheral nunchuks-balance board, head mounted displays and joystick allow interaction and immersion in unreal environments created from computer software. Virtual environments are highly interactive, generating great activation of visual, vestibular and proprioceptive systems during the execution of a video game. In addition, they are entertaining and safe for the user. Recently, incorporating therapeutic purposes in virtual reality interface devices has allowed them to be used for the rehabilitation of neurological patients, e.g., balance training in older adults and dynamic stability in healthy participants. The improvements observed in neurological diseases (chronic stroke and cerebral palsy) have been shown by changes in the reorganization of neural networks in patients' brain, along with better hand function and other skills, contributing to their quality of life. The data generated by such studies could substantially contribute to physical rehabilitation strategies.
Gatica-Rojas, Valeska; Méndez-Rebolledo, Guillermo
2014-01-01
Two key characteristics of all virtual reality applications are interaction and immersion. Systemic interaction is achieved through a variety of multisensory channels (hearing, sight, touch, and smell), permitting the user to interact with the virtual world in real time. Immersion is the degree to which a person can feel wrapped in the virtual world through a defined interface. Virtual reality interface devices such as the Nintendo® Wii and its peripheral nunchuks-balance board, head mounted displays and joystick allow interaction and immersion in unreal environments created from computer software. Virtual environments are highly interactive, generating great activation of visual, vestibular and proprioceptive systems during the execution of a video game. In addition, they are entertaining and safe for the user. Recently, incorporating therapeutic purposes in virtual reality interface devices has allowed them to be used for the rehabilitation of neurological patients, e.g., balance training in older adults and dynamic stability in healthy participants. The improvements observed in neurological diseases (chronic stroke and cerebral palsy) have been shown by changes in the reorganization of neural networks in patients’ brain, along with better hand function and other skills, contributing to their quality of life. The data generated by such studies could substantially contribute to physical rehabilitation strategies. PMID:25206907
Saradjian, Anahid H.; Paleressompoulle, Dany; Louber, Didier; Coyle, Thelma; Blouin, Jean; Mouchnino, Laurence
2014-01-01
We recently found that the cortical response to proprioceptive stimulation was greater when participants were planning a step than when they stood still, and that this sensory facilitation was suppressed in microgravity. The aim of the present study was to test whether the absence of gravity-related sensory afferents during movement planning in microgravity prevented the proprioceptive cortical processing to be enhanced. We reestablished a reference frame in microgravity by providing and translating a horizontal support on which the participants were standing and verified whether this procedure restored the proprioceptive facilitation. The slight translation of the base of support (lateral direction), which occurred prior to step initiation, stimulated at least cutaneous and vestibular receptors. The sensitivity to proprioceptive stimulation was assessed by measuring the amplitude of the cortical somatosensory-evoked potential (SEP, over the Cz electrode) following the vibration of the leg muscle. The vibration lasted 1 s and the participants were asked to either initiate a step at the vibration offset or to remain still. We found that the early SEP (90–160 ms) was smaller when the platform was translated than when it remained stationary, revealing the existence of an interference phenomenon (i.e., when proprioceptive stimulation is preceded by the stimulation of different sensory modalities evoked by the platform translation). By contrast, the late SEP (550 ms post proprioceptive stimulation onset) was greater when the translation preceded the vibration compared to a condition without pre-stimulation (i.e., no translation). This suggests that restoring a body reference system which is impaired in microgravity allowed a greater proprioceptive cortical processing. Importantly, however, the late SEP was similarly increased when participants either produced a step or remained still. We propose that the absence of step-induced facilitation of proprioceptive cortical processing results from a decreased weight of proprioception in the absence of balance constraints in microgravity. PMID:25259838
Voxel-based lesion-symptom mapping of stroke lesions underlying somatosensory deficits
Meyer, Sarah; Kessner, Simon S.; Cheng, Bastian; Bönstrup, Marlene; Schulz, Robert; Hummel, Friedhelm C.; De Bruyn, Nele; Peeters, Andre; Van Pesch, Vincent; Duprez, Thierry; Sunaert, Stefan; Schrooten, Maarten; Feys, Hilde; Gerloff, Christian; Thomalla, Götz; Thijs, Vincent; Verheyden, Geert
2015-01-01
The aim of this study was to investigate the relationship between stroke lesion location and the resulting somatosensory deficit. We studied exteroceptive and proprioceptive somatosensory symptoms and stroke lesions in 38 patients with first-ever acute stroke. The Erasmus modified Nottingham Sensory Assessment was used to clinically evaluate somatosensory functioning in the arm and hand within the first week after stroke onset. Additionally, more objective measures such as the perceptual threshold of touch and somatosensory evoked potentials were recorded. Non-parametric voxel-based lesion-symptom mapping was performed to investigate lesion contribution to different somatosensory deficits in the upper limb. Additionally, structural connectivity of brain areas that demonstrated the strongest association with somatosensory symptoms was determined, using probabilistic fiber tracking based on diffusion tensor imaging data from a healthy age-matched sample. Voxels with a significant association to somatosensory deficits were clustered in two core brain regions: the central parietal white matter, also referred to as the sensory component of the superior thalamic radiation, and the parietal operculum close to the insular cortex, representing the secondary somatosensory cortex. Our objective recordings confirmed findings from clinical assessments. Probabilistic tracking connected the first region to thalamus, internal capsule, brain stem, postcentral gyrus, cerebellum, and frontal pathways, while the second region demonstrated structural connections to thalamus, insular and primary somatosensory cortex. This study reveals that stroke lesions in the sensory fibers of the superior thalamocortical radiation and the parietal operculum are significantly associated with multiple exteroceptive and proprioceptive deficits in the arm and hand. PMID:26900565
Virtual environment display for a 3D audio room simulation
NASA Technical Reports Server (NTRS)
Chapin, William L.; Foster, Scott H.
1992-01-01
The development of a virtual environment simulation system integrating a 3D acoustic audio model with an immersive 3D visual scene is discussed. The system complements the acoustic model and is specified to: allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; reinforce the listener's feeling of telepresence in the acoustical environment with visual and proprioceptive sensations; enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations.
Probing sensorimotor integration during musical performance.
Furuya, Shinichi; Furukawa, Yuta; Uehara, Kazumasa; Oku, Takanori
2018-03-10
An integration of afferent sensory information from the visual, auditory, and proprioceptive systems into execution and update of motor programs plays crucial roles in control and acquisition of skillful sequential movements in musical performance. However, conventional behavioral and neurophysiological techniques that have been applied to study simplistic motor behaviors limit elucidating online sensorimotor integration processes underlying skillful musical performance. Here, we propose two novel techniques that were developed to investigate the roles of auditory and proprioceptive feedback in piano performance. First, a closed-loop noninvasive brain stimulation system that consists of transcranial magnetic stimulation, a motion sensor, and a microcomputer enabled to assess time-varying cortical processes subserving auditory-motor integration during piano playing. Second, a force-field system capable of manipulating the weight of a piano key allowed for characterizing movement adaptation based on the feedback obtained, which can shed light on the formation of an internal representation of the piano. Results of neurophysiological and psychophysics experiments provided evidence validating these systems as effective means for disentangling computational and neural processes of sensorimotor integration in musical performance. © 2018 New York Academy of Sciences.
The Relationship Between the Stomatognathic System and Body Posture
Cuccia, Antonino; Caradonna, Carola
2009-01-01
In recent years, many researchers have investigated the various factors that can influence body posture: mood states, anxiety, head and neck positions, oral functions (respiration, swallowing), oculomotor and visual systems, and the inner ear. Recent studies indicate a role for trigeminal afferents on body posture, but this has not yet been demonstrated conclusively. The present study aims to review the papers that have shown a relationship between the stomatognathic system and body posture. These studies suggest that tension in the stomatognathic system can contribute to impaired neural control of posture. Numerous anatomical connections between the stomatognathic system’s proprioceptive inputs and nervous structures are implicated in posture (cerebellum, vestibular and oculomotor nuclei, superior colliculus). If the proprioceptive information of the stomatognathic system is inaccurate, then head control and body position may be affected. In addition, the present review discusses the role the myofascial system plays in posture. If confirmed by further research, these considerations can improve our understanding and treatment of muscular-skeletal disorders that are associated with temporomandibular joint disorders, occlusal changes, and tooth loss. PMID:19142553
Kapoula, Zoi; Gaertner, Chrystal; Matheron, Eric
2012-01-01
There is controversy as to whether dyslexic children present systematic postural deficiency. Clinicians use a combination of ophthalmic prisms and proprioceptive soles to improve postural performances. This study examines the effects of convergent prisms and spherical lenses on posture. Fourteen dyslexics (13–17 years-old) and 11 non dyslexics (13–16 years-old) participated in the study. Quiet stance posturography was performed with the TechnoConcept device while subjects fixated a target at eye-level from a distance of 1_m. Four conditions were run: normal viewing; viewing the target with spherical lenses of −1 diopter (ACCOM1) over each eye; viewing with −3 diopters over each eye (ACCOM3); viewing with a convergent prism of 8 diopters per eye. Relative to normal viewing, the −1 lenses increased the surface of body sway significantly whereas the −3 diopter lenses only resulted in a significant increase of antero-posterior body sway. Thus, adolescents would appear to cope more effectively with stronger conflicts rather than subtle ones. The prism condition resulted in a significant increase in both the surface and the antero-posterior body sway. Importantly, all of these effects were similar for the two groups. Wavelet analysis (time frequency domain) revealed high spectral power of antero-posterior sway for the prism condition in both groups. In the ACCOM3 condition, the spectral power of antero-posterior sway decreased for non dyslexics but increased for dyslexics suggesting that dyslexics encounter more difficulty with accommodation. The cancelling time for medium range frequency (believed to be controlled by the cerebellum), was shorter in dyslexics, suggesting fewer instances of optimal control. We conclude that dyslexics achieve similar postural performances albeit less efficiently. Prisms and lenses destabilize posture for all teenagers. Thus, contrary to adults, adolescents do not seem to use efferent, proprioceptive ocular motor signals to improve their posture, at least not immediately when confronted to convergence accommodation conflict. PMID:23144786
Both hand position and movement direction modulate visual attention
Festman, Yariv; Adam, Jos J.; Pratt, Jay; Fischer, Martin H.
2013-01-01
The current study explored effects of continuous hand motion on the allocation of visual attention. A concurrent paradigm was used to combine visually concealed continuous hand movements with an attentionally demanding letter discrimination task. The letter probe appeared contingent upon the moving right hand passing through one of six positions. Discrimination responses were then collected via a keyboard press with the static left hand. Both the right hand's position and its movement direction systematically contributed to participants' visual sensitivity. Discrimination performance increased substantially when the right hand was distant from, but moving toward the visual probe location (replicating the far-hand effect, Festman et al., 2013). However, this effect disappeared when the probe appeared close to the static left hand, supporting the view that static and dynamic features of both hands combine in modulating pragmatic maps of attention. PMID:24098288
Spatial vision within egocentric and exocentric frames of reference
NASA Technical Reports Server (NTRS)
Howard, Ian P.
1991-01-01
It is remarkable that we are able to perceive a stable visual world and judge the directions, orientations, and movements of visual objects given that images move on the retina, the eyes move in the head, the head moves on the body, and the body moves in space. An understanding of the mechanisms underlying perceptual stability and spatial judgements requires precise definitions of relevant coordinate systems. An egocentric frame of reference is defined with respect to some part of the observer. There are four principal egocentric frames of reference, a station-point frame associated with the nodal point of the eye, an retinocentric frame associated with the retina, a headcentric frame associated with the head, and a bodycentric frame (torsocentric) associated with the torso. Additional egocentric frames can be identified with respect to any segment of the body. An egocentric task is one in which the position, orientation, or motion of an object is judged with respect to an egocentric frame of reference. A proprioceptive is a special kind of egocentric task in which the object being judged is also part of the body. An example of a proprioceptive task is that of directing the gaze toward the seen or unseen toe. An exocentric frame of reference is external to the observer. Geographical coordinates and the direction of gravity are examples of exocentric frames of reference. These various frames are listed in tabular form, together with examples of judgements of each type.
Madeleine, Pascal; Prietzel, Hanne; Svarrer, Heine; Arendt-Nielsen, Lars
2004-03-01
To quantify neck mobility and posture with and without various postural perturbations. A multivariable 2-group study with repeated measures and treatments. A human performance laboratory. Eleven patients with chronic whiplash injury (mean age, 33.3+/-6.7 y; weight, 73.4+/-11.4 kg; height, 173.3+/-7.2 cm) with a sex- and age-matched control group (mean age, 33.1+/-6.8 y; weight, 68+/-12.5 kg; height, 171.5+/-6.3 cm). Neck mobility and the effects of postural perturbations affecting the visual, vestibular, cutaneous, proprioceptive, and nociceptive systems were measured. Active range of motion, neck position sense, and postural activity. We found significantly reduced neck mobility and increased postural activity in the patient group compared with the control group. In patients, there was significantly greater postural activity with eyes closed, eyes open and speaking, and eyes closed with Achilles' tendons vibrations compared with eyes open with no vibrations. In the controls, there was no significant effect of experimental muscle pain on postural activity. Patients with chronic whiplash injury had a protective response to neck movement and different tuning, sequencing, and execution of the postural synergies probably because of excessive reliance on visual input despite a possible deficit and altered vestibular and/or proprioceptive activity. In healthy volunteers, the pain induced by a single bolus injection of hypertonic saline was probably too limited in intensity and spreading to decrease postural stability.
History effects in visual search for monsters: search times, choice biases, and liking.
Chetverikov, Andrey; Kristjansson, Árni
2015-02-01
Repeating targets and distractors on consecutive visual search trials facilitates search performance, whereas switching targets and distractors harms search. In addition, search repetition leads to biases in free choice tasks, in that previously attended targets are more likely to be chosen than distractors. Another line of research has shown that attended items receive high liking ratings, whereas ignored distractors are rated negatively. Potential relations between the three effects are unclear, however. Here we simultaneously measured repetition benefits and switching costs for search times, choice biases, and liking ratings in color singleton visual search for "monster" shapes. We showed that if expectations from search repetition are violated, targets are liked to be less attended than otherwise. Choice biases were, on the other hand, affected by distractor repetition, but not by target/distractor switches. Target repetition speeded search times but had little influence on choice or liking. Our findings suggest that choice biases reflect distractor inhibition, and liking reflects the conflict associated with attending to previously inhibited stimuli, while speeded search follows both target and distractor repetition. Our results support the newly proposed affective-feedback-of-hypothesis-testing account of cognition, and additionally, shed new light on the priming of visual search.
Balance, Proprioception, and Gross Motor Development of Chinese Children Aged 3 to 6 Years.
Jiang, Gui-Ping; Jiao, Xi-Bian; Wu, Sheng-Kou; Ji, Zhong-Qiu; Liu, Wei-Tong; Chen, Xi; Wang, Hui-Hui
2018-01-01
The authors' aim was to find the features of balance, proprioception, and gross motor development of Chinese children 3-6 years old and their correlations, provide theoretical support for promoting children's motor development, and enrich the world theoretical system of motor development. This study used a Tekscan foot pressure measurement instrument (Tekscan, Inc., Boston, MA), walking on a balance beam, Xsens 3-dimensional positional measuring system (Xsens Technologies, Enschede, the Netherlands), and Test of Gross Motor Development-2 to assess static balance, dynamic balance, knee proprioception, and levels of gross motor development (GMD) of 3- to 6-year-old children (n = 60) in Beijing. The results are as follows: children had significant age differences in static balance, dynamic balance, proprioception, and levels of GMD; children had significant gender differences in static balance, proprioception, and levels of GMD; children's static balance, dynamic balance, and proprioception had a very significant positive correlation with GMD (p < .01), but no significant correlation with body mass index.
Intracortical microstimulation of human somatosensory cortex.
Flesher, Sharlene N; Collinger, Jennifer L; Foldes, Stephen T; Weiss, Jeffrey M; Downey, John E; Tyler-Kabara, Elizabeth C; Bensmaia, Sliman J; Schwartz, Andrew B; Boninger, Michael L; Gaunt, Robert A
2016-10-19
Intracortical microstimulation of the somatosensory cortex offers the potential for creating a sensory neuroprosthesis to restore tactile sensation. Whereas animal studies have suggested that both cutaneous and proprioceptive percepts can be evoked using this approach, the perceptual quality of the stimuli cannot be measured in these experiments. We show that microstimulation within the hand area of the somatosensory cortex of a person with long-term spinal cord injury evokes tactile sensations perceived as originating from locations on the hand and that cortical stimulation sites are organized according to expected somatotopic principles. Many of these percepts exhibit naturalistic characteristics (including feelings of pressure), can be evoked at low stimulation amplitudes, and remain stable for months. Further, modulating the stimulus amplitude grades the perceptual intensity of the stimuli, suggesting that intracortical microstimulation could be used to convey information about the contact location and pressure necessary to perform dexterous hand movements associated with object manipulation. Copyright © 2016, American Association for the Advancement of Science.
A modular theory of multisensory integration for motor control
Tagliabue, Michele; McIntyre, Joseph
2014-01-01
To control targeted movements, such as reaching to grasp an object or hammering a nail, the brain can use divers sources of sensory information, such as vision and proprioception. Although a variety of studies have shown that sensory signals are optimally combined according to principles of maximum likelihood, increasing evidence indicates that the CNS does not compute a single, optimal estimation of the target's position to be compared with a single optimal estimation of the hand. Rather, it employs a more modular approach in which the overall behavior is built by computing multiple concurrent comparisons carried out simultaneously in a number of different reference frames. The results of these individual comparisons are then optimally combined in order to drive the hand. In this article we examine at a computational level two formulations of concurrent models for sensory integration and compare this to the more conventional model of converging multi-sensory signals. Through a review of published studies, both our own and those performed by others, we produce evidence favoring the concurrent formulations. We then examine in detail the effects of additive signal noise as information flows through the sensorimotor system. By taking into account the noise added by sensorimotor transformations, one can explain why the CNS may shift its reliance on one sensory modality toward a greater reliance on another and investigate under what conditions those sensory transformations occur. Careful consideration of how transformed signals will co-vary with the original source also provides insight into how the CNS chooses one sensory modality over another. These concepts can be used to explain why the CNS might, for instance, create a visual representation of a task that is otherwise limited to the kinesthetic domain (e.g., pointing with one hand to a finger on the other) and why the CNS might choose to recode sensory information in an external reference frame. PMID:24550816
Keshner, E A; Kenyon, R V
2000-01-01
We examined the effect of a 3-dimensional stereoscopic scene on segmental stabilization. Eight subjects participated in static sway and locomotion experiments with a visual scene that moved sinusoidally or at constant velocity about the pitch or roll axes. Segmental displacements, Fast Fourier Transforms, and Root Mean Square values were calculated. In both pitch and roll, subjects exhibited greater magnitudes of motion in head and trunk than ankle. Smaller amplitudes and frequent phase reversals suggested control of the ankle by segmental proprioceptive inputs and ground reaction forces rather than by the visual-vestibular signals. Postural controllers may set limits of motion at each body segment rather than be governed solely by a perception of the visual vertical. Two locomotor strategies were also exhibited, implying that some subjects could override the effect of the roll axis optic flow field. Our results demonstrate task dependent differences that argue against using static postural responses to moving visual fields when assessing more dynamic tasks.
[Personnel with poor vision at fighter pilot school].
Corbé, C; Menu, J P
1997-10-01
The piloting of fighting aircraft, the navigation of space-shuttle, the piloting of an helicopter in tactical flight at an altitude of 50 metres require the use of all sensorial, ocular, vestibular, proprioceptive ... sensors. So, the selection and the follow-up of these aerial engines' pilots need a very complete study of medical parameters, in particular sensorial and notably visual system. The doctors and the expert researchers in Aeronautical and spatial Medicine of the Army Health Department, which have in charge the medical supervision of flight crew, should study, create, and improve tests of visual sensorial exploration developed from fundamental and applied research. These authenticated tests with military pilots were applied in ophthalmology for the estimation of normal and deficient vision. A proposition to change norms of World Health Organisation applied to the vision has been following these to low visual persons was equally introduced.
Exploring conflict- and target-related movement of visual attention.
Wendt, Mike; Garling, Marco; Luna-Rodriguez, Aquiles; Jacobsen, Thomas
2014-01-01
Intermixing trials of a visual search task with trials of a modified flanker task, the authors investigated whether the presentation of conflicting distractors at only one side (left or right) of a target stimulus triggers shifts of visual attention towards the contralateral side. Search time patterns provided evidence for lateral attention shifts only when participants performed the flanker task under an instruction assumed to widen the focus of attention, demonstrating that instruction-based control settings of an otherwise identical task can impact performance in an unrelated task. Contrasting conditions with response-related and response-unrelated distractors showed that shifting attention does not depend on response conflict and may be explained as stimulus-conflict-related withdrawal or target-related deployment of attention.
Tcheang, Lili; Bülthoff, Heinrich H.; Burgess, Neil
2011-01-01
Our ability to return to the start of a route recently performed in darkness is thought to reflect path integration of motion-related information. Here we provide evidence that motion-related interoceptive representations (proprioceptive, vestibular, and motor efference copy) combine with visual representations to form a single multimodal representation guiding navigation. We used immersive virtual reality to decouple visual input from motion-related interoception by manipulating the rotation or translation gain of the visual projection. First, participants walked an outbound path with both visual and interoceptive input, and returned to the start in darkness, demonstrating the influences of both visual and interoceptive information in a virtual reality environment. Next, participants adapted to visual rotation gains in the virtual environment, and then performed the path integration task entirely in darkness. Our findings were accurately predicted by a quantitative model in which visual and interoceptive inputs combine into a single multimodal representation guiding navigation, and are incompatible with a model of separate visual and interoceptive influences on action (in which path integration in darkness must rely solely on interoceptive representations). Overall, our findings suggest that a combined multimodal representation guides large-scale navigation, consistent with a role for visual imagery or a cognitive map. PMID:21199934
The EXCITE Trial: Predicting a Clinically Meaningful Motor Activity Log Outcome
Park, Si-Woon; Wolf, Steven L.; Blanton, Sarah; Winstein, Carolee; Nichols-Larsen, Deborah S.
2013-01-01
Background and Objective This study determined which baseline clinical measurements best predicted a predefined clinically meaningful outcome on the Motor Activity Log (MAL) and developed a predictive multivariate model to determine outcome after 2 weeks of constraint-induced movement therapy (CIMT) and 12 months later using the database from participants in the Extremity Constraint Induced Therapy Evaluation (EXCITE) Trial. Methods A clinically meaningful CIMT outcome was defined as achieving higher than 3 on the MAL Quality of Movement (QOM) scale. Predictive variables included baseline MAL, Wolf Motor Function Test (WMFT), the sensory and motor portion of the Fugl-Meyer Assessment (FMA), spasticity, visual perception, age, gender, type of stroke, concordance, and time after stroke. Significant predictors identified by univariate analysis were used to develop the multivariate model. Predictive equations were generated and odds ratios for predictors were calculated from the multivariate model. Results Pretreatment motor function measured by MAL QOM, WMFT, and FMA were significantly associated with outcome immediately after CIMT. Pretreatment MAL QOM, WMFT, proprioception, and age were significantly associated with outcome after 12 months. Each unit of higher pretreatment MAL QOM score and each unit of faster pretreatment WMFT log mean time improved the probability of achieving a clinically meaningful outcome by 7 and 3 times at posttreatment, and 5 and 2 times after 12 months, respectively. Patients with impaired proprioception had a 20% probability of achieving a clinically meaningful outcome compared with those with intact proprioception. Conclusions Baseline clinical measures of motor and sensory function can be used to predict a clinically meaningful outcome after CIMT. PMID:18780883
Dependence of auditory spatial updating on vestibular, proprioceptive, and efference copy signals
Genzel, Daria; Firzlaff, Uwe; Wiegrebe, Lutz
2016-01-01
Humans localize sounds by comparing inputs across the two ears, resulting in a head-centered representation of sound-source position. When the head moves, information about head movement must be combined with the head-centered estimate to correctly update the world-centered sound-source position. Spatial updating has been extensively studied in the visual system, but less is known about how head movement signals interact with binaural information during auditory spatial updating. In the current experiments, listeners compared the world-centered azimuthal position of two sound sources presented before and after a head rotation that depended on condition. In the active condition, subjects rotated their head by ∼35° to the left or right, following a pretrained trajectory. In the passive condition, subjects were rotated along the same trajectory in a rotating chair. In the cancellation condition, subjects rotated their head as in the active condition, but the chair was counter-rotated on the basis of head-tracking data such that the head effectively remained fixed in space while the body rotated beneath it. Subjects updated most accurately in the passive condition but erred in the active and cancellation conditions. Performance is interpreted as reflecting the accuracy of perceived head rotation across conditions, which is modeled as a linear combination of proprioceptive/efference copy signals and vestibular signals. Resulting weights suggest that auditory updating is dominated by vestibular signals but with significant contributions from proprioception/efference copy. Overall, results shed light on the interplay of sensory and motor signals that determine the accuracy of auditory spatial updating. PMID:27169504
The EXCITE Trial: Predicting a clinically meaningful motor activity log outcome.
Park, Si-Woon; Wolf, Steven L; Blanton, Sarah; Winstein, Carolee; Nichols-Larsen, Deborah S
2008-01-01
This study determined which baseline clinical measurements best predicted a predefined clinically meaningful outcome on the Motor Activity Log (MAL) and developed a predictive multivariate model to determine outcome after 2 weeks of constraint-induced movement therapy (CIMT) and 12 months later using the database from participants in the Extremity Constraint Induced Therapy Evaluation (EXCITE) Trial. A clinically meaningful CIMT outcome was defined as achieving higher than 3 on the MAL Quality of Movement (QOM) scale. Predictive variables included baseline MAL, Wolf Motor Function Test (WMFT), the sensory and motor portion of the Fugl-Meyer Assessment (FMA), spasticity, visual perception, age, gender, type of stroke, concordance, and time after stroke. Significant predictors identified by univariate analysis were used to develop the multivariate model. Predictive equations were generated and odds ratios for predictors were calculated from the multivariate model. Pretreatment motor function measured by MAL QOM, WMFT, and FMA were significantly associated with outcome immediately after CIMT. Pretreatment MAL QOM, WMFT, proprioception, and age were significantly associated with outcome after 12 months. Each unit of higher pretreatment MAL QOM score and each unit of faster pretreatment WMFT log mean time improved the probability of achieving a clinically meaningful outcome by 7 and 3 times at posttreatment, and 5 and 2 times after 12 months, respectively. Patients with impaired proprioception had a 20% probability of achieving a clinically meaningful outcome compared with those with intact proprioception. Baseline clinical measures of motor and sensory function can be used to predict a clinically meaningful outcome after CIMT.
Dependence of auditory spatial updating on vestibular, proprioceptive, and efference copy signals.
Genzel, Daria; Firzlaff, Uwe; Wiegrebe, Lutz; MacNeilage, Paul R
2016-08-01
Humans localize sounds by comparing inputs across the two ears, resulting in a head-centered representation of sound-source position. When the head moves, information about head movement must be combined with the head-centered estimate to correctly update the world-centered sound-source position. Spatial updating has been extensively studied in the visual system, but less is known about how head movement signals interact with binaural information during auditory spatial updating. In the current experiments, listeners compared the world-centered azimuthal position of two sound sources presented before and after a head rotation that depended on condition. In the active condition, subjects rotated their head by ∼35° to the left or right, following a pretrained trajectory. In the passive condition, subjects were rotated along the same trajectory in a rotating chair. In the cancellation condition, subjects rotated their head as in the active condition, but the chair was counter-rotated on the basis of head-tracking data such that the head effectively remained fixed in space while the body rotated beneath it. Subjects updated most accurately in the passive condition but erred in the active and cancellation conditions. Performance is interpreted as reflecting the accuracy of perceived head rotation across conditions, which is modeled as a linear combination of proprioceptive/efference copy signals and vestibular signals. Resulting weights suggest that auditory updating is dominated by vestibular signals but with significant contributions from proprioception/efference copy. Overall, results shed light on the interplay of sensory and motor signals that determine the accuracy of auditory spatial updating. Copyright © 2016 the American Physiological Society.
Resolving Conflicts of Interest in State-Owned Enterprises
ERIC Educational Resources Information Center
Radon, Jenik; Thaler, Julius
2005-01-01
State-owned enterprises (SOEs) face conflicts of interest that stem from a government's dual role as an owner, operator and businessman on the one hand and as the protector of the public interest and therefore a regulator of the SOE on the other hand. Besides pursuing profit maximisation like any private business, SOEs often have a mandate if not…
THE ROLE OF THE HIPPOCAMPUS IN OBJECT DISCRIMINATION BASED ON VISUAL FEATURES.
Levcik, David; Nekovarova, Tereza; Antosova, Eliska; Stuchlik, Ales; Klement, Daniel
2018-06-07
The role of rodent hippocampus has been intensively studied in different cognitive tasks. However, its role in discrimination of objects remains controversial due to conflicting findings. We tested whether the number and type of features available for the identification of objects might affect the strategy (hippocampal-independent vs. hippocampal-dependent) that rats adopt to solve object discrimination tasks. We trained rats to discriminate 2D visual objects presented on a computer screen. The objects were defined either by their shape only or by multiple-features (a combination of filling pattern and brightness in addition to the shape). Our data showed that objects displayed as simple geometric shapes are not discriminated by trained rats after their hippocampi had been bilaterally inactivated by the GABA A -agonist muscimol. On the other hand, objects containing a specific combination of non-geometric features in addition to the shape are discriminated even without the hippocampus. Our results suggest that the involvement of the hippocampus in visual object discrimination depends on the abundance of object's features. Copyright © 2018. Published by Elsevier Inc.
Does Seeing Ice Really Feel Cold? Visual-Thermal Interaction under an Illusory Body-Ownership
Kanaya, Shoko; Matsushima, Yuka; Yokosawa, Kazuhiko
2012-01-01
Although visual information seems to affect thermal perception (e.g. red color is associated with heat), previous studies have failed to demonstrate the interaction between visual and thermal senses. However, it has been reported that humans feel an illusory thermal sensation in conjunction with an apparently-thermal visual stimulus placed on a prosthetic hand in the rubber hand illusion (RHI) wherein an individual feels that a prosthetic (rubber) hand belongs to him/her. This study tests the possibility that the ownership of the body surface on which a visual stimulus is placed enhances the likelihood of a visual-thermal interaction. We orthogonally manipulated three variables: induced hand-ownership, visually-presented thermal information, and tactically-presented physical thermal information. Results indicated that the sight of an apparently-thermal object on a rubber hand that is illusorily perceived as one's own hand affects thermal judgments about the object physically touching this hand. This effect was not observed without the RHI. The importance of ownership of a body part that is touched by the visual object on the visual-thermal interaction is discussed. PMID:23144814
Does seeing ice really feel cold? Visual-thermal interaction under an illusory body-ownership.
Kanaya, Shoko; Matsushima, Yuka; Yokosawa, Kazuhiko
2012-01-01
Although visual information seems to affect thermal perception (e.g. red color is associated with heat), previous studies have failed to demonstrate the interaction between visual and thermal senses. However, it has been reported that humans feel an illusory thermal sensation in conjunction with an apparently-thermal visual stimulus placed on a prosthetic hand in the rubber hand illusion (RHI) wherein an individual feels that a prosthetic (rubber) hand belongs to him/her. This study tests the possibility that the ownership of the body surface on which a visual stimulus is placed enhances the likelihood of a visual-thermal interaction. We orthogonally manipulated three variables: induced hand-ownership, visually-presented thermal information, and tactically-presented physical thermal information. Results indicated that the sight of an apparently-thermal object on a rubber hand that is illusorily perceived as one's own hand affects thermal judgments about the object physically touching this hand. This effect was not observed without the RHI. The importance of ownership of a body part that is touched by the visual object on the visual-thermal interaction is discussed.
A learning–based approach to artificial sensory feedback leads to optimal integration
Dadarlat, Maria C.; O’Doherty, Joseph E.; Sabes, Philip N.
2014-01-01
Proprioception—the sense of the body’s position in space—plays an important role in natural movement planning and execution and will likewise be necessary for successful motor prostheses and Brain–Machine Interfaces (BMIs). Here, we demonstrated that monkeys could learn to use an initially unfamiliar multi–channel intracortical microstimulation (ICMS) signal, which provided continuous information about hand position relative to an unseen target, to complete accurate reaches. Furthermore, monkeys combined this artificial signal with vision to form an optimal, minimum–variance estimate of relative hand position. These results demonstrate that a learning–based approach can be used to provide a rich artificial sensory feedback signal, suggesting a new strategy for restoring proprioception to patients using BMIs as well as a powerful new tool for studying the adaptive mechanisms of sensory integration. PMID:25420067
Muaidi, Q I; Nicholson, L L; Refshauge, K M
2009-02-01
The aims of this study were to compare proprioception in knee rotation in Olympic-level soccer players (N=18) with non-athletes (N=18), to explore between-limb differences in soccer players, and examine correlations between proprioception and years of playing, function, physical measures and skill level. The knee rotatory kinaesthetic device was used to present stimuli of different magnitudes to determine proprioceptive acuity for internal and external active rotation, and to measure active and passive rotation range of motion (ROM). Knee rotation strength was measured using a dynamometer. Proprioceptive acuity of the athletes was significantly (P=0.004) better than that of the non-athletes. Athletes displayed significantly less passive ROM (P=0.001), higher isometric muscle strength (P=0.006) and greater hop for distance (P=0.001) than non-athletes. No significant between-limb differences were found in the athletes in any objective outcome measure. Internal rotation proprioceptive acuity was negatively correlated with coach-rated ball skill (r=-0.52) and positively correlated with internal rotation ROM (r=0.59). Our findings suggest that highly trained athletes possess enhanced proprioceptive acuity and muscle strength that may be inherent, or may develop as a result of long-term athletic training.
The Use of Visual Feedback During Signing: Evidence From Signers With Impaired Vision
Korpics, Franco; Petronio, Karen
2009-01-01
The role of visual feedback during the production of American Sign Language was investigated by comparing the size of signing space during conversations and narrative monologues for normally sighted signers, signers with tunnel vision due to Usher syndrome, and functionally blind signers. The interlocutor for all groups was a normally sighted deaf person. Signers with tunnel vision produced a greater proportion of signs near the face than blind and normally sighted signers, who did not differ from each other. Both groups of visually impaired signers produced signs within a smaller signing space for conversations than for monologues, but we hypothesize that they did so for different reasons. Signers with tunnel vision may align their signing space with that of their interlocutor. In contrast, blind signers may enhance proprioceptive feedback by producing signs within an enlarged signing space for monologues, which do not require switching between tactile and visual signing. Overall, we hypothesize that signers use visual feedback to phonetically calibrate the dimensions of signing space, rather than to monitor language output. PMID:18495656
The use of visual feedback during signing: evidence from signers with impaired vision.
Emmorey, Karen; Korpics, Franco; Petronio, Karen
2009-01-01
The role of visual feedback during the production of American Sign Language was investigated by comparing the size of signing space during conversations and narrative monologues for normally sighted signers, signers with tunnel vision due to Usher syndrome, and functionally blind signers. The interlocutor for all groups was a normally sighted deaf person. Signers with tunnel vision produced a greater proportion of signs near the face than blind and normally sighted signers, who did not differ from each other. Both groups of visually impaired signers produced signs within a smaller signing space for conversations than for monologues, but we hypothesize that they did so for different reasons. Signers with tunnel vision may align their signing space with that of their interlocutor. In contrast, blind signers may enhance proprioceptive feedback by producing signs within an enlarged signing space for monologues, which do not require switching between tactile and visual signing. Overall, we hypothesize that signers use visual feedback to phonetically calibrate the dimensions of signing space, rather than to monitor language output.
Rokito, Andrew S; Birdzell, Maureen Gallagher; Cuomo, Frances; Di Paola, Matthew J; Zuckerman, Joseph D
2010-06-01
Previous studies have documented a decrease in proprioceptive capacity in the unstable shoulder. The degree to which surgical approach affects recovery of strength and proprioception is unknown. The recovery of strength and proprioception after open surgery for recurrent anterior glenohumeral instability was compared for 2 surgical procedures. A prospective analysis of 55 consecutive patients with posttraumatic unilateral recurrent anterior glenohumeral instability was performed. Thirty patients (group 1) underwent an open inferior capsular shift with detachment of the subscapularis, and 25 (group 2) underwent an anterior capsulolabral reconstruction. Mean preoperative proprioception and strength values were significantly lower for the affected shoulders in both groups. At 6 months after surgery, there were no significant differences for mean strength and proprioception values between the unaffected and operative sides for group 2 patients. In group 1 patients, however, there were still significant deficits in mean position sense and strength values. Complete restoration of proprioception and strength, however, was evident by 12 months in group 1. This study demonstrates that there are significant deficits in both strength and proprioception in patients with posttraumatic, recurrent anterior glenohumeral instability. Although both are completely restored by 1 year after surgery, a subscapularis-splitting approach allows for complete recovery of strength and position sense as early as 6 months postoperatively. Detachment of the subscapularis delays recovery of strength and position sense for up to 12 months after surgery. Copyright 2010 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Richards, J. T.; Mulavara, A. P.; Ruttley, T.; Peters, B. T.; Warren, L. E.; Bloomberg, J. J.
2006-01-01
We have previously shown that viewing simulated rotary self-motion during treadmill locomotion causes adaptive modification of the control of position and trajectory during over-ground locomotion, which functionally reflects adaptive changes in the sensorimotor integration of visual, vestibular, and proprioceptive cues (Mulavara et al., 2005). The objective of this study was to investigate how strategic changes in torso control during exposure to simulated rotary self-motion during treadmill walking influences adaptive modification of locomotor heading direction during over-ground stepping.
Deficits in the Ability to Use Proprioceptive Feedback in Children with Hemiplegic Cerebral Palsy
ERIC Educational Resources Information Center
Goble, Daniel J.; Hurvitz, Edward A.; Brown, Susan H.
2009-01-01
Compared with motor impairment in children with hemiplegic cerebral palsy (CP), less attention has been paid to sensory feedback processing deficits. This includes, especially, proprioceptive information regarding arm position. This study examined the ability of children with hemiplegic CP to use proprioceptive feedback during a goal-directed…
Prism adaptation by mental practice.
Michel, Carine; Gaveau, Jérémie; Pozzo, Thierry; Papaxanthis, Charalambos
2013-09-01
The prediction of our actions and their interaction with the external environment is critical for sensorimotor adaptation. For instance, during prism exposure, which deviates laterally our visual field, we progressively correct movement errors by combining sensory feedback with forward model sensory predictions. However, very often we project our actions to the external environment without physically interacting with it (e.g., mental actions). An intriguing question is whether adaptation will occur if we imagine, instead of executing, an arm movement while wearing prisms. Here, we investigated prism adaptation during mental actions. In the first experiment, participants (n = 54) performed arm pointing movements before and after exposure to the optical device. They were equally divided into six groups according to prism exposure: Prisms-Active, Prisms-Imagery, Prisms-Stationary, Prisms-Stationary-Attention, No Conflict-Prisms-Imagery, No Prisms-Imagery. Adaptation, measured by the difference in pointing errors between pre-test and post-test, occurred only in Prisms-Active and Prisms-Imagery conditions. The second experiment confirmed the results of the first experiment and further showed that sensorimotor adaptation was mainly due to proprioceptive realignment in both Prisms-Active (n = 10) and Prisms-Imagery (n = 10) groups. In both experiments adaptation was greater following actual than imagined pointing movements. The present results are the first demonstration of prism adaptation by mental practice under prism exposure and they are discussed in terms of internal forward models and sensorimotor plasticity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Volpe, Daniele; Giantin, Maria Giulia; Fasano, Alfonso
2014-01-01
Background Muscle spindles endings are extremely sensitive to externally applied vibrations, and under such circumstances they convey proprioceptive inflows to the central nervous system that modulate the spinal reflexes excitability or the muscle responses elicited by postural perturbations. The aim of this pilot study is to test the feasibility and effectiveness of a balance training program in association with a wearable proprioceptive stabilizer (Equistasi) that emits focal mechanical vibrations in patients with PD. Methods Forty patients with PD were randomly divided in two groups wearing an active or inactive device. All the patients received a 2-month intensive program of balance training. Assessments were performed at baseline, after the rehabilitation period (T1), and two more months after (T2). Posturographic measures were used as primary endpoint; secondary measures of outcome included the number of falls and several clinical scales for balance and quality of life. Results Both groups improved at the end of the rehabilitation period and we did not find significant between-group differences in any of the principal posturographic measures with the exception of higher sway area and limit of stability on the instrumental functional reach test during visual deprivation at T1 in the Equistasi group. As for the secondary outcome, we found an overall better outcome in patients enrolled in the Equistasi group: 1) significant improvement at T1 on Berg Balance Scale (+45.0%, p = .026), Activities-specific Balance Confidence (+83.7, p = .004), Falls Efficacy Scale (−33.3%, p = .026) and PDQ-39 (−48.8%, p = .004); 2) sustained improvement at T2 in terms of UPDRS-III, Berg Balance Scales, Time Up and Go and PDQ-39; 3) significant and sustained reduction of the falls rate. Conclusions This pilot trial shows that a physiotherapy program for training balance in association with focal mechanical vibration exerted by a wearable proprioceptive stabilizer might be superior than rehabilitation alone in improving patients’ balance. Trial Registration EudraCT 2013-003020-36 and ClinicalTrials.gov (number not assigned) PMID:25401967
Knee Proprioception and Strength and Landing Kinematics During a Single-Leg Stop-Jump Task
Nagai, Takashi; Sell, Timothy C; House, Anthony J; Abt, John P; Lephart, Scott M
2013-01-01
Context The importance of the sensorimotor system in maintaining a stable knee joint has been recognized. As individual entities, knee-joint proprioception, landing kinematics, and knee muscles play important roles in functional joint stability. Preventing knee injuries during dynamic tasks requires accurate proprioceptive information and adequate muscular strength. Few investigators have evaluated the relationship between knee proprioception and strength and landing kinematics. Objective To examine the relationship between knee proprioception and strength and landing kinematics. Design Cross-sectional study. Setting University research laboratory. Patients or Other Participants Fifty physically active men (age = 26.4 ± 5.8 years, height = 176.5 ± 8.0 cm, mass = 79.8 ± 16.6 kg). Intervention(s) Three tests were performed. Knee conscious proprioception was evaluated via threshold to detect passive motion (TTDPM). Knee strength was evaluated with a dynamometer. A 3-dimensional biomechanical analysis of a single-legged stop-jump task was used to calculate initial contact (IC) knee-flexion angle and knee-flexion excursion. Main Outcome Measure(s) The TTDPM toward knee flexion and extension, peak knee flexion and extension torque, and IC knee-flexion angle and knee flexion excursion. Linear correlation and stepwise multiple linear regression analyses were used to evaluate the relationships of both proprioception and strength against landing kinematics. The α level was set a priori at .05. Results Enhanced TTDPM and greater knee strength were positively correlated with greater IC knee-flexion angle (r range = 0.281–0.479, P range = .001–.048). The regression analysis revealed that 27.4% of the variance in IC knee-flexion angle could be accounted for by knee-flexion peak torque and TTDPM toward flexion (P = .001). Conclusions The current research highlighted the relationship between knee proprioception and strength and landing kinematics. Individuals with enhanced proprioception and muscular strength had better control of IC knee-flexion angle during a dynamic task. PMID:23672323
DOT National Transportation Integrated Search
1968-10-01
A conflict among sensory signals frequently underlies problems of disorientation, vertigo, and motion sickness. In this study, visual information in conflict with vestibular signals was presented to groups of subjects by illuminating the test room fo...
Petrini, Karin; Remark, Alicia; Smith, Louise; Nardini, Marko
2014-05-01
When visual information is available, human adults, but not children, have been shown to reduce sensory uncertainty by taking a weighted average of sensory cues. In the absence of reliable visual information (e.g. extremely dark environment, visual disorders), the use of other information is vital. Here we ask how humans combine haptic and auditory information from childhood. In the first experiment, adults and children aged 5 to 11 years judged the relative sizes of two objects in auditory, haptic, and non-conflicting bimodal conditions. In , different groups of adults and children were tested in non-conflicting and conflicting bimodal conditions. In , adults reduced sensory uncertainty by integrating the cues optimally, while children did not. In , adults and children used similar weighting strategies to solve audio-haptic conflict. These results suggest that, in the absence of visual information, optimal integration of cues for discrimination of object size develops late in childhood. © 2014 The Authors. Developmental Science Published by John Wiley & Sons Ltd.
Reflex muscle contraction in anterior shoulder instability.
Wallace, D A; Beard, D J; Gill, R H; Eng, B; Carr, A J
1997-01-01
Reduced proprioception may contribute to recurrent anterior shoulder instability. Twelve patients with unilateral shoulder instability were investigated for evidence of deficient proprioception with an activated pneumatic cylinder and surface electromyography electrodes; the contralateral normal shoulder was used as a control. The latency between onset of movement and the detection of muscle contraction was used as an index of proprioception. No significant difference in muscle contraction latency was detected between the stable and unstable shoulders, suggesting that there was no significant defect in muscular reflex activity. This study does not support the use proprioception-enhancing physiotherapy in the treatment of posttraumatic anterior shoulder instability.
Conflict adaptation in schizophrenia: reviewing past and previewing future efforts.
Abrahamse, Elger; Ruitenberg, Marit; Duthoo, Wout; Sabbe, Bernard; Morrens, Manuel; van Dijck, Jean-Philippe
2016-05-01
Cognitive control impairments have been suggested to be a critical component in the overall cognitive deficits observed in patients diagnosed with schizophrenia. Here, we zoom in on a specific function of cognitive control, conflict adaptation. Abnormal neural activity patterns have been observed for patients diagnosed with schizophrenia in core conflict adaptation areas such as anterior cingulate cortex and prefrontal cortex. On the one hand, this strongly indicates that conflict adaptation is affected. On the other hand, however, outcomes at the behavioural level are needed to create a window into a precise interpretation of this abnormal neural activity. We present a narrative review of behavioural work within the context of conflict adaptation in schizophrenia, focusing on various major conflict adaptation markers: congruency sequence effects, proportion congruency effects, and post-error and post-conflict slowing. The review emphasises both methodological and theoretical aspects that are relevant to the understanding of conflict adaptation in schizophrenia. Based on the currently available set of behavioural studies on conflict adaptation, no clear-cut answer can be provided as to the precise conflict adaptation processes that are impaired (and to what extent) in schizophrenia populations. Future work is needed in state-of-the-art designs in order to reach better insight into the specifics of conflict adaptation impairments associated with schizophrenia.
No Proprioceptive Deficits in Autism despite Movement-Related Sensory and Execution Impairments
ERIC Educational Resources Information Center
Fuentes, Christina T.; Mostofsky, Stewart H.; Bastian, Amy J.
2011-01-01
Autism spectrum disorder (ASD) often involves sensory and motor problems, yet the proprioceptive sense of limb position has not been directly assessed. We used three tasks to assess proprioception in adolescents with ASD who had motor and sensory perceptual abnormalities, and compared them to age- and IQ-matched controls. Results showed no group…
Feedback and feedforward adaptation to visuomotor delay during reaching and slicing movements.
Botzer, Lior; Karniel, Amir
2013-07-01
It has been suggested that the brain and in particular the cerebellum and motor cortex adapt to represent the environment during reaching movements under various visuomotor perturbations. It is well known that significant delay is present in neural conductance and processing; however, the possible representation of delay and adaptation to delayed visual feedback has been largely overlooked. Here we investigated the control of reaching movements in human subjects during an imposed visuomotor delay in a virtual reality environment. In the first experiment, when visual feedback was unexpectedly delayed, the hand movement overshot the end-point target, indicating a vision-based feedback control. Over the ensuing trials, movements gradually adapted and became accurate. When the delay was removed unexpectedly, movements systematically undershot the target, demonstrating that adaptation occurred within the vision-based feedback control mechanism. In a second experiment designed to broaden our understanding of the underlying mechanisms, we revealed similar after-effects for rhythmic reversal (out-and-back) movements. We present a computational model accounting for these results based on two adapted forward models, each tuned for a specific modality delay (proprioception or vision), and a third feedforward controller. The computational model, along with the experimental results, refutes delay representation in a pure forward vision-based predictor and suggests that adaptation occurred in the forward vision-based predictor, and concurrently in the state-based feedforward controller. Understanding how the brain compensates for conductance and processing delays is essential for understanding certain impairments concerning these neural delays as well as for the development of brain-machine interfaces. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Effects of Hand Proximity and Movement Direction in Spatial and Temporal Gap Discrimination.
Wiemers, Michael; Fischer, Martin H
2016-01-01
Previous research on the interplay between static manual postures and visual attention revealed enhanced visual selection near the hands (near-hand effect). During active movements there is also superior visual performance when moving toward compared to away from the stimulus (direction effect). The "modulated visual pathways" hypothesis argues that differential involvement of magno- and parvocellular visual processing streams causes the near-hand effect. The key finding supporting this hypothesis is an increase in temporal and a reduction in spatial processing in near-hand space (Gozli et al., 2012). Since this hypothesis has, so far, only been tested with static hand postures, we provide a conceptual replication of Gozli et al.'s (2012) result with moving hands, thus also probing the generality of the direction effect. Participants performed temporal or spatial gap discriminations while their right hand was moving below the display. In contrast to Gozli et al. (2012), temporal gap discrimination was superior at intermediate and not near hand proximity. In spatial gap discrimination, a direction effect without hand proximity effect suggests that pragmatic attentional maps overshadowed temporal/spatial processing biases for far/near-hand space.
Barmack, N H; Errico, P; Ferraresi, A; Pettorossi, V E
1989-01-01
1. Eye movements in unanaesthetized rabbits were studied during horizontal neck-proprioceptive stimulation (movement of the body with respect to the fixed head), when this stimulation was given alone and when it was given simultaneously with vestibular stimulation (rotation of the head-body). The effect of neck-proprioceptive stimulation on modifying the anticompensatory fast-phase eye movements (AFPs) evoked by vestibular stimulation was studied with a 'conditioning-test' protocol; the 'conditioning' stimulus was a neck-proprioceptive signal evoked by a step-like change in body position with respect to the head and the 'test' stimulus was a vestibular signal evoked by a step rotation of the head-body. 2. The influence of eye position and direction of slow eye movements on the occurrence of compensatory fast-phase eye movements (CFPs) evoked by neck-proprioceptive stimulation was also examined. 3. The anticompensatory fast phase (AFP) evoked by vestibular stimulation was attenuated by a preceding neck-proprioceptive stimulus which when delivered alone evoked compensatory slow-phase eye movements (CSP) in the same direction as the CSP evoked by vestibular stimulation. Conversely, the vestibularly evoked AFP was potentiated by a neck-proprioceptive stimulus which evoked CSPs opposite to that of vestibularly evoked CSPs. 4. Eccentric initial eye positions increased the probability of occurrence of midline-directed compensatory fast-phase eye movements (CFPs) evoked by appropriate neck-proprioceptive stimulation. 5. The gain of the horizontal cervico-ocular reflex (GHCOR) was measured from the combined changes in eye position resulting from AFPs and CSPs. GHCOR was potentiated during simultaneous vestibular stimulation. This enhancement of GHCOR occurred at neck-proprioceptive stimulus frequencies which, in the absence of conjoint vestibular stimulation, do not evoke CSPs. PMID:2795479
Cuppone, Anna Vera; Squeri, Valentina; Semprini, Marianna; Masia, Lorenzo; Konczak, Jürgen
2016-01-01
This study examined the trainability of the proprioceptive sense and explored the relationship between proprioception and motor learning. With vision blocked, human learners had to perform goal-directed wrist movements relying solely on proprioceptive/haptic cues to reach several haptically specified targets. One group received additional somatosensory movement error feedback in form of vibro-tactile cues applied to the skin of the forearm. We used a haptic robotic device for the wrist and implemented a 3-day training regimen that required learners to make spatially precise goal-directed wrist reaching movements without vision. We assessed whether training improved the acuity of the wrist joint position sense. In addition, we checked if sensory learning generalized to the motor domain and improved spatial precision of wrist tracking movements that were not trained. The main findings of the study are: First, proprioceptive acuity of the wrist joint position sense improved after training for the group that received the combined proprioceptive/haptic and vibro-tactile feedback (VTF). Second, training had no impact on the spatial accuracy of the untrained tracking task. However, learners who had received VTF significantly reduced their reliance on haptic guidance feedback when performing the untrained motor task. That is, concurrent VTF was highly salient movement feedback and obviated the need for haptic feedback. Third, VTF can be also provided by the limb not involved in the task. Learners who received VTF to the contralateral limb equally benefitted. In conclusion, somatosensory training can significantly enhance proprioceptive acuity within days when learning is coupled with vibro-tactile sensory cues that provide feedback about movement errors. The observable sensory improvements in proprioception facilitates motor learning and such learning may generalize to the sensorimotor control of the untrained motor tasks. The implications of these findings for neurorehabilitation are discussed.
Role of Visual Speech in Phonological Processing by Children With Hearing Loss
Jerger, Susan; Tye-Murray, Nancy; Abdi, Hervé
2011-01-01
Purpose This research assessed the influence of visual speech on phonological processing by children with hearing loss (HL). Method Children with HL and children with normal hearing (NH) named pictures while attempting to ignore auditory or audiovisual speech distractors whose onsets relative to the pictures were either congruent, conflicting in place of articulation, or conflicting in voicing—for example, the picture “pizza” coupled with the distractors “peach,” “teacher,” or “beast,” respectively. Speed of picture naming was measured. Results The conflicting conditions slowed naming, and phonological processing by children with HL displayed the age-related shift in sensitivity to visual speech seen in children with NH, although with developmental delay. Younger children with HL exhibited a disproportionately large influence of visual speech and a negligible influence of auditory speech, whereas older children with HL showed a robust influence of auditory speech with no benefit to performance from adding visual speech. The congruent conditions did not speed naming in children with HL, nor did the addition of visual speech influence performance. Unexpectedly, the /∧/-vowel congruent distractors slowed naming in children with HL and decreased articulatory proficiency. Conclusions Results for the conflicting conditions are consistent with the hypothesis that speech representations in children with HL (a) are initially disproportionally structured in terms of visual speech and (b) become better specified with age in terms of auditorily encoded information. PMID:19339701
Bracci, Stefania; Ietswaart, Magdalena; Peelen, Marius V; Cavina-Pratesi, Cristiana
2010-06-01
Accumulating evidence points to a map of visual regions encoding specific categories of objects. For example, a region in the human extrastriate visual cortex, the extrastriate body area (EBA), has been implicated in the visual processing of bodies and body parts. Although in the monkey, neurons selective for hands have been reported, in humans it is unclear whether areas selective for individual body parts such as the hand exist. Here, we conducted two functional MRI experiments to test for hand-preferring responses in the human extrastriate visual cortex. We found evidence for a hand-preferring region in left lateral occipitotemporal cortex in all 14 participants. This region, located in the lateral occipital sulcus, partially overlapped with left EBA, but could be functionally and anatomically dissociated from it. In experiment 2, we further investigated the functional profile of hand- and body-preferring regions by measuring responses to hands, fingers, feet, assorted body parts (arms, legs, torsos), and non-biological handlike stimuli such as robotic hands. The hand-preferring region responded most strongly to hands, followed by robotic hands, fingers, and feet, whereas its response to assorted body parts did not significantly differ from baseline. By contrast, EBA responded most strongly to body parts, followed by hands and feet, and did not significantly respond to robotic hands or fingers. Together, these results provide evidence for a representation of the hand in extrastriate visual cortex that is distinct from the representation of other body parts.
Ietswaart, Magdalena; Peelen, Marius V.; Cavina-Pratesi, Cristiana
2010-01-01
Accumulating evidence points to a map of visual regions encoding specific categories of objects. For example, a region in the human extrastriate visual cortex, the extrastriate body area (EBA), has been implicated in the visual processing of bodies and body parts. Although in the monkey, neurons selective for hands have been reported, in humans it is unclear whether areas selective for individual body parts such as the hand exist. Here, we conducted two functional MRI experiments to test for hand-preferring responses in the human extrastriate visual cortex. We found evidence for a hand-preferring region in left lateral occipitotemporal cortex in all 14 participants. This region, located in the lateral occipital sulcus, partially overlapped with left EBA, but could be functionally and anatomically dissociated from it. In experiment 2, we further investigated the functional profile of hand- and body-preferring regions by measuring responses to hands, fingers, feet, assorted body parts (arms, legs, torsos), and non-biological handlike stimuli such as robotic hands. The hand-preferring region responded most strongly to hands, followed by robotic hands, fingers, and feet, whereas its response to assorted body parts did not significantly differ from baseline. By contrast, EBA responded most strongly to body parts, followed by hands and feet, and did not significantly respond to robotic hands or fingers. Together, these results provide evidence for a representation of the hand in extrastriate visual cortex that is distinct from the representation of other body parts. PMID:20393066
Effect of ankle proprioceptive exercise on static and dynamic balance in normal adults.
Yong, Min-Sik; Lee, Yun-Seob
2017-02-01
[Purpose] The present study was conducted to investigate whether ankle proprioceptive exercise affects static and dynamic balance in normal adults. [Subjects and Methods] Twenty-eight normal adults were recruited to measure their static and dynamic balancing before and after the proprioceptive exercise. A subject stood with bare feet on the round supporting platform of the device for measuring balance, and the investigator entered the age and the height of the subjects and set his/her feet on the central point of the monitor screen. Training of ankle proprioceptive sense for the movements of plantar-flexion and dorsiflexion was performed. In the training of joint position sense in plantar-flexion and dorsiflexion, the plantar-flexion and the dorsiflexion were set as 15°, respectively. [Results] The static balancing did not show significant differences in average, while the dynamic balancing showed significant differences. [Conclusion] Ankle proprioceptive exercise can affect dynamic balance.
A critical role for Piezo2 channels in the mechanotransduction of mouse proprioceptive neurons
Florez-Paz, Danny; Bali, Kiran Kumar; Kuner, Rohini; Gomis, Ana
2016-01-01
Proprioceptors are responsible for the conscious sensation of limb position and movement, muscle tension or force, and balance. Recent evidence suggests that Piezo2 is a low threshold mechanosensory receptor in the peripheral nervous system, acting as a transducer for touch sensation and proprioception. Thus, we characterized proprioceptive neurons in the mesencephalic trigeminal nucleus that are involved in processing proprioceptive information from the face and oral cavity. This is a specific population of neurons that produce rapidly adapting mechanically-activated currents that are fully dependent on Piezo2. As such, we analyzed the deficits in balance and coordination caused by the selective deletion of the channel in proprioceptors (conditional knockout). The data clearly shows that Piezo2 fulfills a critical role in a defined homogeneous population of proprioceptor neurons that innervate the head muscles, demonstrating that this ion channel is essential for mammalian proprioceptive mechanotransduction. PMID:27184818
The role of proprioception and neuromuscular stability in carpal instabilities.
Hagert, E; Lluch, A; Rein, S
2016-01-01
Carpal stability has traditionally been defined as dependent on the articular congruity of joint surfaces, the static stability maintained by intact ligaments, and the dynamic stability caused by muscle contractions resulting in a compression of joint surfaces. In the past decade, a fourth factor in carpal stability has been proposed, involving the neuromuscular and proprioceptive control of joints. The proprioception of the wrist originates from afferent signals elicited by sensory end organs (mechanoreceptors) in ligaments and joint capsules that elicit spinal reflexes for immediate joint stability, as well as higher order neuromuscular influx to the cerebellum and sensorimotor cortices for planning and executing joint control. The aim of this review is to provide an understanding of the role of proprioception and neuromuscular control in carpal instabilities by delineating the sensory innervation and the neuromuscular control of the carpus, as well as descriptions of clinical applications of proprioception in carpal instabilities. © The Author(s) 2015.
Integrating conflict detection and attentional control mechanisms.
Walsh, Bong J; Buonocore, Michael H; Carter, Cameron S; Mangun, George R
2011-09-01
Human behavior involves monitoring and adjusting performance to meet established goals. Performance-monitoring systems that act by detecting conflict in stimulus and response processing have been hypothesized to influence cortical control systems to adjust and improve performance. Here we used fMRI to investigate the neural mechanisms of conflict monitoring and resolution during voluntary spatial attention. We tested the hypothesis that the ACC would be sensitive to conflict during attentional orienting and influence activity in the frontoparietal attentional control network that selectively modulates visual information processing. We found that activity in ACC increased monotonically with increasing attentional conflict. This increased conflict detection activity was correlated with both increased activity in the attentional control network and improved speed and accuracy from one trial to the next. These results establish a long hypothesized interaction between conflict detection systems and neural systems supporting voluntary control of visual attention.
Information Processing in Auditory-Visual Conflict.
ERIC Educational Resources Information Center
Henker, Barbara A.; Whalen, Carol K.
1972-01-01
The present study used a set of bimodal (auditory-visual) conflict designed specifically for the preschool child. The basic component was a match-to-sample sequence designed to reduce the often-found contaminating factors in studies with young children: failure to understand or remember instructions, inability to perform the indicator response, or…
Touch, tools, and telepresence: embodiment in mediated environments
NASA Astrophysics Data System (ADS)
IJsselsteijn, Wijnand A.; Haans, Antal
2008-02-01
We tend to think of our body image as fixed. However, human brains appear to support highly negotiable body images. As a result, our brains show a remarkable flexibility in incorporating non-biological elements (tools and technologies) into the body image, provided reliable, real-time intersensory correlations can be established, and artifacts can be plausibly mapped onto an already existing body image representation. A particularly interesting and relevant phenomenon in this respect is a recently reported crossmodal perceptual illusion known as the rubber-hand illusion (RHI). When a person is watching a fake hand being stroked and tapped in precise synchrony with his or her own unseen hand, the person will, within a few minutes of stimulation, start experiencing the fake hand as an actual part of his or her own body. In this paper, we will review recent work on the RHI and argue that such experimental transformation of the intimate ties between body morphology, proprioception and self-perception enhances our fundamental understanding of the phenomenal experience of self. Moreover, it will enable us to significantly improve the design of interactive media, including the design of avatars in virtual environments and digital games, as well as a range of human-like telerobotic devices.
A Tactile Stimulator for Studying Passive Shape Perception
Lane, John W.; Fitzgerald, Paul J.; Yau, Jeffrey M.; Pembeci, Izzet; Hsiao, Steven S.
2009-01-01
We describe a computer-controlled tactile stimulator for use in human psychophysical and monkey neurophysiological studies of 3-D shape perception. The stimulator is constructed primarily of commercially available parts, as well as a few custom-built pieces for which we will supply diagrams upon request. There are two components to the stimulator: a tactile component and a hand positioner component. The tactile component consists of multiple stimulating units that move about in a Cartesian plane above the restrained hand. Each stimulating unit contains a servo-controlled linear motor with an attached small rotary stepper motor, allowing arbitrary stimulus shapes to contact the skin through vibration, static indentation, or scanning. The hand positioner component modifies the conformation of the restrained hand through a set of mechanical linkages under motorized control. The present design controls the amount of spread between digits two and three, the spread between digits four and three, and the degree to which digit three is flexed or extended, thereby simulating different conformations of the hand in contact with objects. This design is easily modified to suit the needs of the experimenter. Because the two components of the stimulator are independently controlled, the stimulator allows for parametric study of the mechanoreceptive and proprioceptive contributions to 3-D tactile shape perception. PMID:19800916
Virtual Proprioception for eccentric training.
LeMoyne, Robert; Mastroianni, Timothy
2017-07-01
Wireless inertial sensors enable quantified feedback, which can be applied to evaluate the efficacy of therapy and rehabilitation. In particular eccentric training promotes a beneficial rehabilitation and strength training strategy. Virtual Proprioception for eccentric training applies real-time feedback from a wireless gyroscope platform enabled through a software application for a smartphone. Virtual Proprioception for eccentric training is applied to the eccentric phase of a biceps brachii strength training and contrasted to a biceps brachii strength training scenario without feedback. During the operation of Virtual Proprioception for eccentric training the intent is to not exceed a prescribed gyroscope signal threshold based on the real-time presentation of the gyroscope signal, in order to promote the eccentric aspect of the strength training endeavor. The experimental trial data is transmitted wireless through connectivity to the Internet as an email attachment for remote post-processing. A feature set is derived from the gyroscope signal for machine learning classification of the two scenarios of Virtual Proprioception real-time feedback for eccentric training and eccentric training without feedback. Considerable classification accuracy is achieved through the application of a multilayer perceptron neural network for distinguishing between the Virtual Proprioception real-time feedback for eccentric training and eccentric training without feedback.
Williams, Ian; Constandinou, Timothy G.
2014-01-01
Accurate models of proprioceptive neural patterns could 1 day play an important role in the creation of an intuitive proprioceptive neural prosthesis for amputees. This paper looks at combining efficient implementations of biomechanical and proprioceptor models in order to generate signals that mimic human muscular proprioceptive patterns for future experimental work in prosthesis feedback. A neuro-musculoskeletal model of the upper limb with 7 degrees of freedom and 17 muscles is presented and generates real time estimates of muscle spindle and Golgi Tendon Organ neural firing patterns. Unlike previous neuro-musculoskeletal models, muscle activation and excitation levels are unknowns in this application and an inverse dynamics tool (static optimization) is integrated to estimate these variables. A proprioceptive prosthesis will need to be portable and this is incompatible with the computationally demanding nature of standard biomechanical and proprioceptor modeling. This paper uses and proposes a number of approximations and optimizations to make real time operation on portable hardware feasible. Finally technical obstacles to mimicking natural feedback for an intuitive proprioceptive prosthesis, as well as issues and limitations with existing models, are identified and discussed. PMID:25009463
You, Sung H; Granata, Kevin P; Bunker, Linda K
2004-08-01
Cross-sectional repeated-measures design. Determine the effects of circumferential ankle pressure (CAP) intervention on proprioceptive acuity, ankle stiffness, and postural stability. The application of CAP using braces, taping, and adaptive shoes or military boots is widely used to address chronic ankle instability (CAI). An underlying assumption is that the CAP intervention might improve ankle stability through increased proprioceptive acuity and stiffness in the ankle. METHOD AND MEASURES: A convenience sample of 10 subjects was recruited from the local university community and categorized according to proprioceptive acuity (high, low) and ankle stability (normal, CAI). Proprioceptive acuity was measured when blindfolded subjects were asked to accurately reproduce a self-selected target ankle position before and after the application of CAP. Proprioceptive acuity was determined in 5 different ankle joint position sense tests: neutral, inversion, eversion, plantar flexion, and dorsiflexion. Joint position angles were recorded electromechanically using a potentiometer. Passive ankle stiffness was computed from the ratio of applied static moment versus angular displacement. Active ankle stiffness was determined from biomechanical analyses of ankle motion following a mediolateral perturbation. Postural stability was quantified from the center of pressure displacement in the mediolateral and the anteroposterior directions in unipedal stance. All measurements were recorded with and without CAP applied by a pediatric blood pressure cuff. Data were analyzed using a separate mixed-model analysis of variance (ANOVA) for each dependent variable. Post hoc comparison using Tukey's honestly significant difference (HSD) test was performed if significant interactions were obtained. Significance level was set at P<.05 for all analyses. Significant group (high versus low proprioceptive acuity) x CAP interactions were identified for postural stability. Passive ankle stiffness was not increased by an application of CAP. Active ankle stiffness was significantly different between the high and low proprioceptive acuity groups and was not affected by an application of CAP. Significant group (normal versus CAI) x CAP interactions were observed for mediolateral center-of-pressure displacement with a main effect of group on neutral joint position sense. Application of CAP increased proprioceptive acuity and demonstrated trends toward increased active stiffness in the ankle, hence improved postural stability. The effects tend to be limited to individuals with low proprioceptive acuity.
Chieffi, Sergio; Messina, Giovanni; Messina, Antonietta; Villano, Ines; Monda, Vincenzo; Ambra, Ferdinando Ivano; Garofalo, Elisabetta; Romano, Felice; Mollica, Maria Pina; Monda, Marcellino; Iavarone, Alessandro
2017-01-01
Previous studies suggested that the occipitoparietal stream orients attention toward the near/lower space and is involved in immediate reaching, whereas the occipitotemporal stream orients attention toward the far/upper space and is involved in delayed reaching. In the present study, we investigated the role of the occipitotemporal stream in attention orienting and delayed reaching in a patient (GP) with bilateral damage to the occipitoparietal areas and optic ataxia. GP and healthy controls took part in three experiments. In the experiment 1, the participants bisected lines oriented along radial, vertical, and horizontal axes. GP bisected radial lines farther, and vertical lines more above, than the controls, consistent with an attentional bias toward the far/upper space and near/lower space neglect. The experiment 2 consisted of two tasks: (1) an immediate reaching task, in which GP reached target locations under visual control and (2) a delayed visual reaching task, in which GP and controls were asked to reach remembered target locations visually presented. We measured constant and variable distance and direction errors. In immediate reaching task, GP accurately reached target locations. In delayed reaching task, GP overshot remembered target locations, whereas the controls undershot them. Furthermore, variable errors were greater in GP than in the controls. In the experiment 3, GP and controls performed a delayed proprioceptive reaching task. Constant reaching errors did not differ between GP and the controls. However, variable direction errors were greater in GP than in the controls. We suggest that the occipitoparietal damage, and the relatively intact occipitotemporal region, produced in GP an attentional orienting bias toward the far/upper space (experiment 1). In turns, the attentional bias selectively shifted toward the far space remembered visual (experiment 2), but not proprioceptive (experiment 3), target locations. As a whole, these findings further support the hypothesis of an involvement of the occipitotemporal stream in delayed reaching. Furthermore, the observation that in both delayed reaching tasks the variable errors were greater in GP than in the controls suggested that in optic ataxia is present not only a visuo- but also a proprioceptivo-motor integration deficit. PMID:28620345
Visual perception and regulatory conflict: motivation and physiology influence distance perception.
Cole, Shana; Balcetis, Emily; Zhang, Sam
2013-02-01
Regulatory conflict can emerge when people experience a strong motivation to act on goals but a conflicting inclination to withhold action because physical resources available, or physiological potentials, are low. This study demonstrated that distance perception is biased in ways that theory suggests assists in managing this conflict. Participants estimated the distance to a target location. Individual differences in physiological potential measured via waist-to-hip ratio interacted with manipulated motivational states to predict visual perception. Among people low in physiological potential and likely to experience regulatory conflict, the environment appeared easier to traverse when motivation was strong compared with weak. Among people high in potential and less likely to experience conflict, perception was not predicted by motivational strength. The role of motivated distance perception in self-regulation is discussed. 2013 APA, all rights reserved
Maitre, J; Serres, I; Lhuisset, L; Bois, J; Gasnier, Y; Paillard, T
2015-02-01
The aim was to determine in what extent physical activity influences postural control when visual, vestibular, and/or proprioceptive systems are disrupted. Two groups of healthy older women: an active group (74.0 ± 3.8 years) who practiced physical activities and a sedentary group (74.7 ± 6.3 years) who did not, underwent 12 postural conditions consisted in altering information emanating from sensory systems by means of sensory manipulations (i.e., eyes closed, cervical collar, tendon vibration, electromyostimulation, galvanic vestibular stimulation, foam surface). The center of foot pressure velocity was recorded on a force platform. Results indicate that the sensory manipulations altered postural control. The sedentary group was more disturbed than the active group by the use of tendon vibration. There was no clear difference between the two groups in the other conditions. This study suggests that the practice of physical activities is beneficial as a means of limiting the effects of tendon vibration on postural control through a better use of the not manipulated sensory systems and/or a more efficient reweighting to proprioceptive information from regions unaffected by the tendon vibration. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Moore, Steven T.; Cohen, Bernard; Clement, Gilles; Raphan, Theodore
1999-01-01
On Earth, the low-frequency afferent signal from the otoliths encodes head tilt with respect to the gravitational vertical, and the higher frequency components reflect both tilt and linear acceleration of the head. In microgravity, static tilt of the head does not influence otolith output, and the relationship between sensory input from the vestibular organs, and the visual, proprioceptive and somatosensory systems, would be disrupted. Several researchers have proposed that in 0-g this conflict may induce a reinterpretation of all otolith signals by the brain to encode only linear translation (otolith tilt-translation reinterpretation or OTTR). Ocular counter-rolling (OCR) is a low-frequency otolith-mediated reflex, which generates compensatory torsional eye movements (rotation about the visual axis) towards the spatial vertical during static roll tilt with a gain of approximately 10%. Transient linear acceleration and off-axis centrifugation at a constant angular velocity can also generate OCR. According to the OTTR hypothesis, OCR should be reduced in microgravity, and immediately upon return from a 0-g environment. Results to date have been inconclusive. OCR was reduced following the 10 day Spacelab-1 mission in response to leftward roll tilts (28-56% in 3 subjects and unchanged in one subject), and sinusoidal linear oscillations at 0.4 and 0.8 Hz. OCR gain declined 70% in four monkeys following a 14 day COSMOS mission. Following a 30 day MIR mission OCR gain decreased in one astronaut, but increased in two others following a 180 day mission. We have studied the affect of microgravity on low-frequency otolith function as part of a larger study of the interaction of vision and the vestibular system. This experiment (E-047) involved off-axis centrifugation of payload crewmembers and flew aboard the recent Neurolab mission (STS 90). Presented below are preliminary results focusing on perception and the OCR response during both centrifugation and static tilt.
De Carli, P; Patrizi, M; Pepe, L; Cavaniglia, G; Riva, D; D'Ottavi, L R
2010-08-01
Nine healthy volunteers (6 males, 3 females), mean age 34.5 years (SD = 11.52), underwent a vestibulo-postural rehabilitation cycle with a visuo-proprioceptive-type stimulus. All subjects in the study group were evaluated by means of stabilometric bipodalic and monopodalic tests both before and immediately after treatment, and again 3 month thereafter. The Delos Postural Proprioceptive System®, DPPS (Delos, srl, Turin, Italy), was used in performing these stabilometric tests and in the rehabilitation exercises. The first aim of the study was to evaluate to what extent the functional level of the proprioceptive system was reliable, in healthy subjects, in the control of postural stability; the second was to demonstrate the possibility to increase this level by means of a novel visuo-proprioceptive feedback training; the last was to establish whether or not the increase achieved was permanent. The bipodalic test did not reveal any deficit in posture either before or after rehabilitation. The monopodalic test prior to treatment, with eyes closed, revealed, in 2/3 of the study group, evidence of the risk of falling, expressed as the precautional strategy (8.57 ± 6.18% SD). An increase in the proprioceptive activity, obtained in the subjects examined immediately after the visuo-proprioceptive vestibulo-postural rehabilitation, led, in the monopodalic test, with eyes closed, to a significant reduction in the risk of falling (with the precautional strategy equal to 1.09 ± 2.63% SD, p = 0.004). The monopodalic test, with eyes closed, 3 months after rehabilitation, demonstrated results not unlike those pre-treament with values, therefore, not more significant than those emerging from the pre-treatment test. Thus, from the above-mentioned data, it can be observed that, also in healthy subjects, there may be different levels of postural proprioceptive control related to a high risk of falling. These levels can be maintained constant for a certain period of time, until a significant reduction in the risk of falling is achieved, only if continuously stimulated by appropriate sensorial information.
Palomo, Priscila; Borrego, Adrián; Cebolla, Ausiàs; Llorens, Roberto; Demarzo, Marcelo; Baños, Rosa M
2018-02-01
The Rubber Hand Illusion (RHI) is a perceptual illusion that enables integration of artificial limbs into the body representation through combined multisensory integration. Most previous studies investigating the RHI have involved young healthy adults within a very narrow age range (typically 20-30 years old). The purpose of this paper was to determine the influence of age on the RHI. The RHI was performed on 93 healthy adults classified into three groups of age (20-35 years old, N = 41; 36-60 years old, N = 28; and 61-80 years old, N = 24), and its effects were measured with subjective (Embodiment of Rubber Hand Questionnaire), behavioral (proprioceptive drift), and physiological (changes in skin temperature and conductance) measures. There were neither significant differences among groups in any response, nor significant covariability or correlation between age and other measures (but for skin temperature), which suggests that the RHI elicits similar responses across different age groups in the adult phase. Copyright © 2017 Elsevier Inc. All rights reserved.
Proprioceptive influence on the optokinetic nystagmus.
Botti, F; Anastasopoulos, D; Kostadima, V; Bambagioni, D; Pettorossi, V E
2001-01-01
The influence of neck and leg proprioceptive inputs on optokinetic-induced quick phases was studied in humans. Ten subjects received unidirectional horizontal optokinetic stimulation (10-20%/s) during sinusoidal neck, leg and combined neck + leg proprioceptive stimulation. The optokinetic reflex was measured by electro-oculography. Neck stimulation induced a shift in the nystagmus beating field in the opposite direction to body movement (gain 0.3 0.4, phase 140-180 degrees). The beating field shift resulted totally from the amplitude and frequency modulation of optokinetic quick phases, as slow phases were not affected. Leg proprioceptive stimulation induced a similar effect, but the phase of the response lagged by approximately 90 degrees compared with that of neck response. With combined neck + leg stimulation, the amplitude of the effect was a sum of the separate effects, but the phase coincided with that of the leg response. This suggests that neck and leg proprioceptive signals do not add linearly and that the leg signal determines the time of the response.
Visual cortex activation in kinesthetic guidance of reaching.
Darling, W G; Seitz, R J; Peltier, S; Tellmann, L; Butler, A J
2007-06-01
The purpose of this research was to determine the cortical circuit involved in encoding and controlling kinesthetically guided reaching movements. We used (15)O-butanol positron emission tomography in ten blindfolded able-bodied volunteers in a factorial experiment in which arm (left/right) used to encode target location and to reach back to the remembered location and hemispace of target location (left/right side of midsagittal plane) varied systematically. During encoding of a target the experimenter guided the hand to touch the index fingertip to an external target and then returned the hand to the start location. After a short delay the subject voluntarily moved the same hand back to the remembered target location. SPM99 analysis of the PET data contrasting left versus right hand reaching showed increased (P < 0.05, corrected) neural activity in the sensorimotor cortex, premotor cortex and posterior parietal lobule (PPL) contralateral to the moving hand. Additional neural activation was observed in prefrontal cortex and visual association areas of occipital and parietal lobes contralateral and ipsilateral to the reaching hand. There was no statistically significant effect of target location in left versus right hemispace nor was there an interaction of hand and hemispace effects. Structural equation modeling showed that parietal lobe visual association areas contributed to kinesthetic processing by both hands but occipital lobe visual areas contributed only during dominant hand kinesthetic processing. This visual processing may also involve visualization of kinesthetically guided target location and use of the same network employed to guide reaches to visual targets when reaching to kinesthetic targets. The present work clearly demonstrates a network for kinesthetic processing that includes higher visual processing areas in the PPL for both upper limbs and processing in occipital lobe visual areas for the dominant limb.
Differential approach to strategies of segmental stabilisation in postural control.
Isableu, Brice; Ohlmann, Théophile; Crémieux, Jacques; Amblard, Bernard
2003-05-01
The present paper attempts to clarify the between-subjects variability exhibited in both segmental stabilisation strategies and their subordinated or associated sensory contribution. Previous data have emphasised close relationships between the interindividual variability in both the visual control of posture and the spatial visual perception. In this study, we focused on the possible relationships that might link perceptual visual field dependence-independence and the visual contribution to segmental stabilisation strategies. Visual field dependent (FD) and field independent (FI) subjects were selected on the basis of their extreme score in a static rod and frame test where an estimation of the subjective vertical was required. In the postural test, the subjects stood in the sharpened Romberg position in darkness or under normal or stroboscopic illumination, in front of either a vertical or a tilted frame. Strategies of segmental stabilisation of the head, shoulders and hip in the roll plane were analysed by means of their anchoring index (AI). Our hypothesis was that FD subjects might use mainly visual cues for calibrating not only their spatial perception but also their strategies of segmental stabilisation. In the case of visual cue disturbances, a greater visual dependency to the strategies of segmental stabilisation in FD subjects should be validated by observing more systematic "en bloc" functioning (i.e. negative AI) between two adjacent segments. The main results are the following: 1. Strategies of segmental stabilisation differed between both groups and differences were amplified with the deprivation of either total vision and/or static visual cues. 2. In the absence of total vision and/or static visual cues, FD subjects have shown an increased efficiency of the hip stabilisation in space strategy and an "en bloc" operation of the shoulder-hip unit (whole trunk). The last "en bloc" operation was extended to the whole head-trunk unit in darkness, associated with a hip stabilisation in space. 3. The FI subjects have adopted neither a strategy of segmental stabilisation in space nor on the underlying segment, whatever the body segment considered and the visual condition. Thus, in this group, head, shoulder and hip moved independently from each other during stance control, roughly without taking into account the visual condition. The results, emphasising a differential weighting of sensory input involved in both perceptual and postural control, are discussed in terms of the differential choice and/or ability to select the adequate frame of reference common to both cognitive and motor spatial activities. We assumed that a motor-somesthetics "neglect" or a lack of mastering of these inputs/outputs rather than a mere visual dependence in FD subjects would generate these interindividual differences in both spatial perception and postural balance. This proprioceptive "neglect" is assumed to lead FD subjects to sensory reweighting, whereas proprioceptive dominance would lead FI subjects to a greater ability in selecting the adequate frame of reference in the case of intersensory disturbances. Finally, this study also provides evidence for a new interpretation of the visual field dependence-independence dimension in both spatial perception and postural control.
Visual half-field presentations of incongruent color words: effects of gender and handedness.
Franzon, M; Hugdahl, K
1986-09-01
Right-handed (dextral) and left-handed (sinistral) males and females (N = 15) were compared for language lateralization in a visual half-field (VHF) incongruent color-words paradigm. The paradigm consists of repeated brief (less than 200 msec) presentations of color-words written in an incongruent color. Presentations are either to the right or to the left of center fixation. The task of the subject is to report the color the word is written in on each trial, ignoring the color-word. Color-bars and congruent color-words were used as control stimuli. Vocal reaction time (VRT) and error frequency were used as dependent measures. The logic behind the paradigm is that incongruent color-words should lead to a greater cognitive conflict when presented in the half-field contralateral to the dominant hemisphere. The results showed significantly longer VRTs in the right half-field for the dextral subjects. Furthermore, significantly more errors were observed in the male dextral group when the incongruent stimuli were presented in the right half-field. There was a similar trend in the data for the sinistral males. No differences between half-fields were observed for the female groups. It is concluded that the present results strengthen previous findings from our laboratory (Hugdahl and Franzon, 1985) that the incongruent color-words paradigm is a useful non-invasive technique for the study of lateralization in the intact brain.
Dyadic brain modelling, mirror systems and the ontogenetic ritualization of ape gesture
Arbib, Michael; Ganesh, Varsha; Gasser, Brad
2014-01-01
The paper introduces dyadic brain modelling, offering both a framework for modelling the brains of interacting agents and a general framework for simulating and visualizing the interactions generated when the brains (and the two bodies) are each coded up in computational detail. It models selected neural mechanisms in ape brains supportive of social interactions, including putative mirror neuron systems inspired by macaque neurophysiology but augmented by increased access to proprioceptive state. Simulation results for a reduced version of the model show ritualized gesture emerging from interactions between a simulated child and mother ape. PMID:24778382
Dyadic brain modelling, mirror systems and the ontogenetic ritualization of ape gesture.
Arbib, Michael; Ganesh, Varsha; Gasser, Brad
2014-01-01
The paper introduces dyadic brain modelling, offering both a framework for modelling the brains of interacting agents and a general framework for simulating and visualizing the interactions generated when the brains (and the two bodies) are each coded up in computational detail. It models selected neural mechanisms in ape brains supportive of social interactions, including putative mirror neuron systems inspired by macaque neurophysiology but augmented by increased access to proprioceptive state. Simulation results for a reduced version of the model show ritualized gesture emerging from interactions between a simulated child and mother ape.
NASA Technical Reports Server (NTRS)
Komendantov, G. L.; Kopanev, V. I.
1975-01-01
Spacesickness under weightlessness conditions is explained mainly by disruption of the activity of the functional system perceiving space and participating in carrying out the balancing function, consisting, in particular, of the vestibular, proprioceptive, interoceptive, visual and cutaneomechanical analyzers. It can be assumed that, under specific conditions, Coriolis acceleration also is a cause of spacesickness. Adaptation is possible by formation of a new functional system which is adequate to the new mechanical conditions of weightlessness. Selection, training, creation of optimum conditions in the spacecraft cabin, medicinal, and technical improvement of spacecraft play an important role in prophylaxis of the space form of seasickness.
Ribot-Ciscar, Edith; Aimonetti, Jean-Marc; Azulay, Jean-Philippe
2017-12-15
The present study investigates whether proprioceptive training, based on kinesthetic illusions, can help in re-educating the processing of muscle proprioceptive input, which is impaired in patients with Parkinson's disease (PD). The processing of proprioceptive input before and after training was evaluated by determining the error in the amplitude of voluntary dorsiflexion ankle movement (20°), induced by applying a vibration on the tendon of the gastrocnemius-soleus muscle (a vibration-induced movement error). The training consisted of the subjects focusing their attention upon a series of illusory movements of the ankle. Eleven PD patients and eleven age-matched control subjects were tested. Before training, vibration reduced dorsiflexion amplitude in controls by 4.3° (P<0.001); conversely, vibration was inefficient in PD's movement amplitude (reduction of 2.1°, P=0.20). After training, vibration significantly reduced the estimated movement amplitude in PD patients by 5.3° (P=0.01). This re-emergence of a vibration-induced error leads us to conclude that proprioceptive training, based on kinesthetic illusions, is a simple means for re-educating the processing of muscle proprioceptive input in PD patients. Such complementary training should be included in rehabilitation programs that presently focus on improving balance and motor performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Pivoting neuromuscular control and proprioception in females and males.
Lee, Song Joo; Ren, Yupeng; Kang, Sang Hoon; Geiger, François; Zhang, Li-Qun
2015-04-01
Noncontact ACL injuries occur most commonly in pivoting sports and are much more frequent in females than in males. However, information on sex differences in proprioceptive acuity under weight-bearing and leg neuromuscular control in pivoting is scarce. The objective of this study was to investigate sex differences in pivoting neuromuscular control during strenuous stepping tasks and proprioceptive acuity under weight-bearing. 21 male and 22 female subjects were recruited to evaluate pivoting proprioceptive acuity under weight-bearing, and pivoting neuromuscular control (in terms of leg pivoting instability, stiffness, maximum internal and external pivoting angles, and entropy of time-to-peak EMG in lower limb muscles) during strenuous stepping tasks performed on a novel offaxis elliptical trainer. Compared to males, females had significantly lower proprioceptive acuity under weight-bearing in both internal and external pivoting directions, higher pivoting instability, larger maximum internal pivoting angle, lower leg pivoting stiffness, and higher entropy of time-to-peak EMG in the gastrocnemius muscles during strenuous stepping tasks with internal and external pivoting perturbations. Results of this study may help us better understand factors contributing to ACL injuries in females and males, develop training strategies to improve pivoting neuromuscular control and proprioceptive acuity, and potentially reduce ACL and lower-limb musculoskeletal injuries.
ERIC Educational Resources Information Center
Rogow, Sally M.
1987-01-01
The manual development of 148 blind, visually impaired, and visually impaired multi-handicapped students, aged 3-19, was studied. Results indicated a significant relationship between object manipulation and speech, and an inverse relationship between object manipulation and stereotypic hand mannerisms. Optimal development of manual functions and…
Where is your arm? Variations in proprioception across space and tasks.
Fuentes, Christina T; Bastian, Amy J
2010-01-01
The sense of limb position is crucial for movement control and environmental interactions. Our understanding of this fundamental proprioceptive process, however, is limited. For example, little is known about the accuracy of arm proprioception: Does it vary with changes in arm configuration, since some peripheral receptors are engaged only when joints move toward extreme angles? Are these variations consistent across different tasks? Does proprioceptive ability change depending on what we try to localize (e.g., fingertip position vs. elbow angle)? We used a robot exoskeleton to study proprioception in 14 arm configurations across three tasks, asking healthy subjects to 1) match a pointer to elbow angles after passive movements, 2) match a pointer to fingertip positions after passive movements, and 3) actively match their elbow angle to a pointer. Across all three tasks, subjects overestimated more extreme joint positions; this may be due to peripheral sensory signals biasing estimates as a safety mechanism to prevent injury. We also found that elbow angle estimates were more precise when used to judge fingertip position versus directly reported, suggesting that the brain has better access to limb endpoint position than joint angles. Finally, precision of elbow angle estimates improved in active versus passive movements, corroborating work showing that efference copies of motor commands and alpha-gamma motor neuron coactivation contribute to proprioceptive estimates. In sum, we have uncovered fundamental aspects of normal proprioceptive processing, demonstrating not only predictable biases that are dependent on joint configuration and independent of task but also improved precision when integrating information across joints.
Marinho, Hellen Veloso Rocha; Amaral, Giovanna Mendes; de Souza Moreira, Bruno; Araújo, Vanessa Lara; Souza, Thales Rezende; Ocarino, Juliana Melo; da Fonseca, Sérgio Teixeira
2017-12-01
Study Design Controlled laboratory study, cross-sectional. Background Deficits in ankle proprioceptive acuity have been reported in persons with functional instability of the ankle. Passive stiffness has been proposed as a possible mechanism underlying proprioceptive acuity. Objective To compare proprioceptive acuity and passive ankle stiffness in persons with and without functional ankle instability, and to assess the influence of passive joint stiffness on proprioceptive acuity in persons with functional ankle instability. Methods A sample of 18 subjects with and 18 without complaints of functional ankle instability following lateral ankle sprain participated. An isokinetic dynamometer was used to compare motion perception threshold, passive position sense, and passive ankle stiffness between groups. To evaluate the influence of passive stiffness on proprioceptive acuity, individuals in the lateral functional ankle instability group were divided into 2 subgroups: "high" and "low" passive ankle stiffness. Results The functional ankle instability group exhibited increased motion perception threshold when compared with the corresponding limb of the control group. Between-group differences were not found for passive position sense and passive ankle stiffness. Those in the functional ankle instability group with higher passive ankle stiffness had smaller motion perception thresholds than those with lower passive ankle stiffness. Conclusion Unlike motion perception threshold, passive position sense is not affected by the presence of functional ankle instability. Passive ankle stiffness appears to influence proprioceptive acuity in persons with functional ankle instability. J Orthop Sports Phys Ther 2017;47(12):899-905. Epub 7 Oct 2017. doi:10.2519/jospt.2017.7030.
Eyelid Opening with Trigeminal Proprioceptive Activation Regulates a Brainstem Arousal Mechanism.
Matsuo, Kiyoshi; Ban, Ryokuya; Hama, Yuki; Yuzuriha, Shunsuke
2015-01-01
Eyelid opening stretches mechanoreceptors in the supratarsal Müller muscle to activate the proprioceptive fiber supplied by the trigeminal mesencephalic nucleus. This proprioception induces reflex contractions of the slow-twitch fibers in the levator palpebrae superioris and frontalis muscles to sustain eyelid and eyebrow positions against gravity. The cell bodies of the trigeminal proprioceptive neurons in the mesencephalon potentially make gap-junctional connections with the locus coeruleus neurons. The locus coeruleus is implicated in arousal and autonomic function. Due to the relationship between arousal, ventromedial prefrontal cortex, and skin conductance, we assessed whether upgaze with trigeminal proprioceptive evocation activates sympathetically innervated sweat glands and the ventromedial prefrontal cortex. Specifically, we examined whether 60° upgaze induces palmar sweating and hemodynamic changes in the prefrontal cortex in 16 subjects. Sweating was monitored using a thumb-mounted perspiration meter, and prefrontal cortex activity was measured with 45-channel, functional near-infrared spectroscopy (fNIRS) and 2-channel NIRS at Fp1 and Fp2. In 16 subjects, palmar sweating was induced by upgaze and decreased in response to downgaze. Upgaze activated the ventromedial prefrontal cortex with an accumulation of integrated concentration changes in deoxyhemoglobin, oxyhemoglobin, and total hemoglobin levels in 12 subjects. Upgaze phasically and degree-dependently increased deoxyhemoglobin level at Fp1 and Fp2, whereas downgaze phasically decreased it in 16 subjects. Unilateral anesthetization of mechanoreceptors in the supratarsal Müller muscle used to significantly reduce trigeminal proprioceptive evocation ipsilaterally impaired the increased deoxyhemoglobin level by 60° upgaze at Fp1 or Fp2 in 6 subjects. We concluded that upgaze with strong trigeminal proprioceptive evocation was sufficient to phasically activate sympathetically innervated sweat glands and appeared to induce rapid oxygen consumption in the ventromedial prefrontal cortex and to rapidly produce deoxyhemoglobin to regulate physiological arousal. Thus, eyelid opening with trigeminal proprioceptive evocation may activate the ventromedial prefrontal cortex via the mesencephalic trigeminal nucleus and locus coeruleus.
Eyelid Opening with Trigeminal Proprioceptive Activation Regulates a Brainstem Arousal Mechanism
Matsuo, Kiyoshi; Ban, Ryokuya; Hama, Yuki; Yuzuriha, Shunsuke
2015-01-01
Eyelid opening stretches mechanoreceptors in the supratarsal Müller muscle to activate the proprioceptive fiber supplied by the trigeminal mesencephalic nucleus. This proprioception induces reflex contractions of the slow-twitch fibers in the levator palpebrae superioris and frontalis muscles to sustain eyelid and eyebrow positions against gravity. The cell bodies of the trigeminal proprioceptive neurons in the mesencephalon potentially make gap-junctional connections with the locus coeruleus neurons. The locus coeruleus is implicated in arousal and autonomic function. Due to the relationship between arousal, ventromedial prefrontal cortex, and skin conductance, we assessed whether upgaze with trigeminal proprioceptive evocation activates sympathetically innervated sweat glands and the ventromedial prefrontal cortex. Specifically, we examined whether 60° upgaze induces palmar sweating and hemodynamic changes in the prefrontal cortex in 16 subjects. Sweating was monitored using a thumb-mounted perspiration meter, and prefrontal cortex activity was measured with 45-channel, functional near-infrared spectroscopy (fNIRS) and 2-channel NIRS at Fp1 and Fp2. In 16 subjects, palmar sweating was induced by upgaze and decreased in response to downgaze. Upgaze activated the ventromedial prefrontal cortex with an accumulation of integrated concentration changes in deoxyhemoglobin, oxyhemoglobin, and total hemoglobin levels in 12 subjects. Upgaze phasically and degree-dependently increased deoxyhemoglobin level at Fp1 and Fp2, whereas downgaze phasically decreased it in 16 subjects. Unilateral anesthetization of mechanoreceptors in the supratarsal Müller muscle used to significantly reduce trigeminal proprioceptive evocation ipsilaterally impaired the increased deoxyhemoglobin level by 60° upgaze at Fp1 or Fp2 in 6 subjects. We concluded that upgaze with strong trigeminal proprioceptive evocation was sufficient to phasically activate sympathetically innervated sweat glands and appeared to induce rapid oxygen consumption in the ventromedial prefrontal cortex and to rapidly produce deoxyhemoglobin to regulate physiological arousal. Thus, eyelid opening with trigeminal proprioceptive evocation may activate the ventromedial prefrontal cortex via the mesencephalic trigeminal nucleus and locus coeruleus. PMID:26244675
Behavioral and neural effects of congruency of visual feedback during short-term motor learning.
Ossmy, Ori; Mukamel, Roy
2018-05-15
Visual feedback can facilitate or interfere with movement execution. Here, we describe behavioral and neural mechanisms by which the congruency of visual feedback during physical practice of a motor skill modulates subsequent performance gains. 18 healthy subjects learned to execute rapid sequences of right hand finger movements during fMRI scans either with or without visual feedback. Feedback consisted of a real-time, movement-based display of virtual hands that was either congruent (right virtual hand movement), or incongruent (left virtual hand movement yoked to the executing right hand). At the group level, right hand performance gains following training with congruent visual feedback were significantly higher relative to training without visual feedback. Conversely, performance gains following training with incongruent visual feedback were significantly lower. Interestingly, across individual subjects these opposite effects correlated. Activation in the Supplementary Motor Area (SMA) during training corresponded to individual differences in subsequent performance gains. Furthermore, functional coupling of SMA with visual cortices predicted individual differences in behavior. Our results demonstrate that some individuals are more sensitive than others to congruency of visual feedback during short-term motor learning and that neural activation in SMA correlates with such inter-individual differences. Copyright © 2017 Elsevier Inc. All rights reserved.
Visual Perception and Regulatory Conflict: Motivation and Physiology Influence Distance Perception
ERIC Educational Resources Information Center
Cole, Shana; Balcetis, Emily; Zhang, Sam
2013-01-01
Regulatory conflict can emerge when people experience a strong motivation to act on goals but a conflicting inclination to withhold action because physical resources available, or "physiological potentials", are low. This study demonstrated that distance perception is biased in ways that theory suggests assists in managing this conflict.…
Attention affects visual perceptual processing near the hand.
Cosman, Joshua D; Vecera, Shaun P
2010-09-01
Specialized, bimodal neural systems integrate visual and tactile information in the space near the hand. Here, we show that visuo-tactile representations allow attention to influence early perceptual processing, namely, figure-ground assignment. Regions that were reached toward were more likely than other regions to be assigned as foreground figures, and hand position competed with image-based information to bias figure-ground assignment. Our findings suggest that hand position allows attention to influence visual perceptual processing and that visual processes typically viewed as unimodal can be influenced by bimodal visuo-tactile representations.
Ko, Seung-Nam
2017-01-01
Posterior cruciate ligament (PCL) reconstruction for patients with PCL insufficiency has been associated with postoperative improvements in proprioceptive function due to mechanoreceptor regeneration. However, it is unclear whether reconstructed PCL or contralateral normal knees have better proprioceptive function outcomes. This meta-analysis was designed to compare the proprioceptive function of reconstructed PCL or contralateral normal knees in patients with PCL insufficiency. All studies that compared proprioceptive function, as assessed with threshold to detect passive movement (TTDPM) or joint position sense (JPS) in PCL reconstructed or contralateral normal knees were included. JPS was calculated by reproducing passive positioning (RPP). Five studies met the inclusion/exclusion criteria for the meta-analysis. The proprioceptive function, defined as TTDPM (95% CI: 0.25 to 0.51°; P<0.00001) and RPP (95% CI: 0.19 to 0.45°; P<0.00001), was significantly different between the reconstructed PCL and contralateral normal knees. The mean difference in angle of error between the reconstructed PCL and contralateral normal knees was 0.06° greater in TTDPM than by RPP. In addition, results from subgroup analyses, based on the starting angles and the moving directions of the knee, that evaluated TTDPM at 15° flexion to 45° extension, TTDPM at 45° flexion to 110° flexion, RPP in flexion, and RPP in extension demonstrated that mean angles of error were significantly greater, by 0.38° (P = 0.0001), 0.36° (P = 0.02), 0.36° (P<0.00001), and 0.23° (P = 0.04), respectively, in reconstructed PCL than in contralateral normal knees. The proprioceptive function of PCL reconstructed knees was decreased, compared with contralateral normal knees, as determined by both TTDPM and RPP. In addition, the amount of loss of proprioception was greater in TTDPM than in RPP, even with minute differences. Results from subgroup analysis, that evaluated the mean angles of error in moving directions through RPP, suggested that the moving direction of flexion has a significantly greater mean for angles of error than the moving direction of extension. Although the level of differences between various parameters were statistically significant, further studies are needed to determine whether the small differences (>1°) of the loss of proprioception are clinically relevant. PMID:28922423
Deshpande, Nandini; Simonsick, Eleanor; Metter, E Jeffrey; Ko, Seunguk; Ferrucci, Luigi; Studenski, Stephanie
2016-06-01
Ankle proprioceptive information is integrated by the central nervous system to generate and modulate muscle contractions for maintaining standing balance. This study evaluated the association of ankle joint proprioception with objective and self-report measures of balance, mobility, and physical function across the adult life span. Seven hundred and ninety participants (age range 24-97 years, 362 women) who completed ankle proprioception assessment between 2010 and 2014 were included in the present study from the population-based cohort of the Baltimore Longitudinal Study of Aging (BLSA), USA. Outcome measures included ankle joint proprioception measured as threshold for perception of passive movement (TPPM); single leg stance time; perceived difficulty for standing balance; usual, fastest, and narrow-path gait speed; walking index; short physical performance battery score; and self-reported activity restriction due to fear of falling. Descriptive variables included age, sex, body mass index, education, strength, and cognition. Analyses of covariance (ANCOVA) in general linear model (GLM) or multinomial logistic regression analyses were performed, as appropriate, to test the hypothesis that balance, mobility, and physical function were significantly different according to TPPM quintiles even after adjusting for relevant covariates. Those with TPPM >2.2° consistently demonstrated poor balance, mobility, and physical function. However, with increase in challenge (single leg stance, fastest walking speed, and SPPB), TPPM >1.4° was associated with significantly worse performance. In conclusion, ankle proprioceptive acuity has an overall graded relationship with objective and self-report measures of balance, mobility, and physical function. However, the cutoff proprioceptive acuity associated with substantial decline or inability to perform could depend on the challenge induced.
Cammarata, Martha L; Schnitzer, Thomas J; Dhaher, Yasin Y
2012-01-01
Objective Impaired proprioception may alter joint loading and contribute to the progression of knee osteoarthritis (OA). Though frontal plane loading at the knee contributes to OA, proprioception and its modulation with OA in this direction have not been examined. The aim of this study was to assess knee proprioceptive acuity in the frontal and sagittal planes in knee OA and healthy participants. We hypothesized that proprioceptive acuity will be decreased in the OA population in both planes of movement. Methods Thirteen persons with knee OA and fourteen healthy age-matched subjects participated. Proprioceptive acuity was assessed in varus, valgus, flexion, and extension using the threshold to detection of passive movement (TDPM). Repeated measures analysis of variance was used to assess differences in TDPM between subject groups and across movement directions. Linear regression analyses were performed to assess the correlation of TDPM between and within planes of movement. Results TDPM was found to be significantly higher (P<0.05), in the knee OA group compared to the control group for all directions tested, indicating reduced proprioceptive acuity. Differences in TDPM between groups were consistent across all movement directions, with mean difference (95% CI) for valgus: 0.94° (0.20°, 1.65°), varus: 0.92° (0.18°, 1.68°), extension: 0.93° (0.19°, 1.66°), and flexion: 1.11° (0.38°, 1.85°). TDPM measures across planes of movement were only weakly correlated, especially in the OA group. Conclusions Consistent differences in TDPM between the OA and control groups across all movement directions suggest a global, not direction-specific, reduction in sensation in knee OA patients. PMID:21547895
Can proprioception really be improved by exercises?
Ashton-Miller, J A; Wojtys, E M; Huston, L J; Fry-Welch, D
2001-05-01
There is little question that ankle disc training can improve ankle muscle motor performance in a unipedal balance task, most likely through improved strength and coordination [62] and possibly endurance. How much of the observed improvement in motor performance is due to improved ankle proprioception remains unknown. We have reviewed a number of theoretical ways in which training might improve proprioception for moderately challenging weight-bearing situations such as balancing on one leg. Although the relevant experiments have yet to be performed to test this hypothesis, any improvement would theoretically help to reduce injuries at these moderate levels of challenge. We question, however, whether these exercises can ever improve the reactive response required to prevent injury under the most challenging time-critical situations. If confirmed, this limitation needs to be acknowledged by authors and practitioners alike. Alternative protective strategies for the most challenging time-critical situations should be sought. We conclude that, despite their widespread acceptance, current exercises aimed at "improving proprioception" have not been demonstrated to achieve that goal. We have outlined theoretical scenarios by which proprioception might be improved, but these are speculative. The relevant experiments remain to be conducted. We argue that even if they were proven to improve proprioception, under the best circumstances such exercises could only prevent injury under slow to intermediate rate provocations to the joint musculoligamentous complex in question.
Proprioceptive Flexible Fluidic Actuators Using Conductive Working Fluids
Rossiter, Jonathan
2018-01-01
Abstract Soft robotic systems generally require both soft actuators and soft sensors to perform complex functions. Separate actuators and sensors are often combined into one composite device when proprioception (self-sensing) is required. In this article, we introduce the concept of using a conductive liquid to perform both the sensing and actuation functions of a proprioceptive soft actuator. The working fluid drives actuator deformation while simultaneously acting as a strain-sensing component for detecting actuator deformation. The concept is examined and demonstrated in two proprioceptive flexible fluidic actuators (FFAs) that use conductive liquids as their working fluids: a linear actuator and a bending actuator. In both cases, we show that resistance can be used to infer strain. Some hysteresis and nonlinearity are present, but repeatability is high. The bandwidth of resistance as a sensing variable in the bending FFA is tested and found to be ∼3.665 Hz. Resistance is demonstrated as a feedback variable in a control loop, and the proprioceptive bending FFA is controlled to respond to step input and sinusoidal target functions. The effect of temperature on resistance–strain behavior is also examined, and we demonstrate how measurement of volume and resistance can be used to detect when the actuator is constrained. Biocompatible proprioceptive soft actuators such as those presented in this article are ideal for use in low-cost bionic healthcare components such as orthotics, prosthetics, or even replacement muscles. PMID:29211627
Proprioceptive Flexible Fluidic Actuators Using Conductive Working Fluids.
Helps, Tim; Rossiter, Jonathan
2018-04-01
Soft robotic systems generally require both soft actuators and soft sensors to perform complex functions. Separate actuators and sensors are often combined into one composite device when proprioception (self-sensing) is required. In this article, we introduce the concept of using a conductive liquid to perform both the sensing and actuation functions of a proprioceptive soft actuator. The working fluid drives actuator deformation while simultaneously acting as a strain-sensing component for detecting actuator deformation. The concept is examined and demonstrated in two proprioceptive flexible fluidic actuators (FFAs) that use conductive liquids as their working fluids: a linear actuator and a bending actuator. In both cases, we show that resistance can be used to infer strain. Some hysteresis and nonlinearity are present, but repeatability is high. The bandwidth of resistance as a sensing variable in the bending FFA is tested and found to be ∼3.665 Hz. Resistance is demonstrated as a feedback variable in a control loop, and the proprioceptive bending FFA is controlled to respond to step input and sinusoidal target functions. The effect of temperature on resistance-strain behavior is also examined, and we demonstrate how measurement of volume and resistance can be used to detect when the actuator is constrained. Biocompatible proprioceptive soft actuators such as those presented in this article are ideal for use in low-cost bionic healthcare components such as orthotics, prosthetics, or even replacement muscles.
A conflict-based model of color categorical perception: evidence from a priming study.
Hu, Zhonghua; Hanley, J Richard; Zhang, Ruiling; Liu, Qiang; Roberson, Debi
2014-10-01
Categorical perception (CP) of color manifests as faster or more accurate discrimination of two shades of color that straddle a category boundary (e.g., one blue and one green) than of two shades from within the same category (e.g., two different shades of green), even when the differences between the pairs of colors are equated according to some objective metric. The results of two experiments provide new evidence for a conflict-based account of this effect, in which CP is caused by competition between visual and verbal/categorical codes on within-category trials. According to this view, conflict arises because the verbal code indicates that the two colors are the same, whereas the visual code indicates that they are different. In Experiment 1, two shades from the same color category were discriminated significantly faster when the previous trial also comprised a pair of within-category colors than when the previous trial comprised a pair from two different color categories. Under the former circumstances, the CP effect disappeared. According to the conflict-based model, response conflict between visual and categorical codes during discrimination of within-category pairs produced an adjustment of cognitive control that reduced the weight given to the categorical code relative to the visual code on the subsequent trial. Consequently, responses on within-category trials were facilitated, and CP effects were reduced. The effectiveness of this conflict-based account was evaluated in comparison with an alternative view that CP reflects temporary warping of perceptual space at the boundaries between color categories.
Ha, Sun-Young; Han, Jun-Ho; Sung, Yun-Hee
2018-04-01
The present study was conducted to investigate the effect of ankle strengthening exercise applied on unstable supporting surfaces on the proprioceptive sense and balance in adults with functional ankle instability. As for the study method, 30 adults with functional ankle instability were randomly assigned to an ankle strengthening exercise group and a stretching group on unstable supporting surfaces, and the interventions were implemented for 40 min. Before and after the interventions, a digital dual inclinometer was used to measure the proprioceptive sense of the ankle, the Balancia program was used to measure static balance ability, and the functional reach test was used to measure dynamic balance ability. In the results, both proprioceptive sense and static dynamic balance ability were significantly different between before and after the intervention in the experimental group ( P <0.05). When such results are put together, it can be seen that ankle strengthening exercise applied on unstable supporting surfaces may be presented as an effective treatment method for enhancing the proprioceptive sense and balance ability in adults with functional ankle instability.
Research on conflict detection algorithm in 3D visualization environment of urban rail transit line
NASA Astrophysics Data System (ADS)
Wang, Li; Xiong, Jing; You, Kuokuo
2017-03-01
In this paper, a method of collision detection is introduced, and the theory of three-dimensional modeling of underground buildings and urban rail lines is realized by rapidly extracting the buildings that are in conflict with the track area in the 3D visualization environment. According to the characteristics of the buildings, CSG and B-rep are used to model the buildings based on CSG and B-rep. On the basis of studying the modeling characteristics, this paper proposes to use the AABB level bounding volume method to detect the first conflict and improve the detection efficiency, and then use the triangular rapid intersection detection algorithm to detect the conflict, and finally determine whether the building collides with the track area. Through the algorithm of this paper, we can quickly extract buildings colliding with the influence area of the track line, so as to help the line design, choose the best route and calculate the cost of land acquisition in the three-dimensional visualization environment.
Artificial limb representation in amputees
van den Heiligenberg, Fiona M Z; Orlov, Tanya; Macdonald, Scott N; Duff, Eugene P; Henderson Slater, David; Beckmann, Christian F; Johansen-Berg, Heidi; Culham, Jody C; Makin, Tamar R
2018-01-01
Abstract The human brain contains multiple hand-selective areas, in both the sensorimotor and visual systems. Could our brain repurpose neural resources, originally developed for supporting hand function, to represent and control artificial limbs? We studied individuals with congenital or acquired hand-loss (hereafter one-handers) using functional MRI. We show that the more one-handers use an artificial limb (prosthesis) in their everyday life, the stronger visual hand-selective areas in the lateral occipitotemporal cortex respond to prosthesis images. This was found even when one-handers were presented with images of active prostheses that share the functionality of the hand but not necessarily its visual features (e.g. a ‘hook’ prosthesis). Further, we show that daily prosthesis usage determines large-scale inter-network communication across hand-selective areas. This was demonstrated by increased resting state functional connectivity between visual and sensorimotor hand-selective areas, proportional to the intensiveness of everyday prosthesis usage. Further analysis revealed a 3-fold coupling between prosthesis activity, visuomotor connectivity and usage, suggesting a possible role for the motor system in shaping use-dependent representation in visual hand-selective areas, and/or vice versa. Moreover, able-bodied control participants who routinely observe prosthesis usage (albeit less intensively than the prosthesis users) showed significantly weaker associations between degree of prosthesis observation and visual cortex activity or connectivity. Together, our findings suggest that altered daily motor behaviour facilitates prosthesis-related visual processing and shapes communication across hand-selective areas. This neurophysiological substrate for prosthesis embodiment may inspire rehabilitation approaches to improve usage of existing substitutionary devices and aid implementation of future assistive and augmentative technologies. PMID:29534154
Artificial limb representation in amputees.
van den Heiligenberg, Fiona M Z; Orlov, Tanya; Macdonald, Scott N; Duff, Eugene P; Henderson Slater, David; Beckmann, Christian F; Johansen-Berg, Heidi; Culham, Jody C; Makin, Tamar R
2018-05-01
The human brain contains multiple hand-selective areas, in both the sensorimotor and visual systems. Could our brain repurpose neural resources, originally developed for supporting hand function, to represent and control artificial limbs? We studied individuals with congenital or acquired hand-loss (hereafter one-handers) using functional MRI. We show that the more one-handers use an artificial limb (prosthesis) in their everyday life, the stronger visual hand-selective areas in the lateral occipitotemporal cortex respond to prosthesis images. This was found even when one-handers were presented with images of active prostheses that share the functionality of the hand but not necessarily its visual features (e.g. a 'hook' prosthesis). Further, we show that daily prosthesis usage determines large-scale inter-network communication across hand-selective areas. This was demonstrated by increased resting state functional connectivity between visual and sensorimotor hand-selective areas, proportional to the intensiveness of everyday prosthesis usage. Further analysis revealed a 3-fold coupling between prosthesis activity, visuomotor connectivity and usage, suggesting a possible role for the motor system in shaping use-dependent representation in visual hand-selective areas, and/or vice versa. Moreover, able-bodied control participants who routinely observe prosthesis usage (albeit less intensively than the prosthesis users) showed significantly weaker associations between degree of prosthesis observation and visual cortex activity or connectivity. Together, our findings suggest that altered daily motor behaviour facilitates prosthesis-related visual processing and shapes communication across hand-selective areas. This neurophysiological substrate for prosthesis embodiment may inspire rehabilitation approaches to improve usage of existing substitutionary devices and aid implementation of future assistive and augmentative technologies.
Morrison, Steven; Simmons, Rachel; Colberg, Sheri R; Parson, Henri K; Vinik, Aaron I
2018-02-01
This study examined the benefits of and differences between 12 weeks of thrice-weekly supervised balance training and an unsupervised at-home balance activity (using the Nintendo Wii Fit) for improving balance and reaction time and lowering falls risk in older individuals with type 2 diabetes mellitus (T2DM). Before-after trial. University research laboratory, home environment. Sixty-five older adults with type 2 diabetes were recruited for this study. Participants were randomly allocated to either supervised balance training (mean age 67.8 ± 5.2) or unsupervised training using the Nintendo Wii Fit balance board (mean age 66.1 ± 5.6). The training period for both groups lasted for 12 weeks. Individuals were required to complete three 40-minute sessions per week for a total of 36 sessions. The primary outcome measure was falls risk, which was as derived from the physiological profile assessment. In addition, measures of simple reaction time, lower limb proprioception, postural sway, knee flexion, and knee extension strength were also collected. Persons also self-reported any falls in the previous 6 months. Both training programs resulted in a significant lowering of falls risk (P < .05). The reduced risk was attributable to significant changes in reaction times for the hand (P < .05), foot (P < .01), lower-limb proprioception (P < .01), and postural sway (P < .05). Overall, training led to a decrease in falls risk, which was driven by improvements in reaction times, lower limb proprioception, and general balance ability. Interestingly, the reduced falls risk occurred without significant changes in leg strength, suggesting that interventions to reduce falls risk that target intrinsic risk factors related to balance control (over muscle strength) may have positive benefits for the older adult with T2DM at risk for falls. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Effects of aging on pointing movements under restricted visual feedback conditions.
Zhang, Liancun; Yang, Jiajia; Inai, Yoshinobu; Huang, Qiang; Wu, Jinglong
2015-04-01
The goal of this study was to investigate the effects of aging on pointing movements under restricted visual feedback of hand movement and target location. Fifteen young subjects and fifteen elderly subjects performed pointing movements under four restricted visual feedback conditions that included full visual feedback of hand movement and target location (FV), no visual feedback of hand movement and target location condition (NV), no visual feedback of hand movement (NM) and no visual feedback of target location (NT). This study suggested that Fitts' law applied for pointing movements of the elderly adults under different visual restriction conditions. Moreover, significant main effect of aging on movement times has been found in all four tasks. The peripheral and central changes may be the key factors for these different characteristics. Furthermore, no significant main effects of age on the mean accuracy rate under condition of restricted visual feedback were found. The present study suggested that the elderly subjects made a very similar use of the available sensory information as young subjects under restricted visual feedback conditions. In addition, during the pointing movement, information about the hand's movement was more useful than information about the target location for young and elderly subjects. Copyright © 2014 Elsevier B.V. All rights reserved.
Born, Jannis; Galeazzi, Juan M; Stringer, Simon M
2017-01-01
A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT) learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior of Hebbian learning in VisNet.
Born, Jannis; Stringer, Simon M.
2017-01-01
A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT) learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior of Hebbian learning in VisNet. PMID:28562618
Kemper, Maike; Gaschler, Robert; Schwager, Sabine; Schubert, Torsten
2016-01-01
The role of expectations in sequential adaptation to cognitive conflict has been debated controversially in prior studies. On the one hand, a sequential congruency effect (SCE) has been reported for trials in which participants expect a repetition of conflict level. On the other hand, conflict level expectations vs. the SCE have been shown to develop differentially across runs of trials with the same conflict level, arguing against the theory that the SCE is purely driven by expectation. The current verbal Stroop experiment addresses this controversy by two means. First, we tested which specific type of expectation (cue-induced expectations vs. self-generated predictions) might affect the SCE. Second, we assessed the impact of expectation on the SCE as well as the development of SCE and expectation with congruency level run length in one design. We observed a dissociation between expectations and SCE, demonstrating that the SCE is not exclusively driven by expectations. At the same time, we found evidence that (self-generated) expectations do have an impact on the SCE. Our data document especially high performance for one specific combination of task events: congruent trial accompanied by congruent prediction and conflict level repetition. Our results are in line with theories attributing conflict adaptation effects to the "adaption to the lack of conflict". We discuss our results in a broader context of theories about conflict monitoring. Copyright © 2015. Published by Elsevier B.V.
Oxenstierna, Gabriel; Magnusson Hanson, Linda L; Widmark, Maria; Finnholm, Kristina; Stenfors, Cecilia; Elofsson, Stig; Theorell, Töres
2011-01-01
Few studies have considered the work environment in relation to workplace conflicts and those who have been published have included relatively few psychosocial work environment factors. Little research has been published on the consequences of workplace conflicts in terms of employee health. In this study, the statistical relationships between work and workplace characteristics on one hand and conflicts on the other hand are examined. In addition, the relationship between conflicts at work and self-rated health are described. The study population was derived from the Swedish Longitudinal Occupational Survey of Health (SLOSH) 2006; n=5,141. Among employees at workplaces with more than 20 employees (n=3,341), 1,126 (33.7%) responded that they had been involved in some type of conflict during the two years preceding the survey. Among the work and workplace characteristics studied, the following factors were independently associated with increased likelihood of ongoing conflicts: Conflicting demands, emotional demands, risk of transfer or dismissal, poor promotion prospects, high level of employee influence and good freedom of expression. Factors that decreased the likelihood of ongoing conflicts were: Good resources, good relations with management, good confidence in management, good procedural justice (fairness of decisions) and good social support. After adjustment for socioeconomic conditions the odds ratio for low self-rated health associated with ongoing conflict at work was 2.09 (1.60-2.74). The results provide a good starting point for intervention and prevention work.
Distinct cognitive control mechanisms as revealed by modality-specific conflict adaptation effects.
Yang, Guochun; Nan, Weizhi; Zheng, Ya; Wu, Haiyan; Li, Qi; Liu, Xun
2017-04-01
Cognitive control is essential to resolve conflict in stimulus-response compatibility (SRC) tasks. The SRC effect in the current trial is reduced after an incongruent trial as compared with a congruent trial, a phenomenon being termed conflict adaptation (CA). The CA effect is found to be domain-specific , such that it occurs when adjacent trials contain the same type of conflict, but disappears when the conflicts are of different types. Similar patterns have been observed when tasks involve different modalities, but the modality-specific effect may have been confounded by task switching. In the current study, we investigated whether or not cognitive control could transfer across auditory and visual conflicts when task-switching was controlled. Participants were asked to respond to a visual or auditory (Experiments 1A/B) stimulus, with conflict coming from either the same or a different modality. CA effects showed modality-specific patterns. To account for potential confounding effects caused by differences in task-irrelevant properties, we specifically examined the influence of task-irrelevant properties on CA effects within the visual modality (Experiments 2A/B). Significant CA effects were observed across different conflicts from distinct task-irrelevant properties, ruling out that the lack of cross-modal CA effects in Experiments 1A/B resulted from differences in task-irrelevant information. Task-irrelevant properties were further matched in Experiments 3A/B to examine the pure effect of modality. Results replicated Experiments 1A/B showing robust modality-specific CA effects. Taken together, we provide supporting evidences that modality affects cognitive control in conflict resolution, which should be taken into account in theories of cognitive control. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Proprioceptive Training for the Prevention of Ankle Sprains: An Evidence-Based Review.
Rivera, Matthew J; Winkelmann, Zachary K; Powden, Cameron J; Games, Kenneth E
2017-11-01
Reference: Schiftan GS, Ross LA, Hahne AJ. The effectiveness of proprioceptive training in preventing ankle sprains in sporting populations: a systematic review and meta-analysis. J Sci Med Sport. 2015;18(3):238-244. Does the use of proprioceptive training as a sole intervention decrease the incidence of initial or recurrent ankle sprains in the athletic population? The authors completed a comprehensive literature search of MEDLINE, CINAHL, SPORTDiscus, and Physiotherapy Evidence Database (PEDro) from inception to October 2013. The reference lists of all identified articles were manually screened to obtain additional studies. The following key words were used. Phase 1 population terms were sport*, athlet*, and a combination of the two. Phase 2 intervention terms were propriocept*, balance, neuromusc* adj5 train*, and combinations thereof. Phase 3 condition terms were ankle adj5 sprain*, sprain* adj5 ankle, and combinations thereof. Studies were included according to the following criteria: (1) the design was a moderate- to high-level randomized controlled trial (>4/10 on the PEDro scale), (2) the participants were physically active (regardless of previous ankle injury), (3) the intervention group received proprioceptive training only, compared with a control group that received no proprioceptive training, and (4) the rate of ankle sprains was reported as a main outcome. Search results were limited to the English language. No restrictions were placed on publication dates. Two authors independently reviewed the studies for eligibility. The quality of the pertinent articles was assessed using the PEDro scale, and data were extracted to calculate the relative risk. Data extracted were number of participants, intervention, frequency, duration, follow-up period, and injury rate. Of the initial 345 studies screened, 7 were included in this review for a total of 3726 participants. Three analyses were conducted for proprioceptive training used (1) to prevent ankle sprains regardless of history (n = 3654), (2) to prevent recurrent ankle sprains (n = 1542), or (3) as the primary preventive measure for those without a history of ankle sprain (n = 946). Regardless of a history of ankle sprain, participants had a reduction in ankle-sprain rates (relative risk [RR] = 0.65, 95% confidence interval [CI] = 0.55, 0.77; numbers needed to treat [NNT] = 17, 95% CI = 11, 33). For individuals with a history of ankle sprains, proprioceptive training demonstrated a reduction in repeat ankle sprains (RR = 0.64, 95% CI = 0.51, 0.81; NNT = 13, 95% CI = 7, 100). Proprioceptive training as a primary preventive measure demonstrated significant results (RR = 0.57, 95% CI = 0.34, 0.97; NNT = 33, 95% CI = 16, 1000). Proprioceptive training programs were effective in reducing the incidence rates of ankle sprains in the athletic population, including those with and those without a history of ankle sprains.
Visual perception of ADHD children with sensory processing disorder.
Jung, Hyerim; Woo, Young Jae; Kang, Je Wook; Choi, Yeon Woo; Kim, Kyeong Mi
2014-04-01
The aim of the present study was to investigate the visual perception difference between ADHD children with and without sensory processing disorder, and the relationship between sensory processing and visual perception of the children with ADHD. Participants were 47 outpatients, aged 6-8 years, diagnosed with ADHD. After excluding those who met exclusion criteria, 38 subjects were clustered into two groups, ADHD children with and without sensory processing disorder (SPD), using SSP reported by their parents, then subjects completed K-DTVP-2. Spearman correlation analysis was run to determine the relationship between sensory processing and visual perception, and Mann-Whitney-U test was conducted to compare the K-DTVP-2 score of two groups respectively. The ADHD children with SPD performed inferiorly to ADHD children without SPD in the on 3 quotients of K-DTVP-2. The GVP of K-DTVP-2 score was related to Movement Sensitivity section (r=0.368(*)) and Low Energy/Weak section of SSP (r=0.369*). The result of the present study suggests that among children with ADHD, the visual perception is lower in those children with co-morbid SPD. Also, visual perception may be related to sensory processing, especially in the reactions of vestibular and proprioceptive senses. Regarding academic performance, it is necessary to consider how sensory processing issues affect visual perception in children with ADHD.
Emotions in Go/NoGo conflicts.
Schacht, Annekathrin; Nigbur, Roland; Sommer, Werner
2009-11-01
On the basis of current emotion theories and functional and neurophysiological ties between the processing of conflicts and errors on the one hand and errors and emotions on the other hand we predicted that conflicts between prepotent Go responses and occasional NoGo trials in the Go/NoGo task would induce emotions. Skin conductance responses (SCRs), corrugator muscle activity, and startle blink responses were measured in three experiments requiring speeded Go responses intermixed with NoGo trials of different relative probability and in a choice reaction experiment serving as a control. NoGo trials affected several of these emotion-sensitive indicators as SCRs and startle blinks were reduced whereas corrugator activity was prolonged as compared to Go trials. From the pattern of findings we suggest that NoGo conflicts are not aversive. Instead, they appear to be appraised as obstructive for the response goal and as less action relevant than Go trials.
Roles of the right temporo-parietal and premotor cortices in self-location and body ownership.
Convento, Silvia; Romano, Daniele; Maravita, Angelo; Bolognini, Nadia
2018-06-01
In the rubber hand illusion (RHI), the feeling that a fake hand belongs to oneself can be induced by the simultaneous, congruent touch of the fake visible hand and one's own hidden hand. This condition is also associated with a recalibration of the perceived location of the real hand. A cortical network, including premotor and temporo-parietal areas, has been proposed as the basis of the RHI. However, the causal contribution of these areas to the discrete illusory components remains unclear. We used transcranial direct current stimulation (tDCS) to assess the contribution of the right premotor cortex (rPMc) and the right temporo-parietal junction (rTPJ) to the RHI and explored the role of these areas in modulating the subjective experience of embodiment and the misperception of the hand position. We found that anodal tDCS of both rPMc and rTPJ increased the misjudgement of the real hand location towards the fake hand. Crucially, the difference in proprioceptive displacement evoked by the congruent and incongruent visuo-tactile stroking was minimised when tDCS was applied over the rPMc, while it was amplified when the rTPJ was targeted. The parietal effects of tDCS also extended to the self-report components of the RHI. These findings suggest that the tDCS of rTPJ modulates the RHI depending on the temporal congruency of the visuo-tactile stimulation, while the tDCS of rPMc induces a general recalibration of hand coordinates, regardless of the visuo-tactile congruency. The present results are discussed in the view of a multicomponent model of the RHI. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Surgical simulation software for insertion of pedicle screws.
Eftekhar, Behzad; Ghodsi, Mohammad; Ketabchi, Ebrahim; Rasaee, Saman
2002-01-01
As the first step toward finding noninvasive alternatives to the traditional methods of surgical training, we have developed a small, stand-alone computer program that simulates insertion of pedicle screws in different spinal vertebrae (T10-L5). We used Delphi 5.0 and DirectX 7.0 extension for Microsoft Windows. This is a stand-alone and portable program. The program can run on most personal computers. It provides the trainee with visual feedback during practice of the technique. At present, it uses predefined three-dimensional images of the vertebrae, but we are attempting to adapt the program to three-dimensional objects based on real computed tomographic scans of the patients. The program can be downloaded at no cost from the web site: www.tums.ac.ir/downloads As a preliminary work, it requires further development, particularly toward better visual, auditory, and even proprioceptive feedback and use of the individual patient's data.
Thaler, Lore; Todd, James T
2009-04-01
Two experiments are reported that were designed to measure the accuracy and reliability of both visually guided hand movements (Exp. 1) and perceptual matching judgments (Exp. 2). The specific procedure for informing subjects of the required response on each trial was manipulated so that some tasks could only be performed using an allocentric representation of the visual target; others could be performed using either an allocentric or hand-centered representation; still others could be performed based on an allocentric, hand-centered or head/eye-centered representation. Both head/eye and hand centered representations are egocentric because they specify visual coordinates with respect to the subject. The results reveal that accuracy and reliability of both motor and perceptual responses are highest when subjects direct their response towards a visible target location, which allows them to rely on a representation of the target in head/eye-centered coordinates. Systematic changes in averages and standard deviations of responses are observed when subjects cannot direct their response towards a visible target location, but have to represent target distance and direction in either hand-centered or allocentric visual coordinates instead. Subjects' motor and perceptual performance agree quantitatively well. These results strongly suggest that subjects process head/eye-centered representations differently from hand-centered or allocentric representations, but that they process visual information for motor actions and perceptual judgments together.
Visual search in complex displays: factors affecting conflict detection by air traffic controllers.
Remington, R W; Johnston, J C; Ruthruff, E; Gold, M; Romera, M
2000-01-01
Recent free flight proposals to relax airspace constraints and give greater autonomy to aircraft have raised concerns about their impact on controller performance. Relaxing route and altitude restrictions would reduce the regularity of traffic through individual sectors, possibly impairing controller situation awareness. We examined the impact of this reduced regularity in four visual search experiments that tested controllers' detection of traffic conflicts in the four conditions created by factorial manipulation of fixed routes (present vs. absent) and altitude restrictions (present vs. absent). These four conditions were tested under varying levels of traffic load and conflict geometry (conflict time and conflict angle). Traffic load and conflict geometry showed strong and consistent effects in all experiments. Color coding altitude also substantially improved detection times. In contrast, removing altitude restrictions had only a small negative impact, and removing route restrictions had virtually no negative impact. In some cases conflict detection was actually better without fixed routes. The implications and limitations of these results for the feasibility of free flight are discussed. Actual or potential applications include providing guidance in the selection of free flight operational concepts.
ERIC Educational Resources Information Center
Campbell, Wenonah N.; Skarakis-Doyle, Elizabeth
2011-01-01
This preliminary study explored peer conflict resolution knowledge in children with and without language impairment (LI). Specifically, it evaluated the utility of a visual analogue scale (VAS) for measuring nuances in such knowledge. Children aged 9-12 years, 26 with typically developing language (TLD) and 6 with LI, completed a training protocol…
Active inference and robot control: a case study
Nizard, Ange; Friston, Karl; Pezzulo, Giovanni
2016-01-01
Active inference is a general framework for perception and action that is gaining prominence in computational and systems neuroscience but is less known outside these fields. Here, we discuss a proof-of-principle implementation of the active inference scheme for the control or the 7-DoF arm of a (simulated) PR2 robot. By manipulating visual and proprioceptive noise levels, we show under which conditions robot control under the active inference scheme is accurate. Besides accurate control, our analysis of the internal system dynamics (e.g. the dynamics of the hidden states that are inferred during the inference) sheds light on key aspects of the framework such as the quintessentially multimodal nature of control and the differential roles of proprioception and vision. In the discussion, we consider the potential importance of being able to implement active inference in robots. In particular, we briefly review the opportunities for modelling psychophysiological phenomena such as sensory attenuation and related failures of gain control, of the sort seen in Parkinson's disease. We also consider the fundamental difference between active inference and optimal control formulations, showing that in the former the heavy lifting shifts from solving a dynamical inverse problem to creating deep forward or generative models with dynamics, whose attracting sets prescribe desired behaviours. PMID:27683002
Improved emotional conflict control triggered by the processing priority of negative emotion.
Yang, Qian; Wang, Xiangpeng; Yin, Shouhang; Zhao, Xiaoyue; Tan, Jinfeng; Chen, Antao
2016-04-18
The prefrontal cortex is responsible for emotional conflict resolution, and this control mechanism is affected by the emotional valence of distracting stimuli. In the present study, we investigated effects of negative and positive stimuli on emotional conflict control using a face-word Stroop task in combination with functional brain imaging. Emotional conflict was absent in the negative face context, in accordance with the null activation observed in areas regarding emotional face processing (fusiform face area, middle temporal/occipital gyrus). Importantly, these visual areas negatively coupled with the dorsolateral prefrontal cortex (DLPFC). However, the significant emotional conflict was observed in the positive face context, this effect was accompanied by activation in areas associated with emotional face processing, and the default mode network (DMN), here, DLPFC mainly negatively coupled with DMN, rather than visual areas. These results suggested that the conflict control mechanism exerted differently between negative faces and positive faces, it implemented more efficiently in the negative face condition, whereas it is more devoted to inhibiting internal interference in the positive face condition. This study thus provides a plausible mechanism of emotional conflict resolution that the rapid pathway for negative emotion processing efficiently triggers control mechanisms to preventively resolve emotional conflict.
Improved emotional conflict control triggered by the processing priority of negative emotion
Yang, Qian; Wang, Xiangpeng; Yin, Shouhang; Zhao, Xiaoyue; Tan, Jinfeng; Chen, Antao
2016-01-01
The prefrontal cortex is responsible for emotional conflict resolution, and this control mechanism is affected by the emotional valence of distracting stimuli. In the present study, we investigated effects of negative and positive stimuli on emotional conflict control using a face-word Stroop task in combination with functional brain imaging. Emotional conflict was absent in the negative face context, in accordance with the null activation observed in areas regarding emotional face processing (fusiform face area, middle temporal/occipital gyrus). Importantly, these visual areas negatively coupled with the dorsolateral prefrontal cortex (DLPFC). However, the significant emotional conflict was observed in the positive face context, this effect was accompanied by activation in areas associated with emotional face processing, and the default mode network (DMN), here, DLPFC mainly negatively coupled with DMN, rather than visual areas. These results suggested that the conflict control mechanism exerted differently between negative faces and positive faces, it implemented more efficiently in the negative face condition, whereas it is more devoted to inhibiting internal interference in the positive face condition. This study thus provides a plausible mechanism of emotional conflict resolution that the rapid pathway for negative emotion processing efficiently triggers control mechanisms to preventively resolve emotional conflict. PMID:27086908
Sinaki, Mehrsheed; Lynn, Susan G
2002-04-01
To assess the effect of a proprioceptive dynamic posture training program on balance in osteoporotic women with kyphotic posture. Subjects were randomly assigned to either a proprioceptive dynamic posture training program or exercise only group. Anthropometric measurements, muscle strength, level of physical activity, computerized dynamic posturography, and spine radiography were performed at baseline and 1 mo. At the 1-mo follow-up, three groups were formed on the basis of the baseline computerized dynamic posturography results. In general, groups 1 and 2 had no significant change at 1 mo, whereas group 3 improved balance significantly at 1 mo. The subjects who had abnormal balance and used the proprioceptive dynamic posture training program had the most significant improvement in balance. Improved balance could reduce the risk of falls.
Proprioceptive coupling within motor neurons drives C. elegans forward locomotion
Wen, Quan; Po, Michelle; Hulme, Elizabeth; Chen, Sway; Liu, Xinyu; Kwok, Sen Wai; Gershow, Marc; Leifer, Andrew M; Butler, Victoria; Fang-Yen, Christopher; Kawano, Taizo; Schafer, William R; Whitesides, George
2012-01-01
Summary Locomotion requires coordinated motor activity throughout an animal’s body. In both vertebrates and invertebrates, chains of coupled Central Pattern Generators (CPGs) are commonly evoked to explain local rhythmic behaviors. In C. elegans, we report that proprioception within the motor circuit is responsible for propagating and coordinating rhythmic undulatory waves from head to tail during forward movement. Proprioceptive coupling between adjacent body regions transduces rhythmic movement initiated near the head into bending waves driven along the body by a chain of reflexes. Using optogenetics and calcium imaging to manipulate and monitor motor circuit activity of moving C. elegans held in microfluidic devices, we found that the B-type cholinergic motor neurons transduce the proprioceptive signal. In C. elegans, a sensorimotor feedback loop operating within a specific type of motor neuron both drives and organizes body movement. PMID:23177960
Goble, Daniel J; Mousigian, Marianne A; Brown, Susan H
2012-01-01
Perceiving the positions and movements of one's body segments (i.e., proprioception) is critical for movement control. However, this ability declines with older age as has been demonstrated by joint angle matching paradigms in the absence of vision. The aim of the present study was to explore the extent to which reduced working memory and attentional load influence older adult proprioceptive matching performance. Older adults with relatively HIGH versus LOW working memory ability as determined by backward digit span and healthy younger adults, performed memory-based elbow position matching with and without attentional load (i.e., counting by 3 s) during target position encoding. Even without attentional load, older adults with LOW digit spans (i.e., 4 digits or less) had larger matching errors than younger adults. Further, LOW older adults made significantly greater errors when attentional loads were present during proprioceptive target encoding as compared to both younger and older adults with HIGH digit span scores (i.e., 5 digits or greater). These results extend previous position matching results that suggested greater errors in older adults were due to degraded input signals from peripheral mechanoreceptors. Specifically, the present work highlights the role cognitive factors play in the assessment of older adult proprioceptive acuity using memory-based matching paradigms. Older adults with LOW working memory appear prone to compromised proprioceptive encoding, especially when secondary cognitive tasks must be concurrently executed. This may ultimately result in poorer performance on various activities of daily living.
NASA Technical Reports Server (NTRS)
DiZio, P.; Lackner, J. R.
2000-01-01
Reaching movements made to visual targets in a rotating room are initially deviated in path and endpoint in the direction of transient Coriolis forces generated by the motion of the arm relative to the rotating environment. With additional reaches, movements become progressively straighter and more accurate. Such adaptation can occur even in the absence of visual feedback about movement progression or terminus. Here we examined whether congenitally blind and sighted subjects without visual feedback would demonstrate adaptation to Coriolis forces when they pointed to a haptically specified target location. Subjects were tested pre-, per-, and postrotation at 10 rpm counterclockwise. Reaching to straight ahead targets prerotation, both groups exhibited slightly curved paths. Per-rotation, both groups showed large initial deviations of movement path and curvature but within 12 reaches on average had returned to prerotation curvature levels and endpoints. Postrotation, both groups showed mirror image patterns of curvature and endpoint to the per-rotation pattern. The groups did not differ significantly on any of the performance measures. These results provide compelling evidence that motor adaptation to Coriolis perturbations can be achieved on the basis of proprioceptive, somatosensory, and motor information in the complete absence of visual experience.
Interpretation of human pointing by African elephants: generalisation and rationality.
Smet, Anna F; Byrne, Richard W
2014-11-01
Factors influencing the abilities of different animals to use cooperative social cues from humans are still unclear, in spite of long-standing interest in the topic. One of the few species that have been found successful at using human pointing is the African elephant (Loxodonta africana); despite few opportunities for learning about pointing, elephants follow a pointing gesture in an object-choice task, even when the pointing signal and experimenter's body position are in conflict, and when the gesture itself is visually subtle. Here, we show that the success of captive African elephants at using human pointing is not restricted to situations where the pointing signal is sustained until the time of choice: elephants followed human pointing even when the pointing gesture was withdrawn before they had responded to it. Furthermore, elephants rapidly generalised their response to a type of social cue they were unlikely to have seen before: pointing with the foot. However, unlike young children, they showed no sign of evaluating the 'rationality' of this novel pointing gesture according to its visual context: that is, whether the experimenter's hands were occupied or not.
Concurrent visuomotor behaviour improves form discrimination in a patient with visual form agnosia.
Schenk, Thomas; Milner, A David
2006-09-01
It is now well established that the visual brain is divided into two visual streams, the ventral and the dorsal stream. Milner and Goodale have suggested that the ventral stream is dedicated for processing vision for perception and the dorsal stream vision for action [A.D. Milner & M.A. Goodale (1995) The Visual Brain in Action, Oxford University Press, Oxford]. However, it is possible that ongoing processes in the visuomotor stream will nevertheless have an effect on perceptual processes. This possibility was examined in the present study. We have examined the visual form-discrimination performance of the form-agnosic patient D.F. with and without a concurrent visuomotor task, and found that her performance was significantly improved in the former condition. This suggests that the visuomotor behaviour provides cues that enhance her ability to recognize the form of the target object. In control experiments we have ruled out proprioceptive and efferent cues, and therefore propose that D.F. can, to a significant degree, access the object's visuomotor representation in the dorsal stream. Moreover, we show that the grasping-induced perceptual improvement disappears if the target objects only differ with respect to their shape but not their width. This suggests that shape information per se is not used for this grasping task.
Differential effect of visual motion adaption upon visual cortical excitability.
Lubeck, Astrid J A; Van Ombergen, Angelique; Ahmad, Hena; Bos, Jelte E; Wuyts, Floris L; Bronstein, Adolfo M; Arshad, Qadeer
2017-03-01
The objectives of this study were 1 ) to probe the effects of visual motion adaptation on early visual and V5/MT cortical excitability and 2 ) to investigate whether changes in cortical excitability following visual motion adaptation are related to the degree of visual dependency, i.e., an overreliance on visual cues compared with vestibular or proprioceptive cues. Participants were exposed to a roll motion visual stimulus before, during, and after visual motion adaptation. At these stages, 20 transcranial magnetic stimulation (TMS) pulses at phosphene threshold values were applied over early visual and V5/MT cortical areas from which the probability of eliciting a phosphene was calculated. Before and after adaptation, participants aligned the subjective visual vertical in front of the roll motion stimulus as a marker of visual dependency. During adaptation, early visual cortex excitability decreased whereas V5/MT excitability increased. After adaptation, both early visual and V5/MT excitability were increased. The roll motion-induced tilt of the subjective visual vertical (visual dependence) was not influenced by visual motion adaptation and did not correlate with phosphene threshold or visual cortex excitability. We conclude that early visual and V5/MT cortical excitability is differentially affected by visual motion adaptation. Furthermore, excitability in the early or late visual cortex is not associated with an increase in visual reliance during spatial orientation. Our findings complement earlier studies that have probed visual cortical excitability following motion adaptation and highlight the differential role of the early visual cortex and V5/MT in visual motion processing. NEW & NOTEWORTHY We examined the influence of visual motion adaptation on visual cortex excitability and found a differential effect in V1/V2 compared with V5/MT. Changes in visual excitability following motion adaptation were not related to the degree of an individual's visual dependency. Copyright © 2017 the American Physiological Society.
Anderson, Joe; Bingham, Geoffrey P
2010-09-01
We provide a solution to a major problem in visually guided reaching. Research has shown that binocular vision plays an important role in the online visual guidance of reaching, but the visual information and strategy used to guide a reach remains unknown. We propose a new theory of visual guidance of reaching including a new information variable, tau(alpha) (relative disparity tau), and a novel control strategy that allows actors to guide their reach trajectories visually by maintaining a constant proportion between tau(alpha) and its rate of change. The dynamical model couples the information to the reaching movement to generate trajectories characteristic of human reaching. We tested the theory in two experiments in which participants reached under conditions of darkness to guide a visible point either on a sliding apparatus or on their finger to a point-light target in depth. Slider apparatus controlled for a simple mapping from visual to proprioceptive space. When reaching with their finger, participants were forced, by perturbation of visual information used for feedforward control, to use online control with only binocular disparity-based information for guidance. Statistical analyses of trajectories strongly supported the theory. Simulations of the model were compared statistically to actual reaching trajectories. The results supported the theory, showing that tau(alpha) provides a source of information for the control of visually guided reaching and that participants use this information in a proportional rate control strategy.
Multi-modal information processing for visual workload relief
NASA Technical Reports Server (NTRS)
Burke, M. W.; Gilson, R. D.; Jagacinski, R. J.
1980-01-01
The simultaneous performance of two single-dimensional compensatory tracking tasks, one with the left hand and one with the right hand, is discussed. The tracking performed with the left hand was considered the primary task and was performed with a visual display or a quickened kinesthetic-tactual (KT) display. The right-handed tracking was considered the secondary task and was carried out only with a visual display. Although the two primary task displays had afforded equivalent performance in a critical tracking task performed alone, in the dual-task situation the quickened KT primary display resulted in superior secondary visual task performance. Comparisons of various combinations of primary and secondary visual displays in integrated or separated formats indicate that the superiority of the quickened KT display is not simply due to the elimination of visual scanning. Additional testing indicated that quickening per se also is not the immediate cause of the observed KT superiority.
Response to Tendon Vibration Questions the Underlying Rationale of Proprioceptive Training.
Lubetzky, Anat Vilnai; McCoy, Sarah Westcott; Price, Robert; Kartin, Deborah
2017-02-01
Proprioceptive training on compliant surfaces is used to rehabilitate and prevent ankle sprains. The ability to improve proprioceptive function via such training has been questioned. Achilles tendon vibration is used in motor-control research as a form of proprioceptive stimulus. Using measures of postural steadiness with nonlinear measures to elucidate control mechanisms, tendon vibration can be applied to investigate the underlying rationale of proprioceptive training. To test whether the effect of vibration on young adults' postural control depended on the support surface. Descriptive laboratory study. Research laboratory. Thirty healthy adults and 10 adults with chronic ankle instability (CAI; age range = 18-40 years). With eyes open, participants stood in bilateral stance on a rigid plate (floor), memory foam, and a Both Sides Up (BOSU) ball covering a force platform. We applied bilateral Achilles tendon vibration for the middle 20 seconds in a series of 60-second trials and analyzed participants' responses from previbration to vibration (pre-vib) and from vibration to postvibration (vib-post). We calculated anterior-posterior excursion of the center of pressure and complexity index derived from the area under multiscale entropy curves. The excursion response to vibration differed by surface, as indicated by a significant interaction of P < .001 for the healthy group at both time points and for the CAI group vib-post. Although both groups demonstrated increased excursion from pre-vib and from vib-post, a decrease was observed on the BOSU. The complexity response to vibration differed by surface for the healthy group (pre-vib, P < .001). The pattern for the CAI group was similar but not significant. Complexity changes vib-post were the same on all surfaces for both groups. Participants reacted less to ankle vibration when standing on the BOSU as compared with the floor, suggesting that proprioceptive training may not be occurring. Different balance-training paradigms to target proprioception, including tendon vibration, should be explored.
CARLI, P.; PATRIZI, M.; PEPE, L.; CAVANIGLIA, G.; RIVA, D.; D’OTTAVI, L.R.
2010-01-01
SUMMARY Nine healthy volunteers (6 males, 3 females), mean age 34.5 years (SD = 11.52), underwent a vestibulo-postural rehabilitation cycle with a visuo-proprioceptive-type stimulus. All subjects in the study group were evaluated by means of stabilometric bipodalic and monopodalic tests both before and immediately after treatment, and again 3 month thereafter. The Delos Postural Proprioceptive System®, DPPS (Delos, srl, Turin, Italy), was used in performing these stabilometric tests and in the rehabilitation exercises. The first aim of the study was to evaluate to what extent the functional level of the proprioceptive system was reliable, in healthy subjects, in the control of postural stability; the second was to demonstrate the possibility to increase this level by means of a novel visuo-proprioceptive feedback training; the last was to establish whether or not the increase achieved was permanent. The bipodalic test did not reveal any deficit in posture either before or after rehabilitation. The monopodalic test prior to treatment, with eyes closed, revealed, in 2/3 of the study group, evidence of the risk of falling, expressed as the precautional strategy (8.57 ± 6.18% SD). An increase in the proprioceptive activity, obtained in the subjects examined immediately after the visuo-proprioceptive vestibulo-postural rehabilitation, led, in the monopodalic test, with eyes closed, to a significant reduction in the risk of falling (with the precautional strategy equal to 1.09 ± 2.63% SD, p = 0.004). The monopodalic test, with eyes closed, 3 months after rehabilitation, demonstrated results not unlike those pre-treament with values, therefore, not more significant than those emerging from the pre-treatment test. Thus, from the above-mentioned data, it can be observed that, also in healthy subjects, there may be different levels of postural proprioceptive control related to a high risk of falling. These levels can be maintained constant for a certain period of time, until a significant reduction in the risk of falling is achieved, only if continuously stimulated by appropriate sensorial information. PMID:21253283
Schmidt, Lena; Depper, Lena; Kerkhoff, Georg
2013-01-01
Position sense is an important proprioceptive ability. Disorders of arm position sense (APS) often occur after unilateral stroke, and are associated with a negative functional outcome. In the present study we assessed horizontal APS by measuring angular deviations from a visually defined target separately for each arm in a large group of healthy subjects. We analyzed the accuracy and instability of horizontal APS as a function of age, sex and arm. Subjects were required to specify verbally the position of their unseen arm on a 0-90° circuit by comparing the current position with the target position indicated by a LED lamp, while the arm was passively moved by the examiner. Eighty-seven healthy subjects participated in the study, ranging from 20 to 77 years, subdivided into three age groups. The results revealed that APS was not a function of age or sex, but was significantly better in the non-dominant (left) arm in absolute errors (AE) but not in constant errors (CE) across all age groups of right-handed healthy subjects. This indicates a right-hemisphere superiority for left APS in right-handers and neatly fits to the more frequent and more severe left-sided body-related deficits in patients with unilateral stroke (i.e. impaired APS in left spatial neglect, somatoparaphrenia) or in individuals with abnormalities of the right cerebral hemisphere. These clinical issues will be discussed. PMID:24399962
Performance monitoring for brain-computer-interface actions.
Schurger, Aaron; Gale, Steven; Gozel, Olivia; Blanke, Olaf
2017-02-01
When presented with a difficult perceptual decision, human observers are able to make metacognitive judgements of subjective certainty. Such judgements can be made independently of and prior to any overt response to a sensory stimulus, presumably via internal monitoring. Retrospective judgements about one's own task performance, on the other hand, require first that the subject perform a task and thus could potentially be made based on motor processes, proprioceptive, and other sensory feedback rather than internal monitoring. With this dichotomy in mind, we set out to study performance monitoring using a brain-computer interface (BCI), with which subjects could voluntarily perform an action - moving a cursor on a computer screen - without any movement of the body, and thus without somatosensory feedback. Real-time visual feedback was available to subjects during training, but not during the experiment where the true final position of the cursor was only revealed after the subject had estimated where s/he thought it had ended up after 6s of BCI-based cursor control. During the first half of the experiment subjects based their assessments primarily on the prior probability of the end position of the cursor on previous trials. However, during the second half of the experiment subjects' judgements moved significantly closer to the true end position of the cursor, and away from the prior. This suggests that subjects can monitor task performance when the task is performed without overt movement of the body. Copyright © 2016 Elsevier Inc. All rights reserved.
Schmidt, Lena; Depper, Lena; Kerkhoff, Georg
2013-01-01
Position sense is an important proprioceptive ability. Disorders of arm position sense (APS) often occur after unilateral stroke, and are associated with a negative functional outcome. In the present study we assessed horizontal APS by measuring angular deviations from a visually defined target separately for each arm in a large group of healthy subjects. We analyzed the accuracy and instability of horizontal APS as a function of age, sex and arm. Subjects were required to specify verbally the position of their unseen arm on a 0-90° circuit by comparing the current position with the target position indicated by a LED lamp, while the arm was passively moved by the examiner. Eighty-seven healthy subjects participated in the study, ranging from 20 to 77 years, subdivided into three age groups. The results revealed that APS was not a function of age or sex, but was significantly better in the non-dominant (left) arm in absolute errors (AE) but not in constant errors (CE) across all age groups of right-handed healthy subjects. This indicates a right-hemisphere superiority for left APS in right-handers and neatly fits to the more frequent and more severe left-sided body-related deficits in patients with unilateral stroke (i.e. impaired APS in left spatial neglect, somatoparaphrenia) or in individuals with abnormalities of the right cerebral hemisphere. These clinical issues will be discussed.
Grasping with the eyes of your hands: hapsis and vision modulate hand preference.
Stone, Kayla D; Gonzalez, Claudia L R
2014-02-01
Right-hand preference has been demonstrated for visually guided reaching and grasping. Grasping, however, requires the integration of both visual and haptic cues. To what extent does vision influence hand preference for grasping? Is there a hand preference for haptically guided grasping? Two experiments were designed to address these questions. In Experiment 1, individuals were tested in a reaching-to-grasp task with vision (sighted condition) and with hapsis (blindfolded condition). Participants were asked to put together 3D models using building blocks scattered on a tabletop. The models were simple, composed of ten blocks of three different shapes. Starting condition (Vision-First or Hapsis-First) was counterbalanced among participants. Right-hand preference was greater in visually guided grasping but only in the Vision-First group. Participants who initially built the models while blindfolded (Hapsis-First group) used their right hand significantly less for the visually guided portion of the task. To investigate whether grasping using hapsis modifies subsequent hand preference, participants received an additional haptic experience in a follow-up experiment. While blindfolded, participants manipulated the blocks in a container for 5 min prior to the task. This additional experience did not affect right-hand use on visually guided grasping but had a robust effect on haptically guided grasping. Together, the results demonstrate first that hand preference for grasping is influenced by both vision and hapsis, and second, they highlight how flexible this preference could be when modulated by hapsis.
Donohue, Sarah E.; Liotti, Mario; Perez, Rick; Woldorff, Marty G.
2011-01-01
The electrophysiological correlates of conflict processing and cognitive control have been well characterized for the visual modality in paradigms such as the Stroop task. Much less is known about corresponding processes in the auditory modality. Here, electroencephalographic recordings of brain activity were measured during an auditory Stroop task, using three different forms of behavioral response (Overt verbal, Covert verbal, and Manual), that closely paralleled our previous visual-Stroop study. As expected, behavioral responses were slower and less accurate for incongruent compared to congruent trials. Neurally, incongruent trials showed an enhanced fronto-central negative-polarity wave (Ninc), similar to the N450 in visual-Stroop tasks, with similar variations as a function of behavioral response mode, but peaking ~150 ms earlier, followed by an enhanced positive posterior wave. In addition, sequential behavioral and neural effects were observed that supported the conflict-monitoring and cognitive-adjustment hypothesis. Thus, while some aspects of the conflict detection processes, such as timing, may be modality-dependent, the general mechanisms would appear to be supramodal. PMID:21964643
NASA Astrophysics Data System (ADS)
Schroeder, Karen E.; Irwin, Zachary T.; Bullard, Autumn J.; Thompson, David E.; Bentley, J. Nicole; Stacey, William C.; Patil, Parag G.; Chestek, Cynthia A.
2017-08-01
Objective. Challenges in improving the performance of dexterous upper-limb brain-machine interfaces (BMIs) have prompted renewed interest in quantifying the amount and type of sensory information naturally encoded in the primary motor cortex (M1). Previous single unit studies in monkeys showed M1 is responsive to tactile stimulation, as well as passive and active movement of the limbs. However, recent work in this area has focused primarily on proprioception. Here we examined instead how tactile somatosensation of the hand and fingers is represented in M1. Approach. We recorded multi- and single units and thresholded neural activity from macaque M1 while gently brushing individual finger pads at 2 Hz. We also recorded broadband neural activity from electrocorticogram (ECoG) grids placed on human motor cortex, while applying the same tactile stimulus. Main results. Units displaying significant differences in firing rates between individual fingers (p < 0.05) represented up to 76.7% of sorted multiunits across four monkeys. After normalizing by the number of channels with significant motor finger responses, the percentage of electrodes with significant tactile responses was 74.9% ± 24.7%. No somatotopic organization of finger preference was obvious across cortex, but many units exhibited cosine-like tuning across multiple digits. Sufficient sensory information was present in M1 to correctly decode stimulus position from multiunit activity above chance levels in all monkeys, and also from ECoG gamma power in two human subjects. Significance. These results provide some explanation for difficulties experienced by motor decoders in clinical trials of cortically controlled prosthetic hands, as well as the general problem of disentangling motor and sensory signals in primate motor cortex during dextrous tasks. Additionally, examination of unit tuning during tactile and proprioceptive inputs indicates cells are often tuned differently in different contexts, reinforcing the need for continued refinement of BMI training and decoding approaches to closed-loop BMI systems for dexterous grasping.
ERIC Educational Resources Information Center
Pouwels, Jan; Biesta, Gert
2017-01-01
This paper is about the notion of conflict in the work of John Dewey. Special attention is given to "Democracy and Education" (1916) because of its centennial and its acclaimed status of "magnum opus". After depicting "conflicts as gadflies" that stir thinking--reflection and ingenuity--and relating it to Socrates, in…
Steinberg, Nili; Waddington, Gordon; Adams, Roger; Karin, Janet; Tirosh, Oren
2015-12-01
Ballet dancers require a high level of postural balance (PB) and proprioception ability during performance. As textured insoles inserted into ballet shoes were found to improve proprioception ability, and better proprioceptive acuity was associated with better PB, the aim of the present study was to investigate whether the association between ankle inversion movement discrimination (AIMD) and PB changed following wearing textured insoles in young male and female dancers. Forty-four dancers from the Australian Ballet School, ages 14-19 yrs, were tested for static and dynamic PB and AIMD under two conditions: in ballet shoes, and in ballet shoes with textured insoles inserted. Female dancers demonstrated a significant inverse relationship between AIMD and static PB in the medio-lateral direction when wearing ballet shoes, but not when wearing textured insoles. Male dancers showed a non-monotonic relationship when tested with ballet shoes only, but a significant inverse relationship between AIMD and dynamic PB in the vertical direction and with the waist/head cross-correlation acceleration in the three movement directions when they were tested with textured insoles. Male dancers demonstrated an improved association between dynamic PB and proprioception ability when using textured insoles, suggesting that the increased afferent information from the plantar surface had a beneficial effect on proprioception feedback about their PB. Conversely, for female dancers, that association was present when wearing ballet shoes, but not when using textured insoles, suggesting that the increased afferent information for female dancers who already had high proprioception ability was "overloaded" by wearing the textured insoles.
Durgin, Frank H; Fox, Laura F; Hoon Kim, Dong
2003-11-01
We investigated the phenomenon of limb-specific locomotor adaptation in order to adjudicate between sensory-cue-conflict theory and motor-adaptation theory. The results were consistent with cue-conflict theory in demonstrating that two different leg-specific hopping aftereffects are modulated by the presence of conflicting estimates of self-motion from visual and nonvisual sources. Experiment 1 shows that leg-specific increases in forward drift during attempts to hop in place on one leg while blindfolded vary according to the relationship between visual information and motor activity during an adaptation to outdoor forward hopping. Experiment 2 shows that leg-specific changes in performance on a blindfolded hopping-to-target task are similarly modulated by the presence of cue conflict during adaptation to hopping on a treadmill. Experiment 3 shows that leg-specific aftereffects from hopping additionally produce inadvertent turning during running in place while blindfolded. The results of these experiments suggest that these leg-specific locomotor aftereffects are produced by sensory-cue conflict rather than simple motor adaptation.
Event-related near-infrared spectroscopy detects conflict in the motor cortex in a Stroop task.
Szűcs, Dénes; Killikelly, Clare; Cutini, Simone
2012-10-05
The Stroop effect is one of the most popular models of conflict processing in neuroscience and psychology. The response conflict theory of the Stroop effect explains decreased performance in the incongruent condition of Stroop tasks by assuming that the task-relevant and the task-irrelevant stimulus features elicit conflicting response tendencies. However, to date, there is not much explicit neural evidence supporting this theory. Here we used functional near-infrared imaging (fNIRS) to examine whether conflict at the level of the motor cortex can be detected in the incongruent relative to the congruent condition of a Stroop task. Response conflict was determined by comparing the activity of the hemisphere ipsilateral to the response hand in the congruent and incongruent conditions. First, results provided explicit hemodynamic evidence supporting the response conflict theory of the Stroop effect: there was greater motor cortex activation in the hemisphere ipsilateral to the response hand in the incongruent than in the congruent condition during the initial stage of the hemodynamic response. Second, as fNIRS is still a relatively novel technology, it is methodologically significant that our data shows that fNIRS is able to detect a brief and transient increase in hemodynamic activity localized to the motor cortex, which in this study is related to subthreshold motor response activation. Copyright © 2012 Elsevier B.V. All rights reserved.
Neural correlates of individual performance differences in resolving perceptual conflict.
Labrenz, Franziska; Themann, Maria; Wascher, Edmund; Beste, Christian; Pfleiderer, Bettina
2012-01-01
Attentional mechanisms are a crucial prerequisite to organize behavior. Most situations may be characterized by a 'competition' between salient, but irrelevant stimuli and less salient, relevant stimuli. In such situations top-down and bottom-up mechanisms interact with each other. In the present fMRI study, we examined how interindividual differences in resolving situations of perceptual conflict are reflected in brain networks mediating attentional selection. Doing so, we employed a change detection task in which subjects had to detect luminance changes in the presence and absence of competing distractors. The results show that good performers presented increased activation in the orbitofrontal cortex (BA 11), anterior cingulate (BA 25), inferior parietal lobule (BA 40) and visual areas V2 and V3 but decreased activation in BA 39. This suggests that areas mediating top-down attentional control are stronger activated in this group. Increased activity in visual areas reflects distinct neuronal enhancement relating to selective attentional mechanisms in order to solve the perceptual conflict. Opposed to good performers, brain areas activated by poor performers comprised the left inferior parietal lobule (BA 39) and fronto-parietal and visual regions were continuously deactivated, suggesting that poor performers perceive stronger conflict than good performers. Moreover, the suppression of neural activation in visual areas might indicate a strategy of poor performers to inhibit the processing of the irrelevant non-target feature. These results indicate that high sensitivity in perceptual areas and increased attentional control led to less conflict in stimulus processing and consequently to higher performance in competitive attentional selection.
Kinesthesis can make an invisible hand visible
Dieter, Kevin C.; Hu, Bo; Knill, David C.; Blake, Randolph; Tadin, Duje
2014-01-01
Self-generated body movements have reliable visual consequences. This predictive association between vision and action likely underlies modulatory effects of action on visual processing. However, it is unknown if our own actions can have generative effects on visual perception. We asked whether, in total darkness, self-generated body movements are sufficient to evoke normally concomitant visual perceptions. Using a deceptive experimental design, we discovered that waving one’s own hand in front of one’s covered eyes can cause visual sensations of motion. Conjecturing that these visual sensations arise from multisensory connectivity, we showed that individuals with synesthesia experience substantially stronger kinesthesis-induced visual sensations. Finally, we found that the perceived vividness of kinesthesis-induced visual sensations predicted participants’ ability to smoothly eye-track self-generated hand movements in darkness, indicating that these sensations function like typical retinally-driven visual sensations. Evidently, even in the complete absence of external visual input, our brains predict visual consequences of our actions. PMID:24171930
Hasegawa, Naoya; Takeda, Kenta; Sakuma, Moe; Mani, Hiroki; Maejima, Hiroshi; Asaka, Tadayoshi
2017-10-01
Augmented sensory biofeedback (BF) for postural control is widely used to improve postural stability. However, the effective sensory information in BF systems of motor learning for postural control is still unknown. The purpose of this study was to investigate the learning effects of visual versus auditory BF training in dynamic postural control. Eighteen healthy young adults were randomly divided into two groups (visual BF and auditory BF). In test sessions, participants were asked to bring the real-time center of pressure (COP) in line with a hidden target by body sway in the sagittal plane. The target moved in seven cycles of sine curves at 0.23Hz in the vertical direction on a monitor. In training sessions, the visual and auditory BF groups were required to change the magnitude of a visual circle and a sound, respectively, according to the distance between the COP and target in order to reach the target. The perceptual magnitudes of visual and auditory BF were equalized according to Stevens' power law. At the retention test, the auditory but not visual BF group demonstrated decreased postural performance errors in both the spatial and temporal parameters under the no-feedback condition. These findings suggest that visual BF increases the dependence on visual information to control postural performance, while auditory BF may enhance the integration of the proprioceptive sensory system, which contributes to motor learning without BF. These results suggest that auditory BF training improves motor learning of dynamic postural control. Copyright © 2017 Elsevier B.V. All rights reserved.
Object discrimination using electrotactile feedback.
Arakeri, Tapas J; Hasse, Brady A; Fuglevand, Andrew J
2018-04-09
A variety of bioengineering systems are being developed to restore tactile sensations in individuals who have lost somatosensory feedback because of spinal cord injury, stroke, or amputation. These systems typically detect tactile force with sensors placed on an insensate hand (or prosthetic hand in the case of amputees) and deliver touch information by electrically or mechanically stimulating sensate skin above the site of injury. Successful object manipulation, however, also requires proprioceptive feedback representing the configuration and movements of the hand and digits. Therefore, we developed a simple system that simultaneously provides information about tactile grip force and hand aperture using current amplitude-modulated electrotactile feedback. We evaluated the utility of this system by testing the ability of eight healthy human subjects to distinguish among 27 objects of varying sizes, weights, and compliances based entirely on electrotactile feedback. The feedback was modulated by grip-force and hand-aperture sensors placed on the hand of an experimenter (not visible to the subject) grasping and lifting the test objects. We were also interested to determine the degree to which subjects could learn to use such feedback when tested over five consecutive sessions. The average percentage correct identifications on day 1 (28.5% ± 8.2% correct) was well above chance (3.7%) and increased significantly with training to 49.2% ± 10.6% on day 5. Furthermore, this training transferred reasonably well to a set of novel objects. These results suggest that simple, non-invasive methods can provide useful multisensory feedback that might prove beneficial in improving the control over prosthetic limbs.
Gravity influences top-down signals in visual processing.
Cheron, Guy; Leroy, Axelle; Palmero-Soler, Ernesto; De Saedeleer, Caty; Bengoetxea, Ana; Cebolla, Ana-Maria; Vidal, Manuel; Dan, Bernard; Berthoz, Alain; McIntyre, Joseph
2014-01-01
Visual perception is not only based on incoming visual signals but also on information about a multimodal reference frame that incorporates vestibulo-proprioceptive input and motor signals. In addition, top-down modulation of visual processing has previously been demonstrated during cognitive operations including selective attention and working memory tasks. In the absence of a stable gravitational reference, the updating of salient stimuli becomes crucial for successful visuo-spatial behavior by humans in weightlessness. Here we found that visually-evoked potentials triggered by the image of a tunnel just prior to an impending 3D movement in a virtual navigation task were altered in weightlessness aboard the International Space Station, while those evoked by a classical 2D-checkerboard were not. Specifically, the analysis of event-related spectral perturbations and inter-trial phase coherency of these EEG signals recorded in the frontal and occipital areas showed that phase-locking of theta-alpha oscillations was suppressed in weightlessness, but only for the 3D tunnel image. Moreover, analysis of the phase of the coherency demonstrated the existence on Earth of a directional flux in the EEG signals from the frontal to the occipital areas mediating a top-down modulation during the presentation of the image of the 3D tunnel. In weightlessness, this fronto-occipital, top-down control was transformed into a diverging flux from the central areas toward the frontal and occipital areas. These results demonstrate that gravity-related sensory inputs modulate primary visual areas depending on the affordances of the visual scene.
Programming of left hand exploits task set but that of right hand depends on recent history.
Tang, Rixin; Zhu, Hong
2017-07-01
There are many differences between the left hand and the right hand. But it is not clear if there is a difference in programming between left hand and right hand when the hands perform the same movement. In current study, we carried out two experiments to investigate whether the programming of two hands was equivalent or they exploited different strategies. In the first experiment, participants were required to use one hand to grasp an object with visual feedback or to point to the center of one object without visual feedback on alternate trials, or to grasp an object without visual feedback and to point the center of one object with visual feedback on alternating trials. They then performed the tasks with the other hand. The result was that previous pointing task affected current grasping when it was performed by the left hand, but not the right hand. In experiment 2, we studied if the programming of the left (or right) hand would be affected by the pointing task performed on the previous trial not only by the same hand, but also by the right (or left) hand. Participants pointed and grasped the objects alternately with two hands. The result was similar with Experiment 1, i.e., left-hand grasping was affected by right-hand pointing, whereas right-hand grasping was immune from the interference from left hand. Taken together, the results suggest that when open- and closed-loop trials are interleaved, motor programming of grasping with the right hand was affected by the nature of the online feedback on the previous trial only if it was a grasping trial, suggesting that the trial-to-trial transfer depends on sensorimotor memory and not on task set. In contrast, motor programming of grasping with the left hand can use information about the nature of the online feedback on the previous trial to specify the parameters of the movement, even when the type of movement that occurred was quite different (i.e., pointing) and was performed with the right hand. This suggests that trial-to-trial transfer with the left hand depends on some sort of carry-over of task set for dealing with the availability of visual feedback.
Glofcheskie, Grace O; Brown, Stephen H M
2017-04-01
Trunk motor control is essential for athletic performance, and inadequate trunk motor control has been linked to an increased risk of developing low back and lower limb injury in athletes. Research is limited in comparing relationships between trunk neuromuscular control, postural control, and trunk proprioception in athletes from different sporting backgrounds. To test for these relationships, collegiate level long distance runners and golfers, along with non-athletic controls were recruited. Trunk postural control was investigated using a seated balance task. Neuromuscular control in response to sudden trunk loading perturbations was measured using electromyography and kinematics. Proprioceptive ability was examined using active trunk repositioning tasks. Both athlete groups demonstrated greater trunk postural control (less centre of pressure movement) during the seated task compared to controls. Athletes further demonstrated faster trunk muscle activation onsets, higher muscle activation amplitudes, and less lumbar spine angular displacement in response to sudden trunk loading perturbations when compared to controls. Golfers demonstrated less absolute error and variable error in trunk repositioning tasks compared to both runners and controls, suggestive of greater proprioceptive ability. This suggests an interactive relationship between neuromuscular control, postural control, and proprioception in athletes, and that differences exist between athletes of various training backgrounds. Copyright © 2017 Elsevier B.V. All rights reserved.
Son, Jaebum; Ashton-Miller, James A; Richardson, James K
2010-05-01
To determine whether ankle orthoses that provide medial and lateral support, and have been found to decrease gait variability in older persons with peripheral neuropathy, decrease (improve) frontal plane ankle proprioceptive thresholds or increase unipedal stance time in that same population. Observational study in which unipedal stance time was determined with a stopwatch, and frontal plane ankle (inversion and eversion) proprioceptive thresholds were quantified during bipedal stance using a foot cradle system and a series of 100 rotational stimuli, in 11 older neuropathic subjects (8 men; age 72 +/- 7.1 yr) with and without ankle orthoses. The subjects demonstrated no change in combined frontal plane (inversion + eversion) proprioceptive thresholds or unipedal stance time with vs. without the orthoses (1.06 +/- 0.56 vs. 1.13 +/- 0.39 degrees, respectively; P = 0.955 and 6.1 +/- 6.5 vs. 6.2 +/- 5.4 secs, respectively; P = 0.922). Ankle orthoses that provide medial-lateral support do not seem to change ankle inversion/eversion proprioceptive thresholds or unipedal stance time in older persons with diabetic peripheral neuropathy. Previously identified improvements in gait variability using orthoses in this population are therefore likely related to an orthotically induced stiffening of the ankle rather than a change in ankle afferent function.
Effects of pivoting neuromuscular training on pivoting control and proprioception.
Lee, Song Joo; Ren, Yupeng; Chang, Alison H; Geiger, François; Zhang, Li-Qun
2014-07-01
Pivoting neuromuscular control and proprioceptive acuity may play an important role in anterior cruciate ligament injuries. The goal of this study was to investigate whether pivoting off-axis intensity adjustable neuromuscular control training (POINT) could improve pivoting neuromuscular control, proprioceptive acuity, and functional performance. Among 41 subjects, 21 subjects participated in 18 sessions of POINT (three sessions per week for 6 wk), and 20 subjects served as controls who did their regular workout. Both groups received pre-, mid-, and postintervention evaluations. Propensity score analysis with multivariable regression adjustment was used to investigate the effect of training on pivoting neuromuscular control (pivoting instability, leg pivoting stiffness, maximum internal, and external pivoting angles), proprioceptive acuity, and functional performance in both groups. Compared with the control group, the training group significantly improved pivoting neuromuscular control as reduced pivoting instability, reduced maximum internal and external pivoting angles, increased leg pivoting stiffness, and decreased entropy of time to peak EMG in the gluteus maximus and lateral gastrocnemius under pivoting perturbations. Furthermore, the training group enhanced weight-bearing proprioceptive acuity and improved the single leg hop distance. Improvement of pivoting neuromuscular control in functional weight-bearing activities and task performances after POINT may help develop lower limb injury prevention and rehabilitation methods to reduce anterior cruciate ligament and other musculoskeletal injuries associated with pivoting sports.
Mourcou, Quentin; Fleury, Anthony; Diot, Bruno; Franco, Céline; Vuillerme, Nicolas
2015-01-01
Assessment of joint functional and proprioceptive abilities is essential for balance, posture, and motor control rehabilitation. Joint functional ability refers to the capacity of movement of the joint. It may be evaluated thereby measuring the joint range of motion (ROM). Proprioception can be defined as the perception of the position and of the movement of various body parts in space. Its role is essential in sensorimotor control for movement acuity, joint stability, coordination, and balance. Its clinical evaluation is commonly based on the assessment of the joint position sense (JPS). Both ROM and JPS measurements require estimating angles through goniometer, scoliometer, laser-pointer, and bubble or digital inclinometer. With the arrival of Smartphones, these costly clinical tools tend to be replaced. Beyond evaluation, maintaining and/or improving joint functional and proprioceptive abilities by training with physical therapy is important for long-term management. This review aims to report Smartphone applications used for measuring and improving functional and proprioceptive abilities. It identifies that Smartphone applications are reliable for clinical measurements and are mainly used to assess ROM and JPS. However, there is lack of studies on Smartphone applications which can be used in an autonomous way to provide physical therapy exercises at home. PMID:26583101
Effects of Pivoting Neuromuscular Training on Pivoting Control and Proprioception
Lee, Song Joo; Ren, Yupeng; Chang, Alison H.; Geiger, François; Zhang, Li-Qun
2014-01-01
Purpose Pivoting neuromuscular control and proprioceptive acuity may play an important role in ACL injuries. The goal of this study was to investigate whether pivoting neuromuscular training on an offaxis elliptical trainer (POINT) could improve pivoting neuromuscular control, proprioceptive acuity, and functional performance. Methods Among 41 subjects, 21 subjects participated in 18 sessions of POINT (3 sessions/week for 6 weeks), and 20 subjects served as controls who did their regular workout. Both groups received pre-, mid-, and post-intervention evaluations. Propensity score analysis with multivariable regression adjustment was used to investigate the effect of training on pivoting neuromuscular control (pivoting instability, leg pivoting stiffness, maximum internal and external pivoting angles), proprioceptive acuity, and functional performance in both groups. Results Compared to the control group, the training group significantly improved pivoting neuromuscular control as reduced pivoting instability, reduced maximum internal and external pivoting angles, increased leg pivoting stiffness, and decreased entropy of time to peak EMG in the gluteus maximus and lateral gastrocnemius under pivoting perturbations. Furthermore, the training group enhanced weight-bearing proprioceptive acuity and improved the single leg hop distance. Conclusion Improvement of pivoting neuromuscular control in functional weight-bearing activities and task performances following POINT may help develop lower limb injury prevention and rehabilitation methods to reduce ACL and other musculoskeletal injuries associated with pivoting sports. PMID:24389517
Noll, Christine; Steitz, Vanessa; Daentzer, Dorothea
2017-01-01
Proprioceptive insoles are known to influence the functions of posture and gait by modulations of the sensory structures at the sole of the foot. Literature has shown that they could improve the position of the upper-body in patients with postural complaints of the musculoskeletal system. The aim of this study was to evaluate the influence of proprioceptive insoles on the spinal curvature in patients with slight idiopathic scoliosis. Eighteen patients were included in this prospective, single-centre, randomized study. All patients needed to have a relevant growth potential and suffered from a slight idiopathic scoliosis. Two groups were used, where group 1 performed physiotherapy twice a week, whereas group 2 was additionally supplied with proprioceptive insoles. Patients underwent three-dimensional rasterstereography for back-shape analysis. Furthermore, a conventional x-ray imaging of the spine was performed at the beginning and 1 year later to document the curvatures. There was no statistical difference in the Cobb angles, and in almost all parameters of the rasterstereography, there was no statistically significant change between and within both groups. According to the results of this study, there was no evidence of any statistical significant effect of proprioceptive insoles on spinal curvature in patients with slight idiopathic scoliosis.
Upper extremity transplantation: current concepts and challenges in an emerging field.
Elliott, River M; Tintle, Scott M; Levin, L Scott
2014-03-01
Loss of an isolated upper limb is an emotionally and physically devastating event that results in significant impairment. Patients who lose both upper extremities experience profound disability that affects nearly every aspect of their lives. While prosthetics and surgery can eventually provide the single limb amputee with a suitable assisting hand, limited utility, minimal haptic feedback, weight, and discomfort are persistent problems with these techniques that contribute to high rates of prosthetic rejection. Moreover, despite ongoing advances in prosthetic technology, bilateral amputees continue to experience high levels of dependency, disability, and distress. Hand and upper extremity transplantation holds several advantages over prosthetic rehabilitation. The missing limb is replaced with one of similar skin color and size. Sensibility, voluntary motor control, and proprioception are restored to a greater degree, and afford better dexterity and function than prosthetics. The main shortcomings of transplantation include the hazards of immunosuppression, the complications of rejection and its treatment, and high cost. Hand and upper limb transplantation represents the most commonly performed surgery in the growing field of Vascularized Composite Allotransplantation (VCA). As upper limb transplantation and VCA have become more widespread, several important challenges and controversies have emerged. These include: refining indications for transplantation, optimizing immunosuppression, establishing reliable criteria for monitoring, diagnosing, and treating rejection, and standardizing outcome measures. This article will summarize the historical background of hand transplantation and review the current literature and concepts surrounding it.
Riso, R R
1999-01-01
A continuing challenge for prostheses developers is to replace the sensory function of the hand. This includes tactile sensitivity such as finger contact, grip force, object slippage, surface texture and temperature, as well as proprioceptive sense. One approach is sensory substitution whereby an intact sensory system such as vision, hearing or cutaneous sensation elsewhere on the body is used as an input channel for information related to the prosthesis. A second technique involves using electrical stimulation to deliver sensor derived information directly to the peripheral afferent nerves within the residual limb. Stimulation of the relevant afferent nerves can ultimately come closest to restoring the original sensory perceptions of the hand, and to this end, researchers have already demonstrated some degree of functionality of the transected sensory nerves in studies with amputee subjects. This paper provides an overview of different types of nerve interface components and the advantages and disadvantages of employing each of them in sensory feedback systems. Issues of sensory perception, neurophysiology and anatomy relevant to hand sensation and function are discussed with respect to the selection of the different types of nerve interfaces. The goal of this paper is to outline what can be accomplished for implementing sensation into artificial arms in the near term by applying what is present or presently attainable technology.
Armbrecht, Anne-Simone; Wöhrmann, Anne; Gibbons, Henning; Stahl, Jutta
2010-09-01
The present electrophysiological study investigated the temporal development of response conflict and the effects of diverging conflict sources on error(-related) negativity (Ne). Eighteen participants performed a combined stop-signal flanker task, which was comprised of two different conflict sources: a left-right and a go-stop response conflict. It is assumed that the Ne reflects the activity of a conflict monitoring system and thus increases according to (i) the number of conflict sources and (ii) the temporal development of the conflict activity. No increase of the Ne amplitude after double errors (comprising two conflict sources) as compared to hand- and stop-errors (comprising one conflict source) was found, whereas a higher Ne amplitude was observed after a delayed stop-signal onset. The results suggest that the Ne is not sensitive to an increase in the number of conflict sources, but to the temporal dynamics of a go-stop response conflict. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Dynamic Flexibility and Proprioceptive Neuromuscular Facilitation.
ERIC Educational Resources Information Center
Hardy, Lew; Jones, David
1986-01-01
Two experiments are described which investigated whether results obtained in studies of static flexibility tranfer to dynamic flexibility. In both experiments, subjects were assigned to a group receiving proprioceptive neuromuscular facilitation training, ballistic stretching technique training or a control group. Results are presented and…
Challenging Cognitive Control by Mirrored Stimuli in Working Memory Matching
Wirth, Maria; Gaschler, Robert
2017-01-01
Cognitive conflict has often been investigated by placing automatic processing originating from learned associations in competition with instructed task demands. Here we explore whether mirror generalization as a congenital mechanism can be employed to create cognitive conflict. Past research suggests that the visual system automatically generates an invariant representation of visual objects and their mirrored counterparts (i.e., mirror generalization), and especially so for lateral reversals (e.g., a cup seen from the left side vs. right side). Prior work suggests that mirror generalization can be reduced or even overcome by learning (i.e., for those visual objects for which it is not appropriate, such as letters d and b). We, therefore, minimized prior practice on resolving conflicts involving mirror generalization by using kanji stimuli as non-verbal and unfamiliar material. In a 1-back task, participants had to check a stream of kanji stimuli for identical repetitions and avoid miss-categorizing mirror reversed stimuli as exact repetitions. Consistent with previous work, lateral reversals led to profound slowing of reaction times and lower accuracy in Experiment 1. Yet, different from previous reports suggesting that lateral reversals lead to stronger conflict, similar slowing for vertical and horizontal mirror transformations was observed in Experiment 2. Taken together, the results suggest that transformations of visual stimuli can be employed to challenge cognitive control in the 1-back task. PMID:28503160
Short Term Motor-Skill Acquisition Improves with Size of Self-Controlled Virtual Hands
Ossmy, Ori; Mukamel, Roy
2017-01-01
Visual feedback in general, and from the body in particular, is known to influence the performance of motor skills in humans. However, it is unclear how the acquisition of motor skills depends on specific visual feedback parameters such as the size of performing effector. Here, 21 healthy subjects physically trained to perform sequences of finger movements with their right hand. Through the use of 3D Virtual Reality devices, visual feedback during training consisted of virtual hands presented on the screen, tracking subject’s hand movements in real time. Importantly, the setup allowed us to manipulate the size of the displayed virtual hands across experimental conditions. We found that performance gains increase with the size of virtual hands. In contrast, when subjects trained by mere observation (i.e., in the absence of physical movement), manipulating the size of the virtual hand did not significantly affect subsequent performance gains. These results demonstrate that when it comes to short-term motor skill learning, the size of visual feedback matters. Furthermore, these results suggest that highest performance gains in individual subjects are achieved when the size of the virtual hand matches their real hand size. These results may have implications for optimizing motor training schemes. PMID:28056023
ERIC Educational Resources Information Center
Yang, Fang-Ying
2017-01-01
The main goal of this study was to investigate how readers' visual attention distribution during reading of conflicting science information is related to their scientific reasoning behavior. A total of 25 university students voluntarily participated in the study. They were given conflicting science information about earthquake predictions to read…
ERIC Educational Resources Information Center
Mundy, Amrit; Chan, Judy
2013-01-01
In the 2011-2012 academic year, the Organizational Development and Learning unit and the Centre for Teaching, Learning and Technology at the University of British Columbia co-developed an interactive theatre project, Conflict Theatre, to engage in discussion around conflict with our audience and to allow us to explore, engage with, and build…
Ban, Ryokuya; Matsuo, Kiyoshi; Osada, Yoshiro; Ban, Midori; Yuzuriha, Shunsuke
2010-01-01
We have proposed a hypothetical mechanism to involuntarily sustain the effective eyelid retraction, which consists of not only voluntary but also reflexive contractions of the levator palpebrae superior muscle (LPSM). Voluntary contraction of fast-twitch fibres of the LPSM stretches the mechanoreceptors in Mueller's muscle to evoke trigeminal proprioception, which induces continuous reflexive contraction of slow-twitch fibres of the LPSM through the trigeminal proprioceptive nerve fibres innervating the mechanoreceptors in Mueller's muscle via the oculomotor neurons, as a tonic trigemino-oculomotor reflex. In the common skeletal mixed muscles, electrical stimulation of the proprioceptive nerve, which apparently connects the mechanoreceptors in muscle spindles to the motoneurons, induces the electromyographic response as the Hoffmann reflex. To verify the presence of the trigemino-oculomotor reflex, we confirmed whether intra-operative electrical simulation of the transverse trigeminal proprioceptive nerve on the proximal Mueller's muscle evokes an electromyographic response in the LPSM under general anaesthesia in 12 patients. An ipsilateral, phasic, short-latency response (latency: 2.8+/-0.3 ms) was induced in the ipsilateral LPSM in 10 of 12 subjects. As successful induction of the short-latency response in the ipsilateral LPSM corresponds to the Hoffmann reflex in the common skeletal mixed muscles, the present study is the first electromyographic verification of the presence of the monosynaptic trigemino-oculomotor reflex to induce reflexive contraction of the LPSM. The presence of the trigemino-oculomotor reflex may elucidate the unexplainable blepharoptosis due to surgery, trauma and tumour, all of which may damage the trigeminal proprioceptive nerve fibres to impair the trigemino-oculomotor reflex. Copyright (c) 2008. Published by Elsevier Ltd.
Imai, Fumiyasu; Ladle, David R.; Leslie, Jennifer R.; Duan, Xin; Rizvi, Tilat A.; Ciraolo, Georgianne M.; Zheng, Yi
2016-01-01
Spinal reflex circuit development requires the precise regulation of axon trajectories, synaptic specificity, and synapse formation. Of these three crucial steps, the molecular mechanisms underlying synapse formation between group Ia proprioceptive sensory neurons and motor neurons is the least understood. Here, we show that the Rho GTPase Cdc42 controls synapse formation in monosynaptic sensory–motor connections in presynaptic, but not postsynaptic, neurons. In mice lacking Cdc42 in presynaptic sensory neurons, proprioceptive sensory axons appropriately reach the ventral spinal cord, but significantly fewer synapses are formed with motor neurons compared with wild-type mice. Concordantly, electrophysiological analyses show diminished EPSP amplitudes in monosynaptic sensory–motor circuits in these mutants. Temporally targeted deletion of Cdc42 in sensory neurons after sensory–motor circuit establishment reveals that Cdc42 does not affect synaptic transmission. Furthermore, addition of the synaptic organizers, neuroligins, induces presynaptic differentiation of wild-type, but not Cdc42-deficient, proprioceptive sensory neurons in vitro. Together, our findings demonstrate that Cdc42 in presynaptic neurons is required for synapse formation in monosynaptic sensory–motor circuits. SIGNIFICANCE STATEMENT Group Ia proprioceptive sensory neurons form direct synapses with motor neurons, but the molecular mechanisms underlying synapse formation in these monosynaptic sensory–motor connections are unknown. We show that deleting Cdc42 in sensory neurons does not affect proprioceptive sensory axon targeting because axons reach the ventral spinal cord appropriately, but these neurons form significantly fewer presynaptic terminals on motor neurons. Electrophysiological analysis further shows that EPSPs are decreased in these mice. Finally, we demonstrate that Cdc42 is involved in neuroligin-dependent presynaptic differentiation of proprioceptive sensory neurons in vitro. These data suggest that Cdc42 in presynaptic sensory neurons is essential for proper synapse formation in the development of monosynaptic sensory–motor circuits. PMID:27225763
Campbell, Wenonah N; Skarakis-Doyle, Elizabeth
2011-01-01
This preliminary study explored peer conflict resolution knowledge in children with and without language impairment (LI). Specifically, it evaluated the utility of a visual analogue scale (VAS) for measuring nuances in such knowledge. Children aged 9-12 years, 26 with typically developing language (TLD) and 6 with LI, completed a training protocol and hypothetical task in which they rated goals and strategies that could be pursued following peer conflict. Whereas participants with TLD provided graded judgments using the entire VAS, most children with LI relied solely on the scale anchors. These results suggest at least two possibilities. The less differentiated manner in which participants with LI utilized the VAS may have been influenced by how they viewed the peer conflict situations. Alternatively, additional training may be required to enable them to consistently use the whole scale. Further research is needed to establish whether ratings made by children with LI reflect differences in social perceptions or a need for further experience with the VAS. In either case, distinguishing between these alternatives will likely provide a better understanding of factors that impact the peer relationships of children with LI. Readers will be able to: (1) identify challenges associated with assessing peer conflict resolution knowledge in children with language impairments; (2) describe current methods for measuring children's peer conflict resolution knowledge; (3) describe a visual analogue rating (VAS) scale and explain the potential advantages of this scale format; and (4) describe similarities and differences in how children with and without LI used a VAS in a hypothetical peer conflict resolution task. Copyright © 2010 Elsevier Inc. All rights reserved.
Donohue, Sarah E; Todisco, Alexandra E; Woldorff, Marty G
2013-04-01
Neuroimaging work on multisensory conflict suggests that the relevant modality receives enhanced processing in the face of incongruency. However, the degree of stimulus processing in the irrelevant modality and the temporal cascade of the attentional modulations in either the relevant or irrelevant modalities are unknown. Here, we employed an audiovisual conflict paradigm with a sensory probe in the task-irrelevant modality (vision) to gauge the attentional allocation to that modality. ERPs were recorded as participants attended to and discriminated spoken auditory letters while ignoring simultaneous bilateral visual letter stimuli that were either fully congruent, fully incongruent, or partially incongruent (one side incongruent, one congruent) with the auditory stimulation. Half of the audiovisual letter stimuli were followed 500-700 msec later by a bilateral visual probe stimulus. As expected, ERPs to the audiovisual stimuli showed an incongruency ERP effect (fully incongruent versus fully congruent) of an enhanced, centrally distributed, negative-polarity wave starting ∼250 msec. More critically here, the sensory ERP components to the visual probes were larger when they followed fully incongruent versus fully congruent multisensory stimuli, with these enhancements greatest on fully incongruent trials with the slowest RTs. In addition, on the slowest-response partially incongruent trials, the P2 sensory component to the visual probes was larger contralateral to the preceding incongruent visual stimulus. These data suggest that, in response to conflicting multisensory stimulus input, the initial cognitive effect is a capture of attention by the incongruent irrelevant-modality input, pulling neural processing resources toward that modality, resulting in rapid enhancement, rather than rapid suppression, of that input.
Re-thinking the role of motor cortex: Context-sensitive motor outputs?
Gandolla, Marta; Ferrante, Simona; Molteni, Franco; Guanziroli, Eleonora; Frattini, Tiziano; Martegani, Alberto; Ferrigno, Giancarlo; Friston, Karl; Pedrocchi, Alessandra; Ward, Nick S.
2014-01-01
The standard account of motor control considers descending outputs from primary motor cortex (M1) as motor commands and efference copy. This account has been challenged recently by an alternative formulation in terms of active inference: M1 is considered as part of a sensorimotor hierarchy providing top–down proprioceptive predictions. The key difference between these accounts is that predictions are sensitive to the current proprioceptive context, whereas efference copy is not. Using functional electric stimulation to experimentally manipulate proprioception during voluntary movement in healthy human subjects, we assessed the evidence for context sensitive output from M1. Dynamic causal modeling of functional magnetic resonance imaging responses showed that FES altered proprioception increased the influence of M1 on primary somatosensory cortex (S1). These results disambiguate competing accounts of motor control, provide some insight into the synaptic mechanisms of sensory attenuation and may speak to potential mechanisms of action of FES in promoting motor learning in neurorehabilitation. PMID:24440530
Re-thinking the role of motor cortex: context-sensitive motor outputs?
Gandolla, Marta; Ferrante, Simona; Molteni, Franco; Guanziroli, Eleonora; Frattini, Tiziano; Martegani, Alberto; Ferrigno, Giancarlo; Friston, Karl; Pedrocchi, Alessandra; Ward, Nick S
2014-05-01
The standard account of motor control considers descending outputs from primary motor cortex (M1) as motor commands and efference copy. This account has been challenged recently by an alternative formulation in terms of active inference: M1 is considered as part of a sensorimotor hierarchy providing top-down proprioceptive predictions. The key difference between these accounts is that predictions are sensitive to the current proprioceptive context, whereas efference copy is not. Using functional electric stimulation to experimentally manipulate proprioception during voluntary movement in healthy human subjects, we assessed the evidence for context sensitive output from M1. Dynamic causal modeling of functional magnetic resonance imaging responses showed that FES altered proprioception increased the influence of M1 on primary somatosensory cortex (S1). These results disambiguate competing accounts of motor control, provide some insight into the synaptic mechanisms of sensory attenuation and may speak to potential mechanisms of action of FES in promoting motor learning in neurorehabilitation. Copyright © 2014 unknown. Published by Elsevier Inc. All rights reserved.
Cryotherapy does not impair shoulder joint position sense.
Dover, Geoffrey; Powers, Michael E
2004-08-01
To determine the effects of a cryotherapy treatment on shoulder proprioception. Crossover design with repeated measures. University athletic training and sports medicine research laboratory. Thirty healthy subjects (15 women, 15 men). A 30-minute cryotherapy treatment. Joint position sense was measured in the dominant shoulder by using an inclinometer before and after receiving 30 minutes of either no ice or a 1-kg ice bag application. Skin temperature was measured below the tip of the acromion process and recorded every 5 minutes for the entire 30 minutes and immediately after testing. Three different types of error scores were calculated for data analyses and used to determine proprioception. Separate analyses of absolute, constant, and variable error failed to identify changes in shoulder joint proprioception as a function of the cryotherapy application. Application of an ice bag to the shoulder does not impair joint position sense. The control of proprioception at the shoulder may be more complex than at other joints in the body. Clinical implications may involve modifying rehabilitation considerations when managing shoulder injuries.
Homework Practices: Role Conflicts Concerning Parental Involvement
ERIC Educational Resources Information Center
Bräu, Karin; Harring, Marius; Weyl, Christin
2017-01-01
This article on hand discusses results of an ethnographic study which aims to perform a detailed description of practices of doing homework in a domestic environment. Based on the international state of research, first the question and the methodical approach will be explained, subsequently the role conflicts and stress ratios developed while…
Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi
2016-09-22
Body ownership illusions provide evidence that our sense of self is not coherent and can be extended to non-body objects. Studying about these illusions gives us practical tools to understand the brain mechanisms that underlie body recognition and the experience of self. We previously introduced an illusion of body ownership transfer (BOT) for operators of a very humanlike robot. This sensation of owning the robot's body was confirmed when operators controlled the robot either by performing the desired motion with their body (motion-control) or by employing a brain-computer interface (BCI) that translated motor imagery commands to robot movement (BCI-control). The interesting observation during BCI-control was that the illusion could be induced even with a noticeable delay in the BCI system. Temporal discrepancy has always shown critical weakening effects on body ownership illusions. However the delay-robustness of BOT during BCI-control raised a question about the interaction between the proprioceptive inputs and delayed visual feedback in agency-driven illusions. In this work, we compared the intensity of BOT illusion for operators in two conditions; motion-control and BCI-control. Our results revealed a significantly stronger BOT illusion for the case of BCI-control. This finding highlights BCI's potential in inducing stronger agency-driven illusions by building a direct communication between the brain and controlled body, and therefore removing awareness from the subject's own body.
Graci, Valentina; Rabuffetti, Marco; Frigo, Carlo; Ferrarin, Maurizio
2017-02-01
The importance of peripheral visual information during stair climbing and how peripheral visual information is weighted as a function of step number during step climbing is unclear. Previous authors postulated that the knowledge of predictable characteristics of the steps may decrease reliance on foveal vision and transfer the online visual guidance of stair climbing to peripheral vision. Hence the aim of this study was to investigate if and how the occlusion of the lower peripheral visual field influenced stair climbing and if peripheral visual information was weighted differently between steps. Ten young adult male participants ascended a 5-step staircase under 2 visual conditions: full vision (FV) and lower visual occlusion (LO). Kinematic data (100Hz) were collected. The effect of Vision and Step condition on vertical forefoot clearance was examined with a Repeated Measures 2-way ANOVA. Tukey's HSD test was used for post-hoc comparisons. A significant interaction Vision x Step and main effect of Step were found (p<=0.04): vertical forefoot clearance was greater in LO compared to FV condition only on the 1st and the 2nd steps (p<0.013) and on the last step compared to the other steps (p<0.01). These findings suggest that online peripheral visual information is more relevant when negotiating the first two steps, rather than the end of a staircase and that the steps subsequent the first few ones may require different information likely based on proprioception or working memory of the step height. Copyright © 2016 Elsevier B.V. All rights reserved.
Improvement of Hand Movement on Visual Target Tracking by Assistant Force of Model-Based Compensator
NASA Astrophysics Data System (ADS)
Ide, Junko; Sugi, Takenao; Nakamura, Masatoshi; Shibasaki, Hiroshi
Human motor control is achieved by the appropriate motor commands generating from the central nerve system. A test of visual target tracking is one of the effective methods for analyzing the human motor functions. We have previously examined a possibility for improving the hand movement on visual target tracking by additional assistant force through a simulation study. In this study, a method for compensating the human hand movement on visual target tracking by adding an assistant force was proposed. Effectiveness of the compensation method was investigated through the experiment for four healthy adults. The proposed compensator precisely improved the reaction time, the position error and the variability of the velocity of the human hand. The model-based compensator proposed in this study is constructed by using the measurement data on visual target tracking for each subject. The properties of the hand movement for different subjects can be reflected in the structure of the compensator. Therefore, the proposed method has possibility to adjust the individual properties of patients with various movement disorders caused from brain dysfunctions.
Response to Tendon Vibration Questions the Underlying Rationale of Proprioceptive Training
Lubetzky, Anat Vilnai; McCoy, Sarah Westcott; Price, Robert; Kartin, Deborah
2017-01-01
Context: Proprioceptive training on compliant surfaces is used to rehabilitate and prevent ankle sprains. The ability to improve proprioceptive function via such training has been questioned. Achilles tendon vibration is used in motor-control research as a form of proprioceptive stimulus. Using measures of postural steadiness with nonlinear measures to elucidate control mechanisms, tendon vibration can be applied to investigate the underlying rationale of proprioceptive training. Objective: To test whether the effect of vibration on young adults' postural control depended on the support surface. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: Thirty healthy adults and 10 adults with chronic ankle instability (CAI; age range = 18−40 years). Intervention(s): With eyes open, participants stood in bilateral stance on a rigid plate (floor), memory foam, and a Both Sides Up (BOSU) ball covering a force platform. We applied bilateral Achilles tendon vibration for the middle 20 seconds in a series of 60-second trials and analyzed participants' responses from previbration to vibration (pre-vib) and from vibration to postvibration (vib-post). Main Outcome Measure(s): We calculated anterior-posterior excursion of the center of pressure and complexity index derived from the area under multiscale entropy curves. Results: The excursion response to vibration differed by surface, as indicated by a significant interaction of P < .001 for the healthy group at both time points and for the CAI group vib-post. Although both groups demonstrated increased excursion from pre-vib and from vib-post, a decrease was observed on the BOSU. The complexity response to vibration differed by surface for the healthy group (pre-vib, P < .001). The pattern for the CAI group was similar but not significant. Complexity changes vib-post were the same on all surfaces for both groups. Conclusions: Participants reacted less to ankle vibration when standing on the BOSU as compared with the floor, suggesting that proprioceptive training may not be occurring. Different balance-training paradigms to target proprioception, including tendon vibration, should be explored. PMID:28125270
Elnady, Ahmed Mohamed; Zhang, Xin; Xiao, Zhen Gang; Yong, Xinyi; Randhawa, Bubblepreet Kaur; Boyd, Lara; Menon, Carlo
2015-01-01
Traditional, hospital-based stroke rehabilitation can be labor-intensive and expensive. Furthermore, outcomes from rehabilitation are inconsistent across individuals and recovery is hard to predict. Given these uncertainties, numerous technological approaches have been tested in an effort to improve rehabilitation outcomes and reduce the cost of stroke rehabilitation. These techniques include brain-computer interface (BCI), robotic exoskeletons, functional electrical stimulation (FES), and proprioceptive feedback. However, to the best of our knowledge, no studies have combined all these approaches into a rehabilitation platform that facilitates goal-directed motor movements. Therefore, in this paper, we combined all these technologies to test the feasibility of using a BCI-driven exoskeleton with FES (robotic training device) to facilitate motor task completion among individuals with stroke. The robotic training device operated to assist a pre-defined goal-directed motor task. Because it is hard to predict who can utilize this type of technology, we considered whether the ability to adapt skilled movements with proprioceptive feedback would predict who could learn to control a BCI-driven robotic device. To accomplish this aim, we developed a motor task that requires proprioception for completion to assess motor-proprioception ability. Next, we tested the feasibility of robotic training system in individuals with chronic stroke (n = 9) and found that the training device was well tolerated by all the participants. Ability on the motor-proprioception task did not predict the time to completion of the BCI-driven task. Both participants who could accurately target (n = 6) and those who could not (n = 3), were able to learn to control the BCI device, with each BCI trial lasting on average 2.47 min. Our results showed that the participants' ability to use proprioception to control motor output did not affect their ability to use the BCI-driven exoskeleton with FES. Based on our preliminary results, we show that our robotic training device has potential for use as therapy for a broad range of individuals with stroke.
Elnady, Ahmed Mohamed; Zhang, Xin; Xiao, Zhen Gang; Yong, Xinyi; Randhawa, Bubblepreet Kaur; Boyd, Lara; Menon, Carlo
2015-01-01
Traditional, hospital-based stroke rehabilitation can be labor-intensive and expensive. Furthermore, outcomes from rehabilitation are inconsistent across individuals and recovery is hard to predict. Given these uncertainties, numerous technological approaches have been tested in an effort to improve rehabilitation outcomes and reduce the cost of stroke rehabilitation. These techniques include brain–computer interface (BCI), robotic exoskeletons, functional electrical stimulation (FES), and proprioceptive feedback. However, to the best of our knowledge, no studies have combined all these approaches into a rehabilitation platform that facilitates goal-directed motor movements. Therefore, in this paper, we combined all these technologies to test the feasibility of using a BCI-driven exoskeleton with FES (robotic training device) to facilitate motor task completion among individuals with stroke. The robotic training device operated to assist a pre-defined goal-directed motor task. Because it is hard to predict who can utilize this type of technology, we considered whether the ability to adapt skilled movements with proprioceptive feedback would predict who could learn to control a BCI-driven robotic device. To accomplish this aim, we developed a motor task that requires proprioception for completion to assess motor-proprioception ability. Next, we tested the feasibility of robotic training system in individuals with chronic stroke (n = 9) and found that the training device was well tolerated by all the participants. Ability on the motor-proprioception task did not predict the time to completion of the BCI-driven task. Both participants who could accurately target (n = 6) and those who could not (n = 3), were able to learn to control the BCI device, with each BCI trial lasting on average 2.47 min. Our results showed that the participants’ ability to use proprioception to control motor output did not affect their ability to use the BCI-driven exoskeleton with FES. Based on our preliminary results, we show that our robotic training device has potential for use as therapy for a broad range of individuals with stroke. PMID:25870554
Spatial updating depends on gaze direction even after loss of vision.
Reuschel, Johanna; Rösler, Frank; Henriques, Denise Y P; Fiehler, Katja
2012-02-15
Direction of gaze (eye angle + head angle) has been shown to be important for representing space for action, implying a crucial role of vision for spatial updating. However, blind people have no access to vision yet are able to perform goal-directed actions successfully. Here, we investigated the role of visual experience for localizing and updating targets as a function of intervening gaze shifts in humans. People who differed in visual experience (late blind, congenitally blind, or sighted) were briefly presented with a proprioceptive reach target while facing it. Before they reached to the target's remembered location, they turned their head toward an eccentric direction that also induced corresponding eye movements in sighted and late blind individuals. We found that reaching errors varied systematically as a function of shift in gaze direction only in participants with early visual experience (sighted and late blind). In the late blind, this effect was solely present in people with moveable eyes but not in people with at least one glass eye. Our results suggest that the effect of gaze shifts on spatial updating develops on the basis of visual experience early in life and remains even after loss of vision as long as feedback from the eyes and head is available.
Visual Feedback Dominates the Sense of Agency for Brain-Machine Actions
Evans, Nathan; Gale, Steven; Schurger, Aaron; Blanke, Olaf
2015-01-01
Recent advances in neuroscience and engineering have led to the development of technologies that permit the control of external devices through real-time decoding of brain activity (brain-machine interfaces; BMI). Though the feeling of controlling bodily movements (sense of agency; SOA) has been well studied and a number of well-defined sensorimotor and cognitive mechanisms have been put forth, very little is known about the SOA for BMI-actions. Using an on-line BMI, and verifying that our subjects achieved a reasonable level of control, we sought to describe the SOA for BMI-mediated actions. Our results demonstrate that discrepancies between decoded neural activity and its resultant real-time sensory feedback are associated with a decrease in the SOA, similar to SOA mechanisms proposed for bodily actions. However, if the feedback discrepancy serves to correct a poorly controlled BMI-action, then the SOA can be high and can increase with increasing discrepancy, demonstrating the dominance of visual feedback on the SOA. Taken together, our results suggest that bodily and BMI-actions rely on common mechanisms of sensorimotor integration for agency judgments, but that visual feedback dominates the SOA in the absence of overt bodily movements or proprioceptive feedback, however erroneous the visual feedback may be. PMID:26066840
Simulator-induced spatial disorientation: effects of age, sleep deprivation, and type of conflict.
Previc, Fred H; Ercoline, William R; Evans, Richard H; Dillon, Nathan; Lopez, Nadia; Daluz, Christina M; Workman, Andrew
2007-05-01
Spatial disorientation mishaps are greater at night and with greater time on task, and sleep deprivation is known to decrease cognitive and overall flight performance. However, the ability to perceive and to be influenced by physiologically appropriate simulated SD conflicts has not previously been studied in an automated simulator flight profile. A set of 10 flight profiles were flown by 10 U.S. Air Force (USAF) pilots over a period of 28 h in a specially designed flight simulator for spatial disorientation research and training. Of the 10 flights, 4 had a total of 7 spatial disorientation (SD) conflicts inserted into each of them, 5 simulating motion illusions and 2 involving visual illusions. The percentage of conflict reports was measured along with the effects of four conflicts on flight performance. The results showed that, with one exception, all motion conflicts were reported over 60% of the time, whereas the two visual illusions were reported on average only 25% of the time, although they both significantly affected flight performance. Pilots older than 35 yr of age were more likely to report conflicts than were those under 30 yr of age (63% vs. 38%), whereas fatigue had little effect overall on either recognized or unrecognized SD. The overall effects of these conflicts on perception and performance were generally not altered by sleep deprivation, despite clear indications of fatigue in our pilots.
Xiao, Xiao; Dupuis-Roy, Nicolas; Jiang, Jun; Du, Xue; Zhang, Mingmin; Zhang, Qinglin
2018-02-21
The functional magnetic resonance imaging (fMRI) technique was used to investigate brain activations related to conflict control in a taste-visual cross-modal pairing task. On each trial, participants had to decide whether the taste of a gustatory stimulus matched or did not match the expected taste of the food item depicted in an image. There were four conditions: Negative match (NM; sour gustatory stimulus and image of sour food), negative mismatch (NMM; sour gustatory stimulus and image of sweet food), positive match (PM; sweet gustatory stimulus and image of sweet food), positive mismatch (PMM; sweet gustatory stimulus and image of sour food). Blood oxygenation level-dependent (BOLD) contrasts between the NMM and the NM conditions revealed an increased activity in the middle frontal gyrus (MFG) (BA 6), the lingual gyrus (LG) (BA 18), and the postcentral gyrus. Furthermore, the NMM minus NM BOLD differences observed in the MFG were correlated with the NMM minus NM differences in response time. These activations were specifically associated with conflict control during the aversive gustatory stimulation. BOLD contrasts between the PMM and the PM condition revealed no significant positive activation, which supported the hypothesis that the human brain is especially sensitive to aversive stimuli. Altogether, these results suggest that the MFG is associated with the taste-visual cross-modal conflict control. A possible role of the LG as an information conflict detector at an early perceptual stage is further discussed, along with a possible involvement of the postcentral gyrus in the processing of the taste-visual cross-modal sensory contrast. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Son, Jaebum; Ashton-Miller, James A.; Richardson, James K.
2010-01-01
Objective To determine whether ankle orthoses that provide medial and lateral support, and have been found to decrease gait variability in older persons with peripheral neuropathy, decrease (improve) frontal plane ankle proprioceptive thresholds or increase unipedal stance time in that same population. Design Observational study in which unipedal stance time was determined with a stopwatch, and frontal plane ankle (inversion and eversion) proprioceptive thresholds were quantified during bipedal stance with and without the ankle orthoses, in 11 older diabetic subjects with peripheral neuropathy (8 men; age 72 ± 7.1 years) using a foot cradle system which presented a series of 100 rotational stimuli. Results The subjects demonstrated no change in combined frontal plane (inversion + eversion) proprioceptive thresholds or unipedal stance time with versus without the orthoses (1.06 ± 0.56 versus 1.13 ± 0.39 degrees, respectively; p = 0.955 and 6.1 ± 6.5 versus 6.2 ± 5.4 seconds, respectively; p = 0.922). Conclusion Ankle orthoses which provide medial-lateral support do not appear to change ankle inversion/eversion proprioceptive thresholds or unipedal stance time in older persons with diabetic peripheral neuropathy. Previously identified improvements in gait variability using orthoses in this population are therefore likely related to an orthotically-induced stiffening of the ankle rather than a change in ankle afferent function. PMID:20407302
Impact of Aging on Proprioceptive Sensory Neurons and Intrafusal Muscle Fibers in Mice.
Vaughan, Sydney K; Stanley, Olivia L; Valdez, Gregorio
2017-06-01
The impact of aging on proprioceptive sensory neurons and intrafusal muscle fibers (IMFs) remains largely unexplored despite the central function these cells play in modulating voluntary movements. Here, we show that proprioceptive sensory neurons undergo deleterious morphological changes in middle age (11- to 13-month-old) and old (15- to 21-month-old) mice. In the extensor digitorum longus and soleus muscles of middle age and old mice, there is a significant increase in the number of Ia afferents with large swellings that fail to properly wrap around IMFs compared with young adult (2- to 4-month-old) mice. Fewer II afferents were also found in the same muscles of middle age and old mice. Although these age-related changes in peripheral nerve endings were accompanied by degeneration of proprioceptive sensory neuron cell bodies in dorsal root ganglia (DRG), the morphology and number of IMFs remained unchanged. Our analysis also revealed normal levels of neurotrophin 3 (NT3) but dysregulated expression of the tyrosine kinase receptor C (TrkC) in aged muscles and DRGs, respectively. These results show that proprioceptive sensory neurons degenerate prior to atrophy of IMFs during aging, and in the presence of the NT3/TrkC signaling axis. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Neck Proprioception Shapes Body Orientation and Perception of Motion
Pettorossi, Vito Enrico; Schieppati, Marco
2014-01-01
This review article deals with some effects of neck muscle proprioception on human balance, gait trajectory, subjective straight-ahead (SSA), and self-motion perception. These effects are easily observed during neck muscle vibration, a strong stimulus for the spindle primary afferent fibers. We first remind the early findings on human balance, gait trajectory, SSA, induced by limb, and neck muscle vibration. Then, more recent findings on self-motion perception of vestibular origin are described. The use of a vestibular asymmetric yaw-rotation stimulus for emphasizing the proprioceptive modulation of motion perception from the neck is mentioned. In addition, an attempt has been made to conjointly discuss the effects of unilateral neck proprioception on motion perception, SSA, and walking trajectory. Neck vibration also induces persistent aftereffects on the SSA and on self-motion perception of vestibular origin. These perceptive effects depend on intensity, duration, side of the conditioning vibratory stimulation, and on muscle status. These effects can be maintained for hours when prolonged high-frequency vibration is superimposed on muscle contraction. Overall, this brief outline emphasizes the contribution of neck muscle inflow to the construction and fine-tuning of perception of body orientation and motion. Furthermore, it indicates that tonic neck-proprioceptive input may induce persistent influences on the subject’s mental representation of space. These plastic changes might adapt motion sensitiveness to lasting or permanent head positional or motor changes. PMID:25414660
Neck proprioception shapes body orientation and perception of motion.
Pettorossi, Vito Enrico; Schieppati, Marco
2014-01-01
This review article deals with some effects of neck muscle proprioception on human balance, gait trajectory, subjective straight-ahead (SSA), and self-motion perception. These effects are easily observed during neck muscle vibration, a strong stimulus for the spindle primary afferent fibers. We first remind the early findings on human balance, gait trajectory, SSA, induced by limb, and neck muscle vibration. Then, more recent findings on self-motion perception of vestibular origin are described. The use of a vestibular asymmetric yaw-rotation stimulus for emphasizing the proprioceptive modulation of motion perception from the neck is mentioned. In addition, an attempt has been made to conjointly discuss the effects of unilateral neck proprioception on motion perception, SSA, and walking trajectory. Neck vibration also induces persistent aftereffects on the SSA and on self-motion perception of vestibular origin. These perceptive effects depend on intensity, duration, side of the conditioning vibratory stimulation, and on muscle status. These effects can be maintained for hours when prolonged high-frequency vibration is superimposed on muscle contraction. Overall, this brief outline emphasizes the contribution of neck muscle inflow to the construction and fine-tuning of perception of body orientation and motion. Furthermore, it indicates that tonic neck-proprioceptive input may induce persistent influences on the subject's mental representation of space. These plastic changes might adapt motion sensitiveness to lasting or permanent head positional or motor changes.
Effects of whole-body cryotherapy (-110 °C) on proprioception and indices of muscle damage.
Costello, J T; Algar, L A; Donnelly, A E
2012-04-01
The purpose of this study was to investigate the effects of whole-body cryotherapy (WBC) on proprioceptive function, muscle force recovery following eccentric muscle contractions and tympanic temperature (T(TY) ). Thirty-six subjects were randomly assigned to a group receiving two 3-min treatments of -110 ± 3 °C or 15 ± 3 °C. Knee joint position sense (JPS), maximal voluntary isometric contraction (MVIC) of the knee extensors, force proprioception and T(TY) were recorded before, immediately after the exposure and again 15 min later. A convenience sample of 18 subjects also underwent an eccentric exercise protocol on their contralateral left leg 24 h before exposure. MVIC (left knee), peak power output (PPO) during a repeated sprint on a cycle ergometer and muscles soreness were measured pre-, 24, 48 and 72h post-treatment. WBC reduced T(TY) , by 0.3 °C, when compared with the control group (P<0.001). However, JPS, MVIC or force proprioception was not affected. Similarly, WBC did not effect MVIC, PPO or muscle soreness following eccentric exercise. WBC, administered 24 h after eccentric exercise, is ineffective in alleviating muscle soreness or enhancing muscle force recovery. The results of this study also indicate no increased risk of proprioceptive-related injury following WBC. © 2011 John Wiley & Sons A/S.
Zhang, Lei; Zeng, Yan; Qi, Ji; Guan, Taiyuan; Zhou, Xin; Wang, Guoyou
2018-01-01
The anterior cruciate ligament (ACL) is an important structure maintaining stability of the knee joints. Deficits in physical stability and the proprioceptive capabilities of the knee joints are observed, when the ACL is damaged. Additionally, a unilateral ACL injury can affect bilateral knee proprioception; therefore, proprioception of the ACL may play a key role in stability. Electroacupuncture therapy has a definite effect nerve regeneration. In this study, cynomolgus monkeys were randomly divided into 4 groups: the model control group, intervention of the injured knee with electroacupuncture (IIKE) group, intervention of the bilateral knees with electroacupuncture (IBKE) group, and the blank control group. The unilateral ACL injury model was developed in IIKE and IBKE groups; acupuncture points around the knees underwent intervention similarly in the IIKE and IBKE groups. Then, mRNA and protein expressions of NT-3 and TrkC in the dorsal root ganglion and of growth-associated protein-43 in the ACL increased according to reverse-transcription quantitative polymerase chain reaction and Western blotting results. Decreased incubations and increased amplitudes were found for somatosensory-evoked potentials and motor nerve conduction velocity. The finding indicates that electroacupuncture may play an important role in the recovery of proprioception in the ACL by activating the NT-3/TrkC signalling pathway. PMID:29581981
Loffing, Florian; Schorer, Jörg; Hagemann, Norbert; Baker, Joseph
2012-02-01
High ball speeds and close distances between competitors require athletes in interactive sports to correctly anticipate an opponent's intentions in order to render appropriate reactions. Although it is considered crucial for successful performance, such skill appears impaired when athletes are confronted with a left-handed opponent, possibly because of athletes' reduced perceptual familiarity with rarely encountered left-handed actions. To test this negative perceptual frequency effect hypothesis, we invited 18 skilled and 18 novice volleyball players to predict shot directions of left- and right-handed attacks in a video-based visual anticipation task. In accordance with our predictions, and with recent reports on laterality differences in visual perception, the outcome of left-handed actions was significantly less accurately predicted than the outcome of right-handed attacks. In addition, this left-right bias was most distinct when predictions had to be based on preimpact (i.e., before hand-ball contact) kinematic cues, and skilled players were generally more affected by the opponents' handedness than were novices. The study's findings corroborate the assumption that skilled visual perception is attuned to more frequently encountered actions.
Hagura, Nobuhiro; Oouchida, Yutaka; Aramaki, Yu; Okada, Tomohisa; Matsumura, Michikazu; Sadato, Norihiro
2009-01-01
Combination of visual and kinesthetic information is essential to perceive bodily movements. We conducted behavioral and functional magnetic resonance imaging experiments to investigate the neuronal correlates of visuokinesthetic combination in perception of hand movement. Participants experienced illusory flexion movement of their hand elicited by tendon vibration while they viewed video-recorded flexion (congruent: CONG) or extension (incongruent: INCONG) motions of their hand. The amount of illusory experience was graded by the visual velocities only when visual information regarding hand motion was concordant with kinesthetic information (CONG). The left posterolateral cerebellum was specifically recruited under the CONG, and this left cerebellar activation was consistent for both left and right hands. The left cerebellar activity reflected the participants' intensity of illusory hand movement under the CONG, and we further showed that coupling of activity between the left cerebellum and the “right” parietal cortex emerges during this visuokinesthetic combination/perception. The “left” cerebellum, working with the anatomically connected high-order bodily region of the “right” parietal cortex, participates in online combination of exteroceptive (vision) and interoceptive (kinesthesia) information to perceive hand movement. The cerebro–cerebellar interaction may underlie updating of one's “body image,” when perceiving bodily movement from visual and kinesthetic information. PMID:18453537
Watch what you type: the role of visual feedback from the screen and hands in skilled typewriting.
Snyder, Kristy M; Logan, Gordon D; Yamaguchi, Motonori
2015-01-01
Skilled typing is controlled by two hierarchically structured processing loops (Logan & Crump, 2011): The outer loop, which produces words, commands the inner loop, which produces keystrokes. Here, we assessed the interplay between the two loops by investigating how visual feedback from the screen (responses either were or were not echoed on the screen) and the hands (the hands either were or were not covered with a box) influences the control of skilled typing. Our results indicated, first, that the reaction time of the first keystroke was longer when responses were not echoed than when they were. Also, the interkeystroke interval (IKSI) was longer when the hands were covered than when they were visible, and the IKSI for responses that were not echoed was longer when explicit error monitoring was required (Exp. 2) than when it was not required (Exp. 1). Finally, explicit error monitoring was more accurate when response echoes were present than when they were absent, and implicit error monitoring (i.e., posterror slowing) was not influenced by visual feedback from the screen or the hands. These findings suggest that the outer loop adjusts the inner-loop timing parameters to compensate for reductions in visual feedback. We suggest that these adjustments are preemptive control strategies designed to execute keystrokes more cautiously when visual feedback from the hands is absent, to generate more cautious motor programs when visual feedback from the screen is absent, and to enable enough time for the outer loop to monitor keystrokes when visual feedback from the screen is absent and explicit error reports are required.