Science.gov

Sample records for hand-arm vibration exposure

  1. Hand-arm vibration exposure monitoring with wearable sensor module.

    PubMed

    Austad, Hanne O; Røed, Morten H; Liverud, Anders E; Dalgard, Steffen; Seeberg, Trine M

    2013-01-01

    Vibration exposure is a serious risk within work physiology for several work groups. Combined with cold artic climate, the risk for permanent harm is even higher. Equipment that can monitor the vibration exposure and warn the user when at risk will provide a safer work environment for these work groups. This study evaluates whether data from a wearable wireless multi-parameter sensor module can be used to estimate vibration exposure and exposure time. This work has been focused on the characterization of the response from the accelerometer in the sensor module and the optimal location of the module in the hand-arm configuration.

  2. Hand-arm vibration syndrome

    PubMed Central

    Shen, Shixin (Cindy); House, Ronald A.

    2017-01-01

    Abstract Objective To provide family physicians with an understanding of the epidemiology, pathogenesis, symptoms, diagnosis, and management of hand-arm vibration syndrome (HAVS), an important and common occupational disease in Canada. Sources of information A MEDLINE search was conducted for research and review articles on HAVS. A Google search was conducted to obtain gray literature relevant to the Canadian context. Additional references were obtained from the articles identified. Main message Hand-arm vibration syndrome is a prevalent occupational disease affecting workers in multiple industries in which vibrating tools are used. However, it is underdiagnosed in Canada. It has 3 components—vascular, in the form of secondary Raynaud phenomenon; sensorineural; and musculoskeletal. Hand-arm vibration syndrome in its more advanced stages contributes to substantial disability and poor quality of life. Its diagnosis requires careful history taking, in particular occupational history, physical examination, laboratory tests to rule out alternative diagnoses, and referral to an occupational medicine specialist for additional investigations. Management involves reduction of vibration exposure, avoidance of cold conditions, smoking cessation, and medication. Conclusion To ensure timely diagnosis of HAVS and improve prognosis and quality of life, family physicians should be aware of this common occupational disease and be able to elicit the relevant occupational history, refer patients to occupational medicine clinics, and appropriately initiate compensation claims. PMID:28292796

  3. Dose-response relation between exposure to two types of hand-arm vibration and sensorineural perception of vibration.

    PubMed Central

    Virokannas, H

    1995-01-01

    OBJECTIVES--31 railway workers and 32 lumberjacks were examined to compare the dose-response relation between the exposure to two types of hand-arm vibration and the sensory disturbances in peripheral nerves as evaluated by the vibration perception thresholds (VPTs). METHODS--Clinical examinations were carried out that included measurements of the VPTs, and electroneuromyography (ENMG), and an inquiry to confirm the use of vibrating tools. Diseases of the central nervous system and neuropathies were checked by inquiry and a clinical examination, diabetes was excluded by a blood sample analysis, and the subjects with carpal tunnel syndrome confirmed with ENMG were excluded from the study. RESULTS--Lifetime use of hand held tamping machines (railway workers) and chain saws (lumberjacks) had a significant correlation with the VPTs at frequencies from 32 to 500 Hz. The increase of the VPTs (250 Hz) in relation to use of vibrating tools was 1.8-fold higher on average in the whole group and 2.3-fold higher in the young (< 45) railway workers who had used hand held tamping machines, than in the corresponding groups of lumberjacks, who had used chain saws, whereas the frequency weighted acceleration of vibration in tamping machines was fourfold. CONCLUSION--There was a significant dose-response relation between the exposure to hand-arm vibration and the VPTs. The VPTs as a function of the frequency weighted acceleration of vibration and the exposure to vibration gave promising results for assessment of the risk of damage to sensory nerves induced by vibration. PMID:7795756

  4. [Effects of exposure to occupational hand-arm vibration on maintenance of postural balance].

    PubMed

    Tanaka, Kazuko; Maeda, Takafumi; Tanaka, Masatoshi; Fukushima, Tetsuhito

    2004-11-01

    In order to determine the relationship between exposure to hand-arm vibration through the use of vibration tools and dysfunction in the maintenance of postural balance, 106 male forestry workers were examined by stabilometry for deflection in the center of gravity and in the air conduction hearing levels. A questionnaire survey was also conducted among the workers in order to obtain details regarding their age, the types of tools used by them, and the duration for which they had used a chain saw. The vibration acceleration of a chain saw has been limited to a level of 3 G or less since 1976 in accordance with the notification from the Japanese Forestry Agency and the Ministry of Labor. In fact, chain saws with significantly reduced vibration acceleration in comparison with those used before 1976 have been available. Therefore, in 2000, we conducted a test on forestry workers who were divided into two groups-workers who had used a chain saw for 25 years or more (25-yr-or-more group) and workers who had used a chain saw for 24 yr or less (24-yr-or-less group). Compared to the 24-yr-or-less group, the 25-yr-or-more group exhibited significantly higher levels of average deflection in the center of gravity, expressed as the enveloped (aENV) and rectangular (aREC) areas, and in the hearing levels at 500, 1000, 2000, 4000 and 8000 Hz. For the aENV, the correlation coefficients revealed significant relationships between the hearing levels at 4,000 Hz, the duration of use of a chain saw, and age. Since the duration of use of a chain saw exhibited a significant relationship with age, it was necessary to eliminate the effect of age on the aENV. Subsequently, we divided all the workers into age groups spanning ten years each (from 20 to 70 yr) and compared the aENV among the same age groups in both the 25-yr-or-more and the 24-yr-or-less groups. The averages of the aENV for each age group were higher in the 25-yr-or-more group than in the 24-yr-or-less group. In particular, a

  5. Hand-arm vibration and terrain vehicles.

    PubMed

    Anttonen, H; Virokannas, H; Niskanen, J

    1995-01-01

    Hand-arm vibration was measured on the handlebars of terrain vehicles (N = 36) and a postal inquiry was made among N = 2705 reindeer herders (snowmobile drivers). Since many subjects had also used other vibrating tools the snowmobile group proper (N = 334) was established. In the whole group 19% of the subjects reported having experienced white finger attacks and 48% numbness of the hands. The frequency-weighted acceleration of snowmobile vibration was 3.5 m/s2, and risk evaluation using the ISO 5349 standard predicted the prevalence of white finger well in the snowmobile group proper. The vibration levels were 1.6-7.9 m/s2 on snowmobiles, 5.5-11.8 m/s2 on all-terrain vehicles and 6.9-12.7 m/s2 on terrain motorcycles. The most critical points for damping the vibration were the motor mounting and resonance in the steering yoke. There is need for health care, technical improvements, and other protection means to reduce the symptoms of vibration in driving terrain vehicles.

  6. Hand-arm vibration in tropical rain forestry workers.

    PubMed

    Futatsuka, M; Inaoka, T; Ohtsuka, R; Sakurai, T; Moji, K; Igarashi, T

    1995-01-01

    Working conditions and health hazards including vibration syndrome related to forestry work using chain-saws were studied in Papua New Guinea and Indonesia. The subjects comprised 291 workers including 97 chain-saw operators. The health examination consisted of peripheral circulatory and sensory tests in the upper extremities. The vibration spectrum measured at the handle of the chain-saw indicated that these acceleration levels would lead to a moderately high risk of hand-arm vibration syndrome (HAVS). The peripheral circulatory function tests revealed dysfunction after more than five years vibration exposure. However, in general, the results of the function tests and subjective complaints showed fewer health problems compared to those of Japanese forestry workers. The reason of such differences of vibration effects seem to be the following: (1) warmer climate (more than 25 degrees C throughout the year), (2) young workers and short work experience. (3) short time vibration exposures on working days in the natural forests, (4) seasonal changes in logging work (5) healthy workers effects. Thus, we found no clear evidence that the workers of our study suffered from HAVS. A principal component analysis was applied. The factor score of the components of the reactive dynamics of peripheral circulation differed significantly after more than five years' exposure. On the other hand, we cannot deny the possibility that subclinical dysfunction of peripheral circulation may be caused by chain-saw operation in the tropics in future. Further investigations on the HAVS among forestry workers in the tropic environment are needed.

  7. Hand arm vibration syndrome among quarry workers in Vietnam.

    PubMed

    Futatsuka, Makoto; Shono, Masahiro; Sakakibara, Hisataka; Quoc Quan, Pham

    2005-03-01

    Few studies have focused on the health effects of vibrating tools on workers in the tropical area. Work conditions and health effects related to rock drill operation were studied in 102 quarry workers, including 73 rock drill operators in Vietnam. We aimed to clarify (1) risk of vibration exposure, (2) occurrence of vibration-induced white finger (VWF), and (3) characteristics of hand-arm vibration syndrome (HAVS). Total weighted r.m.s. acceleration of the Chinese -or Russian-made rock drills, was 45-55 m/s(2). According to work observation studies, daily exposure time to vibration was 160-210 min. ISO5349 predicted that this exposure level would be associated with a high risk of HAVS in workers. We found no clear evidence of VWF. There may be several reasons why no worker exhibited VWF: (1) warmer work conditions, (2) younger and less experienced workers, (3) seasonal changes in work operations, and (4) healthy worker effect. On the other hand, 5-10% of rock drill operators might be suffering from moderate HAVS which was sensori-neural type dominant. There may be some characteristic features of HAVS among quarry workers in the tropical area.

  8. Hand-arm vibration syndrome in Swedish car mechanics

    PubMed Central

    Barregard, L; Ehrenstrom, L; Marcus, K

    2003-01-01

    Aims: To assess the occurrence of hand-arm vibration syndrome (HAVS) in Swedish car mechanics, and the relation between HAVS and duration of exposure. Methods: A total of 806 mechanics answered a questionnaire on vascular and neurological symptoms, and exposure to vibrations. Mechanics with symptoms, and some mechanics without symptoms, were invited to a clinical examination, including also a timed Allen test. Vascular and neurological symptoms were classified using the Stockholm Workshop scales. The mean daily exposure (mainly using nut-runners) was 14 minutes and the mean exposure duration, 12 years. Published data have shown vibration levels in nut-runners of about 3.5 m/s2. Results: In the questionnaire, 24% reported cold induced white finger (WF), 25% persistent numbness, and 13%, reduced grip force. The clinical examination showed a prevalence of vibration induced white finger (VWF) of about 15%, mainly in stage 2, and after 20 years, of 25%. A survival analysis showed similar results. We found that the International Organisation for Standardisation (ISO) model underestimates the risk of VWF. The incidence after 1975 was 19 cases per 1000 person-years. Slow refill times in the timed Allen test were common (15% had a refill time of >20 seconds), and associated with the presence of VWF. The clinical examination revealed neurological symptoms in the hands in about 25% of subjects, mainly at stage 2. After 20 years, the prevalence was 40%. The questionnaire items on WF and numbness both showed likelihood ratios of 13. Conclusion: HAVS is common among Swedish car mechanics in spite of short daily exposure times. This underlines the need for preventive measures. PMID:12660377

  9. Validity and inter-observer reliability of subjective hand-arm vibration assessments.

    PubMed

    Coenen, Pieter; Formanoy, Margriet; Douwes, Marjolein; Bosch, Tim; de Kraker, Heleen

    2014-07-01

    Exposure to mechanical vibrations at work (e.g., due to handling powered tools) is a potential occupational risk as it may cause upper extremity complaints. However, reliable and valid assessment methods for vibration exposure at work are lacking. Measuring hand-arm vibration objectively is often difficult and expensive, while often used information provided by manufacturers lacks detail. Therefore, a subjective hand-arm vibration assessment method was tested on validity and inter-observer reliability. In an experimental protocol, sixteen tasks handling powered tools were executed by two workers. Hand-arm vibration was assessed subjectively by 16 observers according to the proposed subjective assessment method. As a gold standard reference, hand-arm vibration was measured objectively using a vibration measurement device. Weighted κ's were calculated to assess validity, intra-class-correlation coefficients (ICCs) were calculated to assess inter-observer reliability. Inter-observer reliability of the subjective assessments depicting the agreement among observers can be expressed by an ICC of 0.708 (0.511-0.873). The validity of the subjective assessments as compared to the gold-standard reference can be expressed by a weighted κ of 0.535 (0.285-0.785). Besides, the percentage of exact agreement of the subjective assessment compared to the objective measurement was relatively low (i.e., 52% of all tasks). This study shows that subjectively assessed hand-arm vibrations are fairly reliable among observers and moderately valid. This assessment method is a first attempt to use subjective risk assessments of hand-arm vibration. Although, this assessment method can benefit from some future improvement, it can be of use in future studies and in field-based ergonomic assessments.

  10. Vascular hand-arm vibration syndrome--magnetic resonance angiography.

    PubMed

    Poole, C J M; Cleveland, T J

    2016-01-01

    The diagnosis of vascular hand-arm vibration syndrome (HAVS) requires consistent symptoms, photographic evidence of digital blanching and sufficient exposure to hand-transmitted vibration (HTV; A(8) > 2.5 m/s2). There is no reliable quantitative investigation for distinguishing HAVS from other causes of Raynaud's phenomenon and from normal individuals. Hypothenar and thenar hammer syndromes produce similar symptoms to HAVS but are difficult to diagnose clinically and may be confused with HAVS. Magnetic resonance angiography (MRA) is a safe and minimally invasive method of visualizing blood vessels. Three cases of vascular HAVS are described in which MRA revealed occlusions of the ulnar, radial and superficial palmar arteries. It is proposed that HTV was the cause of these occlusions, rather than blows to the hand unrelated to vibration, the assumed mechanism for the hammer syndromes. All three cases were advised not to expose their hands to HTV despite one of them being at Stockholm vascular stage 2 (early). MRA should be the investigation of choice for stage 2 vascular HAVS or vascular HAVS with unusual features or for a suspected hammer syndrome. The technique is however technically challenging and best done in specialist centres in collaboration with an occupational physician familiar with the examination of HAVS cases. Staging for HAVS should be developed to include anatomical arterial abnormalities as well as symptoms and signs of blanching. Workers with only one artery supplying a hand, or with only one palmar arch, may be at increased risk of progression and therefore should not be exposed to HTV irrespective of their Stockholm stage.

  11. Acute effects of shock-type vibration transmitted to the hand-arm system.

    PubMed

    Schäfer, N; Dupuis, H; Hartung, E

    1984-01-01

    The aim of the project was to find out whether shock-type vibration of hand-tools compared to non-impulsive vibration has stronger acute effects on the hand-arm system and therefore needs a stricter evaluation from the occupational health point of view in comparison with the requirements of the Draft International Standard ISO-DIS 5349. Under laboratory conditions, subjects were exposed to simulated vibration of hand-tools (grinder, chain saw, hammer-drill, pneumatic hammer, rivet hammer and nailer). The following evaluation criteria were used: biomechanical transmissibility of the hand-arm system (wrist, elbow joint, shoulder joint); muscle-activity (m. flexor carpi ulnaris, m. biceps, m. triceps); peripheral circulation (skin temperature) and subjective perception (comparison of intensity of standard and test vibrations). The results show no significant difference in acute effects on the hand-arm system between impulsive and non-impulsive type vibrations of the hand-tools tested with respect to the chosen vibration level, short-time exposure (up to 8 min) and evaluation criteria. In summary, therefore, it may be concluded that for the evaluation of shock-type vibration of the hand-tools tested, it is justified to use the existing Draft International Standard ISO-DIS 5349.

  12. Acute effects of vibration from a chipping hammer and a grinder on the hand-arm system.

    PubMed Central

    Kihlberg, S; Attebrant, M; Gemne, G; Kjellberg, A

    1995-01-01

    OBJECTIVES--The purpose of this study was to compare various effects on the hand-arm system of vibration exposure from a chipping hammer and a grinder with the same frequency weighted acceleration. Grip and push forces were measured and monitored during the exposure. The various effects were: muscle activity (measured with surface electrodes), discomfort ratings for different parts of the hand-arm system (made during and after exposure), and vibration perception threshold (for 10 minutes before and 10 minutes after the exposure). RESULTS--No increase in muscle activity due to exposure to vibration was found in the hand muscle studied. In the forearm, conversely, there was an increase in both muscle studied. For the upper arm the muscle activity only increased when exposed to impact vibration. Subjective ratings in the hand and shift in vibration perception threshold were effected more by the grinder than the hammer exposure. CONCLUSION--These results show that the reaction of the hand-arm system to vibration varies with frequency quantitatively as well as qualitatively. They do not support the notion that one single frequency weighted curve would be valid for the different health effects of hand-arm vibration (vascular, musculoskeletal, neurological, and psychophysiological). PMID:8535492

  13. [Hand-arm vibration syndrome and upper limbs diseases in the forest workers of Italia meridionale].

    PubMed

    Fenga, C; Rapisarda, V; Valentino, M; Cacciola, A; Deboli, R; Calvo, A; Germanò, D

    2007-01-01

    Vibration exposure of the hand-arm system is associated with an increased risk of upper-limb vascular, neurological and musculoskeletal lesions, or hand-arm vibration syndrome (HAVS). The prevalence of occupational HAVS and upper-limb disorders was studied among 278 Forestry Service workers in Sicily and Calabria. Subjects who used chain-saws (18 weeks/year) had a greater prevalence of peripheral sensory-neural disturbances (28%), upper-limb musculoskeletal disorders (33%) and carpal tunnel syndrome (19%) compared with 260 manual workers from the same Corps not exposed to hand-transmitted vibration. Raynaud's phenomenon was comparable in exposed and control subjects (5.3% vs. 4.7%.) Upper-limb neuropathies were significantly associated with energy-equivalent frequency-weighted acceleration; exposure duration; and cumulative vibration dose (m2/s4h). The variable "years of work with vibrating tools" was strongly associated with peripheral neuropathies; carpal tunnel syndrome; and upper-limb musculotendinous syndromes. Data suggest that in Sicily and Calabria, where the climate is milder than in other areas of Italy, forestry work with hand-held vibrating tools does not entail a greater prevalence of peripheral vascular disorders (Raynaud's phenomenon), while the prevalence of occupational upper-limb neurological and musculoskeletal disorders, in which combined ergonomic and mechanical risk factors have a large pathogenic role, is significantly increased.

  14. An examination of the vibration transmissibility of the hand-arm system in three orthogonal directions

    PubMed Central

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.; Wu, John Z.

    2015-01-01

    The objective of this study is to enhance the understanding of the vibration transmission in the hand-arm system in three orthogonal directions (X, Y, and Z). For the first time, the transmitted vibrations distributed on the entire hand-arm system exposed in the three orthogonal directions via a 3-D vibration test system were measured using a 3-D laser vibrometer. Seven adult male subjects participated in the experiment. This study confirms that the vibration transmissibility generally decreased with the increase in distance from the hand and it varied with the vibration direction. Specifically, to the upper arm and shoulder, only moderate vibration transmission was measured in the test frequency range (16 to 500 Hz), and virtually no transmission was measured in the frequency range higher than 50 Hz. The resonance vibration on the forearm was primarily in the range of 16–30 Hz with the peak amplitude of approximately 1.5 times of the input vibration amplitude. The major resonance on the dorsal surfaces of the hand and wrist occurred at around 30–40 Hz and, in the Y direction, with peak amplitude of more than 2.5 times of the input amplitude. At higher than 50 Hz, vibration transmission was effectively limited to the hand and fingers. A major finger resonance was observed at around 100 Hz in the X and Y directions and around 200 Hz in the Z direction. In the fingers, the resonance magnitude in the Z direction was generally the lowest, and the resonance magnitude in the Y direction was generally the highest with the resonance amplitude of 3 times the input vibration, which was similar to the transmissibility at the wrist and hand dorsum. The implications of the results are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration could result in hand-arm vibration syndrome. While the syndrome's precise mechanisms remain unclear, the characterization of the vibration transmissibility of the system in the three orthogonal

  15. Establishment of one-axis vibration test system for measurement of biodynamic response of human hand-arm system.

    PubMed

    Shibata, Nobuyuki; Hosoya, Naoki; Maeda, Setsuo

    2008-12-01

    Prolonged exposure to hand-arm vibration (HAV) due to use of hand-held power tools leads to an increased occurrence of symptoms of disorders in the vascular, neurological, and osteo-articular systems of the upper limbs called hand-arm vibration syndrome (HAVS). Biodynamic responses of the hand-arm system to vibration can be suggestive parameters that give us better assessment of exposure to HAV and fundamental data for design of low-vibration-exposure power tools. Recently, a single axis hand-arm vibration system has been installed in the Japan National Institute of Occupational Safety and Health (NIOSH). The aims of this study were to obtain the fundamental dynamic characteristics of an instrumented handle and to validate the performance and measurement accuracy of the system applied to dynamic response measurement. A pseudo-random vibration signal with a frequency range of 5-1,250 Hz and a power spectrum density of 1.0 (m/s2)2/Hz was used in this study. First the dynamic response of the instrumented handle without any weight was measured. After this measurement, the dynamic response measurement of the handle with weights mounted on the handle was performed. The apparent mass of a weight itself was obtained by using the mass cancellation method. The mass of the measuring cap on the instrumented handle was well compensated by using the mass cancellation method. Based on the 10% error tolerance, this handle can reliably measure the dynamic response represented by an apparent mass with a minimum weight of 2.0 g in a frequency range of 10.0 to 1,000 Hz. A marked increase in the AM magnitude of the weights of 15 g and 20 g in frequency ranges greater than 800 Hz is attributed not to the fundamental resonance frequency of the handle with weights, but to the fixation of the weight to the measuring cap. In this aspect, the peak of the AM magnitude can be reduced and hence should not be an obstacle to the biodynamic response measurement of the human hand-arm system. On the

  16. Combined effects of noise and hand-arm vibration on auditory organ and peripheral circulation

    NASA Astrophysics Data System (ADS)

    Miyakita, T.; Miura, H.; Futatsuka, M.

    1991-12-01

    This paper first presents an overview of an epidemiological study on noise-induced hearing loss (NIHL) in relation to vibration-induced white finger (VWF). Secondly, the results obtained in a model experiment with a chain-saw under laboratory conditions are discussed from the viewpoints of elucidating the etiological mechanisms of VWF and NIHL. In the epidemiological study, in which 499 chain-saw workers were examined, chain-saw workers with VWF showed a significantly greater hearing loss at high frequencies than those without VWF. Next, an experimental study was designed to determine whether a combination of noise and vibration produced more pronounced changes in temporary shifts of finger skin temperature and temporary threshold shift (TTS) of hearing than those resulting from exposure to either stress alone. The results suggested that noise might play a part in inducing the constriction of the peripheral vessels seen with local exposure to vibration, and that hand-arm vibration may produce an additive effect on the noise-induced TTS. Furthermore, finger skin temperature and finger blood flow were measured simultaneously as indicators of peripheral circulatory movement for five healthy subjects. The relation between the synergistic action of noise and vibration and the participation of the sympathetic nervous system are also discussed.

  17. Symptoms of hand-arm vibration syndrome in gas distribution operatives

    PubMed Central

    Palmer, K.; Crane, G.; Inskip, H.

    1998-01-01

    OBJECTIVES: To survey the prevalence and severity of hand-arm vibration syndrome symptoms (HAVS), and to estimate past and current exposure to hand held vibrating tools in a sample of gas distribution operatives breaking and re-instating road surfaces. METHODS: 153 gas distribution operatives (participation rate 81%) from three company districts were assessed by an administered questionnaire, a clinical examination, and a simple cold challenge test to the hands. Exposure histories were taken aided by a picture album of past and current tools. Information was obtained from several sources on the likely vibratory characteristics of those tools. Estimates were thus obtained of the frequency of blanching and neurological complaints in operatives, and of their lifetime hours of exposure and lifetime dose of vibration. RESULTS: On average, the sample had spent 16 years in employment involving use of vibratory tools. 24% had symptoms or signs of blanching after use of tools in the industry; 46% had troublesome persistent complaints of paraesthesiae or numbness, and these symptoms extended into the hands or arms in 18% of workers. In 5.9% the distribution of symptoms was suggestive of carpal tunnel syndrome; and of ulnar nerve entrapment in a further 3.9%. The risks of blanching and neurological complaints rose significantly with lifetime hours of use of vibrating tools and lifetime dose of vibration. Symptoms were generally mild and apparent only after a prolonged interval, but there were exceptions, and cases had occurred after lower recent exposures. CONCLUSIONS: It has been suggested that aspects of the gas distribution operative's work mitigate against the risk normally anticipated from use of pneumatic road breaking tools. By contrast our data suggest that symptoms of HAVS do occur, given sufficient exposure, a finding relevant not only to gas supply workers, but also to workers from other industries who break and repair road surfaces.   PMID:9930095

  18. Nailfold capillary morphological characteristics of hand-arm vibration syndrome: a cross-sectional study

    PubMed Central

    Chen, QingSong; Chen, GuiPing; Xiao, Bin; Lin, HanSheng; Qu, HongYing; Zhang, DanYing; Shi, MaoGong; Lang, Li; Yang, Bei; Yan, MaoSheng

    2016-01-01

    Objective The purpose of this study was to investigate the characteristics of nailfold capillaroscopy associated with hand-arm vibration syndrome (HAVS). Methods In total, 113 male gold miners were recruited: 35 workers who were chronically exposed to vibration and developed vibration-induced white finger were defined as the HAVS group, 39 workers who were exposed to vibration but did not have HAVS were classified as the vibration-exposed controls (VEC) group, and 39 workers without vibration exposure were categorised as the non-VEC (NVEC) group. Video capillaroscopy was used to capture images of the 2nd, 3rd and 4th fingers of both hands. The following nailfold capillary characteristics were included: number of capillaries/mm, avascular areas, haemorrhages and enlarged capillaries. The experiments were carried out in the same winter. All characteristics were evaluated under blinded conditions. Results Significant differences in all morphological characteristics existed between the groups (p<0.05). Avascular areas in the HAVS, VEC and NVEC groups appeared in 74.3%, 43.6% and 25.0% of participants, respectively. A higher percentage of participants had haemorrhages in the HAVS group (65.7%) compared with the other groups (VEC: 7.7% and NVEC: 7.5%). The number of capillaries/mm, input limb width, output limb width, apical width, and ratio of output limb and input limb all had more than 70% sensitivity or specificity of their cut-off value. Conclusions Nailfold capillary characteristics, especially the number of capillaries/mm, avascular areas, haemorrhages, output limb width, input limb width and apical width alterations, revealed significant associations with HAVS. PMID:27888176

  19. Assessment of coarse and fine hand motor performance in asymptomatic subjects exposed to hand-arm vibration.

    PubMed

    Popević, Martin B; Janković, Srđan M; Borjanović, Srđan S; Jovičić, Slavica R; Tenjović, Lazar R; Milovanović, Aleksandar P S; Bulat, Petar

    2014-03-01

    A frequently encountered exposure profile for hand-arm vibration in contemporary occupational setting comprises workers with a long history of intermittent exposure but without detectable signs of hand-arm vibration syndrome (HAVS). Yet, most of the published studies deal with developed HAVS cases, rarely discussing the biological processes that may be involved in degradation of manual dexterity and grip strength when it can be most beneficial - during the asymptomatic stage. In the present paper, a group of 31 male asymptomatic vibration-exposed workers (according to the Stockholm Workshop Scale) were compared against 30 male controls. They were tested using dynamometry and dexterimetry (modelling coarse and fine manual performance respectively) and cold provocation was done to detect possible differences in manual performance drop on these tests. The results showed reduced manual dexterity but no significant degradation in hand grip strength in the exposed subjects. This suggests that intermittent exposure profile and small cumulative vibration dose could only lead to a measurable deficit in manual dexterity but not hand grip strength even at non-negligible A(8) levels and long term exposures.

  20. An examination of the vibration transmissibility of the hand-arm system in three orthogonal directions.

    PubMed

    Welcome, Daniel E; Dong, Ren G; Xu, Xueyan S; Warren, Christopher; McDowell, Thomas W; Wu, John Z

    2015-02-01

    The objective of this study is to enhance the understanding of the vibration transmission in the hand-arm system in three orthogonal directions (X, Y, and Z). For the first time, the transmitted vibrations distributed on the entire hand-arm system exposed in the three orthogonal directions via a 3-D vibration test system were measured using a 3-D laser vibrometer. Seven adult male subjects participated in the experiment. This study confirms that the vibration transmissibility generally decreased with the increase in distance from the hand and it varied with the vibration direction. Specifically, to the upper arm and shoulder, only moderate vibration transmission was measured in the test frequency range (16 to 500 Hz), and virtually no transmission was measured in the frequency range higher than 50 Hz. The resonance vibration on the forearm was primarily in the range of 16-30 Hz with the peak amplitude of approximately 1.5 times of the input vibration amplitude. The major resonance on the dorsal surfaces of the hand and wrist occurred at around 30-40 Hz and, in the Y direction, with peak amplitude of more than 2.5 times of the input amplitude. At higher than 50 Hz, vibration transmission was effectively limited to the hand and fingers. A major finger resonance was observed at around 100 Hz in the X and Y directions and around 200 Hz in the Z direction. In the fingers, the resonance magnitude in the Z direction was generally the lowest, and the resonance magnitude in the Y direction was generally the highest with the resonance amplitude of 3 times the input vibration, which was similar to the transmissibility at the wrist and hand dorsum. The implications of the results are discussed.

  1. An interpretative phenomenological analysis of the psychological ramifications of hand-arm vibration syndrome.

    PubMed

    Ayers, Beverley; Forshaw, Mark

    2010-05-01

    With a substantial number of individuals diagnosed with Hand-Arm Vibration Syndrome (HAVS) and the preponderance of research focused on the medical and paramedical issues, the psychological and mental health sequelae of HAVS are largely neglected within the published literature. A series of focus groups and interviews were conducted involving nine people who had been diagnosed with HAVS. Transcripts of these interviews were analysed using Interpretative Phenomenological Analysis. Four key themes were identified within the discourse of individuals affected by HAVS: machismo; coping; psychological impacts; and the development of support services for HAVS. Clinical implications are briefly discussed.

  2. The Temporary Threshold Shift of Vibratory Sensation Induced by Hand-Arm Vibration Composed of Four One-Third Octave Band Vibrations

    NASA Astrophysics Data System (ADS)

    Nishiyama, K.; Taoda, K.; Yamashita, H.; Watanabe, S.

    1997-03-01

    The aim of the present study was to define the multiple effect hand-arm vibration composed of four equally effective one-third octave band vibrations (63 Hz, 125 Hz, 250 Hz and 500 Hz) on the temporary threshold shift in vibratory sensation.Seven healthy subjects were exposed to vibration by grasping a vibrated handle in a soundproof thermo-regulated room. The vibratory sensation threshold at 125 Hz was measured before and after vibration exposure at an exposed fingertip. At first we determined each acceleration of the component one-third octave band vibrations for each subject. These should induce the same magnitude of temporary threshold shift in vibratory sensation immediately after the vibration exposure (TTSv.0as induced by the reference one-third octave band vibration (250 Hz, 4g). We measured TTSv.tfor the exposures of the composed vibrations and the four component vibrations. TTSv.0was determined for each exposure according to the exponential recovery model stated in the previous study.The TTSv.0induced by the composite vibration was not longer than that which might have been induced by each component vibration. This result confirms our previous speculation that the component of the vibration inducing the largest TTSv.0determines TTSv.0by broadband random vibration.

  3. Carpal tunnel syndrome in association with hand-arm vibration syndrome: a review of claimants seeking compensation in the Mining Industry.

    PubMed

    Burke, F D; Lawson, I J; McGeoch, K L; Miles, J N V; Proud, G

    2005-05-01

    Twenty six thousand eight hundred and forty-two miners seeking compensation were clinically assessed for vascular and neurosensory impairment arising from exposure to occupational hand-arm vibration (Hand-Arm Vibration Syndrome). They were also assessed clinically for Carpal Tunnel Syndrome which, if present, would result in additional compensation. Fifteen per cent were assessed as having both HAVS and CTS. Thirty-eight per cent of claimants had nocturnal wakening, 1.3% wasting of abductor pollicis brevis, 15% had a positive Tinel's test and 20% had a positive Phalen's test. The 15% prevalence reported is lower than the rates cited previously in several small population studies of workers exposed to vibration. This paper reports the results of the assessment process and discusses the difficulty of discriminating Carpal Tunnel Syndrome from diffuse neurosensory impairment arising from HAVS.

  4. A Cross Sectional Study on Hand-arm Vibration Syndrome among a Group of Tree Fellers in a Tropical Environment

    PubMed Central

    SU, Anselm Ting; MAEDA, Setsuo; FUKUMOTO, Jin; MIYAI, Nobuyuki; ISAHAK, Marzuki; YOSHIOKA, Atsushi; NAKAJIMA, Ryuichi; BULGIBA, Awang; MIYASHITA, Kazuhisa

    2014-01-01

    This study aimed to explore the clinical characteristics of hand arm vibration syndrome (HAVS) in a group of tree fellers in a tropical environment. We examined all tree fellers and selected control subjects in a logging camp of central Sarawak for vibration exposure and presence of HAVS symptoms utilizing vibrotactile perception threshold test (VPT) and cold water provocation test (CWP). None of the subjects reported white finger. The tree fellers reported significantly higher prevalence of finger coldness as compared to the control subjects (OR=10.32, 95%CI=1.21–87.94). A lower finger skin temperature, longer fingernail capillary return time and higher VPT were observed among the tree fellers as compared to the control subjects in all fingers (effect size >0.5). The VPT following CWP of the tree fellers was significantly higher (repeated measures ANOVA p=0.002, partial η2=0.196) than the control subject. The A (8) level was associated with finger tingling, numbness and dullness (effect size=0.983) and finger coldness (effect size=0.524) among the tree fellers. Finger coldness and finger tingling, numbness and dullness are important symptoms for HAVS in tropical environment that may indicate vascular and neurological damage due to hand-transmitted vibration exposure. PMID:24739764

  5. A cross sectional study on hand-arm vibration syndrome among a group of tree fellers in a tropical environment.

    PubMed

    Su, Anselm Ting; Maeda, Setsuo; Fukumoto, Jin; Miyai, Nobuyuki; Isahak, Marzuki; Yoshioka, Atsushi; Nakajima, Ryuichi; Bulgiba, Awang; Miyashita, Kazuhisa

    2014-01-01

    This study aimed to explore the clinical characteristics of hand arm vibration syndrome (HAVS) in a group of tree fellers in a tropical environment. We examined all tree fellers and selected control subjects in a logging camp of central Sarawak for vibration exposure and presence of HAVS symptoms utilizing vibrotactile perception threshold test (VPT) and cold water provocation test (CWP). None of the subjects reported white finger. The tree fellers reported significantly higher prevalence of finger coldness as compared to the control subjects (OR=10.32, 95%CI=1.21-87.94). A lower finger skin temperature, longer fingernail capillary return time and higher VPT were observed among the tree fellers as compared to the control subjects in all fingers (effect size >0.5). The VPT following CWP of the tree fellers was significantly higher (repeated measures ANOVA p=0.002, partial η(2)=0.196) than the control subject. The A (8) level was associated with finger tingling, numbness and dullness (effect size=0.983) and finger coldness (effect size=0.524) among the tree fellers. Finger coldness and finger tingling, numbness and dullness are important symptoms for HAVS in tropical environment that may indicate vascular and neurological damage due to hand-transmitted vibration exposure.

  6. An improved biomechanical model for simulating the strain of the hand-arm system under vibration stress.

    PubMed

    Fritz, M

    1991-01-01

    In order to define relationships between the vibration stress and the strain of the human hand-arm system a biomechanical model was developed. The four masses of the model representing the hand, the forearm and the upper arm were connected by dampers and springs in two perpendicular directions. Simulating muscle activity, damped torsion springs were included additionally. The motions of the model were described by a differential matrix equation which was solved by using a 'transfer matrix routine' as well as by numerical integration. Thus, functions with harmonic or transient time courses could be selected as an excitation. The simulated vibrations were compared with those of other hand-arm models. The forces and torques transmitted between the masses, and the energy dissipated by the dampers were computed for several combinations of exciter frequencies and accelerations. The dependence of torques upon excitation agreed fairly well with the behaviour of the arm muscles under vibration as described by various investigators. At frequencies above 100 Hz the energy was dissipated mainly by the dampers between the masses near to the exciter. Transferring this result to the hand-arm system it shows that at high frequencies energy is dissipated by the hand and its palmar tissues and this might be one cause for the incidence of vibration-induced white finger disease.

  7. [The risk of vibrations to the hand-arm system and cumulative trauma disorders in shoe manufacturing: a clinical case report].

    PubMed

    Delbianco, M; Olivetti, G; De Donato, S R; Ricciotti, M; Campana, A

    1993-01-01

    The article reports the case of a woman working in a shoe factory who had been using vibrating tools for 5 years. Because of paresthesia in her left hand, in 1989 she underwent various diagnostic trials that revealed an initial carpal tunnel syndrome of the left wrist and a homolateral epicondylitis. Measurement of the vibrations transmitted to the hand from the vibrating tool confirmed the probability of a high risk of exposure for the hand-arm system. Such adverse effects have been described by British authors as "cumulative trauma disorders" and were confirmed in this study. The importance of further studies aimed at estimating the type and degree of exposure to vibrations in shoe manufacturing workers is stressed.

  8. Hand-arm vibration syndrome among travertine workers: a follow up study.

    PubMed

    Bovenzi, M; Franzinelli, A; Scattoni, L; Vannuccini, L

    1994-06-01

    In a six year follow up study of the handarm vibration syndrome, 62 stoneworkers operating hand held vibrating tools in 10 travertine quarries and mills were first investigated in 1985 and then in 1991. The frequency weighted acceleration of vibration from the rock drills and stone hammers used by the travertine workers exceeded 20 m/s2, indicating a hazardous work activity according to the proposal of the EC directive for physical agents. A clinical examination and a cold provocation test were repeated with the same procedures as those adopted at the time of the first survey. The stoneworkers were divided into groups according to current work state: active stoneworkers who continued to use powered tools during the follow up (n = 21, median exposure time 22 years), and ex-stoneworkers with retirement vibration free intervals of three years (n = 22, median exposure time 27.5 years) and of six years (n = 19, median exposure time 20 years). In the group of active stoneworkers, a 38% onset a new cases of vibration-induced white finger (VWF) was found during the follow up (p < 0.01). Among the retired stoneworkers affected with VWF (n = 24), one recovered from VWF, one showed improvement, 20 remained stationary, and two deteriorated. The ex-stoneworkers experienced no significant change in sensorineural disturbances and a decrease in musculoskeletal symptoms of the upper limbs. At the cold provocation test, the currently active stoneworkers with VWF showed, on a group basis, a delayed finger rewarming time between the two examinations (p = 0.002). An abnormal response to cold provocation persisted in the fingers of the ex-stoneworkers with VWF, even in those reporting subjective improvement. These findings indicate a tendency towards the irreversibility of sensorineural and VWF symptoms in a group of ex-stoneworkers with prolonged exposure to high vibration levels in the past. The increased occurrence of VWF in the active stone workers after a few extra years of

  9. Hand-arm vibration in the aetiology of hearing loss in lumberjacks.

    PubMed Central

    Pyykkö, I; Starck, J; Färkkilä, M; Hoikkala, M; Korhonen, O; Nurminen, M

    1981-01-01

    A longitudinal study of hearing loss was conducted among a group of lumberjacks in the years 1972 and 1974--8. The number of subjects increased from 72 in 1972 to 203 in 1978. They were classified according to (1) a history of vibration-induced white finger (VWF), (2) age, (3) duration of exposure, an (4) duration of ear muff usage. The hearing level at 4000 Hz was used to indicate the noise-induced permanent threshold shift (NIPTS). The lumberjacks were exposed, at their present pace of work, to noise, Leq values 96-103 dB(A), and to the vibration of a chain saw (linear acceleration 30-70 ms-2). The chain saws of the early 1960s were more hazardous, with the average noise level of 111 dB(A) and a variation acceleration of 60-180 ms-2. When classified on the basis of age, the lumberjacks with VWF had about a 10 dB greater NIPTS than subjects without VWF. NIPTS increased with the duration of exposure to chain saw noise, but with equal noise exposure the NIPTS was about 10 dB greater in lumberjacks with VWF than without VWF. With the same duration of ear protection the lumberjacks with VWF consistently had about a 10 dB greater NIPTS than those without VWF. The differences in NIPTS were statistically significant. The possible reason for more advanced NIPTS in subjects with VWF is that vibration might operate in both of these disorders through a common mechanism--that is, producing a vasoconstriction in both cochlear and digital blood vessels as a result of sympathetic nervous system activity. PMID:7272242

  10. Current perception threshold for assessment of the neurological components of hand-arm vibration syndrome: a review.

    PubMed

    Kurozawa, Youichi; Hosoda, Takenobu; Nasu, Yoshiro

    2010-09-01

    Current perception threshold (CPT) has been proposed as a quantitative method for assessment of peripheral sensory nerve function. The aim of this review of selected reports is to provide an overview of CPT measurement for the assessment of the neurological component of hand-arm vibration syndrome (HAVS). The CPT values at 2000 Hz significantly increased for patients with HAVS. This result supports the previous histological findings that demyelination is found predominantly in the peripheral nerves in the hands of men exposed to hand-arm vibration. Diagnostic sensitivity and specificity were high for severe cases of Stockholm sensorineural (SSN) stage 3 compared with non-exposed controls, but not high for mild cases of SSN stage 1 or 2 and for carpal tunnel syndrome associated with HAVS. However, there are only a few studies on the diagnostic validity of the CPT test for the neurological components of HAVS. Further research is needed and should include diagnostic validity and standardizing of measurement conditions such as skin temperature.

  11. Hand-arm vibration syndrome (HAVS) and musculoskeletal symptoms in the neck and the upper limbs in professional drivers of terrain vehicles--a cross sectional study.

    PubMed

    Aström, Charlotte; Rehn, Börje; Lundström, Ronnie; Nilsson, Tohr; Burström, Lage; Sundelin, Gunnevi

    2006-11-01

    This study compares the prevalence of symptoms of Hand-arm vibration syndrome (HAVS) and musculoskeletal symptoms in the neck and the upper limbs, between professional drivers of terrain vehicles and a referent group. 769 male professional drivers of forest machines, snowmobiles, snowgroomers and reindeer herders and 296 randomly selected male referents completed a questionnaire about symptoms of HAVS and musculoskeletal symptoms in the neck and the upper limbs. They also gave information about their lifetime exposure duration driving terrain vehicles and their nicotine use. Prevalence odds ratios (POR) were determined and adjusted for age and nicotine use. Results show that there is a relation between exposure to driving terrain vehicles and some of the symptoms of HAVS (POR: 1.2-6.1). Increased odds of musculoskeletal symptoms in neck, shoulders and wrists were also found (POR 1.2-6.4), and it seemed to be related to the cumulative exposure time.

  12. Research into hand-arm vibration syndrome and its prevention in Japan.

    PubMed

    Yamada, S; Sakakibara, H

    1994-05-01

    Research on vibration syndrome in Japan began in the 1930s with studies of the disorder among railway, mining and shipyard workers. In 1947, the Ministry of Labor decided vibration syndrome among operators of rock drills and riveters etc. was an occupational disease. Industrial developments in the 1950s and 1960s promoted the survey of vibration syndrome in mining, stone quarrying and forestry. The Ministry of Labor (1965) and the National Personnel Agency (1966) legally recognized vibration syndrome among chain saw operators as an occupational disease. Guidelines for prevention and early therapy were issued in the 1970s and 80s. From the late 1970s into the 1980s, research focused on the clinical picture, diagnostic methods and therapy. In pathophysiology, advances were made in research into the autonomic nervous system during the 1980s. The 1970s and 80s saw a steady reduction in risk from technological change and working conditions, and advances in medical care, education and meteorological forecasting. A comprehensive prevention system established in the 1980s in the Japanese forest industry involved: 1) work restrictions, 2) an improved health care system, 3) advances in the design of vibrating tools, handle-warming devices, and 4) improved worker education. This comprehensive preventive system was legally introduced into other industries, resulting in a rapid decrease in the incidence of vibration syndrome in Japan.

  13. Self-reported cold sensitivity in patients with traumatic hand injuries or hand-arm vibration syndrome - an eight year follow up

    PubMed Central

    2014-01-01

    Background Cold sensitivity is a common complaint following hand injuries. Our aim was to investigate long-term self-reported cold sensitivity, and its predictors and the importance of sense of coherence (SOC), 8 years after a hand injury as well as in patients treated for Hand Arm Vibration Syndrome (HAVS) during the same time period. Methods Responses to the Cold Intolerance Symptom Severity (CISS) questionnaire and the Sense of Coherence (SOC) questionnaire were investigated in hand injured patients (n = 64) and in patients with HAVS (n = 26). The Mann–Whitney U-Test was used to identify significant differences between subgroups. When analysing predictors for cold sensitivity severity, the Spearman rank correlation (rS coefficient) were used for quantitative predictive variables, Mann–Whitney U-Test for dichotomous variables and Kruskal-Wallis Test for multiple categorical data. The Wilcoxon´s signed rank test was used to investigate longitudinal changes in outcome. Results There was a significant change in total CISS score for patients with traumatic hand injury, indicating fewer problems with cold sensitivity over time. Symptoms, such as stiffness, weakness and skin colour change on cold exposure, caused fewer problems, but perceived pain/aching and numbness remained unchanged as well as time needed for relief of symptoms on return to a warm environment. The negative impact of cold sensitivity on daily activities and at work was reduced, but problems when engaged in hobbies or when being exposed to cold wintry weather remained unchanged. None of the investigated predictors related to the hand injury were significantly associated with a change in cold sensitivity at the 8-year follow up. In contrast, no significant change in cold sensitivity was noted in the patients with HAVS for any of the situations included in the CISS questionnaire. A lower sense of coherence score correlated significantly with worse cold sensitivity (CISS score) in both

  14. A systematic review of the etiopathogenesis of Kienböck's disease and a critical appraisal of its recognition as an occupational disease related to hand-arm vibration

    PubMed Central

    2012-01-01

    Background We systematically reviewed etiological factors of Kienböck’s disease (osteonecrosis of the lunate) discussed in the literature in order to examine the justification for including Kienböck’s disease (KD) in the European Listing of Occupational Diseases. Methods We searched the Ovid/Medline and the Cochrane Library for articles discussing the etiology of osteonecrosis of the lunate published since the first description of KD in 1910 and up until July 2012 in English, French or German. Literature was classified by the level of evidence presented, the etiopathological hypothesis discussed, and the author's conclusion about the role of the etiopathological hypothesis. The causal relationship between KD and hand-arm vibration was elucidated by the Bradford Hill criteria. Results A total of 220 references was found. Of the included 152 articles, 140 (92%) reached the evidence level IV (case series). The four most frequently discussed factors were negative ulnar variance (n=72; 47%), primary arterial ischemia of the lunate (n=63; 41%), trauma (n=63; 41%) and hand-arm vibration (n=53; 35%). The quality of the cohort studies on hand-arm vibration did not permit a meta-analysis to evaluate the strength of an association to KD. Evidence for the lack of consistency, plausibility and coherence of the 4 most frequently discussed etiopathologies was found. No evidence was found to support any of the nine Bradford Hill criteria for a causal relationship between KD and hand-arm vibration. Conclusions A systematic review of 220 articles on the etiopathology of KD and the application of the Bradford Hill criteria does not provide sufficient scientific evidence to confirm or refute a causal relationship between KD and hand-arm vibration. This currently suggests that, KD does not comply with the criteria of the International Labour Organization determining occupational diseases. However, research with a higher level of evidence is required to further determine if hand-arm

  15. Applications of hand-arm models in the investigation of the interaction between man and machine.

    PubMed

    Jahn, R; Hesse, M

    1986-08-01

    The mode of vibration of hand-held tools cannot be considered without knowledge of the influence of the operator's hand-arm system. Therefore some technical applications of hand-arm models were realized for drill hammers by the University of Dortmund. These applications are a software program to simulate the motion of machine components, a horizontal drilling jig, and a chucking device in a drilling rig.

  16. Exposure to vibration and self-reported health complaints of riveters in the aircraft industry.

    PubMed

    Burdorf, A; Monster, A

    1991-06-01

    Workers using vibrating tools may experience neurological and vascular symptoms in the fingers and hands. The effect of vibration exposure on bone and joint disorders in the hand, arm and shoulder is less clear. In a cross-sectional study, riveters and controls in an aircraft company were investigated for vibration exposure and health complaints. Vibration measurements showed that frequency-weighted acceleration levels for riveting hammers and bucking bars ranged from 5.5 to 12.3 m s -2. The calculated equivalent frequency-weighted acceleration for a period of 4 h was the questionnaire survey 101 riveters reported statistically significant more complaints of pain and stiffness in their hands and arms when compared with 76 controls with no, or little, exposure to vibration. After 10 years of exposure statistically significant age-adjusted odds ratios (P less than 0.05) were found for vibration-induced white finger (VWF) (1.9) and pain or stiffness of the wrist (3.2). Although they were not statistically significant (0.05 less than P less than 0.10) odds ratios appreciably greater than 1 were found for numbness in fingers (1.6) and pain or stiffness in the elbow (1.6) and the shoulder (1.5), and these complaints were strongly associated with duration of exposure to vibration. With logistic regression the probabilities for a riveter of having symptoms of VWF after 10 and 20 years of exposure was estimated to be P = 0.18 and P = 0.29, respectively, which can be compared with the prevalences predicted by the dose-response relationship for VWF in ISO 5349, which are 10 and 30%. The results of this study suggest that exposure to vibration from working with impact power tools can contribute to complaints of pain and stiffness in the hand, arm and shoulder, and especially in the wrist.

  17. Prevalence of Hand-transmitted Vibration Exposure among Grass-cutting Workers using Objective and Subjective Measures

    NASA Astrophysics Data System (ADS)

    Azmir, N. A.; Yahya, M. N.

    2017-01-01

    Extended exposure to hand-transmitted vibration from vibrating machine is associated with an increased occurrence of symptoms of occupational disease related to hand disorder. The present case study is to determine the prevalence and correlation of significant subjective as well as objective variables that induce to hand arm vibration syndrome (HAVS) among hand-held grass-cutting workers in Malaysia. Thus, recommendations are made for grass-cutting workers and grass maintenance service management based on findings. A cross sectional study using adopted subjective Hand Arm Vibration Exposure Risk Assessment (HAVERA) questionnaire from Vibration Injury Network on hand disorder signs and symptoms was distributed to a sample of one hundred and sixty eight male workers from grass and turf maintenance industry that use vibrating machine as part of their work. For objective measure, hand-transmitted vibration measurement was collected on site during operation by the following ISO 5349-1, 2001. Two groups were identified in this research comprising of high exposure group and low-moderate exposure group. Workers also gave information about their personal identification, social history, workers’ health, occupational history and machine safety inspection. There was positive HAVS symptoms relationship between the low-moderate exposure group and high exposure group among hand-held grass-cutting workers. The prevalence ratio (PR) was considered high for experiencing white colour change at fingers and fingers go numb which are 3.63 (1.41 to 9.39) and 4.24 (2.18 to 8.27), respectively. The estimated daily vibration exposure, A(8) differs between 2.1 to 20.7 ms-2 for right hand while 2.7 to 29.1 ms-2 for left hand. The subjects claimed that the feel of numbness at left hand is much stronger compared to right hand. The results suggest that HAVS is diagnosed in Malaysia especially in agriculture sector. The A(8) indicates that the exposure value is more than exposure limit value

  18. Anti-vibration gloves?

    PubMed

    Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W

    2015-03-01

    For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered.

  19. The effect of vibration exposure during haul truck operation on grip strength, touch sensation, and balance.

    PubMed

    Pollard, Jonisha; Porter, William; Mayton, Alan; Xu, Xueyan; Weston, Eric

    2017-01-01

    Falls from mobile equipment are reported at surface mine quarry operations each year in considerable numbers. Research shows that a preponderance of falls occur while getting on/off mobile equipment. Contributing factors to the risk of falls include the usage of ladders, exiting onto a slippery surface, and foot or hand slippage. Balance issues may also contribute to fall risks for mobile equipment operators who are exposed to whole-body vibration (WBV). For this reason, the National Institute for Occupational Safety and Health, Office of Mine Safety and Health Research conducted a study at four participating mine sites with seven haul truck operators. The purpose was to ascertain whether WBV and hand-arm vibration (HAV) exposures for quarry haul truck operators were linked to short-term decreases in performance in relation to postural stability, touch sensation threshold, and grip strength that are of crucial importance when getting on/off the trucks. WBV measures of frequency-weighted RMS accelerations (wRMS) and vibration dose value (VDV), when compared to the ISO/ANSI standards, were mostly below levels identified for the Health Guidance Caution Zone (HGCZ), although there were instances where the levels were within and above the specified Exposure Action Value. Comparably, all mean HAV levels, when compared to the ISO/ANSI standards, were below the HGCZ. For the existing conditions and equipment, no significant correlation could be identified between the WBV, HAV, postural stability, touch sensation threshold, and grip strength measures taken during this study.

  20. Development of a Light Duty Hand-Arm System:

    NASA Astrophysics Data System (ADS)

    Endo, Gen; Yamada, Hiroya; Hirose, Shigeo

    This paper describes a development of a light duty arm with an active-fingertip gripper for handling discoid objects. The system is potentially capable of sharing a workspace with human workers, assuming the use in a cell manufacturing system. We propose a new 3-DOF gripper mechanism with two fingers which symmetrically move in parallel and each finger has a 2-DOF fingertip of a cylindrical shape. We also develop a lightweight arm with a weight compensation mechanism which is composed of a non-circular pulley and a spring to minimize required actuator torque. After verification of basic performance, the hand-arm system successfully performs a pick-and-place task for a discoid object from horizontal placement to vertical placement and vice versa. We evaluated the positional error tolerance of the discoid object through hardware experiments. The results suggest that the developed hand-arm system has sufficient performance to achieve repetetive pick-and-place tasks where its cycle time almost equals to a human worker.

  1. Task-based assessment of occupational vibration and noise exposures in forestry workers.

    PubMed

    Neitzel, Richard; Yost, Michael

    2002-01-01

    Forty-two noise exposures and 164 whole-body (WBV) and hand-arm (HAV) vibration exposures were collected from 43 forestry workers in six trades employed by two forestry companies. Data were collected on 10 days over 8 weeks during various felling, logging, and log handling operations. Up to 5 volunteers were monitored for noise and vibration daily using datalogging noise dosimeters, which provided daily time-weighted averages (TWAs) and 1-min averages; and a precision sound level meter equipped to measure human vibration, which provided triaxial HAV and WBV event-weighted averages (AEQS). Workers completed a short questionnaire throughout the workday detailing the timing and number of tasks performed and equipment used. Substantial overexposures to noise and vibration were seen; for example, 60% of Occupational Safety and Health Administration (OSHA) TWAs and 83% of National Institute for Occupational Safety and Health (NIOSH) noise TWAs exceeded 85 dBA, 33-53% of the axis-specific HAV AEQS exceeded the 8-hour American Conference of Governmental Industrial Hygienists' HAV threshold limit value, and 34% of all summary weighted WBV AEQS exceeded the Commission of the European Communities' 8-hour exposure limit. The mean for 99 WBV summary weighted AEQ was 3.53 +/- 7.12 m/sec2, whereas the mean for 65 HAV summary weighted AEQ was 5.45 +/- 5.25 m/sec2. The mean OSHA TWA was 86.1 +/- 6.2 dBA, whereas the mean NIOSH TWA was 90.2 +/- 5.1 dBA. The task and tool with the highest exposure levels were unbelling chokers on landings and chain saws (noise), log processing and frontend loaders (WBV), and notching stumps and chain saws (HAV). An internal validation substudy indicated excellent agreement between worker-reported and researcher-documented tasks and tools.

  2. Raynaud's phenomenon among men and women with noise-induced hearing loss in relation to vibration exposure.

    PubMed

    Pettersson, Hans; Burström, Lage; Nilsson, Tohr

    2014-01-01

    Raynaud's phenomenon is characterized by constriction in blood supply to the fingers causing finger blanching, of white fingers (WF) and is triggered by cold. Earlier studies found that workers using vibrating hand-held tools and who had vibration-induced white fingers (VWF) had an increased risk for hearing loss compared with workers without VWF. This study examined the occurrence of Raynaud's phenomenon among men and women with noise-induced hearing loss in relation to vibration exposure. All 342 participants had a confirmed noise-induced hearing loss medico legally accepted as work-related by AFA Insurance. Each subject answered a questionnaire concerning their health status and the kinds of exposures they had at the time when their hearing loss was first discovered. The questionnaire covered types of exposures, discomforts in the hands or fingers, diseases and medications affecting the blood circulation, the use of alcohol and tobacco and for women, the use of hormones and whether they had been pregnant. The participation rate was 41% (n = 133) with 38% (n = 94) for men and 50% (n = 39) for women. 84 men and 36 women specified if they had Raynaud's phenomenon and also if they had used hand-held vibrating machines. Nearly 41% of them had used hand-held vibrating machines and 18% had used vibrating machines at least 2 h each workday. There were 23 men/6 women with Raynaud's phenomenon. 37% reported WF among those participants who were exposed to hand-arm vibration (HAV) and 15% among those not exposed to HAV. Among the participants with hearing loss with daily use of vibrating hand-held tools more than twice as many reports WF compared with participants that did not use vibrating hand-held tools. This could be interpreted as Raynaud's phenomenon could be associated with an increased risk for noise-induced hearing loss. However, the low participation rate limits the generalization of the results from this study.

  3. A Biomechanical Assessment of Hand/Arm Force with Pneumatic Nail Gun Actuation Systems.

    PubMed

    Lowe, Brian D; Albers, James; Hudock, Stephen D

    2014-09-01

    A biomechanical model is presented, and combined with measurements of tip press force, to estimate total user hand force associated with two pneumatic nail gun trigger systems. The contact actuation trigger (CAT) can fire a nail when the user holds the trigger depressed first and then "bumps" the nail gun tip against the workpiece. With a full sequential actuation trigger (SAT) the user must press the tip against the workpiece prior to activating the trigger. The SAT is demonstrably safer in reducing traumatic injury risk, but increases the duration (and magnitude) of tip force exertion. Time integrated (cumulative) hand force was calculated for a single user from measurements of the tip contact force with the workpiece and transfer time between nails as inputs to a static model of the nail gun and workpiece in two nailing task orientations. The model shows the hand force dependence upon the orientation of the workpiece in addition to the trigger system. Based on standard time allowances from work measurement systems (i.e. Methods-Time Measurement - 1) it is proposed that efficient application of hand force with the SAT in maintaining tip contact can reduce force exertion attributable to the sequential actuation trigger to 2-8% (horizontal nailing) and 9-20% (vertical nailing) of the total hand/arm force. The present model is useful for considering differences in cumulative hand/arm force exposure between the SAT and CAT systems and may explain the appeal of the CAT trigger in reducing the user's perception of muscular effort.

  4. A Biomechanical Assessment of Hand/Arm Force with Pneumatic Nail Gun Actuation Systems

    PubMed Central

    Lowe, Brian D.; Albers, James; Hudock, Stephen D.

    2015-01-01

    A biomechanical model is presented, and combined with measurements of tip press force, to estimate total user hand force associated with two pneumatic nail gun trigger systems. The contact actuation trigger (CAT) can fire a nail when the user holds the trigger depressed first and then “bumps” the nail gun tip against the workpiece. With a full sequential actuation trigger (SAT) the user must press the tip against the workpiece prior to activating the trigger. The SAT is demonstrably safer in reducing traumatic injury risk, but increases the duration (and magnitude) of tip force exertion. Time integrated (cumulative) hand force was calculated for a single user from measurements of the tip contact force with the workpiece and transfer time between nails as inputs to a static model of the nail gun and workpiece in two nailing task orientations. The model shows the hand force dependence upon the orientation of the workpiece in addition to the trigger system. Based on standard time allowances from work measurement systems (i.e. Methods-Time Measurement - 1) it is proposed that efficient application of hand force with the SAT in maintaining tip contact can reduce force exertion attributable to the sequential actuation trigger to 2–8% (horizontal nailing) and 9–20% (vertical nailing) of the total hand/arm force. The present model is useful for considering differences in cumulative hand/arm force exposure between the SAT and CAT systems and may explain the appeal of the CAT trigger in reducing the user’s perception of muscular effort. PMID:26321780

  5. The European vibration directive--how will it affect the dental profession?

    PubMed

    Mansfield, N J

    2005-11-12

    On 6 July 2005, the EU Physical Agents (Vibration) Directive (2002) came into force across all member states. This will mean that legally enforceable limits on hand-arm vibration exposures will be introduced and that risk management must be set in place at work. This article briefly describes the content of the Directive, how this will affect the dental profession and what measures will be required to ensure compliance.

  6. Factors influencing vibration sense thresholds used to assess occupational exposures to hand transmitted vibration.

    PubMed Central

    Harada, N; Griffin, M J

    1991-01-01

    The effects of various conditions, including temporary threshold shifts (TTS) induced by exposure to vibration on vibration sense thresholds, have been investigated. The vibration sense thresholds of five subjects were measured on the middle fingertip of the left hand. A contactor with a diameter of 7 mm was surrounded by three alternative plates with holes of different sizes. The contact force was controlled at either 1 N, 2 N, or 3 N. For the TTS test, the left hand was exposed to vibration at 20 ms-2 rms for five minutes. The frequencies of both the exposure to vibration and the vibration threshold test were in the range 16 Hz to 500 Hz. Using a surround around the contactor greatly reduced the vibration sense threshold at 16 Hz and 31.5 Hz but increased the threshold at 125 Hz, 250 Hz, and 500 Hz. An effect of contact force was seen only at the higher frequencies; larger contact forces led to lower thresholds at 125 Hz, 250 Hz, and 500 Hz. As temperature of the finger skin decreased, the vibration thresholds increased, with the changes at higher frequencies greater than those at lower frequencies. The TTS at 16 Hz and 31.5 Hz measured 0.5 minutes after exposure to vibration (TTS0.5) were highest after exposures to vibration at lower frequencies. The TTS0.5 at 63 Hz was similar after exposure to all frequencies. The TTS0.5 values at 125 Hz, 250 Hz, and 500 Hz were highest after exposures to vibration at 125 Hz and 250 Hz. It was apparent that the physiological characteristics of vibration sensation at low and high frequencies differed significantly. These findings suggest that two representative frequencies can be used when evaluation the neurological effects of occupational exposures to vibration by means of vibration sense thresholds. PMID:2015210

  7. Endurance time, muscular activity and the hand/arm tremor for different exertion forces of holding.

    PubMed

    Lee, Tzu-Hsien

    2016-01-01

    This study aimed to examine the effects of exertion force on endurance time, muscular activity and hand/arm tremor during holding. Fifteen healthy young males were recruited as participants. The independent variable was exertion force (20%, 40%, 60% and 80% maximum holding capacity). The dependent variables were endurance time, muscular activity and hand/arm tremor. The results showed that endurance time decreased with exertion force while muscular activity and hand/arm tremor increased with exertion force. Hand/arm tremor increased with holding time. Endurance time of 40%, 60% and 80% maximum holding capacity was approximately 22.7%, 12.0% and 5.6% of that of 20% maximum holding capacity, respectively. The rms (root mean square) acceleration of hand/arm tremor of the final phase of holding was 2.27-, 1.33-, 1.20- and 1.73-fold of that of the initial phase of holding for 20%, 40%, 60% and 80% maximum holding capacity, respectively.

  8. Return to Flying Duties Following Centrifuge or Vibration Exposures

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.; Clarke, Jonathan; Jones, Jeffrey A.

    2009-01-01

    Introduction: In an effort to determine the human performance limits for vibration in spacecraft being developed by NASA, astronauts were evaluated during a simulated launch profile in a centrifuge/vibration environment and separate vibration-only simulation. Current USAF and Army standards for return to flight following centrifuge exposures require 12-24 hours to pass before a crewmember may return to flying duties. There are no standards on vibration exposures and return to flying duties. Based on direct observation and provocative neurological testing of the astronauts, a new standard for return to flying duties following centrifuge and/or vibration exposures was established. Methods: 13 astronaut participants were exposed to simulated launch profiles in a + 3.5 Gx bias centrifuge/vibration environment and separately on a vibration table at the NASA-Ames Research Center. Each subject had complete neurological evaluations pre- and post-exposure for the centrifuge/vibration runs with the NASA neurological function rating scale (NFRS). Subjects who participated in the vibration-only exposures had video oculography performed with provocative maneuvers in addition to the NFRS. NFRS evaluations occurred immediately following each exposure and at 1 hour post-run. Astronauts who remained symptomatic at 1 hour had repeat NFRS performed at 1 hour intervals until the crewmember was asymptomatic. Results: Astronauts in the centrifuge/vibration study averaged a 3-5 point increase in NFRS scores immediately following exposure but returned to baseline 3 hours post-run. Subjects exposed to the vibration-only simulation had a 1-3 point increase following exposure and returned to baseline within 1-2 hours. Pre- and post- vibration exposure video oculography did not reveal any persistent ocular findings with provocative testing 1 hour post-exposure. Discussion: Based on direct observations and objective measurement of neurological function in astronauts following simulated launch

  9. Role of Kv 4.3 in vibration-induced muscle pain in the rat

    PubMed Central

    Conner, Lindsay; Alvarez, Pedro; Bogen, Oliver; Levine, Jon D.

    2015-01-01

    We hypothesized that changes in the expression of Kv4.3 contribute to the mechanical hyperalgesia induced by vibration injury, a rodent model for hand-arm vibration syndrome in humans. Here we show that the exposure of the gastrocnemius muscle to vibration injury induces muscle hyperalgesia that is accompanied by a significant down-regulation of Kv4.3 in affected sensory nerve fibers in dorsal root ganglia (DRG). We additionally demonstrate that the intrathecal administration of antisense oligonucleotides for Kv4.3 mRNA itself induces muscle hyperalgesia in the rat. Our results suggest that attenuation in the expression of Kv4.3 may contribute to neuropathic pain in people affected by hand-arm vibration syndrome. PMID:26721612

  10. The effects of vibration-reducing gloves on finger vibration

    PubMed Central

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2015-01-01

    Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration can cause hand-arm vibration syndrome. Vibration-reducing gloves have been used as an alternative approach to reduce the vibration exposure. However, their effectiveness for reducing finger-transmitted vibrations remains unclear. This study enhanced the understanding of the glove effects on finger vibration and provided useful information on the effectiveness of typical VR gloves at reducing the vibration transmitted to the fingers. The new

  11. Moving Events in Time: Time-Referent Hand-Arm Movements Influence Perceived Temporal Distance to Past Events

    ERIC Educational Resources Information Center

    Blom, Stephanie S. A. H.; Semin, Gun R.

    2013-01-01

    We examine and find support for the hypothesis that time-referent hand-arm movements influence temporal judgments. In line with the concept of "left is associated with earlier times, and right is associated with later times," we show that performing left (right) hand-arm movements while thinking about a past event increases (decreases) the…

  12. Vibration on board and health effects.

    PubMed

    Jensen, Anker; Jepsen, Jørgen Riis

    2014-01-01

    There is only limited knowledge of the exposure to vibrations of ships' crews and their risk of vibration-induced health effects. Exposure to hand-arm vibrations from the use of vibrating tools at sea does not differ from that in the land-based trades. However, in contrast to most other work places, seafarers are also exposed to vibrations to the feet when standing on vibrating surfaces on board. Anecdotal reports have related the development of "white feet" to local exposure to vibration, e.g. in mining, but this connection has not been investigated in the maritime setting. As known from studies of the health consequences of whole body vibrations in land-transportation, such exposure at sea may affect ships' passengers and crews. While the relation of back disorders to high levels of whole body vibration has been demonstrated among e.g. tractor drivers, there are no reported epidemiological evidence for such relation among seafarers except for fishermen, who, however, are also exposed to additional recognised physical risk factors at work. The assessment and reduction of vibrations by naval architects relates to technical implications of this impact for the ships' construction, but has limited value for the estimation of health risks because they express the vibration intensity differently that it is done in a medical context.

  13. The effects of vibration-reducing gloves on finger vibration.

    PubMed

    Welcome, Daniel E; Dong, Ren G; Xu, Xueyan S; Warren, Christopher; McDowell, Thomas W

    2014-01-01

    Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed.

  14. Quantitative thermal perception thresholds relative to exposure to vibration

    PubMed Central

    Nilsson, T; Lundstrom, R

    2001-01-01

    OBJECTIVES—To assess the risk of disturbed thermal perception relative to exposure to vibration, to investigate a possible exposure-response relation and to analyse a possible relation between thermal perception and sensory symptoms.
METHODS—The study was based on a cross section of 123 male workers exposed to vibration and 62 male workers who were not exposed. Thermal perception of cold, warmth, and heat pain was bilaterally determined from the thenar eminence by the method of limits. Perception of cold and warmth were also tested in the second digit. Personal energy equivalent exposure to vibration was measured for all subjects. Vibration was measured in accordance with International Standards Organisation (ISO) 5349 and assessed separately for the left and right hand.
RESULTS—Combining exposure times and intensities gave the left hand an 0.80 exposure to vibration compared with the right. The risk of having contracted reduced thermal perception was increased at all test sites. The risk was higher for the thenar measurements than the finger measurements. A yearly extra contribution of 4000 mh/s2 in cumulative exposure increases the risk of contracting a wider neutral zone by 18% (95% confidence interval (95% CI) 1.06 to 1.32) for the right and 18% (1.05 to 1.32) for the left hand side. Subjects with symptoms of nocturnal paraesthesia had a rate ratio (95% CI) of 2.80 (1.17 to 6.67) for the right hand and 2.72 (1.12 to 6.63) for the left hand for increased neutral zones at the thenar eminence.
CONCLUSIONS—The results indicate thermal sensory impairment related to cumulative exposure to vibration. The effect appeared at vibration levels below the current guiding standard. Quantitative sensory testing of thermal perception offers the chance to assess this specific hazard to the peripheral sensorineural system associated with hand intensive work entailing vibration.


Keywords: quantitative thermal perception; heat pain; vibration

  15. Frequency-dependent Effects of Vibration on Physiological Systems: Experiments with Animals and other Human Surrogates

    PubMed Central

    KRAJNAK, Kristine; RILEY, Danny A.; WU, John; MCDOWELL, Thomas; WELCOME, Daniel E.; XU, Xueyan S.; DONG, Ren G.

    2015-01-01

    Occupational exposure to vibration through the use of power- and pneumatic hand-tools results in cold-induced vasospasms, finger blanching, and alterations in sensorineural function. Collectively, these symptoms are referred to as hand-arm vibration syndrome (HAVS). Currently the International Standards Organization (ISO) standard ISO 5349-1 contains a frequency-weighting curve to help workers and employers predict the risk of developing HAVS with exposure to vibration of different frequencies. However, recent epidemiological and experimental evidence suggests that this curve under-represents the risk of injuries to the hands and fingers induced by exposure to vibration at higher frequencies (>100 Hz). To improve the curve, better exposure-response data need to be collected. The goal of this review is to summarize the results of animal and computational modeling studies that have examined the frequency-dependent effects of vibration, and discuss where additional research would be beneficial to fill these research gaps. PMID:23060248

  16. Establishing aerosol exposure predictive models based on vibration measurements.

    PubMed

    Soo, Jhy-Charm; Tsai, Perng-Jy; Lee, Shih-Chuan; Lu, Shih-Yi; Chang, Cheng-Ping; Liou, Yuh-When; Shih, Tung-Sheng

    2010-06-15

    This paper establishes particulate exposure predictive models based on vibration measurements under various concrete drilling conditions. The whole study was conducted in an exposure chamber using a full-scale mockup of concrete drilling simulator to simulate six drilling conditions. For each drilling condition, the vibration of the three orthogonal axes (i.e., a(x), a(y), and a(z)) was measured from the hand tool. Particulate exposure concentrations to the total suspended particulate (C(TSP)), PM(10) (C(PM10)), and PM(2.5) (C(PM2.5)) were measured at the downwind side of the drilling simulator. Empirical models for predicting C(TSP), C(PM10) and C(PM2.5) were done based on measured a(x), a(y), and a(z) using the generalized additive model. Good agreement between measured aerosol exposures and vibrations was found with R(2)>0.969. Our results also suggest that a(x) was mainly contributed by the abrasive wear. On the other hand, a(y) and a(z) were mainly contributed by both the impact wear and brittle fracture wear. The approach developed from the present study has the potential to provide a cheaper and convenient method for assessing aerosol exposures from various emission sources, particularly when conducting conventional personal aerosol samplings are not possible in the filed.

  17. Teleoperation of a robot manipulator from 3D human hand-arm motion

    NASA Astrophysics Data System (ADS)

    Kofman, Jonathan; Verma, Siddharth; Wu, Xianghai; Luu, Timothy

    2003-10-01

    The control of a robot manipulator by a human operator is often necessary in unstructured dynamic environments with unfamiliar objects. Remote teleoperation is required when human presence at the robot site is undesirable or difficult, such as in handling hazardous materials and operating in dangerous or inaccessible environments. Previous approaches have employed mechanical or other contacting interfaces which require unnatural motions for object manipulation tasks or hinder dexterous human motion. This paper presents a non-contacting method of teleoperating a robot manipulator by having the human operator perform the 3D human hand-arm motion that would naturally be used to compete an object manipulation task and tracking the motion with a stereo-camera system at a local site. The 3D human hand-arm motion is reconstructed at the remote robot site and is used to control the position and orientation of the robot manipulator end-effector in real-time. Images captured of the robot interacting with objects at the remote site provide visual feedback to the human operator. Tests in teleoperation of the robot manipulator have demonstrated the ability of the human to carry out object manipulator tasks remotely and the teleoperated robot manipulator system to copy human-arm motions in real-time.

  18. Cabin attendants’ exposure to vibration and shocks during landing

    NASA Astrophysics Data System (ADS)

    Burström, Lage; Lindberg, Lennart; Lindgren, Torsten

    2006-12-01

    The Scandinavian Airlines System (SAS) has noted that cabin attendants have reported an increase in health problems associated with landing. The European Union reports cover health problems related to neck, shoulder, and lower-back injuries. Moreover, analysis of these reports shows that the problems are often associated with specific airplanes that have a longer tail behind the rear wheels and appear more often in attendants who sit in the back of planes rather then the front. Against this background, this study measures and describes the vibration during landing in specific airplanes to evaluate the health risk for the cabin attendants. Measurements were conducted on regular flights with passengers in the type of airplane, Boeing 737-800, which was related to the highest per cent of reported health problems. All measurements were performed the same day during three landings in one airplane with the same pilots and cabin attendants. The measurements were carried out simultaneously on the cabin crew seats in the back and front of the passenger cabin. Under the cabin crew's seat cushions, a triaxiell seat-accelerometer was placed to measure the vibration in three axes. The signals from the accelerometers were amplified by charge amplifiers and stored on tape. The stored data were analysed with a computer-based analyse system. For the cabin attendants, the dominant direction for the vibration load during landing is the up-and-down direction although some vibration also occurs in the other horizontal directions. The exposure to vibration is higher on the rear crew seat compared to the front seat. For instance, both the vibration dose value (VDV) and the frequency-weighted acceleration in the dominant direction are more then 50% higher on the rear seat. The frequency-weighted acceleration and the VDV measured at the crew seats are below the exposure limits as described by the European vibration directive. The evaluation of the cabin attendants' exposure to multiple

  19. Time frequency characterization of hand-transmitted, impulsive vibrations using analytic wavelet transform

    NASA Astrophysics Data System (ADS)

    Kim, Jay; Welcome, Daniel E.; Dong, Ren G.; Joon Song, Won; Hayden, Charles

    2007-11-01

    Current guidelines to assess health risk of hand-arm vibration are based on the frequency-weighted rms acceleration level, therefore do not fully consider the effect of temporal variations of the spectral energy. Time averaging effect involved with the frequency analysis may severely underestimate the risk of impact tools. A time-frequency ( T- F) analysis is necessary to characterize a highly transient signal whose spectral characteristics change rapidly in time. The analytic wavelet transform (AWT) is an ideal T- F analysis tool as it possesses the advantages of both the Fourier and wavelet transforms. The AWT is applied to acceleration signals measured from six tools, five impact type tools and one relatively steady-type tool, to explore possible improvements of the current risk assessment method of hand-arm vibration exposure. Based on the unique capability of the AWT, several new concepts including frequency-weighted time history, cumulative injury function, and cumulative injury index are defined in this study. Possible applications of these new concepts to hand-arm vibration research are described. Based on the results from this study, needs for future research are discussed.

  20. Ride Dynamics and Evaluation of Human Exposure to Whole Body Vibration. Change 1

    DTIC Science & Technology

    2012-04-03

    methods for evaluating the ride dynamics or ride quality of ground vehicles as well as the vehicle occupants’ exposure to Whole-Body Vibration ( WBV ...occur as a result of vibration exposure . The technique for collecting data to be used for either ride dynamics or WBV exposure assessments is similar...

  1. Effect of hand-arm exercise on venous blood constituents during leg exercise

    NASA Technical Reports Server (NTRS)

    Wong, N.; Silver, J. E.; Greenawalt, S.; Kravik, S. E.; Geelen, G.

    1985-01-01

    Contributions by ancillary hand and arm actions to the changes in blood constituents effected by leg exercises on cycle ergometer were assessed. Static or dynamic hand-arm exercises were added to the leg exercise (50 percent VO2 peak)-only control regimens for the subjects (19-27 yr old men) in the two experimental groups. Antecubital venous blood was analyzed at times 0, 15, and 30 min (T0, T15, and T30) for serum Na(+), K(+), osmolality, albumin, total CA(2+), and glucose; blood hemoglobin, hematocrit, and lactic acid; and change in plasma volume. Only glucose and lactate values were affected by additional arm exercise. Glucose decreased 4 percent at T15 and T30 after static exercise, and by 2 percent at T15 (with no change at T30) after dynamic arm exercise. Conversely, lactic acid increased by 20 percent at T30 after static exercise, and by 14 percent by T15 and 6 percent at T30 after dynamic arm exercise. It is concluded that additional arm movements, performed usually when gripping the handle-bar on the cycle ergometer, could introduce significant errors in measured venous concentrations of glucose and lactate in the leg-exercised subjects.

  2. Exposure-response relationships for annoyance due to freight and passenger railway vibration exposure in residential environments.

    PubMed

    Sharp, Calum; Woodcock, James; Sica, Gennaro; Peris, Eulalia; Moorhouse, Andrew T; Waddington, David C

    2014-01-01

    In this work, exposure-response relationships for annoyance due to freight and passenger railway vibration exposure in residential environments are developed, so as to better understand the differences in human response to these two sources of environmental vibration. Data for this research come from a field study comprising interviews with respondents and measurements of their vibration exposure (N = 752). A logistic regression model is able to accurately classify 96% of these measured railway vibration signals as freight or passenger based on two signal properties that quantify the duration and low frequency content of each signal. Exposure-response relationships are then determined using ordinal probit modeling with fixed thresholds. The results indicate that people are able to distinguish between freight and passenger railway vibration, and that the annoyance response due to freight railway vibration is significantly higher than that due to passenger railway vibration, even for equal levels of exposure. In terms of a community tolerance level, the population studied is 15 dB (re 10(-6) m s(-2)) more tolerant to passenger railway vibration than freight railway vibration. These results have implications for the expansion of freight traffic on rail, or for policies to promote passenger railway.

  3. Ride Dynamics and Evaluation of Human Exposure to Whole Body Vibration

    DTIC Science & Technology

    2011-11-29

    serious injuries that may occur as a result of vibration exposure . The technique for collecting data to be used for either ride dynamics or WBV exposure ......evaluating the ride dynamics or ride quality and whole body vibration ( WBV ) of ground vehicles. Ride dynamics and WBV pertain to the sensation or feel of

  4. Nerve regeneration in nerve grafts conditioned by vibration exposure.

    PubMed

    Bergman, S; Widerberg, A; Danielsen, N; Lundborg, G; Dahlin, L B

    1995-01-01

    Regeneration distances were studied in nerves from vibration-exposed limbs. One hind limb of anaesthetized rats was attached to a vibration exciter and exposed to vibration (80 Hz/32 m/s2) for 5 h/day for 2 or 5 days. Seven days after the latest vibration period a 10-mm long nerve graft was taken from the vibrated sciatic nerve and sutured into a corresponding defect in the con-tralateral sciatic nerve and vice versa, thereby creating two different models within the same animal: (i) regeneration from a freshly transected unvibrated nerve into a vibrated graft and (ii) regeneration from a vibrated nerve into a fresh nerve graft (vibrated recipient side). Four, 6 or 8 days postoperatively (p.o.) the distances achieved by the regenerating axons were determined using the pinch reflex test. Two days of vibration did not influence the regeneration, but 5 days of vibration reduced the initial delay period and a slight reduction of regeneration rate was observed. After 5 days of vibration an increased regeneration distance was observed in both models at day 4 p.o. and at day 6 p.o. in vibrated grafts. This study demonstrates that vibration can condition peripheral nerves and this may be caused by local changes in the peripheral nerve trunk and in the neuron itself.

  5. Changes in EMG activity in the upper trapezius muscle due to local vibration exposure.

    PubMed

    Aström, Charlotte; Lindkvist, Markus; Burström, Lage; Sundelin, Gunnevi; Karlsson, J Stefan

    2009-06-01

    Exposure to vibration is suggested as a risk factor for developing neck and shoulder disorders in working life. Mechanical vibration applied to a muscle belly or a tendon can elicit a reflex muscle contraction, also called tonic vibration reflex, but the mechanisms behind how vibration could cause musculoskeletal disorders has not yet been described. One suggestion has been that the vibration causes muscular fatigue. This study investigates whether vibration exposure changes the development of muscular fatigue in the trapezius muscle. Thirty-seven volunteers (men and women) performed a sub-maximal isometric shoulder elevation for 3 min. This was repeated four times, two times with induced vibration and two times without. Muscle activity was measured before and after each 3-min period to look at changes in the electromyography parameters. The result showed a significantly smaller mean frequency decrease when performing the shoulder elevation with vibration (-2.51 Hz) compared to without vibration (-4.04 Hz). There was also a slightly higher increase in the root mean square when exposed to vibration (5.7% of maximal voluntary contraction) compared to without (3.8% of maximal voluntary contraction); however, this was not statistically significant. The results of the present study indicate that short-time exposure to vibration has no negative acute effects on the fatiguing of upper trapezius muscle.

  6. The temporary threshold shift of vibratory sensation induced by composite-band vibration exposure.

    PubMed

    Nishiyama, K; Taoda, K; Yamashita, H; Watanabe, S

    1996-01-01

    Eight healthy subjects were exposed to three 1/3 octave-band vibrations (63, 200, and 500 Hz) by hand clasping a vibrated handle in a soundproof and thermoregulated room. The vibratory sensation threshold at 125 Hz was measured before and after the vibration exposure at an exposed fingertip. According to a preceding study, we first determined the relationship between the acceleration of the vibration and the temporary threshold shift of vibratory sensation immediately after the vibratory exposure (TTSv,0) induced by 1/3 octave-band vibration. We then measured TTSv after the exposure to a composite vibration composed of two 1/3 octave-band vibrations that might induce an equal magnitude of TTSv,0 on the basis of the above relationship. The TTSv,0 induced by the composite vibration was not larger than the TTSv,0 induced by the component vibrations. This result suggests that the component of the vibration inducing the largest TTSv,0 determines the TTSv,0 by broad-band random vibration.

  7. Design of measurement methodology for the evaluation of human exposure to vibration in residential environments.

    PubMed

    Sica, G; Peris, E; Woodcock, J S; Moorhouse, A T; Waddington, D C

    2014-06-01

    Exposure-response relationships are important tools for policy makers to assess the impact of an environmental stressor on the populace. Their validity lies partly in their statistical strength which is greatly influenced by the size of the sample from which the relationship is derived. As such, the derivation of meaningful exposure-response relationships requires estimates of vibration exposure at a large number of receiver locations. In the United Kingdom a socio-vibrational survey has been conducted with the aim of deriving exposure-response relationships for annoyance due to vibration from (a) railway traffic and (b) the construction of a new light rail system. Response to vibration was measured via a questionnaire conducted face-to-face with residents in their own homes and vibration exposure was estimated using data from a novel measurement methodology. In total, 1281 questionnaires were conducted: 931 for vibration from railway traffic and 350 for vibration from construction sources. Considering the interdisciplinary nature of this work along with the volume of experimental data required, a number of significant technical and logistical challenges needed to be overcome through the planning and implementation of the fieldwork. Four of these challenges are considered in this paper: the site identification for providing a robust sample of the residents affected, the strategies used for measuring both exposure and response and the coordination between the teams carrying out the social survey and the vibration measurements.

  8. Apparent Mass and Absorbed Power during Exposure to Whole-Body Vibration and Repeated Shocks

    NASA Astrophysics Data System (ADS)

    MANSFIELD, N. J.; HOLMLUND, P.; LUNDSTRÖM, R.

    2001-11-01

    Exposure to mechanical shocks might pose a greater health risk than exposure to continuous vibration. Previous studies have investigated subjective responses, muscle activity or transmission of vibration to the spine or head during shock. If there is a difference between biomechanic responses of the seated body to shocks when compared to continuous vibration, then this may indicate a more, or less, hazardous vibration waveform. This paper presents measurements of apparent mass and absorbed power during exposure to random vibration, repeated shocks and combinations of shocks and random vibration. Eleven male and 13 female subjects were exposed to 15 vibration conditions generated using an electro-dynamic shaker. Subjects were exposed to five 20 s acceleration waveforms with nominally identical power spectra (random vibration, equally spaced shocks, unequally spaced shocks, random combined with equally spaced shocks, random combined with unequally spaced shocks) at each of 0·5, 1·0 and 1·5 m/s2r.m.s. The general shapes of the apparent mass or absorbed power curves were not affected by stimulus type, indicating that the biomechanical response of the body is fundamentally the same when exposed to shocks or random vibration. Two non-linear effects were observed: apparent mass resonance frequencies were slightly higher for exposure to shocks; apparent mass and absorbed power resonance frequencies decreased with increases in vibration magnitude for each stimulus type. It is concluded that the two non-linear mechanisms operate simultaneously: a stiffening effect during exposure to shocks and a softening effect as vibration magnitudes increase. Total absorbed powers were greatest for shock stimuli and least for random vibration.

  9. Effects of Exposure to Railway NOISE—A Comparison Between Areas with and Without Vibration

    NASA Astrophysics Data System (ADS)

    Öhrström, E.

    1997-08-01

    This paper presents some of the results of field investigations on effects of exposure to noise and vibration from railway traffic. Effects on annoyance, sleep disturbances and psycho-social well-being as well as disturbance of different activities were evaluated by a postal questionnaire. Fifteen different sites located near railway lines in Sweden were investigated. The study covered areas with different number of trains per 24 hours in area with strong vibration caused by the railway traffic exceeding 2 mm/s as measured in the buildings as well as areas without vibration, or vibration weaker than 1 mm/s. 2833 persons between 18 and 75 years of age participated in the study. This paper presents only the results from two areas with and without vibration and a high number of trains per 24 hours. The results show that railway noise is experienced as more annoying in areas where there is simultaneous exposure to vibration from railway traffic. Disturbance of communication was the most frequently mentioned annoyance reaction, outside and inside the dwelling. To ensure an acceptable environmental quality where less than 5% of the exposed population is rather or very annoyed by railway noise, these noise levels must be below 80LAmaxand below 55LAeqin areas without vibration. In areas with simultaneous exposure to strong vibration, action against vibration or a longer distance between houses and the railway line is needed, corresponding to a 10 dB(A) lower noise level than in areas without vibration.

  10. Head and Helmet Biodynamics and Tracking Performance During Exposure to Whole-Body Vibration

    DTIC Science & Technology

    2005-02-01

    Vibration Suzanne D. Smith Air Force Research Laboratory Jeanne A. Smith Raymond J. Newman Advanced Information Engineering Services, Inc. A General...AND HELMET BIODYNAMICS AND TRACKING PERFORMANCE DURING EXPOSURE TO WHOLE-BODY VIBRATION 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62202F 6. AUTHOR(S...distribution is unlimited. 13. SUPPLEMENTARY NOTES Presented at the UK Conference on Human Response to Vibration , England Sep 2004 14. ABSTRACT Helmet

  11. [Effect of stevia on the picture of peripheral blood under exposure to vibration].

    PubMed

    Adamyan, Ts I; Gevorkyan, E S

    2014-01-01

    There were investigated changes in the peripheral blood of rabbits under prolonged exposure to vibration (5, 10, 20, 30 days). In a separate series of experiments, the nature of changes in the peripheral blood was investigated under the combined action of vibration and stevia leaves. Contained in stevia biologically active substances were found to accelerate metabolism in bone marrow stem cells, promote the compensatory ability of the organism, thereby providing the resistance of the body to the vibration factor.

  12. The Effects of Impact Vibration on Peripheral Blood Vessels and Nerves

    PubMed Central

    KRAJNAK, Kristine M.; WAUGH, Stacey; JOHNSON, Claud; MILLER, G. Roger; XU, Xueyan; WARREN, Christopher; DONG, Ren G.

    2013-01-01

    Research regarding the risk of developing hand-arm vibration syndrome after exposure to impact vibration has produced conflicting results. This study used an established animal model of vibration-induced dysfunction to determine how exposure to impact vibration affects peripheral blood vessels and nerves. The tails of male rats were exposed to a single bout of impact vibration (15 min exposure, at a dominant frequency of 30 Hz and an unweighted acceleration of approximately 345 m/s2) generated by a riveting hammer. Responsiveness of the ventral tail artery to adrenoreceptor-mediated vasoconstriction and acetylcholine-mediated re-dilation was measured ex vivo. Ventral tail nerves and nerve endings in the skin were assessed using morphological and immunohistochemical techniques. Impact vibration did not alter vascular responsiveness to any factors or affect trunk nerves. However, 4 days following exposure there was an increase in protein-gene product (PGP) 9.5 staining around hair follicles. A single exposure to impact vibration, with the exposure characteristics described above, affects peripheral nerves but not blood vessels. PMID:24077447

  13. Vibration-reducing gloves: transmissibility at the palm of the hand in three orthogonal directions.

    PubMed

    McDowell, Thomas W; Dong, Ren G; Welcome, Daniel E; Xu, Xueyan S; Warren, Christopher

    2013-01-01

    Vibration-reducing (VR) gloves are commonly used as a means to help control exposures to hand-transmitted vibrations generated by powered hand tools. The objective of this study was to characterise the vibration transmissibility spectra and frequency-weighted vibration transmissibility of VR gloves at the palm of the hand in three orthogonal directions. Seven adult males participated in the evaluation of seven glove models using a three-dimensional hand-arm vibration test system. Three levels of hand coupling force were applied in the experiment. This study found that, in general, VR gloves are most effective at reducing vibrations transmitted to the palm along the forearm direction. Gloves that are found to be superior at reducing vibrations in the forearm direction may not be more effective in the other directions when compared with other VR gloves. This casts doubts on the validity of the standardised glove screening test. Practitioner Summary: This study used human subjects to measure three-dimensional vibration transmissibility of vibration-reducing gloves at the palm and identified their vibration attenuation characteristics. This study found the gloves to be most effective at reducing vibrations along the forearm direction. These gloves did not effectively attenuate vibration along the handle axial direction.

  14. Measurement of Whole-Body Vibration Exposure from Garbage Trucks

    NASA Astrophysics Data System (ADS)

    Maeda, S.; Morioka, M.

    1998-08-01

    Japanese garbage truck drivers are exposed to mechanical whole-body vibration during their work. Some drivers have suffered from low back pain from this vibration. However, there is no evidence of a relationship between the whole-body vibration from the garbage trucks and low back pain or occupational disease, due to the lack of investigations. A field study was conducted in order to characterize the health risks associated with garbage truck work. Three different types of truck were tested at different loadings and on different road surfaces, with the vibrations measured at the driver/seat interface (x,y, andz-axes). The vibrations were compared with the health risk guidance according to Annex B of ISO 2631-1 [1]. The findings of this study indicated that Japanese garbage truck drivers should not operate trucks for 2.5 h in a day, under current working conditions.

  15. Influence on operator's health of hand-transmitted vibrations from handles of a single-axle tractor.

    PubMed

    Goglia, Vlado; Gospodaric, Zlatko; Filipovic, Dubravko; Djukic, Igor

    2006-01-01

    The operators of the single-axle tractors are especially exposed to hand-arm transmitted vibrations. These vibrations can cause the complex of vascular, neurological and musculoskeletal disorders, collectively named hand-arm vibration syndrome. Among these, the most common disorder is vibration-induced white finger (Raynaud's phenomenon). The vibration levels were measured in three tractor's working conditions, namely idling, transportation and soil tillage. The vibration level on the handles was measured and analysed and the frequency spectra for the chosen working conditions were obtained. The frequency-weighted acceleration, given in m/s2, was calculated and the obtained values are graphically presented. The measured vibration levels are then discussed with regard to the operator's daily exposure limits recommended by the ISO 5349. The vibration levels were much higher in the x and y directions than the z-direction in all working conditions. The vibration total values in idling, transportation and soil tillage were 3.37, 8.37 and 9.62 m/s2, respectively. Results showed that the 10% of workers are exposed to a risk of vibration-induced white finger disorder of the hands after relatively short periods (3-4 years), if the tractor is used 8 hour per day in soil tillage and transportation at full load. Considering the criteria of the ISO 5349, the daily working time with the single-axle tractor should be limited in order to protect the operator and work schedules should be arranged to include vibration-free periods.

  16. Retrospective assessment of occupational exposure to whole-body vibration for a case-control study.

    PubMed

    Harris, M Anne; Cripton, Peter A; Teschke, Kay

    2012-01-01

    Occupational whole-body vibration is often studied as a risk factor for conditions that may arise soon after exposure, but only rarely have studies examined associations with conditions arising long after occupational exposure has ceased. We aimed to develop a method of constructing previous occupational whole-body vibration exposure metrics from self-reported data collected for a case-control study of Parkinson's disease. A detailed job history and exposure interview was administered to 808 residents of British Columbia, Canada (403 people with Parkinson's disease and 405 healthy controls). Participants were prompted to report exposure to whole-body vibrating equipment. We limited the data to exposure reports deemed to be above background exposures and used the whole-body vibration literature (typically reporting on seated vector sum measurements) to assign intensity (acceleration) values to each type of equipment reported. We created four metrics of exposure (duration of exposure, most intense equipment exposure, and two dose metrics combining duration and intensity) and examined their distributions and correlations. We tested the role of age and gender in predicting whole-body vibration exposure. Thirty-six percent of participants had at least one previous occupational exposure to whole-body vibrating equipment. Because less than half of participants reported exposure, all continuous metrics exhibited positively skewed distributions, although the distribution of most intense equipment exposure was more symmetrically distributed among the exposed. The arithmetic mean of duration of exposure among those exposed was 14.0 (standard deviation, SD: 14.2) work years, while the geometric mean was 6.8 (geometric SD, GSD: 4.5). The intensity of the most intense equipment exposure (among the exposed) had an arithmetic mean of 0.9 (SD: 0.3) m·s(-2) and a geometric mean of 0.8 (GSD: 1.4). Male gender and older age were both associated with exposure, although the effect of

  17. Neuromuscular response of the trunk to inertial based sudden perturbations following whole body vibration exposure.

    PubMed

    MacIntyre, Danielle; Cort, Joel A

    2014-12-01

    The effects of whole body vibration exposure on the neuromuscular responses following inertial-based trunk perturbations were examined. Kinematic and surface EMG (sEMG) data were collected while subjects were securely seated on a robotic platform. Participants were either exposed to 10 min of vibration or not, which was followed by sudden inertial trunk perturbations with and without timing and direction knowledge. Amplitude of sEMG was analyzed for data collected during the vibration protocol, whereas the onset of sEMG activity and lumbar spine angle were analyzed for the perturbation protocol. Data from the vibration protocol did not show a difference in amplitude of sEMG for participants exposed to vibration and those not. The perturbation protocol data showed that those not exposed to vibration had a 14% faster muscle onset, despite data showing no difference in fatigue level.

  18. Vibration induced white-feet: Overview and field study of vibration exposure and reported symptoms in workers

    PubMed Central

    Eger, Tammy; Thompson, Aaron; Leduc, Mallorie; Krajnak, Kristine; Goggins, Katie; Godwin, Alison; House, Ron

    2015-01-01

    BACKGROUND Workers who stand on platforms or equipment that vibrate are exposed to foot-transmitted vibration (FTV). Exposure to FTV can lead to vibration white feet/toes resulting in blanching of the toes, and tingling and numbness in the feet and toes. OBJECTIVES The objectives are 1) to review the current state of knowledge of the health risks associated with foot-transmitted vibration (FTV), and 2) to identify the characteristics of FTV and discuss the associated risk of vibration-induced injury. PARTICIPANTS Workers who operated locomotives (n = 3), bolting platforms (n = 10), jumbo drills (n = 7), raise drilling platforms (n = 4), and crushers (n = 3), participated. METHODS A tri-axial accelerometer was used to measure FTV in accordance with ISO 2631-1 guidelines. Frequency-weighted root-mean-square acceleration and the dominant frequency are reported. Participants were also asked to report pain/ache/discomfort in the hands and/or feet. RESULTS Reports of pain/discomfort/ache were highest in raise platform workers and jumbo drill operators who were exposed to FTV in the 40 Hz and 28 Hz range respectively. Reports of discomfort/ache/pain were lowest in the locomotive and crusher operators who were exposed to FTV below 10 Hz. These findings are consistent with animal studies that have shown vascular and neural damage in exposed appendages occurs at frequencies above 40 Hz. CONCLUSIONS Operators exposed to FTV at 40 Hz appear to be at greater risk of experiencing vibration induced injury. Future research is required to document the characteristics of FTV and epidemiological evidence is required to link exposure with injury. PMID:24004754

  19. Health risks of vibration exposure to wheelchair users in the community

    PubMed Central

    Garcia-Mendez, Yasmin; Pearlman, Jonathan L.; Boninger, Michael L.; Cooper, Rory A.

    2013-01-01

    Objective The purpose of this study was to evaluate whole-body vibration (WBV) exposure to wheelchair (WC) users in their communities and to determine the effect of WC frame type (folding, rigid, and suspension) in reducing WBV transmitted to the person. Design An observational case-control study of the WBV exposure levels among WC users. Participants Thirty-seven WC users, with no pressure sores, 18 years old or older and able to perform independent transfers. Main outcome measures WC users were monitored for 2 weeks to collect WBV exposure, as well as activity levels, by using custom vibration and activity data-loggers. Vibration levels were evaluated using ISO 2631-1 methods. Results All WC users who participated in this study were continuously exposed to WBV levels at the seat that were within and above the health caution zone specified by ISO 2631-1 during their day-to-day activities (0.83 ± 0.17 m/second2, weighted root-mean-squared acceleration, for 13.07 ± 3.85 hours duration of exposure). WCs with suspension did not attenuate vibration transmitted to WC users (V = 0.180, F(8, 56) = 0.692, P = 0.697). Conclusions WBV exposure to WC users exceeds international standards. Suspension systems need to be improved to reduce vibrations transmitted to the users. PMID:23820152

  20. Validity of self reported occupational exposures to hand transmitted and whole body vibration

    PubMed Central

    Palmer, K.; Haward, B.; Griffin, M.; Bendall, H.; Coggon, D.

    2000-01-01

    OBJECTIVES—To assess the accuracy with which workers report their exposure to occupational sources of hand transmitted (HTV) and whole body vibration (WBV).
METHODS—179 Workers from various jobs involving exposure to HTV or WBV completed a self administered questionnaire about sources of occupational exposure to vibration in the past week. They were then observed at work over 1 hour, after which they completed a second questionnaire concerning their exposures during this observation period. The feasibility of reported sources of exposure during the past week was examined by questioning managers and by inspection of tools and machines in the workplace. The accuracy of reported sources and durations of exposure in the 1 hour period were assessed relative to what had been observed.
RESULTS—The feasibility of exposure in the previous week was confirmed for 97% of subjects who reported exposure to HTV, and for 93% of subjects who reported exposure to WBV. The individual sources of exposure reported were generally plausible, but occupational use of cars was substantially overreported, possibly because of confusion with their use in travel to and from work. The accuracy of exposures reported during the observation period was generally high, but some sources of HTV were confused—for example, nailing and stapling guns reported as riveting hammers, and hammer drills not distinguished from other sorts of drill. Workers overestimated their duration of exposure to HTV by a median factor of 2.5 (interquartile range (IQR) 1.6-5.9), but estimated durations of exposure were more accurate when the exposure was relatively continuous rather than for intermittent short periods. Reported durations of exposure to WBV were generally accurate (median ratio of reported to observed time 1.1, IQR 1.0-1.2).
CONCLUSIONS—Sources of recent occupational exposure to vibration seem to be reported with reasonable accuracy, but durations of exposure to HTV are systematically

  1. Neonatal head and torso vibration exposure during inter-hospital transfer

    PubMed Central

    Blaxter, Laurence; Yeo, Mildrid; McNally, Donal; Crowe, John; Henry, Caroline; Hill, Sarah; Mansfield, Neil; Leslie, Andrew; Sharkey, Don

    2017-01-01

    Inter-hospital transport of premature infants is increasingly common, given the centralisation of neonatal intensive care. However, it is known to be associated with anomalously increased morbidity, most notably brain injury, and with increased mortality from multifactorial causes. Surprisingly, there have been relatively few previous studies investigating the levels of mechanical shock and vibration hazard present during this vehicular transport pathway. Using a custom inertial datalogger, and analysis software, we quantify vibration and linear head acceleration. Mounting multiple inertial sensing units on the forehead and torso of neonatal patients and a preterm manikin, and on the chassis of transport incubators over the duration of inter-site transfers, we find that the resonant frequency of the mattress and harness system currently used to secure neonates inside incubators is ~9Hz. This couples to vehicle chassis vibration, increasing vibration exposure to the neonate. The vibration exposure per journey (A(8) using the ISO 2631 standard) was at least 20% of the action point value of current European Union regulations over all 12 neonatal transports studied, reaching 70% in two cases. Direct injury risk from linear head acceleration (HIC15) was negligible. Although the overall hazard was similar, vibration isolation differed substantially between sponge and air mattresses, with a manikin. Using a Global Positioning System datalogger alongside inertial sensors, vibration increased with vehicle speed only above 60 km/h. These preliminary findings suggest there is scope to engineer better systems for transferring sick infants, thus potentially improving their outcomes. PMID:28056712

  2. Neonatal head and torso vibration exposure during inter-hospital transfer.

    PubMed

    Blaxter, Laurence; Yeo, Mildrid; McNally, Donal; Crowe, John; Henry, Caroline; Hill, Sarah; Mansfield, Neil; Leslie, Andrew; Sharkey, Don

    2017-02-01

    Inter-hospital transport of premature infants is increasingly common, given the centralisation of neonatal intensive care. However, it is known to be associated with anomalously increased morbidity, most notably brain injury, and with increased mortality from multifactorial causes. Surprisingly, there have been relatively few previous studies investigating the levels of mechanical shock and vibration hazard present during this vehicular transport pathway. Using a custom inertial datalogger, and analysis software, we quantify vibration and linear head acceleration. Mounting multiple inertial sensing units on the forehead and torso of neonatal patients and a preterm manikin, and on the chassis of transport incubators over the duration of inter-site transfers, we find that the resonant frequency of the mattress and harness system currently used to secure neonates inside incubators is [Formula: see text]. This couples to vehicle chassis vibration, increasing vibration exposure to the neonate. The vibration exposure per journey (A(8) using the ISO 2631 standard) was at least 20% of the action point value of current European Union regulations over all 12 neonatal transports studied, reaching 70% in two cases. Direct injury risk from linear head acceleration (HIC15) was negligible. Although the overall hazard was similar, vibration isolation differed substantially between sponge and air mattresses, with a manikin. Using a Global Positioning System datalogger alongside inertial sensors, vibration increased with vehicle speed only above 60 km/h. These preliminary findings suggest there is scope to engineer better systems for transferring sick infants, thus potentially improving their outcomes.

  3. Exploring the effects of seated whole body vibration exposure on repetitive asymmetric lifting tasks.

    PubMed

    Mehta, Jay P; Lavender, Steven A; Jagacinski, Richard J; Sommerich, Carolyn M

    2015-01-01

    This study investigated changes in the physiological and behavioral responses to repetitive asymmetric lifting activity after exposure to whole body vibrations. Seventeen healthy volunteers repeatedly lifted a box (15% of lifter's capacity) positioned in front of them at ankle level to a location on their left side at waist level at the rate of 10 lifts/min for a period of 60 minutes. Prior to lifting, participants were seated on a vibrating platform for 60 minutes; in one of the two sessions the platform did not vibrate. Overall, the physiological responses assessed using near-infrared spectroscopy signals for the erector spinae muscles decreased significantly over time during the seating and the lifting tasks (p < 0.001). During repetitive asymmetric lifting, behavioral changes included increases in peak forward bending motion, twisting movement, and three-dimensional movement velocities of the spine. The lateral bending movement of the spine and the duration of each lift decreased significantly over the 60 minutes of repetitive lifting. With exposure to whole body vibration, participants twisted farther (p = 0.046) and twisted faster (p = 0.025). These behavioral changes would suggest an increase in back injury risk when repetitive lifting tasks are preceded by whole body vibration exposure.

  4. Multi-body dynamics modelling of seated human body under exposure to whole-body vibration.

    PubMed

    Yoshimura, Takuya; Nakai, Kazuma; Tamaoki, Gen

    2005-07-01

    In vehicle systems occupational drivers might expose themselves to vibration for a long time. This may cause illness of the spine such as chronic lumbago or low back pain. Therefore, it is necessary to evaluate the influence of vibration to the spinal column and to make up appropriate guidelines or counter plans. In ISO2631-1 or ISO2631-5 assessment of vibration effects to human in the view of adverse-health effect was already presented. However, it is necessary to carry out further research to understand the effect of vibration to human body to examine their validity and to prepare for the future revision. This paper shows the detail measurement of human response to vibration, and the modelling of the seated human body for the assessment of the vibration risk. The vibration transmissibilities from the seat surface to the spinal column and to the head are measured during the exposure to vertical excitation. The modal paramters of seated subject are extracted in order to understand the dominant natural modes. For the evaluation of adverse-health effect the multi-body modelling of the spinal column is introduced. A simplified model having 10 DOFs is counstructed so that the transmissibilities of the model fit to those of experiment. The transient response analysis is illustrated when a half-sine input is applied. The relative displacements of vertebrae are evaluated, which can be a basis for the assessment of vibration risk. It is suggested that the multi-body dynamic model is used to evaluate the vibration effect to the spinal column for seated subjects.

  5. Exposure to whole-body vibration in open-cast mines in the Barents region

    PubMed Central

    Burström, Lage; Hyvärinen, Ville; Johnsen, Magnar; Pettersson, Hans

    2016-01-01

    Objectives We aimed to measure and evaluate whole-body vibration (WBV) exposure among drivers of mining vehicles in the Barents region. Study design In the period from November 2012 to August 2014, this cross-sectional study was carried out at 3 mines in Finland, Norway and Sweden as part of the MineHealth project. Methods Measurements of WBV were conducted on the surface of the driver's seat during normal work in accordance with international standards. Personal data on daily exposure times were collected by a questionnaire. Results Measurements were conducted on 95 different mining vehicles both as root mean square (RMS) value and vibration dose value (VDV) representing different manufacturers, models and capacities. Of the 453 miners who answered the questionnaire, 232 indicated that they were exposed to WBV during their working day. The results show that the mean daily exposure time varies between 1.9 and 6.7 h for different vehicles. The calculated mean A(8) could be found in an interval between 0.2 and 1.0 m/s2 and the corresponding 8-h VDV fell between 7 and 17 m/s1.75. Conclusions Exposure to WBV among operators of mining vehicles may be a serious health and safety problem in the mines studied. The employers ought, therefore, take active steps to reduce exposure in accordance with the European vibration directive. Moreover, since some groups of drivers are exposed to vibration that is close to or exceeds the exposure limit values, the employer should take immediate action to reduce exposure below these values. PMID:26864832

  6. Tool-specific performance of vibration-reducing gloves for attenuating palm-transmitted vibrations in three orthogonal directions

    PubMed Central

    Dong, Ren G.; Welcome, Daniel E.; Peterson, Donald R.; Xu, Xueyan S.; McDowell, Thomas W.; Warren, Christopher; Asaki, Takafumi; Kudernatsch, Simon; Brammer, Antony

    2015-01-01

    Vibration-reducing (VR) gloves have been increasingly used to help reduce vibration exposure, but it remains unclear how effective these gloves are. The purpose of this study was to estimate tool-specific performances of VR gloves for reducing the vibrations transmitted to the palm of the hand in three orthogonal directions (3-D) in an attempt to assess glove effectiveness and aid in the appropriate selection of these gloves. Four typical VR gloves were considered in this study, two of which can be classified as anti-vibration (AV) gloves according to the current AV glove test standard. The average transmissibility spectrum of each glove in each direction was synthesized based on spectra measured in this study and other spectra collected from reported studies. More than seventy vibration spectra of various tools or machines were considered in the estimations, which were also measured in this study or collected from reported studies. The glove performance assessments were based on the percent reduction of frequency-weighted acceleration as is required in the current standard for assessing the risk of vibration exposures. The estimated tool-specific vibration reductions of the gloves indicate that the VR gloves could slightly reduce (<5%) or marginally amplify (<10%) the vibrations generated from low-frequency (<25 Hz) tools or those vibrating primarily along the axis of the tool handle. With other tools, the VR gloves could reduce palm-transmitted vibrations in the range of 5%–58%, primarily depending on the specific tool and its vibration spectra in the three directions. The two AV gloves were not more effective than the other gloves with some of the tools considered in this study. The implications of the results are discussed. Relevance to industry Hand-transmitted vibration exposure may cause hand-arm vibration syndrome. Vibration-reducing gloves are considered as an alternative approach to reduce the vibration exposure. This study provides useful information

  7. Risk exposure to vibration and noise in the use of agricultural track-laying tractors.

    PubMed

    Vallone, Mariangela; Bono, Filippa; Quendler, Elisabeth; Febo, Pierluigi; Catania, Pietro

    2016-12-23

    Human exposure to mechanical vibration may represent a significant risk factor for exposed workers in the agricultural sector. Also, noise in agriculture is one of the risk factors to be taken into account in the evaluation of workers' health and safety. One of the major sources of discomfort for the workers operating a tractors is the noise to which they are exposed during work. The aim of this study was to evaluate the risk of exposure to whole-body vibration for the operator driving track-laying tractors in vineyard orchard and the noise level. The experimental tests were performed with six different track-laying tractors coupled with the same rototilling machine. The results showed that the vibration values of track-laying tractors coupled to rototilling machine, referred to the 8-hour working day, were always higher than 0.5 m s(-2), the daily exposure action value established by Directive 2002/44/EC of the European Parliament. The daily noise exposure levels always exceeded the exposure limit value of 87 dB(A) established by Directive 2003/10/EC of the European Parliament. The ANOVA repeated measures model showed that the factor 'site', namely, the soil characteristics, did not influence the vibration level on the X and Y-axes of the tractors measured, regardless of their age. In the Z-axis, the vibration level was enhanced as the soil structure increased. As tractor age increased, the influence of soil characteristics was less important. In term of the age of the tractor and the number of hours worked, it was possible to identify three risk classes, which were up to 3,000 hours worked and offered a low risk; from 3,000 - 6,000 hours worked with a medium risk, and over 6,000 hours with a high risk level.

  8. Measurement, evaluation, and assessment of peripheral neurological disorders caused by hand-transmitted vibration.

    PubMed

    Griffin, Michael J

    2008-04-01

    Regular exposure to hand-transmitted vibration can result in symptoms and signs of peripheral vascular, neurological and other disorders collectively known as the hand-arm vibration syndrome. The measurement of the effects of hand-transmitted vibration involves converting the evidence of disorder (symptoms and signs) into information that can be stored. Evaluation requires the use of scales on which to indicate the severity of the various symptoms and signs. Assessment involves a judgement of severity relative to a criterion, usually for a specific purpose (e.g. to decide on removal from work or compensation). The measurement and evaluation of symptoms and signs is necessary when monitoring patient health and when performing epidemiological studies for research. The assessment of the severity of the hand-arm vibration syndrome is currently performed with staging systems, but the criteria are not clear and not related to defined methods for measuring or evaluating the symptoms and signs. Recognizing that similar symptoms can occur without injury from occupational exposures to hand-transmitted vibration, this paper attempts to define significant peripheral neurological symptoms caused by hand-transmitted vibration (i.e. 'unusual symptoms') and how these symptoms and related signs may be measured. Scales for evaluating the symptoms (e.g. their extent) and the related signs (e.g. their probability relative to the probability of the sign being present in persons not exposed to vibration) are defined. A method of relating unusual symptoms to both the signs of disorder and the pattern of vibration exposure is illustrated. Assessments of severity will vary according to the reasons for assessing the health effects of vibration, and will depend on local practice and convenience, but a way of combining evaluations of symptoms and signs is demonstrated in a staging system. Although inherently complex, the methods may assist the collection of data required to improve

  9. Feasibility of caregiver-directed home-based hand-arm bimanual intensive training: A brief report

    PubMed Central

    Ferre, Claudio L.; Brandão, Marina B.; Hung, Ya-Ching; Carmel, Jason B.; Gordon, Andrew M.

    2015-01-01

    Objective To determine feasibility of a home-based, intensive bimanual intervention with children with unilateral spastic cerebral palsy. Methods Eleven children (aged 29–54 months) received 90 hours of home hand-arm bimanual intensive therapy (H-HABIT) provided by their trained caregivers. Parenting stress levels and compliance were monitored using the Parenting Stress Index and daily logs. Quality of bimanual performance and changes in performance/satisfaction of functional goals were assessed using the Assisting Hand Assessment (AHA) and Canadian Occupational Performance Measure (COPM), respectively, at two pretreatment baseline sessions and two posttreatment sessions (immediate and six months). Results Ten children completed the study with caregivers completing on average 85.6 hours of H-HABIT. Daily logs indicated high caregiver compliance. Stress levels remained stable across the intervention. Children demonstrated significant improvements in the AHA and COPM. Conclusion H-HABIT is a feasible intervention for improving hand function and merits further investigation in a randomized-control trial. PMID:25180530

  10. Back pain and exposure to whole body vibration in helicopter pilots.

    PubMed

    Bongers, P M; Hulshof, C T; Dijkstra, L; Boshuizen, H C; Groenhout, H J; Valken, E

    1990-08-01

    In a questionnaire survey the prevalence of back pain in 163 helicopter pilots was compared to that in a control group of 297 non-flying air force officers who underwent the same pre-employment medical examination. Since pilots document their hours of flight in a personal flight log, an accurate estimate of the duration of exposure could be made. In addition, vibration levels of the helicopters were measured and an accumulative vibration dose was calculated for each pilot. 'Transient' back pain of a short duration was more frequent amongst the pilots compared to the control group, and the prevalence of 'chronic' back pain of a persistent nature was also higher amongst the helicopter pilots. Transient back pain seemed to be most strongly related to the average hours of flight per day, whereas chronic back pain was more closely related to total hours of flight or the accumulative vibration dose. A significant higher prevalence of this chronic back pain was observed only after 2000 hours of flight or a vibration dose of 400 m2h/s4. The observed health effects may be due to vibration or constrained posture but are most likely due to concomitant exposure to both factors.

  11. Measurement of vibrations and evaluation of protective gloves for work with hand-held power tools in industrial settings.

    PubMed

    Milosevic, Matija; McConville, Kristiina M V

    2007-01-01

    This study considers the use of hand-held power tools and the exposure of a large number of employees to hand-arm vibrations in work settings as well as the harmful effects that such exposure has on health and safety. The major objective of the project was the development of a diagnostic device for the detection and monitoring of the vibrations produced during work activities in a natural working environment and to analyze the impact of the vibrations on workers during different work operations. The developed device for vibration monitoring is based on the latest generation MEMS tri-axis accelerometer with a wireless link with the PC station. This study demonstrates the use of the device in evaluating the level of protection that gloves provide concerning the level of vibrations during work operations. The initial evaluation shows that the proposed solution provides an effective multifunctional, low-cost diagnostic device for vibration measurement in natural work settings. Preliminary results indicate that the developed device could be used for health and safety studies, evaluation of protective equipment, and ongoing monitoring in a natural working environment, and in this way may lead to more effective prevention and management of the risks associated with exposure to workplace vibrations.

  12. Acute exposure to vibration is an apoptosis-inducing stimulus in the vocal fold epithelium.

    PubMed

    Novaleski, Carolyn K; Kimball, Emily E; Mizuta, Masanobu; Rousseau, Bernard

    2016-10-01

    Clinical voice disorders pose significant communication-related challenges to patients. The purpose of this study was to quantify the rate of apoptosis and tumor necrosis factor-alpha (TNF-α) signaling in vocal fold epithelial cells in response to increasing time-doses and cycle-doses of vibration. 20 New Zealand white breeder rabbits were randomized to three groups of time-doses of vibration exposure (30, 60, 120min) or a control group (120min of vocal fold adduction and abduction). Estimated cycle-doses of vocal fold vibration were extrapolated based on mean fundamental frequency. Laryngeal tissue specimens were evaluated for apoptosis and gene transcript and protein levels of TNF-α. Results revealed that terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was significantly higher after 120min of vibration compared to the control. Transmission electron microscopy (TEM) revealed no significant effect of time-dose on the mean area of epithelial cell nuclei. Extrapolated cycle-doses of vibration exposure were closely related to experimental time-dose conditions, although no significant correlations were observed with TUNEL staining or mean area of epithelial cell nuclei. TUNEL staining was positively correlated with TNF-α protein expression. Our findings suggest that apoptosis can be induced in the vocal fold epithelium after 120min of modal intensity phonation. In contrast, shorter durations of vibration exposure do not result in apoptosis signaling. However, morphological features of apoptosis are not observed using TEM. Future studies are necessary to examine the contribution of abnormal apoptosis to vocal fold diseases.

  13. Using consumer electronic devices to estimate whole-body vibration exposure.

    PubMed

    Wolfgang, Rebecca; Burgess-Limerick, Robin

    2014-01-01

    The cost and complexity of commercially available devices for measuring whole-body vibration is a barrier to the systematic collection of the information required to manage this hazard at workplaces. The potential for a consumer electronic device to be used to estimate whole-body vibration was assessed by use of an accelerometer calibrator, and by collecting 42 simultaneous pairs of measurements from a fifth-generation iPod Touch and one of two gold standard vibration measurement devices (Svantech SV111 [Svantech, Warsaw, Poland] or Brüel & Kjær 4447 [Brüel & Kjær Sound & Vibration Measurement A/S, Nærum, Denmark]) while driving light vehicles on a variety of different roadway surfaces. While sampling rate limitations make the accelerometer data collected from the iPod Touch unsuitable for frequency analysis, the vibration amplitudes recorded are sufficiently accurate (errors less than 0.1 m/s(2)) to assist workplaces manage whole-body vibration exposures.

  14. A Proposed Theory on Biodynamic Frequency Weighting for Hand-Transmitted Vibration Exposure

    PubMed Central

    DONG, Ren G.; WELCOME, Daniel E.; MCDOWELL, Thomas W.; XU, Xueyan S.; KRAJNAK, Kristine; WU, John Z.

    2015-01-01

    The objective of this study is to propose a theory on the biodynamic frequency weighting for studying hand-transmitted vibration exposures and vibration-induced effects. We hypothesize that the development of a vibration effect is the result of two consecutive but synergistic processes: biodynamic responses to input vibration and biological responses to the biomechanical stimuli resulting from the biodynamic responses. Hence, we further hypothesize that the frequency-dependency (W) of the effect generally includes two components: a biodynamic frequency weighting (W1) and a biological frequency weighting (W2), or W=W1•W2. These hypotheses are consistent with the stress and strain analysis theory and methods widely used in structural dynamics and biomechanics. The factorization may make it easier to study the complex frequency-dependency using different approaches: the biodynamic frequency weighting depends on the passive physical response of the system to vibration, and it can thus be determined by examining the biodynamic response of the system using various engineering methods; on the other hand, the biological frequency weighting depends on the biological mechanisms of the effects, and it can be investigated by studying the psychophysical, physiological, and pathological responses. To help test these hypotheses, this study reviewed and further developed methods to derive the finger biodynamic frequency weighting. As a result, preliminary finger biodynamic frequency weightings are proposed. The implications of the proposed theory and the preliminary biodynamic frequency weightings are also discussed. PMID:23060254

  15. Typical whole body vibration exposure magnitudes encountered in the open pit mining industry.

    PubMed

    Howard, Bryan; Sesek, Richard; Bloswick, Don

    2009-01-01

    According to recent research, a causal link has been established between occupational exposure to whole body vibration and an increased occurrence of low back pain. To aid in the further development of an in-house health and safety program for a large open pit mining facility interested in reducing back pain among its operators, whole body vibration magnitudes were characterized for a range of jobs. Specifically, thirty-five individual jobs from five different areas across the facility were evaluated for tri-axial acceleration levels during normal operating conditions. Tri-axial acceleration magnitudes were categorized into thirteen job groups. Job groups were ranked according to exposure and compared to the ISO 2631-1 standard for health risk assessment. Three of the thirteen job groups produced tri-axial acceleration magnitudes below the ISO 2631-1 low/moderate health caution limit for a twelve hour exposure. Six of the thirteen job groups produced exposures within the moderate health risk range. Four job groups were found to subject operators to WBV acceleration magnitudes above the moderate/high health caution limit.

  16. Quantitative neurosensory findings, symptoms and signs in young vibration exposed workers

    PubMed Central

    2013-01-01

    Background Long-term exposure to hand-held vibrating tools may cause the hand arm vibration syndrome (HAVS) including vibration induced white fingers and sensorineural symptoms. The aim was to study early neurosensory effects by quantitative vibrotactile and monofilament tests in young workers with hand-held vibration exposure. Methods This cross-sectional study consisted of 142 young, male machine shop and construction workers with hand-held exposure to vibrating tools. They were compared with 41 non-vibration exposed subjects of the same age-group. All participants passed a structured interview, answered several questionnaires and had a physical examination including the determination of vibrotactile perception thresholds (VPTs) at two frequencies (31.5 and 125 Hz) and Semmes Weinstein’s Monofilament test. Results In the vibration exposed group 8% of the workers reported episodes of tingling sensations and 10% numbness in their fingers. Approximately 5–10% of the exposed population displayed abnormal results on monofilament tests. The vibrotactile testing showed significantly increased VPTs for 125 Hz in dig II bilaterally (right hand, p = 0.01; left hand, p = 0.024) in the vibration exposed group. A multiple regression analysis (VPT - dependent variable; age, height, examiner and five different vibration dose calculations – predictor variables) in dig II bilaterally showed rather low R2-values. None of the explanatory variables including five separately calculated vibration doses were included in the models, neither for the total vibration exposed group, nor for the highest exposed quartile. A logistic multiple regression analysis (result of monofilament testing - dependent variable; age, height, examiner and five vibration dose calculations – predictor variables) of the results of monofilament testing in dig II bilaterally gave a similar outcome. None of the independent variables including five calculated vibration doses were included in the

  17. Characterization of vibration and noise exposure in Canadian Forces armored vehicles

    NASA Astrophysics Data System (ADS)

    Nakashima, Ann M.; Borland, Matthew J.; Abel, Sharon M.

    2005-09-01

    A study to characterize the vibration and noise exposure in several Canadian Forces (CF) armored vehicles is in progress. Measurements of whole-body vibration and ambient noise levels are being made in the LAV III, Bison, Coyote, and M113 vehicles at three different positions: driver, crew commander, and passenger bench (or navigator seat in the case of the Coyote). The measurements are being made while the vehicles are idling, driven over rough terrain, and driven at a high speed on paved highways. There are several standards that provide guidance on the measurement and assessment of whole-body vibration, but they are difficult to implement in practice, particularly in adverse environments. The whole-body vibration measurements in this study are particularly difficult to interpret in the case of the crew commander, who often stands on the seat, and the passenger, who is seated but unrestrained by a seatbelt. The preliminary results-suggest, that according to the International Organization for Standardization guidelines (ISO 2631-1:1997), there may be potential health risks for the driver and passenger after driving on rough terrain for less than 10 min. Noise levels were as high as 100 dBA during high-speed highway driving.

  18. Effect of Seating on Exposures to Whole-Body Vibration in Vehicles

    NASA Astrophysics Data System (ADS)

    PADDAN, G. S.; GRIFFIN, M. J.

    2002-05-01

    The vibration isolation efficiency of seating has been evaluated in 100 work vehicles in 14 categories (cars, vans, lift trucks, lorries, tractors, buses, dumpers, excavators, helicopters, armoured vehicles, mobile cranes, grass rollers, mowers and milk floats). Seat isolation efficiency, expressed by the SEAT value, was determined for all seats (67 conventional seats and 33 suspension seats) from the vertical acceleration measured on the floors and on the seats of the vehicles.For most categories of vehicle, the average SEAT value was less than 100%, indicating that the average seat provided some attenuation of vibration. However, there were large variations in SEAT values between vehicles within categories. Two alternative vibration frequency weightings (Wb from BS 6841, 1987; Wk from ISO 2631, 1997) yielded SEAT values that differed by less than 6%. Overall, the SEAT values determined by two alternative methods (the ratio of r.m.s. values and the ratio of vibration dose values) differed by less than 4·5% when using weighting Wb, although larger differences may be expected in some situations. The median SEAT value for the suspension seats was 84·6%; the median SEAT value for the conventional seats was 86·9% (based on weighting Wb and the ratio of r.m.s. values).Predicted SEAT values were obtained assuming that each seat could be interchanged between vehicles without altering its transmissibility. The calculations suggest that 94% of the vehicles investigated might benefit from changing the current seat to a seat from one of the other vehicles investigated. Although the predictions are based on assumptions that will not always apply, it is concluded that the severity of whole-body vibration exposures in many work environments can be lessened by improvements to seating dynamics.

  19. Long-term daily vibration exposure alters current perception threshold (CPT) sensitivity and myelinated axons in a rat-tail model of vibration-induced injury.

    PubMed

    Krajnak, Kristine; Raju, Sandya G; Miller, G Roger; Johnson, Claud; Waugh, Stacey; Kashon, Michael L; Riley, Danny A

    2016-01-01

    Repeated exposure to hand-transmitted vibration through the use of powered hand tools may result in pain and progressive reductions in tactile sensitivity. The goal of the present study was to use an established animal model of vibration-induced injury to characterize changes in sensory nerve function and cellular mechanisms associated with these alterations. Sensory nerve function was assessed weekly using the current perception threshold test and tail-flick analgesia test in male Sprague-Dawley rats exposed to 28 d of tail vibration. After 28 d of exposure, Aβ fiber sensitivity was reduced. This reduction in sensitivity was partly attributed to structural disruption of myelin. In addition, the decrease in sensitivity was also associated with a reduction in myelin basic protein and 2',3'- cyclic nucleotide phosphodiasterase (CNPase) staining in tail nerves, and an increase in circulating calcitonin gene-related peptide (CGRP) concentrations. Changes in Aβ fiber sensitivity and CGRP concentrations may serve as early markers of vibration-induced injury in peripheral nerves. It is conceivable that these markers may be utilized to monitor sensorineural alterations in workers exposed to vibration to potentially prevent additional injury.

  20. Whole Body Vibration at Different Exposure Frequencies: Infrared Thermography and Physiological Effects

    PubMed Central

    Sonza, Anelise; Robinson, Caroline C.; Achaval, Matilde; Zaro, Milton A.

    2015-01-01

    The aim of this study was to investigate the effects of whole body vibration (WBV) on physiological parameters, cutaneous temperature, tactile sensitivity, and balance. Twenty-four healthy adults (25.3 ± 2.6 years) participated in four WBV sessions. They spent 15 minutes on a vibration platform in the vertical mode at four different frequencies (31, 35, 40, and 44 Hz) with 1 mm of amplitude. All variables were measured before and after WBV exposure. Pressure sensation in five anatomical regions and both feet was determined using Von Frey monofilaments. Postural sway was measured using a force plate. Cutaneous temperature was obtained with an infrared camera. WBV influences the discharge of the skin touch-pressure receptors, decreasing sensitivity at all measured frequencies and foot regions (P ≤ 0.05). Regarding balance, no differences were found after 20 minutes of WBV at frequencies of 31 and 35 Hz. At 40 and 44 Hz, participants showed higher anterior-posterior center of pressure (COP) velocity and length. The cutaneous temperature of the lower limbs decreased during and 10 minutes after WBV. WBV decreases touch-pressure sensitivity at all measured frequencies 10 min after exposure. This may be related to the impaired balance at higher frequencies since these variables have a role in maintaining postural stability. Vasoconstriction might explain the decreased lower limb temperature. PMID:25664338

  1. Elbow joint disorders in relation to vibration exposure and age in stone quarry workers.

    PubMed

    Sakakibara, H; Suzuki, H; Momoi, Y; Yamada, S

    1993-01-01

    Elbow joint disorders were studied in relation to vibration exposure and age in 74 male stone quarry workers who operated mainly chipping hammers and sometimes rock drills. They were examined for range of active motion in elbow extension and flexion, and by means of radiographs of the elbow joint. Effects of age and vibratory tool operation on the elbow joint were statistically estimated using multiple regression analysis. In the analysis of all subjects, including those aged over 60 years, age was significantly related to the range of motion in extension and to radiographic changes in both elbows, and the duration of vibratory tool operation was associated with the range of right elbow flexion. Among subjects under the age of 60 years, duration of vibratory tool operation showed a significant dose-effect relationship to the range of flexion and radiographic changes in the right elbow, but there was no significant relationship with age. The present results suggest that the operation of chipping hammers and rock drills contributes to elbow joint disorders or osteoarthrosis, even when the effect of age is taken into account. Besides vibration exposure, it may be necessary to consider various loads on the elbow joint such as firmly grasping and pressing the tool against stones with the arm bent at about 90 degrees, and carrying stones.

  2. The physiological effects of simultaneous exposures to heat and vibration. Ph.D. Thesis - California Univ., Berkeley

    NASA Technical Reports Server (NTRS)

    Spaul, W. A.

    1983-01-01

    Determination of the effects of exposure to vibration on the body's ability to handle heat stress, and, if so, identification of the specific vibration parameters (frequency and intensity) for both whole-body (wbv) and segmental-body vibration (sbv) that would have the most detrimental effect on the body's ability to maintain thermal homeostasis were studied. Rectal and skin temperatures, heart rates, localized sweat rates, arm-segment blood perfusion rates, respiration rates, oxygen uptakes, and respiratory exchange ratios were measured in six men (22 to 33 yr) during simultaneous exposures to heat and vibration - either wbv or sbv, and during a heated 50 min recovery period. The heat conditions were T (sub db) = 43.5 + or - 0.5 C (mean + or S.E.M.), and RH = 20 + or - 4%. All vibration exposures were divided into two exposure conditions - identical frequencies but at a high intensity (HI) and a low intensity (LI) level. The HI wbv exposure was for 25 min/day at 5 Hz, 0.37 g-rms; 10 Hz, 0.46 g-rms; 16 Hz, 0.72 g-rms; 30 Hz, 1.40 g-rms; 80 Hz, 3.70 g-rms. The LI wbv exposure was for 2.5 hr/day at the same frequencies but at the following accelerations: 0.14 g-rms; 0.18 g-rms; 0.28 g-rms; 0.55 g-rms; 1.44 g-rms. During the sbv the subject stood and grasped a vibrating, in the Z-axis, hand grip with both hands.

  3. The apparent mass and mechanical impedance of the hand and the transmission of vibration to the fingers, hand, and arm

    NASA Astrophysics Data System (ADS)

    Concettoni, Enrico; Griffin, Michael

    2009-08-01

    Although hand-transmitted vibration causes injury and disease, most often evident in the fingers, the biodynamic responses of the fingers, hand, and arm are not yet well understood. A method of investigating the motion of the entire finger-hand-arm system, based on the simultaneous measurement of the biodynamic response at the driving point and the transmissibility to many points on the finger-hand-arm system, is illustrated. Fourteen male subjects participated in an experiment in which they pushed down on a vertically vibrating metal plate with their right forearm pronated and their elbow bent at 90°. The apparent mass and mechanical impedance of the finger-hand-arm system were measured for each of seven different contact conditions between the plate and the fingers and hand. Simultaneously, the vibration of the fingers, hand, and arm was measured at 41 locations using a scanning laser Doppler vibrometer. Transmissibilities showed how the vibration was transmitted along the arm and allowed the construction of spectral operating deflection shapes showing the vibration pattern of the fingers, hand, and arm for each of the seven contact conditions. The vibration patterns at critical frequencies for each contact condition have been used to explain features in the driving point biodynamic responses and the vibration behaviour of the hand-arm system. Spectral operating deflection shapes for the upper limb assist the interpretation of driving point biodynamic responses and help to advance understanding required to predict, explain, and control the various effects of hand-transmitted vibration.

  4. Frequency weighting for vibration-induced white finger compatible with exposure-response models.

    PubMed

    Brammer, Anthony J; Pitts, Paul M

    2012-01-01

    An analysis has been performed to derive a frequency weighting for the development of vibration-induced white finger (VWF). It employs a model to compare health risks for pairs of population groups that are selected to have similar health outcomes from operating power tools or machines with markedly different acceleration spectra (rock drills, chain saws, pavement breakers and motorcycles). The model defines the Relative Risk, RR(f(trial)), which is constructed from the ratio of daily exposures and includes a trial frequency weighting that is applied to the acceleration spectra. The trial frequency weighting consists of a frequency-independent primary frequency range, and subordinate frequency ranges in which the response to vibration diminishes, with cut-off frequencies that are changed to influence the magnitude of RR(f(trial)). The frequency weighting so derived when RR(f(trial)) = 1 is similar to those obtained by other methods (W(hf), W(hT)). It consists of a frequency independent range from about 25 Hz to 500 Hz (-3 dB frequencies), with an amplitude cut-off rate of 12 dB/octave below 25 Hz and above 500 Hz. The range is compatible with studies of vasoconstriction in persons with VWF. The results provide further evidence that the ISO frequency weighting may be inappropriate for assessing the risk of developing VWF.

  5. Vibrational monitor of early demineralization in tooth enamel after in vitro exposure to phosphoridic liquid

    NASA Astrophysics Data System (ADS)

    Pezzotti, Giuseppe; Adachi, Tetsuya; Gasparutti, Isabella; Vincini, Giulio; Zhu, Wenliang; Boffelli, Marco; Rondinella, Alfredo; Marin, Elia; Ichioka, Hiroaki; Yamamoto, Toshiro; Marunaka, Yoshinori; Kanamura, Narisato

    2017-02-01

    The Raman spectroscopic method has been applied to quantitatively assess the in vitro degree of demineralization in healthy human teeth. Based on previous evaluations of Raman selection rules (empowered by an orientation distribution function (ODF) statistical algorithm) and on a newly proposed analysis of phonon density of states (PDOS) for selected vibrational modes of the hexagonal structure of hydroxyapatite, a molecular-scale evaluation of the demineralization process upon in vitro exposure to a highly acidic beverage (i.e., CocaCola™ Classic, pH = 2.5) could be obtained. The Raman method proved quite sensitive and spectroscopic features could be directly related to an increase in off-stoichiometry of the enamel surface structure since the very early stage of the demineralization process (i.e., when yet invisible to other conventional analytical techniques). The proposed Raman spectroscopic algorithm might possess some generality for caries risk assessment, allowing a prompt non-contact diagnostic practice in dentistry.

  6. Assessment of whole-body vibration exposures and influencing factors for quarry haul truck drivers and loader operators

    PubMed Central

    Mayton, Alan G.; Jobes, Christopher C.; Gallagher, Sean

    2015-01-01

    To further assess vibration exposure on haul trucks (HTs) and front-end wheel loaders (FELs), follow-up investigations were conducted at two US crushed stone operations. The purpose was to: 1) evaluate factors such as load/no-load conditions, speed, load capacity, vehicle age, and seat transmissibility relative to vibration exposure; 2) compare exposure levels with existing ISO/ANSI and EUGPG guidelines. Increasing HT speed increased recorded vibration at the chassis and seat as expected. Neither vehicle load nor vehicle speed increased transmissibility. Increasing HT size and age did show transmissibility decreasing. HT dominant-axis wRMS levels (most often the y-axis, lateral or side-to-side direction) were predominantly within the health guidance caution zone (HGCZ). However, several instances showed vibration dose value (VDV) above the exposure limit value (ELV) for the ISO/ANSI guidelines. VDV levels (all dominant x-axis or fore-aft) were within and above the HGCZ for the EUGPG and above the HGCZ for ISO/ANSI guidelines. PMID:26361493

  7. Bioresponses in men after repeated exposures to single and simultaneous sinusoidal or stochastic whole body vibrations of varying bandwidths and noise.

    PubMed

    Manninen, O

    1986-01-01

    This study deals with the changes in temporary hearing threshold (TTS2), upright body posture sway amplitudes in the X and Y direction, heart rate (HR), R-wave amplitude (RWA), systolic (SBP) and diastolic (DBP) blood pressure, pulse pressure (PP) and the index characterizing haemodynamic activity (HDI), when the subjects were exposed to noise alone, to vibrations alone or to simultaneous noise and vibrations. The experiments were carried out in an exposure chamber and the number of exposure combinations was 12. Seven healthy, male students volunteered as subjects, making a total number of 84 experiments. For each person the experiment consisted of a 30-min control period, five consecutive 16-min exposures, between which there was a 4-min measuring interval, and a 15-min recovery period. The noise was broadband (bandwidth 0.2-16.0 kHz) A-weighted (white) noise. The noise categories were: (1) no noise and (2) noise with an intensity of 90 dBA. The categories of low-frequency whole body vibration in the direction of the Z-axis were: (1) vibration within the range 4.4-5.6 Hz, (2) vibration within the range 2.8-5.6 Hz, (3) vibration within the range 2.8-11.2 Hz, (4) vibration within the range 1.4-11.2 Hz and (5) sinusoidal vibration with a frequency of 5 Hz. The (rms) acceleration in all the vibration models was 2.12 m/s2. The results showed that the TTS2 values at 4 and 6 kHz increased as a result of simultaneous exposure to noise and vibration significantly more than as a result of exposure to noise alone. The TTS2 values increased more intensely during the first 16-min exposure. The means of the variances in the amplitudes of body upright posture sway changed not only after exposures to vibration alone, but also after exposure to noise alone. The means of the sway variances in the X and Y directions at 0.1 Hz and within the range 0.06 to 2.00 Hz increased only when the vibration in the noise-vibration combination was sinusoidal. The changes in the heart rate, R

  8. Terminal distribution of the corticospinal projection from the hand/arm region of the primary motor cortex to the cervical enlargement in rhesus monkey.

    PubMed

    Morecraft, Robert J; Ge, Jizhi; Stilwell-Morecraft, Kimberly S; McNeal, David W; Pizzimenti, Marc A; Darling, Warren G

    2013-12-15

    To further our understanding of the corticospinal projection (CSP) from the hand/arm representation of the primary motor cortex (M1), high-resolution anterograde tracing methodology and stereology were used to investigate the terminal distribution of this connection at spinal levels C5 to T1. The highest number of labeled terminal boutons occurred contralaterally (98%) with few ipsilaterally (2%). Contralaterally, labeled boutons were located within laminae I-X, with the densest distribution found in lamina VII and, to a lesser extent, laminae IX and VI. Fewer terminals were found in other contralateral laminae. Within lamina VII, terminal boutons were most prominent in the dorsomedial, dorsolateral, and ventrolateral subsectors. Within lamina IX, the heaviest terminal labeling was distributed dorsally. Ipsilaterally, boutons were found in laminae V-X. The most pronounced distribution occurred in the dorsomedial and ventromedial sectors of lamina VII and fewer labeled boutons were located in other ipsilateral laminae. Segmentally, contralateral lamina VII labeling was highest at levels C5-C7. In contrast, lamina IX labeling was highest at C7-T1 and more widely dispersed among the quadrants at C8-T1. Our findings suggest dominant contralateral influence of the M1 hand/arm CSP, a contralateral innervation pattern in lamina VII supporting Kuypers (1982) conceptual framework of a "lateral motor system," and a projection to lamina IX indicating significant influence on motoneurons innervating flexors acting on the shoulder and elbow rostrally (C5-C7), along with flexors, extensors, abductors and adductors acting on the digits, hand and wrist caudally (C8-T1).

  9. An optimal sampling approach to modelling whole-body vibration exposure in all-terrain vehicle driving.

    PubMed

    Lü, Xiaoshu; Takala, Esa-Pekka; Toppila, Esko; Marjanen, Ykä; Kaila-Kangas, Leena; Lu, Tao

    2016-12-01

    Exposure to whole-body vibration (WBV) presents an occupational health risk and several safety standards obligate to measure WBV. The high cost of direct measurements in large epidemiological studies raises the question of the optimal sampling for estimating WBV exposures given by a large variation in exposure levels in real worksites. This paper presents a new approach to addressing this problem. A daily exposure to WBV was recorded for 9-24 days among 48 all-terrain vehicle drivers. Four data-sets based on root mean squared recordings were obtained from the measurement. The data were modelled using semi-variogram with spectrum analysis and the optimal sampling scheme was derived. The optimum sampling period was 140 min apart. The result was verified and validated in terms of its accuracy and statistical power. Recordings of two to three hours are probably needed to get a sufficiently unbiased daily WBV exposure estimate in real worksites. The developed model is general enough that is applicable to other cumulative exposures or biosignals. Practitioner Summary: Exposure to whole-body vibration (WBV) presents an occupational health risk and safety standards obligate to measure WBV. However, direct measurements can be expensive. This paper presents a new approach to addressing this problem. The developed model is general enough that is applicable to other cumulative exposures or biosignals.

  10. The role of motion platform on postural instability and head vibration exposure at driving simulators.

    PubMed

    Aykent, B; Merienne, F; Paillot, D; Kemeny, A

    2014-02-01

    This paper explains the effect of a motion platform for driving simulators on postural instability and head vibration exposure. The sensed head level-vehicle (visual cues) level longitudinal and lateral accelerations (ax,sensed=ax_head and ay,sensed=ay_head, ayv=ay_veh and ayv=ay_veh) were saved by using a motion tracking sensor and a simulation software respectively. Then, associated vibration dose values (VDVs) were computed at head level during the driving sessions. Furthermore, the postural instabilities of the participants were measured as longitudinal and lateral subject body centre of pressure (XCP and YCP, respectively) displacements just after each driving session via a balance platform. The results revealed that the optic-head inertial level longitudinal accelerations indicated a negative non-significant correlation (r=-.203, p=.154>.05) for the static case, whereas the optic-head inertial longitudinal accelerations depicted a so small negative non-significant correlation (r=-.066, p=.643>.05) that can be negligible for the dynamic condition. The XCP for the dynamic case indicated a significant higher value than the static situation (t(47), p<.0001). The VDVx for the dynamic case yielded a significant higher value than the static situation (U(47), p<.0001). The optic-head inertial lateral accelerations resulted a negative significant correlation (r=-.376, p=.007<.05) for the static platform, whereas the optic-head inertial lateral accelerations showed a positive significant correlation (r=.418, p=.002<.05) at dynamic platform condition. The VDVy for the static case indicated a significant higher value rather than the dynamic situation (U(47), p<.0001). The YCP for the static case yielded significantly higher than the dynamic situation (t(47), p=.001<0.05).

  11. Contribution of individual components of a job cycle on overall severity of whole-body vibration exposure: a study in Indian mines.

    PubMed

    Mandal, Bibhuti B; Mansfield, Neil J

    2016-01-01

    Drivers of earth-moving machines are exposed to whole-body vibration (WBV). In mining operations there can be a combination of relatively high magnitudes of vibration and long exposure times. Effective risk mitigation requires understanding of the main aspects of a task that pose a hazard to health. There are very few published studies of WBV exposure from India. This paper reports on a study that considered the contribution of the component phases of dumper operations, on the overall vibration exposure of the drivers. It shows that vibration magnitudes are relatively high, and that haulage tasks are the main contributor to the exposure. It is recommended that driver speed, haul road surfaces and vehicle maintenance/selection are optimized to ensure minimization of vibration. If this is not sufficient, operation times might need to be reduced in order to ensure that the health guidance caution zone from Standard No. ISO 2631-1:1997 is not exceeded.

  12. Prevalence and pattern of occupational exposure to hand transmitted vibration in Great Britain: findings from a national survey

    PubMed Central

    Palmer, K.; Griffin, M.; Bendall, H.; Pannett, B.; Coggon, D.

    2000-01-01

    OBJECTIVES—To estimate the number of workers in Great Britain with significant occupational exposure to hand transmitted vibration (HTV). Also, to identify the occupations and industries where such exposures arise, and the main sources of exposure.
METHODS—A questionnaire was posted to 22 194 men and women aged 16-64, comprising 21 201 subjects selected at random from the age-sex registers of 34 general practices in England, Scotland, and Wales, and a further 993 subjects selected at random from the central pay registers of the three armed services. Among other things, the questionnaire asked about exposure to sources of HTV in current and earlier employment. Responses were assessed by occupation and industry, and prevalence estimates for the country as a whole were derived from census information on occupational and industrial populations nationally. Estimates were also made in exposed workers of the average daily dose of vibration (A(8) root mean squared (rms) for the past week, based on their reported sources and durations of exposure.
RESULTS—Usable questionnaires were returned by 12 907 subjects (overall response rate 58%). From these it was estimated that some 4.2 million men and 667 000 women in Great Britain are exposed to HTV at work in a 1 week period, and that personal daily exposures to vibration exceed a suggested action level equivalent to 2.8 ms-2 for 8 hours (A(8) >2.8 ms-2 rms) in at least 1.2 million men and 44 000 women. High estimated doses (A(8) >5 ms-2 rms) arose most often in bricklayers and masons, gardeners and groundsmen, carpenters and joiners, electricians and electrical maintenance fitters, and builders and building contractors. The industries where high A(8) values most often arose were construction, motor vehicle repair and maintenance, manufacture of basic metals, and agriculture. The most common sources of exposure were hammer drills, hand held portable grinders, and jigsaws.
CONCLUSIONS—Exposure to HTV is

  13. Measurement, evaluation, and assessment of occupational exposures to hand-transmitted vibration.

    PubMed Central

    Griffin, M J

    1997-01-01

    The measurement of hand-transmitted vibration converts oscillatory movements to a form in which they can be evaluated with respect to human responses and assessed for their acceptability. This paper presents methods of measurement, evaluation, and assessment currently advocated in standards and other forms of guidance. The degree to which the methods of evaluating different frequencies, directions, and durations of vibration affect the assessment of vibration on different tools is illustrated. With the frequency weighting currently used to allow for the effects of different frequencies there is little need to measure vibration at frequencies as high as 1000 Hz; this has significant implications to the design and evaluation of proposed antivibration devices, including gloves. Without the current frequency weighting, vibration at frequencies greater than 250 Hz can contribute to the magnitude of the vibration, but many common causes of injury from hand-transmitted vibration have their dominant components of vibration below 250 Hz. On many powered tools, although the dominant frequency of vibration is the same before and after frequency weighting, the reported magnitude of vibration is greatly affected by the frequency weighting. On tools with dominant low frequencies, their vibration is rated as being of far greater importance relative to other tools when considering frequency-weighted acceleration than when considering unweighted acceleration. It is shown that the effect of considering three axes of vibration as opposed to one axis has a greater effect on some tools than on others. The uncertainties and assumptions involved in the measurement, evaluation, and assessment of hand-transmitted vibration are reviewed. It is suggested that whereas current decisions on health and welfare should be based on current assessment methods, the measurement and evaluation of hand-transmitted vibration should involve the collection and reporting of data which allow other

  14. Whole-body Vibration Exposure Intervention among Professional Bus and Truck Drivers: A Laboratory Evaluation of Seat-suspension Designs.

    PubMed

    Blood, Ryan P; Yost, Michael G; Camp, Janice E; Ching, Randal P

    2015-01-01

    Long-term exposure to seated whole-body vibration (WBV) is one of the leading risk factors for the development of low back disorders. Professional bus and truck drivers are regularly exposed to continuous WBV, since they spend the majority of their working hours driving heavy vehicles. This study measured WBV exposures among professional bus and truck drivers and evaluated the effects of seat-suspension designs using simulated field-collected data on a vibration table. WBV exposures were measured and compared across three different seat designs: an air-ride bus seat, an air-ride truck seat, and an electromagnetically active (EM-active) seat. Air-ride seats use a compressed-air bladder to attenuate vibrations, and they have been in operation throughout the transportation industry for many years. The EM-active seat is a relatively new design that incorporates a microprocessor-controlled actuator to dampen vibration. The vibration table simulated seven WBV exposure scenarios: four segments of vertical vibration and three scenarios that used field-collected driving data on different road surfaces-a city street, a freeway, and a section of rough roadway. The field scenarios used tri-axial WBV data that had been collected at the seat pan and at the driver's sternum, in accordance with ISO 2631-1 and 2631-5. This study found that WBV was significantly greater in the vertical direction (z-axis) than in the lateral directions (x-and y-axes) for each of the three road types and each of the three types of seats. Quantitative comparisons of the results showed that the floor-to-seat-pan transmissibility was significantly lower for the EM-active seat than for either the air-ride bus seat or the air-ride truck seat, across all three road types. This study also demonstrated that seat-suspension designs have a significant effect on the vibrations transmitted to vehicle operators, and the study's results may prove useful in designing future seat suspensions.

  15. Apparent mass and cross-axis apparent mass of standing subjects during exposure to vertical whole-body vibration

    NASA Astrophysics Data System (ADS)

    Subashi, G. H. M. J.; Matsumoto, Y.; Griffin, M. J.

    2006-05-01

    The effects of posture and vibration magnitude on the vertical apparent mass and the fore-and-aft cross-axis apparent mass of the standing human body during exposure to vertical vibration have been investigated. Twelve male subjects were exposed to random vertical vibration over the frequency range 2.0-20 Hz at three vibration magnitudes: 0.125, 0.25 and 0.5 m s -2 rms. Subjects stood in five different postures: upright, lordotic, anterior lean, knees bent and knees more bent. The vertical acceleration at the floor and the forces in the vertical and fore-and-aft directions at the floor were used to obtain the apparent mass and the cross-axis apparent mass. The resonance frequency of the apparent mass was significantly reduced with knees bent and knees more bent postures, but there were only minor effects on the resonance frequency by changing the position of the upper body. Considerable cross-axis apparent mass, up to about 30% of the static mass of subjects, was found. The cross-axis apparent mass was influenced by all postural changes used in the study. In all postures the resonance frequencies of the apparent mass and the cross-axis apparent mass tended to decrease with increasing vibration magnitude. This nonlinear characteristic tended to be less clear in some postures in which subjects increased muscle tension.

  16. Carpal tunnel syndrome (CTS) and exposure to vibration, repetitive wrist movements, and heavy manual work: a case-referent study.

    PubMed Central

    Wieslander, G; Norbäck, D; Göthe, C J; Juhlin, L

    1989-01-01

    Possible connections between carpal tunnel syndrome (CTS) and exposure to vibrating handheld tools, repetitive wrist movements, and heavy manual work were examined in a case-referent study. The cases were 38 men operated on for CTS between 1974 and 1980. For each case, two referents were drawn from among other surgical cases (hospital referents) and two further referents from the population register and telephone directory, respectively (population referents). Thirty four of 38 cases (89%) and 143 of 152 referents (94%) were interviewed by telephone. An increased prevalence of obesity, rheumatoid disease, diabetes, or thyroid disease was observed among the cases but most did not suffer from any of these disorders. CTS was significantly correlated with exposure to vibration from handheld tools and to repetitive wrist movements but showed a weaker correlation with work producing a heavy load on the wrist. A cause-effect relation between CTS and exposures to handheld vibrating tools and to work causing repetitive movements of the wrist seems probable. Some differences between hospital and population referents indicate that a case-referent study of this type could be biased by inappropriate selection of referents. PMID:2920142

  17. Vehicle design influences whole body vibration exposures: effect of the location of the front axle relative to the cab.

    PubMed

    Blood, Ryan P; Rynell, Patrik W; Johnson, Peter W

    2011-06-01

    Using a repeated measure design, this study compared differences in whole body vibration (WBV) exposures among 13 drivers who drove a truck with the cab over the front axle (cab-over design) and a truck with the cab situated behind the front axle (non-cab-over design). The drivers drove both trucks over a standardized route that comprised three distinct segments: a freeway segment, a city street segment with stop-and-go driving (traffic lights), and a city street segment without traffic lights. A portable WBV data acquisition system collected tri-axial time-weighted and raw WBV data per ISO 2631-1 and 2631-5 standards. Simultaneous global positioning system (GPS) data were also collected to compare vehicle speeds. The GPS data indicated that there were no speed differences between the two vehicles. However, average and impulsive z-axis vibration levels were significantly higher for the cab-over design than for the non-cab-over design. In addition, significant WBV exposure differences between road types were found, with the freeway segments having the lowest exposures and the city street segments without traffic lights having the highest exposures. Vehicle type and the associated WBV exposures should be considered when purchasing vehicles to be used by full-time professional vehicle operators.

  18. The potential of micro-electro-mechanical accelerometers in human vibration measurements

    NASA Astrophysics Data System (ADS)

    Tarabini, Marco; Saggin, Bortolino; Scaccabarozzi, Diego; Moschioni, Giovanni

    2012-01-01

    This paper evaluates the advantages and the drawbacks deriving from the use of MEMS (micro-electro-mechanical systems) accelerometers for hand-arm and whole-body vibration measurements. Metrological performances of different transducers were assessed through the identification of their frequency response function, linearity, floor noise and sensitivity to thermal and electromagnetic disturbances. Experimental results highlighted a standard instrumental uncertainty (including the nonlinearity) lower than 5% with the single frequency calibration procedure, such a value was reduced to 2%. The temperature effect was negligible and the electromagnetic disturbances sensitivity was comparable to that of the piezoelectric accelerometers. The compatibility of measurements obtained with MEMS accelerometers with those of piezoelectric-based measurement chains was verified for two specific applications. An example of direct transducer fixation on the skin for vibration transmissibility measurements is also presented. Thanks to the MEMS peculiarities - mainly small sizes and low cost - since novel approaches in the vibration monitoring could be pursued. For instance, it is possible to include by design MEMS accelerometers in any hand-held tool at the operator interface, or inside the seats structures of cars, tractors and trucks. This could be a viable solution to easily obtain repeatable exposure measurements and could also provide diagnostic signals for the tools or seats of functional monitoring.

  19. An Updated Review of Epidemiologic Studies on the Relationship Between Exposure to Whole-Body Vibration and Low Back Pain

    NASA Astrophysics Data System (ADS)

    Bovenzi, M.; Hulshof, C. T. J.

    1998-08-01

    The aim of this paper is to update the information on the epidemiologic evidence of the adverse health effects of whole-body vibration (WBV) on the spinal system by means of a review of the epidemiologic studies published between 1986 and 1996. In a systematic search of epidemiologic studies of low back pain (LBP) disorders and occupations with exposure to WBV, 37 articles were retrieved. The quality of each study was evaluated according to criteria concerning the assessment of vibration exposure, assessment of health effects, and methodology. The epidemiologic studies reaching an adequate score on each of the above mentioned criteria, were included in the final review. A meta-analysis was also conducted in order to combine the results of independent epidemiologic studies. After applying the selection criteria, 16 articles reporting the occurrence of LBP disorders in 19 WBV-exposed occupational groups, reached a sufficient score. The study design was cross-sectional for 13 occupational groups, longitudinal for 5 groups and of case-control type for one group. The main reasons for the exclusion of studies were insufficient quantitative information on WBV exposure and the lack of control groups. The findings of the selected studies and the results of the meta-analysis of both cross-sectional and cohort studies showed that occupational exposure to WBV is associated with an increased risk of LBP, sciatic pain, and degenerative changes in the spinal system, including lumbar intervertebral disc disorders. Owing to the cross-sectional design of the majority of the reviewed studies, this epidemiologic evidence is not sufficient to outline a clear exposure-response relationship between WBV exposure and LBP disorders. Upon comparing the epidemiological studies included in this review with those conducted before 1986, it is concluded that research design and the quality of exposure and health effect data in the field of WBV have improved in the last decade.

  20. The ISO standard: Guide for the evaluation of human exposure to whole-body vibration

    NASA Technical Reports Server (NTRS)

    Vongierke, H. E.

    1975-01-01

    The international guideline is discussed in terms of safety and human tolerance. Charts for equal subjective vibration intensity, subjective judgement of equal fatigue, and severe discomfort boundaries are included.

  1. The Effect of Whole Body Vibration Exposure on Muscle Function in Children With Cystic Fibrosis: A Pilot Efficacy Trial

    PubMed Central

    O’Keefe, Kaitlin; Orr, Rhonda; Huang, Peite; Selvadurai, Hiran; Cooper, Peter; Munns, Craig Frank; Singh, Maria A Fiatarone

    2013-01-01

    Background To examine the effects of whole body vibration (WBV) exposure on muscle function in children with Cystic Fibrosis (CF). Non-randomised controlled cross-over trial. Methods The setting was home-based WBV exposure. The participants were children (8 - 15 years) with CF (n = 7). Intervention: participants served as their own controls for the first four weeks (usual care), then underwent four weeks of parentally-supervised home-based WBV exposure followed by four weeks washout (usual care). The WBV exposure consisted of 20 - 30 minutes of intermittent (1 min vibration:1 min rest) exposure on a Galileo platform (20 - 22Hz, 1 mm amplitude) 3 days/week. The primary outcome measures of absolute and relative lower body (leg extension (LE), leg press (LP)), upper body (chess press (CP)) strength and power, and power were measured at baseline, and weeks 4, 8 and 12. Secondary exploratory outcomes were cardiorespiratory fitness, pulmonary function and health-related quality of life. Results Six participants completed the training without adverse events. Muscle function changes following WBV exposure were not statistically significant. However, moderate-to-large relative effect sizes (ES) favouring WBV were evident for leg extension strength (ES = 0.66 (-0.50, 1.82)), LP relative strength (ES = 0.92 (-0.27, 2.11)), leg press peak power (ES = 0.78 (-0.50, 2.07)) and CMJ height (ES = 0.60 (-0.56 to 1.76)). Conclusions The results from this first controlled trial indicate that WBV may be a potentially effective exercise modality to safely increase leg strength and explosive power in children with CF. Potentially clinically relevant changes support continued investigation of the efficacy, mechanism and feasibility of this intervention in future large-scale studies. PMID:23671546

  2. Modeling of Spinal Column of Seated Human Body under Exposure to Whole-Body Vibration

    NASA Astrophysics Data System (ADS)

    Tamaoki, Gen; Yoshimura, Takuya; Kuriyama, Kaoru; Nakai, Kazuma

    In vehicle systems occupational drivers might expose themselves to vibration for a long time. This may cause illness of the spinal column such as low back pain. Therefore, it is necessary to evaluate the influence of vibration to the spinal column. Thus the modeling of seated human body is conducted in order to evaluate the effect of whole-body vibration to the spinal column. This model has the spinal column and the support structures such as the muscles of the back and the abdomen. The spinal column is made by the vertebrae and the intervertebral disks that are considered the rigid body and the rotational spring and damper respectively. The parameter of this model is decided by the literature and the body type of the subject with respect to the mass and the model structure. And stiffness and damping parameters are searched by fitting the model simulation results to the experimental measured data with respect to the vibration transmissibilities from the seat surface to the spinal column and the head and with respect to the driving-point apparent mass. In addition, the natural modes of the model compare with the result of experimental modal analysis. The influence of the abdomen and the muscles of the back are investigated by comparing three models with respect to above vibration characteristics. Three model are the proposed model, the model that has the spinal column and the model that has the muscles of the back in addition to the spinal column.

  3. Measurement of whole-body vibration exposure from speed control humps

    NASA Astrophysics Data System (ADS)

    Khorshid, E.; Alkalby, F.; Kamal, H.

    2007-07-01

    The main objective of speed control humps is to introduce shocks and high vibration levels when a car passes over them if its speed is higher than the allowable limit. Hump geometry is a major factor in altering the level of these shocks and specifying the speed limit. However, there is no study of the relationship between whole body vibration due to passing over a speed control hump and lower back pain or occupational diseases. In this study, an experimental investigation is conducted to evaluate health risks associated with different geometry speed control humps. Vibration levels and shocks are measured by a seat pad accelerometer placed under the driver's seat to evaluate hazard risks on the human body's lower back. The assessment is based on two standard methods of measuring whole body vibration: the British standard BS 6841 and the new ISO/DIS standard 2631-5. These methods are used to assess the effects of vehicle type, passenger location in the vehicle, vehicle speed, and speed control hump geometry. It was found that circular speed control humps currently installed on many public roads should be modified in order to eliminate hazards. Two newly designed speed humps were proved to be less hazardous than circular speed control humps.

  4. [Exposure to whole body vibrations in workers moving heavy items by mechanical vehicles in the warehouse of a large retail outlet].

    PubMed

    Siciliano, E; Rossi, A; Nori, L

    2007-01-01

    Efficient warehouse management and item transportation is of fundamental importance in the commercial outlet in exam. Whole body vibrations have been measured in various types of machines, some of which not widely studied yet, like the electrical pallet truck. In some tasks (fork lifts drivers) vibrations propagate through the driving seat whereas in some other tasks (electrical pallet trucks, stackers), operated in a standing posture, vibrations propagate through the lower limbs. Results have been provided for a homogeneous job tasks. In particular conditions, the action level of the Italian national (and European) regulations on occupational exposure to WBV may be exceeded. The authors propose a simple system of probabilistic classification of the risk of exposure to whole body vibrations, based on the respective areas of the distribution which lay within the three risk classes.

  5. Influence of forest machine function on operator exposure to whole-body vibration in a cut-to-length timber harvester.

    PubMed

    Sherwin, L M; Owende, P M O; Kanali, C L; Lyons, J; Ward, S M

    2004-09-15

    The influence of machine function (tree felling and processing, and machine movement over the terrain) on operator exposure to whole-body vibration in a cut-to-length (CTL) timber harvester was evaluated. Vibrations were measured on the seat and the cabin chassis in three orthogonal (x, y, z) axes for the tree felling and processing, and during motion on a test track. It was found that the level of vibration transmitted to the operator during felling and processing was mainly affected by the tree size (diameter). For tree diameter at breast height (dbh) range of 0.25-0.35 m that was investigated, the vertical (z-axis) vibration component during processing increased by up to 300%, and increased by 50% during felling. However, the associated vibration levels were not sufficient to pose any serious health risks to the operator for an exposure limit of 8 h. Vibration at the operator seat and cabin chassis was predominant in the lateral (y-axis) and vertical (z-axis) respectively, during vehicle motion over the standard test track. Vibration peaks of approximately 0.20 and 0.17 ms(-2) occurred at 5 and 3.2 Hz respectively.

  6. Review and Evaluation of Hand–Arm Coordinate Systems for Measuring Vibration Exposure, Biodynamic Responses, and Hand Forces

    PubMed Central

    Dong, Ren G.; Sinsel, Erik W.; Welcome, Daniel E.; Warren, Christopher; Xu, Xueyan S.; McDowell, Thomas W.; Wu, John Z.

    2015-01-01

    The hand coordinate systems for measuring vibration exposures and biodynamic responses have been standardized, but they are not actually used in many studies. This contradicts the purpose of the standardization. The objectives of this study were to identify the major sources of this problem, and to help define or identify better coordinate systems for the standardization. This study systematically reviewed the principles and definition methods, and evaluated typical hand coordinate systems. This study confirms that, as accelerometers remain the major technology for vibration measurement, it is reasonable to standardize two types of coordinate systems: a tool-based basicentric (BC) system and an anatomically based biodynamic (BD) system. However, these coordinate systems are not well defined in the current standard. Definition of the standard BC system is confusing, and it can be interpreted differently; as a result, it has been inconsistently applied in various standards and studies. The standard hand BD system is defined using the orientation of the third metacarpal bone. It is neither convenient nor defined based on important biological or biodynamic features. This explains why it is rarely used in practice. To resolve these inconsistencies and deficiencies, we proposed a revised method for defining the realistic handle BC system and an alternative method for defining the hand BD system. A fingertip-based BD system for measuring the principal grip force is also proposed based on an important feature of the grip force confirmed in this study. PMID:26929824

  7. Exposure to mobile phone electromagnetic field radiation, ringtone and vibration affects anxiety-like behaviour and oxidative stress biomarkers in albino wistar rats.

    PubMed

    Shehu, Abubakar; Mohammed, Aliyu; Magaji, Rabiu Abdussalam; Muhammad, Mustapha Shehu

    2016-04-01

    Research on the effects of Mobile phone radio frequency emissions on biological systems has been focused on noise and vibrations as auditory stressors. This study investigated the potential effects of exposure to mobile phone electromagnetic field radiation, ringtone and vibration on anxiety-like behaviour and oxidative stress biomarkers in albino wistar rats. Twenty five male wistar rats were randomly divided into five groups of 5 animals each: group I: exposed to mobile phone in switched off mode (control), group II: exposed to mobile phone in silent mode, group III: exposed to mobile phone in vibration mode, group IV: exposed to mobile phone in ringtone mode, group V: exposed to mobile phone in vibration and ringtone mode. The animals in group II to V were exposed to 10 min call (30 missed calls for 20 s each) per day for 4 weeks. Neurobehavioural studies for assessing anxiety were carried out 24 h after the last exposure and the animals were sacrificed. Brain samples were collected for biochemical evaluation immediately. Results obtained showed a significant decrease (P < 0.05) in open arm duration in all the experimental groups when compared to the control. A significant decrease (P < 0.05) was also observed in catalase activity in group IV and V when compared to the control. In conclusion, the results of the present study indicates that 4 weeks exposure to electromagnetic radiation, vibration, ringtone or both produced a significant effect on anxiety-like behavior and oxidative stress in young wistar rats.

  8. Exposure to Sound Vibrations Lead to Transcriptomic, Proteomic and Hormonal Changes in Arabidopsis

    PubMed Central

    Ghosh, Ritesh; Mishra, Ratnesh Chandra; Choi, Bosung; Kwon, Young Sang; Bae, Dong Won; Park, Soo-Chul; Jeong, Mi-Jeong; Bae, Hanhong

    2016-01-01

    Sound vibration (SV) is considered as an external mechanical force that modulates plant growth and development like other mechanical stimuli (e.g., wind, rain, touch and vibration). A number of previous and recent studies reported developmental responses in plants tailored against SV of varied frequencies. This strongly suggests the existence of sophisticated molecular mechanisms for SV perception and signal transduction. Despite this there exists a huge gap in our understanding regarding the SV-mediated molecular alterations, which is a prerequisite to gain insight into SV-mediated plant development. Herein, we investigated the global gene expression changes in Arabidopsis thaliana upon treatment with five different single frequencies of SV at constant amplitude for 1 h. As a next step, we also studied the SV-mediated proteomic changes in Arabidopsis. Data suggested that like other stimuli, SV also activated signature cellular events, for example, scavenging of reactive oxygen species (ROS), alteration of primary metabolism, and hormonal signaling. Phytohormonal analysis indicated that SV-mediated responses were, in part, modulated by specific alterations in phytohormone levels; especially salicylic acid (SA). Notably, several touch regulated genes were also up-regulated by SV treatment suggesting a possible molecular crosstalk among the two mechanical stimuli, sound and touch. Overall, these results provide a molecular basis to SV triggered global transcriptomic, proteomic and hormonal changes in plant. PMID:27665921

  9. Electron beam exposure mechanisms in hydrogen silsesquioxane investigated by vibrational spectroscopy and in-situ electron beam induced desorption

    SciTech Connect

    Olynick, D.L.; Cord, B.; Schipotinin, A.; Ogletree, D.F.; Schuck, P.J.

    2009-11-13

    Hydrogen Silsesquioxane (HSQ) is used as a high-resolution resist with resolution down below 10nm half-pitch. This material or materials with related functionalities could have widespread impact in nanolithography and nanoscience applications if the exposure mechanism was understood and instabilities controlled. Here we have directly investigated the exposure mechanism using vibrational spectroscopy (both Raman and Fourier transform Infrared) and electron beam desorption spectrocscopy (EBDS). In the non-networked HSQ system, silicon atoms sit at the corners of a cubic structure. Each silicon is bonded to a hydrogen atom and bridges 3 oxygen atoms (formula: HSiO3/2). For the first time, we have shown, via changes in the Si-H2 peak at ~;;2200 cm -1 in the Raman spectra and the release of SiHx products in EBID, that electron-bam exposed materials crosslinks via a redistribution reaction. In addition, we observe the release of significantly more H2 than SiH2 during EBID, which is indicative of additional reaction mechanisms. Additionally, we compare the behavior of HSQ in response to both thermal and electron-beam induced reactions.

  10. The development of an intervention programme to reduce whole-body vibration exposure at work induced by a change in behaviour: a study protocol

    PubMed Central

    Tiemessen, Ivo JH; Hulshof, Carel TJ; Frings-Dresen, Monique HW

    2007-01-01

    Background Whole body vibration (WBV) exposure at work is common and studies found evidence that this exposure might cause low back pain (LBP). A recent review concluded there is a lack of evidence of effective strategies to reduce WBV exposure. Most research in this field is focussed on the technical implications, although changing behaviour towards WBV exposure might be promising as well. Therefore, we developed an intervention programme to reduce WBV exposure in a population of drivers with the emphasis on a change in behaviour of driver and employer. The hypothesis is that an effective reduction in WBV exposure, in time, will lead to a reduction in LBP as WBV exposure is a proxy for an increased risk of LBP. Methods/Design The intervention programme was developed specifically for the drivers of vibrating vehicles and their employers. The intervention programme will be based on the most important determinants of WBV exposure as track conditions, driving speed, quality of the seat, etc. By increasing knowledge and skills towards changing these determinants, the attitude, social influence and self-efficacy (ASE) of both drivers and employers will be affected having an effect on the level of exposure. We used the well-known ASE model to develop an intervention programme aiming at a change or the intention to change behaviour towards WBV exposure. The developed programme consists of: individual health surveillance, an information brochure, an informative presentation and a report of the performed field measurements. Discussion The study protocol described is advantageous as the intervention program actively tries to change behaviour towards WBV exposure. The near future will show if this intervention program is effective by showing a decrease in WBV exposure. PMID:18005400

  11. Assessing combined exposures of whole-body vibration and awkward posture--further results from application of a simultaneous field measurement methodology.

    PubMed

    Raffler, Nastaran; Hermanns, Ingo; Sayn, Detlef; Göres, Benno; Ellegast, Rolf; Rissler, Jörg

    2010-01-01

    The drivers of ten vehicles (tram, helicopter, saloon car, van, forklift, two mobile excavators, wheel loader, tractor, elevating platform truck) were studied with regard to the combined exposures of whole-body vibration and awkward posture during occupational tasks. Seven degrees of freedom (DOFs), or body angles, were recorded as a function of time by means of the CUELA measuring system (Computer-assisted registration and long-term analysis of musculoskeletal workloads) for the purpose of posture assessment. The vibrational exposure is expressed as the vector sum of the frequency-weighted accelerations in the three Cartesian coordinates; these were recorded simultaneously with the posture measurement. Based upon the percentage of working time spent under different workloads, a scheme is proposed for classification of the two exposures into three categories. In addition, a risk of adverse health effects classified as low, possible or high can be assigned to the combination of the two exposures. With regard to posture, the most severe exposure was measured for the drivers of the wheel loader and for the tractor driver, whereas the lowest exposure was measured for the helicopter pilots and van drivers. With regard to the combination of whole-body and posture exposures, the tractor driver and the elevating platform truck driver exhibited the highest workloads.

  12. Random Vibrations

    NASA Technical Reports Server (NTRS)

    Messaro. Semma; Harrison, Phillip

    2010-01-01

    Ares I Zonal Random vibration environments due to acoustic impingement and combustion processes are develop for liftoff, ascent and reentry. Random Vibration test criteria for Ares I Upper Stage pyrotechnic components are developed by enveloping the applicable zonal environments where each component is located. Random vibration tests will be conducted to assure that these components will survive and function appropriately after exposure to the expected vibration environments. Methodology: Random Vibration test criteria for Ares I Upper Stage pyrotechnic components were desired that would envelope all the applicable environments where each component was located. Applicable Ares I Vehicle drawings and design information needed to be assessed to determine the location(s) for each component on the Ares I Upper Stage. Design and test criteria needed to be developed by plotting and enveloping the applicable environments using Microsoft Excel Spreadsheet Software and documenting them in a report Using Microsoft Word Processing Software. Conclusion: Random vibration liftoff, ascent, and green run design & test criteria for the Upper Stage Pyrotechnic Components were developed by using Microsoft Excel to envelope zonal environments applicable to each component. Results were transferred from Excel into a report using Microsoft Word. After the report is reviewed and edited by my mentor it will be submitted for publication as an attachment to a memorandum. Pyrotechnic component designers will extract criteria from my report for incorporation into the design and test specifications for components. Eventually the hardware will be tested to the environments I developed to assure that the components will survive and function appropriately after exposure to the expected vibration environments.

  13. The association between whole body vibration exposure and musculoskeletal disorders in the Swedish work force is confounded by lifting and posture

    NASA Astrophysics Data System (ADS)

    Hagberg, Mats; Burström, Lage; Ekman, Anna; Vilhelmsson, Rebecka

    2006-12-01

    This was a cross-sectional study based on material representing the Swedish work-force from a survey conducted in 1999, 2001 and 2003 by Statistics Sweden. Exposure to whole body vibration (WBV) was prevalent among agricultural, forestry, fishery workers and among plant and machinery operators based on a sample of 40,000 employed persons. Approximately 70% responders, that are 9798 persons answered both the interview and the questionnaire for the analysis of exposure-response. Exposure to WBV at least half the working time was associated with prevalence ratios above two for musculoskeletal symptoms in the low back, neck, shoulder/arm and hand among workers. When the exposure factors lifting and frequent bending were added to a multivariate analysis, surprisingly the magnitude of association was low between low back symptoms and WBV exposure. Interestingly, the relation between WBV exposure and symptoms in the neck, shoulder/arm and hand had the same or higher magnitude of association even when the possible confounders were in the model. For the neck, low back and shoulder/arm there was a visible increase in prevalence ratio (as high as 5 times) when combined exposures of WBV, lifting, frequent bending, twisted posture and noise were included in the analysis.

  14. City bus driving and low back pain: a study of the exposures to posture demands, manual materials handling and whole-body vibration.

    PubMed

    Okunribido, Olanrewaju O; Shimbles, Steven J; Magnusson, Marianne; Pope, Malcolm

    2007-01-01

    A cross-sectional study was conducted to investigate worker exposure to posture demands, manual materials handling (MMH) and whole body vibration as risks for low back pain (LBP). Using validated questionnaire, information about driving experience, driving (sitting) posture MMH, and health history was obtained from 80 city bus drivers. Twelve drivers were observed during their service route driving (at least one complete round trip) and vibration measurements were obtained at the seat and according to the recommendations of ISO 2631 (1997), for three models of bus (a mini-bus, a single-decker bus, a double-decker bus). The results showed that city bus drivers spend about 60% of the daily work time actually driving, often with the torso straight or unsupported, perform occasional and light MMH, and experience discomforting shock/jerking vibration events. Transient and mild LBP (not likely to interfere with work or customary levels of activity) was found to be prevalent among the drivers and a need for ergonomic evaluation of the drivers' seat was suggested.

  15. Mathematical equations and system identification models for a portable pneumatic bladder system designed to reduce human exposure to whole body shock and vibration

    NASA Astrophysics Data System (ADS)

    Aziz Ayyad, Ezzat

    A mathematical representation is sought to model the behavior of a portable pneumatic foam bladder designed to mitigate the effects of human exposure to shock and whole body random vibration. Fluid Dynamics principles are used to derive the analytic differential equations used for the physical equations Model. Additionally, combination of Wiener and Hammerstein block oriented representation techniques have been selected to create system identification (SID) block oriented models. A number of algorithms have been iterated to obtain numerical solutions for the system of equations which was found to be coupled and non-linear, with no analytic closed form solution. The purpose is to be able to predict the response of such system due to random vibrations and shock within reasonable margin of error. The constructed models were found to be accurate within accepted confidence level. Beside the analytic set of physical equations model representation, a linear SID model was selected to take advantage of the available vast amount of mathematical tools available to further analyze and redesign the bladder as a dynamic system. Measured field-test and lab test data have been collected from several helicopter and land terrain vehicle experiments. Numerous excitation and response acceleration measurement records were collected and used to prove the agreement with predictions. The estimation of two selected models were later applied to standard metrics in the frequency domain realization and compared with measurement responses. The collected test records are obtained from measured data at the US Army fields and facilities and at UNLV-CMEST environmental lab. The emerged models have been validated for conformity with actual accelerometer measurement responses and found within accepted error tolerance that is in both time and frequency domains. Further, standard metrics have been used to further confirm the confidence in the validation results. When comparing model prediction with

  16. [Vibration on agricultural tractors].

    PubMed

    Peretti, Alessandro; Delvecchio, Simone; Bonomini, Francesco; di Bisceglie, Anita Pasqua; Colosio, Claudio

    2013-01-01

    In the article, details related to the diffusion of agricultural tractors in Italy are given and considerations about the effects of vibration on operators, the sources of vibration and suggestions to reduce them are presented. The acceleration values observed in Italy amongst 244 tractors and levels of worker exposure are shown by means of histograms. The relevant data variability is discussed.

  17. Parallel β-sheet vibration band increases with proteins dipole moment under exposure to 1765 MHz microwaves.

    PubMed

    Calabrò, Emanuele; Magazù, Salvatore

    2016-02-01

    Effects of exposure of 4 h to mobile phones microwaves at 1765 MHz at a power density around 940 mW/m(2) on four typical proteins (hemoglobin in H2 O solution, and myoglobin, bovine serum albumin, and lysozyme in D2 O solution) were studied by means of Fourier Transform Infrared spectroscopy and Fourier self-deconvolution analysis. Increase in intensity of parallel β-sheet component around 1635 cm(-1) was observed after exposure of hemoglobin, myoglobin, and bovine serum albumin, showing that a mechanism of unfolding occurred after exposure, whereas no appreciable change in the amide I region occurred after lysozyme exposure. In addition, a relationship between protein dipole moment and protein unfolding rate was demonstrated with a correlation coefficient r = 0.973 and 95% confidence interval.

  18. Ride quality and international standard ISO 2631 (Guide for the evaluation of human exposure to whole-body vibration)

    NASA Technical Reports Server (NTRS)

    Allen, G. R.

    1975-01-01

    The evolution of the standard, which is aimed at promoting research and production of more data, and providing some design guidance, is outlined and its contents summarized. Some of the assumptions and information on which it is based are analyzed. Its application to vehicle ride quality is considered in the context of the safety, efficiency and comfort of crew and passengers. The importance of establishing the precise criteria against which vibration limits are required is underlined, particularly the difficulties of first defining comfort and then postulating appropriate levels. Some current and future work related to improving the standard is outlined and additional suggestions offered.

  19. Modelling the effects of exposure to whole-body vibration on low-back pain and its long-term consequences for sickness absence and associated work disability

    NASA Astrophysics Data System (ADS)

    Burdorf, A.; Hulshof, C. T. J.

    2006-12-01

    BackgroundExposure to whole-body vibration (WBV) is a well-known risk factor for the occurrence of low-back pain (LBP). Little is known about the long-term course of back pain in workers exposed to WBV and the consequences for (temporary) disability, due to lack of cohort studies with sufficiently long follow-up periods. MethodsA systematic review of the literature was performed to assess associations between exposure to WBV and LBP, sickness absence due to low-back disorders and permanent disability. A meta-analysis was used to estimate the prevalences of LBP and sickness absence due to low-back disorders in occupational populations, depending on relevant exposure characteristics. These prevalences were converted into probabilities for transitions between no complaints, LBP, sickness due to LBP, and disability. A Markov model was applied to evaluate a hypothetical cohort of workers without LBP at the start of the cohort and a follow-up of 40 years (40 cycles of 1 year) to reflect a long-life career with continuous exposure to WBV. ResultsIn this hypothetical cohort it was estimated that among workers with the highest exposure to WBV on average about 47 weeks of their working life were lost due to sick leave because of LBP, which is approximately 2.5% of their working life. When all workers on prolonged sick leave for 52 weeks would remain disabled for the rest of their working life, a maximum of 23.4% of their working life could be lost due to high WBV exposure. Among workers without or low exposure to WBV the corresponding losses were 0.8% and 7.8%, respectively. ConclusionThe approach to assess years of work lost due to an occupational exposure may provide a more adequate description for stakeholders than the traditional measures of relative risk or attributable risk fraction. The concept of work years lost may also facilitate a better appreciation of the potential benefits of preventive measures.

  20. Vibration manual

    NASA Technical Reports Server (NTRS)

    Green, C.

    1971-01-01

    Guidelines of the methods and applications used in vibration technology at the MSFC are presented. The purpose of the guidelines is to provide a practical tool for coordination and understanding between industry and government groups concerned with vibration of systems and equipments. Topics covered include measuring, reducing, analyzing, and methods for obtaining simulated environments and formulating vibration specifications. Methods for vibration and shock testing, theoretical aspects of data processing, vibration response analysis, and techniques of designing for vibration are also presented.

  1. Whole-body Vibration Exposure of Drill Operators in Iron Ore Mines and Role of Machine-Related, Individual, and Rock-Related Factors

    PubMed Central

    Chaudhary, Dhanjee Kumar; Bhattacherjee, Ashis; Patra, Aditya Kumar; Chau, Nearkasen

    2015-01-01

    Background This study aimed to assess the whole-body vibration (WBV) exposure among large blast hole drill machine operators with regard to the International Organization for Standardization (ISO) recommended threshold values and its association with machine- and rock-related factors and workers' individual characteristics. Methods The study population included 28 drill machine operators who had worked in four opencast iron ore mines in eastern India. The study protocol comprised the following: measurements of WBV exposure [frequency weighted root mean square (RMS) acceleration (m/s2)], machine-related data (manufacturer of machine, age of machine, seat height, thickness, and rest height) collected from mine management offices, measurements of rock hardness, uniaxial compressive strength and density, and workers' characteristics via face-to-face interviews. Results More than 90% of the operators were exposed to a higher level WBV than the ISO upper limit and only 3.6% between the lower and upper limits, mainly in the vertical axis. Bivariate correlations revealed that potential predictors of total WBV exposure were: machine manufacturer (r = 0.453, p = 0.015), age of drill (r = 0.533, p = 0.003), and hardness of rock (r = 0.561, p = 0.002). The stepwise multiple regression model revealed that the potential predictors are age of operator (regression coefficient β = −0.052, standard error SE = 0.023), manufacturer (β = 1.093, SE = 0.227), rock hardness (β = 0.045, SE = 0.018), uniaxial compressive strength (β = 0.027, SE = 0.009), and density (β = –1.135, SE = 0.235). Conclusion Prevention should include using appropriate machines to handle rock hardness, rock uniaxial compressive strength and density, and seat improvement using ergonomic approaches such as including a suspension system. PMID:26929838

  2. Vibration and impulsivity analysis of hand held olive beaters.

    PubMed

    Deboli, Roberto; Calvo, Angela; Preti, Christian

    2016-07-01

    To provide more effective evaluations of hand arm vibration syndromes caused by hand held olive beaters, this study focused on two aspects: the acceleration measured at the tool pole and the analysis of the impulsivity, using the crest factor. The signals were frequency weighted using the weighting curve Wh as described in the ISO 5349-1 standard. The same source signals were also filtered by the Wh-bl filter (ISO/TS 15694), because the weighting filter Wh (unlike the Wh-bl filter) could underestimate the effect of high frequency vibration on vibration-induced finger disorders. Ten (experienced) male operators used three beater models (battery powered) in the real olive harvesting condition. High vibration total values were obtained with values never lower than 20 m(-2). Concerning the crest factor, the values ranged from 5 to more than 22. This work demonstrated that the hand held olive beaters produced high impulsive loads comparable to the industry hand held tools.

  3. Human response to vibration in residential environments.

    PubMed

    Waddington, David C; Woodcock, James; Peris, Eulalia; Condie, Jenna; Sica, Gennaro; Moorhouse, Andrew T; Steele, Andy

    2014-01-01

    This paper presents the main findings of a field survey conducted in the United Kingdom into the human response to vibration in residential environments. The main aim of this study was to derive exposure-response relationships for annoyance due to vibration from environmental sources. The sources of vibration considered in this paper are railway and construction activity. Annoyance data were collected using questionnaires conducted face-to-face with residents in their own homes. Questionnaires were completed with residents exposed to railway induced vibration (N = 931) and vibration from the construction of a light rail system (N = 350). Measurements of vibration were conducted at internal and external positions from which estimates of 24-h vibration exposure were derived for 1073 of the case studies. Sixty different vibration exposure descriptors along with 6 different frequency weightings were assessed as potential predictors of annoyance. Of the exposure descriptors considered, none were found to be a better predictor of annoyance than any other. However, use of relevant frequency weightings was found to improve correlation between vibration exposure and annoyance. A unified exposure-response relationship could not be derived due to differences in response to the two sources so separate relationships are presented for each source.

  4. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  5. Muscular forearm activation in hand-grip tasks with superimposition of mechanical vibrations.

    PubMed

    Fattorini, L; Tirabasso, A; Lunghi, A; Di Giovanni, R; Sacco, F; Marchetti, E

    2016-02-01

    The purpose of this paper is to evaluate the muscular activation of the forearm, with or without vibration stimuli at different frequencies while performing a grip tasks of 45s at various level of exerted force. In 16 individuals, 9 females and 7 males, the surface electromyogram (EMG) of extensor carpi radialis longus and the flexor carpi ulnari muscles were assessed. At a short latency from onset EMG, RMS and the level of MU synchronization were assessed to evaluate the muscular adaptations. Whilst a trend of decay of EMG Median frequency (MDFd) was employed as an index of muscular fatigue. Muscular tasks consists of the grip of an instrumented handle at a force level of 20%, 30%, 40%, 60% of the maximum voluntary force. Vibration was supplied by a shaker to the hand in mono-frequential waves at 20, 30, 33 and 40Hz. In relation to EMG, RMS and MU synchronization, the muscular activation does not seem to change with the superimposition of the mechanical vibrations, on the contrary a lower MDFd was observed at 33Hz than in absence of vibration. This suggests an early muscular fatigue induced by vibration due to the fact that 33Hz is a resonance frequency for the hand-arm system.

  6. Vibration generators

    SciTech Connect

    Lerwill, W.E.

    1980-09-16

    Apparatus for generating vibrations in a medium, such as the ground, comprises a first member which contacts the medium, means , preferably electromagnetic, which includes two relatively movable members for generating vibrations in the apparatus and means operatively connecting the said two members to said first member such that the relatively amplitudes of the movements of said three members can be adjusted to match the impedances of the apparatus and the medium.

  7. Reduced elbow extension torque during vibrations.

    PubMed

    Friesenbichler, Bernd; Coza, Aurel; Nigg, Benno M

    2012-08-31

    Impact sports and vibration platforms trigger vibrations within soft tissues and the skeleton. Although the long-term effects of vibrations on the body have been studied extensively, the acute effects of vibrations are little understood. This study determined the influence of acute vibrations at different frequencies and elbow angles on maximal isometric elbow extension torque and muscle activity. Vibrations were generated by a pneumatic vibrator attached to the lever of a dynamometer, and were applied on the forearm of 15 healthy female subjects. The subjects were instructed to push maximally against the lever at three different elbow angles, while extension torque and muscle activity were quantified and compared between vibration and non-vibration (control) conditions. A change in vibration frequency had no significant effects on torque and muscle activity although vibrations in general decreased the maximal extension torque relative to the control by 1.8% (±5.7%, p>0.05), 7.4% (±7.9%, p<0.01), and 5.0% (±8.2%, p<0.01) at elbow angles of 60°, 90°, and 120°, respectively. Electromyographic activity increased significantly between ∼30% and 40% in both triceps and biceps with vibrations. It is speculated that a similar increase in muscle activity between agonist and antagonist, in combination with an unequal increase in muscle moment arms about the elbow joint, limit the maximal extension torque during exposure to vibrations. This study showed that maximal extension torque decreased during vibration exposure while muscle activity increased and suggests that vibrations may be counterproductive during activities requiring maximal strength but potentially beneficial for strength training.

  8. History of bioresponse to vibration in the Acoustical Society of America

    NASA Astrophysics Data System (ADS)

    Weisenberger, Janet M.

    2003-04-01

    Human response to vibratory stimulation of the skin surface has long been considered an aspect of the sense of touch; however, the debate over whether vibration was one aspect of pressure sensation, as espoused by von Frey in the late 1800s, or a separate sense, as argued by Katz (1925), focused attention on this mode of stimulation. Experimental investigations from the 1920s to the 1960s by Knudsen, Geldard, Sherrick, Verrillo, Mountcastle, and others provided basic data on vibrotactile perception and the neural transduction of vibratory stimulation. Within the Acoustical Society of America, work on bioresponse to vibration has included not only basic investigations of vibrotactile perception and physiology, but also studies of the loss of sensitivity resulting from intense hand-arm vibration induced by occupational use of chainsaws and jackhammers, studies of human response to whole-body vibration, and evaluations of the utility of vibrotactile devices for communication of speech to hearing-impaired persons. Contributions in each of these areas, as well as future research directions, are discussed.

  9. Vibration safety limits for magnetic resonance elastography.

    PubMed

    Ehman, E C; Rossman, P J; Kruse, S A; Sahakian, A V; Glaser, K J

    2008-02-21

    Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within a tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit, and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans.

  10. Vibration safety limits for magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Ehman, E. C.; Rossman, P. J.; Kruse, S. A.; Sahakian, A. V.; Glaser, K. J.

    2008-02-01

    Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within a tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit, and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans.

  11. Heat, cold, noise, and vibration

    SciTech Connect

    Horvath, S.M.; Bedi, J.F. )

    1990-03-01

    Exposure to a cold environment induces a number of physiological alterations, the most serious being hypothermia. This state can occur in all individuals, but the very young and the elderly are more susceptible. Environmental and industrially generated high ambient temperature can place further stress on aged individuals and workers, resulting in a complex symptom picture. Morbidity and death may result from such exposures. Causative factors have been identified. Noise exposure induces hearing losses above those secondary to the aging process. Psychophysiological effects during noise exposure are considered to result from the sympathetic activity secondary to a general stress reaction. Vibration from the use of power tools results in Raynaud's phenomenon. However, modification of power tools has reduced the symptoms associated with vibration exposure. Termination of exposure to vibration appears eventually to reduce symptoms related to white-finger spasms. Interaction between these stressors has not been clarified because of the complex effects of each. The need for additional information about the response to these stressors is evident. 38 references.

  12. Inhalation exposure of animals.

    PubMed Central

    Phalen, R F

    1976-01-01

    Relative advantages and disadvantages and important design criteria for various exposure methods are presented. Five types of exposures are discussed: whole-body chambers, head-only exposures, nose or mouth-only methods, lung-only exposures, and partial-lung exposures. Design considerations covered include: air cleaning and conditioning; construction materials; losses of exposure materials; evenness of exposure; sampling biases; animal observation and care; noise and vibration control, safe exhausts, chamber loading, reliability, pressure fluctuations; neck seals, masks, animal restraint methods; and animal comfort. Ethical considerations in use of animals in inhalation experiments are also discussed. PMID:1017420

  13. Human response to vibration stress in Japanese workers: lessons from our 35-year studies A narrative review.

    PubMed

    Matoba, Tsunetaka

    2015-01-01

    The occupational uses with vibratory tools or vehicles provoked health disorders of users. We reviewed narratively our articles of 35 yr studies and their related literatures, and considered the pathophysiology of the hand-arm vibration disorders. Concerning the risk factors of health impairments in workers with vibratory tools, there are two conflicting schools of the researchers: The peripheral school emphasizes that vibration only makes predominant impairments on hands and arms, showing typically Raynaud's phenomenon in the fingers. In the systemic school, the health disorders are produced by combination with vibration, noise and working environment, namely vibratory work itself, leading to diversified symptoms and signs in relation to systemic impairments. Our 35 yr studies have evidently supported the systemic school, including disorders of the central and autonomic nervous systems. The genesis is vibratory work itself, including vibration, noise, cold working environment, ergonomic and biodynamic conditions, and emotional stress in work. Because the health disorders yield in the whole body, the following measures would contribute to the prevention of health impairments: the attenuation of vibration and noise generated form vibratory machines and the regulations on operating tool hours. In conclusion, this occupational disease results from systemic impairments due to long-term occupational work with vibratory tools.

  14. Human response to vibration stress in Japanese workers: lessons from our 35-year studies A narrative review

    PubMed Central

    MATOBA, Tsunetaka

    2015-01-01

    The occupational uses with vibratory tools or vehicles provoked health disorders of users. We reviewed narratively our articles of 35 yr studies and their related literatures, and considered the pathophysiology of the hand-arm vibration disorders. Concerning the risk factors of health impairments in workers with vibratory tools, there are two conflicting schools of the researchers: The peripheral school emphasizes that vibration only makes predominant impairments on hands and arms, showing typically Raynaud’s phenomenon in the fingers. In the systemic school, the health disorders are produced by combination with vibration, noise and working environment, namely vibratory work itself, leading to diversified symptoms and signs in relation to systemic impairments. Our 35 yr studies have evidently supported the systemic school, including disorders of the central and autonomic nervous systems. The genesis is vibratory work itself, including vibration, noise, cold working environment, ergonomic and biodynamic conditions, and emotional stress in work. Because the health disorders yield in the whole body, the following measures would contribute to the prevention of health impairments: the attenuation of vibration and noise generated form vibratory machines and the regulations on operating tool hours. In conclusion, this occupational disease results from systemic impairments due to long-term occupational work with vibratory tools. PMID:26460379

  15. Production, Delivery and Application of Vibration Energy in Healthcare

    NASA Astrophysics Data System (ADS)

    Abundo, Paolo; Trombetta, Chiara; Foti, Calogero; Rosato, Nicola

    2011-02-01

    In Rehabilitation Medicine therapeutic application of vibration energy in specific clinical treatments and in sport rehabilitation is being affirmed more and more.Vibration exposure can have positive or negative effects on the human body depending on the features and time of the characterizing wave. The human body is constantly subjected to different kinds of vibrations, inducing bones and muscles to actively modify their structure and metabolism in order to fulfill the required functions. Like every other machine, the body supports only certain vibration energy levels over which long term impairments can be recognized. As shown in literature anyway, short periods of vibration exposure and specific frequency values can determine positive adjustments.

  16. Effect of higher frequency components and duration of vibration on bone tissue alterations in the rat-tail model.

    PubMed

    Peelukhana, Srikara V; Goenka, Shilpi; Kim, Brian; Kim, Jay; Bhattacharya, Amit; Stringer, Keith F; Banerjee, Rupak K

    2015-01-01

    To formulate more accurate guidelines for musculoskeletal disorders (MSD) linked to Hand-Arm Vibration Syndrome (HAVS), delineation of the response of bone tissue under different frequencies and duration of vibration needs elucidation. Rat-tails were vibrated at 125 Hz (9 rats) and 250 Hz (9 rats), at 49 m/s(2), for 1D (6 rats), 5D (6 rats) and 20D (6 rats); D=days (4 h/d). Rats in the control group (6 rats for the vibration groups; 2 each for 1D, 5D, and 20D) were left in their cages, without being subjected to any vibration. Structural and biochemical damages were quantified using empty lacunae count and nitrotyrosine signal-intensity, respectively. One-way repeated-measure mixed-model ANOVA at p<0.05 level of significance was used for analysis. In the cortical bone, structural damage quantified through empty lacunae count was significant (p<0.05) at 250 Hz (10.82 ± 0.66) in comparison to the control group (7.41 ± 0.76). The biochemical damage was significant (p<0.05) at both the 125 Hz and 250 Hz vibration frequencies. The structural damage was significant (p<0.05) at 5D for cortical bone while the trabecular bone showed significant (p<0.05) damage at 20D time point. Further, the biochemical damage increased with increase in the duration of vibration with a significant (p<0.05) damage observed at 20D time point and a near significant change (p=0.08) observed at 5D time point. Structural and biochemical changes in bone tissue are dependent upon higher vibration frequencies of 125 Hz, 250 Hz and the duration of vibration (5D, 20D).

  17. A test rig for the measurement of vibration in hand-held power tools.

    PubMed

    Hansson, J E; Kihlberg, S

    1983-03-01

    The purpose of the present project was to study the possibility of using a test rig for the measurement of vibration and noise from hand-held power tools. A test rig was designed to give the same effect on tool handle vibration as the human hand/arm system. Work was simulated by feeding the material to be processed against the tool, clamped into the rig, with the aid of a co-ordinate table. It was designed for use in studies of impact drills, chain saws, grinders and similar power tools. The report describes a proposal for testing the vibration properties of impact drills. Drilling with the test rig was compared with manual drilling. The difference in the acceleration level between the two methods was about 1 dB for ISO-weighted values in the critical direction. Both methods showed good reproducibility. The possibility of conducting noise level tests of a power tool in the rig was studied and the results are reported separately.

  18. Rheumatic effects of vibration at work.

    PubMed

    Palmer, Keith T; Bovenzi, Massimo

    2015-06-01

    Occupational exposures to vibration come in many guises, and they are very common at a population level. It follows that an important minority of working-aged patients seen by medical services will have been exposed to this hazard of employment. Vibration can cause human health effects, which may manifest in the patients that rheumatologists see. In this chapter, we identify the health effects of relevance to them, and review their epidemiology, pathophysiology, clinical presentation, differential diagnosis and vocational and clinical management. On either side of this, we describe the nature and assessment of the hazard, the scale and common patterns of exposure to vibration in the community and the legal basis for controlling health risks, and we comment on the role of health surveillance in detecting early adverse effects and what can be done to prevent the rheumatic effects of vibration at work.

  19. Rheumatic effects of vibration at work

    PubMed Central

    Palmer, Keith T; Bovenzi, Massimo

    2016-01-01

    Occupational exposures to vibration come in many guises and are very common at a population level. It follows that an important minority of working-aged patients seen by medical services will have been exposed to this hazard of employment. Vibration can cause human health effects which may manifest in the patients that rheumatologists see. In this chapter we identify the health effects of relevance to them, and review their epidemiology, pathophysiology, clinical presentation, differential diagnosis, and vocational and clinical management. On either side of this, we describe the nature and assessment of the hazard, the scale and common patterns of exposure to vibration in the community, and the legal basis for controlling health risks, and comment on the role of health surveillance in detecting early adverse effects and what can be done to prevent the rheumatic effects of vibration at work. PMID:26612239

  20. Acoustic vibration can enhance bacterial biofilm formation.

    PubMed

    Murphy, Mark F; Edwards, Thomas; Hobbs, Glyn; Shepherd, Joanna; Bezombes, Frederic

    2016-12-01

    This paper explores the use of low-frequency-low-amplitude acoustic vibration on biofilm formation. Biofilm development is thought to be governed by a diverse range of environmental signals and much effort has gone into researching the effects of environmental factors including; nutrient availability, pH and temperature on the growth of biofilms. Many biofilm-forming organisms have evolved to thrive in mechanically challenging environments, for example soil yet, the effects of the physical environment on biofilm formation has been largely ignored. Exposure of Pseudomonas aeruginosa to vibration at 100, 800 and 1600 Hz for 48 h, resulted in a significant increase in biofilm formation compared with the control, with the greatest growth seen at 800 Hz vibration. The results also show that this increase in biofilm formation is accompanied with an increase in P. aeruginosa cell number. Acoustic vibration was also found to regulate the spatial distribution of biofilm formation in a frequency-dependent manner. Exposure of Staphylococcus aureus to acoustic vibration also resulted in enhanced biofilm formation with the greatest level of biofilm being formed following 48 h exposure at 1600 Hz. These results show that acoustic vibration can be used to control biofilm formation and therefore presents a novel and potentially cost effective means to manipulate the development and yield of biofilms in a range of important industrial and medical processes.

  1. Noncontact Electromagnetic Vibration Source

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Fulton, James P.; Wincheski, Buzz A.

    1994-01-01

    Metal aircraft skins scanned rapidly in vibration tests. Relatively simple combination of permanent magnets and electromagnet serves as noncontact vibration source for nondestructive testing of metal aircraft skins. In test, source excites vibrations, and vibration waveforms measured, then analyzed for changes in resonances signifying cracks and other flaws.

  2. Epidemiological and aetiological aspects of low back pain in vibration environments - an update.

    PubMed

    Wilder, D G; Pope, M H

    1996-03-01

    The article reviews the substantial body of epidemiological evidence linking vibration exposure and low back pain. Drivers appear to be at particular risk if exposures exceed those recommended by the ISO exposure limit. Various aetiological factors associated with vehicular vibration, flattening of the lumbar lordosis, increased motion segment flexibility, disc pressure and mechanical softening are discussed. Vibration studies of functional spinal units are also discussed, as are in vivo whole-body vibration experiments. Animal models have shown that vibration leads to compromised nutrition, higher disc pressures, release of neuropeptides, increased creep and histological changes.

  3. Effect of vibration duration on human discomfort. [passenger comfort and random vibration

    NASA Technical Reports Server (NTRS)

    Clevenson, S. A.; Dempsey, T. K.; Leatherwood, J. D.

    1978-01-01

    The duration effects of random vertical vibration on passenger discomfort were studied in a simulated section of an aircraft cabin configured to seat six persons in tourist-class style. Variables of the study included time of exposure (0.25 min to 60 min) and the rms amplitude of vibration (0.025g to 0.100g). The vibrations had a white noise spectrum with a bandwidth of 10 Hz centered at 5 Hz. Data indicate that the discomfort threshold occurred at an rms vertical acceleration level of 0.027g for all durations of vibration. However, for acceleration levels that exceeded the discomfort threshold, a systematic decrease in discomfort occurred as a function of increasing duration of vibration. For the range of accelerations used, the magnitude of the discomfort decrement was shown to be independent of acceleration level. The results suggest that discomfort from vertical vibration applied in the frequency range at which humans are most sensitive decreases with longer exposure, which is the opposite of the recommendation of the International Standard ISO 2631-1974 (E) Guide for the Evaluation of Human Exposure to Whole-Body Vibration.

  4. [Occupational therapy for work-related damage induced by mechanical vibration].

    PubMed

    Foti, C; Ciocchetti, E; Antignani, E; Pitruzzella, M; Laurini, A

    2010-01-01

    Vibrations are defined as repeated oscillatory movements of a body; they can be transmitted by contact to humans. From the point of view of physics, vibrations can be differentiated on the basis of frequency, wavelength, amplitude of the oscillation, velocity and acceleration. As far as concerns occupational hazards, two risk factors have been identified: the first involves low frequency vibrations (vehicle drivers), while the second involves high frequency vibrations (manual percussion tools). The transmission of vibration energy can be localized or generalized. Tertiary prevention of exposure to vibrations is based on the use of anti-vibration gloves (for vibrations of the hand and arm) and on anti-vibration shoes (for vibrations of the whole body). The damage caused by vibrations is due to reduced blood circulation and mechanical stimulation in the joints exposed.

  5. Thermoregulatory responses to heat and vibration in men

    NASA Technical Reports Server (NTRS)

    Spaul, W. A.; Spear, R. C.; Greenleaf, J. E.

    1986-01-01

    The effect of vibration on thermoregulatory responses was studied in heat-acclimated men exposed suddenly to simultaneous heat and whole body vibrations (WBVs) at two intensity levels, each at graded frequencies between 5 and 80 Hz. The mean rectal temperature (Tre) became elevated more quickly in the WBV exposures than in the controls (heat exposure alone). Both intensity- and frequency-dependent WBV relationships were recorded in localized blood flows and in sweat rates. Thus, vibration appears to reduce the efficiency of the cooling mechanisms during a heat exposure.

  6. Significant characteristics of social response to noise and vibration

    NASA Technical Reports Server (NTRS)

    Nishinomiya, G.

    1979-01-01

    Several surveys made since 1971 to investigate annoyance resulting from noise and vibration, from various sources were studied in order to quantify the relation between annoyance response to noise or vibration and properties of the respondent including factors such as noise exposure, etc. Samples collected by the social surveys and physical measurements were analyzed by multi-dimensional analysis.

  7. Evaluation of Whole-Body Vibration in Vehicles

    NASA Astrophysics Data System (ADS)

    PADDAN, G. S.; GRIFFIN, M. J.

    2002-05-01

    The vibration in 100 different vehicles has been measured, evaluated and assessed according to British Standard BS 6841 (1987) and International Standard ISO 2631 (1997). Vibration was measured in 14 categories of vehicle including cars, lift trucks, tractors, lorries, vans and buses. In each vehicle, the vibration was measured in five axes: vertical vibration beneath the seat, fore-and-aft, lateral and vertical vibration on the seat pan and fore-and-aft vibration at the backrest. The alternative methods of evaluating the vibration (use of different frequency weightings, different averaging methods, the inclusion of different axes, vibration dose values and equivalent r.m.s. acceleration) as defined in the standards have been compared. BS 6841 (1987) suggests that an equivalent acceleration magnitude is calculated using vibration measured at four locations around the seat (x -, y -, z -seat and x -backrest); ISO 2631 (1997) suggests that vibration is measured in the three translational axes only on the seat pan but only the axis with the most severe vibration is used to assess vibration severity. Assessments made using the procedure defined in ISO 2631 tend to underestimate any risks from exposure to whole-body vibration compared to an evaluation made using the guidelines specified in BS 6841; the measurements indicated that the 17 m/s1.75 “health guidance caution zone” in ISO 2631 was less likely to be exceeded than the 15 m/s1.75 “action level” in BS 6841. Consequently, ISO 2631 “allows” appreciably longer daily exposures to whole-body vibration than BS 6841.

  8. Portable vibration exciter

    NASA Technical Reports Server (NTRS)

    Beecher, L. C.; Williams, F. T.

    1970-01-01

    Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.

  9. Tunable Passive Vibration Suppressor

    NASA Technical Reports Server (NTRS)

    Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)

    2016-01-01

    An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.

  10. Hermetically sealed vibration damper

    NASA Technical Reports Server (NTRS)

    Wheatley, D. G.

    1969-01-01

    Simple fluidic vibration damper for installation at each pivotal mounting between gimbals isolates inertial measuring units from external vibration and other disruptive forces. Installation between each of the three gimbal axes can dampen vibration and shock in any direction while permitting free rotation of the gimbals.

  11. Good or bad vibrations? Impacts of anthropogenic vibration on the marine epibenthos.

    PubMed

    Roberts, Louise; Elliott, Michael

    2017-04-03

    Anthropogenic activities directly contacting the seabed, such as drilling and pile-driving, produce a significant vibration likely to impact benthic invertebrates. As with terrestrial organisms, vibration may be used by marine species for the detection of biotic and abiotic cues, yet the significance of this and the sensitivities to vibration are previously undocumented for many marine species. Exposure to additional vibration may elicit behavioral or physiological change, or even physical damage at high amplitudes or particular frequencies, although this is poorly studied in underwater noise research. Here we review studies regarding the sensitivities and responses of marine invertebrates to substrate-borne vibration. This includes information related to vibrations produced by those construction activities directly impacting the seabed, such as pile-driving. This shows the extent to which species are able to detect vibration and respond to anthropogenically-produced vibrations, although the short and long-term implications of this are not known. As such it is especially important that the sensitivities of these species are further understood, given that noise and energy-generating human impacts on the marine environment are only likely to increase and that there are now legal instruments requiring such effects to be monitored and controlled.

  12. Effects of partially ionised medical oxygen, especially with O2•-, in vibration white finger patients.

    PubMed

    Perečinský, Slavomír; Murínová, Lenka; Engler, Ivan; Donič, Viliam; Murín, Pavol; Varga, Marek; Legáth, Lubomír

    2014-05-27

    A major symptom of hand-arm vibration syndrome is a secondary Raynaud's phenomenon-vibration white finger (VWF)-which results from a vasospasm of the digital arteries caused by work with vibration devices leading to occupational disease. Pharmacotherapy of VWF is often ineffective or has adverse effects. The aim of this work was to verify the influence of inhalation of partially ionized oxygen (O2•-) on peripheral blood vessels in the hands of patients with VWF. Ninety one (91)patients with VWF underwent four-finger adsorption plethysmography, and the pulse wave amplitude was recorded expressed in numeric parameters-called the native record. Next, a cold water test was conducted following with second plethysmography. The patients were divided in to the three groups. First and second inhaled 20-min of ionized oxygen O2•- or oxygen O2 respectively. Thirth group was control without treatment. All three groups a follow-up third plethysmography-the post-therapy record. Changes in the pulse wave amplitudes were evaluated. Inpatients group inhaling O2•- a modest increase of pulse wave amplitude was observed compared to the native record; patients inhaling medical oxygen O2 and the control showed a undesirable decline of pulse wave amplitude in VWF fingers. Strong vasodilatation were more frequent in the group inhaling O2•- compare to O2 (p < 0.05). Peripheral vasodilatation achieved by inhalation of O2•- could be used for VWF treatment without undesirable side effect in hospital as well as at home environment.

  13. The influence of vibration on seated human drowsiness

    PubMed Central

    AZIZAN, Amzar; FARD, Mohammad; AZARI, Michael F.; BENEDIKTSDÓTTIR, Bryndís; ARNARDÓTTIR, Erna Sif; JAZAR, Reza; MAEDA, Setsuo

    2016-01-01

    Although much is known about human body vibration discomfort, there is little research data on the effects of vibration on vehicle occupant drowsiness. A laboratory experimental setup has been developed. Vibration was applied to the volunteers sitting on the vehicle seat mounted on the vibration platform. Seated volunteers were exposed to a Gaussian random vibration, with 1–15 Hz frequency bandwidth at 0.2 ms−2 r.m.s., for 20-minutes. Two drowsiness measurement methods were used, Psychomotor Vigilance Test (PVT) and Karolinska Sleepiness Scale (KSS). Significant changes in PVT (p<0.05) and KSS (p<0.05) were detected in all eighteen volunteers. Furthermore, a moderate correlation (r>0.4) was observed between objective measurement (PVT) and subjective measurement (KSS). The results suggest that exposure to vibration even for 20-minutes can cause significant drowsiness impairing psychomotor performance. This finding has important implications for road safety. PMID:26829971

  14. Whole-Body Vibration Assessment of the M1070 Heavy Equipment Transporter. Volume 1

    DTIC Science & Technology

    1994-08-01

    vibration , health hazard assessment, exposure 05 09 limits, tactical vehicles, terrain, crewmembers 20 11 19. ABSTRACT (Continue on reverse if necessary...and identify by block number) An evaluation of all new tactical vehicles and aircraft is required to assess potential whole-body vibration ( WBV ...minimal exposure times with respect to axis, vibration frequency, vehicle speed, and test course ........... . . 12 7. Front passenger seat HSEL for

  15. Self-reported back pain in tractor drivers exposed to whole-body vibration.

    PubMed

    Boshuizen, H C; Bongers, P M; Hulshof, C T

    1990-01-01

    A postal questionnaire on symptoms of ill health and exposure to whole-body vibration was completed by 577 workers (response rate 79%) who were employed in certain functions by two companies 11 years before. The relation between the occupational history of driving vibrating vehicles (mainly agricultural tractors) and back pain has been analyzed. The prevalence of reported back pain is approximately 10% higher in the tractor drivers than in workers not exposed to vibration. The increase is mainly due to more pain in the lower back and more pain lasting at least several days. A vibration dose was calculated by assigning each vehicle driven a vibration magnitude, estimated on the base of vibration measurements. The prevalence of back pain increases with the vibration dose. The highest prevalence odds ratios are found for the more severe types of back pain. These prevalence odds ratios do not increase with the vibration dose. This might be due to health-related selection which is more pronounced for severe back pain than for back pain in general. The two components of the vibration dose, duration of exposure and estimated mean vibration magnitude, have also been considered separately. Back pain increases with duration of exposure but it does not increase with the estimated mean magnitude of vibration. This is probably due to the inaccuracy of this estimate. The higher prevalence of back pain in tractor drivers might be (partly) caused by whole-body vibration, but prolonged sitting and posture might also be of influence.

  16. Thermal Vibrational Convection

    NASA Astrophysics Data System (ADS)

    Gershuni, G. Z.; Lyubimov, D. V.

    1998-08-01

    Recent increasing awareness of the ways in which vibrational effects can affect low-gravity experiments have renewed interest in the study of thermal vibrational convection across a wide range of fields. For example, in applications where vibrational effects are used to provide active control of heat and mass transfer, such as in heat exchangers, stirrers, mineral separators and crystal growth, a sound understanding of the fundamental theory is required. In Thermal Vibrational Convection, the authors present the theory of vibrational effects caused by a static gravity field, and of fluid flows which appear under vibration in fluid-filled cavities. The first part of the book discusses fluid-filled cavities where the fluid motion only appears in the presence of temperature non-uniformities, while the second considers those situations where the vibrational effects are caused by a non-uniform field. Throughout, the authors concentrate on consideration of high frequency vibrations, where averaging methods can be successfully applied in the study of the phenomena. Written by two of the pioneers in this field, Thermal Vibrational Convection will be of great interest to scientists and engineers working in the many areas that are concerned with vibration, and its effect on heat and mass transfer. These include hydrodynamics, hydro-mechanics, low gravity physics and mechanics, and geophysics. The rigorous approach adopted in presenting the theory of this fascinating and highly topical area will facilitate a greater understanding of the phenomena involved, and will lead to the development of more and better-designed experiments.

  17. Evaluation of the vibration attenuation properties of an air-inflated cushion with two different heavy machinery seats in multi-axis vibration environments including jolts.

    PubMed

    Ji, Xiaoxu; Eger, Tammy R; Dickey, James P

    2017-03-01

    Seats and cushions can attenuate whole-body vibration (WBV) exposures and minimize health risks for heavy machine operators. We successfully developed neural network (NN) algorithms to identify the vibration attenuation properties for four different seating conditions (seat/cushion combinations), and implemented each of the NN models to predict the equivalent daily exposure A(8) values for various vehicles in the forestry and mining environments. We also evaluated the performance of the new prototype No-Jolt™ air-inflated cushion and the original cushion of each seat with jolt exposures. We observed that the air cushion significantly improved the vibration attenuation properties of the seat that initially had good performance, but not for the seat that had relatively poor vibration attenuation properties. In addition, operator's anthropometrics and sex influenced the performance of the air-inflated cushion when the vibration environment included jolt exposures.

  18. Vibrating fuel grapple. [LMFBR

    DOEpatents

    Chertock, A.J.; Fox, J.N.; Weissinger, R.B.

    A reactor refueling method is described which utilizes a vibrating fuel grapple for removing spent fuel assemblies from a reactor core. It incorporates a pneumatic vibrator in the grapple head which allows additional withdrawal capability without exceeding the allowable axial force limit. The only moving part in the vibrator is a steel ball, pneumatically driven by a gas, such as argon, around a track, with centrifugal force created by the ball being transmitted through the grapple to the assembly handling socket.

  19. Vibrating fuel grapple

    DOEpatents

    Chertock, deceased, Alan J.; Fox, Jack N.; Weissinger, Robert B.

    1982-01-01

    A reactor refueling method utilizing a vibrating fuel grapple for removing spent fuel assemblies from a reactor core which incorporates a pneumatic vibrator in the grapple head, enabling additional withdrawal capability without exceeding the allowable axial force limit. The only moving part in the vibrator is a steel ball, pneumatically driven by a gas, such as argon, around a track, with centrifugal force created by the ball being transmitted through the grapple to the assembly handling socket.

  20. Critical ischemia of the fingers in an auto mechanic as a result of occupational exposure.

    PubMed

    Rabczyński, Maciej; Kuźnik, Edwin; Guziński, Maciej; Adamiec, Rajmund

    2014-09-10

    Hypothenar hammer syndrome is a rare cause of ischemic fingers observed mainly in young men smoking cigarettes and it is associated with repeated trauma of the ulnar artery in the area of the hypothenar eminence of the dominant-hand arm, resulting in a deficit of blood supply with the occurrence of hand symptoms typical for chronic and sometimes critical ischemia. Artery injury in this location is most often the result of multiple repetitions of the same activity being mostly the result of occupational exposure. We present a case of a 27-year-old car mechanic admitted to the hospital with symptoms of critical ischemia of the fingers III, IV, and V of the right hand, which resolved after conservative treatment.

  1. Critical ischemia of the fingers in an auto mechanic as a result of occupational exposure.

    PubMed

    Rabczyński, Maciej; Kuźnik, Edwin; Guziński, Maciej; Adamiec, Rajmund

    2015-01-01

    Hypothenar hammer syndrome is a rare cause of ischemic fingers observed mainly in young men smoking cigarettes and it is associated with repeated trauma of the ulnar artery in the area of the hypothenar eminence of the dominant-hand arm, resulting in a deficit of blood supply with the occurrence of hand symptoms typical for chronic and sometimes critical ischemia. Artery injury in this location is most often the result of multiple repetitions of the same activity being mostly the result of occupational exposure. We present a case of a 27-year-old car mechanic admitted to the hospital with symptoms of critical ischemia of the fingers III, IV, and V of the right hand, which resolved after conservative treatment.

  2. [Dynamics of morphofunctional state of central nervous system in white rates exposed to vibration].

    PubMed

    Pankov, V A; Katamanova, E V; Kuleshova, M V; Titov, E A; Kartapol'tseva, N V; Iakimova, N L; Lizarev, A V

    2014-01-01

    The authors presented results of experimental studies assessing influence of vibration on white rats. Dynamics of morphologic changes development in brain of experimental animals exposed to vibration were shown. Exposure to vibration in white rats daily during 4 hours over 15 days causes astrogliosis--compensation process in response to brain injury; over 1 month--causes morphologic brain changes (vacuoles formation in neuropile, decrease in astroglia cells number); over 2 months--causes lower plasticity of brain neurons, preserved astrogliosis; over 4 months--causes perivascular edema. Changes in brain bioelectric activity indicate stages of pathologic process in central nervous system. Increase in vibration exposure duration leads to more severe diffuse pathologic changes in brain and local cortical and diencephalic disorders. Exposure to vibration in white rats causes increase in general mobility, nonspecific activation of behaviour, intense emotional exertion, negative emotional state, but less severe effects of vibration were seen in orientative-trying reactions that are inborn, inherited forms of behaviour.

  3. Tool-specific performance of vibration-reducing gloves for attenuating palm-transmitted vibrations in three orthogonal directions.

    PubMed

    Dong, Ren G; Welcome, Daniel E; Peterson, Donald R; Xu, Xueyan S; McDowell, Thomas W; Warren, Christopher; Asaki, Takafumi; Kudernatsch, Simon; Brammer, Antony

    2014-11-01

    Vibration-reducing (VR) gloves have been increasingly used to help reduce vibration exposure, but it remains unclear how effective these gloves are. The purpose of this study was to estimate tool-specific performances of VR gloves for reducing the vibrations transmitted to the palm of the hand in three orthogonal directions (3-D) in an attempt to assess glove effectiveness and aid in the appropriate selection of these gloves. Four typical VR gloves were considered in this study, two of which can be classified as anti-vibration (AV) gloves according to the current AV glove test standard. The average transmissibility spectrum of each glove in each direction was synthesized based on spectra measured in this study and other spectra collected from reported studies. More than seventy vibration spectra of various tools or machines were considered in the estimations, which were also measured in this study or collected from reported studies. The glove performance assessments were based on the percent reduction of frequency-weighted acceleration as is required in the current standard for assessing the risk of vibration exposures. The estimated tool-specific vibration reductions of the gloves indicate that the VR gloves could slightly reduce (<5%) or marginally amplify (<10%) the vibrations generated from low-frequency (<25 Hz) tools or those vibrating primarily along the axis of the tool handle. With other tools, the VR gloves could reduce palm-transmitted vibrations in the range of 5%-58%, primarily depending on the specific tool and its vibration spectra in the three directions. The two AV gloves were not more effective than the other gloves with some of the tools considered in this study. The implications of the results are discussed.

  4. Multiple direction vibration fixture

    DOEpatents

    Cericola, Fred; Doggett, James W.; Ernest, Terry L.; Priddy, Tommy G.

    1991-01-01

    An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.

  5. Vibrational Schroedinger Cats

    NASA Technical Reports Server (NTRS)

    Kis, Z.; Janszky, J.; Vinogradov, An. V.; Kobayashi, T.

    1996-01-01

    The optical Schroedinger cat states are simple realizations of quantum states having nonclassical features. It is shown that vibrational analogues of such states can be realized in an experiment of double pulse excitation of vibrionic transitions. To track the evolution of the vibrational wave packet we derive a non-unitary time evolution operator so that calculations are made in a quasi Heisenberg picture.

  6. Vibration control in accelerators

    SciTech Connect

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  7. Vibration in textile mills.

    PubMed

    Sorainen, E

    1988-12-01

    The vibration in nine halls of the six weaving mills was measured in 1978-80. The measurements were taken at regular intervals in the working area of the weavers, which was the wooden support attached to the machine or the floor of the textile mill. The accelerometer was mounted with screws onto the working area, and all vibration samples were analyzed immediately, in situ. The vibration of the floor was tangent to or exceeded slightly the "reduced comfort boundary" specified in International Standard ISO 2631/1 (1985) only in the areas where the floor was not against the ground. The greatest amount of vibration occurred on the supports which had been attached to the machines. On these supports the vibration in places exceeded the "fatigue-decreased proficiency boundary."

  8. Effect of Vibration Frequency and Acceleration Magnitude of Chicken Embryos on Viability and Development. Phase 1

    DTIC Science & Technology

    1990-11-01

    JUN 86 Previous editions are obsolete, SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED Preface Vibration exposure standards for pregnant women and...potential hazard associated with vibration exposure , continue to fly during their first trimester, not reporting their pregnancy to their flight surgeon...until after the 4th month to avoid over 6 months of medical suspension and administrative action. Thus, the true exposure rate of pregnant women to

  9. Vibration as an exercise modality: how it may work, and what its potential might be.

    PubMed

    Rittweger, Jörn

    2010-03-01

    Whilst exposure to vibration is traditionally regarded as perilous, recent research has focussed on potential benefits. Here, the physical principles of forced oscillations are discussed in relation to vibration as an exercise modality. Acute physiological responses to isolated tendon and muscle vibration and to whole body vibration exercise are reviewed, as well as the training effects upon the musculature, bone mineral density and posture. Possible applications in sports and medicine are discussed. Evidence suggests that acute vibration exercise seems to elicit a specific warm-up effect, and that vibration training seems to improve muscle power, although the potential benefits over traditional forms of resistive exercise are still unclear. Vibration training also seems to improve balance in sub-populations prone to fall, such as frail elderly people. Moreover, literature suggests that vibration is beneficial to reduce chronic lower back pain and other types of pain. Other future indications are perceivable.

  10. Whole-Body Vibration Assessment of the Palletized Load System

    DTIC Science & Technology

    1994-07-01

    iderrtlfy by block number) An evaluation of all new tactical vehicles and aircraft is required to a.sosas potential whole-body vibration ( WBV ) health...tolerances for WBV exposure were on course 2. The results also show that both driver and passenger were exposed to a Hazard Severity-Category III (marginal...to be evaluated for potential whole-body vibration ( WBV ) health hazards to their crevmembers. This - *3uirement is contained in AR 40-10, "Health

  11. U.S. TAG for ISO/TC43, Acoustics, IEC/TC29 Electroacoustics, and ISO/TC108/SC4 Human Exposure to Mechanical Vibration and Shock (Minutes of the Accredited Standards Committee on Bioacoustics, S3)

    DTIC Science & Technology

    1990-11-29

    May 1991 The meeting was called to order by Ms. L.A. Wilber , Chair S3, at 1:30 PM in the Lincoln Room, the Omni Inner Harbor Hotel, Baltimore...Academy of Otolaryngology (alternate for R.J. Naunton) Nixon, C. U.S. Air Force Toothman, E.H. FINCRP Wilber , L.A. Chair S3; ASA representative S3...Conduction Vibrator - D. Dirks, Chair Ms. Wilber said at the last meeting that she had contacted the working group chair to prepare the international

  12. Quantification of the effects of audible rattle and source type on the human response to environmental vibration.

    PubMed

    Woodcock, J; Sica, G; Peris, E; Sharp, C; Moorhouse, A T; Waddington, D C

    2016-03-01

    The present research quantifies the influence of source type and the presence of audible vibration-induced rattle on annoyance caused by vibration in residential environments. The sources of vibration considered are railway and the construction of a light rail system. Data were measured in the United Kingdom using a socio-vibration survey (N = 1281). These data are analyzed using ordinal logit models to produce exposure-response relationships describing community annoyance as a function of vibration exposure. The influence of source type and the presence of audible vibration-induced rattle on annoyance are investigated using dummy variable analysis, and quantified using odds-ratios and community tolerance levels. It is concluded that the sample population is more likely to express higher levels of annoyance if the vibration source is construction compared to railway, and if vibration-induced rattle is audible.

  13. Associations between anthropometric factors and peripheral neuropathy defined by vibrotactile perception threshold among industrial vibrating tool operators in Japan

    PubMed Central

    Takemura, Shigeki; Yoshimasu, Kouichi; Tsuno, Kanami; Fukumoto, Jin; Kuroda, Mototsugu; Miyashita, Kazuhisa

    2016-01-01

    Objectives: The effect of anthropometric factors on the fingertip vibrotactile perception threshold (VPT) of industrial vibrating tool operators (IVTOs) is not well known. The purpose of this study was to investigate the associations between anthropometric factors and fingertip VPT. Methods: We included for analysis two groups of IVTOs: Group 1, predominantly forestry workers (n=325); and Group 2, public servants (n=68). These IVTOs regularly received medical examinations to evaluate hand-arm vibration syndrome. In the examination, measurements of their fingertip VPTs were taken before and after cold-water immersion (10 minutes at 10°C for Group 1 and 5 minutes at 12°C for Group 2). Their body height and weight were measured to calculate the body mass index (BMI). The presence of peripheral neuropathy (PN) was defined as a VPT ≥17.5 dB at 10 minutes after finishing immersion. Results: In the univariate analysis, weight and BMI were associated with a decreased risk of PN in both Groups 1 and 2. The negative association between BMI and PN remained in the multivariate analysis consistently, but weight reached marginal significance only in the multivariate analysis without BMI in both the groups. Age was positively associated with PN consistently in Group 1 but not in Group 2. Years exposed to vibration showed positive association with PN only in the univariate analysis of Group 1. Conclusions: Among IVTOs, factors reflecting body heat production, such as weight and BMI, were associated with a decreased risk of VPT-defined PN, regardless of the task engaged. PMID:27010084

  14. Vibration Analysis and the Accelerometer

    ERIC Educational Resources Information Center

    Hammer, Paul

    2011-01-01

    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  15. PREFACE: Vibrations at surfaces Vibrations at surfaces

    NASA Astrophysics Data System (ADS)

    Rahman, Talat S.

    2011-12-01

    This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of

  16. NIF Ambient Vibration Measurements

    SciTech Connect

    Noble, C.R.; Hoehler, M.S., S.C. Sommer

    1999-11-29

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B.

  17. Whole-Body Vibration Assessment of the M9161A1 Truck Trailer

    DTIC Science & Technology

    1993-08-01

    nd safety exposure Limit 21 8AIaRL summary of analysis per ISO-2631* guideline on RUN-o0 Driver I whole-body vibration ( WBV ) I I 19-AUG-93 8:21:57 1...safety exposure Limit 23 usAaaL summary of analysis per ISO-2631* guideline on RUI-02 Driver I whole-body vibration ( WBV )I ** i~ii19-AUS-93 5:21 58 1... exposure timlt 32 USMIL summary of analysis per 0so-2631* guideline on !RU-07 Passenger whole-body vibration ( WBV ) 19-AUG-93 M::01UM 1: Vehicle

  18. Human mesenchymal stromal cells are mechanosensitive to vibration stimuli.

    PubMed

    Kim, I S; Song, Y M; Lee, B; Hwang, S J

    2012-12-01

    Low-magnitude high-frequency (LMHF) vibrations have the ability to stimulate bone formation and reduce bone loss. However, the anabolic mechanisms that are mediated by vibration in human bone cells at the cellular level remain unclear. We hypothesized that human mesenchymal stromal cells (hMSCs) display direct osteoblastic responses to LMHF vibration signals. Daily exposure to vibrations increased the proliferation of hMSCs, with the highest efficiency occurring at a peak acceleration of 0.3 g and vibrations at 30 to 40 Hz. Specifically, these conditions promoted osteoblast differentiation through an increase in alkaline phosphatase activity and in vitro matrix mineralization. The effect of vibration on the expression of osteogenesis-related factors differed depending on culture method. hMSCs that underwent vibration in a monolayer culture did not exhibit any changes in the expressions of these genes, while cells in three-dimensional culture showed increased expression of type I collagen, osteoprotegerin, or VEGF, and VEGF induction appeared in 2 different hMSC lines. These results are among the first to demonstrate a dose-response effect upon LMHF stimulation, thereby demonstrating that hMSCs are mechanosensitive to LMHF vibration signals such that they could facilitate the osteogenic process.

  19. 2008 Vibrational Spectroscopy

    SciTech Connect

    Philip J. Reid

    2009-09-21

    The conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and interfaces. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of systems.

  20. Guidelines for noise and vibration levels for the space station

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Human habitability noise and vibration guidelines for the Space Station are presented. These were developed by a working group of experts established by the Committee on Hearing, Bioacoustics, and Biomechanics (CHABA) of the National Research Council's Commission on Behavioral and Social Science and Education. Noise exposure limits are suggested that will permit adequate speech communication, sleep, and hearing safety. Vibration exposure limits are suggested which will provide adequate comfort and permit adequate task performance. These are provided for guidance only for setting criteria. The exact criteria will depend on Space Station design and duty cycles.

  1. Laboratory and workplace assessments of rivet bucking bar vibration emissions.

    PubMed

    McDowell, Thomas W; Warren, Christopher; Xu, Xueyan S; Welcome, Daniel E; Dong, Ren G

    2015-04-01

    Sheet metal workers operating rivet bucking bars are at risk of developing hand and wrist musculoskeletal disorders associated with exposures to hand-transmitted vibrations and forceful exertions required to operate these hand tools. New bucking bar technologies have been introduced in efforts to reduce workplace vibration exposures to these workers. However, the efficacy of these new bucking bar designs has not been well documented. While there are standardized laboratory-based methodologies for assessing the vibration emissions of many types of powered hand tools, no such standard exists for rivet bucking bars. Therefore, this study included the development of a laboratory-based method for assessing bucking bar vibrations which utilizes a simulated riveting task. With this method, this study evaluated three traditional steel bucking bars, three similarly shaped tungsten alloy bars, and three bars featuring spring-dampeners. For comparison the bucking bar vibrations were also assessed during three typical riveting tasks at a large aircraft maintenance facility. The bucking bars were rank-ordered in terms of unweighted and frequency-weighted acceleration measured at the hand-tool interface. The results suggest that the developed laboratory method is a reasonable technique for ranking bucking bar vibration emissions; the lab-based riveting simulations produced similar rankings to the workplace rankings. However, the laboratory-based acceleration averages were considerably lower than the workplace measurements. These observations suggest that the laboratory test results are acceptable for comparing and screening bucking bars, but the laboratory measurements should not be directly used for assessing the risk of workplace bucking bar vibration exposures. The newer bucking bar technologies exhibited significantly reduced vibrations compared to the traditional steel bars. The results of this study, together with other information such as rivet quality, productivity, tool

  2. Laboratory and Workplace Assessments of Rivet Bucking Bar Vibration Emissions

    PubMed Central

    McDowell, Thomas W.; Warren, Christopher; Xu, Xueyan S.; Welcome, Daniel E.; Dong, Ren G.

    2016-01-01

    Sheet metal workers operating rivet bucking bars are at risk of developing hand and wrist musculoskeletal disorders associated with exposures to hand-transmitted vibrations and forceful exertions required to operate these hand tools. New bucking bar technologies have been introduced in efforts to reduce workplace vibration exposures to these workers. However, the efficacy of these new bucking bar designs has not been well documented. While there are standardized laboratory-based methodologies for assessing the vibration emissions of many types of powered hand tools, no such standard exists for rivet bucking bars. Therefore, this study included the development of a laboratory-based method for assessing bucking bar vibrations which utilizes a simulated riveting task. With this method, this study evaluated three traditional steel bucking bars, three similarly shaped tungsten alloy bars, and three bars featuring spring-dampeners. For comparison the bucking bar vibrations were also assessed during three typical riveting tasks at a large aircraft maintenance facility. The bucking bars were rank-ordered in terms of unweighted and frequency-weighted acceleration measured at the hand-tool interface. The results suggest that the developed laboratory method is a reasonable technique for ranking bucking bar vibration emissions; the lab-based riveting simulations produced similar rankings to the workplace rankings. However, the laboratory-based acceleration averages were considerably lower than the workplace measurements. These observations suggest that the laboratory test results are acceptable for comparing and screening bucking bars, but the laboratory measurements should not be directly used for assessing the risk of workplace bucking bar vibration exposures. The newer bucking bar technologies exhibited significantly reduced vibrations compared to the traditional steel bars. The results of this study, together with other information such as rivet quality, productivity, tool

  3. Force Limited Vibration Testing

    NASA Technical Reports Server (NTRS)

    Scharton, Terry; Chang, Kurng Y.

    2005-01-01

    This slide presentation reviews the concept and applications of Force Limited Vibration Testing. The goal of vibration testing of aerospace hardware is to identify problems that would result in flight failures. The commonly used aerospace vibration tests uses artificially high shaker forces and responses at the resonance frequencies of the test item. It has become common to limit the acceleration responses in the test to those predicted for the flight. This requires an analysis of the acceleration response, and requires placing accelerometers on the test item. With the advent of piezoelectric gages it has become possible to improve vibration testing. The basic equations have are reviewed. Force limits are analogous and complementary to the acceleration specifications used in conventional vibration testing. Just as the acceleration specification is the frequency spectrum envelope of the in-flight acceleration at the interface between the test item and flight mounting structure, the force limit is the envelope of the in-flight force at the interface . In force limited vibration tests, both the acceleration and force specifications are needed, and the force specification is generally based on and proportional to the acceleration specification. Therefore, force limiting does not compensate for errors in the development of the acceleration specification, e.g., too much conservatism or the lack thereof. These errors will carry over into the force specification. Since in-flight vibratory force data are scarce, force limits are often derived from coupled system analyses and impedance information obtained from measurements or finite element models (FEM). Fortunately, data on the interface forces between systems and components are now available from system acoustic and vibration tests of development test models and from a few flight experiments. Semi-empirical methods of predicting force limits are currently being developed on the basis of the limited flight and system test

  4. Low back and neck pain in locomotive engineers exposed to whole-body vibration.

    PubMed

    McBride, David; Paulin, Sara; Herbison, G Peter; Waite, David; Bagheri, Nasser

    2014-01-01

    The objective of this study was to determine the prevalence and excess risk of low back pain and neck pain in locomotive engineers, and to investigate the relationship of both with whole-body vibration exposure. A cross-sectional survey comparing locomotive engineers with other rail worker referents was conducted. Current vibration levels were measured, cumulative exposures calculated for engineers and referents, and low back and neck pain assessed by a self-completed questionnaire. Median vibration exposure in the z- (vertical) axis was 0.62 m/s(2). Engineers experienced more frequent low back and neck pain, odds ratios (ORs) of 1.77 (95% confidence interval [CI]: 1.19-2.64) and 1.92 (95% CI: 1.22-3.02), respectively. The authors conclude that vibration close to the "action levels" of published standards contribute to low back and neck pain. Vibration levels need to be assessed conservatively and control measures introduced.

  5. Influence of local vibration on plasma creatine phosphokinase (CPK) activity.

    PubMed Central

    Okada, A; Okuda, H; Inaba, R; Ariizumi, M

    1985-01-01

    This study was designed to obtain basic information about the mechanism of the occurrence of muscular disorders after exposure to vibration. The hind legs of rats were exposed to acute and chronic local vibration at frequencies of 30, 60, 120, 240, 480, and 960 Hz with a constant acceleration of 50 m/sec2. The exposure time was four hours for acute, and four hours a day for two weeks continuously for chronic exposure. Blood was collected after exposure to measure plasma creatine phosphokinase (CPK) activity. In both exposure groups the activity of plasma CPK was significantly higher at 30, 60, 120, 240, and 480 Hz compared with the control group and was especially high at 30 Hz; there was no significant change at 960 Hz. As a result of an analysis of the CPK isoenzymes, the increase in plasma CPK activity was shown to be due to the activity of the plasma CPK-MM fraction, originating in the skeletal muscle. Plasma CPK activity showed a tendency to decrease gradually with the increase in vibration frequency during acute exposure but showed no such tendency during chronic exposure. There was no remarkable pathohistological change in muscle preparations from the hind legs, hence it was presumed that the increase in plasma CPK activity was caused not by the morphological changes of muscle but by other mechanisms, such as an increase in the permeability of the cell membrane. Images PMID:4041385

  6. [The effect of the vibration and noise factor on the physical work capacity and autonomic nervous system function of workers in vibration-hazardous jobs].

    PubMed

    Sova, S H; Shapovalova, V A; Korshak, V M

    1999-03-01

    An unexampled study was made of the peripheral vegetative incompetence syndrome developing in vibration disease. It is shown that chronic occupational exposure to vibration and noise results in damage to the segmentary apparatus of the vegetative nervous system. Vegetative inadequacies are manifested by impairement of cardiovascular functions. With exposure to vibration and noise, it is the sympathetic portion of the vegetative nervous system that is first affected. The service duration-related progression of the pathological process results in increase of the share of parasympathetic pathology. A change in vegetative regulation adversely affects physical performance in those workers who have come to be exposed to a vibronoise factor over long periods of time.

  7. Multiple vibration displacements at multiple vibration frequencies stress impact on human femur computational analysis.

    PubMed

    Ezenwa, Bertram; Yeoh, Han Teik

    2011-01-01

    Whole-body vibration training using single-frequency methods has been reported to improve bone mineral density. However, the intensities can exceed safe levels and have drawn unfavorable comments from subjects. In a previous article, whole-body vibration training using multiple vibration displacements at multiple vibration frequencies (MVDMVF) was reported. This article presents the computational simulation evaluation of stress dispersion on a femur with and without the MVDMVF input. A model of bone femur was developed from a computed tomography image of the lower limb with Mimics software from Materialise (Plymouth, Michigan). We analyzed the mesh model in COMSOL Multiphysics (COMSOL, Inc; Burlington, Massachusetts) with and without MVDMVF input, with constraints and load applied to the femur model. We compared the results with published joint stresses during walking, jogging, and stair-climbing and descending and with standard vibration exposure limits. Results showed stress levels on the femur are significantly higher with MVDMVF input than without. The stress levels were within the published levels during walking and stair-climbing and descending but below the stress levels during jogging. Our computational results demonstrate that MVDMVF generates stress level equivalent to the level during walking and stair-climbing. This evidence suggests that MVDMVF is safe for prolonged use in subjects with osteoporosis who ambulate independently.

  8. Vibrational spectroscopy of HNS degradation

    NASA Astrophysics Data System (ADS)

    Alam, M. Kathleen; Martin, Laura; Schmitt, Randal L.; Ten Eyck, Gregory A.; Welle, Eric

    2008-08-01

    Hexanitrostilbene (HNS) is a widely used explosive, due in part to its high thermal stability. Degradation of HNS is known to occur through UV, chemical exposure, and heat exposure, which can lead to reduced performance of the material. Common methods of testing for HNS degradation include wet chemical and surface area testing of the material itself, and performance testing of devices that use HNS. The commonly used chemical tests, such as volatility, conductivity and contaminant trapping provide information on contaminants rather than the chemical stability of the HNS itself. Additionally, these tests are destructive in nature. As an alternative to these methods, we have been exploring the use of vibrational spectroscopy as a means of monitoring HNS degradation non-destructively. In particular, infrared (IR) spectroscopy lends itself well to non-destructive analysis. Molecular variations in the material can be identified and compared to pure samples. The utility of IR spectroscopy was evaluated using pressed pellets of HNS exposed to DETA (diethylaminetriamine). Amines are known to degrade HNS, with the proposed product being a σ-adduct. We have followed these changes as a function of time using various IR sampling techniques including photoacoustic and attenuated total reflectance (ATR).

  9. The Physics of Vibration

    NASA Astrophysics Data System (ADS)

    Pippard, A. B.

    1989-11-01

    The study of vibration in physical systems is an important part of almost all fields in physics and engineering. This work, originally published in two volumes, examines the classical aspects in Part I and the quantum oscillator in Part II. The classical linear vibrator is treated first and the underlying unity of all linear oscillations in electrical, mechanical and acoustic systems is emphasized. Following this the book turns to the treatment of nonlinear vibrations, a field with which engineers and physicists are generally less familiar. In Part II the emphasis turns to quantum systems, that is those systems which can only be adequately described by quantum mechanics. The treatment concentrates on vibrations in atoms and molecules and their interaction with electromagnetic radiation. The similarities of classical and quantum methods are stressed and the limits of the classical treatment are examined. Throughout the book, each phenomenon discussed is illustrated with many examples and theory and experiment are compared. Although the reader may find that the physics discussed is demanding and the concepts are subtle in places, all mathematics used is familiar to both engineers and experimental scientists. Although not a textbook this is a useful introduction to the more advanced mathematical treatment of vibrations as it bridges the gap between the basic principles and more specialized concepts. It will be of great interest to advanced undergraduates and postgraduates as well as applied mathematicians, physicists and engineers in university and industry.

  10. [Clinical and diagnostic value of heart rate variabilities in workers exposed to noise and vibration].

    PubMed

    Serebriakov, P V; Melent'ev, A V; Demina, I D

    2010-01-01

    Noise and vibration cause disorders of vegetative regulation of cardiovascular system. Daily ECG monitoring with heart rate variabilities analysis enables quanitative evaluation of disordered vegetative control over heart rate and diagnosis of cardioneuropathy caused by long occupational exposure to noise and vibration.

  11. [The characteristics of the development of gallbladder and biliary tract pathology under the influence of vibration].

    PubMed

    Preobrazhenskiĭ, V N; Merkulov, V M; Vasil'ev, A Iu; Ermakova, T I; Borisov, B P

    1995-01-01

    The examination of 86 helicopter pilots has shown that their exposure to vibration leads to biliary and gallbladder damage which aggravates with longer service. As indicated by spectroscopy and gas-liquid chromatography, vibration affects colloid-osmotic properties of bile: molecules grow in size, bile acids retention becomes longer.

  12. Measurement of noise and vibration in Canadian forces armoured vehicles.

    PubMed

    Nakashima, Ann M; Borland, Matthew J; Abel, Sharon M

    2007-04-01

    Noise and whole-body vibration measurements were made in the following Canadian Forces vehicles: LAV III, Bison and M113A2 ADATS (air defence anti-tank system). Measurements were made at different crew positions while the vehicles were driven at different speeds over rough terrain and paved roads. The participants completed a questionnaire at the end of each measurement session on their reactions to the noise and vibration. Noise levels were as high as 115 dBA in the ADATS, 102 dBA in the Bison and 96 dBA in the LAV III, exceeding the Canada Labour Code exposure limit of 87 dBA for 8 h(1)). A communications headset was found to be sufficient to reduce the noise exposure to safe levels in most cases. The vector sum vibration magnitudes for the LAV III and Bison were relatively low during highway driving (0.3 m/s(2) for both vehicles) compared to rough terrain (0.71 and 1.36 m/s(2), respectively). The ADATS vibration increased with driving speed (0.62 m/s(2) at 8 km/h and 1.26 m/s(2) at 32 km/h). The questionnaire responses indicated that half the crewmembers had difficulty communicating in vehicle noise, but were generally unaffected physically by vibration. The latter result may have been due to the relatively short exposure duration.

  13. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  14. Fiber optic vibration sensor

    DOEpatents

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  15. Fiber optic vibration sensor

    DOEpatents

    Dooley, Joseph B.; Muhs, Jeffrey D.; Tobin, Kenneth W.

    1995-01-01

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  16. Vibrational spectroscopy of resveratrol

    NASA Astrophysics Data System (ADS)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  17. Development of vibration isolation platform for low amplitude vibration

    NASA Astrophysics Data System (ADS)

    Lee, Dae-Oen; Park, Geeyong; Han, Jae-Hung

    2014-03-01

    The performance of high precision payloads on board a satellite is extremely sensitive to vibration. Although vibration environment of a satellite on orbit is very gentle compared to the launch environment, even a low amplitude vibration disturbances generated by reaction wheel assembly, cryocoolers, etc may cause serious problems in performing tasks such as capturing high resolution images. The most commonly taken approach to protect sensitive payloads from performance degrading vibration is application of vibration isolator. In this paper, development of vibration isolation platform for low amplitude vibration is discussed. Firstly, single axis vibration isolator is developed by adapting three parameter model using bellows and viscous fluid. The isolation performance of the developed single axis isolator is evaluated by measuring force transmissibility. The measured transmissibility shows that both the low Q-factor (about 2) and the high roll-off rate (about -40 dB/dec) are achieved with the developed isolator. Then, six single axis isolators are combined to form Stewart platform in cubic configuration to provide multi-axis vibration isolation. The isolation performance of the developed multi-axis isolator is evaluated using a simple prototype reaction wheel model in which wheel imbalance is the major source of vibration. The transmitted force without vibration isolator is measured and compared with the transmitted force with vibration isolator. More than 20 dB reduction of the X and Y direction (radial direction of flywheel) disturbance is observed for rotating wheel speed of 100 Hz and higher.

  18. Vibration Propagation in Spider Webs

    NASA Astrophysics Data System (ADS)

    Hatton, Ross; Otto, Andrew; Elias, Damian

    Due to their poor eyesight, spiders rely on web vibrations for situational awareness. Web-borne vibrations are used to determine the location of prey, predators, and potential mates. The influence of web geometry and composition on web vibrations is important for understanding spider's behavior and ecology. Past studies on web vibrations have experimentally measured the frequency response of web geometries by removing threads from existing webs. The full influence of web structure and tension distribution on vibration transmission; however, has not been addressed in prior work. We have constructed physical artificial webs and computer models to better understand the effect of web structure on vibration transmission. These models provide insight into the propagation of vibrations through the webs, the frequency response of the bare web, and the influence of the spider's mass and stiffness on the vibration transmission patterns. Funded by NSF-1504428.

  19. Noise, vibration and changes in wakefulness during helicopter flight.

    PubMed

    Landström, U; Löfstedt, P

    1987-02-01

    The investigation was carried out in cooperation with the helicopter school AF 1 in Boden. Measurements were made in two different types of helicopter, Hkp 3 and Hkp 6. Three different parameters were recorded during the flights: noise, vibrations, and wakefulness. Noise and vibration exposures were mainly correlated to the main rotor energy and frequency. Both types of exposure were dominated by lower frequencies, below 10 Hz. Analyses of wakefulness during long-distance flights, about 4 h, and short-distance flights, less than 2 h, were based on EEG and EKG recordings. As expected the level of wakefulness was influenced by the stress upon the pilots. Take-offs and landings, as well as unexpected events during the flight, were correlated to an increased level of wakefulness. In some cases flying was correlated to a gradual increase of weariness. The correlation between weariness, types of flying, and the external environmental factors of noise and vibration, is also discussed.

  20. The Effect of a Mechanical Arm System on Portable Grinder Vibration Emissions.

    PubMed

    McDowell, Thomas W; Welcome, Daniel E; Warren, Christopher; Xu, Xueyan S; Dong, Ren G

    2016-04-01

    Mechanical arm systems are commonly used to support powered hand tools to alleviate ergonomic stressors related to the development of workplace musculoskeletal disorders. However, the use of these systems can increase exposure times to other potentially harmful agents such as hand-transmitted vibration. To examine how these tool support systems affect tool vibration, the primary objectives of this study were to characterize the vibration emissions of typical portable pneumatic grinders used for surface grinding with and without a mechanical arm support system at a workplace and to estimate the potential risk of the increased vibration exposure time afforded by the use of these mechanical arm systems. This study also developed a laboratory-based simulated grinding task based on the ISO 28927-1 (2009) standard for assessing grinder vibrations; the simulated grinding vibrations were compared with those measured during actual workplace grinder operations. The results of this study demonstrate that use of the mechanical arm may provide a health benefit by reducing the forces required to lift and maneuver the tools and by decreasing hand-transmitted vibration exposure. However, the arm does not substantially change the basic characteristics of grinder vibration spectra. The mechanical arm reduced the average frequency-weighted acceleration by about 24% in the workplace and by about 7% in the laboratory. Because use of the mechanical arm system can increase daily time-on-task by 50% or more, the use of such systems may actually increase daily time-weighted hand-transmitted vibration exposures in some cases. The laboratory acceleration measurements were substantially lower than the workplace measurements, and the laboratory tool rankings based on acceleration were considerably different than those from the workplace. Thus, it is doubtful that ISO 28927-1 is useful for estimating workplace grinder vibration exposures or for predicting workplace grinder acceleration rank

  1. The Effect of a Mechanical Arm System on Portable Grinder Vibration Emissions

    PubMed Central

    McDowell, Thomas W.; Welcome, Daniel E.; Warren, Christopher; Xu, Xueyan S.; Dong, Ren G.

    2016-01-01

    Mechanical arm systems are commonly used to support powered hand tools to alleviate ergonomic stressors related to the development of workplace musculoskeletal disorders. However, the use of these systems can increase exposure times to other potentially harmful agents such as hand-transmitted vibration. To examine how these tool support systems affect tool vibration, the primary objectives of this study were to characterize the vibration emissions of typical portable pneumatic grinders used for surface grinding with and without a mechanical arm support system at a workplace and to estimate the potential risk of the increased vibration exposure time afforded by the use of these mechanical arm systems. This study also developed a laboratory-based simulated grinding task based on the ISO 28927-1 (2009) standard for assessing grinder vibrations; the simulated grinding vibrations were compared with those measured during actual workplace grinder operations. The results of this study demonstrate that use of the mechanical arm may provide a health benefit by reducing the forces required to lift and maneuver the tools and by decreasing hand-transmitted vibration exposure. However, the arm does not substantially change the basic characteristics of grinder vibration spectra. The mechanical arm reduced the average frequency-weighted acceleration by about 24% in the workplace and by about 7% in the laboratory. Because use of the mechanical arm system can increase daily time-on-task by 50% or more, the use of such systems may actually increase daily time-weighted hand-transmitted vibration exposures in some cases. The laboratory acceleration measurements were substantially lower than the workplace measurements, and the laboratory tool rankings based on acceleration were considerably different than those from the workplace. Thus, it is doubtful that ISO 28927-1 is useful for estimating workplace grinder vibration exposures or for predicting workplace grinder acceleration rank

  2. The Shock and Vibration Digest. Volume 18, Number 5

    DTIC Science & Technology

    1986-05-01

    Exposure to Vibrating Tools M. Bovenzi La Medicina del Lavoro, 2i, pp 313-321 (1984) 4 figs, 4 tables, 14 refs (in Italian) KEY WORDS: Human... Interna - tional Computers in Engin ’ting Conference and Exhibit], Chicago, IL (212-, 05-7057) 20-24 International Computeta in Engineering Conference

  3. Vibration of Shells

    NASA Technical Reports Server (NTRS)

    Leissa, A. W.

    1973-01-01

    The vibrational characteristics and mechanical properties of shell structures are discussed. The subjects presented are: (1) fundamental equations of thin shell theory, (2) characteristics of thin circular cylindrical shells, (3) complicating effects in circular cylindrical shells, (4) noncircular cylindrical shell properties, (5) characteristics of spherical shells, and (6) solution of three-dimensional equations of motion for cylinders.

  4. Blade Vibration Measurement System

    NASA Technical Reports Server (NTRS)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  5. Compact Vibration Damper

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G. (Inventor)

    2014-01-01

    A vibration damper includes a rigid base with a mass coupled thereto for linear movement thereon. Springs coupled to the mass compress in response to the linear movement along either of two opposing directions. A converter coupled to the mass converts the linear movement to a corresponding rotational movement. A rotary damper coupled to the converter damps the rotational movement.

  6. Nonlinear vibrational microscopy

    DOEpatents

    Holtom, Gary R.; Xie, Xiaoliang Sunney; Zumbusch, Andreas

    2000-01-01

    The present invention is a method and apparatus for microscopic vibrational imaging using coherent Anti-Stokes Raman Scattering or Sum Frequency Generation. Microscopic imaging with a vibrational spectroscopic contrast is achieved by generating signals in a nonlinear optical process and spatially resolved detection of the signals. The spatial resolution is attained by minimizing the spot size of the optical interrogation beams on the sample. Minimizing the spot size relies upon a. directing at least two substantially co-axial laser beams (interrogation beams) through a microscope objective providing a focal spot on the sample; b. collecting a signal beam together with a residual beam from the at least two co-axial laser beams after passing through the sample; c. removing the residual beam; and d. detecting the signal beam thereby creating said pixel. The method has significantly higher spatial resolution then IR microscopy and higher sensitivity than spontaneous Raman microscopy with much lower average excitation powers. CARS and SFG microscopy does not rely on the presence of fluorophores, but retains the resolution and three-dimensional sectioning capability of confocal and two-photon fluorescence microscopy. Complementary to these techniques, CARS and SFG microscopy provides a contrast mechanism based on vibrational spectroscopy. This vibrational contrast mechanism, combined with an unprecedented high sensitivity at a tolerable laser power level, provides a new approach for microscopic investigations of chemical and biological samples.

  7. C0 Vibrational analysis

    SciTech Connect

    Moore, Craig D.; Johnson, Todd; Martens, Mike; Syphers, Mike; McCrory, E.; McGee, Mike; Reilly, Rob; /Fermilab

    1999-08-01

    This is an attempt to document some of the measurements and analysis relating to the modulation of the spill due to the vibration of the magnets in the new C0 area. Not all of the relevant graphs were saved at the time, however an attempt has been made to show representative illustrations albeit not in the proper chronological order.

  8. Friction induced rail vibrations

    NASA Astrophysics Data System (ADS)

    Kralov, Ivan; Sinapov, Petko; Nedelchev, Krasimir; Ignatov, Ignat

    2012-11-01

    A model of rail, considered as multiple supported beam, subjected on friction induced vibration is studied in this work using FEM. The model is presented as continuous system and the mass and elastic properties of a real object are taken into account. The friction forces are nonlinear functions of the relative velocity during slipping. The problem is solved using Matlab Simulink.

  9. Frequency-dependence of psychophysical and physiological responses to hand-transmitted vibration.

    PubMed

    Griffin, Michael J

    2012-01-01

    This invited paper reviews experimental studies of the frequency-dependence of absolute thresholds for the perception of vibration, equivalent comfort contours, temporary changes in sensation caused by vibration, and reductions in finger blood flow caused by hand-transmitted vibration. Absolute thresholds depend on the contact conditions but for a typical hand grip the thresholds show greatest sensitivity to acceleration around 125 Hz. The frequency-dependence of discomfort caused by hand-transmitted vibration depends on vibration magnitude: similar to absolute thresholds at low magnitudes, but the discomfort at higher magnitudes is similar when the vibration velocity is similar (at frequencies between about 16 and 400 Hz). Hand-transmitted vibration induces temporary elevations in vibrotactile thresholds that reflect the sensory mechanisms excited by the vibration and are therefore highly dependent on the frequency of vibration. Hand-transmitted vibration reduces finger blood flow during and after exposure; when the vibration velocity is similar at all frequencies there is more vasoconstriction at frequencies greater than 63 Hz than at lower frequencies. A single frequency weighting cannot provide a good indication of how all effects of hand-transmitted vibration depend on vibration frequency. Furthermore, a single frequency weighting provides only an approximate indication of any single response, because many factors influence the frequency-dependence of responses to hand-transmitted vibration, including the magnitude of vibration, contact conditions, and individual differences. Although the frequency weighting in current standards extends from 8 to 1,000 Hz, frequencies greater than 400 Hz rarely increase the weighted value on tools and there is currently little psychophysical or physiological evidence of their effects.

  10. Gap junctional communication in osteocytes is amplified by low intensity vibrations in vitro.

    PubMed

    Uzer, Gunes; Pongkitwitoon, Suphannee; Ian, Cheng; Thompson, William R; Rubin, Janet; Chan, Meilin E; Judex, Stefan

    2014-01-01

    The physical mechanism by which cells sense high-frequency mechanical signals of small magnitude is unknown. During exposure to vibrations, cell populations within a bone are subjected not only to acceleratory motions but also to fluid shear as a result of fluid-cell interactions. We explored displacements of the cell nucleus during exposure to vibrations with a finite element (FE) model and tested in vitro whether vibrations can affect osteocyte communication independent of fluid shear. Osteocyte like MLO-Y4 cells were subjected to vibrations at acceleration magnitudes of 0.15 g and 1 g and frequencies of 30 Hz and 100 Hz. Gap junctional intracellular communication (GJIC) in response to these four individual vibration regimes was investigated. The FE model demonstrated that vibration induced dynamic accelerations caused larger relative nuclear displacement than fluid shear. Across the four regimes, vibrations significantly increased GJIC between osteocytes by 25%. Enhanced GJIC was independent of vibration induced fluid shear; there were no differences in GJIC between the four different vibration regimes even though differences in fluid shear generated by the four regimes varied 23-fold. Vibration induced increases in GJIC were not associated with altered connexin 43 (Cx43) mRNA or protein levels, but were dependent on Akt activation. Combined, the in silico and in vitro experiments suggest that externally applied vibrations caused nuclear motions and that large differences in fluid shear did not influence nuclear motion (<1%) or GJIC, perhaps indicating that vibration induced nuclear motions may directly increase GJIC. Whether the increase in GJIC is instrumental in modulating anabolic and anti-catabolic processes associated with the application of vibrations remains to be determined.

  11. Active vibration control of structures undergoing bending vibrations

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor)

    1995-01-01

    An active vibration control subassembly for a structure (such as a jet engine duct or a washing machine panel) undergoing bending vibrations caused by a source (such as the clothes agitator of the washing machine) independent of the subassembly. A piezoceramic actuator plate is vibratable by an applied electric AC signal. The plate is connected to the structure such that vibrations in the plate induced by the AC signal cause canceling bending vibrations in the structure and such that the plate is compressively pre-stressed along the structure when the structure is free of any bending vibrations. The compressive prestressing increases the amplitude of the canceling bending vibrations before the critical tensile stress level of the plate is reached. Preferably, a positive electric DC bias is also applied to the plate in its poling direction.

  12. Digital vibration threshold testing and ergonomic stressors in automobile manufacturing workers: a cross-sectional assessment.

    PubMed

    Gold, J E; Punnett, L; Cherniack, M; Wegman, D H

    2005-01-01

    Upper extremity musculoskeletal disorders (UEMSDs) comprise a large proportion of work-related illnesses in the USA. Physical risk factors including manual force and segmental vibration have been associated with UEMSDs. Reduced sensitivity to vibration in the fingertips (a function of nerve integrity) has been found in those exposed to segmental vibration, to hand force, and in office workers. The objective of this study was to determine whether an association exists between digital vibration thresholds (VTs) and exposure to ergonomic stressors in automobile manufacturing. Interviews and physical examinations were conducted in a cross-sectional survey of workers (n = 1174). In multivariable robust regression modelling, associations with workers' estimates of ergonomic stressors stratified on tool use were determined. VTs were separately associated with hand force, vibration as felt through the floor (whole body vibration), and with an index of multiple exposures in both tool users and non-tool users. Additional associations with contact stress and awkward upper extremity postures were found in tool users. Segmental vibration was not associated with VTs. Further epidemiologic and laboratory studies are needed to confirm the associations found. The association with self-reported whole body vibration exposure suggests a possible sympathetic nervous system effect, which remains to be explored.

  13. Vibration sensing method and apparatus

    DOEpatents

    Barna, B.A.

    1989-04-25

    A method and apparatus for nondestructive evaluation of a structure are disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration. 4 figs.

  14. Vibration sensing method and apparatus

    DOEpatents

    Barna, B.A.

    1987-07-07

    A method and apparatus for nondestructive evaluation of a structure is disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration. 4 figs.

  15. Vibration sensing method and apparatus

    SciTech Connect

    Barna, Basil A.

    1989-04-25

    A method and apparatus for nondestructive evaluation of a structure is disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration.

  16. Possible Mechanisms of Low Back Pain due to Whole-Body Vibration

    NASA Astrophysics Data System (ADS)

    Pope, M. H.; Wilder, D. G.; Magnusson, M.

    1998-08-01

    The investigators describe their multifaceted approach to the study of the relationship between whole-body vibration and low back pain.In vitroexperiments, using percutaneous pin-mounted accelerometers have shown that the natural frequency is at 4·5 Hz. The frequency response was affected by posture, seating, and seat-back inclination. The response appears to be largely determined by the rocking of the pelvis. Electromyographic studies have shown that muscle fatigue occurs under whole body vibration. After whole body vibration exposure the muscle response to a sudden load has greater latency. Vehicle driving may be a reason for low back pain or herniated nucleus pulposus. Prolonged seating exposure, coupled with the whole body vibration should be reduced for those recovering from these problems. Vibration attenuating seats, and correct ergonomic layout of the cabs may reduce the risks of recurrence.

  17. Effect of situational, attitudinal and demographic factors on railway vibration annoyance in residential areas.

    PubMed

    Peris, Eulalia; Woodcock, James; Sica, Gennaro; Sharp, Calum; Moorhouse, Andrew T; Waddington, David C

    2014-01-01

    Railway induced vibration is an important source of annoyance among residents living in the vicinity of railways. Annoyance increases with vibration magnitude. However, these correlations between the degree of annoyance and vibration exposure are weak. This suggests that railway vibration induced annoyance is governed by more than just vibration level and therefore other factors may provide information to understand the wide variation in annoyance reactions. Factors coming into play when considering an exposure-response relationship between level of railway vibration and annoyance are presented. The factors investigated were: attitudinal, situational and demographic factors. This was achieved using data from field studies comprised of face-to-face interviews and internal vibration measurements (N = 755). It was found that annoyance scores were strongly influenced by two attitudinal factors: Concern of property damage and expectations about future levels of vibration. Type of residential area and age of the respondent were found to have an important effect on annoyance whereas visibility of the railway and time spent at home showed a significant but small influence. These results indicate that future railway vibration policies and regulations focusing on community impact need to consider additional factors for an optimal assessment of railway effects on residential environments.

  18. Evaluation of human response to structural vibrations induced by sonic booms

    NASA Technical Reports Server (NTRS)

    Sutherland, Louis C.; Czech, J.

    1992-01-01

    The topic is addressed of building vibration response to sonic boom and the evaluation of the associated human response to this vibration. An attempt is made to reexamine some of the issues addressed previously and to offer fresh insight that may assist in reassessing the potential impact of sonic boom over populated areas. Human response to vibration is reviewed first and a new human vibration response criterion curve is developed as a function of frequency. The difference between response to steady state versus impulsive vibration is addressed and a 'vibration exposure' or 'vibration energy' descriptor is suggested as one possible way to evaluate duration effects on response to transient vibration from sonic booms. New data on the acoustic signature of rattling objects are presented along with a review of existing data on the occurrence of rattle. Structural response to sonic boom is reviewed and a new descriptor, 'Acceleration Exposure Level' is suggested which can be easily determined from the Fourier Spectrum of a sonic boom. A preliminary assessment of potential impact from sonic booms is provided in terms of human response to vibration and detection of rattle based on a synthesis of the preceding material.

  19. [Low back pain among farmers exposed to whole body vibration: a literature review].

    PubMed

    Solecki, Leszek

    2011-01-01

    A literature review was performed for the years 1990-2007. It covered reports addressing the problems associated with the prevalence of low back pain and musculoskeletal disorders among farmers. In addition, the anticipated relationship between low back pain and whole body vibration in farmers was evaluated based on 12 reports for the years 1987-2009. The review confirmed that the prevalence of back pain is significantly higher in farmers exposed to whole body vibration than in the control group (not exposed to vibration). The frequency of back pain is related with whole body vibration, as well as with prolonged sitting position, wrong body posture and physical work load (especially lifting and carrying loads). The prevalence of these symptoms increases with the increased vibration dose and duration of exposure. Disorders in the lower section of the spine were associated with age, accidents (concerning the back), cumulative dose of whole body vibration, and overload due to wrong body posture. Long-term exposure affecting the whole body is harmful to the skeletal system (degeneration of the spine). The results of the study suggest that the repeated or constant exposure to mechanical shocks may increase the risk of low back pain. The investigations confirmed that there is a dose-response type of relationship between exposure to whole body vibration and pain in the lumbar section of the spine.

  20. Animal Communications Through Seismic Vibrations

    SciTech Connect

    Hill, Peggy

    2001-05-02

    Substrate vibration has been important to animals as a channel of communication for millions of years, but our literature on vibration in this context of biologically relevant information is only decades old. The jaw mechanism of the earliest land vertebrates allowed them to perceive substrate vibrations as their heads lay on the ground long before airborne sounds could be heard. Although the exact mechanism of vibration production and the precise nature of the wave produced are not always understood, recent development of affordable instrumentation to detect and measure vibrations has allowed researchers to answer increasingly sophisticated questions about how animals send and receive vibration signals. We now know that vibration provides information used in predator defense, prey detection, recruitment to food, mate choice, intrasexual competition, and maternal/brood social interactions in a variety of insect orders, spiders, crabs, scorpions, chameleons, frogs, golden moles, mole rats, kangaroos rats, wallabies, elephants and bison.

  1. Maladie des vibrations

    PubMed Central

    Shen, Shixin (Cindy); House, Ronald A.

    2017-01-01

    Résumé Objectif Permettre aux médecins de famille de comprendre l’épidémiologie, la pathogenèse, les symptômes, le diagnostic et la prise en charge de la maladie des vibrations, une maladie professionnelle importante et courante au Canada. Sources d’information Une recherche a été effectuée sur MEDLINE afin de relever les recherches et comptes rendus portant sur la maladie des vibrations. Une recherche a été effectuée sur Google dans le but d’obtenir la littérature grise qui convient au contexte canadien. D’autres références ont été tirées des articles relevés. Message principal La maladie des vibrations est une maladie professionnelle répandue touchant les travailleurs de diverses industries qui utilisent des outils vibrants. La maladie est cependant sous-diagnostiquée au Canada. Elle compte 3 éléments : vasculaire, sous la forme d’un phénomène de Raynaud secondaire; neurosensoriel; et musculosquelettique. Aux stades les plus avancés, la maladie des vibrations entraîne une invalidité importante et une piètre qualité de vie. Son diagnostic exige une anamnèse minutieuse, en particulier des antécédents professionnels, un examen physique, des analyses de laboratoire afin d’éliminer les autres diagnostics, et la recommandation en médecine du travail aux fins d’investigations plus poussées. La prise en charge consiste à réduire l’exposition aux vibrations, éviter les températures froides, abandonner le tabac et administrer des médicaments. Conclusion Pour assurer un diagnostic rapide de la maladie des vibrations et améliorer le pronostic et la qualité de vie, les médecins de famille devraient connaître cette maladie professionnelle courante, et pouvoir obtenir les détails pertinents durant l’anamnèse, recommander les patients aux cliniques de médecine du travail et débuter les demandes d’indemnisation de manière appropriée. PMID:28292812

  2. Molecular vibrational energy flow

    NASA Astrophysics Data System (ADS)

    Gruebele, M.; Bigwood, R.

    This article reviews some recent work in molecular vibrational energy flow (IVR), with emphasis on our own computational and experimental studies. We consider the problem in various representations, and use these to develop a family of simple models which combine specific molecular properties (e.g. size, vibrational frequencies) with statistical properties of the potential energy surface and wavefunctions. This marriage of molecular detail and statistical simplification captures trends of IVR mechanisms and survival probabilities beyond the abilities of purely statistical models or the computational limitations of full ab initio approaches. Of particular interest is IVR in the intermediate time regime, where heavy-atom skeletal modes take over the IVR process from hydrogenic motions even upon X H bond excitation. Experiments and calculations on prototype heavy-atom systems show that intermediate time IVR differs in many aspects from the early stages of hydrogenic mode IVR. As a result, IVR can be coherently frozen, with potential applications to selective chemistry.

  3. Vibration-Response Analysis

    NASA Technical Reports Server (NTRS)

    Bowman, L. M.

    1986-01-01

    Dynamic behaviors of structures analyzed interactively. Interactive steadystate vibration-response program, VIBRA, developed. Frequency-response analyses commonly used in evaluating dynamic behaviors of structures subjected to cyclic external forces. VIBRA calculates frequency response using modalsuperposition approach. Method applicable to single or multiple forces applied to linear, proportionally damped structure in which damping is viscous or structural. VIBRA written in FORTRAN 77 for interactive execution.

  4. Vibration from freight trains fragments sleep: A polysomnographic study

    PubMed Central

    Smith, Michael G.; Croy, Ilona; Hammar, Oscar; Persson Waye, Kerstin

    2016-01-01

    As the number of freight trains on railway networks increases, so does the potential for vibration exposure in dwellings nearby to freight railway lines. Nocturnal trains in particular are of particular importance since night-time exposure may interfere with sleep. The present work investigates the impact of vibration and noise from night-time freight trains on human sleep. In an experimental polysomnographic laboratory study, 24 young healthy volunteers with normal hearing were exposed to simulated freight pass-bys with vibration amplitudes of 0.7 and 1.4 mm/s either 20 or 36 times during the night. Stronger vibrations were associated with higher probabilities of event-related arousals and awakenings (p < 0.001), and sleep stage changes (p < 0.05). Sleep macrostructure was most affected in high vibration nights with 36 events, with increased wakefulness (p < 0.05), reduced continual slow wave sleep (p < 0.05), earlier awakenings (p < 0.05) and an overall increase in sleep stage changes (p < 0.05). Subjects reported sleep disturbance due to vibration (F(4,92) = 25.9, p < 0.001) and noise (F(4,92) = 25.9, p < 0.001), with the number of trains having an effect only for the 0.7 mm/s condition (p < 0.05). The findings show that combined vibration and noise from railway freight affects the natural rhythm of sleep, but extrapolation of significance for health outcomes should be approached with caution. PMID:27090401

  5. Vibration from freight trains fragments sleep: A polysomnographic study.

    PubMed

    Smith, Michael G; Croy, Ilona; Hammar, Oscar; Persson Waye, Kerstin

    2016-04-19

    As the number of freight trains on railway networks increases, so does the potential for vibration exposure in dwellings nearby to freight railway lines. Nocturnal trains in particular are of particular importance since night-time exposure may interfere with sleep. The present work investigates the impact of vibration and noise from night-time freight trains on human sleep. In an experimental polysomnographic laboratory study, 24 young healthy volunteers with normal hearing were exposed to simulated freight pass-bys with vibration amplitudes of 0.7 and 1.4 mm/s either 20 or 36 times during the night. Stronger vibrations were associated with higher probabilities of event-related arousals and awakenings (p < 0.001), and sleep stage changes (p < 0.05). Sleep macrostructure was most affected in high vibration nights with 36 events, with increased wakefulness (p < 0.05), reduced continual slow wave sleep (p < 0.05), earlier awakenings (p < 0.05) and an overall increase in sleep stage changes (p < 0.05). Subjects reported sleep disturbance due to vibration (F(4,92) = 25.9, p < 0.001) and noise (F(4,92) = 25.9, p < 0.001), with the number of trains having an effect only for the 0.7 mm/s condition (p < 0.05). The findings show that combined vibration and noise from railway freight affects the natural rhythm of sleep, but extrapolation of significance for health outcomes should be approached with caution.

  6. Vibration isolation mounting system

    NASA Technical Reports Server (NTRS)

    Carter, Sam D. (Inventor); Bastin, Paul H. (Inventor)

    1995-01-01

    A system is disclosed for mounting a vibration producing device onto a spacecraft structure and also for isolating the vibration forces thereof from the structure. The system includes a mount on which the device is securely mounted and inner and outer rings. The rings and mount are concentrically positioned. The system includes a base (secured to the structure) and a set of links which are interconnected by a set of torsion bars which allow and resist relative rotational movement therebetween. The set of links are also rotatably connected to a set of brackets which are rigidly connected to the outer ring. Damped leaf springs interconnect the inner and outer rings and the mount allow relative translational movement therebetween in X and Y directions. The links, brackets and base are interconnected and configured so that they allow and resist translational movement of the device in the Z direction so that in combination with the springs they provide absorption of vibrational energy produced by the device in all three dimensions while providing rotational stiffness about all three axes to prevent undesired rotational motions.

  7. Vibrational stability of graphene

    NASA Astrophysics Data System (ADS)

    Hu, Yangfan; Wang, Biao

    2013-05-01

    The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP) models. Compared with three-dimensional (3-D) materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202). This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC), defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D) materials.

  8. Vibration Induced Microfluidic Atomization

    NASA Astrophysics Data System (ADS)

    Yeo, Leslie; Qi, Aisha; Friend, James

    2008-11-01

    We demonstrate rapid generation of micron aerosol droplets in a microfluidic device in which a fluid drop is exposed to surface vibration as it sits atop a piezoelectric substrate. Little, however, is understood about the processes by which these droplets form due to the complex hydrodynamic processes that occur across widely varying length and time scales. Through experiments, scaling theory and numerical modelling, we elucidate the interfacial destabilization mechanisms that lead to droplet formation. Droplets form due to the axisymmetric break-up of cylindrical liquid jets ejected as a consequence of interfacial destabilization. Their 10 μm size correlates with the jet radius and the instability wavelength, both determined from a viscous-capillary dominant force balance and confirmed through a numerical solution. With the exception of drops that spread into thin films with thicknesses on the order of the boundary layer dimension, the free surface is always observed to vibrate at the capillary-viscous resonance frequency despite the surface vibration frequency being several orders larger. This is contrary to common assumptions used in deriving subharmonic models resulting in a Mathieu equation, which has commonly led to spurious predictions in the droplet size.

  9. Vibration Considerations for Cryogenic Tanks Using Glass Bubbles Insulation

    NASA Technical Reports Server (NTRS)

    Werlink, Rudolph J.; Fesmire, James E.; Sass, Jared P.

    2011-01-01

    The use of glass bubbles as an efficient and practical thermal insulation system has been previously demonstrated in cryogenic storage tanks. One such example is a spherical, vacuum-jacketed liquid hydrogen vessel of 218,000 liter capacity where the boiloff rate has been reduced by approximately 50 percent. Further applications may include non-stationary tanks such as mobile tankers and tanks with extreme duty cycles or exposed to significant vibration environments. Space rocket launch events and mobile tanker life cycles represent two harsh cases of mechanical vibration exposure. A number of bulk fill insulation materials including glass bubbles, perlite powders, and aerogel granules were tested for vibration effects and mechanical behavior using a custom design holding fixture subjected to random vibration on an Electrodynamic Shaker. The settling effects for mixtures of insulation materials were also investigated. The vibration test results and granular particle analysis are presented with considerations and implications for future cryogenic tank applications. A thermal performance update on field demonstration testing of a 218,000 L liquid hydrogen storage tank, retrofitted with glass bubbles, is presented. KEYWORDS: Glass bubble, perlite, aerogel, insulation, liquid hydrogen, storage tank, mobile tanker, vibration.

  10. An Industrial Ergonomics Bibliography: Prevention of Cumulative Trauma through Workplace Analysis

    DTIC Science & Technology

    1991-12-05

    absenteeism as tools in the implementation of work environment improvements: The Swenden Post strategy. Ergonomics, 34(6), 841-848. Kogi, K. (1991). Work and...Institute for Ocupational Safety and Health. (1989). Criio recommended standard: Occupational exposure to hand-arm vibration. (NIOSH Report No. 89-106...Cincinnati, OH: Author. National Institute for Ocupational Safety and Health. (1982). The finest tools. (videotape #188/24 minutes). Cincinnati, OH

  11. Guidelines for Whole-Body Vibration Health Surveillance

    NASA Astrophysics Data System (ADS)

    POPE, M.; MAGNUSSON, M.; LUNDSTRÖM, R.; HULSHOF, C.; VERBEEK, J.; BOVENZI, M.

    2002-05-01

    There is strong epidemiological evidence that occupational exposure to WBV is associated with an increased risk of low back pain (LBP), sciatic pain, and degenerative changes in the spinal system, including lumbar intervertebral disc disorders. A prototype health surveillance scheme for WBV is presented in this paper. Surveillance is the collection, analysis, and dissemination of data for the purpose of prevention. The aims are to assess health status and diagnose vibration-induced disorders at an early stage, to inform the workers on the potential risk associated with vibration exposure, to give preventive advice to employers and employees and to control whether preventive measures which have been taken, were successful. It is suggested that a pre-placement health examination should be offered to each worker who will be exposed to WBV so as to make the worker aware of the hazards, to obtain baseline health data, and to identify medical conditions that may increase the risk due to WBV. The case history should focus on personal history, work history, and leisure activities involving driving of vehicles. The personal medical history should detail back pain complaints, disorders in the spine, any injuries or surgery to the musculoskeletal system. A physical examination on the lower back should be performed on workers who have experienced LBP symptoms over the past 12 months. The preplacement examination should be followed by periodic health reassessment with a regular interval according to the legislation of the country. It is suggested that periodic medical examination should be made available at least every 2 years to all workers who are exposed to WBV. Any change in vibration exposure at the workplace should be reported by the employer. If an increase in vibration exposure or a change in health status have occurred, the medical re-examination should be offered at shorter intervals at the discretion of the attending physician. There should be a periodic medical

  12. Characteristics of Vibration that Alter Cardiovascular Parameters in Mice.

    PubMed

    Li, Yao; Rabey, Karyne N; Schmitt, Daniel; Norton, John N; Reynolds, Randall P

    2015-07-01

    We hypothesized that short-term exposure of mice to vibration within a frequency range thought to be near the resonant frequency range of mouse tissue and at an acceleration of 0 to 1 m/s(2) would alter heart rate (HR) and mean arterial pressure (MAP). We used radiotelemetry to evaluate the cardiovascular response to vibration in C57BL/6 and CD1 male mice exposed to vertical vibration of various frequencies and accelerations. MAP was consistently increased above baseline values at an acceleration near 1 m/s(2) and a frequency of 90 Hz in both strains, and HR was increased also in C57BL/6 mice. In addition, MAP increased at 80 Hz in individual mice of both strains. When both strains were analyzed together, mean MAP and HR were increased at 90 Hz at 1 m/s(2), and HR was increased at 80 Hz at 1 m/s(2). No consistent change in MAP or HR occurred when mice were exposed to frequencies below 80 Hz or above 90 Hz. The increase in MAP and HR occurred only when the mice had conscious awareness of the vibration, given that these changes did not occur when anesthetized mice were exposed to vibration. Tested vibration acceleration levels lower than 0.75 m/s(2) did not increase MAP or HR at 80 or 90 Hz, suggesting that a relatively high level of vibration is necessary to increase these parameters. These data are important to establish the harmful frequencies and accelerations of environmental vibration that should be minimized or avoided in mouse facilities.

  13. Vibrational averages along thermal lines

    NASA Astrophysics Data System (ADS)

    Monserrat, Bartomeu

    2016-01-01

    A method is proposed for the calculation of vibrational quantum and thermal expectation values of physical properties from first principles. Thermal lines are introduced: these are lines in configuration space parametrized by temperature, such that the value of any physical property along them is approximately equal to the vibrational average of that property. The number of sampling points needed to explore the vibrational phase space is reduced by up to an order of magnitude when the full vibrational density is replaced by thermal lines. Calculations of the vibrational averages of several properties and systems are reported, namely, the internal energy and the electronic band gap of diamond and silicon, and the chemical shielding tensor of L-alanine. Thermal lines pave the way for complex calculations of vibrational averages, including large systems and methods beyond semilocal density functional theory.

  14. Vibration damping method and apparatus

    DOEpatents

    Redmond, James M.; Barney, Patrick S.; Parker, Gordon G.; Smith, David A.

    1999-01-01

    The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof.

  15. Vibration damping method and apparatus

    DOEpatents

    Redmond, J.M.; Barney, P.S.; Parker, G.G.; Smith, D.A.

    1999-06-22

    The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof. 38 figs.

  16. Vibrational autoionization in polyatomic molecules.

    PubMed

    Pratt, S T

    2005-01-01

    The vibrationally autoionizing Rydberg states of small polyatomic molecules provide a fascinating laboratory in which to study fundamental nonadiabatic processes. In this review, recent results on the vibrational mode dependence of vibrational autoionization are discussed. In general, autoionization rates depend strongly on the character of the normal mode driving the process and on the electronic character of the Rydberg electron. Although quantitative calculations based on multichannel quantum defect theory are available for some polyatomic molecules, including H3, only qualitative information exists for most molecules. This review shows how qualitative information, such as Walsh diagrams along different normal coordinates of the molecule, can provide insight into the vibrational autoionization rates.

  17. [Vibration-induced Raynaud phenomenon caused by an electric hedge trimmer].

    PubMed

    Kákosy, T; Martin, J; Zentai, N; Székely, A

    1995-08-06

    Authors observed Raynaud's phenomenon verified by cold-provocation test and measuring finger systolic blood pressure on a man working with bush cutter equipment installed on a tractor. Vibration measurements showed acceleration superior to maximal allowable level. Other causes of a secondary Raynaud's phenomenon were excluded by means of detailed internal examination. On the ground of the exposure data and lack of other ethiological factors the authors think that the patient had vibration-induced Raynaud's phenomenon. For prevention they proposed the diminishing of the daily exposure time and periodical medical examinations. They want to draw the attention for this sort of exposure.

  18. Effects of vibration on occupant driving performance under simulated driving conditions.

    PubMed

    Azizan, Amzar; Fard, M; Azari, Michael F; Jazar, Reza

    2017-04-01

    Although much research has been devoted to the characterization of the effects of whole-body vibration on seated occupants' comfort, drowsiness induced by vibration has received less attention to date. There are also little validated measurement methods available to quantify whole body vibration-induced drowsiness. Here, the effects of vibration on drowsiness were investigated. Twenty male volunteers were recruited for this experiment. Drowsiness was measured in a driving simulator, before and after 30-min exposure to vibration. Gaussian random vibration, with 1-15 Hz frequency bandwidth was used for excitation. During the driving session, volunteers were required to obey the speed limit of 100 kph and maintain a steady position on the left-hand lane. A deviation in lane position, steering angle variability, and speed deviation were recorded and analysed. Alternatively, volunteers rated their subjective drowsiness by Karolinska Sleepiness Scale (KSS) scores every 5-min. Following 30-min of exposure to vibration, a significant increase of lane deviation, steering angle variability, and KSS scores were observed in all volunteers suggesting the adverse effects of vibration on human alertness level.

  19. Exposure Nomographs

    NASA Astrophysics Data System (ADS)

    Zissell, Ronald E.

    Correct exposure times may be determined from nomographs relating signal-to-noise ratio, exposure time, color, seeing, and magnitude. The equations needed to construct the nomographs are developed. Calibration techniques are discussed.

  20. Turbine blade vibration dampening

    DOEpatents

    Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

  1. Turbine blade vibration dampening

    DOEpatents

    Cornelius, Charles C.; Pytanowski, Gregory P.; Vendituoli, Jonathan S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass "M" or combined mass "CM" of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics.

  2. Cement mixing with vibrator

    SciTech Connect

    Allen, T.E.

    1991-07-09

    This patent describes a method of cementing a casing string in a bore hole of a well. It comprises introducing water and dry cement material into a mixing vessel; mixing the water and dry cement material in the mixing vessel to form a cement slurry, the slurry including lumps of the dry cement material, the mixing including steps of: agitating the slurry; and while agitating the slurry, transmitting vibrational energy into the slurry and thereby aiding disintegration and subsequent wetting of the lumps of the dry cement material in the slurry; and pumping the slurry into an annulus between the casing string and the bore hole.

  3. Chaotic vortex induced vibrations

    SciTech Connect

    Zhao, J.; Sheridan, J.; Leontini, J. S.; Lo Jacono, D.

    2014-12-15

    This study investigates the nature of the dynamic response of an elastically mounted cylinder immersed in a free stream. A novel method is utilized, where the motion of the body during a free vibration experiment is accurately recorded, and then a second experiment is conducted where the cylinder is externally forced to follow this recorded trajectory. Generally, the flow response during both experiments is identical. However, particular regimes exist where the flow response is significantly different. This is taken as evidence of chaos in these regimes.

  4. Nonlinear interferometric vibrational imaging.

    PubMed

    Marks, Daniel L; Boppart, Stephen A

    2004-03-26

    Coherent anti-Stokes Raman scattering (CARS) processes are "coherent," but the phase of the anti-Stokes radiation is lost by most incoherent spectroscopic CARS measurements. We propose a Raman microscopy imaging method called nonlinear interferometric vibrational imaging, which measures Raman spectra by obtaining the temporal anti-Stokes signal through nonlinear interferometry. With a more complete knowledge of the anti-Stokes signal, we show through simulations that a high-resolution Raman spectrum can be obtained of a molecule in a single pulse using broad band radiation. This could be useful for identifying the three-dimensional spatial distribution of molecular species in tissue.

  5. Vibration analysis for electronic equipment (2nd edition)

    NASA Astrophysics Data System (ADS)

    Steinberg, Dave S.

    This book describes methods for designing electronic equipment that must work with a high degree of reliability in severe vibration and shock environments. It explains how to design and predict the operational life of electronic equipment based upon the type of electronic components used and the type of vibration and shock exposure. The book begins with a review of the dynamics of nonuniform sections and composite construction methods for electronic assemblies, followed by a discussion of methods for mounting electronic components and determining electrical lead wire and solder joint stresses and fatigue life. Printed circuit boards and chassis assemblies are examined in detail, with methods for determining natural frequency, dynamic coupling transmissibility, and fatigue life. The design and analysis of electronic components, circuit boards, electrical lead wires, and solder joints for sinusoidal and random vibrations, acoustics, shock, and pyrotechnic shock are addressed.

  6. Development of vibrating insoles.

    PubMed

    Hijmans, Juha M; Geertzen, Jan H B; Schokker, Bart; Postema, Klaas

    2007-12-01

    The objective of this study was to describe the development of vibrating insoles. Insoles, providing a subsensory mechanical noise signal to the plantar side of the feet, may improve balance in healthy young and older people and in patients with stroke or diabetic neuropathy. This study describes the requirements for the tactors, (tactile actuators) insole material and noise generator. A search for the components of vibrating insoles providing mechanical noise to the plantar side of the feet was performed. The mechanical noise signal should be provided by tactors built in an insole or shoe and should obtain an input signal from a noise generator and an amplifier. Possible tactors are electromechanical tactors, a piezo actuator or the VBW32 skin transducer. The Minirator MR1 of NTI, a portable MP3 player or a custom-made noise generator can provide these tactors with input. The tactors can be built in foam, silicone or cork insoles. In conclusion, a C2 electromechanical tactor, a piezo actuator or the VBW32 skin transducer, activated by a custom-made noise generator, built in a cork insole covered with a leather layer seems the ideal solution.

  7. Vibration Response of Airplane Structures

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore; Gelalles, A G

    1935-01-01

    This report presents test results of experiments on the vibration-response characteristics of airplane structures on the ground and in flight. It also gives details regarding the construction and operation of vibration instruments developed by the National Advisory Committee for Aeronautics.

  8. Vibration Analysis by Speckle Interferometry,

    DTIC Science & Technology

    The vibrational modes of complex systems can be visualized with high sensitivity by laser light speckle interferometry. Electronic speckle pattern...interferometry (ESPI), in contrast to holography, does not use photo-chemical storage media but shows a live image of the vibrational modes created by

  9. Force Limited Vibration Testing Monograph

    NASA Technical Reports Server (NTRS)

    Scharton, Terry D.

    1997-01-01

    The practice of limiting the shaker force in vibration tests was investigated at the NASA Jet Propulsion Laboratory (JPL) in 1990 after the mechanical failure of an aerospace component during a vibration test. Now force limiting is used in almost every major vibration test at JPL and in many vibration tests at NASA Goddard Space Flight Center (GSFC) and at many aerospace contractors. The basic ideas behind force limiting have been in the literature for several decades, but the piezo-electric force transducers necessary to conveniently implement force limiting have been available only in the last decade. In 1993, funding was obtained from the NASA headquarters Office of Chief Engineer to develop and document the technology needed to establish force limited vibration testing as a standard approach available to all NASA centers and aerospace contractors. This monograph is the final report on that effort and discusses the history, theory, and applications of the method in some detail.

  10. The origins of vibration theory

    NASA Astrophysics Data System (ADS)

    Dimarogonas, A. D.

    1990-07-01

    The Ionian School of natural philosophy introduced the scientific method of dealing with natural phenomena and the rigorous proofs for abstract propositions. Vibration theory was initiated by the Pythagoreans in the fifth century BC, in association with the theory of music and the theory of acoustics. They observed the natural frequency of vibrating systems and proved that it is a system property and that it does not depend on the excitation. Pythagoreans determined the fundamental natural frequencies of several simple systems, such as vibrating strings, pipes, vessels and circular plates. Aristoteles and the Peripatetic School founded mechanics and developed a fundamental understanding of statics and dynamics. In Alexandrian times there were substantial engineering developments in the field of vibration. The pendulum as a vibration, and probably time, measuring device was known in antiquity, and was further developed by the end of the first millennium AD.

  11. Vibration analysis using digital correlation

    NASA Technical Reports Server (NTRS)

    Gilbert, John A.; Lehner, David L.; Dudderar, T. Dixon; Matthys, Donald R.

    1988-01-01

    This paper demonstrates the use of a computer-based optical method for locating the positions of nodes and antinodes in vibrating members. Structured light patterns are projected at an angle onto the vibrating surface using a 35 mm slide projector. The vibrating surface and the projected images are captured in a time averaged photograph which is subsequently digitized. The inherent fringe patterns are filtered to determine amplitudes of vibration, and computer programs are used to compare the time averaged images to images recorded prior to excitation to locate nodes and antinodes. Some of the influences of pattern regularity on digital correlation are demonstrated, and a speckle-based method for determining the mode shapes and the amplitudes of vibration with variable sensitivity is suggested.

  12. Vibrational transfer functions for complex structures

    NASA Technical Reports Server (NTRS)

    Jones, P. A.; Berry, R. L.

    1972-01-01

    Evaluation of effects of vibrational multiple frequency forcing functions is discussed. Computer program for developing vibrational transfer functions is described. Possible applications of computer program are enumerated.

  13. [The potentials for errors in the hygienic assessment of the general vibrations in tractors].

    PubMed

    Ivanovich, E; Goranova, L; Enev, S

    1991-01-01

    The data for the parameters of the general vibrations in tractors are comparatively scanty and contradictory. In the present work are analyzed the most frequently met omissions and errors in the measurement and evaluation of the general vibrations, as well as the factors, which can effect the intensity of the general vibrations; constructive and technological peculiarities, technical state, rate of machine amortization, construction, damping qualities, and regulation of the seat, motion velocity, relief, type of the performed agricultural activity. The necessity for taking under consideration these factors in measuring the general vibrations and the hygiene interpretation of the data, as well as precise report on the daily, weekly and general exposure, in view of defining the total vibration loading, is underlined.

  14. The association between vibration and vascular injury in rheumatic diseases: a review of the literature.

    PubMed

    Wang, Yu-Jie; Huang, Xiao-Lei; Yan, Jun-Wei; Wan, Ya-Nan; Wang, Bing-Xiang; Tao, Jin-Hui; Chen, Bing; Li, Bao-Zhu; Yang, Guo-Jun; Wang, Jing

    2015-02-01

    Vascular manifestations can be seen early in the pathogenesis of inflammatory rheumatic diseases. Animal experiments, laboratory and clinical findings indicated that acute or long-term vibration exposure can induce vascular abnormalities. Recent years, in addition to Raynaud's phenomenon (RP), vibration as a risk factor for other rheumatic diseases has also received corresponding considered. This review is concentrated upon the role of vibration in the disease of systemic sclerosis (SSc). In this review, we are going to discuss the main mechanisms which are thought to be important in pathophysiology of vascular injury under the three broad headings of "vascular", "neural" and "intravascular". Aspects on the vibration and vascular inflammation are briefly discussed. And the epidemiological studies related to vibration studies in SSc and other rheumatic diseases are taken into account.

  15. Low Frequency Vibrations Disrupt Left-Right Patterning in the Xenopus Embryo

    PubMed Central

    Vandenberg, Laura N.; Pennarola, Brian W.; Levin, Michael

    2011-01-01

    The development of consistent left-right (LR) asymmetry across phyla is a fascinating question in biology. While many pharmacological and molecular approaches have been used to explore molecular mechanisms, it has proven difficult to exert precise temporal control over functional perturbations. Here, we took advantage of acoustical vibration to disrupt LR patterning in Xenopus embryos during tightly-circumscribed periods of development. Exposure to several low frequencies induced specific randomization of three internal organs (heterotaxia). Investigating one frequency (7 Hz), we found two discrete periods of sensitivity to vibration; during the first period, vibration affected the same LR pathway as nocodazole, while during the second period, vibration affected the integrity of the epithelial barrier; both are required for normal LR patterning. Our results indicate that low frequency vibrations disrupt two steps in the early LR pathway: the orientation of the LR axis with the other two axes, and the amplification/restriction of downstream LR signals to asymmetric organs. PMID:21826245

  16. Violin bow vibrations.

    PubMed

    Gough, Colin E

    2012-05-01

    The modal frequencies and bending mode shapes of a freely supported tapered violin bow are investigated by finite element analysis and direct measurement, with and without tensioned bow hair. Such computations are used with analytic models to model the admittance presented to the stretched bow hairs at the ends of the bow and to the string at the point of contact with the bow. Finite element computations are also used to demonstrate the influence of the lowest stick mode vibrations on the low frequency bouncing modes, when the hand-held bow is pressed against the string. The possible influence of the dynamic stick modes on the sound of the bowed instrument is briefly discussed.

  17. Structural Acoustics and Vibrations

    NASA Astrophysics Data System (ADS)

    Chaigne, Antoine

    This structural chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  18. Ross ice shelf vibrations

    NASA Astrophysics Data System (ADS)

    Bromirski, P. D.; Diez, A.; Gerstoft, P.; Stephen, R. A.; Bolmer, T.; Wiens, D. A.; Aster, R. C.; Nyblade, A.

    2015-09-01

    Broadband seismic stations were deployed across the Ross Ice Shelf (RIS) in November 2014 to study ocean gravity wave-induced vibrations. Initial data from three stations 100 km from the RIS front and within 10 km of each other show both dispersed infragravity (IG) wave and ocean swell-generated signals resulting from waves that originate in the North Pacific. Spectral levels from 0.001 to 10 Hz have the highest accelerations in the IG band (0.0025-0.03 Hz). Polarization analyses indicate complex frequency-dependent particle motions, with energy in several frequency bands having distinctly different propagation characteristics. The dominant IG band signals exhibit predominantly horizontal propagation from the north. Particle motion analyses indicate retrograde elliptical particle motions in the IG band, consistent with these signals propagating as Rayleigh-Lamb (flexural) waves in the ice shelf/water cavity system that are excited by ocean wave interactions nearer the shelf front.

  19. Laboratory and field measurements and evaluations of vibration at the handles of riveting hammers.

    PubMed

    McDowell, Thomas W; Warren, Christopher; Welcome, Daniel E; Dong, Ren G

    2012-10-01

    The use of riveting hammers can expose workers to harmful levels of hand-transmitted vibration (HTV). As a part of efforts to reduce HTV exposures through tool selection, the primary objective of this study was to evaluate the applicability of a standardized laboratory-based riveting hammer assessment protocol for screening riveting hammers. The second objective was to characterize the vibration emissions of reduced vibration riveting hammers and to make approximations of the HTV exposures of workers operating these tools in actual work tasks. Eight pneumatic riveting hammers were selected for the study. They were first assessed in a laboratory using the standardized method for measuring vibration emissions at the tool handle. The tools were then further assessed under actual working conditions during three aircraft sheet metal riveting tasks. Although the average vibration magnitudes of the riveting hammers measured in the laboratory test were considerably different from those measured in the field study, the rank orders of the tools determined via these tests were fairly consistent, especially for the lower vibration tools. This study identified four tools that consistently exhibited lower frequency-weighted and unweighted accelerations in both the laboratory and workplace evaluations. These observations suggest that the standardized riveting hammer test is acceptable for identifying tools that could be expected to exhibit lower vibrations in workplace environments. However, the large differences between the accelerations measured in the laboratory and field suggest that the standardized laboratory-based tool assessment is not suitable for estimating workplace riveting hammer HTV exposures. Based on the frequency-weighted accelerations measured at the tool handles during the three work tasks, the sheet metal mechanics assigned to these tasks at the studied workplace are unlikely to exceed the daily vibration exposure action value (2.5 m s(-2)) using any of the

  20. Military Exposures

    MedlinePlus

    ... Chemicals (Agent Orange, contaminated water…) Radiation (nuclear weapons, X-rays…) Air Pollutants (burn pit smoke, dust…) Occupational Hazards (asbestos, lead…) Warfare Agents (chemical and biological weapons) Exposure ...

  1. Vibrational Spectroscopy of Ionic Liquids.

    PubMed

    Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C

    2017-01-04

    Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.

  2. Vibration control of rotor shaft

    NASA Technical Reports Server (NTRS)

    Nonami, K.

    1985-01-01

    Suppression of flexural forced vibration or the self-excited vibration of a rotating shaft system not by passive elements but by active elements is described. The distinctive feature of this method is not to dissipate the vibration energy but to provide the force cancelling the vibration displacement and the vibration velocity through the bearing housing in rotation. Therefore the bearings of this kind are appropriately named Active Control Bearings. A simple rotor system having one disk at the center of the span on flexible supports is investigated in this paper. The actuators of the electrodynamic transducer are inserted in the sections of the bearing housing. First, applying the optimal regulator of optimal control theory, the flexural vibration control of the rotating shaft and the vibration control of support systems are performed by the optimal state feedback system using these actuators. Next, the quasi-modal control based on a modal analysis is applied to this rotor system. This quasi-modal control system is constructed by means of optimal velocity feedback loops. The differences between optimal control and quasi-modal control are discussed and their merits and demerits are made clear. Finally, the experiments are described concerning only the optimal regulator method.

  3. [Dynamics of vegetative indicators induced by low-frequency magnetotherapy and EHF-puncture in hypertensive workers exposed to vibration].

    PubMed

    Drobyshev, V A; Efremov, A V; Loseva, M I; Sukharevskaia, T M; Michurin, A I

    2002-01-01

    Low-frequency magnetic fields and EHF-therapy have been used in correction of autonomic homeostasis in workers exposed to vibration for different periods of time. The workers suffered from early arterial hypertension. Vegetative status and central hemodynamics improved best in workers exposed to vibration for less than 5 years. If the exposure was 6-15 years, a positive trend occurred in the tension of regulatory mechanisms. Workers with long exposure to vibration suffering from vagotonia showed an inadequate response of the autonomic parameters to treatment. This necessitates enhancement of therapeutic measures with medicines.

  4. Effects of Short-Period Whole-Body Vibration of 20 Hz on Selected Blood Biomarkers in Wistar Rats.

    PubMed

    Monteiro, Milena de Oliveira Bravo; de Sá-Caputo, Danúbia da Cunha; Carmo, Fernanda Santos do; Bernardo, Raquel Mattos; Pacheco, Raphaelle; Arnóbio, Adriano; Guimarães, Carlos Alberto Sampaio; Bernardo, Luciana Camargo; Santos-Filho, Sebastião David; Asad, Nasser Ribeiro; Unger, Marianne; Marin, Pedro Jesus; Bernardo-Filho, Mario

    2015-08-31

    There is a growing interest in the use of vibration generated by oscillating/vibratory platforms - also known as whole-body vibration (WBV) - for achieving therapeutic, preventative and/or physical performance goals. This study investigated the effects of vibration generated by an oscillating platform on the concentration of blood biomarkers in rats. Wistar rats (n = 8) were divided in 2 groups, sedated and individually positioned on an oscillating platform. The experimental group (EG) was subjected to vibrations of 20 Hz for one min per day for one week while the control group (CG) experienced no vibration. Samples of heparinized whole blood were drawn by cardiac puncture for biochemical analysis. Concentrations of total cholesterol, triglycerides, HDL, LDL, VLDL, glucose, CK, albumin, alkaline phosphates, TGP, TGO, γGT, lipase, amylase, urea and creatinine were determined. White blood cell count and a platelet hemogram were also performed. Following seven sessions of exposure to the vibration, a significant (P < 0.05) reduction in γGT, VLDL and leukocytes was found. A weekly 1-min/day exposure of 20 Hz vibration can was shown to alter the concentrations of selected blood biomarkers in rats. The action mechanism associated with these effects seems highly complex, but the findings might contribute to the understanding of these mechanisms related to the exposure to 20 Hz vibration.

  5. An iOS Application for Evaluating Whole-body Vibration Within a Workplace Risk Management Process.

    PubMed

    McGlothlin, James; Burgess-Limerick, R; Lynas, D

    2015-01-01

    Workplace management of whole-body vibration exposure requires systematic collection of whole-body vibration data in conjunction with the numerous variables which influence vibration amplitudes. The cost and complexity of commercially available measurement devices is an impediment to the routine collection of such data by workplaces. An iOS application (WBV) has been developed which allows an iPod Touch to be used to measure whole-body vibration exposures. The utility of the application was demonstrated by simultaneously obtaining 98 pairs of whole-body vibration measurements from both the iPod Touch application and a commercially available whole-body vibration device during the operation of a variety of vehicles and mobile plant in operation at a surface coal mine. The iOS application installed on a fifth-generation iPod Touch was shown to provide a 95% confidence of +/- 0.077 m/s(2) r.m.s. constant error for the vertical direction. Situations in which vibration levels lay within the ISO2631.1 health guidance caution zone were accurately identified, and the qualitative features of the frequency spectra were reproduced. The low cost and relative simplicity of the application has potential to facilitate its use as a screening tool to identify situations in which musculoskeletal disorders may arise as a consequence of exposure to whole-body vibration.

  6. [Development of vibration-induced intrahepatic cholestasis in pilots and new ways of correcting these disorders].

    PubMed

    Preobrazhenskiĭ, V N; Vasilenko, V V; Taianovskiĭ, V Iu

    1999-01-01

    Data of analysis of the role of vibration in the development of hepatobiliary pathology in helicopter pilots are reported. Vibration was found to drastically deteriorate colloid-osmotic qualities of the bile and increase the lithogenesis risk. Exposure to vibration over 10 and more years of the flying career may instigate cholelithiasis. Dynamic USI with functional testing for early diagnostics and correction with ursodeoxycholic acid (ursosan) of disorders in the colloid-osmotic properties of the bile and can be proposed as one of the methods to prevent cholelithiasis.

  7. Cushion Effects During Low Frequency Jet Aircraft Vibration Exposure

    DTIC Science & Technology

    2010-05-01

    circulation while in the seated posture. One design included the use of a pulsating -type seat cushion to maintain blood circulation and minimize fatigue...Subjects were tested for a three- hour period in a confined seated posture in the non- pulsating and pulsating modes [2]. Blood flow velocity measured...at the foot showed the greatest reduction with the non- pulsating configuration. The pulsating cushion was also reported by the subjects to be more

  8. The effects of low-frequency vibrations on hepatic profile of blood

    NASA Astrophysics Data System (ADS)

    Damijan, Z.

    2008-02-01

    Body vibrations training has become popular in sports training, fitness activity, it is still a rare form of physical rehabilitation.. Vibrations are transmitted onto the whole body or some body parts of an exercising person via a vibration platform subjected to mechanical vertical vibrations. During the training session a participant has to maintain his body position or do exercises that engage specific muscles whilst vibrations of the platform are transmitted onto the person's body. This paper is the continuation of the earlier study covering the effects of low-frequency vibrations on selected physiological parameters of the human body. The experiments were conducted to find the answer to the question if vibration exposure (total duration of training sessions 6 hours 20 min) should produce any changes in hepatic profile of blood. Therefore a research program was undertaken at the University of Science and Technology AGH UST to investigate the effects of low-frequency vibration on selected parameters of hepatic profile of human blood. Cyclic fluctuations of bone loading were induced by the applied harmonic vibration 3.5 Hz and amplitude 0.004 m. The experiments utilizing two vibrating platforms were performed in the Laboratory of Structural Acoustics and Biomedical Engineering AGH-UST. The applied vibrations were harmless and not annoying, in accordance with the standard PN-EN ISO 130901-1, 1998. 23 women volunteers had 19 sessions on subsequent working days, at the same time of day. during the tests the participants remained in the standing position, passive. The main hypothesis has it that short-term low-frequency vibration exposure might bring about the changes of the hepatic profile of blood, including: bilirubin (BILIRUBIN), alkaline phosphatase (Alp), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and albumin (ALBUMIN) levels. Research data indicate the low-frequency vibrations exposure produces statistically significant decrease of

  9. Vibration dampener for dampening vibration of a tubular member

    DOEpatents

    Obermeyer, F.D.; Middlebrooks, W.B.; DeMario, E.E.

    1994-10-18

    Vibration dampener for dampening vibration of a tubular member, such as an instrumentation tube of the type found in nuclear reactor pressure vessels is disclosed. The instrumentation tube is received in an outer tubular member, such as a guide thimble tube. The vibration dampener comprises an annular sleeve which is attachable to the inside surface of the guide thimble tube and which is sized to surround the instrumentation tube. Dimples are attached to the interior wall of the sleeve for radially supporting the instrumentation tube. The wall of the sleeve has a flexible spring member, which is formed from the wall, disposed opposite the dimples for biasing the instrumentation tube into abutment with the dimples. Flow-induced vibration of the instrumentation tube will cause it to move out of contact with the dimples and further engage the spring member, which will flex a predetermined amount and exert a reactive force against the instrumentation tube to restrain its movement. The amount by which the spring member will flex is less than the unrestrained amplitude of vibration of the instrumentation tube. The reactive force exerted against the instrumentation tube will be sufficient to return it to its original axial position within the thimble tube. In this manner, vibration of the instrumentation tube is dampened so that in-core physics measurements are accurate and so that the instrumentation tube will not wear against the inside surface of the guide thimble tube. 14 figs.

  10. Vibration dampener for dampening vibration of a tubular member

    DOEpatents

    Obermeyer, Franklin D.; Middlebrooks, Willis B.; DeMario, Edmund E.

    1994-01-01

    Vibration dampener for dampening vibration of a tubular member, such as an instrumentation tube of the type found in nuclear reactor pressure vessels. The instrumentation tube is received in an outer tubular member, such as a guide thimble tube. The vibration dampener comprises an annular sleeve which is attachable to the inside surface of the guide thimble tube and which is sized to surround the instrumentation tube. Dimples are attached to the interior wall of the sleeve for radially supporting the instrumentation tube. The wall of the sleeve has a flexible spring member, which is formed from the wall, disposed opposite the dimples for biasing the instrumentation tube into abutment with the dimples. Flow-induced vibration of the instrumentation tube will cause it to move out of contact with the dimples and further engage the spring member, which will flex a predetermined amount and exert a reactive force against the instrumentation tube to restrain its movement. The amount by which the spring member will flex is less than the unrestrained amplitude of vibration of the instrumentation tube. The reactive force exerted against the instrumentation tube will be sufficient to return it to its original axial position within the thimble tube. In this manner, vibration of the instrumentation tube is dampened so that in-core physics measurements are accurate and so that the instrumentation tube will not wear against the inside surface of the guide thimble tube.

  11. EXPOSURE ANALYSIS

    EPA Science Inventory

    This proceedings chapter presents the state of the science regarding the evaluation of exposure as it relates to WQC, SQGs, and wildlife criteria (WC). . . . In summary, the exposure workgroup concluded the following: There should be greater use of mechanistic models to predict b...

  12. Action slips during whole-body vibration.

    PubMed

    Ishimatsu, Kazuma; Meland, Anders; Hansen, Tor Are S; Kåsin, Jan Ivar; Wagstaff, Anthony S

    2016-07-01

    Helicopter aircrew members engage in highly demanding cognitive tasks in an environment subject to whole-body vibration (WBV). Sometimes their actions may not be according to plan (e.g. action slips and lapses). This study used a Sustained Attention to Response Task (SART) to examine whether action slips were more frequent during exposure to WBV. Nineteen participants performed the SART in two blocks. In the WBV block participants were exposed to 17 Hz vertical WBV, which is typical of larger helicopter working environments. In the No-WBV block there was no WBV. There were more responses to the rare no-go digit 3 (i.e. action slips) in the WBV block, and participants responded faster in the WBV block. These results suggest that WBV influences response inhibition, and can induce impulsive responding. WBV may increase the likelihood of action slips, mainly due to failure of response inhibition.

  13. 49 CFR 178.819 - Vibration test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Vibration test. 178.819 Section 178.819... Vibration test. (a) General. The vibration test must be conducted for the qualification of all rigid IBC design types. Flexible IBC design types must be capable of withstanding the vibration test. (b)...

  14. 14 CFR 33.33 - Vibration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure....

  15. 14 CFR 33.43 - Vibration test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vibration test. 33.43 Section 33.43... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.43 Vibration test. (a) Each engine must undergo a vibration survey to establish the torsional and bending vibration...

  16. 14 CFR 33.33 - Vibration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure....

  17. 14 CFR 33.33 - Vibration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure....

  18. 14 CFR 33.63 - Vibration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vibration. 33.63 Section 33.63 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.63 Vibration. Each engine... because of vibration and without imparting excessive vibration forces to the aircraft structure....

  19. 49 CFR 178.819 - Vibration test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Vibration test. 178.819 Section 178.819... Vibration test. (a) General. The vibration test must be conducted for the qualification of all rigid IBC design types. Flexible IBC design types must be capable of withstanding the vibration test. (b)...

  20. 14 CFR 33.63 - Vibration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vibration. 33.63 Section 33.63 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.63 Vibration. Each engine... because of vibration and without imparting excessive vibration forces to the aircraft structure....

  1. 14 CFR 33.33 - Vibration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure....

  2. 14 CFR 33.83 - Vibration test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine must undergo vibration surveys to establish that the vibration characteristics of those components...

  3. 14 CFR 33.63 - Vibration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vibration. 33.63 Section 33.63 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.63 Vibration. Each engine... because of vibration and without imparting excessive vibration forces to the aircraft structure....

  4. 14 CFR 33.83 - Vibration test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine must undergo vibration surveys to establish that the vibration characteristics of those components...

  5. 14 CFR 33.33 - Vibration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure....

  6. 14 CFR 33.63 - Vibration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vibration. 33.63 Section 33.63 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.63 Vibration. Each engine... because of vibration and without imparting excessive vibration forces to the aircraft structure....

  7. 14 CFR 33.63 - Vibration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.63 Section 33.63 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.63 Vibration. Each engine... because of vibration and without imparting excessive vibration forces to the aircraft structure....

  8. 49 CFR 178.819 - Vibration test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Vibration test. 178.819 Section 178.819... Vibration test. (a) General. The vibration test must be conducted for the qualification of all rigid IBC design types. Flexible IBC design types must be capable of withstanding the vibration test. (b)...

  9. Effect of Attitudinal, Situational and Demographic Factors on Annoyance Due to Environmental Vibration and Noise from Construction of a Light Rapid Transit System

    PubMed Central

    Wong-McSweeney, Daniel; Woodcock, James; Waddington, David; Peris, Eulalia; Koziel, Zbigniew; Moorhouse, Andy; Redel-Macías, María Dolores

    2016-01-01

    The aim of this paper is to determine what non-exposure factors influence the relationship between vibration and noise exposure from the construction of a Light Rapid Transit (LRT) system and the annoyance of nearby residents. Noise and vibration from construction sites are known to annoy residents, with annoyance increasing as a function of the magnitude of the vibration and noise. There is not a strong correlation between exposure and levels of annoyance suggesting that factors not directly related to the exposure may have an influence. A range of attitudinal, situational and demographic factors are investigated with the aim of understanding the wide variation in annoyance for a given vibration exposure. A face-to-face survey of residents (n = 350) near three sites of LRT construction was conducted, and responses were compared to semi-empirical estimates of the internal vibration within the buildings. It was found that annoyance responses due to vibration were strongly influenced by two attitudinal variables, concern about property damage and sensitivity to vibration. Age, ownership of the property and the visibility of the construction site were also important factors. Gender, time at home and expectation of future levels of vibration had much less influence. Due to the measurement methods used, it was not possible to separate out the effects of noise and vibration on annoyance; as such, this paper focusses on annoyance due to vibration exposure. This work concludes that for the most cost-effective reduction of the impact of construction vibration and noise on the annoyance felt by a community, policies should consider attitudinal factors. PMID:27983662

  10. Effect of Attitudinal, Situational and Demographic Factors on Annoyance Due to Environmental Vibration and Noise from Construction of a Light Rapid Transit System.

    PubMed

    Wong-McSweeney, Daniel; Woodcock, James; Waddington, David; Peris, Eulalia; Koziel, Zbigniew; Moorhouse, Andy; Redel-Macías, María Dolores

    2016-12-14

    The aim of this paper is to determine what non-exposure factors influence the relationship between vibration and noise exposure from the construction of a Light Rapid Transit (LRT) system and the annoyance of nearby residents. Noise and vibration from construction sites are known to annoy residents, with annoyance increasing as a function of the magnitude of the vibration and noise. There is not a strong correlation between exposure and levels of annoyance suggesting that factors not directly related to the exposure may have an influence. A range of attitudinal, situational and demographic factors are investigated with the aim of understanding the wide variation in annoyance for a given vibration exposure. A face-to-face survey of residents (n = 350) near three sites of LRT construction was conducted, and responses were compared to semi-empirical estimates of the internal vibration within the buildings. It was found that annoyance responses due to vibration were strongly influenced by two attitudinal variables, concern about property damage and sensitivity to vibration. Age, ownership of the property and the visibility of the construction site were also important factors. Gender, time at home and expectation of future levels of vibration had much less influence. Due to the measurement methods used, it was not possible to separate out the effects of noise and vibration on annoyance; as such, this paper focusses on annoyance due to vibration exposure. This work concludes that for the most cost-effective reduction of the impact of construction vibration and noise on the annoyance felt by a community, policies should consider attitudinal factors.

  11. Vibration interaction in a multiple flywheel system

    NASA Astrophysics Data System (ADS)

    Firth, Jordan; Black, Jonathan

    2012-03-01

    This paper investigates vibration interaction in a multiple flywheel system. Flywheels can be used for kinetic energy storage in a satellite Integrated Power and Attitude Control System (IPACS). One hitherto unstudied problem with IPACS is vibration interaction between multiple unbalanced wheels. This paper uses a linear state-space dynamics model to study the impact of vibration interaction. Specifically, imbalance-induced vibration inputs in one flywheel rotor are used to cause a resonant whirling vibration in another rotor. Extra-synchronous resonant vibrations are shown to exist, but with damping modeled the effect is minimal. Vibration is most severe when both rotors are spinning in the same direction.

  12. Measurement of rabbit eardrum vibration through stroboscopic digital holography

    NASA Astrophysics Data System (ADS)

    De Greef, Daniël; Dirckx, Joris J. J.

    2014-05-01

    In this work, we present a setup for high-power single shot stroboscopic digital holography and demonstrate it in an application on rabbit eardrum vibration measurement. The setup is able to make full-field time-resolved measurements of vibrating surfaces with a precision in the nanometer range in a broad frequency range. The height displacement of the measured object is visualized over the entire surface as a function of time. Vibration magnitude and phase maps can be extracted from these data, the latter proving to be very useful to reveal phase delays across the surface. Such deviations from modal motion indicate energy losses due to internal damping, in contrast to purely elastic mechanics. This is of great interest in middle ear mechanics and finite element modelling. In our setup, short laser pulses are fired at selected instants within the surface vibration period and are recorded by a CCD camera. The timing of the pulses and the exposure of the camera are synchronized to the vibration phase by a microprocessor. The high-power frequency-doubled Nd:YAG laser produces pulses containing up to 5 mJ of energy, which is amply sufficient to record single-shot holograms. As the laser pulse length is 8 ns and the smallest time step of the trigger electronics is 1 μs, vibration measurements of frequencies up to 250 kHz are achievable through this method, provided that the maximum vibration amplitude exceeds a few nanometers. In our application, middle ear mechanics, measuring frequencies extend from 5 Hz to 20 kHz. The experimental setup will be presented, as well as results of measurements on a stretched circular rubber membrane and a rabbit's eardrum. Two of the challenges when measuring biological tissues, such as the eardrum, are low reflectivity and fast dehydration. To increase reflectivity, a coating is applied and to counteract the undesirable effects of tissue dehydration, the measurement setup and software have been optimized for speed without compromising

  13. Measurement of rabbit eardrum vibration through stroboscopic digital holography

    SciTech Connect

    De Greef, Daniël; Dirckx, Joris J. J.

    2014-05-27

    In this work, we present a setup for high-power single shot stroboscopic digital holography and demonstrate it in an application on rabbit eardrum vibration measurement. The setup is able to make full-field time-resolved measurements of vibrating surfaces with a precision in the nanometer range in a broad frequency range. The height displacement of the measured object is visualized over the entire surface as a function of time. Vibration magnitude and phase maps can be extracted from these data, the latter proving to be very useful to reveal phase delays across the surface. Such deviations from modal motion indicate energy losses due to internal damping, in contrast to purely elastic mechanics. This is of great interest in middle ear mechanics and finite element modelling. In our setup, short laser pulses are fired at selected instants within the surface vibration period and are recorded by a CCD camera. The timing of the pulses and the exposure of the camera are synchronized to the vibration phase by a microprocessor. The high-power frequency-doubled Nd:YAG laser produces pulses containing up to 5 mJ of energy, which is amply sufficient to record single-shot holograms. As the laser pulse length is 8 ns and the smallest time step of the trigger electronics is 1 μs, vibration measurements of frequencies up to 250 kHz are achievable through this method, provided that the maximum vibration amplitude exceeds a few nanometers. In our application, middle ear mechanics, measuring frequencies extend from 5 Hz to 20 kHz. The experimental setup will be presented, as well as results of measurements on a stretched circular rubber membrane and a rabbit's eardrum. Two of the challenges when measuring biological tissues, such as the eardrum, are low reflectivity and fast dehydration. To increase reflectivity, a coating is applied and to counteract the undesirable effects of tissue dehydration, the measurement setup and software have been optimized for speed without compromising

  14. Evaluation of influences of frequency and amplitude on image degradation caused by satellite vibrations

    NASA Astrophysics Data System (ADS)

    Nan, Yi-Bing; Tang, Yi; Zhang, Li-Jun; Zheng, Cheng; Wang, Jing

    2015-05-01

    Satellite vibrations during exposure will lead to pixel aliasing of remote sensors, resulting in the deterioration of image quality. In this paper, we expose the problem and discuss the characteristics of satellite vibrations, and then present a pixel mixing model. The idea of mean mixing ratio (MMR) is proposed. MMR computations for different frequencies are implemented. In the mixing model, a coefficient matrix is introduced to estimate each mixed pixel. Thus, the simulation of degraded image can be performed when the vibration attitudes are known. The computation of MMR takes into consideration the influences of various frequencies and amplitudes. Therefore, the roles of these parameters played in the degradation progress are identified. Computations show that under the same vibration amplitude, the influence of vibrations fluctuates with the variation of frequency. The fluctuation becomes smaller as the frequency rises. Two kinds of vibration imaging experiments are performed: different amplitudes with the same frequency and different frequencies with the same amplitude. Results are found to be in very good agreement with the theoretical results. MMR has a better description of image quality than modulation transfer function (MTF). The influence of vibrations is determined mainly by the amplitude rather than the frequency. The influence of vibrations on image quality becomes gradually stable with the increase of frequency. Project supported by the National Basic Research Program of China (Grant No. 2013CB329202) and the Basic Industrial Technology Project of China (Grant No. J312012B002).

  15. Stress analysis of vibrating pipelines

    NASA Astrophysics Data System (ADS)

    Zachwieja, Janusz

    2017-03-01

    The pipelines are subject to various constraints variable in time. Those vibrations, if not monitored for amplitude and frequency, may result in both the fatigue damage in the pipeline profile at high stress concentration and the damage to the pipeline supports. If the constraint forces are known, the system response may be determined with high accuracy using analytical or numerical methods. In most cases, it may be difficult to determine the constraint parameters, since the industrial pipeline vibrations occur due to the dynamic effects of the medium in the pipeline. In that case, a vibration analysis is a suitable alternative method to determine the stress strain state in the pipeline profile. Monitoring the pipeline vibration levels involves a comparison between the measured vibration parameters and the permissible values as depicted in the graphs for a specific pipeline type. Unfortunately, in most cases, the studies relate to the petrochemical industry and thus large diameter, long and straight pipelines. For a pipeline section supported on both ends, the response in any profile at the entire section length can be determined by measuring the vibration parameters at two different profiles between the pipeline supports. For a straight pipeline section, the bending moments, variable in time, at the ends of the analysed section are a source of the pipe excitation. If a straight pipe section supported on both ends is excited by the bending moments in the support profile, the starting point for the stress analysis are the strains, determined from the Euler-Bernoulli equation. In practice, it is easier to determine the displacement using the experimental methods, since the factors causing vibrations are unknown. The industrial system pipelines, unlike the transfer pipelines, are straight sections at some points only, which makes it more difficult to formulate the equation of motion. In those cases, numerical methods can be used to determine stresses using the

  16. Smart accelerometer. [vibration damage detection

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.

  17. CV-22 Human Vibration Evaluation

    DTIC Science & Technology

    2008-04-01

    of helmet-mounted equipment such as night vision goggles , helmet-mounted displays, and targeting systems. These systems may not function as...cabin door position, and AVSS setting. It is noted that the high levels of seat back vibration observed at the FE are most likely due to posture ...based on the vibration entering the seated occupant. These levels can vary depending on the occupant’s anthropometry, posture , and activity at the

  18. The effect of whole-body resonance vibration in a porcine model of spinal cord injury.

    PubMed

    Streijger, Femke; Lee, Jae H T; Chak, Jason; Dressler, Dan; Manouchehri, Neda; Okon, Elena B; Anderson, Lisa M; Melnyk, Angela D; Cripton, Peter A; Kwon, Brian K

    2015-06-15

    Whole-body vibration has been identified as a potential stressor to spinal cord injury (SCI) patients during pre-hospital transportation. However, the effect that such vibration has on the acutely injured spinal cord is largely unknown, particularly in the frequency domain of 5 Hz in which resonance of the spine occurs. The objective of the study was to investigate the consequences of resonance vibration on the injured spinal cord. Using our previously characterized porcine model of SCI, we subjected animals to resonance vibration (5.7±0.46 Hz) or no vibration for a period of 1.5 or 3.0 h. Locomotor function was assessed weekly and cerebrospinal fluid (CSF) samples were collected to assess different inflammatory and injury severity markers. Spinal cords were evaluated histologically to quantify preserved white and gray matter. No significant differences were found between groups for CSF levels of monocyte chemotactic protein-1, interleukin 6 (IL-6) and lL-8. Glial fibrillary acidic protein levels were lower in the resonance vibration group, compared with the non-vibrated control group. Spared white matter tissue was increased within the vibrated group at 7 d post-injury but this difference was not apparent at the 12-week time-point. No significant difference was observed in locomotor recovery following resonance vibration of the spine. Here, we demonstrate that exposure to resonance vibration for 1.5 or 3 h following SCI in our porcine model is not detrimental to the functional or histological outcomes. Our observation that a 3.0-h period of vibration at resonance frequency induces modest histological improvement at one week post-injury warrants further study.

  19. Frequency characteristics of human muscle and cortical responses evoked by noisy Achilles tendon vibration.

    PubMed

    Mildren, Robyn Lynne; Peters, Ryan M; Hill, Aimee J; Blouin, Jean-Sebastien; Carpenter, Mark Gregory; Inglis, J Timothy

    2017-02-16

    Noisy stimuli, along with linear systems analysis, have proven to be effective for mapping functional neural connections. We explored the use of noisy (10-115 Hz) Achilles tendon vibration to examine proprioceptive reflexes in the triceps surae muscles in standing healthy young adults (n = 8). We also examined the association between noisy vibration and electrical activity recorded over the sensorimotor cortex using electroencephalography. We applied two-minutes of vibration and recorded ongoing muscle activity of the soleus and gastrocnemii using surface electromyography (EMG). Vibration amplitude was varied to characterize reflex scaling and to examine how different stimulus levels affected postural sway. Muscle activity from the soleus and gastrocnemii were significantly correlated with the tendon vibration across a broad frequency range (~10-80 Hz), with a peak located at ~40 Hz. Vibration-EMG coherence positively scaled with stimulus amplitude in all three muscles, with soleus displaying the strongest coupling and steepest scaling. EMG responses lagged the vibration by ~38 ms, a delay that paralleled observed response latencies to tendon taps. Vibration-evoked cortical oscillations were observed at frequencies ~40-70 Hz (peak ~54 Hz) in most subjects, a finding in line with previous reports of sensory evoked γ-band oscillations. Further examination of the method revealed a) accurate reflex estimates could be obtained with <60 s of low-level (RMS=10 m/s(2)) vibration, b) responses did not habituate over two-minutes of exposure, and importantly c) noisy vibration had a minimal influence on standing balance. Our findings suggest noisy tendon vibration is an effective novel approach to characterize proprioceptive reflexes.

  20. Airfoil Vibration Dampers program

    NASA Technical Reports Server (NTRS)

    Cook, Robert M.

    1991-01-01

    The Airfoil Vibration Damper program has consisted of an analysis phase and a testing phase. During the analysis phase, a state-of-the-art computer code was developed, which can be used to guide designers in the placement and sizing of friction dampers. The use of this computer code was demonstrated by performing representative analyses on turbine blades from the High Pressure Oxidizer Turbopump (HPOTP) and High Pressure Fuel Turbopump (HPFTP) of the Space Shuttle Main Engine (SSME). The testing phase of the program consisted of performing friction damping tests on two different cantilever beams. Data from these tests provided an empirical check on the accuracy of the computer code developed in the analysis phase. Results of the analysis and testing showed that the computer code can accurately predict the performance of friction dampers. In addition, a valuable set of friction damping data was generated, which can be used to aid in the design of friction dampers, as well as provide benchmark test cases for future code developers.

  1. Vibrational modes of nanolines

    NASA Astrophysics Data System (ADS)

    Heyliger, Paul R.; Flannery, Colm M.; Johnson, Ward L.

    2008-04-01

    Brillouin-light-scattering spectra previously have been shown to provide information on acoustic modes of polymeric lines fabricated by nanoimprint lithography. Finite-element methods for modeling such modes are presented here. These methods provide a theoretical framework for determining elastic constants and dimensions of nanolines from measured spectra in the low gigahertz range. To make the calculations feasible for future incorporation in inversion algorithms, two approximations of the boundary conditions are employed in the calculations: the rigidity of the nanoline/substrate interface and sinusoidal variation of displacements along the nanoline length. The accuracy of these approximations is evaluated as a function of wavenumber and frequency. The great advantage of finite-element methods over other methods previously employed for nanolines is the ability to model any cross-sectional geometry. Dispersion curves and displacement patterns are calculated for modes of polymethyl methacrylate nanolines with cross-sectional dimensions of 65 nm × 140 nm and rectangular or semicircular tops. The vibrational displacements and dispersion curves are qualitatively similar for the two geometries and include a series of flexural, Rayleigh-like, and Sezawa-like modes. This paper is a contribution of the National Institute of Standards and Technology and is not subject to copyright in the United States.

  2. Temporal features of human tendon vibration illusions.

    PubMed

    Fuentes, Christina T; Gomi, Hiroaki; Haggard, Patrick

    2012-12-01

    Muscle spindles provide information about the position and movement of our bodies. One method for investigating spindle signals is tendon vibration. Vibration of flexor tendons can produce illusions of extension, and vibration of extensor tendons can produce illusions of flexion. Here we estimate the temporal resolution and persistence of these illusions. In Experiments 1 and 2, sequences of alternating vibration of wrist flexor and extensor tendons produced position illusions that varied with alternation period. When vibrations alternated at 1 Hz or slower, perceived position at the end of the sequence depended on the last vibration. When vibrations alternated every 0.3 s, perceived position was independent of the last vibration. Experiment 2 verified and extended these results using more trials and concurrent electromyographic recording. Although tendon vibrations sometimes induce reflexive muscle activity, we found no evidence that such activity contributed to these effects. Experiment 3 investigated how long position sense is retained when not updated by current information from spindles. Our first experiments suggested that vibrating antagonistic tendons simultaneously could produce conflicting inputs, leaving position sense reliant on memory of position prior to vibration onset. We compared variability in position sense after different durations of such double vibration. After 12 s of double vibration, variability across trials exceeded levels predicted from vibrations of flexor or extensor tendons alone. This suggests that position sense memory had decayed too much to substitute for the current conflicting sensory information. Together, our results provide novel, quantitative insight into the temporal properties of tendon vibration illusions.

  3. The role of whole body vibration, posture and manual materials handling as risk factors for low back pain in occupational drivers.

    PubMed

    Okunribido, O O; Magnusson, M; Pope, M H

    2008-03-01

    It seems evident that occupational drivers have an increased risk of developing back pain. Not only are they exposed to whole body vibration (vibration), their work often includes exposure to several other risk factors for low back pain (LBP), particularly the seated posture (posture) and manual materials handling (MMH). Excessive demands on posture are likely to be aggravated by vibration and vice versa, and the risks may be further compounded when MMH is performed. This study investigated the relative role of vibration, posture and MMH as risk factors for LBP and the stated hypothesis was that the risks for LBP in drivers are the combined effect of vibration, posture and/or MMH. The findings showed that interaction effects due to posture and one or both of vibration and MMH, rather than the individual exposure effects, are the main contributors for precipitation of LBP.

  4. Vibrational dynamics of DNA. I. Vibrational basis modes and couplings

    NASA Astrophysics Data System (ADS)

    Lee, Chewook; Park, Kwang-Hee; Cho, Minhaeng

    2006-09-01

    Carrying out density functional theory calculations of four DNA bases, base derivatives, Watson-Crick (WC) base pairs, and multiple-layer base pair stacks, we studied vibrational dynamics of delocalized modes with frequency ranging from 1400to1800cm-1. These modes have been found to be highly sensitive to structure fluctuation and base pair conformation of DNA. By identifying eight fundamental basis modes, it is shown that the normal modes of base pairs and multilayer base pair stacks can be described by linear combinations of these vibrational basis modes. By using the Hessian matrix reconstruction method, vibrational coupling constants between the basis modes are determined for WC base pairs and multilayer systems and are found to be most strongly affected by the hydrogen bonding interaction between bases. It is also found that the propeller twist and buckle motions do not strongly affect vibrational couplings and basis mode frequencies. Numerically simulated IR spectra of guanine-cytosine and adenine-thymine bases pairs as well as of multilayer base pair stacks are presented and described in terms of coupled basis modes. It turns out that, due to the small interlayer base-base vibrational interactions, the IR absorption spectrum of multilayer base pair system does not strongly depend on the number of base pairs.

  5. Experimental characterization of a nonlinear vibration absorber using free vibration

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Brennan, M. J.; Gatti, G.; Ferguson, N. S.

    2016-04-01

    Knowledge of the nonlinear characteristics of a vibration absorber is important if its performance is to be predicted accurately when connected to a host structure. This can be achieved theoretically, but experimental validation is necessary to verify the modelling procedure and assumptions. This paper describes the characterization of such an absorber using a novel experimental procedure. The estimation method is based on a free vibration test, which is appropriate for a lightly damped device. The nonlinear absorber is attached to a shaker which is operated such that the shaker works in its mass-controlled regime, which means that the shaker dynamics, which are also included in the measurement, are considerably simplified, which facilitates a simple estimation of the absorber properties. From the free vibration time history, the instantaneous amplitude and instantaneous damped natural frequency are estimated using the Hilbert transform. The stiffness and damping of the nonlinear vibration absorber are then estimated from these quantities. The results are compared with an analytical solution for the free vibration of the nonlinear system with cubic stiffness and viscous damping, which is also derived in the paper using an alternative approach to the conventional perturbation methods. To further verify the approach, the results are compared with a method in which the internal forces are balanced at each measured instant in time.

  6. Comparing three methods for evaluating impact wrench vibration emissions.

    PubMed

    McDowell, Thomas W; Marcotte, Pierre; Warren, Cristopher; Welcome, Daniel E; Dong, Ren G

    2009-08-01

    To provide a means for comparing impact wrenches and similar tools, the international standard ISO 8662-7 prescribes a method for measuring the vibrations at the handles of tools during their operations against a cotton-phenolic braking device. To improve the standard, alternative loading mechanisms have been proposed; one device comprises aluminum blocks with friction brake linings, while another features plate-mounted bolts to provide the tool load. The objective of this study was to evaluate these three loading methods so that tool evaluators can select appropriate loading devices in order to obtain results that can be applied to their specific workplace operations. Six experienced tool operators used five tool models to evaluate the loading mechanisms. The results of this study indicate that different loads can yield different tool comparison results. However, any of the three devices appears to be adequate for initial tool screenings. On the other hand, vibration emissions measured in the laboratory are unlikely to be fully representative of those in the workplace. Therefore, for final tool selections and for reliably assessing workplace vibration exposures, vibration measurements should be collected under actual working conditions. Evaluators need to use appropriate numbers of tools and tool operators in their assessments; recommendations are provided.

  7. Importance of Atomic Contacts in Vibrational Energy Flow in Proteins.

    PubMed

    Kondoh, Masato; Mizuno, Misao; Mizutani, Yasuhisa

    2016-06-02

    Vibrational energy flow in proteins was studied by monitoring the time-resolved anti-Stokes ultraviolet resonance Raman scattering of three myoglobin mutants in which a Trp residue substitutes a different amino acid residue near heme. The anti-Stokes Raman intensities of the Trp residue in the three mutants increased with similar rates after depositing excess vibrational energy at heme, despite the difference in distance between heme and each substituted Trp residue along the main chain of the protein. This indicates that vibrational energy is not transferred through the main chain of the protein but rather through atomic contacts between heme and the Trp residue. Distinct differences were observed in the amplitude of the band intensity change between the Trp residues at different positions, and the amplitude of the band intensity change exhibits a correlation with the extent of exposure of the Trp residue to solvent water. This correlation indicates that atomic contacts between an amino acid residue and solvent water play an important role in vibrational energy flow in a protein.

  8. Calibration of Sound and Vibration Sensors and Vibration Testing Systems

    NASA Astrophysics Data System (ADS)

    Nicklich, H.

    2004-08-01

    SPEKTRA is a manufacturer of high quality calibration systems for sound and vibration. Under license No DKD-K-27801, a calibration lab was established at SPEKTRA to provide a calibration service. The paper gives a summary of 4 years experience in the calibration of vibration Sensors, measuring systems and vibration test equipment in the industrial field. In practice calibration is often treated as an unpleasant job that is solved by handing out a "Calibration certificate of every part of the system" to the Quality Manager. The paper comes to the conclusion that calibration can help to minimize costs and risks if the customer has basic knowledge in international standards, the used test equipment and the special requirements for testing with this configuration. It is not enough to calibrate one sen- sor of a system in a standard range. The requirements for calibration should be defined individually for every testing system and application.

  9. Calibration of sound and vibration sensors and vibration testing systems

    NASA Astrophysics Data System (ADS)

    Nicklich, Holger

    2004-08-01

    SPEKTRA is a manufacturer of high quality calibration systems for sound and vibration. Under license No DKD-K-27801, a calibration lab was established at SPEKTRA to provide a calibration service. The paper gives a summary of 4 years experience in the calibration of vibration Sensors, measuring systems and vibration test equipment in the industrial field. In practice calibration is often treated as an unpleasant job that is solved by handing out a “Calibration certificate of every part of the system” to the Quality Manager. The paper comes to the conclusion that calibration can help to minimize costs and risks if the customer has basic knowledge in international standards, the used test equipment and the special requirements for testing with this configuration. It is not enough to calibrate one sensor of a system in a standard range. The requirements for calibration should be defined individually for every testing system and application.

  10. Whole-body vibration and ergonomic study of US railroad locomotives

    NASA Astrophysics Data System (ADS)

    Johanning, Eckardt; Landsbergis, Paul; Fischer, Siegfried; Christ, Eberhard; Göres, Benno; Luhrman, Raymond

    2006-12-01

    US locomotive operators have exposure to multi-axis whole-body vibration (WBV) and shocks while seated. This study assessed operator-related and ergonomic seating design factors that may have confounding or mitigating influence on WBV exposure and its effects. Vibration exposure was measured according to international guidelines (ISO 2631-1; 1997); ergonomic work place factors and vibration effects were studied with a cross-sectional survey instrument distributed to a randomly selected group of railroad engineers ( n=2546) and a control group; and during vehicle inspections. The survey response rate was 47% for the RR engineers ( n=1195) and 41% for the controls ( n=323). Results of the mean basic vibration measurements were for the x, y, z-direction and vector sum 0.14, 0.22, 0.28 and 0.49 m/s 2 respectively; almost all crest factors (CF), MTVV and VDV values were above the critical ratios given in ISO 2631-1. The prevalence of serious neck and lower back disorders among locomotive engineers was found to be nearly double that of the sedentary control group without such exposure. Railroad engineers rated their seats mostly unacceptable regarding different adjustment and comfort aspects (3.02-3.51; scale 1=excellent to 4=unacceptable), while the control group rated their chairs more favorably (1.96-3.44). Existing cab and seat design in locomotives can result in prolonged forced awkward spinal posture of the operator combined with WBV exposure. In a logistic regression analysis, time at work being bothered by vibration (h/day) was significantly associated with an increased risk of low back pain, shoulder and neck pain, and sciatic pain among railroad engineers. Customized vibration attenuation seats and improved cab design of the locomotive controls should be further investigated.

  11. Modular Wideband Active Vibration Absorber

    NASA Technical Reports Server (NTRS)

    Smith, David R.; Zewari, Wahid; Lee, Kenneth Y.

    1999-01-01

    A comparison of space experiments with previous missions shows a common theme. Some of the recent experiments are based on the scientific fundamentals of instruments of prior years. However, the main distinguishing characteristic is the embodiment of advances in engineering and manufacturing in order to extract clearer and sharper images and extend the limits of measurement. One area of importance to future missions is providing vibration free observation platforms at acceptable costs. It has been shown by researchers that vibration problems cannot be eliminated by passive isolation techniques alone. Therefore, various organizations have conducted research in the area of combining active and passive vibration control techniques. The essence of this paper is to present progress in what is believed to be a new concept in this arena. It is based on the notion that if one active element in a vibration transmission path can provide a reasonable vibration attenuation, two active elements in series may provide more control options and better results. The paper presents the functions of a modular split shaft linear actuator developed by NASA's Goddard Space Flight Center and University of Massachusetts Lowell. It discusses some of the control possibilities facilitated by the device. Some preliminary findings and problems are also discussed.

  12. Vibration arthrometry: a critical review.

    PubMed

    Abbott, Steven C; Cole, Michael D

    2013-01-01

    The clinical value of sounds and vibrations produced by biological joints in motion has been studied extensively since 1902, aimed at developing a technology to aid the interpretation of recorded joint vibration signals. Such technology would have clear advantages to current medical imaging systems, e.g. MRI, in speed, cost, and non-invasiveness. However, it has yet to achieve routine clinical use. This review aims to provide a balanced analysis of past and present attempts to progress vibration arthrometry. The literature reveals significant barriers to successful implementation of vibration arthrometry. From a technical standpoint, accounting for the intense variability within recorded signals caused by shifting characteristics of contacting joint surfaces and forces during motion is the primary issue. Additionally, understandable scepticism in the clinical community as to the reliability of vibration arthrometry represents a significant barrier to adoption. In conclusion, until the variability issue is shown to be adequately dealt with, and clear transparent evidence of clinical usefulness to orthopedic medicine demonstrated, it will be difficult to move the field forward. Future work should lead toward proving value to clinicians, and be transparent about how the variability issue has been resolved.

  13. The influence of whole body vibration on the central and peripheral cardiovascular system.

    PubMed

    Robbins, Dan; Yoganathan, Priya; Goss-Sampson, Mark

    2014-09-01

    The purpose of this study was to investigate the physiological changes of the cardiovascular system in response to whole body vibration during quiet standing and identify whether there is a greater influence on the central or peripheral cardiovascular system. Twenty healthy participants (12 male and 8 female) were assessed over two separate testing sessions for changes in peripheral skin temperature, peripheral venous function, blood flow velocity in the dorsalis pedis artery, blood pressure and heart rate during quiet standing with 40 Hz 1·9 mm synchronous vibration. Vibration exposure totalled 5 min in 1 min increments with 5 min recovery during each testing session. There were no significant changes in heart rate, blood pressure or peripheral skin temperature. Significant results were obtained for blood flow velocity with increases from 0·5 + 0·2 cm·s(-1) at baseline to 1 + 0·2 cm·s(-1) during vibration, returning to baseline levels during the recovery period. Due to the absence of changes in heart rate, blood pressure or lower leg and foot temperature, the change in blood flow velocity can be attributed to changes in peripheral vascular function. The results suggest a high level of sensitivity of the peripheral vascular system to vibration exposure; therefore, further studies should be completed to ascertain the physiological mechanisms underlying the effects of vibration on the peripheral vascular system.

  14. Neurocognitive responses to a single session of static squats with whole body vibration.

    PubMed

    Amonette, William E; Boyle, Mandy; Psarakis, Maria B; Barker, Jennifer; Dupler, Terry L; Ott, Summer D

    2015-01-01

    The purpose of this study was to determine if the head accelerations using a common whole body vibration (WBV) exercise protocol acutely reduced neurocognition in healthy subjects. Second, we investigated differential responses to WBV plates with 2 different delivery mechanisms: vertical and rotational vibrations. Twelve healthy subjects (N = 12) volunteered and completed a baseline (BASE) neurocognitive assessment: the Immediate Postconcussion Assessment and Cognitive Test (ImPACT). Subjects then participated in 3 randomized exercise sessions separated by no more than 2 weeks. The exercise sessions consisted of five 2-minute sets of static hip-width stance squats, with the knees positioned at a 45° angle of flexion. The squats were performed with no vibration (control [CON]), with a vertically vibrating plate (vertical vibration [VV]), and with a rotational vibrating plate (rotational vibration [RV]) set to 30 Hz with 4 mm of peak-to-peak displacement. The ImPACT assessments were completed immediately after each exercise session and the composite score for 5 cognitive domains was analyzed: verbal memory, visual memory, visual motor speed, reaction time, and impulse control. Verbal memory scores were unaffected by exercise with or without vibration (p = 0.40). Likewise, visual memory was not different (p = 0.14) after CON, VV, or RV. Significant differences were detected for visual motor speed (p = 0.006); VV was elevated compared with BASE (p = 0.01). There were no significant differences (p = 0.26) in reaction time or impulse control (p = 0.16) after exercise with or without vibration. In healthy individuals, 10 minutes of 30 Hz, 4-mm peak-to-peak displacement vibration exposure with a 45° angle of knee flexion did not negatively affect neurocognition.

  15. Vibration-based photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Li, Rui; Rajian, Justin R.; Wang, Pu; Slipchenko, Mikhail N.; Cheng, Ji-Xin

    2013-03-01

    Photoacoustic imaging employing molecular overtone vibration as contrast mechanism opens a new avenue for deep tissue imaging with chemical bond selectivity. Here, we demonstrate vibration-based photoacoustic tomography with an imaging depth on the centimeter scale. To provide sufficient pulse energy at the overtone transition wavelengths, we constructed a compact, barium nitrite crystal-based Raman laser for excitation of 2nd overtone of C-H bond. Using a 5-ns Nd:YAG laser as pumping source, up to 105 mJ pulse energy at 1197 nm was generated. Vibrational photoacoutic spectroscopy and tomography of phantom (polyethylene tube) immersed in whole milk was performed. With a pulse energy of 47 mJ on the milk surface, up to 2.5 cm penetration depth was reached with a signal-to-noise ratio of 12.

  16. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect

    Martin E. Cobern

    2004-08-31

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.

  17. Innovative Techniques Simplify Vibration Analysis

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In the early years of development, Marshall Space Flight Center engineers encountered challenges related to components in the space shuttle main engine. To assess the problems, they evaluated the effects of vibration and oscillation. To enhance the method of vibration signal analysis, Marshall awarded Small Business Innovation Research (SBIR) contracts to AI Signal Research, Inc. (ASRI), in Huntsville, Alabama. ASRI developed a software package called PC-SIGNAL that NASA now employs on a daily basis, and in 2009, the PKP-Module won Marshall s Software of the Year award. The technology is also used in many industries: aircraft and helicopter, rocket engine manufacturing, transportation, and nuclear power."

  18. Vibrational force constants for acetaldehyde

    NASA Astrophysics Data System (ADS)

    Nikolova, B.

    1990-05-01

    The vibrational force field of ethanal (acetaldehyde), CH 3CHO, is refined by using procedures with differential increments for the force constants (Commun. Dep. Chem., Bulg. Acad. Sci., 21/3 (1988) 433). The characteristics general valence force constants of the high-dimensional symmetry classes of ethanal, A' of tenth and A″ of fifth order, are determined for the experimental assignment of bands. The low barrier to hindered internal rotation about the single carbon—carbon bond is quantitatively estimated on the grounds of normal vibrational analysis.

  19. Period of vibration of axially vibrating truly nonlinear rod

    NASA Astrophysics Data System (ADS)

    Cveticanin, L.

    2016-07-01

    In this paper the axial vibration of a muscle whose fibers are parallel to the direction of muscle compression is investigated. The model is a clamped-free rod with a strongly nonlinear elastic property. Axial vibration is described by a nonlinear partial differential equation. A solution of the equation is constructed for special initial conditions by using the method of separation of variables. The partial differential equation is separated into two uncoupled strongly nonlinear second order differential equations. Both equations, with displacement function and with time function are exactly determined. Exact solutions are given in the form of inverse incomplete and inverse complete Beta function. Using boundary and initial conditions, the frequency of vibration is obtained. It has to be mentioned that the determined frequency represents the exact analytic description for the axially vibrating truly nonlinear clamped-free rod. The procedure suggested in this paper is applied for calculation of the frequency of the longissimus dorsi muscle of a cow. The influence of elasticity order and elasticity coefficient on the frequency property is tested.

  20. Probing vibrational anisotropy with nuclear resonance vibrational spectroscopy.

    SciTech Connect

    Pavlik, J. W.; Barabanschikov, A.; Oliver, A. G.; Alp, E. E.; Sturhahn, W.; Zhao, J.; Sage, J. T.; Scheidt, W. R.

    2010-06-14

    A NRVS single-crystal study (NRVS=nuclear resonance vibrational spectroscopy) has provided detailed information on the in-plane modes of nitrosyl iron porphyrinate [Fe(oep)(NO)] (see picture; oep=octaethylporphyrin). The axial nitrosyl ligand controls the direction of the in-plane iron motion.

  1. Quantification of mouse in vivo whole-body vibration amplitude from motion-blur using x-ray imaging

    NASA Astrophysics Data System (ADS)

    Hu, Zhengyi; Welch, Ian; Yuan, Xunhua; Pollmann, Steven I.; Nikolov, Hristo N.; Holdsworth, David W.

    2015-08-01

    Musculoskeletal effects of whole-body vibration on animals and humans have become an intensely studied topic recently, due to the potential of applying this method as a non-pharmacological therapy for strengthening bones. It is relatively easy to quantify the transmission of whole-body mechanical vibration through the human skeletal system using accelerometers. However, this is not the case for small-animal pre-clinical studies because currently available accelerometers have a large mass, relative to the mass of the animals, which causes the accelerometers themselves to affect the way vibration is transmitted. Additionally, live animals do not typically remain motionless for long periods, unless they are anesthetized, and they are required to maintain a static standing posture during these studies. These challenges provide the motivation for the development of a method to quantify vibrational transmission in small animals. We present a novel imaging technique to quantify whole-body vibration transmission in small animals using 280 μm diameter tungsten carbide beads implanted into the hind limbs of mice. Employing time-exposure digital x-ray imaging, vibrational amplitude is quantified based on the blurring of the implanted beads caused by the vibrational motion. Our in vivo results have shown this technique is capable of measuring vibration amplitudes as small as 0.1 mm, with precision as small as  ±10 μm, allowing us to distinguish differences in the transmitted vibration at different locations on the hindlimbs of mice.

  2. Soil chemical insights provided through vibrational spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrational spectroscopy techniques provide a powerful approach to study environmental materials and processes. These multifunctional analysis tools can be used to probe molecular vibrations of solid, liquid, and gaseous samples for characterizing materials, elucidating reaction mechanisms, and exam...

  3. Vibrator improves spark erosion cutting process

    NASA Technical Reports Server (NTRS)

    Thrall, L. R.

    1966-01-01

    Variable frequency mechanical vibrator improves spark erosion cutting process. The vibration of the cutting tip permits continual flushing away of residue around the cut area with nondestructive electric transformer oil during the cutting process.

  4. Vibration testing and analysis using holography

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Time average holography is useful in recording steady state vibrational mode patterns. Phase relationships under steady state conditions are measured with real time holography and special phase shifting techniques. Data from Michelson interferometer verify vibration amplitudes from holographic data.

  5. Vibration absorber modeling for handheld machine tool

    NASA Astrophysics Data System (ADS)

    Abdullah, Mohd Azman; Mustafa, Mohd Muhyiddin; Jamil, Jazli Firdaus; Salim, Mohd Azli; Ramli, Faiz Redza

    2015-05-01

    Handheld machine tools produce continuous vibration to the users during operation. This vibration causes harmful effects to the health of users for repeated operations in a long period of time. In this paper, a dynamic vibration absorber (DVA) is designed and modeled to reduce the vibration generated by the handheld machine tool. Several designs and models of vibration absorbers with various stiffness properties are simulated, tested and optimized in order to diminish the vibration. Ordinary differential equation is used to derive and formulate the vibration phenomena in the machine tool with and without the DVA. The final transfer function of the DVA is later analyzed using commercial available mathematical software. The DVA with optimum properties of mass and stiffness is developed and applied on the actual handheld machine tool. The performance of the DVA is experimentally tested and validated by the final result of vibration reduction.

  6. Modelling of vibration of gear transmissions

    NASA Astrophysics Data System (ADS)

    Zeman, Vladimir; Nemecek, Josef

    The method for mathematical modeling of spatial vibrations of the spur gear transmissions is presented. This method enables a substantial reduction of the number of degrees of freedom with relatively high accuracy in calculating vibration amplitude.

  7. EXPOSURE ANALYSIS

    EPA Science Inventory

    This proceedings chapter will discuss the state-of-the-science regarding the evaluation of exposure as it relates to water quality criteria (WQC), sediment quality guidelines (SQG), and wildlife criteria (WC). Throughout this discussion, attempts are made to identify the methods ...

  8. Manipulations of vibrating micro magnetic particle chains

    NASA Astrophysics Data System (ADS)

    Li, Yan-Hom; Sheu, Shih-Tsung; Pai, Jay-Min; Chen, Ching-Yao

    2012-04-01

    We investigate the motion of a micro-chain consisting of several magnetic particles. The chain is firstly formed by a uniform directional field, and then manipulated by a vibrating field. We demonstrate where the chain appears to display distinct behaviors, from rigid body vibrations, bending distortions to breaking failures, by increasing either the chain's length or vibrating amplitude. In addition, the vibrating chain can be successfully driven forward, mimicking a micro-swimmer by connecting particles of different sizes.

  9. A Standard Psychophysiological Preparation for Evaluating the Effects of Environmental Vibration Stress. Phase I. Development.

    DTIC Science & Technology

    A Standard Psychophysiological Preparation (SPP) for the evaluation of the physiological and biomechanical mechanisms responsible for performance...consumption, biomechanical parameters and performance level. The results of pilot tests (including 6-hours exposure to vibration while performing a...tracking task) verify the applicability and utility of the SPP and demonstrate that high quality, quantitative physiological and biomechanical data can

  10. 14 CFR 29.251 - Vibration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vibration. 29.251 Section 29.251... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 29.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and...

  11. 14 CFR 29.251 - Vibration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vibration. 29.251 Section 29.251... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 29.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and...

  12. 14 CFR 27.907 - Engine vibration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine vibration. 27.907 Section 27.907... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant General § 27.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The addition of...

  13. 14 CFR 27.907 - Engine vibration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine vibration. 27.907 Section 27.907... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant General § 27.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The addition of...

  14. 14 CFR 29.251 - Vibration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vibration. 29.251 Section 29.251... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 29.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and...

  15. 14 CFR 27.251 - Vibration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vibration. 27.251 Section 27.251... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 27.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and...

  16. 33 CFR 159.103 - Vibration test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Vibration test. 159.103 Section...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.103 Vibration test. The device... subjected to a sinusoidal vibration for a period of 12 hours, 4 hours in each of the x, y, and z planes,...

  17. 49 CFR 178.608 - Vibration standard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Vibration standard. 178.608 Section 178.608... Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section. (b) Test method....

  18. 33 CFR 159.103 - Vibration test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Vibration test. 159.103 Section...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.103 Vibration test. The device... subjected to a sinusoidal vibration for a period of 12 hours, 4 hours in each of the x, y, and z planes,...

  19. 14 CFR 27.251 - Vibration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vibration. 27.251 Section 27.251... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 27.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and...

  20. 49 CFR 178.608 - Vibration standard.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Vibration standard. 178.608 Section 178.608... Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section. (b) Test method....

  1. 14 CFR 29.907 - Engine vibration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b)...

  2. 14 CFR 29.907 - Engine vibration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b)...

  3. 33 CFR 159.103 - Vibration test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vibration test. 159.103 Section...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.103 Vibration test. The device... subjected to a sinusoidal vibration for a period of 12 hours, 4 hours in each of the x, y, and z planes,...

  4. 14 CFR 27.251 - Vibration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vibration. 27.251 Section 27.251... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 27.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and...

  5. 14 CFR 29.251 - Vibration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vibration. 29.251 Section 29.251... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 29.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and...

  6. 49 CFR 178.608 - Vibration standard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Vibration standard. 178.608 Section 178.608... Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section. (b) Test method....

  7. 33 CFR 159.103 - Vibration test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Vibration test. 159.103 Section...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.103 Vibration test. The device... subjected to a sinusoidal vibration for a period of 12 hours, 4 hours in each of the x, y, and z planes,...

  8. Ground Vibration Measurements at LHC Point 4

    SciTech Connect

    Bertsche, Kirk; Gaddi, Andrea; /CERN

    2012-09-17

    Ground vibration was measured at Large Hadron Collider (LHC) Point 4 during the winter shutdown in February 2012. This report contains the results, including power and coherence spectra. We plan to collect and analyze vibration data from representative collider halls to inform specifications for future linear colliders, such as ILC and CLIC. We are especially interested in vibration correlations between final focus lens locations.

  9. 14 CFR 27.251 - Vibration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vibration. 27.251 Section 27.251... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 27.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and...

  10. 14 CFR 29.907 - Engine vibration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b)...

  11. 49 CFR 178.985 - Vibration test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Vibration test. 178.985 Section 178.985... Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A sample...

  12. 14 CFR 27.251 - Vibration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 27.251 Section 27.251... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 27.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and...

  13. 14 CFR 27.907 - Engine vibration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine vibration. 27.907 Section 27.907... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant General § 27.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The addition of...

  14. 49 CFR 178.608 - Vibration standard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration standard. 178.608 Section 178.608... Testing of Non-bulk Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this...

  15. 14 CFR 29.251 - Vibration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 29.251 Section 29.251... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 29.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and...

  16. 49 CFR 178.608 - Vibration standard.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Vibration standard. 178.608 Section 178.608... Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section. (b) Test method....

  17. 49 CFR 178.985 - Vibration test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Vibration test. 178.985 Section 178.985... Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A sample...

  18. Vibrations in a moving flexible robot arm

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.; Wei, Jin-Duo

    1987-01-01

    The vibration in a flexible robot arm modeled by a moving slender prismatic beam is considered. It is found that the extending and contracting motions have destabilizing and stabilizing effects on the vibratory motions, respectively. The vibration analysis is based on a Galerkin approximation with time-dependent basis functions. Typical numerical results are presented to illustrate the qualitative features of vibrations.

  19. Nonlinearity in modal and vibration testing.

    SciTech Connect

    Hunter, N. F.

    2003-01-01

    This set of slides describes some aspects of nonlinear Vibration analysis thru use of analytical fromulas and Examples from real or simulated test systems . The Systems are drawn from a set of examples based on Years of vibration testing experience . Both traditional and new methods are used to describe nonlinear vibration.

  20. Vibrator elapsed time is automatically controlled

    NASA Technical Reports Server (NTRS)

    Burowick, E. A.

    1967-01-01

    Circuit determines elapsed operating time for vibrators when three vibrators are located in one room and are powered by two amplifiers through either of two control systems. It operates the control system elapsed time clocks only when voltage is applied to the vibrator armatures.

  1. Fourier Analysis Of Vibrations Of Round Structures

    NASA Technical Reports Server (NTRS)

    Davis, Gary A.

    1990-01-01

    Fourier-series representation developed for analysis of vibrations in complicated, round structures like turbopump impellers. Method eliminates guesswork involved in characterization of shapes of vibrational modes. Easy way to characterize complicated modes, leading to determination of responsiveness of given mode to various forcing functions. Used in conjunction with finite-element numerical simulation of vibrational modes of structure.

  2. 14 CFR 29.907 - Engine vibration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b)...

  3. 14 CFR 27.907 - Engine vibration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine vibration. 27.907 Section 27.907... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant General § 27.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The addition of...

  4. 14 CFR 27.907 - Engine vibration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine vibration. 27.907 Section 27.907... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant General § 27.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The addition of...

  5. 14 CFR 29.907 - Engine vibration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b)...

  6. 49 CFR 178.985 - Vibration test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Vibration test. 178.985 Section 178.985... Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A sample...

  7. Active Vibration Dampers For Rotating Machinery

    NASA Technical Reports Server (NTRS)

    Kascack, Albert F.; Ropchock, John J.; Lakatos, Tomas F.; Montague, Gerald T.; Palazzolo, Alan; Lin, Reng Rong

    1994-01-01

    Active dampers developed to suppress vibrations in rotating machinery. Essentially feedback control systems and reciprocating piezoelectric actuators. Similar active damper containing different actuators described in LEW-14488. Concept also applicable to suppression of vibrations in stationary structures subject to winds and earthquakes. Active damper offers adjustable suppression of vibrations. Small and lightweight and responds faster to transients.

  8. 49 CFR 178.985 - Vibration test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A... intended for liquids may be tested using water as the filling material for the vibration test. (2) The... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.985 Section...

  9. Vibration Damping Circuit Card Assembly

    NASA Technical Reports Server (NTRS)

    Hunt, Ronald Allen (Inventor)

    2016-01-01

    A vibration damping circuit card assembly includes a populated circuit card having a mass M. A closed metal container is coupled to a surface of the populated circuit card at approximately a geometric center of the populated circuit card. Tungsten balls fill approximately 90% of the metal container with a collective mass of the tungsten balls being approximately (0.07) M.

  10. Hydrogen rotation-vibration oscillator

    DOEpatents

    Rhodes, C.K.

    1974-01-29

    A laser system is described wherein molecular species of hydrogen and hydrogen isotopes are induced to oscillate on rotational-vibrational levels by subjecting the hydrogen to a transverse beam of electrons of a narrowly defined energy between about 1 and 5 eV, thereby producing high intensity and high energy output. (Official Gazette)

  11. Study of lattice defect vibration

    NASA Technical Reports Server (NTRS)

    Elliott, R. J.

    1969-01-01

    Report on the vibrations of defects in crystals relates how defects, well localized in a crystal but interacting strongly with the other atoms, change the properties of a perfect crystal. The methods used to solve defect problems relate the properties of an imperfect lattice to the properties of a perfect lattice.

  12. Vibrational states on Pd surfaces

    NASA Astrophysics Data System (ADS)

    Sklyadneva, I. Yu.; Rusina, G. G.; Chulkov, E. V.

    1997-04-01

    We present the calculation of vibrational modes and lattice relaxation for the Pd(100), (110) and (111) surfaces. The surface phonon frequencies and polarizations are obtained using embedded-atom potentials. Comparison of the calculated frequency values with available experimental data gives agreement within 0.2 THz.

  13. Low-Vibration Oscillating Compressor

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1984-01-01

    Oscillating compressor momentum compensated: produces little vibration in its supporting structure. Compressure requires no lubrication and virtually free of wear. Compresses working fluids such as helium, nitrogen or chlorfluorocarbons for Stirling-cycle refrigeration or other purposes. Compressor includes two mutually opposed ferromagnetic pistons of same shape and mass. Electromagnetic flux links both pistons, causing magnetic attraction between them.

  14. Vibration Control of Large Structures.

    DTIC Science & Technology

    1987-09-01

    Vibration Control of a Beam with a Proof-Mass Actuator," AIAA Guidance, Navigation and Control Conference, Monterey, CA, August, 19S7. Haviland , J. K...Conference, Monterey, CA, August, 1987. Haviland , J. K., Politansky, H., Lim, T. W., and Pilkey, W. D., "The Control of Linear Proof-Mass Dampers," Sixth

  15. Vibrational soliton: an experimental overview

    SciTech Connect

    Bigio, I.J.

    1986-03-08

    To date the most convincing evidence of vibrational solitons in biopolymers has been found in two very disparate systems: Davydov-like excitations in hydrogen-bonded linear chains (acetanilide and N-methylacetamide) which are not biopolymers but plausible structural paradigms for biopolymers, and longitudinal accoustic modes of possibly nonlinear character in biologically viable DNA. 17 refs., 4 figs.

  16. The vibrational frequencies of difluoroethyne

    NASA Technical Reports Server (NTRS)

    Breidung, Juergen; Schneider, Winfried; Thiel, Walter; Lee, Timothy J.

    1992-01-01

    Ab initio coupled-cluster calculations with single and double excitations and with a perturbational treatment of connected triple excitations are reported for difluoroethyne using large basis sets. The results for the transbending mode nu-4 are extremely sensitive to electron correlation and basis set effects. The best theoretical and experimental estimates for the fundamental vibrational frequencies are in excellent agreement.

  17. Vibration analysis utilizing Mossbauer effect

    NASA Technical Reports Server (NTRS)

    Roughton, N. A.

    1967-01-01

    Measuring instrument analyzes mechanical vibrations in transducers at amplitudes in the range of a few to 100 angstroms. This instrument utilizes the Mossbauer effect, the phenomenon of the recoil-free emission and resonant absorption of nuclear gamma rays in solids.

  18. Vibrational Participation in Chemical Reactions.

    DTIC Science & Technology

    1986-08-22

    Cesaro Xue-Feng Yang .. V-. V 8. IV. BIBLIOGRAPHY, AFOSR-SPONSORED RESEARCH, 1981 - 1984 1981 Vibrational Excitation of Ozone and Molecular Fluorine...Phys. Chem. 87, 2142 (1983). G.C. Pimentel, S.N. Cesaro and H. Frei. 11. Selective Vibronic Excitation of Singlet Oxygen-Furan Reactions in Cryogenic

  19. [A method of obtaining vibrational dephasing time of molecular multi-vibrational modes simultaneously].

    PubMed

    Wan, Hui; Yin, Jun; Yu, Ling-Yao; Liu, Xing; Qu, Jun-Le; Lin, Zi-Yang; Niu, Han-Ben

    2011-02-01

    In the present paper, the authors used the time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy based on supercontinuum developed by ourselves to acquire simultaneously the molecular vibration spectrum and vibrational dephasing time of the molecular various vibrational modes. Using benzonitrile as the sample, the authors measured its vibrational relaxation processes at its five typical vibrational modes and obtained their vibrational dephasing time respectively. In the experiment, the authors also found the phenomenon that oscillations appear in the vibrational dephasing of plane bending vibration mode of benzene ring in benzonitrile, which was caused by superposition of the two adjacent normal vibrational modes excited simultaneously. After mixing benzonitrile with anhydrous ethanol, the authors also measured their vibrational dephasing time. This method is capable of monitoring the changes of the molecular characteristics and its micro-environment, therefore it will find widespread applications in biology, chemistry and materials science.

  20. Method for enriching a middle isotope using vibration-vibration pumping

    DOEpatents

    Rich, Joseph W.; Homicz, Gregory F.; Bergman, Richard C.

    1989-01-01

    Method for producing isotopically enriched material by vibration-vibration excitation of gaseous molecules wherein a middle mass isotope of an isotopic mixture including lighter and heavier mass isotopes preferentially populates a higher vibrational mode and chemically reacts to provide a product in which it is enriched. The method can be used for vibration-vibration enrichment of .sup.17 O in a CO reactant mixture.

  1. The effects of vibration on explosive and reactive strength when applying individualized vibration frequencies.

    PubMed

    Di Giminiani, Riccardo; Tihanyi, Jozsef; Safar, Sandor; Scrimaglio, Renato

    2009-01-15

    The aim of this study was to assess the effects of 8 weeks of whole-body vibrations on explosive and reactive leg strength. Thirty-three physically active students took part in the study and were randomly assigned to an individualized-vibration group, a fixed-vibration group or a control group. The frequency of vibration was set to 30 Hz for the fixed-vibration group, whereas the frequency for the individualized-vibration group was determined by monitoring the participants' EMGrms activity. The participants in the two vibration groups were exposed three times a week for 8 weeks to a series of 10 x 1-min whole-body vibrations with a 1-min pause between series of vibrations and a 4-min pause after the first five series of vibrations. Jump height in the squat jump increased significantly in all three groups (by 11% for the individualized-vibration group, p=0.001; by 3% for the fixed-vibration group, p=0.011; and by 2% for the control group, p=0.006), but countermovement jump height was not affected. In continuous rebound jumps by the individualized-vibration group, jumping height increased by 22% (p=0.006) and power increased by 18% (p=0.002). The results of this study suggest that the use of an individualized vibration frequency produces a greater response from the neuromuscular system and is more beneficial than vibrations at a fixed pre-selected frequency.

  2. Exposure chamber

    DOEpatents

    Moss, Owen R.; Briant, James K.

    1983-01-01

    An exposure chamber includes an imperforate casing having a fluid inlet at the top and an outlet at the bottom. A single vertical series of imperforate trays is provided. Each tray is spaced on all sides from the chamber walls. Baffles adjacent some of the trays restrict and direct the flow to give partial flow back and forth across the chambers and downward flow past the lowermost pan adjacent a central plane of the chamber.

  3. Study of T53 engine vibration

    NASA Technical Reports Server (NTRS)

    Walter, T. J.

    1978-01-01

    Vibration characteristics for overhauled T53 engines, including rejection rate, principal sources of vibration, and normal procedures taken by the overhaul center to reduce engine vibration are summarized. Analytical and experimental data were compared to determine the engine's dynamic response to unbalance forces with results showing that the engine operates through bending critical speeds. Present rigid rotor balancing techniques are incapable of compensating for the flexible rotor unbalance. A comparison of typical test cell and aircraft vibration levels disclosed significant differences in the engine's dynamic response. A probable spline shift phenomenon was uncovered and investigated. Action items to control costs and reduce vibration levels were identified from analytical and experimental studies.

  4. Discomfort criteria for single-axis vibrations

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Leatherwood, J. D.; Clevenson, S. A.

    1979-01-01

    Experimental investigations were conducted to determine the fundamental relationships governing human subjective discomfort response to single-axis vibrations. The axes investigated were vertical, lateral, longitudinal, roll, and pitch, and the vibrations used were both sinusoidal and random in nature. Results of these investigations provided the basis for: (1) development of a scale of passenger discomfort that is common to all axes of vibration; and (2) generation of discomfort criteria for each axis of each axis and for both types of vibration. Furthermore, empirical equations describing discomfort responses within each axis of vibration are included.

  5. Vibration generation in a pulse tube refrigerator

    NASA Astrophysics Data System (ADS)

    Riabzev, S. V.; Veprik, A. M.; Vilenchik, H. S.; Pundak, N.

    2009-01-01

    The cold head of a pulse tube refrigerator does not contain moving parts, therefore, is traditionally thought of as producing low vibration and having extended lifespan. Thus, such cryogenic engines are especially attractive for use in vibration-sensitive instrumentation, such as scanning electron microscopes, superconductive quantum interference devices, etc. However, even relatively low-level vibration of a pulse tube, resulting from oscillation of a gas pressure, may be excessive for the above vibration-sensitive OEM instrumentation. By making use of the finite element analysis and the full-scale experimentation, the authors identify the sources of a pulse tube vibration.

  6. Active Suppression Of Vibrations On Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    1995-01-01

    Method of active suppression of nonlinear and nonstationary vibrations developed to reduce sonic fatigue and interior noise in high-speed aircraft. Structure of aircraft exhibits periodic, chaotic, and random vibrations when forced by high-intensity sound from jet engines, shock waves, turbulence, and separated flows. Method of suppressing vibrations involves feedback control: Strain gauges or other sensors mounted in paths of propagation of vibrations on structure sense vibrations; outputs of sensors processed into control signal applied to actuator mounted on structure, inducing compensatory forces.

  7. Sister chromatid exchange analysis in workers exposed to noise and vibration.

    PubMed

    Silva, M J; Carothers, A; Branco, N C; Dias, A; Boavida, M G

    1996-07-10

    Workers chronically exposed to whole-body vibration and noise are known to develop pathophysiological and psychological disturbances. The frequencies of sister chromatid exchanges (SCEs) and of cells with high frequencies of SCEs (HFCs) were analyzed in lymphocytes of 50 workers occupationally exposed to vibration and noise and of 34 controls. The exposed group included: individuals operating hand-vibrating tools (group 1), 'test-cell operators' (group 2) and 'run-up' operators (group 3) from an air base and helicopter pilots (group 4). The statistical analysis of the mean SCE count per cell was carried out by multiple regression analysis, comparing various predictor variables: exposure group, duration of exposure, age and cigarette consumption. Only cigarette consumption and exposure group were found to be significantly correlated with the mean SCE frequency. After allowing for the effects of smoking, the analysis indicates that: (1) there was no significant difference between group 1 and controls (p > 0.05); (2) the differences between group 2 and group 0, group 3 and group 0 and group 4 and group 0 were all highly significant (p < 0.001); (3) there was no significant difference between groups 2 and 3 (p > 0.05), nor between groups 2 and 3 combined and group 4 (p > 0.05); (4) exposure groups 2, 3 and 4 combined, had a significantly elevated mean SCE frequency compared to the control group (p < 0.0001). Statistical analysis of the proportion of HFCs was consistent with these results. Our data suggest that chronic exposure to whole-body vibration and noise may lead to an increase in the level of SCEs in man. The observed effects may not reflect a direct action of these physical agents on DNA. Alternative explanations may include some of the whole-body vibration and noise-induced or stress-induced pathophysiological alterations which may indirectly induce SCE formation.

  8. On the Influence of Freight Trains on Humans: A Laboratory Investigation of the Impact of Nocturnal Low Frequency Vibration and Noise on Sleep and Heart Rate

    PubMed Central

    Smith, Michael G.; Croy, Ilona; Ögren, Mikael; Persson Waye, Kerstin

    2013-01-01

    Background A substantial increase in transportation of goods on railway may be hindered by public fear of increased vibration and noise leading to annoyance and sleep disturbance. As the majority of freight trains run during night time, the impact upon sleep is expected to be the most serious adverse effect. The impact of nocturnal vibration on sleep is an area currently lacking in knowledge. We experimentally investigated sleep disturbance with the aim to ascertain the impact of increasing vibration amplitude. Methodology/Principal Findings The impacts of various amplitudes of horizontal vibrations on sleep disturbance and heart rate were investigated in a laboratory study. Cardiac accelerations were assessed using a combination of polysomnography and ECG recordings. Sleep was assessed subjectively using questionnaires. Twelve young, healthy subjects slept for six nights in the sleep laboratory, with one habituation night, one control night and four nights with a variation of vibration exposures whilst maintaining the same noise exposure. With increasing vibration amplitude, we found a decrease in latency and increase in amplitude of heart rate as well as a reduction in sleep quality and increase in sleep disturbance. Conclusions/Significance We concluded that nocturnal vibration has a negative impact on sleep and that the impact increases with greater vibration amplitude. Sleep disturbance has short- and long-term health consequences. Therefore, it is necessary to define levels that protect residents against sleep disruptive vibrations that may arise from night time railway freight traffic. PMID:23409055

  9. [Clinical aspects of vibration disease caused by general vibration].

    PubMed

    Tarasova, L A; Lagutina, G N; Komleva, L M; Suvorov, G A; Starozhuk, I A; Filatova, O V

    1989-01-01

    The clinico-functional examination of agricultural machine-operators, truck drivers, excavator and boring machine operators revealed that, under low-frequency general vibration, polymorphic pathologic changes occur in human organism. Those include peripheral vascular and neuritic disorders and changes in the vertebral column. The most peculiar symptoms of VD are dealt with. The data obtained show to the importance of further elaboration of differential diagnostic criteria of VD, specifying its pathogenic mechanisms and prevention measures working out.

  10. Machinery vibration: Origins, impressions and cures

    SciTech Connect

    Haq, I. )

    1995-01-01

    The current trend toward high performance (speed, power, flow, etc.) and low eight are causing new machinery dynamics problems. Vibration diagnostics engineering of rotor-bearing-casing systems must consider both internal and external influences to effectively predict and diagnose these problems. It is assumed that machinery vibration data are free from ambiguity, error, conform to a standard and clearly identify the physical cause(s) responsible for vibration. Rotor vibration due to internal forces are described: unbalance force characteristics; response characteristics; and rules of rotor fundamental response. Rotor vibration due to external forces include: rotating aerodynamic stall; oil whirl; oil whip; structural resonance; vane/blade passing vibration; misalignment; rotor rubbing; gear mesh vibrations; and shaft crack. These are also discussed.

  11. Electron-vibration relaxation in oxygen plasmas

    NASA Astrophysics Data System (ADS)

    Laporta, V.; Heritier, K. L.; Panesi, M.

    2016-06-01

    An ideal chemical reactor model is used to study the vibrational relaxation of oxygen molecules in their ground electronic state, X3Σg-, in presence of free electrons. The model accounts for vibrational non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules. The vibrational levels of the molecules are treated as separate species, allowing for non-Boltzmann distributions of their population. The electron and vibrational temperatures are varied in the range [0-20,000] K. Numerical results show a fast energy transfer between oxygen molecules and free electron, which causes strong deviation of the vibrational distribution function from Boltzmann distribution, both in heating and cooling conditions. Comparison with Landau-Teller model is considered showing a good agreement for electron temperature range [2000-12,000] K. Finally analytical fit of the vibrational relaxation time is given.

  12. Interfacial instabilities in vibrated fluids

    NASA Astrophysics Data System (ADS)

    Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier

    2016-07-01

    Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced

  13. Low back pain in drivers: The relative role of whole-body vibration, posture and manual materials handling

    NASA Astrophysics Data System (ADS)

    Okunribido, O. O.; Magnusson, M.; Pope, M. H.

    2006-12-01

    A cross-sectional study was conducted to investigate the relative role of whole-body vibration (WBV), posture and manual materials handling (MMH) as risk factors for low back pain (LBP). Using a validated questionnaire, information about health history, posture and MMH performed was obtained from 394 workers who drove vehicles as part of their job (according to seven predefined occupational groups) and 59 who did not. The intention was to reflect a wide range of exposures with the lower end of the exposure spectrum defined as that of non-manual workers who do not drive as part of their job. Based on the questionnaire responses and direct measurements of vibration exposure, personal aggregate measures of exposure were computed for each of the respondents, i.e., total vibration dose (TVD), posture score (PS) and manual handling score (MHS). Odds ratios (and 95% confidence intervals) for back pain were obtained from logistics regression models and log-linear backward elimination analysis was performed. The findings showed that 'combined exposure' due to posture and one or both of vibration and MMH, rather than the individual exposure to one of the three factors (WBV, posture, MMH) is the main contributor of the increased prevalence of LBP.

  14. Changes over a workshift in aesthesiometric and vibrotactile perception thresholds of workers exposed to intermittent hand transmitted vibration from impact wrenches.

    PubMed Central

    Bovenzi, M; Apostoli, P; Alessandro, G; Vanoni, O

    1997-01-01

    OBJECTIVES: To investigate the changes over a workshift in fingertip tactile perception thresholds in users of impact wrenches exposed to intermittent hand transmitted vibration. A further aim was to assess the relation between acute changes in tactile sensation, sensorineural disorders, and vibration dose. METHODS: The study populations consisted of 30 workers exposed to vibration (16 men and 14 women) and 25 control manual workers (10 men and 15 women). Sensorineural disorders in the fingers and hands were graded according to the staging system of the Stockholm workshop scale. Tactile function was tested by measuring aesthesiometric thresholds (two point discrimination and depth sense perception) and vibrotactile perception thresholds at 16, 31.5, and 125 Hz before and after a workshift. Temporary threshold shift was then calculated as the difference between threshold measures before and after the shift. The measurement and assessment of exposure to vibration were made according to the international standard ISO 5349. The vibration dose accumulated over a workshift (m2s-4h) was estimated for each user of impact wrenches. Daily exposure to vibration was also expressed in terms of eight hour energy equivalent frequency weighted acceleration ((ahw)eq(8) in ms-2 rms). RESULTS: After adjustment for age and alcohol consumption, vibrotactile perception thresholds before exposure were greater in the workers exposed to vibration than in the controls. No differences in aesthesiometric thresholds before the shift were found between the study groups. Sensorineural disorders were mild in the workers exposed to vibration and minor neurological abnormalities were detected at the physical examination. Owing to the intermittent use of impact wrenches, the estimated mean (ahw)eq(8) for the subjects exposed to vibration was low (1.3 ms-2 rms). A significant temporary threshold shift in vibration perception at all test frequencies was found in the workers exposed to vibration but

  15. Whole body vibration and posture as risk factors for low back pain among forklift truck drivers

    NASA Astrophysics Data System (ADS)

    Hoy, J.; Mubarak, N.; Nelson, S.; Sweerts de Landas, M.; Magnusson, M.; Okunribido, O.; Pope, M.

    2005-06-01

    A cross-sectional study was conducted to investigate the risks from whole-body vibration and posture demands for low back pain (LBP) among forklift truck (forklift) drivers. Using a validated questionnaire, information about health history was obtained over a period of two weeks in face-to-face interviews. The forklift drivers were observed in respect of their sitting posture, including frequency with which different positions were adopted (bending, leaning and twisting) and postural analyses were conducted using the OWAS and RULA techniques. Forklift vibrations at the seat (exposure) were measured in the three orthogonal axes ( x-fore and aft, y-lateral and z-vertical) under actual working conditions according to the recommendations of ISO 2631-1. The results showed that LBP was more prevalent amongst forklift drivers than among non-drivers and driving postures in which the trunk is considerably twisted or bent forward associated with greatest risk. Furthermore, forklift drivers showed to be exposed to acceptable levels of vibration in the x- and y-directions (i.e., below the EU Physical Agents Directive on Vibration Exposure recommended action level—0.5 m/s 2), but not in the z-direction. There were indications that whole-body vibration acts associatively with other factors (not independently) to precipitate LBP.

  16. A study on the relationship between subjective unpleasantness and body surface vibrations induced by high-level low-frequency pure tones.

    PubMed

    Takahashi, Yukio; Kanada, Kazuo; Yonekawa, Yoshiharu; Harada, Noriaki

    2005-07-01

    Human body surface vibrations induced by high-level low-frequency pure tones were measured at the chest and the abdomen. At the same time, the subject rated the unpleasantness that he had just perceived during the exposure to low-frequency noise stimulus. Examining the relationship between the measured vibration and the rating score of the unpleasantness revealed that the unpleasantness was in close correlation with the vibration acceleration level (VAL) of the vibration measured. Taking previous results into account, this finding suggests that noise-induced vibrations primarily induce vibratory sensations and through the vibratory sensation or together with some other factors, secondarily contribute to the unpleasantness. The present results suggest that in evaluating high-level low-frequency noise, the effect of vibration should be taken into account.

  17. VIBRATION DAMPING AND SHOCK MOUNT

    DOEpatents

    Stevens, D.J.; Forman, G.W.

    1963-12-10

    A shock absorbing mount in which vibrations are damped by an interference fit between relatively movable parts of the mount is described. A pair of generally cup-shaped parts or members have skirt portions disposed in an oppositely facing nesting relationship with the skirt of one member frictionally engaging the skirt of the other. The outermost skirt may be slotted to provide spring-like segments which embrace the inner skirt for effecting the interference fit. Belleville washers between the members provide yieldable support for a load carried by the mount. When a resonant frequency of vibration forces acting upon the moumt attains a certain level the kinetic energy of these forces is absorbed by sliding friction between the parts. (AEC)

  18. Vibrations of twisted rotating blades

    NASA Technical Reports Server (NTRS)

    Leissa, A. W.; Lee, J. K.; Wang, A. J.

    1981-01-01

    The literature dealing with vibrations of turbomachinery blades is voluminous, but the vast majority of it treats the blades as beams. In a previous paper a two-dimensional analytical procedure was developed and demonstrated on simple models of blades having camber. The procedure utilizes shallow shell theory along with the classical Ritz method for solving the vibration problem. Displacement functions are taken as algebraic polynomials. In the present paper the method is demonstrated on blade models having camber. Comparisons are first made with results in the literature for nonrotating twisted plates and various disagreements between results are pointed out. A method for depicting mode shape information is demonstrated, permitting one to examine all three components of displacement. Finally, the analytical procedure is demonstrated on rotating twisted blade modes, both without and with camber.

  19. Statistical analysis of vibration-induced bone and joint damages.

    PubMed

    Schenk, T

    1995-01-01

    Vibration-induced damages to bones and joints are still occupational diseases with insufficient knowledge about causing and moderating factors and resulting damages. For a better understanding of these relationships also retrospective analyses of already acknowledged occupational diseases may be used. Already recorded detailed data for 203 in 1970 to 1979 acknowledged occupational diseases in the building industry and the building material industry of the GDR are the basis for the here described investigations. The data were gathered from the original documents of the occupational diseases and scaled in cooperation of an industrial engineer and an industrial physician. For the purposes of this investigations the data are to distinguish between data which describe the conditions of the work place (e.g. material, tools and posture), the exposure parameters (e.g. beginning of exposure and latency period) and the disease (e.g. anamnestical and radiological data). These data are treated for the use with sophisticated computerized statistical methods. The following analyses were carried out. Investigation of the connections between the several characteristics, which describe the occupational disease (health damages), including the comparison of the severity of the damages at the individual joints. Investigation of the side dependence of the damages. Investigation of the influence of the age at the beginning of the exposure and the age at the acknowledgement of the occupational disease and herewith of the exposure duration. Investigation of the effect of different occupational and exposure conditions.

  20. Tool-specific performance of vibration-reducing gloves for attenuating fingers-transmitted vibration

    PubMed Central

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2016-01-01

    BACKGROUND Fingers-transmitted vibration can cause vibration-induced white finger. The effectiveness of vibration-reducing (VR) gloves for reducing hand transmitted vibration to the fingers has not been sufficiently examined. OBJECTIVE The objective of this study is to examine tool-specific performance of VR gloves for reducing finger-transmitted vibrations in three orthogonal directions (3D) from powered hand tools. METHODS A transfer function method was used to estimate the tool-specific effectiveness of four typical VR gloves. The transfer functions of the VR glove fingers in three directions were either measured in this study or during a previous study using a 3D laser vibrometer. More than seventy vibration spectra of various tools or machines were used in the estimations. RESULTS When assessed based on frequency-weighted acceleration, the gloves provided little vibration reduction. In some cases, the gloves amplified the vibration by more than 10%, especially the neoprene glove. However, the neoprene glove did the best when the assessment was based on unweighted acceleration. The neoprene glove was able to reduce the vibration by 10% or more of the unweighted vibration for 27 out of the 79 tools. If the dominant vibration of a tool handle or workpiece was in the shear direction relative to the fingers, as observed in the operation of needle scalers, hammer chisels, and bucking bars, the gloves did not reduce the vibration but increased it. CONCLUSIONS This study confirmed that the effectiveness for reducing vibration varied with the gloves and the vibration reduction of each glove depended on tool, vibration direction to the fingers, and finger location. VR gloves, including certified anti-vibration gloves do not provide much vibration reduction when judged based on frequency-weighted acceleration. However, some of the VR gloves can provide more than 10% reduction of the unweighted vibration for some tools or workpieces. Tools and gloves can be matched for

  1. In-situ Vibrational Spectroelectrochemistry

    DTIC Science & Technology

    1988-07-15

    also observed. UNDERPOTENTIAL DEPOSITION We have recently studied the low frequency vibrations for layers of lithium on gold electrodes (45,46). In...removal of adatom or adatom clusters on the surface of the SERS active electrode. The stability of the SERS surface to underpotential deposition is... deposition of zinc, while during underpotential deposition of zinc, cyanide adsorption onto both silver and zinc is evident. When a full layer of zinc

  2. Vibrational excitation induces double reaction.

    PubMed

    Huang, Kai; Leung, Lydie; Lim, Tingbin; Ning, Zhanyu; Polanyi, John C

    2014-12-23

    Electron-induced reaction at metal surfaces is currently the subject of extensive study. Here, we broaden the range of experimentation to a comparison of vibrational excitation with electronic excitation, for reaction of the same molecule at the same clean metal surface. In a previous study of electron-induced reaction by scanning tunneling microscopy (STM), we examined the dynamics of the concurrent breaking of the two C-I bonds of ortho-diiodobenzene physisorbed on Cu(110). The energy of the incident electron was near the electronic excitation threshold of E0=1.0 eV required to induce this single-electron process. STM has been employed in the present work to study the reaction dynamics at the substantially lower incident electron energies of 0.3 eV, well below the electronic excitation threshold. The observed increase in reaction rate with current was found to be fourth-order, indicative of multistep reagent vibrational excitation, in contrast to the first-order rate dependence found earlier for electronic excitation. The change in mode of excitation was accompanied by altered reaction dynamics, evidenced by a different pattern of binding of the chemisorbed products to the copper surface. We have modeled these altered reaction dynamics by exciting normal modes of vibration that distort the C-I bonds of the physisorbed reagent. Using the same ab initio ground potential-energy surface as in the prior work on electronic excitation, but with only vibrational excitation of the physisorbed reagent in the asymmetric stretch mode of C-I bonds, we obtained the observed alteration in reaction dynamics.

  3. Vibrational Spectroscopy and Quantum Localization

    NASA Astrophysics Data System (ADS)

    Fillaux, François

    These lecture-notes are meant to provide newcomers with an overview of the impact of vibrational spectroscopy in the field of nonlinear dynamics of atoms and molecules, in the perspective of energy localization. In the introduction, the terminology of nonlinear excitations and tentative experimental evidences are briefly recalled in a brief historical perspective. The basic principles of vibrational spectroscopy are presented in section 11 for infrared, Raman and inelastic neutron scattering. The potentialities for each technique to probing energy localization are discussed. In section 12, nonlinear dynamics in isolated molecules are treated within the framework of normal versus local mode representations. It is shown that these complementary representations are not necessarily distinctive of weak versus strong anharmonicity, in the context of chemical complexity. It is emphasized that local modes and energy localization are totally independent concepts. In section 4, examples of nonlinear dynamics in crystals are reviewed: multiphonon bound states, strong coupling between phonons and electrons probed with resonance Raman, local modes and quantum rotation in one-dimension probed with inelastic neutron scattering, strong coupling in hydrogen-bonded crystals and self-trapping probed with time-resolved vibrational-spectroscopy. The extended character of eigenstates in crystals free of impurities and disorder, the nature of the interaction of periodic lattices with plane waves, the Franck-Condon principle and the particle-wave duality in the quantum regime are key factors preventing observation of energy localization. It is shown that free spatially-localized nondissipative classical waves give rise to free pseudoparticles that behave as planar waves in the quantum regime. In conclusion, a clear demonstration that energy localization corresponds to eigenstates is eagerly expected for further evidencing these states with vibrational spectroscopy.

  4. Vibrational Overtone Activation of Methylcyclopropene

    DTIC Science & Technology

    1993-05-27

    the 5-0 vinyl and methyl CH stretches were determined using gas chromotography . Product ratios of 1,3-butadiene to 2-butyne were measured as a...methylenic and methyl vibrational progressions. Product yields from activation through the 5-0 vinyl and methyl CH stretches were determined using gas ... chromotography . Product ratios of 1,3-butadiene to 2-butyne were measured as a function of pressure and compared to the RRKM predicted yields. After careful

  5. Magnetic bearings for vibration control

    NASA Technical Reports Server (NTRS)

    Schweitzer, G.

    1985-01-01

    A survey is presented on the research of the Institute of Mechanics of the ETH in the field of vibration control with magnetic bearings. It shows a method for modelling an elastic rotor so that it can be represented by a low order model amenable to control techniques. It deals with the control law and spill-over effects, and it also discusses experimental results for an active resonance damper.

  6. Mated vertical ground vibration test

    NASA Technical Reports Server (NTRS)

    Ivey, E. W.

    1980-01-01

    The Mated Vertical Ground Vibration Test (MVGVT) was considered to provide an experimental base in the form of structural dynamic characteristics for the shuttle vehicle. This data base was used in developing high confidence analytical models for the prediction and design of loads, pogo controls, and flutter criteria under various payloads and operational missions. The MVGVT boost and launch program evolution, test configurations, and their suspensions are described. Test results are compared with predicted analytical results.

  7. Assessment of vibration levels associated with hand-held roadbreakers.

    PubMed

    Tasker, E G

    1986-08-01

    The hand-held roadbreaker plays a vital role in enabling the British gas distribution workforce to install gas supply pipework. Hence, any potential problem which could lead to a restriction of the use of this equipment would present pipework installation departments with serious operational problems. A test program was therefore set up to enable risks to operators to be quantified. The vibration levels measured exceeded proposed limits laid down in current guidelines for vibration exposure. If these limits were realistic, a high prevalence of vibration-induced white finger (VWF) would have been expected. However, a survey of the workforce using the roadbreakers indicated a VWF prevalence of 20 times less than that predicted by the guidelines. It was concluded that a possible explanation could be that the current frequency-weighting factors used in the guidelines are inappropriate for application to this type of equipment with dominant frequencies below 25 Hz. The application of the current weighting factors to the test data produced during the program led to high weighted acceleration values and unrealistic dose-response relationships. It is proposed that the application of the various guidelines to the use of this equipment be reconsidered.

  8. Criminal exposure.

    PubMed

    1999-09-03

    In August, an HIV-positive man plead guilty to sexually assaulting a 14-year-old boy. The sleeping boy awoke to find [name removed] sexually assaulting him, while watching a pornographic video. [Name removed] plead guilty to the assault with intent to rape a child. In addition, [name removed] received three counts of indecent assault and battery on a child, and exposure of pornographic material to a minor. [Name removed] will remain on probation for five years, although the prosecution had recommended sentencing [name removed] to four or five years in prison. The boy continues to be tested for HIV.

  9. Vibrational and theoretical study of diacetylenic acids.

    PubMed

    Roman, Maciej; Baranska, Malgorzata

    2015-02-25

    Three selected diacetylenic acids (DAs) with side-chains of various length (CH3-(CH2)m-C≡C-C≡C(CH2)n-COOH, where m=7, 9, 11, and n=3, 8) were analyzed using vibrational spectroscopy and quantum-chemical calculations. The conformational analysis was followed by potential energy distribution (PED) calculations to gain deeper insight into their FT-Raman and FT-IR spectra. The analysis was focused on spectral features of the diacetylene system sensitive to the substitution. In particular, the electron donor-acceptor properties of the substituent and the influence of side-chain length were studied. FT-IR spectra were measured by using two techniques, i.e. transmission (with KBr substrate) and Attenuated Total Reflection (ATR), and the latter seems to be less adequate for DAs measurements because the bands in the fingerprint region as well as the ν(C≡C)as mode are relatively of low intensity. Additionally, polymerization process of DAs was recognized using FT-Raman spectroscopy and strong and well-separated bands of diacetylenic polymers. Temperature and exposure to the sunlight are the factors of an important influence on the polymerization process of DAs. Since the investigated DAs are carboxylic acids, the interpretation of experimental spectra was performed on the basis of monomer and dimer calculations.

  10. Reduced-vibration tube array

    DOEpatents

    Bruck, Gerald J.; Bartolomeo, Daniel R.

    2004-07-20

    A reduced-vibration tube array is disclosed. The array includes a plurality of tubes in a fixed arrangement and a plurality of damping members positioned within the tubes. The damping members include contoured interface regions characterized by bracing points that selectively contact the inner surface of an associated tube. Each interface region is sized and shaped in accordance with the associated tube, so that the damping member bracing points are spaced apart a vibration-reducing distance from the associated tube inner surfaces at equilibrium. During operation, mechanical interaction between the bracing points and the tube inner surfaces reduces vibration by a damage-reducing degree. In one embodiment, the interface regions are serpentine shaped. In another embodiment, the interface regions are helical in shape. The interface regions may be simultaneously helical and serpentine in shape. The damping members may be fixed within the associated tubes, and damping member may be customized several interference regions having attributes chosen in accordance with desired flow characteristics and associated tube properties.

  11. Measurement of small mechanical vibrations of brain tissue exposed to extremely-low-frequency electric fields.

    PubMed

    Spiegel, R J; Ali, J S; Peoples, J F; Joines, W T

    1986-01-01

    Electromagnetic fields can interact with biological tissue both electrically and mechanically. This study investigated the mechanical interaction between brain tissue and an extremely-low-frequency (ELF) electric field by measuring the resultant vibrational amplitude. The exposure cell is a section of X-band waveguide that was modified by the addition of a center conductor to form a small TEM cell within the waveguide structure. The ELF signal is applied to the center conductor of the TEM cell. The applied ELF electric field generates an electrostrictive force on the surface of the brain tissue. This force causes the tissue to vibrate at a frequency equal to twice the frequency of the applied sinusoidal signal. An X-band signal is fed through the waveguide, scattered by the vibrating sample, and detected by a phase-sensitive receiver. Using a time-averaging spectrum analyzer, a vibration sensitivity of approximately 0.2 nmp-p can be achieved. The amplitude of the brain tissue vibrational response is constant for vibrational frequencies below 50 Hz; between 50 and 200 Hz resonant phenomena were observed; and above 200 Hz the amplitude fall-off is rapid.

  12. Interferometric examination of the vibration modes on stretchable plastic membrane imaging mirrors

    NASA Astrophysics Data System (ADS)

    Waddell, Peter; Stickland, Mathew; Mason, Steven; McKay, Stuart; Mair, Leslie S.

    1996-12-01

    The paper describes a simple interferometer which has been used to visualize the airborne noise induced, low frequency, very small amplitude, vibrations on thin plastic membrane mirrors. Plastic membrane concave imaging mirrors are the patented invention of the first named author and have been the subject of papers since 1983. The mirrors have already been used for inexpensive large aperture flow visualization systems and the transfer of images in holography. The mirrors are being used currently for high definition, natural color large aperture stereoscopy and self focused real imaging with no spectator glasses, i.e., 3D imaging systems. As the mirror diameter increases for the same type and thickness of membrane material then the fundamental resonant frequency decreases. For very large diameters the mirrors become susceptible to aerial noise of a few Hertz, this being equal to the fundamental resonant frequency. For the small mirror tested for this paper, the fundamental resonance was approximately 600 Hz. The mirror was, however, continually vibrating due to aerial room noise frequencies of between 1 Hz and 20 Hz. No proper nodal patterns can be seen, these only occur at frequencies above the fundamental. The vibrations are extremely small, requiring an interferometer to visualize and record amplitude and frequency. The vibration energy can be destroyed by several techniques. The mirrors have already been used for long exposure white light reflection holograms, effectively no vibrations at all on the mirror surface, achieved by destroying the vibration energy.

  13. Smart Structures for Vibration Control on Long-Term Space Exploration and Habitation Missions

    NASA Technical Reports Server (NTRS)

    Gattis, Christy B.; Shepard, W. Steve, Jr.

    2004-01-01

    The current vision for space exploration focuses on human missions to the Moon, Mars, and beyond. To support these goals, it is certain that new vehicles and intermediate bases will be developed, whether that means simply re-direction of the ISS as a "mission research facility" or construction of a lunar base. Since these facilities are expected to be constructed from inherently light-weight materials, this work examines some of the potential sources of vibration and noise as well as means for controlling these vibrations. Many of the operating components within these facilities, such as pumps, fans, and motors, will produce vibrations during operation. These vibrations become structure in which they are housed. Resonances can impact acoustic noise levels and noise quality within the environment, possibly affecting crew health and productivity. For long-term missions in particular, it is expected that crew members will spend significant portions of their time restrained in the structure, such as in seats. As a result, the general health and well-being of the crew can be improved by limiting the harmful effects of human exposure to long-term audible and tactile vibration input. Besides the human factor, this work also examines some operational considerations in which vibrations play an important role. Vibrations can impact the environment for science and in-situ manufacturing research within these vehicles. Since a benign vibratory environment is beneficial for most types of science experiments, there is a need for various forms of vibration control. Because the operational characteristics of a vehicle can change during a long-term mission, it is further expected that the characteristics of many of the vibratory excitations will change with time. Consequently, the form of vibration control needed to improve overall habitability and usefulness of the vehicle or element for exploration missions will rely to some degree on the vibration control system's ability to

  14. Ground test for vibration control demonstrator

    NASA Astrophysics Data System (ADS)

    Meyer, C.; Prodigue, J.; Broux, G.; Cantinaud, O.; Poussot-Vassal, C.

    2016-09-01

    In the objective of maximizing comfort in Falcon jets, Dassault Aviation is developing an innovative vibration control technology. Vibrations of the structure are measured at several locations and sent to a dedicated high performance vibration control computer. Control laws are implemented in this computer to analyse the vibrations in real time, and then elaborate orders sent to the existing control surfaces to counteract vibrations. After detailing the technology principles, this paper focuses on the vibration control ground demonstration that was performed by Dassault Aviation in May 2015 on Falcon 7X business jet. The goal of this test was to attenuate vibrations resulting from fixed forced excitation delivered by shakers. The ground test demonstrated the capability to implement an efficient closed-loop vibration control with a significant vibration level reduction and validated the vibration control law design methodology. This successful ground test was a prerequisite before the flight test demonstration that is now being prepared. This study has been partly supported by the JTI CleanSky SFWA-ITD.

  15. Shock and vibration tests of uranium mononitride fuel pellets for a space power nuclear reactor

    NASA Technical Reports Server (NTRS)

    Adams, D. W.

    1972-01-01

    Shock and vibration tests were conducted on cylindrically shaped, depleted, uranium mononitride (UN) fuel pellets. The structural capabilities of the pellets were determined under exposure to shock and vibration loading which a nuclear reactor may encounter during launching into space. Various combinations of diametral and axial clearances between the pellets and their enclosing structures were tested. The results of these tests indicate that for present fabrication of UN pellets, a diametral clearance of 0.254 millimeter and an axial clearance of 0.025 millimeter are tolerable when subjected to launch-induced loads.

  16. Low-level vibrations maintain the intervertebral disc during unloading

    NASA Astrophysics Data System (ADS)

    Holguin, Nilsson

    Changes in intervertebral disc (IVD) biochemistry, morphology and mechanics have been characterized only incompletely in the rat hindlimb unloading (HU) model. Although exposure to chronic vibrations can be damaging, low-magnitude vibrations can attenuate the geometric changes of the IVD due to altered spinal loading. Here, we tested the hypothesis that low-magnitude, high-frequency vibrations will mitigate the hypotrophy, biochemical degradation and deconditioning of the IVD during HU. When applied as whole-body vibrations through all four paws, Sprague-Dawley rats were subjected to HU and exposed to daily periods (15min/d) of either ambulatory activities (HU+AMB) or whole body vibrations superimposed upon ambulation (HU+WBV; WBV at 45Hz, 0.3g). After 4wks and, compared to age-matched control rats (AC), the lumbar IVD of HU+AMB had a 22% smaller glycosaminoglycans/collagen ratio, 12% smaller posterior IVD height, and 13% smaller cross-sectional area. Compared to HU+AMB rats, the addition of low-level vibratory loading did not significantly alter IVD biochemistry, posterior height, area, or volume, but directionally altered IVD geometry. When subjected to upright vibrations through the hindpaws, rats were HU for 4wks. A subset of HU rats stood in an upright posture on a vertically oscillating plate (0.2g) at 45- or 90-Hz (HU+45 or HU+90). After 4wks, regardless of sham (HU+SC) loading (HU+/-SC) and, compared to AC, IVD of HU+/-SC had 10% less height, 39% smaller nucleus pulposus area, less glycosaminoglycans in the nucleus pulposus (21%), anterior annulus fibrosus (16%) and posterior annulus fibrosus (19%), 76% less tension-compression neutral zone (NZ) modulus, 26% greater compressive modulus, 25% greater initial elastic damping modulus, 26% less torsional NZ stiffness, no difference in collagen content and a weaker relationship between tension-compression NZ modulus and posterior height change. Exogenously introduced oscillations maintained the morphology

  17. Optimization of a hybrid vibration absorber for vibration control of structures under random force excitation

    NASA Astrophysics Data System (ADS)

    Cheung, Y. L.; Wong, W. O.; Cheng, L.

    2013-02-01

    A recently reported design of a hybrid vibration absorber (HVA) which is optimized to suppress resonant vibration of a single degree-of-freedom (SDOF) system is re-optimized for suppressing wide frequency band vibration of the SDOF system under stationary random force excitation. The proposed HVA makes use of the feedback signals from the displacement and velocity of the absorber mass for minimizing the vibration response of the dynamic structure based on the H2 optimization criterion. The objective of the optimal design is to minimize the mean square vibration amplitude of a dynamic structure under a wideband excitation, i.e., the total area under the vibration response spectrum is minimized in this criterion. One of the inherent limitations of the traditional passive vibration absorber is that its vibration suppression is low if the mass ratio between the absorber mass and the mass of the primary structure is low. The active element of the proposed HVA helps further reduce the vibration of the controlled structure and it can provide significant vibration absorption performance even at a low mass ratio. Both the passive and active elements are optimized together for the minimization of the mean square vibration amplitude of the primary system. The proposed HVA are tested on a SDOF system and continuous vibrating structures with comparisons to the traditional passive vibration absorber.

  18. Vibration-type particle separation device with piezoceramic vibrator

    NASA Astrophysics Data System (ADS)

    Ooe, Katsutoshi; Doi, Akihiro

    2008-12-01

    During hemanalysis, it is necessary to separate blood cells from whole blood. Many blood separation methods, for example, centrifugation and filtering, are in practical use. However, the use of these methods involves problems from the perspectives of processing speed and processing volume. We develop new types of blood separation devices that use piezo-ceramic vibrators. The first device uses a capillary. One end of the capillary is fixed to the device frame, and the other is fixed to a piezo-ceramic vibrator. The vibrator transmits bending waves to the capillary. This device can process only a small amount of solution; therefore, it is not suitable for hemanalysis. In order to solve this problem, we developed a second device; this device has a pair of thin glass plates with a small gap as a substitute for the capillary used in the first device. These devices are based on the fact that particles heavier than water move toward transverse velocity antinodes while those lighter than water move toward velocity nodes. In this report, we demonstrate the highspeed separation of silica microbeads and 50-vol% glycerol water by using these devices. The first device can separate the abovementioned solution within 3 min while the second can separate it within 1 min. Both devices are driven by a rectangular wave of 15 to 20 Vpp. Furthermore, it has been confirmed that red blood cells are separated from diluted whole blood using the first device within approximately 1 min. These devices have transparency, so they can compose as the analysis system with the chemical analyzer easily.

  19. Helicopter rotor blade design for minimum vibration

    NASA Technical Reports Server (NTRS)

    Taylor, R. B.

    1984-01-01

    The importance of blade design parameters in rotor vibratory response and the design of a minimum vibration blade based upon this understanding are examined. Various design approaches are examined for a 4 bladed articulated rotor operating at a high speed flight condition. Blade modal shaping, frequency placement, structural and aerodynamic coupling, and intermodal cancellation are investigated to systematically identify and evaluate blade design parameters that influence blade airloads, blade modal response, hub loads, and fuselage vibration. The relative contributions of the various components of blade force excitation and response to the vibratory hub loads transmitted to the fuselage are determined in order to isolate primary candidates for vibration alleviation. A blade design is achieved which reduces the predicted fuselage vibration from the baseline blade by approximately one half. Blade designs are developed that offer significant reductions in vibration (and fatigue stresses) without resorting to special vibration alleviation devices, radical blade geometries, or weight penalties.

  20. Actively controlled vibration welding system and method

    DOEpatents

    Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An

    2013-04-02

    A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.

  1. Coupling between plate vibration and acoustic radiation

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Maestrello, Lucio; Bayliss, Alvin

    1992-01-01

    A detailed numerical investigation of the coupling between the vibration of a flexible plate and the acoustic radiation is performed. The nonlinear Euler equations are used to describe the acoustic fluid while the nonlinear plate equation is used to describe the plate vibration. Linear, nonlinear, and quasi-periodic or chaotic vibrations and the resultant acoustic radiation are analyzed. We find that for the linear plate response, acoustic coupling is negligible. However, for the nonlinear and chaotic responses, acoustic coupling has a significant effect on the vibration level as the loading increases. The radiated pressure from a plate undergoing nonlinear or chaotic vibrations is found to propagate nonlinearly into the far-field. However, the nonlinearity due to wave propagation is much weaker than that due to the plate vibrations. As the acoustic wave propagates into the far-field, the relative difference in level between the fundamental and its harmonics and subharmonics decreases with distance.

  2. Coupling between plate vibration and acoustic radiation

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Maestrello, Lucio; Bayliss, Alvin

    1993-01-01

    A detailed numerical investigation of the coupling between the vibration of a flexible plate and the acoustic radiation is performed. The nonlinear Euler equations are used to describe the acoustic fluid while the nonlinear plate equation is used to describe the plate vibration. Linear, nonlinear, and quasi-periodic or chaotic vibrations and the resultant acoustic radiation are analyzed. We find that for the linear plate response, acoustic coupling is negligible. However, for the nonlinear and chaotic responses, acoustic coupling has a significant effect on the vibration level as the loading increases. The radiated pressure from a plate undergoing nonlinear or chaotic vibrations is found to propagate nonlinearly into the far field. However, the nonlinearity due to wave propagation is much weaker than that due to the plate vibrations. As the acoustic wave propagates into the far field, the relative difference in level between the fundamental and its harmonics and subharmonics decreases with distance.

  3. Communication: Creation of molecular vibrational motions via the rotation-vibration coupling

    SciTech Connect

    Shu, Chuan-Cun; Henriksen, Niels E.

    2015-06-14

    Building on recent advances in the rotational excitation of molecules, we show how the effect of rotation-vibration coupling can be switched on in a controlled manner and how this coupling unfolds in real time after a pure rotational excitation. We present the first examination of the vibrational motions which can be induced via the rotation-vibration coupling after a pulsed rotational excitation. A time-dependent quantum wave packet calculation for the HF molecule shows how a slow (compared to the vibrational period) rotational excitation leads to a smooth increase in the average bond length whereas a fast rotational excitation leads to a non-stationary vibrational motion. As a result, under field-free postpulse conditions, either a stretched stationary bond or a vibrating bond can be created due to the coupling between the rotational and vibrational degrees of freedom. The latter corresponds to a laser-induced breakdown of the adiabatic approximation for rotation-vibration coupling.

  4. Active vibration control in Duffing mechanical systems using dynamic vibration absorbers

    NASA Astrophysics Data System (ADS)

    Beltrán-Carbajal, F.; Silva-Navarro, G.

    2014-07-01

    This paper deals with the multi-frequency harmonic vibration suppression problem in forced Duffing mechanical systems using passive and active linear mass-spring-damper dynamic vibration absorbers. An active vibration absorption scheme is proposed to extend the vibrating energy dissipation capability of a passive dynamic vibration absorber for multiple excitation frequencies and, simultaneously, to perform reference position trajectory tracking tasks planned for the nonlinear primary system. A differential flatness-based disturbance estimation scheme is also described to estimate the unknown multiple time-varying frequency disturbance signal affecting the differentially flat nonlinear vibrating mechanical system dynamics. Some numerical simulation results are provided to show the efficient performance of the proposed active vibration absorption scheme and the fast estimation of the vibration disturbance signal.

  5. Vibration of a rolling wheel— preliminary results

    NASA Astrophysics Data System (ADS)

    Hemsworth, B.

    1983-03-01

    Preliminary results are presented of the axial vibration of a railway wheel on a vehicle travelling at speeds of up to 100 miles/h. Frequency analysis shows that the wheel response is resonant, at modes of vibration which have been identified from static tests. Further developments of measurement and analysis techniques will be necessary before a more complete picture of the importance of wheel vibration on wheel/rail noise radiation can be determined.

  6. Studies Of Residual Flexibility And Vibration Testing

    NASA Technical Reports Server (NTRS)

    Admire, John R.; Tinker, Michael L.; Bookout, Paul S.; Ivey, Edward W.

    1995-01-01

    Collection of reports presents theoretical and experimental studies in which concept of residual flexibility applied to modal vibration testing and verification of mathematical models of vibrations of flexible structure constrained by another structure. "Residual flexibility" denotes that part of interface flexibility due to mode shapes out of frequency range of test. Studies directed toward assessing residual-flexibility approach as substitute for fixed-base vibrational testing of payloads installed in spacecraft.

  7. Vibrational Control of a Nonlinear Elastic Panel

    NASA Technical Reports Server (NTRS)

    Chow, P. L.; Maestrello, L.

    1998-01-01

    The paper is concerned with the stabilization of the nonlinear panel oscillation by an active control. The control is actuated by a combination of additive and parametric vibrational forces. A general method of vibrational control is presented for stabilizing panel vibration satisfying a nonlinear beam equation. To obtain analytical results, a perturbation technique is used in the case of weak nonlinearity. Possible application to other types of problems is briefly discussed.

  8. Experimental modeling of cavitation occurring at vibration

    NASA Astrophysics Data System (ADS)

    Gaynutdinova, D. F.; Modorskii, V. Ya.; Shevelev, N. A.

    2016-10-01

    The article investigates the problem of effects in two-stage centrifugal pumps due to hydro-gas-dynamic processes resulting from vibrations of design elements which are difficult to forecast. Numerical and experimental simulation of this problem was conducted. The experiment discovered cavitation effects brought about by the vibrations. The area of cavitations was plotted. Dependence of cavitation bubble concentration on amplitude and frequency of the vibrations was found.

  9. Two Techniques For Suppressing Vibrations In Structures

    NASA Technical Reports Server (NTRS)

    Chen, Gun-Shing; Garba, John A.; Wada, Ben K.

    1991-01-01

    Two techniques intended to be used together to suppress vibrations in large, complicated truss structure involve combination of active and passive damping. Based on bridge feedback and criterion for placement of actuators. Research continues to develop system using these and other techniques to suppress vibrations in, and help control shape of, truss structure in outer space that supports precise, segmented reflector of communication antenna. On Earth, developmental techniques applicable to suppression of vibrations in bridges and tall buildings.

  10. Non-Synchronous Vibration of Turbomachinery Airfoils

    DTIC Science & Technology

    2006-03-01

    study and prevention of non-synchronous vibrations. Non-synchronous vibrations in turbine engine blades are the result of the interaction of an...was a modern fan vane blade known as the H2 case. This blade encountered NSV in experimental rig testing. An analysis was performed with TURBO ...design stage for flow over turbine engine blades . REFERENCES Anagnostopoulos, P., ed. Flow-Induced Vibrations in Engineering

  11. Centaur liquid oxygen boost pump vibration test

    NASA Technical Reports Server (NTRS)

    Tang, H. M.

    1975-01-01

    The Centaur LOX boost pump was subjected to both the simulated Titan Centaur proof flight and confidence demonstration vibration test levels. For each test level, both sinusoidal and random vibration tests were conducted along each of the three orthogonal axes of the pump and turbine assembly. In addition to these tests, low frequency longitudinal vibration tests for both levels were conducted. All tests were successfully completed without damage to the boost pump.

  12. High force vibration testing with wide frequency range

    SciTech Connect

    Romero, Edward F.; Jepsen, Richard A.; Gregory, Danny Lynn

    2013-04-02

    A shaker assembly for vibration testing includes first and second shakers, where the first shaker includes a piezo-electric material for generating vibration. A support structure permits a test object to be supported for vibration of the test object by both shakers. An input permits an external vibration controller to control vibration of the shakers.

  13. Minutes. Accredited Standards Committee on Bioacoustics, S3, U.S. Tag for ISO/TC43, Acoustics, IEC/TC 29 Electroacoustics, and ISO/TC108/SC4 Human Exposure to Mechanical Vibration and Shock Held in Baltimore, Maryland on 2 May 1991.

    DTIC Science & Technology

    1991-05-02

    Maryland 2 May 1991 The meeting was called to order by Ms. L.A. Wilber , Chair S3, at 1:30 PM in the Lincoln Room, the Omni Inner Harbor Hotel, Baltimore...American Academy of Otolaryngology (alternate for R.J. Naunton) Nixon, C. U.S. Air Force Toothman, E.H. FINCRP Wilber , L.A. Chair S3; ASA representative S3...matters (continued) f) S3/WG43 Method for Calibration of Bone Conduction Vibrator - D. Dirks, Chair Ms. Wilber said at the last meeting that she had

  14. Probing Intermolecular Coupled Vibrations between Two Molecules

    NASA Astrophysics Data System (ADS)

    Han, Zhumin; Czap, Gregory; Xu, Chen; Chiang, Chi-lun; Yuan, Dingwang; Wu, Ruqian; Ho, W.

    2017-01-01

    Intermolecular interactions can induce energy shifts and coupling of molecular vibrations. However, the detection of intermolecular coupled vibrations has not been reported at the single molecule level. Here we detected an intermolecular coupled vibration between two CO molecules, one on the surface and another on the tip within the gap of a subkelvin scanning tunneling microscope, and analyzed the results by density functional calculations. We attribute the evolution of the energy and intensity of this coupled vibration as a function of tip-sample distance to the tilting and orbital alignment of the two CO molecules.

  15. Coal storage hopper with vibrating screen agitator

    SciTech Connect

    Daw, C.S.; Lackey, M.E.; Sy, R.L.

    1984-09-11

    The present invention is directed to a vibrating screen agitator in a coal storage hopper for assuring the uniform feed of coal having sufficient moisture content to effect agglomeration and bridging thereof in the coal hopper from the latter onto a conveyor mechanism. The vibrating screen agitator is provided by a plurality of transversely oriented and vertically spaced apart screens in the storage hopper with a plurality of vertically oriented rods attached to the screens. The rods are vibrated to effect the vibration of the screens and the breaking up of agglomerates in the coal which might impede the uniform flow of the coal from the hopper onto a conveyer.

  16. Computer animation of modal and transient vibrations

    NASA Technical Reports Server (NTRS)

    Lipman, Robert R.

    1987-01-01

    An interactive computer graphics processor is described that is capable of generating input to animate modal and transient vibrations of finite element models on an interactive graphics system. The results from NASTRAN can be postprocessed such that a three dimensional wire-frame picture, in perspective, of the finite element mesh is drawn on the graphics display. Modal vibrations of any mode shape or transient motions over any range of steps can be animated. The finite element mesh can be color-coded by any component of displacement. Viewing parameters and the rate of vibration of the finite element model can be interactively updated while the structure is vibrating.

  17. Analysis of potential helicopter vibration reduction concepts

    NASA Technical Reports Server (NTRS)

    Landgrebe, A. J.; Davis, M. W.

    1985-01-01

    Results of analytical investigations to develop, understand, and evaluate potential helicopter vibration reduction concepts are presented in the following areas: identification of the fundamental sources of vibratory loads, blade design for low vibration, application of design optimization techniques, active higher harmonic control, blade appended aeromechanical devices, and the prediction of vibratory airloads. Primary sources of vibration are identified for a selected four-bladed articulated rotor operating in high speed level flight. The application of analytical design procedures and optimization techniques are shown to have the potential for establishing reduced vibration blade designs through variations in blade mass and stiffness distributions, and chordwise center-of-gravity location.

  18. Inertia-Wheel Vibration-Damping System

    NASA Technical Reports Server (NTRS)

    Fedor, Joseph V.

    1990-01-01

    Proposed electromechanical system would damp vibrations in large, flexible structure. In active vibration-damping system motors and reaction wheels at tips of appendages apply reaction torques in response to signals from accelerometers. Velocity signal for vibrations about one axis processes into control signal to oppose each of n vibrational modes. Various modes suppressed one at a time. Intended primarily for use in spacecraft that has large, flexible solar panels and science-instrument truss assembly, embodies principle of control interesting in its own right and adaptable to terrestrial structures, vehicles, and instrument platforms.

  19. Vibrational dynamics of crystalline L-alanine

    SciTech Connect

    Bordallo, H.N.; Eckert, J.; Barthes, M.

    1997-11-01

    The authors report a new, complete vibrational analysis of L-alanine and L-alanine-d{sub 4} which utilizes IINS intensities in addition to frequency information. The use of both isotopomers resulted in a self-consistent force field for and assignment of the molecular vibrations in L-alanine. Some details of the calculation as well as a comparison of calculated and observed IINS spectra are presented. The study clarifies a number of important issues on the vibrational dynamics of this molecule and presents a self-consistent force field for the molecular vibrations in crystalline L-alanine.

  20. Surface acoustic wave (SAW) vibration sensors.

    PubMed

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.

  1. Experiments In Characterizing Vibrations Of A Structure

    NASA Technical Reports Server (NTRS)

    Yam, Yeung; Hadaegh, Fred Y.; Bayard, David S.

    1993-01-01

    Report discusses experiments conducted to test methods of identification of vibrational and coupled rotational/vibrational modes of flexible structure. Report one in series that chronicle development of integrated system of methods, sensors, actuators, analog and digital signal-processing equipment, and algorithms to suppress vibrations in large, flexible structure even when dynamics of structure partly unknown and/or changing. Two prior articles describing aspects of research, "Autonomous Frequency-Domain Indentification" (NPO-18099), and "Automated Characterization Of Vibrations Of A Structure" (NPO-18141).

  2. Coal storage hopper with vibrating screen agitator

    DOEpatents

    Daw, Charles S.; Lackey, Mack E.; Sy, Ronald L.

    1984-01-01

    The present invention is directed to a vibrating screen agitator in a coal storage hopper for assuring the uniform feed of coal having sufficient moisture content to effect agglomeration and bridging thereof in the coal hopper from the latter onto a conveyor mechanism. The vibrating screen agitator is provided by a plurality of transversely oriented and vertically spaced apart screens in the storage hopper with a plurality of vertically oriented rods attached to the screens. The rods are vibrated to effect the vibration of the screens and the breaking up of agglomerates in the coal which might impede the uniform flow of the coal from the hopper onto a conveyer.

  3. Biodynamic response of the seated human body to single-axis and dual-axis vibration: effect of backrest and non-linearity.

    PubMed

    Qiu, Yi; Griffin, Michael J

    2012-01-01

    The biodynamic responses to the human body give an understanding of why human responses to vibration (changes in health, comfort, and performance) vary with the frequency and direction of vibration. Studies have shown that biodynamic responses also vary with the magnitude of vibration and that the backrests of seats influence the transmission of vibration to the seated human body. There has been little study of the nonlinearity in the biodynamic responses of the body to dual-axis excitation and no study of the influence of backrests during dual-axis excitation. This study investigated the apparent mass and cross-axis apparent mass of the human body exposed to random vibration (0.2 to 20 Hz) in all 15 possible combinations of four magnitudes (0, 0.25, 0.5 and 1.0 ms(-2) r.m.s.) of fore-and-aft vibration and the same four magnitudes of vertical vibration. Nonlinearity was evident, with the body softening with increasing magnitude of vibration when using a fixed magnitude of vibration in one direction and varying the magnitude of vibration in the other direction. The fore-and-aft apparent mass on the seat was greater without a backrest at the lower frequencies but greater with a backrest at the higher frequencies. The vertical apparent mass on the seat was decreased by the backrest at low frequencies. Cross-axis coupling was evident, with excitation in one axis producing a response in the other axis. It is concluded that the nonlinearity of the body evident during single-axis and multi-axis vibration, and the influence of backrests, should be taken into account when determining frequency weightings for predicting human responses to vibration and when optimising the dynamics of seating to minimise exposure to vibration.

  4. Vibration Isolation of a Microphone.

    DTIC Science & Technology

    1985-09-01

    a. Microphone Replica A microphone replica identical in shape to the test microphone was machined from aluminum. A cutout was made on one side to...tion Research Program. 19. KEY WORDS (Continue on ,ererbe side if necesseary and identify by block number) vibration isolator, microphone, Space...34 ,.72_,IM=IN T S: -...S’L.’fMISS: READ ’SPL FOR ME..URED VOLTAGE RE.SF.E. READ XMISS’ FOR MEASURED TRANSMISEIBILITY . ’, ....... O ,IHED WERE WITHIN

  5. Multivariate Analysis of Ladle Vibration

    NASA Astrophysics Data System (ADS)

    Yenus, Jaefer; Brooks, Geoffrey; Dunn, Michelle

    2016-08-01

    The homogeneity of composition and uniformity of temperature of the steel melt before it is transferred to the tundish are crucial in making high-quality steel product. The homogenization process is performed by stirring the melt using inert gas in ladles. Continuous monitoring of this process is important to make sure the action of stirring is constant throughout the ladle. Currently, the stirring process is monitored by process operators who largely rely on visual and acoustic phenomena from the ladle. However, due to lack of measurable signals, the accuracy and suitability of this manual monitoring are problematic. The actual flow of argon gas to the ladle may not be same as the flow gage reading due to leakage along the gas line components. As a result, the actual degree of stirring may not be correctly known. Various researchers have used one-dimensional vibration, and sound and image signals measured from the ladle to predict the degree of stirring inside. They developed online sensors which are indeed to monitor the online stirring phenomena. In this investigation, triaxial vibration signals have been measured from a cold water model which is a model of an industrial ladle. Three flow rate ranges and varying bath heights were used to collect vibration signals. The Fast Fourier Transform was applied to the dataset before it has been analyzed using principal component analysis (PCA) and partial least squares (PLS). PCA was used to unveil the structure in the experimental data. PLS was mainly applied to predict the stirring from the vibration response. It was found that for each flow rate range considered in this study, the informative signals reside in different frequency ranges. The first latent variables in these frequency ranges explain more than 95 pct of the variation in the stirring process for the entire single layer and the double layer data collected from the cold model. PLS analysis in these identified frequency ranges demonstrated that the latent

  6. Radial vibrations of BPS skyrmions

    NASA Astrophysics Data System (ADS)

    Adam, C.; Haberichter, M.; Romanczukiewicz, T.; Wereszczynski, A.

    2016-11-01

    We study radial vibrations of spherically symmetric Skyrmions in the Bogomol'nyi-Prasad-Sommerfield Skyrme model. Concretely, we numerically solve the linearized field equations for small fluctuations in a Skyrmion background, both for linearly stable oscillations and for (unstable) resonances. This is complemented by numerical solutions of the full nonlinear system, which confirm all the results of the linear analysis. In all cases, the resulting fundamental excitation provides a rather accurate value for the Roper resonance, supporting the hypothesis that the Bogomol'nyi-Prasad-Sommerfield Skyrme model already gives a reasonable approximate description of this resonance. Furthermore, for many potentials additional higher resonances appear, again in agreement with known experimental results.

  7. A magnetically sprung vibration harvester

    NASA Astrophysics Data System (ADS)

    Constantinou, P.; Mellor, P. H.; Wilcox, P. D.

    2010-04-01

    The use of energy harvesting systems is becoming a more prominent research topic in supplying energy to wireless sensor nodes. The paper will present an analytical 'toolbox' for designing and modeling a vibration energy harvester where the moving mass is suspended magnetically. Calculations from the presented model and measurements from a prototype are compared, and the presence of system non-linearities is shown and discussed. The use of the magnetic suspension and its equivalent hardening spring suspension leads to the system's non-linearity, demonstrating a broad band response and 'jump' phenomenon characteristic. The benefits of these are discussed and the system's performance is compared with those from literature, showing similarity.

  8. Vibrational Spectroscopy of Chromatographic Interfaces

    SciTech Connect

    Jeanne E. Pemberton

    2011-03-10

    Chromatographic separations play a central role in DOE-supported fundamental research related to energy, biological systems, the environment, and nuclear science. The overall portfolio of research activities in the Separations and Analysis Program within the DOE Office of Basic Energy Sciences includes support for activities designed to develop a molecular-level understanding of the chemical processes that underlie separations for both large-scale and analytical-scale purposes. The research effort funded by this grant award was a continuation of DOE-supported research to develop vibrational spectroscopic methods to characterize the interfacial details of separations processes at a molecular level.

  9. Nozzle flow with vibrational nonequilibrium

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Landry, J. G.

    1995-01-01

    This research concerns the modeling and numerical solutions of the coupled system of compressible Navier-Stokes equations in cylindrical coordinates under conditions of equilibrium and nonequilibrium thermodynamics. The problem considered was the modeling of a high temperature diatomic gas N2 flowing through a converging-diverging high expansion nozzle. The problem was modeled in two ways. The first model uses a single temperature with variable specific heats as functions of this temperature. For the second model we assume that the various degrees of freedom all have a Boltzmann distribution and that there is a continuous redistribution of energy among the various degrees of freedom as the gas passes through the nozzle. Each degree of freedom is assumed to have its own temperature and, consequently, each system state can be characterized by these temperatures. This suggests that formulation of a second model with a vibrational degree of freedom along with a rotational-translation degree of freedom, each degree of freedom having its own temperature. Initially the vibrational degree of freedom is excited by heating the gas to a high temperature. As the high temperature gas passes through the nozzle throat there is a sudden drop in temperature along with a relaxation time for the vibrational degree of freedom to achieve equilibrium with the rotational-translation degree of freedom. That is, we assume that the temperature change upon passing through the throat is so great that the changes in the vibrational degree of freedom occur at a much slower pace and consequently lags behind the rotational-translational energy changes. This lag results in a finite relaxation time. In this context the term nonequilibrium is used to denote the fact that the energy content of the various degrees of freedom are characterized by two temperatures. We neglect any chemical reactions which could also add nonequilibrium effects. We develop the energy equations for the nonequilibrium model

  10. Detection of light and vibration modulates bioluminescence intensity in the glowworm, Arachnocampa flava.

    PubMed

    Mills, Rebecca; Popple, Julie-Anne; Veidt, Martin; Merritt, David John

    2016-04-01

    Glowworms are larval fungus gnats that emit light from a specialised abdominal light organ. The light attracts small arthropod prey to their web-like silk snares. Larvae glow throughout the night and can modulate their bioluminescence in response to sensory input. To better understand light output regulation and its ecological significance, we examined the larvae's reaction to light exposure, vibration and sound. Exposure to a 5-min light pulse in the laboratory causes larvae to exponentially decrease their light output over 5-10 min until they completely switch off. They gradually return to pre-exposure levels but do not show a rebound. Larvae are most sensitive to ultraviolet light, then blue, green and red. Vibration of the larval snares results in a several-fold increase in bioluminescence over 20-30 s, followed by an exponential return to pre-exposure levels over 15-30 min. Under some conditions, larvae can respond to vibration by initiating bioluminescence when they are not glowing; however, the response is reduced compared to when they are glowing. We propose that inhibitory and excitatory mechanisms combine to modulate bioluminescence intensity by regulating biochemical reactions or gating the access of air to the light organ.

  11. Influence of severe vibrations on the visual perception of video sequences

    NASA Astrophysics Data System (ADS)

    Stern, Adrian; Fisher, E.; Rotman, Stanley R.; Kopeika, Norman S.

    2000-12-01

    There are two kinds of video image sequence distortions caused by vibration of the camera. The first is the vibration of the line-of-sight causing location changes of the scene in successive frames. The second effect is the blur of each frame of the sequence due to frame motion during its exposure. In this work, the relative effects of these two types of degradations on the ability of observers to recognize targets are investigated. This study is useful for evaluating the amount of effort required to compensate each effect. We found that the threshold contrast needed to recognize a target in a vibrating video sequence under certain conditions is more affected by the motion blur of each frame than the oscillation of the line-of-sight. For digital sequence restoration methods, this study determines the required precision of the deblurring and registration processes. It shows that the deblurring process should not be neglected as it often is.

  12. Flight electronics for vibration cancellation in cryogenic refrigerators: performance and environmental testing results

    NASA Astrophysics Data System (ADS)

    Burriesci, Lawrence G.; Cook, Eric I.; Hackett, John P.; Drummond, James R.; Mand, Gurpreet S.

    1996-10-01

    Space flight optical instruments and their support hardware must reliably operate in stressing environments for the duration of their mission. They must also survive the mechanical and thermal stresses of transportation, storage and launch. It is necessary to qualify the hardware design through environmental testing and to verify the hardware's ability to perform properly during and/or after some selected environmental tests on the ground. As a rule, flight electronics are subjected to thermal, mechanical and electromagnetic environmental testing. Thermal testing takes the form of temperature cycling over a temperature difference range (Delta) T of up to 100 degrees C for a minimum of six cycles, with additional performance verification testing at the hot and cold extremes. Mechanical testing takes the form of exposure to random vibration, sine sweep vibration, shock spectra and static loading on a centrifuge or by sine burst on a vibration table. A standard series of electromagnetic interference and electromagnetic compatibility testing is also performed.

  13. Vibration Testing of Stirling Power Convertors

    NASA Technical Reports Server (NTRS)

    Hughes, Bill; Goodnight, Thomas; McNelis, Mark E.; Suarez, Vicente J.; Schreiber, Jeff; Samorezov, Sergey

    2003-01-01

    The NASA John H. Glenn Research Center (GRC) and the U.S. Department of Energy (DOE) are currently developing a high efficient, long life, free piston Stirling convertor for use as an advanced spacecraft power system for future NASA missions. As part of this development, a Stirling Technology Demonstrator Convertor (TDC), developed by Stirling Technology Company (STC) for DOE, was vibration tested at GRC s Structural Dynamics Laboratory (SDU7735) in November- December 1999. This testing demonstrated that the Stirling TDC is able to withstand the harsh random vibration (20 to 2000 Hertz) seen during a typical spacecraft launch and survive with no structural damage or functional power performance degradation, thereby enabling its usage in future spacecraft power systems. The Stirling Vibration Test Team at NASA GRC and STC personnel conducted tests on a single 55 electric watt TDC. The purpose was to characterize the TDC s structural response to vibration and determine if the TDC could survive the vibration criteria established by the Jet Propulsion Laboratory (JPL) for launch environments. The TDC was operated at full-stroke and full power conditions during the vibration testing. The TDC was tested in two orientations, with the direction of vibration parallel and perpendicular to the TDC s moving components (displacer and piston). The TDC successfully passed a series of sine and random vibration tests. The most severe test was a 12.3 Grms random vibration test (peak vibration level of 0.2 g2/Hz from 50 to 250 Hertz) with test durations of 3 minutes per axis. The random vibration test levels were chosen to simulate, with margin, the maximum anticipated launch vibration conditions. As a result of this very successful vibration testing and successful evaluations in other key technical readiness areas, the Stirling power system is now considered a viable technology for future application for NASA spacecraft missions. Possible usage of the Stirling power system would be

  14. Exposure chamber

    DOEpatents

    Moss, Owen R.

    1980-01-01

    A chamber for exposing animals, plants, or materials to air containing gases or aerosols is so constructed that catch pans for animal excrement, for example, serve to aid the uniform distribution of air throughout the chamber instead of constituting obstacles as has been the case in prior animal exposure chambers. The chamber comprises the usual imperforate top, bottom and side walls. Within the chamber, cages and their associated pans are arranged in two columns. The pans are spaced horizontally from the walls of the chamber in all directions. Corresponding pans of the two columns are also spaced horizontally from each other. Preferably the pans of one column are also spaced vertically from corresponding pans of the other column. Air is introduced into the top of the chamber and withdrawn from the bottom. The general flow of air is therefore vertical. The effect of the horizontal pans is based on the fact that a gas flowing past the edge of a flat plate that is perpendicular to the flow forms a wave on the upstream side of the plate. Air flows downwardly between the chamber walls and the outer edges of the pan. It also flows downwardly between the inner edges of the pans of the two columns. It has been found that when the air carries aerosol particles, these particles are substantially uniformly distributed throughout the chamber.

  15. DOSE-RESPONSE Relationships Between Whole-Body Vibration and Lumbar Disk DISEASE—A Field Study on 388 Drivers of Different Vehicles

    NASA Astrophysics Data System (ADS)

    Schwarze, S.; Notbohm, G.; Dupuis, H.; Hartung, E.

    1998-08-01

    In a longitudinal study, the dose-response relationships between long term occupational exposure to whole-body vibration and degenerative processes in the lumbar spine caused by the lumbar disks were examined. From 1990 to 1992, 388 vibration-exposed workers from different driving jobs were examined medically and by lumbar X-ray. For each individual, a history of all exposure conditions was recorded, and a cumulative vibration dose was calculated allowing comparisons between groups of low, middle, and high intensity of exposure. 310 subjects were selected for a follow-up four years later, of whom 90·6% (n=281) agreed to participate. In comparing the exposure groups, the results indicate that the limit value ofazw(8h)=0·8 m/s2should be reviewed. The best fit between the lifelong vibration dose and the occurrence of a lumbar syndrome was obtained by applying a daily reference ofazw(8h)=0·6 ms2as a limit value. The results became more distinct still when only those subjects were included in the statistical analysis who had had no lumbar symptoms up to the end of the first year of exposure. The prevalence of lumbar syndrome is 1·55 times higher in the highly exposed group when compared to the reference group with low exposure (CI95%=1·24/1·95). Calculating the cumulative incidence of new cases of lumbar syndrome in the follow-up period yields a relative risk ofRRMH=1·37 (CI95%=0·86/2·17) for the highly exposed group. It is concluded that the limit value for the calculation of an individual lifelong vibration dose should be based on a daily reference exposure ofazw(8h)=0·6 m/s2. With increasing dose it is more and more probable that cases of lumbar syndrome are caused by exposure to vibration.

  16. Time-resolved vibrational spectroscopy

    SciTech Connect

    Tokmakoff, Andrei; Champion, Paul; Heilweil, Edwin J.; Nelson, Keith A.; Ziegler, Larry

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  17. Vibrational Collapse of Hexapod Packings

    NASA Astrophysics Data System (ADS)

    Zhao, Yuchen; Ding, Jingqiu; Barés, Jonathan; Dierichs, Karola; Behringer, Robert

    2016-11-01

    Columns made of convex noncohesive grains like sand collapse after being released from a confining container. However, structures built from concave grains can be stable without external support. Previous research show that the stability of the columns depends on column diameter and height, by observing column stability after carefully lifting their confinement tubes. Thinner and taller columns collapse with higher probability. While the column stability weakly depends on packing density, it strongly depends on inter-particle friction. Experiments that cause the column to collapse also reveal similar trends, as more effort (such as heavier loading or shearing) is required to destabilize columns that are intrinsically more stable. In the current experiments, we invesitage the effect of vibration on destructing a column. Short columns collapse following the relaxation dynamics of disorder systems, which coincides with similar experiments on staple packings. However, tall columns collapse faster at the beginning, in addition to the relaxation process coming after. Using high-speed imaging, we analyze column collapse data from different column geometries. Ongoing work is focusing on characterizing the stability of hexapod packings to vibration. We thanks NSF-DMR-1206351 and the William M. Keck Foundation.

  18. Impact self-excited vibrations of linear motor

    NASA Astrophysics Data System (ADS)

    Zhuravlev, V. Ph.

    2010-08-01

    Impact self-exciting vibration modes in a linear motor of a monorail car are studied. Existence and stability conditions of self-exciting vibrations are found. Ways of avoiding the vibrations are discussed.

  19. Measurement of phthalates in skin wipes: estimating exposure from dermal absorption.

    PubMed

    Gong, Mengyan; Zhang, Yinping; Weschler, Charles J

    2014-07-01

    This study has determined the levels of six phthalates (dimethyl phthalate (DMP), diethyl phthalate (DEP), di(isobutyl) phthalate (DiBP), di(n-butyl) phthalate (DnBP), butyl benzyl phthalate (BBzP), and di(2-ethylhexyl) phthalate (DEHP)) in skin wipes; examined factors that might influence the levels, including body location, time of sampling, and hand-washing; and estimated dermal absorption based on the measured levels. Skin wipes were collected from the forehead, forearm, back-of-hand, and palm of 20 participants using gauze pads moistened with isopropanol. DiBP, DnBP, and DEHP were most frequently detected; DEHP levels were substantially higher than DnBP and DiBP levels, and DnBP levels were somewhat lower than DiBP levels. The levels differed at different body locations, with palm > back-of-hand > forearm ≥ forehead. Repeated wipe sampling from six participants over a 1 month period indicated that levels at the same body location did not vary significantly. The estimated median total dermal absorption from skin surface lipids on the palm, back-of-hand, arm, and head are 0.48, 0.68, and 0.66 (μg/kg)/day for DiBP, DnBP, and DEHP, respectively. These estimates are roughly 10-20% of the total uptake reported for Chinese adults and suggest that dermal absorption contributes significantly to the uptake of these phthalates. Washing with soap and water removed more than 50% of the phthalates on the hands and may be a useful tool in decreasing aggregate phthalate exposure.

  20. Hand-transmitted vibration from the steering wheel to drivers of a small four-wheel drive tractor.

    PubMed

    Goglia, V; Gospodarić, Z; Kosutić, S; Filipović, D

    2003-01-01

    The paper presents research results of the vibration transmitted from the steering wheel of the small tractor with a 4-wheel drive to the driver's hands. The vibration measurements were carried out on the tractor randomly chosen from the producer's store-house. Before testing the tractor was examined and adjusted following the producer's recommendations. The vibration levels were measured at idling and at full load. The vibration level on the steering wheel was measured and analyzed and the frequency spectra for the chosen working conditions were obtained. The frequency-weighted acceleration, given in m/s(-2), was calculated. The vibration total value was defined as the root-mean-square of the three component values. The obtained values are graphically represented in accordance with ISO/DIS 5349-1979 and ISO5349-1-2001. The vibration exposure for the predicted 10% prevalance of vibration-induced white finger in accordance with Annex C of the same standard was also tested.

  1. Surface-Enhanced Impulsive Coherent Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Du, Juan; Harra, Juha; Virkki, Matti; Mäkelä, Jyrki M.; Leng, Yuxin; Kauranen, Martti; Kobayashi, Takayoshi

    2016-11-01

    Surface-enhanced Raman spectroscopy (SERS) has attracted a lot of attention in molecular sensing because of the remarkable ability of plasmonic metal nanostructures to enhance the weak Raman scattering process. On the other hand, coherent vibrational spectroscopy triggered by impulsive excitation using ultrafast laser pulses provides complete information about the temporal evolution of molecular vibrations, allowing dynamical processes in molecular systems to be followed in “real time”. Here, we combine these two concepts and demonstrate surface-enhanced impulsive vibrational spectroscopy. The vibrational modes of the ground and excited states of poly[2-methoxy-5-(2-ethylhexyloxy)‑1,4-phenylenevinylene] (MEH-PPV), spin-coated on a substrate covered with monodisperse silver nanoparticles, are impulsively excited with a sub-10 fs pump pulse and characterized with a delayed broad-band probe pulse. The maximum enhancement in the spectrally and temporally resolved vibrational signatures averaged over the whole sample is about 4.6, while the real-time information about the instantaneous vibrational amplitude together with the initial vibrational phase is preserved. The phase is essential to determine the vibrational contributions from the ground and excited states.

  2. Vibration therapy: clinical applications in bone

    PubMed Central

    Thompson, William R.; Yen, Sherwin S.; Rubin, Janet

    2015-01-01

    Purpose of review The musculoskeletal system is largely regulated through dynamic physical activity and is compromised by cessation of physical loading. There is a need to recreate the anabolic effects of loading on the musculoskeletal system, especially in frail individuals who cannot exercise. Vibration therapy is designed to be a nonpharmacological analogue of physical activity, with an intention to promote bone and muscle strength. Recent findings Animal and human studies suggest that high-frequency, low-magnitude vibration therapy improves bone strength by increasing bone formation and decreasing bone resorption. There is also evidence that vibration therapy is useful in treating sarcopenia, which confounds skeletal fragility and fall risk in aging. Enhancement of skeletal and muscle strength involves regulating the differentiation of mesenchymal stem cells to build these tissues; mesenchymal stem cell lineage allocation is positively promoted by vibration signals. Summary Vibration therapy may be useful as a primary treatment as well as an adjunct to both physical and pharmacological treatments, but future studies must pay close attention to compliance and dosing patterns, and importantly, the vibration signal, be it low-intensity vibration (<1g) appropriate for treatment of frail individuals or high-intensity vibration (>1g) marketed as a training exercise. PMID:25354044

  3. Recent advances in micro-vibration isolation

    NASA Astrophysics Data System (ADS)

    Liu, Chunchuan; Jing, Xingjian; Daley, Steve; Li, Fengming

    2015-05-01

    Micro-vibration caused by disturbance sources onboard spacecraft can severely degrade the working environment of sensitive payloads. Some notable vibration control methods have been developed particularly for the suppression or isolation of micro-vibration over recent decades. Usually, passive isolation techniques are deployed in aerospace engineering. Active isolators, however, are often proposed to deal with the low frequency vibration that is common in spacecraft. Active/passive hybrid isolation has also been effectively used in some spacecraft structures for a number of years. In semi-active isolation systems, the inherent structural performance can be adjusted to deal with variation in the aerospace environment. This latter approach is potentially one of the most practical isolation techniques for micro-vibration isolation tasks. Some emerging advanced vibration isolation methods that exploit the benefits of nonlinearity have also been reported in the literature. This represents an interesting and highly promising approach for solving some challenging problems in the area. This paper serves as a state-of-the-art review of the vibration isolation theory and/or methods which were developed, mainly over the last decade, specifically for or potentially could be used for, micro-vibration control.

  4. The analysis of nonstationary vibration data

    NASA Technical Reports Server (NTRS)

    Piersol, Allan G.

    1987-01-01

    The general methodology for the analysis of arbitrary nonstationary random data is reviewed. A specific parametric model, called the product model, that has applications to space vehicle launch vibration data analysis is discussed. Illustrations are given using the nonstationary launch vibration data measured on the Space Shuttle orbiter vehicle.

  5. Vibrational contribution to molecular polarizabilities and hyperpolarizabilities

    NASA Astrophysics Data System (ADS)

    Pandey, P. K. K.; Santry, D. P.

    1980-09-01

    The vibrational averaging theory of Kern and Matcha is extended, at the harmonic level of approximation, to the case where the molecular property under investigation can itself lead indirectly to a perturbation of the vibrational levels of the molecule. It is found that contributions arising from this perturbation can be significant, especially for molecular hyperpolarizabilities.

  6. 33 CFR 159.103 - Vibration test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Vibration test. 159.103 Section 159.103 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.103 Vibration test. The...

  7. 14 CFR 33.83 - Vibration test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine... experience, analysis, and component test and shall address, as a minimum, blades, vanes, rotor discs,...

  8. 14 CFR 33.43 - Vibration test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vibration test. 33.43 Section 33.43... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.43 Vibration test. (a) Each... configuration of the propeller type which is used for the endurance test, and using, for other engines, the...

  9. 14 CFR 33.43 - Vibration test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.43 Section 33.43... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.43 Vibration test. (a) Each... configuration of the propeller type which is used for the endurance test, and using, for other engines, the...

  10. 14 CFR 33.83 - Vibration test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine... experience, analysis, and component test and shall address, as a minimum, blades, vanes, rotor discs,...

  11. 14 CFR 33.83 - Vibration test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine... experience, analysis, and component test and shall address, as a minimum, blades, vanes, rotor discs,...

  12. Surface-Enhanced Impulsive Coherent Vibrational Spectroscopy

    PubMed Central

    Du, Juan; Harra, Juha; Virkki, Matti; Mäkelä, Jyrki M.; Leng, Yuxin; Kauranen, Martti; Kobayashi, Takayoshi

    2016-01-01

    Surface-enhanced Raman spectroscopy (SERS) has attracted a lot of attention in molecular sensing because of the remarkable ability of plasmonic metal nanostructures to enhance the weak Raman scattering process. On the other hand, coherent vibrational spectroscopy triggered by impulsive excitation using ultrafast laser pulses provides complete information about the temporal evolution of molecular vibrations, allowing dynamical processes in molecular systems to be followed in “real time”. Here, we combine these two concepts and demonstrate surface-enhanced impulsive vibrational spectroscopy. The vibrational modes of the ground and excited states of poly[2-methoxy-5-(2-ethylhexyloxy)−1,4-phenylenevinylene] (MEH-PPV), spin-coated on a substrate covered with monodisperse silver nanoparticles, are impulsively excited with a sub-10 fs pump pulse and characterized with a delayed broad-band probe pulse. The maximum enhancement in the spectrally and temporally resolved vibrational signatures averaged over the whole sample is about 4.6, while the real-time information about the instantaneous vibrational amplitude together with the initial vibrational phase is preserved. The phase is essential to determine the vibrational contributions from the ground and excited states. PMID:27812020

  13. Granular avalanches down inclined and vibrated planes.

    PubMed

    Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine

    2016-09-01

    In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999)PHFLE61070-663110.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.

  14. Benefits of Spacecraft Level Vibration Testing

    NASA Technical Reports Server (NTRS)

    Gordon, Scott; Kern, Dennis L.

    2015-01-01

    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  15. Tunneling ionization of vibrationally excited nitrogen molecules

    NASA Astrophysics Data System (ADS)

    Kornev, Aleksei S.; Zon, Boris A.

    2015-09-01

    Ionization of molecular nitrogen plays an important role in the process of light-filament formation in air. In the present paper we theoretically investigated tunneling ionization of the valence 3 σg and 1 πu shells in a N2 molecule using a strong near-infrared laser field. This research is based on our previously proposed theory of anti-Stokes-enhanced tunneling ionization with quantum accounting for the vibrationally excited states of the molecules [A. S. Kornev and B. A. Zon, Phys. Rev. A 86, 043401 (2012), 10.1103/PhysRevA.86.043401]. We demonstrated that if the N2 molecule is ionized from the ground vibrational state, then the contribution of the 1 πu orbital is 0.5%. In contrast, for vibrationally excited states with a certain angle between the light polarization vector and the molecule axis, both shells can compete and even reverse their contributions due to the anti-Stokes mechanism. The structure constants of molecular orbitals are extracted from numerical solutions to the Hartree-Fock equations. This approach correctly takes into account the exchange interaction. Quantum consideration of vibrational motion results in the occurrence of the critical vibrational state, the tunneling ionization from which has the maximum rate. The numbers of the critical vibrational states are different for different valence shells. In addition, quantum description of vibrations changes the rate of ionization from the ground vibrational state by 20%-40% in comparison with the quasiclassical results.

  16. 49 CFR 178.819 - Vibration test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... design types. Flexible IBC design types must be capable of withstanding the vibration test. (b) Test... for liquids may be tested using water as the filling material for the vibration test. (2) The sample..., but must be left free to move vertically and bounce. (3) The test must be performed for one hour at...

  17. 49 CFR 178.985 - Vibration test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... design types must be capable of withstanding the vibration test. (b) Test method. (1) A sample Large... liquids may be tested using water as the filling material for the vibration test. (2) The sample Large... the platform, but must be left free to move vertically and bounce. (4) The test must be performed...

  18. Granular avalanches down inclined and vibrated planes

    NASA Astrophysics Data System (ADS)

    Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine

    2016-09-01

    In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999), 10.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.

  19. Automated Characterization Of Vibrations Of A Structure

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Yam, Yeung; Mettler, Edward; Hadaegh, Fred Y.; Milman, Mark H.; Scheid, Robert E.

    1992-01-01

    Automated method of characterizing dynamical properties of large flexible structure yields estimates of modal parameters used by robust control system to stabilize structure and minimize undesired motions. Based on extraction of desired modal and control-design data from responses of structure to known vibrational excitations. Applicable to terrestrial structures where vibrations are important - aircraft, buildings, bridges, cranes, and drill strings.

  20. Vibrational Stability of NLC Linac accelerating structure

    SciTech Connect

    Le Pimpec, Frederic

    2002-09-25

    The vibration of components of the NLC linac, such as accelerating structures and girders, is being studied both experimentally and analytically. Various effects are being considered including structural resonances and vibration caused by cooling water in the accelerating structure. This paper reports the status of ongoing work.