Science.gov

Sample records for hand-arm vibration exposure

  1. Hand-arm vibration exposure monitoring with wearable sensor module.

    PubMed

    Austad, Hanne O; Røed, Morten H; Liverud, Anders E; Dalgard, Steffen; Seeberg, Trine M

    2013-01-01

    Vibration exposure is a serious risk within work physiology for several work groups. Combined with cold artic climate, the risk for permanent harm is even higher. Equipment that can monitor the vibration exposure and warn the user when at risk will provide a safer work environment for these work groups. This study evaluates whether data from a wearable wireless multi-parameter sensor module can be used to estimate vibration exposure and exposure time. This work has been focused on the characterization of the response from the accelerometer in the sensor module and the optimal location of the module in the hand-arm configuration.

  2. Hand-arm vibration syndrome

    PubMed Central

    Shen, Shixin (Cindy); House, Ronald A.

    2017-01-01

    Abstract Objective To provide family physicians with an understanding of the epidemiology, pathogenesis, symptoms, diagnosis, and management of hand-arm vibration syndrome (HAVS), an important and common occupational disease in Canada. Sources of information A MEDLINE search was conducted for research and review articles on HAVS. A Google search was conducted to obtain gray literature relevant to the Canadian context. Additional references were obtained from the articles identified. Main message Hand-arm vibration syndrome is a prevalent occupational disease affecting workers in multiple industries in which vibrating tools are used. However, it is underdiagnosed in Canada. It has 3 components—vascular, in the form of secondary Raynaud phenomenon; sensorineural; and musculoskeletal. Hand-arm vibration syndrome in its more advanced stages contributes to substantial disability and poor quality of life. Its diagnosis requires careful history taking, in particular occupational history, physical examination, laboratory tests to rule out alternative diagnoses, and referral to an occupational medicine specialist for additional investigations. Management involves reduction of vibration exposure, avoidance of cold conditions, smoking cessation, and medication. Conclusion To ensure timely diagnosis of HAVS and improve prognosis and quality of life, family physicians should be aware of this common occupational disease and be able to elicit the relevant occupational history, refer patients to occupational medicine clinics, and appropriately initiate compensation claims. PMID:28292796

  3. Hand-arm vibration syndrome from exposure to high-pressure hoses.

    PubMed

    Cooke, R; House, R; Lawson, I J; Pelmear, P L; Wills, M

    2001-09-01

    Hand-arm vibration syndrome has been reported in the literature to occur following exposure to vibration from the use of many tools, but to date there have been no case reports of its occurrence in workers who have used high-pressure hoses, alone or with other tools. To remedy this, the case histories of nine subjects (two without mixed exposure) examined in the UK and Canada are presented, together with their severity classified according to the Stockholm scales. Attention is drawn to the need to use multiple diagnostic tests to establish the diagnosis and the need to implement vibration isolation and damping methodologies, as and when feasible, with respect to hose nozzles in order to minimize the hazard. The ultimate goal for tool manufacturers, hygienists and engineers should be to reduce workplace vibration levels to meet national and international guidelines and legislation, including UK Health & Safety Executive guidelines and European Economic Community directives. The respective risk levels are presented, together with vibration measurements on hoses used by some of the cases.

  4. [Exposure to hand-arm vibrations in orthopaedic plaster room: risk management].

    PubMed

    Lembo, Marco; Lunghi, Alessandro; Leo, Erica; Ritrovato, Matteo; Cannatà, Vittorio; Capussotto, Carlo; Tirabasso, Angelo; Zaffina, Salvatore; Camisa, Vincenzo; Derrico, Pietro; Martella, Mauro; Marchetti, Enrico

    2016-03-24

    In hospitals, the use of vibrating tools, such as oscillating saws to cut plaster, can expose the staff to hand-arm vibrations. The aim of the study was to assess the exposure of workers to vibrations in the plaster room and then  identify the most appropriate  intervention for  prevention and protection to be implemented in order to minimize  exposure and  protect  workers' health, considering different individual hyper-susceptibility conditions. Four different models of plaster saws were examined for the evaluation.  Various measurements were made in normal working conditions of the operators. The values of acceleration and noise detected on the instruments  were  in line with those reported in the literature. The preventive measure adopted (replacing plaster saws currently used in the hospital with similar ones with lower vibration emission) was an adequate means of protection. Health surveillance activities  recorded a higher level of wellbeing, both environmentally and individually and, specifically, an increased protection level for the hyper-susceptibility conditions observed during health checks of exposed personnel  which will be monitored regularly by the Occupational Health Service.

  5. Dose-response relation between exposure to two types of hand-arm vibration and sensorineural perception of vibration.

    PubMed Central

    Virokannas, H

    1995-01-01

    OBJECTIVES--31 railway workers and 32 lumberjacks were examined to compare the dose-response relation between the exposure to two types of hand-arm vibration and the sensory disturbances in peripheral nerves as evaluated by the vibration perception thresholds (VPTs). METHODS--Clinical examinations were carried out that included measurements of the VPTs, and electroneuromyography (ENMG), and an inquiry to confirm the use of vibrating tools. Diseases of the central nervous system and neuropathies were checked by inquiry and a clinical examination, diabetes was excluded by a blood sample analysis, and the subjects with carpal tunnel syndrome confirmed with ENMG were excluded from the study. RESULTS--Lifetime use of hand held tamping machines (railway workers) and chain saws (lumberjacks) had a significant correlation with the VPTs at frequencies from 32 to 500 Hz. The increase of the VPTs (250 Hz) in relation to use of vibrating tools was 1.8-fold higher on average in the whole group and 2.3-fold higher in the young (< 45) railway workers who had used hand held tamping machines, than in the corresponding groups of lumberjacks, who had used chain saws, whereas the frequency weighted acceleration of vibration in tamping machines was fourfold. CONCLUSION--There was a significant dose-response relation between the exposure to hand-arm vibration and the VPTs. The VPTs as a function of the frequency weighted acceleration of vibration and the exposure to vibration gave promising results for assessment of the risk of damage to sensory nerves induced by vibration. PMID:7795756

  6. [Effects of exposure to occupational hand-arm vibration on maintenance of postural balance].

    PubMed

    Tanaka, Kazuko; Maeda, Takafumi; Tanaka, Masatoshi; Fukushima, Tetsuhito

    2004-11-01

    In order to determine the relationship between exposure to hand-arm vibration through the use of vibration tools and dysfunction in the maintenance of postural balance, 106 male forestry workers were examined by stabilometry for deflection in the center of gravity and in the air conduction hearing levels. A questionnaire survey was also conducted among the workers in order to obtain details regarding their age, the types of tools used by them, and the duration for which they had used a chain saw. The vibration acceleration of a chain saw has been limited to a level of 3 G or less since 1976 in accordance with the notification from the Japanese Forestry Agency and the Ministry of Labor. In fact, chain saws with significantly reduced vibration acceleration in comparison with those used before 1976 have been available. Therefore, in 2000, we conducted a test on forestry workers who were divided into two groups-workers who had used a chain saw for 25 years or more (25-yr-or-more group) and workers who had used a chain saw for 24 yr or less (24-yr-or-less group). Compared to the 24-yr-or-less group, the 25-yr-or-more group exhibited significantly higher levels of average deflection in the center of gravity, expressed as the enveloped (aENV) and rectangular (aREC) areas, and in the hearing levels at 500, 1000, 2000, 4000 and 8000 Hz. For the aENV, the correlation coefficients revealed significant relationships between the hearing levels at 4,000 Hz, the duration of use of a chain saw, and age. Since the duration of use of a chain saw exhibited a significant relationship with age, it was necessary to eliminate the effect of age on the aENV. Subsequently, we divided all the workers into age groups spanning ten years each (from 20 to 70 yr) and compared the aENV among the same age groups in both the 25-yr-or-more and the 24-yr-or-less groups. The averages of the aENV for each age group were higher in the 25-yr-or-more group than in the 24-yr-or-less group. In particular, a

  7. Vibrotactile perception and effects of short-term exposure to hand-arm vibration.

    PubMed

    Burström, Lage; Lundström, Ronnie; Hagberg, Mats; Nilsson, Tohr

    2009-07-01

    This study clarifies whether the established frequency weighting procedure for evaluating exposure to hand-transmitted vibration can effectively evaluate the temporary changes in vibrotactile perception thresholds due to pre-exposure to vibration. In addition, this study investigates the relationship between changes of the vibrotactile perception thresholds and the normalized energy-equivalent frequency-weighted acceleration. The fingers of 10 healthy subjects, five male and five female, were exposed to vibration under 16 conditions with a combination of different frequencies, intensities, and exposure times. The vibration frequencies were 31.5 and 125 Hz and exposure lasted between 2 and 16 min. According to International Organization for Standardization (ISO) 5349-1, the energy-equivalent frequency-weighted acceleration for the experimental time of 16 min is 2.5 or 5.0 m s(-2) root-mean-square, corresponding to a 8-h equivalent acceleration, A(8), of approximately 0.5 and 0.9 m s(-2), respectively. A measure of the vibrotactile perception thresholds was conducted before the different exposures to vibration. Immediately after the vibration exposure, the acute effect was measured continuously on the exposed index finger for the first 75 s, followed by 30 s of measures every minute for a maximum of 10 min. If the subject's thresholds had not recovered, the measures continued for a maximum of 30 min with measurements taken every 5 min. Pre-exposure to vibration significantly influenced vibrotactile thresholds. This study concludes that the influence on the thresholds depends on the frequency of the vibration stimuli. Increased equivalent frequency-weighted acceleration resulted in a significant change in threshold, but the thresholds were unaffected when changes in the vibration magnitude were expressed as the frequency-weighted acceleration or the unweighted acceleration. Moreover, the frequency of the pre-vibration exposure significantly influenced (up to 25 min

  8. Effective information campaign for management of exposure to hand-arm vibration in the metal and construction industries.

    PubMed

    Sauni, Riitta; Toivio, Pauliina; Esko, Toppila; Pääkkönen, Rauno; Uitti, Jukka

    2015-01-01

    European Directive 2002/44/EC defines employers' responsibilities in the risk management of hand-arm vibration (HAV). However, the directive is still not completely implemented in all risk industries. The aim of our study was to determine whether it is possible to improve the recognition and management of the risks of HAV at workplaces with a one-year information campaign. A questionnaire on opinions and measures for controlling HAV exposure at workplaces was sent to all occupational safety representatives and occupational safety managers in the construction and metal industry in Finland (n=1887) and once again to those who responded to the first questionnaire (n=961) one year after the campaign. The campaign increased recognition of HAV in risk assessment from 57.0% to 68.3% (p=.001), increased measures to decrease exposure to HAV from 54.6% to 64.2% (p=.006) and increased the number of programmes to control the risks due to HAV (p<.001). The information campaign, which focuses on the construction and metal industries, proved to be effective in increasing the awareness of the risks of HAV and the measures needed to control exposure to HAV. A similar campaign can be recommended in the case of risks specific to certain occupations.

  9. Hand-arm vibration and terrain vehicles.

    PubMed

    Anttonen, H; Virokannas, H; Niskanen, J

    1995-01-01

    Hand-arm vibration was measured on the handlebars of terrain vehicles (N = 36) and a postal inquiry was made among N = 2705 reindeer herders (snowmobile drivers). Since many subjects had also used other vibrating tools the snowmobile group proper (N = 334) was established. In the whole group 19% of the subjects reported having experienced white finger attacks and 48% numbness of the hands. The frequency-weighted acceleration of snowmobile vibration was 3.5 m/s2, and risk evaluation using the ISO 5349 standard predicted the prevalence of white finger well in the snowmobile group proper. The vibration levels were 1.6-7.9 m/s2 on snowmobiles, 5.5-11.8 m/s2 on all-terrain vehicles and 6.9-12.7 m/s2 on terrain motorcycles. The most critical points for damping the vibration were the motor mounting and resonance in the steering yoke. There is need for health care, technical improvements, and other protection means to reduce the symptoms of vibration in driving terrain vehicles.

  10. Hand-arm vibration in tropical rain forestry workers.

    PubMed

    Futatsuka, M; Inaoka, T; Ohtsuka, R; Sakurai, T; Moji, K; Igarashi, T

    1995-01-01

    Working conditions and health hazards including vibration syndrome related to forestry work using chain-saws were studied in Papua New Guinea and Indonesia. The subjects comprised 291 workers including 97 chain-saw operators. The health examination consisted of peripheral circulatory and sensory tests in the upper extremities. The vibration spectrum measured at the handle of the chain-saw indicated that these acceleration levels would lead to a moderately high risk of hand-arm vibration syndrome (HAVS). The peripheral circulatory function tests revealed dysfunction after more than five years vibration exposure. However, in general, the results of the function tests and subjective complaints showed fewer health problems compared to those of Japanese forestry workers. The reason of such differences of vibration effects seem to be the following: (1) warmer climate (more than 25 degrees C throughout the year), (2) young workers and short work experience. (3) short time vibration exposures on working days in the natural forests, (4) seasonal changes in logging work (5) healthy workers effects. Thus, we found no clear evidence that the workers of our study suffered from HAVS. A principal component analysis was applied. The factor score of the components of the reactive dynamics of peripheral circulation differed significantly after more than five years' exposure. On the other hand, we cannot deny the possibility that subclinical dysfunction of peripheral circulation may be caused by chain-saw operation in the tropics in future. Further investigations on the HAVS among forestry workers in the tropic environment are needed.

  11. Hand arm vibration syndrome among quarry workers in Vietnam.

    PubMed

    Futatsuka, Makoto; Shono, Masahiro; Sakakibara, Hisataka; Quoc Quan, Pham

    2005-03-01

    Few studies have focused on the health effects of vibrating tools on workers in the tropical area. Work conditions and health effects related to rock drill operation were studied in 102 quarry workers, including 73 rock drill operators in Vietnam. We aimed to clarify (1) risk of vibration exposure, (2) occurrence of vibration-induced white finger (VWF), and (3) characteristics of hand-arm vibration syndrome (HAVS). Total weighted r.m.s. acceleration of the Chinese -or Russian-made rock drills, was 45-55 m/s(2). According to work observation studies, daily exposure time to vibration was 160-210 min. ISO5349 predicted that this exposure level would be associated with a high risk of HAVS in workers. We found no clear evidence of VWF. There may be several reasons why no worker exhibited VWF: (1) warmer work conditions, (2) younger and less experienced workers, (3) seasonal changes in work operations, and (4) healthy worker effect. On the other hand, 5-10% of rock drill operators might be suffering from moderate HAVS which was sensori-neural type dominant. There may be some characteristic features of HAVS among quarry workers in the tropical area.

  12. Review and Evaluation of Hand-Arm Coordinate Systems for Measuring Vibration Exposure, Biodynamic Responses, and Hand Forces.

    PubMed

    Dong, Ren G; Sinsel, Erik W; Welcome, Daniel E; Warren, Christopher; Xu, Xueyan S; McDowell, Thomas W; Wu, John Z

    2015-09-01

    The hand coordinate systems for measuring vibration exposures and biodynamic responses have been standardized, but they are not actually used in many studies. This contradicts the purpose of the standardization. The objectives of this study were to identify the major sources of this problem, and to help define or identify better coordinate systems for the standardization. This study systematically reviewed the principles and definition methods, and evaluated typical hand coordinate systems. This study confirms that, as accelerometers remain the major technology for vibration measurement, it is reasonable to standardize two types of coordinate systems: a tool-based basicentric (BC) system and an anatomically based biodynamic (BD) system. However, these coordinate systems are not well defined in the current standard. Definition of the standard BC system is confusing, and it can be interpreted differently; as a result, it has been inconsistently applied in various standards and studies. The standard hand BD system is defined using the orientation of the third metacarpal bone. It is neither convenient nor defined based on important biological or biodynamic features. This explains why it is rarely used in practice. To resolve these inconsistencies and deficiencies, we proposed a revised method for defining the realistic handle BC system and an alternative method for defining the hand BD system. A fingertip-based BD system for measuring the principal grip force is also proposed based on an important feature of the grip force confirmed in this study.

  13. Associations of work activities requiring pinch or hand grip or exposure to hand-arm vibration with finger and wrist osteoarthritis: a meta-analysis.

    PubMed

    Hammer, Paula E C; Shiri, Rahman; Kryger, Ann I; Kirkeskov, Lilli; Bonde, Jens Peter

    2014-03-01

    We systematically reviewed the epidemiologic evidence linking finger and wrist osteoarthritis (OA) with work activities requiring pinch or hand grip or exposure to hand-arm vibration (HAV). PubMed and Embase databases were searched up to June 2013. We selected studies assessing the associations of radiographic diagnosed finger and/or wrist joint OA with work activities involving pinch or hand grip or exposure to HAV. We used specific criteria to evaluate completeness of reporting, potential confounding, and bias. Pooled odds ratios (OR) were computed using random-effects meta-analyses. Of the 19 studies included, 17 were cross-sectional, 1 was a prospective cohort, and 1 a case-control study. The meta-analyses of studies that controlled their estimates for at least age and gender showed the associations of pinch grip work with proximal interphalangeal joint [OR 1.56, 95% confidence interval (95% CI) 1.09-2.23] and the first carpometacarpal joint OA (OR 2.10, 95% CI 1.06-4.17), but not with distal interphalangeal, metacarpalphalangeal, or wrist joints OA. Hand grip work and exposure to HAV were not associated with any finger or wrist OA. Epidemiological studies provide limited evidence that pinch grip may increase the risk of wrist or finger OA, but causal relation cannot be resolved because of cross-sectional designs and inadequate characterization of biomechanical strain to the hand and wrist.

  14. Hand-arm vibration syndrome in Swedish car mechanics

    PubMed Central

    Barregard, L; Ehrenstrom, L; Marcus, K

    2003-01-01

    Aims: To assess the occurrence of hand-arm vibration syndrome (HAVS) in Swedish car mechanics, and the relation between HAVS and duration of exposure. Methods: A total of 806 mechanics answered a questionnaire on vascular and neurological symptoms, and exposure to vibrations. Mechanics with symptoms, and some mechanics without symptoms, were invited to a clinical examination, including also a timed Allen test. Vascular and neurological symptoms were classified using the Stockholm Workshop scales. The mean daily exposure (mainly using nut-runners) was 14 minutes and the mean exposure duration, 12 years. Published data have shown vibration levels in nut-runners of about 3.5 m/s2. Results: In the questionnaire, 24% reported cold induced white finger (WF), 25% persistent numbness, and 13%, reduced grip force. The clinical examination showed a prevalence of vibration induced white finger (VWF) of about 15%, mainly in stage 2, and after 20 years, of 25%. A survival analysis showed similar results. We found that the International Organisation for Standardisation (ISO) model underestimates the risk of VWF. The incidence after 1975 was 19 cases per 1000 person-years. Slow refill times in the timed Allen test were common (15% had a refill time of >20 seconds), and associated with the presence of VWF. The clinical examination revealed neurological symptoms in the hands in about 25% of subjects, mainly at stage 2. After 20 years, the prevalence was 40%. The questionnaire items on WF and numbness both showed likelihood ratios of 13. Conclusion: HAVS is common among Swedish car mechanics in spite of short daily exposure times. This underlines the need for preventive measures. PMID:12660377

  15. Validity and inter-observer reliability of subjective hand-arm vibration assessments.

    PubMed

    Coenen, Pieter; Formanoy, Margriet; Douwes, Marjolein; Bosch, Tim; de Kraker, Heleen

    2014-07-01

    Exposure to mechanical vibrations at work (e.g., due to handling powered tools) is a potential occupational risk as it may cause upper extremity complaints. However, reliable and valid assessment methods for vibration exposure at work are lacking. Measuring hand-arm vibration objectively is often difficult and expensive, while often used information provided by manufacturers lacks detail. Therefore, a subjective hand-arm vibration assessment method was tested on validity and inter-observer reliability. In an experimental protocol, sixteen tasks handling powered tools were executed by two workers. Hand-arm vibration was assessed subjectively by 16 observers according to the proposed subjective assessment method. As a gold standard reference, hand-arm vibration was measured objectively using a vibration measurement device. Weighted κ's were calculated to assess validity, intra-class-correlation coefficients (ICCs) were calculated to assess inter-observer reliability. Inter-observer reliability of the subjective assessments depicting the agreement among observers can be expressed by an ICC of 0.708 (0.511-0.873). The validity of the subjective assessments as compared to the gold-standard reference can be expressed by a weighted κ of 0.535 (0.285-0.785). Besides, the percentage of exact agreement of the subjective assessment compared to the objective measurement was relatively low (i.e., 52% of all tasks). This study shows that subjectively assessed hand-arm vibrations are fairly reliable among observers and moderately valid. This assessment method is a first attempt to use subjective risk assessments of hand-arm vibration. Although, this assessment method can benefit from some future improvement, it can be of use in future studies and in field-based ergonomic assessments.

  16. Hand-transmitted vibration and biodynamic response of the human hand-arm: a critical review.

    PubMed

    Dong, R G; Rakheja, S; Schopper, A W; Han, B; Smutz, W P

    2001-01-01

    Hand-arm vibration syndrome (HAVS) has been associated with prolonged exposure to vibration transmitted to the human hand-arm system from hand-held power tools, vibrating machines, or hand-held vibrating workpieces. The biodynamic response of the human hand and arm to hand transmitted vibration (HTV) forms an essential basis for effective evaluations of exposures, vibration-attenuation mechanisms, and potential injury mechanisms. The biodynamic response to HTV and its relationship to HAVS are critically reviewed and discussed to highlight the advances and the need for further research. In view of its strong dependence on the nature of HTV and the lack of general agreement on the characteristics of HTV, the reported studies are first reviewed to enhance an understanding of HTV and related issues. The characteristics of HTV and relevant unresolved issues are discussed on the basis of measured data, proposed standards, and measurement methods, while the need for further developments in measurement systems is emphasized. The studies on biodynamic response and their findings are grouped into four categories based on the methodology used and the objective. These include studies on (1) through-the-hand-arm response, expressed in terms of vibration transmissibility; (2) to-the-hand response, expressed in terms of the force-motion relationship of the hand-arm system; (3) to-the-hand biodynamic response function, expressed in terms of vibration energy absorption; and (4) computer modeling of the biodynamic response characteristics.

  17. Vascular hand-arm vibration syndrome--magnetic resonance angiography.

    PubMed

    Poole, C J M; Cleveland, T J

    2016-01-01

    The diagnosis of vascular hand-arm vibration syndrome (HAVS) requires consistent symptoms, photographic evidence of digital blanching and sufficient exposure to hand-transmitted vibration (HTV; A(8) > 2.5 m/s2). There is no reliable quantitative investigation for distinguishing HAVS from other causes of Raynaud's phenomenon and from normal individuals. Hypothenar and thenar hammer syndromes produce similar symptoms to HAVS but are difficult to diagnose clinically and may be confused with HAVS. Magnetic resonance angiography (MRA) is a safe and minimally invasive method of visualizing blood vessels. Three cases of vascular HAVS are described in which MRA revealed occlusions of the ulnar, radial and superficial palmar arteries. It is proposed that HTV was the cause of these occlusions, rather than blows to the hand unrelated to vibration, the assumed mechanism for the hammer syndromes. All three cases were advised not to expose their hands to HTV despite one of them being at Stockholm vascular stage 2 (early). MRA should be the investigation of choice for stage 2 vascular HAVS or vascular HAVS with unusual features or for a suspected hammer syndrome. The technique is however technically challenging and best done in specialist centres in collaboration with an occupational physician familiar with the examination of HAVS cases. Staging for HAVS should be developed to include anatomical arterial abnormalities as well as symptoms and signs of blanching. Workers with only one artery supplying a hand, or with only one palmar arch, may be at increased risk of progression and therefore should not be exposed to HTV irrespective of their Stockholm stage.

  18. [The hand-arm vibration syndrome: (II). The diagnostic aspects and fitness criteria].

    PubMed

    Bovenzi, M

    1999-01-01

    Part II of this paper reviews the clinical and laboratory methods to diagnose the neurological, vascular and osteoarticular components of the hand-arm vibration syndrome. The prognosis and reversibility of vibration-induced neurological and vascular disorders after cessation of vibration exposure or the introduction of powered tools equipped with vibration isolation systems are discussed on the basis of the results of follow-up clinical investigations and longitudinal epidemiologic studies. Finally, the review debates some of the methodological aspects connected with the health surveillance of vibration-exposed workers and considers the possible medical contra-indications for prolonged exposure to hand-transmitted vibration.

  19. Reduction of the vibration of the hand-arm system by optimization of rotary hammer drills.

    PubMed

    Weinert, K; Gillmeister, F

    1996-02-01

    When operating a hand-held vibrating power tool, for example impact drills and rotary hammers, high vibration loads are introduced into the hand-arm system of the operator. In the long run these mechanical vibrations can lead to health problems of the hand-arm system. Hammer drilling tools for treatment of mineral materials are offered with many different designs of the cutting edge in the diameter range between 16 mm and 50 mm. In this research project the influences of the cutting edge design of drilling tools on the vibration characteristics of rotary hammers are investigated. The vibration exposure of the hand-arm system due to the tool and the volume of chip production are regarded. The gauge being a combination of the weighted acceleration and the drilling capacity. Based on the current spectrum of drillings tools neutral test have been developed to examine geometrical parameters. Both sets of drilling tools have been subjected to the same test programme. The analysis of the results led to the definition of the characteristics of an optimized rotary hammer drilling tool. Lists of criterions have been developed for the different groups of tools. Using these it is possible to create drilling tools optimized for vibration exposure. This was demonstrated by prototype drilling tools. The comparison of the results showed, that the averaged volume of chip production could be significantly improved by modifying the design of the drilling tools retaining the weighted acceleration. The comparison also showed that the total vibration severity parameter decreased.

  20. Hand-arm vibration disorder among grass-cutter workers in Malaysia.

    PubMed

    Azmir, Nor Azali; Ghazali, Mohd Imran; Yahya, Musli Nizam; Ali, Mohamad Hanafi

    2016-09-01

    Prolonged exposure to hand-transmitted vibration from grass-cutting machines has been associated with increasing occurrences of symptoms and signs of occupational diseases related to hand-arm vibration syndrome (HAVS). A cross-sectional study was carried out using an adopted HAVS questionnaire on hand-arm vibration exposure and symptoms distributed to 168 male workers from the grass and turf maintenance industry who use hand-held grass-cutting machines as part of their work. The prevalence ratio and symptom correlation to HAVS between high and low-moderate exposure risk groups were evaluated. There were positive HAVS symptoms relationships between the low-moderate exposure group and the high exposure group among hand-held grass-cutting workers. The prevalence ratio was considered high because there were indicators that fingers turned white and felt numb, 3.63, 95% CI [1.41, 9.39] and 4.24, 95% CI [2.18, 8.27], respectively. Less than 14.3% of workers stated that they were aware of the occupational hand-arm vibration, and it seemed to be related to the finger blanching and numbness. The results suggest that HAVS is under-diagnosed in Malaysia, especially in the agricultural sectors. More information related to safety and health awareness programmes for HAVS exposure is required among hand-held grass-cutting workers.

  1. Acute effects of shock-type vibration transmitted to the hand-arm system.

    PubMed

    Schäfer, N; Dupuis, H; Hartung, E

    1984-01-01

    The aim of the project was to find out whether shock-type vibration of hand-tools compared to non-impulsive vibration has stronger acute effects on the hand-arm system and therefore needs a stricter evaluation from the occupational health point of view in comparison with the requirements of the Draft International Standard ISO-DIS 5349. Under laboratory conditions, subjects were exposed to simulated vibration of hand-tools (grinder, chain saw, hammer-drill, pneumatic hammer, rivet hammer and nailer). The following evaluation criteria were used: biomechanical transmissibility of the hand-arm system (wrist, elbow joint, shoulder joint); muscle-activity (m. flexor carpi ulnaris, m. biceps, m. triceps); peripheral circulation (skin temperature) and subjective perception (comparison of intensity of standard and test vibrations). The results show no significant difference in acute effects on the hand-arm system between impulsive and non-impulsive type vibrations of the hand-tools tested with respect to the chosen vibration level, short-time exposure (up to 8 min) and evaluation criteria. In summary, therefore, it may be concluded that for the evaluation of shock-type vibration of the hand-tools tested, it is justified to use the existing Draft International Standard ISO-DIS 5349.

  2. Hand function in workers with hand-arm vibration syndrome.

    PubMed

    Cederlund, R; Isacsson, A; Lundborg, G

    1999-01-01

    Hand-arm vibration syndrome has been specially addressed in the Scandinavian countries in recent years, but the syndrome is still not sufficiently recognized in many countries. The object of this preliminary study was to describe the nature and character of vibration-induced impairment in the hands of exposed workers. Twenty symptomatic male workers (aged 28 to 65 years) subjected to vibration by hand-held tools were interviewed about subjective symptoms and activities of daily living and were assessed with a battery of objective tests for sensibility, dexterity, grip function, and grip strength. The test results were compared with normative data. The majority of patients complained of cold intolerance, numbness, pain, sensory impairment, and difficulties in handling manual tools and in handwriting. The various objective tests showed considerable variation in indications of pathologic outcome, revealing differences in sensitivity to detect impaired hand function. Semmes-Weinstein monofilament testing for perception of light touch-deep pressure sensation, the small-object shape identification test, and moving two-point discrimination testing for functional sensibility provided the most indications of pathologic outcomes. The authors conclude that vibration-exposed patients present considerable impairment in hand function.

  3. Acute effects of vibration from a chipping hammer and a grinder on the hand-arm system.

    PubMed Central

    Kihlberg, S; Attebrant, M; Gemne, G; Kjellberg, A

    1995-01-01

    OBJECTIVES--The purpose of this study was to compare various effects on the hand-arm system of vibration exposure from a chipping hammer and a grinder with the same frequency weighted acceleration. Grip and push forces were measured and monitored during the exposure. The various effects were: muscle activity (measured with surface electrodes), discomfort ratings for different parts of the hand-arm system (made during and after exposure), and vibration perception threshold (for 10 minutes before and 10 minutes after the exposure). RESULTS--No increase in muscle activity due to exposure to vibration was found in the hand muscle studied. In the forearm, conversely, there was an increase in both muscle studied. For the upper arm the muscle activity only increased when exposed to impact vibration. Subjective ratings in the hand and shift in vibration perception threshold were effected more by the grinder than the hammer exposure. CONCLUSION--These results show that the reaction of the hand-arm system to vibration varies with frequency quantitatively as well as qualitatively. They do not support the notion that one single frequency weighted curve would be valid for the different health effects of hand-arm vibration (vascular, musculoskeletal, neurological, and psychophysiological). PMID:8535492

  4. [Hand-arm vibration syndrome and upper limbs diseases in the forest workers of Italia meridionale].

    PubMed

    Fenga, C; Rapisarda, V; Valentino, M; Cacciola, A; Deboli, R; Calvo, A; Germanò, D

    2007-01-01

    Vibration exposure of the hand-arm system is associated with an increased risk of upper-limb vascular, neurological and musculoskeletal lesions, or hand-arm vibration syndrome (HAVS). The prevalence of occupational HAVS and upper-limb disorders was studied among 278 Forestry Service workers in Sicily and Calabria. Subjects who used chain-saws (18 weeks/year) had a greater prevalence of peripheral sensory-neural disturbances (28%), upper-limb musculoskeletal disorders (33%) and carpal tunnel syndrome (19%) compared with 260 manual workers from the same Corps not exposed to hand-transmitted vibration. Raynaud's phenomenon was comparable in exposed and control subjects (5.3% vs. 4.7%.) Upper-limb neuropathies were significantly associated with energy-equivalent frequency-weighted acceleration; exposure duration; and cumulative vibration dose (m2/s4h). The variable "years of work with vibrating tools" was strongly associated with peripheral neuropathies; carpal tunnel syndrome; and upper-limb musculotendinous syndromes. Data suggest that in Sicily and Calabria, where the climate is milder than in other areas of Italy, forestry work with hand-held vibrating tools does not entail a greater prevalence of peripheral vascular disorders (Raynaud's phenomenon), while the prevalence of occupational upper-limb neurological and musculoskeletal disorders, in which combined ergonomic and mechanical risk factors have a large pathogenic role, is significantly increased.

  5. An examination of the vibration transmissibility of the hand-arm system in three orthogonal directions

    PubMed Central

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.; Wu, John Z.

    2015-01-01

    The objective of this study is to enhance the understanding of the vibration transmission in the hand-arm system in three orthogonal directions (X, Y, and Z). For the first time, the transmitted vibrations distributed on the entire hand-arm system exposed in the three orthogonal directions via a 3-D vibration test system were measured using a 3-D laser vibrometer. Seven adult male subjects participated in the experiment. This study confirms that the vibration transmissibility generally decreased with the increase in distance from the hand and it varied with the vibration direction. Specifically, to the upper arm and shoulder, only moderate vibration transmission was measured in the test frequency range (16 to 500 Hz), and virtually no transmission was measured in the frequency range higher than 50 Hz. The resonance vibration on the forearm was primarily in the range of 16–30 Hz with the peak amplitude of approximately 1.5 times of the input vibration amplitude. The major resonance on the dorsal surfaces of the hand and wrist occurred at around 30–40 Hz and, in the Y direction, with peak amplitude of more than 2.5 times of the input amplitude. At higher than 50 Hz, vibration transmission was effectively limited to the hand and fingers. A major finger resonance was observed at around 100 Hz in the X and Y directions and around 200 Hz in the Z direction. In the fingers, the resonance magnitude in the Z direction was generally the lowest, and the resonance magnitude in the Y direction was generally the highest with the resonance amplitude of 3 times the input vibration, which was similar to the transmissibility at the wrist and hand dorsum. The implications of the results are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration could result in hand-arm vibration syndrome. While the syndrome's precise mechanisms remain unclear, the characterization of the vibration transmissibility of the system in the three orthogonal

  6. Establishment of one-axis vibration test system for measurement of biodynamic response of human hand-arm system.

    PubMed

    Shibata, Nobuyuki; Hosoya, Naoki; Maeda, Setsuo

    2008-12-01

    Prolonged exposure to hand-arm vibration (HAV) due to use of hand-held power tools leads to an increased occurrence of symptoms of disorders in the vascular, neurological, and osteo-articular systems of the upper limbs called hand-arm vibration syndrome (HAVS). Biodynamic responses of the hand-arm system to vibration can be suggestive parameters that give us better assessment of exposure to HAV and fundamental data for design of low-vibration-exposure power tools. Recently, a single axis hand-arm vibration system has been installed in the Japan National Institute of Occupational Safety and Health (NIOSH). The aims of this study were to obtain the fundamental dynamic characteristics of an instrumented handle and to validate the performance and measurement accuracy of the system applied to dynamic response measurement. A pseudo-random vibration signal with a frequency range of 5-1,250 Hz and a power spectrum density of 1.0 (m/s2)2/Hz was used in this study. First the dynamic response of the instrumented handle without any weight was measured. After this measurement, the dynamic response measurement of the handle with weights mounted on the handle was performed. The apparent mass of a weight itself was obtained by using the mass cancellation method. The mass of the measuring cap on the instrumented handle was well compensated by using the mass cancellation method. Based on the 10% error tolerance, this handle can reliably measure the dynamic response represented by an apparent mass with a minimum weight of 2.0 g in a frequency range of 10.0 to 1,000 Hz. A marked increase in the AM magnitude of the weights of 15 g and 20 g in frequency ranges greater than 800 Hz is attributed not to the fundamental resonance frequency of the handle with weights, but to the fixation of the weight to the measuring cap. In this aspect, the peak of the AM magnitude can be reduced and hence should not be an obstacle to the biodynamic response measurement of the human hand-arm system. On the

  7. A descriptive study of women injured by hand-arm vibration.

    PubMed

    Bylund, Sonya H; Burström, Lage; Knutsson, Anders

    2002-04-01

    The aim of this study was to describe the symptoms and the prognosis of vibration injuries in women. The investigation was based on a study of 374 women who had reported an injury due to hand-arm vibration to the Social Insurance Office or had received financial compensation from the Swedish Labor Market Insurance scheme during 1988-1997. Information on, for example, self-rated health symptoms and vibration exposure was collected by means of a questionnaire. On average, the first symptoms started after 7 yr of exposure and the first visit to a doctor took place after 11 yr. Neurological symptoms developed after a shorter period of exposure compared to vascular symptoms, 6.8 and 9.2 yr, respectively. The prevalence of numbness at the time of reporting the injury was 91% and the prevalence of white fingers was reported by 54%. The occupational group with the highest prevalence of vibration injuries was dental technicians. Two thirds of the women had stopped using vibrating machines in their work. Among the women who suffered from white fingers when they reported the injury, 50% declared impairment or no improvement of the symptoms. One woman in five was retired and the same number of women had retrained due to the occupational injury.

  8. Combined effects of noise and hand-arm vibration on auditory organ and peripheral circulation

    NASA Astrophysics Data System (ADS)

    Miyakita, T.; Miura, H.; Futatsuka, M.

    1991-12-01

    This paper first presents an overview of an epidemiological study on noise-induced hearing loss (NIHL) in relation to vibration-induced white finger (VWF). Secondly, the results obtained in a model experiment with a chain-saw under laboratory conditions are discussed from the viewpoints of elucidating the etiological mechanisms of VWF and NIHL. In the epidemiological study, in which 499 chain-saw workers were examined, chain-saw workers with VWF showed a significantly greater hearing loss at high frequencies than those without VWF. Next, an experimental study was designed to determine whether a combination of noise and vibration produced more pronounced changes in temporary shifts of finger skin temperature and temporary threshold shift (TTS) of hearing than those resulting from exposure to either stress alone. The results suggested that noise might play a part in inducing the constriction of the peripheral vessels seen with local exposure to vibration, and that hand-arm vibration may produce an additive effect on the noise-induced TTS. Furthermore, finger skin temperature and finger blood flow were measured simultaneously as indicators of peripheral circulatory movement for five healthy subjects. The relation between the synergistic action of noise and vibration and the participation of the sympathetic nervous system are also discussed.

  9. Tremor and hand-arm vibration syndrome (HAVS) in road maintenance workers.

    PubMed

    Bast-Pettersen, Rita; Ulvestad, Bente; Færden, Karl; Clemm, Thomas Aleksander C; Olsen, Raymond; Ellingsen, Dag Gunnar; Nordby, Karl-Christian

    2017-01-01

    The aim of this study was to evaluate postural and rest tremor among workers using vibrating hand tools, taking into account the possible effects of toxicants such as alcohol and tobacco. A further aim was to study workers diagnosed with hand-arm vibration syndrome (HAVS) at the time of examination. This study comprises 103 road maintenance workers, 55 exposed to vibrating hand tools (age 41.0 years; range 21-62) and 48 referents (age 38.5 years; range 19-64). They were examined with the CATSYS Tremor Pen(®). Exposure to vibrating tools and serum biomarkers of alcohol and tobacco consumption were measured. Cumulative exposure to vibrating tools was associated with increased postural (p < 0.01) and rest tremor (p < 0.05) and with a higher Center Frequency of postural tremor (p < 0.01) among smokers and users of smokeless tobacco. Rest tremor Center Frequency was higher than postural tremor frequency (p < 0.001). The main findings indicate an association between cumulative exposure to hand-held vibrating tools, tremor parameters and consumption of tobacco products. The hand position is important when testing for tremor. Rest tremor had a higher Center Frequency. Postural tremor was more strongly associated with exposure than rest tremor. The finding of increased tremor among the HAVS subjects indicated that tremor might be a part of the clinical picture of a HAVS diagnosis. As with all cross-sectional studies, inferences should be made with caution when drawing conclusions about associations between exposure and possible effects. Future research using longitudinal design is required to validate the findings of the present study.

  10. Symptoms of hand-arm vibration syndrome in gas distribution operatives

    PubMed Central

    Palmer, K.; Crane, G.; Inskip, H.

    1998-01-01

    OBJECTIVES: To survey the prevalence and severity of hand-arm vibration syndrome symptoms (HAVS), and to estimate past and current exposure to hand held vibrating tools in a sample of gas distribution operatives breaking and re-instating road surfaces. METHODS: 153 gas distribution operatives (participation rate 81%) from three company districts were assessed by an administered questionnaire, a clinical examination, and a simple cold challenge test to the hands. Exposure histories were taken aided by a picture album of past and current tools. Information was obtained from several sources on the likely vibratory characteristics of those tools. Estimates were thus obtained of the frequency of blanching and neurological complaints in operatives, and of their lifetime hours of exposure and lifetime dose of vibration. RESULTS: On average, the sample had spent 16 years in employment involving use of vibratory tools. 24% had symptoms or signs of blanching after use of tools in the industry; 46% had troublesome persistent complaints of paraesthesiae or numbness, and these symptoms extended into the hands or arms in 18% of workers. In 5.9% the distribution of symptoms was suggestive of carpal tunnel syndrome; and of ulnar nerve entrapment in a further 3.9%. The risks of blanching and neurological complaints rose significantly with lifetime hours of use of vibrating tools and lifetime dose of vibration. Symptoms were generally mild and apparent only after a prolonged interval, but there were exceptions, and cases had occurred after lower recent exposures. CONCLUSIONS: It has been suggested that aspects of the gas distribution operative's work mitigate against the risk normally anticipated from use of pneumatic road breaking tools. By contrast our data suggest that symptoms of HAVS do occur, given sufficient exposure, a finding relevant not only to gas supply workers, but also to workers from other industries who break and repair road surfaces.   PMID:9930095

  11. [Hand-arm vibration syndrome and upper limb disorders associated with forestry work].

    PubMed

    Bovenzi, M; Rui, Francesca; Versini, W; Tommasini, M; Nataletti, P

    2004-01-01

    Occupational exposure to hand-transmitted vibration in forestry workers is associated with an increased risk for vascular, neurological and musculo-skeletal disorders of the upper limbs. To carry out a cross-sectional study of the hand-arm vibration syndrome and soft-tissue disorders of the upper limb in a group of forestry workers employed in the Forestry Service of the Province of Trento (Italy). In the forestry worker group, usage of anti-vibration chain-saws was intermittent over a typical work year (16 weeks/yr, on average). To investigate vascular, neurological and musculo-skeletal disorders of the upper limbs, the forestry workers (n=159) and a control group of manual workers, unexposed to hand-transmitted vibration, employed in the same Forestry Service (n=146) underwent a structured medical interview and a complete physical examination. The clinical diagnoses of vibration-induced white finger (VWF) and carpal tunnel syndrome were made according to internationally recognised consensus criteria. Occupational exposure to hand-transmitted vibration was assessed according to the recommendations of the International Standard ISO 5349-1 (2001). The forestry workers showed an increased prevalence of peripheral sensory-neural disturbances (33.3%), musculo-skeletal disorders of the upper limbs (37.7%), and carpal tunnel syndrome (21.4%) compared to those observed in the control group. There was no significant difference in the prevalence ofRaynaud' sphenomenon between the forestry workers (6.3%) and the controls (4.1%). After adjustment for confounding factors (age, body mass index, tobacco and alcohol consumption), a significant association was observed between peripheral neuropathies (peripheral sensory-neural disorders, carpal tunnel syndrome) and several indices of vibration exposure such as 8-hr energy-equivalent frequency-weighted acceleration [A(8) in m/s2 r.m.s.], duration of exposure (years), and lifetime vibration dose (m2/s4 hr). An excess, although not

  12. A method for assessing the effectiveness of anti-vibration gloves using biodynamic responses of the hand arm system

    NASA Astrophysics Data System (ADS)

    Dong, R. G.; Rakheja, S.; McDowell, T. W.; Welcome, D. E.; Wu, J. Z.; Warren, C.; Barkley, J.; Washington, B.; Schopper, A. W.

    2005-04-01

    Anti-vibration gloves are widely used to help minimize hand-arm vibration exposure. In this study, an alternative method is proposed to assess the vibration isolation effectiveness of these gloves using the biodynamic responses of the bare- and gloved-hand-arm system exposed to vibration. The laboratory experiments were performed with a total of five human subjects using a typical anti-vibration air bladder glove subjected to a broad-band random vibration spectrum in conjunction with a specially designed instrumented handle. The measured data were analyzed to derive the biodynamic responses of the bare as well as gloved human hand-arm system in terms of the apparent mass and the mechanical impedance. The two biodynamic responses were applied to estimate the vibration isolation effectiveness of the glove. The validity of the proposed concept was examined by comparing the estimated vibration transmissibility magnitudes of the glove with those obtained using a palm adapter method. The comparison of the results suggests that the proposed method offers a good alternative for estimating glove vibration transmissibility. The measured data and the proposed method based upon the biodynamic responses were further used to investigate the effect of the palm adapter on the vibration transmissibility of the glove. The results suggest that the presence of the palm adapter between the subject's palm and the glove may not alter the basic trends in the transmissibility response, but it would affect the transmissibility magnitudes in the middle- and high-frequency ranges. A distinct advantage of the proposed method is that it eliminates the use of an adapter in assessing the vibration isolation effectiveness of the gloves.

  13. Postocclusive reactive hyperemia in hand-arm vibration syndrome.

    PubMed

    Stoyneva, Zlatka

    2016-01-01

    To assess laser Doppler-recorded postocclusive reactive hyperemic responses in vibration-induced Raynaud's phenomenon and compare it with primary and secondary to sclerodermy Raynaud's phenomenon. Thirty patients with vibration-induced Raynaud's phenomenon and 30 healthy controls and patients with primary and secondary to sclerodermy Raynaud's phenomenon were investigated. Fingerpulp skin blood flow was monitored by laser Doppler flowmetry during postocclusive reactive hyperemia test. Lower initial perfusion values were established in all the patients with Raynaud's phenomenon compared to the healthy controls (p < 0.0001). The postocclusive reactive hyperemic peak was lower in all the Raynaud's phenomenon groups compared to the controls (p < 0.0001). The postocclusive and basal perfusions were lower in the secondary Raynaud's phenomenon groups compared to the control and the primary Raynaud's phenomenon groups (p < 0.0001). The velocities to postocclusive hyperemic peak were lower in all the Raynaud's phenomenon patients (p < 0.0001), so were in the vibration-induced (p < 0.002) and the sclerodermy Raynaud's phenomenon (p < 0.004) groups in relation to the primary Raynaud's phenomenon group. The perfusion values and the velocities were significantly influenced by the initial superficial skin temperatures and perfusions, while the velocities were dependent also on gender, and the hyperemic peak on age. Postocclusive reactive hyperemia is abnormal in all Raynaud's phenomenon patients. Laser Doppler-recorded reactive hyperemia test contributes to diagnosing Raynaud's phenomenon and has proved to be valuable for group analysis. The applied method is not sensitive enough to discriminate adequately the type of Raynaud's phenomenon among individual cases. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  14. Nailfold capillary morphological characteristics of hand-arm vibration syndrome: a cross-sectional study

    PubMed Central

    Chen, QingSong; Chen, GuiPing; Xiao, Bin; Lin, HanSheng; Qu, HongYing; Zhang, DanYing; Shi, MaoGong; Lang, Li; Yang, Bei; Yan, MaoSheng

    2016-01-01

    Objective The purpose of this study was to investigate the characteristics of nailfold capillaroscopy associated with hand-arm vibration syndrome (HAVS). Methods In total, 113 male gold miners were recruited: 35 workers who were chronically exposed to vibration and developed vibration-induced white finger were defined as the HAVS group, 39 workers who were exposed to vibration but did not have HAVS were classified as the vibration-exposed controls (VEC) group, and 39 workers without vibration exposure were categorised as the non-VEC (NVEC) group. Video capillaroscopy was used to capture images of the 2nd, 3rd and 4th fingers of both hands. The following nailfold capillary characteristics were included: number of capillaries/mm, avascular areas, haemorrhages and enlarged capillaries. The experiments were carried out in the same winter. All characteristics were evaluated under blinded conditions. Results Significant differences in all morphological characteristics existed between the groups (p<0.05). Avascular areas in the HAVS, VEC and NVEC groups appeared in 74.3%, 43.6% and 25.0% of participants, respectively. A higher percentage of participants had haemorrhages in the HAVS group (65.7%) compared with the other groups (VEC: 7.7% and NVEC: 7.5%). The number of capillaries/mm, input limb width, output limb width, apical width, and ratio of output limb and input limb all had more than 70% sensitivity or specificity of their cut-off value. Conclusions Nailfold capillary characteristics, especially the number of capillaries/mm, avascular areas, haemorrhages, output limb width, input limb width and apical width alterations, revealed significant associations with HAVS. PMID:27888176

  15. Assessment of coarse and fine hand motor performance in asymptomatic subjects exposed to hand-arm vibration.

    PubMed

    Popević, Martin B; Janković, Srđan M; Borjanović, Srđan S; Jovičić, Slavica R; Tenjović, Lazar R; Milovanović, Aleksandar P S; Bulat, Petar

    2014-03-01

    A frequently encountered exposure profile for hand-arm vibration in contemporary occupational setting comprises workers with a long history of intermittent exposure but without detectable signs of hand-arm vibration syndrome (HAVS). Yet, most of the published studies deal with developed HAVS cases, rarely discussing the biological processes that may be involved in degradation of manual dexterity and grip strength when it can be most beneficial - during the asymptomatic stage. In the present paper, a group of 31 male asymptomatic vibration-exposed workers (according to the Stockholm Workshop Scale) were compared against 30 male controls. They were tested using dynamometry and dexterimetry (modelling coarse and fine manual performance respectively) and cold provocation was done to detect possible differences in manual performance drop on these tests. The results showed reduced manual dexterity but no significant degradation in hand grip strength in the exposed subjects. This suggests that intermittent exposure profile and small cumulative vibration dose could only lead to a measurable deficit in manual dexterity but not hand grip strength even at non-negligible A(8) levels and long term exposures.

  16. Evaluation of hand-arm and whole-body vibrations in construction and property management.

    PubMed

    Coggins, Marie A; Van Lente, Eric; McCallig, Margaret; Paddan, Gurmail; Moore, Ken

    2010-11-01

    To identify and measure the magnitude of hand-arm vibration (HAV) and whole-body vibration (WBV) sources (tools, vehicles etc.) in use within a previously unexamined sector: a construction and property management company. To evaluate the effect of factors such as age of tool, materials being worked on, number and location of tool handles, tool weight, and manufacturer brand on HAV magnitude and the effect of factors such as manufacturer machine brand, terrain, and work task on WBV magnitude. This study was carried out in a construction and property management company, employees (n = 469) working in the engineering services and maintenance departments who use vibrating equipment as part of their work were invited to participate. Two hundred and eighty-nine employees working as general operatives, excavator drivers, stone masons, carpenters, labourers, fitters, welders, and gardeners agreed to participate. A total of 20 types of hand tool (n = 264) and 11 types of vehicle (n = 158) in use within the company were selected for inclusion in the study. Five pieces of equipment had never previously been measured. Vibration measurements were carried out in accordance with ISO 5349-1 (Mechanical vibration-measurement and assessment of human exposure to hand transmitted vibration-Part 1: general guidance. 2001) (HAV) and ISO 2631-1 (Mechanical vibration and shock: evaluation of human exposure to WBV in the working environment. Part 1-general requirements. 1997) (WBV). Vibration measurements were made while workers were operating the equipment as part of their normal work activities. A wide range of vibration emission values were recorded for most tool types, e.g. orbital sanders (1.39-10.90 m s⁻²) and angle grinders (0.28-12.25 m s⁻²), and vehicle, e.g. forklifts (0.41-1.00 m s⁻²) and tractors (0.04-0.42 m s⁻²). Vibration magnitudes were largely consistent with those found in previous studies. The highest HAV magnitude was measured on a demolition hammer (13.3 m

  17. Dose-response relationship between hand-transmitted vibration and hand-arm vibration syndrome in a tropical environment.

    PubMed

    Su, Anselm Ting; Maeda, Setsuo; Fukumoto, Jin; Darus, Azlan; Hoe, Victor C W; Miyai, Nobuyuki; Isahak, Marzuki; Takemura, Shigeki; Bulgiba, Awang; Yoshimasu, Kouichi; Miyashita, Kazuhisa

    2013-07-01

    The dose-response relationship for hand-transmitted vibration has been investigated extensively in temperate environments. Since the clinical features of hand-arm vibration syndrome (HAVS) differ between the temperate and tropical environment, we conducted this study to investigate the dose-response relationship of HAVS in a tropical environment. A total of 173 male construction, forestry and automobile manufacturing plant workers in Malaysia were recruited into this study between August 2011 and 2012. The participants were interviewed for history of vibration exposure and HAVS symptoms, followed by hand functions evaluation and vibration measurement. Three types of vibration doses-lifetime vibration dose (LVD), total operating time (TOT) and cumulative exposure index (CEI)-were calculated and its log values were regressed against the symptoms of HAVS. The correlation between each vibration exposure dose and the hand function evaluation results was obtained. The adjusted prevalence ratio for finger tingling and numbness was 3.34 (95% CI 1.27 to 8.98) for subjects with lnLVD≥20 ln m(2) s(-4) against those <16 ln m(2) s(-4). Similar dose-response pattern was found for CEI but not for TOT. No subject reported white finger. The prevalence of finger coldness did not increase with any of the vibration doses. Vibrotactile perception thresholds correlated moderately with lnLVD and lnCEI. The dose-response relationship of HAVS in a tropical environment is valid for finger tingling and numbness. The LVD and CEI are more useful than TOT when evaluating the dose-response pattern of a heterogeneous group of vibratory tools workers.

  18. An examination of the vibration transmissibility of the hand-arm system in three orthogonal directions.

    PubMed

    Welcome, Daniel E; Dong, Ren G; Xu, Xueyan S; Warren, Christopher; McDowell, Thomas W; Wu, John Z

    2015-02-01

    The objective of this study is to enhance the understanding of the vibration transmission in the hand-arm system in three orthogonal directions (X, Y, and Z). For the first time, the transmitted vibrations distributed on the entire hand-arm system exposed in the three orthogonal directions via a 3-D vibration test system were measured using a 3-D laser vibrometer. Seven adult male subjects participated in the experiment. This study confirms that the vibration transmissibility generally decreased with the increase in distance from the hand and it varied with the vibration direction. Specifically, to the upper arm and shoulder, only moderate vibration transmission was measured in the test frequency range (16 to 500 Hz), and virtually no transmission was measured in the frequency range higher than 50 Hz. The resonance vibration on the forearm was primarily in the range of 16-30 Hz with the peak amplitude of approximately 1.5 times of the input vibration amplitude. The major resonance on the dorsal surfaces of the hand and wrist occurred at around 30-40 Hz and, in the Y direction, with peak amplitude of more than 2.5 times of the input amplitude. At higher than 50 Hz, vibration transmission was effectively limited to the hand and fingers. A major finger resonance was observed at around 100 Hz in the X and Y directions and around 200 Hz in the Z direction. In the fingers, the resonance magnitude in the Z direction was generally the lowest, and the resonance magnitude in the Y direction was generally the highest with the resonance amplitude of 3 times the input vibration, which was similar to the transmissibility at the wrist and hand dorsum. The implications of the results are discussed.

  19. An interpretative phenomenological analysis of the psychological ramifications of hand-arm vibration syndrome.

    PubMed

    Ayers, Beverley; Forshaw, Mark

    2010-05-01

    With a substantial number of individuals diagnosed with Hand-Arm Vibration Syndrome (HAVS) and the preponderance of research focused on the medical and paramedical issues, the psychological and mental health sequelae of HAVS are largely neglected within the published literature. A series of focus groups and interviews were conducted involving nine people who had been diagnosed with HAVS. Transcripts of these interviews were analysed using Interpretative Phenomenological Analysis. Four key themes were identified within the discourse of individuals affected by HAVS: machismo; coping; psychological impacts; and the development of support services for HAVS. Clinical implications are briefly discussed.

  20. The Temporary Threshold Shift of Vibratory Sensation Induced by Hand-Arm Vibration Composed of Four One-Third Octave Band Vibrations

    NASA Astrophysics Data System (ADS)

    Nishiyama, K.; Taoda, K.; Yamashita, H.; Watanabe, S.

    1997-03-01

    The aim of the present study was to define the multiple effect hand-arm vibration composed of four equally effective one-third octave band vibrations (63 Hz, 125 Hz, 250 Hz and 500 Hz) on the temporary threshold shift in vibratory sensation.Seven healthy subjects were exposed to vibration by grasping a vibrated handle in a soundproof thermo-regulated room. The vibratory sensation threshold at 125 Hz was measured before and after vibration exposure at an exposed fingertip. At first we determined each acceleration of the component one-third octave band vibrations for each subject. These should induce the same magnitude of temporary threshold shift in vibratory sensation immediately after the vibration exposure (TTSv.0as induced by the reference one-third octave band vibration (250 Hz, 4g). We measured TTSv.tfor the exposures of the composed vibrations and the four component vibrations. TTSv.0was determined for each exposure according to the exponential recovery model stated in the previous study.The TTSv.0induced by the composite vibration was not longer than that which might have been induced by each component vibration. This result confirms our previous speculation that the component of the vibration inducing the largest TTSv.0determines TTSv.0by broadband random vibration.

  1. Transcriptional Pathways Altered in Response to Vibration in a Model of Hand-Arm Vibration Syndrome.

    PubMed

    Waugh, Stacey; Kashon, Michael L; Li, Shengqiao; Miller, Gerome R; Johnson, Claud; Krajnak, Kristine

    2016-04-01

    The aim of this study was to use an established model of vibration-induced injury to assess frequency-dependent changes in transcript expression in skin, artery, and nerve tissues. Transcript expression in tissues from control and vibration-exposed rats (4 h/day for 10 days at 62.5, 125, or 250 Hz; 49 m/s, rms) was measured. Transcripts affected by vibration were used in bioinformatics analyses to identify molecular- and disease-related pathways associated with exposure to vibration. Analyses revealed that cancer-related pathways showed frequency-dependent changes in activation or inhibition. Most notably, the breast-related cancer-1 pathway was affected. Other pathways associated with breast cancer type 1 susceptibility protein related signaling, or associated with cancer and cell cycle/cell survivability were also affected. Occupational exposure to vibration may result in DNA damage and alterations in cell signaling pathways that have significant effects on cellular division.

  2. Transcriptional Pathways Altered in Response to Vibration in a Model of Hand-Arm Vibration Syndrome

    PubMed Central

    Waugh, Stacey; Kashon, Michael L.; Li, Shengqiao; Miller, Gerome R.; Johnson, Claud; Krajnak, Kristine

    2016-01-01

    Objective The aim of this study was to use an established model of vibration-induced injury to assess frequency-dependent changes in transcript expression in skin, artery, and nerve tissues. Methods Transcript expression in tissues from control and vibration-exposed rats (4 h/day for 10 days at 62.5, 125, or 250 Hz; 49 m/s2, rms) was measured. Transcripts affected by vibration were used in bioinformatics analyses to identify molecular- and disease-related pathways associated with exposure to vibration. Results Analyses revealed that cancer-related pathways showed frequency-dependent changes in activation or inhibition. Most notably, the breast-related cancer-1 pathway was affected. Other pathways associated with breast cancer type 1 susceptibility protein related signaling, or associated with cancer and cell cycle/cell survivability were also affected. Conclusion Occupational exposure to vibration may result in DNA damage and alterations in cell signaling pathways that have significant effects on cellular division. PMID:27058473

  3. Hand-arm vibration syndrome: clinical characteristics, conventional electrophysiology and quantitative sensory testing.

    PubMed

    Rolke, Roman; Rolke, Silke; Vogt, Thomas; Birklein, Frank; Geber, Christian; Treede, Rolf-Detlef; Letzel, Stephan; Voelter-Mahlknecht, Susanne

    2013-08-01

    Workers exposed to vibrating tools may develop hand-arm vibration syndrome (HAVS). We assessed the somatosensory phenotype using quantitative sensory testing (QST) in comparison to electrophysiology to characterize (1) the most sensitive QST parameter for detecting sensory loss, (2) the correlation of QST and electrophysiology, and (3) the frequency of a carpal tunnel syndrome (CTS) in HAVS. QST, cold provocation tests, fine motor skills, and median nerve neurography were used. QST included thermal and mechanical detection and pain thresholds. Thirty-two patients were examined (54 ± 11 years, 91% men) at the more affected hand compared to 16 matched controls. Vibration detection threshold was the most sensitive parameter to detect sensory loss that was more pronounced in the sensitivity range of Pacinian (150 Hz, x12) than Meissner's corpuscles (20 Hz, x3). QST (84% abnormal) was more sensitive to detect neural dysfunction than conventional electrophysiology (37% abnormal). Motor (34%) and sensory neurography (25%) were abnormal in HAVS. CTS frequency was not increased (9.4%). Findings are consistent with a mechanically-induced, distally pronounced motor and sensory neuropathy independent of CTS. HAVS involves a neuropathy predominantly affecting large fibers with a sensory damage related to resonance frequencies of vibrating tools. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Carpal tunnel syndrome in association with hand-arm vibration syndrome: a review of claimants seeking compensation in the Mining Industry.

    PubMed

    Burke, F D; Lawson, I J; McGeoch, K L; Miles, J N V; Proud, G

    2005-05-01

    Twenty six thousand eight hundred and forty-two miners seeking compensation were clinically assessed for vascular and neurosensory impairment arising from exposure to occupational hand-arm vibration (Hand-Arm Vibration Syndrome). They were also assessed clinically for Carpal Tunnel Syndrome which, if present, would result in additional compensation. Fifteen per cent were assessed as having both HAVS and CTS. Thirty-eight per cent of claimants had nocturnal wakening, 1.3% wasting of abductor pollicis brevis, 15% had a positive Tinel's test and 20% had a positive Phalen's test. The 15% prevalence reported is lower than the rates cited previously in several small population studies of workers exposed to vibration. This paper reports the results of the assessment process and discusses the difficulty of discriminating Carpal Tunnel Syndrome from diffuse neurosensory impairment arising from HAVS.

  5. Incidence and Predictors of Hand-Arm Musculoskeletal Complaints among Vibration-exposed African Cassava and Corn Millers.

    PubMed

    Mbutshu, Lukuke Hendrick; Malonga, Kaj Francoise; Ngatu, Nlandu Roger; Kanbara, Sakiko; Longo-Mbenza, Benjamin; Suganuma, Narufumi

    2014-09-01

    Cassava and corn milling is a growing small-scale enterprise in Africa. We aimed to determine the incidence of hand-arm musculoskeletal complaints among vibration-exposed Congolese cassava and corn millers in the previous 12 months. A cross-sectional study was conducted, prior to a follow-up study, from March to May 2013 among cassava/corn millers in Lubumbashi, Democratic Republic of Congo, in which 365 millers age-matched to 365 civil workers anonymously answered a questionnaire. Overall incidence of hand-arm musculoskeletal complaints was 25.8% in millers (vs. 5.2% in civil workers; p < 0.001). The risk of experiencing musculoskeletal symptoms was seven times higher in millers [vs. civil workers; odds ratio (OR) = 7.10; 95% confidence interval (CI): 4.03-12.50; p < 0.0001]; 2.4 times higher in smoking millers (vs. smoking civil office workers; OR = 2.36; 95% CI: 1.42-3.88; p < 0.001); 3.6 times higher in millers with longer daily exposure (> 8 hours; vs. those working ≤ 8 hours; OR = 3.56; 95% CI: 1.93-3.61; p = 0.026); and 7.4 times higher in young millers (vs. older millers, OR = 7.39; 95% CI: 1.29-75.52; p < 0.001). Smoking, number of cigarettes, and daily exposure duration were positively correlated with musculoskeletal complaints. This study revealed a relatively high incidence of musculoskeletal complaints among African cassava and corn millers. The use of anti-vibration protective equipment and the regulation of this hazardous occupation may reduce the burden of musculoskeletal disorders in millers.

  6. A Cross Sectional Study on Hand-arm Vibration Syndrome among a Group of Tree Fellers in a Tropical Environment

    PubMed Central

    SU, Anselm Ting; MAEDA, Setsuo; FUKUMOTO, Jin; MIYAI, Nobuyuki; ISAHAK, Marzuki; YOSHIOKA, Atsushi; NAKAJIMA, Ryuichi; BULGIBA, Awang; MIYASHITA, Kazuhisa

    2014-01-01

    This study aimed to explore the clinical characteristics of hand arm vibration syndrome (HAVS) in a group of tree fellers in a tropical environment. We examined all tree fellers and selected control subjects in a logging camp of central Sarawak for vibration exposure and presence of HAVS symptoms utilizing vibrotactile perception threshold test (VPT) and cold water provocation test (CWP). None of the subjects reported white finger. The tree fellers reported significantly higher prevalence of finger coldness as compared to the control subjects (OR=10.32, 95%CI=1.21–87.94). A lower finger skin temperature, longer fingernail capillary return time and higher VPT were observed among the tree fellers as compared to the control subjects in all fingers (effect size >0.5). The VPT following CWP of the tree fellers was significantly higher (repeated measures ANOVA p=0.002, partial η2=0.196) than the control subject. The A (8) level was associated with finger tingling, numbness and dullness (effect size=0.983) and finger coldness (effect size=0.524) among the tree fellers. Finger coldness and finger tingling, numbness and dullness are important symptoms for HAVS in tropical environment that may indicate vascular and neurological damage due to hand-transmitted vibration exposure. PMID:24739764

  7. A cross sectional study on hand-arm vibration syndrome among a group of tree fellers in a tropical environment.

    PubMed

    Su, Anselm Ting; Maeda, Setsuo; Fukumoto, Jin; Miyai, Nobuyuki; Isahak, Marzuki; Yoshioka, Atsushi; Nakajima, Ryuichi; Bulgiba, Awang; Miyashita, Kazuhisa

    2014-01-01

    This study aimed to explore the clinical characteristics of hand arm vibration syndrome (HAVS) in a group of tree fellers in a tropical environment. We examined all tree fellers and selected control subjects in a logging camp of central Sarawak for vibration exposure and presence of HAVS symptoms utilizing vibrotactile perception threshold test (VPT) and cold water provocation test (CWP). None of the subjects reported white finger. The tree fellers reported significantly higher prevalence of finger coldness as compared to the control subjects (OR=10.32, 95%CI=1.21-87.94). A lower finger skin temperature, longer fingernail capillary return time and higher VPT were observed among the tree fellers as compared to the control subjects in all fingers (effect size >0.5). The VPT following CWP of the tree fellers was significantly higher (repeated measures ANOVA p=0.002, partial η(2)=0.196) than the control subject. The A (8) level was associated with finger tingling, numbness and dullness (effect size=0.983) and finger coldness (effect size=0.524) among the tree fellers. Finger coldness and finger tingling, numbness and dullness are important symptoms for HAVS in tropical environment that may indicate vascular and neurological damage due to hand-transmitted vibration exposure.

  8. Cross sectional study of a workforce exposed to hand-arm vibration: with objective tests and the Stockholm workshop scales

    PubMed Central

    McGeoch, K.; Gilmour, W

    2000-01-01

    component while years of tool use and trade were the variables most associated with vascular damage. (3) The prevalence of neurological symptoms (62%) was greater than the prevalence of vascular symptoms (33%). (4) Dressers and welders have shorter latent periods than platers and fitters.


Keywords: hand-arm vibration syndrome; neurological objective tests PMID:10711267

  9. Methods for deriving a representative biodynamic response of the hand-arm system to vibration

    NASA Astrophysics Data System (ADS)

    Dong, Ren G.; Welcome, Daniel E.; McDowell, Thomas W.; Wu, John Z.

    2009-09-01

    Vibration-induced biodynamic responses (BR) of the human hand-arm system measured with subjects participating in an experiment are usually arithmetically averaged and used to represent their mean response. The mean BR data reported from different studies are further arithmetically averaged to form the reference mean response for standardization and other applications. The objectives of this study are to clarify whether such a response-based averaging process could significantly misrepresent the characteristics of the original responses, and to identify an appropriate derivation method. The arithmetically averaged response was directly compared with the response derived from a property-based method proposed in this study. Two sets of reported mechanical impedance data measured at the fingers and the palms of the hands were used to derive the models required for the comparison. This study found that the response-based arithmetic averaging could generate some systematic errors. The range of the subjects' natural frequencies in each resonance mode, the mode damping ratio, and the number of subjects participating in the experiment are among the major factors influencing the level of the errors. An effective and practical approach for reducing the potential for error is to increase the number of subjects in the BR measurement. On the other hand, the property-based derivation method can be generally used to obtain the representative response, but it is less efficient than the response-based derivation method.

  10. An improved biomechanical model for simulating the strain of the hand-arm system under vibration stress.

    PubMed

    Fritz, M

    1991-01-01

    In order to define relationships between the vibration stress and the strain of the human hand-arm system a biomechanical model was developed. The four masses of the model representing the hand, the forearm and the upper arm were connected by dampers and springs in two perpendicular directions. Simulating muscle activity, damped torsion springs were included additionally. The motions of the model were described by a differential matrix equation which was solved by using a 'transfer matrix routine' as well as by numerical integration. Thus, functions with harmonic or transient time courses could be selected as an excitation. The simulated vibrations were compared with those of other hand-arm models. The forces and torques transmitted between the masses, and the energy dissipated by the dampers were computed for several combinations of exciter frequencies and accelerations. The dependence of torques upon excitation agreed fairly well with the behaviour of the arm muscles under vibration as described by various investigators. At frequencies above 100 Hz the energy was dissipated mainly by the dampers between the masses near to the exciter. Transferring this result to the hand-arm system it shows that at high frequencies energy is dissipated by the hand and its palmar tissues and this might be one cause for the incidence of vibration-induced white finger disease.

  11. Different conditions of cold water immersion test for diagnosing hand-arm vibration syndrome.

    PubMed

    Laskar, S; Harada, Noriaki

    2005-11-01

    The cold water immersion test with finger skin temperature (FST) measurement is used to assess vascular disorders in hand-arm vibration syndrome (HAVS). The test method is currently being standardized within the International Organization for Standardization (ISO) in which a water temperature of 12°C for 5 min of hand immersion and an option of using a waterproof hand covering during immersion are proposed. It is necessary to evaluate the diagnostic significance of the test with FST measurement under different conditions to provide a proper management of HAVS patients. The aim of this article is to review research findings of this test with FST measurement and discuss test conditions influencing the results and diagnostic significance.Different conditions were employed, and the test results were shown to be influenced by water temperature, immersion time and other conditions such as room temperature, season, ischemia during immersion, and evaluation parameters. These factors need to be considered in the standardization of the cold water immersion test with FST measurement. It has been mentioned that a high water temperature, a short immersion time and other conditions should be chosen to expose a subject to minimal suffering during the test. A water temperature between 10°C and 15°C and a 5 min immersion might be suitable for the cold water immersion test. The reported sensitivity and specificity evaluating rewarming to the initial temperature for the test using a water temperature of 12°C and a 3 min immersion are 58% and 100%, respectively; these are low but similar to those for tlie water immersion test at 10°C. Therefore, the proposed cold water immersion test at 12°C for 5 min by the ISO (Draft International Standard) is the focus of much interest, and further studies are needed to obtain sufficient data for evaluating the diagnostic significance of the test. At present, the test needs to be used together with a test battery.

  12. [The risk of vibrations to the hand-arm system and cumulative trauma disorders in shoe manufacturing: a clinical case report].

    PubMed

    Delbianco, M; Olivetti, G; De Donato, S R; Ricciotti, M; Campana, A

    1993-01-01

    The article reports the case of a woman working in a shoe factory who had been using vibrating tools for 5 years. Because of paresthesia in her left hand, in 1989 she underwent various diagnostic trials that revealed an initial carpal tunnel syndrome of the left wrist and a homolateral epicondylitis. Measurement of the vibrations transmitted to the hand from the vibrating tool confirmed the probability of a high risk of exposure for the hand-arm system. Such adverse effects have been described by British authors as "cumulative trauma disorders" and were confirmed in this study. The importance of further studies aimed at estimating the type and degree of exposure to vibrations in shoe manufacturing workers is stressed.

  13. The sensitivity and specificity of thermometry and plethysmography in the assessment of hand-arm vibration syndrome.

    PubMed

    Thompson, Aaron; House, Ron; Manno, Michael

    2008-05-01

    Finger plethysmography and thermometry are objective measures used to assess the vascular aspect of hand-arm vibration syndrome (HAVS). Research to date shows poor correlation between these tests and Stockholm Workshop Scale (SWS) vascular stage. Clinicians, researchers and compensation boards require objective means to diagnose and quantify HAVS. To define the specificity and sensitivity of thermometry and plethysmography using the SWS as the reference criterion. A secondary goal was to consider cut points for the tests optimizing sensitivity and specificity. A cross-sectional analysis was conducted on HAVS patients seen at an occupational medicine specialty clinic. Plethysmography and thermometry were analyzed using SWS vascular stage as the outcome variable. Logistic regression controlled for age, smoking and time since last vibration exposure and use of vasoactive medications. The sensitivity and specificity of the combined tests were calculated using varying cut points. A total of 139 patients consented to participate in the study. Plethysmography stage 1 or greater showed the highest sensitivity (sensitivity 94% and specificity 15%). Specificity was optimized combining plethysmography stage 3 and thermometry stage 3 (specificity 98% and sensitivity 23%). Maximal diagnostic accuracy was achieved by plethysmography alone setting the criteria for a positive test as being stage 1 or greater (70%). Neither plethysmography nor thermometry either alone or in combination demonstrated sufficient sensitivity and specificity to serve as an objective correlate for SWS vascular stage. All combinations of plethysmography and thermometry showed a lower specificity than sensitivity indicating that the SWS may be less sensitive in detecting vascular pathology than the objective tests.

  14. Hand-arm vibration and the risk of vascular and neurological diseases—A systematic review and meta-analysis

    PubMed Central

    Wahlström, Jens; Burström, Lage

    2017-01-01

    Background Increased occurrence of Raynaud’s phenomenon, neurosensory injury and carpal tunnel syndrome has been reported for more than 100 years in association with work with vibrating machines. The current risk prediction modelling (ISO-5349) for “Raynaud’s phenomenon” is based on a few studies published 70 to 40 years ago. There are no corresponding risk prediction models for neurosensory injury or carpal tunnel syndrome, nor any systematic reviews comprising a statistical synthesis (meta-analysis) of the evidence. Objectives Our aim was to provide a systematic review of the literature on the association between Raynaud’s phenomenon, neurosensory injuries and carpal tunnel syndrome and hand-arm vibration (HAV) exposure. Moreover the aim was to estimate the magnitude of such an association using meta-analysis. Methods This systematic review covers the scientific literature up to January 2016. The databases used for the literature search were PubMed and Science Direct. We found a total of 4,335 abstracts, which were read and whose validity was assessed according to pre-established criteria. 294 articles were examined in their entirety to determine whether each article met the inclusion criteria. The possible risk of bias was assessed for each article. 52 articles finally met the pre-established criteria for inclusion in the systematic review. Results The results show that workers who are exposed to HAV have an increased risk of vascular and neurological diseases compared to non-vibration exposed groups. The crude estimate of the risk increase is approximately 4–5 fold. The estimated effect size (odds ratio) is 6.9 for the studies of Raynaud’s phenomenon when including only the studies judged to have a low risk of bias. The corresponding risk of neurosensory injury is 7.4 and the equivalent of carpal tunnel syndrome is 2.9. Conclusion At equal exposures, neurosensory injury occurs with a 3-time factor shorter latency than Raynaud’s phenomenon. Which

  15. Hand-arm vibration syndrome among travertine workers: a follow up study.

    PubMed

    Bovenzi, M; Franzinelli, A; Scattoni, L; Vannuccini, L

    1994-06-01

    In a six year follow up study of the handarm vibration syndrome, 62 stoneworkers operating hand held vibrating tools in 10 travertine quarries and mills were first investigated in 1985 and then in 1991. The frequency weighted acceleration of vibration from the rock drills and stone hammers used by the travertine workers exceeded 20 m/s2, indicating a hazardous work activity according to the proposal of the EC directive for physical agents. A clinical examination and a cold provocation test were repeated with the same procedures as those adopted at the time of the first survey. The stoneworkers were divided into groups according to current work state: active stoneworkers who continued to use powered tools during the follow up (n = 21, median exposure time 22 years), and ex-stoneworkers with retirement vibration free intervals of three years (n = 22, median exposure time 27.5 years) and of six years (n = 19, median exposure time 20 years). In the group of active stoneworkers, a 38% onset a new cases of vibration-induced white finger (VWF) was found during the follow up (p < 0.01). Among the retired stoneworkers affected with VWF (n = 24), one recovered from VWF, one showed improvement, 20 remained stationary, and two deteriorated. The ex-stoneworkers experienced no significant change in sensorineural disturbances and a decrease in musculoskeletal symptoms of the upper limbs. At the cold provocation test, the currently active stoneworkers with VWF showed, on a group basis, a delayed finger rewarming time between the two examinations (p = 0.002). An abnormal response to cold provocation persisted in the fingers of the ex-stoneworkers with VWF, even in those reporting subjective improvement. These findings indicate a tendency towards the irreversibility of sensorineural and VWF symptoms in a group of ex-stoneworkers with prolonged exposure to high vibration levels in the past. The increased occurrence of VWF in the active stone workers after a few extra years of

  16. Hand-arm vibration in the aetiology of hearing loss in lumberjacks.

    PubMed Central

    Pyykkö, I; Starck, J; Färkkilä, M; Hoikkala, M; Korhonen, O; Nurminen, M

    1981-01-01

    A longitudinal study of hearing loss was conducted among a group of lumberjacks in the years 1972 and 1974--8. The number of subjects increased from 72 in 1972 to 203 in 1978. They were classified according to (1) a history of vibration-induced white finger (VWF), (2) age, (3) duration of exposure, an (4) duration of ear muff usage. The hearing level at 4000 Hz was used to indicate the noise-induced permanent threshold shift (NIPTS). The lumberjacks were exposed, at their present pace of work, to noise, Leq values 96-103 dB(A), and to the vibration of a chain saw (linear acceleration 30-70 ms-2). The chain saws of the early 1960s were more hazardous, with the average noise level of 111 dB(A) and a variation acceleration of 60-180 ms-2. When classified on the basis of age, the lumberjacks with VWF had about a 10 dB greater NIPTS than subjects without VWF. NIPTS increased with the duration of exposure to chain saw noise, but with equal noise exposure the NIPTS was about 10 dB greater in lumberjacks with VWF than without VWF. With the same duration of ear protection the lumberjacks with VWF consistently had about a 10 dB greater NIPTS than those without VWF. The differences in NIPTS were statistically significant. The possible reason for more advanced NIPTS in subjects with VWF is that vibration might operate in both of these disorders through a common mechanism--that is, producing a vasoconstriction in both cochlear and digital blood vessels as a result of sympathetic nervous system activity. PMID:7272242

  17. Current perception threshold for assessment of the neurological components of hand-arm vibration syndrome: a review.

    PubMed

    Kurozawa, Youichi; Hosoda, Takenobu; Nasu, Yoshiro

    2010-09-01

    Current perception threshold (CPT) has been proposed as a quantitative method for assessment of peripheral sensory nerve function. The aim of this review of selected reports is to provide an overview of CPT measurement for the assessment of the neurological component of hand-arm vibration syndrome (HAVS). The CPT values at 2000 Hz significantly increased for patients with HAVS. This result supports the previous histological findings that demyelination is found predominantly in the peripheral nerves in the hands of men exposed to hand-arm vibration. Diagnostic sensitivity and specificity were high for severe cases of Stockholm sensorineural (SSN) stage 3 compared with non-exposed controls, but not high for mild cases of SSN stage 1 or 2 and for carpal tunnel syndrome associated with HAVS. However, there are only a few studies on the diagnostic validity of the CPT test for the neurological components of HAVS. Further research is needed and should include diagnostic validity and standardizing of measurement conditions such as skin temperature.

  18. Hand-arm vibration syndrome (HAVS) and musculoskeletal symptoms in the neck and the upper limbs in professional drivers of terrain vehicles--a cross sectional study.

    PubMed

    Aström, Charlotte; Rehn, Börje; Lundström, Ronnie; Nilsson, Tohr; Burström, Lage; Sundelin, Gunnevi

    2006-11-01

    This study compares the prevalence of symptoms of Hand-arm vibration syndrome (HAVS) and musculoskeletal symptoms in the neck and the upper limbs, between professional drivers of terrain vehicles and a referent group. 769 male professional drivers of forest machines, snowmobiles, snowgroomers and reindeer herders and 296 randomly selected male referents completed a questionnaire about symptoms of HAVS and musculoskeletal symptoms in the neck and the upper limbs. They also gave information about their lifetime exposure duration driving terrain vehicles and their nicotine use. Prevalence odds ratios (POR) were determined and adjusted for age and nicotine use. Results show that there is a relation between exposure to driving terrain vehicles and some of the symptoms of HAVS (POR: 1.2-6.1). Increased odds of musculoskeletal symptoms in neck, shoulders and wrists were also found (POR 1.2-6.4), and it seemed to be related to the cumulative exposure time.

  19. Research into hand-arm vibration syndrome and its prevention in Japan.

    PubMed

    Yamada, S; Sakakibara, H

    1994-05-01

    Research on vibration syndrome in Japan began in the 1930s with studies of the disorder among railway, mining and shipyard workers. In 1947, the Ministry of Labor decided vibration syndrome among operators of rock drills and riveters etc. was an occupational disease. Industrial developments in the 1950s and 1960s promoted the survey of vibration syndrome in mining, stone quarrying and forestry. The Ministry of Labor (1965) and the National Personnel Agency (1966) legally recognized vibration syndrome among chain saw operators as an occupational disease. Guidelines for prevention and early therapy were issued in the 1970s and 80s. From the late 1970s into the 1980s, research focused on the clinical picture, diagnostic methods and therapy. In pathophysiology, advances were made in research into the autonomic nervous system during the 1980s. The 1970s and 80s saw a steady reduction in risk from technological change and working conditions, and advances in medical care, education and meteorological forecasting. A comprehensive prevention system established in the 1980s in the Japanese forest industry involved: 1) work restrictions, 2) an improved health care system, 3) advances in the design of vibrating tools, handle-warming devices, and 4) improved worker education. This comprehensive preventive system was legally introduced into other industries, resulting in a rapid decrease in the incidence of vibration syndrome in Japan.

  20. Review of different quantification methods for the diagnosis of digital vascular abnormalities in hand-arm vibration syndrome.

    PubMed

    Mahbub, Mh; Harada, Noriaki

    2011-01-01

    This study was undertaken to review the diagnostic ability of different quantification methods in the assessment of vibration-induced white finger (VWF), the typical clinical manifestation of vascular injuries in Hand-arm Vibration Syndrome (HAVS). A literature search of original and major review articles related to the quantification techniques for diagnosing vascular injuries in HAVS was performed. Relevant data from the publications were extracted and included in this study for reporting and discussion. Few studies were available to substantiate the diagnostic techniques using the nail press test and nailfold capillaroscopy. Also, few studies were found to conclusively demonstrate the diagnostic ability using thermometry and thermography incorporated with cold provocation. Some recent reports raised the question regarding the diagnostic ability of finger plethysmography; but by virtue of its comparable assessment parameters and better diagnostic performance, plethysmography appears to be a suitable diagnostic method. In noninvasive quantification of vascular injuries, diagnostic techniques like laser Doppler perfusion imaging and nailfold capillaroscopy require further evaluation in future studies. For a reliable objective diagnosis of VWF at present, quantification of vascular responses using a test battery including established methods like thermometry or thermography and strain gauge plethysmography appears to be useful.

  1. The use of hand perfusion scintigraphy to assess Raynaud's phenomenon associated with hand-arm vibration syndrome.

    PubMed

    Lee, Kyung-Ann; Chung, Hyung Woo; Lee, Sang-Heon; Kim, Hae-Rim

    2017-06-30

    This study aimed to evaluate the hand perfusion scintigraphic features of hand-arm vibration syndrome (HAVS) and to compare these with the features of primary and secondary Raynaud's phenomenon (RP) associated with systemic sclerosis (SSc). Hand perfusion scintigraphy was performed in 57 patients with primary RP, 71 patients with HAVS-related RP, and 15 patients with SSc-related RP. We calculated 6 ratios: chilled to ambient hand and wrist ratios of the first peak height, initial slope, and blood pool uptake. We analysed 3 morphologic characteristics: slow progress pattern, paradoxically increased uptake pattern, and inhomogeneous radioactivity uptake. All of the 71 patients with HAVS-related RP were mine workers. The chilled to ambient hand ratios of the first peak height, the initial slope, and the blood pool uptake were significantly lower in patients with HAVS-related occupational RP than in patients with primary RP. The presence of a paradoxically increased uptake pattern was significantly lower in HAVS than in primary RP. There were significant differences in hand perfusion scintigraphic features between primary RP and HAVS. These results suggest that the underlying pathophysiology of the two diseases differs.

  2. [Study on the effects of walking on functional fitness in aged patients with the hand-arm vibration syndrome].

    PubMed

    Kurosawa, Y; Kato, T; Hosoda, T; Morita, H; Ohshiro, H; Nose, T

    2001-11-01

    This article reports the effectiveness of mild walking exercise for maintaining functional fitness in aged patients with the hand-arm vibration syndrome (HAVS). Fifty-two patients suffering from vibration syndrome, for which they received annual compulsory examination from December 1998 to March 1999 at the San-in Rosai Hospital, were examined. They all were male, with a mean age (standard deviation) of 69.1 (7.3) years, and were randomly allocated to an intervention group (N = 26) and a control group (N = 26). The goal of the intervention was to achieve and maintain at least 30 minutes of walking a day. Functional fitness was assessed by a sitting and standing test, a zigzag walking test, a hand working test with a pegboard for dexterity, and a self-care working test proposed by the Physical Fitness Research Institute, Meiji Life Foundation of Health and Welfare. There were no significant differences between the two groups regarding baseline characteristics. The proportions of subjects with regular exercise habits after the intervention were 84.6% (22/26) and 53.8% (14/26) in the intervention and control groups, respectively, the difference being significant. The total scores for functional fitness were improved in the intervention, while decline was noted in the control group. Sitting and standing and self-care working ability were also improved in the intervention group as against the deterioration with age in the control group. Our findings show to some extent that intervention using mild exercise, walking for 30 min, is effective for aged patients with HAVS to maintain and improve functional fitness.

  3. Impaired nerve conduction in the carpal tunnel of platers and truck assemblers exposed to hand-arm vibration.

    PubMed

    Nilsson, T; Hagberg, M; Burström, L; Kihlberg, S

    1994-06-01

    The goal of this study was to assess the relative risks of sustaining impaired nerve conduction in the hands among vibration-exposed persons as opposed to nonvibration-exposed referents. In a cross-sectional study design platers and truck assembly workers were contrasted to office workers. The 4-h frequency-weighted vibration was 4.6 m.s-2 and 1.0 m.s-2 for the platers and assemblers, respectively. The ergonomic factors were measured as forced grip time. The conduction velocity, distal latency time, and amplitude of the median nerve were measured for both hands. The sensory nerve conduction velocity was slower in the right hand than in the left. An increased risk of prolonged latency time was found for the platers and assemblers when contrasted to the office workers. The relative risks (rate ratios) of impaired nerve conduction for the carpal tunnel segment varied between 1.4 and 2.0 for the distal latency and between 0.9 and 1.7 for the nerve conduction velocity. The rate ratios were generally higher for the left-hand side than for the right-hand side. The risks were not proportional to either the weighted or unweighted vibration exposure. The contributions from vibration and ergonomic factors to impaired nerve conduction velocity were inseparable in this study. Ergonomic factors such as forceful gripping and extreme positions, apart from vibration exposure, may be strong determinants of impaired nerve conduction in the carpal tunnel area.

  4. Cross sectional study of a workforce exposed to hand-arm vibration: with objective tests and the Stockholm workshop scales.

    PubMed

    McGeoch, K L; Gilmour, W H

    2000-01-01

    Medical surveillance of workforces exposed to vibration has been recommended with the Stockholm workshop scales. The aims of this study were (a) to evaluate how the results of the objective tests individually and jointly associated with the final Stockholm workshop staging, (b) how this staging related to the history of exposure to vibration, and (c) how different trades were affected by the hazards from vibrating tools. All workers exposed to vibration in a heavy engineering company were examined with a questionnaire and a battery of tests. An assessment of staging by the Stockholm workshop scales was made. Estimates of the daily exposure and lifetime dosage of vibration of the various trades were reached. The average years of tool use was 23.3 years (range 3-47 years) and the mean lifetime exposure was 11,022 (range 1012-46,125) hours. The individual neurological tests were all strongly associated with the Stockholm neurological staging but the cold provocation test was not associated with the Stockholm vascular staging. Neurological staging was significantly associated with age, years of tool use, and total hours of exposure to vibration, but not with trade or smoking. Vascular staging was significantly associated with age, years of tool use, total hours of exposure to vibration, and trade, but not with smoking. The mean neurological latent period was 19.7 (range 2-40) years and for the vascular component 19.1 (range 2-40) years. These means varied significantly by trade. The overall prevalence of neurological findings of 62% was greater than the overall prevalence of vascular findings, which was 33%. (1) The neurological objective tests were found to be of use in neurological staging. The cold provocation test was not associated with the vascular staging and therefore was of little value. (2) Years of tool use was the exposure variable most significantly associated with evidence of damage to neurological component while years of tool use and trade were the

  5. HTR1B gene variants associate with the susceptibility of Raynauds' phenomenon in workers exposed hand-arm vibration.

    PubMed

    Chen, Qingsong; Lang, Li; Xiao, Bin; Lin, Hansheng; Yang, Aichu; Li, Hongling; Tang, Shichuan; Huang, Hanlin

    2016-10-05

    To explore whether polymorphic variants of the HTR1B gene are associated with the susceptibility of Raynauds' Phenomenon (RP) coursed by vibration. 148 subjects exposed to vibration for more than 2 years were classified into either induced white finger (VWF) group (n = 72), or non-VWF group (n = 76). Vibration exposure levels were measured and assessed following ISO 5349-1:2001 protocol. All workers were genotyped by sequencing for the single nucleotide polymorphisms (SNPs) in the 5'-flanking and coding region of HTR1B. Genetic characteristics and linkage disequilibrium (LD) were analyzed with Haploview. Serum serotonin levels of each subject were detected using ELISA. The association between the susceptibility of vascular damage and genotype was analyzed via logistic regression. 7 known SNPs were obtained and their allele frequencies were inserted into the Hardy-Weinberg equilibrium. rs6297 variant genotype had an increased risk of VWF compared with wild genotype (OR = 2.14, 95% CI = 1.04- 4.58, P < 0.05). rs6298 mutant type (AG+GG) was found to have a significant interaction on vibration exposure LN(CEI), accounting for VWF occurrence. LN(5-HT) level is significantly different between the VWF group (x¯±s= 1.99±1.09 ng/mL) and the non-VWF group (x¯±s= 2.72±1.47 ng/mL). Serotonin levels may affect the progression of secondary RP. Polymorphic variants of the HTR1B gene are associated with the susceptibility of secondary RP in vibration-exposed occupational populations of Chinese Han people.

  6. Self-reported cold sensitivity in normal subjects and in patients with traumatic hand injuries or hand-arm vibration syndrome

    PubMed Central

    2010-01-01

    Background Cold sensitivity is a common and disabling complaint following hand injuries. The main purpose of this study was to describe self-reported consequences of cold sensitivity and the association with disability and health-related quality of life in patients with hand injuries or hand-arm vibration syndrome (HAVS) and in normal subjects. Methods Responses to the Cold Intolerance Symptom Severity (CISS) questionnaire, Potential Work Exposure Scale (PWES), Disability of the Arm, Shoulder and Hand (DASH) and Short-Form 36 questionnaire (SF-36) were investigated in normal subjects (n = 94), hand injured patients (amputation and nerve injuries, n = 88) and patients with HAVS (n = 30). The results are presented as median (range), percent and mean deviation from norms. The Kruskal Wallis Test or Mann-Whitney U-Test were used to identify significant differences between multiple groups or subgroups. The Spearman rank correlation was used to study the relationship between cold sensitivity and disability. Results Abnormal cold sensitivity (CISS score > 50) was seen in 75% and 45% of patients with HAVS and a traumatic hand injury, respectively. Patients were significantly more exposed to cold in their work environment than the normal population, with a consequently negative effect on work ability due to cold sensitivity. Patients with abnormal cold sensitivity were more seriously disabled and had a poorer health-related quality of life than patients with normal cold sensitivity [higher DASH scores and e.g. significantly larger mean deviation from norms in the subscales Role Physical and Bodily Pain (SF-36)]. Conclusion Severe and abnormal cold sensitivity may have a profound impact on work capacity, leisure, disability and health-related quality of life. It is frequently seen in patients with traumatic hand injuries and particularly apparent in patients with HAVS. PMID:20462418

  7. Self-reported cold sensitivity in patients with traumatic hand injuries or hand-arm vibration syndrome - an eight year follow up

    PubMed Central

    2014-01-01

    Background Cold sensitivity is a common complaint following hand injuries. Our aim was to investigate long-term self-reported cold sensitivity, and its predictors and the importance of sense of coherence (SOC), 8 years after a hand injury as well as in patients treated for Hand Arm Vibration Syndrome (HAVS) during the same time period. Methods Responses to the Cold Intolerance Symptom Severity (CISS) questionnaire and the Sense of Coherence (SOC) questionnaire were investigated in hand injured patients (n = 64) and in patients with HAVS (n = 26). The Mann–Whitney U-Test was used to identify significant differences between subgroups. When analysing predictors for cold sensitivity severity, the Spearman rank correlation (rS coefficient) were used for quantitative predictive variables, Mann–Whitney U-Test for dichotomous variables and Kruskal-Wallis Test for multiple categorical data. The Wilcoxon´s signed rank test was used to investigate longitudinal changes in outcome. Results There was a significant change in total CISS score for patients with traumatic hand injury, indicating fewer problems with cold sensitivity over time. Symptoms, such as stiffness, weakness and skin colour change on cold exposure, caused fewer problems, but perceived pain/aching and numbness remained unchanged as well as time needed for relief of symptoms on return to a warm environment. The negative impact of cold sensitivity on daily activities and at work was reduced, but problems when engaged in hobbies or when being exposed to cold wintry weather remained unchanged. None of the investigated predictors related to the hand injury were significantly associated with a change in cold sensitivity at the 8-year follow up. In contrast, no significant change in cold sensitivity was noted in the patients with HAVS for any of the situations included in the CISS questionnaire. A lower sense of coherence score correlated significantly with worse cold sensitivity (CISS score) in both

  8. Self-reported cold sensitivity in patients with traumatic hand injuries or hand-arm vibration syndrome - an eight year follow up.

    PubMed

    Carlsson, Ingela K; Dahlin, Lars B

    2014-03-14

    Cold sensitivity is a common complaint following hand injuries. Our aim was to investigate long-term self-reported cold sensitivity, and its predictors and the importance of sense of coherence (SOC), 8 years after a hand injury as well as in patients treated for Hand Arm Vibration Syndrome (HAVS) during the same time period. Responses to the Cold Intolerance Symptom Severity (CISS) questionnaire and the Sense of Coherence (SOC) questionnaire were investigated in hand injured patients (n = 64) and in patients with HAVS (n = 26). The Mann-Whitney U-Test was used to identify significant differences between subgroups. When analysing predictors for cold sensitivity severity, the Spearman rank correlation (rS coefficient) were used for quantitative predictive variables, Mann-Whitney U-Test for dichotomous variables and Kruskal-Wallis Test for multiple categorical data. The Wilcoxon's signed rank test was used to investigate longitudinal changes in outcome. There was a significant change in total CISS score for patients with traumatic hand injury, indicating fewer problems with cold sensitivity over time. Symptoms, such as stiffness, weakness and skin colour change on cold exposure, caused fewer problems, but perceived pain/aching and numbness remained unchanged as well as time needed for relief of symptoms on return to a warm environment. The negative impact of cold sensitivity on daily activities and at work was reduced, but problems when engaged in hobbies or when being exposed to cold wintry weather remained unchanged. None of the investigated predictors related to the hand injury were significantly associated with a change in cold sensitivity at the 8-year follow up. In contrast, no significant change in cold sensitivity was noted in the patients with HAVS for any of the situations included in the CISS questionnaire. A lower sense of coherence score correlated significantly with worse cold sensitivity (CISS score) in both patient groups. The negative impact of cold

  9. A systematic review of the etiopathogenesis of Kienböck's disease and a critical appraisal of its recognition as an occupational disease related to hand-arm vibration

    PubMed Central

    2012-01-01

    Background We systematically reviewed etiological factors of Kienböck’s disease (osteonecrosis of the lunate) discussed in the literature in order to examine the justification for including Kienböck’s disease (KD) in the European Listing of Occupational Diseases. Methods We searched the Ovid/Medline and the Cochrane Library for articles discussing the etiology of osteonecrosis of the lunate published since the first description of KD in 1910 and up until July 2012 in English, French or German. Literature was classified by the level of evidence presented, the etiopathological hypothesis discussed, and the author's conclusion about the role of the etiopathological hypothesis. The causal relationship between KD and hand-arm vibration was elucidated by the Bradford Hill criteria. Results A total of 220 references was found. Of the included 152 articles, 140 (92%) reached the evidence level IV (case series). The four most frequently discussed factors were negative ulnar variance (n=72; 47%), primary arterial ischemia of the lunate (n=63; 41%), trauma (n=63; 41%) and hand-arm vibration (n=53; 35%). The quality of the cohort studies on hand-arm vibration did not permit a meta-analysis to evaluate the strength of an association to KD. Evidence for the lack of consistency, plausibility and coherence of the 4 most frequently discussed etiopathologies was found. No evidence was found to support any of the nine Bradford Hill criteria for a causal relationship between KD and hand-arm vibration. Conclusions A systematic review of 220 articles on the etiopathology of KD and the application of the Bradford Hill criteria does not provide sufficient scientific evidence to confirm or refute a causal relationship between KD and hand-arm vibration. This currently suggests that, KD does not comply with the criteria of the International Labour Organization determining occupational diseases. However, research with a higher level of evidence is required to further determine if hand-arm

  10. Spatial resonance in a small artery excited by vibration input as a possible mechanism to cause hand-arm vascular disorders

    NASA Astrophysics Data System (ADS)

    Pattnaik, Shrikant; Banerjee, Rupak; Kim, Jay

    2012-04-01

    Hand-arm vibration syndrome (HAVS) is collectively a vasospastic and neurodegenerative occupational disease. One of the major symptoms of HAVS is vibration white finger (VWF) caused by exaggerated vasoconstriction of the arteries and skin arterioles. While VWF is a very painful and costly occupational illness, its pathology has not been well understood. In this study a small artery is modeled as a fluid filled elastic tube whose diameter changes along the axial direction. Equations of motion are developed by considering interactions between the fluid, artery wall and soft-tissue bed. It is shown that the resulting wave equation is the same as that of the basilar membrane in the cochlea of mammals. Therefore, the artery system shows a spatial resonance as in the basilar membrane, which responds with the highest amplitude at the location determined by the vibration frequency. This implies that a long-term use of one type of tool will induce high-level stresses at a few identical locations of the artery that correspond to the major frequency components of the tool. Hardening and deterioration of the artery at these locations may be a possible cause of VWF.

  11. Effect of handle size and hand-handle contact force on the biodynamic response of the hand-arm system under z h-axis vibration

    NASA Astrophysics Data System (ADS)

    Marcotte, P.; Aldien, Y.; Boileau, P.-É.; Rakheja, S.; Boutin, J.

    2005-05-01

    The influences of the handle size and of the hand forces exerted on a vibrating tool handle on the driving-point mechanical impedance (DPMI) response of the human hand-arm system have been investigated through laboratory measurements performed on seven adult male subjects. Measurements were performed with three instrumented cylindrical handles with different diameters (30, 40 and 50 mm) exposed to two different levels of broadband random vibration (2.5 and 5.0 m/s 2) along the z h axis, while the variations in the hand forces were realized through nine different combinations of grip (10, 30 and 50 N) and push (25, 50 and 75 N) forces. The static hand-handle contact forces were also evaluated for each combination of grip and push forces, and each handle size through measurements of pressure distribution at the hand-handle interface. The results have shown that the average contact force is a linear combination of the push and grip forces, while the contribution due to grip force is considerably larger than the push force and dependent upon the handle size. The hand-handle coupling force, as defined in ISO/WD-15230, was further evaluated by summing the grip and push forces, which is independent of the handle size. The results have shown that the DPMI magnitude tends to increase with an increase in both the grip and push forces at frequencies above 25 Hz, while the increase in DPMI magnitude was better correlated with the coupling force below 200 Hz. A better correlation with the contact force, however, was attained at frequencies above 200 Hz, suggesting a stronger dependence on the grip force at higher frequencies. The DPMI magnitude response was also found to be influenced by the handle diameter. Increasing the handle size yielded higher peak DPMI magnitude response, specifically under medium to high hand-handle coupling forces (30 N grip and 50 N push; 50 N grip and 75 N push).

  12. Vibration exposure and prevention in Finland.

    PubMed

    Starck, J; Pyykkö, I; Koskimies, K; Pekkarinen, J

    1994-05-01

    The number of annually compensated occupational diseases due to exposure to hand-arm vibration (HAV) has decreased during the last 15 years. The number of exposed workers has been declining in Finland, especially in forestry work, as harvesters have increasingly replaced manual chain saw operations. During the entire 1970s, forest work caused more cases of vibration-induced occupational diseases than all industrial branches together. The decrease is mainly due to the technical development of chain saws, but also to the effective health care services in Finland. Other factors such as warm transport, warm rest cabins in which to take pauses at work, warm meals, adequate protective clothing, and vocationally adjusted early medical rehabilitation have helped to cut down health hazards, especially in forest work. The number of new cases has been decreasing in Finland not only in forestry but also in other industries. In Finland a considerable amount of research has been conducted to hand-arm vibration, resulting in the increased awareness of the health risks related to certain occupations. This has helped to carry out the Primary Health Care Act (1972) followed by the Occupational Health Care Act (1979) which obligates employers to arrange occupational health care for their employees. We believe that the research activity has contributed significantly to achieving the present health in Finnish work places. The purpose of the present paper is to describe the cases of occupational exposure to HAV, and the effectiveness of different preventive measures in Finland.

  13. Measurement of biodynamic response of human hand arm system

    NASA Astrophysics Data System (ADS)

    Dong, R. G.; Welcome, D. E.; McDowell, T. W.; Wu, J. Z.

    2006-07-01

    Biodynamics of the human hand-arm system is one of the most important foundations for understanding hand-transmitted vibration exposure and its health effects. Considerable differences among the reported data of the biodynamic response (BR) of the hand-arm system have been observed. A significant portion of the differences are believed to have resulted from instrumentation problems and/or computational algorithm errors. To help establish a reliable and accurate methodology for BR measurement, this study addresses the fundamental instrumentation issues. Specifically, the general theory of the driving-point BR is reviewed and summarized. An accurate mass cancellation method for BR measurement is identified and further developed. A set of methods is proposed to systematically examine and calibrate the BR measurement system. Based on the experimental results and theoretical analyses, several instrumentation and algorithm problems are identified. This study demonstrated that the instrumentation problems can be resolved or avoided by appropriately selecting the force and motion sensors, improving the structure design of the instrumented handle and fixture, using the frequency-domain method for the handle mass cancellation, and conducting the static and dynamic calibrations of the measurement system using the proposed methods. The information and knowledge presented in this paper can help to generate reliable experimental data in further BR studies.

  14. Nerve conduction in relation to vibration exposure - a non-positive cohort study.

    PubMed

    Sandén, Helena; Jonsson, Andreas; Wallin, B Gunnar; Burström, Lage; Lundström, Ronnie; Nilsson, Tohr; Hagberg, Mats

    2010-07-19

    Peripheral neuropathy is one of the principal clinical disorders in workers with hand-arm vibration syndrome. Electrophysiological studies aimed at defining the nature of the injury have provided conflicting results. One reason for this lack of consistency might be the sparsity of published longitudinal etiological studies with both good assessment of exposure and a well-defined measure of disease. Against this background we measured conduction velocities in the hand after having assessed vibration exposure over 21 years in a cohort of manual workers. The study group consisted of 155 male office and manual workers at an engineering plant that manufactured pulp and paper machinery. The study has a longitudinal design regarding exposure assessment and a cross-sectional design regarding the outcome of nerve conduction. Hand-arm vibration dose was calculated as the product of self-reported occupational exposure, collected by questionnaire and interviews, and the measured or estimated hand-arm vibration exposure in 1987, 1992, 1997, 2002, and 2008. Distal motor latencies in median and ulnar nerves and sensory nerve conduction over the carpal tunnel and the finger-palm segments in the median nerve were measured in 2008. Before the nerve conduction measurement, the subjects were systemically warmed by a bicycle ergometer test. There were no differences in distal latencies between subjects exposed to hand-arm vibration and unexposed subjects, neither in the sensory conduction latencies of the median nerve, nor in the motor conduction latencies of the median and ulnar nerves. Seven subjects (9%) in the exposed group and three subjects (12%) in the unexposed group had both pathological sensory nerve conduction at the wrist and symptoms suggestive of carpal tunnel syndrome. Nerve conduction measurements of peripheral hand nerves revealed no exposure-response association between hand-arm vibration exposure and distal neuropathy of the large myelinated fibers in a cohort of

  15. Applications of hand-arm models in the investigation of the interaction between man and machine.

    PubMed

    Jahn, R; Hesse, M

    1986-08-01

    The mode of vibration of hand-held tools cannot be considered without knowledge of the influence of the operator's hand-arm system. Therefore some technical applications of hand-arm models were realized for drill hammers by the University of Dortmund. These applications are a software program to simulate the motion of machine components, a horizontal drilling jig, and a chucking device in a drilling rig.

  16. Exposure to vibration and self-reported health complaints of riveters in the aircraft industry.

    PubMed

    Burdorf, A; Monster, A

    1991-06-01

    Workers using vibrating tools may experience neurological and vascular symptoms in the fingers and hands. The effect of vibration exposure on bone and joint disorders in the hand, arm and shoulder is less clear. In a cross-sectional study, riveters and controls in an aircraft company were investigated for vibration exposure and health complaints. Vibration measurements showed that frequency-weighted acceleration levels for riveting hammers and bucking bars ranged from 5.5 to 12.3 m s -2. The calculated equivalent frequency-weighted acceleration for a period of 4 h was the questionnaire survey 101 riveters reported statistically significant more complaints of pain and stiffness in their hands and arms when compared with 76 controls with no, or little, exposure to vibration. After 10 years of exposure statistically significant age-adjusted odds ratios (P less than 0.05) were found for vibration-induced white finger (VWF) (1.9) and pain or stiffness of the wrist (3.2). Although they were not statistically significant (0.05 less than P less than 0.10) odds ratios appreciably greater than 1 were found for numbness in fingers (1.6) and pain or stiffness in the elbow (1.6) and the shoulder (1.5), and these complaints were strongly associated with duration of exposure to vibration. With logistic regression the probabilities for a riveter of having symptoms of VWF after 10 and 20 years of exposure was estimated to be P = 0.18 and P = 0.29, respectively, which can be compared with the prevalences predicted by the dose-response relationship for VWF in ISO 5349, which are 10 and 30%. The results of this study suggest that exposure to vibration from working with impact power tools can contribute to complaints of pain and stiffness in the hand, arm and shoulder, and especially in the wrist.

  17. Noise-induced hearing loss and combined noise and vibration exposure.

    PubMed

    Turcot, A; Girard, S A; Courteau, M; Baril, J; Larocque, R

    2015-04-01

    While there is a wide body of literature addressing noise-induced hearing loss (NIHL) and hand-arm vibration syndrome (HAVS) independently, relatively few studies have considered the combined effects of noise and vibration. These studies have suggested an increased risk of NIHL in workers with vibration white finger (VWF), though the relationship remains poorly understood. To determine whether hearing impairment is worse in noise-exposed workers with VWF than in workers with similar noise exposures but without VWF. The Quebec National Institute of Public Health audiometric database was used in conjunction with work-related accident and occupational diseases data from the Quebec workers' compensation board to analyse differences in audiometry results between vibration-exposed workers in the mining and forestry industries and the overall source population, and between mining and forestry workers with documented VWF and those without VWF. The International Organization for Standardization (ISO) 7029 standards were used to calculate hearing loss not attributable to age. 15751 vibration-exposed workers were identified in an overall source population of 59339. Workers with VWF (n = 96) had significantly worse hearing at every frequency studied (500, 1000, 2000 4000 Hz) compared with other mining and forestry workers without VWF. This study confirms previous findings of greater hearing loss at higher frequencies in workers with VWF, but also found a significant difference in hearing loss at low frequencies. It therefore supports the association between combined noise and hand-arm vibration (HAV) exposure and NIHL. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. [Raynaud's phenomenon in occupational vibration exposure].

    PubMed

    Letzel, S; Muttray, A

    2013-03-01

    A 34-year-old female stonemason was referred for expert opinion. The question at issue was, whether she suffered from vibration-induced white finger disease. She was exposed to high-frequency hand-arm vibrations for many years. She reported white finger attacks at the long fingers, which were associated with cold weather. Until this point, physical findings were normal. The cold water provocation test showed a slight delay of the rewarming for the long fingers of the right hand. The nailfold capillary microscopy was normal. The slight Raynaud's phenomenon was recognized as an occupational disease with a diagnosis of vibration-induced white finger disease. About three years later, the symptoms of the Raynaud's phenomenon had deteriorated, although the patient had finished working with vibrating tools. The cold water provocation test confirmed the deterioration. At this time, the patient had inflamed swellings of some joints caused by rheumatoid arthritis. The differential diagnosis of a Raynaud's phenomenon should include occupational causes. Occupational history is diagnostically indicative. If an occupational disease is assumed, a report must be filed. With respect to German social law, the deterioration of the Raynaud's phenomenon was caused by the rheumatoid arthritis, which is regarded as independent from the job. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Vibration-induced multifocal neuropathy in forestry workers: electrophysiological findings in relation to vibration exposure and finger circulation.

    PubMed

    Bovenzi, M; Giannini, F; Rossi, S

    2000-11-01

    contribute to peripheral nerve disorders occurring in forestry workers who operate chain saws. The findings of this study suggest the existence of an exposure-effect relationship for vibration-induced neuropathy. Different underlying mechanisms are likely to be involved in the pathogenesis of the neurological and vascular components of the hand-arm vibration syndrome.

  20. Intraneural edema following exposure to vibration.

    PubMed

    Lundborg, G; Dahlin, L B; Danielsen, N; Hansson, H A; Necking, L E; Pyykkö, I

    1987-08-01

    Peripheral neuropathy represents a well-known complication from long-term exposure to vibration. In the present study an experimental model is presented with the purpose of analyzing the formation of intraneural edema following vibration exposure. Vibration (82 Hz, peak-to-peak amplitude 0.21 mm) was induced in the hind limb of rats by the use of vibrating electric motors during 4 h/d for 5 d. Tracer techniques (with albumin Evans blue and horseradish peroxidase) were used to study the permeability of intraneural microvessels after the vibration exposure on day 5. It was found that the vibration trauma in this model induced epineurial edema in the sciatic nerve. It is hypothesized that the formation of intraneural edema may be an important pathophysiological factor in the occurrence of vibration-induced neuropathy.

  1. Prevalence of Hand-transmitted Vibration Exposure among Grass-cutting Workers using Objective and Subjective Measures

    NASA Astrophysics Data System (ADS)

    Azmir, N. A.; Yahya, M. N.

    2017-01-01

    Extended exposure to hand-transmitted vibration from vibrating machine is associated with an increased occurrence of symptoms of occupational disease related to hand disorder. The present case study is to determine the prevalence and correlation of significant subjective as well as objective variables that induce to hand arm vibration syndrome (HAVS) among hand-held grass-cutting workers in Malaysia. Thus, recommendations are made for grass-cutting workers and grass maintenance service management based on findings. A cross sectional study using adopted subjective Hand Arm Vibration Exposure Risk Assessment (HAVERA) questionnaire from Vibration Injury Network on hand disorder signs and symptoms was distributed to a sample of one hundred and sixty eight male workers from grass and turf maintenance industry that use vibrating machine as part of their work. For objective measure, hand-transmitted vibration measurement was collected on site during operation by the following ISO 5349-1, 2001. Two groups were identified in this research comprising of high exposure group and low-moderate exposure group. Workers also gave information about their personal identification, social history, workers’ health, occupational history and machine safety inspection. There was positive HAVS symptoms relationship between the low-moderate exposure group and high exposure group among hand-held grass-cutting workers. The prevalence ratio (PR) was considered high for experiencing white colour change at fingers and fingers go numb which are 3.63 (1.41 to 9.39) and 4.24 (2.18 to 8.27), respectively. The estimated daily vibration exposure, A(8) differs between 2.1 to 20.7 ms-2 for right hand while 2.7 to 29.1 ms-2 for left hand. The subjects claimed that the feel of numbness at left hand is much stronger compared to right hand. The results suggest that HAVS is diagnosed in Malaysia especially in agriculture sector. The A(8) indicates that the exposure value is more than exposure limit value

  2. Anti-vibration gloves?

    PubMed

    Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W

    2015-03-01

    For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered.

  3. Cochlear damages caused by vibration exposure.

    PubMed

    Moussavi Najarkola, Seyyed Ali; Khavanin, Ali; Mirzaei, Ramazan; Salehnia, Mojdeh; Muhammadnejad, Ahad

    2013-09-01

    Many industrial devices have an excessive vibration which can affect human body systems. The effect of vibration on cochlear histology has been as a debatable problem in occupational health and medicine. Due to limitation present in human studies, the research was conducted to survey the influence of vibration on cochlear histology in an animal model. TWELVE ALBINO RABBITS WERE EXPERIMENTED AS: Vibration group (n = 6; exposed to 1.0 m.s(-2) r.m.s vertical whole-body vibration at 4 - 8 Hz for 8 hours per day during 5 consecutive days) versus Control group (n = 6; the same rabbits without vibration exposure). After finishing the exposure scenario, all rabbits were killed by CO2 inhalation; their cochleae were extracted and fixed in 10% formaldehyde for 48 hours, decalcified by 10% nitric acid for 24 hours. Specimens were dehydrated, embedded, sectioned 5 µm thick and stained with Hematoxylin and Eosin for light microscopy observations. Severely hydropic degenerated and vacuolated inner hair cells (IHCs) were observed in vibration group compared to the control group. Inter and intracellular edema was appeared in supporting cells (SC). Nuclei of outer hair cells (OHCs) seemed to be pyknotic. Slightly thickened basilar membrane (BM) was probably implied to inter cellular edematous. Tectorial Membrane (TM) was not affected pathologically. Whole-body vibration could cause cochlear damages in male rabbits, though vibration-induced auditory functional effects might be resulted as subsequent outcome of prolonged high level vibration exposures.

  4. Role of Kv4.3 in Vibration-Induced Muscle Pain in the Rat.

    PubMed

    Conner, Lindsay B; Alvarez, Pedro; Bogen, Oliver; Levine, Jon D

    2016-04-01

    We hypothesized that changes in the expression of voltage-gated potassium channel (Kv) 4.3 contribute to the mechanical hyperalgesia induced by vibration injury, in a rodent model for hand-arm vibration syndrome in humans. Here we show that the exposure of the gastrocnemius muscle to vibration injury induces muscle hyperalgesia that is accompanied by a significant downregulation of Kv4.3 in affected sensory nerve fibers in dorsal root ganglia. We additionally show that the intrathecal administration of antisense oligonucleotides for Kv4.3 messenger RNA itself induces muscle hyperalgesia in the rat. Our results suggest that attenuation in the expression of Kv4.3 may contribute to neuropathic pain in people affected by hand-arm vibration syndrome. Our findings establish Kv4.3 as a potential molecular target for the treatment of hand-arm vibration syndrome. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  5. A prospective cohort study investigating an exposure-response relationship among vibration-exposed male workers with numbness of the hands.

    PubMed

    Edlund, Maria; Burström, Lage; Gerhardsson, Lars; Lundström, Ronnie; Nilsson, Tohr; Sandén, Helena; Hagberg, Mats

    2014-03-01

    The aim of this study was to investigate the exposure-response relationship of hand-arm vibration exposure to neurological symptoms (numbness) of the hand in a cohort of vibration-exposed workers. The baseline cohort comprised 241 office and manual workers with and without exposure to hand-arm vibration. Numbness (the symptom or event) in the hand was assessed for all subjects at baseline and follow-ups after 5, 10, and 16 years. The workers were stratified into quartiles with no exposure in the first quartile and increasing intensity of exposure in quartiles 2-4 (groups 1-3). Data analysis was performed using survival analysis (time to event). Information on cumulative exposure and years of exposure to event was collected via questionnaires. Measurements were performed in accordance with the International Organization for Standardization (ISO) 5349-1. The hazard ratio (HR) of risk of event (numbness) differed statistically significantly between the non-exposed group (group 0) and the two higher exposure groups (groups 2 and 3). There was also a significant ratio difference between the lowest exposure group (group 1) and the two higher groups. The ratio for group 1 was 1.77 [95% confidence interval (95% CI) 0.96-3.26] compared with 3.78 (95% CI 2.15-6.62) and 5.31 (95% CI 3.06-9.20) for groups 2 and 3, respectively. The results suggest a dose-response relationship between vibration exposure and numbness of the hands. This underlines the importance of keeping vibration levels low to prevent neurological injury to the hands.

  6. The effect of vibration exposure during haul truck operation on grip strength, touch sensation, and balance.

    PubMed

    Pollard, Jonisha; Porter, William; Mayton, Alan; Xu, Xueyan; Weston, Eric

    2017-01-01

    Falls from mobile equipment are reported at surface mine quarry operations each year in considerable numbers. Research shows that a preponderance of falls occur while getting on/off mobile equipment. Contributing factors to the risk of falls include the usage of ladders, exiting onto a slippery surface, and foot or hand slippage. Balance issues may also contribute to fall risks for mobile equipment operators who are exposed to whole-body vibration (WBV). For this reason, the National Institute for Occupational Safety and Health, Office of Mine Safety and Health Research conducted a study at four participating mine sites with seven haul truck operators. The purpose was to ascertain whether WBV and hand-arm vibration (HAV) exposures for quarry haul truck operators were linked to short-term decreases in performance in relation to postural stability, touch sensation threshold, and grip strength that are of crucial importance when getting on/off the trucks. WBV measures of frequency-weighted RMS accelerations (wRMS) and vibration dose value (VDV), when compared to the ISO/ANSI standards, were mostly below levels identified for the Health Guidance Caution Zone (HGCZ), although there were instances where the levels were within and above the specified Exposure Action Value. Comparably, all mean HAV levels, when compared to the ISO/ANSI standards, were below the HGCZ. For the existing conditions and equipment, no significant correlation could be identified between the WBV, HAV, postural stability, touch sensation threshold, and grip strength measures taken during this study.

  7. An examination of the handheld adapter approach for measuring hand-transmitted vibration exposure

    PubMed Central

    Xu, Xueyan S.; Dong, Ren G.; Welcome, Daniel E.; Warren, Christopher; McDowell, Thomas W.

    2015-01-01

    The use of a handheld adapter equipped with a tri-axial accelerometer is the most convenient and efficient approach for measuring vibration exposure at the hand-tool interface, especially when the adapter is incorporated into a miniature handheld or wrist-strapped dosimeter. To help optimize the adapter approach, the specific aims of this study are to identify and understand the major sources and mechanisms of measurement errors and uncertainties associated with using these adapters, and to explore their improvements. Five representative adapter models were selected and used in the experiment. Five human subjects served as operators in the experiment on a hand-arm vibration test system. The results of this study confirm that many of the handheld adapters can produce substantial overestimations of vibration exposure, and measurement errors can significantly vary with tool, adapter model, mounting position, mounting orientation, and subject. Major problems with this approach include unavoidable influence of the hand dynamic motion on the adapter, unstable attachment, insufficient attachment contact force, and inappropriate adapter structure. However, the results of this study also suggest that measurement errors can be substantially reduced if the design and use of an adapter can be systematically optimized toward minimizing the combined effects of the identified factors. Some potential methods for improving the design and use of the adapters are also proposed and discussed. PMID:26744580

  8. Task-based assessment of occupational vibration and noise exposures in forestry workers.

    PubMed

    Neitzel, Richard; Yost, Michael

    2002-01-01

    Forty-two noise exposures and 164 whole-body (WBV) and hand-arm (HAV) vibration exposures were collected from 43 forestry workers in six trades employed by two forestry companies. Data were collected on 10 days over 8 weeks during various felling, logging, and log handling operations. Up to 5 volunteers were monitored for noise and vibration daily using datalogging noise dosimeters, which provided daily time-weighted averages (TWAs) and 1-min averages; and a precision sound level meter equipped to measure human vibration, which provided triaxial HAV and WBV event-weighted averages (AEQS). Workers completed a short questionnaire throughout the workday detailing the timing and number of tasks performed and equipment used. Substantial overexposures to noise and vibration were seen; for example, 60% of Occupational Safety and Health Administration (OSHA) TWAs and 83% of National Institute for Occupational Safety and Health (NIOSH) noise TWAs exceeded 85 dBA, 33-53% of the axis-specific HAV AEQS exceeded the 8-hour American Conference of Governmental Industrial Hygienists' HAV threshold limit value, and 34% of all summary weighted WBV AEQS exceeded the Commission of the European Communities' 8-hour exposure limit. The mean for 99 WBV summary weighted AEQ was 3.53 +/- 7.12 m/sec2, whereas the mean for 65 HAV summary weighted AEQ was 5.45 +/- 5.25 m/sec2. The mean OSHA TWA was 86.1 +/- 6.2 dBA, whereas the mean NIOSH TWA was 90.2 +/- 5.1 dBA. The task and tool with the highest exposure levels were unbelling chokers on landings and chain saws (noise), log processing and frontend loaders (WBV), and notching stumps and chain saws (HAV). An internal validation substudy indicated excellent agreement between worker-reported and researcher-documented tasks and tools.

  9. Development of a Light Duty Hand-Arm System:

    NASA Astrophysics Data System (ADS)

    Endo, Gen; Yamada, Hiroya; Hirose, Shigeo

    This paper describes a development of a light duty arm with an active-fingertip gripper for handling discoid objects. The system is potentially capable of sharing a workspace with human workers, assuming the use in a cell manufacturing system. We propose a new 3-DOF gripper mechanism with two fingers which symmetrically move in parallel and each finger has a 2-DOF fingertip of a cylindrical shape. We also develop a lightweight arm with a weight compensation mechanism which is composed of a non-circular pulley and a spring to minimize required actuator torque. After verification of basic performance, the hand-arm system successfully performs a pick-and-place task for a discoid object from horizontal placement to vertical placement and vice versa. We evaluated the positional error tolerance of the discoid object through hardware experiments. The results suggest that the developed hand-arm system has sufficient performance to achieve repetetive pick-and-place tasks where its cycle time almost equals to a human worker.

  10. Do exposure limits for hand-transmitted vibration prevent carpal tunnel syndrome?

    PubMed

    Gillibrand, S; Ntani, G; Coggon, D

    2016-07-01

    An apparently high frequency of carpal tunnel syndrome (CTS) among shipyard workers undergoing health surveillance because of exposure to hand-transmitted vibration (HTV) prompted concerns that current regulatory limits on exposure might not protect adequately against the disorder. To explore whether within regulatory limits, higher exposures to HTV predispose to CTS. As part of a retrospective audit, we compared duration and current intensity of exposure to HTV in cases with new-onset CTS and controls matched for age. Conditional logistic regression was used to quantify associations, which were summarized by odds ratios (ORs) and 95% confidence intervals (CIs). There were 23 cases and 55 controls. After adjustment for body mass index and previous diagnosis of diabetes, no clear associations were observed either with duration of exposure to HTV or with current intensity of exposure. Risk was non-significantly elevated in men with ≥30 years' exposure to HTV (OR 1.6), but in the highest category of current exposure [8-h energy-equivalent frequency-weighted acceleration (A8) ≥ 4.0 m/s(2)], risk was lower than that in the reference category (A8 < 2.5 m/s(2)). Moreover, there was a significantly reduced risk of CTS in men with a previous diagnosis of hand-arm vibration syndrome (HAVS) (OR 0.2, 95% CI 0.1-0.9). We found no evidence that below the current limit for A(8) of 5 m/s(2), higher exposures to HTV predispose to CTS. However, care should be taken not to overlook the possibility of treatable CTS when workers with diagnosed HAVS present with new or worsening sensory symptoms in the hand. © The Author 2016. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Raynaud's phenomenon among men and women with noise-induced hearing loss in relation to vibration exposure.

    PubMed

    Pettersson, Hans; Burström, Lage; Nilsson, Tohr

    2014-01-01

    Raynaud's phenomenon is characterized by constriction in blood supply to the fingers causing finger blanching, of white fingers (WF) and is triggered by cold. Earlier studies found that workers using vibrating hand-held tools and who had vibration-induced white fingers (VWF) had an increased risk for hearing loss compared with workers without VWF. This study examined the occurrence of Raynaud's phenomenon among men and women with noise-induced hearing loss in relation to vibration exposure. All 342 participants had a confirmed noise-induced hearing loss medico legally accepted as work-related by AFA Insurance. Each subject answered a questionnaire concerning their health status and the kinds of exposures they had at the time when their hearing loss was first discovered. The questionnaire covered types of exposures, discomforts in the hands or fingers, diseases and medications affecting the blood circulation, the use of alcohol and tobacco and for women, the use of hormones and whether they had been pregnant. The participation rate was 41% (n = 133) with 38% (n = 94) for men and 50% (n = 39) for women. 84 men and 36 women specified if they had Raynaud's phenomenon and also if they had used hand-held vibrating machines. Nearly 41% of them had used hand-held vibrating machines and 18% had used vibrating machines at least 2 h each workday. There were 23 men/6 women with Raynaud's phenomenon. 37% reported WF among those participants who were exposed to hand-arm vibration (HAV) and 15% among those not exposed to HAV. Among the participants with hearing loss with daily use of vibrating hand-held tools more than twice as many reports WF compared with participants that did not use vibrating hand-held tools. This could be interpreted as Raynaud's phenomenon could be associated with an increased risk for noise-induced hearing loss. However, the low participation rate limits the generalization of the results from this study.

  12. a Comparison of Biodynamic Models of the Human HAND-ARM System for Applications to Hand-Held Power Tools

    NASA Astrophysics Data System (ADS)

    RAKHEJA, S.; WU, J. Z.; DONG, R. G.; SCHOPPER, A. W.; BOILEAU, P.-É.

    2002-01-01

    The biodynamic response characteristics of various mechanical models of the human hand and arm system, reported in the literature, are evaluated in terms of their driving-point mechanical impedance modulus and phase responses. The suitability of the reported models for applications in realizing a mechanical simulator and assessment of vibration behavior of hand-held power tools is examined using three different criteria. These include the ability of the model to characterize the driving-point mechanical impedance of the human hand-arm system within the range of idealized values presented in ISO-10068 (1998); the magnitude of model deflection under a static feed force; and the vibration properties of the human hand and arm evaluated in terms of natural frequencies and damping ratios. From the relative evaluations of 12 different models, it is concluded that a vast majority of these models cannot be applied for the development of a mechanical hand-arm simulator or the assessment of dynamic behavior of the coupled hand-tool system. The higher order models, with three and four degrees of freedom, in general, yield impedance characteristics within the range of idealized values, but exhibit excessive static deflections. Moreover, these models involve very light masses (in the 1·2-4·8 g range), and exhibit either one or two vibration modes at frequencies below 10 Hz. The majority of the lower order models yield reasonable magnitudes of static deflections but relatively poor agreement with idealized values of driving-point mechanical impedance.

  13. A Biomechanical Assessment of Hand/Arm Force with Pneumatic Nail Gun Actuation Systems

    PubMed Central

    Lowe, Brian D.; Albers, James; Hudock, Stephen D.

    2015-01-01

    A biomechanical model is presented, and combined with measurements of tip press force, to estimate total user hand force associated with two pneumatic nail gun trigger systems. The contact actuation trigger (CAT) can fire a nail when the user holds the trigger depressed first and then “bumps” the nail gun tip against the workpiece. With a full sequential actuation trigger (SAT) the user must press the tip against the workpiece prior to activating the trigger. The SAT is demonstrably safer in reducing traumatic injury risk, but increases the duration (and magnitude) of tip force exertion. Time integrated (cumulative) hand force was calculated for a single user from measurements of the tip contact force with the workpiece and transfer time between nails as inputs to a static model of the nail gun and workpiece in two nailing task orientations. The model shows the hand force dependence upon the orientation of the workpiece in addition to the trigger system. Based on standard time allowances from work measurement systems (i.e. Methods-Time Measurement - 1) it is proposed that efficient application of hand force with the SAT in maintaining tip contact can reduce force exertion attributable to the sequential actuation trigger to 2–8% (horizontal nailing) and 9–20% (vertical nailing) of the total hand/arm force. The present model is useful for considering differences in cumulative hand/arm force exposure between the SAT and CAT systems and may explain the appeal of the CAT trigger in reducing the user’s perception of muscular effort. PMID:26321780

  14. A Biomechanical Assessment of Hand/Arm Force with Pneumatic Nail Gun Actuation Systems.

    PubMed

    Lowe, Brian D; Albers, James; Hudock, Stephen D

    2014-09-01

    A biomechanical model is presented, and combined with measurements of tip press force, to estimate total user hand force associated with two pneumatic nail gun trigger systems. The contact actuation trigger (CAT) can fire a nail when the user holds the trigger depressed first and then "bumps" the nail gun tip against the workpiece. With a full sequential actuation trigger (SAT) the user must press the tip against the workpiece prior to activating the trigger. The SAT is demonstrably safer in reducing traumatic injury risk, but increases the duration (and magnitude) of tip force exertion. Time integrated (cumulative) hand force was calculated for a single user from measurements of the tip contact force with the workpiece and transfer time between nails as inputs to a static model of the nail gun and workpiece in two nailing task orientations. The model shows the hand force dependence upon the orientation of the workpiece in addition to the trigger system. Based on standard time allowances from work measurement systems (i.e. Methods-Time Measurement - 1) it is proposed that efficient application of hand force with the SAT in maintaining tip contact can reduce force exertion attributable to the sequential actuation trigger to 2-8% (horizontal nailing) and 9-20% (vertical nailing) of the total hand/arm force. The present model is useful for considering differences in cumulative hand/arm force exposure between the SAT and CAT systems and may explain the appeal of the CAT trigger in reducing the user's perception of muscular effort.

  15. Work ability in vibration-exposed workers.

    PubMed

    Gerhardsson, L; Hagberg, M

    2014-12-01

    Hand-arm vibration exposure may cause hand-arm vibration syndrome (HAVS) including sensorineural disturbances. To investigate which factors had the strongest impact on work ability in vibration-exposed workers. A cross-sectional study in which vibration-exposed workers referred to a department of occupational and environmental medicine were compared with a randomized sample of unexposed subjects from the general population of the city of Gothenburg. All participants underwent a structured interview, answered several questionnaires and had a physical examination including measurements of hand and finger muscle strength and vibrotactile and thermal perception thresholds. The vibration-exposed group (47 subjects) showed significantly reduced sensitivity to cold and warmth in digit 2 bilaterally (P < 0.01) and in digit 5 in the left hand (P < 0.05) and to warmth in digit 5 in the right hand (P < 0.01), compared with the 18 referents. Similarly, tactilometry showed significantly raised vibration perception thresholds among the workers (P < 0.05). A strong relationship was found for the following multiple regression model: estimated work ability = 11.4 - 0.1 × age - 2.3 × current stress level - 2.5 × current pain in hands/arms (multiple r = 0.68; P < 0.001). Vibration-exposed workers showed raised vibrotactile and thermal perception thresholds, compared with unexposed referents. Multiple regression analysis indicated that stress disorders and muscle pain in hands/arms must also be considered when evaluating work ability among subjects with HAVS. © The Author 2014. Published by Oxford University Press on behalf of the Society of Occupational Medicine.

  16. Factors influencing vibration sense thresholds used to assess occupational exposures to hand transmitted vibration.

    PubMed Central

    Harada, N; Griffin, M J

    1991-01-01

    The effects of various conditions, including temporary threshold shifts (TTS) induced by exposure to vibration on vibration sense thresholds, have been investigated. The vibration sense thresholds of five subjects were measured on the middle fingertip of the left hand. A contactor with a diameter of 7 mm was surrounded by three alternative plates with holes of different sizes. The contact force was controlled at either 1 N, 2 N, or 3 N. For the TTS test, the left hand was exposed to vibration at 20 ms-2 rms for five minutes. The frequencies of both the exposure to vibration and the vibration threshold test were in the range 16 Hz to 500 Hz. Using a surround around the contactor greatly reduced the vibration sense threshold at 16 Hz and 31.5 Hz but increased the threshold at 125 Hz, 250 Hz, and 500 Hz. An effect of contact force was seen only at the higher frequencies; larger contact forces led to lower thresholds at 125 Hz, 250 Hz, and 500 Hz. As temperature of the finger skin decreased, the vibration thresholds increased, with the changes at higher frequencies greater than those at lower frequencies. The TTS at 16 Hz and 31.5 Hz measured 0.5 minutes after exposure to vibration (TTS0.5) were highest after exposures to vibration at lower frequencies. The TTS0.5 at 63 Hz was similar after exposure to all frequencies. The TTS0.5 values at 125 Hz, 250 Hz, and 500 Hz were highest after exposures to vibration at 125 Hz and 250 Hz. It was apparent that the physiological characteristics of vibration sensation at low and high frequencies differed significantly. These findings suggest that two representative frequencies can be used when evaluation the neurological effects of occupational exposures to vibration by means of vibration sense thresholds. PMID:2015210

  17. The European vibration directive--how will it affect the dental profession?

    PubMed

    Mansfield, N J

    2005-11-12

    On 6 July 2005, the EU Physical Agents (Vibration) Directive (2002) came into force across all member states. This will mean that legally enforceable limits on hand-arm vibration exposures will be introduced and that risk management must be set in place at work. This article briefly describes the content of the Directive, how this will affect the dental profession and what measures will be required to ensure compliance.

  18. Influence of vibration exposure on tactile and thermal perception thresholds.

    PubMed

    Burström, Lage; Hagberg, Mats; Lundström, Ronnie; Nilsson, Tohr

    2009-05-01

    To establish if intermittent exposure to hand-transmitted vibration had the same effect as continuous exposure on the temporary response of finger tactile and thermal perception thresholds. Two laboratory experiments were conducted. In each, 10 healthy subjects, five males and five females, participated. The subjects' fingers were exposed to vibration under four conditions with a combination of different periods of exposure and rest periods. The vibration frequency was 125 Hz and the frequency-weighted acceleration was 5 m/s(2). A measure of the tactile or thermal perception was conducted before the different exposures to vibration. Immediately after the vibration exposure, the acute effect was measured continuously for the first 75 s. This was followed by regular measures for a maximum of 30 min. The results showed that combinations of vibration with different periods of exposure and rest periods significantly influenced vibrotactile perception, but not thermal perception. These findings suggest that intermittent exposure to hand-transmitted vibration might be more beneficial for the response of the finger vibrotactile sensation than continuous exposure. This finding is inconsistent with the evaluation methods in ISO 5349-1 for vibrotactile sensation, but accurate for thermal perception.

  19. Return to Flying Duties Following Centrifuge or Vibration Exposures

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.; Clarke, Jonathan; Jones, Jeffrey A.

    2009-01-01

    Introduction: In an effort to determine the human performance limits for vibration in spacecraft being developed by NASA, astronauts were evaluated during a simulated launch profile in a centrifuge/vibration environment and separate vibration-only simulation. Current USAF and Army standards for return to flight following centrifuge exposures require 12-24 hours to pass before a crewmember may return to flying duties. There are no standards on vibration exposures and return to flying duties. Based on direct observation and provocative neurological testing of the astronauts, a new standard for return to flying duties following centrifuge and/or vibration exposures was established. Methods: 13 astronaut participants were exposed to simulated launch profiles in a + 3.5 Gx bias centrifuge/vibration environment and separately on a vibration table at the NASA-Ames Research Center. Each subject had complete neurological evaluations pre- and post-exposure for the centrifuge/vibration runs with the NASA neurological function rating scale (NFRS). Subjects who participated in the vibration-only exposures had video oculography performed with provocative maneuvers in addition to the NFRS. NFRS evaluations occurred immediately following each exposure and at 1 hour post-run. Astronauts who remained symptomatic at 1 hour had repeat NFRS performed at 1 hour intervals until the crewmember was asymptomatic. Results: Astronauts in the centrifuge/vibration study averaged a 3-5 point increase in NFRS scores immediately following exposure but returned to baseline 3 hours post-run. Subjects exposed to the vibration-only simulation had a 1-3 point increase following exposure and returned to baseline within 1-2 hours. Pre- and post- vibration exposure video oculography did not reveal any persistent ocular findings with provocative testing 1 hour post-exposure. Discussion: Based on direct observations and objective measurement of neurological function in astronauts following simulated launch

  20. Return to Flying Duties Following Centrifuge or Vibration Exposures

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.; Clarke, Jonathan; Jones, Jeffrey A.

    2009-01-01

    Introduction: In an effort to determine the human performance limits for vibration in spacecraft being developed by NASA, astronauts were evaluated during a simulated launch profile in a centrifuge/vibration environment and separate vibration-only simulation. Current USAF and Army standards for return to flight following centrifuge exposures require 12-24 hours to pass before a crewmember may return to flying duties. There are no standards on vibration exposures and return to flying duties. Based on direct observation and provocative neurological testing of the astronauts, a new standard for return to flying duties following centrifuge and/or vibration exposures was established. Methods: 13 astronaut participants were exposed to simulated launch profiles in a + 3.5 Gx bias centrifuge/vibration environment and separately on a vibration table at the NASA-Ames Research Center. Each subject had complete neurological evaluations pre- and post-exposure for the centrifuge/vibration runs with the NASA neurological function rating scale (NFRS). Subjects who participated in the vibration-only exposures had video oculography performed with provocative maneuvers in addition to the NFRS. NFRS evaluations occurred immediately following each exposure and at 1 hour post-run. Astronauts who remained symptomatic at 1 hour had repeat NFRS performed at 1 hour intervals until the crewmember was asymptomatic. Results: Astronauts in the centrifuge/vibration study averaged a 3-5 point increase in NFRS scores immediately following exposure but returned to baseline 3 hours post-run. Subjects exposed to the vibration-only simulation had a 1-3 point increase following exposure and returned to baseline within 1-2 hours. Pre- and post- vibration exposure video oculography did not reveal any persistent ocular findings with provocative testing 1 hour post-exposure. Discussion: Based on direct observations and objective measurement of neurological function in astronauts following simulated launch

  1. Endurance time, muscular activity and the hand/arm tremor for different exertion forces of holding.

    PubMed

    Lee, Tzu-Hsien

    2016-01-01

    This study aimed to examine the effects of exertion force on endurance time, muscular activity and hand/arm tremor during holding. Fifteen healthy young males were recruited as participants. The independent variable was exertion force (20%, 40%, 60% and 80% maximum holding capacity). The dependent variables were endurance time, muscular activity and hand/arm tremor. The results showed that endurance time decreased with exertion force while muscular activity and hand/arm tremor increased with exertion force. Hand/arm tremor increased with holding time. Endurance time of 40%, 60% and 80% maximum holding capacity was approximately 22.7%, 12.0% and 5.6% of that of 20% maximum holding capacity, respectively. The rms (root mean square) acceleration of hand/arm tremor of the final phase of holding was 2.27-, 1.33-, 1.20- and 1.73-fold of that of the initial phase of holding for 20%, 40%, 60% and 80% maximum holding capacity, respectively.

  2. The effects of vibration-reducing gloves on finger vibration

    PubMed Central

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2015-01-01

    Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration can cause hand-arm vibration syndrome. Vibration-reducing gloves have been used as an alternative approach to reduce the vibration exposure. However, their effectiveness for reducing finger-transmitted vibrations remains unclear. This study enhanced the understanding of the glove effects on finger vibration and provided useful information on the effectiveness of typical VR gloves at reducing the vibration transmitted to the fingers. The new

  3. Whole-body vibration exposure in sport: four relevant cases.

    PubMed

    Tarabini, Marco; Saggin, Bortolino; Scaccabarozzi, Diego

    2015-01-01

    This study investigates the whole-body vibration exposure in kite surfing, alpine skiing, snowboarding and cycling. The vibration exposure was experimentally evaluated following the ISO 2631 guidelines. Results evidenced that the most critical axis is the vertical one. The weighted vibration levels are always larger than 2.5 m/s(2) and the vibration dose values are larger than 25 m/s(1.75). The exposure limit values of the EU directive are reached after 8-37 min depending on the sport. The vibration magnitude is influenced by the athletes' speed, by their skill level and sometimes by the equipment. The large vibration values suggest that the practice of sport activities may be a confounding factor in the aetiology of vibration-related diseases. The vibration exposure in some sports is expected to be large, but has never been quantified in the literature. Results of experiments performed in cycling, alpine and water sports outlined vibration levels exceeding the EU standard limit values.

  4. Role of Kv 4.3 in vibration-induced muscle pain in the rat

    PubMed Central

    Conner, Lindsay; Alvarez, Pedro; Bogen, Oliver; Levine, Jon D.

    2015-01-01

    We hypothesized that changes in the expression of Kv4.3 contribute to the mechanical hyperalgesia induced by vibration injury, a rodent model for hand-arm vibration syndrome in humans. Here we show that the exposure of the gastrocnemius muscle to vibration injury induces muscle hyperalgesia that is accompanied by a significant down-regulation of Kv4.3 in affected sensory nerve fibers in dorsal root ganglia (DRG). We additionally demonstrate that the intrathecal administration of antisense oligonucleotides for Kv4.3 mRNA itself induces muscle hyperalgesia in the rat. Our results suggest that attenuation in the expression of Kv4.3 may contribute to neuropathic pain in people affected by hand-arm vibration syndrome. PMID:26721612

  5. [Evaluation of vibration exposure long-term effects in people with diagnosed vibration syndrome].

    PubMed

    Wagrowska-Koski, Ewa; Lewańska, Magdalena; Rybacki, Marcin; Turbańska, Renata; Mikołajczyk, Anna; Łoś-Spychalska, Teresa

    2011-01-01

    Long-term exposure to hand-transmitted vibration can increase the occurrence of symptoms and signs of vascular neurological and musculoskeletal disorders of the upper extremities. The most common is the angioneurotic type of the vibration syndrome. Very little is known about possibility of withdrawal of symptoms after exposure cessation. The aim of the study was to evaluate the long-term effects of vibration exposure in people with diagnosed vibration syndrome. The particular aim of the study was to gain the information on possible withdrawal of symptoms in the peripheral vascular and nervous system after exposure cessation. The medical documentation of patients with vibration syndrome symptoms, examined in the years 1999-2004 in the Outpatient Clinic of the Nofer Institute of Occupational Medicine and in three Voivodeship Centers of Occupational Medicine has been analyzed. A group of 45 people who had been suffering from diagnosed angioneurotic vibration syndrome for at least 5 years was chosen. The mean age of the examined group at the time of occupational disease certification was 48.2 and the mean period of exposure to hand-transmitted vibration was nearly 20 years. The major group comprised persons with vibration syndrome diagnosed at an 'early symptoms' stage, an advanced stage of the disease was described in only 5 cases. From the time of occupational disease certification only 7 persons have been performing any job, and more than a half of the group has been granted disability pension. The results of the study show a bad prognosis of angioneurotic vibration syndrome despite cessation of the exposure to vibration. The total withdrawal of symptoms is possible only in people with vibration syndrome diagnosed at an 'early symptoms' stage, at young age and after short period of exposure.

  6. Modeling of biodynamic responses distributed at the fingers and the palm of the human hand-arm system.

    PubMed

    Dong, Ren G; Dong, Jennie H; Wu, John Z; Rakheja, Subhash

    2007-01-01

    The objective of this study is to develop analytical models for simulating driving-point biodynamic responses distributed at the fingers and palm of the hand under vibration along the forearm direction (z(h)-axis). Two different clamp-like model structures are formulated to analyze the distributed responses at the fingers-handle and palm-handle interfaces, as opposed to the single driving point invariably considered in the reported models. The parameters of the proposed four- and five degrees-of-freedom models are identified through minimization of an rms error function of the model and measured responses under different hand actions, namely, fingers pull, push only, grip only, and combined push and grip. The results show that the responses predicted from both models agree reasonably well with the measured data in terms of distributed as well total impedance magnitude and phase. The variations in the identified model parameters under different hand actions are further discussed in view of the biological system behavior. The proposed models are considered to serve as useful tools for design and assessment of vibration isolation methods, and for developing a hand-arm simulator for vibration analysis of power tools.

  7. An effect of weightlessness following exposure to vibration.

    PubMed

    Gray, S W; Edwards, B F

    1970-01-01

    Vibration of germinating wheat seedlings at the levels experienced during the launch of the NASA Biosatellite II increases the frequency of developmental arrest in seedling organs. Severe vibrations lasted approximately 30 sec in two stages. Power spectral density was greatest at frequencies around 15-16 and 19-22 Hz on the entire vehicle. Vibration forces reaching the affected parts of individual seedlings could not be measured. One or more seedling organs may be expected to be absent in 11% of selected Earth-grown wheat plants. If subjected to simulated launch vibration between 12 and 27 hr after the start of germination, the number of abnormal plants rises to 21.6%. Lateral roots are most affected by vibration at this age. Seedlings which went into orbital weightlessness aboard Biosatellite II, or were grown for several days on a horizontal clinostat after vibration, showed only 5.3% abnormalities. Simulated weightlessness on the clinostat without prior vibration did not alter the number of abnormal plants. It is suggested that growth in weightlessness following exposure to vibration permits more extensive repair of injury produced by vibration than does growth in Earth's gravity.

  8. Moving Events in Time: Time-Referent Hand-Arm Movements Influence Perceived Temporal Distance to Past Events

    ERIC Educational Resources Information Center

    Blom, Stephanie S. A. H.; Semin, Gun R.

    2013-01-01

    We examine and find support for the hypothesis that time-referent hand-arm movements influence temporal judgments. In line with the concept of "left is associated with earlier times, and right is associated with later times," we show that performing left (right) hand-arm movements while thinking about a past event increases (decreases) the…

  9. Moving Events in Time: Time-Referent Hand-Arm Movements Influence Perceived Temporal Distance to Past Events

    ERIC Educational Resources Information Center

    Blom, Stephanie S. A. H.; Semin, Gun R.

    2013-01-01

    We examine and find support for the hypothesis that time-referent hand-arm movements influence temporal judgments. In line with the concept of "left is associated with earlier times, and right is associated with later times," we show that performing left (right) hand-arm movements while thinking about a past event increases (decreases) the…

  10. Vibration on board and health effects.

    PubMed

    Jensen, Anker; Jepsen, Jørgen Riis

    2014-01-01

    There is only limited knowledge of the exposure to vibrations of ships' crews and their risk of vibration-induced health effects. Exposure to hand-arm vibrations from the use of vibrating tools at sea does not differ from that in the land-based trades. However, in contrast to most other work places, seafarers are also exposed to vibrations to the feet when standing on vibrating surfaces on board. Anecdotal reports have related the development of "white feet" to local exposure to vibration, e.g. in mining, but this connection has not been investigated in the maritime setting. As known from studies of the health consequences of whole body vibrations in land-transportation, such exposure at sea may affect ships' passengers and crews. While the relation of back disorders to high levels of whole body vibration has been demonstrated among e.g. tractor drivers, there are no reported epidemiological evidence for such relation among seafarers except for fishermen, who, however, are also exposed to additional recognised physical risk factors at work. The assessment and reduction of vibrations by naval architects relates to technical implications of this impact for the ships' construction, but has limited value for the estimation of health risks because they express the vibration intensity differently that it is done in a medical context.

  11. The effects of vibration-reducing gloves on finger vibration.

    PubMed

    Welcome, Daniel E; Dong, Ren G; Xu, Xueyan S; Warren, Christopher; McDowell, Thomas W

    2014-01-01

    Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed.

  12. Quantitative thermal perception thresholds relative to exposure to vibration

    PubMed Central

    Nilsson, T; Lundstrom, R

    2001-01-01

    OBJECTIVES—To assess the risk of disturbed thermal perception relative to exposure to vibration, to investigate a possible exposure-response relation and to analyse a possible relation between thermal perception and sensory symptoms.
METHODS—The study was based on a cross section of 123 male workers exposed to vibration and 62 male workers who were not exposed. Thermal perception of cold, warmth, and heat pain was bilaterally determined from the thenar eminence by the method of limits. Perception of cold and warmth were also tested in the second digit. Personal energy equivalent exposure to vibration was measured for all subjects. Vibration was measured in accordance with International Standards Organisation (ISO) 5349 and assessed separately for the left and right hand.
RESULTS—Combining exposure times and intensities gave the left hand an 0.80 exposure to vibration compared with the right. The risk of having contracted reduced thermal perception was increased at all test sites. The risk was higher for the thenar measurements than the finger measurements. A yearly extra contribution of 4000 mh/s2 in cumulative exposure increases the risk of contracting a wider neutral zone by 18% (95% confidence interval (95% CI) 1.06 to 1.32) for the right and 18% (1.05 to 1.32) for the left hand side. Subjects with symptoms of nocturnal paraesthesia had a rate ratio (95% CI) of 2.80 (1.17 to 6.67) for the right hand and 2.72 (1.12 to 6.63) for the left hand for increased neutral zones at the thenar eminence.
CONCLUSIONS—The results indicate thermal sensory impairment related to cumulative exposure to vibration. The effect appeared at vibration levels below the current guiding standard. Quantitative sensory testing of thermal perception offers the chance to assess this specific hazard to the peripheral sensorineural system associated with hand intensive work entailing vibration.


Keywords: quantitative thermal perception; heat pain; vibration

  13. Whole-body vibration exposure in metropolitan bus drivers.

    PubMed

    Lewis, C A; Johnson, P W

    2012-10-01

    Back injuries are common in transit drivers, and can result in substantial direct and indirect cost to the employer and employee. Whole-body vibration (WBV) is one risk factor for drivers. Standards have been adopted (ISO 2631-1) to guide researchers in measuring and analysing WBV levels. Lately, a new standard has been added (ISO 2631-5) that takes impulsive exposures into account. The aims of this study were to determine the levels of vibration for bus drivers using both ISO 2631-1 and 2631-5 standards, and whether there are differences in vibration levels and seat transmissibility between different road types. Thirteen bus drivers drove a 7-year-old bus, instrumented to measure WBV in the seat and floor. The 52 km long test route included freeway, city streets and speed humps. Additionally, for comparison, a subset of five drivers also drove a car over the same route. Road type had a significant effect on all the vibration parameters. Based on exposure limit values in the standards, the continuous z-A (w)(8) exposures exceeded the limit value on freeways, and the impulsive z-VDV(8) and S (ed) exposures were above limit values in city streets and speed humps. Bus WBV exposures were about twice as high relative to the car and the bus seat amplified rather than attenuated WBV exposures. Bus drivers are potentially being exposed to daily vibration levels higher than recommended especially on certain road types. The current seat in this study does not attenuate the vibration.

  14. A method to quantify hand-transmitted vibration exposure based on the biodynamic stress concept.

    PubMed

    Dong, R G; Welcome, D E; Wu, J Z

    2007-11-01

    This study generally hypothesized that the vibration-induced biodynamic stress and number of its cycles in a substructure of the hand-arm system play an important role in the development of vibration-induced disorders in the substructure. As the first step to test this hypothesis, the specific aims of this study were to develop a practical method to quantify the biodynamic stress-cycle measure, to compare it with ISO-weighted and unweighted accelerations, and to assess its potential for applications. A mechanical-equivalent model of the system was established using reported experimental data. The model was used to estimate the average stresses in the fingers and palm. The frequency weightings of the stresses in these substructures were derived using the proposed stress-cycle measure. This study found the frequency dependence of the average stress distributed in the fingers is different from that in the palm. Therefore, this study predicted that the frequency dependencies of finger disorders could also be different from those of the disorders in the palm, wrist, and arms. If vibration-induced white finger (VWF) is correlated better with unweighted acceleration than with ISO-weighted acceleration, the biodynamic stress distributed in the fingers is likely to play a more important role in the development of VWF than is th e biodynamic stressdistributed in the other substructures of the hand-arm system. The results of this study also suggest that the ISO weighting underestimates the high-frequency effect on the finger disorder development but it may provide a reasonable risk assessment of the disorders in the wrist and arm.

  15. Frequency-dependent Effects of Vibration on Physiological Systems: Experiments with Animals and other Human Surrogates

    PubMed Central

    KRAJNAK, Kristine; RILEY, Danny A.; WU, John; MCDOWELL, Thomas; WELCOME, Daniel E.; XU, Xueyan S.; DONG, Ren G.

    2015-01-01

    Occupational exposure to vibration through the use of power- and pneumatic hand-tools results in cold-induced vasospasms, finger blanching, and alterations in sensorineural function. Collectively, these symptoms are referred to as hand-arm vibration syndrome (HAVS). Currently the International Standards Organization (ISO) standard ISO 5349-1 contains a frequency-weighting curve to help workers and employers predict the risk of developing HAVS with exposure to vibration of different frequencies. However, recent epidemiological and experimental evidence suggests that this curve under-represents the risk of injuries to the hands and fingers induced by exposure to vibration at higher frequencies (>100 Hz). To improve the curve, better exposure-response data need to be collected. The goal of this review is to summarize the results of animal and computational modeling studies that have examined the frequency-dependent effects of vibration, and discuss where additional research would be beneficial to fill these research gaps. PMID:23060248

  16. Establishing aerosol exposure predictive models based on vibration measurements.

    PubMed

    Soo, Jhy-Charm; Tsai, Perng-Jy; Lee, Shih-Chuan; Lu, Shih-Yi; Chang, Cheng-Ping; Liou, Yuh-When; Shih, Tung-Sheng

    2010-06-15

    This paper establishes particulate exposure predictive models based on vibration measurements under various concrete drilling conditions. The whole study was conducted in an exposure chamber using a full-scale mockup of concrete drilling simulator to simulate six drilling conditions. For each drilling condition, the vibration of the three orthogonal axes (i.e., a(x), a(y), and a(z)) was measured from the hand tool. Particulate exposure concentrations to the total suspended particulate (C(TSP)), PM(10) (C(PM10)), and PM(2.5) (C(PM2.5)) were measured at the downwind side of the drilling simulator. Empirical models for predicting C(TSP), C(PM10) and C(PM2.5) were done based on measured a(x), a(y), and a(z) using the generalized additive model. Good agreement between measured aerosol exposures and vibrations was found with R(2)>0.969. Our results also suggest that a(x) was mainly contributed by the abrasive wear. On the other hand, a(y) and a(z) were mainly contributed by both the impact wear and brittle fracture wear. The approach developed from the present study has the potential to provide a cheaper and convenient method for assessing aerosol exposures from various emission sources, particularly when conducting conventional personal aerosol samplings are not possible in the filed.

  17. Autonomic neuropathy and vibration exposure in forestry workers.

    PubMed Central

    Heinonen, E; Färkkilä, M; Forsström, J; Antila, K; Jalonen, J; Korhonen, O; Pyykkö, I

    1987-01-01

    The variation in heart rate (HRV) at rest and during deep breathing (6 cycles a minute) of 88 professional lumber jacks was studied using a computer technique. The traditional indexes of HRV (CV, CVS, MEAN) were calculated and the spectral components of the HRV were also computed. There was a significant difference (p less than 0.001) between the HRV indexes during the deep breathing test in those with the shortest (CV = 10.1 +/- 1.1) and those with the longest (CV V 6.2 +/- 0.4) exposures to vibration. The values of the HRV indexes decreased with age, but multiple regression analysis showed that the total exposure time to vibration had an independent negative association with the HRV. There were significant differences in all the frequency bands (frequency related power, FRP) of the heart rate between those with the longest and those with the shortest exposures. The HRV during a deep breathing test is associated with the activity of the parasympathetic nervous system and is decreased in autonomic neuropathies. Our results suggest that prolonged exposure to the vibration caused by a chain saw has a negative effect on the parasympathetic activity and thus causes autonomic dysfunction. PMID:3606971

  18. Cabin attendants’ exposure to vibration and shocks during landing

    NASA Astrophysics Data System (ADS)

    Burström, Lage; Lindberg, Lennart; Lindgren, Torsten

    2006-12-01

    The Scandinavian Airlines System (SAS) has noted that cabin attendants have reported an increase in health problems associated with landing. The European Union reports cover health problems related to neck, shoulder, and lower-back injuries. Moreover, analysis of these reports shows that the problems are often associated with specific airplanes that have a longer tail behind the rear wheels and appear more often in attendants who sit in the back of planes rather then the front. Against this background, this study measures and describes the vibration during landing in specific airplanes to evaluate the health risk for the cabin attendants. Measurements were conducted on regular flights with passengers in the type of airplane, Boeing 737-800, which was related to the highest per cent of reported health problems. All measurements were performed the same day during three landings in one airplane with the same pilots and cabin attendants. The measurements were carried out simultaneously on the cabin crew seats in the back and front of the passenger cabin. Under the cabin crew's seat cushions, a triaxiell seat-accelerometer was placed to measure the vibration in three axes. The signals from the accelerometers were amplified by charge amplifiers and stored on tape. The stored data were analysed with a computer-based analyse system. For the cabin attendants, the dominant direction for the vibration load during landing is the up-and-down direction although some vibration also occurs in the other horizontal directions. The exposure to vibration is higher on the rear crew seat compared to the front seat. For instance, both the vibration dose value (VDV) and the frequency-weighted acceleration in the dominant direction are more then 50% higher on the rear seat. The frequency-weighted acceleration and the VDV measured at the crew seats are below the exposure limits as described by the European vibration directive. The evaluation of the cabin attendants' exposure to multiple

  19. Mortality from myocardial infarction in relation to exposure to vibration and dust among a cohort of iron-ore miners in Sweden.

    PubMed

    Björ, Bodil; Burström, Lage; Eriksson, Kåre; Jonsson, Håkan; Nathanaelsson, Lena; Nilsson, Tohr

    2010-03-01

    The aim of this study was to investigate myocardial infarction (MI) mortality in relation to exposure to hand/arm vibration (HAV) and whole body vibration (WBV) as well as exposure to dust among men employed in two Swedish iron-ore mines. This study comprised employed men at two iron-ore mines in Sweden who had been employed for at least 1 year from 1923 up to 1996. The causes of death were obtained from the national cause of death register from 1952 to 2001. Myocardial infarction mortality was obtained by linking personal identification numbers to the national cause of death register. Poisson regression was used for risk estimations on exposure-response relation, and analyses were made on the two age groups < or =60 years and >60 years. Relative risks for MI mortality in relation to exposure were significantly increased for exposure (0/>0) to WBV (RR 1.18, 95% CI 1.06 to 1.31) and dust (RR 1.15, 95% CI 1.02 to 1.31), and the results indicated an exposure-response relation for WBV and dust separately. For 60 years and younger, exposure to HAV (0/>0) (RR 1.34, 95% CI 1.03 to 1.74) and WBV (0/>0) (RR 1.39, 95% CI 1.13 to 1.72) increased the risk of MI mortality. An exposure-response was found for HAV and WBV, as the medium and high exposed categories showed significantly increased risk estimates. None of the exposures significantly increased the risk in the group above 60 years. The increased risk estimates for exposure to WBV remained when adjusting for exposure to dust. The results for the working age (< or =60 years) group showed significantly increased MI mortality for univariate exposure to HAV, WBV and dust. We found an association between increased mortality from MI and occupational exposure to WBV, and the risk remained after adjustment for dust exposure.

  20. Dupuytren's contracture and occupational exposure to hand-transmitted vibration

    PubMed Central

    Palmer, Keith T; D'Angelo, Stefania; Syddall, Holly; Griffin, Michael J; Cooper, Cyrus; Coggon, David

    2014-01-01

    Aims The relation between Dupuytren's contracture and occupational exposure to hand-transmitted vibration (HTV) has frequently been debated. We explored associations in a representative national sample of workers with well-characterised exposure to HTV. Methods We mailed a questionnaire to 21 201 subjects aged 16–64 years, selected at random from the age-sex registers of 34 general practices in Great Britain and to 993 subjects chosen randomly from military pay records, asking about occupational exposure to 39 sources of HTV and about fixed flexion contracture of the little or ring finger. Analysis was restricted to men at work in the previous week. Estimates were made of average daily vibration dose (A(8) root mean squared velocity (rms)) over that week. Associations with Dupuytren's contracture were estimated by Poisson regression, for lifetime exposure to HTV and for exposures in the past week >A(8) of 2.8 ms−2 rms. Estimates of relative risk (prevalence ratio (PR)) were adjusted for age, smoking status, social class and certain manual activities at work. Results In all 4969 eligible male respondents supplied full information on the study variables. These included 72 men with Dupuytren's contracture, 2287 with occupational exposure to HTV and 409 with A(8)>2.8 ms−2 in the past week. PRs for occupational exposure to HTV were elevated 1.5-fold. For men with an A(8)>2.8 ms−2 in the past week, the adjusted PR was 2.85 (95% CI 1.37 to 5.97). Conclusions Our findings suggest that risk of Dupuytren's contracture is more than doubled in men with high levels of weekly exposure to HTV. PMID:24449599

  1. Time frequency characterization of hand-transmitted, impulsive vibrations using analytic wavelet transform

    NASA Astrophysics Data System (ADS)

    Kim, Jay; Welcome, Daniel E.; Dong, Ren G.; Joon Song, Won; Hayden, Charles

    2007-11-01

    Current guidelines to assess health risk of hand-arm vibration are based on the frequency-weighted rms acceleration level, therefore do not fully consider the effect of temporal variations of the spectral energy. Time averaging effect involved with the frequency analysis may severely underestimate the risk of impact tools. A time-frequency ( T- F) analysis is necessary to characterize a highly transient signal whose spectral characteristics change rapidly in time. The analytic wavelet transform (AWT) is an ideal T- F analysis tool as it possesses the advantages of both the Fourier and wavelet transforms. The AWT is applied to acceleration signals measured from six tools, five impact type tools and one relatively steady-type tool, to explore possible improvements of the current risk assessment method of hand-arm vibration exposure. Based on the unique capability of the AWT, several new concepts including frequency-weighted time history, cumulative injury function, and cumulative injury index are defined in this study. Possible applications of these new concepts to hand-arm vibration research are described. Based on the results from this study, needs for future research are discussed.

  2. Vibration exposure and biodynamic responses during whole-body vibration training.

    PubMed

    Abercromby, Andrew F J; Amonette, William E; Layne, Charles S; McFarlin, Brian K; Hinman, Martha R; Paloski, William H

    2007-10-01

    Excessive, chronic whole-body vibration (WBV) has a number of negative side effects on the human body, including disorders of the skeletal, digestive, reproductive, visual, and vestibular systems. Whole-body vibration training (WBVT) is intentional exposure to WBV to increase leg muscle strength, bone mineral density, health-related quality of life, and decrease back pain. The purpose of this study was to quantitatively evaluate vibration exposure and biodynamic responses during typical WBVT regimens. Healthy men and women (N = 16) were recruited to perform slow, unloaded squats during WBVT (30 Hz; 4 mm(p-p)), during which knee flexion angle (KA), mechanical impedance, head acceleration (Ha(rms)), and estimated vibration dose value (eVDV) were measured. WBVT was repeated using two forms of vibration: 1) vertical forces to both feet simultaneously (VV), and 2) upward forces to only one foot at a time (RV). Mechanical impedance varied inversely with KA during RV (effect size, eta(p)(2): 0.668, P < 0.01) and VV (eta(p)(2): 0.533, P < 0.05). Ha(rms) varied with KA (eta(p)(2): 0.686, P < 0.01) and is greater during VV than during RV at all KA (P < 0.01). The effect of KA on Ha(rms) is different for RV and VV (eta(p)(2): 0.567, P < 0.05). The eVDV associated with typical RV and VV training regimens (30 Hz, 4 mm(p-p), 10 min.d(-1)) exceeds the recommended daily vibration exposure as defined by ISO 2631-1 (P < 0.01). ISO standards indicate that 10 min.d(-1) WBVT is potentially harmful to the human body; the risk of adverse health effects may be lower during RV than VV and at half-squats rather than full-squats or upright stance. More research is needed to explore the long-term health hazards of WBVT.

  3. Ride Dynamics and Evaluation of Human Exposure to Whole Body Vibration. Change 1

    DTIC Science & Technology

    2012-04-03

    methods for evaluating the ride dynamics or ride quality of ground vehicles as well as the vehicle occupants’ exposure to Whole-Body Vibration ( WBV ...occur as a result of vibration exposure . The technique for collecting data to be used for either ride dynamics or WBV exposure assessments is similar...

  4. Power tiller: vibration magnitudes and intervention development for vibration reduction.

    PubMed

    Chaturvedi, Varun; Kumar, Adarsh; Singh, J K

    2012-09-01

    The operators of power tiller are exposed to a high level of vibration originating from the dynamic interaction between the soil and the machine. The vibration from the power tiller is transmitted from the handle to hands, arms and shoulders. In the present study, experiments were conducted in three operational conditions i.e. transportation on farm roads, tilling with cultivator and rota-tilling with rota-vator. The highest vibration values were observed in x-direction in all the experiments. The maximum vibration rms values for x-direction were 5.96, 6.81 and 8.00 ms(-2) in tilling with cultivator, transportation and rota-tilling respectively. Three materials were used for intervention development to reduce vibration magnitude. The maximum reduction of 25.30, 31.21 and 30.45% in transportation; 23.50, 30.64 and 20.86% in tilling with cultivator and 24.03, 29.18 and 25.52% in rota-tilling were achieved with polyurethane (PU), rubber and combination of PU and rubber intervention. It was found that the maximum vibration reductions were achieved with the rubber in all three operational conditions. The average exposure time for occurrence of white finger syndrome increased by 28-50% with incorporation of intervention in different operations. Physiological and postural parameters also improved with incorporation of interventions. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  5. Effect of hand-arm exercise on venous blood constituents during leg exercise

    NASA Technical Reports Server (NTRS)

    Wong, N.; Silver, J. E.; Greenawalt, S.; Kravik, S. E.; Geelen, G.

    1985-01-01

    Contributions by ancillary hand and arm actions to the changes in blood constituents effected by leg exercises on cycle ergometer were assessed. Static or dynamic hand-arm exercises were added to the leg exercise (50 percent VO2 peak)-only control regimens for the subjects (19-27 yr old men) in the two experimental groups. Antecubital venous blood was analyzed at times 0, 15, and 30 min (T0, T15, and T30) for serum Na(+), K(+), osmolality, albumin, total CA(2+), and glucose; blood hemoglobin, hematocrit, and lactic acid; and change in plasma volume. Only glucose and lactate values were affected by additional arm exercise. Glucose decreased 4 percent at T15 and T30 after static exercise, and by 2 percent at T15 (with no change at T30) after dynamic arm exercise. Conversely, lactic acid increased by 20 percent at T30 after static exercise, and by 14 percent by T15 and 6 percent at T30 after dynamic arm exercise. It is concluded that additional arm movements, performed usually when gripping the handle-bar on the cycle ergometer, could introduce significant errors in measured venous concentrations of glucose and lactate in the leg-exercised subjects.

  6. Exposure-response relationships for annoyance due to freight and passenger railway vibration exposure in residential environments.

    PubMed

    Sharp, Calum; Woodcock, James; Sica, Gennaro; Peris, Eulalia; Moorhouse, Andrew T; Waddington, David C

    2014-01-01

    In this work, exposure-response relationships for annoyance due to freight and passenger railway vibration exposure in residential environments are developed, so as to better understand the differences in human response to these two sources of environmental vibration. Data for this research come from a field study comprising interviews with respondents and measurements of their vibration exposure (N = 752). A logistic regression model is able to accurately classify 96% of these measured railway vibration signals as freight or passenger based on two signal properties that quantify the duration and low frequency content of each signal. Exposure-response relationships are then determined using ordinal probit modeling with fixed thresholds. The results indicate that people are able to distinguish between freight and passenger railway vibration, and that the annoyance response due to freight railway vibration is significantly higher than that due to passenger railway vibration, even for equal levels of exposure. In terms of a community tolerance level, the population studied is 15 dB (re 10(-6) m s(-2)) more tolerant to passenger railway vibration than freight railway vibration. These results have implications for the expansion of freight traffic on rail, or for policies to promote passenger railway.

  7. Ride Dynamics and Evaluation of Human Exposure to Whole Body Vibration

    DTIC Science & Technology

    2011-11-29

    serious injuries that may occur as a result of vibration exposure . The technique for collecting data to be used for either ride dynamics or WBV exposure ......evaluating the ride dynamics or ride quality and whole body vibration ( WBV ) of ground vehicles. Ride dynamics and WBV pertain to the sensation or feel of

  8. Nerve regeneration in nerve grafts conditioned by vibration exposure.

    PubMed

    Bergman, S; Widerberg, A; Danielsen, N; Lundborg, G; Dahlin, L B

    1995-01-01

    Regeneration distances were studied in nerves from vibration-exposed limbs. One hind limb of anaesthetized rats was attached to a vibration exciter and exposed to vibration (80 Hz/32 m/s2) for 5 h/day for 2 or 5 days. Seven days after the latest vibration period a 10-mm long nerve graft was taken from the vibrated sciatic nerve and sutured into a corresponding defect in the con-tralateral sciatic nerve and vice versa, thereby creating two different models within the same animal: (i) regeneration from a freshly transected unvibrated nerve into a vibrated graft and (ii) regeneration from a vibrated nerve into a fresh nerve graft (vibrated recipient side). Four, 6 or 8 days postoperatively (p.o.) the distances achieved by the regenerating axons were determined using the pinch reflex test. Two days of vibration did not influence the regeneration, but 5 days of vibration reduced the initial delay period and a slight reduction of regeneration rate was observed. After 5 days of vibration an increased regeneration distance was observed in both models at day 4 p.o. and at day 6 p.o. in vibrated grafts. This study demonstrates that vibration can condition peripheral nerves and this may be caused by local changes in the peripheral nerve trunk and in the neuron itself.

  9. Changes in EMG activity in the upper trapezius muscle due to local vibration exposure.

    PubMed

    Aström, Charlotte; Lindkvist, Markus; Burström, Lage; Sundelin, Gunnevi; Karlsson, J Stefan

    2009-06-01

    Exposure to vibration is suggested as a risk factor for developing neck and shoulder disorders in working life. Mechanical vibration applied to a muscle belly or a tendon can elicit a reflex muscle contraction, also called tonic vibration reflex, but the mechanisms behind how vibration could cause musculoskeletal disorders has not yet been described. One suggestion has been that the vibration causes muscular fatigue. This study investigates whether vibration exposure changes the development of muscular fatigue in the trapezius muscle. Thirty-seven volunteers (men and women) performed a sub-maximal isometric shoulder elevation for 3 min. This was repeated four times, two times with induced vibration and two times without. Muscle activity was measured before and after each 3-min period to look at changes in the electromyography parameters. The result showed a significantly smaller mean frequency decrease when performing the shoulder elevation with vibration (-2.51 Hz) compared to without vibration (-4.04 Hz). There was also a slightly higher increase in the root mean square when exposed to vibration (5.7% of maximal voluntary contraction) compared to without (3.8% of maximal voluntary contraction); however, this was not statistically significant. The results of the present study indicate that short-time exposure to vibration has no negative acute effects on the fatiguing of upper trapezius muscle.

  10. The temporary threshold shift of vibratory sensation induced by composite-band vibration exposure.

    PubMed

    Nishiyama, K; Taoda, K; Yamashita, H; Watanabe, S

    1996-01-01

    Eight healthy subjects were exposed to three 1/3 octave-band vibrations (63, 200, and 500 Hz) by hand clasping a vibrated handle in a soundproof and thermoregulated room. The vibratory sensation threshold at 125 Hz was measured before and after the vibration exposure at an exposed fingertip. According to a preceding study, we first determined the relationship between the acceleration of the vibration and the temporary threshold shift of vibratory sensation immediately after the vibratory exposure (TTSv,0) induced by 1/3 octave-band vibration. We then measured TTSv after the exposure to a composite vibration composed of two 1/3 octave-band vibrations that might induce an equal magnitude of TTSv,0 on the basis of the above relationship. The TTSv,0 induced by the composite vibration was not larger than the TTSv,0 induced by the component vibrations. This result suggests that the component of the vibration inducing the largest TTSv,0 determines the TTSv,0 by broad-band random vibration.

  11. Vibration exposure for selected power hand tools used in automobile assembly.

    PubMed

    Radwin, R G; Armstrong, T J; Vanbergeijk, E

    1990-09-01

    A practical method for assessing vibration exposure for workers operating vibrating hand tools on an automobile assembly line is presented. Vibration exposure is difficult to assess directly using many fast Fourier transform (FFT) spectral analyzers because of long task cycle times. Exposure time cannot be accurately estimated using time standards because of the high variability between operators and work methods. Furthermore, because workers frequently move about and get into inaccessible spaces, it is difficult to record vibration without interfering with the operation. A work sampling method was used for determining vibration exposure time by attaching accelerometers to the tools and suspending a battery-operated digital data logger from the air hose. Vibration acceleration and frequency spectra for each tool were obtained off-line replicating actual working conditions and analyzed together with exposure time data for determining individual worker vibration exposure. Eight pneumatic vibrating power hand tools, representing tools commonly used in an automobile assembly plant, were studied. Spectra for the rotary and reciprocating power tools and had large distinct dominant fundamental frequencies occurring in a narrow frequency range between 35 Hz and 150 Hz. These frequencies corresponded closely to tool free-running speeds, suggesting that major spectral component frequencies may be predicted on the basis of speed for some tools.

  12. Design of measurement methodology for the evaluation of human exposure to vibration in residential environments.

    PubMed

    Sica, G; Peris, E; Woodcock, J S; Moorhouse, A T; Waddington, D C

    2014-06-01

    Exposure-response relationships are important tools for policy makers to assess the impact of an environmental stressor on the populace. Their validity lies partly in their statistical strength which is greatly influenced by the size of the sample from which the relationship is derived. As such, the derivation of meaningful exposure-response relationships requires estimates of vibration exposure at a large number of receiver locations. In the United Kingdom a socio-vibrational survey has been conducted with the aim of deriving exposure-response relationships for annoyance due to vibration from (a) railway traffic and (b) the construction of a new light rail system. Response to vibration was measured via a questionnaire conducted face-to-face with residents in their own homes and vibration exposure was estimated using data from a novel measurement methodology. In total, 1281 questionnaires were conducted: 931 for vibration from railway traffic and 350 for vibration from construction sources. Considering the interdisciplinary nature of this work along with the volume of experimental data required, a number of significant technical and logistical challenges needed to be overcome through the planning and implementation of the fieldwork. Four of these challenges are considered in this paper: the site identification for providing a robust sample of the residents affected, the strategies used for measuring both exposure and response and the coordination between the teams carrying out the social survey and the vibration measurements. © 2013 Elsevier B.V. All rights reserved.

  13. Effects of Exposure to Railway NOISE—A Comparison Between Areas with and Without Vibration

    NASA Astrophysics Data System (ADS)

    Öhrström, E.

    1997-08-01

    This paper presents some of the results of field investigations on effects of exposure to noise and vibration from railway traffic. Effects on annoyance, sleep disturbances and psycho-social well-being as well as disturbance of different activities were evaluated by a postal questionnaire. Fifteen different sites located near railway lines in Sweden were investigated. The study covered areas with different number of trains per 24 hours in area with strong vibration caused by the railway traffic exceeding 2 mm/s as measured in the buildings as well as areas without vibration, or vibration weaker than 1 mm/s. 2833 persons between 18 and 75 years of age participated in the study. This paper presents only the results from two areas with and without vibration and a high number of trains per 24 hours. The results show that railway noise is experienced as more annoying in areas where there is simultaneous exposure to vibration from railway traffic. Disturbance of communication was the most frequently mentioned annoyance reaction, outside and inside the dwelling. To ensure an acceptable environmental quality where less than 5% of the exposed population is rather or very annoyed by railway noise, these noise levels must be below 80LAmaxand below 55LAeqin areas without vibration. In areas with simultaneous exposure to strong vibration, action against vibration or a longer distance between houses and the railway line is needed, corresponding to a 10 dB(A) lower noise level than in areas without vibration.

  14. Apparent Mass and Absorbed Power during Exposure to Whole-Body Vibration and Repeated Shocks

    NASA Astrophysics Data System (ADS)

    MANSFIELD, N. J.; HOLMLUND, P.; LUNDSTRÖM, R.

    2001-11-01

    Exposure to mechanical shocks might pose a greater health risk than exposure to continuous vibration. Previous studies have investigated subjective responses, muscle activity or transmission of vibration to the spine or head during shock. If there is a difference between biomechanic responses of the seated body to shocks when compared to continuous vibration, then this may indicate a more, or less, hazardous vibration waveform. This paper presents measurements of apparent mass and absorbed power during exposure to random vibration, repeated shocks and combinations of shocks and random vibration. Eleven male and 13 female subjects were exposed to 15 vibration conditions generated using an electro-dynamic shaker. Subjects were exposed to five 20 s acceleration waveforms with nominally identical power spectra (random vibration, equally spaced shocks, unequally spaced shocks, random combined with equally spaced shocks, random combined with unequally spaced shocks) at each of 0·5, 1·0 and 1·5 m/s2r.m.s. The general shapes of the apparent mass or absorbed power curves were not affected by stimulus type, indicating that the biomechanical response of the body is fundamentally the same when exposed to shocks or random vibration. Two non-linear effects were observed: apparent mass resonance frequencies were slightly higher for exposure to shocks; apparent mass and absorbed power resonance frequencies decreased with increases in vibration magnitude for each stimulus type. It is concluded that the two non-linear mechanisms operate simultaneously: a stiffening effect during exposure to shocks and a softening effect as vibration magnitudes increase. Total absorbed powers were greatest for shock stimuli and least for random vibration.

  15. [Effect of stevia on the picture of peripheral blood under exposure to vibration].

    PubMed

    Adamyan, Ts I; Gevorkyan, E S

    2014-01-01

    There were investigated changes in the peripheral blood of rabbits under prolonged exposure to vibration (5, 10, 20, 30 days). In a separate series of experiments, the nature of changes in the peripheral blood was investigated under the combined action of vibration and stevia leaves. Contained in stevia biologically active substances were found to accelerate metabolism in bone marrow stem cells, promote the compensatory ability of the organism, thereby providing the resistance of the body to the vibration factor.

  16. Head and Helmet Biodynamics and Tracking Performance During Exposure to Whole-Body Vibration

    DTIC Science & Technology

    2005-02-01

    Vibration Suzanne D. Smith Air Force Research Laboratory Jeanne A. Smith Raymond J. Newman Advanced Information Engineering Services, Inc. A General...AND HELMET BIODYNAMICS AND TRACKING PERFORMANCE DURING EXPOSURE TO WHOLE-BODY VIBRATION 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62202F 6. AUTHOR(S...distribution is unlimited. 13. SUPPLEMENTARY NOTES Presented at the UK Conference on Human Response to Vibration , England Sep 2004 14. ABSTRACT Helmet

  17. The Effects of Impact Vibration on Peripheral Blood Vessels and Nerves

    PubMed Central

    KRAJNAK, Kristine M.; WAUGH, Stacey; JOHNSON, Claud; MILLER, G. Roger; XU, Xueyan; WARREN, Christopher; DONG, Ren G.

    2013-01-01

    Research regarding the risk of developing hand-arm vibration syndrome after exposure to impact vibration has produced conflicting results. This study used an established animal model of vibration-induced dysfunction to determine how exposure to impact vibration affects peripheral blood vessels and nerves. The tails of male rats were exposed to a single bout of impact vibration (15 min exposure, at a dominant frequency of 30 Hz and an unweighted acceleration of approximately 345 m/s2) generated by a riveting hammer. Responsiveness of the ventral tail artery to adrenoreceptor-mediated vasoconstriction and acetylcholine-mediated re-dilation was measured ex vivo. Ventral tail nerves and nerve endings in the skin were assessed using morphological and immunohistochemical techniques. Impact vibration did not alter vascular responsiveness to any factors or affect trunk nerves. However, 4 days following exposure there was an increase in protein-gene product (PGP) 9.5 staining around hair follicles. A single exposure to impact vibration, with the exposure characteristics described above, affects peripheral nerves but not blood vessels. PMID:24077447

  18. Vibration-reducing gloves: transmissibility at the palm of the hand in three orthogonal directions.

    PubMed

    McDowell, Thomas W; Dong, Ren G; Welcome, Daniel E; Xu, Xueyan S; Warren, Christopher

    2013-01-01

    Vibration-reducing (VR) gloves are commonly used as a means to help control exposures to hand-transmitted vibrations generated by powered hand tools. The objective of this study was to characterise the vibration transmissibility spectra and frequency-weighted vibration transmissibility of VR gloves at the palm of the hand in three orthogonal directions. Seven adult males participated in the evaluation of seven glove models using a three-dimensional hand-arm vibration test system. Three levels of hand coupling force were applied in the experiment. This study found that, in general, VR gloves are most effective at reducing vibrations transmitted to the palm along the forearm direction. Gloves that are found to be superior at reducing vibrations in the forearm direction may not be more effective in the other directions when compared with other VR gloves. This casts doubts on the validity of the standardised glove screening test. Practitioner Summary: This study used human subjects to measure three-dimensional vibration transmissibility of vibration-reducing gloves at the palm and identified their vibration attenuation characteristics. This study found the gloves to be most effective at reducing vibrations along the forearm direction. These gloves did not effectively attenuate vibration along the handle axial direction.

  19. Measurement of Whole-Body Vibration Exposure from Garbage Trucks

    NASA Astrophysics Data System (ADS)

    Maeda, S.; Morioka, M.

    1998-08-01

    Japanese garbage truck drivers are exposed to mechanical whole-body vibration during their work. Some drivers have suffered from low back pain from this vibration. However, there is no evidence of a relationship between the whole-body vibration from the garbage trucks and low back pain or occupational disease, due to the lack of investigations. A field study was conducted in order to characterize the health risks associated with garbage truck work. Three different types of truck were tested at different loadings and on different road surfaces, with the vibrations measured at the driver/seat interface (x,y, andz-axes). The vibrations were compared with the health risk guidance according to Annex B of ISO 2631-1 [1]. The findings of this study indicated that Japanese garbage truck drivers should not operate trucks for 2.5 h in a day, under current working conditions.

  20. Influence on operator's health of hand-transmitted vibrations from handles of a single-axle tractor.

    PubMed

    Goglia, Vlado; Gospodaric, Zlatko; Filipovic, Dubravko; Djukic, Igor

    2006-01-01

    The operators of the single-axle tractors are especially exposed to hand-arm transmitted vibrations. These vibrations can cause the complex of vascular, neurological and musculoskeletal disorders, collectively named hand-arm vibration syndrome. Among these, the most common disorder is vibration-induced white finger (Raynaud's phenomenon). The vibration levels were measured in three tractor's working conditions, namely idling, transportation and soil tillage. The vibration level on the handles was measured and analysed and the frequency spectra for the chosen working conditions were obtained. The frequency-weighted acceleration, given in m/s2, was calculated and the obtained values are graphically presented. The measured vibration levels are then discussed with regard to the operator's daily exposure limits recommended by the ISO 5349. The vibration levels were much higher in the x and y directions than the z-direction in all working conditions. The vibration total values in idling, transportation and soil tillage were 3.37, 8.37 and 9.62 m/s2, respectively. Results showed that the 10% of workers are exposed to a risk of vibration-induced white finger disorder of the hands after relatively short periods (3-4 years), if the tractor is used 8 hour per day in soil tillage and transportation at full load. Considering the criteria of the ISO 5349, the daily working time with the single-axle tractor should be limited in order to protect the operator and work schedules should be arranged to include vibration-free periods.

  1. Neuromuscular response of the trunk to inertial based sudden perturbations following whole body vibration exposure.

    PubMed

    MacIntyre, Danielle; Cort, Joel A

    2014-12-01

    The effects of whole body vibration exposure on the neuromuscular responses following inertial-based trunk perturbations were examined. Kinematic and surface EMG (sEMG) data were collected while subjects were securely seated on a robotic platform. Participants were either exposed to 10 min of vibration or not, which was followed by sudden inertial trunk perturbations with and without timing and direction knowledge. Amplitude of sEMG was analyzed for data collected during the vibration protocol, whereas the onset of sEMG activity and lumbar spine angle were analyzed for the perturbation protocol. Data from the vibration protocol did not show a difference in amplitude of sEMG for participants exposed to vibration and those not. The perturbation protocol data showed that those not exposed to vibration had a 14% faster muscle onset, despite data showing no difference in fatigue level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Retrospective assessment of occupational exposure to whole-body vibration for a case-control study.

    PubMed

    Harris, M Anne; Cripton, Peter A; Teschke, Kay

    2012-01-01

    Occupational whole-body vibration is often studied as a risk factor for conditions that may arise soon after exposure, but only rarely have studies examined associations with conditions arising long after occupational exposure has ceased. We aimed to develop a method of constructing previous occupational whole-body vibration exposure metrics from self-reported data collected for a case-control study of Parkinson's disease. A detailed job history and exposure interview was administered to 808 residents of British Columbia, Canada (403 people with Parkinson's disease and 405 healthy controls). Participants were prompted to report exposure to whole-body vibrating equipment. We limited the data to exposure reports deemed to be above background exposures and used the whole-body vibration literature (typically reporting on seated vector sum measurements) to assign intensity (acceleration) values to each type of equipment reported. We created four metrics of exposure (duration of exposure, most intense equipment exposure, and two dose metrics combining duration and intensity) and examined their distributions and correlations. We tested the role of age and gender in predicting whole-body vibration exposure. Thirty-six percent of participants had at least one previous occupational exposure to whole-body vibrating equipment. Because less than half of participants reported exposure, all continuous metrics exhibited positively skewed distributions, although the distribution of most intense equipment exposure was more symmetrically distributed among the exposed. The arithmetic mean of duration of exposure among those exposed was 14.0 (standard deviation, SD: 14.2) work years, while the geometric mean was 6.8 (geometric SD, GSD: 4.5). The intensity of the most intense equipment exposure (among the exposed) had an arithmetic mean of 0.9 (SD: 0.3) m·s(-2) and a geometric mean of 0.8 (GSD: 1.4). Male gender and older age were both associated with exposure, although the effect of

  3. Vibration induced white-feet: Overview and field study of vibration exposure and reported symptoms in workers

    PubMed Central

    Eger, Tammy; Thompson, Aaron; Leduc, Mallorie; Krajnak, Kristine; Goggins, Katie; Godwin, Alison; House, Ron

    2015-01-01

    BACKGROUND Workers who stand on platforms or equipment that vibrate are exposed to foot-transmitted vibration (FTV). Exposure to FTV can lead to vibration white feet/toes resulting in blanching of the toes, and tingling and numbness in the feet and toes. OBJECTIVES The objectives are 1) to review the current state of knowledge of the health risks associated with foot-transmitted vibration (FTV), and 2) to identify the characteristics of FTV and discuss the associated risk of vibration-induced injury. PARTICIPANTS Workers who operated locomotives (n = 3), bolting platforms (n = 10), jumbo drills (n = 7), raise drilling platforms (n = 4), and crushers (n = 3), participated. METHODS A tri-axial accelerometer was used to measure FTV in accordance with ISO 2631-1 guidelines. Frequency-weighted root-mean-square acceleration and the dominant frequency are reported. Participants were also asked to report pain/ache/discomfort in the hands and/or feet. RESULTS Reports of pain/discomfort/ache were highest in raise platform workers and jumbo drill operators who were exposed to FTV in the 40 Hz and 28 Hz range respectively. Reports of discomfort/ache/pain were lowest in the locomotive and crusher operators who were exposed to FTV below 10 Hz. These findings are consistent with animal studies that have shown vascular and neural damage in exposed appendages occurs at frequencies above 40 Hz. CONCLUSIONS Operators exposed to FTV at 40 Hz appear to be at greater risk of experiencing vibration induced injury. Future research is required to document the characteristics of FTV and epidemiological evidence is required to link exposure with injury. PMID:24004754

  4. Rock drills used in South African mines: a comparative study of noise and vibration levels.

    PubMed

    Phillips, J I; Heyns, P S; Nelson, G

    2007-04-01

    To compare the noise and vibration levels associated with three hand-held rock drills (pneumatic, hydraulic and electric) currently used in South African mines, and a prototype acoustically shielded self-propelled rock drill. Equivalent A-weighted sound pressure levels were recorded on a geometrical grid, using Rion NL-11 and NL-14 sound level meters. Vibration measurements were conducted on the pneumatic, hydraulic and electric drills in accordance with the ISO5349-1 (2001) international standard on human exposure to hand-transmitted vibration, using a Brupsilonel and Kjaer UA0894 hand adaptor. PCB Piezo accelerometers were used to measure vibration in three orthogonal directions. No vibration measurements were conducted on the self-propelled drill. All four drills emitted noise exceeding 85 dB(A). The pneumatic drill reached levels of up to 114 dB(A), while the shielded self-propelled drill almost complied with the 85 dB(A) 8 h exposure limit. Vibration levels of up to 31 m s(-2) were recorded. These levels greatly exceed recommended and legislated levels. Significant engineering advances will need to be made in the manufacture of rock drills to impact on noise induced hearing loss and hand arm vibration syndrome. Isolating the operator from the drill, as for the self-propelled drill, addresses the problems of both vibration and noise exposure, and is a possible direction for future development.

  5. Whole-body vibration exposure of occupational horseback riding in agriculture: A ranching example.

    PubMed

    Zeng, Xiaoke; Trask, Catherine; Kociolek, Aaron M

    2017-02-01

    Horse riding is common in many occupations; however, there is currently no research evaluating exposure to whole-body vibration and mechanical shock on horseback. Whole-body vibration was measured on a cattle rancher during two 30 min horseback rides using a tri-axial accelerometer mounted on a western saddle. Vibration was summarized into standardized metrics, including the 8 hr equivalent root-mean-squared acceleration (A[8]) and the daily 4th power vibration dose value (VDV). The resulting exposures were compared to the exposure limit and action values provided by European Union Directive 2002/44/EC. The highest vibration for both rides was in the vertical axis, with average A(8) and VDV of 0.56 m/s(2) and 26.24 m/s(1.75) , respectively. The A(8) value indicated moderate risk while the VDV suggested high risk of harmful health effects. Exposure to whole-body vibration and mechanical shock during occupational horseback riding may pose deleterious health risks and increased susceptibility to low back pain. Am. J. Ind. Med. 60:215-220, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Health risks of vibration exposure to wheelchair users in the community.

    PubMed

    Garcia-Mendez, Yasmin; Pearlman, Jonathan L; Boninger, Michael L; Cooper, Rory A

    2013-07-01

    The purpose of this study was to evaluate whole-body vibration (WBV) exposure to wheelchair (WC) users in their communities and to determine the effect of WC frame type (folding, rigid, and suspension) in reducing WBV transmitted to the person. An observational case-control study of the WBV exposure levels among WC users. Thirty-seven WC users, with no pressure sores, 18 years old or older and able to perform independent transfers. WC users were monitored for 2 weeks to collect WBV exposure, as well as activity levels, by using custom vibration and activity data-loggers. Vibration levels were evaluated using ISO 2631-1 methods. All WC users who participated in this study were continuously exposed to WBV levels at the seat that were within and above the health caution zone specified by ISO 2631-1 during their day-to-day activities (0.83 ± 0.17 m/second(2), weighted root-mean-squared acceleration, for 13.07 ± 3.85 hours duration of exposure). WCs with suspension did not attenuate vibration transmitted to WC users (V = 0.180, F(8, 56) = 0.692, P = 0.697). Conclusions WBV exposure to WC users exceeds international standards. Suspension systems need to be improved to reduce vibrations transmitted to the users.

  7. Health risks of vibration exposure to wheelchair users in the community

    PubMed Central

    Garcia-Mendez, Yasmin; Pearlman, Jonathan L.; Boninger, Michael L.; Cooper, Rory A.

    2013-01-01

    Objective The purpose of this study was to evaluate whole-body vibration (WBV) exposure to wheelchair (WC) users in their communities and to determine the effect of WC frame type (folding, rigid, and suspension) in reducing WBV transmitted to the person. Design An observational case-control study of the WBV exposure levels among WC users. Participants Thirty-seven WC users, with no pressure sores, 18 years old or older and able to perform independent transfers. Main outcome measures WC users were monitored for 2 weeks to collect WBV exposure, as well as activity levels, by using custom vibration and activity data-loggers. Vibration levels were evaluated using ISO 2631-1 methods. Results All WC users who participated in this study were continuously exposed to WBV levels at the seat that were within and above the health caution zone specified by ISO 2631-1 during their day-to-day activities (0.83 ± 0.17 m/second2, weighted root-mean-squared acceleration, for 13.07 ± 3.85 hours duration of exposure). WCs with suspension did not attenuate vibration transmitted to WC users (V = 0.180, F(8, 56) = 0.692, P = 0.697). Conclusions WBV exposure to WC users exceeds international standards. Suspension systems need to be improved to reduce vibrations transmitted to the users. PMID:23820152

  8. RECOVERY OF VASCULAR FUNCTION AFTER EXPOSURE TO A SINGLE BOUT OF SEGMENTAL VIBRATION

    PubMed Central

    Krajnak, Kristine; Waugh, Stacey; Miller, G. Roger; Johnson, Claud

    2015-01-01

    Work rotation schedules may be used to reduce the negative effects of vibration on vascular function. This study determined how long it takes vascular function to recover after a single exposure to vibration in rats (125 Hz, acceleration 5g). The responsiveness of rat-tail arteries to the vasoconstricting factor UK14304, an α2C-adrenoreceptor agonist, and the vasodilating factor acetylcholine (ACh) were measured ex vivo 1, 2, 7, or 9 d after exposure to a single bout of vibration. Vasoconstriction induced by UK14304 returned to control levels after 1 d of recovery. However, re-dilation induced by ACh did not return to baseline until after 9 d of recovery. Exposure to vibration exerted prolonged effects on peripheral vascular function, and altered vascular responses to a subsequent exposure. To optimize the positive results of work rotation schedules, it is suggested that studies assessing recovery of vascular function after exposure to a single bout of vibration be performed in humans. PMID:25072825

  9. Neonatal head and torso vibration exposure during inter-hospital transfer

    PubMed Central

    Blaxter, Laurence; Yeo, Mildrid; McNally, Donal; Crowe, John; Henry, Caroline; Hill, Sarah; Mansfield, Neil; Leslie, Andrew; Sharkey, Don

    2017-01-01

    Inter-hospital transport of premature infants is increasingly common, given the centralisation of neonatal intensive care. However, it is known to be associated with anomalously increased morbidity, most notably brain injury, and with increased mortality from multifactorial causes. Surprisingly, there have been relatively few previous studies investigating the levels of mechanical shock and vibration hazard present during this vehicular transport pathway. Using a custom inertial datalogger, and analysis software, we quantify vibration and linear head acceleration. Mounting multiple inertial sensing units on the forehead and torso of neonatal patients and a preterm manikin, and on the chassis of transport incubators over the duration of inter-site transfers, we find that the resonant frequency of the mattress and harness system currently used to secure neonates inside incubators is ~9Hz. This couples to vehicle chassis vibration, increasing vibration exposure to the neonate. The vibration exposure per journey (A(8) using the ISO 2631 standard) was at least 20% of the action point value of current European Union regulations over all 12 neonatal transports studied, reaching 70% in two cases. Direct injury risk from linear head acceleration (HIC15) was negligible. Although the overall hazard was similar, vibration isolation differed substantially between sponge and air mattresses, with a manikin. Using a Global Positioning System datalogger alongside inertial sensors, vibration increased with vehicle speed only above 60 km/h. These preliminary findings suggest there is scope to engineer better systems for transferring sick infants, thus potentially improving their outcomes. PMID:28056712

  10. Neonatal head and torso vibration exposure during inter-hospital transfer.

    PubMed

    Blaxter, Laurence; Yeo, Mildrid; McNally, Donal; Crowe, John; Henry, Caroline; Hill, Sarah; Mansfield, Neil; Leslie, Andrew; Sharkey, Don

    2017-02-01

    Inter-hospital transport of premature infants is increasingly common, given the centralisation of neonatal intensive care. However, it is known to be associated with anomalously increased morbidity, most notably brain injury, and with increased mortality from multifactorial causes. Surprisingly, there have been relatively few previous studies investigating the levels of mechanical shock and vibration hazard present during this vehicular transport pathway. Using a custom inertial datalogger, and analysis software, we quantify vibration and linear head acceleration. Mounting multiple inertial sensing units on the forehead and torso of neonatal patients and a preterm manikin, and on the chassis of transport incubators over the duration of inter-site transfers, we find that the resonant frequency of the mattress and harness system currently used to secure neonates inside incubators is [Formula: see text]. This couples to vehicle chassis vibration, increasing vibration exposure to the neonate. The vibration exposure per journey (A(8) using the ISO 2631 standard) was at least 20% of the action point value of current European Union regulations over all 12 neonatal transports studied, reaching 70% in two cases. Direct injury risk from linear head acceleration (HIC15) was negligible. Although the overall hazard was similar, vibration isolation differed substantially between sponge and air mattresses, with a manikin. Using a Global Positioning System datalogger alongside inertial sensors, vibration increased with vehicle speed only above 60 km/h. These preliminary findings suggest there is scope to engineer better systems for transferring sick infants, thus potentially improving their outcomes.

  11. Validity of self reported occupational exposures to hand transmitted and whole body vibration

    PubMed Central

    Palmer, K.; Haward, B.; Griffin, M.; Bendall, H.; Coggon, D.

    2000-01-01

    OBJECTIVES—To assess the accuracy with which workers report their exposure to occupational sources of hand transmitted (HTV) and whole body vibration (WBV).
METHODS—179 Workers from various jobs involving exposure to HTV or WBV completed a self administered questionnaire about sources of occupational exposure to vibration in the past week. They were then observed at work over 1 hour, after which they completed a second questionnaire concerning their exposures during this observation period. The feasibility of reported sources of exposure during the past week was examined by questioning managers and by inspection of tools and machines in the workplace. The accuracy of reported sources and durations of exposure in the 1 hour period were assessed relative to what had been observed.
RESULTS—The feasibility of exposure in the previous week was confirmed for 97% of subjects who reported exposure to HTV, and for 93% of subjects who reported exposure to WBV. The individual sources of exposure reported were generally plausible, but occupational use of cars was substantially overreported, possibly because of confusion with their use in travel to and from work. The accuracy of exposures reported during the observation period was generally high, but some sources of HTV were confused—for example, nailing and stapling guns reported as riveting hammers, and hammer drills not distinguished from other sorts of drill. Workers overestimated their duration of exposure to HTV by a median factor of 2.5 (interquartile range (IQR) 1.6-5.9), but estimated durations of exposure were more accurate when the exposure was relatively continuous rather than for intermittent short periods. Reported durations of exposure to WBV were generally accurate (median ratio of reported to observed time 1.1, IQR 1.0-1.2).
CONCLUSIONS—Sources of recent occupational exposure to vibration seem to be reported with reasonable accuracy, but durations of exposure to HTV are systematically

  12. Whole-body vibration exposure of haul truck drivers at a surface coal mine.

    PubMed

    Wolfgang, Rebecca; Burgess-Limerick, Robin

    2014-11-01

    Haul truck drivers at surface mines are exposed to whole-body vibration for extended periods. Thirty-two whole-body vibration measurements were gathered from haul trucks under a range of normal operating conditions. Measurements taken from 30 of the 32 trucks fell within the health guidance caution zone defined by ISO2631-1 for an 8 h daily exposure suggesting, according to ISO2631-1, that "caution with respect to potential health risks is indicated". Maintained roadways were associated with substantially lower vibration amplitudes. Larger trucks were associated with lower vibration levels than small trucks. The descriptive nature of the research, and small sample size, prevents any strong conclusion regarding causal links. Further investigation of the variables associated with elevated vibration levels is justified. The operators of mining equipment such as haul trucks are exposed to whole-body vibration amplitudes which have potential to lead to long term health effects. Systematic whole-body vibration measurements taken at frequent intervals are required to provide an understanding of the causes of elevated vibration levels and hence determine appropriate control measures. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  13. A longitudinal study of neck and upper limb musculoskeletal disorders and alternative measures of vibration exposure.

    PubMed

    Bovenzi, Massimo; Prodi, Andrea; Mauro, Marcella

    2016-08-01

    To investigate the exposure-response relationships between alternative frequency weightings of hand-transmitted vibration (HTV) and neck and upper limb musculoskeletal disorders (MSDs) in a cohort of HTV workers. In a three-year longitudinal study, the occurrence of neck and upper limb MSDs was investigated in 249 HTV workers and 138 control men. In the HTV workers, MSDs were related to measures of daily vibration exposure expressed in terms of 8-h energy-equivalent frequency-weighted acceleration magnitude [A(8)]. To calculate A(8), the acceleration magnitudes of vibration were weighted by means of four alternative frequency weightings of HTV. The associations between MSDs, individual characteristics, physical work load other than vibration, and psychological strain were also investigated. The occurrence of upper limb MSDs was greater in the HTV workers than in the controls. After adjustment for potential confounders, the occurrence of elbow/forearm and wrist/hand MSDs increased with the increase in vibration exposure. A measure of model selection did not reveal any substantial difference in the performance of the alternative frequency weightings of HTV for the prediction of neck and upper limb MSDs. In the study population, age, hard physical work load, and poor psychological well-being were associated with both neck and upper limb MSDs. In this study, there was evidence for significant exposure-response relationships between HTV exposure and MSDs in the distal sites of the upper limbs. There were no differences in the prediction of neck and upper limb MSDs between measures of daily vibration exposure calculated with alternative frequency weightings of acceleration magnitude.

  14. Exploring the effects of seated whole body vibration exposure on repetitive asymmetric lifting tasks.

    PubMed

    Mehta, Jay P; Lavender, Steven A; Jagacinski, Richard J; Sommerich, Carolyn M

    2015-01-01

    This study investigated changes in the physiological and behavioral responses to repetitive asymmetric lifting activity after exposure to whole body vibrations. Seventeen healthy volunteers repeatedly lifted a box (15% of lifter's capacity) positioned in front of them at ankle level to a location on their left side at waist level at the rate of 10 lifts/min for a period of 60 minutes. Prior to lifting, participants were seated on a vibrating platform for 60 minutes; in one of the two sessions the platform did not vibrate. Overall, the physiological responses assessed using near-infrared spectroscopy signals for the erector spinae muscles decreased significantly over time during the seating and the lifting tasks (p < 0.001). During repetitive asymmetric lifting, behavioral changes included increases in peak forward bending motion, twisting movement, and three-dimensional movement velocities of the spine. The lateral bending movement of the spine and the duration of each lift decreased significantly over the 60 minutes of repetitive lifting. With exposure to whole body vibration, participants twisted farther (p = 0.046) and twisted faster (p = 0.025). These behavioral changes would suggest an increase in back injury risk when repetitive lifting tasks are preceded by whole body vibration exposure.

  15. Tool-specific performance of vibration-reducing gloves for attenuating palm-transmitted vibrations in three orthogonal directions

    PubMed Central

    Dong, Ren G.; Welcome, Daniel E.; Peterson, Donald R.; Xu, Xueyan S.; McDowell, Thomas W.; Warren, Christopher; Asaki, Takafumi; Kudernatsch, Simon; Brammer, Antony

    2015-01-01

    Vibration-reducing (VR) gloves have been increasingly used to help reduce vibration exposure, but it remains unclear how effective these gloves are. The purpose of this study was to estimate tool-specific performances of VR gloves for reducing the vibrations transmitted to the palm of the hand in three orthogonal directions (3-D) in an attempt to assess glove effectiveness and aid in the appropriate selection of these gloves. Four typical VR gloves were considered in this study, two of which can be classified as anti-vibration (AV) gloves according to the current AV glove test standard. The average transmissibility spectrum of each glove in each direction was synthesized based on spectra measured in this study and other spectra collected from reported studies. More than seventy vibration spectra of various tools or machines were considered in the estimations, which were also measured in this study or collected from reported studies. The glove performance assessments were based on the percent reduction of frequency-weighted acceleration as is required in the current standard for assessing the risk of vibration exposures. The estimated tool-specific vibration reductions of the gloves indicate that the VR gloves could slightly reduce (<5%) or marginally amplify (<10%) the vibrations generated from low-frequency (<25 Hz) tools or those vibrating primarily along the axis of the tool handle. With other tools, the VR gloves could reduce palm-transmitted vibrations in the range of 5%–58%, primarily depending on the specific tool and its vibration spectra in the three directions. The two AV gloves were not more effective than the other gloves with some of the tools considered in this study. The implications of the results are discussed. Relevance to industry Hand-transmitted vibration exposure may cause hand-arm vibration syndrome. Vibration-reducing gloves are considered as an alternative approach to reduce the vibration exposure. This study provides useful information

  16. Multi-body dynamics modelling of seated human body under exposure to whole-body vibration.

    PubMed

    Yoshimura, Takuya; Nakai, Kazuma; Tamaoki, Gen

    2005-07-01

    In vehicle systems occupational drivers might expose themselves to vibration for a long time. This may cause illness of the spine such as chronic lumbago or low back pain. Therefore, it is necessary to evaluate the influence of vibration to the spinal column and to make up appropriate guidelines or counter plans. In ISO2631-1 or ISO2631-5 assessment of vibration effects to human in the view of adverse-health effect was already presented. However, it is necessary to carry out further research to understand the effect of vibration to human body to examine their validity and to prepare for the future revision. This paper shows the detail measurement of human response to vibration, and the modelling of the seated human body for the assessment of the vibration risk. The vibration transmissibilities from the seat surface to the spinal column and to the head are measured during the exposure to vertical excitation. The modal paramters of seated subject are extracted in order to understand the dominant natural modes. For the evaluation of adverse-health effect the multi-body modelling of the spinal column is introduced. A simplified model having 10 DOFs is counstructed so that the transmissibilities of the model fit to those of experiment. The transient response analysis is illustrated when a half-sine input is applied. The relative displacements of vertebrae are evaluated, which can be a basis for the assessment of vibration risk. It is suggested that the multi-body dynamic model is used to evaluate the vibration effect to the spinal column for seated subjects.

  17. Estimation of biodynamic forces distributed on the fingers and the palm exposed to vibration.

    PubMed

    Dong, Ren G; Welcome, Daniel E; Wu, John Z

    2005-07-01

    The hand-tool coupling force in the operation of a vibrating tool is generally composed of applied force (AF) and biodynamic force (BF). There is wide interest in quantifying the coupling force. The objectives of this study are to develop an effective method for estimating the BF and to investigate its fundamental characteristics. Using the biodynamic response of the hand-arm system, such as apparent mass or mechanical impedance, and the acceleration that can be measured on vibrating tools, this study proposed an indirect method for the BF estimation. The BFs distributed on the fingers and the palm of the hand along the forearm direction (z(h)-axis) in the operations of eighteen types of tool were estimated and used to identify the distributed BF characteristics. The results indicate that the BFs depend on both the tool vibration spectrum and the biodynamic properties of the hand-arm system. The dominant BF frequency component is usually at the same frequency as the dominant vibration frequency of each tool. The BF distributed on the palm (2-98 N) is much higher than that distributed on the fingers (1-30 N) at frequencies less than 100 Hz, but these biodynamic forces (2-22 N) are comparable at higher frequencies. The palm BF on several tools with relatively low dominant frequencies (< or = 40 Hz), especially in the resonant frequency range (16-40 Hz), is comparable with the applied palm force (50-100 N). Since the resonant frequency of the palm BF is also in the range of the dominant vibration frequencies of many percussive tools, the palm BF may be related to the disorders in the wrist-arm system. The BF on the fingers is likely to be closely related to the dynamic stresses and deformations in the fingers and it may thus be used to quantify the finger vibration exposure.

  18. Measurement, evaluation, and assessment of peripheral neurological disorders caused by hand-transmitted vibration.

    PubMed

    Griffin, Michael J

    2008-04-01

    Regular exposure to hand-transmitted vibration can result in symptoms and signs of peripheral vascular, neurological and other disorders collectively known as the hand-arm vibration syndrome. The measurement of the effects of hand-transmitted vibration involves converting the evidence of disorder (symptoms and signs) into information that can be stored. Evaluation requires the use of scales on which to indicate the severity of the various symptoms and signs. Assessment involves a judgement of severity relative to a criterion, usually for a specific purpose (e.g. to decide on removal from work or compensation). The measurement and evaluation of symptoms and signs is necessary when monitoring patient health and when performing epidemiological studies for research. The assessment of the severity of the hand-arm vibration syndrome is currently performed with staging systems, but the criteria are not clear and not related to defined methods for measuring or evaluating the symptoms and signs. Recognizing that similar symptoms can occur without injury from occupational exposures to hand-transmitted vibration, this paper attempts to define significant peripheral neurological symptoms caused by hand-transmitted vibration (i.e. 'unusual symptoms') and how these symptoms and related signs may be measured. Scales for evaluating the symptoms (e.g. their extent) and the related signs (e.g. their probability relative to the probability of the sign being present in persons not exposed to vibration) are defined. A method of relating unusual symptoms to both the signs of disorder and the pattern of vibration exposure is illustrated. Assessments of severity will vary according to the reasons for assessing the health effects of vibration, and will depend on local practice and convenience, but a way of combining evaluations of symptoms and signs is demonstrated in a staging system. Although inherently complex, the methods may assist the collection of data required to improve

  19. Risk exposure to vibration and noise in the use of agricultural track-laying tractors.

    PubMed

    Vallone, Mariangela; Bono, Filippa; Quendler, Elisabeth; Febo, Pierluigi; Catania, Pietro

    2016-12-23

    Human exposure to mechanical vibration may represent a significant risk factor for exposed workers in the agricultural sector. Also, noise in agriculture is one of the risk factors to be taken into account in the evaluation of workers' health and safety. One of the major sources of discomfort for the workers operating a tractors is the noise to which they are exposed during work. The aim of this study was to evaluate the risk of exposure to whole-body vibration for the operator driving track-laying tractors in vineyard orchard and the noise level. The experimental tests were performed with six different track-laying tractors coupled with the same rototilling machine. The results showed that the vibration values of track-laying tractors coupled to rototilling machine, referred to the 8-hour working day, were always higher than 0.5 m s(-2), the daily exposure action value established by Directive 2002/44/EC of the European Parliament. The daily noise exposure levels always exceeded the exposure limit value of 87 dB(A) established by Directive 2003/10/EC of the European Parliament. The ANOVA repeated measures model showed that the factor 'site', namely, the soil characteristics, did not influence the vibration level on the X and Y-axes of the tractors measured, regardless of their age. In the Z-axis, the vibration level was enhanced as the soil structure increased. As tractor age increased, the influence of soil characteristics was less important. In term of the age of the tractor and the number of hours worked, it was possible to identify three risk classes, which were up to 3,000 hours worked and offered a low risk; from 3,000 - 6,000 hours worked with a medium risk, and over 6,000 hours with a high risk level.

  20. Exposure to whole-body vibration in open-cast mines in the Barents region

    PubMed Central

    Burström, Lage; Hyvärinen, Ville; Johnsen, Magnar; Pettersson, Hans

    2016-01-01

    Objectives We aimed to measure and evaluate whole-body vibration (WBV) exposure among drivers of mining vehicles in the Barents region. Study design In the period from November 2012 to August 2014, this cross-sectional study was carried out at 3 mines in Finland, Norway and Sweden as part of the MineHealth project. Methods Measurements of WBV were conducted on the surface of the driver's seat during normal work in accordance with international standards. Personal data on daily exposure times were collected by a questionnaire. Results Measurements were conducted on 95 different mining vehicles both as root mean square (RMS) value and vibration dose value (VDV) representing different manufacturers, models and capacities. Of the 453 miners who answered the questionnaire, 232 indicated that they were exposed to WBV during their working day. The results show that the mean daily exposure time varies between 1.9 and 6.7 h for different vehicles. The calculated mean A(8) could be found in an interval between 0.2 and 1.0 m/s2 and the corresponding 8-h VDV fell between 7 and 17 m/s1.75. Conclusions Exposure to WBV among operators of mining vehicles may be a serious health and safety problem in the mines studied. The employers ought, therefore, take active steps to reduce exposure in accordance with the European vibration directive. Moreover, since some groups of drivers are exposed to vibration that is close to or exceeds the exposure limit values, the employer should take immediate action to reduce exposure below these values. PMID:26864832

  1. Studies of farmers' annual exposure to whole body vibration on selected family farms of mixed production profile.

    PubMed

    Solecki, Leszek

    2012-01-01

    The objective of the study was to recognize and evaluate the annual exposure of private farmers to whole body mechanical vibration on selected family farms of mixed production profile (plant-animal). The scope of study covered the carrying out of time schedules of agricultural activities, and measurements of the frequency weighted vibration acceleration (m/s(2)), expressed as effective values (r.m.s.) for each of three spatial directions on the seat surface within the period of the whole year. The basic vibration parameter was vibration dose (d). The following values were determined: total monthly vibration dose, mean equivalent daily vibration dose, and mean equivalent daily vibration acceleration. The highest values of the total monthly vibration dose (d) were observed in April and August (55.3-56.7 m(2)/s(4).h). The mean equivalent of daily vibration acceleration showed the highest values in four months of the year: April, August, September and October (0.49-0.60 m/s(2)); the average value of this parameter for the whole year reached the level of 0.44 m/s(2) - below the standard. Due to the occurrence in agricultural vehicles of mechanical shocks (mean values of maximum vibration acceleration: 0.82-1.00 m/s(2); exceeding the standard), and exceeding of the daily exposure action value, proper steps should be undertaken with respect to the protection of private farmers against risk resulting from exposure to mechanical vibration while performing work activities.

  2. Back pain and exposure to whole body vibration in helicopter pilots.

    PubMed

    Bongers, P M; Hulshof, C T; Dijkstra, L; Boshuizen, H C; Groenhout, H J; Valken, E

    1990-08-01

    In a questionnaire survey the prevalence of back pain in 163 helicopter pilots was compared to that in a control group of 297 non-flying air force officers who underwent the same pre-employment medical examination. Since pilots document their hours of flight in a personal flight log, an accurate estimate of the duration of exposure could be made. In addition, vibration levels of the helicopters were measured and an accumulative vibration dose was calculated for each pilot. 'Transient' back pain of a short duration was more frequent amongst the pilots compared to the control group, and the prevalence of 'chronic' back pain of a persistent nature was also higher amongst the helicopter pilots. Transient back pain seemed to be most strongly related to the average hours of flight per day, whereas chronic back pain was more closely related to total hours of flight or the accumulative vibration dose. A significant higher prevalence of this chronic back pain was observed only after 2000 hours of flight or a vibration dose of 400 m2h/s4. The observed health effects may be due to vibration or constrained posture but are most likely due to concomitant exposure to both factors.

  3. Using consumer electronic devices to estimate whole-body vibration exposure.

    PubMed

    Wolfgang, Rebecca; Burgess-Limerick, Robin

    2014-01-01

    The cost and complexity of commercially available devices for measuring whole-body vibration is a barrier to the systematic collection of the information required to manage this hazard at workplaces. The potential for a consumer electronic device to be used to estimate whole-body vibration was assessed by use of an accelerometer calibrator, and by collecting 42 simultaneous pairs of measurements from a fifth-generation iPod Touch and one of two gold standard vibration measurement devices (Svantech SV111 [Svantech, Warsaw, Poland] or Brüel & Kjær 4447 [Brüel & Kjær Sound & Vibration Measurement A/S, Nærum, Denmark]) while driving light vehicles on a variety of different roadway surfaces. While sampling rate limitations make the accelerometer data collected from the iPod Touch unsuitable for frequency analysis, the vibration amplitudes recorded are sufficiently accurate (errors less than 0.1 m/s(2)) to assist workplaces manage whole-body vibration exposures.

  4. Measurement of vibrations and evaluation of protective gloves for work with hand-held power tools in industrial settings.

    PubMed

    Milosevic, Matija; McConville, Kristiina M V

    2007-01-01

    This study considers the use of hand-held power tools and the exposure of a large number of employees to hand-arm vibrations in work settings as well as the harmful effects that such exposure has on health and safety. The major objective of the project was the development of a diagnostic device for the detection and monitoring of the vibrations produced during work activities in a natural working environment and to analyze the impact of the vibrations on workers during different work operations. The developed device for vibration monitoring is based on the latest generation MEMS tri-axis accelerometer with a wireless link with the PC station. This study demonstrates the use of the device in evaluating the level of protection that gloves provide concerning the level of vibrations during work operations. The initial evaluation shows that the proposed solution provides an effective multifunctional, low-cost diagnostic device for vibration measurement in natural work settings. Preliminary results indicate that the developed device could be used for health and safety studies, evaluation of protective equipment, and ongoing monitoring in a natural working environment, and in this way may lead to more effective prevention and management of the risks associated with exposure to workplace vibrations.

  5. Acute exposure to vibration is an apoptosis-inducing stimulus in the vocal fold epithelium.

    PubMed

    Novaleski, Carolyn K; Kimball, Emily E; Mizuta, Masanobu; Rousseau, Bernard

    2016-10-01

    Clinical voice disorders pose significant communication-related challenges to patients. The purpose of this study was to quantify the rate of apoptosis and tumor necrosis factor-alpha (TNF-α) signaling in vocal fold epithelial cells in response to increasing time-doses and cycle-doses of vibration. 20 New Zealand white breeder rabbits were randomized to three groups of time-doses of vibration exposure (30, 60, 120min) or a control group (120min of vocal fold adduction and abduction). Estimated cycle-doses of vocal fold vibration were extrapolated based on mean fundamental frequency. Laryngeal tissue specimens were evaluated for apoptosis and gene transcript and protein levels of TNF-α. Results revealed that terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was significantly higher after 120min of vibration compared to the control. Transmission electron microscopy (TEM) revealed no significant effect of time-dose on the mean area of epithelial cell nuclei. Extrapolated cycle-doses of vibration exposure were closely related to experimental time-dose conditions, although no significant correlations were observed with TUNEL staining or mean area of epithelial cell nuclei. TUNEL staining was positively correlated with TNF-α protein expression. Our findings suggest that apoptosis can be induced in the vocal fold epithelium after 120min of modal intensity phonation. In contrast, shorter durations of vibration exposure do not result in apoptosis signaling. However, morphological features of apoptosis are not observed using TEM. Future studies are necessary to examine the contribution of abnormal apoptosis to vocal fold diseases.

  6. Feasibility of caregiver-directed home-based hand-arm bimanual intensive training: A brief report

    PubMed Central

    Ferre, Claudio L.; Brandão, Marina B.; Hung, Ya-Ching; Carmel, Jason B.; Gordon, Andrew M.

    2015-01-01

    Objective To determine feasibility of a home-based, intensive bimanual intervention with children with unilateral spastic cerebral palsy. Methods Eleven children (aged 29–54 months) received 90 hours of home hand-arm bimanual intensive therapy (H-HABIT) provided by their trained caregivers. Parenting stress levels and compliance were monitored using the Parenting Stress Index and daily logs. Quality of bimanual performance and changes in performance/satisfaction of functional goals were assessed using the Assisting Hand Assessment (AHA) and Canadian Occupational Performance Measure (COPM), respectively, at two pretreatment baseline sessions and two posttreatment sessions (immediate and six months). Results Ten children completed the study with caregivers completing on average 85.6 hours of H-HABIT. Daily logs indicated high caregiver compliance. Stress levels remained stable across the intervention. Children demonstrated significant improvements in the AHA and COPM. Conclusion H-HABIT is a feasible intervention for improving hand function and merits further investigation in a randomized-control trial. PMID:25180530

  7. Vibration and shock exposure of maintenance-of-way vehicles in the railroad industry.

    PubMed

    Johanning, Eckardt

    2011-05-01

    The aim of this study is to investigate and compare vibration and shock measurements of maintenance-of-way vehicles used in the railroad industry for track maintenance and construction. Following international standards (i.e., ISO 2631-1: 1997) and professional guidelines the frequency weighted root-mean-square (r.m.s.) acceleration for each measurement axis, the vector sum, the seat effective amplitude transmissibility (SEAT), the crest factor (CF), the maximum transient vibration value (MTVV), the vibration dose value (VDV), the ratio and the newly proposed shock risk estimation factor 'R' for spinal injury according to ISO 2631-5:2004 were measured and calculated for seven different maintenance-of-way vehicles during revenue service. Furthermore, a proposed alternative spinal injury prediction method, the VibRisk model, which incorporates different typical driver postures and operator physical characteristics was included for comparison with the ISO 2631-5 risk prediction. The results of the vibration exposure measurements depended on vehicle type, track/surface conditions and seat properties, with the tamper and bulldozer showing the highest r.m.s. vibration values. The vector sum (a(v)) results ranged from 0.37 to 0.99 (m/s(2)). Five of seven track maintenance vehicles would exceed the current Whole-body Vibration ACGIH-TLV(®) guideline for an 8 h exposure duration in the vertical axis recommended by the American Conference of Governmental Industrial Hygienists (ACGIH). The measured CF, MTVV/a(w) and VDV/(a(w)·T(1/4)) ratios were at or above the critical ratios in the majority of measurements given by the ISO 2631-1 (1997) and American industry guidelines by the American Conference of Governmental Industrial Hygienists (ACGIH-TLV). Comparing both prediction models for vibration shock risk for parts of the lumbar spine, different risk predictions and inconsistencies were found. The VibRisk model generally suggests different and higher risk of vertebral

  8. Temporary threshold shift of vibratory sensation induced by a vibrating handle and its gripping force.

    PubMed

    Nishiyama, K; Taoda, K; Yamashita, H; Watanabe, S

    1996-01-01

    This study examines the effect of the force with which a vibrating handle is gripped on the temporary threshold shift of vibratory sensation (TTSv) induced by hand-arm vibration. Six healthy subjects gripped a handle vibrating with a 1.3 octave-band vibration, with a central frequency of 200 Hz and an intensity of 39.2 m/s2. Exposure was for 1 min and 10 min, respectively. Gripping forces for the 1-min exposure were 5 N, 10 N, 40 N and 80 N, respectively, with 0 N push-pull force. Gripping forces for the 10-min exposure were the same as for the 1-min exposure but omitting 80 N. The vibratory sensation threshold at 125 Hz was measured before and after exposure of an exposed fingertip to vibration. The differences measured determine TTSv.t at time t. TTSv.t determines TTSv.0, that is, the temporary threshold shift of vibratory sensation immediately after exposure to vibration according to the estimate made on the basis of the preceding study. The same experimental conditions were repeated 3 times on different days in a soundproof and thermoregulated room. Our findings show that TTSv increases significantly with increasing gripping force. We also determined the quantitative relationships between TTSv.0 and gripping force as described by the equation TTSv.0 = exp(kf x F + Cf). where kt and Cf are constants and F is gripping force. This study revealed the importance of ergonomic design in reducing the force with which a vibrating handle is gripped to prevent an adverse effect of local vibration. The equation devised may help in the quantitative assessment of the effect of reduced gripping force.

  9. Biodynamic response of human fingers in a power grip subjected to a random vibration.

    PubMed

    Dong, R G; Welcome, D E; McDowell, T W; Wu, J Z

    2004-08-01

    Knowledge of the biodynamic response (BR) of the human hand-arm system is an important part of the foundation for the measurement and assessment of hand-transmitted vibration exposure. This study investigated the BR of human fingers in a power grip subjected to a random vibration. Ten male subjects were used in the experiment. Each subject applied three coupling actions to a simulated tool handle at three different finger grip force levels. The BR is practically independent of the hand coupling actions for frequencies at or above 100 Hz. Above 50 Hz, the BR is correlated to finger and hand sizes. Increasing the finger coupling force significantly increases the BR. Therefore, hand forces should be measured and used when assessing hand-transmitted vibration exposure. The results also show that under a constant-velocity vibration, the finger vibration power absorption at frequencies above 200 Hz is approximately twice that at frequencies below 100 Hz. This suggests that the frequency weighting specified in the current ISO 5349-1 (2001) may underestimate the high frequency effect on vibration-induced finger disorders.

  10. A Proposed Theory on Biodynamic Frequency Weighting for Hand-Transmitted Vibration Exposure

    PubMed Central

    DONG, Ren G.; WELCOME, Daniel E.; MCDOWELL, Thomas W.; XU, Xueyan S.; KRAJNAK, Kristine; WU, John Z.

    2015-01-01

    The objective of this study is to propose a theory on the biodynamic frequency weighting for studying hand-transmitted vibration exposures and vibration-induced effects. We hypothesize that the development of a vibration effect is the result of two consecutive but synergistic processes: biodynamic responses to input vibration and biological responses to the biomechanical stimuli resulting from the biodynamic responses. Hence, we further hypothesize that the frequency-dependency (W) of the effect generally includes two components: a biodynamic frequency weighting (W1) and a biological frequency weighting (W2), or W=W1•W2. These hypotheses are consistent with the stress and strain analysis theory and methods widely used in structural dynamics and biomechanics. The factorization may make it easier to study the complex frequency-dependency using different approaches: the biodynamic frequency weighting depends on the passive physical response of the system to vibration, and it can thus be determined by examining the biodynamic response of the system using various engineering methods; on the other hand, the biological frequency weighting depends on the biological mechanisms of the effects, and it can be investigated by studying the psychophysical, physiological, and pathological responses. To help test these hypotheses, this study reviewed and further developed methods to derive the finger biodynamic frequency weighting. As a result, preliminary finger biodynamic frequency weightings are proposed. The implications of the proposed theory and the preliminary biodynamic frequency weightings are also discussed. PMID:23060254

  11. A proposed theory on biodynamic frequency weighting for hand-transmitted vibration exposure.

    PubMed

    Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W; Xu, Xueyan S; Krajnak, Kristine; Wu, John Z

    2012-01-01

    The objective of this study is to propose a theory on the biodynamic frequency weighting for studying hand-transmitted vibration exposures and vibration-induced effects. We hypothesize that the development of a vibration effect is the result of two consecutive but synergistic processes: biodynamic responses to input vibration and biological responses to the biomechanical stimuli resulting from the biodynamic responses. Hence, we further hypothesize that the frequency-dependency (W) of the effect generally includes two components: a biodynamic frequency weighting (W1) and a biological frequency weighting (W2), or W=W1• W2. These hypotheses are consistent with the stress and strain analysis theory and methods widely used in structural dynamics and biomechanics. The factorization may make it easier to study the complex frequency-dependency using different approaches: the biodynamic frequency weighting depends on the passive physical response of the system to vibration, and it can thus be determined by examining the biodynamic response of the system using various engineering methods; on the other hand, the biological frequency weighting depends on the biological mechanisms of the effects, and it can be investigated by studying the psychophysical, physiological, and pathological responses. To help test these hypotheses, this study reviewed and further developed methods to derive the finger biodynamic frequency weighting. As a result, preliminary finger biodynamic frequency weightings are proposed. The implications of the proposed theory and the preliminary biodynamic frequency weightings are also discussed.

  12. Quantification of Acute Vocal Fold Epithelial Surface Damage with Increasing Time and Magnitude Doses of Vibration Exposure

    PubMed Central

    Kojima, Tsuyoshi; Van Deusen, Mark; Jerome, W. Gray; Garrett, C. Gaelyn; Sivasankar, M. Preeti; Novaleski, Carolyn K.; Rousseau, Bernard

    2014-01-01

    Because the vocal folds undergo repeated trauma during continuous cycles of vibration, the epithelium is routinely susceptible to damage during phonation. Excessive and prolonged vibration exposure is considered a significant predisposing factor in the development of vocal fold pathology. The purpose of the present study was to quantify the extent of epithelial surface damage following increased time and magnitude doses of vibration exposure using an in vivo rabbit phonation model. Forty-five New Zealand white breeder rabbits were randomized to nine groups and received varying phonation time-doses (30, 60, or 120 minutes) and magnitude-doses (control, modal intensity phonation, or raised intensity phonation) of vibration exposure. Scanning electron microscopy and transmission electron microscopy was used to quantify the degree of epithelial surface damage. Results revealed a significant reduction in microprojection density, microprojection height, and depth of the epithelial surface with increasing time and phonation magnitudes doses, signifying increased epithelial surface damage risk with excessive and prolonged vibration exposure. Destruction to the epithelial cell surface may provide significant insight into the disruption of cell function following prolonged vibration exposure. One important goal achieved in the present study was the quantification of epithelial surface damage using objective imaging criteria. These data provide an important foundation for future studies of long-term tissue recovery from excessive and prolonged vibration exposure. PMID:24626217

  13. Predicting and controlling risks from human exposures to vibration and mechanical shock: flag waving and flag weaving.

    PubMed

    Griffin, Michael J

    2015-01-01

    At work or in leisure activities, many people are exposed to vibration or mechanical shocks associated with risks of injury or disease. This paper identifies information that can be used to decide whether there may be a risk from exposure to hand-transmitted vibration or whole-body vibration and shock, and suggests actions that can control the risks. The complex and time-varying nature of human exposures to vibration and shock, the complexity of the different disorders and uncertainty as to the mechanisms of injury and the factors influencing injury have prevented the definition of dose-response relationships well proven by scientific study. It is necessary to wave a flag indicating when there is a need to control risks from exposure to vibration and shock while scientific enquiry provides understanding needed to weave a better flag. It is concluded that quantifying exposure severity is often neither necessary nor sufficient to either identify risks or implement measures that control the risks. The identification of risks associated with exposure to vibration and mechanical shock cannot, and need not, rely solely on the quantification of exposure severity. Qualitative methods can provide a sufficient indication of the need for control measures, which should not be restricted to reducing standardised measures of exposure severity.

  14. Vocal Dose Measures: Quantifying Accumulated Vibration Exposure in Vocal Fold Tissues

    PubMed Central

    Titze, Ingo R.; Švec, Jan G.; Popolo, Peter S.

    2011-01-01

    To measure the exposure to self-induced tissue vibration in speech, three vocal doses were defined and described: distance dose, which accumulates the distance that tissue particles of the vocal folds travel in an oscillatory trajectory; energy dissipation dose, which accumulates the total amount of heat dissipated over a unit volume of vocal fold tissues; and time dose, which accumulates the total phonation time. These doses were compared to a previously used vocal dose measure, the vocal loading index, which accumulates the number of vibration cycles of the vocal folds. Empirical rules for viscosity and vocal fold deformation were used to calculate all the doses from the fundamental frequency (F0) and sound pressure level (SPL) values of speech. Six participants were asked to read in normal, monotone, and exaggerated speech and the doses associated with these vocalizations were calculated. The results showed that large F0 and SPL variations in speech affected the dose measures, suggesting that accumulation of phonation time alone is insufficient. The vibration exposure of the vocal folds in normal speech was related to the industrial limits for hand-transmitted vibration, in which the safe distance dose was derived to be about 500 m. This limit was found rather low for vocalization; it was related to a comparable time dose of about 17 min of continuous vocalization, or about 35 min of continuous reading with normal breathing and unvoiced segments. The voicing pauses in normal speech and dialogue effectively prolong the safe time dose. The derived safety limits for vocalization will likely require refinement based on a more detailed knowledge of the differences in hand and vocal fold tissue morphology and their response to vibrational stress, and on the effect of recovery of the vocal fold tissue during voicing pauses. PMID:12959470

  15. Quantitative neurosensory findings, symptoms and signs in young vibration exposed workers

    PubMed Central

    2013-01-01

    Background Long-term exposure to hand-held vibrating tools may cause the hand arm vibration syndrome (HAVS) including vibration induced white fingers and sensorineural symptoms. The aim was to study early neurosensory effects by quantitative vibrotactile and monofilament tests in young workers with hand-held vibration exposure. Methods This cross-sectional study consisted of 142 young, male machine shop and construction workers with hand-held exposure to vibrating tools. They were compared with 41 non-vibration exposed subjects of the same age-group. All participants passed a structured interview, answered several questionnaires and had a physical examination including the determination of vibrotactile perception thresholds (VPTs) at two frequencies (31.5 and 125 Hz) and Semmes Weinstein’s Monofilament test. Results In the vibration exposed group 8% of the workers reported episodes of tingling sensations and 10% numbness in their fingers. Approximately 5–10% of the exposed population displayed abnormal results on monofilament tests. The vibrotactile testing showed significantly increased VPTs for 125 Hz in dig II bilaterally (right hand, p = 0.01; left hand, p = 0.024) in the vibration exposed group. A multiple regression analysis (VPT - dependent variable; age, height, examiner and five different vibration dose calculations – predictor variables) in dig II bilaterally showed rather low R2-values. None of the explanatory variables including five separately calculated vibration doses were included in the models, neither for the total vibration exposed group, nor for the highest exposed quartile. A logistic multiple regression analysis (result of monofilament testing - dependent variable; age, height, examiner and five vibration dose calculations – predictor variables) of the results of monofilament testing in dig II bilaterally gave a similar outcome. None of the independent variables including five calculated vibration doses were included in the

  16. Characterization of vibration and noise exposure in Canadian Forces armored vehicles

    NASA Astrophysics Data System (ADS)

    Nakashima, Ann M.; Borland, Matthew J.; Abel, Sharon M.

    2005-09-01

    A study to characterize the vibration and noise exposure in several Canadian Forces (CF) armored vehicles is in progress. Measurements of whole-body vibration and ambient noise levels are being made in the LAV III, Bison, Coyote, and M113 vehicles at three different positions: driver, crew commander, and passenger bench (or navigator seat in the case of the Coyote). The measurements are being made while the vehicles are idling, driven over rough terrain, and driven at a high speed on paved highways. There are several standards that provide guidance on the measurement and assessment of whole-body vibration, but they are difficult to implement in practice, particularly in adverse environments. The whole-body vibration measurements in this study are particularly difficult to interpret in the case of the crew commander, who often stands on the seat, and the passenger, who is seated but unrestrained by a seatbelt. The preliminary results-suggest, that according to the International Organization for Standardization guidelines (ISO 2631-1:1997), there may be potential health risks for the driver and passenger after driving on rough terrain for less than 10 min. Noise levels were as high as 100 dBA during high-speed highway driving.

  17. Typical whole body vibration exposure magnitudes encountered in the open pit mining industry.

    PubMed

    Howard, Bryan; Sesek, Richard; Bloswick, Don

    2009-01-01

    According to recent research, a causal link has been established between occupational exposure to whole body vibration and an increased occurrence of low back pain. To aid in the further development of an in-house health and safety program for a large open pit mining facility interested in reducing back pain among its operators, whole body vibration magnitudes were characterized for a range of jobs. Specifically, thirty-five individual jobs from five different areas across the facility were evaluated for tri-axial acceleration levels during normal operating conditions. Tri-axial acceleration magnitudes were categorized into thirteen job groups. Job groups were ranked according to exposure and compared to the ISO 2631-1 standard for health risk assessment. Three of the thirteen job groups produced tri-axial acceleration magnitudes below the ISO 2631-1 low/moderate health caution limit for a twelve hour exposure. Six of the thirteen job groups produced exposures within the moderate health risk range. Four job groups were found to subject operators to WBV acceleration magnitudes above the moderate/high health caution limit.

  18. Acute changes in neuromuscular activity in vertical jump and flexibility after exposure to whole body vibration

    PubMed Central

    Annino, Giuseppe; Iellamo, Ferdinando; Palazzo, Francesco; Fusco, Augusto; Lombardo, Mauro; Campoli, Francesca; Padua, Elvira

    2017-01-01

    Abstract This study was aimed to investigate the neuromuscular activity after 10 minutes of exposure to a whole body vibration (WBV) session. Twenty male young adults (24.8 ± 2.5 year olds) were randomized and divided into 2 groups: the vibration group (VG) was exposed to 10 minutes of WBV at 35 Hz; performed 10 minutes of WBV at 35 Hz (displacement = 5 mm; magnitude = 5 g); the nonvibrated group (NVG) was the placebo group that maintained the same position on the plate but without exposure to any type of vibration. Subjects were evaluated with counter movement jump (CMJ) and muscular flexibility by means of electromyographic (EMG) analysis recorded on the vastus lateralis (VL), vastus medialis (VM), biceps femoris (BF), and gastrocnemius lateralis (LG). The 10 minutes of WBV showed an increase in muscular flexibility, associated with a decrease of EMG activity in BF (P < .01) and jump height. The latter was associated with a reduction of EMGs activity in BF (P < .01). The control group did not show any significant difference in all considered parameters. These results support the hypothesis that 10 minutes of WBV had effects on flexibility and explosive strength performance influencing neuromuscular behavior through inhibitor effects on antagonist muscles more than the stretch reflex activity on agonist muscles. PMID:28816944

  19. Vibration analysis of the Long Duration Exposure Facility (LDEF) using SPAR

    NASA Technical Reports Server (NTRS)

    Edighoffer, H.

    1980-01-01

    The structural modeling of the Long Duration Exposure Facility (LDEF) utilizing the SPAR system of computer programs for vibration analysis is discussed. The technical areas of interest were: (1) development of the LDEF finite element model; (2) derivation of tray effective panel stiffness matrix using finite element tray models; (3) assessment of attachment conditions and end fitting flexibility by comparing SPAR with test static displacements; (4) SPAR grouping; and (5) derivation of the LDEF frequencies and mode shapes and comparing them with tests. Special detailed finite element modeling was required to obtain good agreement between analytical and test vibration modes. An orthotropic panel in the overall model was developed. Orthotropic stiffness for this panel were obtained from finely detailed statically loaded SPAR models which included stiffness and allowed for partial relative sliding of the tray clamping attachments. Sensitivity to LDEF joint boundary conditions was determined, and static test data proved valuable in assessing modeling of local end fittings.

  20. Effect of Seating on Exposures to Whole-Body Vibration in Vehicles

    NASA Astrophysics Data System (ADS)

    PADDAN, G. S.; GRIFFIN, M. J.

    2002-05-01

    The vibration isolation efficiency of seating has been evaluated in 100 work vehicles in 14 categories (cars, vans, lift trucks, lorries, tractors, buses, dumpers, excavators, helicopters, armoured vehicles, mobile cranes, grass rollers, mowers and milk floats). Seat isolation efficiency, expressed by the SEAT value, was determined for all seats (67 conventional seats and 33 suspension seats) from the vertical acceleration measured on the floors and on the seats of the vehicles.For most categories of vehicle, the average SEAT value was less than 100%, indicating that the average seat provided some attenuation of vibration. However, there were large variations in SEAT values between vehicles within categories. Two alternative vibration frequency weightings (Wb from BS 6841, 1987; Wk from ISO 2631, 1997) yielded SEAT values that differed by less than 6%. Overall, the SEAT values determined by two alternative methods (the ratio of r.m.s. values and the ratio of vibration dose values) differed by less than 4·5% when using weighting Wb, although larger differences may be expected in some situations. The median SEAT value for the suspension seats was 84·6%; the median SEAT value for the conventional seats was 86·9% (based on weighting Wb and the ratio of r.m.s. values).Predicted SEAT values were obtained assuming that each seat could be interchanged between vehicles without altering its transmissibility. The calculations suggest that 94% of the vehicles investigated might benefit from changing the current seat to a seat from one of the other vehicles investigated. Although the predictions are based on assumptions that will not always apply, it is concluded that the severity of whole-body vibration exposures in many work environments can be lessened by improvements to seating dynamics.

  1. Whole Body Vibration Exposures and Health Status among Professional Truck Drivers: A Cross-sectional Analysis.

    PubMed

    Kim, Jeong Ho; Zigman, Monica; Aulck, Lovenoor S; Ibbotson, Jennifer A; Dennerlein, Jack T; Johnson, Peter W

    2016-10-01

    Many professional truck drivers suffer from low back pain (LBP) which is thought to be associated with exposure to whole-body vibration (WBV). The objectives of this study were to: (i) characterize general health, regional body pain and WBV exposures, (ii) evaluate the associations between different WBV parameters and health outcomes, and (iii) determine whether there were factors which affect a truck driver's WBV exposures. This study analyzed WBV exposures from 96 long-haul truck drivers over their regular work shift (6-15h) per International Standards Organization (ISO) 2631-1 and 2631-5 WBV standards. This study also evaluated regional body pain (10-point scale), low back disability (the Oswestry Disability Index), and physical and mental health (the Short Form 12-item Health Survey). The results demonstrated that the daily vector sum WBV exposures [A(8), VDV(8) and Sed(8)] were above action limits while the predominant z-axis exposures were below action limits. Among all the musculoskeletal outcomes, LBP was the most prevalent (72.5%) with average LBP score of 2.9 (SD: 2.0). The SF-12 health scores demonstrated that truck drivers in general had lower physical health status than the general US population (P's < 0.04) and that physical health status decreased as WBV exposures increased (P = 0.03). In addition, the correlations between the WBV measures and health outcomes indicated that A(8) exposure measures had a stronger link to musculoskeletal (LBP) and other health outcomes than the VDV(8) and Sed(8) measures. Finally, seat manufacturer and seat age were two factors which had a strong influence on WBV exposures. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  2. Comparison of whole-body vibration exposures in buses: effects and interactions of bus and seat design.

    PubMed

    Jonsson, Per M G; Rynell, Patrik W; Hagberg, Mats; Johnson, Peter W

    2015-01-01

    Bus and seat design may be important for the drivers' whole-body vibration (WBV). WBV exposures in buses during actual operation were assessed. WBV attenuation performance between an air-suspension seat and a static pedestal seat in low-floor buses was compared; there were no differences in WBV attenuation between the seats. Air-suspension seat performance in a high-floor and low-floor bus was compared. Relative to the pedestal seat with its relatively static, limited travel seat suspension, the air-suspension seat with its dynamic, longer travel suspension provided little additional benefit. Relative to the measurement collected at the bus floor, the air-suspension seat amplified the WBV exposures in the high-floor bus. All WBV exposures were below European Union (EU) daily exposure action values. The EU Vibration Directive only allows the predominant axis of vibration exposure to be evaluated but a tri-axial vector sum exposure may be more representative of the actual health risks. Low back pain is common in bus drivers and studies have shown a relationship with whole body vibration. Relative to a pedestal seat with its limited travel seat suspension, the air-suspension seat with its longer travel suspension provided little additional benefit. Exposures were below European Union daily exposure action values.

  3. A Randomized Controlled Trial of Whole Body Vibration Exposure on Markers of Bone Turnover in Postmenopausal Women

    PubMed Central

    Turner, Sarah; Torode, Margaret; Climstein, Mike; Naughton, Geraldine; Greene, David; Baker, Michael K.; Fiatarone Singh, Maria A.

    2011-01-01

    Purpose. To examine the effects of two doses of low-frequency (12 Hz), low-magnitude (0.3 g), whole body vibration on markers of bone formation and resorption in postmenopausal women. Methods. Women were recruited and randomized into a sham vibration control group, one time per week vibration group (1×/week), or three times per week vibration group (3×/week). Vibration exposure consisted of 20 minutes of intermittent vibration for the 1×/week and 3×/week groups, and sham vibration (<0.1 g) for the control group for eight weeks. Double-blinded primary outcome measures were urine markers of bone resorption: N-telopeptide X normalised to creatinine (NTx/Cr) and bone formation: bone-specific alkaline phosphatase (ALP). Results. Forty-six women (59.8 ± 6.2 years, median 7.3 years since menopause) were enrolled. NTx/Cr was significantly reduced (34.6%) in the 3×/wk vibration group but not in the 1×/wk vibration group compared with sham control (P < .01) group. No effect of time or group allocation was observed on the bone formation marker ALP (P = .27). Conclusion. We have shown for the first time that low-frequency, low-magnitude vibration 3×/week for eight weeks in postmenopausal women results in a significant reduction in NTx/Cr, a marker of bone resorption, when compared with sham vibration exposure. PMID:21772975

  4. Long-term daily vibration exposure alters current perception threshold (CPT) sensitivity and myelinated axons in a rat-tail model of vibration-induced injury.

    PubMed

    Krajnak, Kristine; Raju, Sandya G; Miller, G Roger; Johnson, Claud; Waugh, Stacey; Kashon, Michael L; Riley, Danny A

    2016-01-01

    Repeated exposure to hand-transmitted vibration through the use of powered hand tools may result in pain and progressive reductions in tactile sensitivity. The goal of the present study was to use an established animal model of vibration-induced injury to characterize changes in sensory nerve function and cellular mechanisms associated with these alterations. Sensory nerve function was assessed weekly using the current perception threshold test and tail-flick analgesia test in male Sprague-Dawley rats exposed to 28 d of tail vibration. After 28 d of exposure, Aβ fiber sensitivity was reduced. This reduction in sensitivity was partly attributed to structural disruption of myelin. In addition, the decrease in sensitivity was also associated with a reduction in myelin basic protein and 2',3'- cyclic nucleotide phosphodiasterase (CNPase) staining in tail nerves, and an increase in circulating calcitonin gene-related peptide (CGRP) concentrations. Changes in Aβ fiber sensitivity and CGRP concentrations may serve as early markers of vibration-induced injury in peripheral nerves. It is conceivable that these markers may be utilized to monitor sensorineural alterations in workers exposed to vibration to potentially prevent additional injury.

  5. Elbow joint disorders in relation to vibration exposure and age in stone quarry workers.

    PubMed

    Sakakibara, H; Suzuki, H; Momoi, Y; Yamada, S

    1993-01-01

    Elbow joint disorders were studied in relation to vibration exposure and age in 74 male stone quarry workers who operated mainly chipping hammers and sometimes rock drills. They were examined for range of active motion in elbow extension and flexion, and by means of radiographs of the elbow joint. Effects of age and vibratory tool operation on the elbow joint were statistically estimated using multiple regression analysis. In the analysis of all subjects, including those aged over 60 years, age was significantly related to the range of motion in extension and to radiographic changes in both elbows, and the duration of vibratory tool operation was associated with the range of right elbow flexion. Among subjects under the age of 60 years, duration of vibratory tool operation showed a significant dose-effect relationship to the range of flexion and radiographic changes in the right elbow, but there was no significant relationship with age. The present results suggest that the operation of chipping hammers and rock drills contributes to elbow joint disorders or osteoarthrosis, even when the effect of age is taken into account. Besides vibration exposure, it may be necessary to consider various loads on the elbow joint such as firmly grasping and pressing the tool against stones with the arm bent at about 90 degrees, and carrying stones.

  6. Whole Body Vibration at Different Exposure Frequencies: Infrared Thermography and Physiological Effects

    PubMed Central

    Sonza, Anelise; Robinson, Caroline C.; Achaval, Matilde; Zaro, Milton A.

    2015-01-01

    The aim of this study was to investigate the effects of whole body vibration (WBV) on physiological parameters, cutaneous temperature, tactile sensitivity, and balance. Twenty-four healthy adults (25.3 ± 2.6 years) participated in four WBV sessions. They spent 15 minutes on a vibration platform in the vertical mode at four different frequencies (31, 35, 40, and 44 Hz) with 1 mm of amplitude. All variables were measured before and after WBV exposure. Pressure sensation in five anatomical regions and both feet was determined using Von Frey monofilaments. Postural sway was measured using a force plate. Cutaneous temperature was obtained with an infrared camera. WBV influences the discharge of the skin touch-pressure receptors, decreasing sensitivity at all measured frequencies and foot regions (P ≤ 0.05). Regarding balance, no differences were found after 20 minutes of WBV at frequencies of 31 and 35 Hz. At 40 and 44 Hz, participants showed higher anterior-posterior center of pressure (COP) velocity and length. The cutaneous temperature of the lower limbs decreased during and 10 minutes after WBV. WBV decreases touch-pressure sensitivity at all measured frequencies 10 min after exposure. This may be related to the impaired balance at higher frequencies since these variables have a role in maintaining postural stability. Vasoconstriction might explain the decreased lower limb temperature. PMID:25664338

  7. Assessment and prediction of whole-body vibration exposure in transport truck drivers.

    PubMed

    Nitti, Rocco; De Santis, Paolo

    2010-01-01

    The European Directive 2002/44/EC on the minimum Health and Safety prescriptions regarding the exposure of workers to vibrations, was implemented in Italy through the Legislative Decree 187/2005, recently amended by the Legislative Decree 81/2008. The Decrees contain legal obligations and minimum requirements for the evaluation by direct measurement, which is the reference method, although not always appropriate or necessary, and by means of vibration data banks or information provided by equipment manufacturers. The values assessed must be representative of the actual working environment: in order to adapt assessed values to real working conditions it may be useful to adopt some statistical models. Statistically significant relationships were observed by means of a multiple linear regression on a limited set of measures on different models of trucks, in different operating conditions and settings: the relative influence of predictor variables was then assessed. Finally a short digression about the evolution of the suspension fitting has been made in order to briefly describe the historical context of WBV exposure level reduction and the state of the art of industrial vehicle comfort improvement technologies.

  8. Assessment of annual exposure of private farmers to whole body mechanical vibration on selected family farms of plant production profile.

    PubMed

    Solecki, Leszek

    2010-01-01

    The objective of the study was evaluation of an annual exposure of private farmers to whole body mechanical vibration on selected family farms of plant production profile. The study covered 15 family farms, using arable land of the size of 10-50 ha (22.3 ha on average), engaged mainly in plant production, and equipped with tractors, tractor-mounted agricultural machinery, with a partial contribution of self-propelled machines. The scope of the study covered the carrying out of time schedules of agricultural activities, and measurements of effective values (RMS) for vibration acceleration (equivalent), frequency corrected, on the seats of farm vehicles in 3 spatial directions of vibration (X, Y, Z). The measurements were made while performing various basic field and transport work activities during the period of the whole year. The study showed (plant production) that the degree of whole body mechanical vibration load among farmers during the whole year depends on the vibration level and duration of exposure to this factor. The highest values of the total vibration dose (d) occur both during summer-autumn months (August, September, October and November), and in spring (April, May). The mean equivalent of daily vibration acceleration shows the highest values during 4 months of the year: April and May (0.52 m/s(2)), and in August and September (0.56-0.57 m/s(2)); the average value of this parameter, for the whole year, reaches the level of 0.45 m/s(2). Considering the fact of the occurrence of mechanical shocks in agricultural vehicles (high maximum accelerations values registered: 0.81-1.01 m/s(2); standard exceeding), and exceeding of the daily exposure action value, proper steps should be undertaken with respect to the protection of private farmers against risk resulting from exposure to mechanical vibration while performing work activities.

  9. Can a battery of functional and sensory tests corrobrate the sensorineural complaints of subjects working with vibrating tools?

    PubMed

    Cock, N; Piette, A; Malchaire, J

    2000-07-01

    The objective of the present paper is to study the relationship between the early sensorineural symptoms, classified according to the Stockholm scale, and the results of the main functional and sensory tests described in the literature, in subjects working with vibrating tools. Three groups of male workers were selected from industry: one group (69 subjects) exposed to hand-arm vibration in several workplaces, one group (62) performing heavy and repetitive hand and arm work but without exposure to vibration, and one control group (46) performing light and non-repetitive tasks without vibration. All the workers were interviewed by questionnaire, about their personal characteristics, their health status, their actual and past working conditions and the episodes of tingling at the level of the fingers. From these reported symptoms, the sensorineural stage of the hand-arm vibration was determined using the Stockholm scale. Based on the review of the literature, we selected six functional and sensory tests: maximum voluntary grip force, maximum angles of the wrist, pressure perception threshold test, vibration perception threshold test, distal sensory latency and the Purdue Pegboard test. Each test was performed by the workers in the three groups. No main differences were observed between the personal characteristics of the three groups. According to the Stockholm scale, the sensorineural symptoms were mainly at stage SN1, with 9% at stage SN2 and none at stage SN3. These symptoms are associated with exposure to vibration, and had a prevalence of 40% in group 1, versus 20% in the two other groups. Furthermore, 25% of the workers exposed to vibration complained of symptoms at least once a week, compared with only 2% in the other groups. The multivariate logistic regression analysis showed an association between the existence of symptoms and a decrease in the maximum flexion angle of the wrist and an increase in the pressure perception threshold. This association, however

  10. The physiological effects of simultaneous exposures to heat and vibration. Ph.D. Thesis - California Univ., Berkeley

    NASA Technical Reports Server (NTRS)

    Spaul, W. A.

    1983-01-01

    Determination of the effects of exposure to vibration on the body's ability to handle heat stress, and, if so, identification of the specific vibration parameters (frequency and intensity) for both whole-body (wbv) and segmental-body vibration (sbv) that would have the most detrimental effect on the body's ability to maintain thermal homeostasis were studied. Rectal and skin temperatures, heart rates, localized sweat rates, arm-segment blood perfusion rates, respiration rates, oxygen uptakes, and respiratory exchange ratios were measured in six men (22 to 33 yr) during simultaneous exposures to heat and vibration - either wbv or sbv, and during a heated 50 min recovery period. The heat conditions were T (sub db) = 43.5 + or - 0.5 C (mean + or S.E.M.), and RH = 20 + or - 4%. All vibration exposures were divided into two exposure conditions - identical frequencies but at a high intensity (HI) and a low intensity (LI) level. The HI wbv exposure was for 25 min/day at 5 Hz, 0.37 g-rms; 10 Hz, 0.46 g-rms; 16 Hz, 0.72 g-rms; 30 Hz, 1.40 g-rms; 80 Hz, 3.70 g-rms. The LI wbv exposure was for 2.5 hr/day at the same frequencies but at the following accelerations: 0.14 g-rms; 0.18 g-rms; 0.28 g-rms; 0.55 g-rms; 1.44 g-rms. During the sbv the subject stood and grasped a vibrating, in the Z-axis, hand grip with both hands.

  11. Frequency weighting for vibration-induced white finger compatible with exposure-response models.

    PubMed

    Brammer, Anthony J; Pitts, Paul M

    2012-01-01

    An analysis has been performed to derive a frequency weighting for the development of vibration-induced white finger (VWF). It employs a model to compare health risks for pairs of population groups that are selected to have similar health outcomes from operating power tools or machines with markedly different acceleration spectra (rock drills, chain saws, pavement breakers and motorcycles). The model defines the Relative Risk, RR(f(trial)), which is constructed from the ratio of daily exposures and includes a trial frequency weighting that is applied to the acceleration spectra. The trial frequency weighting consists of a frequency-independent primary frequency range, and subordinate frequency ranges in which the response to vibration diminishes, with cut-off frequencies that are changed to influence the magnitude of RR(f(trial)). The frequency weighting so derived when RR(f(trial)) = 1 is similar to those obtained by other methods (W(hf), W(hT)). It consists of a frequency independent range from about 25 Hz to 500 Hz (-3 dB frequencies), with an amplitude cut-off rate of 12 dB/octave below 25 Hz and above 500 Hz. The range is compatible with studies of vasoconstriction in persons with VWF. The results provide further evidence that the ISO frequency weighting may be inappropriate for assessing the risk of developing VWF.

  12. The relationship between occupational noise and vibration exposure and headache/eyestrain, based on the fourth Korean Working Condition Survey (KWCS).

    PubMed

    Kim, Jihyun; Lee, Wanhyung; Won, Jong-Uk; Yoon, Jin-Ha; Seok, Hongdeok; Kim, Yeong-Kwang; Lee, Seunghyun; Roh, Jaehoon

    2017-01-01

    The individual and combined effect of occupational noise and vibration exposures, on workers' health has not been thoroughly investigated. In order to find better ways to prevent and manage workers' headache, this study aimed to investigate the effects of occupational noise and vibration exposure on headache/eyestrain. We used data from the fourth Korean Working Condition Survey (2014). After applying inclusion and exclusion criteria, 25,751 workers were included. Occupational noise and vibration exposure and the prevalence of headache/eyestrain were investigated by self-reported survey. Chi-square tests were used to compare differences in baseline characteristics between the group with headache/eyestrain and the group without. Odds ratios and 95% confidence intervals were estimated using a logistic regression model adjusted for several covariates. Area under the receiver operating characteristics curve (AUROC) analysis was used to evaluate the effect of occupational noise and/or vibration exposure. Among the 25,751 study subjects, 4,903 had experienced headache/eyestrain in the preceding year. There were significant differences in age, education level, household income, occupational classification, shift work, occupational vibration exposure, and occupational noise exposure between the two groups (all p<0.05). The odds ratios between each exposure and headache/eyestrain increased proportionally with the level of exposure, increasing from 1.08 to 1.26 with increasing vibration exposure, and from 1.25 to 1.41 with increasing noise exposure. According to the AUROC analysis, the predictive power of each exposure was significant, and increased when the two exposures were considered in combination. The findings of this study show that both occupational noise and vibration exposures are associated with headache/eyestrain; noise exposure more strongly so. However, when the two exposures are considered in combination, the explanatory power for headache/eyestrain is

  13. The relationship between occupational noise and vibration exposure and headache/eyestrain, based on the fourth Korean Working Condition Survey (KWCS)

    PubMed Central

    Kim, Jihyun; Lee, Wanhyung; Won, Jong-Uk; Yoon, Jin-Ha; Seok, Hongdeok; Kim, Yeong-Kwang; Lee, Seunghyun

    2017-01-01

    Introduction The individual and combined effect of occupational noise and vibration exposures, on workers’ health has not been thoroughly investigated. In order to find better ways to prevent and manage workers’ headache, this study aimed to investigate the effects of occupational noise and vibration exposure on headache/eyestrain. Methods We used data from the fourth Korean Working Condition Survey (2014). After applying inclusion and exclusion criteria, 25,751 workers were included. Occupational noise and vibration exposure and the prevalence of headache/eyestrain were investigated by self-reported survey. Chi-square tests were used to compare differences in baseline characteristics between the group with headache/eyestrain and the group without. Odds ratios and 95% confidence intervals were estimated using a logistic regression model adjusted for several covariates. Area under the receiver operating characteristics curve (AUROC) analysis was used to evaluate the effect of occupational noise and/or vibration exposure. Results Among the 25,751 study subjects, 4,903 had experienced headache/eyestrain in the preceding year. There were significant differences in age, education level, household income, occupational classification, shift work, occupational vibration exposure, and occupational noise exposure between the two groups (all p<0.05). The odds ratios between each exposure and headache/eyestrain increased proportionally with the level of exposure, increasing from 1.08 to 1.26 with increasing vibration exposure, and from 1.25 to 1.41 with increasing noise exposure. According to the AUROC analysis, the predictive power of each exposure was significant, and increased when the two exposures were considered in combination. Discussion The findings of this study show that both occupational noise and vibration exposures are associated with headache/eyestrain; noise exposure more strongly so. However, when the two exposures are considered in combination, the

  14. Effects of Posture and Vibration Magnitude on Apparent Mass and Pelvis Rotation during Exposure to Whole-Body Vertical Vibration

    NASA Astrophysics Data System (ADS)

    MANSFIELD, N. J.; GRIFFIN, M. J.

    2002-05-01

    The effect of variations in posture and vibration magnitude on apparent mass and seat-to-pelvis pitch transmissibility have been studied with vertical random vibration over the frequency range 1·0-20 Hz. Each of 12 subjects was exposed to 27 combinations of three vibration magnitudes (0·2, 1·0 and 2·0m/s2 r.m.s.) and nine sitting postures (“upright”, “anterior lean”, “posterior lean”, “kyphotic”, “back-on”, “pelvis support”, “inverted SIT-BAR” (increased pressure beneath ischial tuberosities), “bead cushion” (decreased pressure beneath ischial tuberosities) and “belt” (wearing an elasticated belt)).Peaks in the apparent masses were observed at about 5 and 10 Hz, and in the seat-to-pelvis pitch transmissibilities at about 12 Hz. In all postures, the resonance frequencies in the apparent mass and transmissibility decreased with increased vibration magnitude, indicating a non-linear softening system. There were only small changes in apparent mass or transmissibility with posture, although peaks were lower for the apparent mass in the “kyphotic” posture and were lower for the transmissibility in the “belt” posture. The changes in apparent mass and transmissibility caused by changes in vibration magnitude were greater than the changes caused by variation in posture.

  15. Vibrational monitor of early demineralization in tooth enamel after in vitro exposure to phosphoridic liquid

    NASA Astrophysics Data System (ADS)

    Pezzotti, Giuseppe; Adachi, Tetsuya; Gasparutti, Isabella; Vincini, Giulio; Zhu, Wenliang; Boffelli, Marco; Rondinella, Alfredo; Marin, Elia; Ichioka, Hiroaki; Yamamoto, Toshiro; Marunaka, Yoshinori; Kanamura, Narisato

    2017-02-01

    The Raman spectroscopic method has been applied to quantitatively assess the in vitro degree of demineralization in healthy human teeth. Based on previous evaluations of Raman selection rules (empowered by an orientation distribution function (ODF) statistical algorithm) and on a newly proposed analysis of phonon density of states (PDOS) for selected vibrational modes of the hexagonal structure of hydroxyapatite, a molecular-scale evaluation of the demineralization process upon in vitro exposure to a highly acidic beverage (i.e., CocaCola™ Classic, pH = 2.5) could be obtained. The Raman method proved quite sensitive and spectroscopic features could be directly related to an increase in off-stoichiometry of the enamel surface structure since the very early stage of the demineralization process (i.e., when yet invisible to other conventional analytical techniques). The proposed Raman spectroscopic algorithm might possess some generality for caries risk assessment, allowing a prompt non-contact diagnostic practice in dentistry.

  16. Assessment of whole-body vibration exposures and influencing factors for quarry haul truck drivers and loader operators

    PubMed Central

    Mayton, Alan G.; Jobes, Christopher C.; Gallagher, Sean

    2015-01-01

    To further assess vibration exposure on haul trucks (HTs) and front-end wheel loaders (FELs), follow-up investigations were conducted at two US crushed stone operations. The purpose was to: 1) evaluate factors such as load/no-load conditions, speed, load capacity, vehicle age, and seat transmissibility relative to vibration exposure; 2) compare exposure levels with existing ISO/ANSI and EUGPG guidelines. Increasing HT speed increased recorded vibration at the chassis and seat as expected. Neither vehicle load nor vehicle speed increased transmissibility. Increasing HT size and age did show transmissibility decreasing. HT dominant-axis wRMS levels (most often the y-axis, lateral or side-to-side direction) were predominantly within the health guidance caution zone (HGCZ). However, several instances showed vibration dose value (VDV) above the exposure limit value (ELV) for the ISO/ANSI guidelines. VDV levels (all dominant x-axis or fore-aft) were within and above the HGCZ for the EUGPG and above the HGCZ for ISO/ANSI guidelines. PMID:26361493

  17. Bioresponses in men after repeated exposures to single and simultaneous sinusoidal or stochastic whole body vibrations of varying bandwidths and noise.

    PubMed

    Manninen, O

    1986-01-01

    This study deals with the changes in temporary hearing threshold (TTS2), upright body posture sway amplitudes in the X and Y direction, heart rate (HR), R-wave amplitude (RWA), systolic (SBP) and diastolic (DBP) blood pressure, pulse pressure (PP) and the index characterizing haemodynamic activity (HDI), when the subjects were exposed to noise alone, to vibrations alone or to simultaneous noise and vibrations. The experiments were carried out in an exposure chamber and the number of exposure combinations was 12. Seven healthy, male students volunteered as subjects, making a total number of 84 experiments. For each person the experiment consisted of a 30-min control period, five consecutive 16-min exposures, between which there was a 4-min measuring interval, and a 15-min recovery period. The noise was broadband (bandwidth 0.2-16.0 kHz) A-weighted (white) noise. The noise categories were: (1) no noise and (2) noise with an intensity of 90 dBA. The categories of low-frequency whole body vibration in the direction of the Z-axis were: (1) vibration within the range 4.4-5.6 Hz, (2) vibration within the range 2.8-5.6 Hz, (3) vibration within the range 2.8-11.2 Hz, (4) vibration within the range 1.4-11.2 Hz and (5) sinusoidal vibration with a frequency of 5 Hz. The (rms) acceleration in all the vibration models was 2.12 m/s2. The results showed that the TTS2 values at 4 and 6 kHz increased as a result of simultaneous exposure to noise and vibration significantly more than as a result of exposure to noise alone. The TTS2 values increased more intensely during the first 16-min exposure. The means of the variances in the amplitudes of body upright posture sway changed not only after exposures to vibration alone, but also after exposure to noise alone. The means of the sway variances in the X and Y directions at 0.1 Hz and within the range 0.06 to 2.00 Hz increased only when the vibration in the noise-vibration combination was sinusoidal. The changes in the heart rate, R

  18. Design and evaluation of a suspension seat to reduce vibration exposure of subway operators: a case study.

    PubMed

    Marcotte, Pierre; Beaugrand, Sylvie; Boutin, Jérôme; Larue, Christian

    2010-01-01

    Subway operators have complained about discomfort caused by whole-body vibration. To address this problem, a suspension seat with extensive ergonomic features has been adapted to the confined space of the subway operator cab. The suspension was modified from an existing suspension in order to reduce the dominant frequency of the subway vertical vibration (2.4 Hz). The suspension seat has been extensively tested on a vertical hydraulic shaker. These tests have shown that the SEAT value was lower for a higher vibration level, for higher subject weight, and for the suspension adjusted at median height. The seat also produces a lower SEAT value when there was a predominance of the 6 Hz vibration component. The horizontal seat adjustments had no influence on the suspension SEAT value. Removing the suspension damper also decreases the SEAT value for all the tested configurations. The final version of the suspension seat prototype was validated during normal subway operation with 19 different operators having weight in the 5th, 50th and 95th percentile of the operator population. Accelerations were measured with triaxial accelerometers at the seat cushion, above the suspension and on the floor. In addition to the vibration measurements, each operator was asked about his perceived discomfort from vibration exposure. Globally, the suspension seat attenuated the vertical vibration (SEAT values from 0.86 to 0.99), but discomfort due to amplification of the 2.4 Hz component occurred when the suspension height was adjusted at the minimum, even when the global weighted acceleration was lower (SEAT value < 1). These results suggest that in order to reduce the discomfort caused by whole-body vibration, the transmissibility of the seat should also be considered, in particular when there is a dominant frequency in the vibration spectra.

  19. Prevalence and pattern of occupational exposure to whole body vibration in Great Britain: findings from a national survey

    PubMed Central

    Palmer, K.; Griffin, M.; Bendall, H.; Pannett, B.; Coggon, D.

    2000-01-01

    OBJECTIVES—To estimate the number of workers in Great Britain with significant occupational exposure to whole body vibration (WBV) and to identify the common sources of exposure and the occupations and industries where such exposures arise.
METHODS—A postal questionnaire was posted to a random community sample of 22 194 men and women of working age. Among other things, the questionnaire asked about exposure to WBV in the past week, including occupational and common non-occupational sources. Responses were assessed by occupation and industry, and national prevalence estimates were derived from census information. Estimates were also made of the average estimated daily personal dose of vibration (eVDV).
RESULTS—From the 12 907 responses it was estimated that 7.2 million men and 1.8 million women in Great Britain are exposed to WBV at work in a 1 week period if the occupational use of cars, vans, buses, trains, and motor cycles is included within the definition of exposure. The eVDV of >374 000 men and 9000 women was estimated to exceed a proposed British Standard action level of 15 ms-1.75. Occupations in which the estimated exposures most often exceeded 15 ms-1.75 included forklift truck and mechanical truck drivers, farm owners and managers, farm workers, and drivers of road goods vehicles. These occupations also contributed the largest estimated numbers of workers in Great Britain with such levels of exposure. The highest estimated median occupational eVDVs were found in forklift truck drivers, drivers of road goods vehicles, bus and coach drivers, and technical and wholesale sales representatives, among whom a greater contribution to total dose was received from occupational exposures than from non-occupational ones; but in many other occupations the reverse applied. The most common sources of occupational exposure to WBV are cars, vans, forklift trucks, lorries, tractors, buses, and loaders.
CONCLUSIONS—Exposure to whole body vibration is

  20. An optimal sampling approach to modelling whole-body vibration exposure in all-terrain vehicle driving.

    PubMed

    Lü, Xiaoshu; Takala, Esa-Pekka; Toppila, Esko; Marjanen, Ykä; Kaila-Kangas, Leena; Lu, Tao

    2016-12-01

    Exposure to whole-body vibration (WBV) presents an occupational health risk and several safety standards obligate to measure WBV. The high cost of direct measurements in large epidemiological studies raises the question of the optimal sampling for estimating WBV exposures given by a large variation in exposure levels in real worksites. This paper presents a new approach to addressing this problem. A daily exposure to WBV was recorded for 9-24 days among 48 all-terrain vehicle drivers. Four data-sets based on root mean squared recordings were obtained from the measurement. The data were modelled using semi-variogram with spectrum analysis and the optimal sampling scheme was derived. The optimum sampling period was 140 min apart. The result was verified and validated in terms of its accuracy and statistical power. Recordings of two to three hours are probably needed to get a sufficiently unbiased daily WBV exposure estimate in real worksites. The developed model is general enough that is applicable to other cumulative exposures or biosignals. Practitioner Summary: Exposure to whole-body vibration (WBV) presents an occupational health risk and safety standards obligate to measure WBV. However, direct measurements can be expensive. This paper presents a new approach to addressing this problem. The developed model is general enough that is applicable to other cumulative exposures or biosignals.

  1. Terminal distribution of the corticospinal projection from the hand/arm region of the primary motor cortex to the cervical enlargement in rhesus monkey.

    PubMed

    Morecraft, Robert J; Ge, Jizhi; Stilwell-Morecraft, Kimberly S; McNeal, David W; Pizzimenti, Marc A; Darling, Warren G

    2013-12-15

    To further our understanding of the corticospinal projection (CSP) from the hand/arm representation of the primary motor cortex (M1), high-resolution anterograde tracing methodology and stereology were used to investigate the terminal distribution of this connection at spinal levels C5 to T1. The highest number of labeled terminal boutons occurred contralaterally (98%) with few ipsilaterally (2%). Contralaterally, labeled boutons were located within laminae I-X, with the densest distribution found in lamina VII and, to a lesser extent, laminae IX and VI. Fewer terminals were found in other contralateral laminae. Within lamina VII, terminal boutons were most prominent in the dorsomedial, dorsolateral, and ventrolateral subsectors. Within lamina IX, the heaviest terminal labeling was distributed dorsally. Ipsilaterally, boutons were found in laminae V-X. The most pronounced distribution occurred in the dorsomedial and ventromedial sectors of lamina VII and fewer labeled boutons were located in other ipsilateral laminae. Segmentally, contralateral lamina VII labeling was highest at levels C5-C7. In contrast, lamina IX labeling was highest at C7-T1 and more widely dispersed among the quadrants at C8-T1. Our findings suggest dominant contralateral influence of the M1 hand/arm CSP, a contralateral innervation pattern in lamina VII supporting Kuypers (1982) conceptual framework of a "lateral motor system," and a projection to lamina IX indicating significant influence on motoneurons innervating flexors acting on the shoulder and elbow rostrally (C5-C7), along with flexors, extensors, abductors and adductors acting on the digits, hand and wrist caudally (C8-T1).

  2. Terminal Distribution of the Corticospinal Projection from the Hand/Arm Region of the Primary Motor Cortex to the Cervical Enlargement in Rhesus Monkey

    PubMed Central

    Morecraft, Robert J.; Ge, Jizhi; Stilwell-Morecraft, Kimberly S.; McNeal, David W.; Pizzimenti, Marc A.; Darling, Warren G.

    2013-01-01

    To further our understanding of the corticospinal projection (CSP) from the hand/arm representation of the primary motor cortex (M1), high-resolution anterograde tracing methodology and stereology were used to investigate the terminal distribution of this connection at spinal levels C5 to T1. The highest number of labeled terminal boutons occurred contralaterally (98%) with few ipsilaterally (2%). Contralaterally, labeled boutons were located within laminae I – X, with the densest distribution found in lamina VII and, to a lesser extent, laminae IX and VI. Fewer terminals were found in other contralateral laminae. Within lamina VII, terminal boutons were most prominent in the dorsomedial, dorsolateral and ventrolateral subsectors. Within lamina IX, the heaviest terminal labeling was distributed dorsally. Ipsilaterally, boutons were found in laminae V – X. The most pronounced distribution occurred in the dorsomedial and ventromedial sectors of lamina VII and fewer labeled boutons were located in other ipsilateral laminae. Segmentally, contralateral lamina VII labeling was highest at levels C5-C7. In contrast, lamina IX labeling was highest at C7-T1 and more widely dispersed amongst the quadrants at C8-T1. Our findings suggest dominant contralateral influence of the M1 hand/arm CSP, a contralateral innervation pattern in lamina VII supporting Kuypers (1982) conceptual framework of a “lateral motor system”, and a projection to lamina IX indicating significant influence on motoneurons innervating flexors acting on the shoulder and elbow rostrally (C5-C7), along with flexors, extensors, abductors and adductors acting on the digits, hand and wrist caudally (C8-T1). PMID:23840034

  3. The role of motion platform on postural instability and head vibration exposure at driving simulators.

    PubMed

    Aykent, B; Merienne, F; Paillot, D; Kemeny, A

    2014-02-01

    This paper explains the effect of a motion platform for driving simulators on postural instability and head vibration exposure. The sensed head level-vehicle (visual cues) level longitudinal and lateral accelerations (ax,sensed=ax_head and ay,sensed=ay_head, ayv=ay_veh and ayv=ay_veh) were saved by using a motion tracking sensor and a simulation software respectively. Then, associated vibration dose values (VDVs) were computed at head level during the driving sessions. Furthermore, the postural instabilities of the participants were measured as longitudinal and lateral subject body centre of pressure (XCP and YCP, respectively) displacements just after each driving session via a balance platform. The results revealed that the optic-head inertial level longitudinal accelerations indicated a negative non-significant correlation (r=-.203, p=.154>.05) for the static case, whereas the optic-head inertial longitudinal accelerations depicted a so small negative non-significant correlation (r=-.066, p=.643>.05) that can be negligible for the dynamic condition. The XCP for the dynamic case indicated a significant higher value than the static situation (t(47), p<.0001). The VDVx for the dynamic case yielded a significant higher value than the static situation (U(47), p<.0001). The optic-head inertial lateral accelerations resulted a negative significant correlation (r=-.376, p=.007<.05) for the static platform, whereas the optic-head inertial lateral accelerations showed a positive significant correlation (r=.418, p=.002<.05) at dynamic platform condition. The VDVy for the static case indicated a significant higher value rather than the dynamic situation (U(47), p<.0001). The YCP for the static case yielded significantly higher than the dynamic situation (t(47), p=.001<0.05).

  4. Contribution of individual components of a job cycle on overall severity of whole-body vibration exposure: a study in Indian mines.

    PubMed

    Mandal, Bibhuti B; Mansfield, Neil J

    2016-01-01

    Drivers of earth-moving machines are exposed to whole-body vibration (WBV). In mining operations there can be a combination of relatively high magnitudes of vibration and long exposure times. Effective risk mitigation requires understanding of the main aspects of a task that pose a hazard to health. There are very few published studies of WBV exposure from India. This paper reports on a study that considered the contribution of the component phases of dumper operations, on the overall vibration exposure of the drivers. It shows that vibration magnitudes are relatively high, and that haulage tasks are the main contributor to the exposure. It is recommended that driver speed, haul road surfaces and vehicle maintenance/selection are optimized to ensure minimization of vibration. If this is not sufficient, operation times might need to be reduced in order to ensure that the health guidance caution zone from Standard No. ISO 2631-1:1997 is not exceeded.

  5. Acute exposure to microgravity does not influence the H-reflex with or without whole body vibration and does not cause vibration-specific changes in muscular activity.

    PubMed

    Kramer, Andreas; Gollhofer, Albert; Ritzmann, Ramona

    2013-08-01

    Many potential countermeasures for muscle and bone loss caused by exposure to microgravity require an uncompromised stretch reflex system. This is especially true for whole body vibration (WBV), as the main source of the neuromuscular activity during WBV has been attributed to stretch reflexes. A priori, it cannot be assumed that reflexes and Ia afferent transmission in particular have the same characteristics in microgravity as in normal gravity (NG). Therefore, the purpose of the study was to compare Ia afferent transmission in microgravity and NG and to assess how microgravity affects muscle activity during WBV. In 14 participants, electromyographic activity of four leg muscles as well as Hoffmann-reflexes were recorded during NG and microgravity induced by parabolic flights. The size of the Hoffmann-reflex was reduced during WBV, but did not differ during acute exposure to microgravity compared to NG. The influence of the gravity conditions on the electromyographic activity did not change depending on the vibration condition. As far as the electromyographic activity of the recorded leg muscles is concerned, the effect of WBV is the same in microgravity as in NG. Moreover, Ia afferent transmission does not seem to be affected by acute exposure to microgravity when subjects are loaded with body weight and postural sway is minimized. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Prevalence and pattern of occupational exposure to hand transmitted vibration in Great Britain: findings from a national survey

    PubMed Central

    Palmer, K.; Griffin, M.; Bendall, H.; Pannett, B.; Coggon, D.

    2000-01-01

    OBJECTIVES—To estimate the number of workers in Great Britain with significant occupational exposure to hand transmitted vibration (HTV). Also, to identify the occupations and industries where such exposures arise, and the main sources of exposure.
METHODS—A questionnaire was posted to 22 194 men and women aged 16-64, comprising 21 201 subjects selected at random from the age-sex registers of 34 general practices in England, Scotland, and Wales, and a further 993 subjects selected at random from the central pay registers of the three armed services. Among other things, the questionnaire asked about exposure to sources of HTV in current and earlier employment. Responses were assessed by occupation and industry, and prevalence estimates for the country as a whole were derived from census information on occupational and industrial populations nationally. Estimates were also made in exposed workers of the average daily dose of vibration (A(8) root mean squared (rms) for the past week, based on their reported sources and durations of exposure.
RESULTS—Usable questionnaires were returned by 12 907 subjects (overall response rate 58%). From these it was estimated that some 4.2 million men and 667 000 women in Great Britain are exposed to HTV at work in a 1 week period, and that personal daily exposures to vibration exceed a suggested action level equivalent to 2.8 ms-2 for 8 hours (A(8) >2.8 ms-2 rms) in at least 1.2 million men and 44 000 women. High estimated doses (A(8) >5 ms-2 rms) arose most often in bricklayers and masons, gardeners and groundsmen, carpenters and joiners, electricians and electrical maintenance fitters, and builders and building contractors. The industries where high A(8) values most often arose were construction, motor vehicle repair and maintenance, manufacture of basic metals, and agriculture. The most common sources of exposure were hammer drills, hand held portable grinders, and jigsaws.
CONCLUSIONS—Exposure to HTV is

  7. Vibration perception thresholds in workers with long term exposure to lead.

    PubMed

    Chuang, H Y; Schwartz, J; Tsai, S Y; Lee, M L; Wang, J D; Hu, H

    2000-09-01

    To evaluate the impact of long term occupational exposure to lead on function of the peripheral nervous system as reflected by vibration perception threshold (VPT), measured with a portable vibrameter. 217 Workers in a lead battery factory were required to have an annual blood lead measurement during each of the 5 years preceding this study. All were invited to take the VPT test. A total of 206 workers were studied. The associations were analysed between VPTs and current blood lead concentration, mean concentration of blood lead over the past 5 years, maximum blood lead concentration during the past 5 years, index of cumulative blood lead (ICL), time weighted index of cumulative blood lead (TWICL), and percentage of lifespan spent at work in the plant, as well as the other potential confounders. Ordinary multiple regressions, generalised additive models, and hockey stick regression analyses were used to explore the potential existence of a threshold effect of blood lead variables on VPT. VPT at a frequency of 220 Hz ranged from 6 to 100 (10(-2) g, or 0.098 m/s(2)) with a mean (SD) of 19.8 (14.2) for the feet and from 4 to 43 with a mean (SD) of 10.2 (6.1) for the hands. The five variables of exposure to lead were all significantly correlated with VPT of the feet but not the hands. In multiple linear regression analyses, the mean of the blood lead concentrations and the TWICL were significantly associated with VPT of the feet. The relation between VPT of the feet and mean blood lead was shown to be a J shaped curve with a generalised additive model and local smoothing technique. In the hockey stick regression, evidence was found of a threshold effect at a mean blood lead concentration of 31 microgram/dl. Above this threshold it was estimated that each increase of 1 microgram/dl mean blood lead over 5 years would increase VPT of the feet by 0.29 (10(-2) g) or 0.028 m/s(2) (at a frequency of 220 Hz) with other potential confounders held constant. This study suggests

  8. Whole-body vibration exposure study in U.S. railroad locomotives--an ergonomic risk assessment.

    PubMed

    Johanning, Eckardt; Fischer, Siegfried; Christ, Eberhard; Göres, Benno; Landsbergis, Paul

    2002-01-01

    Whole-body vibration exposure of locomotive engineers and the vibration attenuation of seats in 22 U.S. locomotives (built between 1959 and 2000) was studied during normal revenue service and following international measurement guidelines. Triaxial vibration measurements (duration mean 155 min, range 84-383 min) on the seat and on the floor were compared. In addition to the basic vibration evaluation (aw rms), the vector sum (av), the maximum transient vibration value (MTVV/aw), the vibration dose value (VDV/(aw T1/4)), and the vibration seat effective transmissibility factor (SEAT) were calculated. The power spectral densities are also reported. The mean basic vibration level (aw rms) was for the fore-aft axis x = 0.18 m/sec2, the lateral axis y = 0.28 m/sec2, and the vertical axis z = 0.32 m/sec2. The mean vector sum was 0.59 m/sec2 (range 0.27 to 1.44). The crest factors were generally at or above 9 in the horizontal and vertical axis. The mean MTVV/aw was 5.3 (x), 5.1 (y), and 4.8 (z), and the VDV/(aw T1/4) values ranged from 1.32 to 2.3 (x-axis), 1.33 to 1.7 (y-axis), and 1.38 to 1.86 (z-axis), generally indicating high levels of shocks. The mean seat transmissibility factor (SEAT) was 1.4 (x) and 1.2 (y) and 1 (z), demonstrating a general ineffectiveness of any of the seat suspension systems. In conclusion, these data indicate that locomotive rides are characterized by relatively high shock content (acceleration peaks) of the vibration signal in all directions. Locomotive vertical and lateral vibrations are similar, which appears to be characteristic for rail vehicles compared with many road/off-road vehicles. Tested locomotive cab seats currently in use (new or old) appear inadequate to reduce potentially harmful vibration and shocks transmitted to the seated operator, and older seats particularly lack basic ergonomic features regarding adjustability and postural support.

  9. Measurement, evaluation, and assessment of occupational exposures to hand-transmitted vibration.

    PubMed Central

    Griffin, M J

    1997-01-01

    The measurement of hand-transmitted vibration converts oscillatory movements to a form in which they can be evaluated with respect to human responses and assessed for their acceptability. This paper presents methods of measurement, evaluation, and assessment currently advocated in standards and other forms of guidance. The degree to which the methods of evaluating different frequencies, directions, and durations of vibration affect the assessment of vibration on different tools is illustrated. With the frequency weighting currently used to allow for the effects of different frequencies there is little need to measure vibration at frequencies as high as 1000 Hz; this has significant implications to the design and evaluation of proposed antivibration devices, including gloves. Without the current frequency weighting, vibration at frequencies greater than 250 Hz can contribute to the magnitude of the vibration, but many common causes of injury from hand-transmitted vibration have their dominant components of vibration below 250 Hz. On many powered tools, although the dominant frequency of vibration is the same before and after frequency weighting, the reported magnitude of vibration is greatly affected by the frequency weighting. On tools with dominant low frequencies, their vibration is rated as being of far greater importance relative to other tools when considering frequency-weighted acceleration than when considering unweighted acceleration. It is shown that the effect of considering three axes of vibration as opposed to one axis has a greater effect on some tools than on others. The uncertainties and assumptions involved in the measurement, evaluation, and assessment of hand-transmitted vibration are reviewed. It is suggested that whereas current decisions on health and welfare should be based on current assessment methods, the measurement and evaluation of hand-transmitted vibration should involve the collection and reporting of data which allow other

  10. Structural equation modelling of lower back pain due to whole body vibration exposure in the construction industry.

    PubMed

    Vitharana, Vitharanage Hashini Paramitha; Chinda, Thanwadee

    2017-08-10

    Whole body vibration (WBV) exposure is a health hazard among workers, causing lower back pain (LBP) in the construction industry. This study examines key factors affecting LBP due to WBV exposure using the exploratory factor analysis and structural equation modelling. The results confirm five key factors, which are equipment, job-related, organizational, personal, and social- context, with their 17 associated items. The organizational factor is found the most important factor, as it influences the other four factors. The results also show that appropriate seat type, specific training program, job rotation, workers' satisfaction, and workers' physical condition are crucial in reducing LBP due to WBV exposure. Moreover, provision of new machines without proper training and good working condition might not help reduce LBP due to WBV exposure. The results help the construction companies to better understand key factors affecting LBP due to WBV exposure, and plan for a better health improvement program.

  11. Vibration perception thresholds in workers with long term exposure to lead

    PubMed Central

    Chuang, H.; Schwartz, J.; Tsai, S.; Lee, M.; Wang, J.; Hu, H.

    2000-01-01

    OBJECTIVES—To evaluate the impact of long term occupational exposure to lead on function of the peripheral nervous system as reflected by vibration perception threshold (VPT), measured with a portable vibrameter.
METHODS—217 Workers in a lead battery factory were required to have an annual blood lead measurement during each of the 5 years preceding this study. All were invited to take the VPT test. A total of 206 workers were studied. The associations were analysed between VPTs and current blood lead concentration, mean concentration of blood lead over the past 5 years, maximum blood lead concentration during the past 5 years, index of cumulative blood lead (ICL), time weighted index of cumulative blood lead (TWICL), and percentage of lifespan spent at work in the plant, as well as the other potential confounders. Ordinary multiple regressions, generalised additive models, and hockey stick regression analyses were used to explore the potential existence of a threshold effect of blood lead variables on VPT.
RESULTS—VPT at a frequency of 220 Hz ranged from 6 to 100 (10-2 g, or 0.098 m/s2) with a mean (SD) of 19.8 (14.2) for the feet and from 4 to 43 with a mean (SD) of 10.2 (6.1) for the hands. The five variables of exposure to lead were all significantly correlated with VPT of the feet but not the hands. In multiple linear regression analyses, the mean of the blood lead concentrations and the TWICL were significantly associated with VPT of the feet. The relation between VPT of the feet and mean blood lead was shown to be a J shaped curve with a generalised additive model and local smoothing technique. In the hockey stick regression, evidence was found of a threshold effect at a mean blood lead concentration of 31 µg/dl. Above this threshold it was estimated that each increase of 1 µg/dl mean blood lead over 5 years would increase VPT of the feet by 0.29 (10-2 g) or 0.028 m/s2 (at a frequency of 220 Hz) with other potential confounders

  12. Whole-body Vibration Exposure Intervention among Professional Bus and Truck Drivers: A Laboratory Evaluation of Seat-suspension Designs.

    PubMed

    Blood, Ryan P; Yost, Michael G; Camp, Janice E; Ching, Randal P

    2015-01-01

    Long-term exposure to seated whole-body vibration (WBV) is one of the leading risk factors for the development of low back disorders. Professional bus and truck drivers are regularly exposed to continuous WBV, since they spend the majority of their working hours driving heavy vehicles. This study measured WBV exposures among professional bus and truck drivers and evaluated the effects of seat-suspension designs using simulated field-collected data on a vibration table. WBV exposures were measured and compared across three different seat designs: an air-ride bus seat, an air-ride truck seat, and an electromagnetically active (EM-active) seat. Air-ride seats use a compressed-air bladder to attenuate vibrations, and they have been in operation throughout the transportation industry for many years. The EM-active seat is a relatively new design that incorporates a microprocessor-controlled actuator to dampen vibration. The vibration table simulated seven WBV exposure scenarios: four segments of vertical vibration and three scenarios that used field-collected driving data on different road surfaces-a city street, a freeway, and a section of rough roadway. The field scenarios used tri-axial WBV data that had been collected at the seat pan and at the driver's sternum, in accordance with ISO 2631-1 and 2631-5. This study found that WBV was significantly greater in the vertical direction (z-axis) than in the lateral directions (x-and y-axes) for each of the three road types and each of the three types of seats. Quantitative comparisons of the results showed that the floor-to-seat-pan transmissibility was significantly lower for the EM-active seat than for either the air-ride bus seat or the air-ride truck seat, across all three road types. This study also demonstrated that seat-suspension designs have a significant effect on the vibrations transmitted to vehicle operators, and the study's results may prove useful in designing future seat suspensions.

  13. Vibrational monitor of early demineralization in tooth enamel after in vitro exposure to phosphoridic liquid.

    PubMed

    Pezzotti, Giuseppe; Adachi, Tetsuya; Gasparutti, Isabella; Vincini, Giulio; Zhu, Wenliang; Boffelli, Marco; Rondinella, Alfredo; Marin, Elia; Ichioka, Hiroaki; Yamamoto, Toshiro; Marunaka, Yoshinori; Kanamura, Narisato

    2017-02-15

    The Raman spectroscopic method has been applied to quantitatively assess the in vitro degree of demineralization in healthy human teeth. Based on previous evaluations of Raman selection rules (empowered by an orientation distribution function (ODF) statistical algorithm) and on a newly proposed analysis of phonon density of states (PDOS) for selected vibrational modes of the hexagonal structure of hydroxyapatite, a molecular-scale evaluation of the demineralization process upon in vitro exposure to a highly acidic beverage (i.e., CocaCola™ Classic, pH=2.5) could be obtained. The Raman method proved quite sensitive and spectroscopic features could be directly related to an increase in off-stoichiometry of the enamel surface structure since the very early stage of the demineralization process (i.e., when yet invisible to other conventional analytical techniques). The proposed Raman spectroscopic algorithm might possess some generality for caries risk assessment, allowing a prompt non-contact diagnostic practice in dentistry. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Apparent mass and cross-axis apparent mass of standing subjects during exposure to vertical whole-body vibration

    NASA Astrophysics Data System (ADS)

    Subashi, G. H. M. J.; Matsumoto, Y.; Griffin, M. J.

    2006-05-01

    The effects of posture and vibration magnitude on the vertical apparent mass and the fore-and-aft cross-axis apparent mass of the standing human body during exposure to vertical vibration have been investigated. Twelve male subjects were exposed to random vertical vibration over the frequency range 2.0-20 Hz at three vibration magnitudes: 0.125, 0.25 and 0.5 m s -2 rms. Subjects stood in five different postures: upright, lordotic, anterior lean, knees bent and knees more bent. The vertical acceleration at the floor and the forces in the vertical and fore-and-aft directions at the floor were used to obtain the apparent mass and the cross-axis apparent mass. The resonance frequency of the apparent mass was significantly reduced with knees bent and knees more bent postures, but there were only minor effects on the resonance frequency by changing the position of the upper body. Considerable cross-axis apparent mass, up to about 30% of the static mass of subjects, was found. The cross-axis apparent mass was influenced by all postural changes used in the study. In all postures the resonance frequencies of the apparent mass and the cross-axis apparent mass tended to decrease with increasing vibration magnitude. This nonlinear characteristic tended to be less clear in some postures in which subjects increased muscle tension.

  15. Carpal tunnel syndrome (CTS) and exposure to vibration, repetitive wrist movements, and heavy manual work: a case-referent study.

    PubMed Central

    Wieslander, G; Norbäck, D; Göthe, C J; Juhlin, L

    1989-01-01

    Possible connections between carpal tunnel syndrome (CTS) and exposure to vibrating handheld tools, repetitive wrist movements, and heavy manual work were examined in a case-referent study. The cases were 38 men operated on for CTS between 1974 and 1980. For each case, two referents were drawn from among other surgical cases (hospital referents) and two further referents from the population register and telephone directory, respectively (population referents). Thirty four of 38 cases (89%) and 143 of 152 referents (94%) were interviewed by telephone. An increased prevalence of obesity, rheumatoid disease, diabetes, or thyroid disease was observed among the cases but most did not suffer from any of these disorders. CTS was significantly correlated with exposure to vibration from handheld tools and to repetitive wrist movements but showed a weaker correlation with work producing a heavy load on the wrist. A cause-effect relation between CTS and exposures to handheld vibrating tools and to work causing repetitive movements of the wrist seems probable. Some differences between hospital and population referents indicate that a case-referent study of this type could be biased by inappropriate selection of referents. PMID:2920142

  16. Vehicle design influences whole body vibration exposures: effect of the location of the front axle relative to the cab.

    PubMed

    Blood, Ryan P; Rynell, Patrik W; Johnson, Peter W

    2011-06-01

    Using a repeated measure design, this study compared differences in whole body vibration (WBV) exposures among 13 drivers who drove a truck with the cab over the front axle (cab-over design) and a truck with the cab situated behind the front axle (non-cab-over design). The drivers drove both trucks over a standardized route that comprised three distinct segments: a freeway segment, a city street segment with stop-and-go driving (traffic lights), and a city street segment without traffic lights. A portable WBV data acquisition system collected tri-axial time-weighted and raw WBV data per ISO 2631-1 and 2631-5 standards. Simultaneous global positioning system (GPS) data were also collected to compare vehicle speeds. The GPS data indicated that there were no speed differences between the two vehicles. However, average and impulsive z-axis vibration levels were significantly higher for the cab-over design than for the non-cab-over design. In addition, significant WBV exposure differences between road types were found, with the freeway segments having the lowest exposures and the city street segments without traffic lights having the highest exposures. Vehicle type and the associated WBV exposures should be considered when purchasing vehicles to be used by full-time professional vehicle operators.

  17. The potential of micro-electro-mechanical accelerometers in human vibration measurements

    NASA Astrophysics Data System (ADS)

    Tarabini, Marco; Saggin, Bortolino; Scaccabarozzi, Diego; Moschioni, Giovanni

    2012-01-01

    This paper evaluates the advantages and the drawbacks deriving from the use of MEMS (micro-electro-mechanical systems) accelerometers for hand-arm and whole-body vibration measurements. Metrological performances of different transducers were assessed through the identification of their frequency response function, linearity, floor noise and sensitivity to thermal and electromagnetic disturbances. Experimental results highlighted a standard instrumental uncertainty (including the nonlinearity) lower than 5% with the single frequency calibration procedure, such a value was reduced to 2%. The temperature effect was negligible and the electromagnetic disturbances sensitivity was comparable to that of the piezoelectric accelerometers. The compatibility of measurements obtained with MEMS accelerometers with those of piezoelectric-based measurement chains was verified for two specific applications. An example of direct transducer fixation on the skin for vibration transmissibility measurements is also presented. Thanks to the MEMS peculiarities - mainly small sizes and low cost - since novel approaches in the vibration monitoring could be pursued. For instance, it is possible to include by design MEMS accelerometers in any hand-held tool at the operator interface, or inside the seats structures of cars, tractors and trucks. This could be a viable solution to easily obtain repeatable exposure measurements and could also provide diagnostic signals for the tools or seats of functional monitoring.

  18. An Updated Review of Epidemiologic Studies on the Relationship Between Exposure to Whole-Body Vibration and Low Back Pain

    NASA Astrophysics Data System (ADS)

    Bovenzi, M.; Hulshof, C. T. J.

    1998-08-01

    The aim of this paper is to update the information on the epidemiologic evidence of the adverse health effects of whole-body vibration (WBV) on the spinal system by means of a review of the epidemiologic studies published between 1986 and 1996. In a systematic search of epidemiologic studies of low back pain (LBP) disorders and occupations with exposure to WBV, 37 articles were retrieved. The quality of each study was evaluated according to criteria concerning the assessment of vibration exposure, assessment of health effects, and methodology. The epidemiologic studies reaching an adequate score on each of the above mentioned criteria, were included in the final review. A meta-analysis was also conducted in order to combine the results of independent epidemiologic studies. After applying the selection criteria, 16 articles reporting the occurrence of LBP disorders in 19 WBV-exposed occupational groups, reached a sufficient score. The study design was cross-sectional for 13 occupational groups, longitudinal for 5 groups and of case-control type for one group. The main reasons for the exclusion of studies were insufficient quantitative information on WBV exposure and the lack of control groups. The findings of the selected studies and the results of the meta-analysis of both cross-sectional and cohort studies showed that occupational exposure to WBV is associated with an increased risk of LBP, sciatic pain, and degenerative changes in the spinal system, including lumbar intervertebral disc disorders. Owing to the cross-sectional design of the majority of the reviewed studies, this epidemiologic evidence is not sufficient to outline a clear exposure-response relationship between WBV exposure and LBP disorders. Upon comparing the epidemiological studies included in this review with those conducted before 1986, it is concluded that research design and the quality of exposure and health effect data in the field of WBV have improved in the last decade.

  19. The ISO standard: Guide for the evaluation of human exposure to whole-body vibration

    NASA Technical Reports Server (NTRS)

    Vongierke, H. E.

    1975-01-01

    The international guideline is discussed in terms of safety and human tolerance. Charts for equal subjective vibration intensity, subjective judgement of equal fatigue, and severe discomfort boundaries are included.

  20. The Effect of Whole Body Vibration Exposure on Muscle Function in Children With Cystic Fibrosis: A Pilot Efficacy Trial

    PubMed Central

    O’Keefe, Kaitlin; Orr, Rhonda; Huang, Peite; Selvadurai, Hiran; Cooper, Peter; Munns, Craig Frank; Singh, Maria A Fiatarone

    2013-01-01

    Background To examine the effects of whole body vibration (WBV) exposure on muscle function in children with Cystic Fibrosis (CF). Non-randomised controlled cross-over trial. Methods The setting was home-based WBV exposure. The participants were children (8 - 15 years) with CF (n = 7). Intervention: participants served as their own controls for the first four weeks (usual care), then underwent four weeks of parentally-supervised home-based WBV exposure followed by four weeks washout (usual care). The WBV exposure consisted of 20 - 30 minutes of intermittent (1 min vibration:1 min rest) exposure on a Galileo platform (20 - 22Hz, 1 mm amplitude) 3 days/week. The primary outcome measures of absolute and relative lower body (leg extension (LE), leg press (LP)), upper body (chess press (CP)) strength and power, and power were measured at baseline, and weeks 4, 8 and 12. Secondary exploratory outcomes were cardiorespiratory fitness, pulmonary function and health-related quality of life. Results Six participants completed the training without adverse events. Muscle function changes following WBV exposure were not statistically significant. However, moderate-to-large relative effect sizes (ES) favouring WBV were evident for leg extension strength (ES = 0.66 (-0.50, 1.82)), LP relative strength (ES = 0.92 (-0.27, 2.11)), leg press peak power (ES = 0.78 (-0.50, 2.07)) and CMJ height (ES = 0.60 (-0.56 to 1.76)). Conclusions The results from this first controlled trial indicate that WBV may be a potentially effective exercise modality to safely increase leg strength and explosive power in children with CF. Potentially clinically relevant changes support continued investigation of the efficacy, mechanism and feasibility of this intervention in future large-scale studies. PMID:23671546

  1. An innovative multi dof TMD system for motorcycle handlebars designed to reduce structural vibrations and human exposure

    NASA Astrophysics Data System (ADS)

    Agostoni, S.; Cheli, F.; Leo, E.; Pezzola, M.

    2012-08-01

    Motor vehicle ride comfort is mainly affected by reciprocating engine inertia unbalances. These forces are transmitted to the driver through the main frame, the engine mounts, and the auxiliary sub systems—all components with which he physically comes into contact. On-road traction vehicle engines are mainly characterized by transient exercise. Thus, an excitation frequency range from 800 RPM (≈15 Hz for stationary vehicles) up to 15,000 RPM (≈250 Hz as a cut off condition) occurs. Several structural resonances are induced by the unbalancing forces spectrum, thus exposing the driver to amplified vibrations. The aim of this research is to reduce driver vibration exposure, by acting on the modal response of structures with which the driver comes into contact. An experimental methodology, capable of identifying local vibration modes was developed. The application of this methodology on a reference vehicle allows us to detect if/when/how the above mentioned resonances are excited. Numerical models were used to study structural modifications. In this article, a handlebar equipped with an innovative multi reciprocating tuned mass damper was optimized. All structural modifications were designed, developed and installed on a vehicle. Modal investigations were then performed in order to predict modification efficiency. Furthermore, functional solution efficiency was verified during sweep tests performed on a target vehicle, by means of a roller bench capable of replicating on-road loads. Three main investigation zones of the vehicle were detected and monitored using accelerometers: (1) engine mounts, to characterize vibration emissions; (2) bindings connecting the engine to the frame, in order to detect vibration transfer paths, with particular attention being paid to local dynamic amplifications due to compliances and (3) the terminal components with which the driver comes into contact.

  2. A multi-site study of functional outcomes following a themed approach to hand-arm bimanual intensive therapy for children with hemiplegia.

    PubMed

    Green, Dido; Schertz, Mitchell; Gordon, Andrew M; Moore, Amarlie; Schejter Margalit, Tamara; Farquharson, Yvonne; Ben Bashat, Dafna; Weinstein, Maya; Lin, Jean-Pierre; Fattal-Valevski, Aviva

    2013-06-01

    This study investigated the effects of a theme-based ('magic') variation of the hand-arm bimanual intensive therapy programme, in two different countries, in improving activity performance for children with hemiplegia, including those with severe movement restrictions. Twenty-three children with spastic hemiplegia (13 males, 10 females; mean age 10y 7mo, range 7-15y; Manual Ability Classification System level I, two; level II, 13; level III, eight), participated in one of three, 2-week, summer camps. A within-participant experimental design was used with the Assisting Hand Assessment and Children's Hand Experience Questionnaire as primary outcome measures. Evaluations occurred immediately before the first day, on the last day, and 3 months after intervention. Two groups underwent additional assessments 2 weeks before the camp. Significant intervention effects were seen on the Assisting Hand Assessment (p=0.002) and on the Children's Hand Experience Questionnaire (p<0.001), the latter maintained at follow-up. The affected hand was reported to be used in 25% of bimanual activities before the camp, progressing to 93% after camp, and decreasing to 86% at follow-up. Severity of impairment did not influence progress. This themed approach to intensive intervention showed positive results in bimanual use, with improvements in independence sustained at follow-up. Although children across camps and motor severity made progress, some questions remain about intensity and duration of intervention to optimize longer-term outcomes. © The Authors. Developmental Medicine & Child Neurology © 2013 Mac Keith Press.

  3. [Assessment of annual exposure of private farmers to the whole body mechanical vibration on selected family farms of animal production profile].

    PubMed

    Solecki, Leszek

    2010-01-01

    Besides noise, mechanical vibration of a general effect (whole body vibration), is an important physical risk factor that occurrs in the farmers' work environment. The vibration occurs on the seats of agricultural vehicles in motion, during the performance of specified field and transportation work tasks. The study covered the measurements of time schedules of agricultural activities, and effective values (RMS) for frequency of weighted vibration acceleration (equivalent), frequency corrected, on the seats of farm vehicles in three spatial directions of vibration (X,Y,Z) throughout the year. The basic vibration parameter was the dose (d). The following values were determined: total monthly vibration dose, mean equivalent daily vibration dose and mean equivalent daily vibration acceleration. The highest values of the total monthly vibration dose occur both during summer-autumn months (August, September), and in spring (April, May). The mean equivalent daily vibration acceleration shows the highest values during four months of the year: April and May (0.50-0.53 m/s2), and August and September (0.47-0.50 m/s2); the average value of this parameter, for the whole year, reaches the level of0.37 m/s2. Considering the fact that mechanical shocks occur in agricultural vehicles (mean maximum accelerations values registered: 0.86-0.99 m/s2; standard exceeding), and the threshold level of vibration exceeds the required values, adequate steps should be undertaken to protect private farmers against the risk resulting from exposure to mechanical vibration while performing their work.

  4. Effects of muscular strength, exercise order, and acute whole-body vibration exposure on bat swing speed.

    PubMed

    Reyes, G F Cisco; Dickin, D Clark; Dolny, Dennis G; Crusat, Nolan J K

    2010-12-01

    The purposes for this study were to investigate effects of acute whole-body vibration (WBV) exposure and exercise order on bat speed and to examine relationship between muscular strength and bat speed. All participants were recreationally trained men (n = 16; 22 ± 2 years; 181.4 ± 7.4 cm; 84.7 ± 9 kg), with previous baseball experience and were tested for 1 repetitive maximum (1RM) strength in squat and bench press. Subjects then participated in 4 randomized sessions on separate days, each consisting of 3 sets of 5 bat swings. Exercises (upper and lower body dynamic and static movements related to bat swing) with or without WBV exposure were performed after sets 1 and 2. Trials were as follows: no-exercise Control (CTRL), upper body followed by lower body exercises without WBV (Arm-Leg NOVIB), upper body followed by lower body exercises with WBV (Arm-Leg VIB), and lower body followed by upper body exercises with WBV (Leg-Arm VIB). Bat speed was recorded during each swing and averaged across sets. Statistical analyses were performed to assess differences across sets and trials. Linear regressions analyzed relationship between strength and bat speed. A significant relationship existed between bat speed and lower body strength (r = 0.406, p = 0.008) but not for upper body strength. The exercise order of Arm-Leg VIB significantly increased bat speed by 2.6% (p = 0.02). Performing identical order of exercises without vibration (Arm-Leg NOVIB) significantly decreased bat speed by 2% (p = 0.039). It was concluded that adding vibration exposure to total-body exercises can provide acute enhancements in bat speed. Additionally, leg strength was shown to influence bat speed suggesting that increasing leg strength may enhance bat speed.

  5. Modeling of Spinal Column of Seated Human Body under Exposure to Whole-Body Vibration

    NASA Astrophysics Data System (ADS)

    Tamaoki, Gen; Yoshimura, Takuya; Kuriyama, Kaoru; Nakai, Kazuma

    In vehicle systems occupational drivers might expose themselves to vibration for a long time. This may cause illness of the spinal column such as low back pain. Therefore, it is necessary to evaluate the influence of vibration to the spinal column. Thus the modeling of seated human body is conducted in order to evaluate the effect of whole-body vibration to the spinal column. This model has the spinal column and the support structures such as the muscles of the back and the abdomen. The spinal column is made by the vertebrae and the intervertebral disks that are considered the rigid body and the rotational spring and damper respectively. The parameter of this model is decided by the literature and the body type of the subject with respect to the mass and the model structure. And stiffness and damping parameters are searched by fitting the model simulation results to the experimental measured data with respect to the vibration transmissibilities from the seat surface to the spinal column and the head and with respect to the driving-point apparent mass. In addition, the natural modes of the model compare with the result of experimental modal analysis. The influence of the abdomen and the muscles of the back are investigated by comparing three models with respect to above vibration characteristics. Three model are the proposed model, the model that has the spinal column and the model that has the muscles of the back in addition to the spinal column.

  6. C-130J Human Vibration

    DTIC Science & Technology

    2005-08-01

    Organisation DSTO-TR-1756 ABSTRACT Human exposure to whole - body vibration (WBV) has been associated with a variety of changes in health...1.2.1 Whole - body Vibration (WBV) ................................................................... 3 1.2.2 Local vibration ...amplitude transmissibility VDV vibration dose value VWF vibration -induced white finger WBV whole body vibration DSTO-TR-1756 1 1. Introduction

  7. [Exposure to whole body vibrations in workers moving heavy items by mechanical vehicles in the warehouse of a large retail outlet].

    PubMed

    Siciliano, E; Rossi, A; Nori, L

    2007-01-01

    Efficient warehouse management and item transportation is of fundamental importance in the commercial outlet in exam. Whole body vibrations have been measured in various types of machines, some of which not widely studied yet, like the electrical pallet truck. In some tasks (fork lifts drivers) vibrations propagate through the driving seat whereas in some other tasks (electrical pallet trucks, stackers), operated in a standing posture, vibrations propagate through the lower limbs. Results have been provided for a homogeneous job tasks. In particular conditions, the action level of the Italian national (and European) regulations on occupational exposure to WBV may be exceeded. The authors propose a simple system of probabilistic classification of the risk of exposure to whole body vibrations, based on the respective areas of the distribution which lay within the three risk classes.

  8. Measurement of whole-body vibration exposure from speed control humps

    NASA Astrophysics Data System (ADS)

    Khorshid, E.; Alkalby, F.; Kamal, H.

    2007-07-01

    The main objective of speed control humps is to introduce shocks and high vibration levels when a car passes over them if its speed is higher than the allowable limit. Hump geometry is a major factor in altering the level of these shocks and specifying the speed limit. However, there is no study of the relationship between whole body vibration due to passing over a speed control hump and lower back pain or occupational diseases. In this study, an experimental investigation is conducted to evaluate health risks associated with different geometry speed control humps. Vibration levels and shocks are measured by a seat pad accelerometer placed under the driver's seat to evaluate hazard risks on the human body's lower back. The assessment is based on two standard methods of measuring whole body vibration: the British standard BS 6841 and the new ISO/DIS standard 2631-5. These methods are used to assess the effects of vehicle type, passenger location in the vehicle, vehicle speed, and speed control hump geometry. It was found that circular speed control humps currently installed on many public roads should be modified in order to eliminate hazards. Two newly designed speed humps were proved to be less hazardous than circular speed control humps.

  9. a Field Survey on Effects of Exposure to Noise and Vibration from Railway Traffic, Part i: Annoyance and Activity Disturbance Effects

    NASA Astrophysics Data System (ADS)

    Öhrström, E.; Skånberg, A.-B.

    1996-05-01

    The paper presents some of the results from field investigations on effects of exposure to noise and vibration from railway traffic. Effects on annoyance, sleep disturbances and psycho-social well-being, as well as disturbance of different activities, were evaluated by a postal questionnaire. Effects on sleep and psycho-social well-being will be presented in a second paper. Fifteen different sites located near railway lines in Sweden were investigated. The study covered areas with different number of trains per 24 hours in areas with strong vibration exceeding 2 mm/s, caused by the railway traffic, as measured in the buildings, as well as areas without vibration, or with vibration weaker than 1 mm/s; 2833 persons between 18 and 75 years of age participated in the study. The results show that railway noise is experienced as more annoying in areas in which there is simultaneous exposure to vibration from railway traffic. Disturbance of communication was the most frequently mentioned annoyance reaction, outside and inside the dwellings, especially in areas with a high number of trains per 24 hours. To ensure an acceptable environmental quality where less than 5% of the exposed population is rather or very annoyed by railway noise, these noise levels must be below 80 dB LAmaxand below 55 Leqrespectively in areas without vibration. In areas with simultaneous exposure to strong vibration, actions against vibration or a greater distance between the houses and the railway line is needed, corresponding to a 10 dB(A) lower noise level than in areas without vibration.

  10. Influence of forest machine function on operator exposure to whole-body vibration in a cut-to-length timber harvester.

    PubMed

    Sherwin, L M; Owende, P M O; Kanali, C L; Lyons, J; Ward, S M

    2004-09-15

    The influence of machine function (tree felling and processing, and machine movement over the terrain) on operator exposure to whole-body vibration in a cut-to-length (CTL) timber harvester was evaluated. Vibrations were measured on the seat and the cabin chassis in three orthogonal (x, y, z) axes for the tree felling and processing, and during motion on a test track. It was found that the level of vibration transmitted to the operator during felling and processing was mainly affected by the tree size (diameter). For tree diameter at breast height (dbh) range of 0.25-0.35 m that was investigated, the vertical (z-axis) vibration component during processing increased by up to 300%, and increased by 50% during felling. However, the associated vibration levels were not sufficient to pose any serious health risks to the operator for an exposure limit of 8 h. Vibration at the operator seat and cabin chassis was predominant in the lateral (y-axis) and vertical (z-axis) respectively, during vehicle motion over the standard test track. Vibration peaks of approximately 0.20 and 0.17 ms(-2) occurred at 5 and 3.2 Hz respectively.

  11. Oxygen-related vibrational modes produced in Czochralski silicon by hydrogen plasma exposure

    SciTech Connect

    Stein, H.J.; Medernach, J.W.

    1996-03-01

    Plasma hydrogenation of Czochralski Si has been performed to investigate the introduction of Si{endash}O stretch modes and their correlation with thermal donor formation. Plasma hydrogenation at 275{degree}C introduces a well-resolved vibrational absorption band at 1005 cm{sup {minus}1}, while absorption due to electronic excitations for thermal donors remains weak. We attribute this band to a Si{endash}O precursor center for thermal donor formation, and suggest it is the oxygen dimer center discussed in other studies of oxygen in Si. Vibrational modes introduced at 990 and 1000 cm{sup {minus}1} during post-hydrogenation furnace annealing at 400{degree}C correlate with thermal donors TD2 and TD3, respectively. Stretch frequencies for Si{endash}O in thermal donor centers are compared to those for oxygen aggregates in oxygen-implanted and electron-irradiated Si.

  12. Acute and cumulative effects of different times of recovery from whole body vibration exposure on muscle performance.

    PubMed

    Da Silva-Grigoletto, Marzo E; Vaamonde, Diana M; Castillo, Eduardo; Poblador, Maria S; García-Manso, Juan M; Lancho, Jose L

    2009-10-01

    This experiment was designed to assess the acute (Study I) and cumulative response (Study II) of muscle performance to differing recovery times after exposure to whole body vibration (WBV). All subjects (mean age 19.7 +/- 1.9) were healthy and physically active. In both studies, subjects were exposed to a WBV bout of 6 exposures of 60 seconds each, with frequency of 30 Hz and amplitude of 4 mm. In Study I, subjects (n = 30) underwent 3 trials (1 per day) on different days with a 2-day wash-out period between trials; each trial included either a 1, 2, or 3 minutes of recovery between exposures to WBV. All subjects underwent all trials, which were randomly assigned. Jump ability and muscle power were measured before and after each bout. In Study II, subjects (n = 45) underwent 12 sessions of WBV training in 4 weeks (3 bouts/wk). The subjects were randomly assigned to 1 of the following 3 groups: WBV with 1-minute recovery periods between exposures, WBV with 2-minute recovery periods between exposures, or control group. Jump ability, muscle power, and strength were measured before and after each bout. In the acute study (I), recovery times of 1 and 2 minutes enhanced all measured parameters (p < 0.05), with the 2-minute recovery being more effective. In the long-term study (II), however, although both periods also enhanced the measured parameters (p < 0.05), the 1-minute recovery proved more effective because the response was modified by systematic stimulation. In conclusion, 2-minute recovery periods provided the most effective acute enhancement of muscle activation, whereas the 1-minute recovery provided a more effective cumulative enhancement of muscle power and jump ability.

  13. Review and Evaluation of Hand–Arm Coordinate Systems for Measuring Vibration Exposure, Biodynamic Responses, and Hand Forces

    PubMed Central

    Dong, Ren G.; Sinsel, Erik W.; Welcome, Daniel E.; Warren, Christopher; Xu, Xueyan S.; McDowell, Thomas W.; Wu, John Z.

    2015-01-01

    The hand coordinate systems for measuring vibration exposures and biodynamic responses have been standardized, but they are not actually used in many studies. This contradicts the purpose of the standardization. The objectives of this study were to identify the major sources of this problem, and to help define or identify better coordinate systems for the standardization. This study systematically reviewed the principles and definition methods, and evaluated typical hand coordinate systems. This study confirms that, as accelerometers remain the major technology for vibration measurement, it is reasonable to standardize two types of coordinate systems: a tool-based basicentric (BC) system and an anatomically based biodynamic (BD) system. However, these coordinate systems are not well defined in the current standard. Definition of the standard BC system is confusing, and it can be interpreted differently; as a result, it has been inconsistently applied in various standards and studies. The standard hand BD system is defined using the orientation of the third metacarpal bone. It is neither convenient nor defined based on important biological or biodynamic features. This explains why it is rarely used in practice. To resolve these inconsistencies and deficiencies, we proposed a revised method for defining the realistic handle BC system and an alternative method for defining the hand BD system. A fingertip-based BD system for measuring the principal grip force is also proposed based on an important feature of the grip force confirmed in this study. PMID:26929824

  14. Exposure to mobile phone electromagnetic field radiation, ringtone and vibration affects anxiety-like behaviour and oxidative stress biomarkers in albino wistar rats.

    PubMed

    Shehu, Abubakar; Mohammed, Aliyu; Magaji, Rabiu Abdussalam; Muhammad, Mustapha Shehu

    2016-04-01

    Research on the effects of Mobile phone radio frequency emissions on biological systems has been focused on noise and vibrations as auditory stressors. This study investigated the potential effects of exposure to mobile phone electromagnetic field radiation, ringtone and vibration on anxiety-like behaviour and oxidative stress biomarkers in albino wistar rats. Twenty five male wistar rats were randomly divided into five groups of 5 animals each: group I: exposed to mobile phone in switched off mode (control), group II: exposed to mobile phone in silent mode, group III: exposed to mobile phone in vibration mode, group IV: exposed to mobile phone in ringtone mode, group V: exposed to mobile phone in vibration and ringtone mode. The animals in group II to V were exposed to 10 min call (30 missed calls for 20 s each) per day for 4 weeks. Neurobehavioural studies for assessing anxiety were carried out 24 h after the last exposure and the animals were sacrificed. Brain samples were collected for biochemical evaluation immediately. Results obtained showed a significant decrease (P < 0.05) in open arm duration in all the experimental groups when compared to the control. A significant decrease (P < 0.05) was also observed in catalase activity in group IV and V when compared to the control. In conclusion, the results of the present study indicates that 4 weeks exposure to electromagnetic radiation, vibration, ringtone or both produced a significant effect on anxiety-like behavior and oxidative stress in young wistar rats.

  15. Exposure to Sound Vibrations Lead to Transcriptomic, Proteomic and Hormonal Changes in Arabidopsis.

    PubMed

    Ghosh, Ritesh; Mishra, Ratnesh Chandra; Choi, Bosung; Kwon, Young Sang; Bae, Dong Won; Park, Soo-Chul; Jeong, Mi-Jeong; Bae, Hanhong

    2016-09-26

    Sound vibration (SV) is considered as an external mechanical force that modulates plant growth and development like other mechanical stimuli (e.g., wind, rain, touch and vibration). A number of previous and recent studies reported developmental responses in plants tailored against SV of varied frequencies. This strongly suggests the existence of sophisticated molecular mechanisms for SV perception and signal transduction. Despite this there exists a huge gap in our understanding regarding the SV-mediated molecular alterations, which is a prerequisite to gain insight into SV-mediated plant development. Herein, we investigated the global gene expression changes in Arabidopsis thaliana upon treatment with five different single frequencies of SV at constant amplitude for 1 h. As a next step, we also studied the SV-mediated proteomic changes in Arabidopsis. Data suggested that like other stimuli, SV also activated signature cellular events, for example, scavenging of reactive oxygen species (ROS), alteration of primary metabolism, and hormonal signaling. Phytohormonal analysis indicated that SV-mediated responses were, in part, modulated by specific alterations in phytohormone levels; especially salicylic acid (SA). Notably, several touch regulated genes were also up-regulated by SV treatment suggesting a possible molecular crosstalk among the two mechanical stimuli, sound and touch. Overall, these results provide a molecular basis to SV triggered global transcriptomic, proteomic and hormonal changes in plant.

  16. Exposure to Sound Vibrations Lead to Transcriptomic, Proteomic and Hormonal Changes in Arabidopsis

    PubMed Central

    Ghosh, Ritesh; Mishra, Ratnesh Chandra; Choi, Bosung; Kwon, Young Sang; Bae, Dong Won; Park, Soo-Chul; Jeong, Mi-Jeong; Bae, Hanhong

    2016-01-01

    Sound vibration (SV) is considered as an external mechanical force that modulates plant growth and development like other mechanical stimuli (e.g., wind, rain, touch and vibration). A number of previous and recent studies reported developmental responses in plants tailored against SV of varied frequencies. This strongly suggests the existence of sophisticated molecular mechanisms for SV perception and signal transduction. Despite this there exists a huge gap in our understanding regarding the SV-mediated molecular alterations, which is a prerequisite to gain insight into SV-mediated plant development. Herein, we investigated the global gene expression changes in Arabidopsis thaliana upon treatment with five different single frequencies of SV at constant amplitude for 1 h. As a next step, we also studied the SV-mediated proteomic changes in Arabidopsis. Data suggested that like other stimuli, SV also activated signature cellular events, for example, scavenging of reactive oxygen species (ROS), alteration of primary metabolism, and hormonal signaling. Phytohormonal analysis indicated that SV-mediated responses were, in part, modulated by specific alterations in phytohormone levels; especially salicylic acid (SA). Notably, several touch regulated genes were also up-regulated by SV treatment suggesting a possible molecular crosstalk among the two mechanical stimuli, sound and touch. Overall, these results provide a molecular basis to SV triggered global transcriptomic, proteomic and hormonal changes in plant. PMID:27665921

  17. Effect of bit wear on hammer drill handle vibration and productivity.

    PubMed

    Antonucci, Andrea; Barr, Alan; Martin, Bernard; Rempel, David

    2017-08-01

    The use of large electric hammer drills exposes construction workers to high levels of hand vibration that may lead to hand-arm vibration syndrome and other musculoskeletal disorders. The aim of this laboratory study was to investigate the effect of bit wear on drill handle vibration and drilling productivity (e.g., drilling time per hole). A laboratory test bench system was used with an 8.3 kg electric hammer drill and 1.9 cm concrete bit (a typical drill and bit used in commercial construction). The system automatically advanced the active drill into aged concrete block under feed force control to a depth of 7.6 cm while handle vibration was measured according to ISO standards (ISO 5349 and 28927). Bits were worn to 4 levels by consecutive hole drilling to 4 cumulative drilling depths: 0, 1,900, 5,700, and 7,600 cm. Z-axis handle vibration increased significantly (p<0.05) from 4.8 to 5.1 m/s(2) (ISO weighted) and from 42.7-47.6 m/s(2) (unweighted) when comparing a new bit to a bit worn to 1,900 cm of cumulative drilling depth. Handle vibration did not increase further with bits worn more than 1900 cm of cumulative drilling depth. Neither x- nor y-axis handle vibration was effected by bit wear. The time to drill a hole increased by 58% for the bit with 5,700 cm of cumulative drilling depth compared to a new bit. Bit wear led to a small but significant increase in both ISO weighted and unweighted z-axis handle vibration. Perhaps more important, bit wear had a large effect on productivity. The effect on productivity will influence a worker's allowable daily drilling time if exposure to drill handle vibration is near the ACGIH Threshold Limit Value. ([1]) Construction contractors should implement a bit replacement program based on these findings.

  18. Electron beam exposure mechanisms in hydrogen silsesquioxane investigated by vibrational spectroscopy and in-situ electron beam induced desorption

    SciTech Connect

    Olynick, D.L.; Cord, B.; Schipotinin, A.; Ogletree, D.F.; Schuck, P.J.

    2009-11-13

    Hydrogen Silsesquioxane (HSQ) is used as a high-resolution resist with resolution down below 10nm half-pitch. This material or materials with related functionalities could have widespread impact in nanolithography and nanoscience applications if the exposure mechanism was understood and instabilities controlled. Here we have directly investigated the exposure mechanism using vibrational spectroscopy (both Raman and Fourier transform Infrared) and electron beam desorption spectrocscopy (EBDS). In the non-networked HSQ system, silicon atoms sit at the corners of a cubic structure. Each silicon is bonded to a hydrogen atom and bridges 3 oxygen atoms (formula: HSiO3/2). For the first time, we have shown, via changes in the Si-H2 peak at ~;;2200 cm -1 in the Raman spectra and the release of SiHx products in EBID, that electron-bam exposed materials crosslinks via a redistribution reaction. In addition, we observe the release of significantly more H2 than SiH2 during EBID, which is indicative of additional reaction mechanisms. Additionally, we compare the behavior of HSQ in response to both thermal and electron-beam induced reactions.

  19. An investigation of a cluster of cervical herniated discs among container truck drivers with occupational exposure to whole-body vibration.

    PubMed

    Lan, Fan-Yun; Liou, Yuh-Wehn; Huang, Kuo-Yuan; Guo, How-Ran; Wang, Jung-Der

    2016-01-01

    This study aimed to determine if occupational exposure to whole-body vibration is associated with cervical intervertebral disc herniation among container truck drivers. We conducted a walk-through survey among container truck drivers and unexposed workers. We also measured the vibration hazard of the container truck over the driver's back and seat when the driver was loading a container and driving the loaded truck. Among the 38 workers interviewed, 32 were container truck drivers. Four of them reported cervical herniated discs, and all of these individuals were container truck drivers with a job tenure of greater than 10 years. Self-reported cervical herniated disc, nuchal pain, nocturia, arm/forearm weakness, arm/forearm numbness, and finger numbness were significantly more prevalent as the driver's duration of exposure increased (all p values of test for trend <0.05). The vibration of the truck during and after loading a container was considered the main cause of herniated disc. When a container truck was driven with a loaded container, both the vertical and horizontal vibrating acceleration over the seat and back sites exceeded the 8-hr exposure level based on the ISO 2631-1 criteria. The transient vibration dose values (VDVs) measured during misaligned or unsmooth loading operations were usually greater than the upper bounds of the health guidance caution zone for the 8-hr VDV. Our investigation disclosed a cluster of cervical intervertebral disc herniation that was associated with the vibration hazard during long-term container truck driving under full load and possibly aggravated by misaligned loading operations.

  20. The development of an intervention programme to reduce whole-body vibration exposure at work induced by a change in behaviour: a study protocol

    PubMed Central

    Tiemessen, Ivo JH; Hulshof, Carel TJ; Frings-Dresen, Monique HW

    2007-01-01

    Background Whole body vibration (WBV) exposure at work is common and studies found evidence that this exposure might cause low back pain (LBP). A recent review concluded there is a lack of evidence of effective strategies to reduce WBV exposure. Most research in this field is focussed on the technical implications, although changing behaviour towards WBV exposure might be promising as well. Therefore, we developed an intervention programme to reduce WBV exposure in a population of drivers with the emphasis on a change in behaviour of driver and employer. The hypothesis is that an effective reduction in WBV exposure, in time, will lead to a reduction in LBP as WBV exposure is a proxy for an increased risk of LBP. Methods/Design The intervention programme was developed specifically for the drivers of vibrating vehicles and their employers. The intervention programme will be based on the most important determinants of WBV exposure as track conditions, driving speed, quality of the seat, etc. By increasing knowledge and skills towards changing these determinants, the attitude, social influence and self-efficacy (ASE) of both drivers and employers will be affected having an effect on the level of exposure. We used the well-known ASE model to develop an intervention programme aiming at a change or the intention to change behaviour towards WBV exposure. The developed programme consists of: individual health surveillance, an information brochure, an informative presentation and a report of the performed field measurements. Discussion The study protocol described is advantageous as the intervention program actively tries to change behaviour towards WBV exposure. The near future will show if this intervention program is effective by showing a decrease in WBV exposure. PMID:18005400

  1. Assessing combined exposures of whole-body vibration and awkward posture--further results from application of a simultaneous field measurement methodology.

    PubMed

    Raffler, Nastaran; Hermanns, Ingo; Sayn, Detlef; Göres, Benno; Ellegast, Rolf; Rissler, Jörg

    2010-01-01

    The drivers of ten vehicles (tram, helicopter, saloon car, van, forklift, two mobile excavators, wheel loader, tractor, elevating platform truck) were studied with regard to the combined exposures of whole-body vibration and awkward posture during occupational tasks. Seven degrees of freedom (DOFs), or body angles, were recorded as a function of time by means of the CUELA measuring system (Computer-assisted registration and long-term analysis of musculoskeletal workloads) for the purpose of posture assessment. The vibrational exposure is expressed as the vector sum of the frequency-weighted accelerations in the three Cartesian coordinates; these were recorded simultaneously with the posture measurement. Based upon the percentage of working time spent under different workloads, a scheme is proposed for classification of the two exposures into three categories. In addition, a risk of adverse health effects classified as low, possible or high can be assigned to the combination of the two exposures. With regard to posture, the most severe exposure was measured for the drivers of the wheel loader and for the tractor driver, whereas the lowest exposure was measured for the helicopter pilots and van drivers. With regard to the combination of whole-body and posture exposures, the tractor driver and the elevating platform truck driver exhibited the highest workloads.

  2. A field study of exposure to whole-body vibration due to agricultural machines in a full-time rice farmer over one year.

    PubMed

    Tsujimura, Hiroji; Taoda, Kazushi; Kitahara, Teruyo

    2015-01-01

    The aims of this study were to clarify in detail the levels of whole-body vibration (WBV) exposure from a variety of agricultural machines in a rice farmer over one year, and to evaluate the daily level of exposure compared with European and Japanese threshold limits. The subject was a full-time, male rice farmer. We measured vibration accelerations on the seat pan and at the seat base of four tractors with various implements attached, one rice-planting machine, two combine harvesters, produced by the same manufacturer, and one truck used for transportation of agricultural machines. The position and velocity of the machines were recorded in parallel with WBV measurements. In addition, during the year starting in April 2010, the subject completed a questionnaire regarding his work (date, place, content, hours worked, machines used). We calculated the daily exposure to WBV, A(8), on all the days on which the subject used the agricultural machines. The WBV magnitude in farm fields was relatively high during tasks with high velocity and heavy mechanical load on the machine, and had no dominant axis. The subject worked for 159 days using the agricultural machines during the year, and the proportion of days on which A(8) values exceeded the thresholds was 90% for the Japan occupational exposure limit and 24% for the EU exposure action value. Our findings emphasize the need for rice farmers to have health management strategies suited to the farming seasons and measures to reduce WBV exposure during each farm task.

  3. [Magnetic resonance imaging for the wrist joint of the coal miners in vibration department].

    PubMed

    Zhao, Xuan-zhi; Liu, Rui-lian; Hu, Shu-dong; Zhang, Wei; Xu, Wen-xiu; Ge, Ling-xia

    2006-04-01

    To study the magnetic resonance imaging (MRI) in the wrist joint of coal miners who work in excavation and vibration department. Forty-three coal miners with the hand-arm vibration disease served as the observation group while 20 workers who were not working in the vibration department acted as the control group. The patients in the observation group were divided into five subgroups according to the time when they received vibration. The regularity of the development of signs and symptoms of MRI was observed and analyzed. The hydroarthrosis was most found in MRI. There were significant difference in hydroarthrosis (chi(2) = 8.80, P < 0.01), osteoporosis and osteomyelitis (chi(2) = 3.91, chi(2) = 5.01, P < 0.05 respectively) between the observation group and the control group. The edema of bone marrow and the avascular necrosis of ossa carpi were found only in the observation group and not found in the control group. The hydroarthrosis and the edema of bone marrow occurred most in the early stage of vibration. The signal in the edema of the bone marrow of the distal end of the radius was decreased in the GE sequence T(2)WI with the specificity. (1) Changes in the wrist joint occur in the early stage of the vibration work, and can be found in the MRI. (2) The edema of the bone marrow of the distal end of the radius is of great value in the diagnosis of the hand-arm vibration disease.

  4. [Morphological changes of hemomicrocirculatory bed of the organs of rat masticatory apparatus after the exposure to general vibration and during pharmacologic correction].

    PubMed

    Gaĭvoronskiĭ, I V; Iordanishvili, A K; Kovalevskiĭ, A M

    2013-01-01

    The effect of chronic exposure to general vibration on the state of hemomicrocirculatory bed in the organs of rat masticatory apparatus and the efficacy of antihypoxants and adaptogens for its pharmacological prophylaxis was studied. The experiments were performed in 210 albino male rats aged 8 to 30 weeks. The intact rats served as control. Transcapillary injections with 1% collargol solution, histological, electron microscopic and morphometric methods were used. It was found that chronic exposure to general vibration induced a hemodynamic disturbances at the level of hemomicrocirculatory bed vessels in the organs of masticatory apparatus with subsequent hypoxia. Electron microscopic study revealed the damage of the cellular ultrastructure in the endotheliocytes of blood vessels of the hemomicrocirculatory bed. Antihypoxants, adaptogens and their combinations demonstrated a pronounced protective effect

  5. Random Vibrations

    NASA Technical Reports Server (NTRS)

    Messaro. Semma; Harrison, Phillip

    2010-01-01

    Ares I Zonal Random vibration environments due to acoustic impingement and combustion processes are develop for liftoff, ascent and reentry. Random Vibration test criteria for Ares I Upper Stage pyrotechnic components are developed by enveloping the applicable zonal environments where each component is located. Random vibration tests will be conducted to assure that these components will survive and function appropriately after exposure to the expected vibration environments. Methodology: Random Vibration test criteria for Ares I Upper Stage pyrotechnic components were desired that would envelope all the applicable environments where each component was located. Applicable Ares I Vehicle drawings and design information needed to be assessed to determine the location(s) for each component on the Ares I Upper Stage. Design and test criteria needed to be developed by plotting and enveloping the applicable environments using Microsoft Excel Spreadsheet Software and documenting them in a report Using Microsoft Word Processing Software. Conclusion: Random vibration liftoff, ascent, and green run design & test criteria for the Upper Stage Pyrotechnic Components were developed by using Microsoft Excel to envelope zonal environments applicable to each component. Results were transferred from Excel into a report using Microsoft Word. After the report is reviewed and edited by my mentor it will be submitted for publication as an attachment to a memorandum. Pyrotechnic component designers will extract criteria from my report for incorporation into the design and test specifications for components. Eventually the hardware will be tested to the environments I developed to assure that the components will survive and function appropriately after exposure to the expected vibration environments.

  6. US TAG for ISO/TC43, acoustics, IEC/TC29 electroacoustics, ISO/TC108/SC4 human exposure to mechanical vibration and shock: Minutes of the Accredited Standards Committee on Bioacoustics, S3

    NASA Astrophysics Data System (ADS)

    1991-05-01

    This symposia included the following topics: coupler calibration of earphones, human exposure to mechanical vibration and shock, method for calibration of bone conduction vibrator, hearing aids, criteria for background noise for audiometer testing, hearing conservation criteria, measurement of speech levels, measurement of acoustic impedance and admittance of the ear.

  7. The association between whole body vibration exposure and musculoskeletal disorders in the Swedish work force is confounded by lifting and posture

    NASA Astrophysics Data System (ADS)

    Hagberg, Mats; Burström, Lage; Ekman, Anna; Vilhelmsson, Rebecka

    2006-12-01

    This was a cross-sectional study based on material representing the Swedish work-force from a survey conducted in 1999, 2001 and 2003 by Statistics Sweden. Exposure to whole body vibration (WBV) was prevalent among agricultural, forestry, fishery workers and among plant and machinery operators based on a sample of 40,000 employed persons. Approximately 70% responders, that are 9798 persons answered both the interview and the questionnaire for the analysis of exposure-response. Exposure to WBV at least half the working time was associated with prevalence ratios above two for musculoskeletal symptoms in the low back, neck, shoulder/arm and hand among workers. When the exposure factors lifting and frequent bending were added to a multivariate analysis, surprisingly the magnitude of association was low between low back symptoms and WBV exposure. Interestingly, the relation between WBV exposure and symptoms in the neck, shoulder/arm and hand had the same or higher magnitude of association even when the possible confounders were in the model. For the neck, low back and shoulder/arm there was a visible increase in prevalence ratio (as high as 5 times) when combined exposures of WBV, lifting, frequent bending, twisted posture and noise were included in the analysis.

  8. Heart disease attributed to occupational noise, vibration and other co-exposure: Self-reported population-based survey among Bulgarian workers.

    PubMed

    Dzhambov, Angel M; Dimitrova, Donka D

    Cardiovascular disease (CVD) is the main mortality cause worldwide. Noise and vibration are considered to be occupational risk factors, but little is known about their cardiovascular effects in Bulgaria in terms of gender and various professional groups. The aim of this study has been to investigate the risk of prevalent CVD, associated with occupational noise and vibration exposure. We conducted a secondary analysis of the data from 3 waves of the European Working Conditions Survey (EWCS) 2001-2010 - a nationally-representative cross-sectional questionnaire survey covering 3149 workers aged ≥ 15 years in Bulgaria. Data on self-reported heart disease were linked to self-reported occupational noise and vibration, adjusting for other factors. Results from the 3 waves were pooled together using the inverse variance heterogeneity (IVhet) meta-analysis. For noise, the risk was elevated among women (relative risk (RR) = 1.26, 95% confidence interval (CI): 0.53-3.01), but not men (RR = 0.49, 95% CI: 0.14-1.65). Long-term workers had RR = 1.01, 95% CI: 0.60-1.69. For vibration, the risk was increased in all participants. It was higher among men (RR = 2.56, 95% CI: 1.60-4.09) than it was among women (RR = 1.32, 95% CI: 0.77-2.27). Among long-term, industrial, and service workers it was RR = 1.56, 95% CI: 1.02-2.40; RR = 1.10, 95% CI: 0.61-1.98, and RR = 1.18, 95% CI: 0.57-2.46, respectively. Occupational vibration was a risk factor for prevalent heart disease in Bulgaria. Noise was an alleged risk factor only among long-term workers and women. Med Pr 2016;67(4):435-445. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  9. Ulnar neuropathy and ulnar neuropathy-like symptoms in relation to biomechanical exposures assessed by a job exposure matrix: a triple case-referent study.

    PubMed

    Svendsen, Susanne Wulff; Johnsen, Birger; Fuglsang-Frederiksen, Anders; Frost, Poul

    2012-11-01

    We aimed to evaluate relations between occupational biomechanical exposures and (1) ulnar neuropathy confirmed by electroneurography (ENG) and (2) ulnar neuropathy-like symptoms with normal ENG. In this triple case-referent study, we identified all patients aged 18-65 years, examined with ENG at a neurophysiological department on suspicion of ulnar neuropathy, 2001-2007. We mailed a questionnaire to 546 patients with ulnar neuropathy, 633 patients with ulnar neuropathy-like symptoms and two separate groups of community referents, matched on sex, age and primary care centre (risk set sampling). The two patient groups were also compared to each other directly. We constructed a Job Exposure Matrix to provide estimates of exposure to non-neutral postures, repetitive movements, hand-arm vibrations and forceful work. Conditional and unconditional logistic regressions were used. The proportion who responded was 59%. Ulnar neuropathy was related to forceful work with an exposure-response pattern reaching an OR of 3.85 (95% CI 2.04 to 7.24); non-neutral postures strengthened effects of forceful work. No relation was observed with repetitive movements. Ulnar neuropathy-like symptoms were related to repetitive movements with an OR of 1.89 (95% CI 1.01 to 3.52) in the highest-exposure category (≥2.5 h/day); forceful work was unrelated to the outcome. Ulnar neuropathy and ulnar neuropathy-like symptoms differed with respect to associations with occupational biomechanical exposures. Findings suggested specific effects of forceful work on the ulnar nerve. Thus, results corroborated the importance of an electrophysiological diagnosis when evaluating risk factors for ulnar neuropathy. Preventive effects may be achieved by reducing biomechanical exposures at work.

  10. The effect of whole body vibration exposure on muscle or bone morphology and function in older adults: a systematic review of the literature.

    PubMed

    Mikhael, Monica; Orr, Rhonda; Fiatarone Singh, Maria A

    2010-06-01

    The aim of this study was to examine the effect of whole body vibration (WBV), a novel exercise modality, on muscle or bone morphology and function in older adults. A literature search of published randomised controlled trials (RCTs) was conducted using multiple databases and hand searching for study designs reporting the effects of WBV in older adults on any outcomes related to muscle function, or muscle or bone morphology. Concomitant exercise was only included if the control group performed the same exercise as the active WBV group, but without vibration. Six RCTs met the inclusion criteria of this review, three reporting measures of muscle only, two assessing bone measures only and one detailing measures of both bone and muscle. Study design varied greatly across the six trials and only six of 35 musculoskeletal outcomes analysed were statistically significant. All statistically significant improvements were of muscle function. The published literature to date provides only weak support for the efficacy of WBV exposure for muscle function, muscle morphology, or bone architecture in older adults. Irregularities in study design and WBV protocols across the literature and poor quality trials contribute to this inconsistency, revealing the need for more uniformity in future trials. Future research should be more robust in design, include larger cohorts, longer interventions and standardisation of protocols. They should also investigate the optimal dose-response relationships and variation in vibration characteristics, to determine the true efficacy, clinical relevance, and underlying mechanisms of muscle and bone adaptations. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  11. City bus driving and low back pain: a study of the exposures to posture demands, manual materials handling and whole-body vibration.

    PubMed

    Okunribido, Olanrewaju O; Shimbles, Steven J; Magnusson, Marianne; Pope, Malcolm

    2007-01-01

    A cross-sectional study was conducted to investigate worker exposure to posture demands, manual materials handling (MMH) and whole body vibration as risks for low back pain (LBP). Using validated questionnaire, information about driving experience, driving (sitting) posture MMH, and health history was obtained from 80 city bus drivers. Twelve drivers were observed during their service route driving (at least one complete round trip) and vibration measurements were obtained at the seat and according to the recommendations of ISO 2631 (1997), for three models of bus (a mini-bus, a single-decker bus, a double-decker bus). The results showed that city bus drivers spend about 60% of the daily work time actually driving, often with the torso straight or unsupported, perform occasional and light MMH, and experience discomforting shock/jerking vibration events. Transient and mild LBP (not likely to interfere with work or customary levels of activity) was found to be prevalent among the drivers and a need for ergonomic evaluation of the drivers' seat was suggested.

  12. [Vibration on agricultural tractors].

    PubMed

    Peretti, Alessandro; Delvecchio, Simone; Bonomini, Francesco; di Bisceglie, Anita Pasqua; Colosio, Claudio

    2013-01-01

    In the article, details related to the diffusion of agricultural tractors in Italy are given and considerations about the effects of vibration on operators, the sources of vibration and suggestions to reduce them are presented. The acceleration values observed in Italy amongst 244 tractors and levels of worker exposure are shown by means of histograms. The relevant data variability is discussed.

  13. Mathematical equations and system identification models for a portable pneumatic bladder system designed to reduce human exposure to whole body shock and vibration

    NASA Astrophysics Data System (ADS)

    Aziz Ayyad, Ezzat

    A mathematical representation is sought to model the behavior of a portable pneumatic foam bladder designed to mitigate the effects of human exposure to shock and whole body random vibration. Fluid Dynamics principles are used to derive the analytic differential equations used for the physical equations Model. Additionally, combination of Wiener and Hammerstein block oriented representation techniques have been selected to create system identification (SID) block oriented models. A number of algorithms have been iterated to obtain numerical solutions for the system of equations which was found to be coupled and non-linear, with no analytic closed form solution. The purpose is to be able to predict the response of such system due to random vibrations and shock within reasonable margin of error. The constructed models were found to be accurate within accepted confidence level. Beside the analytic set of physical equations model representation, a linear SID model was selected to take advantage of the available vast amount of mathematical tools available to further analyze and redesign the bladder as a dynamic system. Measured field-test and lab test data have been collected from several helicopter and land terrain vehicle experiments. Numerous excitation and response acceleration measurement records were collected and used to prove the agreement with predictions. The estimation of two selected models were later applied to standard metrics in the frequency domain realization and compared with measurement responses. The collected test records are obtained from measured data at the US Army fields and facilities and at UNLV-CMEST environmental lab. The emerged models have been validated for conformity with actual accelerometer measurement responses and found within accepted error tolerance that is in both time and frequency domains. Further, standard metrics have been used to further confirm the confidence in the validation results. When comparing model prediction with

  14. Vibration characteristics of dental high-speed turbines and speed-increasing handpieces.

    PubMed

    Poole, Ruth L; Lea, Simon C; Dyson, John E; Shortall, Adrian C C; Walmsley, A Damien

    2008-07-01

    Vibrations of dental handpieces may contribute to symptoms of hand-arm vibration syndrome in dental personnel and iatrogenic enamel cracking in teeth. However, methods for measuring dental handpiece vibrations have previously been limited and information about vibration characteristics is sparse. This preliminary study aimed to use a novel approach to assess the vibrations of unloaded high-speed handpieces in vitro. Maximum vibration displacement amplitudes of five air turbines and two speed-increasing handpieces were recorded whilst they were operated with and without a rotary cutting instrument (RCI) using a scanning laser vibrometer (SLV). RCI rotation speeds, calculated from frequency peaks, were consistent with expected values. ANOVA statistical analysis indicated significant differences in vibrations between handpiece models (p<0.01), although post hoc tests revealed that differences between most individual models were not significant (p>0.11). Operating handpieces with a RCI resulted in greater vibrations than with no RCI (p<0.01). Points on the head of the handpiece showed greater vibration displacement amplitudes than points along the body (p<0.01). Although no single measurement exceeded 4 microm for the handpieces in the current test setup (implying that these vibrations may be unlikely to cause adverse effects), this study has formed the basis for future work which will include handpiece vibration measurements whilst cutting under clinically representative loads.

  15. Ride quality and international standard ISO 2631 (Guide for the evaluation of human exposure to whole-body vibration)

    NASA Technical Reports Server (NTRS)

    Allen, G. R.

    1975-01-01

    The evolution of the standard, which is aimed at promoting research and production of more data, and providing some design guidance, is outlined and its contents summarized. Some of the assumptions and information on which it is based are analyzed. Its application to vehicle ride quality is considered in the context of the safety, efficiency and comfort of crew and passengers. The importance of establishing the precise criteria against which vibration limits are required is underlined, particularly the difficulties of first defining comfort and then postulating appropriate levels. Some current and future work related to improving the standard is outlined and additional suggestions offered.

  16. Parallel β-sheet vibration band increases with proteins dipole moment under exposure to 1765 MHz microwaves.

    PubMed

    Calabrò, Emanuele; Magazù, Salvatore

    2016-02-01

    Effects of exposure of 4 h to mobile phones microwaves at 1765 MHz at a power density around 940 mW/m(2) on four typical proteins (hemoglobin in H2 O solution, and myoglobin, bovine serum albumin, and lysozyme in D2 O solution) were studied by means of Fourier Transform Infrared spectroscopy and Fourier self-deconvolution analysis. Increase in intensity of parallel β-sheet component around 1635 cm(-1) was observed after exposure of hemoglobin, myoglobin, and bovine serum albumin, showing that a mechanism of unfolding occurred after exposure, whereas no appreciable change in the amide I region occurred after lysozyme exposure. In addition, a relationship between protein dipole moment and protein unfolding rate was demonstrated with a correlation coefficient r = 0.973 and 95% confidence interval.

  17. Modelling the effects of exposure to whole-body vibration on low-back pain and its long-term consequences for sickness absence and associated work disability

    NASA Astrophysics Data System (ADS)

    Burdorf, A.; Hulshof, C. T. J.

    2006-12-01

    BackgroundExposure to whole-body vibration (WBV) is a well-known risk factor for the occurrence of low-back pain (LBP). Little is known about the long-term course of back pain in workers exposed to WBV and the consequences for (temporary) disability, due to lack of cohort studies with sufficiently long follow-up periods. MethodsA systematic review of the literature was performed to assess associations between exposure to WBV and LBP, sickness absence due to low-back disorders and permanent disability. A meta-analysis was used to estimate the prevalences of LBP and sickness absence due to low-back disorders in occupational populations, depending on relevant exposure characteristics. These prevalences were converted into probabilities for transitions between no complaints, LBP, sickness due to LBP, and disability. A Markov model was applied to evaluate a hypothetical cohort of workers without LBP at the start of the cohort and a follow-up of 40 years (40 cycles of 1 year) to reflect a long-life career with continuous exposure to WBV. ResultsIn this hypothetical cohort it was estimated that among workers with the highest exposure to WBV on average about 47 weeks of their working life were lost due to sick leave because of LBP, which is approximately 2.5% of their working life. When all workers on prolonged sick leave for 52 weeks would remain disabled for the rest of their working life, a maximum of 23.4% of their working life could be lost due to high WBV exposure. Among workers without or low exposure to WBV the corresponding losses were 0.8% and 7.8%, respectively. ConclusionThe approach to assess years of work lost due to an occupational exposure may provide a more adequate description for stakeholders than the traditional measures of relative risk or attributable risk fraction. The concept of work years lost may also facilitate a better appreciation of the potential benefits of preventive measures.

  18. Vibration manual

    NASA Technical Reports Server (NTRS)

    Green, C.

    1971-01-01

    Guidelines of the methods and applications used in vibration technology at the MSFC are presented. The purpose of the guidelines is to provide a practical tool for coordination and understanding between industry and government groups concerned with vibration of systems and equipments. Topics covered include measuring, reducing, analyzing, and methods for obtaining simulated environments and formulating vibration specifications. Methods for vibration and shock testing, theoretical aspects of data processing, vibration response analysis, and techniques of designing for vibration are also presented.

  19. The effect of whole body vibration exposure on balance and functional mobility in older adults: a systematic review and meta-analysis.

    PubMed

    Orr, Rhonda

    2015-04-01

    The aim of this review was to systematically evaluate the effect of WBV exposure alone on balance and functional mobility in older adults. A literature search of randomized controlled trials (RCT) reporting the effects of WBV on balance or functional mobility outcomes in older adults, was conducted using multiple databases. WBV-plus-exercise was only included if the control group performed the same exercises as the WBV group, but without vibration. The methodological quality of studies was assessed using the PEDro scale. Meta-analysis was performed if three or more studies measured the same outcome. Twenty RCTs met the inclusion criteria. Eight RCTs compared WBV-only with control and eight RCTs compared WBV-plus-exercise with the same-exercise only group. Meta-analysis indicated that WBV improved single-leg stance (p=0.05) and timed up and go (p=0.004) measures compared with controls. WBV improved other balance and mobility outcomes with inconsistent results. Although balance and mobility appeared to be responsive to WBV-plus-exercise, particularly in lower-functioning patients, compared with WBV-only, caution is required when interpreting the findings. Although there is some evidence for an overall effect of WBV on selected balance and mobility measures, its impact remains inconclusive. Robust RCTs examining WBV-only exposure on balance and functional mobility in older adults are warranted.

  20. Optimization approaches to ameliorate humidity and vibration related issues using the microAeth black carbon monitor for personal exposure measurement

    PubMed Central

    Cai, Jing; Yan, Beizhan; Kinney, Patrick L.; Perzanowski, Matthew S.; Jung, Kyung-Hwa; Li, Tiantian; Xiu, Guangli; Zhang, Danian; Olivo, Cosette; Ross, James; Miller, Rachel L.; Chillrud, Steven N.

    2014-01-01

    Exposure to ambient black carbon (BC) is associated with adverse health effects. Black carbon levels display large spatial and temporal variability in many settings, such as cities and rural households where fossil fuel and biomass, respectively, are commonly burned for transportation, heat and cooking. This paper addresses the optimization of the miniaturized personal BC monitor, the microAeth® for use in epidemiology studies. To address false positive and negative peaks in real time BC concentrations resulting from changes in temperature and humidity, an inlet with a diffusion drier was developed. In addition, we developed data cleaning algorithms to address occasional false positive and negative fluctuations in BC readings related to physical vibration, due in part to both dirt accumulations in the optical inserts and degraded components. These methods were successfully used to process real-time BC data generated from a cohort of 9-10 year old children (N= 54) in NYC, who wore 1 or 2 microAeth units for six 24hr time periods. Two hour and daily BC averages after data cleaning were consistent with averaged raw data (slopes near 1 with R =0.99, p<0.001; R= 0.95, p<0.001, respectively), strongly suggesting that the false positive and negative excursions balance each other out when averaged for at least 2 hrs. Data cleaning of identified suspect events allows more confidence in the interpretation of the real-time personal monitoring data generated in environmental exposure studies, with mean percent difference <10% for 19 duplicate deployments. PMID:25558122

  1. Whole-body Vibration Exposure of Drill Operators in Iron Ore Mines and Role of Machine-Related, Individual, and Rock-Related Factors

    PubMed Central

    Chaudhary, Dhanjee Kumar; Bhattacherjee, Ashis; Patra, Aditya Kumar; Chau, Nearkasen

    2015-01-01

    Background This study aimed to assess the whole-body vibration (WBV) exposure among large blast hole drill machine operators with regard to the International Organization for Standardization (ISO) recommended threshold values and its association with machine- and rock-related factors and workers' individual characteristics. Methods The study population included 28 drill machine operators who had worked in four opencast iron ore mines in eastern India. The study protocol comprised the following: measurements of WBV exposure [frequency weighted root mean square (RMS) acceleration (m/s2)], machine-related data (manufacturer of machine, age of machine, seat height, thickness, and rest height) collected from mine management offices, measurements of rock hardness, uniaxial compressive strength and density, and workers' characteristics via face-to-face interviews. Results More than 90% of the operators were exposed to a higher level WBV than the ISO upper limit and only 3.6% between the lower and upper limits, mainly in the vertical axis. Bivariate correlations revealed that potential predictors of total WBV exposure were: machine manufacturer (r = 0.453, p = 0.015), age of drill (r = 0.533, p = 0.003), and hardness of rock (r = 0.561, p = 0.002). The stepwise multiple regression model revealed that the potential predictors are age of operator (regression coefficient β = −0.052, standard error SE = 0.023), manufacturer (β = 1.093, SE = 0.227), rock hardness (β = 0.045, SE = 0.018), uniaxial compressive strength (β = 0.027, SE = 0.009), and density (β = –1.135, SE = 0.235). Conclusion Prevention should include using appropriate machines to handle rock hardness, rock uniaxial compressive strength and density, and seat improvement using ergonomic approaches such as including a suspension system. PMID:26929838

  2. Whole-body Vibration Exposure of Drill Operators in Iron Ore Mines and Role of Machine-Related, Individual, and Rock-Related Factors.

    PubMed

    Chaudhary, Dhanjee Kumar; Bhattacherjee, Ashis; Patra, Aditya Kumar; Chau, Nearkasen

    2015-12-01

    This study aimed to assess the whole-body vibration (WBV) exposure among large blast hole drill machine operators with regard to the International Organization for Standardization (ISO) recommended threshold values and its association with machine- and rock-related factors and workers' individual characteristics. The study population included 28 drill machine operators who had worked in four opencast iron ore mines in eastern India. The study protocol comprised the following: measurements of WBV exposure [frequency weighted root mean square (RMS) acceleration (m/s(2))], machine-related data (manufacturer of machine, age of machine, seat height, thickness, and rest height) collected from mine management offices, measurements of rock hardness, uniaxial compressive strength and density, and workers' characteristics via face-to-face interviews. More than 90% of the operators were exposed to a higher level WBV than the ISO upper limit and only 3.6% between the lower and upper limits, mainly in the vertical axis. Bivariate correlations revealed that potential predictors of total WBV exposure were: machine manufacturer (r = 0.453, p = 0.015), age of drill (r = 0.533, p = 0.003), and hardness of rock (r = 0.561, p = 0.002). The stepwise multiple regression model revealed that the potential predictors are age of operator (regression coefficient β = -0.052, standard error SE = 0.023), manufacturer (β = 1.093, SE = 0.227), rock hardness (β = 0.045, SE = 0.018), uniaxial compressive strength (β = 0.027, SE = 0.009), and density (β = -1.135, SE = 0.235). Prevention should include using appropriate machines to handle rock hardness, rock uniaxial compressive strength and density, and seat improvement using ergonomic approaches such as including a suspension system.

  3. Vibration and impulsivity analysis of hand held olive beaters.

    PubMed

    Deboli, Roberto; Calvo, Angela; Preti, Christian

    2016-07-01

    To provide more effective evaluations of hand arm vibration syndromes caused by hand held olive beaters, this study focused on two aspects: the acceleration measured at the tool pole and the analysis of the impulsivity, using the crest factor. The signals were frequency weighted using the weighting curve Wh as described in the ISO 5349-1 standard. The same source signals were also filtered by the Wh-bl filter (ISO/TS 15694), because the weighting filter Wh (unlike the Wh-bl filter) could underestimate the effect of high frequency vibration on vibration-induced finger disorders. Ten (experienced) male operators used three beater models (battery powered) in the real olive harvesting condition. High vibration total values were obtained with values never lower than 20 m(-2). Concerning the crest factor, the values ranged from 5 to more than 22. This work demonstrated that the hand held olive beaters produced high impulsive loads comparable to the industry hand held tools.

  4. Human response to vibration in residential environments.

    PubMed

    Waddington, David C; Woodcock, James; Peris, Eulalia; Condie, Jenna; Sica, Gennaro; Moorhouse, Andrew T; Steele, Andy

    2014-01-01

    This paper presents the main findings of a field survey conducted in the United Kingdom into the human response to vibration in residential environments. The main aim of this study was to derive exposure-response relationships for annoyance due to vibration from environmental sources. The sources of vibration considered in this paper are railway and construction activity. Annoyance data were collected using questionnaires conducted face-to-face with residents in their own homes. Questionnaires were completed with residents exposed to railway induced vibration (N = 931) and vibration from the construction of a light rail system (N = 350). Measurements of vibration were conducted at internal and external positions from which estimates of 24-h vibration exposure were derived for 1073 of the case studies. Sixty different vibration exposure descriptors along with 6 different frequency weightings were assessed as potential predictors of annoyance. Of the exposure descriptors considered, none were found to be a better predictor of annoyance than any other. However, use of relevant frequency weightings was found to improve correlation between vibration exposure and annoyance. A unified exposure-response relationship could not be derived due to differences in response to the two sources so separate relationships are presented for each source.

  5. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  6. Vibration isolation

    NASA Technical Reports Server (NTRS)

    Bastin, Paul

    1990-01-01

    Viewgraphs on vibration isolation are presented. Techniques to control and isolate centrifuge disturbances were identified. Topics covered include: disturbance sources in the microgravity environment; microgravity assessment criteria; life sciences centrifuge; flight support equipment for launch; active vibration isolation system; active balancing system; and fuzzy logic control.

  7. Biodynamic response at the palm of the human hand subjected to a random vibration.

    PubMed

    Dong, Ren G; McDowell, Thomas W; Welcome, Daniel E

    2005-01-01

    This study investigated the biodynamic response (BR) distributed at the palm of the hand subjected to a random vibration. Twelve male subjects were used in the experiment. Each subject applied three coupling actions (grip-only, push-only, and combined grip and push) on a simulated tool handle at three different levels (50, 75, and 100 N) of palm force. This study found that the hand-arm system resonated mostly in the frequency range of 20 to 50 Hz, depending on the specific test treatment and individual characteristics. The maximum vibration power transmission through the palm occurred at the resonant frequency. Increasing the effective palm force generally increased the BR magnitude and resonant frequency. The apparent stiffness measured at the middle frequencies (80-100 Hz) is correlated to the BR in almost the entire frequency range (20-1,000 Hz). Under the same palm force, the push-only action corresponded to the highest BR values while the grip-only action generally produced the lowest values. Since the resonant frequency range matches the dominant vibration frequency range of many percussive tools, it is anticipated that the palm BR and vibration power transmission may have an association with vibration-induced injuries or disorders in the wrist-arm system among the workers using these tools.

  8. Muscular forearm activation in hand-grip tasks with superimposition of mechanical vibrations.

    PubMed

    Fattorini, L; Tirabasso, A; Lunghi, A; Di Giovanni, R; Sacco, F; Marchetti, E

    2016-02-01

    The purpose of this paper is to evaluate the muscular activation of the forearm, with or without vibration stimuli at different frequencies while performing a grip tasks of 45s at various level of exerted force. In 16 individuals, 9 females and 7 males, the surface electromyogram (EMG) of extensor carpi radialis longus and the flexor carpi ulnari muscles were assessed. At a short latency from onset EMG, RMS and the level of MU synchronization were assessed to evaluate the muscular adaptations. Whilst a trend of decay of EMG Median frequency (MDFd) was employed as an index of muscular fatigue. Muscular tasks consists of the grip of an instrumented handle at a force level of 20%, 30%, 40%, 60% of the maximum voluntary force. Vibration was supplied by a shaker to the hand in mono-frequential waves at 20, 30, 33 and 40Hz. In relation to EMG, RMS and MU synchronization, the muscular activation does not seem to change with the superimposition of the mechanical vibrations, on the contrary a lower MDFd was observed at 33Hz than in absence of vibration. This suggests an early muscular fatigue induced by vibration due to the fact that 33Hz is a resonance frequency for the hand-arm system.

  9. Vibrational Diver

    NASA Astrophysics Data System (ADS)

    Kozlov, Victor; Ivanova, Alevtina; Schipitsyn, Vitalii; Stambouli, Moncef

    2014-10-01

    The paper is concerned with dynamics of light solid in cavity with liquid subjected to rotational vibration in the external force field. New vibrational phenomenon - diving of a light cylinder to the cavity bottom is found. The experimental investigation of a horizontal annulus with a partition has shown that under vibration a light body situated in the upper part of the layer is displaced in a threshold manner some distance away from the boundary. In this case the body executes symmetric tangential oscillations. An increase of the vibration intensity leads to a tangential displacement of the body near the external boundary. This displacement is caused by the tangential component of the vibrational lift force, which appears as soon as the oscillations lose symmetry. In this case the trajectory of the body oscillatory motion has the form of a loop. The tangential lift force makes stable the position of the body on the inclined section of the layer and even in its lower part. A theoretical interpretation has been proposed, which explains stabilization of a quasi-equilibrium state of a light body near the cavity bottom in the framework of vibrational hydromechanics.

  10. Reduced elbow extension torque during vibrations.

    PubMed

    Friesenbichler, Bernd; Coza, Aurel; Nigg, Benno M

    2012-08-31

    Impact sports and vibration platforms trigger vibrations within soft tissues and the skeleton. Although the long-term effects of vibrations on the body have been studied extensively, the acute effects of vibrations are little understood. This study determined the influence of acute vibrations at different frequencies and elbow angles on maximal isometric elbow extension torque and muscle activity. Vibrations were generated by a pneumatic vibrator attached to the lever of a dynamometer, and were applied on the forearm of 15 healthy female subjects. The subjects were instructed to push maximally against the lever at three different elbow angles, while extension torque and muscle activity were quantified and compared between vibration and non-vibration (control) conditions. A change in vibration frequency had no significant effects on torque and muscle activity although vibrations in general decreased the maximal extension torque relative to the control by 1.8% (±5.7%, p>0.05), 7.4% (±7.9%, p<0.01), and 5.0% (±8.2%, p<0.01) at elbow angles of 60°, 90°, and 120°, respectively. Electromyographic activity increased significantly between ∼30% and 40% in both triceps and biceps with vibrations. It is speculated that a similar increase in muscle activity between agonist and antagonist, in combination with an unequal increase in muscle moment arms about the elbow joint, limit the maximal extension torque during exposure to vibrations. This study showed that maximal extension torque decreased during vibration exposure while muscle activity increased and suggests that vibrations may be counterproductive during activities requiring maximal strength but potentially beneficial for strength training.

  11. Vibration safety limits for magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Ehman, E. C.; Rossman, P. J.; Kruse, S. A.; Sahakian, A. V.; Glaser, K. J.

    2008-02-01

    Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within a tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit, and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans.

  12. Vibration safety limits for magnetic resonance elastography.

    PubMed

    Ehman, E C; Rossman, P J; Kruse, S A; Sahakian, A V; Glaser, K J

    2008-02-21

    Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within a tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit, and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans.

  13. Vibration safety limits for magnetic resonance elastography

    PubMed Central

    Ehman, E C; Rossman, P J; Kruse, S A; Sahakian, A V; Glaser, K J

    2010-01-01

    Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure, and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast, and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values, and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans. PMID:18263949

  14. History of bioresponse to vibration in the Acoustical Society of America

    NASA Astrophysics Data System (ADS)

    Weisenberger, Janet M.

    2003-04-01

    Human response to vibratory stimulation of the skin surface has long been considered an aspect of the sense of touch; however, the debate over whether vibration was one aspect of pressure sensation, as espoused by von Frey in the late 1800s, or a separate sense, as argued by Katz (1925), focused attention on this mode of stimulation. Experimental investigations from the 1920s to the 1960s by Knudsen, Geldard, Sherrick, Verrillo, Mountcastle, and others provided basic data on vibrotactile perception and the neural transduction of vibratory stimulation. Within the Acoustical Society of America, work on bioresponse to vibration has included not only basic investigations of vibrotactile perception and physiology, but also studies of the loss of sensitivity resulting from intense hand-arm vibration induced by occupational use of chainsaws and jackhammers, studies of human response to whole-body vibration, and evaluations of the utility of vibrotactile devices for communication of speech to hearing-impaired persons. Contributions in each of these areas, as well as future research directions, are discussed.

  15. Vibrational spectroscopy

    Treesearch

    Umesh P. Agarwal; Rajai Atalla

    2010-01-01

    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  16. Heat, cold, noise, and vibration

    SciTech Connect

    Horvath, S.M.; Bedi, J.F. )

    1990-03-01

    Exposure to a cold environment induces a number of physiological alterations, the most serious being hypothermia. This state can occur in all individuals, but the very young and the elderly are more susceptible. Environmental and industrially generated high ambient temperature can place further stress on aged individuals and workers, resulting in a complex symptom picture. Morbidity and death may result from such exposures. Causative factors have been identified. Noise exposure induces hearing losses above those secondary to the aging process. Psychophysiological effects during noise exposure are considered to result from the sympathetic activity secondary to a general stress reaction. Vibration from the use of power tools results in Raynaud's phenomenon. However, modification of power tools has reduced the symptoms associated with vibration exposure. Termination of exposure to vibration appears eventually to reduce symptoms related to white-finger spasms. Interaction between these stressors has not been clarified because of the complex effects of each. The need for additional information about the response to these stressors is evident. 38 references.

  17. Production, Delivery and Application of Vibration Energy in Healthcare

    NASA Astrophysics Data System (ADS)

    Abundo, Paolo; Trombetta, Chiara; Foti, Calogero; Rosato, Nicola

    2011-02-01

    In Rehabilitation Medicine therapeutic application of vibration energy in specific clinical treatments and in sport rehabilitation is being affirmed more and more.Vibration exposure can have positive or negative effects on the human body depending on the features and time of the characterizing wave. The human body is constantly subjected to different kinds of vibrations, inducing bones and muscles to actively modify their structure and metabolism in order to fulfill the required functions. Like every other machine, the body supports only certain vibration energy levels over which long term impairments can be recognized. As shown in literature anyway, short periods of vibration exposure and specific frequency values can determine positive adjustments.

  18. Human response to vibration stress in Japanese workers: lessons from our 35-year studies A narrative review

    PubMed Central

    MATOBA, Tsunetaka

    2015-01-01

    The occupational uses with vibratory tools or vehicles provoked health disorders of users. We reviewed narratively our articles of 35 yr studies and their related literatures, and considered the pathophysiology of the hand-arm vibration disorders. Concerning the risk factors of health impairments in workers with vibratory tools, there are two conflicting schools of the researchers: The peripheral school emphasizes that vibration only makes predominant impairments on hands and arms, showing typically Raynaud’s phenomenon in the fingers. In the systemic school, the health disorders are produced by combination with vibration, noise and working environment, namely vibratory work itself, leading to diversified symptoms and signs in relation to systemic impairments. Our 35 yr studies have evidently supported the systemic school, including disorders of the central and autonomic nervous systems. The genesis is vibratory work itself, including vibration, noise, cold working environment, ergonomic and biodynamic conditions, and emotional stress in work. Because the health disorders yield in the whole body, the following measures would contribute to the prevention of health impairments: the attenuation of vibration and noise generated form vibratory machines and the regulations on operating tool hours. In conclusion, this occupational disease results from systemic impairments due to long-term occupational work with vibratory tools. PMID:26460379

  19. Human response to vibration stress in Japanese workers: lessons from our 35-year studies A narrative review.

    PubMed

    Matoba, Tsunetaka

    2015-01-01

    The occupational uses with vibratory tools or vehicles provoked health disorders of users. We reviewed narratively our articles of 35 yr studies and their related literatures, and considered the pathophysiology of the hand-arm vibration disorders. Concerning the risk factors of health impairments in workers with vibratory tools, there are two conflicting schools of the researchers: The peripheral school emphasizes that vibration only makes predominant impairments on hands and arms, showing typically Raynaud's phenomenon in the fingers. In the systemic school, the health disorders are produced by combination with vibration, noise and working environment, namely vibratory work itself, leading to diversified symptoms and signs in relation to systemic impairments. Our 35 yr studies have evidently supported the systemic school, including disorders of the central and autonomic nervous systems. The genesis is vibratory work itself, including vibration, noise, cold working environment, ergonomic and biodynamic conditions, and emotional stress in work. Because the health disorders yield in the whole body, the following measures would contribute to the prevention of health impairments: the attenuation of vibration and noise generated form vibratory machines and the regulations on operating tool hours. In conclusion, this occupational disease results from systemic impairments due to long-term occupational work with vibratory tools.

  20. Good Vibrations

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A Small Business Innovation Research (SBIR) sponsorship from NASA's Dryden Flight Research Center, assisted MetroLaser, of Irvine, California, in the development of a self-aligned laser vibrometer system. VibroMet, capable of measuring surface vibrations in a variety of industries, provides information on the structural integrity and acoustical characteristics of manufactured products. This low-cost, easy-to-use sensor performs vibration measurement from distances of up to three meters without the need for adjustment. The laser beam is simply pointed at the target and the system then uses a compact laser diode to illuminate the surface and to subsequently analyze the reflected light. The motion of the surface results in a Doppler shift that is measured with very high precision. VibroMet is considered one of the many behind-the-scenes tools that can be relied on to assure the quality, reliability and safety of everything from airplane panels to disk brakes

  1. Vibration syndrome

    PubMed Central

    Stewart, Alice M.; Goda, D. F

    1970-01-01

    Stewart, Alice M., and Goda, D. F. (1970).Brit. J. industr. Med.,27, 19-27. Vibration syndrome. Raynaud's phenomenon, or the finger blanching of men who work with vibrating tools, is undoubtedly due to vasospasm. Nevertheless the abnormal element in the situation is not a series of traumatized nerve endings but a deposition of callus under the palmar surfaces of fingers and thumbs. This deposition is a late consequence of the most distinctive, but not necessarily the most painful, of the numerous effects incurred as a result of the tool speed being completely out of the control of the operator and of the tool/component rebound being only partially under his control. The replacement of soft finger pads by rigid callus is also the only consequence of hard manual work to show how necessary it is for a structure like a finger–which is largely composed of bones, joints, tendons, and skin–to have a reservoir, the equivalent of a blood-filled sponge, between every joint to accommodate any sudden reduction in blood volume, or indeed any sudden increase in the volume of blood held in the arteries and veins relative to the amount held in the capillaries. It is still a moot point whether users of vibrating tools have more arm complaints of a serious nature than other manual workers. They do, however, have a multiplicity of aches and pains, ascribable to various causes including tool speed and tool/component rebound, which are in toto very sensitive to such things as blunt impacts, hard components, heavy tools, awkward jobs, and inept handling of tools, whether the ineptness be due to inexperience or to advancing age. Users of vibrating tools have more pain in the hands and wrists than in the elbows and shoulders, but the pain tends to persist longer in the latter sites than in the former sites. PMID:5418915

  2. Effect of higher frequency components and duration of vibration on bone tissue alterations in the rat-tail model

    PubMed Central

    PEELUKHANA, Srikara V.; GOENKA, Shilpi; KIM, Brian; KIM, Jay; BHATTACHARYA, Amit; STRINGER, Keith F.; BANERJEE, Rupak K.

    2015-01-01

    To formulate more accurate guidelines for musculoskeletal disorders (MSD) linked to Hand-Arm Vibration Syndrome (HAVS), delineation of the response of bone tissue under different frequencies and duration of vibration needs elucidation. Rat-tails were vibrated at 125 Hz (9 rats) and 250 Hz (9 rats), at 49 m/s2, for 1D (6 rats), 5D (6 rats) and 20D (6 rats); D=days (4 h/d). Rats in the control group (6 rats for the vibration groups; 2 each for 1D, 5D, and 20D) were left in their cages, without being subjected to any vibration. Structural and biochemical damages were quantified using empty lacunae count and nitrotyrosine signal-intensity, respectively. One-way repeated-measure mixed-model ANOVA at p<0.05 level of significance was used for analysis. In the cortical bone, structural damage quantified through empty lacunae count was significant (p<0.05) at 250 Hz (10.82 ± 0.66) in comparison to the control group (7.41 ± 0.76). The biochemical damage was significant (p<0.05) at both the 125 Hz and 250 Hz vibration frequencies. The structural damage was significant (p<0.05) at 5D for cortical bone while the trabecular bone showed significant (p<0.05) damage at 20D time point. Further, the biochemical damage increased with increase in the duration of vibration with a significant (p<0.05) damage observed at 20D time point and a near significant change (p=0.08) observed at 5D time point. Structural and biochemical changes in bone tissue are dependent upon higher vibration frequencies of 125 Hz, 250 Hz and the duration of vibration (5D, 20D). PMID:25843564

  3. Effect of higher frequency components and duration of vibration on bone tissue alterations in the rat-tail model.

    PubMed

    Peelukhana, Srikara V; Goenka, Shilpi; Kim, Brian; Kim, Jay; Bhattacharya, Amit; Stringer, Keith F; Banerjee, Rupak K

    2015-01-01

    To formulate more accurate guidelines for musculoskeletal disorders (MSD) linked to Hand-Arm Vibration Syndrome (HAVS), delineation of the response of bone tissue under different frequencies and duration of vibration needs elucidation. Rat-tails were vibrated at 125 Hz (9 rats) and 250 Hz (9 rats), at 49 m/s(2), for 1D (6 rats), 5D (6 rats) and 20D (6 rats); D=days (4 h/d). Rats in the control group (6 rats for the vibration groups; 2 each for 1D, 5D, and 20D) were left in their cages, without being subjected to any vibration. Structural and biochemical damages were quantified using empty lacunae count and nitrotyrosine signal-intensity, respectively. One-way repeated-measure mixed-model ANOVA at p<0.05 level of significance was used for analysis. In the cortical bone, structural damage quantified through empty lacunae count was significant (p<0.05) at 250 Hz (10.82 ± 0.66) in comparison to the control group (7.41 ± 0.76). The biochemical damage was significant (p<0.05) at both the 125 Hz and 250 Hz vibration frequencies. The structural damage was significant (p<0.05) at 5D for cortical bone while the trabecular bone showed significant (p<0.05) damage at 20D time point. Further, the biochemical damage increased with increase in the duration of vibration with a significant (p<0.05) damage observed at 20D time point and a near significant change (p=0.08) observed at 5D time point. Structural and biochemical changes in bone tissue are dependent upon higher vibration frequencies of 125 Hz, 250 Hz and the duration of vibration (5D, 20D).

  4. Surgery for subacromial impingement syndrome in relation to occupational exposures, lifestyle factors and diabetes mellitus: a nationwide nested case-control study.

    PubMed

    Dalbøge, Annett; Frost, Poul; Andersen, Johan Hviid; Svendsen, Susanne Wulff

    2017-10-01

    To estimate the risk of surgery for subacromial impingement syndrome (SIS) in relation to occupational exposures, lifestyle factors and diabetes mellitus. We conducted a case-control study nested in a register-based cohort study of the Danish working population. For each of 3000 first-time cases of surgery for SIS, two age-matched and sex-matched controls were drawn. Cases and controls received a questionnaire on job history and other factors. Job histories were combined with a psychosocial job exposure matrix (JEM) and the updated Shoulder JEM, which provided exposure intensities on measurement scales. Ten-year cumulative exposures to upper arm elevation >90°, repetitive shoulder movements, forceful shoulder exertions and hand-arm vibrations (HAVs) were estimated. We used conditional logistic regression. There were 5396 persons (60%) who answered the questionnaire. For occupational mechanical exposures, the adjusted OR (ORadj) ranged from 1.9 (95% CI 1.5 to 2.5 for HAVs) to 2.5 (95% CI 1.9 to 3.5 for force) among men and 1.7 (95% CI 1.2 to 2.5 for HAVs) to 2.0 (95% CI 1.3 to 2.9 for force) among women. No statistically significant associations were found for occupational psychosocial factors. Body mass index (BMI) and pack-years of smoking showed ORadj up to 2.0. Diabetes mellitus showed ORadj of 1.5 (95% CI 1.1 to 2.2) for men and 2.2 (95% CI 1.4 to 3.4) for women. Our findings add to the evidence of an increased risk of surgery for SIS in relation to occupational cumulative mechanical exposures, even when an increased risk in relation to BMI, smoking and diabetes mellitus is taken into account. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Physiological effects of railway vibration and noise on sleep.

    PubMed

    Smith, Michael G; Croy, Ilona; Ögren, Mikael; Hammar, Oscar; Lindberg, Eva; Persson Waye, Kerstin

    2017-05-01

    This paper evaluates the relative contribution of vibration and noise from railway on physiological sleep outcomes. Vibration from railway freight often accompanies airborne noise, yet is almost totally absent in the existing literature. In an experimental investigation, 23 participants, each sleeping for six nights in the laboratory, were exposed to 36 simulated railway freight pass-bys per night with vibration alone (aWd,max = 0.0204 ms(-2)), noise alone (LAF,max = 49.8 dB), or both vibration and noise simultaneously. A fourth exposure night involved 52 pass-bys with concurrent vibration and noise. Sleep was measured with polysomnography. Cardiac activity was measured with electrocardiography. The probability of cortical arousals or awakenings was greater following all exposures, including vibration alone, than spontaneous reaction probability (p < 0.05). The effects of vibration exposure and noise exposure on changes of sleep stage and arousals were directly additive. Vibration and noise exposure both induced heart rate acceleration above spontaneously expected fluctuations at baseline. The results indicate that vibration and noise are processed in the brain separately yet in parallel, with both contributing towards the likelihood of sleep disruption. The findings show that vibration is of importance when considering the impact of railway freight on sleep.

  6. Sensor design for outdoor racing bicycle field testing for human vibration comfort evaluation

    NASA Astrophysics Data System (ADS)

    Vanwalleghem, Joachim; De Baere, Ives; Loccufier, Mia; Van Paepegem, Wim

    2013-09-01

    This paper is concerned with the vibrational comfort evaluation of the cyclist when cycling a rough surface. Outdoor comfort tests have so far only been done through instrumenting the bicycle with accelerometers. This work instruments a racing bicycle with custom-made contact force sensors and velocity sensors to acquire human comfort through the absorbed power method. Comfort evaluation is assessed at the hand-arm and seat interface of the cyclist with the bicycle. By means of careful finite-element analysis for designing the force gauges at the handlebar and the seat combined with precise calibration of both force and velocity sensors, all sensors have proven to work properly. Initial field tests are focused on the proper functioning of the designed sensors and their suitability for vibration comfort measurements. Tests on a cobblestone road reveal that the outcome of the absorbed power values is within the same range as those from laboratory tests found in the literature. This sensor design approach for outdoor testing with racing bicycles may give a new interpretation on evaluating the cyclist's comfort since the vibrational load is not only quantified in terms of acceleration but also in terms of force and velocity at the bicycle-cyclist contact points.

  7. A test rig for the measurement of vibration in hand-held power tools.

    PubMed

    Hansson, J E; Kihlberg, S

    1983-03-01

    The purpose of the present project was to study the possibility of using a test rig for the measurement of vibration and noise from hand-held power tools. A test rig was designed to give the same effect on tool handle vibration as the human hand/arm system. Work was simulated by feeding the material to be processed against the tool, clamped into the rig, with the aid of a co-ordinate table. It was designed for use in studies of impact drills, chain saws, grinders and similar power tools. The report describes a proposal for testing the vibration properties of impact drills. Drilling with the test rig was compared with manual drilling. The difference in the acceleration level between the two methods was about 1 dB for ISO-weighted values in the critical direction. Both methods showed good reproducibility. The possibility of conducting noise level tests of a power tool in the rig was studied and the results are reported separately.

  8. Inhalation exposure of animals.

    PubMed Central

    Phalen, R F

    1976-01-01

    Relative advantages and disadvantages and important design criteria for various exposure methods are presented. Five types of exposures are discussed: whole-body chambers, head-only exposures, nose or mouth-only methods, lung-only exposures, and partial-lung exposures. Design considerations covered include: air cleaning and conditioning; construction materials; losses of exposure materials; evenness of exposure; sampling biases; animal observation and care; noise and vibration control, safe exhausts, chamber loading, reliability, pressure fluctuations; neck seals, masks, animal restraint methods; and animal comfort. Ethical considerations in use of animals in inhalation experiments are also discussed. PMID:1017420

  9. The Efficacy of Anti-vibration Gloves

    PubMed Central

    Hewitt, Sue; Dong, Ren; McDowell, Tom; Welcome, Daniel

    2016-01-01

    Anyone seeking to control the risks from vibration transmitted to the hands and arms may contemplate the use of anti-vibration gloves. To make an informed decision about any type of personal protective equipment, it is necessary to have performance data that allow the degree of protection to be estimated. The information provided with an anti-vibration glove may not be easy to understand without some background knowledge of how gloves are tested and does not provide any clear route for estimating likely protection. Some of the factors that influence the potential efficacy of an anti-vibration glove include how risks from hand–arm vibration exposure are assessed, how the standard test for a glove is carried out, the frequency range and direction of the vibration for which protection is sought, how much hand contact force or pressure is applied and the physical limitations due to glove material and construction. This paper reviews some of the background issues that are useful for potential purchasers of anti-vibration gloves. Ultimately, anti-vibration gloves cannot be relied on to provide sufficient and consistent protection to the wearer and before their use is contemplated all other available means of vibration control ought first to be implemented. PMID:27582615

  10. Reductions in finger blood flow induced by 125-Hz vibration: effect of location of contact with vibration.

    PubMed

    Ye, Ying; Griffin, Michael J

    2016-04-01

    This study investigated whether the reductions in finger blood flow induced by 125-Hz vibration applied to different locations on the hand depend on thresholds for perceiving vibration at these locations. Subjects attended three sessions during which vibration was applied to the right index finger, the right thenar eminence, or the left thenar eminence. Absolute thresholds for perceiving vibration at these locations were determined. Finger blood flow in the middle finger of both hands was then measured at 30-s intervals during five successive 5-min periods: (i) pre-exposure, (ii) pre-exposure with 2-N force, (iii) 2-N force with vibration, (iv) post-exposure with 2-N force, (v) recovery. During period (iii), vibration was applied at 15 dB above the absolute threshold for perceiving vibration at the right thenar eminence. Vibration at all three locations reduced finger blood flow on the exposed and unexposed hand, with greater reductions when vibrating the finger. Vibration-induced vasoconstriction was greatest for individuals with low thresholds and locations of excitation with low thresholds. Differences in vasoconstriction between subjects and between locations are consistent with the Pacinian channel mediating both absolute thresholds and vibration-induced vasoconstriction.

  11. Rheumatic effects of vibration at work.

    PubMed

    Palmer, Keith T; Bovenzi, Massimo

    2015-06-01

    Occupational exposures to vibration come in many guises, and they are very common at a population level. It follows that an important minority of working-aged patients seen by medical services will have been exposed to this hazard of employment. Vibration can cause human health effects, which may manifest in the patients that rheumatologists see. In this chapter, we identify the health effects of relevance to them, and review their epidemiology, pathophysiology, clinical presentation, differential diagnosis and vocational and clinical management. On either side of this, we describe the nature and assessment of the hazard, the scale and common patterns of exposure to vibration in the community and the legal basis for controlling health risks, and we comment on the role of health surveillance in detecting early adverse effects and what can be done to prevent the rheumatic effects of vibration at work.

  12. Rheumatic effects of vibration at work

    PubMed Central

    Palmer, Keith T; Bovenzi, Massimo

    2016-01-01

    Occupational exposures to vibration come in many guises and are very common at a population level. It follows that an important minority of working-aged patients seen by medical services will have been exposed to this hazard of employment. Vibration can cause human health effects which may manifest in the patients that rheumatologists see. In this chapter we identify the health effects of relevance to them, and review their epidemiology, pathophysiology, clinical presentation, differential diagnosis, and vocational and clinical management. On either side of this, we describe the nature and assessment of the hazard, the scale and common patterns of exposure to vibration in the community, and the legal basis for controlling health risks, and comment on the role of health surveillance in detecting early adverse effects and what can be done to prevent the rheumatic effects of vibration at work. PMID:26612239

  13. Human comfort in relation to sinusoidal vibration

    NASA Technical Reports Server (NTRS)

    Jones, B.; Rao, B. K. N.

    1975-01-01

    An investigation was made to assess the overall subjective comfort levels to sinusoidal excitations over the range 1 to 19 Hz using a two axis electrohydraulic vibration simulator. Exposure durations of 16 minutes, 25 minutes, 1 hour, and 2.5 hours have been considered. Subjects were not exposed over such durations, but were instructed to estimate the overall comfort levels preferred had they been constantly subjected to vibration over such durations.

  14. Noncontact Electromagnetic Vibration Source

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Fulton, James P.; Wincheski, Buzz A.

    1994-01-01

    Metal aircraft skins scanned rapidly in vibration tests. Relatively simple combination of permanent magnets and electromagnet serves as noncontact vibration source for nondestructive testing of metal aircraft skins. In test, source excites vibrations, and vibration waveforms measured, then analyzed for changes in resonances signifying cracks and other flaws.

  15. Acoustic vibration can enhance bacterial biofilm formation.

    PubMed

    Murphy, Mark F; Edwards, Thomas; Hobbs, Glyn; Shepherd, Joanna; Bezombes, Frederic

    2016-12-01

    This paper explores the use of low-frequency-low-amplitude acoustic vibration on biofilm formation. Biofilm development is thought to be governed by a diverse range of environmental signals and much effort has gone into researching the effects of environmental factors including; nutrient availability, pH and temperature on the growth of biofilms. Many biofilm-forming organisms have evolved to thrive in mechanically challenging environments, for example soil yet, the effects of the physical environment on biofilm formation has been largely ignored. Exposure of Pseudomonas aeruginosa to vibration at 100, 800 and 1600 Hz for 48 h, resulted in a significant increase in biofilm formation compared with the control, with the greatest growth seen at 800 Hz vibration. The results also show that this increase in biofilm formation is accompanied with an increase in P. aeruginosa cell number. Acoustic vibration was also found to regulate the spatial distribution of biofilm formation in a frequency-dependent manner. Exposure of Staphylococcus aureus to acoustic vibration also resulted in enhanced biofilm formation with the greatest level of biofilm being formed following 48 h exposure at 1600 Hz. These results show that acoustic vibration can be used to control biofilm formation and therefore presents a novel and potentially cost effective means to manipulate the development and yield of biofilms in a range of important industrial and medical processes.

  16. Flow-induced vibration

    SciTech Connect

    Blevins, R.D.

    1990-01-01

    This book reports on dimensional analysis; ideal fluid models; vortex-induced vibration; galloping and flutter; instability of tube and cylinder arrays; vibrations induced by oscillating flow; vibration induced by turbulence and sound; damping of structures; sound induced by vortex shedding; vibrations of a pipe containing a fluid flow; indices. It covers the analysis of the vibrations of structures exposed to fluid flows; explores applications for offshore platforms and piping; wind-induced vibration of buildings, bridges, and towers; and acoustic and mechanical vibration of heat exchangers, power lines, and process ducting.

  17. [Occupational therapy for work-related damage induced by mechanical vibration].

    PubMed

    Foti, C; Ciocchetti, E; Antignani, E; Pitruzzella, M; Laurini, A

    2010-01-01

    Vibrations are defined as repeated oscillatory movements of a body; they can be transmitted by contact to humans. From the point of view of physics, vibrations can be differentiated on the basis of frequency, wavelength, amplitude of the oscillation, velocity and acceleration. As far as concerns occupational hazards, two risk factors have been identified: the first involves low frequency vibrations (vehicle drivers), while the second involves high frequency vibrations (manual percussion tools). The transmission of vibration energy can be localized or generalized. Tertiary prevention of exposure to vibrations is based on the use of anti-vibration gloves (for vibrations of the hand and arm) and on anti-vibration shoes (for vibrations of the whole body). The damage caused by vibrations is due to reduced blood circulation and mechanical stimulation in the joints exposed.

  18. Epidemiological and aetiological aspects of low back pain in vibration environments - an update.

    PubMed

    Wilder, D G; Pope, M H

    1996-03-01

    The article reviews the substantial body of epidemiological evidence linking vibration exposure and low back pain. Drivers appear to be at particular risk if exposures exceed those recommended by the ISO exposure limit. Various aetiological factors associated with vehicular vibration, flattening of the lumbar lordosis, increased motion segment flexibility, disc pressure and mechanical softening are discussed. Vibration studies of functional spinal units are also discussed, as are in vivo whole-body vibration experiments. Animal models have shown that vibration leads to compromised nutrition, higher disc pressures, release of neuropeptides, increased creep and histological changes.

  19. Thermoregulatory responses to heat and vibration in men

    NASA Technical Reports Server (NTRS)

    Spaul, W. A.; Spear, R. C.; Greenleaf, J. E.

    1986-01-01

    The effect of vibration on thermoregulatory responses was studied in heat-acclimated men exposed suddenly to simultaneous heat and whole body vibrations (WBVs) at two intensity levels, each at graded frequencies between 5 and 80 Hz. The mean rectal temperature (Tre) became elevated more quickly in the WBV exposures than in the controls (heat exposure alone). Both intensity- and frequency-dependent WBV relationships were recorded in localized blood flows and in sweat rates. Thus, vibration appears to reduce the efficiency of the cooling mechanisms during a heat exposure.

  20. Evaluation of Whole-Body Vibration in Vehicles

    NASA Astrophysics Data System (ADS)

    PADDAN, G. S.; GRIFFIN, M. J.

    2002-05-01

    The vibration in 100 different vehicles has been measured, evaluated and assessed according to British Standard BS 6841 (1987) and International Standard ISO 2631 (1997). Vibration was measured in 14 categories of vehicle including cars, lift trucks, tractors, lorries, vans and buses. In each vehicle, the vibration was measured in five axes: vertical vibration beneath the seat, fore-and-aft, lateral and vertical vibration on the seat pan and fore-and-aft vibration at the backrest. The alternative methods of evaluating the vibration (use of different frequency weightings, different averaging methods, the inclusion of different axes, vibration dose values and equivalent r.m.s. acceleration) as defined in the standards have been compared. BS 6841 (1987) suggests that an equivalent acceleration magnitude is calculated using vibration measured at four locations around the seat (x -, y -, z -seat and x -backrest); ISO 2631 (1997) suggests that vibration is measured in the three translational axes only on the seat pan but only the axis with the most severe vibration is used to assess vibration severity. Assessments made using the procedure defined in ISO 2631 tend to underestimate any risks from exposure to whole-body vibration compared to an evaluation made using the guidelines specified in BS 6841; the measurements indicated that the 17 m/s1.75 “health guidance caution zone” in ISO 2631 was less likely to be exceeded than the 15 m/s1.75 “action level” in BS 6841. Consequently, ISO 2631 “allows” appreciably longer daily exposures to whole-body vibration than BS 6841.

  1. Significant characteristics of social response to noise and vibration

    NASA Technical Reports Server (NTRS)

    Nishinomiya, G.

    1979-01-01

    Several surveys made since 1971 to investigate annoyance resulting from noise and vibration, from various sources were studied in order to quantify the relation between annoyance response to noise or vibration and properties of the respondent including factors such as noise exposure, etc. Samples collected by the social surveys and physical measurements were analyzed by multi-dimensional analysis.

  2. Comparison of Annoyance from Railway Noise and Railway Vibration.

    PubMed

    Ögren, Mikael; Gidlöf-Gunnarsson, Anita; Smith, Michael; Gustavsson, Sara; Persson Waye, Kerstin

    2017-07-19

    The aim of this study is to compare vibration exposure to noise exposure from railway traffic in terms of equal annoyance, i.e., to determine when a certain noise level is equally annoying as a corresponding vibration velocity. Based on questionnaire data from the Train Vibration and Noise Effects (TVANE) research project from residential areas exposed to railway noise and vibration, the dose response relationship for annoyance was estimated. By comparing the relationships between exposure and annoyance for areas both with and without significant vibration exposure, the noise levels and vibration velocities that had an equal probability of causing annoyance was determined using logistic regression. The comparison gives a continuous mapping between vibration velocity in the ground and a corresponding noise level at the facade that are equally annoying. For equivalent noise level at the facade compared to maximum weighted vibration velocity in the ground the probability of annoyance is approximately 20% for 59 dB or 0.48 mm/s, and about 40% for 63 dB or 0.98 mm/s.

  3. Comparison of Annoyance from Railway Noise and Railway Vibration

    PubMed Central

    Gidlöf-Gunnarsson, Anita; Gustavsson, Sara

    2017-01-01

    The aim of this study is to compare vibration exposure to noise exposure from railway traffic in terms of equal annoyance, i.e., to determine when a certain noise level is equally annoying as a corresponding vibration velocity. Based on questionnaire data from the Train Vibration and Noise Effects (TVANE) research project from residential areas exposed to railway noise and vibration, the dose response relationship for annoyance was estimated. By comparing the relationships between exposure and annoyance for areas both with and without significant vibration exposure, the noise levels and vibration velocities that had an equal probability of causing annoyance was determined using logistic regression. The comparison gives a continuous mapping between vibration velocity in the ground and a corresponding noise level at the facade that are equally annoying. For equivalent noise level at the facade compared to maximum weighted vibration velocity in the ground the probability of annoyance is approximately 20% for 59 dB or 0.48 mm/s, and about 40% for 63 dB or 0.98 mm/s. PMID:28753921

  4. Acute effects of vibration on thermal perception thresholds.

    PubMed

    Burström, Lage; Lundström, Ronnie; Sjödin, Fredrik; Lindmark, Asta; Lindkvist, Markus; Hagberg, Mats; Nilsson, Tohr

    2008-04-01

    This study focuses on the acute effects of vibration and how vibrations influence the measures of the thermal perception thresholds during different vibration magnitudes, frequencies, and durations. The fingers of ten healthy subjects, five males and five females, were exposed to vibration under 16 conditions with a combination of different frequency, intensity and exposure time. The vibration frequency was 31.5 and 125 Hz and exposure lasted between 2 and 16 min. The energy-equivalent frequency weighted acceleration, according to ISO 5349-1, for the experimental time of 16 min was 2.5 or 5.0 m/s(2) (r.m.s.), corresponding to a 8-h equivalent acceleration, A(8) of 0.46 and 0.92 m/s(2), respectively. A measure of the thermal perception of cold and warmth was conducted before the different exposures to vibration. Immediately after the vibration exposure the acute effect was measured continuously on the exposed index finger for the first 75 s, followed by 30 s of measures at every minute for a maximum of 10 min. If the subject's thermal thresholds had not recovered, the measures continued for a maximum of 30 min with measurements taken every 5 min. For all experimental conditions and 30 s after exposure, the mean changes of the thresholds compared with the pre-test were found to be 0.05 and -0.67 degrees C for the warmth and cold thresholds, respectively. The effect of the vibration exposure was only significant on the cold threshold and only for the first minute after exposure when the threshold was decreased. The warmth threshold was not significantly affected at all. The frequency and the exposure time of the vibration stimuli had no significant influence on the perception thresholds for the sensation of cold or warmth. Increased equivalent frequency weighted acceleration resulted in a significant decrease of the subjects' cold threshold, not the warmth. The thresholds were unaffected when changes in the vibration magnitude were expressed as the frequency weighted

  5. Portable vibration exciter

    NASA Technical Reports Server (NTRS)

    Beecher, L. C.; Williams, F. T.

    1970-01-01

    Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.

  6. Control System Damps Vibrations

    NASA Technical Reports Server (NTRS)

    Kopf, E. H., Jr.; Brown, T. K.; Marsh, E. L.

    1983-01-01

    New control system damps vibrations in rotating equipment with help of phase-locked-loop techniques. Vibrational modes are controlled by applying suitable currents to drive motor. Control signals are derived from sensors mounted on equipment.

  7. Hermetically sealed vibration damper

    NASA Technical Reports Server (NTRS)

    Wheatley, D. G.

    1969-01-01

    Simple fluidic vibration damper for installation at each pivotal mounting between gimbals isolates inertial measuring units from external vibration and other disruptive forces. Installation between each of the three gimbal axes can dampen vibration and shock in any direction while permitting free rotation of the gimbals.

  8. Tunable Passive Vibration Suppressor

    NASA Technical Reports Server (NTRS)

    Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)

    2016-01-01

    An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.

  9. Good or bad vibrations? Impacts of anthropogenic vibration on the marine epibenthos.

    PubMed

    Roberts, Louise; Elliott, Michael

    2017-04-03

    Anthropogenic activities directly contacting the seabed, such as drilling and pile-driving, produce a significant vibration likely to impact benthic invertebrates. As with terrestrial organisms, vibration may be used by marine species for the detection of biotic and abiotic cues, yet the significance of this and the sensitivities to vibration are previously undocumented for many marine species. Exposure to additional vibration may elicit behavioral or physiological change, or even physical damage at high amplitudes or particular frequencies, although this is poorly studied in underwater noise research. Here we review studies regarding the sensitivities and responses of marine invertebrates to substrate-borne vibration. This includes information related to vibrations produced by those construction activities directly impacting the seabed, such as pile-driving. This shows the extent to which species are able to detect vibration and respond to anthropogenically-produced vibrations, although the short and long-term implications of this are not known. As such it is especially important that the sensitivities of these species are further understood, given that noise and energy-generating human impacts on the marine environment are only likely to increase and that there are now legal instruments requiring such effects to be monitored and controlled.

  10. Response of finger circulation to energy equivalent combinations of magnitude and duration of vibration

    PubMed Central

    Bovenzi, M; Lindsell, C; Griffin, M

    2001-01-01

    OBJECTIVES—To investigate the acute response of finger circulation to vibration with different combinations of magnitude and duration but with the same "energy equivalent" acceleration magnitude according to current standards for hand transmitted vibration.
METHODS—Finger skin temperature (FST) and finger blood flow (FBF) were measured in the middle fingers of both hands of 10 healthy men who had not used hand held vibrating tools regularly. With a static load of 10 N, the right hand was exposed to 125 Hz vibration with the following unweighted root mean square (rms) acceleration magnitudes and durations of exposure: 44 m/s2 for 30 minutes; 62 m/s2 for 15 minutes; 88 m/s2 for 7.5 minutes; 125 m/s2 for 3.75 minutes; and 176 m/s2 for 1.88 minutes. These vibration exposures produce the same 8 hour energy equivalent frequency weighted acceleration magnitude (~1.4 m/s2 rms) according to international standard ISO 5349 (1986). Finger circulation was measured in both the right (vibrated) and the left (non-vibrated) middle fingers before application of the vibration, and at fixed intervals during exposure to vibration and during a 45 minute recovery period.
RESULTS—The FST did not change during exposure to vibration, whereas vibration with any combination of acceleration magnitude and duration produced significant percentage reductions in the FBF of the vibrated finger compared with the FBF before exposure (from −40.1% (95% confidence interval (95% CI) −24.3% to −57.2%) to −61.4% (95% CI −45.0% to −77.8%). The reduction in FBF during vibration was stronger in the vibrated finger than in the non-vibrated finger. Across the five experimental conditions, the various vibration stimuli caused a similar degree of vasoconstriction in the vibrated finger during exposure to vibration. There was a progressive decrease in the FBF of both fingers after the end of exposure to vibration with acceleration magnitudes of 44 m/s2 for 30 minutes and 62

  11. Eggshell Cutter Using Ultrasonic Vibration

    NASA Astrophysics Data System (ADS)

    Miura, Hikaru

    2003-05-01

    An eggshell cutting apparatus which utilizes ultrasonic vibration was developed, replacing the conventional apparatus which uses an air cutter, to cut eggshells at the blunt end of eggs. Two ultrasonic vibration sources were used: one with longitudinal vibration only and the other with torsional vibration plus longitudinal vibration. Eggshell cutting experiments using these vibration sources were conducted. The eggshell cutting time sharply decreased with increasing longitudinal vibration amplitude as well as increasing input power. When the source with torsional vibration plus longitudinal vibration was used and the amplitude of longitudinal vibration was 12 μm or less, the torsional vibration was effective for cutting eggshells. Furthermore, at the same input power, the eggshell cutting time by the source with longitudinal vibration only was shorter than that by the source with torsional vibration plus longitudinal vibration. When an egg was cut using the apparatus, there was essentially no cutting noise and the cut surface was smooth.

  12. Acute effects of force and vibration on finger blood flow

    PubMed Central

    Bovenzi, M; Welsh, A J L; Vedova, A Della; Griffin, M J

    2006-01-01

    Objectives To investigate the effects of contact force at the finger on acute changes in finger circulation during exposure to vibration. Methods Each of 10 subjects attended 11 sessions in which they experienced five successive experimental 5‐minute periods: (i) no force and no vibration; (ii) force and no vibration; (iii) force and vibration; (iv) force and no vibration; (v) no force and no vibration. During periods (ii) to (iv), the intermediate phalanx of the right middle finger applied one of two forces (2 N or 5 N) on a platform that vibrated during period (iii) at one of two frequencies: 31.5 Hz (at 4 or 16 ms−2 r.m.s.) or 125 Hz (at 16 or 64 ms−2 r.m.s.). Finger blood flow was measured in the exposed right middle finger, the unexposed right little finger, and the unexposed left middle fingers throughout the 25 minutes of each session. Results The application of force alone caused a reduction in finger blood flow in the exposed finger, but not other fingers. There were additional reductions in finger blood flow caused by vibration, with greater reductions at the higher vibration magnitudes at both frequencies but no difference between the two frequencies when using unweighted acceleration. The vibration caused a similar vasoconstriction in vibrated and non‐vibrated fingers. Conclusions Modest levels of force applied by a finger can have a large effect on the finger blood flow, possibly due to the constriction of local blood vessels. The acute vascular effects of vibration cause additional reductions in finger blood flow that are not limited to the finger experiencing force and vibration. In all fingers (exposed and not exposed to vibration), the greater the magnitude of vibration, the greater the reduction in finger blood flow. In all fingers (exposed and not exposed to vibration), when the vibration was frequency weighted according to current standards, 125 Hz vibration caused greater reductions in finger blood flow than 31.5

  13. The influence of vibration on seated human drowsiness

    PubMed Central

    AZIZAN, Amzar; FARD, Mohammad; AZARI, Michael F.; BENEDIKTSDÓTTIR, Bryndís; ARNARDÓTTIR, Erna Sif; JAZAR, Reza; MAEDA, Setsuo

    2016-01-01

    Although much is known about human body vibration discomfort, there is little research data on the effects of vibration on vehicle occupant drowsiness. A laboratory experimental setup has been developed. Vibration was applied to the volunteers sitting on the vehicle seat mounted on the vibration platform. Seated volunteers were exposed to a Gaussian random vibration, with 1–15 Hz frequency bandwidth at 0.2 ms−2 r.m.s., for 20-minutes. Two drowsiness measurement methods were used, Psychomotor Vigilance Test (PVT) and Karolinska Sleepiness Scale (KSS). Significant changes in PVT (p<0.05) and KSS (p<0.05) were detected in all eighteen volunteers. Furthermore, a moderate correlation (r>0.4) was observed between objective measurement (PVT) and subjective measurement (KSS). The results suggest that exposure to vibration even for 20-minutes can cause significant drowsiness impairing psychomotor performance. This finding has important implications for road safety. PMID:26829971

  14. The influence of vibration on seated human drowsiness.

    PubMed

    Azizan, Amzar; Fard, Mohammad; Azari, Michael F; Benediktsdóttir, Bryndís; Arnardóttir, Erna Sif; Jazar, Reza; Maeda, Setsuo

    2016-08-05

    Although much is known about human body vibration discomfort, there is little research data on the effects of vibration on vehicle occupant drowsiness. A laboratory experimental setup has been developed. Vibration was applied to the volunteers sitting on the vehicle seat mounted on the vibration platform. Seated volunteers were exposed to a Gaussian random vibration, with 1-15 Hz frequency bandwidth at 0.2 ms(-2) r.m.s., for 20-minutes. Two drowsiness measurement methods were used, Psychomotor Vigilance Test (PVT) and Karolinska Sleepiness Scale (KSS). Significant changes in PVT (p<0.05) and KSS (p<0.05) were detected in all eighteen volunteers. Furthermore, a moderate correlation (r>0.4) was observed between objective measurement (PVT) and subjective measurement (KSS). The results suggest that exposure to vibration even for 20-minutes can cause significant drowsiness impairing psychomotor performance. This finding has important implications for road safety.

  15. Thermal Vibrational Convection

    NASA Astrophysics Data System (ADS)

    Gershuni, G. Z.; Lyubimov, D. V.

    1998-08-01

    Recent increasing awareness of the ways in which vibrational effects can affect low-gravity experiments have renewed interest in the study of thermal vibrational convection across a wide range of fields. For example, in applications where vibrational effects are used to provide active control of heat and mass transfer, such as in heat exchangers, stirrers, mineral separators and crystal growth, a sound understanding of the fundamental theory is required. In Thermal Vibrational Convection, the authors present the theory of vibrational effects caused by a static gravity field, and of fluid flows which appear under vibration in fluid-filled cavities. The first part of the book discusses fluid-filled cavities where the fluid motion only appears in the presence of temperature non-uniformities, while the second considers those situations where the vibrational effects are caused by a non-uniform field. Throughout, the authors concentrate on consideration of high frequency vibrations, where averaging methods can be successfully applied in the study of the phenomena. Written by two of the pioneers in this field, Thermal Vibrational Convection will be of great interest to scientists and engineers working in the many areas that are concerned with vibration, and its effect on heat and mass transfer. These include hydrodynamics, hydro-mechanics, low gravity physics and mechanics, and geophysics. The rigorous approach adopted in presenting the theory of this fascinating and highly topical area will facilitate a greater understanding of the phenomena involved, and will lead to the development of more and better-designed experiments.

  16. Effects of partially ionised medical oxygen, especially with O2•-, in vibration white finger patients.

    PubMed

    Perečinský, Slavomír; Murínová, Lenka; Engler, Ivan; Donič, Viliam; Murín, Pavol; Varga, Marek; Legáth, Lubomír

    2014-05-27

    A major symptom of hand-arm vibration syndrome is a secondary Raynaud's phenomenon-vibration white finger (VWF)-which results from a vasospasm of the digital arteries caused by work with vibration devices leading to occupational disease. Pharmacotherapy of VWF is often ineffective or has adverse effects. The aim of this work was to verify the influence of inhalation of partially ionized oxygen (O2•-) on peripheral blood vessels in the hands of patients with VWF. Ninety one (91)patients with VWF underwent four-finger adsorption plethysmography, and the pulse wave amplitude was recorded expressed in numeric parameters-called the native record. Next, a cold water test was conducted following with second plethysmography. The patients were divided in to the three groups. First and second inhaled 20-min of ionized oxygen O2•- or oxygen O2 respectively. Thirth group was control without treatment. All three groups a follow-up third plethysmography-the post-therapy record. Changes in the pulse wave amplitudes were evaluated. Inpatients group inhaling O2•- a modest increase of pulse wave amplitude was observed compared to the native record; patients inhaling medical oxygen O2 and the control showed a undesirable decline of pulse wave amplitude in VWF fingers. Strong vasodilatation were more frequent in the group inhaling O2•- compare to O2 (p < 0.05). Peripheral vasodilatation achieved by inhalation of O2•- could be used for VWF treatment without undesirable side effect in hospital as well as at home environment.

  17. Self-reported back pain in tractor drivers exposed to whole-body vibration.

    PubMed

    Boshuizen, H C; Bongers, P M; Hulshof, C T

    1990-01-01

    A postal questionnaire on symptoms of ill health and exposure to whole-body vibration was completed by 577 workers (response rate 79%) who were employed in certain functions by two companies 11 years before. The relation between the occupational history of driving vibrating vehicles (mainly agricultural tractors) and back pain has been analyzed. The prevalence of reported back pain is approximately 10% higher in the tractor drivers than in workers not exposed to vibration. The increase is mainly due to more pain in the lower back and more pain lasting at least several days. A vibration dose was calculated by assigning each vehicle driven a vibration magnitude, estimated on the base of vibration measurements. The prevalence of back pain increases with the vibration dose. The highest prevalence odds ratios are found for the more severe types of back pain. These prevalence odds ratios do not increase with the vibration dose. This might be due to health-related selection which is more pronounced for severe back pain than for back pain in general. The two components of the vibration dose, duration of exposure and estimated mean vibration magnitude, have also been considered separately. Back pain increases with duration of exposure but it does not increase with the estimated mean magnitude of vibration. This is probably due to the inaccuracy of this estimate. The higher prevalence of back pain in tractor drivers might be (partly) caused by whole-body vibration, but prolonged sitting and posture might also be of influence.

  18. [Measurement and analysis of hand-transmitted vibration of vibration tools in workplace for automobile casting and assembly].

    PubMed

    Xie, X S; Qi, C; Du, X Y; Shi, W W; Zhang, M

    2016-02-20

    To investigate the features of hand-transmitted vibration of common vibration tools in the workplace for automobile casting and assembly. From September to October, 2014, measurement and spectral analysis were performed for 16 typical hand tools(including percussion drill, pneumatic wrench, grinding machine, internal grinder, and arc welding machine) in 6 workplaces for automobile casting and assembly according to ISO 5349-1-2001 Mechanical vibration-Measurement and evaluation of human exposure to hand-transmitted vibration-part 1: General requirements and ISO 5349-2-2001 Mechanical vibration-Measurement and evaluation of human exposure to hand-transmitted vibration-Part 2: Practical guidance for measurement in the workplace. The vibration acceleration waveforms of shearing machine, arc welding machine, and pneumatic wrench were mainly impact wave and random wave, while those of internal grinder, angle grinder, percussion drill, and grinding machine were mainly long-and short-period waves. The daily exposure duration to vibration of electric wrench, pneumatic wrench, shearing machine, percussion drill, and internal grinder was about 150 minutes, while that of plasma cutting machine, angle grinder, grinding machine, bench grinder, and arc welding machine was about 400 minutes. The range of vibration total value(ahv) was as follows: pneumatic wrench 0.30~11.04 m/s(2), grinding wheel 1.61~8.97 m/s(2), internal grinder 1.46~8.70 m/s(2), percussion drill 11.10~14.50 m/s(2), and arc welding machine 0.21~2.18 m/s(2). The workers engaged in cleaning had the longest daily exposure duration to vibration, and the effective value of 8-hour energy-equivalent frequency-weighted acceleration for them[A(8)] was 8.03 m/s(2), while this value for workers engaged in assembly was 4.78 m/s(2). The frequency spectrogram with an 1/3-time frequency interval showed that grinding machine, angle grinder, and percussion drill had a high vibration acceleration, and the vibration limit curve

  19. Whole-Body Vibration Assessment of the M1070 Heavy Equipment Transporter. Volume 1

    DTIC Science & Technology

    1994-08-01

    vibration , health hazard assessment, exposure 05 09 limits, tactical vehicles, terrain, crewmembers 20 11 19. ABSTRACT (Continue on reverse if necessary...and identify by block number) An evaluation of all new tactical vehicles and aircraft is required to assess potential whole-body vibration ( WBV ...minimal exposure times with respect to axis, vibration frequency, vehicle speed, and test course ........... . . 12 7. Front passenger seat HSEL for

  20. The Potential Neural Mechanisms of Acute Indirect Vibration

    PubMed Central

    2011-01-01

    There is strong evidence to suggest that acute indirect vibration acts on muscle to enhance force, power, flexibility, balance and proprioception suggesting neural enhancement. Nevertheless, the neural mechanism(s) of vibration and its potentiating effect have received little attention. One proposal suggests that spinal reflexes enhance muscle contraction through a reflex activity known as tonic vibration stretch reflex (TVR), which increases muscle activation. However, TVR is based on direct, brief, and high frequency vibration (>100 Hz) which differs to indirect vibration, which is applied to the whole body or body parts at lower vibration frequency (5-45 Hz). Likewise, muscle tuning and neuromuscular aspects are other candidate mechanisms used to explain the vibration phenomenon. But there is much debate in terms of identifying which neural mechanism(s) are responsible for acute vibration; due to a number of studies using various vibration testing protocols. These protocols include: different methods of application, vibration variables, training duration, exercise types and a range of population groups. Therefore, the neural mechanism of acute vibration remain equivocal, but spinal reflexes, muscle tuning and neuromuscular aspects are all viable factors that may contribute in different ways to increasing muscular performance. Additional research is encouraged to determine which neural mechanism(s) and their contributions are responsible for acute vibration. Testing variables and vibration applications need to be standardised before reaching a consensus on which neural mechanism(s) occur during and post-vibration. Key points There is strong evidence to suggest that acute indirect vibration acts on muscle to enhance force, power, flexibility, balance and proprioception, but little attention has been given to the neural mechanism(s) of acute indirect vibration. Current findings suggest that acute vibration exposure may cause a neural response, but there is little

  1. Vibrating fuel grapple. [LMFBR

    DOEpatents

    Chertock, A.J.; Fox, J.N.; Weissinger, R.B.

    A reactor refueling method is described which utilizes a vibrating fuel grapple for removing spent fuel assemblies from a reactor core. It incorporates a pneumatic vibrator in the grapple head which allows additional withdrawal capability without exceeding the allowable axial force limit. The only moving part in the vibrator is a steel ball, pneumatically driven by a gas, such as argon, around a track, with centrifugal force created by the ball being transmitted through the grapple to the assembly handling socket.

  2. Vibrating fuel grapple

    DOEpatents

    Chertock, deceased, Alan J.; Fox, Jack N.; Weissinger, Robert B.

    1982-01-01

    A reactor refueling method utilizing a vibrating fuel grapple for removing spent fuel assemblies from a reactor core which incorporates a pneumatic vibrator in the grapple head, enabling additional withdrawal capability without exceeding the allowable axial force limit. The only moving part in the vibrator is a steel ball, pneumatically driven by a gas, such as argon, around a track, with centrifugal force created by the ball being transmitted through the grapple to the assembly handling socket.

  3. Adaptive vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Behrens, Sam; Ward, John; Davidson, Josh

    2007-04-01

    By scavenging energy from their local environment, portable electronic devices such as mobile phones, radios and wireless sensors can achieve greater run-times with potentially lower weight. Vibration energy harvesting is one such approach where energy from parasitic vibrations can be converted into electrical energy, through the use of piezoelectric and electromagnetic transducers. Parasitic vibrations come from a range of sources such as wind, seismic forces and traffic. Existing approaches to vibration energy harvesting typically utilise a rectifier circuit, which is tuned to the resonant frequency of the harvesting structure and the dominant frequency of vibration. We have developed a novel approach to vibration energy harvesting, including adaption to non-periodic vibrations so as to extract the maximum amount of vibration energy available. Experimental results of an experimental apparatus using off-the-shelf transducer (i.e. speaker coil) show mechanical vibration to electrical energy conversion efficiencies of 27 - 34%. However, simulations of a more electro-mechanical efficient and lightly damped transducer show conversion efficiencies in excess of 80%.

  4. Evaluation of the vibration attenuation properties of an air-inflated cushion with two different heavy machinery seats in multi-axis vibration environments including jolts.

    PubMed

    Ji, Xiaoxu; Eger, Tammy R; Dickey, James P

    2017-03-01

    Seats and cushions can attenuate whole-body vibration (WBV) exposures and minimize health risks for heavy machine operators. We successfully developed neural network (NN) algorithms to identify the vibration attenuation properties for four different seating conditions (seat/cushion combinations), and implemented each of the NN models to predict the equivalent daily exposure A(8) values for various vehicles in the forestry and mining environments. We also evaluated the performance of the new prototype No-Jolt™ air-inflated cushion and the original cushion of each seat with jolt exposures. We observed that the air cushion significantly improved the vibration attenuation properties of the seat that initially had good performance, but not for the seat that had relatively poor vibration attenuation properties. In addition, operator's anthropometrics and sex influenced the performance of the air-inflated cushion when the vibration environment included jolt exposures.

  5. An investigation on the biodynamic foundation of a rat tail vibration model.

    PubMed

    Welcome, D E; Krajnak, K; Kashon, M L; Dong, R G

    2008-10-01

    The objectives of this study are to examine the fundamental characteristics of the biodynamic responses of a rat tail to vibration and to compare them with those of human fingers. Vibration transmission through tails exposed to three vibration magnitudes (1 g, 5 g, and 10 g r.m.s.) at six frequencies (32 Hz, 63 Hz, 125 Hz, 160 Hz, 250 Hz, and 500 Hz) was measured using a laser vibrometer. A mechanical-equivalent model of the tail was established on the basis of the transmissibility data, which was used to estimate the biodynamic deformation and vibration power absorption at several representative locations on the tail. They were compared with those derived from a mechanical-equivalent model of human fingers reported in the literature. This study found that, similar to human fingers, the biodynamic responses of the rat tail depends on the vibration magnitude, frequency, and measurement location. With the restraint method used in this study, the natural frequency of the rat tail is in the range 161-368 Hz, which is mostly within the general range of human finger resonant frequencies (100-350 Hz). However, the damping ratios of the rat tail at the unconstrained locations are from 0.094 to 0.394, which are lower than those of human fingers (0.708-0.725). Whereas the biodynamic responses of human fingers at frequencies lower than 100 Hz could be significantly influenced by the biodynamics of the entire hand-arm system, the rat tail biodynamic responses can be considered independent of the rat body in the frequency range used in this study. Based on these findings it is concluded that, although there are some differences between the frequency dependences of the biodynamic responses of the rat tail and human fingers, the rat tail model can provide a practical and reasonable approach to examine the relationships between the biodynamic and biological responses at midrange to high frequencies, and to understand the mechanisms underlying vibration-induced finger disorders.

  6. The Shock and Vibration Bulletin. Part 1: Invited Papers, Vibrations and Acoustics, Blast and Shock

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Development in the modeling and simulation of shock and vibration phenomena are considered. Predicting the noise exposure of payloads in the space shuttle, prediction for step-stress fatigue, pyrotechnique shock simulation using metal-to-metal impact, and prediction of fragment velocities and trajectories are among the topics covered.

  7. Dose-response patterns for vibration-induced white finger

    PubMed Central

    Griffin, M; Bovenzi, M; Nelson, C

    2003-01-01

    Aims: To investigate alternative relations between cumulative exposures to hand-transmitted vibration (taking account of vibration magnitude, lifetime exposure duration, and frequency of vibration) and the development of white finger (Raynaud's phenomenon). Methods: Three previous studies have been combined to provide a group of 1557 users of powered vibratory tools in seven occupational subgroups: stone grinders, stone carvers, quarry drillers, dockyard caulkers, dockyard boilermakers, dockyard painters, and forest workers. The estimated total operating duration in hours was thus obtained for each subject, for each tool, and for all tools combined. From the vibration magnitudes and exposure durations, seven alternative measurements of cumulative exposure were calculated for each subject, using expressions of the form: dose = ∑amiti, where ai is the acceleration magnitude on tool i, ti is the lifetime exposure duration for tool i, and m = 0, 1, 2, or 4. Results: For all seven alternative dose measures, an increase in dose was associated with a significant increase in the occurrence of vibration-induced white finger, after adjustment for age and smoking. However, dose measures with high powers of acceleration (m > 1) faired less well than measures in which the weighted or unweighted acceleration, and lifetime exposure duration, were given equal weight (m = 1). Dose determined solely by the lifetime exposure duration (without consideration of the vibration magnitude) gave better predictions than measures with m greater than unity. All measures of dose calculated from the unweighted acceleration gave better predictions than the equivalent dose measures using acceleration frequency-weighted according to current standards. Conclusions: Since the total duration of exposure does not discriminate between exposures accumulated over the day and those accumulated over years, a linear relation between vibration magnitude and exposure duration seems appropriate for predicting

  8. Vibrational Schroedinger Cats

    NASA Technical Reports Server (NTRS)

    Kis, Z.; Janszky, J.; Vinogradov, An. V.; Kobayashi, T.

    1996-01-01

    The optical Schroedinger cat states are simple realizations of quantum states having nonclassical features. It is shown that vibrational analogues of such states can be realized in an experiment of double pulse excitation of vibrionic transitions. To track the evolution of the vibrational wave packet we derive a non-unitary time evolution operator so that calculations are made in a quasi Heisenberg picture.

  9. Multiple direction vibration fixture

    DOEpatents

    Cericola, Fred; Doggett, James W.; Ernest, Terry L.; Priddy, Tommy G.

    1991-01-01

    An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.

  10. Multiple direction vibration fixture

    SciTech Connect

    Cericola, F.; Doggett, J.W.; Ernest, T.L.; Priddy, T.G.

    1990-03-21

    An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis. 1 fig.

  11. Multiple direction vibration fixture

    SciTech Connect

    Cericola, F.; Doggett, J.W.; Ernest, T.L.

    1991-08-27

    An apparatus is discussed for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 {degrees} around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.

  12. Force limited vibration testing

    NASA Technical Reports Server (NTRS)

    Scharton, Terry D.

    1991-01-01

    A new method of conducting lab vibration tests of spacecraft equipment was developed to more closely simulate the vibration environment experienced when the spacecraft is launched on a rocket. The improved tests are tailored to identify equipment design and workmanship problems without inducing artificial failures that would not have occurred at launch. These new, less destructive types of vibration tests are essential to JPL's protoflight test approach in which lab testing is conducted using the flight equipment, often one of a kind, to save time and money. In conventional vibration tests, only the input vibratory motion is specified; the feedback, or reaction force, between the test item and the vibration machine is ignored. Most test failures occur when the test item goes into resonance, and the reaction force becomes very large. It has long been recognized that the large reaction force is a test artifact which does not occur with the lightweight, flexible mounting structures characteristic of spacecraft and space vehicles. In new vibration tests, both the motion and the force provided to the test item by the vibration machine are controlled, so that the vibration ride experienced by the test item is as in flight.

  13. Reduction in finger blood flow induced by hand-transmitted vibration: effect of hand elevation.

    PubMed

    Ye, Ying; Mauro, Marcella; Bovenzi, Massimo; Griffin, Michael J

    2015-10-01

    This study investigated the effect of hand elevation on reductions in finger blood flow (FBF) induced by hand-transmitted vibration. Fourteen males attended six sessions on six separate days, with a control sessions and a vibration session (125-Hz vibration at 44 ms(-2) rms) with the right hand supported at each of three elevations: 20 cm below heart level (HL), at HL, and 20 cm above HL. Finger blood flow on the left and right hand was measured every 30 s during each 25-min session comprised of five periods: (1) no force and no vibration (5 min), (2) 2-N force and no vibration (5 min), (3) 2-N force and vibration (5 min), (4) 2-N force and no vibration (5 min), and (5) no force and no vibration (5 min). Without vibration, FBF decreased with increasing elevation of the hand. During vibration of the right hand, FBF reduced on both hands. With elevation of the right hand, the percentage reduction in FBF due to vibration (relative to FBF on the same finger at the same elevation before exposure to vibration) was similar on the middle and little fingers of both hands. After cessation of vibration, there was delayed return of FBF with all three hand heights. Vibration of one hand reduces FBF on both exposed and unexposed hands, with the reduction dependent on the elevation of the hand. The mechanisms responsible for vibration-induced reductions in FBF seem to reduce blood flow as a percentage of the blood flow without vibration. Tasks requiring the elevation of the hands will be associated with lower FBF, and the FBF will be reduced further if there is exposure to hand-transmitted vibration.

  14. Vibration control in accelerators

    SciTech Connect

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  15. Vibration in textile mills.

    PubMed

    Sorainen, E

    1988-12-01

    The vibration in nine halls of the six weaving mills was measured in 1978-80. The measurements were taken at regular intervals in the working area of the weavers, which was the wooden support attached to the machine or the floor of the textile mill. The accelerometer was mounted with screws onto the working area, and all vibration samples were analyzed immediately, in situ. The vibration of the floor was tangent to or exceeded slightly the "reduced comfort boundary" specified in International Standard ISO 2631/1 (1985) only in the areas where the floor was not against the ground. The greatest amount of vibration occurred on the supports which had been attached to the machines. On these supports the vibration in places exceeded the "fatigue-decreased proficiency boundary."

  16. [Dynamics of morphofunctional state of central nervous system in white rates exposed to vibration].

    PubMed

    Pankov, V A; Katamanova, E V; Kuleshova, M V; Titov, E A; Kartapol'tseva, N V; Iakimova, N L; Lizarev, A V

    2014-01-01

    The authors presented results of experimental studies assessing influence of vibration on white rats. Dynamics of morphologic changes development in brain of experimental animals exposed to vibration were shown. Exposure to vibration in white rats daily during 4 hours over 15 days causes astrogliosis--compensation process in response to brain injury; over 1 month--causes morphologic brain changes (vacuoles formation in neuropile, decrease in astroglia cells number); over 2 months--causes lower plasticity of brain neurons, preserved astrogliosis; over 4 months--causes perivascular edema. Changes in brain bioelectric activity indicate stages of pathologic process in central nervous system. Increase in vibration exposure duration leads to more severe diffuse pathologic changes in brain and local cortical and diencephalic disorders. Exposure to vibration in white rats causes increase in general mobility, nonspecific activation of behaviour, intense emotional exertion, negative emotional state, but less severe effects of vibration were seen in orientative-trying reactions that are inborn, inherited forms of behaviour.

  17. Tool-specific performance of vibration-reducing gloves for attenuating palm-transmitted vibrations in three orthogonal directions.

    PubMed

    Dong, Ren G; Welcome, Daniel E; Peterson, Donald R; Xu, Xueyan S; McDowell, Thomas W; Warren, Christopher; Asaki, Takafumi; Kudernatsch, Simon; Brammer, Antony

    2014-11-01

    Vibration-reducing (VR) gloves have been increasingly used to help reduce vibration exposure, but it remains unclear how effective these gloves are. The purpose of this study was to estimate tool-specific performances of VR gloves for reducing the vibrations transmitted to the palm of the hand in three orthogonal directions (3-D) in an attempt to assess glove effectiveness and aid in the appropriate selection of these gloves. Four typical VR gloves were considered in this study, two of which can be classified as anti-vibration (AV) gloves according to the current AV glove test standard. The average transmissibility spectrum of each glove in each direction was synthesized based on spectra measured in this study and other spectra collected from reported studies. More than seventy vibration spectra of various tools or machines were considered in the estimations, which were also measured in this study or collected from reported studies. The glove performance assessments were based on the percent reduction of frequency-weighted acceleration as is required in the current standard for assessing the risk of vibration exposures. The estimated tool-specific vibration reductions of the gloves indicate that the VR gloves could slightly reduce (<5%) or marginally amplify (<10%) the vibrations generated from low-frequency (<25 Hz) tools or those vibrating primarily along the axis of the tool handle. With other tools, the VR gloves could reduce palm-transmitted vibrations in the range of 5%-58%, primarily depending on the specific tool and its vibration spectra in the three directions. The two AV gloves were not more effective than the other gloves with some of the tools considered in this study. The implications of the results are discussed.

  18. Vibration as an exercise modality: how it may work, and what its potential might be.

    PubMed

    Rittweger, Jörn

    2010-03-01

    Whilst exposure to vibration is traditionally regarded as perilous, recent research has focussed on potential benefits. Here, the physical principles of forced oscillations are discussed in relation to vibration as an exercise modality. Acute physiological responses to isolated tendon and muscle vibration and to whole body vibration exercise are reviewed, as well as the training effects upon the musculature, bone mineral density and posture. Possible applications in sports and medicine are discussed. Evidence suggests that acute vibration exercise seems to elicit a specific warm-up effect, and that vibration training seems to improve muscle power, although the potential benefits over traditional forms of resistive exercise are still unclear. Vibration training also seems to improve balance in sub-populations prone to fall, such as frail elderly people. Moreover, literature suggests that vibration is beneficial to reduce chronic lower back pain and other types of pain. Other future indications are perceivable.

  19. Characterization of Frequency-Dependent Responses of the Vascular System to Repetitive Vibration

    PubMed Central

    Krajnak, Kristine; Miller, G. Roger; Waugh, Stacey; Johnson, Claud; Kashon, Michael L.

    2015-01-01

    Objective Occupational exposure to hand-transmitted vibration can result in damage to nerves and sensory loss. The goal of this study was to assess the frequency-dependent effects of repeated bouts of vibration on sensory nerve function and associated changes in nerves. Methods The tails of rats were exposed to vibration at 62.5, 125, or 250 Hz (constant acceleration of 49m/s2) for 10 days. The effects on sensory nerve function, nerve morphology, and transcript expression in ventral tail nerves were measured. Results Vibration at all frequencies had effects on nerve function and physiology. However, the effects tended to be more prominent with exposure at 250 Hz. Conclusion Exposure to vibration has detrimental effects on sensory nerve function and physiology. However, many of these changes are more prominent at 250-Hz exposure than at lower frequencies. PMID:22785326

  20. Effect of Vibration Frequency and Acceleration Magnitude of Chicken Embryos on Viability and Development. Phase 1

    DTIC Science & Technology

    1990-11-01

    JUN 86 Previous editions are obsolete, SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED Preface Vibration exposure standards for pregnant women and...potential hazard associated with vibration exposure , continue to fly during their first trimester, not reporting their pregnancy to their flight surgeon...until after the 4th month to avoid over 6 months of medical suspension and administrative action. Thus, the true exposure rate of pregnant women to

  1. Thermal Deformation Analysis of Vibrated-Type Optical Fibers Sensors

    SciTech Connect

    Michtchenko, Alexandre; Tulaikova, Tamara

    2010-05-28

    In this paper we analyzed and calculated the deformation based on noon symmetrical temperature distributions in the cross section of optical fiber. Deformation distortion causes the micro vibrations of the optical fibers under periodical thermal excitation applied to one side of cylindrical surface. Calculations were made to optimize the exposure and to minimize energy, needed for realization of this class of sensors based on vibrations.

  2. Whole-Body Vibration Assessment of the Palletized Load System

    DTIC Science & Technology

    1994-07-01

    iderrtlfy by block number) An evaluation of all new tactical vehicles and aircraft is required to a.sosas potential whole-body vibration ( WBV ) health...tolerances for WBV exposure were on course 2. The results also show that both driver and passenger were exposed to a Hazard Severity-Category III (marginal...to be evaluated for potential whole-body vibration ( WBV ) health hazards to their crevmembers. This - *3uirement is contained in AR 40-10, "Health

  3. Mechanisms Mediating Vibration-induced Chronic Musculoskeletal Pain Analyzed in the Rat

    PubMed Central

    Dina, Olayinka A.; Joseph, Elizabeth K.; Levine, Jon D.; Green, Paul G.

    2009-01-01

    While occupational exposure to vibration is a common cause of acute and chronic musculoskeletal pain, eliminating exposure produces limited symptomatic improvement, and re-exposure precipitates rapid recurrence or exacerbation. To evaluate mechanisms underlying these pain syndromes, we have developed a model in the rat, in which exposure to vibration (60–80 Hz) induces, in skeletal muscle, both acute mechanical hyperalgesia as well as long-term changes characterized by enhanced hyperalgesia to a pro-inflammatory cytokine or re-exposure to vibration. Exposure of a hind limb to vibration produced mechanical hyperalgesia measured in the gastrocnemius muscle of the exposed hind limb, which persisted for ~2 weeks. When nociceptive thresholds had returned to baseline, exposure to a pro-inflammatory cytokine or re-exposure to vibration produced markedly prolonged hyperalgesia. The chronic prolongation of vibration- and cytokine-hyperalgesia induced by vibration was prevented by spinal intrathecal injection of oligodeoxynucleotide (ODN) antisense to protein kinase Cε, a second messenger in nociceptors implicated in the induction and maintenance of chronic pain. Vibration-induced hyperalgesia was inhibited by spinal intrathecal administration of ODN antisense to receptors for the type-1 tumor necrosis factor-α (TNFα) receptor. Finally, in TNFα-pretreated muscle, subsequent vibration-induced hyperalgesia was markedly prolonged. Perspective These studies establish a model of vibration-induced acute and chronic musculoskeletal pain, and identify the proinflammatory cytokine TNFα and the second messenger PKCε as targets against which therapies might be directed to prevent and/or treat this common and very debilitating chronic pain syndrome. PMID:19962353

  4. Quantification of the effects of audible rattle and source type on the human response to environmental vibration.

    PubMed

    Woodcock, J; Sica, G; Peris, E; Sharp, C; Moorhouse, A T; Waddington, D C

    2016-03-01

    The present research quantifies the influence of source type and the presence of audible vibration-induced rattle on annoyance caused by vibration in residential environments. The sources of vibration considered are railway and the construction of a light rail system. Data were measured in the United Kingdom using a socio-vibration survey (N = 1281). These data are analyzed using ordinal logit models to produce exposure-response relationships describing community annoyance as a function of vibration exposure. The influence of source type and the presence of audible vibration-induced rattle on annoyance are investigated using dummy variable analysis, and quantified using odds-ratios and community tolerance levels. It is concluded that the sample population is more likely to express higher levels of annoyance if the vibration source is construction compared to railway, and if vibration-induced rattle is audible.

  5. Vibration Analysis and the Accelerometer

    ERIC Educational Resources Information Center

    Hammer, Paul

    2011-01-01

    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  6. Vibration Analysis and the Accelerometer

    ERIC Educational Resources Information Center

    Hammer, Paul

    2011-01-01

    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  7. PREFACE: Vibrations at surfaces Vibrations at surfaces

    NASA Astrophysics Data System (ADS)

    Rahman, Talat S.

    2011-12-01

    This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of

  8. NIF Ambient Vibration Measurements

    SciTech Connect

    Noble, C.R.; Hoehler, M.S., S.C. Sommer

    1999-11-29

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B.

  9. Calculating impedance vibrator antennas

    NASA Astrophysics Data System (ADS)

    Eminov, S. I.

    2017-07-01

    The technique of analytical reversal of a hypersingular equation is used to solve the equation of an impedance vibrator antenna. A numerical method for solving the equation is developed, and its efficiency is demonstrated.

  10. Critical ischemia of the fingers in an auto mechanic as a result of occupational exposure.

    PubMed

    Rabczyński, Maciej; Kuźnik, Edwin; Guziński, Maciej; Adamiec, Rajmund

    2014-09-10

    Hypothenar hammer syndrome is a rare cause of ischemic fingers observed mainly in young men smoking cigarettes and it is associated with repeated trauma of the ulnar artery in the area of the hypothenar eminence of the dominant-hand arm, resulting in a deficit of blood supply with the occurrence of hand symptoms typical for chronic and sometimes critical ischemia. Artery injury in this location is most often the result of multiple repetitions of the same activity being mostly the result of occupational exposure. We present a case of a 27-year-old car mechanic admitted to the hospital with symptoms of critical ischemia of the fingers III, IV, and V of the right hand, which resolved after conservative treatment.

  11. Critical ischemia of the fingers in an auto mechanic as a result of occupational exposure.

    PubMed

    Rabczyński, Maciej; Kuźnik, Edwin; Guziński, Maciej; Adamiec, Rajmund

    2015-01-01

    Hypothenar hammer syndrome is a rare cause of ischemic fingers observed mainly in young men smoking cigarettes and it is associated with repeated trauma of the ulnar artery in the area of the hypothenar eminence of the dominant-hand arm, resulting in a deficit of blood supply with the occurrence of hand symptoms typical for chronic and sometimes critical ischemia. Artery injury in this location is most often the result of multiple repetitions of the same activity being mostly the result of occupational exposure. We present a case of a 27-year-old car mechanic admitted to the hospital with symptoms of critical ischemia of the fingers III, IV, and V of the right hand, which resolved after conservative treatment.

  12. 2008 Vibrational Spectroscopy

    SciTech Connect

    Philip J. Reid

    2009-09-21

    The conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and interfaces. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of systems.

  13. Development of a Novel Translational Model of Vibration Injury to the Spine to Study Acute Injury in Vivo

    DTIC Science & Technology

    2011-10-01

    spine vibration, physiology and pain . Considering that pain is tremendous problem, a novel model platform for studying how vibration produces chronic... pain can provide insight into those exposures with high risk. We hypothesized that a model of vibration and/or jolt induced pain could be produced in...days is sufficient to induce significant widespread pain that is sustained following the termination of vibration. Another finding is that a host of

  14. Human mesenchymal stromal cells are mechanosensitive to vibration stimuli.

    PubMed

    Kim, I S; Song, Y M; Lee, B; Hwang, S J

    2012-12-01

    Low-magnitude high-frequency (LMHF) vibrations have the ability to stimulate bone formation and reduce bone loss. However, the anabolic mechanisms that are mediated by vibration in human bone cells at the cellular level remain unclear. We hypothesized that human mesenchymal stromal cells (hMSCs) display direct osteoblastic responses to LMHF vibration signals. Daily exposure to vibrations increased the proliferation of hMSCs, with the highest efficiency occurring at a peak acceleration of 0.3 g and vibrations at 30 to 40 Hz. Specifically, these conditions promoted osteoblast differentiation through an increase in alkaline phosphatase activity and in vitro matrix mineralization. The effect of vibration on the expression of osteogenesis-related factors differed depending on culture method. hMSCs that underwent vibration in a monolayer culture did not exhibit any changes in the expressions of these genes, while cells in three-dimensional culture showed increased expression of type I collagen, osteoprotegerin, or VEGF, and VEGF induction appeared in 2 different hMSC lines. These results are among the first to demonstrate a dose-response effect upon LMHF stimulation, thereby demonstrating that hMSCs are mechanosensitive to LMHF vibration signals such that they could facilitate the osteogenic process.

  15. Combined Effects of High-Speed Railway Noise and Ground Vibrations on Annoyance.

    PubMed

    Yokoshima, Shigenori; Morihara, Takashi; Sato, Tetsumi; Yano, Takashi

    2017-07-27

    The Shinkansen super-express railway system in Japan has greatly increased its capacity and has expanded nationwide. However, many inhabitants in areas along the railways have been disturbed by noise and ground vibration from the trains. Additionally, the Shinkansen railway emits a higher level of ground vibration than conventional railways at the same noise level. These findings imply that building vibrations affect living environments as significantly as the associated noise. Therefore, it is imperative to quantify the effects of noise and vibration exposures on each annoyance under simultaneous exposure. We performed a secondary analysis using individual datasets of exposure and community response associated with Shinkansen railway noise and vibration. The data consisted of six socio-acoustic surveys, which were conducted separately over the last 20 years in Japan. Applying a logistic regression analysis to the datasets, we confirmed the combined effects of vibration/noise exposure on noise/vibration annoyance. Moreover, we proposed a representative relationship between noise and vibration exposures, and the prevalence of each annoyance associated with the Shinkansen railway.

  16. Combined Effects of High-Speed Railway Noise and Ground Vibrations on Annoyance

    PubMed Central

    Yokoshima, Shigenori; Morihara, Takashi; Sato, Tetsumi; Yano, Takashi

    2017-01-01

    The Shinkansen super-express railway system in Japan has greatly increased its capacity and has expanded nationwide. However, many inhabitants in areas along the railways have been disturbed by noise and ground vibration from the trains. Additionally, the Shinkansen railway emits a higher level of ground vibration than conventional railways at the same noise level. These findings imply that building vibrations affect living environments as significantly as the associated noise. Therefore, it is imperative to quantify the effects of noise and vibration exposures on each annoyance under simultaneous exposure. We performed a secondary analysis using individual datasets of exposure and community response associated with Shinkansen railway noise and vibration. The data consisted of six socio-acoustic surveys, which were conducted separately over the last 20 years in Japan. Applying a logistic regression analysis to the datasets, we confirmed the combined effects of vibration/noise exposure on noise/vibration annoyance. Moreover, we proposed a representative relationship between noise and vibration exposures, and the prevalence of each annoyance associated with the Shinkansen railway. PMID:28749452

  17. Associations between anthropometric factors and peripheral neuropathy defined by vibrotactile perception threshold among industrial vibrating tool operators in Japan

    PubMed Central

    Takemura, Shigeki; Yoshimasu, Kouichi; Tsuno, Kanami; Fukumoto, Jin; Kuroda, Mototsugu; Miyashita, Kazuhisa

    2016-01-01

    Objectives: The effect of anthropometric factors on the fingertip vibrotactile perception threshold (VPT) of industrial vibrating tool operators (IVTOs) is not well known. The purpose of this study was to investigate the associations between anthropometric factors and fingertip VPT. Methods: We included for analysis two groups of IVTOs: Group 1, predominantly forestry workers (n=325); and Group 2, public servants (n=68). These IVTOs regularly received medical examinations to evaluate hand-arm vibration syndrome. In the examination, measurements of their fingertip VPTs were taken before and after cold-water immersion (10 minutes at 10°C for Group 1 and 5 minutes at 12°C for Group 2). Their body height and weight were measured to calculate the body mass index (BMI). The presence of peripheral neuropathy (PN) was defined as a VPT ≥17.5 dB at 10 minutes after finishing immersion. Results: In the univariate analysis, weight and BMI were associated with a decreased risk of PN in both Groups 1 and 2. The negative association between BMI and PN remained in the multivariate analysis consistently, but weight reached marginal significance only in the multivariate analysis without BMI in both the groups. Age was positively associated with PN consistently in Group 1 but not in Group 2. Years exposed to vibration showed positive association with PN only in the univariate analysis of Group 1. Conclusions: Among IVTOs, factors reflecting body heat production, such as weight and BMI, were associated with a decreased risk of VPT-defined PN, regardless of the task engaged. PMID:27010084

  18. Force Limited Vibration Testing

    NASA Technical Reports Server (NTRS)

    Scharton, Terry; Chang, Kurng Y.

    2005-01-01

    This slide presentation reviews the concept and applications of Force Limited Vibration Testing. The goal of vibration testing of aerospace hardware is to identify problems that would result in flight failures. The commonly used aerospace vibration tests uses artificially high shaker forces and responses at the resonance frequencies of the test item. It has become common to limit the acceleration responses in the test to those predicted for the flight. This requires an analysis of the acceleration response, and requires placing accelerometers on the test item. With the advent of piezoelectric gages it has become possible to improve vibration testing. The basic equations have are reviewed. Force limits are analogous and complementary to the acceleration specifications used in conventional vibration testing. Just as the acceleration specification is the frequency spectrum envelope of the in-flight acceleration at the interface between the test item and flight mounting structure, the force limit is the envelope of the in-flight force at the interface . In force limited vibration tests, both the acceleration and force specifications are needed, and the force specification is generally based on and proportional to the acceleration specification. Therefore, force limiting does not compensate for errors in the development of the acceleration specification, e.g., too much conservatism or the lack thereof. These errors will carry over into the force specification. Since in-flight vibratory force data are scarce, force limits are often derived from coupled system analyses and impedance information obtained from measurements or finite element models (FEM). Fortunately, data on the interface forces between systems and components are now available from system acoustic and vibration tests of development test models and from a few flight experiments. Semi-empirical methods of predicting force limits are currently being developed on the basis of the limited flight and system test

  19. Whole-Body Vibration Assessment of the M9161A1 Truck Trailer

    DTIC Science & Technology

    1993-08-01

    nd safety exposure Limit 21 8AIaRL summary of analysis per ISO-2631* guideline on RUN-o0 Driver I whole-body vibration ( WBV ) I I 19-AUG-93 8:21:57 1...safety exposure Limit 23 usAaaL summary of analysis per ISO-2631* guideline on RUI-02 Driver I whole-body vibration ( WBV )I ** i~ii19-AUS-93 5:21 58 1... exposure timlt 32 USMIL summary of analysis per 0so-2631* guideline on !RU-07 Passenger whole-body vibration ( WBV ) 19-AUG-93 M::01UM 1: Vehicle

  20. Laboratory and workplace assessments of rivet bucking bar vibration emissions.

    PubMed

    McDowell, Thomas W; Warren, Christopher; Xu, Xueyan S; Welcome, Daniel E; Dong, Ren G

    2015-04-01

    Sheet metal workers operating rivet bucking bars are at risk of developing hand and wrist musculoskeletal disorders associated with exposures to hand-transmitted vibrations and forceful exertions required to operate these hand tools. New bucking bar technologies have been introduced in efforts to reduce workplace vibration exposures to these workers. However, the efficacy of these new bucking bar designs has not been well documented. While there are standardized laboratory-based methodologies for assessing the vibration emissions of many types of powered hand tools, no such standard exists for rivet bucking bars. Therefore, this study included the development of a laboratory-based method for assessing bucking bar vibrations which utilizes a simulated riveting task. With this method, this study evaluated three traditional steel bucking bars, three similarly shaped tungsten alloy bars, and three bars featuring spring-dampeners. For comparison the bucking bar vibrations were also assessed during three typical riveting tasks at a large aircraft maintenance facility. The bucking bars were rank-ordered in terms of unweighted and frequency-weighted acceleration measured at the hand-tool interface. The results suggest that the developed laboratory method is a reasonable technique for ranking bucking bar vibration emissions; the lab-based riveting simulations produced similar rankings to the workplace rankings. However, the laboratory-based acceleration averages were considerably lower than the workplace measurements. These observations suggest that the laboratory test results are acceptable for comparing and screening bucking bars, but the laboratory measurements should not be directly used for assessing the risk of workplace bucking bar vibration exposures. The newer bucking bar technologies exhibited significantly reduced vibrations compared to the traditional steel bars. The results of this study, together with other information such as rivet quality, productivity, tool

  1. Laboratory and Workplace Assessments of Rivet Bucking Bar Vibration Emissions

    PubMed Central

    McDowell, Thomas W.; Warren, Christopher; Xu, Xueyan S.; Welcome, Daniel E.; Dong, Ren G.

    2016-01-01

    Sheet metal workers operating rivet bucking bars are at risk of developing hand and wrist musculoskeletal disorders associated with exposures to hand-transmitted vibrations and forceful exertions required to operate these hand tools. New bucking bar technologies have been introduced in efforts to reduce workplace vibration exposures to these workers. However, the efficacy of these new bucking bar designs has not been well documented. While there are standardized laboratory-based methodologies for assessing the vibration emissions of many types of powered hand tools, no such standard exists for rivet bucking bars. Therefore, this study included the development of a laboratory-based method for assessing bucking bar vibrations which utilizes a simulated riveting task. With this method, this study evaluated three traditional steel bucking bars, three similarly shaped tungsten alloy bars, and three bars featuring spring-dampeners. For comparison the bucking bar vibrations were also assessed during three typical riveting tasks at a large aircraft maintenance facility. The bucking bars were rank-ordered in terms of unweighted and frequency-weighted acceleration measured at the hand-tool interface. The results suggest that the developed laboratory method is a reasonable technique for ranking bucking bar vibration emissions; the lab-based riveting simulations produced similar rankings to the workplace rankings. However, the laboratory-based acceleration averages were considerably lower than the workplace measurements. These observations suggest that the laboratory test results are acceptable for comparing and screening bucking bars, but the laboratory measurements should not be directly used for assessing the risk of workplace bucking bar vibration exposures. The newer bucking bar technologies exhibited significantly reduced vibrations compared to the traditional steel bars. The results of this study, together with other information such as rivet quality, productivity, tool

  2. Guidelines for noise and vibration levels for the space station

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Human habitability noise and vibration guidelines for the Space Station are presented. These were developed by a working group of experts established by the Committee on Hearing, Bioacoustics, and Biomechanics (CHABA) of the National Research Council's Commission on Behavioral and Social Science and Education. Noise exposure limits are suggested that will permit adequate speech communication, sleep, and hearing safety. Vibration exposure limits are suggested which will provide adequate comfort and permit adequate task performance. These are provided for guidance only for setting criteria. The exact criteria will depend on Space Station design and duty cycles.

  3. Sleep disturbances caused by vibrations from heavy road traffic.

    PubMed

    Arnberg, P W; Bennerhult, O; Eberhardt, J L

    1990-09-01

    The influence of whole-body vibrations, noise, and a combination of the two, caused by heavy road traffic (150 events/night) on sleep, subjectively experienced sleep quality, and performance was investigated under controlled laboratory conditions for male and female subjects 20-35 years of age. A room was built above a vibrator table, with the legs of the bed mounted directly on the table through holes in the floor. Vertical vibrations were found to be attenuated by the mattress with 20-40 dB for frequencies greater than 10 Hz, whereas horizontal vibrations were slightly amplified. It could be concluded that when traffic noise [50-dB (A) peak level] is accompanied by vibrations with peak levels of 0.24 m/s2 vertically and 0.17 m/s2 horizontally as measured on the frame of the bed (stimulus duration approximately 2 s, dominant frequency approximately 12 Hz), sleep is more disturbed than is the case when noise alone occurs. The amount of REM sleep, which was significantly reduced for the vibration level mentioned above, was even more disturbed when a higher exposure level, 0.34 m/s2 vertically and 0.24 m/s2 horizontally, was applied. The subjectively rated sleep quality was lower for the higher than for the lower vibration level. Performance in the morning was only influenced for the higher vibration level. It could be concluded that vibration exposure levels near the recommendation made in ISO-standard 2631 for the awake state disturb sleep in man.

  4. Low back and neck pain in locomotive engineers exposed to whole-body vibration.

    PubMed

    McBride, David; Paulin, Sara; Herbison, G Peter; Waite, David; Bagheri, Nasser

    2014-01-01

    The objective of this study was to determine the prevalence and excess risk of low back pain and neck pain in locomotive engineers, and to investigate the relationship of both with whole-body vibration exposure. A cross-sectional survey comparing locomotive engineers with other rail worker referents was conducted. Current vibration levels were measured, cumulative exposures calculated for engineers and referents, and low back and neck pain assessed by a self-completed questionnaire. Median vibration exposure in the z- (vertical) axis was 0.62 m/s(2). Engineers experienced more frequent low back and neck pain, odds ratios (ORs) of 1.77 (95% confidence interval [CI]: 1.19-2.64) and 1.92 (95% CI: 1.22-3.02), respectively. The authors conclude that vibration close to the "action levels" of published standards contribute to low back and neck pain. Vibration levels need to be assessed conservatively and control measures introduced.

  5. Vibration-reducing gloves: transmissibility at the palm of the hand in three orthogonal directions

    PubMed Central

    McDowell, Thomas W.; Dong, Ren G.; Welcome, Daniel E.; Xu, Xueyan S.; Warren, Christopher

    2015-01-01

    Vibration-reducing (VR) gloves are commonly used as a means to help control exposures to hand-transmitted vibrations generated by powered hand tools. The objective of this study was to characterise the vibration transmissibility spectra and frequency-weighted vibration transmissibility of VR gloves at the palm of the hand in three orthogonal directions. Seven adult males participated in the evaluation of seven glove models using a three-dimensional hand–arm vibration test system. Three levels of hand coupling force were applied in the experiment. This study found that, in general, VR gloves are most effective at reducing vibrations transmitted to the palm along the forearm direction. Gloves that are found to be superior at reducing vibrations in the forearm direction may not be more effective in the other directions when compared with other VR gloves. This casts doubts on the validity of the standardised glove screening test. Practitioner Summary This study used human subjects to measure three-dimensional vibration transmissibility of vibration-reducing gloves at the palm and identified their vibration attenuation characteristics. This study found the gloves to be most effective at reducing vibrations along the forearm direction. These gloves did not effectively attenuate vibration along the handle axial direction. PMID:24160755

  6. Evaluation of anti-vibration interventions for the hand during sheet metal assembly work.

    PubMed

    Dale, Ann Marie; Rohn, A E; Burwell, A; Shannon, W; Standeven, J; Patton, A; Evanoff, B

    2011-01-01

    Occupational use of vibrating hand tools contributes to the development of upper extremity disorders. While several types of vibration damping materials are commercially available, reductions in vibration exposure are usually tested in the laboratory rather than in actual work environments. This study evaluated reductions in hand vibration with different vibration damping interventions under actual work conditions. Three experienced sheet metal assemblers at a manufacturing facility installed sheet metal fasteners with a pneumatic tool using no vibration damping (bare hand) and each of six anti-vibration interventions (five different gloves and a viscoelastic tool wrap). Vibration was measured with tri-axial accelerometers on the tool and the back of the hand. Unweighted mean vibration measured at the hand showed reduced vibration (p<0.001) for all six interventions (range = 3.07-5.56 m/s(2)) compared to the bare hand condition (12.91 m/s(2)). All of the interventions were effective at reducing vibration at the hand during testing under usual work conditions. Field testing beyond laboratory-based testing accounts for the influences of worker, tools, and materials on vibration transmission to the body from specific work operations. © 2011 - IOS Press and the authors. All rights reserved

  7. The Effects of Vibration Frequencies on Physical, Perceptual and Cognitive Performance

    DTIC Science & Technology

    2006-10-01

    the problems related to low-altitude, high-speed flight ( Grether , 1971; Shoenberger, 1972). Problems arising from vibration exposure can also exist in...review papers on this topic. In a review by Grether (1971), it was concluded that decrements in tracking performance have been found for vertical...and y-axis) vibrations, tracking errors were the greatest between 1 and 3 Hz. Grether concluded that the magnitude of the vibration had a larger

  8. The Physics of Vibration

    NASA Astrophysics Data System (ADS)

    Pippard, A. B.

    1989-11-01

    The study of vibration in physical systems is an important part of almost all fields in physics and engineering. This work, originally published in two volumes, examines the classical aspects in Part I and the quantum oscillator in Part II. The classical linear vibrator is treated first and the underlying unity of all linear oscillations in electrical, mechanical and acoustic systems is emphasized. Following this the book turns to the treatment of nonlinear vibrations, a field with which engineers and physicists are generally less familiar. In Part II the emphasis turns to quantum systems, that is those systems which can only be adequately described by quantum mechanics. The treatment concentrates on vibrations in atoms and molecules and their interaction with electromagnetic radiation. The similarities of classical and quantum methods are stressed and the limits of the classical treatment are examined. Throughout the book, each phenomenon discussed is illustrated with many examples and theory and experiment are compared. Although the reader may find that the physics discussed is demanding and the concepts are subtle in places, all mathematics used is familiar to both engineers and experimental scientists. Although not a textbook this is a useful introduction to the more advanced mathematical treatment of vibrations as it bridges the gap between the basic principles and more specialized concepts. It will be of great interest to advanced undergraduates and postgraduates as well as applied mathematicians, physicists and engineers in university and industry.

  9. Multiple vibration displacements at multiple vibration frequencies stress impact on human femur computational analysis.

    PubMed

    Ezenwa, Bertram; Yeoh, Han Teik

    2011-01-01

    Whole-body vibration training using single-frequency methods has been reported to improve bone mineral density. However, the intensities can exceed safe levels and have drawn unfavorable comments from subjects. In a previous article, whole-body vibration training using multiple vibration displacements at multiple vibration frequencies (MVDMVF) was reported. This article presents the computational simulation evaluation of stress dispersion on a femur with and without the MVDMVF input. A model of bone femur was developed from a computed tomography image of the lower limb with Mimics software from Materialise (Plymouth, Michigan). We analyzed the mesh model in COMSOL Multiphysics (COMSOL, Inc; Burlington, Massachusetts) with and without MVDMVF input, with constraints and load applied to the femur model. We compared the results with published joint stresses during walking, jogging, and stair-climbing and descending and with standard vibration exposure limits. Results showed stress levels on the femur are significantly higher with MVDMVF input than without. The stress levels were within the published levels during walking and stair-climbing and descending but below the stress levels during jogging. Our computational results demonstrate that MVDMVF generates stress level equivalent to the level during walking and stair-climbing. This evidence suggests that MVDMVF is safe for prolonged use in subjects with osteoporosis who ambulate independently.

  10. Vibrational spectroscopy of HNS degradation

    NASA Astrophysics Data System (ADS)

    Alam, M. Kathleen; Martin, Laura; Schmitt, Randal L.; Ten Eyck, Gregory A.; Welle, Eric

    2008-08-01

    Hexanitrostilbene (HNS) is a widely used explosive, due in part to its high thermal stability. Degradation of HNS is known to occur through UV, chemical exposure, and heat exposure, which can lead to reduced performance of the material. Common methods of testing for HNS degradation include wet chemical and surface area testing of the material itself, and performance testing of devices that use HNS. The commonly used chemical tests, such as volatility, conductivity and contaminant trapping provide information on contaminants rather than the chemical stability of the HNS itself. Additionally, these tests are destructive in nature. As an alternative to these methods, we have been exploring the use of vibrational spectroscopy as a means of monitoring HNS degradation non-destructively. In particular, infrared (IR) spectroscopy lends itself well to non-destructive analysis. Molecular variations in the material can be identified and compared to pure samples. The utility of IR spectroscopy was evaluated using pressed pellets of HNS exposed to DETA (diethylaminetriamine). Amines are known to degrade HNS, with the proposed product being a σ-adduct. We have followed these changes as a function of time using various IR sampling techniques including photoacoustic and attenuated total reflectance (ATR).

  11. Vibrational spectroscopy of HNS degradation.

    SciTech Connect

    Martin, Laura Elizabeth; Welle, Eric James; Ten Eyck, Gregory A.; Schmitt, Randal L.; Alam, Mary Kathleen

    2008-07-01

    Hexanitrostilbene (HNS) is a widely used explosive, due in part to its high thermal stability. Degradation of HNS is known to occur through UV, chemical exposure, and heat exposure, which can lead to reduced performance of the material. Common methods of testing for HNS degradation include wet chemical and surface area testing of the material itself, and performance testing of devices that use HNS. The commonly used chemical tests, such as volatility, conductivity and contaminant trapping provide information on contaminants rather than the chemical stability of the HNS itself. Additionally, these tests are destructive in nature. As an alternative to these methods, we have been exploring the use of vibrational spectroscopy as a means of monitoring HNS degradation non-destructively. In particular, infrared (IR) spectroscopy lends itself well to non-destructive analysis. Molecular variations in the material can be identified and compared to pure samples. The utility of IR spectroscopy was evaluated using pressed pellets of HNS exposed to DETA (diethylaminetriamine). Amines are known to degrade HNS, with the proposed product being a {sigma}-adduct. We have followed these changes as a function of time using various IR sampling techniques including photoacoustic and attenuated total reflectance (ATR).

  12. [The effect of the vibration and noise factor on the physical work capacity and autonomic nervous system function of workers in vibration-hazardous jobs].

    PubMed

    Sova, S H; Shapovalova, V A; Korshak, V M

    1999-03-01

    An unexampled study was made of the peripheral vegetative incompetence syndrome developing in vibration disease. It is shown that chronic occupational exposure to vibration and noise results in damage to the segmentary apparatus of the vegetative nervous system. Vegetative inadequacies are manifested by impairement of cardiovascular functions. With exposure to vibration and noise, it is the sympathetic portion of the vegetative nervous system that is first affected. The service duration-related progression of the pathological process results in increase of the share of parasympathetic pathology. A change in vegetative regulation adversely affects physical performance in those workers who have come to be exposed to a vibronoise factor over long periods of time.

  13. Fiber optic vibration sensor

    DOEpatents

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  14. Fiber optic vibration sensor

    DOEpatents

    Dooley, Joseph B.; Muhs, Jeffrey D.; Tobin, Kenneth W.

    1995-01-01

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  15. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  16. Vibration control of ELTs

    NASA Astrophysics Data System (ADS)

    Pott, J.-U.

    2011-09-01

    MPIA is the PI institute of the MCAO-supported Fizeau imager LINC-NIRVANA at the LBT, and a partner of the E-ELT first light NIR imager MICADO (both SCAO and MCAO assisted). LINC-NIRVANA is a true pathfinder for future ELT-AO imagers both in terms of size and technology. I will present our vibration control strategies, involving accelerometer based real-time vibration measurements, feedforward and feedback optical path control, predictive filtering, vibration sensitive active control of actuators, and the development of a dynamical model of the entire telescope. Our experiences, made with LINC-NIRVANA, will be fed into the MICADO structural AO design to reach highest on-sky sensitivity.

  17. Influence of local vibration on plasma creatine phosphokinase (CPK) activity.

    PubMed Central

    Okada, A; Okuda, H; Inaba, R; Ariizumi, M

    1985-01-01

    This study was designed to obtain basic information about the mechanism of the occurrence of muscular disorders after exposure to vibration. The hind legs of rats were exposed to acute and chronic local vibration at frequencies of 30, 60, 120, 240, 480, and 960 Hz with a constant acceleration of 50 m/sec2. The exposure time was four hours for acute, and four hours a day for two weeks continuously for chronic exposure. Blood was collected after exposure to measure plasma creatine phosphokinase (CPK) activity. In both exposure groups the activity of plasma CPK was significantly higher at 30, 60, 120, 240, and 480 Hz compared with the control group and was especially high at 30 Hz; there was no significant change at 960 Hz. As a result of an analysis of the CPK isoenzymes, the increase in plasma CPK activity was shown to be due to the activity of the plasma CPK-MM fraction, originating in the skeletal muscle. Plasma CPK activity showed a tendency to decrease gradually with the increase in vibration frequency during acute exposure but showed no such tendency during chronic exposure. There was no remarkable pathohistological change in muscle preparations from the hind legs, hence it was presumed that the increase in plasma CPK activity was caused not by the morphological changes of muscle but by other mechanisms, such as an increase in the permeability of the cell membrane. Images PMID:4041385

  18. [Clinical and diagnostic value of heart rate variabilities in workers exposed to noise and vibration].

    PubMed

    Serebriakov, P V; Melent'ev, A V; Demina, I D

    2010-01-01

    Noise and vibration cause disorders of vegetative regulation of cardiovascular system. Daily ECG monitoring with heart rate variabilities analysis enables quanitative evaluation of disordered vegetative control over heart rate and diagnosis of cardioneuropathy caused by long occupational exposure to noise and vibration.

  19. [The characteristics of the development of gallbladder and biliary tract pathology under the influence of vibration].

    PubMed

    Preobrazhenskiĭ, V N; Merkulov, V M; Vasil'ev, A Iu; Ermakova, T I; Borisov, B P

    1995-01-01

    The examination of 86 helicopter pilots has shown that their exposure to vibration leads to biliary and gallbladder damage which aggravates with longer service. As indicated by spectroscopy and gas-liquid chromatography, vibration affects colloid-osmotic properties of bile: molecules grow in size, bile acids retention becomes longer.

  20. The influence of seat backrest angle on human performance during whole-body vibration.

    PubMed

    Paddan, G S; Holmes, S R; Mansfield, N J; Hutchinson, H; Arrowsmith, C I; King, S K; Jones, R J M; Rimell, A N

    2012-01-01

    This study investigated the effects of reclined backrest angles on cognitive and psycho-motor tasks during exposure to vertical whole-body vibration. Twenty participants were each exposed to three test stimuli of vertical vibration: 2-8 Hz; 8-14 Hz and 14-20 Hz, plus a stationary control condition whilst seated on a vibration platform at five backrest angles: 0° (recumbent, supine) to 90° (upright). The vibration magnitude was 2.0 ms(-2) root-mean-square. The participants were seated at one of the backrest angles and exposed to each of the three vibration stimuli while performing a tracking and choice reaction time tasks; then they completed the NASA-TLX workload scales. Apart from 22.5° seat backrest angle for the tracking task, backrest angle did not adversely affect the performance during vibration. However, participants required increased effort to maintain performance during vibration relative to the stationary condition. These results suggest that undertaking tasks in an environment with vibration could increase workload and risk earlier onset of fatigue. Current vibration standards provide guidance for assessing exposures for seated, standing and recumbent positions, but not for semi-recumbent postures. This paper reports new experimental data systematically investigating the effect of backrest angle on human performance. It demonstrates how workload is elevated with whole-body vibration, without getting affected by backrest angle.

  1. Vibrational spectroscopy of resveratrol

    NASA Astrophysics Data System (ADS)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  2. Development of vibration isolation platform for low amplitude vibration

    NASA Astrophysics Data System (ADS)

    Lee, Dae-Oen; Park, Geeyong; Han, Jae-Hung

    2014-03-01

    The performance of high precision payloads on board a satellite is extremely sensitive to vibration. Although vibration environment of a satellite on orbit is very gentle compared to the launch environment, even a low amplitude vibration disturbances generated by reaction wheel assembly, cryocoolers, etc may cause serious problems in performing tasks such as capturing high resolution images. The most commonly taken approach to protect sensitive payloads from performance degrading vibration is application of vibration isolator. In this paper, development of vibration isolation platform for low amplitude vibration is discussed. Firstly, single axis vibration isolator is developed by adapting three parameter model using bellows and viscous fluid. The isolation performance of the developed single axis isolator is evaluated by measuring force transmissibility. The measured transmissibility shows that both the low Q-factor (about 2) and the high roll-off rate (about -40 dB/dec) are achieved with the developed isolator. Then, six single axis isolators are combined to form Stewart platform in cubic configuration to provide multi-axis vibration isolation. The isolation performance of the developed multi-axis isolator is evaluated using a simple prototype reaction wheel model in which wheel imbalance is the major source of vibration. The transmitted force without vibration isolator is measured and compared with the transmitted force with vibration isolator. More than 20 dB reduction of the X and Y direction (radial direction of flywheel) disturbance is observed for rotating wheel speed of 100 Hz and higher.

  3. Measurement of noise and vibration in Canadian forces armoured vehicles.

    PubMed

    Nakashima, Ann M; Borland, Matthew J; Abel, Sharon M

    2007-04-01

    Noise and whole-body vibration measurements were made in the following Canadian Forces vehicles: LAV III, Bison and M113A2 ADATS (air defence anti-tank system). Measurements were made at different crew positions while the vehicles were driven at different speeds over rough terrain and paved roads. The participants completed a questionnaire at the end of each measurement session on their reactions to the noise and vibration. Noise levels were as high as 115 dBA in the ADATS, 102 dBA in the Bison and 96 dBA in the LAV III, exceeding the Canada Labour Code exposure limit of 87 dBA for 8 h(1)). A communications headset was found to be sufficient to reduce the noise exposure to safe levels in most cases. The vector sum vibration magnitudes for the LAV III and Bison were relatively low during highway driving (0.3 m/s(2) for both vehicles) compared to rough terrain (0.71 and 1.36 m/s(2), respectively). The ADATS vibration increased with driving speed (0.62 m/s(2) at 8 km/h and 1.26 m/s(2) at 32 km/h). The questionnaire responses indicated that half the crewmembers had difficulty communicating in vehicle noise, but were generally unaffected physically by vibration. The latter result may have been due to the relatively short exposure duration.

  4. Vibration Propagation in Spider Webs

    NASA Astrophysics Data System (ADS)

    Hatton, Ross; Otto, Andrew; Elias, Damian

    Due to their poor eyesight, spiders rely on web vibrations for situational awareness. Web-borne vibrations are used to determine the location of prey, predators, and potential mates. The influence of web geometry and composition on web vibrations is important for understanding spider's behavior and ecology. Past studies on web vibrations have experimentally measured the frequency response of web geometries by removing threads from existing webs. The full influence of web structure and tension distribution on vibration transmission; however, has not been addressed in prior work. We have constructed physical artificial webs and computer models to better understand the effect of web structure on vibration transmission. These models provide insight into the propagation of vibrations through the webs, the frequency response of the bare web, and the influence of the spider's mass and stiffness on the vibration transmission patterns. Funded by NSF-1504428.

  5. Vibrational structure theory: new vibrational wave function methods for calculation of anharmonic vibrational energies and vibrational contributions to molecular properties.

    PubMed

    Christiansen, Ove

    2007-06-21

    A number of recently developed theoretical methods for the calculation of vibrational energies and wave functions are reviewed. Methods for constructing the appropriate quantum mechanical Hamilton operator are briefly described before reviewing a particular branch of theoretical methods for solving the nuclear Schrödinger equation. The main focus is on wave function methods using the vibrational self-consistent field (VSCF) as starting point, and includes vibrational configuration interaction (VCI), vibrational Møller-Plesset (VMP) theory, and vibrational coupled cluster (VCC) theory. The convergence of the different methods towards the full vibrational configuration interaction (FVCI) result is discussed. Finally, newly developed vibrational response methods for calculation of vibrational contributions to properties, energies, and transition probabilities are discussed.

  6. High-speed digital holographic interferometry for vibration measurement

    SciTech Connect

    Pedrini, Giancarlo; Osten, Wolfgang; Gusev, Mikhail E

    2006-05-20

    A system based on digital holographic interferometry for the measurement of vibrations is presented. A high-power continuous laser(10 W) and a high-speed CCD camera are used. Hundreds of holograms of an object that has been subjected to dynamic deformation are recorded. The acquisition speed and the time of exposure of the detector are determined by the vibration frequency. Two methods are presented for triggering the camera in order to acquire at a given phase of the vibration. The phase of the wavefront is calculated from the recorded holograms by use of a two-dimensional digital Fourier-transform method. The deformation of the object is obtained from the phase. By combination of the deformations recorded at different times it is possible to reconstruct the vibration of the object.

  7. Effect of Vibrations on Transportation System

    NASA Astrophysics Data System (ADS)

    Birlik, Gülin; Sezgin, Önder Cem

    In overly populated cities people living in suburban areas have to endure long journeys in order to reach their job sites. Whether they go by train, bus or by car they are inevitably exposed to vibrations, of considerable magnitude, in vertical (z) and lateral (x, y) directions. The immediate effect of vibration exposure is the fatigue of ones' muscles. This is verified by the blood and saliva analysis of the volunteers travelling in a train. Their lactic acid levels were increased by 34% at the end of a 5 hr journey. The most affected people by vibration were, without doubt, the train operators and bus drivers. 42% of the suburban train operators had pain complaints at their waists. az(floor) in the machinist cabin of a suburban train was measured to be, on the average, 0.23 m/s2. Max peak was 1.34 m/s2. The bus and car drivers were exposed to lower vibrations but they were exposed to multiple shocks originating from the non-standardized humps placed on the roads. Peak az(seat) = 0.054 m/s2 (f = 5.25 Hz) (vcar = 30 km/hr) on an asphalt road increased considerably while crossing over a hump. This value was 1.27 m/s2 (f = 4.5 Hz) in case of bus drivers (vbus = 20 km/hr). Studies have been done to provide practical measures for the reduction of the vibrations transmitted to the drivers. The waist belts filled with fluids of different viscosities prepared for this purpose seemed to be promising. The cushions filled with glycerin and gel were observed to be the best alternatives.

  8. C0 Vibrational analysis

    SciTech Connect

    Moore, Craig D.; Johnson, Todd; Martens, Mike; Syphers, Mike; McCrory, E.; McGee, Mike; Reilly, Rob; /Fermilab

    1999-08-01

    This is an attempt to document some of the measurements and analysis relating to the modulation of the spill due to the vibration of the magnets in the new C0 area. Not all of the relevant graphs were saved at the time, however an attempt has been made to show representative illustrations albeit not in the proper chronological order.

  9. Friction induced rail vibrations

    NASA Astrophysics Data System (ADS)

    Kralov, Ivan; Sinapov, Petko; Nedelchev, Krasimir; Ignatov, Ignat

    2012-11-01

    A model of rail, considered as multiple supported beam, subjected on friction induced vibration is studied in this work using FEM. The model is presented as continuous system and the mass and elastic properties of a real object are taken into account. The friction forces are nonlinear functions of the relative velocity during slipping. The problem is solved using Matlab Simulink.

  10. Nonlinear vibrational microscopy

    DOEpatents

    Holtom, Gary R.; Xie, Xiaoliang Sunney; Zumbusch, Andreas

    2000-01-01

    The present invention is a method and apparatus for microscopic vibrational imaging using coherent Anti-Stokes Raman Scattering or Sum Frequency Generation. Microscopic imaging with a vibrational spectroscopic contrast is achieved by generating signals in a nonlinear optical process and spatially resolved detection of the signals. The spatial resolution is attained by minimizing the spot size of the optical interrogation beams on the sample. Minimizing the spot size relies upon a. directing at least two substantially co-axial laser beams (interrogation beams) through a microscope objective providing a focal spot on the sample; b. collecting a signal beam together with a residual beam from the at least two co-axial laser beams after passing through the sample; c. removing the residual beam; and d. detecting the signal beam thereby creating said pixel. The method has significantly higher spatial resolution then IR microscopy and higher sensitivity than spontaneous Raman microscopy with much lower average excitation powers. CARS and SFG microscopy does not rely on the presence of fluorophores, but retains the resolution and three-dimensional sectioning capability of confocal and two-photon fluorescence microscopy. Complementary to these techniques, CARS and SFG microscopy provides a contrast mechanism based on vibrational spectroscopy. This vibrational contrast mechanism, combined with an unprecedented high sensitivity at a tolerable laser power level, provides a new approach for microscopic investigations of chemical and biological samples.

  11. Compact Vibration Damper

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G. (Inventor)

    2014-01-01

    A vibration damper includes a rigid base with a mass coupled thereto for linear movement thereon. Springs coupled to the mass compress in response to the linear movement along either of two opposing directions. A converter coupled to the mass converts the linear movement to a corresponding rotational movement. A rotary damper coupled to the converter damps the rotational movement.

  12. Blade Vibration Measurement System

    NASA Technical Reports Server (NTRS)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  13. Polyatomic molecule vibrations

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Polyatomic molecule vibrations are analyzed as harmonic vibrations along normal coordinates. The energy eigenvalues are found for linear and nonlinear symmetric triatomic molecules for valence bond models of the potential function with arbitrary coupling coefficients; such models can usually be fitted to observed energy levels with reasonably good accuracy. Approximate normal coordinates for the H2O molecule are discussed. Degenerate vibrational modes such as occur in CO2 are analyzed and expressions for Fermi resonance between close-lying states of the same symmetry are developed. The bending modes of linear triatomic molecules are expressed in terms of Laguerre polynomials in cylindrical coordinates as well as in terms of Hermite polynomials in Cartesian coordinates. The effects of large-amplitude bending such as occur in the C3 molecule are analyzed, along with anharmonic effects, which split the usually degenerate bending mode energy levels. Finally, the vibrational frequencies, degeneracies, and symmetry properties of XY3, X2Y2, and XY4 type molecules are discussed.

  14. Vibration of Shells

    NASA Technical Reports Server (NTRS)

    Leissa, A. W.

    1973-01-01

    The vibrational characteristics and mechanical properties of shell structures are discussed. The subjects presented are: (1) fundamental equations of thin shell theory, (2) characteristics of thin circular cylindrical shells, (3) complicating effects in circular cylindrical shells, (4) noncircular cylindrical shell properties, (5) characteristics of spherical shells, and (6) solution of three-dimensional equations of motion for cylinders.

  15. Engine-Vibration Analyzer

    NASA Technical Reports Server (NTRS)

    Tolmei, V. R.

    1982-01-01

    Proposed circuit would monitor vibration spectrum of engines under test or in service. It could detect subtle out-of-specification conditions and could be programed to shut down engine if an out-of-limits condition develops. Possible uses of monitor are in bench testing automobiles and outboard motors and as a safety device in very critical engine applications.

  16. Vibrational coherent quantum computation

    SciTech Connect

    Paternostro, M.; Kim, M.S.; Knight, P.L.

    2005-02-01

    A long-lived coherent state and nonlinear interaction have been experimentally demonstrated for the vibrational mode of a trapped ion. We propose an implementation of quantum computation using coherent states of the vibrational modes of trapped ions. Differently from earlier experiments, we consider a far-off resonance for the interaction between external fields and the ion in a bidimensional trap. By appropriate choices of the detunings between the external fields, the adiabatic elimination of the ionic excited level from the Hamiltonian of the system allows for beam splitting between orthogonal vibrational modes, production of coherent states, and nonlinear interactions of various kinds. In particular, this model enables the generation of the four coherent Bell states. Furthermore, all the necessary operations for quantum computation, such as preparation of qubits and one-qubit and controlled two-qubit operations, are possible. The detection of the state of a vibrational mode in a Bell state is made possible by the combination of resonant and off-resonant interactions between the ion and some external fields. We show that our read-out scheme provides highly efficient discrimination between all the four Bell states. We extend this to a quantum register composed of many individually trapped ions. In this case, operations on two remote qubits are possible through a cavity mode. We emphasize that our remote-qubit operation scheme does not require a high-quality factor resonator: the cavity field acts as a catalyst for the gate operation.

  17. Pickin’ Up Good Vibrations

    DOE PAGES

    Smith, Jeremy C.

    2017-03-14

    Although conformational change has long been recognized as critical to protein function, whether the same goes for equilibrium dynamical fluctuations has been the subject of myriad squabbles. There are also those who rigidly deny any dynamical effects, those who claim fluctuations drive functional conformational change, while those who claim to have snared exquisitely evolved function-channeling vibrations.

  18. Noise, vibration and changes in wakefulness during helicopter flight.

    PubMed

    Landström, U; Löfstedt, P

    1987-02-01

    The investigation was carried out in cooperation with the helicopter school AF 1 in Boden. Measurements were made in two different types of helicopter, Hkp 3 and Hkp 6. Three different parameters were recorded during the flights: noise, vibrations, and wakefulness. Noise and vibration exposures were mainly correlated to the main rotor energy and frequency. Both types of exposure were dominated by lower frequencies, below 10 Hz. Analyses of wakefulness during long-distance flights, about 4 h, and short-distance flights, less than 2 h, were based on EEG and EKG recordings. As expected the level of wakefulness was influenced by the stress upon the pilots. Take-offs and landings, as well as unexpected events during the flight, were correlated to an increased level of wakefulness. In some cases flying was correlated to a gradual increase of weariness. The correlation between weariness, types of flying, and the external environmental factors of noise and vibration, is also discussed.

  19. Frequency-dependence of psychophysical and physiological responses to hand-transmitted vibration.

    PubMed

    Griffin, Michael J

    2012-01-01

    This invited paper reviews experimental studies of the frequency-dependence of absolute thresholds for the perception of vibration, equivalent comfort contours, temporary changes in sensation caused by vibration, and reductions in finger blood flow caused by hand-transmitted vibration. Absolute thresholds depend on the contact conditions but for a typical hand grip the thresholds show greatest sensitivity to acceleration around 125 Hz. The frequency-dependence of discomfort caused by hand-transmitted vibration depends on vibration magnitude: similar to absolute thresholds at low magnitudes, but the discomfort at higher magnitudes is similar when the vibration velocity is similar (at frequencies between about 16 and 400 Hz). Hand-transmitted vibration induces temporary elevations in vibrotactile thresholds that reflect the sensory mechanisms excited by the vibration and are therefore highly dependent on the frequency of vibration. Hand-transmitted vibration reduces finger blood flow during and after exposure; when the vibration velocity is similar at all frequencies there is more vasoconstriction at frequencies greater than 63 Hz than at lower frequencies. A single frequency weighting cannot provide a good indication of how all effects of hand-transmitted vibration depend on vibration frequency. Furthermore, a single frequency weighting provides only an approximate indication of any single response, because many factors influence the frequency-dependence of responses to hand-transmitted vibration, including the magnitude of vibration, contact conditions, and individual differences. Although the frequency weighting in current standards extends from 8 to 1,000 Hz, frequencies greater than 400 Hz rarely increase the weighted value on tools and there is currently little psychophysical or physiological evidence of their effects.

  20. The Effect of a Mechanical Arm System on Portable Grinder Vibration Emissions.

    PubMed

    McDowell, Thomas W; Welcome, Daniel E; Warren, Christopher; Xu, Xueyan S; Dong, Ren G

    2016-04-01

    Mechanical arm systems are commonly used to support powered hand tools to alleviate ergonomic stressors related to the development of workplace musculoskeletal disorders. However, the use of these systems can increase exposure times to other potentially harmful agents such as hand-transmitted vibration. To examine how these tool support systems affect tool vibration, the primary objectives of this study were to characterize the vibration emissions of typical portable pneumatic grinders used for surface grinding with and without a mechanical arm support system at a workplace and to estimate the potential risk of the increased vibration exposure time afforded by the use of these mechanical arm systems. This study also developed a laboratory-based simulated grinding task based on the ISO 28927-1 (2009) standard for assessing grinder vibrations; the simulated grinding vibrations were compared with those measured during actual workplace grinder operations. The results of this study demonstrate that use of the mechanical arm may provide a health benefit by reducing the forces required to lift and maneuver the tools and by decreasing hand-transmitted vibration exposure. However, the arm does not substantially change the basic characteristics of grinder vibration spectra. The mechanical arm reduced the average frequency-weighted acceleration by about 24% in the workplace and by about 7% in the laboratory. Because use of the mechanical arm system can increase daily time-on-task by 50% or more, the use of such systems may actually increase daily time-weighted hand-transmitted vibration exposures in some cases. The laboratory acceleration measurements were substantially lower than the workplace measurements, and the laboratory tool rankings based on acceleration were considerably different than those from the workplace. Thus, it is doubtful that ISO 28927-1 is useful for estimating workplace grinder vibration exposures or for predicting workplace grinder acceleration rank

  1. The Effect of a Mechanical Arm System on Portable Grinder Vibration Emissions

    PubMed Central

    McDowell, Thomas W.; Welcome, Daniel E.; Warren, Christopher; Xu, Xueyan S.; Dong, Ren G.

    2016-01-01

    Mechanical arm systems are commonly used to support powered hand tools to alleviate ergonomic stressors related to the development of workplace musculoskeletal disorders. However, the use of these systems can increase exposure times to other potentially harmful agents such as hand-transmitted vibration. To examine how these tool support systems affect tool vibration, the primary objectives of this study were to characterize the vibration emissions of typical portable pneumatic grinders used for surface grinding with and without a mechanical arm support system at a workplace and to estimate the potential risk of the increased vibration exposure time afforded by the use of these mechanical arm systems. This study also developed a laboratory-based simulated grinding task based on the ISO 28927-1 (2009) standard for assessing grinder vibrations; the simulated grinding vibrations were compared with those measured during actual workplace grinder operations. The results of this study demonstrate that use of the mechanical arm may provide a health benefit by reducing the forces required to lift and maneuver the tools and by decreasing hand-transmitted vibration exposure. However, the arm does not substantially change the basic characteristics of grinder vibration spectra. The mechanical arm reduced the average frequency-weighted acceleration by about 24% in the workplace and by about 7% in the laboratory. Because use of the mechanical arm system can increase daily time-on-task by 50% or more, the use of such systems may actually increase daily time-weighted hand-transmitted vibration exposures in some cases. The laboratory acceleration measurements were substantially lower than the workplace measurements, and the laboratory tool rankings based on acceleration were considerably different than those from the workplace. Thus, it is doubtful that ISO 28927-1 is useful for estimating workplace grinder vibration exposures or for predicting workplace grinder acceleration rank

  2. Active vibration control of a plate using vibration gradients

    NASA Astrophysics Data System (ADS)

    Kaizuka, T.; Nakano, K.

    2016-09-01

    Minimization of the squared transverse velocity at a measurement point does not guarantee the global vibration reduction for the whole structure, and the control result is dependent on the measurement point. Flexibility of the sensor placement is usually limited in practice. If the measurement point is near the nodal line of the mode, this mode cannot be decreased effectively and even increased by the control force. This study investigates the control method with the error criterion being the sum of the squared vibration velocity and the squared vibration gradients (spatial gradients) at a measurement point. Since the spatial distributions of the vibration velocity and its gradients are different, the aforementioned problem caused by the nodal line are mitigated. The numerical examples indicate that the performance of the control including the vibration gradients is less dependent on the measurement point, and this method achieves a better global vibration reduction, than the conventional method, i.e., minimization of the squared vibration velocity.

  3. Active vibration control of structures undergoing bending vibrations

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor)

    1995-01-01

    An active vibration control subassembly for a structure (such as a jet engine duct or a washing machine panel) undergoing bending vibrations caused by a source (such as the clothes agitator of the washing machine) independent of the subassembly. A piezoceramic actuator plate is vibratable by an applied electric AC signal. The plate is connected to the structure such that vibrations in the plate induced by the AC signal cause canceling bending vibrations in the structure and such that the plate is compressively pre-stressed along the structure when the structure is free of any bending vibrations. The compressive prestressing increases the amplitude of the canceling bending vibrations before the critical tensile stress level of the plate is reached. Preferably, a positive electric DC bias is also applied to the plate in its poling direction.

  4. Systematically Controlling for the Influence of Age, Sex, Hertz and Time Post-Whole-Body Vibration Exposure on Four Measures of Physical Performance in Community-Dwelling Older Adults: A Randomized Cross-Over Study

    PubMed Central

    Merriman, Harold L.; Brahler, C. Jayne; Jackson, Kurt

    2011-01-01

    Though popular, there is little agreement on what whole-body vibration (WBV) parameters will optimize performance. This study aimed to clarify the effects of age, sex, hertz and time on four physical function indicators in community-dwelling older adults (N = 32). Participants were exposed to 2 min WBV per session at either 2 Hz or 26 Hz and outcome measures were recorded at 2, 20 and 40 min post-WBV. Timed get up-and-go and chair sit-and-reach performances improved post-WBV for both sexes, were significantly different between 2 Hz and 26 Hz treatments (P ≤ 0.05) and showed statistically significant interactions between age and gender (P ≤ 0.01). Counter movement jump and timed one-legged stance performances showed a similar but non-significant response to 2 Hz and 26 Hz treatments, though male subjects showed a distinct trended response. Age and gender should be statistically controlled and both 2 Hz and 26 Hz exert a treatment effect. PMID:21977028

  5. Gap junctional communication in osteocytes is amplified by low intensity vibrations in vitro.

    PubMed

    Uzer, Gunes; Pongkitwitoon, Suphannee; Ian, Cheng; Thompson, William R; Rubin, Janet; Chan, Meilin E; Judex, Stefan

    2014-01-01

    The physical mechanism by which cells sense high-frequency mechanical signals of small magnitude is unknown. During exposure to vibrations, cell populations within a bone are subjected not only to acceleratory motions but also to fluid shear as a result of fluid-cell interactions. We explored displacements of the cell nucleus during exposure to vibrations with a finite element (FE) model and tested in vitro whether vibrations can affect osteocyte communication independent of fluid shear. Osteocyte like MLO-Y4 cells were subjected to vibrations at acceleration magnitudes of 0.15 g and 1 g and frequencies of 30 Hz and 100 Hz. Gap junctional intracellular communication (GJIC) in response to these four individual vibration regimes was investigated. The FE model demonstrated that vibration induced dynamic accelerations caused larger relative nuclear displacement than fluid shear. Across the four regimes, vibrations significantly increased GJIC between osteocytes by 25%. Enhanced GJIC was independent of vibration induced fluid shear; there were no differences in GJIC between the four different vibration regimes even though differences in fluid shear generated by the four regimes varied 23-fold. Vibration induced increases in GJIC were not associated with altered connexin 43 (Cx43) mRNA or protein levels, but were dependent on Akt activation. Combined, the in silico and in vitro experiments suggest that externally applied vibrations caused nuclear motions and that large differences in fluid shear did not influence nuclear motion (<1%) or GJIC, perhaps indicating that vibration induced nuclear motions may directly increase GJIC. Whether the increase in GJIC is instrumental in modulating anabolic and anti-catabolic processes associated with the application of vibrations remains to be determined.

  6. Vibration sensing method and apparatus

    DOEpatents

    Barna, B.A.

    1989-04-25

    A method and apparatus for nondestructive evaluation of a structure are disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration. 4 figs.

  7. Vibration sensing method and apparatus

    DOEpatents

    Barna, Basil A.

    1989-04-25

    A method and apparatus for nondestructive evaluation of a structure is disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration.

  8. Vibration sensing method and apparatus

    DOEpatents

    Barna, B.A.

    1987-07-07

    A method and apparatus for nondestructive evaluation of a structure is disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration. 4 figs.

  9. Free vibrations of delaminated beams

    NASA Technical Reports Server (NTRS)

    Shen, M.-H. H.; Grady, J. E.

    1992-01-01

    Free vibration of laminated composite beams is studied. The effect of interply delaminations on natural frequencies and mode shapes is evaluated both analytically and experimentally. A generalized vibrational principle is used to formulate the equation of motion and associated boundary conditions for the free vibration of a composite beam with a delamination of arbitrary size and location. The effect of coupling between longitudinal vibration and bending vibration is considered. This coupling effect is shown to significantly affect the calculated natural frequencies and mode shapes of the delaminated beam.

  10. Animal Communications Through Seismic Vibrations

    SciTech Connect

    Hill, Peggy

    2001-05-02

    Substrate vibration has been important to animals as a channel of communication for millions of years, but our literature on vibration in this context of biologically relevant information is only decades old. The jaw mechanism of the earliest land vertebrates allowed them to perceive substrate vibrations as their heads lay on the ground long before airborne sounds could be heard. Although the exact mechanism of vibration production and the precise nature of the wave produced are not always understood, recent development of affordable instrumentation to detect and measure vibrations has allowed researchers to answer increasingly sophisticated questions about how animals send and receive vibration signals. We now know that vibration provides information used in predator defense, prey detection, recruitment to food, mate choice, intrasexual competition, and maternal/brood social interactions in a variety of insect orders, spiders, crabs, scorpions, chameleons, frogs, golden moles, mole rats, kangaroos rats, wallabies, elephants and bison.

  11. Rheology of vibrated granular suspensions

    NASA Astrophysics Data System (ADS)

    Kiesgen de Richter, Sebastien; Hanotin, Caroline; Gaudel, Naima; Louvet, Nicolas; Marchal, Philippe; Jenny, Mathieu

    2017-06-01

    In this work we investigate in details the flow behaviour of dense vibrated gravitational suspensions. We study the rheology in the stationary state by using a stress imposed rheometer (spectroscopy mechanics) coupled with a vibration cell, we show that applying well-controlled mechanical vibrations allows the control of the suspension viscosity by suppressing the apparent yield stress which is largely the cause of flow jamming. We show that the rheology in the stationary state is controlled by the competition between the reorganization time induced by the flow and the internal reorganization time induced by vibrations. We discuss the influence of particles size, suspending fluid viscosity and vibration parameters and demonstrate that the grains dynamics is controlled by the ratio between the lubrication stress and the granular pressure. This work evidences the major role played by the vibration induced lubrication stress on the liquefaction of vibrated granular suspensions.

  12. Maladie des vibrations

    PubMed Central

    Shen, Shixin (Cindy); House, Ronald A.

    2017-01-01

    Résumé Objectif Permettre aux médecins de famille de comprendre l’épidémiologie, la pathogenèse, les symptômes, le diagnostic et la prise en charge de la maladie des vibrations, une maladie professionnelle importante et courante au Canada. Sources d’information Une recherche a été effectuée sur MEDLINE afin de relever les recherches et comptes rendus portant sur la maladie des vibrations. Une recherche a été effectuée sur Google dans le but d’obtenir la littérature grise qui convient au contexte canadien. D’autres références ont été tirées des articles relevés. Message principal La maladie des vibrations est une maladie professionnelle répandue touchant les travailleurs de diverses industries qui utilisent des outils vibrants. La maladie est cependant sous-diagnostiquée au Canada. Elle compte 3 éléments : vasculaire, sous la forme d’un phénomène de Raynaud secondaire; neurosensoriel; et musculosquelettique. Aux stades les plus avancés, la maladie des vibrations entraîne une invalidité importante et une piètre qualité de vie. Son diagnostic exige une anamnèse minutieuse, en particulier des antécédents professionnels, un examen physique, des analyses de laboratoire afin d’éliminer les autres diagnostics, et la recommandation en médecine du travail aux fins d’investigations plus poussées. La prise en charge consiste à réduire l’exposition aux vibrations, éviter les températures froides, abandonner le tabac et administrer des médicaments. Conclusion Pour assurer un diagnostic rapide de la maladie des vibrations et améliorer le pronostic et la qualité de vie, les médecins de famille devraient connaître cette maladie professionnelle courante, et pouvoir obtenir les détails pertinents durant l’anamnèse, recommander les patients aux cliniques de médecine du travail et débuter les demandes d’indemnisation de manière appropriée. PMID:28292812

  13. Neuropathic Pain-like Alterations in Muscle Nociceptor Function Associated with Vibration-induced Muscle Pain

    PubMed Central

    Chen, Xiaojie; Green, Paul G.; Levine, Jon D.

    2010-01-01

    We recently developed a rodent model of the painful muscle disorders induced by occupational exposure to vibration. In the present study we used this model to evaluate the function of sensory neurons innervating the vibration-exposed gastrocnemius muscle. Activity of 74 vibration-exposed and 40 control nociceptors, with mechanical receptive fields in the gastrocnemius muscle, were recorded. In vibration-exposed rats ~15% of nociceptors demonstrated an intense and long-lasting barrage of action potentials in response to sustained suprathreshold mechanical stimulation (average of 2635 action potentials with frequency of ~44 Hz during a 1 minute suprathreshold stimulus) much greater than has been reported to be produced even by potent inflammatory mediators. While these high-firing nociceptors had lower mechanical thresholds than the remaining nociceptors, exposure to vibration had no effect on conduction velocity and did not induce spontaneous activity. Hyperactivity was not observed in any of 19 neurons from vibration exposed rats pretreated with intrathecal antisense for the IL-6 receptor subunit gp130. Since vibration can injure peripheral nerves, and IL-6 has been implicated in painful peripheral neuropathies, we suggest that the dramatic change in sensory neuron function and development of muscles pain, induced by exposure to vibration, reflects a neuropathic muscle pain syndrome. PMID:20800357

  14. Digital vibration threshold testing and ergonomic stressors in automobile manufacturing workers: a cross-sectional assessment.

    PubMed

    Gold, J E; Punnett, L; Cherniack, M; Wegman, D H

    2005-01-01

    Upper extremity musculoskeletal disorders (UEMSDs) comprise a large proportion of work-related illnesses in the USA. Physical risk factors including manual force and segmental vibration have been associated with UEMSDs. Reduced sensitivity to vibration in the fingertips (a function of nerve integrity) has been found in those exposed to segmental vibration, to hand force, and in office workers. The objective of this study was to determine whether an association exists between digital vibration thresholds (VTs) and exposure to ergonomic stressors in automobile manufacturing. Interviews and physical examinations were conducted in a cross-sectional survey of workers (n = 1174). In multivariable robust regression modelling, associations with workers' estimates of ergonomic stressors stratified on tool use were determined. VTs were separately associated with hand force, vibration as felt through the floor (whole body vibration), and with an index of multiple exposures in both tool users and non-tool users. Additional associations with contact stress and awkward upper extremity postures were found in tool users. Segmental vibration was not associated with VTs. Further epidemiologic and laboratory studies are needed to confirm the associations found. The association with self-reported whole body vibration exposure suggests a possible sympathetic nervous system effect, which remains to be explored.

  15. Effect of situational, attitudinal and demographic factors on railway vibration annoyance in residential areas.

    PubMed

    Peris, Eulalia; Woodcock, James; Sica, Gennaro; Sharp, Calum; Moorhouse, Andrew T; Waddington, David C

    2014-01-01

    Railway induced vibration is an important source of annoyance among residents living in the vicinity of railways. Annoyance increases with vibration magnitude. However, these correlations between the degree of annoyance and vibration exposure are weak. This suggests that railway vibration induced annoyance is governed by more than just vibration level and therefore other factors may provide information to understand the wide variation in annoyance reactions. Factors coming into play when considering an exposure-response relationship between level of railway vibration and annoyance are presented. The factors investigated were: attitudinal, situational and demographic factors. This was achieved using data from field studies comprised of face-to-face interviews and internal vibration measurements (N = 755). It was found that annoyance scores were strongly influenced by two attitudinal factors: Concern of property damage and expectations about future levels of vibration. Type of residential area and age of the respondent were found to have an important effect on annoyance whereas visibility of the railway and time spent at home showed a significant but small influence. These results indicate that future railway vibration policies and regulations focusing on community impact need to consider additional factors for an optimal assessment of railway effects on residential environments.

  16. Evaluation of human response to structural vibrations induced by sonic booms

    NASA Technical Reports Server (NTRS)

    Sutherland, Louis C.; Czech, J.

    1992-01-01

    The topic is addressed of building vibration response to sonic boom and the evaluation of the associated human response to this vibration. An attempt is made to reexamine some of the issues addressed previously and to offer fresh insight that may assist in reassessing the potential impact of sonic boom over populated areas. Human response to vibration is reviewed first and a new human vibration response criterion curve is developed as a function of frequency. The difference between response to steady state versus impulsive vibration is addressed and a 'vibration exposure' or 'vibration energy' descriptor is suggested as one possible way to evaluate duration effects on response to transient vibration from sonic booms. New data on the acoustic signature of rattling objects are presented along with a review of existing data on the occurrence of rattle. Structural response to sonic boom is reviewed and a new descriptor, 'Acceleration Exposure Level' is suggested which can be easily determined from the Fourier Spectrum of a sonic boom. A preliminary assessment of potential impact from sonic booms is provided in terms of human response to vibration and detection of rattle based on a synthesis of the preceding material.

  17. Possible Mechanisms of Low Back Pain due to Whole-Body Vibration

    NASA Astrophysics Data System (ADS)

    Pope, M. H.; Wilder, D. G.; Magnusson, M.

    1998-08-01

    The investigators describe their multifaceted approach to the study of the relationship between whole-body vibration and low back pain.In vitroexperiments, using percutaneous pin-mounted accelerometers have shown that the natural frequency is at 4·5 Hz. The frequency response was affected by posture, seating, and seat-back inclination. The response appears to be largely determined by the rocking of the pelvis. Electromyographic studies have shown that muscle fatigue occurs under whole body vibration. After whole body vibration exposure the muscle response to a sudden load has greater latency. Vehicle driving may be a reason for low back pain or herniated nucleus pulposus. Prolonged seating exposure, coupled with the whole body vibration should be reduced for those recovering from these problems. Vibration attenuating seats, and correct ergonomic layout of the cabs may reduce the risks of recurrence.

  18. [Low back pain among farmers exposed to whole body vibration: a literature review].

    PubMed

    Solecki, Leszek

    2011-01-01

    A literature review was performed for the years 1990-2007. It covered reports addressing the problems associated with the prevalence of low back pain and musculoskeletal disorders among farmers. In addition, the anticipated relationship between low back pain and whole body vibration in farmers was evaluated based on 12 reports for the years 1987-2009. The review confirmed that the prevalence of back pain is significantly higher in farmers exposed to whole body vibration than in the control group (not exposed to vibration). The frequency of back pain is related with whole body vibration, as well as with prolonged sitting position, wrong body posture and physical work load (especially lifting and carrying loads). The prevalence of these symptoms increases with the increased vibration dose and duration of exposure. Disorders in the lower section of the spine were associated with age, accidents (concerning the back), cumulative dose of whole body vibration, and overload due to wrong body posture. Long-term exposure affecting the whole body is harmful to the skeletal system (degeneration of the spine). The results of the study suggest that the repeated or constant exposure to mechanical shocks may increase the risk of low back pain. The investigations confirmed that there is a dose-response type of relationship between exposure to whole body vibration and pain in the lumbar section of the spine.

  19. Molecular vibrational energy flow

    NASA Astrophysics Data System (ADS)

    Gruebele, M.; Bigwood, R.

    This article reviews some recent work in molecular vibrational energy flow (IVR), with emphasis on our own computational and experimental studies. We consider the problem in various representations, and use these to develop a family of simple models which combine specific molecular properties (e.g. size, vibrational frequencies) with statistical properties of the potential energy surface and wavefunctions. This marriage of molecular detail and statistical simplification captures trends of IVR mechanisms and survival probabilities beyond the abilities of purely statistical models or the computational limitations of full ab initio approaches. Of particular interest is IVR in the intermediate time regime, where heavy-atom skeletal modes take over the IVR process from hydrogenic motions even upon X H bond excitation. Experiments and calculations on prototype heavy-atom systems show that intermediate time IVR differs in many aspects from the early stages of hydrogenic mode IVR. As a result, IVR can be coherently frozen, with potential applications to selective chemistry.

  20. Dependence of palmar sweating response and central nervous system activity on the frequency of whole-body vibration.

    PubMed

    Ando, Hideo; Noguchi, Ryo

    2003-06-01

    This study was carried out to determine the effects of the frequency of whole-body vibration on palmar sweating response and the activity of the central sympathetic nervous system. Palmar sweating volume was measured on the right palm of six healthy men before and during 3 minutes of exposure to sinusoidal whole-body vibration at three different frequencies (16, 31.5, and 63 Hz). The whole-body vibration had a frequency-weighted, root mean square (rms) acceleration magnitude of 2.0 m/s2. As the index of the activated central sympathetic nervous system, saliva level of 3-methoxy-4-hydroxyphenylglycol (MHPG) was analyzed before and immediately after each vibration exposure. Each vibration frequency induced a palmar sweating response, that of 31.5 Hz being the largest. However, no significant difference was found between the three vibration conditions. Saliva MHPG increased in all the vibration exposures, and the largest change was observed at 31.5 Hz, the difference being significant. Acute exposure to whole-body vibration induced a palmar sweating response and activated the central sympathetic nervous system. The effects on the central nervous system were found to be dependent on the frequency of the vibration.

  1. Vibration-Response Analysis

    NASA Technical Reports Server (NTRS)

    Bowman, L. M.

    1986-01-01

    Dynamic behaviors of structures analyzed interactively. Interactive steadystate vibration-response program, VIBRA, developed. Frequency-response analyses commonly used in evaluating dynamic behaviors of structures subjected to cyclic external forces. VIBRA calculates frequency response using modalsuperposition approach. Method applicable to single or multiple forces applied to linear, proportionally damped structure in which damping is viscous or structural. VIBRA written in FORTRAN 77 for interactive execution.

  2. Annoyance due to railway vibration at different times of the day.

    PubMed

    Peris, Eulalia; Woodcock, James; Sica, Gennaro; Moorhouse, Andrew T; Waddington, David C

    2012-02-01

    The time of day when vibration occurs is considered as a factor influencing the human response to vibration. The aim of the present paper is to identify the times of day during which railway vibration causes the greatest annoyance, to measure the differences between annoyance responses for different time periods and to obtain estimates of the time of day penalties. This was achieved using data from case studies comprised of face-to-face interviews and internal vibration measurements (N=755). Results indicate that vibration annoyance differs with time of day and that separate time of day weights can be applied when considering exposure-response relationships from railway vibration in residential environments. © 2012 Acoustical Society of America

  3. Vibration Induced Microfluidic Atomization

    NASA Astrophysics Data System (ADS)

    Yeo, Leslie; Qi, Aisha; Friend, James

    2008-11-01

    We demonstrate rapid generation of micron aerosol droplets in a microfluidic device in which a fluid drop is exposed to surface vibration as it sits atop a piezoelectric substrate. Little, however, is understood about the processes by which these droplets form due to the complex hydrodynamic processes that occur across widely varying length and time scales. Through experiments, scaling theory and numerical modelling, we elucidate the interfacial destabilization mechanisms that lead to droplet formation. Droplets form due to the axisymmetric break-up of cylindrical liquid jets ejected as a consequence of interfacial destabilization. Their 10 μm size correlates with the jet radius and the instability wavelength, both determined from a viscous-capillary dominant force balance and confirmed through a numerical solution. With the exception of drops that spread into thin films with thicknesses on the order of the boundary layer dimension, the free surface is always observed to vibrate at the capillary-viscous resonance frequency despite the surface vibration frequency being several orders larger. This is contrary to common assumptions used in deriving subharmonic models resulting in a Mathieu equation, which has commonly led to spurious predictions in the droplet size.

  4. Vibrational stability of graphene

    NASA Astrophysics Data System (ADS)

    Hu, Yangfan; Wang, Biao

    2013-05-01

    The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP) models. Compared with three-dimensional (3-D) materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202). This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC), defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D) materials.

  5. Vibration isolation mounting system

    NASA Technical Reports Server (NTRS)

    Carter, Sam D. (Inventor); Bastin, Paul H. (Inventor)

    1995-01-01

    A system is disclosed for mounting a vibration producing device onto a spacecraft structure and also for isolating the vibration forces thereof from the structure. The system includes a mount on which the device is securely mounted and inner and outer rings. The rings and mount are concentrically positioned. The system includes a base (secured to the structure) and a set of links which are interconnected by a set of torsion bars which allow and resist relative rotational movement therebetween. The set of links are also rotatably connected to a set of brackets which are rigidly connected to the outer ring. Damped leaf springs interconnect the inner and outer rings and the mount allow relative translational movement therebetween in X and Y directions. The links, brackets and base are interconnected and configured so that they allow and resist translational movement of the device in the Z direction so that in combination with the springs they provide absorption of vibrational energy produced by the device in all three dimensions while providing rotational stiffness about all three axes to prevent undesired rotational motions.

  6. Over-vibration induced blood perfusion and vascular permeability changes may lead to vocal edema.

    PubMed

    Wang, Jiajia; Devine, Erin; Fang, Rui; Jiang, Jack J

    2017-01-01

    To observe blood perfusion and vascular permeability changes under varying vibration frequency exposures. Animal model. Blood perfusion was measured using laser Doppler flowmetry in eight rabbit auricular vessels (four rabbits) under nonvibration, and 62.5-Hz/1-mm, 125-Hz/1-mm, and 250-Hz/0.5-mm vibration frequency/amplitude exposures. Another 12 rabbits were randomly divided into vibration only and vibration with histamine groups. After 3 hours of continuous 125-Hz, 1-mm amplitude vibration of the auricle, vascular permeability was analyzed by absorbance of Evans blue-albumin complex. Significantly lower blood perfusion was observed in the vibration group, compared with no vibration exposure controls. Blood perfusion decreased 29 ± 16% as the vibration frequency was increased from 62.5 Hz to 125 Hz with the vibration amplitude constant at 1 mm. When the frequency was increased from 125 Hz to 250 Hz, while the amplitude was decreased from 1 mm to 0.5 mm, blood flow perfusion further decreased 29 ± 29%, and the decline tendency in blood perfusion showed no significant difference (P = .992). Meanwhile, in the vibration with histamine group, vascular permeability of the vibrated ears increased significantly compared to the nonvibrated ears (P = .005). Overvibration of the vocal folds due to voice overuse or abuse may significantly reduce blood perfusion, and increase vascular permeability in the vocal fold in inflammatory situations, which may lead to the formation of vocal edema. NA Laryngoscope, 127:148-152, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  7. Vibration from freight trains fragments sleep: A polysomnographic study

    PubMed Central

    Smith, Michael G.; Croy, Ilona; Hammar, Oscar; Persson Waye, Kerstin

    2016-01-01

    As the number of freight trains on railway networks increases, so does the potential for vibration exposure in dwellings nearby to freight railway lines. Nocturnal trains in particular are of particular importance since night-time exposure may interfere with sleep. The present work investigates the impact of vibration and noise from night-time freight trains on human sleep. In an experimental polysomnographic laboratory study, 24 young healthy volunteers with normal hearing were exposed to simulated freight pass-bys with vibration amplitudes of 0.7 and 1.4 mm/s either 20 or 36 times during the night. Stronger vibrations were associated with higher probabilities of event-related arousals and awakenings (p < 0.001), and sleep stage changes (p < 0.05). Sleep macrostructure was most affected in high vibration nights with 36 events, with increased wakefulness (p < 0.05), reduced continual slow wave sleep (p < 0.05), earlier awakenings (p < 0.05) and an overall increase in sleep stage changes (p < 0.05). Subjects reported sleep disturbance due to vibration (F(4,92) = 25.9, p < 0.001) and noise (F(4,92) = 25.9, p < 0.001), with the number of trains having an effect only for the 0.7 mm/s condition (p < 0.05). The findings show that combined vibration and noise from railway freight affects the natural rhythm of sleep, but extrapolation of significance for health outcomes should be approached with caution. PMID:27090401

  8. Vibration from freight trains fragments sleep: A polysomnographic study.

    PubMed

    Smith, Michael G; Croy, Ilona; Hammar, Oscar; Persson Waye, Kerstin

    2016-04-19

    As the number of freight trains on railway networks increases, so does the potential for vibration exposure in dwellings nearby to freight railway lines. Nocturnal trains in particular are of particular importance since night-time exposure may interfere with sleep. The present work investigates the impact of vibration and noise from night-time freight trains on human sleep. In an experimental polysomnographic laboratory study, 24 young healthy volunteers with normal hearing were exposed to simulated freight pass-bys with vibration amplitudes of 0.7 and 1.4 mm/s either 20 or 36 times during the night. Stronger vibrations were associated with higher probabilities of event-related arousals and awakenings (p < 0.001), and sleep stage changes (p < 0.05). Sleep macrostructure was most affected in high vibration nights with 36 events, with increased wakefulness (p < 0.05), reduced continual slow wave sleep (p < 0.05), earlier awakenings (p < 0.05) and an overall increase in sleep stage changes (p < 0.05). Subjects reported sleep disturbance due to vibration (F(4,92) = 25.9, p < 0.001) and noise (F(4,92) = 25.9, p < 0.001), with the number of trains having an effect only for the 0.7 mm/s condition (p < 0.05). The findings show that combined vibration and noise from railway freight affects the natural rhythm of sleep, but extrapolation of significance for health outcomes should be approached with caution.

  9. Vibration Considerations for Cryogenic Tanks Using Glass Bubbles Insulation

    NASA Technical Reports Server (NTRS)

    Werlink, Rudolph J.; Fesmire, James E.; Sass, Jared P.

    2011-01-01

    The use of glass bubbles as an efficient and practical thermal insulation system has been previously demonstrated in cryogenic storage tanks. One such example is a spherical, vacuum-jacketed liquid hydrogen vessel of 218,000 liter capacity where the boiloff rate has been reduced by approximately 50 percent. Further applications may include non-stationary tanks such as mobile tankers and tanks with extreme duty cycles or exposed to significant vibration environments. Space rocket launch events and mobile tanker life cycles represent two harsh cases of mechanical vibration exposure. A number of bulk fill insulation materials including glass bubbles, perlite powders, and aerogel granules were tested for vibration effects and mechanical behavior using a custom design holding fixture subjected to random vibration on an Electrodynamic Shaker. The settling effects for mixtures of insulation materials were also investigated. The vibration test results and granular particle analysis are presented with considerations and implications for future cryogenic tank applications. A thermal performance update on field demonstration testing of a 218,000 L liquid hydrogen storage tank, retrofitted with glass bubbles, is presented. KEYWORDS: Glass bubble, perlite, aerogel, insulation, liquid hydrogen, storage tank, mobile tanker, vibration.

  10. Mechanisms mediating vibration-induced chronic musculoskeletal pain analyzed in the rat.

    PubMed

    Dina, Olayinka A; Joseph, Elizabeth K; Levine, Jon D; Green, Paul G

    2010-04-01

    While occupational exposure to vibration is a common cause of acute and chronic musculoskeletal pain, eliminating exposure produces limited symptomatic improvement, and reexposure precipitates rapid recurrence or exacerbation. To evaluate mechanisms underlying these pain syndromes, we have developed a model in the rat, in which exposure to vibration (60-80Hz) induces, in skeletal muscle, both acute mechanical hyperalgesia as well as long-term changes characterized by enhanced hyperalgesia to a proinflammatory cytokine or reexposure to vibration. Exposure of a hind limb to vibration-produced mechanical hyperalgesia measured in the gastrocnemius muscle of the exposed hind limb, which persisted for approximately 2 weeks. When nociceptive thresholds had returned to baseline, exposure to a proinflammatory cytokine or reexposure to vibration produced markedly prolonged hyperalgesia. The chronic prolongation of vibration- and cytokine-hyperalgesia was prevented by spinal intrathecal injection of oligodeoxynucleotide (ODN) antisense to protein kinase Cepsilon, a second messenger in nociceptors implicated in the induction and maintenance of chronic pain. Vibration-induced hyperalgesia was inhibited by spinal intrathecal administration of ODN antisense to receptors for the type-1 tumor necrosis factor-alpha (TNFalpha) receptor. Finally, in TNFalpha-pretreated muscle, subsequent vibration-induced hyperalgesia was markedly prolonged. These studies establish a model of vibration-induced acute and chronic musculoskeletal pain, and identify the proinflammatory cytokine TNFalpha and the second messenger protein kinase Cepsilon as targets against which therapies might be directed to prevent and/or treat this common and very debilitating chronic pain syndrome. Copyright 2010 American Pain Society. All rights reserved.

  11. Vibrational averages along thermal lines

    NASA Astrophysics Data System (ADS)

    Monserrat, Bartomeu

    2016-01-01

    A method is proposed for the calculation of vibrational quantum and thermal expectation values of physical properties from first principles. Thermal lines are introduced: these are lines in configuration space parametrized by temperature, such that the value of any physical property along them is approximately equal to the vibrational average of that property. The number of sampling points needed to explore the vibrational phase space is reduced by up to an order of magnitude when the full vibrational density is replaced by thermal lines. Calculations of the vibrational averages of several properties and systems are reported, namely, the internal energy and the electronic band gap of diamond and silicon, and the chemical shielding tensor of L-alanine. Thermal lines pave the way for complex calculations of vibrational averages, including large systems and methods beyond semilocal density functional theory.

  12. Characteristics of Vibration that Alter Cardiovascular Parameters in Mice.

    PubMed

    Li, Yao; Rabey, Karyne N; Schmitt, Daniel; Norton, John N; Reynolds, Randall P

    2015-07-01

    We hypothesized that short-term exposure of mice to vibration within a frequency range thought to be near the resonant frequency range of mouse tissue and at an acceleration of 0 to 1 m/s(2) would alter heart rate (HR) and mean arterial pressure (MAP). We used radiotelemetry to evaluate the cardiovascular response to vibration in C57BL/6 and CD1 male mice exposed to vertical vibration of various frequencies and accelerations. MAP was consistently increased above baseline values at an acceleration near 1 m/s(2) and a frequency of 90 Hz in both strains, and HR was increased also in C57BL/6 mice. In addition, MAP increased at 80 Hz in individual mice of both strains. When both strains were analyzed together, mean MAP and HR were increased at 90 Hz at 1 m/s(2), and HR was increased at 80 Hz at 1 m/s(2). No consistent change in MAP or HR occurred when mice were exposed to frequencies below 80 Hz or above 90 Hz. The increase in MAP and HR occurred only when the mice had conscious awareness of the vibration, given that these changes did not occur when anesthetized mice were exposed to vibration. Tested vibration acceleration levels lower than 0.75 m/s(2) did not increase MAP or HR at 80 or 90 Hz, suggesting that a relatively high level of vibration is necessary to increase these parameters. These data are important to establish the harmful frequencies and accelerations of environmental vibration that should be minimized or avoided in mouse facilities.

  13. Characteristics of Vibration that Alter Cardiovascular Parameters in Mice

    PubMed Central

    Li, Yao; Rabey, Karyne N; Schmitt, Daniel; Norton, John N; Reynolds, Randall P

    2015-01-01

    We hypothesized that short-term exposure of mice to vibration within a frequency range thought to be near the resonant frequency range of mouse tissue and at an acceleration of 0 to 1 m/s2 would alter heart rate (HR) and mean arterial pressure (MAP). We used radiotelemetry to evaluate the cardiovascular response to vibration in C57BL/6 and CD1 male mice exposed to vertical vibration of various frequencies and accelerations. MAP was consistently increased above baseline values at an acceleration near 1 m/s2 and a frequency of 90 Hz in both strains, and HR was increased also in C57BL/6 mice. In addition, MAP increased at 80 Hz in individual mice of both strains. When both strains were analyzed together, mean MAP and HR were increased at 90 Hz at 1 m/s2, and HR was increased at 80 Hz at 1 m/s2. No consistent change in MAP or HR occurred when mice were exposed to frequencies below 80 Hz or above 90 Hz. The increase in MAP and HR occurred only when the mice had conscious awareness of the vibration, given that these changes did not occur when anesthetized mice were exposed to vibration. Tested vibration acceleration levels lower than 0.75 m/s2 did not increase MAP or HR at 80 or 90 Hz, suggesting that a relatively high level of vibration is necessary to increase these parameters. These data are important to establish the harmful frequencies and accelerations of environmental vibration that should be minimized or avoided in mouse facilities. PMID:26224436

  14. Guidelines for Whole-Body Vibration Health Surveillance

    NASA Astrophysics Data System (ADS)

    POPE, M.; MAGNUSSON, M.; LUNDSTRÖM, R.; HULSHOF, C.; VERBEEK, J.; BOVENZI, M.

    2002-05-01

    There is strong epidemiological evidence that occupational exposure to WBV is associated with an increased risk of low back pain (LBP), sciatic pain, and degenerative changes in the spinal system, including lumbar intervertebral disc disorders. A prototype health surveillance scheme for WBV is presented in this paper. Surveillance is the collection, analysis, and dissemination of data for the purpose of prevention. The aims are to assess health status and diagnose vibration-induced disorders at an early stage, to inform the workers on the potential risk associated with vibration exposure, to give preventive advice to employers and employees and to control whether preventive measures which have been taken, were successful. It is suggested that a pre-placement health examination should be offered to each worker who will be exposed to WBV so as to make the worker aware of the hazards, to obtain baseline health data, and to identify medical conditions that may increase the risk due to WBV. The case history should focus on personal history, work history, and leisure activities involving driving of vehicles. The personal medical history should detail back pain complaints, disorders in the spine, any injuries or surgery to the musculoskeletal system. A physical examination on the lower back should be performed on workers who have experienced LBP symptoms over the past 12 months. The preplacement examination should be followed by periodic health reassessment with a regular interval according to the legislation of the country. It is suggested that periodic medical examination should be made available at least every 2 years to all workers who are exposed to WBV. Any change in vibration exposure at the workplace should be reported by the employer. If an increase in vibration exposure or a change in health status have occurred, the medical re-examination should be offered at shorter intervals at the discretion of the attending physician. There should be a periodic medical

  15. Vibration damping method and apparatus

    DOEpatents

    Redmond, James M.; Barney, Patrick S.; Parker, Gordon G.; Smith, David A.

    1999-01-01

    The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof.

  16. Vibration damping method and apparatus

    DOEpatents

    Redmond, J.M.; Barney, P.S.; Parker, G.G.; Smith, D.A.

    1999-06-22

    The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof. 38 figs.

  17. An evaluation of impact wrench vibration emissions and test methods.

    PubMed

    McDowell, Thomas W; Dong, R G; Xu, X; Welcome, D E; Warren, C

    2008-03-01

    In the interest of providing more effective evaluations of impact wrench vibration exposures and the development of improved methods for measuring vibration emissions produced by these tools, this study focused on three variables: acceleration measured at the tool surface, vibration exposure duration per test trial, and the amount of torque required to unseat the nuts following a test trial. For this evaluation, six experienced male impact wrench operators used three samples each of five impact wrench models (four pneumatic models and one battery-powered model) in a simulated work task. The test setup and procedures were based on those provided by an International Organization for Standardization (ISO) Technical Committee overseeing the revision of ISO 8662-7. The work task involved the seating of 10 nuts onto 10 bolts mounted on steel plates. The results indicate that acceleration magnitudes vary not only by tool type but also by individual tools within a type. Thus, evaluators are cautioned against drawing conclusions based on small numbers of tools and/or tool operators. Appropriate sample sizes are suggested. It was further noted that evaluators could draw different conclusions if tool assessments are based on ISO-weighted acceleration as opposed to unweighted acceleration. As expected, vibration exposure durations varied by tool type and by test subject; duration means varied more for study participants than they did for tool types. For the 12 pneumatic tools evaluated in this study, torque varied directly with tool handle acceleration. Therefore, in order to reduce vibration exposure, tools should be selected and adjusted so that they produce no more than the needed torque for the task at hand.

  18. Computer analysis of railcar vibrations

    NASA Technical Reports Server (NTRS)

    Vlaminck, R. R.

    1975-01-01

    Computer models and techniques for calculating railcar vibrations are discussed along with criteria for vehicle ride optimization. The effect on vibration of car body structural dynamics, suspension system parameters, vehicle geometry, and wheel and rail excitation are presented. Ride quality vibration data collected on the state-of-the-art car and standard light rail vehicle is compared to computer predictions. The results show that computer analysis of the vehicle can be performed for relatively low cost in short periods of time. The analysis permits optimization of the design as it progresses and minimizes the possibility of excessive vibration on production vehicles.

  19. Vibrational autoionization in polyatomic molecules.

    PubMed

    Pratt, S T

    2005-01-01

    The vibrationally autoionizing Rydberg states of small polyatomic molecules provide a fascinating laboratory in which to study fundamental nonadiabatic processes. In this review, recent results on the vibrational mode dependence of vibrational autoionization are discussed. In general, autoionization rates depend strongly on the character of the normal mode driving the process and on the electronic character of the Rydberg electron. Although quantitative calculations based on multichannel quantum defect theory are available for some polyatomic molecules, including H3, only qualitative information exists for most molecules. This review shows how qualitative information, such as Walsh diagrams along different normal coordinates of the molecule, can provide insight into the vibrational autoionization rates.

  20. Nonlinear interferometric vibrational imaging.

    PubMed

    Marks, Daniel L; Boppart, Stephen A

    2004-03-26

    Coherent anti-Stokes Raman scattering (CARS) processes are "coherent," but the phase of the anti-Stokes radiation is lost by most incoherent spectroscopic CARS measurements. We propose a Raman microscopy imaging method called nonlinear interferometric vibrational imaging, which measures Raman spectra by obtaining the temporal anti-Stokes signal through nonlinear interferometry. With a more complete knowledge of the anti-Stokes signal, we show through simulations that a high-resolution Raman spectrum can be obtained of a molecule in a single pulse using broad band radiation. This could be useful for identifying the three-dimensional spatial distribution of molecular species in tissue.

  1. Turbine blade vibration dampening

    DOEpatents

    Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

  2. Turbine blade vibration dampening

    DOEpatents

    Cornelius, Charles C.; Pytanowski, Gregory P.; Vendituoli, Jonathan S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass "M" or combined mass "CM" of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics.

  3. Chaotic vortex induced vibrations

    SciTech Connect

    Zhao, J.; Sheridan, J.; Leontini, J. S.; Lo Jacono, D.

    2014-12-15

    This study investigates the nature of the dynamic response of an elastically mounted cylinder immersed in a free stream. A novel method is utilized, where the motion of the body during a free vibration experiment is accurately recorded, and then a second experiment is conducted where the cylinder is externally forced to follow this recorded trajectory. Generally, the flow response during both experiments is identical. However, particular regimes exist where the flow response is significantly different. This is taken as evidence of chaos in these regimes.

  4. Structural Acoustics and Vibrations

    NASA Astrophysics Data System (ADS)

    Chaigne, Antoine

    This chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  5. Cement mixing with vibrator

    SciTech Connect

    Allen, T.E.

    1991-07-09

    This patent describes a method of cementing a casing string in a bore hole of a well. It comprises introducing water and dry cement material into a mixing vessel; mixing the water and dry cement material in the mixing vessel to form a cement slurry, the slurry including lumps of the dry cement material, the mixing including steps of: agitating the slurry; and while agitating the slurry, transmitting vibrational energy into the slurry and thereby aiding disintegration and subsequent wetting of the lumps of the dry cement material in the slurry; and pumping the slurry into an annulus between the casing string and the bore hole.

  6. Effects of vibration on occupant driving performance under simulated driving conditions.

    PubMed

    Azizan, Amzar; Fard, M; Azari, Michael F; Jazar, Reza

    2017-04-01

    Although much research has been devoted to the characterization of the effects of whole-body vibration on seated occupants' comfort, drowsiness induced by vibration has received less attention to date. There are also little validated measurement methods available to quantify whole body vibration-induced drowsiness. Here, the effects of vibration on drowsiness were investigated. Twenty male volunteers were recruited for this experiment. Drowsiness was measured in a driving simulator, before and after 30-min exposure to vibration. Gaussian random vibration, with 1-15 Hz frequency bandwidth was used for excitation. During the driving session, volunteers were required to obey the speed limit of 100 kph and maintain a steady position on the left-hand lane. A deviation in lane position, steering angle variability, and speed deviation were recorded and analysed. Alternatively, volunteers rated their subjective drowsiness by Karolinska Sleepiness Scale (KSS) scores every 5-min. Following 30-min of exposure to vibration, a significant increase of lane deviation, steering angle variability, and KSS scores were observed in all volunteers suggesting the adverse effects of vibration on human alertness level.

  7. [Monitoring arterial hypertension in workers in professions exposed to vibration hazards (results of a 15-year study)].

    PubMed

    Drobyshev, V A; Efremov, A V; Loseva, M I; Britov, A N; Michurin, A I

    2002-01-01

    To follow up for 15 years prevalence of arterial hypertension (AH) in workers exposed to vibration, to study AH course and possible correction in long-term vibration exposure. The survey covered 1232 males aged 25-59 years exposed to vibration at their working places for 1 to 30 years (test group) and 1163 males matched for age but not exposed to vibration (control group). Active primary and secondary prevention of AH and annual population control for 10 years were performed in the test group. The control group was followed up outpatiently without active intervention. Final screening was conducted 5 years after completion of the program of AH prophylaxis. Among workers exposed to vibration AH prevalence was similar to that in the controls and tended to reduction in the process of preventive treatment. However, after the end of prophylactic measures AH incidence rate returned to the baseline level. In workers at risk of vibration aftereffects conversion of normal arterial pressure to hypertension was observed more frequently than in unexposed patients. This requires active prophylactic intervention. Long-term exposure to moderate and high frequency vibration is an AH risk factor. Incidence rate of AH increases with longer exposure to vibration. Compared to controls, aged workers exposed to vibration have AH much more frequently.

  8. Melt Stirring by Horizontal Crucible Vibration

    NASA Technical Reports Server (NTRS)

    Wolf, M. F.; Elwell, D.; Feigelson, R. S.

    1985-01-01

    Horizontal vibration suggested as technique for more effective stirring of melts in crystal-growth apparatus. Vibrational technique may replace accelerated crucible rotation. Potential superiority of vibrational technique shown by preliminary experiments in which ink stirred into water.

  9. Development of vibrating insoles.

    PubMed

    Hijmans, Juha M; Geertzen, Jan H B; Schokker, Bart; Postema, Klaas

    2007-12-01

    The objective of this study was to describe the development of vibrating insoles. Insoles, providing a subsensory mechanical noise signal to the plantar side of the feet, may improve balance in healthy young and older people and in patients with stroke or diabetic neuropathy. This study describes the requirements for the tactors, (tactile actuators) insole material and noise generator. A search for the components of vibrating insoles providing mechanical noise to the plantar side of the feet was performed. The mechanical noise signal should be provided by tactors built in an insole or shoe and should obtain an input signal from a noise generator and an amplifier. Possible tactors are electromechanical tactors, a piezo actuator or the VBW32 skin transducer. The Minirator MR1 of NTI, a portable MP3 player or a custom-made noise generator can provide these tactors with input. The tactors can be built in foam, silicone or cork insoles. In conclusion, a C2 electromechanical tactor, a piezo actuator or the VBW32 skin transducer, activated by a custom-made noise generator, built in a cork insole covered with a leather layer seems the ideal solution.

  10. [Vibration-induced Raynaud phenomenon caused by an electric hedge trimmer].

    PubMed

    Kákosy, T; Martin, J; Zentai, N; Székely, A

    1995-08-06

    Authors observed Raynaud's phenomenon verified by cold-provocation test and measuring finger systolic blood pressure on a man working with bush cutter equipment installed on a tractor. Vibration measurements showed acceleration superior to maximal allowable level. Other causes of a secondary Raynaud's phenomenon were excluded by means of detailed internal examination. On the ground of the exposure data and lack of other ethiological factors the authors think that the patient had vibration-induced Raynaud's phenomenon. For prevention they proposed the diminishing of the daily exposure time and periodical medical examinations. They want to draw the attention for this sort of exposure.

  11. Vibration considerations for cryogenic tanks using glass bubbles insulation

    NASA Astrophysics Data System (ADS)

    Werlink, Rudy John; Fesmire, James; Sass, Jared P.

    2012-06-01

    The use of glass bubbles as an efficient and practical thermal insulation system hasbeen previously demonstrated in cryogenic storage tanks. One such example is a spherical,vacuum-jacketed liquid hydrogen vessel of 218,000 liter capacity where the boiloff rate hasbeen reduced by approximately 50 percent. Further applications may include non-stationarytanks such as mobile tankers and tanks with extreme duty cycles or exposed to significantvibration environments. Space rocket launch events and mobile tanker life cycles representtwo harsh cases of mechanical vibration exposure. A number of bulk fill insulationmaterials including glass bubbles, perlite powders, and aerogel granules were tested forvibration effects and mechanical behavior using a custom design holding fixture subjectedto random vibration on an Electrodynamic Shaker. The settling effects for mixtures ofinsulation materials were also investigated. The vibration test results and granular particleanalysis are presented with considerations and implications for future cryogenic tankapplications.

  12. Intelligent vibration control of ELTs and large AO hardware

    NASA Astrophysics Data System (ADS)

    Pott, J.-U.; Kürster, M.; Trowitzsch, J.; Borelli, J.; Rohloff, R.-R.; Herbst, T.; Böhm, M.; Keck, A.; Ruppel, T.; Sawodny, O.

    2012-07-01

    MPIA leads the construction of the LINC-NIRVANA instrument, the MCAO-supported Fizeau imager for the LBT, serves as pathfinder for future ELT-AO imagers in terms of size and technology. In this contribution, we review recent results and significant progress made on the development of key items of our stratgey to achieve a piston stability of up to 100nm during a science exposure. We present an overview of our vibration control strategies for optical path and tip-tilt stabilization, involving accelerometer based real-time vibration measurements, vibration sensitive active control of actuators, and the development of a dynamical model of the LBT. MPIA also co-develops the E-ELT first-light NIR imager MICADO (both SCAO and MCAO assisted). Our experiences, made with LINC-NIRVANA, will be fed into the MICADO structural AO design to reach highest on-sky sensitivity.

  13. Vibration analysis for electronic equipment (2nd edition)

    NASA Astrophysics Data System (ADS)

    Steinberg, Dave S.

    This book describes methods for designing electronic equipment that must work with a high degree of reliability in severe vibration and shock environments. It explains how to design and predict the operational life of electronic equipment based upon the type of electronic components used and the type of vibration and shock exposure. The book begins with a review of the dynamics of nonuniform sections and composite construction methods for electronic assemblies, followed by a discussion of methods for mounting electronic components and determining electrical lead wire and solder joint stresses and fatigue life. Printed circuit boards and chassis assemblies are examined in detail, with methods for determining natural frequency, dynamic coupling transmissibility, and fatigue life. The design and analysis of electronic components, circuit boards, electrical lead wires, and solder joints for sinusoidal and random vibrations, acoustics, shock, and pyrotechnic shock are addressed.

  14. Vibration Analysis by Speckle Interferometry,

    DTIC Science & Technology

    The vibrational modes of complex systems can be visualized with high sensitivity by laser light speckle interferometry. Electronic speckle pattern...interferometry (ESPI), in contrast to holography, does not use photo-chemical storage media but shows a live image of the vibrational modes created by

  15. Vibration Response of Airplane Structures

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore; Gelalles, A G

    1935-01-01

    This report presents test results of experiments on the vibration-response characteristics of airplane structures on the ground and in flight. It also gives details regarding the construction and operation of vibration instruments developed by the National Advisory Committee for Aeronautics.

  16. [Vibrations in deafness and psychosis].

    PubMed

    Gayda, M; Vacola, G

    1988-01-01

    Vibratory transmission is one of the first principles ofthe verbo-tonal method for the deaf child. Besides wrist vibrators, vibrating floor is a useful aid in communication with the autistic child. Complementary to oral or sign language, vibratory communication is full of possibilities in child deafness and psychosis.

  17. An Industrial Ergonomics Bibliography: Prevention of Cumulative Trauma through Workplace Analysis

    DTIC Science & Technology

    1991-12-05

    Institute for Ocupational Safety and Health . (1989). Criio recommended standard: Occupational exposure to hand-arm vibration. (NIOSH Report No. 89-106...Cincinnati, OH: Author. National Institute for Ocupational Safety and Health . (1982). The finest tools. (videotape #188/24 minutes). Cincinnati, OH...8217Occupational Health & Performance Directorate US Army Research Institute of Environmental Medicine Natick, MA 01760-5007 2School of Psychology Florida

  18. [Management of the worker affected by shoulder pathology].

    PubMed

    Rotini, Roberto; Bonfiglioli, Roberta

    2014-01-01

    Shoulder disorders due to overexertion include joint and soft tissues chronic conditions and are an important cause of disability. Shoulder pain is one of the most common musculoskeletal disorders and has been associated to manual handling of heavy loads, high repetition jobs, exposure to hand-arm vibration and to overhead activities. Diagnosis of shoulder disorders is primarily based on clinical examination; selected cases should be referred to an orthopedic specialist and to imaging. Return to normal activities should be encouraged.

  19. Minimum health and safety requirements for workers exposed to hand-transmitted vibration and whole-body vibration in the European Union; a review

    PubMed Central

    Griffin, M

    2004-01-01

    In 2002, the Parliament and Commission of the European Community agreed "minimum health and safety requirements" for the exposure of workers to the risks arising from vibration. The Directive defines qualitative requirements and also quantitative requirements in the form of "exposure action values" and "exposure limit values". The quantitative guidance is based on, but appears to conflict with, the guidance in International Standards for hand-transmitted vibration (ISO 5349) and whole-body vibration (ISO 2631). There is a large internal inconsistency within the Directive for short duration exposures to whole-body vibration: the two alternative methods give very different values. It would appear prudent to base actions on the qualitative guidance (i.e. reducing risk to a minimum) and only refer to the quantitative guidance where there is no other reasonable basis for the identification of risk (i.e. similar exposures are not a suspected cause of injury). Health surveillance and other precautions will be appropriate wherever there is reason to suspect a risk and will not be restricted to conditions where the exposure action value is exceeded. PMID:15090658

  20. Force Limited Vibration Testing Monograph

    NASA Technical Reports Server (NTRS)

    Scharton, Terry D.

    1997-01-01

    The practice of limiting the shaker force in vibration tests was investigated at the NASA Jet Propulsion Laboratory (JPL) in 1990 after the mechanical failure of an aerospace component during a vibration test. Now force limiting is used in almost every major vibration test at JPL and in many vibration tests at NASA Goddard Space Flight Center (GSFC) and at many aerospace contractors. The basic ideas behind force limiting have been in the literature for several decades, but the piezo-electric force transducers necessary to conveniently implement force limiting have been available only in the last decade. In 1993, funding was obtained from the NASA headquarters Office of Chief Engineer to develop and document the technology needed to establish force limited vibration testing as a standard approach available to all NASA centers and aerospace contractors. This monograph is the final report on that effort and discusses the history, theory, and applications of the method in some detail.

  1. The origins of vibration theory

    NASA Astrophysics Data System (ADS)

    Dimarogonas, A. D.

    1990-07-01

    The Ionian School of natural philosophy introduced the scientific method of dealing with natural phenomena and the rigorous proofs for abstract propositions. Vibration theory was initiated by the Pythagoreans in the fifth century BC, in association with the theory of music and the theory of acoustics. They observed the natural frequency of vibrating systems and proved that it is a system property and that it does not depend on the excitation. Pythagoreans determined the fundamental natural frequencies of several simple systems, such as vibrating strings, pipes, vessels and circular plates. Aristoteles and the Peripatetic School founded mechanics and developed a fundamental understanding of statics and dynamics. In Alexandrian times there were substantial engineering developments in the field of vibration. The pendulum as a vibration, and probably time, measuring device was known in antiquity, and was further developed by the end of the first millennium AD.

  2. Vibration analysis using digital correlation

    NASA Technical Reports Server (NTRS)

    Gilbert, John A.; Lehner, David L.; Dudderar, T. Dixon; Matthys, Donald R.

    1988-01-01

    This paper demonstrates the use of a computer-based optical method for locating the positions of nodes and antinodes in vibrating members. Structured light patterns are projected at an angle onto the vibrating surface using a 35 mm slide projector. The vibrating surface and the projected images are captured in a time averaged photograph which is subsequently digitized. The inherent fringe patterns are filtered to determine amplitudes of vibration, and computer programs are used to compare the time averaged images to images recorded prior to excitation to locate nodes and antinodes. Some of the influences of pattern regularity on digital correlation are demonstrated, and a speckle-based method for determining the mode shapes and the amplitudes of vibration with variable sensitivity is suggested.

  3. Low Cost Digital Vibration Meter.

    PubMed

    Payne, W Vance; Geist, Jon

    2007-01-01

    This report describes the development of a low cost, digital Micro Electro Mechanical System (MEMS) vibration meter that reports an approximation to the RMS acceleration of the vibration to which the vibration meter is subjected. The major mechanical element of this vibration meter is a cantilever beam, which is on the order of 500 µm in length, with a piezoresistor deposited at its base. Vibration of the device in the plane perpendicular to the cantilever beam causes it to bend, which produces a measurable change in the resistance of a piezoresistor. These changes in resistance along with a unique signal-processing scheme are used to determine an approximation to the RMS acceleration sensed by the device.

  4. Vibrational transfer functions for complex structures

    NASA Technical Reports Server (NTRS)

    Jones, P. A.; Berry, R. L.

    1972-01-01

    Evaluation of effects of vibrational multiple frequency forcing functions is discussed. Computer program for developing vibrational transfer functions is described. Possible applications of computer program are enumerated.

  5. Neuropathy in female dental personnel exposed to high frequency vibrations.

    PubMed Central

    Akesson, I; Lundborg, G; Horstmann, V; Skerfving, S

    1995-01-01

    OBJECTIVE--To evaluate early neuropathy in dental personnel exposed to high frequency vibrations. METHODS--30 dentists and 30 dental hygienists who used low and high speed hand pieces and ultrasonic scalers were studied, and 30 dental assistants and 30 medical nurses not exposed to vibration (all women). Vibrotactile sensibility, strength, motor performance, sensorineural symptoms and signs, and vascular symptoms in the hands, as well as mercury concentrations in biological samples and cervicobrachial symptoms, were studied. RESULTS--The two groups exposed to vibration had significant impairments of vibrotactile sensibility, strength, and motor performance, as well as more frequent sensorineural symptoms. In the dentists there were significant associations between the vibrotactile sensibility and strength, motor performance, superficial sensibility, and sensorineural symptoms. There were no associations between these findings and cervicobrachial symptoms, mercury concentrations, or smoking. There was no increase of vascular symptoms of the hands in the groups exposed to vibration. CONCLUSION--Dental hygienists and dentists had a slight neuropathy, which may be associated with their exposure to high frequency vibrations, and which may be detrimental to their work performance. Thus, development of safer equipment is urgent. PMID:7757164

  6. Structural Acoustics and Vibrations

    NASA Astrophysics Data System (ADS)

    Chaigne, Antoine

    This structural chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  7. Violin bow vibrations.

    PubMed

    Gough, Colin E

    2012-05-01

    The modal frequencies and bending mode shapes of a freely supported tapered violin bow are investigated by finite element analysis and direct measurement, with and without tensioned bow hair. Such computations are used with analytic models to model the admittance presented to the stretched bow hairs at the ends of the bow and to the string at the point of cont