Sample records for hand-held accelerometer-based input

  1. Physiologically Modulating Videogames or Simulations which use Motion-Sensing Input Devices

    NASA Technical Reports Server (NTRS)

    Pope, Alan T. (Inventor); Stephens, Chad L. (Inventor); Blanson, Nina Marie (Inventor)

    2014-01-01

    New types of controllers allow players to make inputs to a video game or simulation by moving the entire controller itself. This capability is typically accomplished using a wireless input device having accelerometers, gyroscopes, and an infrared LED tracking camera. The present invention exploits these wireless motion-sensing technologies to modulate the player's movement inputs to the videogame based upon physiological signals. Such biofeedback-modulated video games train valuable mental skills beyond eye-hand coordination. These psychophysiological training technologies enhance personal improvement, not just the diversion, of the user.

  2. Interactive Design and Development of Real Arm Movements for Application in Rehabilitation

    NASA Astrophysics Data System (ADS)

    Rosman, Rafidah; Hadi, Muhammad Zaidan Abdul; Abu Bakar, Nurulliyana

    2018-03-01

    An interactive real arm movements for application in rehabilitation is designed and developed. The aim is to encourage hand paralysis patients performing their physical therapy by introducing games application in replacing conventional hand therapy module and methods. In this project, the accelerometer is used for tracking the orientation of the arm. As the arm moves, the values from x, y and z axis from the accelerometer changes and are being read by the Analog Inputs of the Arduino Board. After being read by the Analog Inputs of the Arduino Board, the 3D model moves as well. Solidworks software was used to modeled the hand in which the data is then transferred to Matlab/Simulink using SimMechanicalLink from Mathworks. Lastly, the sensor glove was programmed to work as a controller of games application in hand rehabilitation thus makes it an enjoyable therapy process.

  3. Hand-held radiometer red and photographic infrared spectral measurements of agricultural crops

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Fan, C. J.; Elgin, J. H., Jr.; Mcmurtrey, J. E., III

    1978-01-01

    Red and photographic infrared radiance data, collected under a variety of conditions at weekly intervals throughout the growing season using a hand-held radiometer, were used to monitor crop growth and development. The vegetation index transformation was used to effectively compensate for the different irradiational conditions encountered during the study period. These data, plotted against time, compared the different crops measured by comparing their green leaf biomass dynamics. This approach, based entirely upon spectral inputs, closely monitors crop growth and development and indicates the promise of ground-based hand-held radiometer measurements of crops.

  4. Physiologically Modulating Videogames or Simulations which Use Motion-Sensing Input Devices

    NASA Technical Reports Server (NTRS)

    Blanson, Nina Marie (Inventor); Stephens, Chad L. (Inventor); Pope, Alan T. (Inventor)

    2017-01-01

    New types of controllers allow a player to make inputs to a video game or simulation by moving the entire controller itself or by gesturing or by moving the player's body in whole or in part. This capability is typically accomplished using a wireless input device having accelerometers, gyroscopes, and a camera. The present invention exploits these wireless motion-sensing technologies to modulate the player's movement inputs to the videogame based upon physiological signals. Such biofeedback-modulated video games train valuable mental skills beyond eye-hand coordination. These psychophysiological training technologies enhance personal improvement, not just the diversion, of the user.

  5. Ergonomic analysis of fastening vibration based on ISO Standard 5349 (2001).

    PubMed

    Joshi, Akul; Leu, Ming; Murray, Susan

    2012-11-01

    Hand-held power tools used for fastening operations exert high dynamic forces on the operator's hand-arm, potentially causing injuries to the operator in the long run. This paper presents a study that analyzed the vibrations exerted by two hand-held power tools used for fastening operations with the operating exhibiting different postures. The two pneumatic tools, a right-angled nut-runner and an offset pistol-grip, are used to install shearing-type fasteners. A tri-axial accelerometer is used to measure the tool's vibration. The position and orientation of the transducer mounted on the tool follows the ISO-5349 Standard. The measured vibration data is used to compare the two power tools at different operating postures. The data analysis determines the number of years required to reach a 10% probability of developing finger blanching. The results indicate that the pistol-grip tool induces more vibration in the hand-arm than the right-angled nut-runner and that the vibrations exerted on the hand-arm vary for different postures. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  6. DataPlus™ - a revolutionary applications generator for DOS hand-held computers

    Treesearch

    David Dean; Linda Dean

    2000-01-01

    DataPlus allows the user to easily design data collection templates for DOS-based hand-held computers that mimic clipboard data sheets. The user designs and tests the application on the desktop PC and then transfers it to a DOS field computer. Other features include: error checking, missing data checks, and sensor input from RS-232 devices such as bar code wands,...

  7. A Methodology to Determine the Psychomotor Performance of Helicopter Pilots During Flight Maneuvers.

    PubMed

    McMahon, Terry W; Newman, David G

    2015-07-01

    Helicopter flying is a complex psychomotor task requiring continuous control inputs to maintain stable flight and conduct maneuvers. Flight safety is impaired when this psychomotor performance is compromised. A comprehensive understanding of the psychomotor performance of helicopter pilots, under various operational and physiological conditions, remains to be developed. The purpose of this study was to develop a flight simulator-based technique for capturing psychomotor performance data of helicopter pilots. Three helicopter pilots conducted six low-level flight sequences in a helicopter simulator. Accelerometers applied to each flight control recorded the frequency and magnitude of movements. The mean (± SEM) number of control inputs per flight was 2450 (± 136). The mean (± SEM) number of control inputs per second was 1.96 (± 0.15). The mean (± SEM) force applied was 0.44 G (± 0.05 G). No significant differences were found between pilots in terms of flight completion times or number of movements per second. The number of control inputs made by the hands was significantly greater than the number of foot movements. The left hand control input forces were significantly greater than all other input forces. This study shows that the use of accelerometers in flight simulators is an effective technique for capturing accurate, reliable data on the psychomotor performance of helicopter pilots. This technique can be applied in future studies to a wider range of operational and physiological conditions and mission types in order to develop a greater awareness and understanding of the psychomotor performance demands on helicopter pilots.

  8. Instrument Records And Plays Back Acceleration Signals

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J.

    1994-01-01

    Small, battery-powered, hand-held instrument feeds power to accelerometer and records time-varying component of output for 15 seconds in analog form. No power needed to maintain content of memory; memory chip removed after recording and stored indefinitely. Recorded signal plays back at any time up to several years later. Principal advantages: compactness, portability, and low cost.

  9. Hand held data collection and monitoring system for nuclear facilities

    DOEpatents

    Brayton, D.D.; Scharold, P.G.; Thornton, M.W.; Marquez, D.L.

    1999-01-26

    Apparatus and method is disclosed for a data collection and monitoring system that utilizes a pen based hand held computer unit which has contained therein interaction software that allows the user to review maintenance procedures, collect data, compare data with historical trends and safety limits, and input new information at various collection sites. The system has a means to allow automatic transfer of the collected data to a main computer data base for further review, reporting, and distribution purposes and uploading updated collection and maintenance procedures. The hand held computer has a running to-do list so sample collection and other general tasks, such as housekeeping are automatically scheduled for timely completion. A done list helps users to keep track of all completed tasks. The built-in check list assures that work process will meet the applicable processes and procedures. Users can hand write comments or drawings with an electronic pen that allows the users to directly interface information on the screen. 15 figs.

  10. Hand held data collection and monitoring system for nuclear facilities

    DOEpatents

    Brayton, Darryl D.; Scharold, Paul G.; Thornton, Michael W.; Marquez, Diana L.

    1999-01-01

    Apparatus and method is disclosed for a data collection and monitoring system that utilizes a pen based hand held computer unit which has contained therein interaction software that allows the user to review maintenance procedures, collect data, compare data with historical trends and safety limits, and input new information at various collection sites. The system has a means to allow automatic transfer of the collected data to a main computer data base for further review, reporting, and distribution purposes and uploading updated collection and maintenance procedures. The hand held computer has a running to-do list so sample collection and other general tasks, such as housekeeping are automatically scheduled for timely completion. A done list helps users to keep track of all completed tasks. The built-in check list assures that work process will meet the applicable processes and procedures. Users can hand write comments or drawings with an electronic pen that allows the users to directly interface information on the screen.

  11. Measurement Uncertainty Analysis of an Accelerometer Calibration Using a POC Electromagnetic Launcher

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timpson, Erik J.; Engel, T. G.

    A pulse forming network (PFN), helical electromagnetic launcher (HEML), command module (CM), and calibration table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored nergy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass reinforced epoxy and is designed to accelerate a mass of 600 grams to a velocity of 10 meters per second. The CM is microcontroller-based running Arduino Software. The CM has a keypad input and 7 segment outputs of the PFNmore » voltage and desired charging voltage. After entering a desired PFN voltage, the CM controls the charging of the PFN. When the two voltages are equal it sends a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile’s tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocimeter and catch pot. The target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely so that the velocimeter can accurately read. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.« less

  12. Calibrating Accelerometers Using an Electromagnetic Launcher

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erik Timpson

    A Pulse Forming Network (PFN), Helical Electromagnetic Launcher (HEML), Command Module (CM), and Calibration Table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored energy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass and is designed to accelerate 600 grams to 10 meters per second. The CM is microcontroller based running Arduino Software. The CM has a keypad input and 7 segment outputs of the bank voltage and desired voltage. After entering amore » desired bank voltage, the CM controls the charge of the PFN. When the two voltages are equal it allows the fire button to send a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile's tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocity meter and catch pot. The Target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely for the velocity meter to get an accurate reading. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.« less

  13. Programmable differential capacitance-to-voltage converter for MEMS accelerometers

    NASA Astrophysics Data System (ADS)

    Royo, G.; Sánchez-Azqueta, C.; Gimeno, C.; Aldea, C.; Celma, S.

    2017-05-01

    Capacitive MEMS sensors exhibit an excellent noise performance, high sensitivity and low power consumption. They offer a huge range of applications, being the accelerometer one of its main uses. In this work, we present the design of a capacitance-to-voltage converter in CMOS technology to measure the acceleration from the capacitance variations. It is based on a low-power, fully-differential transimpedance amplifier with low input impedance and a very low input noise.

  14. Human-scale interaction for virtual model displays: a clear case for real tools

    NASA Astrophysics Data System (ADS)

    Williams, George C.; McDowall, Ian E.; Bolas, Mark T.

    1998-04-01

    We describe a hand-held user interface for interacting with virtual environments displayed on a Virtual Model Display. The tool, constructed entirely of transparent materials, is see-through. We render a graphical counterpart of the tool on the display and map it one-to-one with the real tool. This feature, combined with a capability for touch- sensitive, discrete input, results in a useful spatial input device that is visually versatile. We discuss the tool's design and interaction techniques it supports. Briefly, we look at the human factors issues and engineering challenges presented by this tool and, in general, by the class of hand-held user interfaces that are see-through.

  15. Automatic detection of a hand-held needle in ultrasound via phased-based analysis of the tremor motion

    NASA Astrophysics Data System (ADS)

    Beigi, Parmida; Salcudean, Septimiu E.; Rohling, Robert; Ng, Gary C.

    2016-03-01

    This paper presents an automatic localization method for a standard hand-held needle in ultrasound based on temporal motion analysis of spatially decomposed data. Subtle displacement arising from tremor motion has a periodic pattern which is usually imperceptible in the intensity image but may convey information in the phase image. Our method aims to detect such periodic motion of a hand-held needle and distinguish it from intrinsic tissue motion, using a technique inspired by video magnification. Complex steerable pyramids allow specific design of the wavelets' orientations according to the insertion angle as well as the measurement of the local phase. We therefore use steerable pairs of even and odd Gabor wavelets to decompose the ultrasound B-mode sequence into various spatial frequency bands. Variations of the local phase measurements in the spatially decomposed input data is then temporally analyzed using a finite impulse response bandpass filter to detect regions with a tremor motion pattern. Results obtained from different pyramid levels are then combined and thresholded to generate the binary mask input for the Hough transform, which determines an estimate of the direction angle and discards some of the outliers. Polynomial fitting is used at the final stage to remove any remaining outliers and improve the trajectory detection. The detected needle is finally added back to the input sequence as an overlay of a cloud of points. We demonstrate the efficiency of our approach to detect the needle using subtle tremor motion in an agar phantom and in-vivo porcine cases where intrinsic motion is also present. The localization accuracy was calculated by comparing to expert manual segmentation, and presented in (mean, standard deviation and root-mean-square error) of (0.93°, 1.26° and 0.87°) and (1.53 mm, 1.02 mm and 1.82 mm) for the trajectory and the tip, respectively.

  16. Carrying Position Independent User Heading Estimation for Indoor Pedestrian Navigation with Smartphones

    PubMed Central

    Deng, Zhi-An; Wang, Guofeng; Hu, Ying; Cui, Yang

    2016-01-01

    This paper proposes a novel heading estimation approach for indoor pedestrian navigation using the built-in inertial sensors on a smartphone. Unlike previous approaches constraining the carrying position of a smartphone on the user’s body, our approach gives the user a larger freedom by implementing automatic recognition of the device carrying position and subsequent selection of an optimal strategy for heading estimation. We firstly predetermine the motion state by a decision tree using an accelerometer and a barometer. Then, to enable accurate and computational lightweight carrying position recognition, we combine a position classifier with a novel position transition detection algorithm, which may also be used to avoid the confusion between position transition and user turn during pedestrian walking. For a device placed in the trouser pockets or held in a swinging hand, the heading estimation is achieved by deploying a principal component analysis (PCA)-based approach. For a device held in the hand or against the ear during a phone call, user heading is directly estimated by adding the yaw angle of the device to the related heading offset. Experimental results show that our approach can automatically detect carrying positions with high accuracy, and outperforms previous heading estimation approaches in terms of accuracy and applicability. PMID:27187391

  17. Accelerometer telemetry system

    NASA Technical Reports Server (NTRS)

    Konigsberg, E. (Inventor)

    1976-01-01

    An accelerometer telemetry system incorporated in a finger ring is used for monitoring the motor responses of a subject. The system includes an accelerometer, battery, and transmitter and provides information to a remote receiver regarding hand movements of a subject wearing the ring, without the constraints of wires. Possible applications include the detection of fatigue from the hand movements of the wearer.

  18. Pen-Based Interface Using Hand Motions in the Air

    NASA Astrophysics Data System (ADS)

    Suzuki, Yu; Misue, Kazuo; Tanaka, Jiro

    A system which employs a stylus as an input device is suitable for creative activities like writing and painting. However, such a system does not always provide the user with a GUI that is easy to operate using the stylus. In addition, system usability is diminished because the stylus is not always integrated into the system in a way that takes into consideration the features of a pen. The purpose of our research is to improve the usability of a system which uses a stylus as an input device. We propose shortcut actions, which are interaction techniques for operation with a stylus that are controlled through a user's hand motions made in the air. We developed the Context Sensitive Stylus as a device to implement the shortcut actions. The Context Sensitive Stylus consists of an accelerometer and a conventional stylus. We also developed application programs to which we applied the shortcut actions; e.g., a drawing tool, a scroll supporting tool, and so on. Results from our evaluation of the shortcut actions indicate that users can concentrate better on their work when using the shortcut actions than when using conventional menu operations.

  19. Immersive Input Display Device (I2D2) for tactical information viewing

    NASA Astrophysics Data System (ADS)

    Tremper, David E.; Burnett, Kevin P.; Malloy, Andrew R.; Wert, Robert

    2006-05-01

    Daylight readability of hand-held displays has been an ongoing issue for both commercial and military applications. In an effort to reduce the effects of ambient light on the readability of military displays, the Naval Research Laboratory (NRL) began investigating and developing advanced hand-held displays. Analysis and research of display technologies with consideration for vulnerability to environmental conditions resulted in the complete design and fabrication of the hand-held Immersive Input Display Device (I2D2) monocular. The I2D2 combines an Organic Light Emitting Diode (OLED) SVGA+ micro-display developed by eMagin Corporation with an optics configuration inside a cylindrical housing. A rubber pressure-eyecup allows view ability only when the eyecup is depressed, eliminating light from both entering and leaving the device. This feature allows the I2D2 to be used during the day, while not allowing ambient light to affect the readability. It simultaneously controls light leakage, effectively eliminating the illumination, and thus preserving the tactical position, of the user in the dark. This paper will examine the characteristics and introduce the design of the I2D2.

  20. An analysis of the input-output properties of neuroprosthetic hand grasps.

    PubMed

    Memberg, W D; Crago, P E

    2000-01-01

    We measured the input-output properties of the hand grasps of 14 individuals with tetraplegia at the C5/C6 level who had received an implanted upper limb neuroprosthesis. The data provide a quantitative description of grasp-opening and grasp-force control with neuroprosthetic hand grasp systems. Static properties were estimated by slowly ramping the command (input) from 0 to 100%. A hand-held sensor monitored the outputs: grasp force and grasp opening. Trials were performed at different wrist positions, with two different-sized objects being held, and with both grasp modes (lateral and palmar grasps). Larger forces were produced when grasping larger objects, and greater opening was achieved with the wrist in flexion. Although active grasp force increased with wrist extension, it was not significant statistically. Lateral grasp produced larger forces than the palmar grasp. The command range can be divided into a portion that controls grasp opening and a portion that controls grasp force. The portion controlling force increased with spacer size, but did not depend significantly on grasp mode or wrist position. The force-command relationships were more linear than the position-command relationships. Grasp opening decreased significantly over a one-year period, while no significant change in grasp force was observed. These quantitative descriptions of neuroprosthetic hand grasps under varying conditions provide useful information about output capabilities that can be used to gauge the effectiveness of different control schemes and to design future control systems.

  1. Hand-held monitor of sympathetic nervous system using salivary amylase activity and its validation by driver fatigue assessment.

    PubMed

    Yamaguchi, Masaki; Deguchi, Mitsuo; Wakasugi, Junichi; Ono, Shin; Takai, Noriyasu; Higashi, Tomoyuki; Mizuno, Yasufumi

    2006-01-15

    In order to realize a hand-held monitor of the sympathetic nervous system, we fabricated a completely automated analytical system for salivary amylase activity using a dry-chemistry system. This was made possible by the fabrication of a disposable test-strip equipped with built-in collecting and reagent papers and an automatic saliva transfer device. In order to cancel out the effects of variations in environmental temperature and pH of saliva, temperature- and pH-adjusted equations were experimentally determined, and each theoretical value was input into the memory of the hand-held monitor. Within a range of salivary amylase activity between 10 and 140 kU/l, the calibration curve for the hand-held monitor showed a coefficient with R(2)=0.97. Accordingly, it was demonstrated that the hand-held monitor enabled a user to automatically measure the salivary amylase activity with high accuracy with only 30 microl sample of saliva within a minute from collection to completion of the measurement. In order to make individual variations of salivary amylase activity negligible during driver fatigue assessment, a normalized equation was proposed. The normalized salivary amylase activity correlated with the mental and physical fatigue states. Thus, this study demonstrated that an excellent hand-held monitor with an algorithm for normalization of individuals' differences in salivary amylase activity, which could be easily and quickly used for evaluating the activity of the sympathetic nervous system at any time. Furthermore, it is suggested that the salivary amylase activity might be used as a better index for psychological research.

  2. Recognizing the Operating Hand and the Hand-Changing Process for User Interface Adjustment on Smartphones †

    PubMed Central

    Guo, Hansong; Huang, He; Huang, Liusheng; Sun, Yu-E

    2016-01-01

    As the size of smartphone touchscreens has become larger and larger in recent years, operability with a single hand is getting worse, especially for female users. We envision that user experience can be significantly improved if smartphones are able to recognize the current operating hand, detect the hand-changing process and then adjust the user interfaces subsequently. In this paper, we proposed, implemented and evaluated two novel systems. The first one leverages the user-generated touchscreen traces to recognize the current operating hand, and the second one utilizes the accelerometer and gyroscope data of all kinds of activities in the user’s daily life to detect the hand-changing process. These two systems are based on two supervised classifiers constructed from a series of refined touchscreen trace, accelerometer and gyroscope features. As opposed to existing solutions that all require users to select the current operating hand or confirm the hand-changing process manually, our systems follow much more convenient and practical methods and allow users to change the operating hand frequently without any harm to the user experience. We conduct extensive experiments on Samsung Galaxy S4 smartphones, and the evaluation results demonstrate that our proposed systems can recognize the current operating hand and detect the hand-changing process with 94.1% and 93.9% precision and 94.1% and 93.7% True Positive Rates (TPR) respectively, when deciding with a single touchscreen trace or accelerometer-gyroscope data segment, and the False Positive Rates (FPR) are as low as 2.6% and 0.7% accordingly. These two systems can either work completely independently and achieve pretty high accuracies or work jointly to further improve the recognition accuracy. PMID:27556461

  3. Recognizing the Operating Hand and the Hand-Changing Process for User Interface Adjustment on Smartphones.

    PubMed

    Guo, Hansong; Huang, He; Huang, Liusheng; Sun, Yu-E

    2016-08-20

    As the size of smartphone touchscreens has become larger and larger in recent years, operability with a single hand is getting worse, especially for female users. We envision that user experience can be significantly improved if smartphones are able to recognize the current operating hand, detect the hand-changing process and then adjust the user interfaces subsequently. In this paper, we proposed, implemented and evaluated two novel systems. The first one leverages the user-generated touchscreen traces to recognize the current operating hand, and the second one utilizes the accelerometer and gyroscope data of all kinds of activities in the user's daily life to detect the hand-changing process. These two systems are based on two supervised classifiers constructed from a series of refined touchscreen trace, accelerometer and gyroscope features. As opposed to existing solutions that all require users to select the current operating hand or confirm the hand-changing process manually, our systems follow much more convenient and practical methods and allow users to change the operating hand frequently without any harm to the user experience. We conduct extensive experiments on Samsung Galaxy S4 smartphones, and the evaluation results demonstrate that our proposed systems can recognize the current operating hand and detect the hand-changing process with 94.1% and 93.9% precision and 94.1% and 93.7% True Positive Rates (TPR) respectively, when deciding with a single touchscreen trace or accelerometer-gyroscope data segment, and the False Positive Rates (FPR) are as low as 2.6% and 0.7% accordingly. These two systems can either work completely independently and achieve pretty high accuracies or work jointly to further improve the recognition accuracy.

  4. Structural health monitoring using a hybrid network of self-powered accelerometer and strain sensors

    NASA Astrophysics Data System (ADS)

    Alavi, Amir H.; Hasni, Hassene; Jiao, Pengcheng; Lajnef, Nizar

    2017-04-01

    This paper presents a structural damage identification approach based on the analysis of the data from a hybrid network of self-powered accelerometer and strain sensors. Numerical and experimental studies are conducted on a plate with bolted connections to verify the method. Piezoelectric ceramic Lead Zirconate Titanate (PZT)-5A ceramic discs and PZT-5H bimorph accelerometers are placed on the surface of the plate to measure the voltage changes due to damage progression. Damage is defined by loosening or removing one bolt at a time from the plate. The results show that the PZT accelerometers provide a fairly more consistent behavior than the PZT strain sensors. While some of the PZT strain sensors are not sensitive to the changes of the boundary condition, the bimorph accelerometers capture the mode changes from undamaged to missing bolt conditions. The results corresponding to the strain sensors are better indicator to the location of damage compared to the accelerometers. The characteristics of the overall structure can be monitored with even one accelerometer. On the other hand, several PZT strain sensors might be needed to localize the damage.

  5. Experiment on interface separation detection of concrete-filled steel tubular arch bridge using accelerometer array

    NASA Astrophysics Data System (ADS)

    Pan, Shengshan; Zhao, Xuefeng; Zhao, Hailiang; Mao, Jian

    2015-04-01

    Based on the vibration testing principle, and taking the local vibration of steel tube at the interface separation area as the study object, a real-time monitoring and the damage detection method of the interface separation of concrete-filled steel tube by accelerometer array through quantitative transient self-excitation is proposed. The accelerometers are arranged on the steel tube area with or without void respectively, and the signals of accelerometers are collected at the same time and compared under different transient excitation points. The results show that compared with the signal of compact area, the peak value of accelerometer signal at void area increases and attenuation speed slows down obviously, and the spectrum peaks of the void area are much more and disordered and the amplitude increases obviously. whether the input point of transient excitation is on void area or not is irrelevant with qualitative identification results. So the qualitative identification of the interface separation of concrete-filled steel tube based on the signal of acceleration transducer is feasible and valid.

  6. Topographic analysis of the skull vibration-induced nystagmus test with piezoelectric accelerometers and force sensors.

    PubMed

    Dumas, Georges; Lion, Alexis; Perrin, Philippe; Ouedraogo, Evariste; Schmerber, Sébastien

    2016-03-23

    Vibration-induced nystagmus is elicited by skull or posterior cervical muscle stimulations in patients with vestibular diseases. Skull vibrations delivered by the skull vibration-induced nystagmus test are known to stimulate the inner ear structures directly. This study aimed to measure the vibration transfer at different cranium locations and posterior cervical regions to contribute toward stimulus topographic optimization (experiment 1) and to determine the force applied on the skull with a hand-held vibrator to study the test reproducibility and provide recommendations for good clinical practices (experiment 2). In experiment 1, a 100 Hz hand-held vibrator was applied on the skull (vertex, mastoids) and posterior cervical muscles in 11 healthy participants. Vibration transfer was measured by piezoelectric sensors. In experiment 2, the vibrator was applied 30 times by two experimenters with dominant and nondominant hands on a mannequin equipped to measure the force. Experiment 1 showed that after unilateral mastoid vibratory stimulation, the signal transfer was higher when recorded on the contralateral mastoid than on the vertex or posterior cervical muscles (P<0.001). No difference was observed between the different vibratory locations when vibration transfer was measured on vertex and posterior cervical muscles. Experiment 2 showed that the force applied to the mannequin varied according to the experimenters and the handedness, higher forces being observed with the most experienced experimenter and with the dominant hand (10.3 ± 1.0 and 7.8 ± 2.9 N, respectively). The variation ranged from 9.8 to 29.4% within the same experimenter. Bone transcranial vibration transfer is more efficient from one mastoid to the other mastoid than other anatomical sites. The mastoid is therefore the optimal site for skull vibration-induced nystagmus test in patients with unilateral vestibular lesions and enables a stronger stimulation of the healthy side. In clinical practice, the vibrator should be placed on the mastoid and should be held by the clinician's dominant hand.

  7. Feature selection for elderly faller classification based on wearable sensors.

    PubMed

    Howcroft, Jennifer; Kofman, Jonathan; Lemaire, Edward D

    2017-05-30

    Wearable sensors can be used to derive numerous gait pattern features for elderly fall risk and faller classification; however, an appropriate feature set is required to avoid high computational costs and the inclusion of irrelevant features. The objectives of this study were to identify and evaluate smaller feature sets for faller classification from large feature sets derived from wearable accelerometer and pressure-sensing insole gait data. A convenience sample of 100 older adults (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, left and right shanks. Feature selection was performed using correlation-based feature selection (CFS), fast correlation based filter (FCBF), and Relief-F algorithms. Faller classification was performed using multi-layer perceptron neural network, naïve Bayesian, and support vector machine classifiers, with 75:25 single stratified holdout and repeated random sampling. The best performing model was a support vector machine with 78% accuracy, 26% sensitivity, 95% specificity, 0.36 F1 score, and 0.31 MCC and one posterior pelvis accelerometer input feature (left acceleration standard deviation). The second best model achieved better sensitivity (44%) and used a support vector machine with 74% accuracy, 83% specificity, 0.44 F1 score, and 0.29 MCC. This model had ten input features: maximum, mean and standard deviation posterior acceleration; maximum, mean and standard deviation anterior acceleration; mean superior acceleration; and three impulse features. The best multi-sensor model sensitivity (56%) was achieved using posterior pelvis and both shank accelerometers and a naïve Bayesian classifier. The best single-sensor model sensitivity (41%) was achieved using the posterior pelvis accelerometer and a naïve Bayesian classifier. Feature selection provided models with smaller feature sets and improved faller classification compared to faller classification without feature selection. CFS and FCBF provided the best feature subset (one posterior pelvis accelerometer feature) for faller classification. However, better sensitivity was achieved by the second best model based on a Relief-F feature subset with three pressure-sensing insole features and seven head accelerometer features. Feature selection should be considered as an important step in faller classification using wearable sensors.

  8. Testing accelerometer rectification error caused by multidimensional composite inputs with double turntable centrifuge.

    PubMed

    Guan, W; Meng, X F; Dong, X M

    2014-12-01

    Rectification error is a critical characteristic of inertial accelerometers. Accelerometers working in operational situations are stimulated by composite inputs, including constant acceleration and vibration, from multiple directions. However, traditional methods for evaluating rectification error only use one-dimensional vibration. In this paper, a double turntable centrifuge (DTC) was utilized to produce the constant acceleration and vibration simultaneously and we tested the rectification error due to the composite accelerations. At first, we deduced the expression of the rectification error with the output of the DTC and a static model of the single-axis pendulous accelerometer under test. Theoretical investigation and analysis were carried out in accordance with the rectification error model. Then a detailed experimental procedure and testing results were described. We measured the rectification error with various constant accelerations at different frequencies and amplitudes of the vibration. The experimental results showed the distinguished characteristics of the rectification error caused by the composite accelerations. The linear relation between the constant acceleration and the rectification error was proved. The experimental procedure and results presented in this context can be referenced for the investigation of the characteristics of accelerometer with multiple inputs.

  9. Automatic identification of solid-phase medication intake using wireless wearable accelerometers.

    PubMed

    Rui Wang; Sitova, Zdenka; Xiaoqing Jia; Xiang He; Abramson, Tobi; Gasti, Paolo; Balagani, Kiran S; Farajidavar, Aydin

    2014-01-01

    We have proposed a novel solution to a fundamental problem encountered in implementing non-ingestion based medical adherence monitoring systems, namely, how to reliably identify pill medication intake. We show how wireless wearable devices with tri-axial accelerometer can be used to detect and classify hand gestures of users during solid-phase medication intake. Two devices were worn on the wrists of each user. Users were asked to perform two activities in the way that is natural and most comfortable to them: (1) taking empty gelatin capsules with water, and (2) drinking water and wiping mouth. 25 users participated in this study. The signals obtained from the devices were filtered and the patterns were identified using dynamic time warping algorithm. Using hand gesture signals, we achieved 84.17 percent true positive rate and 13.33 percent false alarm rate, thus demonstrating that the hand gestures could be used to effectively identify pill taking activity.

  10. Hand-Held Keyboard

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Data Egg, a prototype chord key-based data entry device, can be used autonomously or as an auxiliary keyboard with a personal computer. Data is entered by pressing combinations of seven buttons positioned where the fingers naturally fall when clasping the device. An experienced user can enter text at 30 to 35 words per minute. No transcription is required. The input is downloaded into a computer and printed. The Data Egg can be used by an astronaut in space, a journalist, a bedridden person, etc. It was developed by a Jet Propulsion Laboratory engineer. Product is not currently manufactured.

  11. Gestural Communication With Accelerometer-Based Input Devices and Tactile Displays

    DTIC Science & Technology

    2008-12-01

    and natural terrain obstructions, or concealment often impede visual communication attempts. To overcome some of these issues, “daisy-chaining” or...the intended recipients. Moreover, visual communication demands a focus on the visual modality possibly distracting a receiving soldier’s visual

  12. Rapid and automatic chemical identification of the medicinal flower buds of Lonicera plants by the benchtop and hand-held Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Jianbo; Guo, Baolin; Yan, Rui; Sun, Suqin; Zhou, Qun

    2017-07-01

    With the utilization of the hand-held equipment, Fourier transform infrared (FT-IR) spectroscopy is a promising analytical technique to minimize the time cost for the chemical identification of herbal materials. This research examines the feasibility of the hand-held FT-IR spectrometer for the on-site testing of herbal materials, using Lonicerae Japonicae Flos (LJF) and Lonicerae Flos (LF) as examples. Correlation-based linear discriminant models for LJF and LF are established based on the benchtop and hand-held FT-IR instruments. The benchtop FT-IR models can exactly recognize all articles of LJF and LF. Although a few LF articles are misjudged at the sub-class level, the hand-held FT-IR models are able to exactly discriminate LJF and LF. As a direct and label-free analytical technique, FT-IR spectroscopy has great potential in the rapid and automatic chemical identification of herbal materials either in laboratories or in fields. This is helpful to prevent the spread and use of adulterated herbal materials in time.

  13. Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system

    PubMed Central

    Ge, Jiajia; Zhu, Banghe; Regalado, Steven; Godavarty, Anuradha

    2008-01-01

    Hand-held based optical imaging systems are a recent development towards diagnostic imaging of breast cancer. To date, all the hand-held based optical imagers are used to perform only surface mapping and target localization, but are not capable of demonstrating tomographic imaging. Herein, a novel hand-held probe based optical imager is developed towards three-dimensional (3-D) optical tomography studies. The unique features of this optical imager, which primarily consists of a hand-held probe and an intensified charge coupled device detector, are its ability to; (i) image large tissue areas (5×10 sq. cm) in a single scan, (ii) perform simultaneous multiple point illumination and collection, thus reducing the overall imaging time; and (iii) adapt to varying tissue curvatures, from a flexible probe head design. Experimental studies are performed in the frequency domain on large slab phantoms (∼650 ml) using fluorescence target(s) under perfect uptake (1:0) contrast ratios, and varying target depths (1–2 cm) and X-Y locations. The effect of implementing simultaneous over sequential multiple point illumination towards 3-D tomography is experimentally demonstrated. The feasibility of 3-D optical tomography studies has been demonstrated for the first time using a hand-held based optical imager. Preliminary fluorescence-enhanced optical tomography studies are able to reconstruct 0.45 ml target(s) located at different target depths (1–2 cm). However, the depth recovery was limited as the actual target depth increased, since only reflectance measurements were acquired. Extensive tomography studies are currently carried out to determine the resolution and performance limits of the imager on flat and curved phantoms. PMID:18697559

  14. Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system.

    PubMed

    Ge, Jiajia; Zhu, Banghe; Regalado, Steven; Godavarty, Anuradha

    2008-07-01

    Hand-held based optical imaging systems are a recent development towards diagnostic imaging of breast cancer. To date, all the hand-held based optical imagers are used to perform only surface mapping and target localization, but are not capable of demonstrating tomographic imaging. Herein, a novel hand-held probe based optical imager is developed towards three-dimensional (3-D) optical tomography studies. The unique features of this optical imager, which primarily consists of a hand-held probe and an intensified charge coupled device detector, are its ability to; (i) image large tissue areas (5 x 10 sq. cm) in a single scan, (ii) perform simultaneous multiple point illumination and collection, thus reducing the overall imaging time; and (iii) adapt to varying tissue curvatures, from a flexible probe head design. Experimental studies are performed in the frequency domain on large slab phantoms (approximately 650 ml) using fluorescence target(s) under perfect uptake (1:0) contrast ratios, and varying target depths (1-2 cm) and X-Y locations. The effect of implementing simultaneous over sequential multiple point illumination towards 3-D tomography is experimentally demonstrated. The feasibility of 3-D optical tomography studies has been demonstrated for the first time using a hand-held based optical imager. Preliminary fluorescence-enhanced optical tomography studies are able to reconstruct 0.45 ml target(s) located at different target depths (1-2 cm). However, the depth recovery was limited as the actual target depth increased, since only reflectance measurements were acquired. Extensive tomography studies are currently carried out to determine the resolution and performance limits of the imager on flat and curved phantoms.

  15. Navigating a Maze with Balance Board and Wiimote

    NASA Astrophysics Data System (ADS)

    Fikkert, Wim; Hoeijmakers, Niek; van der Vet, Paul; Nijholt, Anton

    Input from the lower body in human-computer interfaces can be beneficial, enjoyable and even entertaining when users are expected to perform tasks simultaneously. Users can navigate a virtual (game) world or even an (empirical) dataset while having their hands free to issue commands. We compared the Wii Balance Board to a hand-held Wiimote for navigating a maze and found that users completed this task slower with the Balance Board. However, the Balance Board was considered more intuitive, easy to learn and ‘much fun’.

  16. Programmable Low-Power Low-Noise Capacitance to Voltage Converter for MEMS Accelerometers

    PubMed Central

    Royo, Guillermo; Sánchez-Azqueta, Carlos; Gimeno, Cecilia; Aldea, Concepción; Celma, Santiago

    2016-01-01

    In this work, we present a capacitance-to-voltage converter (CVC) for capacitive accelerometers based on microelectromechanical systems (MEMS). Based on a fully-differential transimpedance amplifier (TIA), it features a 34-dB transimpedance gain control and over one decade programmable bandwidth, from 75 kHz to 1.2 MHz. The TIA is aimed for low-cost low-power capacitive sensor applications. It has been designed in a standard 0.18-μm CMOS technology and its power consumption is only 54 μW. At the maximum transimpedance configuration, the TIA shows an equivalent input noise of 42 fA/Hz at 50 kHz, which corresponds to 100 μg/Hz. PMID:28042830

  17. Programmable Low-Power Low-Noise Capacitance to Voltage Converter for MEMS Accelerometers.

    PubMed

    Royo, Guillermo; Sánchez-Azqueta, Carlos; Gimeno, Cecilia; Aldea, Concepción; Celma, Santiago

    2016-12-30

    In this work, we present a capacitance-to-voltage converter (CVC) for capacitive accelerometers based on microelectromechanical systems (MEMS). Based on a fully-differential transimpedance amplifier (TIA), it features a 34-dB transimpedance gain control and over one decade programmable bandwidth, from 75 kHz to 1.2 MHz. The TIA is aimed for low-cost low-power capacitive sensor applications. It has been designed in a standard 0.18-μm CMOS technology and its power consumption is only 54 μW. At the maximum transimpedance configuration, the TIA shows an equivalent input noise of 42 fA/ Hz at 50 kHz, which corresponds to 100 μg/ Hz .

  18. Use of smartphones and portable media devices for quantifying human movement characteristics of gait, tendon reflex response, and Parkinson's disease hand tremor.

    PubMed

    LeMoyne, Robert; Mastroianni, Timothy

    2015-01-01

    Smartphones and portable media devices are both equipped with sensor components, such as accelerometers. A software application enables these devices to function as a robust wireless accelerometer platform. The recorded accelerometer waveform can be transmitted wireless as an e-mail attachment through connectivity to the Internet. The implication of such devices as a wireless accelerometer platform is the experimental and post-processing locations can be placed anywhere in the world. Gait was quantified by mounting a smartphone or portable media device proximal to the lateral malleolus of the ankle joint. Attributes of the gait cycle were quantified with a considerable accuracy and reliability. The patellar tendon reflex response was quantified by using the device in tandem with a potential energy impact pendulum to evoke the patellar tendon reflex. The acceleration waveform maximum acceleration feature of the reflex response displayed considerable accuracy and reliability. By mounting the smartphone or portable media device to the dorsum of the hand through a glove, Parkinson's disease hand tremor was quantified and contrasted with significance to a non-Parkinson's disease steady hand control. With the methods advocated in this chapter, any aspect of human movement may be quantified through smartphones or portable media devices and post-processed anywhere in the world. These wearable devices are anticipated to substantially impact the biomedical and healthcare industry.

  19. Hand-held computer operating system program for collection of resident experience data.

    PubMed

    Malan, T K; Haffner, W H; Armstrong, A Y; Satin, A J

    2000-11-01

    To describe a system for recording resident experience involving hand-held computers with the Palm Operating System (3 Com, Inc., Santa Clara, CA). Hand-held personal computers (PCs) are popular, easy to use, inexpensive, portable, and can share data among other operating systems. Residents in our program carry individual hand-held database computers to record Residency Review Committee (RRC) reportable patient encounters. Each resident's data is transferred to a single central relational database compatible with Microsoft Access (Microsoft Corporation, Redmond, WA). Patient data entry and subsequent transfer to a central database is accomplished with commercially available software that requires minimal computer expertise to implement and maintain. The central database can then be used for statistical analysis or to create required RRC resident experience reports. As a result, the data collection and transfer process takes less time for residents and program director alike, than paper-based or central computer-based systems. The system of collecting resident encounter data using hand-held computers with the Palm Operating System is easy to use, relatively inexpensive, accurate, and secure. The user-friendly system provides prompt, complete, and accurate data, enhancing the education of residents while facilitating the job of the program director.

  20. An interactive VR system based on full-body tracking and gesture recognition

    NASA Astrophysics Data System (ADS)

    Zeng, Xia; Sang, Xinzhu; Chen, Duo; Wang, Peng; Guo, Nan; Yan, Binbin; Wang, Kuiru

    2016-10-01

    Most current virtual reality (VR) interactions are realized with the hand-held input device which leads to a low degree of presence. There is other solutions using sensors like Leap Motion to recognize the gestures of users in order to interact in a more natural way, but the navigation in these systems is still a problem, because they fail to map the actual walking to virtual walking only with a partial body of the user represented in the synthetic environment. Therefore, we propose a system in which users can walk around in the virtual environment as a humanoid model, selecting menu items and manipulating with the virtual objects using natural hand gestures. With a Kinect depth camera, the system tracks the joints of the user, mapping them to a full virtual body which follows the move of the tracked user. The movements of the feet can be detected to determine whether the user is in walking state, so that the walking of model in the virtual world can be activated and stopped by means of animation control in Unity engine. This method frees the hands of users comparing to traditional navigation way using hand-held device. We use the point cloud data getting from Kinect depth camera to recognize the gestures of users, such as swiping, pressing and manipulating virtual objects. Combining the full body tracking and gestures recognition using Kinect, we achieve our interactive VR system in Unity engine with a high degree of presence.

  1. An efficient solid modeling system based on a hand-held 3D laser scan device

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming

    2014-12-01

    The hand-held 3D laser scanner sold in the market is appealing for its port and convenient to use, but price is expensive. To develop such a system based cheap devices using the same principles as the commercial systems is impossible. In this paper, a simple hand-held 3D laser scanner is developed based on a volume reconstruction method using cheap devices. Unlike convenient laser scanner to collect point cloud of an object surface, the proposed method only scan few key profile curves on the surface. Planar section curve network can be generated from these profile curves to construct a volume model of the object. The details of design are presented, and illustrated by the example of a complex shaped object.

  2. Validation of a method to measure the vector fidelity of triaxial vector sensors

    NASA Astrophysics Data System (ADS)

    De Freitas, J. M.

    2018-06-01

    A method to measure the misalignment angles and vector fidelity of a mutually orthogonal arrangement of triaxial accelerometers has been validated by introducing known misalignments into the measurement procedure. The method is based on the excitation of all three accelerometers in equal measure and the determination of the second order responsivity tensor as a metric. The sensor axis misalignment angles measured using a sensor rotation technique as a reference were 1.49°  ±  0.05°, 0.63°  ±  0.02°, and 0.78°  ±  0.04°. The resolution of the new approach against the reference was 0.03° with an accuracy of 0.2° and maximum deviation of 0.4°. An ellipticity tensor β that characterises the extent to which a triaxial system preserves the input polarisation state purity was introduced. In a careful laboratory arrangement, up to 98% input polarisation state purity was shown to be maintained. It is recommended that documentation on commercial and research grade high-precision triaxial sensor systems should give the responsivity matrix . This technique will improve the range of vector fidelity measurement tools for triaxial accelerometers and other vector sensors such as magnetometers, gyroscopes and acoustic vector sensors.

  3. Haptic over visual information in the distribution of visual attention after tool-use in near and far space.

    PubMed

    Park, George D; Reed, Catherine L

    2015-10-01

    Despite attentional prioritization for grasping space near the hands, tool-use appears to transfer attentional bias to the tool's end/functional part. The contributions of haptic and visual inputs to attentional distribution along a tool were investigated as a function of tool-use in near (Experiment 1) and far (Experiment 2) space. Visual attention was assessed with a 50/50, go/no-go, target discrimination task, while a tool was held next to targets appearing near the tool-occupied hand or tool-end. Target response times (RTs) and sensitivity (d-prime) were measured at target locations, before and after functional tool practice for three conditions: (1) open-tool: tool-end visible (visual + haptic inputs), (2) hidden-tool: tool-end visually obscured (haptic input only), and (3) short-tool: stick missing tool's length/end (control condition: hand occupied but no visual/haptic input). In near space, both open- and hidden-tool groups showed a tool-end, attentional bias (faster RTs toward tool-end) before practice; after practice, RTs near the hand improved. In far space, the open-tool group showed no bias before practice; after practice, target RTs near the tool-end improved. However, the hidden-tool group showed a consistent tool-end bias despite practice. Lack of short-tool group results suggested that hidden-tool group results were specific to haptic inputs. In conclusion, (1) allocation of visual attention along a tool due to tool practice differs in near and far space, and (2) visual attention is drawn toward the tool's end even when visually obscured, suggesting haptic input provides sufficient information for directing attention along the tool.

  4. Survey reveals public open to ban on hand-held cell phone use and texting.

    DOT National Transportation Integrated Search

    2013-01-01

    A study performed by the Bureau of Transportation Statistics : (BTS) reveals that the public is open to a ban on : hand-held cell phone use while driving. The study is based : on data from 2009s Omnibus Household Survey (OHS), : which is administe...

  5. Development and Testing of a Portable Vocal Accumulator

    ERIC Educational Resources Information Center

    Cheyne, Harold A.; Hanson, Helen M.; Genereux, Ronald P.; Stevens, Kenneth N.; Hillman, Robert E.

    2003-01-01

    This research note describes the design and testing of a device for unobtrusive, long-term ambulatory monitoring of voice use, named the Portable Vocal Accumulator (PVA). The PVA contains a digital signal processor for analyzing input from a neck-placed miniature accelerometer. During its development, accelerometer recordings were obtained from 99…

  6. Utility of hand-held devices in diagnosis and triage of cardiovascular emergencies. Observations during implementation of a PACS-based system in an acute aortic syndrome (AAS) network.

    PubMed

    Matar, Ralph; Renapurkar, Rahul; Obuchowski, Nancy; Menon, Venu; Piraino, David; Schoenhagen, Paul

    2015-01-01

    Prompt diagnosis and early referral to specialized centers is critical for patients presenting with cardiovascular emergencies, including acute aortic syndromes (AAS). Prior data has suggested that mobile access to imaging studies with hand-held devices can accelerate diagnosis and management. We conducted a study to determine the diagnostic accuracy of a hand-held device compared to conventional dedicated work-stations for diagnosing a spectrum of cardiovascular emergencies, predominantly acute aortic pathology. This study included 104 cases who underwent computed tomography (CT)-scan during "on-call'' hours between January, 2013 and August, 2014 for suspected AAS. Assessment was performed on a hand-held device independently by two readers using an iPhone5 connected via secure connection to web-based PACS servers. The subsequent interpretation from a dedicated workstation coupled with the diagnosis at the time of discharge was used as the reference standard for determining the presence or absence of an acute abnormality. Sensitivity and Specificity were calculated on a per patient basis. Readers' sensitivity and specificity using the hand-held device to diagnose acute chest pathology were calculated. Hand-held device evaluation was determined to have a sensitivity of 85.2% and a specificity of 98.6% by reader A and a sensitivity of 96.3% and specificity of 100% by reader B. Of 103 cases interpreted by both readers, the readers agreed about the diagnosis in 98 cases (95.1%). This study demonstrates that hand-held devices can be a potential useful tool to assist in diagnosis and triage of patients presenting with cardiovascular emergencies. Further studies are needed to assess the impact of screen size and resolution. Copyright © 2015 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  7. DC attenuation meter

    DOEpatents

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  8. Laparoscopic surgery skills evaluation: analysis based on accelerometers.

    PubMed

    Sánchez, Alexis; Rodríguez, Omaira; Sánchez, Renata; Benítez, Gustavo; Pena, Romina; Salamo, Oriana; Baez, Valentina

    2014-01-01

    Technical skills assessment is considered an important part of surgical training. Subjective assessment is not appropriate for training feedback, and there is now increased demand for objective assessment of surgical performance. Economy of movement has been proposed as an excellent alternative for this purpose. The investigators describe a readily available method to evaluate surgical skills through motion analysis using accelerometers in Apple's iPod Touch device. Two groups of individuals with different minimally invasive surgery skill levels (experts and novices) were evaluated. Each group was asked to perform a given task with an iPod Touch placed on the dominant-hand wrist. The Accelerometer Data Pro application makes it possible to obtain movement-related data detected by the accelerometers. Average acceleration and maximum acceleration for each axis (x, y, and z) were determined and compared. The analysis of average acceleration and maximum acceleration showed statistically significant differences between groups on both the y (P = .04, P = .03) and z (P = .04, P = .04) axes. This demonstrates the ability to distinguish between experts and novices. The analysis of the x axis showed no significant differences between groups, which could be explained by the fact that the task involves few movements on this axis. Accelerometer-based motion analysis is a useful tool to evaluate laparoscopic skill development of surgeons and should be used in training programs. Validation of this device in an in vivo setting is a research goal of the investigators' team.

  9. System design of a hand-held mobile robot for craniotomy.

    PubMed

    Kane, Gavin; Eggers, Georg; Boesecke, Robert; Raczkowsky, Jörg; Wörn, Heinz; Marmulla, Rüdiger; Mühling, Joachim

    2009-01-01

    This contribution reports the development and initial testing of a Mobile Robot System for Surgical Craniotomy, the Craniostar. A kinematic system based on a unicycle robot is analysed to provide local positioning through two spiked wheels gripping directly onto a patients skull. A control system based on a shared control system between both the Surgeon and Robot is employed in a hand-held design that is tested initially on plastic phantom and swine skulls. Results indicate that the system has substantially lower risk than present robotically assisted craniotomies, and despite being a hand-held mobile robot, the Craniostar is still capable of sub-millimetre accuracy in tracking along a trajectory and thus achieving an accurate transfer of pre-surgical plan to the operating room procedure, without the large impact of current medical robots based on modified industrial robots.

  10. Classification of motor activities through derivative dynamic time warping applied on accelerometer data.

    PubMed

    Muscillo, Rossana; Conforto, Silvia; Schmid, Maurizio; Caselli, Paolo; D'Alessio, Tommaso

    2007-01-01

    In the context of tele-monitoring, great interest is presently devoted to physical activity, mainly of elderly or people with disabilities. In this context, many researchers studied the recognition of activities of daily living by using accelerometers. The present work proposes a novel algorithm for activity recognition that considers the variability in movement speed, by using dynamic programming. This objective is realized by means of a matching and recognition technique that determines the distance between the signal input and a set of previously defined templates. Two different approaches are here presented, one based on Dynamic Time Warping (DTW) and the other based on the Derivative Dynamic Time Warping (DDTW). The algorithm was applied to the recognition of gait, climbing and descending stairs, using a biaxial accelerometer placed on the shin. The results on DDTW, obtained by using only one sensor channel on the shin showed an average recognition score of 95%, higher than the values obtained with DTW (around 85%). Both DTW and DDTW consistently show higher classification rate than classical Linear Time Warping (LTW).

  11. The method of attachment influences accelerometer-based activity data in dogs.

    PubMed

    Martin, Kyle W; Olsen, Anastasia M; Duncan, Colleen G; Duerr, Felix M

    2017-02-10

    Accelerometer-based activity monitoring is a promising new tool in veterinary medicine used to objectively assess activity levels in dogs. To date, it is unknown how device orientation, attachment method, and attachment of a leash to the collar holding an accelerometer affect canine activity data. It was our goal to evaluate whether attachment methods of accelerometers affect activity counts. Eight healthy, client-owned dogs were fitted with two identical neck collars to which two identical activity monitors were attached using six different methods of attachment. These methods of attachment evaluated the use of a protective case, positioning of the activity monitor and the tightness of attachment of the accelerometer. Lastly, the effect of leash attachment to the collar was evaluated. For trials where the effect of leash attachment to the collar was not being studied, the leash was attached to a harness. Activity data obtained from separate monitors within a given experiment were compared using Pearson correlation coefficients and across all experiments using the Kruskal-Wallis Test. There was excellent correlation and low variability between activity monitors on separate collars when the leash was attached to a harness, regardless of their relative positions. There was good correlation when activity monitors were placed on the same collar regardless of orientation. There were poor correlations between activity monitors in three experiments: when the leash was fastened to the collar that held an activity monitor, when one activity monitor was housed in the protective casing, and when one activity monitor was loosely zip-tied to the collar rather than threaded on using the provided metal loop. Follow-up, pair-wise comparisons identified the correlation associated with these three methods of attachment to be statistically different from the level of correlation when monitors were placed on separate collars. While accelerometer-based activity monitors are useful tools to objectively assess physical activity in dogs, care must be taken when choosing a method to attach the device. The attachment of the activity monitor to the collar should utilize a second, dedicated collar that is not used for leash attachment and the attachment method should remain consistent throughout a study period.

  12. Command control for functional electrical stimulation hand grasp systems using miniature accelerometers and gyroscopes.

    PubMed

    Tong, K Y; Mak, A F T; Ip, W Y

    2003-11-01

    Recent commercially available miniature sensors have the potential to improve the functions of functional electrical stimulation (FES) systems in terms of control, reliability and robustness. A new control approach using a miniature gyroscope and an accelerometer was studied. These sensors were used to detect the linear acceleration and angular velocity of residual voluntary movements on upper limbs and were small and easy to put on. Five healthy subjects and three cervical spinal cord injured subjects were recruited to evaluate this controller. Sensors were placed on four locations: the shoulder, upper arm, wrist and hand. A quick forward-and-backward movement was employed to produce a distinctive waveform that was different from general movements. A detection algorithm was developed to generate a command signal by identifying this distinctive waveform through the detection of peaks and valleys in the sensor's signals. This command signal was used to control different FES hand grasp patterns. With a specificity of 0.9, the sensors had a success rate of 85-100% on healthy subjects and 82-97% on spinal cord injured subjects. In terms of sensor placement, the gyroscope was better as a control source than the accelerometer for wrist and hand positions, but the reverse was true for the shoulder.

  13. Study on Misalignment Angle Compensation during Scale Factor Matching for Two Pairs of Accelerometers in a Gravity Gradient Instrument

    PubMed Central

    Huang, Xiangqing; Deng, Zhongguang; Xie, Yafei; Fan, Ji; Hu, Chenyuan

    2018-01-01

    A method for automatic compensation of misalignment angles during matching the scale factors of two pairs of the accelerometers in developing the rotating accelerometer gravity gradient instrument (GGI) is proposed and demonstrated in this paper. The purpose of automatic scale factor matching of the four accelerometers in GGI is to suppress the common mode acceleration of the moving-based platforms. However, taking the full model equation of the accelerometer into consideration, the other two orthogonal axes which is the pendulous axis and the output axis, will also sense the common mode acceleration and reduce the suppression performance. The coefficients from the two axes to the output are δO and δP respectively, called the misalignment angles. The angle δO, coupling with the acceleration along the pendulous axis perpendicular to the rotational plane, will not be modulated by the rotation and gives little contribution to the scale factors matching. On the other hand, because of coupling with the acceleration along the centripetal direction in the rotating plane, the angle δP would produce a component with 90 degrees phase delay relative to the scale factor component. Hence, the δP component coincides exactly with the sensitive direction of the orthogonal accelerometers. To improve the common mode acceleration rejection, the misalignment angle δP is compensated by injecting a trimming current, which is proportional to the output of an orthogonal accelerometer, into the torque coil of the accelerometer during the scale factor matching. The experimental results show that the common linear acceleration suppression achieved three orders after the scale factors balance and five orders after the misalignment angles compensation, which is almost down to the noise level of the used accelerometers of 1~2 × 10−7 g/√Hz (1 g ≈ 9.8 m/s2). PMID:29670021

  14. Study on Misalignment Angle Compensation during Scale Factor Matching for Two Pairs of Accelerometers in a Gravity Gradient Instrument.

    PubMed

    Huang, Xiangqing; Deng, Zhongguang; Xie, Yafei; Fan, Ji; Hu, Chenyuan; Tu, Liangcheng

    2018-04-18

    A method for automatic compensation of misalignment angles during matching the scale factors of two pairs of the accelerometers in developing the rotating accelerometer gravity gradient instrument (GGI) is proposed and demonstrated in this paper. The purpose of automatic scale factor matching of the four accelerometers in GGI is to suppress the common mode acceleration of the moving-based platforms. However, taking the full model equation of the accelerometer into consideration, the other two orthogonal axes which is the pendulous axis and the output axis, will also sense the common mode acceleration and reduce the suppression performance. The coefficients from the two axes to the output are δ O and δ P respectively, called the misalignment angles. The angle δ O , coupling with the acceleration along the pendulous axis perpendicular to the rotational plane, will not be modulated by the rotation and gives little contribution to the scale factors matching. On the other hand, because of coupling with the acceleration along the centripetal direction in the rotating plane, the angle δ P would produce a component with 90 degrees phase delay relative to the scale factor component. Hence, the δ P component coincides exactly with the sensitive direction of the orthogonal accelerometers. To improve the common mode acceleration rejection, the misalignment angle δ P is compensated by injecting a trimming current, which is proportional to the output of an orthogonal accelerometer, into the torque coil of the accelerometer during the scale factor matching. The experimental results show that the common linear acceleration suppression achieved three orders after the scale factors balance and five orders after the misalignment angles compensation, which is almost down to the noise level of the used accelerometers of 1~2 × 10 −7 g/√Hz (1 g ≈ 9.8 m/s²).

  15. Hand Held Device for Wireless Powering and Interrogation of Biomems Sensors and Actuators

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N (Inventor); Miranda, Felix Antonio (Inventor)

    2007-01-01

    A compact, hand-held device for wireless powering, interrogation and data retrieval from at least one implanted sensor. The hand-held device includes an antenna for powering an implanted sensor and for receiving data from the implanted sensor to the hand-held device for at least one of storage, display or analysis. The hand-held device establishes electromagnetic coupling with a low radiating radio frequency power inductor in the implanted sensor at a predefined separation and the antenna geometry allows for the antenna to power, interrogate and retrieve data from the implanted sensor without strapping the hand-held device to a human body housing the implanted sensor The hand-held device optionally allows for activation of the implanted sensor only during interrogation and data retrieval.

  16. An embedded system developed for hand held assay used in water monitoring

    NASA Astrophysics Data System (ADS)

    Wu, Lin; Wang, Jianwei; Ramakrishna, Bharath; Hsueh, Mingkai; Liu, Jonathan; Wu, Qufei; Wu, Chao-Cheng; Cao, Mang; Chang, Chein-I.; Jensen, Janet L.; Jensen, James O.; Knapp, Harlan; Daniel, Robert; Yin, Ray

    2005-11-01

    The US Army Joint Service Agent Water Monitor (JSAWM) program is currently interested in an approach that can implement a hardware- designed device in ticket-based hand-held assay (currently being developed) used for chemical/biological agent detection. This paper presents a preliminary investigation of the proof of concept. Three components are envisioned to accomplish the task. One is the ticket development which has been undertaken by the ANP, Inc. Another component is the software development which has been carried out by the Remote Sensing Signal and Image Processing Laboratory (RSSIPL) at the University of Maryland, Baltimore County (UMBC). A third component is an embedded system development which can be used to drive the UMBC-developed software to analyze the ANP-developed HHA tickets on a small pocket-size device like a PDA. The main focus of this paper is to investigate the third component that is viable and is yet to be explored. In order to facilitate to prove the concept, a flatbed scanner is used to replace a ticket reader to serve as an input device. The Stargate processor board is used as the embedded System with Embedded Linux installed. It is connected to an input device such as scanner as well as output devices such as LCD display or laptop etc. It executes the C-Coded processing program developed for this embedded system and outputs its findings on a display device. The embedded system to be developed and investigated in this paper is the core of a future hardware device. Several issues arising in such an embedded system will be addressed. Finally, the proof-of-concept pilot embedded system will be demonstrated.

  17. Operational Data Reduction Procedure for Determining Density and Vertical Structure of the Martian Upper Atmosphere from Mars Global Surveyor Accelerometer Measurements

    NASA Technical Reports Server (NTRS)

    Cancro, George J.; Tolson, Robert H.; Keating, Gerald M.

    1998-01-01

    The success of aerobraking by the Mars Global Surveyor (MGS) spacecraft was partly due to the analysis of MGS accelerometer data. Accelerometer data was used to determine the effect of the atmosphere on each orbit, to characterize the nature of the atmosphere, and to predict the atmosphere for future orbits. To interpret the accelerometer data, a data reduction procedure was developed to produce density estimations utilizing inputs from the spacecraft, the Navigation Team, and pre-mission aerothermodynamic studies. This data reduction procedure was based on the calculation of aerodynamic forces from the accelerometer data by considering acceleration due to gravity gradient, solar pressure, angular motion of the MGS, instrument bias, thruster activity, and a vibration component due to the motion of the damaged solar array. Methods were developed to calculate all of the acceleration components including a 4 degree of freedom dynamics model used to gain a greater understanding of the damaged solar array. The total error inherent to the data reduction procedure was calculated as a function of altitude and density considering contributions from ephemeris errors, errors in force coefficient, and instrument errors due to bias and digitization. Comparing the results from this procedure to the data of other MGS Teams has demonstrated that this procedure can quickly and accurately describe the density and vertical structure of the Martian upper atmosphere.

  18. Hand-held cell phone use while driving legislation and observed driver behavior among population sub-groups in the United States.

    PubMed

    Rudisill, Toni M; Zhu, Motao

    2017-05-12

    Cell phone use behaviors are known to vary across demographic sub-groups and geographic locations. This study examined whether universal hand-held calling while driving bans were associated with lower road-side observed hand-held cell phone conversations across drivers of different ages (16-24, 25-59, ≥60 years), sexes, races (White, African American, or other), ruralities (suburban, rural, or urban), and regions (Northeast, Midwest, South, and West). Data from the 2008-2013 National Occupant Protection Use Survey were merged with states' cell phone use while driving legislation. The exposure was presence of a universal hand-held cell phone ban at time of observation. Logistic regression was used to assess the odds of drivers having a hand-held cell phone conversation. Sub-groups differences were assessed using models with interaction terms. When universal hand-held cell phone bans were effective, hand-held cell phone conversations were lower across all driver demographic sub-groups and regions. Sub-group differences existed among the sexes (p-value, <0.0001) and regions (p-value, 0.0003). Compared to states without universal hand-held cell phone bans, the adjusted odds ratio (aOR) of a driver hand-held phone conversation was 0.34 [95% confidence interval (CI): 0.28, 0.41] for females versus 0.47 (CI 0.40, 0.55) for males and 0.31 (CI 0.25, 0.38) for drivers in Western states compared to 0.47 (CI 0.30, 0.72) in the Northeast and 0.50 (CI 0.38, 0.66) in the South. The presence of universal hand-held cell phone bans were associated lower hand-held cell phone conversations across all driver sub-groups and regions. Hand-held phone conversations were particularly lower among female drivers and those from Western states when these bans were in effect. Public health interventions concerning hand-held cell phone use while driving could reasonably target all drivers.

  19. A design of the u-health monitoring system using a Nintendo DS game machine.

    PubMed

    Lee, Sangjoon; Kim, Jinkwon; Kim, Jungkuk; Lee, Myoungho

    2009-01-01

    In this paper, we used the hand held type a Nintendo DS Game Machine for consisting of a u-Health Monitoring system. This system is consists of four parts. Biosignal acquire device is the first. The Second is a wireless sensor network device. The third is a wireless base-station for connecting internet network. Displaying units are the last part which were a personal computer and a Nintendo DS game machine. The bio-signal measurement device among the four parts the u-health monitoring system can acquire 7-channels data which have 3-channels ECG(Electrocardiogram), 3-axis accelerometer and tilting sensor data. Acquired data connect up the internet network throughout the wireless sensor network and a base-station. In the experiment, we concurrently display the bio-signals on to a monitor of personal computer and LCD of a Nintendo DS using wireless internet protocol and those monitoring devices placed off to the one side an office building. The result of the experiment, this proposed system effectively can transmit patient's biosignal data as a long time and a long distance. This suggestion of the u-health monitoring system need to operate in the ambulance, general hospitals and geriatric institutions as a u-health monitoring device.

  20. Library service delivery via hand-held computers--the right information at the point of care.

    PubMed

    Peterson, Mary

    2004-03-01

    Today's health and medical librarians are well aware of the move towards evidence-based clinical practice which has emerged during the past decade. Hand-in-hand with this trend is the need for health practitioners to have access to the best possible evidence to help them in their clinical decision making. Libraries have a key role in the provision of information to their clients, and this means keeping abreast, not only of the various information sources available, but also the means by which those sources may be used. This paper will examine the effects that the hand-held computer is having on the work practices of our clients-library users. It is hoped that the paper will give an insight into the various types of library material which are suitable for use with hand-held devices, and an understanding of their advantages and limitations.

  1. Smart mobility solution with multiple input Output interface.

    PubMed

    Sethi, Aartika; Deb, Sujay; Ranjan, Prabhat; Sardar, Arghya

    2017-07-01

    Smart wheelchairs are commonly used to provide solution for mobility impairment. However their usage is limited primarily due to high cost owing from sensors required for giving input, lack of adaptability for different categories of input and limited functionality. In this paper we propose a smart mobility solution using smartphone with inbuilt sensors (accelerometer, camera and speaker) as an input interface. An Emotiv EPOC+ is also used for motor imagery based input control synced with facial expressions in cases of extreme disability. Apart from traction, additional functions like home security and automation are provided using Internet of Things (IoT) and web interfaces. Although preliminary, our results suggest that this system can be used as an integrated and efficient solution for people suffering from mobility impairment. The results also indicate a decent accuracy is obtained for the overall system.

  2. 30 CFR 57.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Moving hand-held drills. 57.7053 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7053 Moving hand-held drills. Before hand-held...

  3. 30 CFR 57.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Moving hand-held drills. 57.7053 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7053 Moving hand-held drills. Before hand-held...

  4. 30 CFR 57.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Moving hand-held drills. 57.7053 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7053 Moving hand-held drills. Before hand-held...

  5. 30 CFR 57.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Moving hand-held drills. 57.7053 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7053 Moving hand-held drills. Before hand-held...

  6. 30 CFR 57.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Moving hand-held drills. 57.7053 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling-Surface and Underground § 57.7053 Moving hand-held drills. Before hand-held...

  7. 30 CFR 57.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  8. 30 CFR 57.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  9. 30 CFR 57.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  10. 30 CFR 57.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  11. 30 CFR 57.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hand-held electric tools. 57.12033 Section 57.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12033 Hand-held electric tools. Hand-held electric tools shall not be...

  12. 30 CFR 56.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Moving hand-held drills. 56.7053 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7053 Moving hand-held drills. Before hand-held drills are moved from one...

  13. 30 CFR 56.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Moving hand-held drills. 56.7053 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7053 Moving hand-held drills. Before hand-held drills are moved from one...

  14. 30 CFR 56.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Moving hand-held drills. 56.7053 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7053 Moving hand-held drills. Before hand-held drills are moved from one...

  15. 30 CFR 56.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Moving hand-held drills. 56.7053 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7053 Moving hand-held drills. Before hand-held drills are moved from one...

  16. 30 CFR 56.7053 - Moving hand-held drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Moving hand-held drills. 56.7053 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Drilling § 56.7053 Moving hand-held drills. Before hand-held drills are moved from one...

  17. Reliability and validity of a smartphone-based assessment of gait parameters across walking speed and smartphone locations: Body, bag, belt, hand, and pocket.

    PubMed

    Silsupadol, Patima; Teja, Kunlanan; Lugade, Vipul

    2017-10-01

    The assessment of spatiotemporal gait parameters is a useful clinical indicator of health status. Unfortunately, most assessment tools require controlled laboratory environments which can be expensive and time consuming. As smartphones with embedded sensors are becoming ubiquitous, this technology can provide a cost-effective, easily deployable method for assessing gait. Therefore, the purpose of this study was to assess the reliability and validity of a smartphone-based accelerometer in quantifying spatiotemporal gait parameters when attached to the body or in a bag, belt, hand, and pocket. Thirty-four healthy adults were asked to walk at self-selected comfortable, slow, and fast speeds over a 10-m walkway while carrying a smartphone. Step length, step time, gait velocity, and cadence were computed from smartphone-based accelerometers and validated with GAITRite. Across all walking speeds, smartphone data had excellent reliability (ICC 2,1 ≥0.90) for the body and belt locations, with bag, hand, and pocket locations having good to excellent reliability (ICC 2,1 ≥0.69). Correlations between the smartphone-based and GAITRite-based systems were very high for the body (r=0.89, 0.98, 0.96, and 0.87 for step length, step time, gait velocity, and cadence, respectively). Similarly, Bland-Altman analysis demonstrated that the bias approached zero, particularly in the body, bag, and belt conditions under comfortable and fast speeds. Thus, smartphone-based assessments of gait are most valid when placed on the body, in a bag, or on a belt. The use of a smartphone to assess gait can provide relevant data to clinicians without encumbering the user and allow for data collection in the free-living environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Vehicle longitudinal velocity estimation during the braking process using unknown input Kalman filter

    NASA Astrophysics Data System (ADS)

    Moaveni, Bijan; Khosravi Roqaye Abad, Mahdi; Nasiri, Sayyad

    2015-10-01

    In this paper, vehicle longitudinal velocity during the braking process is estimated by measuring the wheels speed. Here, a new algorithm based on the unknown input Kalman filter is developed to estimate the vehicle longitudinal velocity with a minimum mean square error and without using the value of braking torque in the estimation procedure. The stability and convergence of the filter are analysed and proved. Effectiveness of the method is shown by designing a real experiment and comparing the estimation result with actual longitudinal velocity computing from a three-axis accelerometer output.

  19. Portable multiplicity counter

    DOEpatents

    Newell, Matthew R [Los Alamos, NM; Jones, David Carl [Los Alamos, NM

    2009-09-01

    A portable multiplicity counter has signal input circuitry, processing circuitry and a user/computer interface disposed in a housing. The processing circuitry, which can comprise a microcontroller integrated circuit operably coupled to shift register circuitry implemented in a field programmable gate array, is configured to be operable via the user/computer interface to count input signal pluses receivable at said signal input circuitry and record time correlations thereof in a total counting mode, coincidence counting mode and/or a multiplicity counting mode. The user/computer interface can be for example an LCD display/keypad and/or a USB interface. The counter can include a battery pack for powering the counter and low/high voltage power supplies for biasing external detectors so that the counter can be configured as a hand-held device for counting neutron events.

  20. An Examination of Hand-Held Computer-Assisted Instruction on Subtraction Skills for Second Grade Students with Learning and Behavioral Disabilities

    ERIC Educational Resources Information Center

    Nordness, Philip D.; Haverkost, Ann; Volberding, Annette

    2011-01-01

    The effect of a mathematic flashcard application on a hand-held computing device was examined across three individual second grade students with learning and behavioral disabilities. All of the students improved their subtraction scores by an average of 17% as measured by the district-created, curriculum-based assessment. The results of this study…

  1. Performance of a new hand-held device for exhaled nitric oxide measurement in adults and children.

    PubMed

    Alving, K; Janson, C; Nordvall, L

    2006-04-20

    Exhaled nitric oxide (NO) measurement has been shown to be a valuable tool in the management of patients with asthma. Up to now, most measurements have been done with stationary, chemiluminescence-based NO analysers, which are not suitable for the primary health care setting. A hand-held NO analyser which simplifies the measurement would be of value both in specialized and primary health care. In this study, the performance of a new electrochemical hand-held device for exhaled NO measurements (NIOX MINO) was compared with a standard stationary chemiluminescence unit (NIOX). A total of 71 subjects (6-60 years; 36 males), both healthy controls and atopic patients with and without asthma were included. The mean of three approved exhalations (50 ml/s) in each device, and the first approved measurement in the hand-held device, were compared with regard to NO readings (Bland-Altman plots), measurement feasibility (success rate with 6 attempts) and repeatability (intrasubject SD). Success rate was high (> or = 84%) in both devices for both adults and children. The subjects represented a FENO range of 8-147 parts per billion (ppb). When comparing the mean of three measurements (n = 61), the median of the intrasubject difference in exhaled NO for the two devices was -1.2 ppb; thus generally the hand-held device gave slightly higher readings. The Bland-Altman plot shows that the 95% limits of agreement were -9.8 and 8.0 ppb. The intrasubject median difference between the NIOX and the first approved measurement in the NIOX MINO was -2.0 ppb, and limits of agreement were -13.2 and 10.2 ppb. The median repeatability for NIOX and NIOX MINO were 1.1 and 1.2 ppb, respectively. The hand-held device (NIOX MINO) and the stationary system (NIOX) are in clinically acceptable agreement both when the mean of three measurements and the first approved measurement (NIOX MINO) is used. The hand-held device shows good repeatability, and it can be used successfully on adults and most children. The new hand-held device will enable the introduction of exhaled NO measurements into the primary health care.

  2. Solutions for acceleration measurement in vehicle crash tests

    NASA Astrophysics Data System (ADS)

    Dima, D. S.; Covaciu, D.

    2017-10-01

    Crash tests are useful for validating computer simulations of road traffic accidents. One of the most important parameters measured is the acceleration. The evolution of acceleration versus time, during a crash test, form a crash pulse. The correctness of the crash pulse determination depends on the data acquisition system used. Recommendations regarding the instrumentation for impact tests are given in standards, which are focused on the use of accelerometers as impact sensors. The goal of this paper is to present the device and software developed by authors for data acquisition and processing. The system includes two accelerometers with different input ranges, a processing unit based on a 32-bit microcontroller and a data logging unit with SD card. Data collected on card, as text files, is processed with a dedicated software running on personal computers. The processing is based on diagrams and includes the digital filters recommended in standards.

  3. The strength of attentional biases reduces as visual short-term memory load increases

    PubMed Central

    Shimi, A.

    2013-01-01

    Despite our visual system receiving irrelevant input that competes with task-relevant signals, we are able to pursue our perceptual goals. Attention enhances our visual processing by biasing the processing of the input that is relevant to the task at hand. The top-down signals enabling these biases are therefore important for regulating lower level sensory mechanisms. In three experiments, we examined whether we apply similar biases to successfully maintain information in visual short-term memory (VSTM). We presented participants with targets alongside distracters and we graded their perceptual similarity to vary the extent to which they competed. Experiments 1 and 2 showed that the more items held in VSTM before the onset of the distracters, the more perceptually distinct the distracters needed to be for participants to retain the target accurately. Experiment 3 extended these behavioral findings by demonstrating that the perceptual similarity between target and distracters exerted a significantly greater effect on occipital alpha amplitudes, depending on the number of items already held in VSTM. The trade-off between VSTM load and target-distracter competition suggests that VSTM and perceptual competition share a partially overlapping mechanism, namely top-down inputs into sensory areas. PMID:23576694

  4. Criterion validity of the Physical Activity Questionnaire for Schoolchildren (PAQ-S) in assessing physical activity levels: the Healthy Growth Study.

    PubMed

    Manios, Y; Androutsos, O; Moschonis, G; Birbilis, M; Maragkopoulou, K; Giannopoulou, A; Argyri, E; Kourlaba, G

    2013-10-01

    The aim of this paper was to evaluate the criterion validity of the Physical Activity Questionnaire for Schoolchildren (PAQ-S). The current study is a subcohort of the Healthy Growth Study, a large-scale cross-sectional study. 202 schoolchildren aged 9-13 years from Greece completed the PAQ-S and wore an accelerometer for 4 consecutive days. Time spent moderate (MPA), moderate to vigorous (MVPA) and vigorous (VPA) physical activity was calculated based on PAQ-S and accelerometer data. The average time spent on MPA and MVPA as derived from PAQ-S and from accelerometers were significantly moderately correlated (r=0.462, P<0.001 and r=0.483, P<0.001, respectively). No significant correlation was detected between PAQ-S and accelerometer-measured time spent performing VPA (rho=0.150, P=0.057). Intraclass Correlation Coefficient (ICC) indicated a moderate agreement between PAQ-S and accelerometer in estimating MPA (ICC=0.592, P<0.001) and MVPA (ICC=0.581, P<0.001). Bland-Altman analysis revealed a small mean difference (the "bias"), between the two methods, in estimating MPA, although this difference was found to be significantly higher than zero ("bias"=27.4% of the accelerometer-measured mean score, P=0.006). On the other hand, Bland-Altman analysis revealed a large mean difference in estimating MVPA and VPA ("bias"=84.2% and 357% of the accelerometer-measured mean score for MVPA and VPA, respectively and P<0.001). The high correlation coefficient between the average and difference values between all physical activity scores derived from accelerometers and PAQ-S, indicate a systematic overestimation of physical activity time with increasing physical activity for PAQ-S. The validity of PAQ-S for the estimation of MPA and MVPA was found to be slightly similar self-reported measures for schoolchildren. Therefore, this questionnaire could be used as a tool for physical activity assessment in large population studies.

  5. Water vapour correction of the daily 1 km AVHRR global land dataset: Part I validation and use of the Water Vapour input field

    USGS Publications Warehouse

    DeFelice, Thomas P.; Lloyd, D.; Meyer, D.J.; Baltzer, T. T.; Piraina, P.

    2003-01-01

    An atmospheric correction algorithm developed for the 1 km Advanced Very High Resolution Radiometer (AVHRR) global land dataset was modified to include a near real-time total column water vapour data input field to account for the natural variability of atmospheric water vapour. The real-time data input field used for this study is the Television and Infrared Observational Satellite (TIROS) Operational Vertical Sounder (TOVS) Pathfinder A global total column water vapour dataset. It was validated prior to its use in the AVHRR atmospheric correction process using two North American AVHRR scenes, namely 13 June and 28 November 1996. The validation results are consistent with those reported by others and entail a comparison between TOVS, radiosonde, experimental sounding, microwave radiometer, and data from a hand-held sunphotometer. The use of this data layer as input to the AVHRR atmospheric correction process is discussed.

  6. Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method.

    PubMed

    Meng, Xin; Huang, Huachuan; Yan, Keding; Tian, Xiaolin; Yu, Wei; Cui, Haoyang; Kong, Yan; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2016-12-20

    In order to realize high contrast imaging with portable devices for potential mobile healthcare, we demonstrate a hand-held smartphone based quantitative phase microscope using the transport of intensity equation method. With a cost-effective illumination source and compact microscope system, multi-focal images of samples can be captured by the smartphone's camera via manual focusing. Phase retrieval is performed using a self-developed Android application, which calculates sample phases from multi-plane intensities via solving the Poisson equation. We test the portable microscope using a random phase plate with known phases, and to further demonstrate its performance, a red blood cell smear, a Pap smear and monocot root and broad bean epidermis sections are also successfully imaged. Considering its advantages as an accurate, high-contrast, cost-effective and field-portable device, the smartphone based hand-held quantitative phase microscope is a promising tool which can be adopted in the future in remote healthcare and medical diagnosis.

  7. How Accurately Can Your Wrist Device Recognize Daily Activities and Detect Falls?

    PubMed Central

    Gjoreski, Martin; Gjoreski, Hristijan; Luštrek, Mitja; Gams, Matjaž

    2016-01-01

    Although wearable accelerometers can successfully recognize activities and detect falls, their adoption in real life is low because users do not want to wear additional devices. A possible solution is an accelerometer inside a wrist device/smartwatch. However, wrist placement might perform poorly in terms of accuracy due to frequent random movements of the hand. In this paper we perform a thorough, large-scale evaluation of methods for activity recognition and fall detection on four datasets. On the first two we showed that the left wrist performs better compared to the dominant right one, and also better compared to the elbow and the chest, but worse compared to the ankle, knee and belt. On the third (Opportunity) dataset, our method outperformed the related work, indicating that our feature-preprocessing creates better input data. And finally, on a real-life unlabeled dataset the recognized activities captured the subject’s daily rhythm and activities. Our fall-detection method detected all of the fast falls and minimized the false positives, achieving 85% accuracy on the first dataset. Because the other datasets did not contain fall events, only false positives were evaluated, resulting in 9 for the second, 1 for the third and 15 for the real-life dataset (57 days data). PMID:27258282

  8. Hand-held internet tablets for school-based data collection.

    PubMed

    Denny, Simon J; Milfont, Taciano L; Utter, Jennifer; Robinson, Elizabeth M; Ameratunga, Shanthi N; Merry, Sally N; Fleming, Theresa M; Watson, Peter D

    2008-07-26

    In the last 20 years, researchers have been using computer self-administered questionnaires to gather data on a wide range of adolescent health related behaviours. More recently, researchers collecting data in schools have started to use smaller hand-held computers for their ease of use and portability. The aim of this study is to describe a new technology with wi-fi enabled hand-held internet tablets and to compare adolescent preferences of laptop computers or hand-held internet tablets in administering a youth health and well-being questionnaire in a school setting. A total of 177 students took part in a pilot study of a national youth health and wellbeing survey. Students were randomly assigned to internet tablets or laptops at the start of the survey and were changed to the alternate mode of administration about half-way through the questionnaire. Students at the end of the questionnaire were asked which of the two modes of administration (1) they preferred, (2) was easier to use, (3) was more private and confidential, and (4) was easier to answer truthfully. Many students expressed no preference between laptop computers or internet tablets. However, among the students who expressed a preference between laptop computers or internet tablets, the majority of students found the internet tablets more private and confidential (p < 0.001) and easier to answer questions truthfully (p < 0.001) compared to laptop computers. This study demonstrates that using wi-fi enabled hand-held internet tablets is a feasible methodology for school-based surveys especially when asking about sensitive information.

  9. Hand-held internet tablets for school-based data collection

    PubMed Central

    Denny, Simon J; Milfont, Taciano L; Utter, Jennifer; Robinson, Elizabeth M; Ameratunga, Shanthi N; Merry, Sally N; Fleming, Theresa M; Watson, Peter D

    2008-01-01

    Background In the last 20 years, researchers have been using computer self-administered questionnaires to gather data on a wide range of adolescent health related behaviours. More recently, researchers collecting data in schools have started to use smaller hand-held computers for their ease of use and portability. The aim of this study is to describe a new technology with wi-fi enabled hand-held internet tablets and to compare adolescent preferences of laptop computers or hand-held internet tablets in administering a youth health and well-being questionnaire in a school setting. Methods A total of 177 students took part in a pilot study of a national youth health and wellbeing survey. Students were randomly assigned to internet tablets or laptops at the start of the survey and were changed to the alternate mode of administration about half-way through the questionnaire. Students at the end of the questionnaire were asked which of the two modes of administration (1) they preferred, (2) was easier to use, (3) was more private and confidential, and (4) was easier to answer truthfully. Results Many students expressed no preference between laptop computers or internet tablets. However, among the students who expressed a preference between laptop computers or internet tablets, the majority of students found the internet tablets more private and confidential (p < 0.001) and easier to answer questions truthfully (p < 0.001) compared to laptop computers. Conclusion This study demonstrates that using wi-fi enabled hand-held internet tablets is a feasible methodology for school-based surveys especially when asking about sensitive information. PMID:18710505

  10. Intrinsic fluorescence based in-vivo detection of cervical precancer with hand held prototype device

    NASA Astrophysics Data System (ADS)

    Meena, Bharat Lal; Raikwar, Akanksha; Pandey, Kiran; Agarwal, Asha; Pantola, Chayanika; Pradhan, Asima

    2018-02-01

    A prototype device (hand held probe) designed and fabricated in the lab has been tested for cervical precancer detection using intrinsic fluorescence. The intrinsic fluorescence gets strongly modulated by the interplay of scattering and absorption. This masks valuable biochemical information which is present in the intrinsic fluorescence. These distortion effects can be minimized by normalizing the polarized fluorescence spectra by the polarized elastic scattering spectra. The measurements have been made with a in-house fabricated device using a 405 nm diode laser and white light source respectively. 166 sites of different grades of cervical pre-cancer biopsy samples (CIN I and CIN II) (CIN: cervical intraepithelial neoplastic) have been discriminated from 29 sites of normal biopsy samples using principal component analysis (PCA) based linear discriminant analysis (LDA). The sensitivity and specificity for discrimination of normal samples from CIN I are found to be 99% and 96% respectively. Further the normal samples can be discriminated from CIN II samples with 96% sensitivity and 96% specificity. Based on these promising ex-vivo results an in-vivo study on patients has been initiated in the hospital. The hand held device built in-house shows promise as a useful tool for in vivo cervical precancer detection by polarized fluorescence. Preliminary in-vivo results on 10 patients indicate the efficacy of the hand held device for screening cervical precancers using intrinsic fluorescence.

  11. The effect of single engine fixed wing air transport on rate-responsive pacemakers.

    PubMed

    De Rotte, A A; Van Der Kemp, P

    1999-09-01

    Insufficient information exists about the safety of patients with accelerometer-based rate-responsive pacemakers in air transport by general aviation aircraft. The response in pacing rate of two types of accelerometer-based rate-responsive pacemakers with data logging capabilities was studied during test flights with single engine fixed wing aircraft. Results were compared with the rate-response of these pacemakers during transportation by car and were also interpreted in respect to physiological heart rate response of aircrew during flights in single engine fixed wing aircraft. In addition, a continuous accelerometer readout was recorded during a turbulent phase of flight. This recording was used for a pacemaker-simulator experiment with maximal sensitive motion-sensor settings. Only a minor increase in pacing rate due to aircraft motion could be demonstrated during all phases of flight at all altitudes with the pacemakers programmed in the normal mode. This increase was of the same magnitude as induced during transport by car and would be of negligible influence on the performance of the individual pacemaker patient equipped with such a pacemaker. Moreover, simultaneous Holter monitoring of the pilots during these flights showed a similar rate-response in natural heart rate compared with the increase in pacing rate induced by aircraft motion in accelerometer-based rate-responsive pacemakers. No sensor-mediated pacemaker tachycardia was seen during any of these recordings. However, a 15% increase in pacing rate was induced by severe air turbulence. Programming the maximal sensitivity of the motion sensor into the pacemaker could, on the other hand, induce a significant increase in pacing rate as was demonstrated by the simulation experiments. These results seem to rule out potentially dangerous or adverse effects from motional or vibrational influences during transport in single engine fixed wing aircraft on accelerometer-based rate-responsive pacemakers with normal activity sensor settings.

  12. Validity of maximal isometric knee extension strength measurements obtained via belt-stabilized hand-held dynamometry in healthy adults.

    PubMed

    Ushiyama, Naoko; Kurobe, Yasushi; Momose, Kimito

    2017-11-01

    [Purpose] To determine the validity of knee extension muscle strength measurements using belt-stabilized hand-held dynamometry with and without body stabilization compared with the gold standard isokinetic dynamometry in healthy adults. [Subjects and Methods] Twenty-nine healthy adults (mean age, 21.3 years) were included. Study parameters involved right side measurements of maximal isometric knee extension strength obtained using belt-stabilized hand-held dynamometry with and without body stabilization and the gold standard. Measurements were performed in all subjects. [Results] A moderate correlation and fixed bias were found between measurements obtained using belt-stabilized hand-held dynamometry with body stabilization and the gold standard. No significant correlation and proportional bias were found between measurements obtained using belt-stabilized hand-held dynamometry without body stabilization and the gold standard. The strength identified using belt-stabilized hand-held dynamometry with body stabilization may not be commensurate with the maximum strength individuals can generate; however, it reflects such strength. In contrast, the strength identified using belt-stabilized hand-held dynamometry without body stabilization does not reflect the maximum strength. Therefore, a chair should be used to stabilize the body when performing measurements of maximal isometric knee extension strength using belt-stabilized hand-held dynamometry in healthy adults. [Conclusion] Belt-stabilized hand-held dynamometry with body stabilization is more convenient than the gold standard in clinical settings.

  13. Citizen sensors for SHM: use of accelerometer data from smartphones.

    PubMed

    Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin

    2015-01-29

    Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications.

  14. High-nitrogen-based pyrotechnics: longer- and brighter-burning, perchlorate-free, red-light illuminants for military and civilian applications.

    PubMed

    Sabatini, Jesse J; Nagori, Amita V; Chen, Gary; Chu, Phillip; Damavarapu, Reddy; Klapötke, Thomas M

    2012-01-09

    The full-up prototype testing of perchlorate-free, hand-held, signal illuminants for the US Army's M126A1 red star parachute hand-held signal is described. Compared to the perchlorate-containing control, the disclosed illuminants yielded excellent stabilities toward various ignition stimuli while offering superior pyrotechnic performance. Militarily, the illuminants provided further evidence that development of smaller hand-held signal items in an environmentally conscious way is a realistic and obtainable goal. The results are also important from the perspective of civilian fireworks, as the development of brighter, longer-burning, and environmentally compatible red-light-emitting pyrotechnics is now possible. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Design and validation of a desk-free and posture-independent input device.

    PubMed

    Lee, Yung-Hui; Su, Mu-Chuan

    2008-05-01

    This study investigates variations in performance, postures and strains on the hand-arm-shoulder musculature during the operation of a wireless mouse, trackpad and a new input device. The device is held between the flexed index and middle fingers with the palm facing sideways. The buttons and wheels are activated by flexion and/or rolling of the thumb. Eleven males and nine females participated in the study. All subjects performed an aiming task to test the pointing and dragging functions. The results of this study reveal that the new pointing device allowed users to adopt more ergonomic postures and has the advantage of reduced muscular loadings of the upper extremities. Mean (SD) muscular activities (%RVC) using the wireless mouse, the trackpad and the new input device were as follows: trapezius: 3.0 (1.7), 4.4 (2.9) and 1.4 (1.0), and extensor carpi ulnaris: 7.3 (4.4), 14.5 (8.4) and 5.6 (3.1), respectively. The device was used in a variety of hand positions, alternatively. The size of the working area was far greater when the new input device was used than when the two conventional analogues were used. Although reasonable performance was not achieved, the results support recommendations concerning the redesign of the device. The ergonomic efforts in the design of the input device are of heuristic value, providing a basis for future development.

  16. KSC-04pd2127

    NASA Image and Video Library

    2004-10-12

    KENNEDY SPACE CENTER, FLA. - This photo shows the size of the sensors being placed on the wing leading edge of orbiter Discovery. In her hand, United Space Alliance technician Lisa Campbell holds an accelerometer (left), which will eventually be installed on a mounting nut. The sensors are part of the Wing Leading Edge Impact Detection System, a new safety measure added for all future Space Shuttle missions. The system also includes accelerometers that monitor the orbiter's wings for debris impacts during launch and while in orbit. There are 22 temperature sensors and 66 accelerometers on each wing. Sensor data will flow from the wing to the crew compartment, where it will be transmitted to Earth.

  17. KSC-04PD-2127

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. This photo shows the size of the sensors being placed on the wing leading edge of orbiter Discovery. In her hand, United Space Alliance technician Lisa Campbell holds an accelerometer (left), which will eventually be installed on a mounting nut. The sensors are part of the Wing Leading Edge Impact Detection System, a new safety measure added for all future Space Shuttle missions. The system also includes accelerometers that monitor the orbiter's wings for debris impacts during launch and while in orbit. There are 22 temperature sensors and 66 accelerometers on each wing. Sensor data will flow from the wing to the crew compartment, where it will be transmitted to Earth.

  18. Vibration Damping Workshop Proceedings Held at Long Beach, California on 27-29 February 1984.

    DTIC Science & Technology

    1984-11-11

    control system with a sensing accelerometer plus a differentiating network is an extremely effective damping system, if - the magnitude of the... devopment /operating cost by 340M UU -2 p 0 i -L . ..’ - . , ,.. . ,, _,_ ... . .-; .. :: -- _. . , .:... : . -.. .*. - - -.- 2 -,-i-. . i

  19. Use of a hand-held meter for detecting subclinical ketosis in dairy cows.

    PubMed

    Voyvoda, Huseyin; Erdogan, Hasan

    2010-12-01

    The Optium Xceed is a new hand-held meter for determining blood β-hydroxybutyrate (BHBA) and glucose in human medicine. The objective of this study was to compare BHBA and glucose results obtained using the hand-held meter with those results made with a laboratory method and to evaluate its usefulness as a cowside test in the diagnosis of subclinical ketosis (SCK) in dairy cows. Seventy-eight blood samples from clinically healthy Holstein cows between 5 and 60 days post-calving were analysed. BHBA and glucose values were significantly higher with the hand-held meter versus laboratory methods. Correlation coefficients (r) for BHBA and glucose with the Optium Xceed versus laboratory methods were 0.97 and 0.63, respectively. Based on Bland-Altman plot and Passing-Bablok regression, agreement between two methods was good for BHBA but the agreement for glucose was only fair. When SCK was defined as plasma BHBA levels ≥ 1200 μmol/L, the sensitivity and specificity of the hand-held meter ketone testing in determining SCK were 85% and 94%, respectively. Raising the threshold of the laboratory method to ≥ 1400 μmol/L, the sensitivity and specificity incremented to 0.90 and 0.98, respectively. In conclusion, the blood ketone-monitoring device can be used as a rapid and reliable diagnostic test to detect SCK under field conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Evaluation of a focussed protocol for hand-held echocardiography and computer-assisted auscultation in detecting latent rheumatic heart disease in scholars.

    PubMed

    Zühlke, Liesl J; Engel, Mark E; Nkepu, Simpiwe; Mayosi, Bongani M

    2016-08-01

    Introduction Echocardiography is the diagnostic test of choice for latent rheumatic heart disease. The utility of echocardiography for large-scale screening is limited by high cost, complex diagnostic protocols, and time to acquire multiple images. We evaluated the performance of a brief hand-held echocardiography protocol and computer-assisted auscultation in detecting latent rheumatic heart disease with or without pathological murmur. A total of 27 asymptomatic patients with latent rheumatic heart disease based on the World Heart Federation criteria and 66 healthy controls were examined by standard cardiac auscultation to detect pathological murmur. Hand-held echocardiography using a focussed protocol that utilises one view - that is, the parasternal long-axis view - and one measurement - that is, mitral regurgitant jet - and a computer-assisted auscultation utilising an automated decision tool were performed on all patients. The sensitivity and specificity of computer-assisted auscultation in latent rheumatic heart disease were 4% (95% CI 1.0-20.4%) and 93.7% (95% CI 84.5-98.3%), respectively. The sensitivity and specificity of the focussed hand-held echocardiography protocol for definite rheumatic heart disease were 92.3% (95% CI 63.9-99.8%) and 100%, respectively. The test reliability of hand-held echocardiography was 98.7% for definite and 94.7% for borderline disease, and the adjusted diagnostic odds ratios were 1041 and 263.9 for definite and borderline disease, respectively. Computer-assisted auscultation has extremely low sensitivity but high specificity for pathological murmur in latent rheumatic heart disease. Focussed hand-held echocardiography has fair sensitivity but high specificity and diagnostic utility for definite or borderline rheumatic heart disease in asymptomatic patients.

  1. Practical applications of hand-held computers in dermatology.

    PubMed

    Goldblum, Orin M

    2002-09-01

    For physicians, hand-held computers are gaining popularity as point of care reference tools. The convergence of hand-held computers, the Internet, and wireless networks will enable these devices to assume more essential roles as mobile transmitters and receivers of digital medical Information. In addition to serving as portable medical reference sources, these devices can be Internet-enabled, allowing them to communicate over wireless wide and local area networks. With enhanced wireless connectivity, hand-held computers can be used at the point of patient care for charge capture, electronic prescribing, laboratory test ordering, laboratory result retrieval, web access, e-mail communication, and other clinical and administrative tasks. Physicians In virtually every medical specialty have begun using these devices in various ways. This review of hand-held computer use in dermatology illustrates practical examples of the many different ways hand-held computers can be effectively used by the practicing dermatologist.

  2. Performance of a new hand-held device for exhaled nitric oxide measurement in adults and children

    PubMed Central

    Alving, K; Janson, C; Nordvall, L

    2006-01-01

    Background Exhaled nitric oxide (NO) measurement has been shown to be a valuable tool in the management of patients with asthma. Up to now, most measurements have been done with stationary, chemiluminescence-based NO analysers, which are not suitable for the primary health care setting. A hand-held NO analyser which simplifies the measurement would be of value both in specialized and primary health care. In this study, the performance of a new electrochemical hand-held device for exhaled NO measurements (NIOX MINO) was compared with a standard stationary chemiluminescence unit (NIOX). Methods A total of 71 subjects (6–60 years; 36 males), both healthy controls and atopic patients with and without asthma were included. The mean of three approved exhalations (50 ml/s) in each device, and the first approved measurement in the hand-held device, were compared with regard to NO readings (Bland-Altman plots), measurement feasibility (success rate with 6 attempts) and repeatability (intrasubject SD). Results Success rate was high (≥ 84%) in both devices for both adults and children. The subjects represented a FENO range of 8–147 parts per billion (ppb). When comparing the mean of three measurements (n = 61), the median of the intrasubject difference in exhaled NO for the two devices was -1.2 ppb; thus generally the hand-held device gave slightly higher readings. The Bland-Altman plot shows that the 95% limits of agreement were -9.8 and 8.0 ppb. The intrasubject median difference between the NIOX and the first approved measurement in the NIOX MINO was -2.0 ppb, and limits of agreement were -13.2 and 10.2 ppb. The median repeatability for NIOX and NIOX MINO were 1.1 and 1.2 ppb, respectively. Conclusion The hand-held device (NIOX MINO) and the stationary system (NIOX) are in clinically acceptable agreement both when the mean of three measurements and the first approved measurement (NIOX MINO) is used. The hand-held device shows good repeatability, and it can be used successfully on adults and most children. The new hand-held device will enable the introduction of exhaled NO measurements into the primary health care. PMID:16626491

  3. The Quake-Catcher Network: An Innovative Community-Based Seismic Network

    NASA Astrophysics Data System (ADS)

    Saltzman, J.; Cochran, E. S.; Lawrence, J. F.; Christensen, C. M.

    2009-12-01

    The Quake-Catcher Network (QCN) is a volunteer computing seismic network that engages citizen scientists, teachers, and museums to participate in the detection of earthquakes. In less than two years, the network has grown to over 1000 participants globally and continues to expand. QCN utilizes Micro-Electro-Mechanical System (MEMS) accelerometers, in laptops and external to desktop computers, to detect moderate to large earthquakes. One goal of the network is to involve K-12 classrooms and museums by providing sensors and software to introduce participants to seismology and community-based scientific data collection. The Quake-Catcher Network provides a unique opportunity to engage participants directly in the scientific process, through hands-on activities that link activities and outcomes to their daily lives. Partnerships with teachers and museum staff are critical to growth of the Quake Catcher Network. Each participating institution receives a MEMS accelerometer to connect, via USB, to a computer that can be used for hands-on activities and to record earthquakes through a distributed computing system. We developed interactive software (QCNLive) that allows participants to view sensor readings in real time. Participants can also record earthquakes and download earthquake data that was collected by their sensor or other QCN sensors. The Quake-Catcher Network combines research and outreach to improve seismic networks and increase awareness and participation in science-based research in K-12 schools.

  4. Bone age maturity assessment using hand-held device

    NASA Astrophysics Data System (ADS)

    Ratib, Osman M.; Gilsanz, Vicente; Liu, Xiaodong; Boechat, M. I.

    2004-04-01

    Purpose: Assessment of bone maturity is traditionally performed through visual comparison of hand and wrist radiograph with existing reference images in textbooks. Our goal was to develop a digital index based on idealized hand Xray images that can be incorporated in a hand held computer and used for visual assessment of bone age for patients. Material and methods: Due to the large variability in bone maturation in normals, we generated a set of "ideal" images obtained by computer combinations of images from our normal reference data sets. Software for hand-held PDA devices was developed for easy navigation through the set of images and visual selection of matching images. A formula based on our statistical analysis provides the standard deviation from normal based on the chronological age of the patient. The accuracy of the program was compared to traditional interpretation by two radiologists in a double blind reading of 200 normal Caucasian children (100 boys, 100 girls). Results: Strong correlations were present between chronological age and bone age (r > 0.9) with no statistical difference between the digital and traditional assessment methods. Determinations of carpal bone maturity in adolescents was slightly more accurate using the digital system. The users did praise the convenience and effectiveness of the digital Palm Index in clinical practice. Conclusion: An idealized digital Palm Bone Age Index provides a convenient and effective alternative to conventional atlases for the assessment of skeletal maturity.

  5. Hand-held indirect calorimeter offers advantages compared with prediction equations, in a group of overweight women, to determine resting energy expenditures and estimated total energy expenditures during research screening.

    PubMed

    Spears, Karen E; Kim, Hyunsook; Behall, Kay M; Conway, Joan M

    2009-05-01

    To compare standardized prediction equations to a hand-held indirect calorimeter in estimating resting energy and total energy requirements in overweight women. Resting energy expenditure (REE) was measured by hand-held indirect calorimeter and calculated by prediction equations Harris-Benedict, Mifflin-St Jeor, World Health Organization/Food and Agriculture Organization/United Nations University (WHO), and Dietary Reference Intakes (DRI). Physical activity level, assessed by questionnaire, was used to estimate total energy expenditure (TEE). Subjects (n=39) were female nonsmokers older than 25 years of age with body mass index more than 25. Repeated measures analysis of variance, Bland-Altman plot, and fitted regression line of difference. A difference within +/-10% of two methods indicated agreement. Significant proportional bias was present between hand-held indirect calorimeter and prediction equations for REE and TEE (P<0.01); prediction equations overestimated at lower values and underestimated at higher values. Mean differences (+/-standard error) for REE and TEE between hand-held indirect calorimeter and Harris-Benedict were -5.98+/-46.7 kcal/day (P=0.90) and 21.40+/-75.7 kcal/day (P=0.78); between hand-held indirect calorimeter and Mifflin-St Jeor were 69.93+/-46.7 kcal/day (P=0.14) and 116.44+/-75.9 kcal/day (P=0.13); between hand-held indirect calorimeter and WHO were -22.03+/-48.4 kcal/day (P=0.65) and -15.8+/-77.9 kcal/day (P=0.84); and between hand-held indirect calorimeter and DRI were 39.65+/-47.4 kcal/day (P=0.41) and 56.36+/-85.5 kcal/day (P=0.51). Less than 50% of predictive equation values were within +/-10% of hand-held indirect calorimeter values, indicating poor agreement. A significant discrepancy between predicted and measured energy expenditure was observed. Further evaluation of hand-held indirect calorimeter research screening is needed.

  6. Citizen Sensors for SHM: Use of Accelerometer Data from Smartphones

    PubMed Central

    Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin

    2015-01-01

    Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications. PMID:25643056

  7. Evaluation of U.S. Commercial-Off-the-Shelf Hand-Held Assays to Detect Opiate Pain Reliever Compounds in Multiple Biofluids

    DTIC Science & Technology

    2016-09-01

    EVALUATION OF U.S. COMMERCIAL-OFF-THE-SHELF HAND-HELD ASSAYS TO DETECT OPIATE PAIN RELIEVER COMPOUNDS IN...Commercial-Off-the-Shelf Hand-Held Assays to Detect Opiate Pain Reliever Compounds in Multiple Biofluids 5a. CONTRACT NUMBER 5b. GRANT NUMBER R...study, we evaluated the potential for several U.S. commercial-off-the-shelf (COTS) hand-held assays (HHAs) to detect members of the opiate pain reliever

  8. Prediction of essential oil content of oregano by hand-held and Fourier transform NIR spectroscopy.

    PubMed

    Camps, Cédric; Gérard, Marianne; Quennoz, Mélanie; Brabant, Cécile; Oberson, Carine; Simonnet, Xavier

    2014-05-01

    In the framework of a breeding programme, the analysis of hundreds of oregano samples to determine their essential oil content (EOC) is time-consuming and expensive in terms of labour. Therefore developing a new method that is rapid, accurate and less expensive to use would be an asset to breeders. The aim of the present study was to develop a method based on near-inrared (NIR) spectroscopy to determine the EOC of oregano dried powder. Two spectroscopic approaches were compared, the first using a hand-held NIR device and the second a Fourier transform (FT) NIR spectrometer. Hand-held NIR (1000-1800 nm) measurements and partial least squares regression allowed the determination of EOC with R² and SEP values of 0.58 and 0.81 mL per 100 g dry matter (DM) respectively. Measurements with FT-NIR (1000-2500 nm) allowed the determination of EOC with R² and SEP values of 0.91 and 0.68 mL per 100 g DM respectively. RPD, RER and RPIQ values for the model implemented with FT-NIR data were satisfactory for screening application, while those obtained with hand-held NIR data were below the level required to consider the model as enough accurate for screening application. The FT-NIR approach allowed the development of an accurate model for EOC prediction. Although the hand-held NIR approach is promising, it needs additional development before it can be used in practice. © 2013 Society of Chemical Industry.

  9. 46 CFR 160.036-5 - Marking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Hand-Held Rocket-Propelled Parachute Red Flare Distress Signals § 160.036-5 Marking. (a) General. Each hand-held rocket-propelled parachute red flare distress signal shall be legibly marked or labeled as follows: (Company brand or style designation) Hand-Held Rocket...

  10. 46 CFR 160.036-5 - Marking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Hand-Held Rocket-Propelled Parachute Red Flare Distress Signals § 160.036-5 Marking. (a) General. Each hand-held rocket-propelled parachute red flare distress signal shall be legibly marked or labeled as follows: (Company brand or style designation) Hand-Held Rocket...

  11. 46 CFR 160.036-5 - Marking.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Hand-Held Rocket-Propelled Parachute Red Flare Distress Signals § 160.036-5 Marking. (a) General. Each hand-held rocket-propelled parachute red flare distress signal shall be legibly marked or labeled as follows: (Company brand or style designation) Hand-Held Rocket...

  12. 46 CFR 160.036-5 - Marking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Hand-Held Rocket-Propelled Parachute Red Flare Distress Signals § 160.036-5 Marking. (a) General. Each hand-held rocket-propelled parachute red flare distress signal shall be legibly marked or labeled as follows: (Company brand or style designation) Hand-Held Rocket...

  13. 46 CFR 160.036-5 - Marking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Hand-Held Rocket-Propelled Parachute Red Flare Distress Signals § 160.036-5 Marking. (a) General. Each hand-held rocket-propelled parachute red flare distress signal shall be legibly marked or labeled as follows: (Company brand or style designation) Hand-Held Rocket...

  14. Further developments in orbit ephemeris derived neutral density

    NASA Astrophysics Data System (ADS)

    Locke, Travis

    There are a number of non-conservative forces acting on a satellite in low Earth orbit. The one which is the most dominant and also contains the most uncertainty is atmospheric drag. Atmospheric drag is directly proportional to atmospheric density, and the existing atmospheric density models do not accurately model the variations in atmospheric density. In this research, precision orbit ephemerides (POE) are used as input measurements in an optimal orbit determination scheme in order to estimate corrections to existing atmospheric density models. These estimated corrections improve the estimates of the drag experienced by a satellite and therefore provide an improvement in orbit determination and prediction as well as a better overall understanding of the Earth's upper atmosphere. The optimal orbit determination scheme used in this work includes using POE data as measurements in a sequential filter/smoother process using the Orbit Determination Tool Kit (ODTK) software. The POE derived density estimates are validated by comparing them with the densities derived from accelerometers on board the Challenging Minisatellite Payload (CHAMP) and the Gravity Recovery and Climate Experiment (GRACE). These accelerometer derived density data sets for both CHAMP and GRACE are available from Sean Bruinsma of the Centre National d'Etudes Spatiales (CNES). The trend in the variation of atmospheric density is compared quantitatively by calculating the cross correlation (CC) between the POE derived density values and the accelerometer derived density values while the magnitudes of the two data sets are compared by calculating the root mean square (RMS) values between the two. There are certain high frequency density variations that are observed in the accelerometer derived density data but not in the POE derived density data or any of the baseline density models. These high frequency density variations are typically small in magnitude compared to the overall day-night variation. However during certain time periods, such as when the satellite is near the terminator, the variations are on the same order of magnitude as the diurnal variations. These variations can also be especially prevalent during geomagnetic storms and near the polar cusps. One of the goals of this work is to see what affect these unmodeled high frequency variations have on orbit propagation. In order to see this effect, the orbits of CHAMP and GRACE are propagated during certain time periods using different sources of density data as input measurements (accelerometer, POE, HASDM, and Jacchia 1971). The resulting orbit propagations are all compared to the propagation using the accelerometer derived density data which is used as truth. The RMS and the maximum difference between the different propagations are analyzed in order to see what effect the unmodeled density variations have on orbit propagation. These results are also binned by solar and geomagnetic activity level. The primary input into the orbit determination scheme used to produce the POE derived density estimates is a precision orbit ephemeris file. This file contains position and velocity in-formation for the satellite based on GPS and SLR measurements. The values contained in these files are estimated values and therefore contain some level of error, typically thought to be around the 5-10 cm level. The other primary focus of this work is to evaluate the effect of adding different levels of noise (0.1 m, 0.5 m, 1 m, 10 m, and 100 m) to this raw ephemeris data file before it is input into the orbit determination scheme. The resulting POE derived density estimates for each level of noise are then compared with the accelerometer derived densities by computing the CC and RMS values between the data sets. These results are also binned by solar and geomagnetic activity level.

  15. Flight instrument and telemetry response and its inversion

    NASA Technical Reports Server (NTRS)

    Weinberger, M. R.

    1971-01-01

    Mathematical models of rate gyros, servo accelerometers, pressure transducers, and telemetry systems were derived and their parameters were obtained from laboratory tests. Analog computer simulations were used extensively for verification of the validity for fast and large input signals. An optimal inversion method was derived to reconstruct input signals from noisy output signals and a computer program was prepared.

  16. Demonstration of the B4C/NaIO4/PTFE Delay in the U.S. Army Hand-Held Signal

    DTIC Science & Technology

    2015-05-20

    Figure 1. Partial cross section diagram of a hand-held signal showing the rocket motor , delay element, expelling charge, and pyrotechnic payload as...The black powder-based rocket motor , consisting of propellant pellets (G) encased in a cardboard tube, contains an axial core hole to accommodate the...that ignites the rocket motor . Simultaneously, the delay element is ignited and burns for an interval (preferably 5−6 s) before it ignites the black

  17. Multisensor speech input

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. R.; Karnofsky, K. F.; Stevens, K. N.; Alakel, M. N.

    1983-12-01

    The use of multiple sensors to transduce speech was investigated. A data base of speech and noise was collected from a number of transducers located on and around the head of the speaker. The transducers included pressure, first order gradient, second order gradient microphones and an accelerometer. The effort analyzed this data and evaluated the performance of a multiple sensor configuration. The conclusion was: multiple transducer configurations can provide a signal containing more useable speech information than that provided by a microphone.

  18. 30 CFR 56.14116 - Hand-held power tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...

  19. 30 CFR 56.14116 - Hand-held power tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...

  20. 30 CFR 56.14116 - Hand-held power tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...

  1. 30 CFR 57.14116 - Hand-held power tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...

  2. 30 CFR 56.14116 - Hand-held power tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...

  3. 30 CFR 57.14116 - Hand-held power tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...

  4. 30 CFR 57.14116 - Hand-held power tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...

  5. 30 CFR 56.14116 - Hand-held power tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hand-held power tools. 56.14116 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14116 Hand-held power tools. (a) Power drills...

  6. 30 CFR 57.14116 - Hand-held power tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...

  7. 30 CFR 57.14116 - Hand-held power tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hand-held power tools. 57.14116 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14116 Hand-held power tools. (a) Power drills...

  8. Classification of Sporting Activities Using Smartphone Accelerometers

    PubMed Central

    Mitchell, Edmond; Monaghan, David; O'Connor, Noel E.

    2013-01-01

    In this paper we present a framework that allows for the automatic identification of sporting activities using commonly available smartphones. We extract discriminative informational features from smartphone accelerometers using the Discrete Wavelet Transform (DWT). Despite the poor quality of their accelerometers, smartphones were used as capture devices due to their prevalence in today's society. Successful classification on this basis potentially makes the technology accessible to both elite and non-elite athletes. Extracted features are used to train different categories of classifiers. No one classifier family has a reportable direct advantage in activity classification problems to date; thus we examine classifiers from each of the most widely used classifier families. We investigate three classification approaches; a commonly used SVM-based approach, an optimized classification model and a fusion of classifiers. We also investigate the effect of changing several of the DWT input parameters, including mother wavelets, window lengths and DWT decomposition levels. During the course of this work we created a challenging sports activity analysis dataset, comprised of soccer and field-hockey activities. The average maximum F-measure accuracy of 87% was achieved using a fusion of classifiers, which was 6% better than a single classifier model and 23% better than a standard SVM approach. PMID:23604031

  9. Slip detection with accelerometer and tactile sensors in a robotic hand model

    NASA Astrophysics Data System (ADS)

    Al-Shanoon, Abdulrahman Abdulkareem S.; Anom Ahmad, Siti; Hassan, Mohd. Khair b.

    2015-11-01

    Grasp planning is an interesting issue in studies that dedicated efforts to investigate tactile sensors. This study investigated the physical force interaction between a tactile pressure sensor and a particular object. It also characterized object slipping during gripping operations and presented secure regripping of an object. Acceleration force was analyzed using an accelerometer sensor to establish a completely autonomous robotic hand model. An automatic feedback control system was applied to regrip the particular object when it commences to slip. Empirical findings were presented in consideration of the detection and subsequent control of the slippage situation. These findings revealed the correlation between the distance of the object slipping and the required force to regrip the object safely. This approach is similar to Hooke's law formula.

  10. Automated Detection of Stereotypical Motor Movements in Autism Spectrum Disorder Using Recurrence Quantification Analysis

    PubMed Central

    Großekathöfer, Ulf; Manyakov, Nikolay V.; Mihajlović, Vojkan; Pandina, Gahan; Skalkin, Andrew; Ness, Seth; Bangerter, Abigail; Goodwin, Matthew S.

    2017-01-01

    A number of recent studies using accelerometer features as input to machine learning classifiers show promising results for automatically detecting stereotypical motor movements (SMM) in individuals with Autism Spectrum Disorder (ASD). However, replicating these results across different types of accelerometers and their position on the body still remains a challenge. We introduce a new set of features in this domain based on recurrence plot and quantification analyses that are orientation invariant and able to capture non-linear dynamics of SMM. Applying these features to an existing published data set containing acceleration data, we achieve up to 9% average increase in accuracy compared to current state-of-the-art published results. Furthermore, we provide evidence that a single torso sensor can automatically detect multiple types of SMM in ASD, and that our approach allows recognition of SMM with high accuracy in individuals when using a person-independent classifier. PMID:28261082

  11. Automated Detection of Stereotypical Motor Movements in Autism Spectrum Disorder Using Recurrence Quantification Analysis.

    PubMed

    Großekathöfer, Ulf; Manyakov, Nikolay V; Mihajlović, Vojkan; Pandina, Gahan; Skalkin, Andrew; Ness, Seth; Bangerter, Abigail; Goodwin, Matthew S

    2017-01-01

    A number of recent studies using accelerometer features as input to machine learning classifiers show promising results for automatically detecting stereotypical motor movements (SMM) in individuals with Autism Spectrum Disorder (ASD). However, replicating these results across different types of accelerometers and their position on the body still remains a challenge. We introduce a new set of features in this domain based on recurrence plot and quantification analyses that are orientation invariant and able to capture non-linear dynamics of SMM. Applying these features to an existing published data set containing acceleration data, we achieve up to 9% average increase in accuracy compared to current state-of-the-art published results. Furthermore, we provide evidence that a single torso sensor can automatically detect multiple types of SMM in ASD, and that our approach allows recognition of SMM with high accuracy in individuals when using a person-independent classifier.

  12. Smart self management: assistive technology to support people with chronic disease.

    PubMed

    Zheng, Huiru; Nugent, Chris; McCullagh, Paul; Huang, Yan; Zhang, Shumei; Burns, William; Davies, Richard; Black, Norman; Wright, Peter; Mawson, Sue; Eccleston, Christopher; Hawley, Mark; Mountain, Gail

    2010-01-01

    We have developed a personalised self management system to support self management of chronic conditions with support from health-care professionals. Accelerometers are used to measure gross levels of activity, for example walking around the house, and used to infer higher level activity states, such as standing, sitting and lying. A smart phone containing an accelerometer and a global positioning system (GPS) module can be used to monitor outdoor activity, providing both activity and location based information. Heart rate, blood pressure and weight are recorded and input to the system by the user. A decision support system (DSS) detects abnormal activity and distinguishes life style patterns. The DSS is used to assess the self management process, and automates feedback to the user, consistent with the achievement of their life goals. We have found that telecare and assistive technology is feasible to support self management for chronic conditions within the home and local community environments.

  13. Hand-held analyser based on microchip electrophoresis with contactless conductivity detection for measurement of chemical warfare agent degradation products

    NASA Astrophysics Data System (ADS)

    Duran, Karolina-Petkovic; Zhu, Yonggang; Chen, Chuanpin; Swallow, Anthony; Stewart, Robert; Hoobin, Pam; Leech, Patrick; Ovenden, Simon

    2008-12-01

    This paper reports on the development of a hand-held device for on-site detection of organophosphonate nerve agent degradation products. This field-deployable analyzer relies on efficient microchip electrophoresis separation of alkyl methylphosphonic acids and their sensitive contactless conductivity detection. Miniaturized, low-powered design is coupled with promising analytical performance for separating the breakdown products of chemical warfare agents such as Soman, Sarin and VX . The detector has a detection limit of about 10 μg/mL and has a good linear response in the range 10-300 μg/mL concentration range. Applicability to environmental samples is demonstrated .The new hand-held analyzer offers great promise for converting conventional ion chromatography or capillary electrophoresis sophisticated systems into a portable forensic laboratory for faster, simpler and more reliable on-site screening.

  14. A hand-held electronic tongue based on fluorometry for taste assessment of tea.

    PubMed

    Chang, Kuang-Hua; Chen, Richie L C; Hsieh, Bo-Chuan; Chen, Po-Chung; Hsiao, Hsien-Yi; Nieh, Chi-Hua; Cheng, Tzong-Jih

    2010-12-15

    A hand-held electronic tongue was developed for determining taste levels of astringency and umami in tea infusions. The sensing principles are based on quenching the fluorescence of 3-aminophthalate by tannin, and the fluorogenic reaction of o-phthalaldehyde (OPA) with amino acids to determine astringency and umami levels, respectively. Both reactions were measured by a single fluorescence sensing system with same excitation and emission wavelengths (340/425 nm). This work describes in detail the design, fabrication, and performance evaluation of a hand-held fluorometer with an ultra-violet light emitted diode (UVLED) and a photo-detector with a filter built-in. The dimension and the weight of proposed electronic tongue prototype are only 120×60×65 mm(3) and 150 g, respectively. The detection limits of this prototype for theanine and tannic acid were 0.2 μg/ml and 1 μg/ml, respectively. Correlation coefficients of this prototype compared with a commercial fluorescence instrument are both higher than 0.995 in determinations of tannin acid and theanine. Linear detection ranges of the hand-held fluorometer for tannic acid and theanine are 1-20 μg/ml and 0.2-10 μg/ml (CV<5%, n=3), respectively. A specified taste indicator for tea, defined as ratio of umami to astringency, was adopted here to effectively distinguish flavour quality of partially fermented Oolong teas. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Hand-held radiometry: A set of notes developed for use at the Workshop of Hand-held radiometry

    NASA Technical Reports Server (NTRS)

    Jackson, R. D.; Pinter, P. J., Jr.; Reginato, R. J.; Idso, S. B. (Principal Investigator)

    1980-01-01

    A set of notes was developed to aid the beginner in hand-held radiometry. The electromagnetic spectrum is reviewed, and pertinent terms are defined. View areas of multiband radiometers are developed to show the areas of coincidence of adjacent bands. The amounts of plant cover seen by radiometers having different fields of view are described. Vegetation indices are derived and discussed. Response functions of several radiometers are shown and applied to spectrometer data taken over 12 wheat plots, to provide a comparison of instruments and bands within and among instruments. The calculation of solar time is reviewed and applied to the calculation of the local time of LANDSAT satellite overpasses for any particular location in the Northern Hemisphere. The use and misuse of hand-held infrared thermometers are discussed, and a procedure for photographic determination of plant cover is described. Some suggestions are offered concerning procedures to be followed when collecting hand-held spectral and thermal data. A list of references pertinent to hand-held radiometry is included.

  16. Haptic information provided by the "anchor system" reduces trunk sway acceleration in the frontal plane during tandem walking in older adults.

    PubMed

    Costa, Andréia Abud da Silva; Manciopi, Priscila Abbári Rossi; Mauerberg-deCastro, Eliane; Moraes, Renato

    2015-11-16

    This study assessed whether the use of an "anchor system" benefited older adults who performed a tandem walking task. Additionally, we tested the effects of practice with the anchor system during walking on trunk stability, in the frontal plane, of older adults. Forty-four older adults were randomly assigned to three groups: control group, 0g anchor group, and 125g anchor group. Individuals in each group performed a tandem walking task on the GaitRite system with an accelerometer placed on the cervical region. The participants in the 125g anchor group held, in each hand, a flexible cable with a light mass attached at the end of the cable, which rested on the ground. While the participants walked, they pulled on the cables just enough to keep them taut as the masses slid over the ground. The 0g anchor group held an anchor tool without any mass attached to the end portion. The results of this study demonstrated that the use of the anchor system contributed to the reduction of trunk acceleration in the frontal plane. However, this effect did not persist after removal of the anchors, which suggests that the amount of practice with this tool was insufficient to generate any lasting effect, or that the task was not sufficiently challenging, or both. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Mobile input device type, texting style and screen size influence upper extremity and trapezius muscle activity, and cervical posture while texting.

    PubMed

    Kietrys, David M; Gerg, Michael J; Dropkin, Jonathan; Gold, Judith E

    2015-09-01

    This study aimed to determine the effects of input device type, texting style, and screen size on upper extremity and trapezius muscle activity and cervical posture during a short texting task in college students. Users of a physical keypad produced greater thumb, finger flexor, and wrist extensor muscle activity than when texting with a touch screen device of similar dimensions. Texting on either device produced greater wrist extensor muscle activity when texting with 1 hand/thumb compared with both hands/thumbs. As touch screen size increased, more participants held the device on their lap, and chose to use both thumbs less. There was also a trend for greater finger flexor, wrist extensor, and trapezius muscle activity as touch screen size increased, and for greater cervical flexion, although mean differences for cervical flexion were small. Future research can help inform whether the ergonomic stressors observed during texting are associated with musculoskeletal disorder risk. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. Light airplane crash tests at impact velocities of 13 and 27 m/sec

    NASA Technical Reports Server (NTRS)

    Alfaro-Bou, E.; Vaughan, V. L., Jr.

    1977-01-01

    Two similar general aviation airplanes were crash tested at the Langley impact dynamics research facility at velocities of 13 and 27 m/sec. Other flight parameters were held constant. The facility, instrumentation, tests specimens, and test method are briefly described. Structural damage and accelerometer data are discussed.

  19. Application of neural based estimation algorithm for gait phases of above knee prosthesis.

    PubMed

    Tileylioğlu, E; Yilmaz, A

    2015-01-01

    In this study, two gait phase estimation methods which utilize a rule based quantization and an artificial neural network model respectively are developed and applied for the microcontroller based semi-active knee prosthesis in order to respond user demands and adapt environmental conditions. In this context, an experimental environment in which gait data collected synchronously from both inertial and image based measurement systems has been set up. The inertial measurement system that incorporates MEM accelerometers and gyroscopes is used to perform direct motion measurement through the microcontroller, while the image based measurement system is employed for producing the verification data and assessing the success of the prosthesis. Embedded algorithms dynamically normalize the input data prior to gait phase estimation. The real time analyses of two methods revealed that embedded ANN based approach performs slightly better in comparison with the rule based algorithm and has advantage of being easily-scalable, thus able to accommodate additional input parameters considering the microcontroller constraints.

  20. Choosing a Hand-Held Inventory Device

    ERIC Educational Resources Information Center

    Green, Lois; Hughes, Janet; Neff, Verne; Notartomas, Trish

    2008-01-01

    In spring of 2006, a task force was charged to look at the feasibility of acquiring hand-held inventory devices for the Pennsylvania State University Libraries (PSUL). The task force's charge was not to look at the whole concept of doing an inventory, but rather to focus on the feasibility of acquiring hand-held devices to use in an inventory.…

  1. Implications of Hand Held Electronic Games and Microcomputers for Informal Learning.

    ERIC Educational Resources Information Center

    Kee, Daniel W.

    The use of hand-held electronic devices and microcomputers in places of public access and in the home are discussed. First, the different activities supported by this technology are described, with emphasis on the commonality of game playing to both hand-held devices and microcomputers. The need for research to investigate the motivational…

  2. Motion-compensated hand-held common-path Fourier-domain optical coherence tomography probe for image-guided intervention

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Song, Cheol; Liu, Xuan; Kang, Jin U.

    2013-03-01

    A motion-compensated hand-held common-path Fourier-domain optical coherence tomography imaging probe has been developed for image guided intervention during microsurgery. A hand-held prototype instrument was designed and fabricated by integrating an imaging fiber probe inside a stainless steel needle which is attached to the ceramic shaft of a piezoelectric motor housed in an aluminum handle. The fiber probe obtains A-scan images. The distance information was extracted from the A-scans to track the sample surface distance and a fixed distance was maintained by a feedback motor control which effectively compensated hand tremor and target movements in the axial direction. Graphical user interface, real-time data processing, and visualization based on a CPU-GPU hybrid programming architecture were developed and used in the implantation of this system. To validate the system, free-hand optical coherence tomography images using various samples were obtained. The system can be easily integrated into microsurgical tools and robotics for a wide range of clinical applications. Such tools could offer physicians the freedom to easily image sites of interest with reduced risk and higher image quality.

  3. 78 FR 27441 - NIJ Evaluation of Hand-Held Cell Phone Detector Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... Hand-Held Cell Phone Detector Devices AGENCY: National Institute of Justice, Department of Justice...-held cell phone detector devices for participation in an evaluation by the NIJ Corrections Technology...-held cell phone detector devices for participation in an evaluation by the NIJ Corrections Technology...

  4. Hand-held optical imager (Gen-2): improved instrumentation and target detectability

    PubMed Central

    Gonzalez, Jean; DeCerce, Joseph; Erickson, Sarah J.; Martinez, Sergio L.; Nunez, Annie; Roman, Manuela; Traub, Barbara; Flores, Cecilia A.; Roberts, Seigbeh M.; Hernandez, Estrella; Aguirre, Wenceslao; Kiszonas, Richard

    2012-01-01

    Abstract. Hand-held optical imagers are developed by various researchers towards reflectance-based spectroscopic imaging of breast cancer. Recently, a Gen-1 handheld optical imager was developed with capabilities to perform two-dimensional (2-D) spectroscopic as well as three-dimensional (3-D) tomographic imaging studies. However, the imager was bulky with poor surface contact (∼30%) along curved tissues, and limited sensitivity to detect targets consistently. Herein, a Gen-2 hand-held optical imager that overcame the above limitations of the Gen-1 imager has been developed and the instrumentation described. The Gen-2 hand-held imager is less bulky, portable, and has improved surface contact (∼86%) on curved tissues. Additionally, the forked probe head design is capable of simultaneous bilateral reflectance imaging of both breast tissues, and also transillumination imaging of a single breast tissue. Experimental studies were performed on tissue phantoms to demonstrate the improved sensitivity in detecting targets using the Gen-2 imager. The improved instrumentation of the Gen-2 imager allowed detection of targets independent of their location with respect to the illumination points, unlike in Gen-1 imager. The developed imager has potential for future clinical breast imaging with enhanced sensitivity, via both reflectance and transillumination imaging. PMID:23224163

  5. Material Analysis and Identification

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KeyMaster Technologies, Inc., develops and markets specialized, hand-held X-ray fluorescence (XRF) instruments and unique tagging technology used to identify and authenticate materials or processes. NASA first met with this Kennewick, Washington-based company as the Agency began seeking companies to develop a hand-held instrument that would detect data matrix symbols on parts covered by paint and other coatings. Since the Federal Aviation Administration was also searching for methods to detect and eliminate the use of unapproved parts, it recommended that NASA and KeyMaster work together to develop a technology that would benefit both agencies.

  6. Validating the use of smartphone-based accelerometers for performance assessment in a simulated neurosurgical task.

    PubMed

    Jensen Ang, Wei Jie; Hopkins, Michael Edward; Partridge, Roland; Hennessey, Iain; Brennan, Paul Martin; Fouyas, Ioannis; Hughes, Mark Antony

    2014-03-01

    Reductions in working hours affect training opportunities for surgeons. Surgical simulation is increasingly proposed to help bridge the resultant training gap. For simulation training to translate effectively into the operating theater, acquisition of technical proficiency must be objectively assessed. Evaluating "economy of movement" is one way to achieve this. We sought to validate a practical and economical method of assessing economy of movement during a simulated task. We hypothesized that accelerometers, found in smartphones, provide quantitative, objective feedback when attached to a neurosurgeon's wrists. Subjects (n = 25) included consultants, senior registrars, junior registrars, junior doctors, and medical students. Total resultant acceleration (TRA), average resultant acceleration, and movements with acceleration >0.6g (suprathreshold acceleration events) were recorded while subjects performed a simulated dural closure task. Students recorded an average TRA 97.0 ± 31.2 ms higher than senior registrars (P = .03) and 103 ± 31.2 ms higher than consultants (P = .02). Similarly, junior doctors accrued an average TRA 181 ± 31.2 ms higher than senior registrars (P < .001) and 187 ± 31.2 ms higher than consultants (P < .001). Significant correlations were observed between surgical outcome (as measured by quality of dural closure) and both TRA (r = .44, P < .001) and number of suprathreshold acceleration events (r = .33, P < .001). TRA (219 ± 66.6 ms; P = .01) and number of suprathreshold acceleration events (127 ± 42.5; P = .02) dropped between the first and fourth trials for junior doctors, suggesting procedural learning. TRA was 45.4 ± 17.1 ms higher in the dominant hand for students (P = .04) and 57.2 ± 17.1 ms for junior doctors (P = .005), contrasting with even TRA distribution between hands (acquired ambidexterity) in senior groups. Data from smartphone-based accelerometers show construct validity as an adjunct for assessing technical performance during simulation training.

  7. Is questionnaire-based sitting time inaccurate and can it be improved? A cross-sectional investigation using accelerometer-based sitting time

    PubMed Central

    Gupta, Nidhi; Christiansen, Caroline Stordal; Hanisch, Christiana; Bay, Hans; Burr, Hermann; Holtermann, Andreas

    2017-01-01

    Objectives To investigate the differences between a questionnaire-based and accelerometer-based sitting time, and develop a model for improving the accuracy of questionnaire-based sitting time for predicting accelerometer-based sitting time. Methods 183 workers in a cross-sectional study reported sitting time per day using a single question during the measurement period, and wore 2 Actigraph GT3X+ accelerometers on the thigh and trunk for 1–4 working days to determine their actual sitting time per day using the validated Acti4 software. Least squares regression models were fitted with questionnaire-based siting time and other self-reported predictors to predict accelerometer-based sitting time. Results Questionnaire-based and accelerometer-based average sitting times were ≈272 and ≈476 min/day, respectively. A low Pearson correlation (r=0.32), high mean bias (204.1 min) and wide limits of agreement (549.8 to −139.7 min) between questionnaire-based and accelerometer-based sitting time were found. The prediction model based on questionnaire-based sitting explained 10% of the variance in accelerometer-based sitting time. Inclusion of 9 self-reported predictors in the model increased the explained variance to 41%, with 10% optimism using a resampling bootstrap validation. Based on a split validation analysis, the developed prediction model on ≈75% of the workers (n=132) reduced the mean and the SD of the difference between questionnaire-based and accelerometer-based sitting time by 64% and 42%, respectively, in the remaining 25% of the workers. Conclusions This study indicates that questionnaire-based sitting time has low validity and that a prediction model can be one solution to materially improve the precision of questionnaire-based sitting time. PMID:28093433

  8. Evaluation of a six-DOF electrodynamic shaker system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, Danny Lynn; Smallwood, David Ora

    2009-03-01

    The paper describes the preliminary evaluation of a 6 degree of freedom electrodynamic shaker system. The 8 by 8 inch (20.3 cm) table is driven by 12 electrodynamic shakers producing motion in all 6 rigid body modes. A small electrodynamic shaker system suitable for small component testing is described. The principal purpose of the system is to demonstrate the technology. The shaker is driven by 12 electrodynamic shakers each with a force capability of about 50 lbs (220 N). The system was developed through an informal cooperative agreement between Sandia National Laboratories, Team Corp. and Spectral Dynamics Corporation. Sandia providedmore » the laboratory space and some development funds. Team provided the mechanical system, and Spectral Dynamics provided the control system. Spectral Dynamics was chosen to provide the control system partly because of their experience in MIMO control and partly because Sandia already had part of the system in house. The shaker system was conceived and manufactured by TEAM Corp. Figure 1 shows the overall system. The vibration table, electrodynamic shakers, hydraulic pumps, and amplifiers are all housed in a single cabinet. Figure 2 is a drawing showing how the electrodynamic shakers are coupled to the table. The shakers are coupled to the table through a hydraulic spherical pad bearing providing 5 degrees of freedom and one stiff degree of freedom. The pad bearing must be preloaded with a static force as they are unable to provide any tension forces. The horizontal bearings are preloaded with steel springs. The drawing shows a spring providing the vertical preload. This was changed in the final design. The vertical preload is provided by multiple strands of an O-ring material as shown in Figure 4. Four shakers provide excitation in each of the three orthogonal axes. The specifications of the shaker are outlined in Table 1. Four shakers provide inputs in each of the three orthogonal directions. By choosing the phase relationships between the shakers all six rigid body modes (three translation, and three rotations) can be excited. The system is over determined. There are more shakers than degrees of freedom. This provided an interesting control problem. The problem was approached using the input-output transformation matrices provided in the Spectral control system. Twelve accelerometers were selected for the control accelerometers (a tri-axial accelerometer at each corner of the table (see Figure 5). Figure 6 shows the nomenclature used to identify the shakers and control accelerometers. A fifth tri-axial accelerometer was placed at the center of the table, but it was not used for control. Thus we had 12 control accelerometers and 12 shakers to control a 6-dof shaker. The 12 control channels were reduced to a 6-dof control using a simple input transformation matrix. The control was defined by a 6x6 spectral density matrix. The six outputs in the control variable coordinates were transformed to twelve physical drive signals using another simple output transformation matrix. It was assumed that the accelerometers and shakers were well matched such that the transformation matrices were independent of frequency and could be deduced from rigid body considerations. The input/output transformations are shown in Equations 1 and 2.« less

  9. Common input to motor units of intrinsic and extrinsic hand muscles during two-digit object hold.

    PubMed

    Winges, Sara A; Kornatz, Kurt W; Santello, Marco

    2008-03-01

    Anatomical and physiological evidence suggests that common input to motor neurons of hand muscles is an important neural mechanism for hand control. To gain insight into the synaptic input underlying the coordination of hand muscles, significant effort has been devoted to describing the distribution of common input across motor units of extrinsic muscles. Much less is known, however, about the distribution of common input to motor units belonging to different intrinsic muscles and to intrinsic-extrinsic muscle pairs. To address this void in the literature, we quantified the incidence and strength of near-simultaneous discharges of motor units residing in either the same or different intrinsic hand muscles (m. first dorsal, FDI, and m. first palmar interosseus, FPI) during two-digit object hold. To extend the characterization of common input to pairs of extrinsic muscles (previous work) and pairs of intrinsic muscles (present work), we also recorded electromyographic (EMG) activity from an extrinsic thumb muscle (m. flexor pollicis longus, FPL). Motor-unit synchrony across FDI and FPI was weak (common input strength, CIS, mean +/- SE: 0.17 +/- 0.02). Similarly, motor units from extrinsic-intrinsic muscle pairs were characterized by weak synchrony (FPL-FDI: 0.25 +/- 0.02; FPL-FPI: 0.29 +/- 0.03) although stronger than FDI-FPI. Last, CIS from within FDI and FPI was more than three times stronger (0.70 +/- 0.06 and 0.66 +/- 0.06, respectively) than across these muscles. We discuss present and previous findings within the framework of muscle-pair specific distribution of common input to hand muscles based on their functional role in grasping.

  10. The different ways to obtain digital images of urine microscopy findings: Their advantages and limitations.

    PubMed

    Fogazzi, G B; Garigali, G

    2017-03-01

    We describe three ways to take digital images of urine sediment findings. Way 1 encompasses a digital camera permanently mounted on the microscope and connected with a computer equipped with a proprietary software to acquire, process and store the images. Way 2 is based on the use of inexpensive compact digital cameras, held by hands - or mounted on a tripod - close to one eyepiece of the microscope. Way 3 is based on the use of smartphones, held by hands close to one eyepiece of the microscope or connected to the microscope by an adapter. The procedures, advantages and limitations of each way are reported. Copyright © 2017. Published by Elsevier B.V.

  11. An adaptive optimal control for smart structures based on the subspace tracking identification technique

    NASA Astrophysics Data System (ADS)

    Ripamonti, Francesco; Resta, Ferruccio; Borroni, Massimo; Cazzulani, Gabriele

    2014-04-01

    A new method for the real-time identification of mechanical system modal parameters is used in order to design different adaptive control logics aiming to reduce the vibrations in a carbon fiber plate smart structure. It is instrumented with three piezoelectric actuators, three accelerometers and three strain gauges. The real-time identification is based on a recursive subspace tracking algorithm whose outputs are elaborated by an ARMA model. A statistical approach is finally applied to choose the modal parameter correct values. These are given in input to model-based control logics such as a gain scheduling and an adaptive LQR control.

  12. Review and Evaluation of Hand-Arm Coordinate Systems for Measuring Vibration Exposure, Biodynamic Responses, and Hand Forces.

    PubMed

    Dong, Ren G; Sinsel, Erik W; Welcome, Daniel E; Warren, Christopher; Xu, Xueyan S; McDowell, Thomas W; Wu, John Z

    2015-09-01

    The hand coordinate systems for measuring vibration exposures and biodynamic responses have been standardized, but they are not actually used in many studies. This contradicts the purpose of the standardization. The objectives of this study were to identify the major sources of this problem, and to help define or identify better coordinate systems for the standardization. This study systematically reviewed the principles and definition methods, and evaluated typical hand coordinate systems. This study confirms that, as accelerometers remain the major technology for vibration measurement, it is reasonable to standardize two types of coordinate systems: a tool-based basicentric (BC) system and an anatomically based biodynamic (BD) system. However, these coordinate systems are not well defined in the current standard. Definition of the standard BC system is confusing, and it can be interpreted differently; as a result, it has been inconsistently applied in various standards and studies. The standard hand BD system is defined using the orientation of the third metacarpal bone. It is neither convenient nor defined based on important biological or biodynamic features. This explains why it is rarely used in practice. To resolve these inconsistencies and deficiencies, we proposed a revised method for defining the realistic handle BC system and an alternative method for defining the hand BD system. A fingertip-based BD system for measuring the principal grip force is also proposed based on an important feature of the grip force confirmed in this study.

  13. Hand controllers for teleoperation. A state-of-the-art technology survey and evaluation

    NASA Technical Reports Server (NTRS)

    Brooks, T. L.; Bejczy, A. K.

    1985-01-01

    Hand controller technology for teleoperation is surveyed in three major catagories: (1) hand grip design, (2) control input devices, and (3) control strategies. In the first category, 14 hand grip designs are reviewed and evaluated in light of human factor considerations. In the second, 12 hand controller input devices are evaluated in terms of task performance, configuration and force feedback, controller/slave correspondence, operating volume, operator workload, human limitations, cross coupling, singularities, anthropomorphic characteristics, physical complexity, control/display interference, accuracy, technological base, cost, and reliability. In the third catagory, control strategies, commonly called control modes, are surveyed and evaluated. The report contains a bibliography with 189 select references on hand controller technology.

  14. Comparison of Physical Activity Adult Questionnaire results with accelerometer data.

    PubMed

    Garriguet, Didier; Tremblay, Sylvain; Colley, Rachel C

    2015-07-01

    Discrepancies between self-reported and objectively measured physical activity are well-known. For the purpose of validation, this study compares a new self-reported physical activity questionnaire with an existing one and with accelerometer data. Data collected at one site of the Canadian Health Measures Survey in 2013 were used for this validation study. The International Physical Activity Questionnaire (IPAQ) was administered to respondents during the household interview, and the new Physical Activity for Adults Questionnaire (PAAQ) was administered during a subsequent visit to a mobile examination centre (MEC). At the MEC, respondents were given an accelerometer to wear for seven days. The analysis pertains to 112 respondents aged 18 to 79 who wore the accelerometer for 10 or more hours on at least four days. Moderate-to-vigorous physical activity (MVPA) measured by accelerometer had higher correlation with data from the PAAQ (r = 0.44) than with data from the IPAQ (r = 0.20). The differences between accelerometer and PAAQ data were greater based on accelerometer-measured physical activity accumulated in 10-minute bouts (30-minute difference in MVPA) than on all minutes (9-minute difference). The percentages of respondents meeting the Canadian Physical Activity Guidelines were 90% based on self-reported IPAQ minutes, 70% based on all accelerometer MVPA minutes, 29% based on accelerometer MVPA minutes accumulated in 10-minute bouts, and 61% based on self-reported PAAQ minutes. The PAAQ demonstrated reasonable validity against the accelerometer criterion. Based on correlations and absolute differences between daily minutes of MVPA and the percentages of respondents meeting the Canadian Physical Activity Guidelines, PAAQ results were closer to accelerometer data than were the IPAQ results for the study sample and previous Statistics Canada self-reported questionnaire findings.

  15. The GSFC Mark-2 three band hand-held radiometer. [thematic mapper for ground truth data collection

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Jones, W. H.; Kley, W. A.; Sundstrom, G. J.

    1980-01-01

    A self-contained, portable, hand-radiometer designed for field usage was constructed and tested. The device, consisting of a hand-held probe containing three sensors and a strap supported electronic module, weighs 4 1/2 kilograms. It is powered by flashlight and transistor radio batteries, utilizes two silicon and one lead sulfide detectors, has three liquid crystal displays, sample and hold radiometric sampling, and its spectral configuration corresponds to LANDSAT-D's thematic mapper bands. The device was designed to support thematic mapper ground-truth data collection efforts and to facilitate 'in situ' ground-based remote sensing studies of natural materials. Prototype instruments were extensively tested under laboratory and field conditions with excellent results.

  16. An Investigation of Energy Transmission Due to Flexural Wave Propagation in Lightweight, Built-Up Structures. Thesis

    NASA Technical Reports Server (NTRS)

    Mickol, John Douglas; Bernhard, R. J.

    1986-01-01

    A technique to measure flexural structure-borne noise intensity is investigated. Two accelerometers serve as transducers in this cross-spectral technique. The structure-borne sound power is obtained by two different techniques and compared. In the first method, a contour integral of intensity is performed from the values provided by the two-accelerometer intensity technique. In the second method, input power is calculated directly from the output of force and acceleration transducers. A plate and two beams were the subjects of the sound power comparisons. Excitation for the structures was either band-limited white noise or a deterministic signal similar to a swept sine. The two-accelerometer method was found to be sharply limited by near field and transducer spacing limitations. In addition, for the lightweight structures investigated, it was found that the probe inertia can have a significant influence on the power input to the structure. In addition to the experimental investigation of structure-borne sound energy, an extensive study of the point harmonically forced, point-damped beam boundary value problem was performed to gain insight into measurements of this nature. The intensity formulations were also incorporated into the finite element method. Intensity mappings were obtained analytically via finite element modeling of simple structures.

  17. Driver hand-held cellular phone use: a four-year analysis.

    PubMed

    Eby, David W; Vivoda, Jonathon M; St Louis, Renée M

    2006-01-01

    The use of hand-held cellular (mobile) phones while driving has stirred more debate, passion, and research than perhaps any other traffic safety issue in the past several years. There is ample research showing that the use of either hand-held or hands-free cellular phones can lead to unsafe driving patterns. Whether or not these performance deficits increase the risk of crash is difficult to establish, but recent studies are beginning to suggest that cellular phone use elevates crash risk. The purpose of this study was to assess changes in the rate of hand-held cellular phone use by motor-vehicle drivers on a statewide level in Michigan. This study presents the results of 13 statewide surveys of cellular phone use over a 4-year period. Hand-held cellular phone use data were collected through direct observation while vehicles were stopped at intersections and freeway exit ramps. Data were weighted to be representative of all drivers traveling during daylight hours in Michigan. The study found that driver hand-held cellular phone use has more than doubled between 2001 and 2005, from 2.7% to 5.8%. This change represents an average increase of 0.78 percentage points per year. The 5.8% use rate observed in 2005 means that at any given daylight hour, around 36,550 drivers were conversing on cellular phones while driving on Michigan roadways. The trend line fitted to these data predicts that by the year 2010, driver hand-held cellular phone use will be around 8.6%, or 55,000 drivers at any given daylight hour. These results make it clear that cellular phone use while driving will continue to be an important traffic safety issue, and highlight the importance of continued attempts to generate new ways of alleviating this potential hazard.

  18. Measuring frequency of spontaneous swallowing.

    PubMed

    Afkari, Sohail

    2007-12-01

    A new multi-sensory non-invasive portable system capable of detecting spontaneous swallowing in a patient population has been developed. Swallowing signals are recorded via Electromyogram (voltage potentials generated by throat muscles), an accelerometer (laryngeal elevations) and a microphone (cervical auscultation) affixed to the neck at the coniotomy region. Simultaneous signal comparison of all three modalities provides a vastly more reliable measure of swallowing frequency by rejecting artefacts associated with speech, body movement, coughing and background intereferences. The operational accuracy of the system was validated by a hand-held manual counter on a healthy subject undertaking everyday activities. Preliminary results showed a recorded mean spontaneous swallowing frequency of 1.32 swallows/minute and a slighly higher mean voluntary swallowing frequency of 1.52 swallows/minute with the intake of 100 ml of water. The device was able to detect 94.3% of dry swallows correctly, with each sensor responding differently to various noise interferences. The proposed system has potential to provide additional diagnostic information in clinical research of possible physiological problems associated with an abnormal swallowing frequency across a range of medical fields.

  19. Sensor Suitcase Tablet Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Retrocommissioning Sensor Suitcase is targeted for use in small commercial buildings of less than 50,000 square feet of floor space that regularly receive basic services such as maintenance and repair, but don't have in-house energy management staff or buildings experts. The Suitcase is designed to be easy-to-use by building maintenance staff, or other professionals such as telecom and alarm technicians. The software in the hand-held is designed to guide the staff to input the building and system information, deploy the sensors in proper location, configure the sensor hardware, and start the data collection.

  20. Shipboard fisheries management terminals

    NASA Technical Reports Server (NTRS)

    Nagler, R. G.; Sager, E. V.

    1980-01-01

    The needs of the National Marine Fisheries Service (NMGS), National Weather Service, and the U.S. Coast Guard for locational, biological, and environmental data were assessed. The fisheries conservation zones and the yellowfin tuna jurisdiction of the NMFS operates observer programs on foreign and domestic fishing vessels. Data input terminal and data transfer and processing technology are reviewed to establish available capability. A matrix of implementation options is generated to identify the benefits of each option, and preliminary cost estimates are made. Recommendations are made for incremental application of available off the shelf hardware to obtain improved performance and benefits within a well bounded cost. Terminal recommendations are made for three interdependent shipboard units emphasizing: (1) the determination of location and fishing activity; (2) hand held data inputting and formatting in the fishing work areas; and (3) data manipulation, merging, and editing.

  1. Is questionnaire-based sitting time inaccurate and can it be improved? A cross-sectional investigation using accelerometer-based sitting time.

    PubMed

    Gupta, Nidhi; Christiansen, Caroline Stordal; Hanisch, Christiana; Bay, Hans; Burr, Hermann; Holtermann, Andreas

    2017-01-16

    To investigate the differences between a questionnaire-based and accelerometer-based sitting time, and develop a model for improving the accuracy of questionnaire-based sitting time for predicting accelerometer-based sitting time. 183 workers in a cross-sectional study reported sitting time per day using a single question during the measurement period, and wore 2 Actigraph GT3X+ accelerometers on the thigh and trunk for 1-4 working days to determine their actual sitting time per day using the validated Acti4 software. Least squares regression models were fitted with questionnaire-based siting time and other self-reported predictors to predict accelerometer-based sitting time. Questionnaire-based and accelerometer-based average sitting times were ≈272 and ≈476 min/day, respectively. A low Pearson correlation (r=0.32), high mean bias (204.1 min) and wide limits of agreement (549.8 to -139.7 min) between questionnaire-based and accelerometer-based sitting time were found. The prediction model based on questionnaire-based sitting explained 10% of the variance in accelerometer-based sitting time. Inclusion of 9 self-reported predictors in the model increased the explained variance to 41%, with 10% optimism using a resampling bootstrap validation. Based on a split validation analysis, the developed prediction model on ≈75% of the workers (n=132) reduced the mean and the SD of the difference between questionnaire-based and accelerometer-based sitting time by 64% and 42%, respectively, in the remaining 25% of the workers. This study indicates that questionnaire-based sitting time has low validity and that a prediction model can be one solution to materially improve the precision of questionnaire-based sitting time. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. A Research and Development Strategy for Unexploded Ordnance Sensing

    DTIC Science & Technology

    1996-04-01

    Each lane was carefully traversed with the MK-26 Ordnance Detector (dual fluxgate magnetometer hand-held unit) and the operator hand-excavated any...proton-precessing magnetometers , optically pumped magnetometers , fluxgates magnetometers , and magnetometers based on superconducting quantum...sensitivity better than 0.05 nT, and the optically-pumped magnetometers have sensitivity better than 0.005 nT. Fluxgate magnetometers are based on solid

  3. A simplified financial model for automatic meter reading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, S.M.

    1994-01-15

    The financial model proposed here (which can be easily adapted for electric, gas, or water) combines aspects of [open quotes]life cycle,[close quotes] [open quotes]consumer value[close quotes] and [open quotes]revenue based[close quotes] approaches and addresses intangible benefits. A simple value tree of one-word descriptions clarifies the relationship between level of investment and level of value, visually relating increased value to increased cost. The model computes the numerical present values of capital costs, recurring costs, and revenue benefits over a 15-year period for the seven configurations: manual reading of existing or replacement standard meters (MMR), manual reading using electronic, hand-held retrievers (EMR),more » remote reading of inaccessible meters via hard-wired receptacles (RMR), remote reading of meters adapted with pulse generators (RMR-P), remote reading of meters adapted with absolute dial encoders (RMR-E), offsite reading over a few hundred feet with mobile radio (OMR), and fully automatic reading using telephone or an equivalent network (AMR). In the model, of course, the costs of installing the configurations are clearly listed under each column. The model requires only four annualized inputs and seven fixed-cost inputs that are rather easy to obtain.« less

  4. Prediction modeling of physiological responses and human performance in the heat with application to space operations

    NASA Technical Reports Server (NTRS)

    Pandolf, Kent B.; Stroschein, Leander A.; Gonzalez, Richard R.; Sawka, Michael N.

    1994-01-01

    This institute has developed a comprehensive USARIEM heat strain model for predicting physiological responses and soldier performance in the heat which has been programmed for use by hand-held calculators, personal computers, and incorporated into the development of a heat strain decision aid. This model deals directly with five major inputs: the clothing worn, the physical work intensity, the state of heat acclimation, the ambient environment (air temperature, relative humidity, wind speed, and solar load), and the accepted heat casualty level. In addition to predicting rectal temperature, heart rate, and sweat loss given the above inputs, our model predicts the expected physical work/rest cycle, the maximum safe physical work time, the estimated recovery time from maximal physical work, and the drinking water requirements associated with each of these situations. This model provides heat injury risk management guidance based on thermal strain predictions from the user specified environmental conditions, soldier characteristics, clothing worn, and the physical work intensity. If heat transfer values for space operations' clothing are known, NASA can use this prediction model to help avoid undue heat strain in astronauts during space flight.

  5. Spring wheat-leaf phytomass and yield estimates from airborne scanner and hand-held radiometer measurements

    NASA Technical Reports Server (NTRS)

    Aase, J. K.; Siddoway, F. H.; Millard, J. P.

    1984-01-01

    An attempt has been made to relate hand-held radiometer measurements, and airborne multispectral scanner readings, with both different wheat stand densities and grain yield. Aircraft overflights were conducted during the tillering, stem extension and heading period stages of growth, while hand-held radiometer readings were taken throughout the growing season. The near-IR/red ratio was used in the analysis, which indicated that both the aircraft and the ground measurements made possible a differentiation and evaluation of wheat stand densities at an early enough growth stage to serve as the basis of management decisions. The aircraft data also corroborated the hand-held radiometer measurements with respect to yield prediction. Winterkill was readily evaluated.

  6. Computer implemented method, and apparatus for controlling a hand-held tool

    NASA Technical Reports Server (NTRS)

    Wagner, Kenneth William (Inventor); Taylor, James Clayton (Inventor)

    1999-01-01

    The invention described here in is a computer-implemented method and apparatus for controlling a hand-held tool. In particular, the control of a hand held tool is for the purpose of controlling the speed of a fastener interface mechanism and the torque applied to fasteners by the fastener interface mechanism of the hand-held tool and monitoring the operating parameters of the tool. The control is embodied in intool software embedded on a processor within the tool which also communicates with remote software. An operator can run the tool, or through the interaction of both software, operate the tool from a remote location, analyze data from a performance history recorded by the tool, and select various torque and speed parameters for each fastener.

  7. Accelerometry Measuring the Outcome of Robot-Supported Upper Limb Training in Chronic Stroke: A Randomized Controlled Trial

    PubMed Central

    Lemmens, Ryanne J. M.; Timmermans, Annick A. A.; Janssen-Potten, Yvonne J. M.; Pulles, Sanne A. N. T. D.; Geers, Richard P. J.; Bakx, Wilbert G. M.; Smeets, Rob J. E. M.; Seelen, Henk A. M.

    2014-01-01

    Purpose This study aims to assess the extent to which accelerometers can be used to determine the effect of robot-supported task-oriented arm-hand training, relative to task-oriented arm-hand training alone, on the actual amount of arm-hand use of chronic stroke patients in their home situation. Methods This single-blind randomized controlled trial included 16 chronic stroke patients, randomly allocated using blocked randomization (n = 2) to receive task-oriented robot-supported arm-hand training or task-oriented (unsupported) arm-hand training. Training lasted 8 weeks, 4 times/week, 2×30 min/day using the (T-)TOAT ((Technology-supported)-Task-Oriented-Arm-Training) method. The actual amount of arm-hand use, was assessed at baseline, after 8 weeks training and 6 months after training cessation. Duration of use and intensity of use of the affected arm-hand during unimanual and bimanual activities were calculated. Results Duration and intensity of use of the affected arm-hand did not change significantly during and after training, with or without robot-support (i.e. duration of use of unimanual use of the affected arm-hand: median difference of −0.17% in the robot-group and −0.08% in the control group between baseline and after training cessation; intensity of the affected arm-hand: median difference of 3.95% in the robot-group and 3.32% in the control group between baseline and after training cessation). No significant between-group differences were found. Conclusions Accelerometer data did not show significant changes in actual amount of arm-hand use after task-oriented training, with or without robot-support. Next to the amount of use, discrimination between activities performed and information about quality of use of the affected arm-hand are essential to determine actual arm-hand performance. Trial Registration Controlled-trials.com ISRCTN82787126 PMID:24823925

  8. Design and implementation of a micromechanical silicon resonant accelerometer.

    PubMed

    Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing

    2013-11-19

    The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C.

  9. The SRS-Viewer: A Software Tool for Displaying and Evaluation of Pyroshock Data

    NASA Astrophysics Data System (ADS)

    Eberl, Stefan

    2014-06-01

    For the evaluation of the success of a pyroshock, the time domain and the corresponding Shock-Response- Spectra (SRS) have to be considered. The SRS-Viewer is an IABG developed software tool [1] to read data in Universal File format (*.unv) and either display or plot for each accelerometer the time domain, corresponding SRS and the specified Reference-SRS with tolerances in the background.The software calculates the "Average (AVG)", "Maximum (MAX)" and "Minimum (MIN)" SRS of any selection of accelerometers. A statistical analysis calculates the percentages of measured SRS above the specified Reference-SRS level and the percentage within the tolerance bands for comparison with the specified success criteria.Overlay plots of single accelerometers of different test runs enable to monitor the repeatability of the shock input and the integrity of the specimen. Furthermore the difference between the shock on a mass-dummy and the real test unit can be examined.

  10. Surgical guidance system using hand-held probe with accompanying positron coincidence detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majewski, Stanislaw; Weisenberger, Andrew G.

    A surgical guidance system offering different levels of imaging capability while maintaining the same hand-held convenient small size of light-weight intra-operative probes. The surgical guidance system includes a second detector, typically an imager, located behind the area of surgical interest to form a coincidence guidance system with the hand-held probe. This approach is focused on the detection of positron emitting biomarkers with gamma rays accompanying positron emissions from the radiolabeled nuclei.

  11. Automated Hand-Held UXO Detection, Classification & Discrimination Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Thomas H.

    2000-06-12

    The research focused on procedures for target discrimination and classification using hand-held EMI sensors. The idea is to have a small, portable sensor that can be operated in a sweep or similar pattern in front of the operator, and that is capable of distinguishing between buried UXO and clutter on the spot. Curing Phase 1, we developed the processing techniques for distinguishing between buried UXO and clutter using the EM61-HH hand-held metal detector.

  12. A Novel Hand-Held Optical Imager with Real-Time Coregistration Facilities Toward Diagnostic Mammography

    DTIC Science & Technology

    2011-01-01

    Journal Publications (1) S.J. Erickson, S.L. Martinez, J. Gonzalez, L. Caldera , and A. Godavarty. “Improved detection limits using a hand-held...Erickson, S. Martinez, J. Gonzalez, L. Caldera , and A. Godavarty. “Non- invasive Diagnostic Breast Imaging using a Hand-held Optical Imager...Proceedings of the 14th World Multi-Conference on Systems, Cybernetics and Informatics, 2010. (4) S.J. Erickson, S. Martinez, L. Caldera , and A

  13. Validation of a portable nitric oxide analyzer for screening in primary ciliary dyskinesias.

    PubMed

    Harris, Amanda; Bhullar, Esther; Gove, Kerry; Joslin, Rhiannon; Pelling, Jennifer; Evans, Hazel J; Walker, Woolf T; Lucas, Jane S

    2014-02-10

    Nasal nitric oxide (nNO) levels are very low in primary ciliary dyskinesia (PCD) and it is used as a screening test. We assessed the reliability and usability of a hand-held analyser in comparison to a stationary nitric oxide (NO) analyser in 50 participants (15 healthy, 13 PCD, 22 other respiratory diseases; age 6-79 years). Nasal NO was measured using a stationary NO analyser during a breath-holding maneuver, and using a hand-held analyser during tidal breathing, sampling at 2 ml/sec or 5 ml/sec. The three methods were compared for their specificity and sensitivity as a screen for PCD, their success rate in different age groups, within subject repeatability and acceptability. Correlation between methods was assessed. Valid nNO measurements were obtained in 94% of participants using the stationary analyser, 96% using the hand-held analyser at 5 ml/sec and 76% at 2 ml/sec. The hand-held device at 5 ml/sec had excellent sensitivity and specificity as a screening test for PCD during tidal breathing (cut-off of 30 nL/min,100% sensitivity, >95% specificity). The cut-off using the stationary analyser during breath-hold was 38 nL/min (100% sensitivity, 95% specificity). The stationary and hand-held analyser (5 ml/sec) showed reasonable within-subject repeatability(% coefficient of variation = 15). The hand-held NO analyser provides a promising screening tool for PCD.

  14. Review and Evaluation of Hand–Arm Coordinate Systems for Measuring Vibration Exposure, Biodynamic Responses, and Hand Forces

    PubMed Central

    Dong, Ren G.; Sinsel, Erik W.; Welcome, Daniel E.; Warren, Christopher; Xu, Xueyan S.; McDowell, Thomas W.; Wu, John Z.

    2015-01-01

    The hand coordinate systems for measuring vibration exposures and biodynamic responses have been standardized, but they are not actually used in many studies. This contradicts the purpose of the standardization. The objectives of this study were to identify the major sources of this problem, and to help define or identify better coordinate systems for the standardization. This study systematically reviewed the principles and definition methods, and evaluated typical hand coordinate systems. This study confirms that, as accelerometers remain the major technology for vibration measurement, it is reasonable to standardize two types of coordinate systems: a tool-based basicentric (BC) system and an anatomically based biodynamic (BD) system. However, these coordinate systems are not well defined in the current standard. Definition of the standard BC system is confusing, and it can be interpreted differently; as a result, it has been inconsistently applied in various standards and studies. The standard hand BD system is defined using the orientation of the third metacarpal bone. It is neither convenient nor defined based on important biological or biodynamic features. This explains why it is rarely used in practice. To resolve these inconsistencies and deficiencies, we proposed a revised method for defining the realistic handle BC system and an alternative method for defining the hand BD system. A fingertip-based BD system for measuring the principal grip force is also proposed based on an important feature of the grip force confirmed in this study. PMID:26929824

  15. Nintendo Wii assessment of Hoehn and Yahr score with Parkinson's disease tremor.

    PubMed

    Koçer, Abdulkadir; Oktay, Ayse Betul

    2016-01-01

    Diagnosis of Parkinson's Disease (PD) by analyzing the resting tremor were much studied by using different accelerometer based methods, however the quantitative assessment of Hoehn and Yahr Scale (HYS) score with a machine learning based system has not been previously addressed. In this study, we aimed to propose a system to automatically assess the HYS score of patients with PD. The system was evaluated and tested on a dataset containing 55 subjects where 35 of them were patients and 20 of them were healthy controls. The resting tremor data were gathered with the 3 axis accelerometer of the Nintendo Wii (Wiimote). The clinical disability of the PD was graded from 1 to 5 by the HYS and tremor was recorded twice from the more affected side in each patient and from the dominant extremity in each control for a 60 seconds period. The HYS scores were learned with Support Vector Machines (SVM) from the features of the tremor data. Thirty-two of the subjects with PD were classified correctly and 18 of the normal subjects were also classified correctly by our system. The system had average 0.89 accuracy rate (Range: 81-100% changing according to grading by HYS). We compared quantitative measurements of hand tremor in PD patients, with staging of PD based on accelerometer data gathered using the Wii sensor. Our results showed that the machine learning based system with simple features could be helpful for diagnosis of PD and estimate HYS score. We believed that this portable and easy-to-use Wii sensor measure might also be applicable in the continuous monitoring of the resting tremor with small modifications in routine clinical use.

  16. The Relationship Between Lower Extremily Strength and Shoulder Overuse Symptoms: A Model Based on Polio Survivors

    DTIC Science & Technology

    1998-01-01

    developed based on a questionnaire designed to measure habitual physical activity.9 The survey 124 included specific activities that might predispose...manual strength examination was then performed by a physical therapist using a hand- 149 held dynamometer (Empi Microfet2, St. Paul, MN). The physical ...subject pushed against the padded dynamometer force plate, 157 which the physical therapist held stationary. The peak force was measured in pounds, and

  17. Design and Implementation of a Micromechanical Silicon Resonant Accelerometer

    PubMed Central

    Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing

    2013-01-01

    The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C. PMID:24256978

  18. The analysis of temperature effect and temperature compensation of MOEMS accelerometer based on a grating interferometric cavity

    NASA Astrophysics Data System (ADS)

    Han, Dandan; Bai, Jian; Lu, Qianbo; Lou, Shuqi; Jiao, Xufen; Yang, Guoguang

    2016-08-01

    There is a temperature drift of an accelerometer attributed to the temperature variation, which would adversely influence the output performance. In this paper, a quantitative analysis of the temperature effect and the temperature compensation of a MOEMS accelerometer, which is composed of a grating interferometric cavity and a micromachined sensing chip, are proposed. A finite-element-method (FEM) approach is applied in this work to simulate the deformation of the sensing chip of the MOEMS accelerometer at different temperature from -20°C to 70°C. The deformation results in the variation of the distance between the grating and the sensing chip of the MOEMS accelerometer, modulating the output intensities finally. A static temperature model is set up to describe the temperature characteristics of the accelerometer through the simulation results and the temperature compensation is put forward based on the temperature model, which can improve the output performance of the accelerometer. This model is permitted to estimate the temperature effect of this type accelerometer, which contains a micromachined sensing chip. Comparison of the output intensities with and without temperature compensation indicates that the temperature compensation can improve the stability of the output intensities of the MOEMS accelerometer based on a grating interferometric cavity.

  19. Development and characterization of a round hand-held silicon photomultiplier based gamma camera for intraoperative imaging

    PubMed Central

    Popovic, Kosta; McKisson, Jack E.; Kross, Brian; Lee, Seungjoon; McKisson, John; Weisenberger, Andrew G.; Proffitt, James; Stolin, Alexander; Majewski, Stan; Williams, Mark B.

    2017-01-01

    This paper describes the development of a hand-held gamma camera for intraoperative surgical guidance that is based on silicon photomultiplier (SiPM) technology. The camera incorporates a cerium doped lanthanum bromide (LaBr3:Ce) plate scintillator, an array of 80 SiPM photodetectors and a two-layer parallel-hole collimator. The field of view is circular with a 60 mm diameter. The disk-shaped camera housing is 75 mm in diameter, approximately 40.5 mm thick and has a mass of only 1.4 kg, permitting either hand-held or arm-mounted use. All camera components are integrated on a mobile cart that allows easy transport. The camera was developed for use in surgical procedures including determination of the location and extent of primary carcinomas, detection of secondary lesions and sentinel lymph node biopsy (SLNB). Here we describe the camera design and its principal operating characteristics, including spatial resolution, energy resolution, sensitivity uniformity, and geometric linearity. The gamma camera has an intrinsic spatial resolution of 4.2 mm FWHM, an energy resolution of 21.1 % FWHM at 140 keV, and a sensitivity of 481 and 73 cps/MBq when using the single- and double-layer collimators, respectively. PMID:28286345

  20. Deadly distractions.

    PubMed

    Zuzek, Crystal

    2013-04-01

    In 2011, the National Transportation Safety Board urged all states to ban the use of portable electronic devices while driving, including hand-held and hands-free devices. Texting while driving concerns several Texas legislators, who have filed bills, backed by the Texas Medical Association, to ban the practice. TMA physicians recognize that the use of hand-held and hands-free devices and other factors associated with distracted driving affect their patients' safety.

  1. Cost effective spectral sensor solutions for hand held and field applications

    NASA Astrophysics Data System (ADS)

    Reetz, Edgar; Correns, Martin; Notni, Gunther

    2015-05-01

    Optical spectroscopy is without doubt one of the most important non-contact measurement principles. It is used in a wide range of applications from bio-medical to industrial fields. One recent trend is to miniaturize spectral sensors to address new areas of application. The most common spectral sensor type is based on diffraction gratings, while other types are based on micro mechanical systems (MEMS) or filter technologies. The authors represent the opinion that there is a potentially wide spread field of applications for spectrometers, but the market limits the range of applications since they cannot keep up with targeted cost requirements for consumer products. The present article explains an alternative approach for miniature multichannel spectrometer to enhance robustness for hand held field applications at a cost efficient price point.

  2. No programming required. Mobile PCs can help physicians work more efficiently, especially when the application is designed to fit the practice.

    PubMed

    Campbell, J

    2000-09-01

    The Jacobson Medical Group San Antonio Jacobson Medical Group (JMG) needed a way to effectively and efficiently coordinate referral information between their hospitalist physicians and specialists. JMG decided to replace paper-based binders with something more convenient and easily updated. The organization chose to implement a mobile solution that would provide its physicians with convenient access to a database of information via a hand-held computer. The hand-held solution provides physicians with full demographic profiles of primary care givers for each area where the group operates. The database includes multiple profiles based on different healthcare plans, along with details about preferred and authorized specialists. JMG adopted a user-friendly solution that the hospitalists and specialists would embrace and actually use.

  3. The Use of Microcomputers to Improve Army Ground-Vehicle Readiness

    DTIC Science & Technology

    1980-03-01

    point indicated in Fig. 1. A demonstration of the leverage of the algorithmic parameter transformation can be inferred from data from automobile ...data) 45 data input channels: 1 accelerometer 22 digital data 22 analog data Backup battery Modular software architecture Field reprogrammable

  4. Borehole survey instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharp, H.E.; Lin, J.W. III; Macha, E.S.

    1984-12-04

    A borehole survey instrument is provided having a meniscus type floating compass member with indicia thereon for indicating azimuth and inclination. A light source is disposed below the indicia for illuminating the indicia upward through the liquid through which the meniscus type floating compass member floats. A lens system is provided for focusing the image of the illuminated compass member upon a film disposed below the compass member. This arrangement permits the centering post for the compass member to be of minimum diameter consistent with rigidity requirements and permits a high angle compass member to indicate angles of inclination approachingmore » ninety degrees. A multiple light bulb light source is utilized and each light bulb is mounted in a manner which permits a single light bulb to illuminate the entire compass member. A hand-held programming and diagnostic unit is provided which may be momentarily electrically mated with the borehole survey tool to input a programmed timed delay and diagnostically test both the condition of the light bulbs utilized as the illumination source and the state of the batteries within the instrument. This hand-held programmable unit eliminates all the mechanical programming switches and permits the instrument to be completely sealed from the pressure, fluids and contaminants normally found in a well bore.« less

  5. 77 FR 1768 - Self-Regulatory Organizations; New York Stock Exchange LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... Held Device--Opening and Closing Order Imbalances Only (Together the ``Hand Held Device Fees''), the... the NYSE e-Broker[supreg] Hand Held Device--Opening and Closing Order Imbalances Only (together the... Imbalances Only, the $1,000 per year fee for approval of a pre-qualified substitute, and the $250 per year...

  6. Density and crosswind from GOCE - comparisons with other satellite data, ground-based observations and models

    NASA Astrophysics Data System (ADS)

    Doornbos, E.; Bruinsma, S.; Conde, M.; Forbes, J. M.

    2013-12-01

    Observations made by the European Space Agency (ESA) Gravity field and Ocean Circulation Explorer (GOCE) satellite have enabled the production of a spin-off product of high resolution and high accuracy data on thermosphere density, derived from aerodynamic analysis of acceleration measurements. In this regard, the mission follows in the footsteps of the earlier accelerometer-carrying gravity missions CHAMP and GRACE. The extremely high accuracy and redundancy of the six accelerometers carried by GOCE in its gravity gradiometer instrument has provided new insights on the performance and calibration of these instruments. Housekeeping data on the activation of the GOCE drag free control thruster, made available by ESA has made the production of the thermosphere data possible. The long duration low altitude of GOCE, enabled by its drag free control system, has ensured the presence of very large aerodynamic accelerations throughout its lifetime. This has been beneficial for the accurate derivation of data on the wind speed encountered by the satellite. We have compared the GOCE density observations with data from CHAMP and GRACE. The crosswind data has been compared with CHAMP observations, as well as ground-based observations, made using Scanning Doppler Imagers in Alaska. Models of the thermosphere can provide a bigger, global picture, required as a background in the interpretation of the local space- and ground-based measurements. The comparison of these different sources of information on thermosphere density and wind, each with their own strengths and weaknesses, can provide scientific insight, as well as inputs for further refinement of the processing algorithms and models that are part of the various techniques. Density and crosswind data derived from GOCE (dusk-dawn) and CHAMP (midnight-noon) satellite accelerometer data, superimposed over HWM07 modelled horizontal wind vectors.

  7. Accelerometer use during field-based physical activity research in children and adolescents with intellectual disabilities: a systematic review.

    PubMed

    McGarty, Arlene M; Penpraze, Victoria; Melville, Craig A

    2014-05-01

    Many methodological questions and issues surround the use of accelerometers as a measure of physical activity during field-based research. To ensure overall research quality and the accuracy of results, methodological decisions should be based on study research questions. This paper aims to systematically review accelerometer use during field-based research in children and adolescents with intellectual disabilities. Medline, Embase, Cochrane Library, Web of Knowledge, PsycINFO, PubMed, and a thesis database (up to May 2013) were searched to identify relevant articles. Articles which used accelerometry-based monitors, quantified activity levels, and included ambulatory children and adolescents (≤ 18 years) with intellectual disabilities were included. Based on best practice guidelines, a form was developed to extract data based on 17 research components of accelerometer use. The search identified 429 articles. Ten full-text articles met the criteria and were included in the review. Many shortcomings in accelerometer use were identified, with the percentage of review criteria met ranging from 12% to 47%. Various methods of accelerometer use were reported, with most use decisions not based on population-specific research. However, a lack of measurement research, e.g., calibration/validation, for children and adolescents with intellectual disabilities is limiting the ability of field-based researchers to make to the most appropriate accelerometer use decisions. The methods of accelerometer use employed can have significant effects on the quality and validity of results produced, which researchers should be more aware of. To allow informed use decisions, there should be a greater focus on measurement research related to children and adolescents with intellectual disabilities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Evaluation of artificial neural network algorithms for predicting METs and activity type from accelerometer data: validation on an independent sample.

    PubMed

    Freedson, Patty S; Lyden, Kate; Kozey-Keadle, Sarah; Staudenmayer, John

    2011-12-01

    Previous work from our laboratory provided a "proof of concept" for use of artificial neural networks (nnets) to estimate metabolic equivalents (METs) and identify activity type from accelerometer data (Staudenmayer J, Pober D, Crouter S, Bassett D, Freedson P, J Appl Physiol 107: 1330-1307, 2009). The purpose of this study was to develop new nnets based on a larger, more diverse, training data set and apply these nnet prediction models to an independent sample to evaluate the robustness and flexibility of this machine-learning modeling technique. The nnet training data set (University of Massachusetts) included 277 participants who each completed 11 activities. The independent validation sample (n = 65) (University of Tennessee) completed one of three activity routines. Criterion measures were 1) measured METs assessed using open-circuit indirect calorimetry; and 2) observed activity to identify activity type. The nnet input variables included five accelerometer count distribution features and the lag-1 autocorrelation. The bias and root mean square errors for the nnet MET trained on University of Massachusetts and applied to University of Tennessee were +0.32 and 1.90 METs, respectively. Seventy-seven percent of the activities were correctly classified as sedentary/light, moderate, or vigorous intensity. For activity type, household and locomotion activities were correctly classified by the nnet activity type 98.1 and 89.5% of the time, respectively, and sport was correctly classified 23.7% of the time. Use of this machine-learning technique operates reasonably well when applied to an independent sample. We propose the creation of an open-access activity dictionary, including accelerometer data from a broad array of activities, leading to further improvements in prediction accuracy for METs, activity intensity, and activity type.

  9. Systems and Methods for Determining Inertial Navigation System Faults

    NASA Technical Reports Server (NTRS)

    Bharadwaj, Raj Mohan (Inventor); Bageshwar, Vibhor L. (Inventor); Kim, Kyusung (Inventor)

    2017-01-01

    An inertial navigation system (INS) includes a primary inertial navigation system (INS) unit configured to receive accelerometer measurements from an accelerometer and angular velocity measurements from a gyroscope. The primary INS unit is further configured to receive global navigation satellite system (GNSS) signals from a GNSS sensor and to determine a first set of kinematic state vectors based on the accelerometer measurements, the angular velocity measurements, and the GNSS signals. The INS further includes a secondary INS unit configured to receive the accelerometer measurements and the angular velocity measurements and to determine a second set of kinematic state vectors of the vehicle based on the accelerometer measurements and the angular velocity measurements. A health management system is configured to compare the first set of kinematic state vectors and the second set of kinematic state vectors to determine faults associated with the accelerometer or the gyroscope based on the comparison.

  10. Vibration and impulsivity analysis of hand held olive beaters.

    PubMed

    Deboli, Roberto; Calvo, Angela; Preti, Christian

    2016-07-01

    To provide more effective evaluations of hand arm vibration syndromes caused by hand held olive beaters, this study focused on two aspects: the acceleration measured at the tool pole and the analysis of the impulsivity, using the crest factor. The signals were frequency weighted using the weighting curve Wh as described in the ISO 5349-1 standard. The same source signals were also filtered by the Wh-bl filter (ISO/TS 15694), because the weighting filter Wh (unlike the Wh-bl filter) could underestimate the effect of high frequency vibration on vibration-induced finger disorders. Ten (experienced) male operators used three beater models (battery powered) in the real olive harvesting condition. High vibration total values were obtained with values never lower than 20 m(-2). Concerning the crest factor, the values ranged from 5 to more than 22. This work demonstrated that the hand held olive beaters produced high impulsive loads comparable to the industry hand held tools. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  11. An Activity Recognition Framework Deploying the Random Forest Classifier and A Single Optical Heart Rate Monitoring and Triaxial AccelerometerWrist-Band.

    PubMed

    Mehrang, Saeed; Pietilä, Julia; Korhonen, Ilkka

    2018-02-22

    Wrist-worn sensors have better compliance for activity monitoring compared to hip, waist, ankle or chest positions. However, wrist-worn activity monitoring is challenging due to the wide degree of freedom for the hand movements, as well as similarity of hand movements in different activities such as varying intensities of cycling. To strengthen the ability of wrist-worn sensors in detecting human activities more accurately, motion signals can be complemented by physiological signals such as optical heart rate (HR) based on photoplethysmography. In this paper, an activity monitoring framework using an optical HR sensor and a triaxial wrist-worn accelerometer is presented. We investigated a range of daily life activities including sitting, standing, household activities and stationary cycling with two intensities. A random forest (RF) classifier was exploited to detect these activities based on the wrist motions and optical HR. The highest overall accuracy of 89.6 ± 3.9% was achieved with a forest of a size of 64 trees and 13-s signal segments with 90% overlap. Removing the HR-derived features decreased the classification accuracy of high-intensity cycling by almost 7%, but did not affect the classification accuracies of other activities. A feature reduction utilizing the feature importance scores of RF was also carried out and resulted in a shrunken feature set of only 21 features. The overall accuracy of the classification utilizing the shrunken feature set was 89.4 ± 4.2%, which is almost equivalent to the above-mentioned peak overall accuracy.

  12. Principal components analysis based control of a multi-DoF underactuated prosthetic hand.

    PubMed

    Matrone, Giulia C; Cipriani, Christian; Secco, Emanuele L; Magenes, Giovanni; Carrozza, Maria Chiara

    2010-04-23

    Functionality, controllability and cosmetics are the key issues to be addressed in order to accomplish a successful functional substitution of the human hand by means of a prosthesis. Not only the prosthesis should duplicate the human hand in shape, functionality, sensorization, perception and sense of body-belonging, but it should also be controlled as the natural one, in the most intuitive and undemanding way. At present, prosthetic hands are controlled by means of non-invasive interfaces based on electromyography (EMG). Driving a multi degrees of freedom (DoF) hand for achieving hand dexterity implies to selectively modulate many different EMG signals in order to make each joint move independently, and this could require significant cognitive effort to the user. A Principal Components Analysis (PCA) based algorithm is used to drive a 16 DoFs underactuated prosthetic hand prototype (called CyberHand) with a two dimensional control input, in order to perform the three prehensile forms mostly used in Activities of Daily Living (ADLs). Such Principal Components set has been derived directly from the artificial hand by collecting its sensory data while performing 50 different grasps, and subsequently used for control. Trials have shown that two independent input signals can be successfully used to control the posture of a real robotic hand and that correct grasps (in terms of involved fingers, stability and posture) may be achieved. This work demonstrates the effectiveness of a bio-inspired system successfully conjugating the advantages of an underactuated, anthropomorphic hand with a PCA-based control strategy, and opens up promising possibilities for the development of an intuitively controllable hand prosthesis.

  13. Hand-held medical robots.

    PubMed

    Payne, Christopher J; Yang, Guang-Zhong

    2014-08-01

    Medical robots have evolved from autonomous systems to tele-operated platforms and mechanically-grounded, cooperatively-controlled robots. Whilst these approaches have seen both commercial and clinical success, uptake of these robots remains moderate because of their high cost, large physical footprint and long setup times. More recently, researchers have moved toward developing hand-held robots that are completely ungrounded and manipulated by surgeons in free space, in a similar manner to how conventional instruments are handled. These devices provide specific functions that assist the surgeon in accomplishing tasks that are otherwise challenging with manual manipulation. Hand-held robots have the advantages of being compact and easily integrated into the normal surgical workflow since there is typically little or no setup time. Hand-held devices can also have a significantly reduced cost to healthcare providers as they do not necessitate the complex, multi degree-of-freedom linkages that grounded robots require. However, the development of such devices is faced with many technical challenges, including miniaturization, cost and sterility, control stability, inertial and gravity compensation and robust instrument tracking. This review presents the emerging technical trends in hand-held medical robots and future development opportunities for promoting their wider clinical uptake.

  14. Distinguishing the causes of falls in humans using an array of wearable tri-axial accelerometers.

    PubMed

    Aziz, Omar; Park, Edward J; Mori, Greg; Robinovitch, Stephen N

    2014-01-01

    Falls are the number one cause of injury in older adults. Lack of objective evidence on the cause and circumstances of falls is often a barrier to effective prevention strategies. Previous studies have established the ability of wearable miniature inertial sensors (accelerometers and gyroscopes) to automatically detect falls, for the purpose of delivering medical assistance. In the current study, we extend the applications of this technology, by developing and evaluating the accuracy of wearable sensor systems for determining the cause of falls. Twelve young adults participated in experimental trials involving falls due to seven causes: slips, trips, fainting, and incorrect shifting/transfer of body weight while sitting down, standing up from sitting, reaching and turning. Features (means and variances) of acceleration data acquired from four tri-axial accelerometers during the falling trials were input to a linear discriminant analysis technique. Data from an array of three sensors (left ankle+right ankle+sternum) provided at least 83% sensitivity and 89% specificity in classifying falls due to slips, trips, and incorrect shift of body weight during sitting, reaching and turning. Classification of falls due to fainting and incorrect shift during rising was less successful across all sensor combinations. Furthermore, similar classification accuracy was observed with data from wearable sensors and a video-based motion analysis system. These results establish a basis for the development of sensor-based fall monitoring systems that provide information on the cause and circumstances of falls, to direct fall prevention strategies at a patient or population level. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Fixture for winding transformers

    NASA Technical Reports Server (NTRS)

    Mclyman, M. T.

    1980-01-01

    Bench-mounted fixture assists operator in winding toroid-shaped transformer cores. Toroid is rigidly held in place as wires are looped around. Arrangement frees both hands for rapid winding and untangling of wires that occurs when core is hand held.

  16. Development of Hand-Held Thermographic Inspection Technologies

    DOT National Transportation Integrated Search

    2009-09-01

    This study explored the application of hand-held thermographic cameras for the detection of subsurface delaminations in concrete bridges. The goal of the research was to provide maintenance and inspection personnel with an effective tool for detectin...

  17. Development of hand-held thermographic inspection technologies.

    DOT National Transportation Integrated Search

    2009-09-01

    This study explored the application of hand-held thermographic cameras for the detection of subsurface delaminations in concrete : bridges. The goal of the research was to provide maintenance and inspection personnel with an effective tool for detect...

  18. Neuropsychological Evidence for Visual- and Motor-Based Affordance: Effects of Reference Frame and Object-Hand Congruence

    ERIC Educational Resources Information Center

    Humphreys, Glyn W.; Wulff, Melanie; Yoon, Eun Young; Riddoch, M. Jane

    2010-01-01

    Two experiments are reported that use patients with visual extinction to examine how visual attention is influenced by action information in images. In Experiment 1 patients saw images of objects that were either correctly or incorrectly colocated for action, with the objects held by hands that were congruent or incongruent with those used…

  19. Noise-Robust Monitoring of Lombard Speech Using a Wireless Neck-surface Accelerometer and Microphone

    DTIC Science & Technology

    2017-08-20

    rechargeable, lithium - ion polymer battery that can be charged through a micro-USB input on the circuit. The micro-USB input also allows for communication to...protection, an on/off switch for the battery , status LEDs, and a logic switch that enables the `Bluetooth module to be fully functional when...simultaneously powered via USB and battery . The system contains a small receiver that is equipped with the same Bluetooth module as the transmitter (BC127

  20. Accelerometer-based measures in physical activity surveillance: current practices and issues.

    PubMed

    Pedišić, Željko; Bauman, Adrian

    2015-02-01

    Self-reports of physical activity (PA) have been the mainstay of measurement in most non-communicable disease (NCD) surveillance systems. To these, other measures are added to summate to a comprehensive PA surveillance system. Recently, some national NCD surveillance systems have started using accelerometers as a measure of PA. The purpose of this paper was specifically to appraise the suitability and role of accelerometers for population-level PA surveillance. A thorough literature search was conducted to examine aspects of the generalisability, reliability, validity, comprehensiveness and between-study comparability of accelerometer estimates, and to gauge the simplicity, cost-effectiveness, adaptability and sustainability of their use in NCD surveillance. Accelerometer data collected in PA surveillance systems may not provide estimates that are generalisable to the target population. Accelerometer-based estimates have adequate reliability for PA surveillance, but there are still several issues associated with their validity. Accelerometer-based prevalence estimates are largely dependent on the investigators' choice of intensity cut-off points. Maintaining standardised accelerometer data collections in long-term PA surveillance systems is difficult, which may cause discontinuity in time-trend data. The use of accelerometers does not necessarily produce useful between-study and international comparisons due to lack of standardisation of data collection and processing methods. To conclude, it appears that accelerometers still have limitations regarding generalisability, validity, comprehensiveness, simplicity, affordability, adaptability, between-study comparability and sustainability. Therefore, given the current evidence, it seems that the widespread adoption of accelerometers specifically for large-scale PA surveillance systems may be premature. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. New Matching Method for Accelerometers in Gravity Gradiometer

    PubMed Central

    Wei, Hongwei; Wu, Meiping; Cao, Juliang

    2017-01-01

    The gravity gradiometer is widely used in mineral prospecting, including in the exploration of mineral, oil and gas deposits. The mismatch of accelerometers adversely affects the measuring precision of rotating accelerometer-based gravity gradiometers. Several strategies have been investigated to address the imbalance of accelerometers in gradiometers. These strategies, however, complicate gradiometer structures because feedback loops and re-designed accelerometers are needed in these strategies. In this paper, we present a novel matching method, which is based on a new configuration of accelerometers in a gravity gradiometer. In the new configuration, an angle was introduced between the measurement direction of the accelerometer and the spin direction. With the introduced angle, accelerometers could measure the centrifugal acceleration generated by the rotating disc. Matching was realized by updating the scale factors of the accelerometers with the help of centrifugal acceleration. Further simulation computations showed that after adopting the new matching method, signal-to-noise ratio improved from −41 dB to 22 dB. Compared with other matching methods, our method is more flexible and costs less. The matching accuracy of this new method is similar to that of other methods. Our method provides a new idea for matching methods in gravity gradiometer measurement. PMID:28757584

  2. Passive Wake Detection Using Seal Whisker-Inspired Sensing

    DTIC Science & Technology

    2015-02-01

    2sA!2 (1.12) C l,v : The lift coecient in phase with velocity is a particularly important variable in this context. It describes the energy transfer ...start-up phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 2-10 C m contours plotted as a function of amplitude ratio and...minimize drag. The tube on top attaches directly to the front of the Tow Tank carriage. . . . . . . . . . . . . . 174 C-2 (Left) Accelerometer held in

  3. Electromyography (EMG) signal recognition using combined discrete wavelet transform based adaptive neuro-fuzzy inference systems (ANFIS)

    NASA Astrophysics Data System (ADS)

    Arozi, Moh; Putri, Farika T.; Ariyanto, Mochammad; Khusnul Ari, M.; Munadi, Setiawan, Joga D.

    2017-01-01

    People with disabilities are increasing from year to year either due to congenital factors, sickness, accident factors and war. One form of disability is the case of interruptions of hand function. The condition requires and encourages the search for solutions in the form of creating an artificial hand with the ability as a human hand. The development of science in the field of neuroscience currently allows the use of electromyography (EMG) to control the motion of artificial prosthetic hand into the necessary use of EMG as an input signal to control artificial prosthetic hand. This study is the beginning of a significant research planned in the development of artificial prosthetic hand with EMG signal input. This initial research focused on the study of EMG signal recognition. Preliminary results show that the EMG signal recognition using combined discrete wavelet transform and Adaptive Neuro-Fuzzy Inference System (ANFIS) produces accuracy 98.3 % for training and 98.51% for testing. Thus the results can be used as an input signal for Simulink block diagram of a prosthetic hand that will be developed on next study. The research will proceed with the construction of artificial prosthetic hand along with Simulink program controlling and integrating everything into one system.

  4. Bayesian nonlinear structural FE model and seismic input identification for damage assessment of civil structures

    NASA Astrophysics Data System (ADS)

    Astroza, Rodrigo; Ebrahimian, Hamed; Li, Yong; Conte, Joel P.

    2017-09-01

    A methodology is proposed to update mechanics-based nonlinear finite element (FE) models of civil structures subjected to unknown input excitation. The approach allows to jointly estimate unknown time-invariant model parameters of a nonlinear FE model of the structure and the unknown time histories of input excitations using spatially-sparse output response measurements recorded during an earthquake event. The unscented Kalman filter, which circumvents the computation of FE response sensitivities with respect to the unknown model parameters and unknown input excitations by using a deterministic sampling approach, is employed as the estimation tool. The use of measurement data obtained from arrays of heterogeneous sensors, including accelerometers, displacement sensors, and strain gauges is investigated. Based on the estimated FE model parameters and input excitations, the updated nonlinear FE model can be interrogated to detect, localize, classify, and assess damage in the structure. Numerically simulated response data of a three-dimensional 4-story 2-by-1 bay steel frame structure with six unknown model parameters subjected to unknown bi-directional horizontal seismic excitation, and a three-dimensional 5-story 2-by-1 bay reinforced concrete frame structure with nine unknown model parameters subjected to unknown bi-directional horizontal seismic excitation are used to illustrate and validate the proposed methodology. The results of the validation studies show the excellent performance and robustness of the proposed algorithm to jointly estimate unknown FE model parameters and unknown input excitations.

  5. Validation of Freezing-of-Gait Monitoring Using Smartphone.

    PubMed

    Kim, Han Byul; Lee, Hong Ji; Lee, Woong Woo; Kim, Sang Kyong; Jeon, Hyo Seon; Park, Hye Young; Shin, Chae Won; Yi, Won Jin; Jeon, Beomseok; Park, Kwang S

    2018-04-30

    Freezing of gait (FOG) is a commonly observed motor symptom for patients with Parkinson's disease (PD). The symptoms of FOG include reduced step lengths or motor blocks, even with an evident intention of walking. FOG should be monitored carefully because it not only lowers the patient's quality of life, but also significantly increases the risk of injury. In previous studies, patients had to wear several sensors on the body and another computing device was needed to run the FOG detection algorithm. Moreover, the features used in the algorithm were based on low-level and hand-crafted features. In this study, we propose a FOG detection system based on a smartphone, which can be placed in the patient's daily wear, with a novel convolutional neural network (CNN). The walking data of 32 PD patients were collected from the accelerometer and gyroscope embedded in the smartphone, located in the trouser pocket. The motion signals measured by the sensors were converted into the frequency domain and stacked into a 2D image for the CNN input. A specialized CNN model for FOG detection was determined through a validation process. We compared our performances with the results acquired by the previously reported settings. The proposed architecture discriminated the freezing events from the normal activities with an average sensitivity of 93.8% and a specificity of 90.1%. Using our methodology, the precise and continuous monitoring of freezing events with unconstrained sensing can assist patients in managing their chronic disease in daily life effectively.

  6. Strain System for the Motion Base Shuttle Mission Simulator

    NASA Technical Reports Server (NTRS)

    Huber, David C.; Van Vossen, Karl G.; Kunkel, Glenn W.; Wells, Larry W.

    2010-01-01

    The Motion Base Shuttle Mission Simulator (MBSMS) Strain System is an innovative engineering tool used to monitor the stresses applied to the MBSMS motion platform tilt pivot frames during motion simulations in real time. The Strain System comprises hardware and software produced by several different companies. The system utilizes a series of strain gages, accelerometers, orientation sensor, rotational meter, scanners, computer, and software packages working in unison. By monitoring and recording the inputs applied to the simulator, data can be analyzed if weld cracks or other problems are found during routine simulator inspections. This will help engineers diagnose problems as well as aid in repair solutions for both current as well as potential problems.

  7. Maintaining radiation exposures as low as reasonably achievable (ALARA) for dental personnel operating portable hand-held x-ray equipment.

    PubMed

    McGiff, Thomas J; Danforth, Robert A; Herschaft, Edward E

    2012-08-01

    Clinical experience indicates that newly available portable hand-held x-ray units provide advantages compared to traditional fixed properly installed and operated x-ray units in dental radiography. However, concern that hand-held x-ray units produce higher operator doses than fixed x-ray units has caused regulatory agencies to mandate requirements for use of hand-held units that go beyond those recommended by the manufacturer and can discourage the use of this technology. To assess the need for additional requirements, a hand-held x-ray unit and a pair of manikins were used to measure the dose to a simulated operator under two conditions: exposures made according to the manufacturer's recommendations and exposures made according to manufacturer's recommendation except for the removal of the x-ray unit's protective backscatter shield. Dose to the simulated operator was determined using an array of personal dosimeters and a pair of pressurized ion chambers. The results indicate that the dose to an operator of this equipment will be less than 0.6 mSv y⁻¹ if the device is used according to the manufacturer's recommendations. This suggests that doses to properly trained operators of well-designed, hand-held dental x-ray units will be below 1.0 mSv y⁻¹ (2% of the annual occupational dose limit) even if additional no additional operational requirements are established by regulatory agencies. This level of annual dose is similar to those reported as typical dental personnel using fixed x-ray units and appears to satisfy the ALARA principal for this class of occupational exposures.

  8. Hand-transmitted vibration and biodynamic response of the human hand-arm: a critical review.

    PubMed

    Dong, R G; Rakheja, S; Schopper, A W; Han, B; Smutz, W P

    2001-01-01

    Hand-arm vibration syndrome (HAVS) has been associated with prolonged exposure to vibration transmitted to the human hand-arm system from hand-held power tools, vibrating machines, or hand-held vibrating workpieces. The biodynamic response of the human hand and arm to hand transmitted vibration (HTV) forms an essential basis for effective evaluations of exposures, vibration-attenuation mechanisms, and potential injury mechanisms. The biodynamic response to HTV and its relationship to HAVS are critically reviewed and discussed to highlight the advances and the need for further research. In view of its strong dependence on the nature of HTV and the lack of general agreement on the characteristics of HTV, the reported studies are first reviewed to enhance an understanding of HTV and related issues. The characteristics of HTV and relevant unresolved issues are discussed on the basis of measured data, proposed standards, and measurement methods, while the need for further developments in measurement systems is emphasized. The studies on biodynamic response and their findings are grouped into four categories based on the methodology used and the objective. These include studies on (1) through-the-hand-arm response, expressed in terms of vibration transmissibility; (2) to-the-hand response, expressed in terms of the force-motion relationship of the hand-arm system; (3) to-the-hand biodynamic response function, expressed in terms of vibration energy absorption; and (4) computer modeling of the biodynamic response characteristics.

  9. Automated Detection of Stereotypical Motor Movements

    ERIC Educational Resources Information Center

    Goodwin, Matthew S.; Intille, Stephen S.; Albinali, Fahd; Velicer, Wayne F.

    2011-01-01

    To overcome problems with traditional methods for measuring stereotypical motor movements in persons with Autism Spectrum Disorders (ASD), we evaluated the use of wireless three-axis accelerometers and pattern recognition algorithms to automatically detect body rocking and hand flapping in children with ASD. Findings revealed that, on average,…

  10. Driver electronic device use in 2013.

    DOT National Transportation Integrated Search

    2015-04-01

    The percentage of drivers text-messaging or visibly manipulating : hand-held devices increased from 1.5 percent in : 2012 to 1.7 percent in 2013; however, this was not a statistically : significant increase. Driver hand-held cell phone : use decrease...

  11. Abdominal aortic aneurysm screening program using hand-held ultrasound in primary healthcare

    PubMed Central

    Kostov, Belchin; Navarro González, Marta; Cararach Salami, Daniel; Pérez Jiménez, Alfonso; Gilabert Solé, Rosa; Bru Saumell, Concepció; Donoso Bach, Lluís; Villalta Martí, Mireia; González-de Paz, Luis; Ruiz Riera, Rafael; Riambau Alonso, Vicenç; Acar-Denizli, Nihan; Farré Almacellas, Marta; Ramos-Casals, Manuel; Benavent Àreu, Jaume

    2017-01-01

    We determined the feasibility of abdominal aortic aneurysm (AAA) screening program led by family physicians in public primary healthcare setting using hand-held ultrasound device. The potential study population was 11,214 men aged ≥ 60 years attended by three urban, public primary healthcare centers. Participants were recruited by randomly-selected telephone calls. Ultrasound examinations were performed by four trained family physicians with a hand-held ultrasound device (Vscan®). AAA observed were verified by confirmatory imaging using standard ultrasound or computed tomography. Cardiovascular risk factors were determined. The prevalence of AAA was computed as the sum of previously-known aneurysms, aneurysms detected by the screening program and model-based estimated undiagnosed aneurysms. We screened 1,010 men, with mean age of 71.3 (SD 6.9) years; 995 (98.5%) men had normal aortas and 15 (1.5%) had AAA on Vscan®. Eleven out of 14 AAA-cases (78.6%) had AAA on confirmatory imaging (one patient died). The total prevalence of AAA was 2.49% (95%CI 2.20 to 2.78). The median aortic diameter at diagnosis was 3.5 cm in screened patients and 4.7 cm (p<0.001) in patients in whom AAA was diagnosed incidentally. Multivariate logistic regression analysis identified coronary heart disease (OR = 4.6, 95%CI 1.3 to 15.9) as the independent factor with the highest odds ratio. A screening program led by trained family physicians using hand-held ultrasound was a feasible, safe and reliable tool for the early detection of AAA. PMID:28453577

  12. Effects of input device and motion type on a cursor-positioning task.

    PubMed

    Yau, Yi-Jan; Hwang, Sheue-Ling; Chao, Chin-Jung

    2008-02-01

    Many studies have investigated the performance of using nonkey-board input devices under static situations, but few have considered the effects of motion type on manipulating these input devices. In this study comparison of 12 mens' performance using four input devices (three trackballs: currently used, trackman wheel, and erectly held trackballs, as well as a touch screen) under five motion types of static, heave, roll, pitch, and random movements was conducted. The input device and motion type significantly affected movement speed and accuracy, and their interaction significantly affected the movement speed. The touch screen was the fastest but the least accurate input device. The erectly held trackball was the slowest, whereas the error rate of the currently used trackball was the lowest. Impairments of the random motion on movement time and error rate were larger than those of other motion types. Considering objective and subjective evaluations, the trackman wheel and currently used trackball were more efficient in operation than the erectly held trackball and touch screen under the motion environments.

  13. Evaluation of haptic interfaces for simulation of drill vibration in virtual temporal bone surgery.

    PubMed

    Ghasemloonia, Ahmad; Baxandall, Shalese; Zareinia, Kourosh; Lui, Justin T; Dort, Joseph C; Sutherland, Garnette R; Chan, Sonny

    2016-11-01

    Surgical training is evolving from an observership model towards a new paradigm that includes virtual-reality (VR) simulation. In otolaryngology, temporal bone dissection has become intimately linked with VR simulation as the complexity of anatomy demands a high level of surgeon aptitude and confidence. While an adequate 3D visualization of the surgical site is available in current simulators, the force feedback rendered during haptic interaction does not convey vibrations. This lack of vibration rendering limits the simulation fidelity of a surgical drill such as that used in temporal bone dissection. In order to develop an immersive simulation platform capable of haptic force and vibration feedback, the efficacy of hand controllers for rendering vibration in different drilling circumstances needs to be investigated. In this study, the vibration rendering ability of four different haptic hand controllers were analyzed and compared to find the best commercial haptic hand controller. A test-rig was developed to record vibrations encountered during temporal bone dissection and a software was written to render the recorded signals without adding hardware to the system. An accelerometer mounted on the end-effector of each device recorded the rendered vibration signals. The newly recorded vibration signal was compared with the input signal in both time and frequency domains by coherence and cross correlation analyses to quantitatively measure the fidelity of these devices in terms of rendering vibrotactile drilling feedback in different drilling conditions. This method can be used to assess the vibration rendering ability in VR simulation systems and selection of ideal haptic devices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Localizing Tortoise Nests by Neural Networks.

    PubMed

    Barbuti, Roberto; Chessa, Stefano; Micheli, Alessio; Pucci, Rita

    2016-01-01

    The goal of this research is to recognize the nest digging activity of tortoises using a device mounted atop the tortoise carapace. The device classifies tortoise movements in order to discriminate between nest digging, and non-digging activity (specifically walking and eating). Accelerometer data was collected from devices attached to the carapace of a number of tortoises during their two-month nesting period. Our system uses an accelerometer and an activity recognition system (ARS) which is modularly structured using an artificial neural network and an output filter. For the purpose of experiment and comparison, and with the aim of minimizing the computational cost, the artificial neural network has been modelled according to three different architectures based on the input delay neural network (IDNN). We show that the ARS can achieve very high accuracy on segments of data sequences, with an extremely small neural network that can be embedded in programmable low power devices. Given that digging is typically a long activity (up to two hours), the application of ARS on data segments can be repeated over time to set up a reliable and efficient system, called Tortoise@, for digging activity recognition.

  15. Hand held phase-shifting diffraction moire interferometer

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1994-01-01

    An interferometer in which a coherent beam of light is generated within a remote case and transmitted to a hand held unit tethered to said remote case, said hand held unit having optical elements for directing a pair of mutually coherent collimated laser beams at a diffraction grating. Data from the secondary or diffracted beams are then transmitted to a separate video and data acquisition system for recording and analysis for load induced deformation or for identification purposes. Means are also provided for shifting the phase of one incident beam relative to the other incident beam and being controlled from within said remote case.

  16. Hand-Held Sunphotometers for High School Student Construction and Measuring Aerosol Optical Thickness

    NASA Technical Reports Server (NTRS)

    Almonor, Linda; Baldwin, C.; Craig, R.; Johnson, L. P.

    2000-01-01

    Science education is taking the teaching of science from a traditional (lecture) approach to a multidimensional sense-making approach which allows teachers to support students by providing exploratory experiences. Using projects is one way of providing students with opportunities to observe and participate in sense-making activity. We created a learning environment that fostered inquiry-based learning. Students were engaged in a variety of Inquiry activities that enabled them to work in cooperative planning teams where respect for each other was encouraged and their ability to grasp, transform and transfer information was enhanced. Summer, 1998: An air pollution workshop was conducted for high school students in the Medgar Evers College/Middle College High School Liberty Partnership Summer Program. Students learned the basics of meteorology: structure and composition of the atmosphere and the processes that cause weather. The highlight of this workshop was the building of hand-held sunphotometers, which measure the intensity of the sunlight striking the Earth. Summer, 1999: high school students conducted a research project which measured the mass and size of ambient particulates and enhanced our ability to observe through land based measurements changes in the optical depth of ambient aerosols over Brooklyn. Students used hand held Sunphotometers to collect data over a two week period and entered it into the NASA GISS database by way of the internet.

  17. Fetal echocardiography

    MedlinePlus

    ... based gel on your belly. A hand-held probe is moved over the area. The probe sends out sound waves, which bounce off the ... screen. In a transvaginal ultrasound, a much smaller probe is placed into the vagina. A transvaginal ultrasound ...

  18. Reconstructive Microsurgery: The Future Is Today.

    PubMed

    Amin, Kavit; Mohan, Anita T

    2017-01-01

    This reconstructive microsurgery course will run yearly and was borne and popularized from its infant meeting the year before, primarily focused on perforator flaps. It is a 2-day course updating residents/registrars to attending physicians/consultants about the most topical advancements in microvascular reconstructive surgery. The course is held at the New York University Langone Hospital in the United States.The timetable is primarily lecture based with the advantage of live-surgical procedures by world-renowned faculty. The timetable includes, but not limited to, facial/hand vascularized composite allotransplantation, upper/lower limb, breast, head and neck, transgender, and lymphedema surgery. Lectures were highly informative and there was ample time for case discussion with the appreciation that managing complex situations often requires input from other colleagues. The faculty focused on the lessons they have learned and potential pitfalls to avoid. The faculty was comprised of leading experts in reconstructive microsurgery from Europe, Korea, and throughout the United States.The primary emphasis of the course was to appreciate the global recognition in advances in microsurgery.

  19. Linear Acceleration Measurement Utilizing Inter-Instrument Synchronization: A Comparison between Accelerometers and Motion-Based Tracking Approaches

    ERIC Educational Resources Information Center

    Callaway, Andrew J.; Cobb, Jon E.

    2012-01-01

    Where as video cameras are a reliable and established technology for the measurement of kinematic parameters, accelerometers are increasingly being employed for this type of measurement due to their ease of use, performance, and comparatively low cost. However, the majority of accelerometer-based studies involve a single channel due to the…

  20. Driver electronic device use in 2008

    DOT National Transportation Integrated Search

    2009-09-01

    The 2008 hand-held cell phone use rate translates into 812,000 vehicles being driven by someone using a hand-held cell phone at any given daylight moment.1 It also translates into an estimated 11 percent of the vehicles whose drivers were using some ...

  1. The accuracy of a hand-held navigation system in total knee arthroplasty.

    PubMed

    Loh, Bryan; Chen, Jerry Yongqiang; Yew, Andy Khye Soon; Pang, Hee Nee; Tay, Darren Keng Jin; Chia, Shi-Lu; Lo, Ngai Nung; Yeo, Seng Jin

    2017-03-01

    This study aims to evaluate the effectiveness of a new hand-held navigation system. The authors of this study hypothesize that this navigation system will improve overall lower limb alignment and implant placement without causing a delay in surgery. Two hundred consecutive patients diagnosed with tricompartmental osteoarthritis and underwent total knee arthroplasty by a senior surgeon were included in this study. One hundred patients underwent TKA using the hand-held navigation system, while the other 100 patients underwent TKA using the conventional technique. The primary outcomes of this study were the overall alignment of the lower limb and the position of the components. This was determined radiologically using the: (1) Hip-Knee-Ankle angle (HKA) for lower limb alignment; (2) Coronal Femoral-Component angle (CFA); and (3) Coronal Tibia-Component angle (CTA) for component position. Normal alignment was taken as 180° ± 3° for the HKA and 90° ± 3° for both the CFA and CTA. For the CFA, the proportion of outliers was 7 and 17% in the hand-held navigation and conventional group, respectively (p = 0.030). For the HKA and CTA, there was no difference in the proportion of outliers between the two groups. The duration of surgery was 73 ± 9 min and 87 ± 15 min in the hand-held navigation and conventional group, respectively (p < 0.001). This hand-held navigation system is an effective intraoperative tool for reducing the proportion of outliers for femoral implant placement as well as the duration of surgery. The authors conclude that it can be considered for use to check femoral implant placement intra-operatively. III.

  2. A Self-Diagnostic System for the M6 Accelerometer

    NASA Technical Reports Server (NTRS)

    Flanagan, Patrick M.; Lekki, John

    2001-01-01

    The design of a Self-Diagnostic (SD) accelerometer system for the Space Shuttle Main Engine is presented. This retrofit system connects diagnostic electronic hardware and software to the current M6 accelerometer system. This paper discusses the general operation of the M6 accelerometer SD system and procedures for developing and evaluating the SD system. Signal processing techniques using M6 accelerometer diagnostic data are explained. Test results include diagnostic data responding to changing ambient temperature, mounting torque and base mounting impedance.

  3. Neuromagnetic Cerebellar Activity Entrains to the Kinematics of Executed Finger Movements.

    PubMed

    Marty, Brice; Wens, V; Bourguignon, M; Naeije, G; Goldman, S; Jousmäki, V; De Tiège, X

    2018-05-03

    This magnetoencephalography (MEG) study aims at characterizing the coupling between cerebellar activity and the kinematics of repetitive self-paced finger movements. Neuromagnetic signals were recorded in 11 right-handed healthy adults while they performed repetitive flexion-extensions of right-hand fingers at three different movement rates: slow (~ 1 Hz), medium (~ 2 Hz), and fast (~ 3 Hz). Right index finger acceleration was monitored with an accelerometer. Coherence analysis was used to index the coupling between right index finger acceleration and neuromagnetic signals. Dynamic imaging of coherent sources was used to locate coherent sources. Coupling directionality between primary sensorimotor (SM1), cerebellar, and accelerometer signals was assessed with renormalized partial directed coherence. Permutation-based statistics coupled with maximum statistic over the entire brain volume or restricted to the cerebellum were used. At all movement rates, maximum coherence peaked at SM1 cortex contralateral to finger movements at movement frequency (F0) and its first harmonic (F1). Significant (statistics restricted to the cerebellum) coherence consistently peaked at the right posterior lobe of the cerebellum at F0 with no influence of movement rate. Coupling between Acc and cerebellar signals was significantly stronger in the afferent than in the efferent direction with no effective contribution of cortico-cerebellar or cerebello-cortical pathways. This study demonstrates the existence of significant coupling between finger movement kinematics and neuromagnetic activity at the posterior cerebellar lobe ipsilateral to finger movement at F0. This coupling is mainly driven by spinocerebellar, presumably proprioceptive, afferences.

  4. Small-scale rotor test rig capabilities for testing vibration alleviation algorithms

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.; Leyland, Jane Anne

    1987-01-01

    A test was conducted to assess the capabilities of a small scale rotor test rig for implementing higher harmonic control and stability augmentation algorithms. The test rig uses three high speed actuators to excite the swashplate over a range of frequencies. The actuator position signals were monitored to measure the response amplitudes at several frequencies. The ratio of response amplitude to excitation amplitude was plotted as a function of frequency. In addition to actuator performance, acceleration from six accelerometers placed on the test rig was monitored to determine whether a linear relationship exists between the harmonics of N/Rev control input and the least square error (LSE) identification technique was used to identify local and global transfer matrices for two rotor speeds at two batch sizes each. It was determined that the multicyclic control computer system interfaced very well with the rotor system and kept track of the input accelerometer signals and their phase angles. However, the current high speed actuators were found to be incapable of providing sufficient control authority at the higher excitation frequencies.

  5. Augmented Reality and Mobile Art

    NASA Astrophysics Data System (ADS)

    Gwilt, Ian

    The combined notions of augmented-reality (AR) and mobile art are based on the amalgamation of a number of enabling technologies including computer imaging, emergent display and tracking systems and the increased computing-power in hand-held devices such as Tablet PCs, smart phones, or personal digital assistants (PDAs) which have been utilized in the making of works of art. There is much published research on the technical aspects of AR and the ongoing work being undertaken in the development of faster more efficient AR systems [1] [2]. In this text I intend to concentrate on how AR and its associated typologies can be applied in the context of new media art practices, with particular reference to its application on hand-held or mobile devices.

  6. WISE Design for Knowledge Integration.

    ERIC Educational Resources Information Center

    Linn, Marcia C.; Clark, Douglas; Slotta, James D.

    2003-01-01

    Examines the implementation of Web-based Inquiry Science Environment (WISE), which can incorporate modeling tools and hand-held devices. Describes WISE design team practices, features of the WISE learning environment, and patterns of feature use in WISE library projects. (SOE)

  7. 16 CFR 1507.7 - Handles and spikes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FIREWORKS DEVICES § 1507.7 Handles and spikes. (a) Fireworks devices which are intended to be hand-held and...) Spikes provided with fireworks devices shall protrude at least 2 inches from the base of the device and...

  8. Remote sensing of land use and water quality relationships - Wisconsin shore, Lake Michigan

    NASA Technical Reports Server (NTRS)

    Haugen, R. K.; Marlar, T. L.

    1976-01-01

    This investigation assessed the utility of remote sensing techniques in the study of land use-water quality relationships in an east central Wisconsin test area. The following types of aerial imagery were evaluated: high altitude (60,000 ft) color, color infrared, multispectral black and white, and thermal; low altitude (less than 5000 ft) color infrared, multispectral black and white, thermal, and passive microwave. A non-imaging hand-held four-band radiometer was evaluated for utility in providing data on suspended sediment concentrations. Land use analysis includes the development of mapping and quantification methods to obtain baseline data for comparison to water quality variables. Suspended sediment loads in streams, determined from water samples, were related to land use differences and soil types in three major watersheds. A multiple correlation coefficient R of 0.85 was obtained for the relationship between the 0.6-0.7 micrometer incident and reflected radiation data from the hand-held radiometer and concurrent ground measurements of suspended solids in streams. Applications of the methods and baseline data developed in this investigation include: mapping and quantification of land use; input to watershed runoff models; estimation of effects of land use changes on stream sedimentation; and remote sensing of suspended sediment content of streams. High altitude color infrared imagery was found to be the most acceptable remote sensing technique for the mapping and measurement of land use types.

  9. Digital hand-held temperature monitor

    NASA Astrophysics Data System (ADS)

    Allin, L. V.; Ferrari, I.

    1980-09-01

    A hand-held non-invasive monitoring instrument has been designed, constructed and tested to allow core temperature measurements to be obtained from human subjects who have swallowed a temperature-sensing radio transmitter (radio pill). This instrument uses a simple AM radio for a receiver, digital circuitry to decode the received signal and a four-digit LED module to display the temperature. The unit, which is battery-powered, can be held in one hand while an antenna probe is swept over the abdomen of the subject until a continuously audible signal is generated by a piezoelectric sound source, indicating reception. The digital display then presents the body core temperature in tenths of a degree Celsius.

  10. Engineering issues for hand-held sensing devices, with examples

    NASA Astrophysics Data System (ADS)

    Freiwald, David A.; Freiwald, Joyce

    1994-03-01

    It is now U.S. defense policy that there will be no new platform starts. The emphasis for platforms will be on O&M cost reduction, life-extension improvements, and force-multiplier- device upgrades. There is also an increasing emphasis on hand-held force-multiplier devices for individuals, which is the focus of this paper. Engineering issues include operations analysis, weight, cube, cost, prime power, ease of use, data storage, reliability, fault tolerance, data communications and human factors. Two examples of hand-held devices are given. Applications include USMC, Army, SOCOM, DEA, FBI, SS, Border Patrol and others. Barriers to adoption of such technology are also discussed.

  11. Hand held phase-shifting diffraction Moire interferometer

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1994-09-20

    An interferometer is described in which a coherent beam of light is generated within a remote case and transmitted to a hand held unit tethered to said remote case, said hand held unit having optical elements for directing a pair of mutually coherent collimated laser beams at a diffraction grating. Data from the secondary or diffracted beams are then transmitted to a separate video and data acquisition system for recording and analysis for load induced deformation or for identification purposes. Means are also provided for shifting the phase of one incident beam relative to the other incident beam and being controlled from within said remote case. 4 figs.

  12. Attentionally splitting the mass distribution of hand-held rods.

    PubMed

    Burton, G; Turvey, M T

    1991-08-01

    Two experiments on the length-perception capabilities of effortful or dynamic touch differed only in terms of what the subject intended to perceive, while experimental conditions and apparatus were held constant. In each trial, a visually occluded rod was held as still as possible by the subject at an intermediate position. For two thirds of the trials, a weight was attached to the rod above or below the hand. In Experiment 1, in which the subject's task was to perceive the distance reachable with the portion of the rod forward of the hand, perceived extent was a function of the first moment of the mass distribution associated with the forward portion of the rod, and indifferent to the first moment of the entire rod. In Experiment 2, in which the task was to perceive the distance reachable with the entire rod if it was held at an end, the pattern of results was reversed. These results indicate the capability of selective sensitivity to different aspects of a hand-held object's mass distribution, without the possibility of differential exploration specific to these two tasks. Results are discussed in relation to possible roles of differential information, intention, and self-organization in the explanations of selective perceptual abilities.

  13. Accelerometer-Based Method for Extracting Respiratory and Cardiac Gating Information for Dual Gating during Nuclear Medicine Imaging

    PubMed Central

    Pänkäälä, Mikko; Paasio, Ari

    2014-01-01

    Both respiratory and cardiac motions reduce the quality and consistency of medical imaging specifically in nuclear medicine imaging. Motion artifacts can be eliminated by gating the image acquisition based on the respiratory phase and cardiac contractions throughout the medical imaging procedure. Electrocardiography (ECG), 3-axis accelerometer, and respiration belt data were processed and analyzed from ten healthy volunteers. Seismocardiography (SCG) is a noninvasive accelerometer-based method that measures accelerations caused by respiration and myocardial movements. This study was conducted to investigate the feasibility of the accelerometer-based method in dual gating technique. The SCG provides accelerometer-derived respiratory (ADR) data and accurate information about quiescent phases within the cardiac cycle. The correct information about the status of ventricles and atria helps us to create an improved estimate for quiescent phases within a cardiac cycle. The correlation of ADR signals with the reference respiration belt was investigated using Pearson correlation. High linear correlation was observed between accelerometer-based measurement and reference measurement methods (ECG and Respiration belt). Above all, due to the simplicity of the proposed method, the technique has high potential to be applied in dual gating in clinical cardiac positron emission tomography (PET) to obtain motion-free images in the future. PMID:25120563

  14. Computational Video for Collaborative Applications

    DTIC Science & Technology

    2003-03-01

    Plenoptic Modeling: An Image- Based Rendering System.” SIGGRAPH 95, 39-46. [18] McMillan, L. An Image-Based Approach to Three-Dimensional Computer... Plenoptic modeling and rendering from image sequences taken by hand-held camera. Proc. DAGM 99, pages 94–101. [8] Y. Horry, K. Anjyo, and K. Arai

  15. Promoting Physical Activity through Hand-Held Computer Technology

    PubMed Central

    King, Abby C.; Ahn, David K.; Oliveira, Brian M.; Atienza, Audie A.; Castro, Cynthia M.; Gardner, Christopher D.

    2009-01-01

    Background Efforts to achieve population-wide increases in walking and similar moderate-intensity physical activities potentially can be enhanced through relevant applications of state-of-the-art interactive communication technologies. Yet few systematic efforts to evaluate the efficacy of hand-held computers and similar devices for enhancing physical activity levels have occurred. The purpose of this first-generation study was to evaluate the efficacy of a hand-held computer (i.e., personal digital assistant [PDA]) for increasing moderate intensity or more vigorous (MOD+) physical activity levels over 8 weeks in mid-life and older adults relative to a standard information control arm. Design Randomized, controlled 8-week experiment. Data were collected in 2005 and analyzed in 2006-2007. Setting/Participants Community-based study of 37 healthy, initially underactive adults aged 50 years and older who were randomized and completed the 8-week study (intervention=19, control=18). Intervention Participants received an instructional session and a PDA programmed to monitor their physical activity levels twice per day and provide daily and weekly individualized feedback, goal setting, and support. Controls received standard, age-appropriate written physical activity educational materials. Main Outcome Measure Physical activity was assessed via the Community Healthy Activities Model Program for Seniors (CHAMPS) questionnaire at baseline and 8 weeks. Results Relative to controls, intervention participants reported significantly greater 8-week mean estimated caloric expenditure levels and minutes per week in MOD+ activity (p<0.04). Satisfaction with the PDA was reasonably high in this largely PDA-naive sample. Conclusions Results from this first-generation study indicate that hand-held computers may be effective tools for increasing initial physical activity levels among underactive adults. PMID:18201644

  16. Exploring the feasibility and use of acceleromters before, during, and after a camp-based CIMT program for children with cerebral palsy.

    PubMed

    Coker-Bolt, Patty; Downey, Ryan J; Connolly, Jacqueline; Hoover, Reagin; Shelton, Daniel; Seo, Na Jin

    2017-01-01

    The aim of this pilot study was to determine the feasibility and use accelerometers before, during, and after a camp-based constraint-induced movement therapy (CIMT) program for children with hemiplegic cerebral palsy. A pre-test post-test design was used for 12 children with CP (mean = 4.9 yrs) who completed a 30-hour camp-based CIMT program. The accelerometer data were collected using ActiGraph GT9X Link. Children wore accelerometers on both wrists one day before and after the camp and on the affected limb during each camp day. Three developmental assessments were administered pre-post CIMT program. Accelerometers were successfully worn before, during, and directly after the CIMT program to collect upper limb data. Affected upper limb accelerometer activity significantly increased during the CIMT camp compared to baseline (p< 0.05). Significant improvements were seen in all twelve children on all assessments of affected upper limb function (p< 0.05) measuring capacity and quality of affected upper limb functioning. Accelerometers can be worn during high intensity pediatric CIMT programs to collect data about affected upper limb function. Further study is required to determine the relationship between accelerometer data, measure of motor capacity, and real-world performance post-CIMT.

  17. A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer.

    PubMed

    Vähä-Ypyä, Henri; Vasankari, Tommi; Husu, Pauliina; Suni, Jaana; Sievänen, Harri

    2015-01-01

    Accelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis algorithms, direct comparisons between accelerometer brands are difficult. In this study, we propose and evaluate open source methods for commensurate assessment of raw accelerometer data irrespective of the brand. Twenty-one participants carried simultaneously three different tri-axial accelerometers on their waist during five different sedentary activities and five different intensity levels of bipedal movement from slow walking to running. Several time and frequency domain traits were calculated from the measured raw data, and their performance in classifying the activities was compared. Of the several traits, the mean amplitude deviation (MAD) provided consistently the best performance in separating the sedentary activities and different speeds of bipedal movement from each other. Most importantly, the universal cut-off limits based on MAD classified sedentary activities and different intensity levels of walking and running equally well for all three accelerometer brands and reached at least 97% sensitivity and specificity in each case. Irrespective of the accelerometer brand, a simply calculable MAD with universal cut-off limits provides a universal method to evaluate physical activity and sedentary behaviour using raw accelerometer data. A broader application of the present approach is expected to render different accelerometer studies directly comparable with each other. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  18. Kinesthetic coupling between operator and remote manipulator

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Salisbury, J. K., Jr.

    1980-01-01

    A universal force-reflecting hand controller has been developed which allows the establishment of a kinesthetic coupling between the operator and a remote manipulator. The six-degree-of-freedom controller was designed to generate forces and torques on its three positional and three rotational axes in order to permit the operator to accurately feel the forces encountered by the manipulator and be as transparent to operate as possible. The universal controller has been used in an application involving a six-degree-of-freedom mechanical arm equipped with a six-dimensional force-torque sensor at its base. In this application, the hand controller acts as a position control input device to the arm, while forces and torques sensed at the base of the mechanical hand back drive the hand controller. The positional control relation and the back driving of the controller according to inputs experienced by the force-torque sensor are established through complex mathematical transformations performed by a minicomputer. The hand controller is intended as a development tool for investigating force-reflecting master-slave manipulator control technology.

  19. A Model of Gravity Vector Measurement Noise for Estimating Accelerometer Bias in Gravity Disturbance Compensation.

    PubMed

    Tie, Junbo; Cao, Juliang; Chang, Lubing; Cai, Shaokun; Wu, Meiping; Lian, Junxiang

    2018-03-16

    Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method.

  20. A Model of Gravity Vector Measurement Noise for Estimating Accelerometer Bias in Gravity Disturbance Compensation

    PubMed Central

    Cao, Juliang; Cai, Shaokun; Wu, Meiping; Lian, Junxiang

    2018-01-01

    Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method. PMID:29547552

  1. A rapid evidence-based service by librarians provided information to answer primary care clinical questions.

    PubMed

    McGowan, Jessie; Hogg, William; Rader, Tamara; Salzwedel, Doug; Worster, Danielle; Cogo, Elise; Rowan, Margo

    2010-03-01

    A librarian consultation service was offered to 88 primary care clinicians during office hours. This included a streamlined evidence-based process to answer questions in fewer than 20 min. This included a contact centre accessed through a Web-based platform and using hand-held devices and computers with Web access. Librarians were given technical training in evidence-based medicine, including how to summarise evidence. To describe the process and lessons learned from developing and operating a rapid response librarian consultation service for primary care clinicians. Evaluation included librarian interviews and a clinician exit satisfaction survey. Clinicians were positive about its impact on their clinical practice and decision making. The project revealed some important 'lessons learned' in the clinical use of hand-held devices, knowledge translation and training for clinicians and librarians. The Just-in-Time Librarian Consultation Service showed that it was possible to provide evidence-based answers to clinical questions in 15 min or less. The project overcame a number of barriers using innovative solutions. There are many opportunities to build on this experience for future joint projects of librarians and healthcare providers.

  2. Hand-Held Self-Maneuvering Unit to be used during EVA on Gemini 4

    NASA Image and Video Library

    1965-06-02

    Hand-Held Self-Maneuvering Unit to be used during extravehicular activity (EVA) on Gemini 4 flight. It is an integral unit that contains its own high pressure metering valves and nozzles required to produce controlled thrust. A camera is mounted on the front of the unit.

  3. 49 CFR 392.82 - Using a hand-held mobile telephone.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Definitions. For the purpose of this section only, driving means operating a commercial motor vehicle on a... SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF.... (a)(1) No driver shall use a hand-held mobile telephone while driving a CMV. (2) No motor carrier...

  4. 49 CFR 392.82 - Using a hand-held mobile telephone.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Definitions. For the purpose of this section only, driving means operating a commercial motor vehicle on a... SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF.... (a)(1) No driver shall use a hand-held mobile telephone while driving a CMV. (2) No motor carrier...

  5. 49 CFR 392.82 - Using a hand-held mobile telephone.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Definitions. For the purpose of this section only, driving means operating a commercial motor vehicle on a... SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS DRIVING OF.... (a)(1) No driver shall use a hand-held mobile telephone while driving a CMV. (2) No motor carrier...

  6. 30 CFR 56.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  7. 30 CFR 56.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  8. 30 CFR 56.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  9. 30 CFR 56.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  10. 30 CFR 56.12033 - Hand-held electric tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Hand-held electric tools. 56.12033 Section 56.12033 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  11. Optimal accelerometer placement on a robot arm for pose estimation

    NASA Astrophysics Data System (ADS)

    Wijayasinghe, Indika B.; Sanford, Joseph D.; Abubakar, Shamsudeen; Saadatzi, Mohammad Nasser; Das, Sumit K.; Popa, Dan O.

    2017-05-01

    The performance of robots to carry out tasks depends in part on the sensor information they can utilize. Usually, robots are fitted with angle joint encoders that are used to estimate the position and orientation (or the pose) of its end-effector. However, there are numerous situations, such as in legged locomotion, mobile manipulation, or prosthetics, where such joint sensors may not be present at every, or any joint. In this paper we study the use of inertial sensors, in particular accelerometers, placed on the robot that can be used to estimate the robot pose. Studying accelerometer placement on a robot involves many parameters that affect the performance of the intended positioning task. Parameters such as the number of accelerometers, their size, geometric placement and Signal-to-Noise Ratio (SNR) are included in our study of their effects for robot pose estimation. Due to the ubiquitous availability of inexpensive accelerometers, we investigated pose estimation gains resulting from using increasingly large numbers of sensors. Monte-Carlo simulations are performed with a two-link robot arm to obtain the expected value of an estimation error metric for different accelerometer configurations, which are then compared for optimization. Results show that, with a fixed SNR model, the pose estimation error decreases with increasing number of accelerometers, whereas for a SNR model that scales inversely to the accelerometer footprint, the pose estimation error increases with the number of accelerometers. It is also shown that the optimal placement of the accelerometers depends on the method used for pose estimation. The findings suggest that an integration-based method favors placement of accelerometers at the extremities of the robot links, whereas a kinematic-constraints-based method favors a more uniformly distributed placement along the robot links.

  12. A data mining technique for discovering distinct patterns of hand signs: implications in user training and computer interface design.

    PubMed

    Ye, Nong; Li, Xiangyang; Farley, Toni

    2003-01-15

    Hand signs are considered as one of the important ways to enter information into computers for certain tasks. Computers receive sensor data of hand signs for recognition. When using hand signs as computer inputs, we need to (1) train computer users in the sign language so that their hand signs can be easily recognized by computers, and (2) design the computer interface to avoid the use of confusing signs for improving user input performance and user satisfaction. For user training and computer interface design, it is important to have a knowledge of which signs can be easily recognized by computers and which signs are not distinguishable by computers. This paper presents a data mining technique to discover distinct patterns of hand signs from sensor data. Based on these patterns, we derive a group of indistinguishable signs by computers. Such information can in turn assist in user training and computer interface design.

  13. 78 FR 20695 - Walk-Through Metal Detectors and Hand-Held Metal Detectors Test Method Validation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... Detectors and Hand-Held Metal Detectors Test Method Validation AGENCY: National Institute of Justice, DOJ... ensure that the test methods in the standards are properly documented, NIJ is requesting proposals (including price quotes) for test method validation efforts from testing laboratories. NIJ is also seeking...

  14. How to use hand-held computers to evaluate wood drying.

    Treesearch

    Howard N. Rosen; Darrell S. Martin

    1985-01-01

    Techniques have been developed to evaluate end generate wood drying curves with hand-held computers (3-5K memory). Predictions of time to dry to a specific moisture content, drying rates, and other characteristics of wood drying curves can be made. The paper describes the development of programs and illustrates their use.

  15. Epilepsy Forewarning Using A Hand-Held Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hively, LM

    2005-02-21

    Over the last decade, ORNL has developed and patented a novel approach for forewarning of a large variety of machine and biomedical events. The present implementation uses desktop computers to analyze archival data. This report describes the next logical step in this effort, namely use of a hand-held device for the analysis.

  16. 75 FR 59301 - Self-Regulatory Organizations; Notice of Filing and Immediate Effectiveness of Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... makes clear what type of information may be communicated to and from hand-held devices. \\8\\ 15 U.S.C...\\ NYSE approved portable telephones,\\6\\ or through a written electronic communication from the Floor brokers' hand-held device as permitted by the NYSE's ``Wireless Data Communications Initiatives...

  17. Technology in the College Classroom.

    ERIC Educational Resources Information Center

    Earl, Archie W., Sr.

    An analysis was made of the use of computing tools at the graduate and undergraduate levels in colleges and universities in the United States. Topics ranged from hand-held calculators to the use of main-frame computers and the assessment of the SPSSX, SPSS, LINDO, and MINITAB computer software packages. Hand-held calculators are being increasingly…

  18. Multi-Sensor Systems Development for UXO Detection and Discrimination: Hand-Held Dual Magnetic/Electromagnetic Induction Sensor

    DTIC Science & Technology

    2008-04-01

    5 Fluxgate magnetometer ... magnetometer into digital format, and transmitted as a single serial data string to log the Cs and fluxgate magnetometer data. After procurement...Hardware The system hardware comprises an EMI sensor, Cs vapor magnetometer , fluxgate magnetometer , hand-held data acquisition computer, integrated

  19. Hand-held Calculators: Past, Present, and Future

    ERIC Educational Resources Information Center

    Bell, Max; And Others

    1977-01-01

    Recommendations of several publications with regard to the use of hand-held calculators in the mathematics curriculum are presented. Relevant portions of the NACOME and Euclid Conference reports are cited as well as a report to NSF and recommendations from an NIE/NSF conference. Recommendations support expanded use of, and research concerning,…

  20. Online Responses towards Parental Rearing Styles Regarding Hand-Held Devices

    ERIC Educational Resources Information Center

    Geng, Gretchen; Disney, Leigh

    2014-01-01

    This article reviewed the literature on parental rearing styles and used responses from an online discussion forum to investigate people's opinions towards parental rearing styles and strategies when children use hand-held devices. Critical discourse analysis (CDA) was used as an analysis method via micro, meso and macro multi-level…

  1. 33 CFR 175.130 - Visual distress signals accepted.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... red flare (160.024 or 160.036) meets both day and night requirements. Three hand held orange smoke (160.037) with one electric distress light (161.013) meet both day and night requirements. Table 175... Number required 160.021 Hand Held Red Flare Distress Signals 3 Day and Night 3 160.022 Floating Orange...

  2. 77 FR 40637 - Honeywell International, Scanning and Mobility Division, Formerly Known as Hand Held Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ..., Scanning and Mobility Division, Formerly Known as Hand Held Products, Inc., Including On-Site Leased Workers From Manpower, Skaneatelles Falls, NY; Amended Certification Regarding Eligibility To Apply for...''), 19 U.S.C. 2273, the Department of Labor issued a Certification of Eligibility to Apply for Worker...

  3. 49 CFR 177.804 - Compliance with Federal Motor Carrier Safety Regulations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... require texting while driving. (c) Prohibition against the use of hand-held mobile telephones. In... those regulations apply. (b) Prohibition against texting. In accordance with § 392.80 of the FMCSRs a... 42 CFR part 73 may not engage in, allow, or require use of a hand-held mobile telephone while driving...

  4. Distributing Data from Desktop to Hand-Held Computers

    NASA Technical Reports Server (NTRS)

    Elmore, Jason L.

    2005-01-01

    A system of server and client software formats and redistributes data from commercially available desktop to commercially available hand-held computers via both wired and wireless networks. This software is an inexpensive means of enabling engineers and technicians to gain access to current sensor data while working in locations in which such data would otherwise be inaccessible. The sensor data are first gathered by a data-acquisition server computer, then transmitted via a wired network to a data-distribution computer that executes the server portion of the present software. Data in all sensor channels -- both raw sensor outputs in millivolt units and results of conversion to engineering units -- are made available for distribution. Selected subsets of the data are transmitted to each hand-held computer via the wired and then a wireless network. The selection of the subsets and the choice of the sequences and formats for displaying the data is made by means of a user interface generated by the client portion of the software. The data displayed on the screens of hand-held units can be updated at rates from 1 to

  5. A new approach for the screening of carotid lesions: a 'fast-track' method with the use of new generation hand-held ultrasound devices.

    PubMed

    Aboyans, V; Lacroix, P; Jeannicot, A; Guilloux, J; Bertin, F; Laskar, M

    2004-09-01

    We assessed the usefulness of fast-track neck sonography with a new-generation hand-held ultrasound scanner in the detection of > or =60% carotid stenosis. Patients with a past history of atherosclerotic disease or presence of risk factors were enrolled. All had fast-track carotid screening with a hand-held ultrasound scanner. Initial assessment was performed with our quick imaging protocol. A second examiner performed a conventional complete carotid duplex as gold-standard. We enrolled 197 consecutive patients with a mean age of 67 years (range 35-94). A carotid stenosis >60% was detected in 13 cases (6%). The sensitivity, specificity, positive and negative predictive value of fast-track sonography was 100%, 64%, 17% and 100%, respectively. Concomitant power Doppler imaging during the fast-track method did not improve accuracy. The use of a fast-track method with a hand-held ultrasound device can reduce the number of unnecessary carotid Duplex and enhance the screening efficiency without missing significant carotid stenoses.

  6. Noise reduction techniques in the design of a pneumatic-driven hand held power tool

    NASA Astrophysics Data System (ADS)

    Skinner, Christian M.

    2005-09-01

    Pneumatic-driven hand-held power tools generate noise in the workplace. Current legislation in Europe and the USA aims at protecting workers against noise exposure. In the United States, the Occupational Safety and Health Administration (OSHA) requires that employers create a hearing conservation program if the noise exposure exceeds 85 dB(A). In the European Community under the Directive 2003/10/EC, employers are required to provide hearing protection if the noise exposure within the working environment exceeds 80 dB(A) and must require hearing protection to be worn if the noise exposure exceeds 85 dB(A). This paper examines the sources of noise which contribute to the overall noise from a hand-held power tool. A test plan was developed to identify these individual sources of noise and to determine if structure-borne noise or airborne noise is the dominant source relative to the overall noise level. The measurements were performed per International Standards Organization (ISO) 15744. This paper will describe the methodology used to identify the noise sources and reduce the overall noise of a hand-held power tool.

  7. Location Based Services for Outdoor Ecological Learning System: Design and Implementation

    ERIC Educational Resources Information Center

    Hsiao, Hsien-Sheng; Lin, Chih-Cheng; Feng, Ruei-Ting; Li, Kun Jing

    2010-01-01

    This paper aimed to demonstrate how location-based services were implemented in ubiquitous outdoor ecological learning system. In an elementary school in northern Taiwan, two fifth grade classes on an ecology project were randomly selected: The experimental group could access the ecological learning system on hand-held devices while the control…

  8. Base pairing and base mis-pairing in nucleic acids

    NASA Technical Reports Server (NTRS)

    Wang, A. H. J.; Rich, A.

    1986-01-01

    In recent years we have learned that DNA is conformationally active. It can exist in a number of different stable conformations including both right-handed and left-handed forms. Using single crystal X-ray diffraction analysis we are able to discover not only additional conformations of the nucleic acids but also different types of hydrogen bonded base-base interactions. Although Watson-Crick base pairings are the predominant type of interaction in double helical DNA, they are not the only types. Recently, we have been able to examine mismatching of guanine-thymine base pairs in left-handed Z-DNA at atomic resolution (1A). A minimum amount of distortion of the sugar phosphate backbone is found in the G x T pairing in which the bases are held together by two hydrogen bonds in the wobble pairing interaction. Because of the high resolution of the analysis we can visualize water molecules which fill in to accommodate the other hydrogen bonding positions in the bases which are not used in the base-base interactions. Studies on other DNA oligomers have revealed that other types of non-Watson-Crick hydrogen bonding interactions can occur. In the structure of a DNA octamer with the sequence d(GCGTACGC) complexed to an antibiotic triostin A, it was found that the two central AT base pairs are held together by Hoogsteen rather than Watson-Crick base pairs. Similarly, the G x C base pairs at the ends are also Hoogsteen rather than Watson-Crick pairing. Hoogsteen base pairs make a modified helix which is distinct from the Watson-Crick double helix.

  9. A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments.

    PubMed

    Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang; Tu, Liangcheng

    2017-11-18

    A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng / Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz . The accelerometer's designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng / Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer.

  10. Locomotion mode identification for lower limbs using neuromuscular and joint kinematic signals.

    PubMed

    Afzal, Taimoor; White, Gannon; Wright, Andrew B; Iqbal, Kamran

    2014-01-01

    Recent development in lower limb prosthetics has seen an emergence of powered prosthesis that have the capability to operate in different locomotion modes. However, these devices cannot transition seamlessly between modes such as level walking, stair ascent and descent and up slope and down slope walking. They require some form of user input that defines the human intent. The purpose of this study was to develop a locomotion mode detection system and evaluate its performance for different sensor configurations and to study the effect of locomotion mode detection with and without electromyography (EMG) signals while using kinematic data from hip joint of non-dominant/impaired limb and an accelerometer. Data was collected from four able bodied subjects that completed two circuits that contained standing, level-walking, ramp ascent and descent and stair ascent and descent. By using only the kinematic data from the hip joint and accelerometer data the system was able to identify the transitions, stance and swing phases with similar performance as compared to using only EMG and accelerometer data. However, significant improvement in classification error was observed when EMG, kinematic and accelerometer data were used together to identify the locomotion modes. The higher recognition rates when using the kinematic data along with EMG shows that the joint kinematics could be beneficial in intent recognition systems of locomotion modes.

  11. Vibration Analysis and the Accelerometer

    ERIC Educational Resources Information Center

    Hammer, Paul

    2011-01-01

    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  12. A Novel Approach For Ankle Foot Orthosis Developed By Three Dimensional Technologies

    NASA Astrophysics Data System (ADS)

    Belokar, R. M.; Banga, H. K.; Kumar, R.

    2017-12-01

    This study presents a novel approach for testing mechanical properties of medical orthosis developed by three dimensional (3D) technologies. A hand-held type 3D laser scanner is used for generating 3D mesh geometry directly from patient’s limb. Subsequently 3D printable orthotic design is produced from crude input model by means of Computer Aided Design (CAD) software. Fused Deposition Modelling (FDM) method in Additive Manufacturing (AM) technologies is used to fabricate the 3D printable Ankle Foot Orthosis (AFO) prototype in order to test the mechanical properties on printout. According to test results, printed Acrylonitrile Butadiene Styrene (ABS) AFO prototype has sufficient elasticity modulus and durability for patient-specific medical device manufactured by the 3D technologies.

  13. Technical Evaluation of Metal Detectors for Concealed Weapons (Supplement 1)

    DOT National Transportation Integrated Search

    1972-04-01

    This document augments the classification and technical evaluation of Commercial Metal Detectors presented in Report No. DOT-TSC-OST-71-15, June 1971. Data based on extensive laboratory tests are presented on two hand-held models and two walk-through...

  14. A low-noise MEMS accelerometer for unattended ground sensor applications

    NASA Astrophysics Data System (ADS)

    Speller, Kevin E.; Yu, Duli

    2004-09-01

    A low-noise micro-machined servo accelerometer has been developed for use in Unattended Ground Sensors (UGS). Compared to conventional coil-and-magnet based velocity transducers, this Micro-Electro-Mechanical System (MEMS) accelerometer offers several key benefits for battlefield monitoring. Many UGS require a compass to determine deployment orientation with respect to magnetic North. This orientation information is critical for determining the bearing of incoming signals. Conventional sensors with sensing technology based on a permanent magnet can cause interference with a compass when used in close proximity. This problem is solved with a MEMS accelerometer which does not require any magnetic materials. Frequency information below 10 Hz is valuable for identification of signal sources. Conventional seismometers used in UGS are typically limited in frequency response from 20 to 200 Hz. The MEMS accelerometer has a flat frequency response from DC to 5 kHz. The wider spectrum of signals received improves detection, classification and monitoring on the battlefield. The DC-coupled output of the MEMS accelerometer also has the added benefit of providing tilt orientation data for the deployed UGS. Other performance parameters of the MEMS accelerometer that are important to UGS such as size, weight, shock survivability, phase response, distortion, and cross-axis rejection will be discussed. Additionally, field test data from human footsteps recorded with the MEMS accelerometer will be presented.

  15. A biomimetic accelerometer inspired by the cricket's clavate hair

    PubMed Central

    Droogendijk, H.; de Boer, M. J.; Sanders, R. G. P.; Krijnen, G. J. M.

    2014-01-01

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a one-axis biomimetic accelerometer has been developed and fabricated using surface micromachining and SU-8 lithography. An analytical model is presented for the design of the accelerometer, and guidelines are derived to reduce responsivity due to flow-induced contributions to the accelerometer's output. Measurements show that this microelectromechanical systems (MEMS) hair-based accelerometer has a resonance frequency of 320 Hz, a detection threshold of 0.10 ms−2 and a dynamic range of more than 35 dB. The accelerometer exhibits a clear directional response to external accelerations and a low responsivity to airflow. Further, the accelerometer's physical limits with respect to noise levels are addressed and the possibility for short-term adaptation of the sensor to the environment is discussed. PMID:24920115

  16. Inverse Proportional Relationship Between Switching-Time Length and Fractal-Like Structure for Continuous Tracking Movement

    NASA Astrophysics Data System (ADS)

    Hirakawa, Takehito; Suzuki, Hiroo; Gohara, Kazutoshi; Yamamoto, Yuji

    We investigate the relationship between the switching-time length T and the fractal-like feature that characterizes the behavior of dissipative dynamical systems excited by external temporal inputs for tracking movement. Seven healthy right-handed male participants were asked to continuously track light-emitting diodes that were located on the right and left sides in front of them. These movements were performed under two conditions: when the same input pattern was repeated (the periodic-input condition) and when two different input patterns were switched stochastically (the switching-input condition). The repeated time lengths of input patterns during these conditions were 2.00, 1.00, 0.75, 0.50, 0.35, and 0.25s. The movements of a lever held between a participant’s thumb and index finger were measured by a motion-capture system and were analyzed with respect to position and velocity. The condition in which the same input was repeated revealed that two different stable trajectories existed in a cylindrical state space, while the condition in which the inputs were switched induced transitions between these two trajectories. These two different trajectories were considered as excited attractors. The transitions between the two excited attractors produced eight trajectories; they were then characterized by a fractal-like feature as a third-order sequence effect. Moreover, correlation dimensions, which are typically used to evaluate fractal-like features, calculated from the set on the Poincaré section increased as the switching-time length T decreased. These results suggest that an inverse proportional relationship exists between the switching-time length T and the fractal-like feature of human movement.

  17. Hand-arm vibration disorder among grass-cutter workers in Malaysia.

    PubMed

    Azmir, Nor Azali; Ghazali, Mohd Imran; Yahya, Musli Nizam; Ali, Mohamad Hanafi

    2016-09-01

    Prolonged exposure to hand-transmitted vibration from grass-cutting machines has been associated with increasing occurrences of symptoms and signs of occupational diseases related to hand-arm vibration syndrome (HAVS). A cross-sectional study was carried out using an adopted HAVS questionnaire on hand-arm vibration exposure and symptoms distributed to 168 male workers from the grass and turf maintenance industry who use hand-held grass-cutting machines as part of their work. The prevalence ratio and symptom correlation to HAVS between high and low-moderate exposure risk groups were evaluated. There were positive HAVS symptoms relationships between the low-moderate exposure group and the high exposure group among hand-held grass-cutting workers. The prevalence ratio was considered high because there were indicators that fingers turned white and felt numb, 3.63, 95% CI [1.41, 9.39] and 4.24, 95% CI [2.18, 8.27], respectively. Less than 14.3% of workers stated that they were aware of the occupational hand-arm vibration, and it seemed to be related to the finger blanching and numbness. The results suggest that HAVS is under-diagnosed in Malaysia, especially in the agricultural sectors. More information related to safety and health awareness programmes for HAVS exposure is required among hand-held grass-cutting workers.

  18. Portable Electromyograph

    NASA Technical Reports Server (NTRS)

    De Luca, Gianluca; De Luca, Carlo J.; Bergman, Per

    2004-01-01

    A portable electronic apparatus records electromyographic (EMG) signals in as many as 16 channels at a sampling rate of 1,024 Hz in each channel. The apparatus (see figure) includes 16 differential EMG electrodes (each electrode corresponding to one channel) with cables and attachment hardware, reference electrodes, an input/output-and-power-adapter unit, a 16-bit analog-to-digital converter, and a hand-held computer that contains a removable 256-MB flash memory card. When all 16 EMG electrodes are in use, full-bandwidth data can be recorded in each channel for as long as 8 hours. The apparatus is powered by a battery and is small enough that it can be carried in a waist pouch. The computer is equipped with a small screen that can be used to display the incoming signals on each channel. Amplitude and time adjustments of this display can be made easily by use of touch buttons on the screen. The user can also set up a data-acquisition schedule to conform to experimental protocols or to manage battery energy and memory efficiently. Once the EMG data have been recorded, the flash memory card is removed from the EMG apparatus and placed in a flash-memory- card-reading external drive unit connected to a personal computer (PC). The PC can then read the data recorded in the 16 channels. Preferably, before further analysis, the data should be stored in the hard drive of the PC. The data files are opened and viewed on the PC by use of special- purpose software. The software for operation of the apparatus resides in a random-access memory (RAM), with backup power supplied by a small internal lithium cell. A backup copy of this software resides on the flash memory card. In the event of loss of both main and backup battery power and consequent loss of this software, the backup copy can be used to restore the RAM copy after power has been restored. Accessories for this device are also available. These include goniometers, accelerometers, foot switches, and force gauges.

  19. Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays.

    PubMed

    Berg, Brandon; Cortazar, Bingen; Tseng, Derek; Ozkan, Haydar; Feng, Steve; Wei, Qingshan; Chan, Raymond Yan-Lok; Burbano, Jordi; Farooqui, Qamar; Lewinski, Michael; Di Carlo, Dino; Garner, Omai B; Ozcan, Aydogan

    2015-08-25

    Standard microplate based enzyme-linked immunosorbent assays (ELISA) are widely utilized for various nanomedicine, molecular sensing, and disease screening applications, and this multiwell plate batched analysis dramatically reduces diagnosis costs per patient compared to nonbatched or nonstandard tests. However, their use in resource-limited and field-settings is inhibited by the necessity for relatively large and expensive readout instruments. To mitigate this problem, we created a hand-held and cost-effective cellphone-based colorimetric microplate reader, which uses a 3D-printed opto-mechanical attachment to hold and illuminate a 96-well plate using a light-emitting-diode (LED) array. This LED light is transmitted through each well, and is then collected via 96 individual optical fibers. Captured images of this fiber-bundle are transmitted to our servers through a custom-designed app for processing using a machine learning algorithm, yielding diagnostic results, which are delivered to the user within ∼1 min per 96-well plate, and are visualized using the same app. We successfully tested this mobile platform in a clinical microbiology laboratory using FDA-approved mumps IgG, measles IgG, and herpes simplex virus IgG (HSV-1 and HSV-2) ELISA tests using a total of 567 and 571 patient samples for training and blind testing, respectively, and achieved an accuracy of 99.6%, 98.6%, 99.4%, and 99.4% for mumps, measles, HSV-1, and HSV-2 tests, respectively. This cost-effective and hand-held platform could assist health-care professionals to perform high-throughput disease screening or tracking of vaccination campaigns at the point-of-care, even in resource-poor and field-settings. Also, its intrinsic wireless connectivity can serve epidemiological studies, generating spatiotemporal maps of disease prevalence and immunity.

  20. 75 FR 59753 - Self-Regulatory Organizations; Notice of Filing and Immediate Effectiveness of Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... makes clear what type of information may be communicated to and from hand-held devices. \\8\\ 15 U.S.C... using a wired telephone line,\\5\\ NYSE Amex approved portable telephones,\\6\\ or through a written electronic communication from the Floor brokers' hand-held device as permitted by the NYSE Amex's ``Wireless...

  1. Issues Arising on the Use of Hand-Held Calculators in Schools.

    ERIC Educational Resources Information Center

    D'Ambrosio, Ubiratan

    This paper notes three objections to the use of hand-held calculators in schools: they would (1) block reasoning, (2) make individuals machine-dependent, and (3) broaden the gap between developed and underdeveloped nations. Each is addressed, with specific examples used to refute them. The belief is strongly expressed that calculators can aid in…

  2. Chosen Striking Location and the User-Tool-Environment System

    ERIC Educational Resources Information Center

    Wagman, Jeffrey B.; Taylor, Kona R.

    2004-01-01

    Controlling a hand-held tool requires that the tool user bring the tool into contact with an environmental surface in a task-appropriate manner. This, in turn, requires applying muscular forces so as to overcome how the object resists being moved about its various axes. Perceived properties of hand-held objects tend to be constrained by inertial…

  3. Field evaluation of indoor thermal fog and ultra-low volume applications for control of Aedes aegypti, in Thailand

    USDA-ARS?s Scientific Manuscript database

    Efficacies of a hand-held thermal fogger (PatriotTM) and hand-held Ultra-low volume (ULV) sprayer (TwisterTM) with combinations of two different adulticides and an insect growth regulator (pyriproxyfen) were field assessed and compared for their impact on reducing dengue vector populations in Thaila...

  4. 46 CFR 34.20-20 - Discharge outlets-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... least one mounted foam appliance shall be provided for each station that is required in § 34.20-15(c). (c) The number of hand-held appliances provided shall be at least equal to the number of hose outlets at the two foam stations having the most hose outlets. Hand-held appliances shall be stowed in a well...

  5. Development of a minimum performance standard for hand-held fire extinguishers as a replacement for Halon 1211 on civilian transport category aircraft

    DOT National Transportation Integrated Search

    2002-08-01

    One or more Halon 1211 hand-held fire extinguishers are specified in Federal Aviation Regulation (FAR) Part 25.851 as a requirement on transport category aircraft with 31 or more seats. Halon 1211 has been linked to the destruction of the ozone layer...

  6. Hand-Held Calculators in the Classroom: A Review of the Research.

    ERIC Educational Resources Information Center

    Parkhurst, Scott

    This report surveys many of the recent investigations on calculators and their use in mathematics education. The review notes that the widespread availability of hand-held calculators and their affordability has led to their consideration as a viable tool to aid in mathematics instruction. The studies reviewed suggest that many questions are still…

  7. Hand-Held Ultrasonic Instrument for Reading Matrix Symbols

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kula, John P.; Gurney, John W.; Lior, Ephraim D.

    2008-01-01

    A hand-held instrument that would include an ultrasonic camera has been proposed as an efficient means of reading matrix symbols. The proposed instrument could be operated without mechanical raster scanning. All electronic functions from excitation of ultrasonic pulses through final digital processing for decoding matrix symbols would be performed by dedicated circuitry within the single, compact instrument housing.

  8. Using Gamma ray and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) to Evaluate Elemental Sequences in Cap-carbonates and Cap-like Carbonates of the Death Valley Region

    NASA Astrophysics Data System (ADS)

    Holter, S. A.; Theissen, K. M.; Hickson, T. A.; Bostick, B.

    2004-12-01

    The Snowball Earth theory of Hoffman et al. (1998) proposes dramatic post-glacial chemical weathering as large concentrations of carbon were removed from the atmosphere. This would result in a large input of terrigenous material into the oceans; hence, we might expect that carbonates formed under these conditions would demonstrate elevated K, U, Th levels in comparison to carbonates formed under more typical conditions. In January of 2004 we collected spectral gamma data (K, U, Th) and hand samples from cap carbonates (Noonday Dolomite) and cap-like carbonates (Beck Spring Dolomite) of the Death Valley region in order to explore elemental changes in post-snowball Earth oceans. Based on our spectral gamma results, Th/U ratio trends suggested variations in the oxidation state of the Precambrian ocean. We pursued further investigations of trace elements to ascertain the reliability of these results by using ICP-OES. A suite of 25 trace elements was measured, most notably including U and Th. The ICP-OES data not only allow us to compare elemental changes between cap-carbonates and cap-like carbonates, but they also allow for a comparison of optical emission spectrometry and hand held gamma spectrometry methods. Both methods show similar trends in U and Th values for both the cap-carbonates and cap-like carbonates.

  9. Nanothermite-Based Microsystem for Drug Delivery and Cell Transfection

    DTIC Science & Technology

    2008-12-01

    micropyrotechnic-based system in which a nanothermite energy source is coupled to a biological target for gene transfer and drug delivery ... delivery of particulate vaccines and drugs to human skin with a practical, hand-held shock tube-based system . Shock Waves, 12, 23-30. Kodama, T., M...1 NANOTHERMITE-BASED MICROSYSTEM FOR DRUG DELIVERY AND CELL TRANSFECTION S. Apperson, R. Thiruvengadathan, A. Bezmelnitsyn, K. Gangopadhyay, S

  10. Digital controller design: Continuous and discrete describing function analysis of the IPS system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The dynamic equations and the mathematical model of the continuous-data IPS control system are developed. The IPS model considered included one flexible body mode and was hardmounted to the Orbiter/Pallet. The model contains equations describing a torque feed-forward loop (using accelerometers as inputs) which will aid in reducing the pointing errors caused by Orbiter disturbances.

  11. Testing an integrated behavioural and biomedical model of disability in N-of-1 studies with chronic pain.

    PubMed

    Quinn, Francis; Johnston, Marie; Johnston, Derek W

    2013-01-01

    Previous research has supported an integrated biomedical and behavioural model explaining activity limitations. However, further tests of this model are required at the within-person level, because while it proposes that the constructs are related within individuals, it has primarily been tested between individuals in large group studies. We aimed to test the integrated model at the within-person level. Six correlational N-of-1 studies in participants with arthritis, chronic pain and walking limitations were carried out. Daily measures of theoretical constructs were collected using a hand-held computer (PDA), the activity was assessed by self-report and accelerometer and the data were analysed using time-series analysis. The biomedical model was not supported as pain impairment did not predict activity, so the integrated model was supported partially. Impairment predicted intention to move around, while perceived behavioural control (PBC) and intention predicted activity. PBC did not predict activity limitation in the expected direction. The integrated model of disability was partially supported within individuals, especially the behavioural elements. However, results suggest that different elements of the model may drive activity (limitations) for different individuals. The integrated model provides a useful framework for understanding disability and suggests interventions, and the utility of N-of-1 methodology for testing theory is illustrated.

  12. Identification of hand motion using background subtraction method and extraction of image binary with backpropagation neural network on skeleton model

    NASA Astrophysics Data System (ADS)

    Fauziah; Wibowo, E. P.; Madenda, S.; Hustinawati

    2018-03-01

    Capturing and recording motion in human is mostly done with the aim for sports, health, animation films, criminality, and robotic applications. In this study combined background subtraction and back propagation neural network. This purpose to produce, find similarity movement. The acquisition process using 8 MP resolution camera MP4 format, duration 48 seconds, 30frame/rate. video extracted produced 1444 pieces and results hand motion identification process. Phase of image processing performed is segmentation process, feature extraction, identification. Segmentation using bakground subtraction, extracted feature basically used to distinguish between one object to another object. Feature extraction performed by using motion based morfology analysis based on 7 invariant moment producing four different classes motion: no object, hand down, hand-to-side and hands-up. Identification process used to recognize of hand movement using seven inputs. Testing and training with a variety of parameters tested, it appears that architecture provides the highest accuracy in one hundred hidden neural network. The architecture is used propagate the input value of the system implementation process into the user interface. The result of the identification of the type of the human movement has been clone to produce the highest acuracy of 98.5447%. The training process is done to get the best results.

  13. Towards remote assessment and screening of acute abdominal pain using only a smartphone with native accelerometers.

    PubMed

    Myers, David R; Weiss, Alexander; Rollins, Margo R; Lam, Wilbur A

    2017-10-06

    Smartphone-based telehealth holds the promise of shifting healthcare from the clinic to the home, but the inability for clinicians to conduct remote palpation, or touching, a key component of the physical exam, remains a major limitation. This is exemplified in the assessment of acute abdominal pain, in which a physician's palpation determines if a patient's pain is life-threatening requiring emergency intervention/surgery or due to some less-urgent cause. In a step towards virtual physical examinations, we developed and report for the first time a "touch-capable" mHealth technology that enables a patient's own hands to serve as remote surrogates for the physician's in the screening of acute abdominal pain. Leveraging only a smartphone with its native accelerometers, our system guides a patient through an exact probing motion that precisely matches the palpation motion set by the physician. An integrated feedback algorithm, with 95% sensitivity and specificity, enabled 81% of tested patients to match a physician abdominal palpation curve with <20% error after 6 attempts. Overall, this work addresses a key issue in telehealth that will vastly improve its capabilities and adoption worldwide.

  14. WebAlchemist: a Web transcoding system for mobile Web access in handheld devices

    NASA Astrophysics Data System (ADS)

    Whang, Yonghyun; Jung, Changwoo; Kim, Jihong; Chung, Sungkwon

    2001-11-01

    In this paper, we describe the design and implementation of WebAlchemist, a prototype web transcoding system, which automatically converts a given HTML page into a sequence of equivalent HTML pages that can be properly displayed on a hand-held device. The Web/Alchemist system is based on a set of HTML transcoding heuristics managed by the Transcoding Manager (TM) module. In order to tackle difficult-to-transcode pages such as ones with large or complex table structures, we have developed several new transcoding heuristics that extract partial semantics from syntactic information such as the table width, font size and cascading style sheet. Subjective evaluation results using popular HTML pages (such as the CNN home page) show that WebAlchemist generates readable, structure-preserving transcoded pages, which can be properly displayed on hand-held devices.

  15. Pilot study of a point-of-use decision support tool for cancer clinical trials eligibility.

    PubMed

    Breitfeld, P P; Weisburd, M; Overhage, J M; Sledge, G; Tierney, W M

    1999-01-01

    Many adults with cancer are not enrolled in clinical trials because caregivers do not have the time to match the patient's clinical findings with varying eligibility criteria associated with multiple trials for which the patient might be eligible. The authors developed a point-of-use portable decision support tool (DS-TRIEL) to automate this matching process. The support tool consists of a hand-held computer with a programmable relational database. A two-level hierarchic decision framework was used for the identification of eligible subjects for two open breast cancer clinical trials. The hand-held computer also provides protocol consent forms and schemas to further help the busy oncologist. This decision support tool and the decision framework on which it is based could be used for multiple trials and different cancer sites.

  16. Pilot Study of a Point-of-use Decision Support Tool for Cancer Clinical Trials Eligibility

    PubMed Central

    Breitfeld, Philip P.; Weisburd, Marina; Overhage, J. Marc; Sledge, George; Tierney, William M.

    1999-01-01

    Many adults with cancer are not enrolled in clinical trials because caregivers do not have the time to match the patient's clinical findings with varying eligibility criteria associated with multiple trials for which the patient might be eligible. The authors developed a point-of-use portable decision support tool (DS-TRIEL) to automate this matching process. The support tool consists of a hand-held computer with a programmable relational database. A two-level hierarchic decision framework was used for the identification of eligible subjects for two open breast cancer clinical trials. The hand-held computer also provides protocol consent forms and schemas to further help the busy oncologist. This decision support tool and the decision framework on which it is based could be used for multiple trials and different cancer sites. PMID:10579605

  17. Hand-held portable desorption atmospheric pressure chemical ionization ion source for in situ analysis of nitroaromatic explosives.

    PubMed

    Jjunju, Fred P M; Maher, Simon; Li, Anyin; Syed, Sarfaraz U; Smith, Barry; Heeren, Ron M A; Taylor, Stephen; Cooks, R Graham

    2015-10-06

    A novel, lightweight (0.6 kg), solvent- and gas-cylinder-free, hand-held ion source based on desorption atmospheric pressure chemical ionization has been developed and deployed for the analysis of nitroaromatic explosives on surfaces in open air, offering portability for in-field analysis. A small, inexpensive, rechargeable lithium polymer battery was used to power the custom-designed circuitry within the device, which generates up to ±5 kV dc voltage to ignite a corona discharge plasma in air for up to 12 h of continuous operation, and allowing positive- and negative-ion mass spectrometry. The generated plasma is pneumatically transported to the surface to be interrogated by ambient air at a rate of 1-3.5 L/min, compressed using a small on-board diaphragm pump. The plasma source allows liquid or solid samples to be examined almost instantaneously without any sample preparation in the open environment. The advantages of low carrier gas and low power consumption (<6 W), as well as zero solvent usage, have aided in developing the field-ready, hand-held device for trigger-based, "near-real-time" sampling/ionization. Individual nitroaromatic explosives (such as 2,4,6-trinitrotoluene) can be easily detected in amounts as low as 5.8 pg with a linear dynamic range of at least 10 (10-100 pg), a relative standard deviation of ca. 7%, and an R(2) value of 0.9986. Direct detection of several nitroaromatic compounds in a complex mixture without prior sample preparation is demonstrated, and their identities are confirmed by tandem mass spectrometry fragmentation patterns.

  18. Hand-Held Color Meters Based on Interference Filters

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey; Fleurial, Jean-Pierre; Caillat, Thierry; Chen, Gang; Yang, Rong Gui

    2004-01-01

    Small, inexpensive, hand-held optoelectronic color-measuring devices based on metal-film/dielectric-film interference filters are undergoing development. These color meters could be suitable for use in a variety of applications in which there are requirements to quantify or match colors for aesthetic purposes but there is no need for the high spectral resolution of scientific-grade spectrometers. Such applications typically occur in the paint, printing, and cosmetic industries, for example. The figure schematically depicts a color meter of this type being used to measure the color of a sample in terms of the spectrum of light reflected from the sample. Light from a white source (for example, a white light-emitting diode) passes through a collimating lens to the sample. Another lens collects some of the light reflected from the sample and focuses the light onto the input end of optical fiber. Light emerging from the output end of the optical fiber illuminates an array of photodetectors covered with metal/dielectric-film interference filters like those described in Metal/Dielectric-film Interference Color Filters (NPO-20217), NASA Tech Briefs, Vol. 23, No. 2 (February 1999), page 70. Typically, these are wide-band-pass filters, as shown at the bottom of the figure. The photodetector array need not be of any particular design: it could be something as simple as an assembly containing several photodiodes or something as elaborate as an active-pixel sensor or other imaging device. What is essential is that each of the photodetectors or each of several groups of photodetectors is covered with a metal/dielectric-film filter of a different color. In most applications, it would be desirable to have at least three different filters, each for a spectral band that contains one of the three primary additive red, green, and blue colors. In some applications, it may be necessary to have more than three different color filters in order to characterize subtle differences in color (or in the sensation of color) that cannot be characterized with sufficient precision by use of the primary colors alone.

  19. Simultaneous hand-held contact color fundus and SD-OCT imaging for pediatric retinal diseases (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ruggeri, Marco; Hernandez, Victor; De Freitas, Carolina; Relhan, Nidhi; Silgado, Juan; Manns, Fabrice; Parel, Jean-Marie

    2016-03-01

    Hand-held wide-field contact color fundus photography is currently the standard method to acquire diagnostic images of children during examination under anesthesia and in the neonatal intensive care unit. The recent development of portable non-contact hand-held OCT retinal imaging systems has proved that OCT is of tremendous help to complement fundus photography in the management of pediatric patients. Currently, there is no commercial or research system that combines color wide-field digital fundus and OCT imaging in a contact-fashion. The contact of the probe with the cornea has the advantages of reducing motion experienced by the photographer during the imaging and providing fundus and OCT images with wider field of view that includes the periphery of the retina. In this study we produce proof of concept for a contact-type hand-held unit for simultaneous color fundus and OCT live view of the retina of pediatric patients. The front piece of the hand-held unit consists of a contact ophthalmoscopy lens integrating a circular light guide that was recovered from a digital fundus camera for pediatric imaging. The custom-made rear piece consists of the optics to: 1) fold the visible aerial image of the fundus generated by the ophthalmoscopy lens on a miniaturized level board digital color camera; 2) conjugate the eye pupil to the galvanometric scanning mirrors of an OCT delivery system. Wide-field color fundus and OCT images were simultaneously obtained in an eye model and sequentially obtained on the eye of a conscious 25 year-old human subject with healthy retina.

  20. Development of a Coded Aperture X-Ray Backscatter Imager for Explosive Device Detection

    NASA Astrophysics Data System (ADS)

    Faust, Anthony A.; Rothschild, Richard E.; Leblanc, Philippe; McFee, John Elton

    2009-02-01

    Defence R&D Canada has an active research and development program on detection of explosive devices using nuclear methods. One system under development is a coded aperture-based X-ray backscatter imaging detector designed to provide sufficient speed, contrast and spatial resolution to detect antipersonnel landmines and improvised explosive devices. The successful development of a hand-held imaging detector requires, among other things, a light-weight, ruggedized detector with low power requirements, supplying high spatial resolution. The University of California, San Diego-designed HEXIS detector provides a modern, large area, high-temperature CZT imaging surface, robustly packaged in a light-weight housing with sound mechanical properties. Based on the potential for the HEXIS detector to be incorporated as the detection element of a hand-held imaging detector, the authors initiated a collaborative effort to demonstrate the capability of a coded aperture-based X-ray backscatter imaging detector. This paper will discuss the landmine and IED detection problem and review the coded aperture technique. Results from initial proof-of-principle experiments will then be reported.

  1. A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments

    PubMed Central

    Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang

    2017-01-01

    A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng/Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz. The accelerometer’s designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng/Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer. PMID:29156587

  2. Hand-Held Model of a Sarcomere to Illustrate the Sliding Filament Mechanism in Muscle Contraction

    ERIC Educational Resources Information Center

    Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2009-01-01

    From our teaching of the contractile unit of the striated muscle, we have found limitations in using textbook illustrations of sarcomere structure and its related dynamic molecular physiological details. A hand-held model of a striated muscle sarcomere made from common items has thus been made by us to enhance students' understanding of the…

  3. Applying Hand-Held 3D Printing Technology to the Teaching of VSEPR Theory

    ERIC Educational Resources Information Center

    Dean, Natalie L.; Ewan, Corrina; McIndoe, J. Scott

    2016-01-01

    The use of hand-held 3D printing technology provides a unique and engaging approach to learning VSEPR theory by enabling students to draw three-dimensional depictions of different molecular geometries, giving them an appreciation of the shapes of the building blocks of complex molecular structures. Students are provided with 3D printing pens and…

  4. A Cheap, Semiquantitative Hand-Held Conductivity Tester.

    ERIC Educational Resources Information Center

    Zawacky, Susan K. S.

    1995-01-01

    Describes a design for a hand-held conductivity tester powered by a 9V battery that gives semi-quantitative results for aqueous electrolyte solutions of concentrations ranging from 0.001 M to 0.1 M. The tester uses a bar-graph LED driven by an LM3914 integrated circuit to indicate the level of conductivity. A list of parts, procedures, and results…

  5. The Weak Link HP-41C hand-held calculator program

    Treesearch

    Ross A. Phillips; Penn A. Peters; Gary D. Falk

    1982-01-01

    The Weak Link hand-held calculator program (HP-41C) quickly analyzes a system for logging production and costs. The production equations model conventional chain saw, skidder, loader, and tandemaxle truck operations in eastern mountain areas. Production of each function of the logging system may be determined so that the system may be balanced for minimum cost. The...

  6. Spray distribution evaluation of different settings of a hand-held-trolley sprayer used in greenhouse tomato crops.

    PubMed

    Llop, Jordi; Gil, Emilio; Gallart, Montserrat; Contador, Felipe; Ercilla, Mireia

    2016-03-01

    Hand-held-trolley sprayers have recently been promoted to improve spray application techniques in greenhouses in south-eastern Spain. However, certain aspects remain to be improved. A modified hand-held-trolley sprayer was evaluated under two different canopy conditions (high and low canopy density) and with several sprayer settings (nozzle type, air assistance and spray volume). In this study, the deposition, coverage and uniformity of distribution of the spray on the canopy have been assessed. The deposition on leaves was significantly higher when flat-fan nozzles and air assistance were used at both high and low spray volumes. No differences were detected between the reference system at a high spray volume and the modified trolley at a low spray volume. Flat-fan nozzles with air assistance increased penetrability into the canopy. Air assistance and flat-fan nozzles allow volume rates to be reduced while maintaining or improving spray quality distribution. The working parameters of hand-held sprayers must be considered to reduce environmental risk and increase the efficacy of the spraying process. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  7. Gen-2 hand-held optical imager towards cancer imaging: reflectance and transillumination phantom studies.

    PubMed

    Gonzalez, Jean; Roman, Manuela; Hall, Michael; Godavarty, Anuradha

    2012-01-01

    Hand-held near-infrared (NIR) optical imagers are developed by various researchers towards non-invasive clinical breast imaging. Unlike these existing imagers that can perform only reflectance imaging, a generation-2 (Gen-2) hand-held optical imager has been recently developed to perform both reflectance and transillumination imaging. The unique forked design of the hand-held probe head(s) allows for reflectance imaging (as in ultrasound) and transillumination or compressed imaging (as in X-ray mammography). Phantom studies were performed to demonstrate two-dimensional (2D) target detection via reflectance and transillumination imaging at various target depths (1-5 cm deep) and using simultaneous multiple point illumination approach. It was observed that 0.45 cc targets were detected up to 5 cm deep during transillumination, but limited to 2.5 cm deep during reflectance imaging. Additionally, implementing appropriate data post-processing techniques along with a polynomial fitting approach, to plot 2D surface contours of the detected signal, yields distinct target detectability and localization. The ability of the gen-2 imager to perform both reflectance and transillumination imaging allows its direct comparison to ultrasound and X-ray mammography results, respectively, in future clinical breast imaging studies.

  8. A triaxial accelerometer monkey algorithm for optimal sensor placement in structural health monitoring

    NASA Astrophysics Data System (ADS)

    Jia, Jingqing; Feng, Shuo; Liu, Wei

    2015-06-01

    Optimal sensor placement (OSP) technique is a vital part of the field of structural health monitoring (SHM). Triaxial accelerometers have been widely used in the SHM of large-scale structures in recent years. Triaxial accelerometers must be placed in such a way that all of the important dynamic information is obtained. At the same time, the sensor configuration must be optimal, so that the test resources are conserved. The recommended practice is to select proper degrees of freedom (DOF) based upon several criteria and the triaxial accelerometers are placed at the nodes corresponding to these DOFs. This results in non-optimal placement of many accelerometers. A ‘triaxial accelerometer monkey algorithm’ (TAMA) is presented in this paper to solve OSP problems of triaxial accelerometers. The EFI3 measurement theory is modified and involved in the objective function to make it more adaptable in the OSP technique of triaxial accelerometers. A method of calculating the threshold value based on probability theory is proposed to improve the healthy rate of monkeys in a troop generation process. Meanwhile, the processes of harmony ladder climb and scanning watch jump are proposed and given in detail. Finally, Xinghai NO.1 Bridge in Dalian is implemented to demonstrate the effectiveness of TAMA. The final results obtained by TAMA are compared with those of the original monkey algorithm and EFI3 measurement, which show that TAMA can improve computational efficiency and get a better sensor configuration.

  9. Gyroscope-reduced inertial navigation system for flight vehicle motion estimation

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Xiao, Lu

    2017-01-01

    In this paper, a novel configuration of strategically distributed accelerometer sensors with the aid of one gyro to infer a flight vehicle's angular motion is presented. The MEMS accelerometer and gyro sensors are integrated to form a gyroscope-reduced inertial measurement unit (GR-IMU). The motivation for gyro aided accelerometers array is to have direct measurements of angular rates, which is an improvement to the traditional gyroscope-free inertial system that employs only direct measurements of specific force. Some technical issues regarding error calibration in accelerometers and gyro in GR-IMU are put forward. The GR-IMU based inertial navigation system can be used to find a complete attitude solution for flight vehicle motion estimation. Results of numerical simulation are given to illustrate the effectiveness of the proposed configuration. The gyroscope-reduced inertial navigation system based on distributed accelerometer sensors can be developed into a cost effective solution for a fast reaction, MEMS based motion capture system. Future work will include the aid from external navigation references (e.g. GPS) to improve long time mission performance.

  10. Suitability of capillary blood obtained by a minimally invasive lancet technique to detect subclinical ketosis in dairy cows by using 3 different electronic hand-held devices.

    PubMed

    Kanz, P; Drillich, M; Klein-Jöbstl, D; Mair, B; Borchardt, S; Meyer, L; Schwendenwein, I; Iwersen, M

    2015-09-01

    The objective of this study was to evaluate the suitability of capillary blood obtained by a minimally invasive lancet technique to detect subclinical ketosis in 49 prepartum and 191 postpartum Holstein-Friesian cows using 3 different electronic hand-held devices [FreeStyle Precision (FSP, Abbott), GlucoMen LX Plus (GLX, A. Menarini), NovaVet (NOV, Nova Biomedical)]. The β-hydroxybutyrate (BHBA) concentration in serum harvested from coccygeal blood samples was analyzed in a laboratory and used as a reference value. Capillary samples were obtained from the skin of the exterior vulva by using 1 of 3 different lancets. In all samples, the concentration of BHBA was immediately analyzed with all 3 hand-held devices used in random order. All lancets used in the study were eligible for capillary blood collection but differed in the total number of incisions needed. Spearman correlation coefficients between the BHBA concentrations in capillary blood and the reference test were highly significant with 83% for the FSP, 73% for the NOV, and 63% for the GLX. Using capillary blood, the FSP overestimated the mean BHBA concentration compared with the reference test (+0.08 mmol/L), whereas the GLX and NOV underestimated the mean concentration (-0.07 and -0.01 mmol/L). When a BHBA concentration of 1.2 mmol/L in serum was used to define subclinical ketosis, the corresponding analyses of receiver operating characteristics resulted in optimized thresholds for capillary blood of 1.1 mmol/L for the NOV and GLX devices, and of 1.0 mmol/L for the FSP. Based on these thresholds, sensitivities (Se) and specificities (Sp) were 89 and 84% for the NOV, 80 and 89% for the GLX, and 100 and 76% for the FSP. Based on a serum BHBA concentration of 1.4 mmol/L, analyses of receiver operating characteristics resulted in optimized cut-offs of 1.4 mmol/L for the FSP (Se 100%, Sp 92%), 1.3 mmol/L for the NOV (Se 80%, Sp 95%), and 1.1 mmol/L (Se 90%, Sp 85%) for the GLX. Using these optimized thresholds for the specific hand-held meters, no significant differences between the devices in Se and Sp to detect subclinical ketosis in coccygeal blood were observed. Calculated test characteristics for analyzing capillary blood using the hand-held devices were numerically smaller compared with blood obtained from a coccygeal vessel, but overlapping confidence intervals indicate no statistical difference between the origin of the sample. Hence, this procedure seems to be suitable for ketosis monitoring in dairy cows, but further validation with more data from different farms is recommended. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Comparison of pedometer and accelerometer accuracy under controlled conditions.

    PubMed

    Le Masurier, Guy C; Tudor-Locke, Catrine

    2003-05-01

    The purpose of this investigation was to compare the concurrent accuracy of the CSA accelerometer and the Yamax pedometer under two conditions: 1) on a treadmill at five different speeds and 2) riding in a motorized vehicle on paved roads. In study 1, motion sensor performance was evaluated against actual steps taken during 5-min bouts at five different treadmill walking speeds (54, 67, 80, 94, and 107 m.min-1). In study 2, performance was evaluated during a roundtrip (drive 1 and drive 2) motor vehicle travel on paved roads (total distance traveled was 32.6 km or 20.4 miles). Any steps detected during motor vehicle travel were considered error. In study 1, the Yamax pedometer detected significantly (P < 0.05) fewer steps than actually taken at the slowest treadmill speed (54 m.min-1). Further, the pedometer detected fewer steps than the accelerometer at this speed (75.4% vs 98.9%, P < 0.05). There were no differences between instruments compared with actual steps taken at all other walking speeds. In study 2, the CSA detected approximately 17-fold more erroneous steps than the pedometer (approximately 250 vs 15 steps for the total distance traveled, P < 0.05). The magnitude of the error (for either instrument) is not likely an important threat to the assessment of free-living ambulatory populations but may be a problem for pedometers when monitoring frail older adults with slow gaits. On the other hand, CSA accelerometers erroneously detect more nonsteps than the Yamax pedometer under typical motor vehicle traveling conditions. This threat to validity is likely only problematic when using the accelerometer to assess physical activity in sedentary individuals who travel extensively by motor vehicle.

  12. Accuracy and feasibility of using an electrogoniometer for measuring simple thumb movements.

    PubMed

    Jonsson, Per; Johnson, Peter W; Hagberg, Mats

    2007-05-01

    The aim of this study was to determine the accuracy and feasibility of using an electrogoniometer (Model SG 110; Biometrics, Gwent, UK) for measuring simple thumb movements. Thumb disorders have been associated with the use of hand held devices such as mobile phones and these devices have become an integral part of modern life. In 15 young subjects, the measurements of eight flexion/extension (Flex/Ext) and adduction/abduction (Ad/Ab) thumb positions were compared between a thumb-mounted electrogoniometer and manual goniometer (which was taken as the benchmark). Group mean electrogoniometric measurement errors were below 4 degrees and 5 degrees for Ad/Ab and Flex/Ext measurements, respectively. During mobile phone use, the electrogoniometers measured differences in maximal joint angle postures, which appeared to be related to differences in mobile phone size. High movement velocities may increase the risk of musculoskeletal injury and the results indicated that Ad/Ab movements were twice the speed of Flex/Ext movements during mobile phone use. Electrogoniometers have utility for studying thumb movements during mobile phone use and may be used to evaluate other thumb-based input devices.

  13. Convolutional Neural Network-Based Classification of Driver's Emotion during Aggressive and Smooth Driving Using Multi-Modal Camera Sensors.

    PubMed

    Lee, Kwan Woo; Yoon, Hyo Sik; Song, Jong Min; Park, Kang Ryoung

    2018-03-23

    Because aggressive driving often causes large-scale loss of life and property, techniques for advance detection of adverse driver emotional states have become important for the prevention of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram (ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached from the driver's body, it becomes difficult to focus on bio-signals to determine their emotional state. Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns, a driver's emotional state can easily be misrecognized as that of an aggressive driver. To resolve these problems, we propose a convolutional neural network (CNN)-based method of detecting emotion to identify aggressive driving using input images of the driver's face, obtained using near-infrared (NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own database, which provides a high classification accuracy for detecting driver emotion leading to either aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance than existing methods.

  14. Laser Doppler vibrometry measurement of the mechanical myogram

    NASA Astrophysics Data System (ADS)

    Rohrbaugh, John W.; Sirevaag, Erik J.; Richter, Edward J.

    2013-12-01

    Contracting muscles show complex dimensional changes that include lateral expansion. Because this expansion process is intrinsically vibrational, driven by repetitive actions of multiple motor units, it can be sensed and quantified using the method of Laser Doppler Vibrometry (LDV). LDV has a number of advantages over more traditional mechanical methods based on microphones and accelerometers. The LDV mechanical myogram from a small hand muscle (the first dorsal interosseous) was studied under conditions of elastic loading applied to the tip of the abducted index finger. The LDV signal was shown to be related systematically to the level of force production, and to compare favorably with conventional methods for sensing the mechanical and electrical aspects of muscle contraction.

  15. Theoretical analysis and concept demonstration of a novel MOEMS accelerometer based on Raman—Nath diffraction

    NASA Astrophysics Data System (ADS)

    Zuwei, Zhang; Zhiyu, Wen; Jing, Hu

    2012-04-01

    The design and simulation of a novel microoptoelectromechanical system (MOEMS) accelerometer based on Raman—Nath diffraction are presented. The device is planned to be fabricated by microelectromechanical system technology and has a different sensing principle than the other reported MOEMS accelerometers. The fundamental theories and principles of the device are discussed in detail, a 3D finite element simulation of the flexural plate wave delay line oscillator is provided, and the operation frequency around 40 MHz is calculated. Finally, a lecture experiment is performed to demonstrate the feasibility of the device. This novel accelerometer is proposed to have the advantages of high sensitivity and anti-radiation, and has great potential for various applications.

  16. Hand-held Raman sensor head for in-situ characterization of meat quality applying a microsystem 671 nm diode laser

    NASA Astrophysics Data System (ADS)

    Schmidt, Heinar; Sowoidnich, Kay; Maiwald, Martin; Sumpf, Bernd; Kronfeldt, Heinz-Detlef

    2009-05-01

    A hand-held Raman sensor head was developed for the in-situ characterization of meat quality. As light source, a microsystem based external cavity diode laser module (ECDL) emitting at 671 nm was integrated in the sensor head and attached to a miniaturized optical bench which contains lens optics for excitation and signal collection as well as a Raman filter stage for Rayleigh rejection. The signal is transported with an optical fiber to the detection unit which was in the initial phase a laboratory spectrometer with CCD detector. All elements of the ECDL are aligned on a micro optical bench with 13 x 4 mm2 footprint. The wavelength stability is provided by a reflection Bragg grating and the laser has an optical power of up to 200 mW. However, for the Raman measurements of meat only 35 mW are needed to obtain Raman spectra within 1 - 5 seconds. Short measuring times are essential for the hand-held device. The laser and the sensor head are characterized in terms of stability and performance for in-situ Raman investigations. The function is demonstrated in a series of measurements with raw and packaged pork meat as samples. The suitability of the Raman sensor head for the quality control of meat and other products will be discussed.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Oleg P.; Semin, Ilya A.; Potapov, Victor N.

    Gamma-ray imaging is the most important way to identify unknown gamma-ray emitting objects in decommissioning, security, overcoming accidents. Over the past two decades a system for producing of gamma images in these conditions became more or less portable devices. But in recent years these systems have become the hand-held devices. This is very important, especially in emergency situations, and measurements for safety reasons. We describe the first integrated hand-held instrument for emergency and security applications. The device is based on the coded aperture image formation, position sensitive gamma-ray (X-ray) detector Medipix2 (detectors produces by X-ray Imaging Europe) and tablet computer.more » The development was aimed at creating a very low weight system with high angular resolution. We present some sample gamma-ray images by camera. Main estimated parameters of the system are the following. The field of view video channel ∼ 490 deg. The field of view gamma channel ∼ 300 deg. The sensitivity of the system with a hexagonal mask for the source of Cs-137 (Eg = 662 keV), is in units of dose D ∼ 100 mR. This option is less then order of magnitude worse than for the heavy, non-hand-held systems (e.g., gamma-camera Cartogam, by Canberra.) The angular resolution of the gamma channel for the sources of Cs-137 (Eg = 662 keV) is about 1.20 deg. (authors)« less

  18. Neurosurgical hand-held optical coherence tomography (OCT) forward-viewing probe

    NASA Astrophysics Data System (ADS)

    Sun, Cuiru; Lee, Kenneth K. C.; Vuong, Barry; Cusimano, Michael; Brukson, Alexander; Mariampillai, Adrian; Standish, Beau A.; Yang, Victor X. D.

    2012-02-01

    A prototype neurosurgical hand-held optical coherence tomography (OCT) imaging probe has been developed to provide micron resolution cross-sectional images of subsurface tissue during open surgery. This new ergonomic hand-held probe has been designed based on our group's previous work on electrostatically driven optical fibers. It has been packaged into a catheter probe in the familiar form factor of the clinically accepted Bayonet shaped neurosurgical non-imaging Doppler ultrasound probes. The optical design was optimized using ZEMAX simulation. Optical properties of the probe were tested to yield an ~20 um spot size, 5 mm working distance and a 3.5 mm field of view. The scan frequency can be increased or decreased by changing the applied voltage. Typically a scan frequency of less than 60Hz is chosen to keep the applied voltage to less than 2000V. The axial resolution of the probe was ~15 um (in air) as determined by the OCT system. A custom-triggering methodology has been developed to provide continuous stable imaging, which is crucial for clinical utility. Feasibility of this probe, in combination with a 1310 nm swept source OCT system was tested and images are presented to highlight the usefulness of such a forward viewing handheld OCT imaging probe. Knowledge gained from this research will lay the foundation for developing new OCT technologies for endovascular management of cerebral aneurysms and transsphenoidal neuroendoscopic treatment of pituitary tumors.

  19. Hands beat machines for collecting native seed

    Treesearch

    Mary Ann Davies; Scott Jensen

    2008-01-01

    A hedge trimmer (Garden Groom Pro) and a hand-held vacuum (Euro-Pro Shark) were tested to determine whether they might be more effective for collecting the seed of native plants than common hand methods. The common hand methods worked best.

  20. Computer-based test-bed for clinical assessment of hand/wrist feed-forward neuroprosthetic controllers using artificial neural networks.

    PubMed

    Luján, J L; Crago, P E

    2004-11-01

    Neuroprosthestic systems can be used to restore hand grasp and wrist control in individuals with C5/C6 spinal cord injury. A computer-based system was developed for the implementation, tuning and clinical assessment of neuroprosthetic controllers, using off-the-shelf hardware and software. The computer system turned a Pentium III PC running Windows NT into a non-dedicated, real-time system for the control of neuroprostheses. Software execution (written using the high-level programming languages LabVIEW and MATLAB) was divided into two phases: training and real-time control. During the training phase, the computer system collected input/output data by stimulating the muscles and measuring the muscle outputs in real-time, analysed the recorded data, generated a set of training data and trained an artificial neural network (ANN)-based controller. During real-time control, the computer system stimulated the muscles using stimulus pulsewidths predicted by the ANN controller in response to a sampled input from an external command source, to provide independent control of hand grasp and wrist posture. System timing was stable, reliable and capable of providing muscle stimulation at frequencies up to 24Hz. To demonstrate the application of the test-bed, an ANN-based controller was implemented with three inputs and two independent channels of stimulation. The ANN controller's ability to control hand grasp and wrist angle independently was assessed by quantitative comparison of the outputs of the stimulated muscles with a set of desired grasp or wrist postures determined by the command signal. Controller performance results were mixed, but the platform provided the tools to implement and assess future controller designs.

  1. A Test Facility for the Calibration of Pressure and Acceleration Transducers by a Continuous Sweep Method.

    DTIC Science & Technology

    1976-03-01

    350Pa and 35MPa (0.05 lb/sqin and 5000 lb/sqin) and accelerometers with range maxima between 1.0g sub n and 100g sub n . Both types of transducer are...calibrated by subjecting them and an accurate reference transducer to a continuous sweep of input parameter. Graphs are drawn by an X- Y recorder of

  2. Simulation of Satellite Vibration Test

    NASA Astrophysics Data System (ADS)

    Bettacchioli, Alain

    2014-06-01

    During every mechanical qualification test of satellites on vibrator, we systematically notice beating phenomena that appear every time we cross a mode's frequency. There could lead to an over-qualification of the tested specimen when the beating reaches a maximum and a under-qualification when the beating passes by a minimum. On a satellite, three lateral modes raise such a problem in a recurring way: the first structure mode (between 10 and 15 hertz) and the two tanks modes (between 35 and 50 hertz).To step forward in the resolution of this problem, we are developing a simulator which is based on the identification of the responses of the accelerometers that are fixed on the satellite and on the shaker slip table. The estimated transfer functions then allow to reconstruct at once the sensors response and the drive which generated them.For the simulation, we do not select all the sensors but only those on the slip table and those used to limit the input level (notching). We may also add those which were close to generate a notching.To perform its calculations, the simulator reproduces on one hand the unity amplitude signal (cola) which serves as frequency reference for the sweep achievement (generally 3 octaves per minute from 5 to 100 and even 150 Hertz), and on the other hand, the vibrator control loop. The drive amplitude is calculated at each cola's period by taking into account a compression factor. The control applied through the amplifier to the shaker coil is the product of this amplitude by the cola. The simulated measurements are updated at each sampling period thanks to the propagation of the identified model. The superposition of these curves on those supplied by real sensors during the tests allows to validate the simulation.Thereby, it seems possible to actively control the beatings thanks to a real-time corrector which uses these identifications.

  3. Hand placement near the visual stimulus improves orientation selectivity in V2 neurons

    PubMed Central

    Sergio, Lauren E.; Crawford, J. Douglas; Fallah, Mazyar

    2015-01-01

    Often, the brain receives more sensory input than it can process simultaneously. Spatial attention helps overcome this limitation by preferentially processing input from a behaviorally-relevant location. Recent neuropsychological and psychophysical studies suggest that attention is deployed to near-hand space much like how the oculomotor system can deploy attention to an upcoming gaze position. Here we provide the first neuronal evidence that the presence of a nearby hand enhances orientation selectivity in early visual processing area V2. When the hand was placed outside the receptive field, responses to the preferred orientation were significantly enhanced without a corresponding significant increase at the orthogonal orientation. Consequently, there was also a significant sharpening of orientation tuning. In addition, the presence of the hand reduced neuronal response variability. These results indicate that attention is automatically deployed to the space around a hand, improving orientation selectivity. Importantly, this appears to be optimal for motor control of the hand, as opposed to oculomotor mechanisms which enhance responses without sharpening orientation selectivity. Effector-based mechanisms for visual enhancement thus support not only the spatiotemporal dissociation of gaze and reach, but also the optimization of vision for their separate requirements for guiding movements. PMID:25717165

  4. The High Resolution Accelerometer Package (HiRAP) flight experiment summary for the first 10 flights

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Larman, K. T.; Barrett, M.

    1992-01-01

    The High Resolution Accelerometer Package (HiRAP) instrument is a triaxial, orthogonal system of gas damped accelerometers with a resolution of 1 x 10(exp -6) g (1 micro-g). The purpose of HiRAP is to measure the low frequency component of the total acceleration along the orbiter vehicle (OV) body axes while the OV descends through the rarefied flow flight regime. Two HiRAP instruments have flown on a total of 10 Space Transport System (STS) missions. The aerodynamic component of the acceleration measurements was separated from the total acceleration. Instrument bias and orbiter mechanical system acceleration effects were incorporated into one bulk bias. The bulk bias was subtracted from the acceleration measurements to produce aerodynamic descent data sets for all 10 flights. The aerodynamic acceleration data sets were input to an aerodynamic coefficient model. The aerodynamic acceleration data and coefficient model were used to estimate the atmospheric density for the altitude range of 140 to 60 km and a downrange distance of 600 km. For 8 of 10 flights results from this model agree with expected results. For the results that do not agree with expected results, a variety of error sources have been explored.

  5. Assessing Stride Variables and Vertical Stiffness with GPS-Embedded Accelerometers: Preliminary Insights for the Monitoring of Neuromuscular Fatigue on the Field

    PubMed Central

    Buchheit, Martin; Gray, Andrew; Morin, Jean-Benoit

    2015-01-01

    The aim of the present study was to examine the ability of a GPS-imbedded accelerometer to assess stride variables and vertical stiffness (K), which are directly related to neuromuscular fatigue during field-based high-intensity runs. The ability to detect stride imbalances was also examined. A team sport player performed a series of 30-s runs on an instrumented treadmill (6 runs at 10, 17 and 24 km·h-1) with or without his right ankle taped (aimed at creating a stride imbalance), while wearing on his back a commercially-available GPS unit with an embedded 100-Hz tri-axial accelerometer. Contact (CT) and flying (FT) time, and K were computed from both treadmill and accelerometers (Athletic Data Innovations) data. The agreement between treadmill (criterion measure) and accelerometer-derived data was examined. We also compared the ability of the different systems to detect the stride imbalance. Biases were small (CT and K) and moderate (FT). The typical error of the estimate was trivial (CT), small (K) and moderate (FT), with nearly perfect (CT and K) and large (FT) correlations for treadmill vs. accelerometer. The tape induced very large increase in the right - left foot ∆ in CT, FT and K measured by the treadmill. The tape effect on CT and K ∆ measured with the accelerometers were also very large, but of lower magnitude than with the treadmill. The tape effect on accelerometer-derived ∆ FT was unclear. Present data highlight the potential of a GPS-embedded accelerometer to assess CT and K during ground running. Key points GPS-embedded tri-axial accelerometers may be used to assess contact time and vertical stiffness during ground running. These preliminary results open new perspective for the field monitoring of neuromuscular fatigue and performance in run-based sports PMID:26664264

  6. Brady's Geothermal Field - March 2016 Vibroseis SEG-Y Files and UTM Locations

    DOE Data Explorer

    Kurt Feigl

    2016-03-31

    PoroTomo March 2016 (Task 6.4) Updated vibroseis source locations with UTM locations. Supersedes gdr.openei.org/submissions/824. Updated vibroseis source location data for Stages 1-4, PoroTomo March 2016. This revision includes source point locations in UTM format (meters) for all four Stages of active source acquisition. Vibroseis sweep data were collected on a Signature Recorder unit (mfr Seismic Source) mounted in the vibroseis cab during the March 2016 PoroTomo active seismic survey Stages 1 to 4. Each sweep generated a GPS timed SEG-Y file with 4 input channels and a 20 second record length. Ch1 = pilot sweep, Ch2 = accelerometer output from the vibe's mass, Ch3 = accel output from the baseplase, and Ch4 = weighted sum of the accelerometer outputs. SEG-Y files are available via the links below.

  7. An evaluation of a UAV guidance system with consumer grade GPS receivers

    NASA Astrophysics Data System (ADS)

    Rosenberg, Abigail Stella

    Remote sensing has been demonstrated an important tool in agricultural and natural resource management and research applications, however there are limitations that exist with traditional platforms (i.e., hand held sensors, linear moves, vehicle mounted, airplanes, remotely piloted vehicles (RPVs), unmanned aerial vehicles (UAVs) and satellites). Rapid technological advances in electronics, computers, software applications, and the aerospace industry have dramatically reduced the cost and increased the availability of remote sensing technologies. Remote sensing imagery vary in spectral, spatial, and temporal resolutions and are available from numerous providers. Appendix A presented results of a test project that acquired high-resolution aerial photography with a RPV to map the boundary of a 0.42 km2 fire area. The project mapped the boundaries of the fire area from a mosaic of the aerial images collected and compared this with ground-based measurements. The project achieved a 92.4% correlation between the aerial assessment and the ground truth data. Appendix B used multi-objective analysis to quantitatively assess the tradeoffs between different sensor platform attributes to identify the best overall technology. Experts were surveyed to identify the best overall technology at three different pixel sizes. Appendix C evaluated the positional accuracy of a relatively low cost UAV designed for high resolution remote sensing of small areas in order to determine the positional accuracy of sensor readings. The study evaluated the accuracy and uncertainty of a UAV flight route with respect to the programmed waypoints and of the UAV's GPS position, respectively. In addition, the potential displacement of sensor data was evaluated based on (1) GPS measurements on board the aircraft and (2) the autopilot's circuit board with 3-axis gyros and accelerometers (i.e., roll, pitch, and yaw). The accuracies were estimated based on a 95% confidence interval or similar methods. The accuracy achieved in the second and third manuscripts demonstrates that reasonably priced, high resolution remote sensing via RPVs and UAVs is practical for agriculture and natural resource professionals.

  8. Machine learning algorithms based on signals from a single wearable inertial sensor can detect surface- and age-related differences in walking.

    PubMed

    Hu, B; Dixon, P C; Jacobs, J V; Dennerlein, J T; Schiffman, J M

    2018-04-11

    The aim of this study was to investigate if a machine learning algorithm utilizing triaxial accelerometer, gyroscope, and magnetometer data from an inertial motion unit (IMU) could detect surface- and age-related differences in walking. Seventeen older (71.5 ± 4.2 years) and eighteen young (27.0 ± 4.7 years) healthy adults walked over flat and uneven brick surfaces wearing an inertial measurement unit (IMU) over the L5 vertebra. IMU data were binned into smaller data segments using 4-s sliding windows with 1-s step lengths. Ninety percent of the data were used as training inputs and the remaining ten percent were saved for testing. A deep learning network with long short-term memory units was used for training (fully supervised), prediction, and implementation. Four models were trained using the following inputs: all nine channels from every sensor in the IMU (fully trained model), accelerometer signals alone, gyroscope signals alone, and magnetometer signals alone. The fully trained models for surface and age outperformed all other models (area under the receiver operator curve, AUC = 0.97 and 0.96, respectively; p ≤ .045). The fully trained models for surface and age had high accuracy (96.3, 94.7%), precision (96.4, 95.2%), recall (96.3, 94.7%), and f1-score (96.3, 94.6%). These results demonstrate that processing the signals of a single IMU device with machine-learning algorithms enables the detection of surface conditions and age-group status from an individual's walking behavior which, with further learning, may be utilized to facilitate identifying and intervening on fall risk. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. 21 CFR 872.4565 - Dental hand instrument.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Dental hand instrument. 872.4565 Section 872.4565...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4565 Dental hand instrument. (a) Identification. A dental hand instrument is a hand-held device intended to perform various tasks in general dentistry and...

  10. 21 CFR 872.4565 - Dental hand instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental hand instrument. 872.4565 Section 872.4565...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4565 Dental hand instrument. (a) Identification. A dental hand instrument is a hand-held device intended to perform various tasks in general dentistry and...

  11. 21 CFR 872.4565 - Dental hand instrument.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Dental hand instrument. 872.4565 Section 872.4565...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4565 Dental hand instrument. (a) Identification. A dental hand instrument is a hand-held device intended to perform various tasks in general dentistry and...

  12. 21 CFR 872.4565 - Dental hand instrument.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Dental hand instrument. 872.4565 Section 872.4565...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4565 Dental hand instrument. (a) Identification. A dental hand instrument is a hand-held device intended to perform various tasks in general dentistry and...

  13. 21 CFR 872.4565 - Dental hand instrument.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Dental hand instrument. 872.4565 Section 872.4565...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4565 Dental hand instrument. (a) Identification. A dental hand instrument is a hand-held device intended to perform various tasks in general dentistry and...

  14. So the Kids Are Busy, What Now? Teacher Perceptions of the Use of Hand-Held Game Consoles in West Australian Primary Classrooms

    ERIC Educational Resources Information Center

    O'Rourke, John; Main, Susan; Ellis, Michelle

    2013-01-01

    Games technology in the form of hand-held game consoles (HGCs) when focussed on specific academic skill development has the capacity to engage students in learning and in turn produce positive academic results. This current research explores teacher perceptions of the implementation of HGCs to enhance the development of mental maths skills (namely…

  15. Integrating a Hand Held computer and Stethoscope into a Fetal Monitor

    PubMed Central

    Ahmad Soltani, Mitra

    2009-01-01

    This article presents procedures for modifying a hand held computer or personal digital assistant (PDA) into a versatile device functioning as an electronic stethoscope for fetal monitoring. Along with functioning as an electronic stethoscope, a PDA can provide a useful information source for a medical trainee. Feedback from medical students, residents and interns suggests the device is well accepted by medical trainees. PMID:20165517

  16. 26 CFR 1.1223-1 - Determination of period for which capital assets are held.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Gains and Losses § 1.1223-1 Determination of period for which capital assets are held. (a) The holding... determining gain or loss in the hands of the taxpayer as the property exchanged. However, this rule shall... in part in the hands of the taxpayer for determining gain or loss from a sale or exchange as it would...

  17. 26 CFR 1.1223-1 - Determination of period for which capital assets are held.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Gains and Losses § 1.1223-1 Determination of period for which capital assets are held. (a) The holding... determining gain or loss in the hands of the taxpayer as the property exchanged. However, this rule shall... in part in the hands of the taxpayer for determining gain or loss from a sale or exchange as it would...

  18. 26 CFR 1.1223-1 - Determination of period for which capital assets are held.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Gains and Losses § 1.1223-1 Determination of period for which capital assets are held. (a) The holding... determining gain or loss in the hands of the taxpayer as the property exchanged. However, this rule shall... in part in the hands of the taxpayer for determining gain or loss from a sale or exchange as it would...

  19. 26 CFR 1.1223-1 - Determination of period for which capital assets are held.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Gains and Losses § 1.1223-1 Determination of period for which capital assets are held. (a) The holding... determining gain or loss in the hands of the taxpayer as the property exchanged. However, this rule shall... in part in the hands of the taxpayer for determining gain or loss from a sale or exchange as it would...

  20. Improved Academic Performance and Student Perceptions of Learning through Use of a Cell Phone-Based Personal Response System

    ERIC Educational Resources Information Center

    Ma, Sihui; Steger, Daniel G.; Doolittle, Peter E.; Stewart, Amanda C.

    2018-01-01

    Personal response systems, such as clickers, have been widely used to improve the effectiveness of teaching in various classroom settings. Although hand-held clicker response systems have been the subject of multiple prior studies, few studies have focused on the use of cell phone-based personal response system (CPPRS) specifically. This study…

  1. Content Delivery in the "Blogosphere"

    ERIC Educational Resources Information Center

    Ferdig, Richard E.; Trammell, Kaye D.

    2004-01-01

    The interest in new media for teaching and learning has highlighted the potential of innovative software and hardware for education. This has included laptops, hand-helds, wireless systems and Web-based learning environments. Most recently, however, this interest has focused on blogs and blogging. Weblogs, or blogs, are Web pages often likened to…

  2. Computer supplies insulation recipe for Cookie Company Roof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Roofing contractors no longer have to rely on complicated calculations and educated guesses to determine cost-efficient levels of roof insulation. A simple hand-held calculator and printer offers seven different programs for fast figuring insulation thickness based on job type, roof size, tax rates, and heating and cooling cost factors.

  3. Comparison of the performance of the activPAL Professional physical activity logger to a discrete accelerometer-based activity monitor.

    PubMed

    Godfrey, A; Culhane, K M; Lyons, G M

    2007-10-01

    The aim of this study was to assess the accuracy of the 'activPAL Professional' physical activity logger by comparing its output to that of a proven discrete accelerometer-based activity monitor during extended measurements on healthy subjects while performing activities of daily living (ADL). Ten healthy adults, with unrestricted mobility, wore both the activPAL and the discrete dual accelerometer (Analog Devices ADXL202)-based activity monitor that recorded in synchronization with each other. The accelerometer derived data were then compared to that generated by the activPAL and a complete statistical and error analysis was performed using a Matlab program. This program determined trunk and thigh inclination angles to distinguish between sitting/lying, standing and stepping for the discrete accelerometer device and amount of time spent on each activity. Analysis was performed on a second-by-second basis and then categorized at 15s intervals in direct comparison with the activPAL generated data. Of the total time monitored (approximately 60 h) the detection accuracies for static and dynamic activities were approximately 98%. In a population of healthy adults, the data obtained from the activPAL Professional physical activity logger for both static and dynamic activities showed a close match to a proven discrete accelerometer data with an offset of approximately 2% between the two systems.

  4. Self-Reported Versus Accelerometer-Assessed Daily Physical Activity in Childhood Obesity Treatment.

    PubMed

    Schnurr, Theresia M; Bech, Bianca; Nielsen, Tenna R H; Andersen, Ida G; Hjorth, Mads F; Aadahl, Mette; Fonvig, Cilius E; Hansen, Torben; Holm, Jens-Christian

    2017-08-01

    We investigated the relationship between interview-based subjective ratings of physical activity (PA) engagement and accelerometer-assessed objectively measured PA in children and adolescents with overweight or obesity. A total of 92 children and adolescents (40 males, 52 females) with BMI ≥ 90th percentile for sex and age, aged 5-17 years had valid GT3X + accelerometer-assessed PA and interview-assessed self-reported information on PA engagement at the time of enrollment in a multidisciplinary outpatient tertiary treatment for childhood obesity. Accelerometer-derived mean overall PA and time spent in moderate to vigorous physical intensity were generated, applying cut-offs based on Vector Magnitude settings as defined by Romanzini et al. (2014), and a physical activity score (PAS) based on self-reported data. Overall, a higher self-reported PAS was correlated with higher accelerometer-assessed daily total PA levels ( r = 0.34, p < .01) and children who reported a high PAS were more physically active compared with children who reported a low PAS. There was a fair level of agreement between self-reported PAS and accelerometer-assessed PA (Kappa agreement = 0.23; 95% CI = [0.03, 0.43]; p = .01). PAS, derived from self-report, may be a useful instrument for evaluating PA at a group level among children and adolescents enrolled in multidisciplinary obesity treatment.

  5. Ground Vibration Attenuation Measurement using Triaxial and Single Axis Accelerometers

    NASA Astrophysics Data System (ADS)

    Mohammad, A. H.; Yusoff, N. A.; Madun, A.; Tajudin, S. A. A.; Zahari, M. N. H.; Chik, T. N. T.; Rahman, N. A.; Annuar, Y. M. N.

    2018-04-01

    Peak Particle Velocity is one of the important term to show the level of the vibration amplitude especially traveling wave by distance. Vibration measurement using triaxial accelerometer is needed to obtain accurate value of PPV however limited by the size and the available channel of the data acquisition module for detailed measurement. In this paper, an attempt to estimate accurate PPV has been made by using only a triaxial accelerometer together with multiple single axis accelerometer for the ground vibration measurement. A field test was conducted on soft ground using nine single axis accelerometers and a triaxial accelerometer installed at nine receiver location R1 to R9. Based from the obtained result, the method shows convincing similarity between actual PPV with the calculated PPV with error ratio 0.97. With the design method, vibration measurement equipment size can be reduced with fewer channel required.

  6. A glucose meter evaluation co-designed with both health professional and consumer input.

    PubMed

    Thompson, Harmony; Chan, Huan; Logan, Florence J; Heenan, Helen F; Taylor, Lynne; Murray, Chris; Florkowski, Christopher M; Frampton, Christopher M A; Lunt, Helen

    2013-11-22

    Health consumer's input into assessment of medical device safety is traditionally given either as part of study outcome (trial participants) or during post marketing surveillance. Direct consumer input into the methodological design of device assessment is less common. We discuss the difference in requirements for assessment of a measuring device from the consumer and clinician perspectives, using the example of hand held glucose meters. Around 80,000 New Zealanders with diabetes recently changed their glucose meter system, to enable ongoing access to PHARMAC subsidised meters and strips. Consumers were most interested in a direct comparison of their 'old' meter system (Accu-Chek Performa) with their 'new' meter system (CareSens brand, including the CareSens N POP), rather than comparisons against a laboratory standard. This direct comparison of meter/strip systems showed that the CareSens N POP meter read around 0.6 mmol/L higher than the Performa system. Whilst this difference is unlikely to result in major errors in clinical decision making such as major insulin dosing errors, this information is nevertheless of interest to consumers who switched meters so that they could maintain access to PHARMAC subsidised meters and strips. We recommend that when practical, the consumer perspective be incorporated into study design related to medical device assessment.

  7. Ground Test of the Urine Processing Assembly for Accelerations and Transfer Functions

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Almond, Deborah F. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of the ground test of the urine processing assembly for accelerations and transfer functions. Details are given on the test setup, test data, data analysis, analytical results, and microgravity assessment. The conclusions of the tests include the following: (1) the single input/multiple output method is useful if the data is acquired by tri-axial accelerometers and inputs can be considered uncorrelated; (2) tying coherence with the matrix yields higher confidence in results; (3) the WRS#2 rack ORUs need to be isolated; (4) and future work includes a plan for characterizing performance of isolation materials.

  8. Phone use and crashes while driving: A representative survey of drivers in two Australian states.

    PubMed

    McEvoy, Suzanne P; Stevenson, Mark R; Woodward, Mark

    To explore the use and effects of using mobile phones while driving. Cross-sectional survey. New South Wales and Western Australia, 20 October to 7 November 2003. 1347 licensed drivers aged 18 to 65 years. Data were weighted to reflect the corresponding driving population in each state. Mobile phone use while driving (hand-held, hands-free and text messaging); adverse effects of use. While driving, an estimated 57.3% +/- 1.5% of drivers have ever used a mobile phone and 12.4% +/- 1.0% have written text messages. Men, younger drivers and metropolitan residents were more likely to use a phone while driving and to report a higher frequency of use. Enforcement of hand-held phone restrictions was perceived to be low (69.0% +/- 1.5%) and an estimated 39.4% +/- 2.1% of people who phone while driving use a hand-held phone. Half of all drivers (50.1% +/- 1.6%) did not agree with extending the ban to include hands-free phones. Among drivers aged 18-65 years in NSW and WA, an estimated 45 800 +/- 16 466 (0.9% +/- 0.3%) have ever had a crash while using a mobile phone and, in the past year, 146 762 +/- 26 856 (3.0% +/- 0.6%) have had to take evasive action to avoid a crash because of their phone use. Phone use while driving is prevalent and can result in adverse consequences, including crashes. Despite legislation, a significant proportion of drivers continue to use hand-held mobile phones while driving. Enhanced enforcement is needed.

  9. OMV mission simulator

    NASA Technical Reports Server (NTRS)

    Cok, Keith E.

    1989-01-01

    The Orbital Maneuvering Vehicle (OMV) will be remotely piloted during rendezvous, docking, or proximity operations with target spacecraft from a ground control console (GCC). The real-time mission simulator and graphics being used to design a console pilot-machine interface are discussed. A real-time orbital dynamics simulator drives the visual displays. The dynamics simulator includes a J2 oblate earth gravity model and a generalized 1962 rotating atmospheric and drag model. The simulator also provides a variable-length communication delay to represent use of the Tracking and Data Relay Satellite System (TDRSS) and NASA Communications (NASCOM). Input parameter files determine the graphics display. This feature allows rapid prototyping since displays can be easily modified from pilot recommendations. A series of pilot reviews are being held to determine an effective pilot-machine interface. Pilots fly missions with nominal to 3-sigma dispersions in translational or rotational axes. Console dimensions, switch type and layout, hand controllers, and graphic interfaces are evaluated by the pilots and the GCC simulator is modified for subsequent runs. Initial results indicate a pilot preference for analog versus digital displays and for two 3-degree-of-freedom hand controllers.

  10. Activity recognition in planetary navigation field tests using classification algorithms applied to accelerometer data.

    PubMed

    Song, Wen; Ade, Carl; Broxterman, Ryan; Barstow, Thomas; Nelson, Thomas; Warren, Steve

    2012-01-01

    Accelerometer data provide useful information about subject activity in many different application scenarios. For this study, single-accelerometer data were acquired from subjects participating in field tests that mimic tasks that astronauts might encounter in reduced gravity environments. The primary goal of this effort was to apply classification algorithms that could identify these tasks based on features present in their corresponding accelerometer data, where the end goal is to establish methods to unobtrusively gauge subject well-being based on sensors that reside in their local environment. In this initial analysis, six different activities that involve leg movement are classified. The k-Nearest Neighbors (kNN) algorithm was found to be the most effective, with an overall classification success rate of 90.8%.

  11. Application of computer image enhancement techniques to shuttle hand-held photography

    NASA Technical Reports Server (NTRS)

    David, B. E.

    1986-01-01

    With the advent of frequent Space Transportation System Shuttle missions, photography from hyperaltitudes stands to become an accessible and convenient resource for scientists and environmental managers. As satellite products (such as LANDSAT) continue to spiral in costs, all but the most affluent consumer is finding Earth imagery from space to be more and more unavailable. Therefore, the potential for Shuttle photography to serve a wide variety of users is increasing. However, despite the popularity of photos from space as public relations tools and report illustrations, little work has been performed to prove their scientific worth beyond that as basic mapping bases. It is the hypothesis of this project that hand-held Earth photography from the Space Shuttle has potentially high scientific merit and that primary data can be extracted. In effect, Shuttle photography should be considered a major remote sensing information resource.

  12. Left-handed compact MIMO antenna array based on wire spiral resonator for 5-GHz wireless applications

    NASA Astrophysics Data System (ADS)

    Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Rahim, Sharul Kamal Abdul; Narbudowicz, Adam

    2017-01-01

    A compact coplanar waveguide-fed multiple-input multiple-output antenna array based on the left-handed wire loaded spiral resonators (SR) is presented. The proposed antenna consists of a 2 × 2 wire SR with two symmetrical microstrip feed lines, each line exciting a 1 × 2 wire SR. Left-handed metamaterial unit cells are placed on its reverse side and arranged in a 2 × 3 array. A reflection coefficient of less than -16 dB and mutual coupling of less than -28 dB are achieved at 5.15 GHz WLAN band.

  13. Calibration and comparison of accelerometer cut points in preschool children.

    PubMed

    van Cauwenberghe, Eveline; Labarque, Valery; Trost, Stewart G; de Bourdeaudhuij, Ilse; Cardon, Greet

    2011-06-01

    The present study aimed to develop accelerometer cut points to classify physical activities (PA) by intensity in preschoolers and to investigate discrepancies in PA levels when applying various accelerometer cut points. To calibrate the accelerometer, 18 preschoolers (5.8 ± 0.4 years) performed eleven structured activities and one free play session while wearing a GT1M ActiGraph accelerometer using 15 s epochs. The structured activities were chosen based on the direct observation system Children's Activity Rating Scale (CARS) while the criterion measure of PA intensity during free play was provided using a second-by-second observation protocol (modified CARS). Receiver Operating Characteristic (ROC) curve analyses were used to determine the accelerometer cut points. To examine the classification differences, accelerometer data of four consecutive days from 114 preschoolers (5.5 ± 0.3 years) were classified by intensity according to previously published and the newly developed accelerometer cut points. Differences in predicted PA levels were evaluated using repeated measures ANOVA and Chi Square test. Cut points were identified at 373 counts/15 s for light (sensitivity: 86%; specificity: 91%; Area under ROC curve: 0.95), 585 counts/15 s for moderate (87%; 82%; 0.91) and 881 counts/15 s for vigorous PA (88%; 91%; 0.94). Further, applying various accelerometer cut points to the same data resulted in statistically and biologically significant differences in PA. Accelerometer cut points were developed with good discriminatory power for differentiating between PA levels in preschoolers and the choice of accelerometer cut points can result in large discrepancies.

  14. Selected developments in laser wire stripping. [cutting insulation from aerospace-type wires and cables

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The operation of mechanical and thermal strippers and the early development of laser wire strippers are reviewed. NASA sponsored development of laser wire stripping for space shuttle includes bench-type strippers as well as an advanced portable hand-held stripper which incorporates a miniaturized carbon dioxide laser and a rotating optics unit with a gas-jet assist and debris exhaust. Drives and controls girdle the wire and slit the remaining slug without manual assistance. This unit can strip wire sizes 26 through 12 gage. A larger-capacity hand-held unit for wire sizes through 1/0 gage was built using a neodynium-doped yttrium aluminum garnet (Nd:YAG) laser. The hand-held units have a flexible umbilical cable to an accompanying cart that carries the power supply, gas supply, cooling unit, and the controls.

  15. Smith machine counterbalance system affects measures of maximal bench press throw performance.

    PubMed

    Vingren, Jakob L; Buddhadev, Harsh H; Hill, David W

    2011-07-01

    Equipment with counterbalance weight systems is commonly used for the assessment of performance in explosive resistance exercise movements, but it is not known if such systems affect performance measures. The purpose of this study was to determine the effect of using a counterbalance weight system on measures of smith machine bench press throw performance. Ten men and 14 women (mean ± SD: age, 25 ± 4 years; height, 173 ± 10 cm; weight, 77.7 ± 18.3 kg) completed maximal smith machine bench press throws under 4 different conditions (2 × 2; counterbalance × load): with or without a counterbalance weight system and using 'light' or 'moderate' net barbell loads. Performance variables (peak force, peak velocity, and peak power) were measured using a linear accelerometer attached to the barbell. The counterbalance weight system resulted in significant (p < 0.001) reductions in measures of peak force (mean difference ± standard error: light: -112 ± 20 N; moderate: -140 ± 23 N), peak velocity (light: -0.49 ± 0.10 m·s; moderate: -0.33 ± 0.07 m·s), and peak power (light: -220 ± 43 W; moderate: -143 ± 28 W) compared with no counterbalance system for both load conditions. Load condition did not affect absolute or percentage reductions from the counterbalance weight system for any variable. In conclusion, the use of a counterbalance weight system reduces accelerometer-based performance measures for the bench press throw exercise at light and moderate loads. This reduction in measures is likely because of an increase in the external resistance during the movement, which results in a discrepancy between the manually input and the actual value for external load. A counterbalance weight system should not be used when measuring performance in explosive resistance exercises with an accelerometer.

  16. Comparison of home and away-from-home physical activity using accelerometers and cellular network-based tracking devices.

    PubMed

    Ramulu, Pradeep Y; Chan, Emilie S; Loyd, Tara L; Ferrucci, Luigi; Friedman, David S

    2012-08-01

    Measuring physical at home and away from home is essential for assessing health and well-being, and could help design interventions to increase physical activity. Here, we describe how physical activity at home and away from home can be quantified by combining information from cellular network-based tracking devices and accelerometers. Thirty-five working adults wore a cellular network-based tracking device and an accelerometer for 6 consecutive days and logged their travel away from home. Performance of the tracking device was determined using the travel log for reference. Tracking device and accelerometer data were merged to compare physical activity at home and away from home. The tracking device detected 98.6% of all away-from-home excursions, accurately measured time away from home and demonstrated few prolonged signal drop-out periods. Most physical activity took place away from home on weekdays, but not on weekends. Subjects were more physically active per unit of time while away from home, particularly on weekends. Cellular network-based tracking devices represent an alternative to global positioning systems for tracking location, and provide information easily integrated with accelerometers to determine where physical activity takes place. Promoting greater time spent away from home may increase physical activity.

  17. Influence of Electrotactile Tongue Feedback on Controlling Upright Stance during Rotational and/or Translational Sway-referencing with Galvanic Vestibular Stimulation

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Tyler, Mitchell E.; Bach-y-Rita, Paul; MacDougall, Hamish G.; Moore, Steven T.; Stallings, Valerie L.; Paloski, William H.; Black, F. Owen

    2007-01-01

    Integration of multi-sensory inputs to detect tilts relative to gravity is critical for sensorimotor control of upright orientation. Displaying body orientation using electrotactile feedback to the tongue has been developed by Bach-y-Rita and colleagues as a sensory aid to maintain upright stance with impaired vestibular feedback. MacDougall et al. (2006) recently demonstrated that unpredictably varying Galvanic vestibular stimulation (GVS) significantly increased anterior-posterior (AP) sway during rotational sway referencing with eyes closed. The purpose of this study was to assess the influence of electrotactile feedback on postural control performance with pseudorandom binaural bipolar GVS. Postural equilibrium was measured with a computerized hydraulic platform in 10 healthy adults (6M, 4F, 24-65 y). Tactile feedback (TF) of pitch and roll body orientation was derived from a two-axis linear accelerometer mounted on a torso belt and displayed on a 144-point electrotactile array held against the anterior dorsal tongue (BrainPort, Wicab, Inc., Middleton, WI). Subjects were trained to use TF by voluntarily swaying to draw figures on their tongue, both with and without GVS. Subjects were required to keep the intraoral display in their mouths on all trials, including those that did not provide TF. Subjects performed 24 randomized trials (20 s duration with eyes closed) including four support surface conditions (fixed, rotational sway-referenced, translating the support surface proportional to AP sway, and combined rotational-translational sway-referencing), each repeated twice with and without GVS, and with combined GVS and TF. Postural performance was assessed using deviations from upright (peak-to-peak and RMS sway) and convergence toward stability limits (time and distance to base of support boundaries). Postural stability was impaired with GVS in all platform conditions, with larger decrements in performance during trials with rotation sway-referencing. Electrotactile feedback improved performance with GVS toward non-GVS levels, again with the greatest improvement during trials with rotation sway-referencing. These results demonstrate the effectiveness of tongue electrotactile feedback in providing sensory substitution to maintain postural stability with distorted vestibular input.

  18. Biennial Guidance Test Symposium (16th) Held in Holloman Air Force Base, New Mexico on October 5-7, 1993. Volume 1

    DTIC Science & Technology

    1993-10-01

    Michael Swamp, Contraves Inc., Pittsburgh PA; Dr. Michael D. Hooser, CIGTF, Holloman AFB NM Hig h Stability Large Centrifuge Test Bed 305 Dr. Louis A...DeMore, Robert Anticole, and Hans Riggenbach, Contraves Inc, Pittsburgh PA; Dr. Michael D. Hooser, CIGTF, Holloman AFB NM vi SESSION V-A: WEAPONS...power spectral density of input are also frozen out, allowing very low loss referred noise) of 10’ HzŖ below 100 Hz. springs. The input coils are

  19. Evidence for -Gz Adaptation Observed with Wearable Biosensors During High Performance Jet Flight.

    PubMed

    Rice, G Merrill; Snider, Dallas; Moore, Jeffrey L; Lavan, J Timothy; Folga, Rich; VanBrunt, Thomas B

    2016-12-01

    Few studies have evaluated physiological responses to high acceleration forces during actual flight and to our knowledge no normative data has been acquired by technologies such as wearable biosensors during high performance jet aircraft operations. In-flight physiological data from an FDA cleared portable triaxial accelerometer and bio-sensor were observed from five active duty F-18 pilots of the Naval Flight Demonstration Squadron (Blue Angels). Of the five pilots, three were formation pilots who flew lower G profiles and two were solo pilots who flew higher G profiles. Physiological parameters monitored were heart rate, respiratory rate, temperature, caloric expenditure, and duration of exposure to levels of acceleration. Evaluated were 25 practice demonstration flights; 9 flights were excluded secondary to incomplete or inaccurate physiological data. We observed no significant bradycardia during a total of 189 maneuvers which met inclusion criteria for push-pull events (PPE) or isolated -Gz exposures. Further analysis of 73 PPE revealed an overall significant rise in HR following the PPE, where mean heart rate was 106 (95% CI, 100:112) at the beginning of the push and 129 (95% CI, 123:135) following the pull. A majority of the flights monitored provided reliable physiological data. Initial data suggests, contrary to currently held aeromedical doctrine, maneuvers such as the "push-pull" do not evoke vasovagal based bradycardic responses in aerobatic pilots. Possible explanations for these findings are sympathetic nervous system activation through adaptation and/or sustained isometric resistance from control inputs, both of which are areas of future research for our team.Rice GM, Snider D, Moore JL, Lavan JT, Folga R, VanBrunt TB. Evidence for -Gz adaptation observed with wearable biosensors during high performance jet flight. Aerosp Med Hum Perform. 2016; 87(12):996-1003.

  20. Accelerometer Measurements in the Amusement Park.

    ERIC Educational Resources Information Center

    Reno, Charles; Speers, Robert R.

    1995-01-01

    Describes the use of the Texas Instruments' calculator-based laboratory (CBL) and Vernier accelerometer for measuring the vector sum of the gravitational field and the acceleration of amusement park rides. (JRH)

  1. Wearable-Sensor-Based Classification Models of Faller Status in Older Adults.

    PubMed

    Howcroft, Jennifer; Lemaire, Edward D; Kofman, Jonathan

    2016-01-01

    Wearable sensors have potential for quantitative, gait-based, point-of-care fall risk assessment that can be easily and quickly implemented in clinical-care and older-adult living environments. This investigation generated models for wearable-sensor based fall-risk classification in older adults and identified the optimal sensor type, location, combination, and modelling method; for walking with and without a cognitive load task. A convenience sample of 100 older individuals (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m under single-task and dual-task conditions while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, and left and right shanks. Participants also completed the Activities-specific Balance Confidence scale, Community Health Activities Model Program for Seniors questionnaire, six minute walk test, and ranked their fear of falling. Fall risk classification models were assessed for all sensor combinations and three model types: multi-layer perceptron neural network, naïve Bayesian, and support vector machine. The best performing model was a multi-layer perceptron neural network with input parameters from pressure-sensing insoles and head, pelvis, and left shank accelerometers (accuracy = 84%, F1 score = 0.600, MCC score = 0.521). Head sensor-based models had the best performance of the single-sensor models for single-task gait assessment. Single-task gait assessment models outperformed models based on dual-task walking or clinical assessment data. Support vector machines and neural networks were the best modelling technique for fall risk classification. Fall risk classification models developed for point-of-care environments should be developed using support vector machines and neural networks, with a multi-sensor single-task gait assessment.

  2. Inter-Tester Reliability and Precision of Manual Muscle Testing and Hand-Held Dynamometry in Lower Limb Muscles of Children with Spina Bifida

    ERIC Educational Resources Information Center

    Mahony, Kate; Hunt, Adrienne; Daley, Deborah; Sims, Susan; Adams, Roger

    2009-01-01

    Reliability and measurement precision of manual muscle testing (MMT) and hand-held dynamometry (HHD) were compared for children with spina bifida. Strength measures were obtained of the hip flexors, hip abductors, and knee extensors of 20 children (10 males, 10 females; mean age 9 years 10 months; range: 5 to 15 years) by two experienced physical…

  3. Unexploded Ordnance (UXO) Data Analysis System (DAS). Environmental Quality Technology Program

    DTIC Science & Technology

    2009-09-01

    is comprised of an EMI sensor, cesium (Cs) vapor magnetometer , fluxgate magnetometer , hand-held data acquisition computer, integrated power supply...Geometrics model 823A Cs vapor magnetometer . The fluxgate magnetometer is a Bartington model Mag-3MRN60, three- axis fluxgate magnetometer . The system...9. The ERDC hand-held Dual TFM/EMI with ArcSecond positioning system. During standard usage, the fluxgate magnetometer is used to provide the

  4. Intra- and Inter-Rater Reliability of the Rate of Force Development of Hip Abductor Muscles Measured by Hand-Held Dynamometer

    ERIC Educational Resources Information Center

    Takeda, Kazuya; Tanabe, Shigeo; Koyama, Soichiro; Nagai, Tomoko; Sakurai, Hiroaki; Kanada, Yoshikiyo; Shomoto, Koji

    2018-01-01

    The aim of this study was to clarify the intra- and inter-rater reliability of the rate of force development in hip abductor muscle force measurements using a hand-held dynamometer. Thirty healthy adults were separately assessed by two independent raters on two separate days. Rate of force development was calculated from the slope of the…

  5. Portable rapid and quiet drill

    NASA Technical Reports Server (NTRS)

    Badescu, Mireca (Inventor); Chang, Zenshea (Inventor); Sherrit, Stewart (Inventor); Bar-Cohen, Yoseph (Inventor); Bao, Xiaoqi (Inventor)

    2010-01-01

    A hand-held drilling device, and method for drilling using the device, has a housing, a transducer within the housing, with the transducer effectively operating at ultrasonic frequencies, a rotating motor component within the housing and rigid cutting end-effector rotationally connected to the rotating motor component and vibrationally connected to the transducer. The hand-held drilling device of the present invention operates at a noise level of from about 50 decibels or less.

  6. Analysis of shipboard aerosol optical thickness measurements from multiple sunphotometers aboard the R/V Ronald H. Brown during the Aerosol Characterization Experiment - Asia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Mark A.; Knobelspiesse, Kirk; Frouin, Robert

    2005-06-20

    Marine sunphotometer measurements collected aboard the R/V Ronald H. Brown during the Aerosol Characterization Experiment - Asia (ACE-Asia) are used to evaluate the ability of complementary instrumentation to obtain the best possible estimates of aerosol optical thickness and Angstrom exponent from ships at sea. A wide range of aerosol conditions, including clean maritime conditions and highly polluted coastal environments, were encountered during the ACE-Asia cruise. The results of this study suggest that shipboard hand-held sunphotometers and fast-rotating shadow-band radiometers (FRSRs) yield similar measurements and uncertainties if proper measurement protocols are used and if the instruments are properly calibrated. The automatedmore » FRSR has significantly better temporal resolution (2 min) than the hand-held sunphotometers when standard measurement protocols are used, so it more faithfully represents the variability of the local aerosol structure in polluted regions. Conversely, results suggest that the hand-held sunphotometers may perform better in clean, maritime air masses for unknown reasons. Results also show that the statistical distribution of the Angstrom exponent measurements is different when the distributions from hand-held sunphotometers are compared with those from the FRSR and that the differences may arise from a combination of factors.« less

  7. Comparison of non-invasive tear film stability measurement techniques.

    PubMed

    Wang, Michael Tm; Murphy, Paul J; Blades, Kenneth J; Craig, Jennifer P

    2018-01-01

    Measurement of tear film stability is commonly used to give an indication of tear film quality but a number of non-invasive techniques exists within the clinical setting. This study sought to compare three non-invasive tear film stability measurement techniques: instrument-mounted wide-field white light clinical interferometry, instrument-mounted keratoscopy and hand-held keratoscopy. Twenty-two subjects were recruited in a prospective, randomised, masked, cross-over study. Tear film break-up or thinning time was measured non-invasively by independent experienced examiners, with each of the three devices, in a randomised order, within an hour. Significant correlation was observed between instrument-mounted interferometric and keratoscopic measurements (p < 0.001) but not between the hand-held device and the instrument-mounted techniques (all p > 0.05). Tear film stability values obtained from the hand-held device were significantly shorter and demonstrated narrower spread than the other two instruments (all p < 0.05), while no significant differences were observed between the two instrument-mounted devices (all p > 0.05). Good clinical agreement exists between the instrument-mounted interferometric and keratoscopic measurements but not between the hand-held device and either of the instrument-mounted techniques. The results highlight the importance of specifying the instrument employed to record non-invasive tear film stability. © 2017 Optometry Australia.

  8. Differential diagnosis between Parkinson's disease and essential tremor using the smartphone's accelerometer.

    PubMed

    Barrantes, Sergi; Sánchez Egea, Antonio J; González Rojas, Hernán A; Martí, Maria J; Compta, Yaroslau; Valldeoriola, Francesc; Simo Mezquita, Ester; Tolosa, Eduard; Valls-Solè, Josep

    2017-01-01

    The differential diagnosis between patients with essential tremor (ET) and those with Parkinson's disease (PD) whose main manifestation is tremor may be difficult unless using complex neuroimaging techniques such as 123I-FP-CIT SPECT. We considered that using smartphone's accelerometer to stablish a diagnostic test based on time-frequency differences between PD an ET could support the clinical diagnosis. The study was carried out in 17 patients with PD, 16 patients with ET, 12 healthy volunteers and 7 patients with tremor of undecided diagnosis (TUD), who were re-evaluated one year after the first visit to reach the definite diagnosis. The smartphone was placed over the hand dorsum to record epochs of 30 s at rest and 30 s during arm stretching. We generated frequency power spectra and calculated receiver operating characteristics curves (ROC) curves of total spectral power, to establish a threshold to separate subjects with and without tremor. In patients with PD and ET, we found that the ROC curve of relative energy was the feature discriminating better between the two groups. This threshold was then used to classify the TUD patients. We could correctly classify 49 out of 52 subjects in the category with/without tremor (97.96% sensitivity and 83.3% specificity) and 27 out of 32 patients in the category PD/ET (84.38% discrimination accuracy). Among TUD patients, 2 of 2 PD and 2 of 4 ET were correctly classified, and one patient having PD plus ET was classified as PD. Based on the analysis of smartphone accelerometer recordings, we found several kinematic features in the analysis of tremor that distinguished first between healthy subjects and patients and, ultimately, between PD and ET patients. The proposed method can give immediate results for the clinician to gain valuable information for the diagnosis of tremor. This can be useful in environments where more sophisticated diagnostic techniques are unavailable.

  9. The magic glove: a gesture-based remote controller for intelligent mobile robots

    NASA Astrophysics Data System (ADS)

    Luo, Chaomin; Chen, Yue; Krishnan, Mohan; Paulik, Mark

    2012-01-01

    This paper describes the design of a gesture-based Human Robot Interface (HRI) for an autonomous mobile robot entered in the 2010 Intelligent Ground Vehicle Competition (IGVC). While the robot is meant to operate autonomously in the various Challenges of the competition, an HRI is useful in moving the robot to the starting position and after run termination. In this paper, a user-friendly gesture-based embedded system called the Magic Glove is developed for remote control of a robot. The system consists of a microcontroller and sensors that is worn by the operator as a glove and is capable of recognizing hand signals. These are then transmitted through wireless communication to the robot. The design of the Magic Glove included contributions on two fronts: hardware configuration and algorithm development. A triple axis accelerometer used to detect hand orientation passes the information to a microcontroller, which interprets the corresponding vehicle control command. A Bluetooth device interfaced to the microcontroller then transmits the information to the vehicle, which acts accordingly. The user-friendly Magic Glove was successfully demonstrated first in a Player/Stage simulation environment. The gesture-based functionality was then also successfully verified on an actual robot and demonstrated to judges at the 2010 IGVC.

  10. Complete low-cost implementation of a teleoperated control system for a humanoid robot.

    PubMed

    Cela, Andrés; Yebes, J Javier; Arroyo, Roberto; Bergasa, Luis M; Barea, Rafael; López, Elena

    2013-01-24

    Humanoid robotics is a field of a great research interest nowadays. This work implements a low-cost teleoperated system to control a humanoid robot, as a first step for further development and study of human motion and walking. A human suit is built, consisting of 8 sensors, 6 resistive linear potentiometers on the lower extremities and 2 digital accelerometers for the arms. The goal is to replicate the suit movements in a small humanoid robot. The data from the sensors is wirelessly transmitted via two ZigBee RF configurable modules installed on each device: the robot and the suit. Replicating the suit movements requires a robot stability control module to prevent falling down while executing different actions involving knees flexion. This is carried out via a feedback control system with an accelerometer placed on the robot's back. The measurement from this sensor is filtered using Kalman. In addition, a two input fuzzy algorithm controlling five servo motors regulates the robot balance. The humanoid robot is controlled by a medium capacity processor and a low computational cost is achieved for executing the different algorithms. Both hardware and software of the system are based on open platforms. The successful experiments carried out validate the implementation of the proposed teleoperated system.

  11. Validation of finite element computations for the quantitative prediction of underwater noise from impact pile driving.

    PubMed

    Zampolli, Mario; Nijhof, Marten J J; de Jong, Christ A F; Ainslie, Michael A; Jansen, Erwin H W; Quesson, Benoit A J

    2013-01-01

    The acoustic radiation from a pile being driven into the sediment by a sequence of hammer strikes is studied with a linear, axisymmetric, structural acoustic frequency domain finite element model. Each hammer strike results in an impulsive sound that is emitted from the pile and then propagated in the shallow water waveguide. Measurements from accelerometers mounted on the head of a test pile and from hydrophones deployed in the water are used to validate the model results. Transfer functions between the force input at the top of the anvil and field quantities, such as acceleration components in the structure or pressure in the fluid, are computed with the model. These transfer functions are validated using accelerometer or hydrophone measurements to infer the structural forcing. A modeled hammer forcing pulse is used in the successive step to produce quantitative predictions of sound exposure at the hydrophones. The comparison between the model and the measurements shows that, although several simplifying assumptions were made, useful predictions of noise levels based on linear structural acoustic models are possible. In the final part of the paper, the model is used to characterize the pile as an acoustic radiator by analyzing the flow of acoustic energy.

  12. Complete Low-Cost Implementation of a Teleoperated Control System for a Humanoid Robot

    PubMed Central

    Cela, Andrés; Yebes, J. Javier; Arroyo, Roberto; Bergasa, Luis M.; Barea, Rafael; López, Elena

    2013-01-01

    Humanoid robotics is a field of a great research interest nowadays. This work implements a low-cost teleoperated system to control a humanoid robot, as a first step for further development and study of human motion and walking. A human suit is built, consisting of 8 sensors, 6 resistive linear potentiometers on the lower extremities and 2 digital accelerometers for the arms. The goal is to replicate the suit movements in a small humanoid robot. The data from the sensors is wirelessly transmitted via two ZigBee RF configurable modules installed on each device: the robot and the suit. Replicating the suit movements requires a robot stability control module to prevent falling down while executing different actions involving knees flexion. This is carried out via a feedback control system with an accelerometer placed on the robot's back. The measurement from this sensor is filtered using Kalman. In addition, a two input fuzzy algorithm controlling five servo motors regulates the robot balance. The humanoid robot is controlled by a medium capacity processor and a low computational cost is achieved for executing the different algorithms. Both hardware and software of the system are based on open platforms. The successful experiments carried out validate the implementation of the proposed teleoperated system. PMID:23348029

  13. Social Cognitive Theory Predictors of Exercise Behavior in Endometrial Cancer Survivors

    PubMed Central

    Basen-Engquist, Karen; Carmack, Cindy L.; Li, Yisheng; Brown, Jubilee; Jhingran, Anuja; Hughes, Daniel C.; Perkins, Heidi Y.; Scruggs, Stacie; Harrison, Carol; Baum, George; Bodurka, Diane C.; Waters, Andrew

    2014-01-01

    Objective This study evaluated whether social cognitive theory (SCT) variables, as measured by questionnaire and ecological momentary assessment (EMA), predicted exercise in endometrial cancer survivors. Methods One hundred post-treatment endometrial cancer survivors received a 6-month home-based exercise intervention. EMAs were conducted using hand-held computers for 10- to 12-day periods every 2 months. Participants rated morning self-efficacy and positive and negative outcome expectations using the computer, recorded exercise information in real time and at night, and wore accelerometers. At the midpoint of each assessment period participants completed SCT questionnaires. Using linear mixed-effects models, we tested whether morning SCT variables predicted minutes of exercise that day (Question 1) and whether exercise minutes at time point Tj could be predicted by questionnaire measures of SCT variables from time point Tj-1 (Question 2). Results Morning self-efficacy significantly predicted that day’s exercise minutes (p<.0001). Morning positive outcome expectations was also associated with exercise minutes (p=0.0003), but the relationship was attenuated when self-efficacy was included in the model (p=0.4032). Morning negative outcome expectations was not associated with exercise minutes. Of the questionnaire measures of SCT variables, only exercise self-efficacy predicted exercise at the next time point (p=0.003). Conclusions The consistency of the relationship between self-efficacy and exercise minutes over short (same day) and longer (Tj to Tj-1) time periods provides support for a causal relationship. The strength of the relationship between morning self-efficacy and exercise minutes suggest that real-time interventions that target daily variation in self-efficacy may benefit endometrial cancer survivors’ exercise adherence. PMID:23437853

  14. Computation of Southern Pine Site Index Using a TI-59 Calculator

    Treesearch

    Robert M. Farrar

    1983-01-01

    A program is described that permits computation of site index in the field using a Texas Instruments model TI-59 programmable, hand-held, battery-powered calculator. Based on a series of equations developed by R.M. Farrar, Jr., for the site index curves in USDA Miscellaneous Publication 50, the program can accommodate any index base age, tree age, and height within...

  15. Hand-arm vibration exposure monitoring with wearable sensor module.

    PubMed

    Austad, Hanne O; Røed, Morten H; Liverud, Anders E; Dalgard, Steffen; Seeberg, Trine M

    2013-01-01

    Vibration exposure is a serious risk within work physiology for several work groups. Combined with cold artic climate, the risk for permanent harm is even higher. Equipment that can monitor the vibration exposure and warn the user when at risk will provide a safer work environment for these work groups. This study evaluates whether data from a wearable wireless multi-parameter sensor module can be used to estimate vibration exposure and exposure time. This work has been focused on the characterization of the response from the accelerometer in the sensor module and the optimal location of the module in the hand-arm configuration.

  16. Research and Development of Electrostatic Accelerometers for Space Science Missions at HUST.

    PubMed

    Bai, Yanzheng; Li, Zhuxi; Hu, Ming; Liu, Li; Qu, Shaobo; Tan, Dingyin; Tu, Haibo; Wu, Shuchao; Yin, Hang; Li, Hongyin; Zhou, Zebing

    2017-08-23

    High-precision electrostatic accelerometers have achieved remarkable success in satellite Earth gravity field recovery missions. Ultralow-noise inertial sensors play important roles in space gravitational wave detection missions such as the Laser Interferometer Space Antenna (LISA) mission, and key technologies have been verified in the LISA Pathfinder mission. Meanwhile, at Huazhong University of Science and Technology (HUST, China), a space accelerometer and inertial sensor based on capacitive sensors and the electrostatic control technique have also been studied and developed independently for more than 16 years. In this paper, we review the operational principle, application, and requirements of the electrostatic accelerometer and inertial sensor in different space missions. The development and progress of a space electrostatic accelerometer at HUST, including ground investigation and space verification are presented.

  17. Research and Development of Electrostatic Accelerometers for Space Science Missions at HUST

    PubMed Central

    Bai, Yanzheng; Li, Zhuxi; Hu, Ming; Liu, Li; Qu, Shaobo; Tan, Dingyin; Tu, Haibo; Wu, Shuchao; Yin, Hang; Li, Hongyin; Zhou, Zebing

    2017-01-01

    High-precision electrostatic accelerometers have achieved remarkable success in satellite Earth gravity field recovery missions. Ultralow-noise inertial sensors play important roles in space gravitational wave detection missions such as the Laser Interferometer Space Antenna (LISA) mission, and key technologies have been verified in the LISA Pathfinder mission. Meanwhile, at Huazhong University of Science and Technology (HUST, China), a space accelerometer and inertial sensor based on capacitive sensors and the electrostatic control technique have also been studied and developed independently for more than 16 years. In this paper, we review the operational principle, application, and requirements of the electrostatic accelerometer and inertial sensor in different space missions. The development and progress of a space electrostatic accelerometer at HUST, including ground investigation and space verification are presented. PMID:28832538

  18. A review of micromachined thermal accelerometers

    NASA Astrophysics Data System (ADS)

    Mukherjee, Rahul; Basu, Joydeep; Mandal, Pradip; Guha, Prasanta Kumar

    2017-12-01

    A thermal convection based micro-electromechanical accelerometer is a relatively new kind of acceleration sensor that does not require a solid proof mass, yielding unique benefits like high shock survival rating, low production cost, and integrability with CMOS integrated circuit technology. This article provides a comprehensive survey of the research, development, and current trends in the field of thermal acceleration sensors, with detailed enumeration on the theory, operation, modeling, and numerical simulation of such devices. Different reported varieties and structures of thermal accelerometers have been reviewed highlighting key design, implementation, and performance aspects. Materials and technologies used for fabrication of such sensors have also been discussed. Further, the advantages and challenges for thermal accelerometers vis-à-vis other prominent accelerometer types have been presented, followed by an overview of associated signal conditioning circuitry and potential applications.

  19. Accelerometer-based step initiation control for gait-assist neuroprostheses.

    PubMed

    Foglyano, Kevin M; Schnellenberger, John R; Kobetic, Rudi; Lombardo, Lisa; Pinault, Gilles; Selkirk, Stephen; Makowski, Nathaniel S; Triolo, Ronald J

    2016-01-01

    Electrical activation of paralyzed musculature can generate or augment joint movements required for walking after central nervous system trauma. Proper timing of stimulation relative to residual volitional control is critical to usefully affecting ambulation. This study evaluates three-dimensional accelerometers and customized algorithms to detect the intent to step from voluntary movements to trigger stimulation during walking in individuals with significantly different etiologies, mobility limitations, manual dexterities, and walking aids. Three individuals with poststroke hemiplegia or partial spinal cord injury exhibiting varying gait deficits were implanted with multichannel pulse generators to provide joint motions at the hip, knee, and ankle. An accelerometer integrated into the external control unit was used to detect heel strike or walker movement, and wireless accelerometers were used to detect crutch strike. Algorithms were developed for each sensor location to detect intent to step to progress through individualized stimulation patterns. Testing these algorithms produced detection accuracies of at least 90% on both level ground and uneven terrain. All participants use their accelerometer-triggered implanted gait systems in the community; the validation/system testing was completed in the hospital. The results demonstrated that safe, reliable, and convenient accelerometer-based step initiation can be achieved regardless of specific gait deficits, manual dexterities, and walking aids.

  20. A Miniature High-Sensitivity Braodband Accelerometer Based on Electron Tunneling Transducers

    NASA Technical Reports Server (NTRS)

    Rockstad, H.; Kenny, T.; Reynolds, J.; Kaiser, W.; Gabrielson, T.

    1993-01-01

    This paper describes the successful fabrication and demonstration of a new dual-element micromachined silicon tunnel accelerometer that extends the operational bandwidth beyond the resonant frequency of the proof mass.

  1. Developing Secure Agent Systems Using Delegation Based Trust Management

    DTIC Science & Technology

    2005-01-01

    delegation rules, so that the information in the SCM may be accessed only by authorized agents. Special intelligent agents called security agents are re... Bluetooth , IEEE 802.11, or Infrared, via any hand-held device, within a Vigil can also be used in wired systems, but the focal point of our re- search is

  2. Interactive Learning in the Classroom: Is Student Response Method Related to Performance?

    ERIC Educational Resources Information Center

    Elicker, Joelle D.; McConnell, Nicole L.

    2011-01-01

    This study examined three methods of responding to in-class multiple-choice concept questions in an Introduction to Psychology course. Specifically, this study compared exam performance and student reactions using three methods of responding to concept questions: (a) a technology-based network system, (b) hand-held flashcards, and (c) hand…

  3. Another Intuitive Approach to Stirling's Formula. Classroom Notes

    ERIC Educational Resources Information Center

    Osler, Thomas J.

    2004-01-01

    An intuitive derivation of Stirling's formula is presented, together with a modification that greatly improves its accuracy. The derivation is based on the closed form evaluation of the gamma function at an integer plus one-half. The modification is easily implemented on a hand-held calculator and often triples the number of significant digits…

  4. Technology and Speech Training: An Affair to Remember.

    ERIC Educational Resources Information Center

    Levitt, Harry

    1989-01-01

    A history of speech training technology is presented, from the simple hand-held mirror to complicated computer-based systems and tactile devices, and subsequent papers in this theme issue are introduced. Both the advantages and problems of technological aids are addressed. Simplicity in the application and use of speech training aids is stressed.…

  5. Micro-fluidic (Lab-on the- Chip) PCR Array Cartridge for Biological Screening in a Hand Held Device: FInal Report for CRADA no 264. PNNL-T2-258-RU with CombiMatrix Corp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rainina, Evguenia I.

    2010-10-31

    The worldwide emergence of both new and old diseases resulting from human expansion and also human and materials mobility has and will continue to place stress on both medical and clinical diagnostics. The classical approach to bioagents detection involves the use of differential metabolic assays to determine species type in the case of most bacteria, or the use of cell culture and electron microscopy to diagnose viruses and some bacteria that are intracellular parasites. The long-term goal in bioagent detection is to develop a hand-held instrument featuring disposable cartridges which contain all the necessary reagents, reaction chambers, waste chambers, andmore » micro-fluidics to extract, concentrate, amplify, and analyze nucleic acids. This GIPP project began development of a sensory platform using nucleic-acid based probes. Although research was not completed, initial findings indicated that an advanced sensing device could theoretically be built on a DNA/RNA-based technology platform.« less

  6. InfraCAM (trade mark): A Hand-Held Commercial Infrared Camera Modified for Spaceborne Applications

    NASA Technical Reports Server (NTRS)

    Manitakos, Daniel; Jones, Jeffrey; Melikian, Simon

    1996-01-01

    In 1994, Inframetrics introduced the InfraCAM(TM), a high resolution hand-held thermal imager. As the world's smallest, lightest and lowest power PtSi based infrared camera, the InfraCAM is ideal for a wise range of industrial, non destructive testing, surveillance and scientific applications. In addition to numerous commercial applications, the light weight and low power consumption of the InfraCAM make it extremely valuable for adaptation to space borne applications. Consequently, the InfraCAM has been selected by NASA Lewis Research Center (LeRC) in Cleveland, Ohio, for use as part of the DARTFire (Diffusive and Radiative Transport in Fires) space borne experiment. In this experiment, a solid fuel is ignited in a low gravity environment. The combustion period is recorded by both visible and infrared cameras. The infrared camera measures the emission from polymethyl methacrylate, (PMMA) and combustion products in six distinct narrow spectral bands. Four cameras successfully completed all qualification tests at Inframetrics and at NASA Lewis. They are presently being used for ground based testing in preparation for space flight in the fall of 1995.

  7. Cloud-based processing of multi-spectral imaging data

    NASA Astrophysics Data System (ADS)

    Bernat, Amir S.; Bolton, Frank J.; Weiser, Reuven; Levitz, David

    2017-03-01

    Multispectral imaging holds great promise as a non-contact tool for the assessment of tissue composition. Performing multi - spectral imaging on a hand held mobile device would allow to bring this technology and with it knowledge to low resource settings to provide a state of the art classification of tissue health. This modality however produces considerably larger data sets than white light imaging and requires preliminary image analysis for it to be used. The data then needs to be analyzed and logged, while not requiring too much of the system resource or a long computation time and battery use by the end point device. Cloud environments were designed to allow offloading of those problems by allowing end point devices (smartphones) to offload computationally hard tasks. For this end we present a method where the a hand held device based around a smartphone captures a multi - spectral dataset in a movie file format (mp4) and compare it to other image format in size, noise and correctness. We present the cloud configuration used for segmenting images to frames where they can later be used for further analysis.

  8. 7 CFR 201.39 - General procedure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... hand into the bulk and withdrawing representative portions. The hand is inserted in an open position and the fingers are held closely together while the hand is being inserted and the portion withdrawn... bag, the handfuls shall be taken from well-separated points. (b) For free-flowing seed in bags or bulk...

  9. 7 CFR 201.39 - General procedure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... hand into the bulk and withdrawing representative portions. The hand is inserted in an open position and the fingers are held closely together while the hand is being inserted and the portion withdrawn... bag, the handfuls shall be taken from well-separated points. (b) For free-flowing seed in bags or bulk...

  10. Image registration for multi-exposed HDRI and motion deblurring

    NASA Astrophysics Data System (ADS)

    Lee, Seok; Wey, Ho-Cheon; Lee, Seong-Deok

    2009-02-01

    In multi-exposure based image fusion task, alignment is an essential prerequisite to prevent ghost artifact after blending. Compared to usual matching problem, registration is more difficult when each image is captured under different photographing conditions. In HDR imaging, we use long and short exposure images, which have different brightness and there exist over/under satuated regions. In motion deblurring problem, we use blurred and noisy image pair and the amount of motion blur varies from one image to another due to the different exposure times. The main difficulty is that luminance levels of the two images are not in linear relationship and we cannot perfectly equalize or normalize the brightness of each image and this leads to unstable and inaccurate alignment results. To solve this problem, we applied probabilistic measure such as mutual information to represent similarity between images after alignment. In this paper, we discribed about the characteristics of multi-exposed input images in the aspect of registration and also analyzed the magnitude of camera hand shake. By exploiting the independence of luminance of mutual information, we proposed a fast and practically useful image registration technique in multiple capturing. Our algorithm can be applied to extreme HDR scenes and motion blurred scenes with over 90% success rate and its simplicity enables to be embedded in digital camera and mobile camera phone. The effectiveness of our registration algorithm is examined by various experiments on real HDR or motion deblurring cases using hand-held camera.

  11. 75 FR 27504 - Substantial Product Hazard List: Hand-Held Hair Dryers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ...The Consumer Product Safety Improvement Act of 2008 (``CPSIA''), authorizes the United States Consumer Product Safety Commission (``Commission'') to specify, by rule, for any consumer product or class of consumer products, characteristics whose existence or absence shall be deemed a substantial product hazard under certain circumstances. In this document, the Commission is proposing a rule to determine that any hand-held hair dryer without integral immersion protection presents a substantial product hazard.

  12. Beyond Textbook Illustrations: Hand-Held Models of Ordered DNA and Protein Structures as 3D Supplements to Enhance Student Learning of Helical Biopolymers

    ERIC Educational Resources Information Center

    Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2010-01-01

    Textbook illustrations of 3D biopolymers on printed paper, regardless of how detailed and colorful, suffer from its two-dimensionality. For beginners, computer screen display of skeletal models of biopolymers and their animation usually does not provide the at-a-glance 3D perception and details, which can be done by good hand-held models. Here, we…

  13. Estimation of 1RM for knee extension based on the maximal isometric muscle strength and body composition.

    PubMed

    Kanada, Yoshikiyo; Sakurai, Hiroaki; Sugiura, Yoshito; Arai, Tomoaki; Koyama, Soichiro; Tanabe, Shigeo

    2017-11-01

    [Purpose] To create a regression formula in order to estimate 1RM for knee extensors, based on the maximal isometric muscle strength measured using a hand-held dynamometer and data regarding the body composition. [Subjects and Methods] Measurement was performed in 21 healthy males in their twenties to thirties. Single regression analysis was performed, with measurement values representing 1RM and the maximal isometric muscle strength as dependent and independent variables, respectively. Furthermore, multiple regression analysis was performed, with data regarding the body composition incorporated as another independent variable, in addition to the maximal isometric muscle strength. [Results] Through single regression analysis with the maximal isometric muscle strength as an independent variable, the following regression formula was created: 1RM (kg)=0.714 + 0.783 × maximal isometric muscle strength (kgf). On multiple regression analysis, only the total muscle mass was extracted. [Conclusion] A highly accurate regression formula to estimate 1RM was created based on both the maximal isometric muscle strength and body composition. Using a hand-held dynamometer and body composition analyzer, it was possible to measure these items in a short time, and obtain clinically useful results.

  14. Hand held lasers, a hazard to aircraft: How do we address this?

    NASA Astrophysics Data System (ADS)

    Barat, K.

    2015-10-01

    The availability of hand held lasers, commonly termed "laser pointers" is easy and wide spread, through commercial web sites and brick & mortar stores. The output of these hand held devices ranges from 1-5 milliWatts (mW) the legal laser pointer output limit, to 5000mW (5Watts). This is thousand times the maximum limit for pointers. Sadly the abuse of these devices is also wide spread. Over the last few years over 3000 aircraft are exposed to laser hits per year. While these aircraft exposures are of no danger to the aircraft frame but they can cause pilot distractions with the potential to cause a serve accident. The presentation will discuss the problem review visual effects, the regulatory response and how educators need to be aware of the problem and can take steps to educate students in the hope of having an effect.

  15. Do hand-held calorimeters provide reliable and accurate estimates of resting metabolic rate?

    PubMed

    Van Loan, Marta D

    2007-12-01

    This paper provides an overview of a new technique for indirect calorimetry and the assessment of resting metabolic rate. Information from the research literature includes findings on the reliability and validity of a new hand-held indirect calorimeter as well as use in clinical and field settings. Research findings to date are of mixed results. The MedGem instrument has provided more consistent results when compared to the Douglas bag method of measuring metabolic rate. The BodyGem instrument has been shown to be less accurate when compared to standard metabolic carts. Furthermore, when the Body Gem has been used with clinical patients or with under nourished individuals the results have not been acceptable. Overall, there is not a large enough body of evidence to definitively support the use of these hand-held devices for assessment of metabolic rate in a wide variety of clinical or research environments.

  16. Diolistic labeling of neuronal cultures and intact tissue using a hand-held gene gun

    PubMed Central

    O'Brien, John A; Lummis, Sarah CR

    2009-01-01

    Diolistic labeling is a highly efficient method for introducing dyes into cells using biolistic techniques. The use of lipophilic carbocyanine dyes, combined with particle-mediated biolistic delivery using a hand-held gene gun, allows non-toxic labeling of multiple cells in both living and fixed tissue. The technique is rapid (labeled cells can be visualized in minutes) and technically undemanding. Here, we provide a detailed protocol for diolistic labeling of cultured human embryonic kidney 293 cells and whole brain using a hand-held gene gun. There are four major steps: (i) coating gold microcarriers with one or more dyes; (ii) transferring the microcarriers into a cartridge to make a bullet; (iii) preparation of cells or intact tissue; and (iv) firing the microcarriers into cells or tissue. The method can be readily adapted to other cell types and tissues. This protocol can be completed in less than 1 h. PMID:17406443

  17. Analysis and amelioration about the cross-sensitivity of a high resolution MOEMS accelerometer based on diffraction grating

    NASA Astrophysics Data System (ADS)

    Lu, Qianbo; Bai, Jian; Wang, Kaiwei; Lou, Shuqi; Jiao, Xufen; Han, Dandan

    2016-10-01

    Cross-sensitivity is a crucial parameter since it detrimentally affect the performance of an accelerometer, especially for a high resolution accelerometer. In this paper, a suite of analytical and finite-elements-method (FEM) models for characterizing the mechanism and features of the cross-sensitivity of a single-axis MOEMS accelerometer composed of a diffraction grating and a micromachined mechanical sensing chip are presented, which have not been systematically investigated yet. The mechanism and phenomena of the cross-sensitivity of this type MOEMS accelerometer based on diffraction grating differ quite a lot from the traditional ones owing to the identical sensing principle. By analyzing the models, some ameliorations and the modified design are put forward to suppress the cross-sensitivity. The modified design, achieved by double sides etching on a specific double-substrate-layer silicon-on-insulator (SOI) wafer, is validated to have a far smaller cross-sensitivity compared with the design previously reported in the literature. Moreover, this design can suppress the cross-sensitivity dramatically without compromising the acceleration sensitivity and resolution.

  18. CO2 laser myringotomy with a hand-held otoscope and fiber optic delivery system: animal experimentation and preclinical trials

    NASA Astrophysics Data System (ADS)

    DeRowe, Ari; Ophir, Dov; Finkelstein, Y.; Katzir, Abraham

    1993-07-01

    CO2 laser myringotomy has previously been proven effective in patients with serous otitis media for short term aeration of the middle ear. However, the system based on a microscope and a coaxially aligned laser is cumbersome and expensive. Also, conventional optical fibers do not transmit CO2 laser energy ((lambda) equals 10.6 micrometers ). We have developed a silver halide optical fiber of diameter 0.9 mm and lengths of several meters, with high transmission at 10.6 micrometers . Using a hand held otoscope coupled to a fiberoptic delivery system CO2 laser myringotomies were performed first in guinea pigs and then in humans. In the animal model the feasibility of the procedure was proven. Different irradiation parameters were studied and a `dose dependent' relationship was found between the total energy used and the duration of a patent myringotomy. This system was used to perform CO2 laser myringotomies under local anesthesia in five patients with serous otitis media and conductive hearing loss. None of the patients complained of discomfort and no scarring was noted. All patients had subjective and audiometric documentation of hearing improvement. The average duration of a patent myringotomy was 21 days. In two patients the effusion recurred. CO2 laser myringotomy utilizing a hand held otoscope coupled to an optical fiber capable of transmitting CO2 laser energy may prove simple and effective in the treatment of serous otitis media.

  19. Finger tracking for hand-held device interface using profile-matching stereo vision

    NASA Astrophysics Data System (ADS)

    Chang, Yung-Ping; Lee, Dah-Jye; Moore, Jason; Desai, Alok; Tippetts, Beau

    2013-01-01

    Hundreds of millions of people use hand-held devices frequently and control them by touching the screen with their fingers. If this method of operation is being used by people who are driving, the probability of deaths and accidents occurring substantially increases. With a non-contact control interface, people do not need to touch the screen. As a result, people will not need to pay as much attention to their phones and thus drive more safely than they would otherwise. This interface can be achieved with real-time stereovision. A novel Intensity Profile Shape-Matching Algorithm is able to obtain 3-D information from a pair of stereo images in real time. While this algorithm does have a trade-off between accuracy and processing speed, the result of this algorithm proves the accuracy is sufficient for the practical use of recognizing human poses and finger movement tracking. By choosing an interval of disparity, an object at a certain distance range can be segmented. In other words, we detect the object by its distance to the cameras. The advantage of this profile shape-matching algorithm is that detection of correspondences relies on the shape of profile and not on intensity values, which are subjected to lighting variations. Based on the resulting 3-D information, the movement of fingers in space from a specific distance can be determined. Finger location and movement can then be analyzed for non-contact control of hand-held devices.

  20. Development of a high-speed VCSEL OCT system for real-time imaging of conscious patients larynx using a hand-held probe (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rangarajan, Swathi; Chou, Li-Dek; Coughlan, Carolyn; Sharma, Giriraj; Wong, Brian J. F.; Ramalingam, Tirunelveli S.

    2016-02-01

    Fourier domain optical coherence tomography (FD-OCT) is a noninvasive imaging modality that has previously been used to image the human larynx. However, differences in anatomical geometry and short imaging range of conventional OCT limits its application in a clinical setting. In order to address this issue, we have developed a gradient-index (GRIN) lens rod-based hand-held probe in conjunction with a long imaging range 200 kHz Vertical-Cavity Surface Emitting Lasers (VCSEL) swept-source optical coherence tomography (SS-OCT) system for high speed real-time imaging of the human larynx in an office setting. This hand-held probe is designed to have a long and dynamically tunable working distance to accommodate the differences in anatomical geometry of human test subjects. A nominal working distance (~6 cm) of the probe is selected to have a lateral resolution <100 um within a depth of focus of 6.4 mm, which covers more than half of the 12 mm imaging range of the VCSEL laser. The maximum lateral scanning range of the probe at 6 cm working distance is approximately 8.4 mm, and imaging an area of 8.5 mm by 8.5 mm is accomplished within a second. Using the above system, we will demonstrate real-time cross-sectional OCT imaging of larynx during phonation in vivo in human and ex-vivo in pig vocal folds.

  1. MEMS and FOG Technologies for Tactical and Navigation Grade Inertial Sensors—Recent Improvements and Comparison

    PubMed Central

    Deppe, Olaf; Dorner, Georg; König, Stefan; Martin, Tim; Voigt, Sven; Zimmermann, Steffen

    2017-01-01

    In the following paper, we present an industry perspective of inertial sensors for navigation purposes driven by applications and customer needs. Microelectromechanical system (MEMS) inertial sensors have revolutionized consumer, automotive, and industrial applications and they have started to fulfill the high end tactical grade performance requirements of hybrid navigation systems on a series production scale. The Fiber Optic Gyroscope (FOG) technology, on the other hand, is further pushed into the near navigation grade performance region and beyond. Each technology has its special pros and cons making it more or less suitable for specific applications. In our overview paper, we present latest improvements at NG LITEF in tactical and navigation grade MEMS accelerometers, MEMS gyroscopes, and Fiber Optic Gyroscopes, based on our long-term experience in the field. We demonstrate how accelerometer performance has improved by switching from wet etching to deep reactive ion etching (DRIE) technology. For MEMS gyroscopes, we show that better than 1°/h series production devices are within reach, and for FOGs we present how limitations in noise performance were overcome by signal processing. The paper also intends a comparison of the different technologies, emphasizing suitability for different navigation applications, thus providing guidance to system engineers. PMID:28287483

  2. Two-gun suicide by simultaneous shots to the head: interdisciplinary reconstruction on the basis of scene investigation, autopsy findings, GSR analysis and examination of firearms, bullets and cartridge cases.

    PubMed

    Grosse Perdekamp, Markus; Nadjem, Hadi; Merkel, Joachim; Braunwarth, Roland; Pollak, Stefan; Thierauf, Annette

    2011-07-01

    Suicidal shots fired simultaneously to the head from two handguns are rare. The authors report about a recent case in which a Smith & Wesson cal. 9 mm pistol and a Smith & Wesson cal. .357 Magnum revolver were used. Sitting on a sofa, a 33-year-old man (member of a shooting club) fired two simultaneous shots to the head; the pistol held in the left hand was discharged into the left temple, and the revolver held in the right hand was fired into the mouth. Both weapons remained in the respective hands. An upside-down muzzle imprint in the left temporal region and recoil injuries of a mandibular incisor, and the lower lip indicated that both the pistol and the revolver had been held in an inverted manner at the time of discharge. Blood stains (backspatter) and gunshot residues were present on both firing hands, whereas forward spatter originating from the exit wounds was deposited on the wall behind the suicide's head.

  3. Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks.

    PubMed

    Wei, Hong; Li, Zhipeng; Tian, Xiaorui; Wang, Zhuoxian; Cong, Fengzi; Liu, Ning; Zhang, Shunping; Nordlander, Peter; Halas, Naomi J; Xu, Hongxing

    2011-02-09

    We show that the local electric field distribution of propagating plasmons along silver nanowires can be imaged by coating the nanowires with a layer of quantum dots, held off the surface of the nanowire by a nanoscale dielectric spacer layer. In simple networks of silver nanowires with two optical inputs, control of the optical polarization and phase of the input fields directs the guided waves to a specific nanowire output. The QD-luminescent images of these structures reveal that a complete family of phase-dependent, interferometric logic functions can be performed on these simple networks. These results show the potential for plasmonic waveguides to support compact interferometric logic operations.

  4. Student Focused Marketing: Impact of Marketing Higher Education Based on Student Data and Input

    ERIC Educational Resources Information Center

    Wright, Robert E.

    2014-01-01

    USA Today headlined an article "Study: Nearly Half are Overqualified for Their Jobs," (Marklein, 2013). The article cited a study by the nonprofit Center for College Affordability and Productivity which found this apparent mismatch between qualifications and jobs held. The question then becomes, what has led to this mismatch? Three…

  5. Arabic sign language recognition based on HOG descriptor

    NASA Astrophysics Data System (ADS)

    Ben Jmaa, Ahmed; Mahdi, Walid; Ben Jemaa, Yousra; Ben Hamadou, Abdelmajid

    2017-02-01

    We present in this paper a new approach for Arabic sign language (ArSL) alphabet recognition using hand gesture analysis. This analysis consists in extracting a histogram of oriented gradient (HOG) features from a hand image and then using them to generate an SVM Models. Which will be used to recognize the ArSL alphabet in real-time from hand gesture using a Microsoft Kinect camera. Our approach involves three steps: (i) Hand detection and localization using a Microsoft Kinect camera, (ii) hand segmentation and (iii) feature extraction using Arabic alphabet recognition. One each input image first obtained by using a depth sensor, we apply our method based on hand anatomy to segment hand and eliminate all the errors pixels. This approach is invariant to scale, to rotation and to translation of the hand. Some experimental results show the effectiveness of our new approach. Experiment revealed that the proposed ArSL system is able to recognize the ArSL with an accuracy of 90.12%.

  6. Real-time myoelectric control of a multi-fingered hand prosthesis using principal components analysis.

    PubMed

    Matrone, Giulia C; Cipriani, Christian; Carrozza, Maria Chiara; Magenes, Giovanni

    2012-06-15

    In spite of the advances made in the design of dexterous anthropomorphic hand prostheses, these sophisticated devices still lack adequate control interfaces which could allow amputees to operate them in an intuitive and close-to-natural way. In this study, an anthropomorphic five-fingered robotic hand, actuated by six motors, was used as a prosthetic hand emulator to assess the feasibility of a control approach based on Principal Components Analysis (PCA), specifically conceived to address this problem. Since it was demonstrated elsewhere that the first two principal components (PCs) can describe the whole hand configuration space sufficiently well, the controller here employed reverted the PCA algorithm and allowed to drive a multi-DoF hand by combining a two-differential channels EMG input with these two PCs. Hence, the novelty of this approach stood in the PCA application for solving the challenging problem of best mapping the EMG inputs into the degrees of freedom (DoFs) of the prosthesis. A clinically viable two DoFs myoelectric controller, exploiting two differential channels, was developed and twelve able-bodied participants, divided in two groups, volunteered to control the hand in simple grasp trials, using forearm myoelectric signals. Task completion rates and times were measured. The first objective (assessed through one group of subjects) was to understand the effectiveness of the approach; i.e., whether it is possible to drive the hand in real-time, with reasonable performance, in different grasps, also taking advantage of the direct visual feedback of the moving hand. The second objective (assessed through a different group) was to investigate the intuitiveness, and therefore to assess statistical differences in the performance throughout three consecutive days. Subjects performed several grasp, transport and release trials with differently shaped objects, by operating the hand with the myoelectric PCA-based controller. Experimental trials showed that the simultaneous use of the two differential channels paradigm was successful. This work demonstrates that the proposed two-DoFs myoelectric controller based on PCA allows to drive in real-time a prosthetic hand emulator into different prehensile patterns with excellent performance. These results open up promising possibilities for the development of intuitive, effective myoelectric hand controllers.

  7. A Novel Phonology- and Radical-Coded Chinese Sign Language Recognition Framework Using Accelerometer and Surface Electromyography Sensors

    PubMed Central

    Cheng, Juan; Chen, Xun; Liu, Aiping; Peng, Hu

    2015-01-01

    Sign language recognition (SLR) is an important communication tool between the deaf and the external world. It is highly necessary to develop a worldwide continuous and large-vocabulary-scale SLR system for practical usage. In this paper, we propose a novel phonology- and radical-coded Chinese SLR framework to demonstrate the feasibility of continuous SLR using accelerometer (ACC) and surface electromyography (sEMG) sensors. The continuous Chinese characters, consisting of coded sign gestures, are first segmented into active segments using EMG signals by means of moving average algorithm. Then, features of each component are extracted from both ACC and sEMG signals of active segments (i.e., palm orientation represented by the mean and variance of ACC signals, hand movement represented by the fixed-point ACC sequence, and hand shape represented by both the mean absolute value (MAV) and autoregressive model coefficients (ARs)). Afterwards, palm orientation is first classified, distinguishing “Palm Downward” sign gestures from “Palm Inward” ones. Only the “Palm Inward” gestures are sent for further hand movement and hand shape recognition by dynamic time warping (DTW) algorithm and hidden Markov models (HMM) respectively. Finally, component recognition results are integrated to identify one certain coded gesture. Experimental results demonstrate that the proposed SLR framework with a vocabulary scale of 223 characters can achieve an averaged recognition accuracy of 96.01% ± 0.83% for coded gesture recognition tasks and 92.73% ± 1.47% for character recognition tasks. Besides, it demonstrats that sEMG signals are rather consistent for a given hand shape independent of hand movements. Hence, the number of training samples will not be significantly increased when the vocabulary scale increases, since not only the number of the completely new proposed coded gestures is constant and limited, but also the transition movement which connects successive signs needs no training samples to model even though the same coded gesture performed in different characters. This work opens up a possible new way to realize a practical Chinese SLR system. PMID:26389907

  8. A Novel Phonology- and Radical-Coded Chinese Sign Language Recognition Framework Using Accelerometer and Surface Electromyography Sensors.

    PubMed

    Cheng, Juan; Chen, Xun; Liu, Aiping; Peng, Hu

    2015-09-15

    Sign language recognition (SLR) is an important communication tool between the deaf and the external world. It is highly necessary to develop a worldwide continuous and large-vocabulary-scale SLR system for practical usage. In this paper, we propose a novel phonology- and radical-coded Chinese SLR framework to demonstrate the feasibility of continuous SLR using accelerometer (ACC) and surface electromyography (sEMG) sensors. The continuous Chinese characters, consisting of coded sign gestures, are first segmented into active segments using EMG signals by means of moving average algorithm. Then, features of each component are extracted from both ACC and sEMG signals of active segments (i.e., palm orientation represented by the mean and variance of ACC signals, hand movement represented by the fixed-point ACC sequence, and hand shape represented by both the mean absolute value (MAV) and autoregressive model coefficients (ARs)). Afterwards, palm orientation is first classified, distinguishing "Palm Downward" sign gestures from "Palm Inward" ones. Only the "Palm Inward" gestures are sent for further hand movement and hand shape recognition by dynamic time warping (DTW) algorithm and hidden Markov models (HMM) respectively. Finally, component recognition results are integrated to identify one certain coded gesture. Experimental results demonstrate that the proposed SLR framework with a vocabulary scale of 223 characters can achieve an averaged recognition accuracy of 96.01% ± 0.83% for coded gesture recognition tasks and 92.73% ± 1.47% for character recognition tasks. Besides, it demonstrats that sEMG signals are rather consistent for a given hand shape independent of hand movements. Hence, the number of training samples will not be significantly increased when the vocabulary scale increases, since not only the number of the completely new proposed coded gestures is constant and limited, but also the transition movement which connects successive signs needs no training samples to model even though the same coded gesture performed in different characters. This work opens up a possible new way to realize a practical Chinese SLR system.

  9. Reliability of a novel thermal imaging system for temperature assessment of healthy feet.

    PubMed

    Petrova, N L; Whittam, A; MacDonald, A; Ainarkar, S; Donaldson, A N; Bevans, J; Allen, J; Plassmann, P; Kluwe, B; Ring, F; Rogers, L; Simpson, R; Machin, G; Edmonds, M E

    2018-01-01

    Thermal imaging is a useful modality for identifying preulcerative lesions ("hot spots") in diabetic foot patients. Despite its recognised potential, at present, there is no readily available instrument for routine podiatric assessment of patients at risk. To address this need, a novel thermal imaging system was recently developed. This paper reports the reliability of this device for temperature assessment of healthy feet. Plantar skin foot temperatures were measured with the novel thermal imaging device (Diabetic Foot Ulcer Prevention System (DFUPS), constructed by Photometrix Imaging Ltd) and also with a hand-held infrared spot thermometer (Thermofocus® 01500A3, Tecnimed, Italy) after 20 min of barefoot resting with legs supported and extended in 105 subjects (52 males and 53 females; age range 18 to 69 years) as part of a multicentre clinical trial. The temperature differences between the right and left foot at five regions of interest (ROIs), including 1st and 4th toes, 1st, 3rd and 5th metatarsal heads were calculated. The intra-instrument agreement (three repeated measures) and the inter-instrument agreement (hand-held thermometer and thermal imaging device) were quantified using intra-class correlation coefficients (ICCs) and the 95% confidence intervals (CI). Both devices showed almost perfect agreement in replication by instrument. The intra-instrument ICCs for the thermal imaging device at all five ROIs ranged from 0.95 to 0.97 and the intra-instrument ICCs for the hand-held-thermometer ranged from 0.94 to 0.97. There was substantial to perfect inter-instrument agreement between the hand-held thermometer and the thermal imaging device and the ICCs at all five ROIs ranged between 0.94 and 0.97. This study reports the performance of a novel thermal imaging device in the assessment of foot temperatures in healthy volunteers in comparison with a hand-held infrared thermometer. The newly developed thermal imaging device showed very good agreement in repeated temperature assessments at defined ROIs as well as substantial to perfect agreement in temperature assessment with the hand-held infrared thermometer. In addition to the reported non-inferior performance in temperature assessment, the thermal imaging device holds the potential to provide an instantaneous thermal image of all sites of the feet (plantar, dorsal, lateral and medial views). Diabetic Foot Ulcer Prevention System NCT02317835, registered December 10, 2014.

  10. Attributing Crop Production in the United States Using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Zhang, Z.; Pan, B.

    2017-12-01

    Crop production plays key role in supporting life, economy and shaping environment. It is on one hand influenced by natural factors including precipitation, temperature, energy, and on the other hand shaped by the investment of fertilizers, pesticides and human power. Successful attributing of crop production to different factors can help optimize resources and improve productivity. Based on the meteorological records from National Center for Environmental Prediction and state-wise crop production related data provided by the United States Department of Agriculture Economic Research Service, an artificial neural network was constructed to connect crop production with precipitation and temperature anormlies, capital input, labor input, energy input, pesticide consumption and fertilizer consumption. Sensitivity analysis were carried out to attribute their specific influence on crop production for each grid. Results confirmed that the listed factors can generally determine the crop production. Different state response differently to the pertubation of predictands. Their spatial distribution is visulized and discussed.

  11. Implementation of accelerometer sensor module and fall detection monitoring system based on wireless sensor network.

    PubMed

    Lee, Youngbum; Kim, Jinkwon; Son, Muntak; Lee, Myoungho

    2007-01-01

    This research implements wireless accelerometer sensor module and algorithm to determine wearer's posture, activity and fall. Wireless accelerometer sensor module uses ADXL202, 2-axis accelerometer sensor (Analog Device). And using wireless RF module, this module measures accelerometer signal and shows the signal at ;Acceloger' viewer program in PC. ADL algorithm determines posture, activity and fall that activity is determined by AC component of accelerometer signal and posture is determined by DC component of accelerometer signal. Those activity and posture include standing, sitting, lying, walking, running, etc. By the experiment for 30 subjects, the performance of implemented algorithm was assessed, and detection rate for postures, motions and subjects was calculated. Lastly, using wireless sensor network in experimental space, subject's postures, motions and fall monitoring system was implemented. By the simulation experiment for 30 subjects, 4 kinds of activity, 3 times, fall detection rate was calculated. In conclusion, this system can be application to patients and elders for activity monitoring and fall detection and also sports athletes' exercise measurement and pattern analysis. And it can be expected to common person's exercise training and just plaything for entertainment.

  12. Prevalence of Hand-transmitted Vibration Exposure among Grass-cutting Workers using Objective and Subjective Measures

    NASA Astrophysics Data System (ADS)

    Azmir, N. A.; Yahya, M. N.

    2017-01-01

    Extended exposure to hand-transmitted vibration from vibrating machine is associated with an increased occurrence of symptoms of occupational disease related to hand disorder. The present case study is to determine the prevalence and correlation of significant subjective as well as objective variables that induce to hand arm vibration syndrome (HAVS) among hand-held grass-cutting workers in Malaysia. Thus, recommendations are made for grass-cutting workers and grass maintenance service management based on findings. A cross sectional study using adopted subjective Hand Arm Vibration Exposure Risk Assessment (HAVERA) questionnaire from Vibration Injury Network on hand disorder signs and symptoms was distributed to a sample of one hundred and sixty eight male workers from grass and turf maintenance industry that use vibrating machine as part of their work. For objective measure, hand-transmitted vibration measurement was collected on site during operation by the following ISO 5349-1, 2001. Two groups were identified in this research comprising of high exposure group and low-moderate exposure group. Workers also gave information about their personal identification, social history, workers’ health, occupational history and machine safety inspection. There was positive HAVS symptoms relationship between the low-moderate exposure group and high exposure group among hand-held grass-cutting workers. The prevalence ratio (PR) was considered high for experiencing white colour change at fingers and fingers go numb which are 3.63 (1.41 to 9.39) and 4.24 (2.18 to 8.27), respectively. The estimated daily vibration exposure, A(8) differs between 2.1 to 20.7 ms-2 for right hand while 2.7 to 29.1 ms-2 for left hand. The subjects claimed that the feel of numbness at left hand is much stronger compared to right hand. The results suggest that HAVS is diagnosed in Malaysia especially in agriculture sector. The A(8) indicates that the exposure value is more than exposure limit value which is 5 ms-2. Thus, control measure such as engineering and administrative control should be implemented to reduce the severity of hand-transmitted vibration hazard.

  13. Spatially Distributed Dendritic Resonance Selectively Filters Synaptic Input

    PubMed Central

    Segev, Idan; Shamma, Shihab

    2014-01-01

    An important task performed by a neuron is the selection of relevant inputs from among thousands of synapses impinging on the dendritic tree. Synaptic plasticity enables this by strenghtening a subset of synapses that are, presumably, functionally relevant to the neuron. A different selection mechanism exploits the resonance of the dendritic membranes to preferentially filter synaptic inputs based on their temporal rates. A widely held view is that a neuron has one resonant frequency and thus can pass through one rate. Here we demonstrate through mathematical analyses and numerical simulations that dendritic resonance is inevitably a spatially distributed property; and therefore the resonance frequency varies along the dendrites, and thus endows neurons with a powerful spatiotemporal selection mechanism that is sensitive both to the dendritic location and the temporal structure of the incoming synaptic inputs. PMID:25144440

  14. The modulation and demodulation module of a high resolution MOEMS accelerometer

    NASA Astrophysics Data System (ADS)

    Jiao, Xufen; Bai, Jian; Lu, Qianbo; Lou, Shuqi

    2016-02-01

    A MOEMS accelerometer with high precision based on grating interferometer is demonstrated in this paper. In order to increase the signal-to-noise ratio (SNR) and accuracy, a specific modulator and an orthogonal phase-lock demodulator are proposed. Phase modulation is introduced to this accelerometer by applying a sinusoidal signal to a piezoelectric translator (PZT) amounted to the accelerometer. Phase demodulation module consists of a circuit design and a digital design. In the circuit design, the modulated light intensity signal is converted to a voltage signal and processed. In the digital part, the demodulator is mainly composed of a Band Pass Filter, two Phase-Sensitive Detectors, a phase shifter, and two Low Pass Filters based on virtual instrument. Simulation results indicate that this approach can decrease the noise greatly, and the SNR of this demodulator is 50dB and the relative error is less than 4%.

  15. Hand-Based Biometric Analysis

    NASA Technical Reports Server (NTRS)

    Bebis, George

    2013-01-01

    Hand-based biometric analysis systems and techniques provide robust hand-based identification and verification. An image of a hand is obtained, which is then segmented into a palm region and separate finger regions. Acquisition of the image is performed without requiring particular orientation or placement restrictions. Segmentation is performed without the use of reference points on the images. Each segment is analyzed by calculating a set of Zernike moment descriptors for the segment. The feature parameters thus obtained are then fused and compared to stored sets of descriptors in enrollment templates to arrive at an identity decision. By using Zernike moments, and through additional manipulation, the biometric analysis is invariant to rotation, scale, or translation or an input image. Additionally, the analysis uses re-use of commonly seen terms in Zernike calculations to achieve additional efficiencies over traditional Zernike moment calculation.

  16. Hand-Held EMI Sensor Combined with Inertial Positioning for Cued UXO Discrimination - APG Standardized UXO Test Site

    DTIC Science & Technology

    2013-04-01

    Measurement Tracking System (SAINT) with an advanced hand-held, time-domain electromagnetic sensor (TEM-HH) and document classification performance at...rejecting 77% of the clutter. 15. SUBJECT TERMS EMI, electromagnetic induction, UXO classification, UXO, IMU, inertial measurement unit, 16. SECURITY...U c. THIS PAGE U UU 19b. TELEPHONE NUMBER (include area code) 919-677-1560 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18

  17. Hands-on Science. Exploring Magnification.

    ERIC Educational Resources Information Center

    Kepler, Lynne

    1993-01-01

    Presents hands-on science activities using inexpensive, hand-held microscopes and slides made from simple, readily available materials. The article describes how to introduce students to microscopes and presents directions for using the microscopes and making slides. A student page investigates fingerprints with microscopes. (SM)

  18. ISFET-based sensor signal processor chip design for environment monitoring applications

    NASA Astrophysics Data System (ADS)

    Chung, Wen-Yaw; Yang, Chung-Huang; Wang, Ming-Ga

    2004-12-01

    In recent years Ion-Sensitive Field Effect Transistor (ISFET) based transducers create valuable applications in physiological data acquisition and environment monitoring. This paper presents a mixed-mode ASIC design for potentiometric ISFET-based bio-chemical sensor applications including H+ sensing and hand-held pH meter. For battery power consideration, the proposed system consists of low voltage (3V) analog front-end readout circuits and digital processor has been developed and fabricated in a 0.5mm double-poly double-metal CMOS technology. To assure that the correct pH value can be measured, the two-point calibration circuitry based on the response of standard pH4 and pH7 buffer solution has been implemented by using algorithmic state machine hardware algorithms. The measurement accuracy of the chip is 10 bits and the measured range between pH 2 to pH 12 compared to ideal values is within the accuracy of 0.1pH. For homeland environmental applications, the system provide rapid, easy to use, and cost-effective on-site testing on the quality of water, such as drinking water, ground water and river water. The processor has a potential usage in battery-operated and portable devices in environmental monitoring applications compared to commercial hand-held pH meter.

  19. Eutectic-based wafer-level-packaging technique for piezoresistive MEMS accelerometers and bond characterization using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Aono, T.; Kazama, A.; Okada, R.; Iwasaki, T.; Isono, Y.

    2018-03-01

    We developed a eutectic-based wafer-level-packaging (WLP) technique for piezoresistive micro-electromechanical systems (MEMS) accelerometers on the basis of molecular dynamics analyses and shear tests of WLP accelerometers. The bonding conditions were experimentally and analytically determined to realize a high shear strength without solder material atoms diffusing to adhesion layers. Molecular dynamics (MD) simulations and energy dispersive x-ray (EDX) spectrometry done after the shear tests clarified the eutectic reaction of the solder materials used in this research. Energy relaxation calculations in MD showed that the diffusion of solder material atoms into the adhesive layer was promoted at a higher temperature. Tensile creep MD simulations also suggested that the local potential energy in a solder material model determined the fracture points of the model. These numerical results were supported by the shear tests and EDX analyses for WLP accelerometers. Consequently, a bonding load of 9.8 kN and temperature of 300 °C were found to be rational conditions because the shear strength was sufficient to endure the polishing process after the WLP process and there was little diffusion of solder material atoms to the adhesion layer. Also, eutectic-bonding-based WLP was effective for controlling the attenuation of the accelerometers by determining the thickness of electroplated solder materials that played the role of a cavity between the accelerometers and lids. If the gap distance between the two was less than 6.2 µm, the signal gains for x- and z-axis acceleration were less than 20 dB even at the resonance frequency due to air-damping.

  20. A Study into the Method of Precise Orbit Determination of a HEO Orbiter by GPS and Accelerometer

    NASA Technical Reports Server (NTRS)

    Ikenaga, Toshinori; Hashida, Yoshi; Unwin, Martin

    2007-01-01

    In the present day, orbit determination by Global Positioning System (GPS) is not unusual. Especially for low-cost small satellites, position determination by an on-board GPS receiver provides a cheap, reliable and precise method. However, the original purpose of GPS is for ground users, so the transmissions from all of the GPS satellites are directed toward the Earth s surface. Hence there are some restrictions for users above the GPS constellation to detect those signals. On the other hand, a desire for precise orbit determination for users in orbits higher than GPS constellation exists. For example, the next Japanese Very Long Baseline Interferometry (VLBI) mission "ASTRO-G" is trying to determine its orbit in an accuracy of a few centimeters at apogee. The use of GPS is essential for such ultra accurate orbit determination. This study aims to construct a method for precise orbit determination for such high orbit users, especially in High Elliptical Orbits (HEOs). There are several approaches for this objective. In this study, a hybrid method with GPS and an accelerometer is chosen. Basically, while the position cannot be determined by an on-board GPS receiver or other Range and Range Rate (RARR) method, all we can do to estimate the user satellite s position is to propagate the orbit along with the force model, which is not perfectly correct. However if it has an accelerometer (ACC), the coefficients of the air drag and the solar radiation pressure applied to the user satellite can be updated and then the propagation along with the "updated" force model can improve the fitting accuracy of the user satellite s orbit. In this study, it is assumed to use an accelerometer available in the present market. The effects by a bias error of an accelerometer will also be discussed in this paper.

  1. Evaluation of MEMS-Based Wireless Accelerometer Sensors in Detecting Gear Tooth Faults in Helicopter Transmissions

    NASA Technical Reports Server (NTRS)

    Lewicki, David George; Lambert, Nicholas A.; Wagoner, Robert S.

    2015-01-01

    The diagnostics capability of micro-electro-mechanical systems (MEMS) based rotating accelerometer sensors in detecting gear tooth crack failures in helicopter main-rotor transmissions was evaluated. MEMS sensors were installed on a pre-notched OH-58C spiral-bevel pinion gear. Endurance tests were performed and the gear was run to tooth fracture failure. Results from the MEMS sensor were compared to conventional accelerometers mounted on the transmission housing. Most of the four stationary accelerometers mounted on the gear box housing and most of the CI's used gave indications of failure at the end of the test. The MEMS system performed well and lasted the entire test. All MEMS accelerometers gave an indication of failure at the end of the test. The MEMS systems performed as well, if not better, than the stationary accelerometers mounted on the gear box housing with regards to gear tooth fault detection. For both the MEMS sensors and stationary sensors, the fault detection time was not much sooner than the actual tooth fracture time. The MEMS sensor spectrum data showed large first order shaft frequency sidebands due to the measurement rotating frame of reference. The method of constructing a pseudo tach signal from periodic characteristics of the vibration data was successful in deriving a TSA signal without an actual tach and proved as an effective way to improve fault detection for the MEMS.

  2. A Novel Controller Design for the Next Generation Space Electrostatic Accelerometer Based on Disturbance Observation and Rejection.

    PubMed

    Li, Hongyin; Bai, Yanzheng; Hu, Ming; Luo, Yingxin; Zhou, Zebing

    2016-12-23

    The state-of-the-art accelerometer technology has been widely applied in space missions. The performance of the next generation accelerometer in future geodesic satellites is pushed to 8 × 10 - 13 m / s 2 / H z 1 / 2 , which is close to the hardware fundamental limit. According to the instrument noise budget, the geodesic test mass must be kept in the center of the accelerometer within the bounds of 56 pm / Hz 1 / 2 by the feedback controller. The unprecedented control requirements and necessity for the integration of calibration functions calls for a new type of control scheme with more flexibility and robustness. A novel digital controller design for the next generation electrostatic accelerometers based on disturbance observation and rejection with the well-studied Embedded Model Control (EMC) methodology is presented. The parameters are optimized automatically using a non-smooth optimization toolbox and setting a weighted H-infinity norm as the target. The precise frequency performance requirement of the accelerometer is well met during the batch auto-tuning, and a series of controllers for multiple working modes is generated. Simulation results show that the novel controller could obtain not only better disturbance rejection performance than the traditional Proportional Integral Derivative (PID) controllers, but also new instrument functions, including: easier tuning procedure, separation of measurement and control bandwidth and smooth control parameter switching.

  3. A Novel Controller Design for the Next Generation Space Electrostatic Accelerometer Based on Disturbance Observation and Rejection

    PubMed Central

    Li, Hongyin; Bai, Yanzheng; Hu, Ming; Luo, Yingxin; Zhou, Zebing

    2016-01-01

    The state-of-the-art accelerometer technology has been widely applied in space missions. The performance of the next generation accelerometer in future geodesic satellites is pushed to 8×10−13m/s2/Hz1/2, which is close to the hardware fundamental limit. According to the instrument noise budget, the geodesic test mass must be kept in the center of the accelerometer within the bounds of 56 pm/Hz1/2 by the feedback controller. The unprecedented control requirements and necessity for the integration of calibration functions calls for a new type of control scheme with more flexibility and robustness. A novel digital controller design for the next generation electrostatic accelerometers based on disturbance observation and rejection with the well-studied Embedded Model Control (EMC) methodology is presented. The parameters are optimized automatically using a non-smooth optimization toolbox and setting a weighted H-infinity norm as the target. The precise frequency performance requirement of the accelerometer is well met during the batch auto-tuning, and a series of controllers for multiple working modes is generated. Simulation results show that the novel controller could obtain not only better disturbance rejection performance than the traditional Proportional Integral Derivative (PID) controllers, but also new instrument functions, including: easier tuning procedure, separation of measurement and control bandwidth and smooth control parameter switching. PMID:28025534

  4. Application of Accelerometer Data to Mars Odyssey Aerobraking and Atmospheric Modeling

    NASA Technical Reports Server (NTRS)

    Tolson, R. H.; Keating, G. M.; George, B. E.; Escalera, P. E.; Werner, M. R.; Dwyer, A. M.; Hanna, J. L.

    2002-01-01

    Aerobraking was an enabling technology for the Mars Odyssey mission even though it involved risk due primarily to the variability of the Mars upper atmosphere. Consequently, numerous analyses based on various data types were performed during operations to reduce these risk and among these data were measurements from spacecraft accelerometers. This paper reports on the use of accelerometer data for determining atmospheric density during Odyssey aerobraking operations. Acceleration was measured along three orthogonal axes, although only data from the component along the axis nominally into the flow was used during operations. For a one second count time, the RMS noise level varied from 0.07 to 0.5 mm/s2 permitting density recovery to between 0.15 and 1.1 kg per cu km or about 2% of the mean density at periapsis during aerobraking. Accelerometer data were analyzed in near real time to provide estimates of density at periapsis, maximum density, density scale height, latitudinal gradient, longitudinal wave variations and location of the polar vortex. Summaries are given of the aerobraking phase of the mission, the accelerometer data analysis methods and operational procedures, some applications to determining thermospheric properties, and some remaining issues on interpretation of the data. Pre-flight estimates of natural variability based on Mars Global Surveyor accelerometer measurements proved reliable in the mid-latitudes, but overestimated the variability inside the polar vortex.

  5. 77 FR 20005 - Solicitation of Input From Stakeholders Regarding the Proposed Crop Protection Competitive Grants...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... DEPARTMENT OF AGRICULTURE National Institute of Food and Agriculture Solicitation of Input From... Food and Agriculture, USDA. ACTION: Notice of public meeting and request for stakeholder input. SUMMARY... held by conference call (audio) and internet (visual only). Connection details for those meetings will...

  6. Effects of Blood-Alcohol Concentration (BAC) Feedback on BAC Estimates Over Time

    ERIC Educational Resources Information Center

    Bullers, Susan; Ennis, Melissa

    2006-01-01

    This study examines the effects of self-tested blood alcohol concentration (BAC) feedback, from personal hand-held breathalyzers, on the accuracy of BAC estimation. Using an e-mail prompted web-based questionnaire, 19 participants were asked to report both BAC estimates and subsequently measured BAC levels over the course of 27 days. Results from…

  7. Urban field guide: applying social forestry observation techniques to the east coast megalopolis

    Treesearch

    E. Svendsen; V. Marshall; M.F. Ufer

    2006-01-01

    A changing economy and different lifestyles have altered the meaning of the forest in the northeastern United States, prompting scientists to reconsider the spatial form, stewardship and function of the urban forest. The Authors describe how social observation techniques and the employment of a novel, locally based, participatory hand-held monitoring system could aid...

  8. Using virtual data for training deep model for hand gesture recognition

    NASA Astrophysics Data System (ADS)

    Nikolaev, E. I.; Dvoryaninov, P. V.; Lensky, Y. Y.; Drozdovsky, N. S.

    2018-05-01

    Deep learning has shown real promise for the classification efficiency for hand gesture recognition problems. In this paper, the authors present experimental results for a deeply-trained model for hand gesture recognition through the use of hand images. The authors have trained two deep convolutional neural networks. The first architecture produces the hand position as a 2D-vector by input hand image. The second one predicts the hand gesture class for the input image. The first proposed architecture produces state of the art results with an accuracy rate of 89% and the second architecture with split input produces accuracy rate of 85.2%. In this paper, the authors also propose using virtual data for training a supervised deep model. Such technique is aimed to avoid using original labelled images in the training process. The interest of this method in data preparation is motivated by the need to overcome one of the main challenges of deep supervised learning: using a copious amount of labelled data during training.

  9. INSIGHT (interaction of low-orbiting satellites with the surrounding ionosphere and thermosphere)

    NASA Astrophysics Data System (ADS)

    Schlicht, Anja; Reussner, Elisabeth; Lühr, Hermann; Stolle, Claudia; Xiong, Chao; Schmidt, Michael; Blossfeld, Mathis; Erdogan, Eren; Pancetta, Francesca; Flury, Jakob

    2016-04-01

    In the framework of the DFG special program "Dynamic Earth" the project INSIGHT, started in September 2015, is studying the interactions between the ionosphere and thermosphere as well as the role of the satellites and their instruments in observing the space environment. Accelerometers on low-Earth orbiters (LEOs) are flown to separate non-gravitational forces acting on the satellite from influences of gravitational effects. Amongst others these instruments provide valuable information for improving our understanding of thermospheric properties like densities and winds. An unexpected result, for example, is the clear evidence of geomagnetic field control on the neutral upper atmosphere. The charged particles of the ionosphere act as mediators between the magnetic field and the thermosphere. In the framework of INSIGHT the climatology of the thermosphere will be established and the coupling between the ionosphere and thermosphere is studied. There are indications that the accelerometers are influenced by systematic errors not identified up to now. For GRACE it is one of the discussed reasons, why this mission so far did not reach the baseline accuracy. Beutler et al. 2010 discussed the limited use of the GRACE accelerometer measurements in comparison to stochastic pulses in gravity field recovery. Analysis of the accelerometer measurements show many structures in the high frequency region which can be traced back to switching processes of electric circuits in the spacecraft, like heater and magnetic torquer switching, or so called twangs, which can be associated with discharging of non-conducting surfaces of the satellite. As all observed signals have the same time dependency a common origin is very likely, namely the coupling of time variable electric currents into the accelerometer signal. In GOCE gravity field gradients non-gravitational signatures around the magnetic poles are found indicating that even at lower frequencies problems occur. INSIGHT will identify systematic errors in the accelerometer measurements and establish an algorithm to separate these errors from real accelerations with the analysis of satellite rotations on GOCE. A transfer to other accelerometer missions will be studied. Accelerometer missions are characterized by satellites of a complex geometry and surface structure making it necessary to take their shape and surface interactions into account. On the other hand accelerometers have to be calibrated in space as biases and bias drifts are inherent. These two facts make it difficult to scale thermospheric densities. To overcome this problem a high precision orbit determination of satellites of simpler structure is more suitable. In the framework of INSIGHT a multi-satellite solution of satellite laser ranging (SLR) measurements is aimed for absolute density determination of the thermosphere. Besides, due to the coupling processes between the ionosphere and thermosphere it shall be studied how ionospheric target quantities such as the electron density can be used to improve thermospheric density modeling. This presentation provides the overall structure of the project INSIGHT as well as first results.

  10. Bulk Micromachined 6H-SiC High-g Piezoresistive Accelerometer Fabricated and Tested

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.

    2002-01-01

    High-g accelerometers are needed in certain applications, such as in the study and analysis of high-g impact landings and projectiles. Also, these accelerometers must survive the high electromagnetic fields associated with the all-electric vehicle technology needed for aerospace applications. The choice of SiC is largely due to its excellent thermomechanical properties over conventional silicon-based accelerometers, whose material properties inhibit applicability in high electromagnetic radiation and high temperatures (>150 C) unless more complex and sometimes costly packaging schemes are adopted. This work was the outcome of a NASA Glenn Research Center summer internship program, in collaboration with Cornell University and the Munitions Directorate of the U.S. Air Force in Eglin, Florida. It aimed to provide the enabling technology infrastructure (modeling, fabrication, and validation) for the implementation of SiC accelerometers designed specifically for harsh environments.

  11. Connectionist Models: Proceedings of the Summer School Held in San Diego, California on 1990

    DTIC Science & Technology

    1990-01-01

    modes: control network continues activation spreading based There is the sequential version and the parallel version on the actual inputs instead of...ent). 2. Execute all motoric actions based on activations of r a ent.The parallel version of the algorithm is local in time, units in A. Update the...a- movements that help o recognize an entering person.) tions like ’move focus left’, ’rotate focus’ are based on the activations of the C’s output

  12. Applications of a hand-held GPS receiver in South American rain forests

    NASA Technical Reports Server (NTRS)

    Baksh, Michael

    1991-01-01

    A hand-held Global Positioning System receiver was used to determine the precise locations of villages, houses, gardens, and other cultural and environmental features in poorly mapped South American rain forests. The Magellan NAV 1000 unit profides extremely accurate latitude and longitude information, but determination of altitude is problematical. Overall, the receiver effectively allows anthropologists to obtain essential locational data useful for categorizing land uses, mapping tribal boundaries, and other applications in regions where environmental conditions are harsh and/or accessibility is difficult.

  13. Automation Study for Longhorn Army Ammunition Plant Hand Held Signal Flight Assembly, Rocket Barrel Assembly, 40 MM Signal, Final Packaging/Pack-Out, and Star Finishing

    DTIC Science & Technology

    1990-03-01

    J.B. Webb Jonesboro , AR Farmington, MI Crimping Press Joraco Drake Corp. Smithfield, RI Phoenix, AZ Die Cutter Roll Cut Peerless Machinery Co. Harbour...be taken are detailed for each assembly procedure. The report provides overall system integration requirements. The layouts of the two manufacturing...buildings are detailed. Several component changes to the Hand Held Signals are proposed. None of these will affect the operation of the-final product

  14. Results of Skylab experiment T00-2, manual navigation sightings

    NASA Technical Reports Server (NTRS)

    Randle, R. J.

    1976-01-01

    An analysis of navigation data collected using a hand-held space sextant on the second and third manned Skylab missions was presented. From performance data and astronaut comments it was determined that: (1) the space sextant, the sighting station, and the sighting techniques require modification; (2) the sighting window must be of good optical quality; (3) astronaut performance was stable over long mission time; and (4) sightings made with a hand-held sextant were accurate and precise enough for reliable interplanetary manual navigation.

  15. Design and development of equipment for laser wire stripping

    NASA Technical Reports Server (NTRS)

    Iceland, W. F.

    1977-01-01

    Three laser wire strippers have been built for the stripping of Kapton-insulated wire, the baseline wire of the space shuttle orbiter. The strippers are: (1) a bench-model stripper powered with a cw CO2 10.6-micron laser, (2) a hand-held stripper powered with a cw 1.06-micron Nd-YAG laser with an output of 5-7 watts, and (3) a hand-held stripper with a five-inch-long CO2 laser inside the stripping head.

  16. Portable Biomarker Detection with Magnetic Nanotags

    PubMed Central

    Hall, Drew A.; Wang, Shan X.; Murmann, Boris; Gaster, Richard S.

    2012-01-01

    This paper presents a hand-held, portable biosensor platform for quantitative biomarker measurement. By combining magnetic nanoparticle (MNP) tags with giant magnetoresistive (GMR) spin-valve sensors, the hand-held platform achieves highly sensitive (picomolar) and specific biomarker detection in less than 20 minutes. The rapid analysis and potential low cost make this technology ideal for point-of-care (POC) diagnostics. Furthermore, this platform is able to detect multiple biomarkers simultaneously in a single assay, creating a promising diagnostic tool for a vast number of applications. PMID:22495252

  17. 29 CFR 1910.242 - Hand and portable powered tools and equipment, general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to less than 30 p.s.i. and then only with effective chip guarding and personal protective equipment. ... 29 Labor 5 2011-07-01 2011-07-01 false Hand and portable powered tools and equipment, general... Powered Tools and Other Hand-Held Equipment § 1910.242 Hand and portable powered tools and equipment...

  18. 29 CFR 1910.242 - Hand and portable powered tools and equipment, general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to less than 30 p.s.i. and then only with effective chip guarding and personal protective equipment. ... 29 Labor 5 2010-07-01 2010-07-01 false Hand and portable powered tools and equipment, general... Powered Tools and Other Hand-Held Equipment § 1910.242 Hand and portable powered tools and equipment...

  19. Spiral Bevel Pinion Crack Detection in a Helicopter Gearbox

    NASA Technical Reports Server (NTRS)

    Decker, Harry J.; Lewicki, David G.

    2003-01-01

    The vibration resulting from a cracked spiral bevel pinion was recorded and analyzed using existing Health and Usage Monitoring System (HUMS) techniques. A tooth on the input pinion to a Bell OH-58 main rotor gearbox was notched and run for an extended period at severe over-torque condition to facilitate a tooth fracture. Thirteen vibration-based diagnostic metrics were calculated throughout the run. After 101.41 hours of run time, some of the metrics indicated damage. At that point a visual inspection did not reveal any damage. The pinion was then run for another 12 minutes until a proximity probe indicated that a tooth had fractured. This paper discusses the damage detection effectiveness of the different metrics and a comparison of effects of the different accelerometer locations.

  20. Agreement between pedometer and accelerometer in measuring physical activity in overweight and obese pregnant women.

    PubMed

    Kinnunen, Tarja I; Tennant, Peter W G; McParlin, Catherine; Poston, Lucilla; Robson, Stephen C; Bell, Ruth

    2011-06-27

    Inexpensive, reliable objective methods are needed to measure physical activity (PA) in large scale trials. This study compared the number of pedometer step counts with accelerometer data in pregnant women in free-living conditions to assess agreement between these measures. Pregnant women (n = 58) with body mass index ≥25 kg/m(2) at median 13 weeks' gestation wore a GT1M Actigraph accelerometer and a Yamax Digi-Walker CW-701 pedometer for four consecutive days. The Spearman rank correlation coefficients were determined between pedometer step counts and various accelerometer measures of PA. Total agreement between accelerometer and pedometer step counts was evaluated by determining the 95% limits of agreement estimated using a regression-based method. Agreement between the monitors in categorising participants as active or inactive was assessed by determining Kappa. Pedometer step counts correlated moderately (r = 0.36 to 0.54) with most accelerometer measures of PA. Overall step counts recorded by the pedometer and the accelerometer were not significantly different (medians 5961 vs. 5687 steps/day, p = 0.37). However, the 95% limits of agreement ranged from -2690 to 2656 steps/day for the mean step count value (6026 steps/day) and changed substantially over the range of values. Agreement between the monitors in categorising participants to active and inactive varied from moderate to good depending on the criteria adopted. Despite statistically significant correlations and similar median step counts, the overall agreement between pedometer and accelerometer step counts was poor and varied with activity level. Pedometer and accelerometer steps cannot be used interchangeably in overweight and obese pregnant women.

  1. Measurement method of magnetic field for the wire suspended micro-pendulum accelerometer.

    PubMed

    Lu, Yongle; Li, Leilei; Hu, Ning; Pan, Yingjun; Ren, Chunhua

    2015-04-13

    Force producer is one of the core components of a Wire Suspended Micro-Pendulum Accelerometer; and the stability of permanent magnet in the force producer determines the consistency of the acceleration sensor's scale factor. For an assembled accelerometer; direct measurement of magnetic field strength is not a feasible option; as the magnetometer probe cannot be laid inside the micro-space of the sensor. This paper proposed an indirect measurement method of the remnant magnetization of Micro-Pendulum Accelerometer. The measurement is based on the working principle of the accelerometer; using the current output at several different scenarios to resolve the remnant magnetization of the permanent magnet. Iterative Least Squares algorithm was used for the adjustment of the data due to nonlinearity of this problem. The calculated remnant magnetization was 1.035 T. Compared to the true value; the error was less than 0.001 T. The proposed method provides an effective theoretical guidance for measuring the magnetic field of the Wire Suspended Micro-Pendulum Accelerometer; correcting the scale factor and temperature influence coefficients; etc.

  2. Detector optimization for hand-held CsI(Tl)/HgI{sub 2} gamma-ray scintillation spectrometer applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.J.; Patt, B.E.; Iwanczyk, J.S.

    Gamma-ray spectrometers using mercuric iodide (HgI{sub 2}) photodetectors (PDs) coupled with CsI(Tl) scintillators have shown excellent energy resolutions and high detection efficiency at room temperature. Additionally HgI{sub 2} semiconductor PDs allow for extreme miniaturization of the detector packaging compared with photomultiplier tube (PMT) based detectors. These advantages make possible the construction of a new generation of hand-held gamma-ray spectrometers. Studies of detector optimization for this application have been undertaken. Several contact materials including hydrogen and semi-transparent metal films have been evaluated and compared for their performances and long term stability. In order to provide higher gamma-ray detection efficiency (i.e., largermore » scintillator volume), but without causing significant degradation of the excellent response achieved with the matched scintillator/PD interface, the scintillator/PD configuration has been studied. A Monte Carlo simulation model has been developed so that the spectral shape can be predicted for various scintillator shapes and surface treatments.« less

  3. Detecting Plant Stress

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Through an exclusive patent license from NASA Stennis Space Center, Spectrum Technologies, Inc., has developed a hand-held tool that helps farmers, foresters and other growers detect unhealthy crops before the human eye can see the damage. Developed by two NASA researchers, the Observer,TM shows the viewer which plants are under stress through multispectral imaging, a process that uses specific wavelengths of the light spectrum to obtain information about objects-in this case, plants. With this device, several wavelengths of light collect information about the plant and results are immediately processed and displayed. NASA research found that previsible signs of stress, such as such as a lack of nutrients, insufficient water, disease, or insect damage, can be detected by measuring the chlorophyll content based on light energy reflected from the plant. The Observer detects stress up to 16 days before deterioration is visible to the eye. Early detection provides an opportunity to reverse stress and save the plant. The hand-held, easily operated unit works in both natural and artificial light, making it suitable for outdoor or indoor planting.

  4. Drift from the Use of Hand-Held Knapsack Pesticide Sprayers in Boyacá (Colombian Andes).

    PubMed

    García-Santos, Glenda; Feola, Giuseppe; Nuyttens, David; Diaz, Jaime

    2016-05-25

    Offsite pesticide losses in tropical mountainous regions have been little studied. One example is measuring pesticide drift soil deposition, which can support pesticide risk assessment for surface water, soil, bystanders, and off-target plants and fauna. This is considered a serious gap, given the evidence of pesticide-related poisoning in those regions. Empirical data of drift deposition of a pesticide surrogate, Uranine tracer, within one of the highest potato-producing regions in Colombia, characterized by small plots and mountain orography, is presented. High drift values encountered in this study reflect the actual spray conditions using hand-held knapsack sprayers. Comparison between measured and predicted drift values using three existing empirical equations showed important underestimation. However, after their optimization based on measured drift information, the equations showed a strong predictive power for this study area and the study conditions. The most suitable curve to assess mean relative drift was the IMAG calculator after optimization.

  5. Three-dimensional multispectral hand-held optoacoustic imaging with microsecond-level delayed laser pulses

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. L.; Bay, Erwin; Razansky, Daniel

    2015-03-01

    Three-dimensional hand-held optoacoustic imaging comes with important advantages that prompt the clinical translation of this modality, with applications envisioned in cardiovascular and peripheral vascular disease, disorders of the lymphatic system, breast cancer, arthritis or inflammation. Of particular importance is the multispectral acquisition of data by exciting the tissue at several wavelengths, which enables functional imaging applications. However, multispectral imaging of entire three-dimensional regions is significantly challenged by motion artefacts in concurrent acquisitions at different wavelengths. A method based on acquisition of volumetric datasets having a microsecond-level delay between pulses at different wavelengths is described in this work. This method can avoid image artefacts imposed by a scanning velocity greater than 2 m/s, thus, does not only facilitate imaging influenced by respiratory, cardiac or other intrinsic fast movements in living tissues, but can achieve artifact-free imaging in the presence of more significant motion, e.g., abrupt displacements during handheld-mode operation in a clinical environment.

  6. Multimodal Excitatory Interfaces with Automatic Content Classification

    NASA Astrophysics Data System (ADS)

    Williamson, John; Murray-Smith, Roderick

    We describe a non-visual interface for displaying data on mobile devices, based around active exploration: devices are shaken, revealing the contents rattling around inside. This combines sample-based contact sonification with event playback vibrotactile feedback for a rich and compelling display which produces an illusion much like balls rattling inside a box. Motion is sensed from accelerometers, directly linking the motions of the user to the feedback they receive in a tightly closed loop. The resulting interface requires no visual attention and can be operated blindly with a single hand: it is reactive rather than disruptive. This interaction style is applied to the display of an SMS inbox. We use language models to extract salient features from text messages automatically. The output of this classification process controls the timbre and physical dynamics of the simulated objects. The interface gives a rapid semantic overview of the contents of an inbox, without compromising privacy or interrupting the user.

  7. Phonological memory in sign language relies on the visuomotor neural system outside the left hemisphere language network.

    PubMed

    Kanazawa, Yuji; Nakamura, Kimihiro; Ishii, Toru; Aso, Toshihiko; Yamazaki, Hiroshi; Omori, Koichi

    2017-01-01

    Sign language is an essential medium for everyday social interaction for deaf people and plays a critical role in verbal learning. In particular, language development in those people should heavily rely on the verbal short-term memory (STM) via sign language. Most previous studies compared neural activations during signed language processing in deaf signers and those during spoken language processing in hearing speakers. For sign language users, it thus remains unclear how visuospatial inputs are converted into the verbal STM operating in the left-hemisphere language network. Using functional magnetic resonance imaging, the present study investigated neural activation while bilinguals of spoken and signed language were engaged in a sequence memory span task. On each trial, participants viewed a nonsense syllable sequence presented either as written letters or as fingerspelling (4-7 syllables in length) and then held the syllable sequence for 12 s. Behavioral analysis revealed that participants relied on phonological memory while holding verbal information regardless of the type of input modality. At the neural level, this maintenance stage broadly activated the left-hemisphere language network, including the inferior frontal gyrus, supplementary motor area, superior temporal gyrus and inferior parietal lobule, for both letter and fingerspelling conditions. Interestingly, while most participants reported that they relied on phonological memory during maintenance, direct comparisons between letters and fingers revealed strikingly different patterns of neural activation during the same period. Namely, the effortful maintenance of fingerspelling inputs relative to letter inputs activated the left superior parietal lobule and dorsal premotor area, i.e., brain regions known to play a role in visuomotor analysis of hand/arm movements. These findings suggest that the dorsal visuomotor neural system subserves verbal learning via sign language by relaying gestural inputs to the classical left-hemisphere language network.

  8. Physical Activity Assessment with the ActiGraph GT3X and Doubly Labeled Water.

    PubMed

    Chomistek, Andrea K; Yuan, Changzheng; Matthews, Charles E; Troiano, Richard P; Bowles, Heather R; Rood, Jennifer; Barnett, Junaidah B; Willett, Walter C; Rimm, Eric B; Bassett, David R

    2017-09-01

    To compare the degree to which four accelerometer metrics-total activity counts per day (TAC per day), steps per day (steps per day), physical activity energy expenditure (PAEE) (kcal·kg·d), and moderate- to vigorous-intensity physical activity (MVPA) (min·d)-were correlated with PAEE measured by doubly labeled water (DLW). Additionally, accelerometer metrics based on vertical axis counts and triaxial counts were compared. This analysis included 684 women and 611 men age 43 to 83 yr. Participants wore the Actigraph GT3X on the hip for 7 d twice during the study and the average of the two measurements was used. Each participant also completed one DLW measurement, with a subset having a repeat. PAEE was estimated by subtracting resting metabolic rate and the thermic effect of food from total daily energy expenditure estimated by DLW. Partial Spearman correlations were used to estimate associations between PAEE and each accelerometer metric. Correlations between the accelerometer metrics and DLW-determined PAEE were higher for triaxial counts than vertical axis counts. After adjusting for weight, age, accelerometer wear time, and fat free mass, the correlation between TAC per day based on triaxial counts and DLW-determined PAEE was 0.44 in women and 0.41 in men. Correlations for steps per day and accelerometer-estimated PAEE with DLW-determined PAEE were similar. After adjustment for within-person variation in DLW-determined PAEE, the correlations for TAC per day increased to 0.61 and 0.49, respectively. Correlations between MVPA and DLW-determined PAEE were lower, particularly for modified bouts of ≥10 min. Accelerometer measures that represent total activity volume, including TAC per day, steps per day, and PAEE, were more highly correlated with DLW-determined PAEE than MVPA using traditional thresholds and should be considered by researchers seeking to reduce accelerometer data to a single metric.

  9. Off-the-shelf mobile handset environments for deploying accelerometer based gait and activity analysis algorithms.

    PubMed

    Hynes, Martin; Wang, Han; Kilmartin, Liam

    2009-01-01

    Over the last decade, there has been substantial research interest in the application of accelerometry data for many forms of automated gait and activity analysis algorithms. This paper introduces a summary of new "of-the-shelf" mobile phone handset platforms containing embedded accelerometers which support the development of custom software to implement real time analysis of the accelerometer data. An overview of the main software programming environments which support the development of such software, including Java ME based JSR 256 API, C++ based Motion Sensor API and the Python based "aXYZ" module, is provided. Finally, a sample application is introduced and its performance evaluated in order to illustrate how a standard mobile phone can be used to detect gait activity using such a non-intrusive and easily accepted sensing platform.

  10. Combining a Disturbance Observer with Triple-Loop Control Based on MEMS Accelerometers for Line-of-Sight Stabilization

    PubMed Central

    Huang, Yongmei; Deng, Chao; Ren, Wei; Wu, Qiongyan

    2017-01-01

    In the CCD-based fine tracking optical system (FTOS), the whole disturbance suppression ability (DSA) is the product of the inner loop and outer position loop. Traditionally, high sampling fiber-optic gyroscopes (FOGs) are added to the platform to stabilize the line-of-sight (LOS). However, because of the FOGs’ high cost and relatively big volume relative to the back narrow space of small rotating mirrors, we attempt in this work to utilize a cheaper and smaller micro-electro-mechanical system (MEMS) accelerometer to build the inner loop, replacing the FOG. Unfortunately, since accelerometers are susceptible to the low-frequency noise, according to the classical way of using accelerometers, the crucial low-frequency DSA of the system is insufficient. To solve this problem, in this paper, we propose an approach based on MEMS accelerometers combining disturbance observer (DOB) with triple-loop control (TLC) in which the composite velocity loop is built by acceleration integration and corrected by CCD. The DOB is firstly used to reform the platform, greatly improving the medium-frequency DSA. Then the composite velocity loop exchanges a part of medium-frequency performance for the low-frequency DSA. A detailed analysis and experiments verify the proposed method has a better DSA than the traditional way and could totally substitute FOG in the LOS stabilization. PMID:29149050

  11. Private Information Retrieval Techniques for Enabling Location Privacy in Location-Based Services

    NASA Astrophysics Data System (ADS)

    Khoshgozaran, Ali; Shahabi, Cyrus

    The ubiquity of smartphones and other location-aware hand-held devices has resulted in a dramatic increase in popularity of location-based services (LBS) tailored to user locations. The comfort of LBS comes with a privacy cost. Various distressing privacy violations caused by sharing sensitive location information with potentially malicious services have highlighted the importance of location privacy research aiming to protect user privacy while interacting with LBS.

  12. Hand-held digital books in radiology: convenient access to information.

    PubMed

    D'Alessandro, M P; Galvin, J R; Santer, D M; Erkonen, W E

    1995-02-01

    Radiologists need constant, convenient access to current information throughout the course of their daily work. Today most learning in radiology is obtained from the printed word in books, journals, and teaching files, supplemented by the spoken word in lectures and conferences. Although learning from printed material and lectures has been proved efficacious over time, these media share the disadvantage of not being conveniently available for reference during the course of daily work at the alternator or in the examination room when accurate and up-to-date information is needed the most. As a result, many important questions about patient care go unanswered. We have developed a technique--hand-held digital books--to lower this barrier to searching and retrieval. When radiologists have a digital library that can be carried with them, they will be able to incorporate current radiology information into their daily decision making. We describe a technique for creating hand-held digital books and their future use in radiology.

  13. Automatic machine-learning based identification of jogging periods from accelerometer measurements of adolescents under field conditions.

    PubMed

    Zdravevski, Eftim; Risteska Stojkoska, Biljana; Standl, Marie; Schulz, Holger

    2017-01-01

    Assessment of health benefits associated with physical activity depend on the activity duration, intensity and frequency, therefore their correct identification is very valuable and important in epidemiological and clinical studies. The aims of this study are: to develop an algorithm for automatic identification of intended jogging periods; and to assess whether the identification performance is improved when using two accelerometers at the hip and ankle, compared to when using only one at either position. The study used diarized jogging periods and the corresponding accelerometer data from thirty-nine, 15-year-old adolescents, collected under field conditions, as part of the GINIplus study. The data was obtained from two accelerometers placed at the hip and ankle. Automated feature engineering technique was performed to extract features from the raw accelerometer readings and to select a subset of the most significant features. Four machine learning algorithms were used for classification: Logistic regression, Support Vector Machines, Random Forest and Extremely Randomized Trees. Classification was performed using only data from the hip accelerometer, using only data from ankle accelerometer and using data from both accelerometers. The reported jogging periods were verified by visual inspection and used as golden standard. After the feature selection and tuning of the classification algorithms, all options provided a classification accuracy of at least 0.99, independent of the applied segmentation strategy with sliding windows of either 60s or 180s. The best matching ratio, i.e. the length of correctly identified jogging periods related to the total time including the missed ones, was up to 0.875. It could be additionally improved up to 0.967 by application of post-classification rules, which considered the duration of breaks and jogging periods. There was no obvious benefit of using two accelerometers, rather almost the same performance could be achieved from either accelerometer position. Machine learning techniques can be used for automatic activity recognition, as they provide very accurate activity recognition, significantly more accurate than when keeping a diary. Identification of jogging periods in adolescents can be performed using only one accelerometer. Performance-wise there is no significant benefit from using accelerometers on both locations.

  14. Microelectromechanical systems (MEMS) sensors based on lead zirconate titanate (PZT) films

    NASA Astrophysics Data System (ADS)

    Wang, Li-Peng

    2001-12-01

    In this thesis, modeling, fabrication and testing of microelectromechanical systems (MEMS) accelerometers based on piezoelectric lead zirconate titanate (PZT) films are investigated. Three different types of structures, cantilever beam, trampoline, and annular diaphragm, are studied. It demonstrates the high-performance, miniaturate, mass-production-compatible, and potentially circuitry-integratable piezoelectric-type PZT MEMS devices. Theoretical models of the cantilever-beam and trampoline accelerometers are derived via structural dynamics and the constitutive equations of piezoelectricity. The time-dependent transverse vibration equations, mode shapes, resonant frequencies, and sensitivities of the accelerometers are calculated through the models. Optimization of the silicon and PZT thickness is achieved with considering the effects of the structural dynamics, the material properties, and manufacturability for different accelerometer specifications. This work is the first demonstration of the fabrication of bulk-micromachined accelerometers combining a deep-trench reactive ion etching (DRIE) release strategy and thick piezoelectric PZT films deposited using a sol-gel method. Processing challenges which are overcome included materials compatibility, metallization, processing of thick layers, double-side processing, deep-trench silicon etching, post-etch cleaning and process integration. In addition, the processed PZT films are characterized by dielectric, ferroelectric (polarization electric-field hysteresis), and piezoelectric measurements and no adverse effects are found. Dynamic frequency response and impedance resonance measurements are performed to ascertain the performance of the MEMS accelerometers. The results show high sensitivities and broad frequency ranges of the piezoelectric-type PZT MEMS accelerometers; the sensitivities range from 0.1 to 7.6 pC/g for resonant frequencies ranging from 44.3 kHz to 3.7 kHz. The sensitivities were compared to theoretical values and a reasonable agreement (˜36% difference) is obtained.

  15. Combining heterogenous features for 3D hand-held object recognition

    NASA Astrophysics Data System (ADS)

    Lv, Xiong; Wang, Shuang; Li, Xiangyang; Jiang, Shuqiang

    2014-10-01

    Object recognition has wide applications in the area of human-machine interaction and multimedia retrieval. However, due to the problem of visual polysemous and concept polymorphism, it is still a great challenge to obtain reliable recognition result for the 2D images. Recently, with the emergence and easy availability of RGB-D equipment such as Kinect, this challenge could be relieved because the depth channel could bring more information. A very special and important case of object recognition is hand-held object recognition, as hand is a straight and natural way for both human-human interaction and human-machine interaction. In this paper, we study the problem of 3D object recognition by combining heterogenous features with different modalities and extraction techniques. For hand-craft feature, although it reserves the low-level information such as shape and color, it has shown weakness in representing hiconvolutionalgh-level semantic information compared with the automatic learned feature, especially deep feature. Deep feature has shown its great advantages in large scale dataset recognition but is not always robust to rotation or scale variance compared with hand-craft feature. In this paper, we propose a method to combine hand-craft point cloud features and deep learned features in RGB and depth channle. First, hand-held object segmentation is implemented by using depth cues and human skeleton information. Second, we combine the extracted hetegerogenous 3D features in different stages using linear concatenation and multiple kernel learning (MKL). Then a training model is used to recognize 3D handheld objects. Experimental results validate the effectiveness and gerneralization ability of the proposed method.

  16. Driver Cellphone and Texting Bans in the United States: Evidence of Effectiveness

    PubMed Central

    McCartt, Anne T.; Kidd, David G.; Teoh, Eric R.

    2014-01-01

    Almost all U.S. states have laws limiting drivers’ cellphone use. The evidence suggests that all-driver bans on hand-held phone conversations have resulted in long-term reductions in hand-held phone use, and drivers in ban states reported higher rates of hands-free phone use and lower overall phone use compared with drivers in non-ban states. Bans on all phone use by teenage drivers have not been shown to reduce their phone use. The effects of texting bans on the rates of drivers’ texting are unknown. With regard to the effects of bans on crashes, 11 peer-reviewed papers or technical reports of all-driver hand-held phone bans and texting bans were reviewed. Some were single-state studies examining crash measures before and after a state ban; other national or multi-state studies compared crashes in states with and without bans over time. The results varied widely. The lack of appropriate controls and other challenges in conducting strong evaluations limited the findings of some studies. Thus, despite the proliferation of laws limiting drivers’ cellphone use, it is unclear whether they are having the desired effects on safety. Priorities for future research are suggested. PMID:24776230

  17. Sensing power transfer between the human body and the environment.

    PubMed

    Veltink, Peter H; Kortier, Henk; Schepers, H Martin

    2009-06-01

    The power transferred between the human body and the environment at any time and the work performed are important quantities to be estimated when evaluating and optimizing the physical interaction between the human body and the environment in sports, physical labor, and rehabilitation. It is the objective of the current paper to present a concept for estimating power transfer between the human body and the environment during free motions and using sensors at the interface, not requiring measurement systems in the environment, and to experimentally demonstrate this principle. Mass and spring loads were moved by hand over a fixed height difference via varying free movement trajectories. Kinematic and kinetic quantities were measured in the handle between the hand and the load. 3-D force and moments were measured using a 6 DOF force/moment sensor module, 3-D movement was measured using 3-D accelerometers and angular velocity sensors. The orientation was estimated from the angular velocity, using the initial orientation as a begin condition. The accelerometer signals were expressed in global coordinates using this orientation information. Velocity was estimated by integrating acceleration in global coordinates, obtained by adding gravitational acceleration to the accelerometer signals. Zero start and end velocities were used as begin and end conditions. Power was calculated as the sum of the inner products of velocity and force and of angular velocity and moment, and work was estimated by integrating power over time. The estimated performed work was compared to the potential energy difference corresponding to the change in height of the loads and appeared to be accurate within 4% for varying movements with net displacements and varying loads (mass and spring). The principle of estimating power transfer demonstrated in this paper can be used in future interfaces between the human body and the environment instrumented with body-mounted miniature 3-D force and acceleration sensors.

  18. A selective-update affine projection algorithm with selective input vectors

    NASA Astrophysics Data System (ADS)

    Kong, NamWoong; Shin, JaeWook; Park, PooGyeon

    2011-10-01

    This paper proposes an affine projection algorithm (APA) with selective input vectors, which based on the concept of selective-update in order to reduce estimation errors and computations. The algorithm consists of two procedures: input- vector-selection and state-decision. The input-vector-selection procedure determines the number of input vectors by checking with mean square error (MSE) whether the input vectors have enough information for update. The state-decision procedure determines the current state of the adaptive filter by using the state-decision criterion. As the adaptive filter is in transient state, the algorithm updates the filter coefficients with the selected input vectors. On the other hand, as soon as the adaptive filter reaches the steady state, the update procedure is not performed. Through these two procedures, the proposed algorithm achieves small steady-state estimation errors, low computational complexity and low update complexity for colored input signals.

  19. Comparison of complementary and Kalman filter based data fusion for attitude heading reference system

    NASA Astrophysics Data System (ADS)

    Islam, Tariqul; Islam, Md. Saiful; Shajid-Ul-Mahmud, Md.; Hossam-E-Haider, Md

    2017-12-01

    An Attitude Heading Reference System (AHRS) provides 3D orientation of an aircraft (roll, pitch, and yaw) with instantaneous position and also heading information. For implementation of a low cost AHRS system Micro-electrical-Mechanical system (MEMS) based sensors are used such as accelerometer, gyroscope, and magnetometer. Accelerometers suffer from errors caused by external accelerations that sums to gravity and make accelerometers based rotation inaccurate. Gyroscopes can remove such errors but create drifting problems. So for getting the precise data additionally two very common and well known filters Complementary and Kalman are introduced to the system. In this paper a comparison of system performance using these two filters is shown separately so that one would be able to select filter with better performance for his/her system.

  20. Comparison of FRF measurements and mode shapes determined using optically image based, laser, and accelerometer measurements

    NASA Astrophysics Data System (ADS)

    Warren, Christopher; Niezrecki, Christopher; Avitabile, Peter; Pingle, Pawan

    2011-08-01

    Today, accelerometers and laser Doppler vibrometers are widely accepted as valid measurement tools for structural dynamic measurements. However, limitations of these transducers prevent the accurate measurement of some phenomena. For example, accelerometers typically measure motion at a limited number of discrete points and can mass load a structure. Scanning laser vibrometers have a very wide frequency range and can measure many points without mass-loading, but are sensitive to large displacements and can have lengthy acquisition times due to sequential measurements. Image-based stereo-photogrammetry techniques provide additional measurement capabilities that compliment the current array of measurement systems by providing an alternative that favors high-displacement and low-frequency vibrations typically difficult to measure with accelerometers and laser vibrometers. Within this paper, digital image correlation, three-dimensional (3D) point-tracking, 3D laser vibrometry, and accelerometer measurements are all used to measure the dynamics of a structure to compare each of the techniques. Each approach has its benefits and drawbacks, so comparative measurements are made using these approaches to show some of the strengths and weaknesses of each technique. Additionally, the displacements determined using 3D point-tracking are used to calculate frequency response functions, from which mode shapes are extracted. The image-based frequency response functions (FRFs) are compared to those obtained by collocated accelerometers. Extracted mode shapes are then compared to those of a previously validated finite element model (FEM) of the test structure and are shown to have excellent agreement between the FEM and the conventional measurement approaches when compared using the Modal Assurance Criterion (MAC) and Pseudo-Orthogonality Check (POC).

  1. Comparative Geometrical Accuracy Investigations of Hand-Held 3d Scanning Systems - AN Update

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Lindstaedt, M.; Starosta, D.

    2018-05-01

    Hand-held 3D scanning systems are increasingly available on the market from several system manufacturers. These systems are deployed for 3D recording of objects with different size in diverse applications, such as industrial reverse engineering, and documentation of museum exhibits etc. Typical measurement distances range from 0.5 m to 4.5 m. Although they are often easy-to-use, the geometric performance of these systems, especially the precision and accuracy, are not well known to many users. First geometrical investigations of a variety of diverse hand-held 3D scanning systems were already carried out by the Photogrammetry & Laser Scanning Lab of the HafenCity University Hamburg (HCU Hamburg) in cooperation with two other universities in 2016. To obtain more information about the accuracy behaviour of the latest generation of hand-held 3D scanning systems, HCU Hamburg conducted further comparative geometrical investigations using structured light systems with speckle pattern (Artec Spider, Mantis Vision PocketScan 3D, Mantis Vision F5-SR, Mantis Vision F5-B, and Mantis Vision F6), and photogrammetric systems (Creaform HandySCAN 700 and Shining FreeScan X7). In the framework of these comparative investigations geometrically stable reference bodies were used. The appropriate reference data was acquired by measurements with two structured light projection systems (AICON smartSCAN and GOM ATOS I 2M). The comprehensive test results of the different test scenarios are presented and critically discussed in this contribution.

  2. Cellular phone use while driving at night.

    PubMed

    Vivoda, Jonathon M; Eby, David W; St Louis, Renée M; Kostyniuk, Lidia P

    2008-03-01

    Use of a cellular phone has been shown to negatively affect one's attention to the driving task, leading to an increase in crash risk. At any given daylight hour, about 6% of US drivers are actively talking on a hand-held cell phone. However, previous surveys have focused only on cell phone use during the day. Driving at night has been shown to be a riskier activity than driving during the day. The purpose of the current study was to assess the rate of hand-held cellular phone use while driving at night, using specialized night vision equipment. In 2006, two statewide direct observation survey waves of nighttime cellular phone use were conducted in Indiana utilizing specialized night vision equipment. Combined results of driver hand-held cellular phone use from both waves are presented in this manuscript. The rates of nighttime cell phone use were similar to results found in previous daytime studies. The overall rate of nighttime hand-held cellular phone use was 5.8 +/- 0.6%. Cellular phone use was highest for females and for younger drivers. In fact, the highest rate observed during the study (of 11.9%) was for 16-to 29-year-old females. The high level of cellular phone use found within the young age group, coupled with the increased crash risk associated with cellular phone use, nighttime driving, and for young drivers in general, suggests that this issue may become an important transportation-related concern.

  3. Defect Depth Measurement Using White Light Interferometry

    NASA Technical Reports Server (NTRS)

    Parker, Don; Starr, Stan

    2009-01-01

    The objectives of the White Light Interferometry project are the following: (1) Demonstrate a small hand-held instrument capable of performing inspections of identified defects on Orbiter outer pane window surfaces. (2) Build and field-test a prototype device using miniaturized optical components. (3) Modify the instrument based on field testing and begin the conversion of the unit to become a certified shop-aid.

  4. A Study on the Performance of Low Cost MEMS Sensors in Strong Motion Studies

    NASA Astrophysics Data System (ADS)

    Tanırcan, Gulum; Alçık, Hakan; Kaya, Yavuz; Beyen, Kemal

    2017-04-01

    Recent advances in sensors have helped the growth of local networks. In recent years, many Micro Electro Mechanical System (MEMS)-based accelerometers have been successfully used in seismology and earthquake engineering projects. This is basically due to the increased precision obtained in these downsized instruments. Moreover, they are cheaper alternatives to force-balance type accelerometers. In Turkey, though MEMS-based accelerometers have been used in various individual applications such as magnitude and location determination of earthquakes, structural health monitoring, earthquake early warning systems, MEMS-based strong motion networks are not currently available in other populated areas of the country. Motivation of this study comes from the fact that, if MEMS sensors are qualified to record strong motion parameters of large earthquakes, a dense network can be formed in an affordable price at highly populated areas. The goals of this study are 1) to test the performance of MEMS sensors, which are available in the inventory of the Institute through shake table tests, and 2) to setup a small scale network for observing online data transfer speed to a trusted in-house routine. In order to evaluate the suitability of sensors in strong motion related studies, MEMS sensors and a reference sensor are tested under excitations of sweeping waves as well as scaled earthquake recordings. Amplitude response and correlation coefficients versus frequencies are compared. As for earthquake recordings, comparisons are carried out in terms of strong motion(SM) parameters (PGA, PGV, AI, CAV) and elastic response of structures (Sa). Furthermore, this paper also focuses on sensitivity and selectivity for sensor performances in time-frequency domain to compare different sensing characteristics and analyzes the basic strong motion parameters that influence the design majors. Results show that the cheapest MEMS sensors under investigation are able to record the mid-frequency dominant SM parameters PGV and CAV with high correlation. PGA and AI, the high frequency components of the ground motion, are underestimated. Such a difference, on the other hand, does not manifest itself on intensity estimations. PGV and CAV values from the reference and MEMS sensors converge to the same seismic intensity level. Hence a strong motion network with MEMS sensors could be a modest option to produce PGV-based damage impact of an urban area under large magnitude earthquake threats in the immediate vicinity.

  5. An ultra-sensitive wearable accelerometer for continuous heart and lung sound monitoring.

    PubMed

    Hu, Yating; Xu, Yong

    2012-01-01

    This paper presents a chest-worn accelerometer with high sensitivity for continuous cardio-respiratory sound monitoring. The accelerometer is based on an asymmetrical gapped cantilever which is composed of a bottom mechanical layer and a top piezoelectric layer separated by a gap. This novel structure helps to increase the sensitivity by orders of magnitude compared with conventional cantilever based accelerometers. The prototype with a resonant frequency of 1100Hz and a total weight of 5 gram is designed, constructed and characterized. The size of the prototype sensor is 35mm×18mm×7.8mm (l×w×t). A built-in charge amplifier is used to amplify the output voltage of the sensor. A sensitivity of 86V/g and a noise floor of 40ng/√Hz are obtained. Preliminary tests for recording both cardiac and respiratory signals are carried out on human body and the new sensor exhibits better performance compared with a high-end electronic stethoscope.

  6. Agreement between pedometer and accelerometer in measuring physical activity in overweight and obese pregnant women

    PubMed Central

    2011-01-01

    Background Inexpensive, reliable objective methods are needed to measure physical activity (PA) in large scale trials. This study compared the number of pedometer step counts with accelerometer data in pregnant women in free-living conditions to assess agreement between these measures. Methods Pregnant women (n = 58) with body mass index ≥25 kg/m2 at median 13 weeks' gestation wore a GT1M Actigraph accelerometer and a Yamax Digi-Walker CW-701 pedometer for four consecutive days. The Spearman rank correlation coefficients were determined between pedometer step counts and various accelerometer measures of PA. Total agreement between accelerometer and pedometer step counts was evaluated by determining the 95% limits of agreement estimated using a regression-based method. Agreement between the monitors in categorising participants as active or inactive was assessed by determining Kappa. Results Pedometer step counts correlated moderately (r = 0.36 to 0.54) with most accelerometer measures of PA. Overall step counts recorded by the pedometer and the accelerometer were not significantly different (medians 5961 vs. 5687 steps/day, p = 0.37). However, the 95% limits of agreement ranged from -2690 to 2656 steps/day for the mean step count value (6026 steps/day) and changed substantially over the range of values. Agreement between the monitors in categorising participants to active and inactive varied from moderate to good depending on the criteria adopted. Conclusions Despite statistically significant correlations and similar median step counts, the overall agreement between pedometer and accelerometer step counts was poor and varied with activity level. Pedometer and accelerometer steps cannot be used interchangeably in overweight and obese pregnant women. PMID:21703033

  7. Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.

    PubMed

    Ellis, Katherine; Kerr, Jacqueline; Godbole, Suneeta; Staudenmayer, John; Lanckriet, Gert

    2016-05-01

    Accelerometers are a valuable tool for objective measurement of physical activity (PA). Wrist-worn devices may improve compliance over standard hip placement, but more research is needed to evaluate their validity for measuring PA in free-living settings. Traditional cut-point methods for accelerometers can be inaccurate and need testing in free living with wrist-worn devices. In this study, we developed and tested the performance of machine learning (ML) algorithms for classifying PA types from both hip and wrist accelerometer data. Forty overweight or obese women (mean age = 55.2 ± 15.3 yr; BMI = 32.0 ± 3.7) wore two ActiGraph GT3X+ accelerometers (right hip, nondominant wrist; ActiGraph, Pensacola, FL) for seven free-living days. Wearable cameras captured ground truth activity labels. A classifier consisting of a random forest and hidden Markov model classified the accelerometer data into four activities (sitting, standing, walking/running, and riding in a vehicle). Free-living wrist and hip ML classifiers were compared with each other, with traditional accelerometer cut points, and with an algorithm developed in a laboratory setting. The ML classifier obtained average values of 89.4% and 84.6% balanced accuracy over the four activities using the hip and wrist accelerometer, respectively. In our data set with average values of 28.4 min of walking or running per day, the ML classifier predicted average values of 28.5 and 24.5 min of walking or running using the hip and wrist accelerometer, respectively. Intensity-based cut points and the laboratory algorithm significantly underestimated walking minutes. Our results demonstrate the superior performance of our PA-type classification algorithm, particularly in comparison with traditional cut points. Although the hip algorithm performed better, additional compliance achieved with wrist devices might justify using a slightly lower performing algorithm.

  8. The effectiveness of the use of a digital activity coaching system in addition to a two-week home-based exercise program in patients after total knee arthroplasty: study protocol for a randomized controlled trial.

    PubMed

    Harmelink, Karen E M; Zeegers, A V C M; Tönis, Thijs M; Hullegie, Wim; Nijhuis-van der Sanden, Maria W G; Staal, J Bart

    2017-07-05

    There is consistent evidence that supervised programs are not superior to home-based programs after total knee arthroplasty (TKA), especially in patients without complications. Home-based exercise programs are effective, but we hypothesize that their effectiveness can be improved by increasing the adherence to physical therapy advice to reach an adequate exercise level during the program and thereafter. Our hypothesis is that an activity coaching system (accelerometer-based activity sensor), alongside a home-based exercise program, will increase adherence to exercises and the activity level, thereby improving physical functioning and recovery. The objective of this study is to determine the effectiveness of an activity coaching system in addition to a home-based exercise program after a TKA compared to only the home-based exercise program with physical functioning as outcome. This study is a single-blind randomized controlled trial. Both the intervention (n = 55) and the control group (n = 55) receive a two-week home-based exercise program, and the intervention group receives an additional activity coaching system. This is a hand-held electronic device together with an app on a smartphone providing information and advice on exercise behavior during the day. The primary outcome is physical functioning, measured with the Timed Up and Go test (TUG) after two weeks, six weeks and three months. Secondary outcomes are 1) adherence to the activity level (activity diary); 2) physical functioning, measured with the 2-Minute Walk Test (2MWT) and the Knee Osteoarthritis Outcome Score; 3) quality of life (SF-36); 4) healthcare use up to one year postoperatively and 5) cost-effectiveness. Data are collected preoperatively, three days, two and six weeks, three months and one year postoperatively. The strengths of the study are the use of both performance-based tests and self-reported questionnaires and the personalized tailored program after TKA given by specialized physical therapists. Its weakness is the lack of blinding of the participants to treatment allocation. Outcomes are generalizable to uncomplicated patients as defined in the inclusion criteria. The trial is registered in the Dutch Trial Register ( www.trialregister.nl , NTR 5109) (March 22, 2015).

  9. The Evaluation of Physical Stillness with Wearable Chest and Arm Accelerometer during Chan Ding Practice.

    PubMed

    Chang, Kang-Ming; Chun, Yu-Teng; Chen, Sih-Huei; Lu, Luo; Su, Hsiao-Ting Jannis; Liang, Hung-Meng; Santhosh, Jayasree; Ching, Congo Tak-Shing; Liu, Shing-Hong

    2016-07-20

    Chan Ding training is beneficial to health and emotional wellbeing. More and more people have taken up this practice over the past few years. A major training method of Chan Ding is to focus on the ten Mailuns, i.e., energy points, and to maintain physical stillness. In this article, wireless wearable accelerometers were used to detect physical stillness, and the created physical stillness index (PSI) was also shown. Ninety college students participated in this study. Primarily, accelerometers used on the arms and chest were examined. The results showed that the PSI values on the arms were higher than that of the chest, when participants moved their bodies in three different ways, left-right, anterior-posterior, and hand, movements with natural breathing. Then, they were divided into three groups to practice Chan Ding for approximately thirty minutes. Participants without any Chan Ding experience were in Group I. Participants with one year of Chan Ding experience were in Group II, and participants with over three year of experience were in Group III. The Chinese Happiness Inventory (CHI) was also conducted. Results showed that the PSI of the three groups measured during 20-30 min were 0.123 ± 0.155, 0.012 ± 0.013, and 0.001 ± 0.0003, respectively (p < 0.001 ***). The averaged CHI scores of the three groups were 10.13, 17.17, and 25.53, respectively (p < 0.001 ***). Correlation coefficients between PSI and CHI of the three groups were -0.440, -0.369, and -0.537, respectively (p < 0.01 **). PSI value and the wearable accelerometer that are presently available on the market could be used to evaluate the quality of the physical stillness of the participants during Chan Ding practice.

  10. The Evaluation of Physical Stillness with Wearable Chest and Arm Accelerometer during Chan Ding Practice

    PubMed Central

    Chang, Kang-Ming; Chun, Yu-Teng; Chen, Sih-Huei; Lu, Luo; Su, Hsiao-Ting Jannis; Liang, Hung-Meng; Santhosh, Jayasree; Ching, Congo Tak-Shing; Liu, Shing-Hong

    2016-01-01

    Chan Ding training is beneficial to health and emotional wellbeing. More and more people have taken up this practice over the past few years. A major training method of Chan Ding is to focus on the ten Mailuns, i.e., energy points, and to maintain physical stillness. In this article, wireless wearable accelerometers were used to detect physical stillness, and the created physical stillness index (PSI) was also shown. Ninety college students participated in this study. Primarily, accelerometers used on the arms and chest were examined. The results showed that the PSI values on the arms were higher than that of the chest, when participants moved their bodies in three different ways, left-right, anterior-posterior, and hand, movements with natural breathing. Then, they were divided into three groups to practice Chan Ding for approximately thirty minutes. Participants without any Chan Ding experience were in Group I. Participants with one year of Chan Ding experience were in Group II, and participants with over three year of experience were in Group III. The Chinese Happiness Inventory (CHI) was also conducted. Results showed that the PSI of the three groups measured during 20–30 min were 0.123 ± 0.155, 0.012 ± 0.013, and 0.001 ± 0.0003, respectively (p < 0.001 ***). The averaged CHI scores of the three groups were 10.13, 17.17, and 25.53, respectively (p < 0.001 ***). Correlation coefficients between PSI and CHI of the three groups were −0.440, −0.369, and −0.537, respectively (p < 0.01 **). PSI value and the wearable accelerometer that are presently available on the market could be used to evaluate the quality of the physical stillness of the participants during Chan Ding practice. PMID:27447641

  11. Inertial Sensor-Based Touch and Shake Metaphor for Expressive Control of 3D Virtual Avatars

    PubMed Central

    Patil, Shashidhar; Chintalapalli, Harinadha Reddy; Kim, Dubeom; Chai, Youngho

    2015-01-01

    In this paper, we present an inertial sensor-based touch and shake metaphor for expressive control of a 3D virtual avatar in a virtual environment. An intuitive six degrees-of-freedom wireless inertial motion sensor is used as a gesture and motion control input device with a sensor fusion algorithm. The algorithm enables user hand motions to be tracked in 3D space via magnetic, angular rate, and gravity sensors. A quaternion-based complementary filter is implemented to reduce noise and drift. An algorithm based on dynamic time-warping is developed for efficient recognition of dynamic hand gestures with real-time automatic hand gesture segmentation. Our approach enables the recognition of gestures and estimates gesture variations for continuous interaction. We demonstrate the gesture expressivity using an interactive flexible gesture mapping interface for authoring and controlling a 3D virtual avatar and its motion by tracking user dynamic hand gestures. This synthesizes stylistic variations in a 3D virtual avatar, producing motions that are not present in the motion database using hand gesture sequences from a single inertial motion sensor. PMID:26094629

  12. Volumetric Evaluation of Different Obturation Techniques in Primary Teeth Using Spiral Computed Tomography.

    PubMed

    Nagaveni, N B; Yadav, Sneha; Poornima, P; Reddy, Vv Subba; Roshan, N M

    Various obturation techniques have been evaluated for better filling of the root canals in primary teeth using different methods. Spiral Computed Tomography (SCT) is a new revolution in the pediatric endodontics for assessment of quality of the obturation from 3 dimensions. To evaluate the efficiency of 5 different obturation methods in delivering the filling material into the canals of primary teeth using Spiral Computed Tomography scan. A total of 50 canals of primary teeth were prepared, divided into 5 groups with 10 canals in each group and obturated with Zinc Oxide Eugenol cement using 5 different obturation techniques such as Local anesthetic syringe, Tuberculin syringe, Endodontic plugger, hand held Lentulo-spiral, and Lentulo-spiral mounted on slow speed hand piece. The pre and post obturation volume and finally the Percentage of Obturated Volume (POV) were calculated using SCT scan for each group. The data obtained was statistically analyzed using One-way Analysis of Variance (ANOVA) and Tukey's post-hoc test. Lentulo-spiral hand held showed highest POV value followed by Lentulospiral mounted to hand piece, Tuberculin syringe and Endodontic plugger; whereas Anesthetic syringe had least POV (P < 0.05). Lentulo-spiral hand held is the best obturating technique among the 5 groups evaluated as the canals of this group showed maximum percentage of filled material. However, a further study with large sample size is highly essential.

  13. Prediction of activity-related energy expenditure using accelerometer-derived physical activity under free-living conditions: a systematic review.

    PubMed

    Jeran, S; Steinbrecher, A; Pischon, T

    2016-08-01

    Activity-related energy expenditure (AEE) might be an important factor in the etiology of chronic diseases. However, measurement of free-living AEE is usually not feasible in large-scale epidemiological studies but instead has traditionally been estimated based on self-reported physical activity. Recently, accelerometry has been proposed for objective assessment of physical activity, but it is unclear to what extent this methods explains the variance in AEE. We conducted a systematic review searching MEDLINE database (until 2014) on studies that estimated AEE based on accelerometry-assessed physical activity in adults under free-living conditions (using doubly labeled water method). Extracted study characteristics were sample size, accelerometer (type (uniaxial, triaxial), metrics (for example, activity counts, steps, acceleration), recording period, body position, wear time), explained variance of AEE (R(2)) and number of additional predictors. The relation of univariate and multivariate R(2) with study characteristics was analyzed using nonparametric tests. Nineteen articles were identified. Examination of various accelerometers or subpopulations in one article was treated separately, resulting in 28 studies. Sample sizes ranged from 10 to 149. In most studies the accelerometer was triaxial, worn at the trunk, during waking hours and reported activity counts as output metric. Recording periods ranged from 5 to 15 days. The variance of AEE explained by accelerometer-assessed physical activity ranged from 4 to 80% (median crude R(2)=26%). Sample size was inversely related to the explained variance. Inclusion of 1 to 3 other predictors in addition to accelerometer output significantly increased the explained variance to a range of 12.5-86% (median total R(2)=41%). The increase did not depend on the number of added predictors. We conclude that there is large heterogeneity across studies in the explained variance of AEE when estimated based on accelerometry. Thus, data on predicted AEE based on accelerometry-assessed physical activity need to be interpreted cautiously.

  14. Optical image encryption using QR code and multilevel fingerprints in gyrator transform domains

    NASA Astrophysics Data System (ADS)

    Wei, Yang; Yan, Aimin; Dong, Jiabin; Hu, Zhijuan; Zhang, Jingtao

    2017-11-01

    A new concept of GT encryption scheme is proposed in this paper. We present a novel optical image encryption method by using quick response (QR) code and multilevel fingerprint keys in gyrator transform (GT) domains. In this method, an original image is firstly transformed into a QR code, which is placed in the input plane of cascaded GTs. Subsequently, the QR code is encrypted into the cipher-text by using multilevel fingerprint keys. The original image can be obtained easily by reading the high-quality retrieved QR code with hand-held devices. The main parameters used as private keys are GTs' rotation angles and multilevel fingerprints. Biometrics and cryptography are integrated with each other to improve data security. Numerical simulations are performed to demonstrate the validity and feasibility of the proposed encryption scheme. In the future, the method of applying QR codes and fingerprints in GT domains possesses much potential for information security.

  15. Method and apparatus for checking fire detectors

    NASA Technical Reports Server (NTRS)

    Clawson, G. T. (Inventor)

    1974-01-01

    A fire detector checking method and device are disclosed for nondestructively verifying the operation of installed fire detectors of the type which operate on the principle of detecting the rate of temperature rise of the ambient air to sound an alarm and/or which sound an alarm when the temperature of the ambient air reaches a preset level. The fire alarm checker uses the principle of effecting a controlled simulated alarm condition to ascertain wheather or not the detector will respond. The checker comprises a hand-held instrument employing a controlled heat source, e.g., an electric lamp having a variable input, for heating at a controlled rate an enclosed mass of air in a first compartment, which air mass is then disposed about the fire detector to be checked. A second compartment of the device houses an electronic circuit to sense and adjust the temperature level and heating rate of the heat source.

  16. Evaluation of protective gloves and working techniques for reducing hand-arm vibration exposure in the workplace.

    PubMed

    Milosevic, Matija; McConville, Kristiina M Valter

    2012-01-01

    Operation of handheld power tools results in exposure to hand-arm vibrations, which over time lead to numerous health complications. The objective of this study was to evaluate protective equipment and working techniques for the reduction of vibration exposure. Vibration transmissions were recorded during different work techniques: with one- and two-handed grip, while wearing protective gloves (standard, air and anti-vibration gloves) and while holding a foam-covered tool handle. The effect was examined by analyzing the reduction of transmitted vibrations at the wrist. The vibration transmission was recorded with a portable device using a triaxial accelerometer. The results suggest large and significant reductions of vibration with appropriate safety equipment. Reductions of 85.6% were achieved when anti-vibration gloves were used. Our results indicated that transmitted vibrations were affected by several factors and could be measured and significantly reduced.

  17. Assessment of input-output properties and control of neuroprosthetic hand grasp.

    PubMed

    Hines, A E; Owens, N E; Crago, P E

    1992-06-01

    Three tests have been developed to evaluate rapidly and quantitatively the input-output properties and patient control of neuroprosthetic hand grasp. Each test utilizes a visual pursuit tracking task during which the subject controls the grasp force and grasp opening (position) of the hand. The first test characterizes the static input-output properties of the hand grasp, where the input is a slowly changing patient generated command signal and the outputs are grasp force and grasp opening. Nonlinearities and inappropriate slopes have been documented in these relationships, and in some instances the need for system returning has been indicated. For each subject larger grasp forces were produced when grasping larger objects, and for some subjects the shapes of the relationships also varied with object size. The second test quantifies the ability of the subject to control the hand grasp outputs while tracking steps and ramps. Neuroprosthesis users had rms errors two to three times larger when tracking steps versus ramps, and had rms errors four to five times larger than normals when tracking ramps. The third test provides an estimate of the frequency response of the hand grasp system dynamics, from input and output data collected during a random tracking task. Transfer functions were estimated by spectral analysis after removal of the static input-output nonlinearities measured in the first test. The dynamics had low-pass filter characteristics with 3 dB cutoff frequencies from 1.0 to 1.4 Hz. The tests developed in this study provide a rapid evaluation of both the system and the user. They provide information to 1) help interpret subject performance of functional tasks, 2) evaluate the efficacy of system features such as closed-loop control, and 3) screen the neuroprosthesis to indicate the need for retuning.

  18. Variable-Tension-Cord Suspension/Vibration-Isolation System

    NASA Technical Reports Server (NTRS)

    Villemarette, Mark L.; Boston, Joshua; RInks, Judith; Felice, Pat; Stein, Tim; Payne, Patrick

    2006-01-01

    A system for mechanical suspension and vibration isolation of a machine or instrument is based on the use of Kevlar (or equivalent aromatic polyamide) cord held in variable tension between the machine or instrument and a surrounding frame. The basic concept of such a tensioned-cord suspension system (including one in which the cords are made of aromatic polyamide fibers) is not new by itself; what is new here is the additional provision for adjusting the tension during operation to optimize vibration- isolation properties. In the original application for which this system was conceived, the objective is to suspend a reciprocating cryocooler aboard a space shuttle and to prevent both (1) transmission of launch vibrations to the cryocooler and (2) transmission of vibrations from the cryocooler to samples in a chamber cooled by the cryocooler. The basic mechanical principle of this system can also be expected to be applicable to a variety of other systems in which there are requirements for cord suspension and vibration isolation. The reciprocating cryocooler of the original application is a generally axisymmetric object, and the surrounding frame is a generally axisymmetric object with windows (see figure). Two cords are threaded into a spoke-like pattern between attachment rings on the cryocooler, holes in the cage, and cord-tension- adjusting assemblies. Initially, the cord tensions are adjusted to at least the level necessary to suspend the cryocooler against gravitation. Accelerometers for measuring vibrations are mounted (1) on the cold tip of the cryocooler and (2) adjacent to the cage, on a structure that supports the cage. During operation, a technician observes the accelerometer outputs on an oscilloscope while manually adjusting the cord tensions in an effort to minimize the amount of vibration transmitted to and/or from the cryocooler. A contemplated future version of the system would include a microprocessor-based control subsystem that would include cord-tension actuators. This control subsystem would continually adjust the cord tension in response to accelerometer feedback to optimize vibration-isolation properties as required for various operating conditions. The control system could also adjust cord tensions (including setting the two cords to different tensions) to suppress resonances. Other future enhancements could include optimizing the cord material, thickness, and braid; optimizing the spoke patterns; and adding longitudinal cords for applications in which longitudinal stiffness and vibration suppression are required.

  19. Double resonator cantilever accelerometer

    DOEpatents

    Koehler, Dale R.

    1984-01-01

    A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

  20. Real-Time Classification of Patients with Balance Disorders vs. Normal Subjects Using a Low-Cost Small Wireless Wearable Gait Sensor.

    PubMed

    Nukala, Bhargava Teja; Nakano, Taro; Rodriguez, Amanda; Tsay, Jerry; Lopez, Jerry; Nguyen, Tam Q; Zupancic, Steven; Lie, Donald Y C

    2016-11-29

    Gait analysis using wearable wireless sensors can be an economical, convenient and effective way to provide diagnostic and clinical information for various health-related issues. In this work, our custom designed low-cost wireless gait analysis sensor that contains a basic inertial measurement unit (IMU) was used to collect the gait data for four patients diagnosed with balance disorders and additionally three normal subjects, each performing the Dynamic Gait Index (DGI) tests while wearing the custom wireless gait analysis sensor (WGAS). The small WGAS includes a tri-axial accelerometer integrated circuit (IC), two gyroscopes ICs and a Texas Instruments (TI) MSP430 microcontroller and is worn by each subject at the T4 position during the DGI tests. The raw gait data are wirelessly transmitted from the WGAS to a near-by PC for real-time gait data collection and analysis. In order to perform successful classification of patients vs. normal subjects, we used several different classification algorithms, such as the back propagation artificial neural network (BP-ANN), support vector machine (SVM), k -nearest neighbors (KNN) and binary decision trees (BDT), based on features extracted from the raw gait data of the gyroscopes and accelerometers. When the range was used as the input feature, the overall classification accuracy obtained is 100% with BP-ANN, 98% with SVM, 96% with KNN and 94% using BDT. Similar high classification accuracy results were also achieved when the standard deviation or other values were used as input features to these classifiers. These results show that gait data collected from our very low-cost wearable wireless gait sensor can effectively differentiate patients with balance disorders from normal subjects in real time using various classifiers, the success of which may eventually lead to accurate and objective diagnosis of abnormal human gaits and their underlying etiologies in the future, as more patient data are being collected.

  1. Hand-held synchronous scan spectrometer for in situ and immediate detection of live/dead bacteria ratio

    NASA Astrophysics Data System (ADS)

    Li, Runze; Goswami, Umang; Walck, Matthew; Khan, Kasfia; Chen, Jie; Cesario, Thomas C.; Rentzepis, Peter M.

    2017-11-01

    The design, construction, and operation of a hand-held synchronously scanned, excitation-emission, double monochromator spectrometer is described. Data show that it is possible to record and display within minutes the fluorescence spectra and ratio of live/dead bacteria in situ. Excitation emission matrix contour plots display clearly bacteria fluorescence spectra before and after UV inactivation, respectively. The separation of the fluorescence band maxima of molecular components, such as tryptophan, tyrosine, and DNA, may be distinguished in the diffused fluorescence spectra of bacteria and mixtures.

  2. Balancing fast-rotating parts of hand-held machine drive

    NASA Astrophysics Data System (ADS)

    Korotkov, V. S.; Sicora, E. A.; Nadeina, L. V.; Yongzheng, Wang

    2018-03-01

    The article considers the issues related to the balancing of fast rotating parts of the hand-held machine drive including a wave transmission with intermediate rolling elements, which is constructed on the basis of the single-phase collector motor with a useful power of 1 kW and a nominal rotation frequency of 15000 rpm. The forms of balancers and their location are chosen. The method of balancing is described. The scheme for determining of residual unbalance in two correction planes is presented. Measurement results are given in tables.

  3. Hand-held synchronous scan spectrometer for in situ and immediate detection of live/dead bacteria ratio.

    PubMed

    Li, Runze; Goswami, Umang; Walck, Matthew; Khan, Kasfia; Chen, Jie; Cesario, Thomas C; Rentzepis, Peter M

    2017-11-01

    The design, construction, and operation of a hand-held synchronously scanned, excitation-emission, double monochromator spectrometer is described. Data show that it is possible to record and display within minutes the fluorescence spectra and ratio of live/dead bacteria in situ. Excitation emission matrix contour plots display clearly bacteria fluorescence spectra before and after UV inactivation, respectively. The separation of the fluorescence band maxima of molecular components, such as tryptophan, tyrosine, and DNA, may be distinguished in the diffused fluorescence spectra of bacteria and mixtures.

  4. A capacitive CMOS-MEMS sensor designed by multi-physics simulation for integrated CMOS-MEMS technology

    NASA Astrophysics Data System (ADS)

    Konishi, Toshifumi; Yamane, Daisuke; Matsushima, Takaaki; Masu, Kazuya; Machida, Katsuyuki; Toshiyoshi, Hiroshi

    2014-01-01

    This paper reports the design and evaluation results of a capacitive CMOS-MEMS sensor that consists of the proposed sensor circuit and a capacitive MEMS device implemented on the circuit. To design a capacitive CMOS-MEMS sensor, a multi-physics simulation of the electromechanical behavior of both the MEMS structure and the sensing LSI was carried out simultaneously. In order to verify the validity of the design, we applied the capacitive CMOS-MEMS sensor to a MEMS accelerometer implemented by the post-CMOS process onto a 0.35-µm CMOS circuit. The experimental results of the CMOS-MEMS accelerometer exhibited good agreement with the simulation results within the input acceleration range between 0.5 and 6 G (1 G = 9.8 m/s2), corresponding to the output voltages between 908.6 and 915.4 mV, respectively. Therefore, we have confirmed that our capacitive CMOS-MEMS sensor and the multi-physics simulation will be beneficial method to realize integrated CMOS-MEMS technology.

  5. Failure detection and isolation investigation for strapdown skew redundant tetrad laser gyro inertial sensor arrays

    NASA Technical Reports Server (NTRS)

    Eberlein, A. J.; Lahm, T. G.

    1976-01-01

    The degree to which flight-critical failures in a strapdown laser gyro tetrad sensor assembly can be isolated in short-haul aircraft after a failure occurrence has been detected by the skewed sensor failure-detection voting logic is investigated along with the degree to which a failure in the tetrad computer can be detected and isolated at the computer level, assuming a dual-redundant computer configuration. The tetrad system was mechanized with two two-axis inertial navigation channels (INCs), each containing two gyro/accelerometer axes, computer, control circuitry, and input/output circuitry. Gyro/accelerometer data is crossfed between the two INCs to enable each computer to independently perform the navigation task. Computer calculations are synchronized between the computers so that calculated quantities are identical and may be compared. Fail-safe performance (identification of the first failure) is accomplished with a probability approaching 100 percent of the time, while fail-operational performance (identification and isolation of the first failure) is achieved 93 to 96 percent of the time.

  6. Airborne optical tracking control system design study

    NASA Astrophysics Data System (ADS)

    1992-09-01

    The Kestrel LOS Tracking Program involves the development of a computer and algorithms for use in passive tracking of airborne targets from a high altitude balloon platform. The computer receivers track error signals from a video tracker connected to one of the imaging sensors. In addition, an on-board IRU (gyro), accelerometers, a magnetometer, and a two-axis inclinometer provide inputs which are used for initial acquisitions and course and fine tracking. Signals received by the control processor from the video tracker, IRU, accelerometers, magnetometer, and inclinometer are utilized by the control processor to generate drive signals for the payload azimuth drive, the Gimballed Mirror System (GMS), and the Fast Steering Mirror (FSM). The hardware which will be procured under the LOS tracking activity is the Controls Processor (CP), the IRU, and the FSM. The performance specifications for the GMS and the payload canister azimuth driver are established by the LOS tracking design team in an effort to achieve a tracking jitter of less than 3 micro-rad, 1 sigma for one axis.

  7. Actogram analysis of free-flying migratory birds: new perspectives based on acceleration logging.

    PubMed

    Bäckman, Johan; Andersson, Arne; Pedersen, Lykke; Sjöberg, Sissel; Tøttrup, Anders P; Alerstam, Thomas

    2017-07-01

    The use of accelerometers has become an important part of biologging techniques for large-sized birds with accelerometer data providing information about flight mode, wing-beat pattern, behaviour and energy expenditure. Such data show that birds using much energy-saving soaring/gliding flight like frigatebirds and swifts can stay airborne without landing for several months. Successful accelerometer studies have recently been conducted also for free-flying small songbirds during their entire annual cycle. Here we review the principles and possibilities for accelerometer studies in bird migration. We use the first annual actograms (for red-backed shrike Lanius collurio) to explore new analyses and insights that become possible with accelerometer data. Actogram data allow precise estimates of numbers of flights, flight durations as well as departure/landing times during the annual cycle. Annual and diurnal rhythms of migratory flights, as well as prolonged nocturnal flights across desert barriers are illustrated. The shifting balance between flight, rest and different intensities of activity throughout the year as revealed by actogram data can be used to analyse exertion levels during different phases of the life cycle. Accelerometer recording of the annual activity patterns of individual birds will open up a new dimension in bird migration research.

  8. Investigation of Electrostatic Accelerometer in HUST for Space Science Missions

    NASA Astrophysics Data System (ADS)

    Bai, Yanzheng; Hu, Ming; Li, Gui; Liu, Li; Qu, Shaobo; Wu, Shuchao; Zhou, Zebing

    2014-05-01

    High-precision electrostatic accelerometers are significant payload in CHAMP, GRACE and GOCE gravity missions to measure the non-gravitational forces. In our group, space electrostatic accelerometer and inertial sensor based on the capacitive sensors and electrostatic control technique has been investigated for space science research in China such as testing of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, satellite Earth's field recovery and so on. In our group, a capacitive position sensor with a resolution of 10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are developed. The fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. Meanwhile, high voltage suspension and free fall methods are applied to verify the function of electrostatic accelerometer. Last, the engineering model of electrostatic accelerometer has been developed and tested successfully in space and preliminary results are present.

  9. Edgewood Biosensors Test Bed Hand-held and Man-Portable Edition

    DTIC Science & Technology

    2013-09-01

    Laboratories Antibody-based wave guide detection Antibody-based capture beads Seattle Sensor Systems 𔃺Ŕ’"𔃺’ Surface plasmon resonance 19  Approved...160  APPENDIX A: TECHNOLOGY READINESS ASSIGNMENTS .......................................................... A‐1  APPENDIX B: BIO ...Sandia National Laboratories’ SpinDx™, Seattle  Sensors  Systems’ SPIRIT™ and  the Research International RAPTOR scored poorly and assessed to be

  10. Seamless Tracing of Human Behavior Using Complementary Wearable and House-Embedded Sensors

    PubMed Central

    Augustyniak, Piotr; Smoleń, Magdalena; Mikrut, Zbigniew; Kańtoch, Eliasz

    2014-01-01

    This paper presents a multimodal system for seamless surveillance of elderly people in their living environment. The system uses simultaneously a wearable sensor network for each individual and premise-embedded sensors specific for each environment. The paper demonstrates the benefits of using complementary information from two types of mobility sensors: visual flow-based image analysis and an accelerometer-based wearable network. The paper provides results for indoor recognition of several elementary poses and outdoor recognition of complex movements. Instead of complete system description, particular attention was drawn to a polar histogram-based method of visual pose recognition, complementary use and synchronization of the data from wearable and premise-embedded networks and an automatic danger detection algorithm driven by two premise- and subject-related databases. The novelty of our approach also consists in feeding the databases with real-life recordings from the subject, and in using the dynamic time-warping algorithm for measurements of distance between actions represented as elementary poses in behavioral records. The main results of testing our method include: 95.5% accuracy of elementary pose recognition by the video system, 96.7% accuracy of elementary pose recognition by the accelerometer-based system, 98.9% accuracy of elementary pose recognition by the combined accelerometer and video-based system, and 80% accuracy of complex outdoor activity recognition by the accelerometer-based wearable system. PMID:24787640

  11. Improved patch-based learning for image deblurring

    NASA Astrophysics Data System (ADS)

    Dong, Bo; Jiang, Zhiguo; Zhang, Haopeng

    2015-05-01

    Most recent image deblurring methods only use valid information found in input image as the clue to fill the deblurring region. These methods usually have the defects of insufficient prior information and relatively poor adaptiveness. Patch-based method not only uses the valid information of the input image itself, but also utilizes the prior information of the sample images to improve the adaptiveness. However the cost function of this method is quite time-consuming and the method may also produce ringing artifacts. In this paper, we propose an improved non-blind deblurring algorithm based on learning patch likelihoods. On one hand, we consider the effect of the Gaussian mixture model with different weights and normalize the weight values, which can optimize the cost function and reduce running time. On the other hand, a post processing method is proposed to solve the ringing artifacts produced by traditional patch-based method. Extensive experiments are performed. Experimental results verify that our method can effectively reduce the execution time, suppress the ringing artifacts effectively, and keep the quality of deblurred image.

  12. Implementation of Wireless Input Methods (Game Controllers and Accelerometers) for Simulated Weapon Trigger Fire in the Computer Assisted Rehabilitation Environment (CAREN)

    DTIC Science & Technology

    2013-08-22

    software. Using this weapon, two ways of sending trigger fire response to the D-Flow software were proposed. One was to integrate a wireless game...Logitech International, S.A., Romanel-sur- Morges, Switzerland) and the Xbox 360 wireless controller for Windows (Microsoft, Redmond, WA). The circuit board...power on and off the game controller so that the batteries do not drain (though these devices will time out after approximately 10 minutes of

  13. Tensor Rank Preserving Discriminant Analysis for Facial Recognition.

    PubMed

    Tao, Dapeng; Guo, Yanan; Li, Yaotang; Gao, Xinbo

    2017-10-12

    Facial recognition, one of the basic topics in computer vision and pattern recognition, has received substantial attention in recent years. However, for those traditional facial recognition algorithms, the facial images are reshaped to a long vector, thereby losing part of the original spatial constraints of each pixel. In this paper, a new tensor-based feature extraction algorithm termed tensor rank preserving discriminant analysis (TRPDA) for facial image recognition is proposed; the proposed method involves two stages: in the first stage, the low-dimensional tensor subspace of the original input tensor samples was obtained; in the second stage, discriminative locality alignment was utilized to obtain the ultimate vector feature representation for subsequent facial recognition. On the one hand, the proposed TRPDA algorithm fully utilizes the natural structure of the input samples, and it applies an optimization criterion that can directly handle the tensor spectral analysis problem, thereby decreasing the computation cost compared those traditional tensor-based feature selection algorithms. On the other hand, the proposed TRPDA algorithm extracts feature by finding a tensor subspace that preserves most of the rank order information of the intra-class input samples. Experiments on the three facial databases are performed here to determine the effectiveness of the proposed TRPDA algorithm.

  14. Hand-held triangulation laser profilometer with audio output for blind people Profilométre laser à triangulation tenu en main avec sortie sonare pour non-voyants

    NASA Astrophysics Data System (ADS)

    Farcy, R.; Damaschini, R.

    1998-06-01

    We describe a device currently under industrial development which will give to the blind a means of three-dimensional space perception. It consists of a 350 g hand-held triangulating laser telemeter including electronic parts and batteries, with auditory feedback either inside the apparatus or close to the ear. The microprocessor unit converts in real time the distance measured by the telemeter into a musical note. Scanning the space with an adequate movement of the hand produces musical lines corresponding to the profiles of the environment. We discuss the optical configuration of the system relative to our first year of clinical experimentation.

  15. In-flight estimation of center of gravity position using all-accelerometers.

    PubMed

    Al-Rawashdeh, Yazan Mohammad; Elshafei, Moustafa; Al-Malki, Mohammad Fahad

    2014-09-19

    Changing the position of the Center of Gravity (CoG) for an aerial vehicle is a challenging part in navigation, and control of such vehicles. In this paper, an all-accelerometers-based inertial measurement unit is presented, with a proposed method for on-line estimation of the position of the CoG. The accelerometers' readings are used to find and correct the vehicle's angular velocity and acceleration using an Extended Kalman Filter. Next, the accelerometers' readings along with the estimated angular velocity and acceleration are used in an identification scheme to estimate the position of the CoG and the vehicle's linear acceleration. The estimated position of the CoG and motion measurements can then be used to update the control rules to achieve better trim conditions for the air vehicle.

  16. Influence of Visual Prism Adaptation on Auditory Space Representation.

    PubMed

    Pochopien, Klaudia; Fahle, Manfred

    2017-01-01

    Prisms shifting the visual input sideways produce a mismatch between the visual versus felt position of one's hand. Prism adaptation eliminates this mismatch, realigning hand proprioception with visual input. Whether this realignment concerns exclusively the visuo-(hand)motor system or it generalizes to acoustic inputs is controversial. We here show that there is indeed a slight influence of visual adaptation on the perceived direction of acoustic sources. However, this shift in perceived auditory direction can be fully explained by a subconscious head rotation during prism exposure and by changes in arm proprioception. Hence, prism adaptation does only indirectly generalize to auditory space perception.

  17. Automatic machine-learning based identification of jogging periods from accelerometer measurements of adolescents under field conditions

    PubMed Central

    Risteska Stojkoska, Biljana; Standl, Marie; Schulz, Holger

    2017-01-01

    Background Assessment of health benefits associated with physical activity depend on the activity duration, intensity and frequency, therefore their correct identification is very valuable and important in epidemiological and clinical studies. The aims of this study are: to develop an algorithm for automatic identification of intended jogging periods; and to assess whether the identification performance is improved when using two accelerometers at the hip and ankle, compared to when using only one at either position. Methods The study used diarized jogging periods and the corresponding accelerometer data from thirty-nine, 15-year-old adolescents, collected under field conditions, as part of the GINIplus study. The data was obtained from two accelerometers placed at the hip and ankle. Automated feature engineering technique was performed to extract features from the raw accelerometer readings and to select a subset of the most significant features. Four machine learning algorithms were used for classification: Logistic regression, Support Vector Machines, Random Forest and Extremely Randomized Trees. Classification was performed using only data from the hip accelerometer, using only data from ankle accelerometer and using data from both accelerometers. Results The reported jogging periods were verified by visual inspection and used as golden standard. After the feature selection and tuning of the classification algorithms, all options provided a classification accuracy of at least 0.99, independent of the applied segmentation strategy with sliding windows of either 60s or 180s. The best matching ratio, i.e. the length of correctly identified jogging periods related to the total time including the missed ones, was up to 0.875. It could be additionally improved up to 0.967 by application of post-classification rules, which considered the duration of breaks and jogging periods. There was no obvious benefit of using two accelerometers, rather almost the same performance could be achieved from either accelerometer position. Conclusions Machine learning techniques can be used for automatic activity recognition, as they provide very accurate activity recognition, significantly more accurate than when keeping a diary. Identification of jogging periods in adolescents can be performed using only one accelerometer. Performance-wise there is no significant benefit from using accelerometers on both locations. PMID:28880923

  18. Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data.

    PubMed

    Montoye, Alexander H K; Begum, Munni; Henning, Zachary; Pfeiffer, Karin A

    2017-02-01

    This study had three purposes, all related to evaluating energy expenditure (EE) prediction accuracy from body-worn accelerometers: (1) compare linear regression to linear mixed models, (2) compare linear models to artificial neural network models, and (3) compare accuracy of accelerometers placed on the hip, thigh, and wrists. Forty individuals performed 13 activities in a 90 min semi-structured, laboratory-based protocol. Participants wore accelerometers on the right hip, right thigh, and both wrists and a portable metabolic analyzer (EE criterion). Four EE prediction models were developed for each accelerometer: linear regression, linear mixed, and two ANN models. EE prediction accuracy was assessed using correlations, root mean square error (RMSE), and bias and was compared across models and accelerometers using repeated-measures analysis of variance. For all accelerometer placements, there were no significant differences for correlations or RMSE between linear regression and linear mixed models (correlations: r  =  0.71-0.88, RMSE: 1.11-1.61 METs; p  >  0.05). For the thigh-worn accelerometer, there were no differences in correlations or RMSE between linear and ANN models (ANN-correlations: r  =  0.89, RMSE: 1.07-1.08 METs. Linear models-correlations: r  =  0.88, RMSE: 1.10-1.11 METs; p  >  0.05). Conversely, one ANN had higher correlations and lower RMSE than both linear models for the hip (ANN-correlation: r  =  0.88, RMSE: 1.12 METs. Linear models-correlations: r  =  0.86, RMSE: 1.18-1.19 METs; p  <  0.05), and both ANNs had higher correlations and lower RMSE than both linear models for the wrist-worn accelerometers (ANN-correlations: r  =  0.82-0.84, RMSE: 1.26-1.32 METs. Linear models-correlations: r  =  0.71-0.73, RMSE: 1.55-1.61 METs; p  <  0.01). For studies using wrist-worn accelerometers, machine learning models offer a significant improvement in EE prediction accuracy over linear models. Conversely, linear models showed similar EE prediction accuracy to machine learning models for hip- and thigh-worn accelerometers and may be viable alternative modeling techniques for EE prediction for hip- or thigh-worn accelerometers.

  19. Development of piezoelectric bistable energy harvester based on buckled beam with axially constrained end condition for human motion

    NASA Astrophysics Data System (ADS)

    Eltanany, Ali M.; Yoshimura, Takeshi; Fujimura, Norifumi; Ebied, Mohamed R.; Ali, Mohamed G. S.

    2017-10-01

    In this study, we aim to examine the triggering force for an efficient snap-through solution of hand shaking vibrations of a piezoelectric bistable energy harvester. The proposed structure works at very low frequencies with nearly continuous periodic vibrations. The static characterizations are presented as well as the dynamic characterizations based on the phase diagrams of velocity vs displacement, voltage vs displacement, and voltage vs input acceleration. The mass attached to the bistable harvester plays an important role in determining the acceleration needed for the snap-through action, and the explanation for this role is complex because of mass dependence on frequency/amplitude vibration. Various hand shaking vibration tests are performed to demonstrate the advantage of the proposed structure in harvesting energy from hand shaking vibration. The minimum input acceleration for snap-through action was 11.59 m/s2 with peaks of 15.76 and 2 m/s2 in the frequency range of 1.3-2.7 Hz, when an attached mass of 14.6 g is used. The maximum generated power at a buckling state of 0.5 mm is 11.3 µW for the test structure at 26 g. The experimental results obtained in this study indicate that power output harvesting of slow hand shaking vibrations at 10 µW and a load resistance of 1 MΩ.

  20. Comparison of accelerometer data calibration methods used in thermospheric neutral density estimation

    NASA Astrophysics Data System (ADS)

    Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Löcher, Anno; Kusche, Jürgen; Börger, Klaus

    2018-05-01

    Ultra-sensitive space-borne accelerometers on board of low Earth orbit (LEO) satellites are used to measure non-gravitational forces acting on the surface of these satellites. These forces consist of the Earth radiation pressure, the solar radiation pressure and the atmospheric drag, where the first two are caused by the radiation emitted from the Earth and the Sun, respectively, and the latter is related to the thermospheric density. On-board accelerometer measurements contain systematic errors, which need to be mitigated by applying a calibration before their use in gravity recovery or thermospheric neutral density estimations. Therefore, we improve, apply and compare three calibration procedures: (1) a multi-step numerical estimation approach, which is based on the numerical differentiation of the kinematic orbits of LEO satellites; (2) a calibration of accelerometer observations within the dynamic precise orbit determination procedure and (3) a comparison of observed to modeled forces acting on the surface of LEO satellites. Here, accelerometer measurements obtained by the Gravity Recovery And Climate Experiment (GRACE) are used. Time series of bias and scale factor derived from the three calibration procedures are found to be different in timescales of a few days to months. Results are more similar (statistically significant) when considering longer timescales, from which the results of approach (1) and (2) show better agreement to those of approach (3) during medium and high solar activity. Calibrated accelerometer observations are then applied to estimate thermospheric neutral densities. Differences between accelerometer-based density estimations and those from empirical neutral density models, e.g., NRLMSISE-00, are observed to be significant during quiet periods, on average 22 % of the simulated densities (during low solar activity), and up to 28 % during high solar activity. Therefore, daily corrections are estimated for neutral densities derived from NRLMSISE-00. Our results indicate that these corrections improve model-based density simulations in order to provide density estimates at locations outside the vicinity of the GRACE satellites, in particular during the period of high solar/magnetic activity, e.g., during the St. Patrick's Day storm on 17 March 2015.

Top